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Abstract

Solute transport, the processes of water carrying particles through flow, is affected
by the bulk mixing that the flow experiences. Improved understanding of solute
transport can therefore lead to improved understanding of bulk mixing processes.
The Residence Time Distribution (RTD) is a non-parametric model that more
fully describes solute transport than traditional models, and therefore can provide
additional insight into the underlying mixing processes. As a predictive model,
a downstream concentration profile can be expressed as the convolution of an
upstream concentration profile with an RTD. Maximum entropy deconvolution is
an optimisation method that can be used to reverse the convolution process and
obtain an RTD from paired experimental upstream/downstream concentration
profiles. This thesis focuses on the application of maximum entropy deconvolution
to solute transport.

As maximum entropy deconvolution is a relatively new method as applied to
solute transport data, it has been tested thoroughly. An initial investigation of
the effects of outlet angle on short-circuiting (as a mixing process) in surcharged
manholes was undertaken to guide further work on maximum entropy deconvolu-
tion. Maximum entropy deconvolution was found to make repeated comparisons
between recorded and predicted data through a constraint function. A study
evaluating 12 potential correlation measures was undertaken, finding 8 measures
potentially suitable for inclusion in maximum entropy deconvolution as a con-
straint function. 3 correlation measures were found to be additionally suitable for
independent model evaluation. Several other configuration settings to maximum
entropy deconvolution (number and distribution of sample points, and number
of iterations) were also found to impact on the deconvolved RTD. These were
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examined with different types of input data (e.g. storage tank vs manhole) in
order to determine a robust combination of settings for all data types.

Two novel extensions to maximum entropy deconvolution are proposed and ex-
amined. The first novel extension involves changing interpolation function and
number of sample points to give a smoother RTD. The smoother shape is more
realistic and allows for easier interpretation of the RTD. The use of alternative in-
terpolation functions also reduces the impact of over-sampling. The second novel
extension is the deconvolution of raw data, i.e. data without pre-processing, re-
ducing potential sources for error and making deconvolution easier to apply. Syn-
thetic raw data was examined to produce guidelines for raw data quality. When
the quality limits are exceeded, some minimal pre-processing then becomes ne-
cessary.

A large data set, covering both benched and unbenched manholes with 0°, 30°,
60°, and 90° outlet angles at a range of surcharge depths and flow rates, has
been re-analysed (as raw data) with deconvolution. The data was previously ana-
lysed with Advection Dispersion Equation and Aggregated Dead Zone models. 6
characteristic RTD shapes were observed, from which different flow fields have
been inferred. Deconvolved RTDs are shown to provide new insight into mixing
processes occurring.
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Chapter 1

Introduction

“Identifying the residence time distributions of urban drainage structures from
solute transport data using maximum entropy deconvolution.”

1.1 Context

Urban drainage structures are devices throughout the urban environment that
collect and transport water. They are designed and constructed to ensure sanitary
and safe living conditions as part of the built environment. When the toilet is
flushed, water begins a long and complex journey through these structures and
the drainage network they form. In combined sewer networks (like are used in the
UK), rainfall also travels these structures. Example drainage structures include:
manholes, green roofs, combined sewer overflows (CSOs), and stilling ponds.

As the built environment spreads, it is becoming increasingly important to fully
understand and manage these structures for planning purposes. This is emphas-
ised by climate change. It is generally expected that in some areas rainfall events
will become more extreme and rain will fall at greater intensity, e.g. Mailhot et al.
(2012); Rodda et al. (2010). As a result, hydraulic loading on existing infrastruc-
ture is likely to significantly increase. An improved understanding of how urban
drainage structures function will be critical in this scenario.
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2 CHAPTER 1. INTRODUCTION

Models of drainage networks are routinely used by water companies for planning
purposes. They consist of two components: a hydraulic model that predicts flows;
and a water quality model for predicting the fate of pollution loads. The latter
is particularly important for the evaluation of CSOs. The continued occurrence
of CSO spill events (Dirckx et al., 2011) highlights the need to fully understand
the solute transport and mixing processes that occur and affect water quality
within combined sewer networks so that environmental impacts can be quantified
(Lau et al., 2002; Andrés-Doménech et al., 2010). Better understanding can lead
to improved models, risk assessments, and management decisions.

Solute transport is the process of water carrying particles through flow, and is
affected by the bulk mixing processes that the flow experiences. For example,
solute transport through a pipe is different from solute transport through a man-
hole due to the differences in flow between them. An improved understanding
of solute transport can lead to an improved understanding of the bulk mixing
processes and therefore flow.

The Residence Time Distribution (RTD) is a non-parametric model that can
describe solute transport within a reach or structure, but relies on no assumptions
about their operation. As it more fully describes solute transport than traditional
models, the RTD can provide new insights into mixing processes. This in turn
can improve network quality models.

An RTD can be extracted from recorded data using a process called deconvo-
lution. This allows for laboratory and field solute transport experiments to be
analysed to provide more information on the underlying mixing processes.

1.2 Thesis layout

This thesis focuses on the application of type of deconvolution called maximum
entropy deconvolution to solute transport. Chapter 2 provides background liter-
ature on network modelling, solute transport, and deconvolution. It also states
the aims and objectives. Chapter 3 is a initial investigation carried out with max-
imum entropy deconvolution to guide further work. Chapter 4 contains a review
of correlation measures, used to identify the similarity between two time-series in
the maximum entropy deconvolution process. Maximum entropy deconvolution
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is explored in more detail and a sensitivity analysis of configuration parameters
is carried out in Chapter 5. Two improvements to maximum entropy deconvo-
lution are developed in Chapters 6 and 7, focussing on RTD smoothness and
deconvolution of raw data respectively. Chapter 8 is an investigation of flow fields
in surcharged benched and unbenched manholes with varying outlet angle using
maximum entropy deconvolution. The thesis, conclusions, and further work are
summarised in Chapter 9.
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Chapter 2

Background

This chapter covers background literature on hydraulic, water quality, and solute
transport modelling. Solute transport modelling in manholes is introduced spe-
cifically, leading to the introduction of Residence Time Distributions as a solute
transport model and deconvolution as a means of obtaining a Residence Time
Distribution from experimental data. The aims and objectives and introduced
More detailed literature review is included in later chapters where relevant.

2.1 Hydraulic modelling

The most commonly used software package for drainage network modelling within
the UK is InfoWorks CS (Innovyze, 2010). Other packages available include MIKE
(DHI, 2012) and SWMM (U.S. EPA, 2010). Within these packages, a hydraulic
model is solved and then calibrated. Calibration is an empirical process, but the
underlying model is based on drainage structure hydraulics. The output from the
solved and calibrated model is then input into a water quality model.

Principles such as conservation of mass, conservation of energy, and conservation
of momentum (Chadwick et al., 2004) underlie all hydraulics. They are applied
through formulae like Bernoulli’s equation, the Manning formula, and reservoir
routing (Chow, 1959). Most structures in sewer networks are simple enough that
this basic hydraulics theory can be easily applied and therefore they are easily
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6 CHAPTER 2. BACKGROUND

modelled, e.g. pipes. Additionally, computational power has made the application
of numerically complex methods such as the Hardy-Cross method (Cross, 1936)
for solving network flow problems practical.

When urban drainage structures have extremely complex geometries, simpler for-
mulae and methods can no longer be applied as the application of basic hydraulics
theory is highly dependent upon simplifying assumptions. These assumptions gen-
erally no longer hold true in complex geometry due to correspondingly complex
3-D flow fields. As a result it becomes necessary to create a more detailed model.
To date these models are typically either scale physical models or Computational
Fluid Dynamics (CFD) models. CFD models implement complex systems of equa-
tions, e.g. the Navier-Stokes equations (Chadwick et al., 2004), to determine flow
through a structure.

Physical models can be expensive and can require significant expenditures of both
time and space to create. CFD models, while requiring less physical space are
extremely numerically complex, requiring significant computational time. Both
types of model require specialised knowledge. These limitations make including
realistic models of more complex urban drainage structures into larger network
models nearly impossible on anything other than a case by case basis. Empirical
calibration (e.g. for energy losses) will on many occasions alleviate the need for
a model.

2.2 Water quality modelling

Water quality modelling is a broad subject area that has many different facets,
but in general describes the transport and reactions of substances (dissolved or
solid) within water. This covers species transport, whose chemical properties may
depend on pH, temperature, and other chemicals present. Substances or particles
may or may not interact with the pipe walls in the form of particle build-up
or bioflims. Larger particles may flocculate to form suspended solids, but also
very small fine particles can be picked up and deposited again depending on flow
velocity.

Accurate water quality modelling for urban drainage depends on the accuracy of
the underlying hydraulic models as well as the accuracy of the quality models
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themselves. The use of simplified hydraulic models, however, inherently results
in simplified quality models. This affects their predictive ability, e.g. gauging the
impact of a chemical spill, which is of great importance considering the increased
awareness of impact on the environment.

2.2.1 Solute transport

Solute transport in an urban drainage context refers to the transportation of
solutes in water, i.e. chemicals that can be diluted or dissolved. (Solute trans-
port, however, may also refer to the transport of solutes in other fluids in other
contexts.) Solutes in most cases follow the flow field of the water, and therefore as
solute transport is generally concerned with understanding how solutes move, it
is also by extension concerned with how water moves. Traditionally solute trans-
port is analysed in a one-dimensional context, e.g. Fischer (1979); Rutherford
(1994). In one-dimensional solute transport, experiments are typically performed
by injecting fluorescent Rhodamine dye and measuring concentration levels with
fluorometers. Alternatively, salt or radioactive tracers may be used. This results
in a temporal concentration profile, a record of concentration level (e.g. ppm)
over time.

Plug flow in pipes occurs when all the solute moves at the average velocity of the
water, shown in Figure 2.1a. However, as plug flow does not take into account the
velocity distribution across the pipe cross-section it is not a realistic represent-
ation in most cases. Figure 2.1b shows longitudinal differential advection, which
takes into account the velocity distribution and therefore better represents solute
transport processes in pipes. Particles closer to the centre of the pipe travel fur-
ther with time as the velocity at the centre of the pipe is higher. However, this
only occurs in pipes experiencing laminar flow (very low velocities). As velocity
increases so does turbulent diffusion, which promotes mixing across the pipe dia-
meter. However, longitudinal differential advection continues to occur, resulting
in a combination of the two processes known as longitudinal dispersion. The ef-
fects of turbulent flow are shown in Figure 2.1c. Two simple models characterising
the laminar and turbulent behaviour in pipes were developed by Taylor (1953)
and Taylor (1954), respectively.

It can be inferred from Taylor’s work that Fick’s Law can be used to model lon-
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Figure 2.1: Solute transport in pipes

gitudinal solute transport assuming a constant velocity profile and cross-section,
e.g. a pipe (Rutherford, 1994). This leads to the Advection-Dispersion Equation
(ADE), shown in Equation 2.1 where S is cross-sectional averaged concentration,
t is time, Vx is the mean longitudinal velocity, x is distance, and Kx is the longit-
udinal dispersion coefficient. The solution of this equation using the “frozen cloud
method” is shown in Equation 2.2, where y(t) is the downstream response to an
upstream concentration profile u(t), t̄ is mean travel time and τ is an integration
variable. The ADE model has been applied not only to pipes, but to rivers and
other well-mixed structures.

∂S

∂t
+ Vx

∂S

∂x
= Kx

∂2S

∂x2
(2.1)

y(t) =

ˆ ∞
−∞

u(τ)Vx√
4πKxt̄

exp

[
−V

2
x (t̄− t+ τ)2

4Kxt̄

]
dτ (2.2)

Unfortunately, the ADE model is not suitable for systems that contain dead zones.
Dead zones are areas of a system that occur outside of the main flow path, where
flow velocity is extremely low in comparison to the main channel (Valentine &
Wood, 1977). The majority of a solute cloud is carried with the flow past the
dead zone while some solute enters the dead zone. Later, after the main bulk of
solute has passed, solute will continue to be released from the dead zone, leading
to a long tail in concentration profile. This is illustrated in Figure 2.2.

An alternative method for solute transport routing, the Aggregated Dead Zone
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Figure 2.2: Dead-zone mixing

(ADZ) model, was developed as an extension to the simple Cells-in-series (CIS)
model (Beer & Young, 1983; Wallis et al., 1989; Rutherford, 1994). The CIS model
assumes that solute passes through a sequence of instantaneously mixed reactors,
each with an exponential decay and no delay. The ADZ model adds a delay term
between each cell to allow for pure advection of the solute. It is convenient to
think of the ADZ model of a channel as a series of hypothetical dead zones, where
the solute transfers from one zone to the next.

The single-cell ADZ model can be expressed as the discrete time formula shown
in Equation 2.3. n is the sample point at time t, α = − exp(−4t/T ), 4t is the
sampling time-step, T is the residence time t̄ − τ , δ is τ/4t rounded down to
the nearest integer, and τ is the time delay or difference in first arrival time. The
ADZ model is useful when channels are less homogeneous, i.e. they have dead
zones, and so no longer have the consistent mean velocity or cross-sectional area
required to apply the ADE model.

y(n) = −αy(n− 1) + (1 + α)u(n− δ) (2.3)

2.3 Solute transport in surcharged manholes

One hydraulic structure of particular interest is the manhole (Figure 2.3). Man-
holes are introduced to a sewer network at regular intervals to provide access
and are present at every change in level and/or direction. After heavy rainfalls,
manholes in combined sewer systems (common in the UK) become surcharged,
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temporarily storing water. In this condition, flow through the manhole experi-
ences complex mixing processes which affect its solute transport characteristics.
These processes are not yet well understood and therefore may be represented
unrealistically in water quality models.

Previous research investigating solute transport in surcharged manholes began
with ADE and ADZ model parameter analysis (Guymer & O’Brien, 2000). Sub-
sequent research examined the effects of manhole outlet angle and benching (Saiy-
udthong, 2003). More recent research has included the effects of manhole diameter
(Guymer et al., 2005; Lau et al., 2008; Stovin et al., 2013). Figure 2.4 shows
experimental upstream and downstream concentration profiles from a manhole
with three downstream predictions: one an optimised ADE model; the second
an optimised ADZ model; and the last an RTD based prediction (introduced
in Section 2.4). This figure shows how ADE model predictions typically result
in poor fits. ADZ model predictions can be somewhat better, but that neither
model has high overall predictive capability. ADE and ADZ model performance
degrades when the underlying assumptions are not met (Davis et al., 2000; Rieck-
ermann et al., 2005).

The manhole diameter analyses have revealed a “hydraulic threshold” (e.g. Guy-
mer et al., 2005). Depending on surcharge depth, there was a significant change in
dispersion coefficient, indicating that there was a change in the solute transport
characteristics. Guymer et al. (2005) theorised that there were two flow regimes,
dependent on surcharge depth, resulting in different solute transport characterist-
ics. The two regimes are referred to as the below-threshold condition (Figure 2.5a)
and the above-threshold condition (Figure 2.5b). The threshold is the surcharge
depth at which the change in flow regime occurs, which Stovin et al. (2010a)
suggested to occur at s′ = 0.258D, where s′ is threshold surcharge depth and D

Manhole diameter
D

Pipe diameter
Dp

Threshold depth
s'

Surcharge depth
s

Figure 2.3: Manhole schematic
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Figure 2.4: Comparison of ADE, ADZ, and RTD model fits for an 800 mm man-
hole with 1 l/s flow and 31 mm surcharge depth (data from Guymer & Stovin,
2011)

is manhole diameter.

Below-threshold flow is characterised by thorough mixing, while in the above-
threshold condition the bulk of the solute passes directly through the manhole
without mixing in the surcharge volume. Guymer et al. (2005) linked this to jet
theory (Albertson et al., 1950), where the jet core creates a “short-circuiting” and
dead zone combined flow field. The yellow areas in Figure 2.5 shows this jet effect.
In Figure 2.5b, the lighter area above the jet is the manhole’s dead zone.

Flow

(a) Below-threshold
Flow

(b) Above-threshold

Figure 2.5: Mixing regimes in a surcharged manhole, shown through (PLIF) im-
ages, after Guymer et al. (2005)
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2.4 The Residence Time Distribution

Due to the poor fit of the traditional ADE and ADZ models in many cases, a
new approach to modelling solute transport centred around the Residence Time
Distribution (RTD) was developed (Stovin et al., 2010a). An RTD is a non-
parametric model that can describe the mixing (hydrodynamic) processes taking
place in a river reach or urban drainage structure. Figure 2.4 shows how the RTD
based prediction clearly provides a better fit than either an ADE or a single-cell
ADZ model can for that data.

“Residence time” in general refers to the amount of time a volume of solute may
reside within a structure before continuing. In Figures 2.2 and 2.5b, water swirls
around within the dead zone, and then continues onwards. Considering multiple
single particles passing through a dead zone, each particle may have a separate
path and therefore residence time. The RTD describes the range of times a particle
may take and is in effect a probability distribution of residence times.

The RTD is commonly used in Chemical Engineering as the E curve, where it
describes mixing in chemical reactors in response to a Dirac pulse (instantaneous
input) (Levenspiel, 1972; Denbigh & Turner, 1984). The RTD may also be referred
to as an exit distribution, age function, or transfer function. It is considered
analogous to the instantaneous unit hydrograph (Sherman, 1932).

Using the RTD as a predictive model, the relationship between the upstream and
downstream concentration profiles is defined by the convolution integral, shown
in Equation 2.4. A simplified convolution process is shown in Figure 2.6. Each
point of the upstream profile is multiplied by the RTD, creating a scaled RTD.
This scaled RTD is then placed in the downstream profile so that it starts at
upstream profile point and continues to the end of the scaled RTD. For example,
Point 1 in upstream profile (t = 1) becomes the green curve in the downstream
profile, starting at t = 1 and continuing until t = 5. This process is repeated for
Point 2, etc., of the upstream profile. The convolved profile is the summation of
all the scaled RTDs. The principle of convolution, or super-positioning, is also
used in ADE model routing (Equation 2.2).
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y(t) =

ˆ ∞
−∞

E(τ)u(t− τ)dτ (2.4)

Figure 2.7a shows what could be a typical upstream/downstream concentration
profile pair. The solute disperses and spreads out as it travels downstream. Going
backwards in time, i.e. upstream, leads towards a reverse of this and the con-
centration profile increases in peakiness (Figure 2.7b). Eventually the peakiness
reaches infinity, i.e. an instantaneous pulse. If the downstream profile is shifted
backwards in time simultaneously with the upstream profile, when the upstream
profile is instantaneous, the downstream profile is the RTD.

Figure 2.8 shows an arbitrary example RTD. It displays the primary character-
istics of the RTD. By definition, the sum of the RTD is 1, i.e.

´∞
0
E(τ)dτ = 1,

when the solute transport routing is a mass conservation (non-reactive) system.
The shaded area represents the fraction of particles input that have not yet ex-
ited at time t and hence are older than t. This RTD in general indicates that the
concentration of particles to pass through a system increases slowly, peaks, then
decreases slowly, similar to the Gaussian profile that describes Fickian processes.

The primary benefit of the RTD is that, as it is a non-parametric model, it
makes no assumptions about how a system operates. It can therefore describe
any arbitrary mixing regime. An additional feature of the RTD is that it can
be normalised along the x-axis by Equation 2.5, where tnz is normalised time,
Q is the volumetric flow rate, and V is the mixing volume (volume of water
between the upstream and downstream boundaries of the system under study,
e.g. between fluorometers) (Danckwerts, 1953). By taking into account different
flow rates and volumes (e.g. surcharge depths in manholes), different physical
scales and experimental configurations can be compared directly.

tnz = tQV −1 (2.5)

Stovin et al. (2010a) illustrate the difference between the below-threshold and
above-threshold mixing regimes by calculating RTDs from CFD models. This
comparison between different manholes was made, in part, through the use of
the Cumulative Residence Time Distribution (CRTD). The CRTD is a sum over
time of the RTD. The y-axis of a CRTD plot shows the relative amount of solute
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Figure 2.6: Convolution demonstration
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Figure 2.8: An example Residence Time Distribution, after Levenspiel (1972)

(cumulative mass-fraction) that has passed through the system. In chemical en-
gineering the CRTD is referred to as the F curve (Levenspiel, 1972).

Figure 2.9 shows two CRTDs, one for below-threshold and one for above-threshold
surcharges in an 800 mm manhole. There is a clear difference in shape between
the two CRTDs, i.e. the mixing characteristics of a hydraulic structure can be
characterised by the CRTD. The above-threshold CRTD rises steeply with a short
tail, which corresponds to the majority of the solute short-circuiting. In the below-
threshold CRTD there is only a short rise, with a long drawn out tail, reflecting
more complete mixing. The exponential response is typically associated idealised
perfect mixing, i.e. complete instantaneous mixing (Levenspiel, 1972).

2.5 Deconvolution

Deconvolution is the reverse process of convolution, that is to say the process
of determining E given u and y. It is possible to use deconvolution on recorded
experimental solute transport data to obtain an RTD with a good fit to the data.

F 
[-

]

Time (normalised)

0 1 2 3 4
0.0

0.5

1.0

Above-threshold

Below-threshold

Figure 2.9: Cumulative Residence Time Distributions, showing the difference
between the below-threshold and above-threshold conditions for an 800 mm man-
hole with 1 l/s flow (data from Guymer & Stovin, 2011)
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For the ADE and ADZ models, the model parameters can be directly estim-
ated from recorded experimental data, e.g. the method of moments (Rutherford,
1994). However, there is no equivalent direct solution for E in Equation 2.4 from
experimental data as due to the presence of noise it forms an ill-posed prob-
lem (Hansen, 1998). As a result, deconvolution is generally an optimisation pro-
cess, of which there are many methods. Madden et al. (1996) outline several,
including Fourier transform based deconvolution, using Discrete Integral Least
Squares to model the convolution process with a linear differential equation, con-
strained deconvolution using spline functions, maximum entropy deconvolution,
and a Genetic Algorithm approach to deconvolution. Gooseff et al. (2011) used
optimal Wiener filtering and geostatistical inversion in analysing solute transport
in streams. Stovin et al. (2010b) outline and apply maximum entropy deconvolu-
tion to experimental solute transport data.

Deconvolution can be considered as a control systems engineering technique for
system identification. For application to solute transport, the system under invest-
igation (e.g. manhole) becomes analogous to a single-input single-output system
and the RTD becomes the system response function (Figure 2.10). This general-
isation allows deconvolution to be applied to a wide range of systems, i.e. there
is no inherent predisposition towards any physical characteristics.

Compared to a theoretical hydrodynamic basis, deconvolution treats a solute
transport system as a black box. This is equivalent to attempting only to describe
the operation of a system, without explaining the how or why. A deconvolved
RTD is not constrained by how the system is assumed to operate. However, the
abstraction provided by the systems analogy is also a weakness. There is the
temptation to ignore the underlying hydrodynamics, which should not be done.

Solute Transport: Upstream 
Concentration Profile

Mixing
Downstream 

Concentration Profile

u(t) E y(t)

Generic System: Input System Processes Output

Figure 2.10: Systems analogy for solute transport systems
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2.5.1 Geostatistical deconvolution

Geostatistical deconvolution is one means of obtaining an RTD from experimental
solute transport data. Fienen et al. (2006) first applied geostatistical deconvolu-
tion to solute transport data. According to their work, geostatistical deconvolu-
tion is a stochastic approach to obtaining the RTD, allowing for the consideration
of uncertainty. The geostatistical solution is formulated based on Bayes’ rule and
is solved using Markov chain Monte Carlo methods, giving individual values for
each point on the RTD. Cirpka et al. (2007) proposed a different, non-linear,
solution to the geostatistical deconvolution problem based on Lagrange multi-
pliers. Payn et al. (2008) compare geostatistical deconvolution and Fast Fourier
Transform (FFT) based deconvolution to estimate RTDs. Gooseff et al. (2011)
compared geostatistical deconvolution to Weiner filtering. FFT based deconvolu-
tion was found to be sensitive to noise and Wiener filtering was observed to have
non-real (negative) values for the RTD. These papers illustrate the validity of de-
convolution and applicability of RTDs in a variety of environmental engineering
contexts.

2.5.2 Maximum entropy deconvolution

Maximum entropy deconvolution as applied by Stovin et al. (2010b) and Guymer
& Stovin (2011) to solute transport data is based on an application in pharma-
cokinetics by Hattersley et al. (2008). It is a deterministic approach that uses
two time-series, one an upstream concentration profile and the other a down-
stream concentration profile, keyed to the same times and observed at a uniform
time-step to deconvolve an RTD from non-instantaneous laboratory data. This
is achieved through a non-linear optimisation process, implemented in MATLAB
(The MathWorks Inc., 2011).

As the starting point for the optimisation, an initial estimate of the RTD (Ê0)
is made so that

´∞
0
Ê(τ)dτ = 1. Solving for the RTD is carried out by the

MATLAB fmincon function, which operates for a given number of iterations to
minimise an entropy function (Hattersley et al., 2008; Skilling & Bryan, 1984)
that evaluates RTD smoothness. The minimisation problem is also constrained
so that the recorded downstream profile matches with the predicted downstream
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profile ŷ(t). This ensures that the predicted RTD Ê is valid. (ŷ(t) is calculated as
the convolution of the Ê and the recorded upstream profile u(t), Equation 2.6.)

ŷ(t) =

ˆ ∞
−∞

Ê(τ)u(t− τ)dτ (2.6)

Before minimisation, the RTD is sub-sampled according to a logarithmic decrease
in spacing until first arrival time and a logarithmic increase in spacing to the end
of the data. At each step of the minimisation process, the RTD is linearly interpol-
ated between sample points before calculating ŷ(t). The RTD is also interpolated
as the final step of deconvolution. Sub-sampling significantly reduces the time
taken to find a solution, without significantly impacting on solution accuracy.

2.5.3 Choice of deconvolution methodology

Maximum entropy deconvolution is a preferable method to geostatistical decon-
volution for this thesis for several reasons. In general it is a simpler methodology,
which means it can be more easily applied to a range of data. It also has low
computational costs. With reference to geostatistical deconvolution, Fienen et al.
(2006) stated several days were necessary to solve for one RTD on a typical
desktop PC. In comparison maximum entropy deconvolution can take less than
a minute. Finally, positive previous experience with maximum entropy deconvo-
lution also recommends it.

2.6 Aims and objectives

The primary aim of this thesis is the further exploration of maximum entropy
deconvolution. To develop, validate, and extend the maximum entropy decon-
volution method and subsequently use the deconvolved RTDs to improve the
understanding of hydraulic processes relating to solute transport.

Specific objectives of this thesis are to:

1. Develop an understanding of and outline how maximum entropy deconvo-
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lution works.

2. Design and conduct sensitivity analyses to verify the suitability of maximum
entropy deconvolution.

3. Extend the maximum entropy deconvolution methodology to address any is-
sues encountered or potential improvements discovered during Objectives 1
and 2.

4. Apply the new methodology to existing laboratory data to validate and
demonstrate its use; and to develop new understanding of relevant mixing
conditions through the deconvolved RTDs.

2.7 Summary

Manholes occur in many places in sewer networks and better understanding of
solute transport processes within them can result in better network water qual-
ity models. Most existing research on solute transport in manholes has focussed
on Advection-Dispersion Equation and Aggregated Dead Zone model parameter
analysis of manhole configuration. A Residence Time Distribution forms a non-
parametric model that better reflects mixing processes in manholes. Stovin et al.
(2010b) suggests maximum entropy deconvolution as a means of obtaining the
RTD from experimental solute transport data, and it has been chosen for explor-
ation in this thesis.

The maximum entropy deconvolution methodology is explored in more detail in
Chapter 5.
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Chapter 3

Initial investigation

Originally presented as “The Influence of Outlet Angle on Solute Transport in
Surcharged Manholes” by Sonnenwald et al. (2011) at the 12th International

Conference on Urban Drainage, Porte Alegre, Brazil, 11th–16th September 2011.

This chapter presents an analysis of variation in manhole mixing processes with
respect to outlet angle. This investigation uses maximum entropy deconvolution
as described in Chapter 2 (as it existed at the start of the research), and was used
to guide further work.

3.1 Introduction

As discussed in Section 2.3, Guymer et al. (2005) proposed that mixing in man-
holes might be generalised into two regimes, the below-threshold and above-
threshold condition, dependent on the surcharge depth. In the below-threshold
condition the flow was observed to be well-mixed. In the above-threshold con-
dition, a submerged jet forms, which reduces mean travel times and passes part
of the main body of solute through the manhole, effectively short-circuiting the
surcharge volume. Stovin et al. (2010a) suggested that the threshold occurs at
s′ = 0.258D for straight-through (0° outlet angle) manholes without benching.
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22 CHAPTER 3. INITIAL INVESTIGATION

Saiyudthong (2003) investigated the effects of varying outlet angle in benched
and unbenched surcharged manholes on solute transport and head loss. The Ag-
gregated Dead Zone model parameter analysis carried out indicated the presence
of the threshold, which appeared to occur at different elevations dependent upon
the outlet angle. He also suggested that travel time might be influenced by out-
let angle. This aim of this chapter is to use the previously collected data with
maximum entropy deconvolution to identify Residence Time Distributions. These
will be used these to investigate both the elevation of the threshold as well as
how the mixing changes with outlet angle by quantifying the fraction of the flow
short-circuiting the surcharge volume.

3.2 Methodology

The data set was recorded using a recirculating system (Saiyudthong, 2003) with
88 mm internal diameter pipes and a 388 mm internal diameter manhole. Solute
transport tests were carried out with rhodamine dye and concentration measured
by fluorometers 1350 mm either side of the manhole centre line. Surcharge was
measured as depth of water above the soffit using a water level follower and ranged
from s = 0 mm to s = 460 mm, where s is surcharge depth. The outlet angles
were 0°, 30°, 60°, and 90° and flow rates were 1, 2, 4, 6 and 8 l/s. Figure 3.1 shows
the laboratory setup.

The data analysed in this chapter is the 1 l/s unbenched manhole concentration
profiles and the distribution of surcharges covered is shown in Figure 3.2. The 30°,
60°, and 90° data were already pre-processed and calibrated, while the 0° data were
not. Pre-processing of the 0° data was carried out as described by Saiyudthong
(2003). Background was established as a linear relationship between the average
of the first and last 30 seconds of the profile, then subtracted. A 6.5 second moving
average was applied. The 0° data were down-sampled so that the time step would
be equal to the time step of the other data at 0.15 seconds. At least three test
runs were completed for each flow condition and configuration. The start of a
test was defined as 1% of the peak upstream concentration and the end 1% of
the peak downstream concentration.

The original laboratory fluorometer calibration function was not available to cal-
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(a) The manhole in a 90° outlet angle configuration
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Figure 3.1: The experimental setup of Saiyudthong (2003)
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ibrate the 0° data. Instead, the concentration profile was scaled so that the area
under the upstream profile and downstream profile was the same. This implies
that the mass recovery is 100%, which is acceptable as the mass recovery observed
in the 30°, 60°, and 90° data was generally high. The dimensionless characteristic
of the RTD means that the amount of mass need not be consistent across tests.

The data were deconvolved using the deconvolution approach outlined in Sec-
tion 2.5.2. Mass-balance of the deconvolved Cumulative Residence Time Distri-
butions was enforced by scaling so that the final CRTD value equalled 1. The
resulting CRTDs were grouped by the surcharges shown in Figure 3.2, with a
maximum variation of ±0.5 mm, and averaged to produce a single CRTD for
each configuration. The average was taken based on cumulative mass fraction
rather than time, i.e. horizontal averaging—the times taken to reach a CRTD
value of x were averaged. The average CRTDs were then temporally normalised
according to Equation 2.5. The results are presented in Figures 3.4 to 3.7.

3.2.1 Identifying the threshold depth

As previously discussed, the above-threshold condition is characterised by short-
circuiting, which typically gives rise to a two-stage CRTD. The first portion of the
curve is steep and almost linear. This corresponds to the mass fraction of flow (and
solute) that passes directly through (short-circuits) the manhole. There is then a
clear transition in the CRTD, with the second part (i.e. the remainder of the dis-
tribution) exhibiting a more drawn out tail. In contrast, a below-threshold CRTD
is a continuous curve, reflecting more complete mixing. The sharp discontinuity
(point of inflection, shelf, or kink) between the two stages of the above-threshold
CRTD has been used to identify the presence of short-circuiting and estimate the
proportion of the flow that experiences it. This is shown in Figure 3.3, where it is
estimated that approximately 45% of the flow short-circuits. The transition from
below-threshold to above-threshold CRTDs provides an estimate of the threshold
depth.
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Figure 3.3: Sample plot showing angled out below-threshold and above-threshold
CRTDs, highlighting the short-circuiting fraction

3.3 Results and discussion

The 0° outlet angle CRTDs (Figure 3.4) appear to be solely above-threshold.
They all exhibit a rapid rise followed by a longer tail. The general lack of overall
similarity between the CRTDs, particularly the initial rise, makes it especially
difficult to determine if there is indeed a threshold, so no clear value can be
determined for its surcharge depth. However, CRTDs at surcharge depths greater
than 100 mm do appear to be more similar and may therefore match the s′ =

0.258D model. At sub-100 mm surcharges, the CRTDs show more below-threshold
characteristics, with a gentler slope.

The initial rise of the 0° CRTDs decreases systematically with surcharge. This
variation indicates that the system is not well-mixed, i.e. the main body of the
flow short-circuits the manhole, passing through as a jet. For solute travelling in
a short-circuiting jet, residence time is constant independent of surcharge depth,
and therefore when surcharge and volume increases, as volume is in the denomin-
ator and discharge is fixed, the normalised time of the initial rise lowers. When the
outlet angle is not 0° this effect is suppressed by more complex mixing processes
affecting the jet.

The 30° outlet angle CRTDs (Figure 3.5) fall into two clear groups, with a few
outliers. The first group (s ≥ 306 mm) shows the characteristic steep incline
and then drawn out tail, indicating it is above-threshold. The second group (s ≤
242 mm) is more consistent with below-threshold, appearing to be approximately
exponential in form. One outlier, the single CRTD that occurs between the two
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Figure 3.4: 0° outlet angle normalised average deconvolved CRTDs for 10 sur-
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Figure 3.5: 30° outlet angle normalised average deconvolved CRTDs for 15 sur-
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Figure 3.6: 60° outlet angle normalised average deconvolved CRTDs for 16 sur-
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Figure 3.7: 90° outlet angle normalised average deconvolved CRTDs for 16 sur-
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groups (s = 273 mm) could be a surcharge that is around threshold, and so
consists of below-threshold and above-threshold CRTDs averaged together, or
could represent a transition zone. This indicates the threshold to be between the
surcharges of 242 mm and 306 mm. The remaining outliers occur at low threshold
(s ≤ 30 mm) and indicate short-circuiting based on their CRTD shape (different
to above-threshold short-circuiting).

The 60° outlet angle CRTDs (Figure 3.6) are similar to the 30° CRTDs and
also fall into two groups, but this time without outliers. The two groups are
again representative of the above-threshold and below-threshold conditions. The
threshold can be determined to be between the surcharges of 299 mm and 332 mm.
Closer inspection of the CRTDs reveals that passing a fraction of 0.9, the above-
threshold curves take longer than the below-threshold curves, indicating that the
tail is more drawn out. This appears to be unique to the 60° outlet angle.

The 90° outlet angle CRTDs (Figure 3.7) show a more gradual transition between
the two different conditions compared to the 30° and 60° CRTDs. The highest
surcharge depths (s ≥ 361 mm) show the sharp discontinuity characteristic of the
above-threshold condition. Similarly, the low surcharge conditions exhibit the ex-
ponential response associated with the below-threshold condition (s ≤ 240 mm).
Precise identification of the threshold elevation is not possible with this data
set, although it is clearly much greater than the s′ = 0.258D model previously
suggested for 0° manholes.

The 90° data also presents the clearest evidence of a possible third regime at
very low surcharge depths, similar to above-threshold, i.e. short-circuiting. The
CRTDs for the surcharges of 1 mm and 32 mm both exhibit the long first arrival
times characteristic of the below-threshold condition, but their initial rises are
steep. There is also the sharp discontinuity associated with the above-threshold
condition. These curves are similar to the low surcharge outliers present within
the 30° data. They indicate that an amount of flow travels through the manhole
with the jet, the remainder experiencing full mixing. This may also be present in
some of the low surcharge CRTDs from the 0° and 60° data.

The results suggest that, as outlet angle increases, the depth at which the flow
transitions from the below-threshold to the above-threshold condition increases.
The threshold appears to occur at 100 mm at 0° (s′ = 0.258D), 242–306 mm
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at 30° (0.623D ≤ s′ ≤ 0.789D), 299–332 mm at 60° (0.770D ≤ s′ ≤ 0.856D),
and 240–361 mm at 90° (0.619D ≤ s′ ≤ 0.930D), shown in Figure 3.8. It is clear
that the previously established model of s′ = 0.258D is only applicable when the
outlet angle is 0°.

3.3.1 Short-circuiting

Numerical values of short-circuiting mass fraction can be inferred from the CRTD
plots by looking for the point at which the steep incline ceases. The short-
circuiting that occurs is difficult to gauge because of the variation between in-
dividual above-threshold CRTDs. The estimated range of values is presented in
Figure 3.8, which shows a possible inverse relationship between outlet angle and
mass short-circuiting.

3.3.2 Physical processes

The shape of the CRTD can provide some insight as to what might be occurring
within the manhole. Figure 3.9 shows potential paths of the jet for the different
outlet angles in the above-threshold condition, based solely on the CRTD and
some understanding of jets. These are presented as horizontal and vertical sec-
tions. The arrows indicate direction of flow and the intensity of the line indicates
strength of flow.

Most of the jet is shown to pass straight through the manhole in the 0° outlet angle
case (Figure 3.9a), with the edges of the jet recirculating horizontally. Vertically,
some of the flow goes into surcharged volume mixing. Most of the flow continues
straight through the manhole, corresponding to the observed high proportion of
short-circuiting.

In the 30° outlet angle case, shown in Figure 3.9b, a portion of the jet deflects
horizontally through to the outlet angle with some further small recirculation to
the left of the jet flow. A larger portion of the jet recirculates on the right, setting
up pressure that reinforces the deflection of the jet. Vertically there is more of
the jet that passes into storage mixing, which is related to the recirculation on
the right and hence a reduction in short-circuiting.
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Figure 3.8: The observed threshold depth and proportion of mass short-circuiting
at each outlet angle

Some recirculation to the left from the edge of the jet is thought to be possible
in the 60° outlet angle case (Figure 3.9c), with flow nearer to the main body of
the jet passing directly through. However, the main body itself is not forced to
the outlet and instead recirculates. Correspondingly the main body of the jet also
goes into vertical storage mixing and reduces the short-circuiting further.

When the outlet angle is 90°, as shown in Figure 3.9d, the jet no longer deflects,
or only deflects slightly, and mainly impacts the far wall of the manhole. This
sends most of the dye into surcharge storage mixing with a small amount short-
circuiting, possibly due to eddies around the very edge of the jet. The vertical
section shows the setup of an even larger recirculation pattern, with most of the
jet going upwards as it impacts the wall. Even at low surcharge levels, the system
is well-mixed.

3.4 Conclusions

• The deconvolution approach produced consistent Cumulative Residence
Time Distributions for all outlet angles. Whilst not completely clear, the
CRTDs suggest the presence of the previously postulated threshold and
that the surcharge depth of its occurrence increases with outlet angle.

• There is some evidence of a low-surcharge short-circuiting regime.

• A significant fraction of dye that passes directly through the system due to
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Horizontal Vertical

(a) 0° outlet angle

Horizontal Vertical

(b) 30° outlet angle
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(c) 60° outlet angle

Horizontal Vertical

(d) 90° outlet angle

Figure 3.9: Diagram of potential path of jet, flow is left to right
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short-circuiting. This is reduced at higher outlet angle.

• It is possible to suggest the behaviour of the jet to some extent based on
the CRTD, and also explain the CRTD by considering the jet.

Since this investigation was conducted and the chapter detailing it was originally
written, significant progress has been made on both deconvolution and interpreting
CRTDs. A reanalysis of this data is presented later in Chapter 8. This experience
gained carrying out this research helped to guide research in subsequent chapters.
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Chapter 4

Correlation measures, model
identification, and model

evaluation

Originally presented as “Correlation Measures for Solute Transport Model
Identification & Evaluation” by Sonnenwald et al. (2013b) at the XXXII

International School of Hydraulics, Łochów, Poland, 28nd–31st May 2012. It
was subsequently published as a book chapter in Experimental and

Computational Solutions of Hydraulic Problems in 2013 and is reproduced here
with the kind permission of Springer Science+Business Media.

Maximum entropy deconvolution relies heavily on a term that compares the
known, experimental, downstream concentration profile to a downstream con-
centration profile predicted with an estimated Residence Time Distribution. A
correlation measure compares the two profiles in each step of the minimisation
process. As the comparison is responsible for ensuring an accurate RTD, correl-
ation measures are explored here to provide understanding of how correlation
value reflects differences between time-series.
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4.1 Introduction

A correlation value expresses the similarity between either two separate time-
series or two segments of the same time-series. They are frequently used to eval-
uate the goodness-of-fit for models. Within solute transport and environmental
engineering, typically the R2 (Nash & Sutcliffe, 1970), R2

t (Young et al., 1980),
and RMSD (Anderson & Woessner, 1992) correlation measures are used. The
conventional understanding is that a higher or lower correlation value represents
a better fit, but the reasons for the use of a specific correlation measure are typic-
ally not discussed. For example, with reference to solute transport model fitting,
Fischer (1967) only specified that “the best possible agreement” be obtained, with
no further guidance on how agreement is defined or assessed.

As previously discussed in Section 2.5.2, Stovin et al. (2010b) described a de-
convolution based approach to identifying a Residence Time Distribution (RTD)
from experimentally obtained upstream and downstream concentration profiles.
In its original application it utilised the χ2 parameter as the goodness-of-fit con-
straint (Hattersley et al., 2008; Greenwood & Nikulin, 1996). For solute transport
research the method was modified to use the R2

t correlation measure as a more
familiar metric.

More information on both χ2 and R2
t is necessary to determine the suitability

of their application to solute transport data. Indeed, other correlation measures
might prove to be better. The aim of this research, therefore, is to undertake
an objective comparison of candidate correlation measures to determine which
would be most suitable for use in maximum entropy deconvolution for model (i.e.
RTD) identification. Correlation measures may also be used to cross-compare the
identified model, and so these measures are also investigated for the subsequent
evaluation of the identified RTDs.

4.1.1 Correlation measures

There are many different types of correlation/similarity measures/coefficients.
They range from simple formulaic measures, which include R2 and R2

t , to al-
gorithms such as Dynamic Time Warping (Berndt & Clifford, 1994), which pro-
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cess the data in several steps. The most common correlation measures are based
on Euclidean geometry. Euclidean based measures derive their correlation value
from the Cartesian coordinate differences of the two time-series. There are also
statistical and energy based measures. Statistical measures are derived from as-
sumed probability density functions or other statistical functions. Energy based
measures treat time-series data as analogous to energy states and apply energy
transformations or functions developed in an energy context.

While this chapter focuses on one-dimensional solute transport data, correlation
measures have applications in many fields, ranging from economic forecasting
(Miskiewicz, 2010) to voice analysis (Vlachos et al., 2002). Two-dimensional cor-
relation measures (Chen et al., 2005) are used when each time step has two asso-
ciated values, e.g. t(1) = {a, b}. Correlation measures which operate on different
time intervals or segments of the same time-series are called cross-correlation
or auto-correlation measures (Movahed et al., 2006). Auto-correlation measures
highlight trends or repeating patterns in a time-series and as such are often used
with frequency or wave form data. Correlation measures can also appear in com-
plex number forms (Boudraa et al., 2008).

Ignoring correlation measures that fall into the two-dimensional, non-linear, al-
gorithmic, and cross/auto-correlation categories, twelve correlation measures have
been identified as potentially suitable for use with solute transport data. These
are summarised in Table 4.1. The measures contain a mix of non-dimensional and
dimensional correlation measures. Non-dimensional correlation measures produce
correlation values that have a defined meaning within a fixed range. R2

t is a typ-
ical examples of this, where 1 indicates a perfect correlation, and values less than
or equal to 0 indicate no correlation.

4.1.2 Existing correlation measure comparisons

Christopoulos & Lew (2000) describe the problem of model fitting and outline
generic models and the optimisation procedures (e.g. least squares) behind model
fitting. They then describe model assessment, i.e. correlation measures, and fur-
ther methods of optimisation based on model assessment. Bennett et al. (2012)
provide an extensive review of correlation methods and measures for environ-
mental models. They describe data constraints and then outline different meth-
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Name Symbol Type Reference

Burnham-Liard Criterion BLC S George et al. (1998)
χ2 Test χ2 S Greenwood & Nikulin (1996)

Hattersley et al. (2008)
Furthest Fitting Cost Based
Similarity

FFCBS E Ye et al. (2004)
Equal weighting applied

Nash-Sutcliffe Efficiency Index R2 E, D Nash & Sutcliffe (1970)
Pearson’s Product Moment
Correlation Coefficient

PMCC S, D Rodgers & Nicewander (1988)

Root Mean Square Deviation RMSD S Anderson & Woessner (1992)
Young’s Coefficient of
Determination

R2
t E, D Young et al. (1980)

SimilB SimilB J, D Boudraa et al. (2008)
Young Information Criterion YIC S Cox & Boucher (1989)
MATLAB’s 2-D Correlation
Coefficient

CORR2 E, D The MathWorks Inc. (2011)

Integral of Squared Error ISE E Ghosh (2007)
Average Percent Error APE S, D Kashefipour & Falconer (2000)

Table 4.1: List of correlation measures: (E)uclidean; Non-(D)imensional;
(S)tatistical; (J)Energy

ods of comparing time-series: direct value comparisons, comparing time-series as
a whole; concurrent comparisons, directly comparing data points (e.g. a scat-
ter plot); residual methods, based on the difference between time-series data
points; relative error transformations, accentuating e.g. differences at high or
low values; preserving data patterns, taking into account adjacent values (e.g.
cross-correlation); indirect metrics based on model parameters, coupling para-
meter variance and model error; and data transformation methods, moving the
data into different domains (e.g. Fourier transformations). Their main focus is
on providing a 5 step guideline to correctly define the comparison between data
sets and then select an appropriate means of comparison. However, neither study
provides insight into numerical interpretation of the correlation values that might
be obtained.

Moriasi et al. (2007) conducted an extensive literature review compiling correl-
ation values reported from various model fitting studies. The study provides a
guideline for the use of the correlation measures found to be commonly used
for watershed simulations. Through analysis of the measures used and values
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obtained they recommended minimum satisfactory correlation values. However,
these specific values are only of direct relevance in the context of watershed simu-
lation performance evaluation. The study does not provide understanding of the
relative sensitivity of the correlation measures.

In general there is little guidance on how correlation values obtained reflect the
differences between time-series. Within deconvolution, the model identification
process is based on an internal comparison between correlation values, and there-
fore it is straightforward to recognise higher or lower values as representing a
better model. However, for evaluating the quality of different models, an addi-
tional understanding of the impact of differences between time-series on correla-
tion value is necessary. This is particularly important for evaluating downstream
concentration profile predictions made with deconvolved RTDs.

4.1.3 Correlation measure characteristics

For the purposes of using correlation measures in solute transport model identific-
ation and evaluation, certain characteristics are desirable. In model identification,
several models using different model parameters are compared to the same ex-
perimental data. In this scenario, all models have the same number of sample
points, so any sensitivity to this parameter can be ignored. However, when eval-
uating models, data may be of different lengths, so a correlation measure should
not be sensitive to number of sample points. In identification and evaluation,
the correlation measure should be sensitive to transformation and transformation
magnitude, e.g. the correlation value obtained should indicate that the overall
shape of the model is a poor fit when this is the case. In all scenarios correlation
measures should not be sensitive to the noise present in natural systems. This
chapter aims to systematically evaluate the 12 correlation measures in Table 4.1
against four concentration profile characteristics: number of sample points, trans-
formation, transformation intensity, and noise.
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4.2 Methodology

Three synthetic concentration profiles have been created, each representing a
different solute transport scenario. The synthetic profiles were discretised, trans-
formed, and had noise added to reflect different conditions. Correlation measures
were then used to compare the unmodified concentration profiles with their mod-
ified counterparts.

4.2.1 The synthetic concentration profiles

The three synthetic concentration profiles are shown in Figure 4.1. Profile 1 con-
sists of a normal distribution covering ±3 standard deviations (99% of the data),
as generated by the MATLAB pdf function (The MathWorks Inc., 2011). This
represents a typical response to an instantaneous input in pipe flow. Profile 2
represents a fully mixed response to a step input. It is calculated from an ex-
ponential increase and decrease. Profile 3 represents a non-ideal mixing response
to an instantaneous input in the form of a 2-cell Aggregated Dead Zone (ADZ)
model (Rutherford, 1994). Profile 1 is symmetric while Profiles 2 and 3 are more
common asymmetric shapes.
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Figure 4.1: The synthetic concentration profiles

March 2014



CHAPTER 4. CORRELATION MEASURES 39

4.2.2 Generating the test data

The test data was generated from the synthetic profiles by varying four paramet-
ers: number of points; transformation; transformation magnitude; and noise level.
The first step was to discretise the synthetic profiles according to the number of
sample points parameter. This resulted in a total of thirty profiles, three each
at 20, 40, 80, 100, 200, 400, 800, 1200, 1600, and 2000 uniformly spaced sample
points. The range of number of sample points represents common solute transport
time-series lengths. Each profile at each number of sample points was normalised
to have unit area. This ensures that changes due to variation in number of sample
points are independent of total solute volume.

From the discretised profiles, the transformed profiles were generated using five
transformations, each in combination with three transformation magnitudes, 0.05,
0.10, and 0.20. Each transformation was applied in two directions, up/down or
left/right (as appropriate) at magnitude times value (y-axis) or magnitude times
sample points (x-axis) as appropriate, e.g. a shift or stretch of 0.20 × 400 = 80

sample points. Any additional sample points that were generated as a result of
transformation were ignored, and in order to retain a constant time-series length,
zeros were inserted when the number of sample points was reduced. Figures 4.2a–
4.2e illustrate the five transformations, outlined below:

• Scaling, Figure 4.2a, a linear change in value that may occur when the
model has errors in scale or due to poor calibration of measuring equipment;

• Shifting, Figure 4.2b, a temporal change that may occur when a modelled
concentration profile has errors in its advection term;

• Truncation, Figure 4.2c, a loss of data that could be representative of not
monitoring the entire experiment;

• Stretching, Figure 4.2d, an elongation of concentration profile that could
be representative of an error in sampling frequency or an overestimation of
dispersion coefficient;

• Squeezing, Figure 4.2e, the opposite of stretching.

Noise, e.g. Figure 4.2f, was applied to the transformed concentration profiles to
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(e) Squeezing
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Figure 4.2: Examples of generated data, with transformation applied at a mag-
nitude of 0.20 and each displayed using a temporal discretisation of 400 sample
points
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represent the variation common in recorded data due to both instrument noise
and natural systems. Noise was generated through the superposition of a random
number [5, 15] of sine waves with random amplitude [-1, 1], random phase [0, π],
and random frequency [0, length/2]. This was found to have a better zero mean
when sub-sampling to lower numbers of sample points, and therefore better reflect
natural noise than purely random computer generated noise. The noise was scaled
to 0%, 5%, 10%, and 20% ratios of noise peak to discretised profile peak.

4.2.3 Generating correlation values

Correlation values are obtained from the application of a correlation measure
to two time-series. In order to evaluate the correlation measures, each measure
was used to compare each transformed concentration profile to the unmodified
original at that number of sample points. 12 correlation measures, 3 profiles, 10
numbers of sample points, 5 transformations, 3 transformation magnitudes in 2
directions and 4 noise levels gives 12×3×10×5×(3×2)×4 = 43, 200 correlation
values to be compared.

4.2.4 Comparing correlation values

Not all the correlation measures tested are non-dimensional, so a method for
directly comparing all correlation values was required. Expressing the correlation
value as a ratio of the perfect correlation value was rejected as for some measures
a perfect correlation is indicated by 0, which would result in division by zero.
Instead, correlation values were normalised into a similar range. Equation 4.1 is
used to do this, where cnorm is a normalised correlation value, c is the correlation
value to be normalised, cperfect is the value of a perfect correlation between the
concentration profile and itself prior to transformation and/or addition of noise,
cmax and cmin are respectively the highest and lowest correlation values obtained
for that profile (each either the perfect or worst correlation by definition).

cnorm = 1−
∣∣∣∣ cperfect − ccmax − cmin

∣∣∣∣ (4.1)
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Applying Equation 4.1 results in a correlation value that is context specific for a
given synthetic profile shape, number of sample points, and correlation measure. 1
will be the best match between unmodified synthetic and transformed concentra-
tion profile—0 the worst. Normalised correlation values are data set specific, and
so have limited meaning outside the present analysis. An example of normalising
correlation values is shown in Table 4.2. Despite very different raw correlation
values, the normalised values indicate that a χ2 of 2 × 105 represents a better
match between time-series than an R2

t value of 0.9975.

To directly compare the large number of correlation values generated, plots show-
ing all four parameters (number of sample points, transformation, transformation
magnitude and noise) have been generated and considered. A more easily inter-
preted summary plot has also been generated. The sensitivity of a correlation
measure to a given parameter can be expressed as the standard deviation of cor-
relation values with respect to that parameter. For example, after taking the
mean value of all correlation values for involving 20 sample points, the standard
deviation of all such means for 20 to 2000 sample points. This is expressed as the
standard deviation of the vector produced by Equation 4.2, where: i, j, k, and l
are indices for the four parameters; and N is the number of parameter values (e.g.
10 different numbers of sample points). Equation 4.2 also takes into consideration
all 3 synthetic profiles. Comparing standard deviations for each parameter and
measure gives a good indication of how well the different correlation measures
perform.

cnormvector i =
3

Nj ×Nk ×Nl

Nj∑
j=1

Nk∑
k=1

Nl∑
l=1

cnorm i,j,k,l (4.2)

Term in
Description

R2
t χ2

Equation 4.1 Non-dimensional Dimensional

c Raw correlation value to normalise 0.9975 2× 105

cmin Lowest value in data set 0.5364 0
cmax Highest value in data set 1 3.6× 108

cperfect Perfect correlation value 1 0
cnorm Normalised value 0.9946 0.9994

Table 4.2: Example correlation value normalisation
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4.3 Results and discussion

There were three stages to data analysis. The first was to examine the obtained
results in detail. Second was to examine trends and overall performance of the
correlation measures and discard those correlation measures judged unsuitable for
solute transport model identification. Finally, the correlation measures suitable
for solute transport model evaluation have been examined.

4.3.1 Detailed examination

The plots for each correlation measure are made up of multiple sub-plots, each
of which shows the correlation values for one of the synthetic profiles and one of
the transformations. There are 3 profiles and 5 transformations so there are 15
sub-plots in total. A sub-plot before and after normalisation for R2

t is shown in
Figure 4.3. The full normalised plot for R2

t is shown in Figure 4.4. As a detailed
examination of all plots does not add significantly to the analysis, the remaining
full normalised plots are in Appendix A.

Raw R2
t correlation values for the shifting transformation applied to Profile 2

are shown in Figure 4.3a, where 1 is a perfect correlation. The lines are nearly
horizontal, which indicates that noise has very little influence on the correlation
value obtained when Profile 2 is transformed by shifting. The greater vertical
spacing between the dashed lines compared with the solid lines shows that right
shifting consistently has more impact than left shifting, which is expected for this
asymmetric profile. The 2000 sample point symbols are close to their lines, but
the 20 sample point symbols diverge from their lines as noise increases—noise
appears to have greater impact on the shifted Profile 2 when there are fewer
sample points to characterise the curve. The normalised equivalent of Figure 4.3a
is shown in Figure 4.3b. The normalised sub-plot in this case effectively expands
the y-axis values. The occurrence of normalised values of 0 shows that shifting
resulted in the lowest correlation across all transformations applied to Profile 2.

The full plot of normalised R2
t correlation values is shown in Figure 4.4. Shifting

also has the greatest impact on Profile 1 and is about equal with squeezing in
Profile 3. For Profile 2, truncation has about half the impact of shifting, and
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squeezing has an influence somewhere between truncation and shifting. Stretching
has the second least impact and scaling has the least impact. Sensitivity to noise
is universally low. Stratification of the lines is similar across all profiles for the
scaling transformation, which indicates any profiles scaled to the same degree
with R2

t will have a similar change in correlation value, regardless of profile shape.
The stratification of transformation intensity lines otherwise varies significantly.
Profile 1 shows the least variation, with left/right transformations being identical
and stretching and squeezing being very similar as well. Truncation of Profile 1
shows the least distinction of all the transformation/profile combinations, which
implies that R2

t will not deal as well with identifying discrepancies associated
with long tails. The long tail effect can also be seen in the right truncation of
Profile 3, where again there is very little stratification. Conversely, there is a very
large impact from left truncation, where the majority of the peak of Profile 3 is
cut-off.

4.3.2 Correlation measure comparison

Many of the trends exhibited by R2
t apply to other correlation measures as well

(Appendix A). The Profile 1 correlation values obtained for the up/left trans-
formations produce nearly identical results to the down/right transformations.
Increasing transformation magnitude results in decreased correlation. In most
cases there is little variation with noise and small variation with number of sample
points. This is also shown in Figure 4.5, which shows the standard deviation values
generated with Equation 4.2. A higher value indicates that a correlation measure
is more sensitive to that parameter.

The correlation measures fall into three distinct groups. Group 1 comprises BLC,
FFCBS, R2, PMCC, RMSD, R2

t , CORR2, and APE, which all exhibit high sens-
itivity to transformation/transformation magnitude and low sensitivity to num-
ber of sample points/noise. Within this group: R2 has the greatest sensitivity
to transformation (change in the underlying shape); and APE shows a slightly
higher sensitivity to noise. All Group 1 measures appear suitable for model identi-
fication. However, when examining the complete plots (Appendix A), PMCC and
CORR2 show extremely limited sensitivity to scaling. This is attributed to these
measures relying on a difference in mean value which will only change slightly
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when all values in a concentration profile are scaled.

Group 2 measures, χ2 and ISE, are characterised by lower sensitivity to trans-
formation and transformation magnitude. They appear potentially suitable for
model identification despite higher sensitivity to number of sample points. The
lower sensitivity to transformation/transformation magnitude is still acceptable
due to the insensitivity to noise. SimilB and YIC make up Group 3, with high
sensitivity to both number of sample points and noise. This, combined with lower
sensitivity to transformation/transformation magnitude, make Group 3 measures
unsuitable for model identification.

Overall there are eight measures which show the characteristics previously men-
tioned to be desirable for model identification. Six measures in Group 1 (BLC,
FFCBS, R2, RMSD, R2

t , and APE) and the Group 2 measures (χ2 and ISE) are
all sensitive to transformation, and transformation magnitude, while insensitive
to noise. They could therefore all be used for model identification, e.g. within the
deconvolution method. To narrow the choice of measure further requires testing
for interaction with other elements of the deconvolution process, which is carried
out in Chapter 5.

For solute transport model evaluation, only the non-dimensional measures of
Group 1 (R2, R2

t and APE) can be recommended as these are not influenced by
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number of sample points.

4.3.3 Application to model evaluation

To further investigate the correlation measures for model evaluation and provide
guidance on choice of correlation measure, R2, R2

t , and APE have been applied
to the scenarios shown in Figure 4.6. Associated (raw) correlation values are
presented in Table 4.3. For APE, a lower value represents a better correlation,
with 0 being the best ranging to 100. For R2 and R2

t , 1 is the best ranging to 0.
“% Change” shows the change in correlation value between Models A2 and B2 as
a percentage of the total range.

In Figure 4.6a, goodness-of-fit can be ranked by visual interpretation in order of
decreasing fit as Model A1, then C1, then B1. All correlation measures correctly
identify this. Model A1 shows good correlation values. For Model C1, while R2

t

shows a somewhat lower correlation, R2 and APE both show significantly lower
correlations. For Model B1, R2 indicates that there is no correlation at all even
though B1 is clearly a temporal shift of A1. This is unique to R2, and indic-
ates it may actually be unsuitable for model identification. In comparison, any
dimensional correlation measure would still indicate some relation.

Figure 4.6b presents a scenario in which the measured data exhibits a secondary
peak representative of recirculation effects or transient storage. This scenario is
common and it is essential that correlation measures indicate whether or not
the model fits correctly. Model B2 can be visually described as the best as it
clearly includes the secondary peak. However, the R2 and R2

t correlation values
imply an extremely good fit for both models. It is important to recognise what
differences in correlation value indicate for these measures. In contrast, APE still

Model A1 B1 C1 A2 B2 % Change

R2 0.9561 0.0000 0.8386 0.9881 0.9982 1.010%

R2
t 0.9853 0.5457 0.9459 0.9938 0.9990 0.520%

APE 12.19 73.32 23.24 9.719 3.745 5.974%

Table 4.3: Correlation values for the models presented in Figure 4.6

March 2014



48 CHAPTER 4. CORRELATION MEASURES
R

e
la

ti
v
e
 C

o
n
ce

n
tr

a
ti

o
n
 [

-]

Sample Point

0 100 200 300 400
0

0.5

1

1.5

× 10
-3

Model C1

Model B1

Model A1

Recorded

(a) Profile 1 type situation
R

e
la

ti
v
e
 C

o
n
ce

n
tr

a
ti

o
n
 [

-]

Sample Point

0 100 200 300 400
0

0.5

1

1.5

× 10
-3

Model B2

Model A2

Recorded

(b) Secondary peak situation

Figure 4.6: Models fit to theoretical ‘recorded’ data for examining correlation
measures.

clearly differentiates between Model A2 and Model B2. A dimensional correlation
measure would also show B2 to be the better fit, but similar to R2 and R2

t , it
would be difficult to distinguish between the correlation values.

Each of the three correlation measures might be useful in different scenarios. R2
t

might be most useful when model fits are expected to generally be poor as it will
still indicate correlation for a wide range of transformations and magnitudes, i.e.
it is flexible. APE exaggerates small differences between profiles, and so might
be useful in some situations, while R2 exaggerates larger differences. Dimensional
correlation measures may perform similarly to any of these three measures, but
lack the finite scale to quantify and compare correlation values. Of the three
correlation measures, both R2 and R2

t have been used extensively in civil engin-
eering and therefore the values obtained can be more easily compared to existing
research.

4.4 Conclusions

A systematic comparison of twelve different correlation measures using three real-
istic solute concentration profiles was carried out to identify measures that show
high sensitivity to profile shape but limited sensitivity to noise. Eight measures
(BLC, χ2, FFCBS, R2, RMSD, R2

t , ISE, and APE) have been found to be poten-
tially suitable for model identification and use in the deconvolution method. Of
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these, the three non-dimensional measures, R2, R2
t , and APE were examined in

greater detail for use in model evaluation. All three measures produced correlation
values that match visual interpretation of model fit, although at different levels
of sensitivity. Due to this the measures might be suitable for different scenarios,
with APE exaggerating small differences, R2 exaggerating large differences, and
R2

t being flexible about differences between concentration profiles.

Choice of correlation measure within the deconvolution process is examined in
more detail in Chapter 5.
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Chapter 5

Maximum entropy
deconvolution for solute

transport data

Accepted for publication as “Configuring maximum entropy deconvolution for the
identification of residence time distributions in solute transport applications” by

Sonnenwald et al. (2013a) in ASCE Journal of Hydrologic Engineering,
22nd October 2013. It is reproduced here with permission from ASCE.

After using maximum entropy deconvolution in Chapter 3, the need for further
investigation into maximum entropy parameters and applicable data was appre-
ciated. The first step of this process was to investigate correlation measures in
Chapter 4. The second step was to perform a sensitivity analysis to rigorously
demonstrate the applicability of maximum entropy deconvolution to solute trans-
port data.

5.1 Introduction

The RTD has been introduced as a model that describes solute transport in
urban drainage systems, e.g. Guymer & Stovin (2011). The particular benefit
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of an RTD is that, as a non-parametric model, no assumptions are made on
how a system operates. Therefore, the RTD can more accurately represent the
effect of complex mixing processes in a reach or structure, such as dead-zone
short-circuiting (Stovin et al., 2010a). Unfortunately this benefit incurs a cost, as
identifying an RTD is significantly more complex than identifying the parameters
of traditional models.

The general method of identifying an RTD from recorded laboratory data is de-
convolution. There are many methods and applications for deconvolution. An
overview of some common methods is given by (Madden et al., 1996). Other
applications include noise cancellation (Pandolfi, 2010) and gas chromatography
(Zhong et al., 2011). Within solute transport research, deconvolution techniques
have been used to examine soil transfer functions (Skaggs et al., 1998), bank fil-
tration (Cirpka et al., 2007), and transient storage (Gooseff et al., 2011). The
latter two studies used geostatistical deconvolution. Maximum entropy deconvo-
lution, the main subject of this thesis, has previously been used to investigate
solute transport in manholes in Chapter 3, as well as other studies (Stovin et al.,
2010b; Guymer & Stovin, 2011).

Although maximum entropy deconvolution has previously been successfully ap-
plied to solute transport data, no rigorous investigation into how the configuration
settings affect the quality of the results obtained has been reported. Four max-
imum entropy deconvolution settings impact on the quality of the deconvolved
RTD: the number of sample points; sample point distribution; constraint func-
tion; and the maximum number of iterations. Inappropriate configuration options
for any of the settings may result in a poor quality RTD. Two additional settings
have been found to have no impact on the deconvolved RTD: initial guess and
convergence criteria.

This chapter aims to systematically identify a robust set of options that can be
used to deconvolve the RTD from typical solute transport data. To this end, a
sensitivity analysis has been carried out with a range of data and options for the
different maximum entropy settings.
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5.1.1 Maximum entropy deconvolution

Entropy is the amount of disorder in a system. It is a commonly used concept in
physics and chemistry as the second law of thermodynamics, which states that
the amount of order in a system will never increase. The concept of entropy is also
mathematical. In this case it is an estimation of randomness of an event based
on a known probability distribution. The “higher” (more negative) the entropy,
the more random the result is. This is known as Shannon entropy, shown in
Equation 5.1. H is the entropy of X. P (x) is the probability distribution that
X = x. (Shannon, 1948; Weisstein, n.d.).

H(X) = −
∑
i

P (xi) lnP (xi) (5.1)

Maximum entropy deconvolution is a discrete computational technique developed
by Skilling & Bryan (1984) for image reconstruction. They presented an altered
Shannon entropy function, Equation 5.2, where S is the entropy function for
deconvolution and f1, . . . , fN are a positive set of numerical values to be recovered.
The entropy function is constructed so that any value of fj is part of the complete
image f being recovered. In this scenario, the probability pj that fj is a part of
f is the value fj divided by the sum of all values of f, i.e. Σf .

S(f) = −
N∑
j=1

pj ln pj, pj = fj/Σf (5.2)

Equation 5.2 can be interpreted in a solute transport context. In this scenario,
f is the RTD. Assuming mass-balance the RTD must sum to 1 (

´∞
0
E(τ)dτ = 1

or
∑
f = 1), and Equation 5.2 simplifies to Equation 5.3. This can then be

interpreted as an exponential measure of error. As points along the RTD have
larger values, entropy increases.

S(f) = −
N∑
j=1

fj ln fj (5.3)

Reinterpreting the maximum entropy method of Skilling & Bryan (1984) for solute
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transport data then, maximum entropy deconvolution uses regularly sampled
paired upstream u(t) and downstream y(t) temporal concentration profiles to
deconvolve the RTD. An estimate of the RTD, Ê = {Ê1, . . . , ÊN} where N is the
number of data points, is to be made as flat as possible with the only exceptions
being those implied by the upstream and downstream data. Flatness of Ê is
measured by an entropy function, Equation 5.4. This also enforces non-negativity.

A constraint function C, Equation 5.5, ensures that the RTD is a realistic result by
comparing the goodness-of-fit of the predicted downstream concentration profile ŷ
against the recorded profile, where ŷ is calculated as the convolution of Ê and the
upstream profile (Equation 2.6). C is typically, as presented here, the chi-squared
(χ2) function, where σ is an error estimate. The RTD is identified by combining
both equations in a Lagrangian function L, Equation 5.6, and maximising. λ is
the Lagrange multiplier determined during the maximisation process. Sub-scripts
denote specific points in discrete time.

S(Ê) = −
N∑
i=1

(
Êi∑N
j=1 Êj

)
ln

(
Êi∑N
j=1 Êj

)
(5.4)

C =
N∑
i=1

(ŷi − yi)2/σ2
i (5.5)

ŷ(t) =

ˆ ∞
−∞

Ê(τ)u(t− τ)dτ (2.6)

L(Ê, λ) = S(Ê)− λC (5.6)

The software and methodology used for maximum entropy deconvolution of solute
transport data is an evolution of a pharmacokinetics application (Hattersley et al.,
2008). In pharmacokinetics, data points are often collected at uneven time inter-
vals, e.g. by a nurse making rounds. As a result, the entropy function was modified
for piecewise data, where the value between points is assumed to vary linearly,
and Equation 5.7 was developed. The r term is added as a base-line prediction
of the RTD in the absence of other data. r takes the form of a nearest neighbour
moving average where ri = ((Êi−1 + Êi+1)/2) and at i = 0 and i = N the value
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of the two nearest points, e.g. rN = (ÊN−1 + ÊN)/2. The inclusion of r results in
an entropy value that evaluates smoothness rather than flatness; entropy values
closer to zero indicate a smoother function.

S(Ê) = −
N∑
i=1

(
Êi∑N
j=1 Êj

)
ln

(
Êi/

∑N
j=1 Êj

ri

)
(5.7)

To obtain Ê, Hattersley et al. (2008) converted Equation 5.6 into an equivalent
minimisation problem. This was solved using a Sequential Quadratic Program-
ming (SQP) technique implemented within the MATLAB fmincon function (The
MathWorks Inc., 2011). SQP is an optimisation algorithm that works by minim-
ising a quadratic model of the problem to find the next step towards the solution
(Schittkowski, 1986).

Maximum entropy deconvolution was further modified for application to solute
transport data by Stovin et al. (2010b). The piecewise capability previously intro-
duced was modified to create a simplified deconvolution problem where the RTD
is sub-sampled. This reduces computational expense and the impact of noisy
data while maintaining the benefits of a non-parametric model. The sub-sampled
RTD is defined only at n sample points, spread between the start and end of
the concentration data, as the length of the RTD is unknown. Sample points are
otherwise placed where more variation is expected in the RTD. A full RTD is
reconstructed from the sub-sampled RTD using linear interpolation.

5.2 Methodology

Equation 5.7 is used for maximum entropy deconvolution throughout this thesis.
Maximum entropy deconvolution has been carried out using MATLAB, based
upon the original implementation by Stovin et al. (2010b). It has, however, been
completely recoded for this thesis to support additional configuration settings,
data formats, and data analysis. The fmincon function is still used.
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5.2.1 Configuration settings for maximum entropy decon-

volution

The first two configuration settings are number and positioning of sample points.
As linear interpolation is used to reconstruct the RTD, each sample point defines
a change in the slope of the RTD. Therefore, changing the position and number
of points is expected to have a high impact on the identified RTD.

Skilling & Bryan (1984) suggest that alternative constraint functions may be
preferable to χ2, hence this configuration setting is also examined here. As C
effectively evaluates goodness-of-fit, correlation measures form suitable alternat-
ives. Different correlation measures may place different emphasis on matching the
shape, scale, or noise, discussed in Chapter 4.

fmincon introduces the fourth configuration setting, maximum number of iter-
ations, which imposes an upper limit on fmincon so that it does not enter an
infinite loop. Too few iterations, however, will stop the deconvolution process
before convergence is achieved, i.e. before the RTD is identified. fmincon also in-
troduces convergence criteria to determine when optimisation stops and an ‘initial
guess’ that is the start point of the optimisation process.

5.2.1.1 Number of sample points

Stovin et al. (2007) suggested that as few as 7 points are necessary to define an
RTD. A minimum of 10 sample points has therefore been used. 20, 40, 80, 120, 160,
and 200 sample points have also been evaluated. After 200 points computational
cost was observed to increase significantly. Stovin et al. (2010b) used 40 sample
points.

5.2.1.2 Sample point distributions

Sample points are placed where more variation in the RTD is anticipated by
incorporating basic assumptions about the expected RTD. Six sample point dis-
tributions have been developed using varying amounts of prior knowledge. These
are described below and shown in Figure 5.1.
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• Equally spaced (ES): A new development added for comparison, the
sample points are evenly distributed across the input data. This distribution
assumes no knowledge of the RTD.

• Log from zero (LFZ): The interval between sample points increases log-
arithmically from the start to the end of the input data. This distribution
assumes more variation earlier in the RTD and less variation as time goes
on, i.e. an exponential decay.

• Downstream log (DwL): From Equation 2.4 it follows that there must
be some delay in the RTD if there is a delay between first arrival times.
Three sample points are evenly distributed from the start of the input data
until the difference in first arrival times, after which the interval between
sample points increases logarithmically until the end of the downstream
event. Three more sample points are evenly distributed until the end of the
downstream data. First arrival time and end of event are defined as 1% of
peak concentration. This is the sample point distribution previously used
by Stovin et al. (2010b).

• Double log (DuL): Half of the sample points are distributed logarithmic-
ally from the start of the input data to the difference in time to peak, which
is used as an estimate of delay. The other half of the sample points are log-
arithmically distributed away from the difference in time to peak to the end
of the downstream data. A greater concentration of points around the time
the RTD peak is expected allows for more uncertainty in its location.

• Slope-based (SB): This is a new development. An approximation of the
RTD is used to distribute the sample points where its slope is expected to be
greater. The approximation is computed using Fast Fourier Transformation
(FFT) deconvolution (Madden et al., 1996) with Blackman-Tukey Window-
ing (Blackman & Tukey, 1958; Harris, 1978) applied to the input data to
improve accuracy, Equations 5.8-5.10, where F is the FFT, w is the window
function, ? is cross-correlation, α is length of the input data to be windowed
(in this case 20%), and T is the last time or length of the input data. The
absolute area of the first derivative of the approximation is evenly divided
and sample points placed at the division points.
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Ê(t) = F−1
(
F(uBT (t))

F(yBT (t))

)
(5.8)

uBT (t) = u(t).w(t) ? y(t).w(t)

yBT (t) = u(t).w(t) ? u(t).w(t)
(5.9)

w(t) =


0.5
[
1.0− cos

[
π 2t
αT

]]
0 ≤ t ≤ α

2
T

1.0 α
2
T ≤ t ≤ (1− α

2
)T

0.5
[
1.0− cos

[
π 2t
αT

]]
(1− α

2
)T ≤ t ≤ T

(5.10)

• Double cubic (DC): This is a new development. It is the same as the
DuL distribution, but using cubic spacing. This results in a more spread
out distribution, similar to the log from zero and slope-based sample point
distributions, which is expected to allow greater flexibility in capturing com-
plex profile characteristics, e.g. secondary peaks.

5.2.1.3 Constraint functions

In Chapter 4, twelve correlation measures were examined to identify potentially
suitable correlation measures for solute transport model identification. Eight
measures were found to be sensitive to transformation and transformation intens-
ity while remaining insensitive to noise, and were therefore judged to be suitable
as constraint functions. These are: the Burnham-Liard Criterion (BLC); χ2; Fur-
thest Fitting Cost Based Similarity (FFCBS); the Nash-Sutcliffe Efficiency Index
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Figure 5.1: Example sample point distributions using 40 sample points
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(R2); Root Mean Square Deviation (RMSD); Young’s Coefficient of Determina-
tion (R2

t ); the Integral of Squared Error (ISE); and Average Percent Error (APE).
They have been converted into equivalent constraint functions for inclusion in the
present sensitivity analysis. The error estimate σ of χ2 is taken from Stovin et al.
(2010b) as 5% of recorded value. In order to avoid confusion between R2 values
used to evaluate RTD performance (Section 5.2.3) and R2 used as a constraint
function, the latter will be referred to CR2.

5.2.1.4 Maximum number of iterations

Maximum number of iterations in practice indicates a maximum amount of effort
that should be used in deconvolving the RTD should an optimum RTD not be
found earlier through convergence. 50, 100, 150, 200, 250, 300, and 350 iterations
have been evaluated. A maximum of 200 iterations was used by Stovin et al.
(2010b).

5.2.1.5 Convergence criteria

Initial testing indicated no sensitivity to convergence criteria. They have been
left at fmincon defaults as previous work has used them successfully.

5.2.1.6 Initial guess (optimisation start point)

Initial testing indicated no sensitivity to the initial guess of the RTD. As the
optimisation starting point it does not change the minimisation problem, but an
initial guess that is closer to the final solution is a ‘warm start’ and has been shown
to reduce the amount of time necessary to reach convergence in SQP algorithms
(Fan et al., 1988). Therefore the initial guess is fixed as the result of a FFT
deconvolution with Blackman-Tukey windowing (as used in the SB distribution).
Stovin et al. (2010b) used a flat line guess based on

´∞
0
E(τ)dτ = 1.
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5.2.2 Selection of data for sensitivity analysis

Several data sets from previously published laboratory studies were available.
Within these, five mixing scenarios are represented; pipe flow (Hart et al., 2013),
open channel flow (Guymer, 1998), storage tank mixing (Guymer et al., 2002),
below-threshold (BT) surcharged manholes, and above-threshold (AT) surcharged
manholes (Guymer et al., 2005; Guymer & Stovin, 2011). The threshold is the
surcharge depth at which hydraulic regime within a manhole switches from a
fully-mixed (below-threshold) to a short-circuiting (above-threshold) system (see
Section 2.3).

Two sets of typical solute transport concentration data from each of the five
mixing scenarios were selected to ensure that conclusions would not be unduly
influenced by a single test within each mixing scenario. The 10 paired upstream
and downstream concentration profiles (henceforth referred to as ‘experiments’)
are outlined in Table 5.1 and shown in Figure 5.2. In all cases, pre-processing
of the raw data (i.e. calibration, smoothing, background removal) applied in the
previous studies has been retained.

5.2.3 Analysing RTD performance

As previously stated, the full RTD is generated from the sample points via linear
interpolation. A complete predicted downstream profile can then be generated by
convolving the upstream profile with the full deconvolved RTD (Equation 2.6). A
successful deconvolution is defined as one with high goodness-of-fit between the
predicted and recorded downstream profiles, as measured by a relevant correlation
measure. In Chapter 4, R2

t , R2 and APE were suggested as suitable for model
evaluation in this context. The R2 correlation measure has been chosen here for
its high sensitivity to overall profile shape. With a perfect match, R2 = 1, and
for R2 ≤ 0 there is no correlation.

RTD shape can vary significantly without having a noticeable impact on R2 value.
As a result the entropy function (Equation 5.7) has been applied to the decon-
volved RTD to evaluate smoothness. A smoother RTD is assumed to better rep-
resent a natural turbulent system, and therefore entropy values closer to zero are
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Figure 5.2: Upstream and downstream concentration profiles of experiments
Time origin set to 0 and Experiment 1 and 2 zoomed in for display
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Experiment Description Flow (l/s)* Duration (s) Mass recovery

1 24 mm Pipe1 1.084 150.0 84.42%
2 24 mm Pipe1 0.221 150.0 98.45%
3 Storage Tank2 6.9 240.2 100.00%
4 Storage Tank2 6 371.6 100.00%
5 Natural Channel3 13.7 157.3 101.96%
6 Trapezoidal Channel3 46.1 73.7 105.60%
7 400 mm BT Manhole4 1 117.3 100.00%
8 400 mm AT Manhole4 1 91.0 100.00%
9 800 mm BT Manhole5 1 186.0 100.00%
10 800 mm AT Manhole5 1 116.7 100.00%

1Hart et al. (2013), 2Guymer et al. (2002), 3Guymer (1998)
4Guymer et al. (2005), 5Guymer & Stovin (2011) *As reported

Table 5.1: Summary of laboratory solute transport concentration data used

desired. An example of evaluating curve smoothness with entropy is shown in
Figure 5.3.

Mass-balance of the RTDs has also been used for evaluation. Normally with per-
fect mass-balance,

´∞
0
E(τ)dτ = 1. When mass recovery is not perfect, e.g. due to

calibration error, then
´∞
0
Ê(τ)dτ =

´∞
−∞ y(τ)dτ/

´∞
−∞ u(τ)dτ . RTD quality was

also evaluated as the ratio between the expected and actual sum of the RTD.

5.3 Results and discussion

The combination of configuration options and experiments resulted in 23,520 de-
convolutions. These were carried out using batch processing on the Intel Xeon
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Figure 5.3: Entropy demonstration
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X5650 nodes of the Iceberg parallel high-performance computing cluster at The
University of Sheffield. Processing took approximately 187 days of CPU time.
61.4% of the predicted downstream profiles in comparison to the recorded down-
stream profiles exceed an R2 value of 0.95 and 34.6% exceed 0.99 indicating that
many combinations of configuration options are acceptable.

5.3.1 Mean and standard deviation of R2 values

The mean (µ) and standard deviation (σ) of R2 with respect to each configuration
option are shown in Figure 5.4. Options that result in low mean R2 values like
the BLC, χ2, ISE, and FFCBS constraints should not generally be used. They
have therefore been eliminated from further consideration as robust constraint
functions. The remaining configuration options are evaluated across only the CR2,
RMSD, R2

t , and APE constraints.

Figure 5.5 illustrates the poor performance of the χ2 and ISE constraints in
contrast to R2

t , before solution convergence. χ2 roughly matches the shape but
not scale and ISE only roughly matches shape. The performance of these two
constraints does not improve with more iterations while the performance of the
R2

t constraint does, which is typical of the other remaining constraints, CR2,
RMSD, and APE. χ2 was originally used in maximum entropy deconvolution,
but it is clear that other constraint functions perform much better.

Figure 5.4 also suggests that the DwL and ES sample point distributions perform
poorly, and therefore these two distributions were eliminated from further consid-
eration. Figure 5.6 confirms the elimination of DwL and ES by comparison to the
SB distribution. Only the SB distribution fits the data for both Experiments 2
and 7. The other two distributions result in approximate fits for Experiment 7
only. For Experiment 2, DwL is mostly flat and ES is almost entirely coincid-
ent with the x-axis. This highlights the impact of poor sample point distribution
choice.

After eliminating BLC, χ2, ISE, FFCBS, DwL, and ES as configuration options,
the mean R2 values indicate improving goodness-of-fit for maximum number of
iterations up to 150 iterations and near constant performance thereafter. As such,
50 and 100 iterations were also eliminated, at which point it was observed that
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mean R2 also tended to increase with number of sample points. (This is not
evident in Figure 5.4.) Due to their low mean R2, 10 and 20 sample points have
been eliminated as well.

All 4,000 remaining R2 values exceed 0.95, and 68.6% exceed 0.99. Differences
in mean R2 value are less than 0.002, and as such there is very little sensitivity
of goodness-of-fit to the remaining options. This demonstrates the robustness of
maximum entropy deconvolution for most combinations of 40-200 sample points,
the LFZ, DuL, SB, and DC distributions, the CR2, RMSD, R2

t , and APE con-
straints, and 150-350 iterations.

5.3.2 Entropy values

Entropy values have been examined to further evaluate RTD sensitivity to the
remaining configuration options. Mean entropy values for each experiment with
respect to each option are shown in Figure 5.7. These are plotted for individual
experiments as entropy is a dimensional measure. The figure provides insight into
the sensitivity of the deconvolved RTD to the different configuration settings.

40 sample points results in the entropy closest to zero for 9 out of 10 experiments,
which clearly recommends it, and therefore other numbers of sample points can be
eliminated from consideration. The general trend of entropy values further from
zero for increased number of sample points is consistently observed independently
of data set. This is expected because a greater number of sample points provides
increased potential for entropy as each sample point represents a possible change
in the slope of the RTD.

The LFZ and SB distributions appear to perform almost identically across all
experiments, with entropy values significantly closer to zero than the DuL and
DC distributions for almost all experiments. The entropy values further from zero
indicate that, although the DuL and DC distributions will generate RTDs with
high goodness-of-fit, the shape of the RTDs is less smooth. They can therefore
be eliminated from consideration.

Number and distribution of sample points have the highest impact on entropy
and therefore on the quality of the deconvolved RTD. This is consistent with the
problem formulation, i.e. changes in sample point position affect the numerical
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problem being solved. Although there are multiple RTD solutions for each exper-
iment, improved sample point positioning (and lower numbers of sample points)
limits variation and results in smoother RTDs. That R2 values remain high in
these cases demonstrates the robustness of maximum entropy deconvolution as
applied to solute transport.

A maximum number of iterations greater than 200 has minimal impact on RTD
smoothness. Trends in smoothness with increased numbers of iterations are incon-
sistent. However, mean R2 value continues to increase consistently with increased
maximum numbers of iterations (Figure 5.4), and so 350 iterations can been re-
commended. The lack of change in RTD smoothness and predictive capability for
some experiments implies that the vast majority of deconvolutions reach conver-
gence before the maximum number of iterations is reached.

There is no clear trend in constraint function, with high variation between exper-
iments. The smaller changes in entropy with respect to constraint are reasonable
considering that constraints are interchangeable measures of error. As all of the
constraint functions, CR2, RMSD, R2

t , and APE, are indicated to be perform
similarly they are retained for further examination.

5.3.3 Mass-balance performance

Performance has been further examined by comparing the mass-balance of the
remaining deconvolved RTDs, shown in Figure 5.8. The LFZ and SB distribu-
tions have been compared, using 40 sample points, the remaining four constraint
functions, and 350 iterations. The SB distribution performs better, with all values
close to 1, and therefore LFZ has been eliminated from consideration. The mass-
balance performance shows no systematic variation with respect to constraint
function.

5.3.4 Recommended configuration options

There is some evidence in the entropy data presented in Figure 5.7 that the
paired experiments from each of the five data sets responded similarly to the four
different constraint functions; this suggests that the optimal constraint function
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may be linked to data set characteristics. However, general investigation and
consideration of all results suggests that the R2

t constraint may perform slightly
better. An additional argument in favour of R2

t would be that it is already a
well used and understood measure in the field of solute transport. Therefore the
new SB sample point distribution, 40 sample points, 350 iterations, and the R2

t

constraint function have been identified as a robust set of configuration options.

5.4 Validation

Predicted downstream profiles and CRTDs generated with the robust configura-
tion options (40 sample points, the new SB distribution, the R2

t constraint, and
350 iterations) are shown in Figure 5.9. The lower than expected final value of
the CRTD for Experiment 1 is the result of the poor mass-recovery of the labor-
atory concentration data (Table 5.1). The predicted profiles give confidence that
the identified configuration options are fit for use in deconvolution, with mean
R2 = 0.994.

5.5 Conclusions

Maximum entropy deconvolution has previously been successfully applied to labor-
atory solute transport data to identify the residence time distribution. The labor-
atory data was used to evaluate the impact of four different configuration set-
tings on the deconvolved RTD. These settings are the number and distribution of
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Figure 5.9: Predicted downstream profiles and deconvolved CRTDs for each ex-
periment
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sample points, the constraint function, and the maximum number of iterations.

The number and distribution of sample points particularly affects the smoothness
of the deconvolved RTD, as evaluated by the entropy function. A greater number
of sample points provides increased potential for noise as each point is a possible
change in slope of the RTD. Smaller numbers of sample points therefore tend to
result in a smoother RTD, as well as reduced computational expense. However, too
few or poorly positioned sample points will result in a poor quality RTD. A new
slope-based sample point distribution, where sample points are positioned based
on an Fast-Fourier Transform deconvolution approximation, has been proposed
and shown to perform best out of the six tested sample point distributions.

The constraint function affects the overall goodness-of-fit between the recorded
downstream concentration profile and a predicted profile generated using the de-
convolved RTD, here evaluated by R2. While maximum entropy deconvolution has
typically utilised χ2 as the constraint function, alternative correlation measures
place different emphasis on matching profile shape, scale, or noise. The present
analysis suggests that χ2 does not provide a robust constraint for solute transport
data, but that the R2, RMSD, R2

t , and APE constraint functions do. There is some
evidence that the optimal constraint function may be linked to specific data set
characteristics, but as it is well understood in the field of solute transport, R2

t has
been recommended as the most generically applicable constraint function. Max-
imum number of iterations had relatively little impact on predictive capability or
RTD smoothness once 200 iterations were exceeded.

Across ten representative laboratory solute transport experiments, the recommen-
ded configuration options—40 sample points, the new slope-based sample point
distribution, the R2

t constraint function, and a maximum of 350 iterations—result
in a mean R2 value for the predicted downstream profiles of 0.994. This con-
firms that maximum entropy deconvolution with the options recommended here
provides a robust and effective means of identifying the RTD from laboratory
solute transport data.
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Chapter 6

Improvements to RTD
smoothness

To extend the application of maximum entropy deconvolution for solute transport
data, two improvements have been proposed. The first improvement, for RTD
smoothness, is discussed here. Alternatives to the linear interpolation used to
reconstruct the RTD, as well as changes to number of sample points, are suggested
and evaluated. How the application of an alternative to linear interpolation affects
potential over-sampling is also examined.

6.1 Introduction

In earlier chapters, deconvolved RTDs have been presented only as Cumulative
Residence Time Distributions, as this allows easy interpretation of the underlying
mixing processes they reflect. It becomes apparent when the RTD is plotted that
there can be fluctuations in the RTD that are not necessarily visible in the CRTD
(e.g. Figure 6.1). These fluctuations numerically cancel out during convolution
and so do not have an impact on the predictive capability of the RTD. However,
as a result of the fluctuations, the RTD may not correctly reflect the bulk mixing
processes occurring when it is interpreted as a hydrodynamic model.

The presence of fluctuations in deconvolved RTDs highlights a potential issue
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Figure 6.1: CRTD vs RTD deconvolved with linear interpolation

with the use of maximum entropy deconvolution for determining the RTD. As a
black-box approach, the deconvolved RTD may provide only limited insight into
hydrodynamic processes. Therefore if the deconvolution process were modified
to minimise fluctuations, the quality of the deconvolved RTD and the resulting
hydrodynamic interpretation should improve.

This chapter proposes an enhancement to maximum entropy deconvolution in
the form of a new interpolation function and a re-evaluation of number of sample
points. Several interpolation functions are presented and investigated. In a sens-
itivity analysis, three interpolation functions that result in a smoother RTD are
investigated together with a range of sample point numbers. A second analysis,
demonstrating the impact of interpolation function on over-sampled data is also
carried out.

6.1.1 Factors affecting RTD smoothness

There are three main features of maximum entropy deconvolution which affect
the smoothness of the RTD:

1. The r term of the objective entropy function (Equation 5.7). It is used as
part of the evaluation of RTD smoothness and therefore influences final
RTD shape.

2. Sample point distribution and number of sample points. Both have a high
impact on RTD smoothness as shown in Figure 5.7.

3. The linear interpolation used to reconstruct the RTD from the sample
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points. It affects the smoothness as it results in sharp changes in slope
at sample points.

The next-neighbour average used to generate r means that in the absence of
data characteristics that affect C (the deconvolution constraint, Equation 5.5),
repeated iterations of the deconvolution process cause the RTD to tend towards a
flat line (the lowest possible entropy). In comparison, most solute transport pro-
cesses can be described with a uni-modal RTD similar to a Gaussian distribution,
e.g. the ADE model (Taylor, 1954). The r term could therefore be set to a best fit
Gaussian distribution to encourage a smooth RTD in that shape. This has been
tested, and aside from losing some of the non-parametric benefits of having no
prior assumptions about RTD shape, the impact on final RTD smoothness was
consistently low and therefore it has not been investigated further.

A new sample point distribution could be developed to specifically generate a
smoother RTD by incorporating additional expected RTD characteristics or for-
cibly increasing sample point spacing. However, this would remove some of the
non-parametric flexibility of maximum entropy deconvolution. In contrast, the
previous chapter showed that lower numbers of sample points could produce
smoother RTDs in some cases. There is therefore scope for further adjusting
the number of sample points, which could potentially also reduce computational
requirements.

Neither adjusting the r term nor changing the distribution or number of sample
points address the sharp changes in RTD slope caused by linear interpolation.
The interpolation function can be changed to a more complex one which also
smooths and—as a result—removes this effect. The interpolation function and the
number of sample points have therefore been identified as key factors influencing
RTD smoothness.

In Section 6.2, interpolation is investigated in more detail. Several potential al-
ternative interpolation functions have been reviewed leading to a preliminary
recommendation for further investigation in a sensitivity analysis, outlined in
Section 6.3.
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6.1.2 Over-sampling

When using linear interpolation, maximum entropy deconvolution can be sensitive
to over-sampling. Over-sampling occurs when too large a number of sample points
has been specified leading to tight temporal clustering of sample points. The
tight clustering tends to result in significant oscillation between sample point
values in the deconvolved RTD. The oscillation cancels out when convolved and
therefore over-sampling does not affect the predicted downstream profile, but does
significantly impact on RTD smoothness.

An analysis of the impact of interpolation and number of sample points on over-
sampling is also outlined in Section 6.3.

6.2 Interpolation

Interpolation is the act of filling in unknown data at a given point using data
from surrounding points. It is heavily used in Geographic Information Systems
(GIS) and other geostatistical applications such as hydrological engineering. For
example, rainfall may be estimated at a location based on the rainfall recorded
at nearby rain gauges using interpolation (Teegavarapu & Chandramouli, 2005).

Within the deconvolution process, interpolation is used to generate Ê (the pre-
dicted RTD) to convolve the downstream predicted profile (Equation 2.6), which
in turn is used to evaluating Ê in the constraint function (Equation 5.5). As
such, interpolation is used multiple times for each iteration of the deconvolution.
The maximum entropy deconvolution process is outlined in Figure 6.2, which
highlights the repeated use of interpolation.

Linear interpolation, which is currently used, is the simplest type of interpola-
tion. A straight line is drawn between the two closest sample points, and the
interpolated data points are evaluated to be on that line. This has the benefit of
being conceptually simple and easily executed. There are however, several more
complex interpolation functions including, polynomial interpolation, Inverse Dis-
tance Weighting (IDW) and the Kriging estimation method (KEM). The latter
two are the most commonly used interpolation functions in GIS applications (Zi-
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Figure 6.2: Deconvolution flowchart, highlighting interpolation

mmerman et al., 1999). Both are primarily used in 2D interpolation, but can be
adapted to 1D interpolation.

Linear interpolation with an Applied Moving Average (LAMA) and Gaussian In-
fluence Estimation (GIE) are also introduced as potential replacement interpola-
tion functions. These, and several other interpolation functions, are investigated
and their suitability for maximum entropy deconvolution evaluated prior to the
more detailed sensitivity analysis undertaken in this chapter.

6.2.1 Polynomial interpolation

Cubic interpolation and other polynomial interpolation schemes exist in many
forms. In piecewise Hermite cubic interpolation (Fritsch & Carlson, 1980), the
known sample points are used to estimate the derivatives of a cubic function that
passes between them. The derivatives are then used to estimate the values at
points being interpolated.

Splines can be considered a subset of regular polynomial interpolation (de Boor,
1978). They are specified to have continuous n− 1 derivatives, so a cubic spline
has continuous first and second derivatives. The result is that there are fewer
possibilities for the interpolated line. Splines are commonly used in spreadsheet
software to generate smooth lines in graphs.

The cubic and spline options of the MATLAB interp1 function (The MathWorks
Inc., 2011) have been used here as they are representative of the two classes of
interpolation and exist as usable implementations. Examples of both methods are
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shown in Figure 6.3, where they have been applied to the RTD from Figure 6.1 as a
post-processing operation. The results show that spline interpolation is unsuitable
for use in maximum entropy deconvolution as the interpolated RTD includes
physically impossible values less than 0. However, cubic interpolation appears
acceptable.

6.2.2 Inverse Distance Weighting

In IDW, the point being interpolated is a function of neighbouring point values
weighted by distance (Armstrong & Marciano, 1994). As a result, IDW interpola-
tion gives a smoothed line where closer points have a greater influence than further
points, determined by the weighting function. The standard weighting function
is linear, e.g. 1

da
where d is the distance and a is an exponent (Armstrong &

Marciano, 1994). Unfortunately, around the peak of the RTD, the weighting from
nearby points will result in a catenary (or inverted catenary) effect between some
sample points. This is unrealistic for an RTD and so IDW is judged an unsuitable
interpolation function for maximum entropy deconvolution. IDW is evaluated in
more detail in Appendix B.

6.2.3 Kriging Estimation Method

In KEM interpolation, a statistical model of the data being interpolated is built
(Jernigan, 1986). This model is then used to predict the points being interpolated.
There are several standard models, and as a result choice of model is an exercise
similar to choosing either an ADE or ADZ model for solute transport data. This
means on its own, model fitting is a complex exercise. Additionally, however, the
uni-modal nature of the RTD further increases the complexity. This is explained
in more detail in Appendix B, but in general results in KEM being unsuitable for
inclusion in an automatic method such as maximum entropy deconvolution.
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Figure 6.3: Cubic and spline interpolation applied to Figure 6.1

6.2.4 Linear interpolation with an applied moving average

Linear interpolation with an applied moving average consists of firstly linearly
interpolating the data and secondly applying a moving average of fixed window
size. It is a practical and straightforward way of removing the sharp changes in
slope in deconvolved RTDs.

Before LAMA can be applied to the RTD from Figure 6.1 as a post-processing
operation, the window size must be determined. A window which is too short
will produce no noticeable change from the linearly interpolated RTD, but too
long and it will affect predictive capability. LAMA interpolation was tested with
windows sizes up to 8 seconds. The 2 second window has almost no impact on
predictive capability but improves RTD shape and so has been used. The LAMA
interpolated RTD is shown in Figure 6.4.

6.2.5 Gaussian Influence Estimation

Gaussian Influence Estimation can be considered a modified IDW based approach
to interpolation, specifically for use in deconvolution. It has been designed to
accommodate uneven sample point spacing, including dense and sparse sample
points. GIE has also been designed so that the interpolated values do not ne-
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Figure 6.4: LAMA interpolation applied to Figure 6.1, predictive R2 = 0.9969

cessarily pass through sample point values, allowing for more natural looking
interpolation.

GIE uses weighting factors based on the distance between nearby sample points
and assumes that the positive spatial autocorrelation (similarity of closer data
points) of the RTD can be expressed as a Gaussian distribution centred about
each point being interpolated. Closer sample points to the point being inter-
polated have more influence on the interpolated value according to a Gaussian
distribution. The distribution for each point being interpolated is used to determ-
ine the weighting factors. The standard deviation of the Gaussian distribution is
determined according to sample point spacing so that only minimal information
is lost due to interpolation when sample points are close together.

GIE is presented in Equations 6.1, 6.2, and 6.3. Equation 6.1 shows the application
of the weighting factors, where zj is the point being interpolated, zi is a known
data point, and λi is the weighting factor for point zi. The weighting factors are
determined by Equation 6.2, where the standard deviation σj for the Gaussian
weighting term is defined in Equation 6.3 as the mean distance between the
three closest sample points a (earlier in time), b (closest), and c (later in time).
This ensures that the distribution always takes into account at least two nearby
sample points. If zj coincided with sample point b, and sample points a and c

were equidistant, both would be one standard deviation away.

zj =

∑N
i=1 λizi∑N
i=1 λi

(6.1)
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λi =
1

σj
√

2π
exp

(
−(i− j)2

2σ2
j

)
(6.2)

σj = (ic − ia)/4 (6.3)

Using sample point spacing directly for the standard deviation results in sharp
changes in σ as the nearest sample points change. This in turn results in an RTD
with discontinuities. Taking the mid-points of plateaus in standard deviation,
cubic interpolation has been successfully employed to ensure a continuous change
in σ, shown in Figure 6.5, for the sample point spacing used in Figure 6.1.

In general sample points are placed farther apart when less change is expected in
the RTD. This sparsity of sample points can lead to high σ values that indicate
points further away than is reasonable should be taken into account, causing un-
realistic variations in the interpolated result. To account for this, virtual sample
points are used. They are placed equidistant between sample points when the dis-
tance between them exceeds the standard deviation of sample point spacing until
this is no longer the case. The values at virtual sample points are linearly inter-
polated from the neighbouring real points. When GIE is applied to sequences of
virtual sample points, in the worst case scenario the space between the real sample
points will be effectively linearly interpolated but with a smooth transition.

GIE interpolation when applied to the RTD from Figure 6.1 as a post-processing
operation is shown in Figure 6.6.

σ
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σ

Figure 6.5: σ smoothing
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Figure 6.6: GIE interpolation applied to Figure 6.1, predictive R2 = 0.9965

6.2.6 Suitable interpolation functions

Several interpolation functions have been investigated: cubic, spline, IDW, KEM,
LAMA, and GIE interpolation. All of these were evaluated as a post-processing
to the RTD from Figure 6.1. KEM interpolation was judged to be too complex
for an automatic application. Otherwise, the remaining functions all resulted in
RTDs without sharp transitions. Spline and IDW interpolation, however, pro-
duced unrealistic RTD shapes. Cubic, LAMA, and GIE produce reasonable test
interpolations and so have been further evaluated for use in maximum entropy
deconvolution.

6.3 Methodology

A sensitivity analysis comparing the three recommended interpolation functions
(cubic, LAMA, and GIE interpolation) to the original linear interpolation function
has been carried out. The analysis compares the deconvolved RTDs as predictive
models using R2 and evaluates hydraulic model quality through RTD smoothness
using the entropy function. Deconvolution was carried out for all four interpola-
tion functions using two representative solute transport data records.

To demonstrate the impact of smoothing on over-sampled data (Section 6.1.2),
a second analysis has been carried out. Synthetic and laboratory concentration
data has been deconvolved, with and without smoothing, at 40, and at 24 sample
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points. The use of synthetic data allows for the examination of the impact of
smoothing under known conditions.

6.3.1 Input data

6.3.1.1 Sensitivity analysis

Two sets of recorded laboratory upstream and downstream concentration profiles
have been used; the below- and above-threshold 800 mm manhole data of Guymer
& Stovin (2011), which were also used in Chapter 5 as Experiments 9 and 10.
While not necessarily representative of all solute transport data, an improved
interpolation function can be expected to improve the quality of the deconvolved
RTDs in this case and therefore serve as a platform for investigation. The recorded
data are presented again in Figure 6.7. The below-threshold data was used to
generate the RTD in Figure 6.1.

6.3.1.2 Over-sampling analysis

Both synthetic and laboratory data have been used to look at the impact of in-
terpolation on over-sampled data. To generate the synthetic data, an upstream
temporal concentration profile and RTD have been generated as normal distribu-
tions. The downstream concentration profile was then created as the convolution
of the upstream profile and RTD. Normal distributions were chosen as being
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Figure 6.7: Input solute transport data for sensitivity analysis
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representative of pipe flow. The data is shown in Figure 6.8.

The main criterion for the synthetic data was that number of data points should
be small enough to cause over-sampling when the recommended 40 sample points
for deconvolution are used. As a result the synthetic upstream profile was chosen
to be 50 points long and the synthetic RTD 100 points long. The convolved
downstream profile is therefore 149 points long. The time step has been treated
as 1 point (i.e. dt = 1 s). A mean of 25 points and standard deviation of 5
points has been used for the synthetic upstream profile. A mean of 50 points and
standard deviation of 16.67 points has been used for the synthetic RTD. Area
was normalised to 1 under both the upstream profile and RTD. In order to make
a paired data record for deconvolution, the upstream profile was extended to 149
points using zeroes.

The laboratory data used was recorded from fluorometers in a 24 mm diameter
pipe with a flow rate of 0.221 l/s by Hart et al. (2013). The data was pre-processed
through calibration, the removal of background concentration levels, and the de-
termination of start and end of the experimental event. Concentration values
occurring before or after the event were set to zero. This data was also used in
Chapter 5 as Experiment 2. For this study the zero concentration values were
trimmed, resulting in data series 246 points long (dt = 0.033̇ s).
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Figure 6.8: Input solute transport data for over-sampling analysis
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6.3.2 Deconvolution settings

6.3.2.1 Sensitivity analysis

Chapter 5 recommended the slope-based sample point distribution, 350 iterations,
and the R2

t constraint function as robust deconvolution configuration settings,
and these have been used here. 40 sample points were recommended, but the
results also suggested that 20 sample points would produce good RTDs (similar
predictive capability at increased RTD smoothness) with the slope-based sample
point distribution. Therefore the range of 15 to 45 sample points has been chosen
to include both 20 and 40 sample points. Deconvolution has been carried out in
steps of 1 sample point. The alternative interpolation functions were used for all
deconvolution steps shown in Figure 6.2 that require interpolation. As described
in Section 6.2.4, a 2 second window size was used with LAMA interpolation. This
is roughly equivalent to 20% of RTD peak width, where RTD peak width is the
duration of the largest roughly Gaussian spike in the RTD.

6.3.2.2 Over-sampling analysis

Deconvolution has been carried out at both 40 and 24 sample points with linear
and LAMA interpolation. LAMA interpolation has been used as it functions inde-
pendently of sample point spacing. To determine window size, test deconvolutions
were carried out with window size varying from 3 data points to 35 data points.
The largest window size that provided a visually smooth deconvolved RTD with a
high predictive capability was chosen. For both the synthetic data and laboratory
data, the LAMA interpolation coincidentally used a 21 point window size. For
the synthetic data this is roughly equivalent to 20% RTD peak width, and for the
laboratory data 35% of RTD peak width.

6.3.3 Evaluation of predictive capability

When the deconvolved RTD is convolved with upstream data, a downstream
prediction is formed (Equation 2.6). The downstream prediction was compared
to the recorded downstream data using the R2 correlation measure to give an
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indication of predictive capability (see Section 5.2.3).

6.3.4 Evaluation of RTD smoothness

In Chapter 5, the entropy function (Equation 5.7) was used to evaluate RTD
smoothness. The entropy function provides a dimensional measure of the dif-
ference between the RTD and a smoothed equivalent, where values closer to 0
indicate a smoother RTD. With linear interpolation, only inflection points affect
entropy value as the next-neighbour moving average of a line with a linear gradi-
ent is equal to the mid-point. The entropy function therefore directly reflects the
number and scale of fluctuations in the RTD. When the RTD is a continuous
smooth function, entropy becomes a more complex measure.

The number of inflection points (NIPs) in the RTD can be counted. The number
of points where the slope is zero provides a measure of the variation in the RTD
that may be cancelled out during convolution. Both NIPs and entropy were used
to evaluate RTD smoothness in the sensitivity analysis.

RTD smoothness can be directly evaluated when synthetic data is used, as a
comparison can be made between the known synthetic RTD and the deconvolved
RTD. Results in Chapter 4 suggest that the Average Percent Error correlation
measure (Kashefipour & Falconer, 2000) is suitable for this purpose, as it exag-
gerates small differences between profiles. APE describes the percentage differ-
ence between two time-series, with APE = 0 indicating perfect correlation and
APE ≥ 100 indicating no correlation. An APE comparison between the decon-
volved and known RTD was used in the over-sampling analysis.

6.4 Results and discussion

6.4.1 Sensitivity analysis

In total 248 deconvolutions were carried out for the sensitivity analysis. Figure 6.9
presents the predictive R2, entropy, and NIPs values for each combination of
interpolation function and number of sample points.
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Figure 6.9: R2, entropy, and NIPs values with respect to number of sample points
for the below- and above-threshold data for each interpolation function
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Mean R2 value overall was 0.9973 with a minimum value of 0.9929 and maximum
value of 0.9993, showing that all deconvolved RTDs form good predictive models.
Figures 6.9a and 6.9b show the distribution of R2 values with respect to interpol-
ation function and number of sample points and in general show an increasing
trend in predictive capability with more sample points. For the above-threshold
RTD this is approximately linear. For this below-threshold RTD it may be broken
down into two approximately linear trends, from 15 to 24 sample points, and from
24 to 45 sample points. The relative spread of R2 values at a given number of
sample points shows that interpolation function has a lower impact than number
of sample points. There is no clear relationship between interpolation function
and R2 value which suggests choice of interpolation function should primarily be
guided by entropy or NIPs.

Entropy trends for both the below- and above-threshold RTDs (Figures 6.9c and 6.9d)
show increasing smoothness with fewer sample points, which is expected. This
demonstrates the impact that number of sample points can have on RTD quality.
LAMA interpolation performs best with entropy values significantly and consist-
ently closer to zero. GIE entropy values, while not as close to zero, also show low
variation with respect to number of sample points. The consistency of the entropy
values suggests both the LAMA and GIE interpolation functions as good choices
for a smooth RTD. Cubic and linear interpolation generally show entropy values
closer to zero with lower numbers of sample points, but show significantly higher
values and more variation with more sample points. The high values of entropy
for linear and cubic interpolation can be attributed to the fact that both methods
treat the sample points as observations of the RTD that the interpolated RTD
must pass through.

Both the below- and above-threshold results show overall decreasing NIPs with
fewer sample points (Figures 6.9e and 6.9f), which is consistent with the entropy
results. Below-threshold NIPs values are approximately constant below 24 sample
points, and increase at higher sample point numbers. This is similar to the below-
threshold R2 values. LAMA particularly appears to perform better with lower
NIPs values at higher numbers of sample points. This is a result of the fixed
moving average window size.
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6.4.1.1 Recommendations

Higher R2 value, entropy closer to zero, and lower NIPs are representative of
smoother RTDs and are to be preferred. R2 and NIPs primarily provide recom-
mendation on number of sample points, while entropy provides recommendation
on interpolation function. Number of sample points should be chosen (in com-
bination with interpolation function) to provide the best balance of predictive
capability and smoothness. In this instance, based on the results in Figure 6.9, 24
sample points appears to provide the best match of high predictive capability and
low entropy. In the below-threshold data, 24 sample points is the change point
between the two linear trends. In both cases, all four interpolation functions have
similar predictive capability and NIPs values at 24 sample points. Entropy values
are also low. As such it makes an excellent case for more detailed comparison. In
general, LAMA and GIE can clearly be recommended over cubic and the original
linear interpolation.

6.4.1.2 Visual inspection of deconvolved RTDs

Plots of the deconvolved RTDs for each interpolation function at 24 sample points
are presented in Figure 6.10, together with the original 40 sample point linearly
interpolated deconvolution result for comparison. Associated R2, entropy, and
NIPs values are presented in Table 6.1.

The plots show improvements in RTD smoothness. As a result of the reduced
numbers of sample points the below-threshold peak RTD value is reduced. LAMA
and GIE particularly show the greatest change in shape below-threshold. Above-

Below-threshold Above-threshold
R2 Entropy NIPs R2 Entropy NIPs

Linear 40 0.9971 −2.0144× 10−3 21 0.9991 −9.6227× 10−4 15
Linear 0.9956 −1.5562× 10−4 8 0.9984 −1.4609× 10−4 7
Cubic 0.9960 −5.9767× 10−5 7 0.9986 −2.0130× 10−5 9
LAMA 0.9955 −3.8505× 10−5 7 0.9983 −1.5752× 10−5 9
GIE 0.9959 −2.6547× 10−5 7 0.9985 −8.8952× 10−5 9

Table 6.1: Deconvolution results summary for 24 sample points
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Figure 6.10: Deconvolved 24 sample point RTDs
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threshold, RTD shapes are more similar across interpolation function. The small
decreases in predictive capability at 24 sample points compared to 40 sample
points suggests that the slope-based sample point distribution functions as de-
signed.

Key RTD characteristics are consistently retained independent of interpolation
function. Peak values and location are similar for each below- and above-threshold
RTD across interpolation function. The secondary peak and tail in the below-
threshold RTDs are also reproduced across interpolation function. Small second-
ary characteristics are evident in the above-threshold RTDs before and after the
main peak with the LAMA and GIE interpolation functions only.

While peak RTD values have remained similar across interpolation function with
24 sample points, the peak values for the below-threshold RTDs are only approx-
imately half the peak value for the 40 sample point linear RTD. The decrease is
due to a sample point in the 40 point distribution not existing in the 24 point dis-
tribution. There has not been a similar decrease in peak for the above-threshold
RTDs. Number of sample points, and the associated sample point positioning has
played a significant role in altering RTD characteristics.

The lower number of sample points has positively influenced RTD smoothness,
but potentially affected hydraulic interpretation. It may be over limiting the RTD,
but there is no real indication which RTD provides the “correct” hydraulic inter-
pretation. As with any experiment, ideally multiple runs should be carried out
and deconvolved to reveal key system characteristics.

6.4.2 Over-sampling

R2 and APE values from the over-sampling analysis, for both the synthetic and
recorded data, are presented in Table 6.2.

6.4.2.1 Synthetic data

RTDs generated from the deconvolution of the synthetic data are presented in
Figure 6.11. In all cases the deconvolved RTDs form excellent predictive models
with R2 > 0.999999, but there is significant variation in RTD shape.
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Figure 6.12: Deconvolved laboratory RTDs
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Data type Interpolation Sample points R2 APE

Synthetic Linear 40 0.9999999362 48.49
24 0.9999991264 8.35

LAMA 40 0.9999999556 1.65
24 0.9999993859 1.35

Laboratory Linear 40 0.9992231319 N/A
24 0.9991585371 N/A

LAMA 40 0.9991332380 N/A
24 0.9991206907 N/A

Table 6.2: Comparison between interpolated RTDs and sample point numbers by
R2 and APE value

The RTDs deconvolved using linear interpolation show oscillation around the
known synthetic RTD. The 40 sample point linear RTD shows extreme variation,
reflected in a high APE value of 48.49. There is a repeating pattern of points below
then above the known RTD which is the characteristic over-sampling oscillation.
This is present to a much lesser extent in the 24 sample point RTD, although
the APE value of 8.35 suggests that even 24 sample points may also be over-
sampling in this case. However, the 24 point linearly interpolated RTD does
correctly capture the basic RTD shape and could be considered satisfactory on
its own.

LAMA interpolation gives a ‘visually pleasing’ and more accurate deconvolved
RTD when using either 40 or 24 sample points. Both results show only minor
variation between the known synthetic RTD and deconvolved RTD, with APE
values less than 2. The 40 point LAMA RTD has a slightly higher APE value
than the 24 point LAMA RTD, but both are still superior to the linear 24 point
RTD in terms of shape and APE. LAMA has compensated for over-sampling.

Oscillation in the RTDs deconvolved with linear interpolation does not signific-
antly affect predictive capability as in the convolution process as the RTD is shif-
ted according to the integration variable τ in Equation 2.4. This can be thought
of as a moving average process. Using LAMA interpolation, the moving aver-
age effect is relocated to the interpolation stages of deconvolution. The synthetic
data LAMA RTDs actually also have (very) slightly higher predictive capability.
LAMA interpolation could potentially result in all round better models and not
just smoother RTDs.
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6.4.2.2 Laboratory data

The results from the deconvolution of the laboratory data are presented in Fig-
ure 6.12. Again, the deconvolved RTDs form excellent predictive models with all
R2 > 0.999, and similarly there is significant variation in RTD shape.

The RTD deconvolved with the recommended 40 sample points and linear inter-
polation (Figure 6.12a) shows oscillation similar to its synthetic data counterpart,
which is unrealistic in pipe flow. The RTD shape clearly indicates over-sampling.
The 24 sample point linearly interpolated RTD shows a smoother profile that
could be considered acceptable on its own, but still shows some signs of oscilla-
tion.

Similar to the LAMA interpolated synthetic RTDs, there is agreement between
the LAMA interpolated 40 and 24 sample point RTDs. There is only minor vari-
ation between the two, which gives confidence that the deconvolved RTD is a
good result and shows LAMA has compensated for over-sampling. Additionally,
the similarity between the deconvolved LAMA interpolated RTDs based on the
synthetic data and the known synthetic RTD further indicates that the RTD de-
convolved from the laboratory data is a good result. Deconvolution of repeated
laboratory trials could confirm this.

The non-Gaussian RTD shape could be indicative of either incomplete mixing due
to less than full turbulence or due to non-Fickian advective processes dominating
solute transport over short-distances (Hart et al., 2013).

6.4.3 Recommendations

LAMA and GIE interpolation have both shown similar good performance. LAMA
typically has a lower entropy value, but its fixed window size must be identified
for each specific data set. Unfortunately this does not lend it to generic applic-
ation, which otherwise is a strength of using maximum entropy deconvolution.
GIE effectively uses an adaptive window size to avoid this, but it comes at the
cost of slightly higher entropy and increased computational costs (longer decon-
volution times). GIE also is a new measure that has not yet been proven to be
robust. Either interpolation function could be recommended for specific detailed
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investigation, but in general more work is needed before large scale application.

By definition, lower numbers of sample points remove the oscillation that is char-
acteristic of over-sampling and provide an alternative to applying LAMA interpol-
ation. This has been shown in the results where the 24 point linearly interpolated
RTDs are somewhat similar to their LAMA interpolated counterparts. However,
a reduction in number of sample points removes some flexibility from the decon-
volution methodology. Sample point positioning becomes increasingly important
and any error could result in a poor or unrepresentative RTD.

The application of LAMA allows for higher numbers of sample points to be used,
avoiding over-sampling and keeping solution flexibility. Window size is critical in
this case. It may be linked to RTD characteristics or sample point distribution. For
practical purposes window size analysis could be conducted on one experimental
configuration, and then applied to other similar configurations, e.g. similar flow
rates. In the future choice of window size could potentially be automated.

24 or other lower numbers of sample points, and both LAMA and GIE interpol-
ation can be recommended when a smoother RTD is expected or required.

6.5 Validation

Figure 6.13 shows a comparison between CRTDs generated with the recommen-
ded settings for a smoother RTD (24 sample points and GIE or LAMA inter-
polation) and their linearly-interpolated 40 sample point equivalents. The below-
threshold rise in CRTD is less steep, and the above-threshold tail is slightly
different. In both cases, however, the start and height of the steep rise are near
identical and in general there is good overall agreement. The CRTDs generated
from interpolated RTDs are smoother, but otherwise key CRTD characteristics
are retained when using LAMA or GIE interpolation and 24 sample points in
deconvolution.
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Figure 6.13: CRTD comparison of interpolated results

6.6 Conclusion

Changing the interpolation function and number of sample points were proposed
as means of improving the quality of RTDs deconvolved with maximum entropy
deconvolution. An interpolation function which smooths gives the RTD a more
realistic shape that minimises fluctuations that otherwise cancel out during con-
volution. Fewer sample points reduces the potential for variation and so also
results in a more realistic, smoother, RTD. Several interpolation functions were
initially explored, three of which were suggested for potential inclusion in max-
imum entropy deconvolution.

Two experimental solute transport upstream and downstream concentration pro-
files were deconvolved with the original linear interpolation, cubic interpolation,
Linear interpolation with an Applied Moving Average (LAMA), and the spe-
cially developed Gaussian Influence Estimation (GIE) interpolation. The data
were deconvolved with 15 to 45 sample points, but otherwise the previously re-
commended 350 iterations, R2

t constraint function, and slope-based sample point
distribution were used. The deconvolved RTDs were compared with the Nash-
Sutcliffe Efficiency Index (R2) for evaluating predictive capability, the entropy
function for evaluating smoothness, and the Number of Inflection Points (NIPs)
to also evaluate smoothness.

All interpolation functions resulted in RTDs with good predictive capability. The
consistent quality of results across different numbers of sample points indicates
that the slope-based sample point distribution functions as designed and places
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sample points effectively. R2 and NIPs values decreased with fewer sample points,
the former showing a decrease in predictive capability with smoother RTDs. The
entropy values of the LAMA and GIE interpolated RTDs were much closer to
zero (reflecting smoother RTDs) than linear or cubic interpolation, and so either
LAMA or GIE interpolation are recommended. More detailed work may be neces-
sary before the generic application of either, e.g. relating to the choice of LAMA
window size.

In general, high R2 values, entropy closer to zero, and low NIPs values are to
be preferred as indicating smoother, good quality RTDs. Based on the results
obtained, 24 sample points were found to produce smooth RTDs with high pre-
dictive capability. Examination of RTDs deconvolved with 24 sample points for
each interpolation function showed that RTD shape is consistent across interpol-
ation function, but that RTD shape varies with sample point positioning.

Synthetic solute transport data and recorded laboratory solute transport data
were deconvolved with 40 and 24 sample points using linear and LAMA interpol-
ation to investigate the possibility of reducing the effects of over-sampling in the
sample point distribution. Both sets of data deconvolved with 40 sample points
and linear interpolation showed signs of over-sampling, with oscillation in the de-
convolved RTD. At 24 points using linear interpolation this effect was minimised,
although not eliminated entirely. Using LAMA interpolation practically elimin-
ated over-sampling effects in all cases, resulting in a smooth RTD, which in the
case of the synthetic data was nearly a perfect match to the known RTD.

RTDs deconvolved with 24 sample points and LAMA or GIE interpolation are
of high quality. When compared to those deconvolved with linear interpolation
and 40 sample points as CRTDs all key characteristics are reproduced showing,
that the interpretation of bulk mixing conditions remains similar. Either LAMA
or GIE interpolation and 24 sample points can be recommended for deconvolving
smoother RTDs when they are expected or required.
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Chapter 7

The deconvolution of raw data

In Chapter 6, an improvement for deconvolution involving changing the interpol-
ation function was discussed. In this chapter, as a new addition to the method-
ology, the potential to apply deconvolution to raw data (i.e. data without pre-
processing) is explored. Different levels of pre-processing are used to investigate
what, if any, pre-processing is necessary before maximum entropy deconvolution
can successfully be applied to solute transport data.

7.1 Introduction

Raw data is the information collected directly from instrumentation and recor-
ded as-is during experimental laboratory and field work, e.g. voltage readings. In
most cases raw data must be pre-processed before it can be analysed. Saiyudt-
hong (2003) describes the pre-processing of laboratory solute transport data as a
complex chain of operations consisting of calibration, subtraction of background
concentration levels, filtering and the trimming of the data record (reducing the
length, or duration, of the record through data cut-off based on definitions of
trace start and end times).

Researchers can spend significant amounts of time developing pre-processing steps
that take into account their specific experimental setup. Guymer & O’Brien
(2000) provide several paragraphs describing the calibration of fluorometers. Kas-
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ban et al. (2010) clearly outlines and documents each step of the pre-processing
used when obtaining the RTD using radiotracers. However, in many published
papers pre-processing is only summarised, e.g. Guymer (1998), or effectively ig-
nored, e.g. Wallis & Manson (2005). While pre-processing is generally not the
specific focus of the research, it can impact significantly on the quality of the
research findings. As an example of this, Joo et al. (2000) show how better pre-
processing of data for an artificial neural network used in predicting coagulant
dosing rate leads to a better learning rate, reduced error, and improved predict-
ive capability. It is equally possible that poor pre-processing can lead to poorer
results.

Given regularly sampled paired time-series experimental concentration data re-
cords for upstream u(t) and downstream y(t) data, maximum entropy decon-
volution has been shown to robustly deconvolve the RTD from many types of
pre-processed laboratory solute transport data (see Chapter 5). Assuming a lin-
ear instrument response, deconvolution of raw data should prove to be equally
robust, allowing for a reduction in the time spent on, and potential errors intro-
duced in, the application of pre-processing steps.

This chapter aims to demonstrate the applicability of maximum entropy deconvo-
lution to raw solute transport data through a sensitivity analysis. Synthetic raw
data of varying duration, noise level, background concentration level, and calibra-
tion has been generated to simulate different types of raw data. The quality of the
RTDs deconvolved from the synthetic raw data have been evaluated to determ-
ine to what extent raw data can be deconvolved and whether any pre-processing
steps remain necessary.

7.2 Methodology

Synthetic ‘raw data’ time-series have been created to investigate how input data
impacts on the deconvolved RTD. An upstream profile has been convolved with
a known RTD to create a downstream profile, and various pre-processing steps
have then been applied in reverse.
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7.2.1 Base synthetic data

The base synthetic data, analogous to pre-processed data, were created as the
combination of a Gaussian upstream concentration profile (µ = 12.4 s, σ =

5.5 s) and an RTD synthesised from the Advection-Dispersion Equation routing
solution (Equation 2.2) using parameters D = 0.014 m2s−1 and t = 13.5 s. The
downstream concentration profile is the convolution of the upstream profile and
RTD. The data has a time step of dt = 0.15 s. Concentration levels below 10−4

have been treated as below instrument resolution and set to 0. The base data
has 100% mass-recovery and is shown in Figure 7.1. It has been created to be
representative of recorded laboratory pipe data with a 88 mm diameter, 5 l/s
flow, and a distance between instruments of 2.7 m (Guymer & O’Brien, 2000).

7.2.2 Reversed pre-processing

Typical pre-processing of raw solute transport data follows these steps:

1. Apply calibration function

2. Subtract background concentration levels

3. Filter noise (e.g. smoothing or down-sampling)

4. Determine the start and end of the experimental event, then trim extra
data
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Figure 7.1: Base synthetic data (representative of pipe flow)
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To generate synthetic raw data these steps have been applied in reverse, as de-
scribed below.

7.2.2.1 Data extension

Laboratory data is often recorded for a longer period than the created event, al-
lowing for the start and end of the experiment to be recorded fully. With synthetic
data the start and end is known, so to simulate a reversal of step 4, extra data
points have been added before and after the base data, as shown in Figure 7.2,
effectively extending the duration of the data record. Zeros were used in order to
retain mass-balance. Data extension has been added as 0%, 10%, and 20% of re-
cord length on either side, e.g. an extension of 20% is 2 additional minutes before
and after a 10 minute data record, resulting in a total duration of 14 minutes.

7.2.2.2 Addition of noise

Recorded data is subject to random variation from either within the system or
due to the instrumentation, which is reflected as noise in the recorded data. Pre-
processing step 3 is often used to limit the impact of noise through filtering, e.g.
the application of a moving average. The base data has no noise and it must
be added to simulate raw data. Random white noise has been used, as shown
in Figure 7.3. Noise level is defined as peak noise intensity over peak upstream
concentration. 0%, 5%, 10%, and 20% have been used. 20% noise is representative
of 1 V of noise in a 5 V sensor and can be considered a conservatively high value.
These levels correspond to Signal-to-Noise ratios of approximately∞, 50, 25, and
12.5 respectively (Photon Technology International, Inc., 2005).
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Figure 7.2: Data extension example (20%)
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Figure 7.3: Data with 10% noise added

7.2.2.3 Addition of background

Background concentration refers to a constant or near-constant concentration
level measured independently of any experimental event. It is often present in
laboratory setups, particularly in those utilising recirculating systems. This step 2
of pre-processing is usually carried out to leave only the change in concentration
caused by the event. This can be done by taking an assumed mean value or linear
function derived from the recorded concentration levels and subtracting it.

To simulate raw data, a background concentration has been added to the base
data, either as a constant value or varying linearly with time (sloped background).
Constant background takes the form of a mean background concentration level,
defined as a fraction of peak upstream concentration. Values of 0%, 10%, and
20% have been used. Background slope has been applied on top of each mean
background level as an additional -2.5% increasing to 2.5% of peak upstream
concentration for positive slope or 2.5% decreasing to -2.5% for negative slope.
Addition of background is shown in Figure 7.4.

7.2.2.4 Reverse calibration

Calibrating raw data for linear sensors, pre-processing step 1, consists of mul-
tiplication by a known factor to relate sensor reading to concentration level.
Therefore, to simulate raw data, multiplication by a factor has been applied (‘un-
calibration’). Factors have been chosen for the upstream and downstream profiles
separately so that the peak values are a combination of 2, 3, 4 or 5 V, resulting in
16 combinations of uncalibration. 5 V is a representative maximum sensor value.
Base data with uncalibration is shown in Figure 7.5.
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7.2.3 Anomalous data

There are situations where laboratory data displays unusual characteristics not
dealt with in routine pre-processing. Two such cases have been created and tested
in order to examine how unusually low quality input data impacts on the decon-
volved RTD.

The first case consists of recurring data spikes where single data points have sig-
nificantly higher values, e.g. Figure 7.6a. Spikes have been introduced once every
133, 67, and 33 points (once every 20, 10, or 5 s) with intensities of 10%, 20%, and
40% of peak concentration non-coincidentally to the upstream and downstream
concentration profiles. The second anomalous case consists of sequences of zero
reading, e.g. short periods where sensors became unplugged (Figure 7.6b). 13, 33,
and 67 consecutive points (2, 5, or 10 s durations) in both profiles have been set
to zero at different times ranging through the entire data record, e.g. from 0 to 2
seconds or from 2 to 4 seconds.

The anomalous data cases have been applied to only a subset of the synthetic data,
and are analysed separately from the main sensitivity analysis. The anomalous
data has been applied to 6 types of raw data. These are the combinations of 0%,
5%, or 10% noise and 0% or 10% constant mean background (no slope) with an
uncalibration of the upstream and downstream profiles to 3 V and 0% extension.
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Figure 7.6: Anomalous data examples
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7.2.4 Deconvolution settings

In Chapter 5, deconvolution was recommended to be carried out using 40 sample
points, 350 iterations, the slope-based sample point distribution and the R2

t con-
straint function. However, the recommended 40 samples points has here been
changed to 20 sample points to reduce the potential for noise and over-sampling
(see Chapter 6) in the deconvolved RTD.

7.2.5 Analysis

7.2.5.1 Predictive capability

The RTD forms part of a predictive model (Equation 2.6), which can be eval-
uated through the R2 correlation measure (see Section 5.2.3). For this analysis,
the deconvolved RTD is scaled by the mass-balance of the synthetic raw data
from which it was derived to account for uncalibration. The base upstream pro-
file is then convolved with the scaled deconvolved RTD to generate a predicted
downstream concentration profile, which is then compared with the original down-
stream concentration profile.

7.2.5.2 RTD comparison

Considering that the RTD used to generate the synthetic raw data is known, a dir-
ect evaluation of RTD quality can be made by comparing the scaled deconvolved
RTD with the original synthesised RTD using the APE correlation measure (see
Section 6.3.4).

7.2.6 Validation

To verify the applicability of the results obtained to a wider range of raw data,
e.g. data with asymmetric and other more complex RTD profiles, genuine raw
laboratory data has been deconvolved. As discussed in Section 2.3, Guymer et al.
(2005) suggested that surcharged manholes experience two hydraulic mixing re-
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gimes dependent on surcharge depth, a below-threshold fully mixed condition and
an above-threshold short-circuiting condition. These conditions have previously
been shown to have differing RTDs when deconvolved from pre-processed data,
e.g. Figure 2.9. The raw recorded solute transport data from a below- and above-
threshold surcharged 800 mm manhole at a 0.88 l/s flow rate have therefore been
selected for deconvolution from O’Brien (1999), shown in Figures 7.7a and 7.7b.

Minimal pre-processing has been applied. This comprises a sloped background
subtraction based on the mean of the first and last 5 seconds of data as background
concentration level estimations. The raw data after minimal pre-processing is
shown in Figures 7.7c and 7.7d. Noise level has been estimated as around 13%
for both data records. Deconvolution was carried out with the previously recom-
mended settings. 40 sample points are used to account for the longer data record,
and as the RTD does not need specifically to be inspected.

7.3 Results and discussion

The different combinations of synthetic input data with different levels of data
pre-processing resulted in 1,728 deconvolutions being carried out. The anomalous
data resulted in an additional 816 deconvolutions.

7.3.1 Predictive capability

Figure 7.8a shows all of the R2 values evaluating the comparison between the
base and predicted downstream profiles. These values exclude the anomalous
data. Each group of 3 columns represents a mean background level, and each
individual column corresponds to a different background slope (i.e. positive, no
slope, or negative). Each column contains all combinations of uncalibration. Every
nine columns represent a specific noise level.

Overall predictive capability is excellent, with mean R2 = 0.9958. There is a
clear trend of decreasing predictive capability with increasing noise and increasing
mean background level. The greater spread in the columns further to the right
indicates that the impact of uncalibration increases with greater background levels
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Figure 7.7: Raw data records for validation
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and noise, but does not appear to be systematic. Background slope and extension
have relatively little impact on predictive capability, but may be explained.

A positive background slope leads to lower R2 values than a negative background
slope when mean background level is 0%, independent of uncalibration. The neg-
ative portion of the downstream profile with a negative background slope cannot
be matched in the deconvolution process, while the greater positive portion due
to a positive background slope can be. RTDs deconvolved from the latter will
more greatly over predict mass-balance than the former will under predict it.
The greater over-prediction results in poorer R2 values.

The increase of R2 with extension at no background and no noise may be explained
by the wider spacing of sample points that results from the same 20 points being
distributed over a longer profile. This reduces the relative potential for noise,
leading to an improvement in RTD quality with extension. When there is non-
zero background, there is a consistent period of time at the start of the profile
when the downstream prediction does not match the synthetic raw data. This
period is fixed in length regardless of total duration and therefore, as extension
increases, represents a proportionately smaller period of time. The period of poor
fit therefore has less negative influence on the R2 value at greater extension,
increasing R2 values overall.

7.3.2 RTD quality

Mean APE values for the comparison between the known and deconvolved RTDs
are shown in Figure 7.8b. The effects of extension and uncalibration have been
combined as they have no impact on predictive R2 value in the ideal scenario of
no background and no noise. Those RTDs are therefore assumed to be of similar
quality, although realistically there is some variation due to the deconvolution
process. Bars are coloured by mean predictive R2 value (from Figure 7.8a), show-
ing the relationship between RTD quality and predictive quality.

Figure 7.8b shows similar trends to Figure 7.8a, breaking down into clear groups
in RTD quality around noise and mean background level. The lowest observed
mean APE value is 13.00, indicating that the deconvolved RTD will always vary
from the actual RTD. APE value approximately doubles with either the addition
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of 10% constant background or 10% noise. As background and noise level increase
further so does APE value. In general, background concentration appears to have
a greater impact on RTD quality than noise level as 20% noise with 0% mean
constant background has a lower mean APE value than 0% noise and 20% mean
background level.

The variation in RTD quality due to background slope can be seen again. APE
values for positive background slope are significantly higher than their negative
background slope counterparts due to the greater over-prediction of the RTD
when there is a positive background slope. Despite relatively small variations in
R2 value, the larger difference in APE value shows significant change in RTD
shape.

7.3.3 Visual inspection

Figure 7.9 shows the predicted concentration profiles and deconvolved cumulative
residence time distributions (CRTDs) for three cases. The first case has 5% noise
and no background. The second case has 10% noise and 10% mean background
(no slope). The third case has 20% noise and 20% mean background (no slope).

The figures show decay in predictive capability and RTD quality with increased
noise and background. Lower noise and background levels should therefore be
preferred to keep RTD quality high. This confirms the results shown in Fig-
ures 7.8a and 7.8b, suggesting 10% noise and 10% background levels as limits for
a fit-for-purpose deconvolved RTDs. This corresponds to approximate lower limit
cut-offs of R2 = 0.998 and APE = 30 for this data set. Higher noise levels may
be acceptable with no background concentration.

7.3.4 Data anomalies

In data that includes the spike and sequence of zero reading anomalies, the trend
of decreasing predictive capability and RTD quality with increased noise and
background level remains.

When random data spikes are applied, there is no overall significant change in
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(c) Second case prediction, R2 = 0.9991
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(d) Second case CRTD, APE = 29.20
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Predicted Downstream

Recorded DownstreamUpstream

Error

Error

Deconvolved CRTD

Known CRTD

Figure 7.9: Test cases showing deconvolved CRTD and predicted downstream
profiles for visual inspection
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predictive capability, with mean R2 = 0.9985. RTD quality also remains accept-
able with a mean APE value of 26.67. The greatest impact occurs on RTD quality
with a spike frequency of 5 s, with an increase in APE value of 5. The decrease
in R2 value is minimal. Greater spike size affects only R2 value, causing slightly
lower values.

Impact due to the sequences of zero reading is much clearer, with predictive
capability and RTD quality varying widely depending on the location of the zeros.
Across the 6 tested data records, a 10 s sequence of zeros replacing the peak of
downstream profile impacts on the deconvolved RTD the greatest, with mean R2

of 0.2400 and mean APE value of 100. A 2 s sequence replacing the upstream
peak results in a mean R2 of 0.9828 and APE of 30.39. If the sequence of zero
readings is at the start or end of the profile, R2 and APE value are unaffected.
Impact is minimised as the sequences of zero reading move away from the peak
of the profile and as sequence length decreases. The impact of sequences of zero
reading on the upstream profile is lower than on the downstream profile, which
indicates that downstream profile quality is more important for obtaining a good
RTD.

7.3.5 Raw data analysis recommendations

10% noise and 10% background have been suggested as input data quality limits
for deconvolving a fit-for-purpose RTD, with calibration and extension having
minimal impact. Spikes are suggested to have a similar impact to noise, while
sequences of zero readings can significantly affect the RTD. To ensure sufficient
input data quality, minimal pre-processing to the data should be applied based
on these findings.

Background concentration has a high impact on RTD and is a common occur-
rence, so it is the most important data quality issue to address. Background
concentration should be subtracted as part of minimal pre-processing. This sub-
traction should take into account background slope, but in general need not be
overly precise as at very low background levels noise will have a greater impact
on RTD quality.

Pre-processing for noise is indicated to be unnecessary as long as background
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subtraction has taken place. Even at noise levels higher than 10% the RTD has
been observed to remain good. In the event of significantly greater noise levels,
some filtering should be applied, e.g. a moving average. Additional steps of down-
sampling or cutting may be required for computational reasons when time-series
are of significant length. However, in most cases no other pre-processing should
be required.

7.3.6 Validation

The applicability of maximum entropy deconvolution to raw solute transport data
has been carried out using raw laboratory data. Figure 7.10 shows the downstream
profiles from Figure 7.7 with predicted output from the deconvolved RTDs. The
R2 values in this case are much lower than those obtained in the sensitivity ana-
lysis, but by visual examination the predicted downstream profile clearly matches
the recorded profile. The lower R2 values are the result of noise captured by the
high sampling frequency of 166 Hz. The high sampling frequency also causes high
numbers of data points, which results in long deconvolution times. As previously
mentioned, sub-sampling of the concentration data may be advisable in these
situations for practical purposes.

Figure 7.11 shows the deconvolved CRTDs. While there is no way to make a
numerical evaluation of RTD quality, they can be evaluated in comparison to each
other based on the previously presented below- and above-threshold CRTDs, e.g.
Figure 2.9. In both figures, the above-threshold CRTD rises steeply, while the
below-threshold CRTD only has a short rise followed by a drawn out tail.

Deconvolution can be successfully applied to raw solute transport data to ob-
tain fit-for-purpose predictive models and CRTDs that reflect hydraulic system
characteristics.

7.4 Conclusions

Data pre-processing is an important step that converts raw data records into a
form suitable for analysis. Typical solute transport data pre-processing steps have
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Figure 7.10: Predicted downstream profiles from experimental validation data
(Figure 7.7)
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Figure 7.11: Deconvolved CRTDs from experimental validation data: 800 mm
manhole, 0.88 l/s flow, mass-balanced
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been identified and applied in reverse to generate synthetic raw data. Maximum
entropy deconvolution has then been used to deconvolve the synthetic raw data
in order to evaluate how input data quality affects the quality of the deconvolved
RTD. Anomalous data were also tested.

Predictive capability of the deconvolved RTD is generally good, but degrades with
increases in noise and background concentration level. Differences in uncalibration
and extension impact on the deconvolved RTD, but do so in an unsystematic fash-
ion. Increasing background concentration levels with time particularly influence
the deconvolved RTD, causing over estimation of the RTD and a corresponding
reduction in RTD quality and predictive capability.

RTD quality, assessed using a direct comparison to a known RTD, shows similar
trends to predictive capability, decreasing with increased noise and background
concentration level. Even with no noise or background, however, there is a slight
degradation in the quality of the deconvolved RTD with a mean APE value of
13.00. This degradation approximately doubles with 10% noise or background.
RTD quality and predictive capability are clearly linked.

A visual inspection of the predicted downstream profiles and deconvolved CRTDs
was carried out. Combined, the results suggest that 10% noise and background
are limits for deconvolving a fit-for-purpose RTD. Higher noise levels may be
acceptable, providing the mean background concentration level is low, as noise
appears to less severely impact on deconvolved RTD. Minimal pre-processing is
suggested to take the form of a background concentration level subtraction that
takes into account background slope.

Provided minimal pre-processing is done, and the instrumentation used to collect
the raw data has a linear response, maximum entropy deconvolution can be suc-
cessfully applied to raw solute transport data to extract the RTD. This has been
demonstrated with independent laboratory data.

A more thorough test of the deconvolution of raw data is carried out in Chapter 8.
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Chapter 8

Mixing in surcharged manholes

This chapter serves as a demonstration of the applicability of maximum entropy
deconvolution towards deconvolving large amounts of raw data and the identific-
ation of hydraulic processes occurring in surcharged manholes. The partial data
set previously analysed in Chapter 3 is re-analysed together with the complete
data set, and an enhanced understanding of both the deconvolution process and
Residence Time Distributions is used to draw new conclusions.

8.1 Introduction

In combined sewer networks surcharged manholes experience complex mixing con-
ditions. To correctly model the effect of manholes in hydraulic models, research
has been conducted on energy losses in manholes and several relationships have
been proposed. However, due to the complex nature of mixing processes in man-
holes, no clear theoretical relationship has emerged for water quality modelling
and as such most water quality models simply use a plug flow assumption through
manholes.

To date, mixing in manholes has been characterised primarily for unbenched,
straight through manholes. A brief summary of this work was given in Section 2.3.
Of particular interest is research carried out by Saiyudthong (2003) on the effects
of outlet angle and benching on mixing characteristics. Benching is a manhole
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feature incorporated to reduce the chance of settling. A significant amount of
solute tracer data was collected and the raw data saved in a form suitable for
re-analysis with deconvolution (see Chapter 7). Complementary data collected
by Dennis (2000) is also suitable. This chapter aims to combine existing research
with new deconvolution analysis to present a more complete picture of mixing
processes in surcharged manholes by including results from angled and benched
manholes.

8.1.1 Solute transport in manholes

Guymer et al. (2005) described two mixing conditions in unbenched manholes.
A below-threshold well-mixed condition and an above-threshold short-circuiting
condition. Stovin et al. (2010a) identified a hydraulic threshold for this change
in mixing regime at s′ = 0.258D, where s′ is threshold surcharge depth and D

is manhole diameter. Stovin et al. (2013) used validated CFD models to show
that the below-threshold well-mixed condition does not occur in manholes when
D/Dp < 4.4, where Dp is pipe diameter. Instead, flow is short-circuiting (above-
threshold) for all surcharge depths. Manhole to pipe diameter ratios below this
D/Dp = 4.4 cut-off are more common in sewer networks than manholes with a
higher ratio. The CFD models also showed that for manholes where D/Dp ≥ 4.4,
the threshold occurred at s′ = 0.2D. This corresponds directly with theoretical
jet expansion according to Albertson et al. (1950).

The results of Stovin et al. (2013) were shown through Cumulative Residence
Time Distribution analysis and through normalised t50 values. The t50 value is
the residence time at which CRTD = 0.5, i.e. the time taken for 50% of the mass
to pass through a system or

´ t50
0

E(τ)dτ = 0.5. The CRTDs indicated that in
the below-threshold condition (D/Dp ≥ 4.4), there was systematic variation in
mixing that should be taken into account. Stovin et al. (2013) hypothesised that as
surcharge depth increased there was more jet expansion promoting better mixing
until the above-threshold condition was reached, fully damping most jet mixing
effects. They also showed K energy loss coefficients (discussed in Section 8.1.2)
that corresponded well to normalised t50 values, and as a result hypothesised
that, given solute transport processes and energy losses are both factors of system
hydrodynamics, it should be possible to correlate the results to predict one from
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the other.

A third “very low surcharge” mixing condition was observed at surcharge depths
of 10–20 mm in unbenched manholes by Stovin et al. (2013) when D/Dp ≥ 4.4.
This condition was indicated by CRTDs similar in shape to those of the above-
threshold condition, also indicating short-circuiting. Analogous CRTDs at low
surcharge depth were also shown in Chapter 3 for unbenched manholes at 0°,
30°, and 90° outlet angles with flow at 1 l/s. This condition was first reported
by Jones (2011) when investigating unsteady-state flow conditions in unbenched
surcharged straight through manholes.

8.1.2 Energy losses

Stovin et al. (2013) suggested a link between mixing processes and energy losses.
Pedersen & Mark (1990) suggested that energy losses in manholes could be ac-
counted for using submerged jet theory. They developed a theoretical basis for
relating energy losses (head loss) in manholes to a single energy loss coefficient K
in Equation 8.1, where 4h is head loss, g is the acceleration due to gravity, and
Vx is mean longitudinal pipe velocity. After establishing this, they proceeded to
investigate relationships between K and manhole geometry. Several other studies
have also related the K value to manhole characteristics (e.g. Arao et al., 2012;
Zhao et al., 2006; Wang et al., 1998), and as such it is the standard coefficient
for describing energy losses in manholes.

4h = K
V 2
x

2g
(8.1)

Other previous work also suggests that K values change with the hydraulic
threshold (Lindvall, 1986; Arao & Kusada, 1999). In terms of system hydraul-
ics, flow at high surcharge depths has visually been observed to have a smooth
water surface (less turbulence) (Johnston & Volker, 1990), resulting lower K val-
ues. This is likely a case of above-threshold flow and less well-mixed manhole
outflow. It should be possible to use K to further examine mixing processes in
conjunction with the RTD.

Specifically of interest is work by Arao & Kusada (1999), who studied the effect
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of outlet angle, water depth, and manhole drop on energy loss in an unbenched
manhole. They investigated a 0° outlet, 45° outlet and two different types of 90°
outlet with aD/Dp = 3.6. For a 0° outlet angle with no drop, their results show an
increase in K with surcharge depth up to s = 0.278D, where s is surcharge depth,
after which it decreases to a near constant value. This is consistent with the well-
mixed below-threshold condition 0.2D ≤ s′ ≤ 0.285D proposed by Stovin et al.
(2010a) and Stovin et al. (2013). For a 90° outlet angle with no drop they show
increasing K with surcharge depth until s = 0.833D, after which K drops to a
steady value. This is consistent with the threshold depth reported in Chapter 3
for a 90° outlet angle. They conclude that there are clear differences in K with
water depth.

8.1.3 Energy dissipation

Saiyudthong (2003) suggested an energy dissipation value as a link between the
mixing processes and energy losses, but did not conduct a detailed analysis, par-
ticularly with reference to system hydraulics. The rate of energy dissipation G

for a unit of water is known as the velocity gradient and has the units s−1 (Equa-
tion 8.2). It was originally derived by Camp & Stein (1943) to relate power input
to mixing in the context of flocculation.

Droste (1997) provides a good explanation and basic derivation for G. Force
equations and power equations are balanced for an elemental volume of water,
and pressure terms used to combine them. This is linked to shear forces, which
are in turn linked to velocity through the stress-strain relationship of Newton’s
law of viscosity, i.e. assuming a Newtonian fluid, shear is related to velocity by
the dynamic viscosity. Velocity is then linked to power dissipation through flow,
resulting in Equation 8.2, where, ν is kinematic viscosity, and tn is the nominal
retention time.

G =

√
g4h
νtn

(8.2)

G when combined with 4h from a system is a mean value. Although energy
dissipation varies throughout a system, it is assumed that G scales with work
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input and therefore mean G also scales with power input. This is the basis of the
use of G as a criterion for design of flocculation vessels.

8.1.4 Cumulative Residence Time Distributions

F , the CRTD is the cumulative sum of the RTD, expressed in Equation 8.3.
The CRTD has been used to distinguish between different mixing conditions,
but previous manhole related research has not discussed how to interpret mixing
conditions through CRTD analysis.

F (t) =

ˆ t

0

E(τ)dτ (8.3)

8.1.4.1 Normalised time

Danckwerts (1953) implicitly introduces the concept of normalised time as a mech-
anism for analysing CRTDs that takes into account volume and flow rate. Nor-
malised time was introduced in Chapter 2 as Equation 2.5. tnz = 1 is equivalent
to the nominal retention time tn = V Q−1.

tnz = tQV −1 (2.5)

Normalised time is expected to allow for CRTD scaling provided three conditions
are met: geometric similarity, Reynolds number similarity, and fluid similarity
(fluids at the model scale and at full scale behave the same). Stovin et al. (2010a)
investigated CRTDs as a dimensionless predictive model of unbenched manholes
and showed them to be applicable provided similar flow fields existed (e.g. all
below-threshold). Manhole CRTDs with different flow rates and surcharge depths
were shown to collapse onto a common shape (or line) when normalised time was
used. An example of this is shown in Figure 8.1.
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Figure 8.1: CRTD demonstration of normalised time for below-threshold CRTDs
from unbenched 800 mm manhole data (Guymer & Stovin, 2011)
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8.1.4.2 Interpreting CRTDs

Knowledge of general CRTD shapes can be used in interpreting deconvolved
CRTDs to infer underlying mixing processes. Both Danckwerts (1953) and Leven-
spiel (1972) discuss certain fundamental flow regimes and the CRTD shapes that
reflect them. These are outlined below, increasing in complexity.

• Plug flow, shown in Figure 8.2a. The CRTD rises from 0 to 1 at tnz = 1.
Pure advection with no dispersion. All particles share the same travel time.

• Pipe flow, shown in Figure 8.2b. The CRTD rises gradually from 0 near tnz =

1, rises more steeply around tnz = 1, and then continues on to gradually
approach 1. Advection with some Fickian dispersion, e.g. Taylor (1954).
The bulk of particles travel around the mean pipe velocity.

• Complete mixing, shown in Figure 8.2c. All particles are mixed instantan-
eously throughout the available mixing volume, and gradually exit. This is
expressed by Equation 8.4.

F (tnz) = 1− e−tnzQ/V (8.4)

• Short-circuiting flow, shown in Figure 8.2d. The bulk of the particles travel
through significantly more rapidly than tnz = 1, while a small fraction of
the particles are trapped in a dead zone and so have a higher retention time.

• Arbitrary flow, shown in Figure 8.2e. There is no single dominating flow
path. Instead, particles can potentially travel along several different paths
and/or through dead zone(s).

8.1.4.3 Short-circuiting

The concept of short-circuiting has been previously introduced in Chapter 2 to
explain the above-threshold flow field, e.g. Figure 2.9. Several different CRTD
parameters to quantify short-circuiting have been developed, e.g. Persson (2000).
In general these rely on at least one of two key CRTD features, both of which
can be seen in Figure 8.2d. The first of these is a steep rise in CRTD, which
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Figure 8.2: Different mixing conditions expressed as CRTDs, after Danckwerts
(1953); Levenspiel (1972)

can be numerically expressed as a high ratio of t16/t50 (Ta & Brignal, 1998).
Unfortunately this could also indicate something similar to plug flow, e.g. Fig 8.2a,
or a single dominating flow path (Stovin et al., 2008). A more reliable indicator is
that the bulk of the CRTD occurs prior to tnz = 1 (Holland et al., 2004). In this
scenario flow has moved through the system more rapidly through the system
than the nominal retention time would indicate. A short-circuiting flow field in
manholes is typically indicated by both features.

While a CRTD contains features that indicate short-circuiting, this does not on
its own imply what underlying flow field may be causing the short-circuiting. As
indicated by the variety of CRTD parameters that have been proposed, more of
the context of these features must be considered as well. This chapter introduces
a second type of short-circuiting flow field occurring within manholes. Both the
original and new fields are shown in Figure 8.3.

Type I short-circuiting is the previously introduced above-threshold short-circuiting,
where flow passes directly through the manhole according to the jet. This matches
the PLIF imagery shown in Figure 2.5b. As such, Type I short-circuiting is spe-
cifically characterised by the rise in CRTD corresponding to the equivalent pipe
travel time, i.e. t16 ≈ t50 ≈ 0.25πDD2

pQ
−1. As this time is independent of sur-

charge volume, when CRTDs reflecting Type I short-circuiting are normalised,
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(a) Type I (b) Type II

Figure 8.3: Short-circuiting flow fields

they do not collapse e.g. Figure 3.4.

Type II short-circuiting appears on a CRTD plot nearly identically to Type I
short-circuiting, with a similar steep rise in CRTD, and again the bulk of the
solute passes through the manhole at tnz < 1. However, in Type II short-circuiting
the flow path is different. Flow is still dominated by a jet core, but in this case
it circulates throughout the manhole surcharge volume. As a result, the time at
which the steep rise occurs is much later than the equivalent pipe travel time.
Additionally, as Type II short-circuiting is a volume effect, the flow path changes
with surcharge depth and therefore when CRTDs showing Type II short-circuiting
are normalised they do collapse.

The primary difference therefore between Type I and Type II short-circuiting
CRTDs is not the shape but instead that Type II CRTDs will collapse due to
volume effects when normalised while Type I CRTDs will not.

8.1.4.4 CRTD balance

Danckwerts (1953) showed that one of the fundamental properties of the CRTD
is that the area under the CRTD for tnz ≤ 1 is equal to the area above the CRTD
for tnz > 1, as shown in Figure 8.4. While this applies to all CRTDs, many plots,
such as those in Figure 8.2, are truncated and therefore do not show this. The
area A can be expressed as Equation 8.5 (Denbigh & Turner, 1984).

A =

ˆ tn

0

F (τ)dτ =

ˆ ∞
tn

[1− F (τ)]dτ (8.5)
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Figure 8.4: CRTD area balance, after Danckwerts (1953)

8.1.5 Chapter aims

This chapter aims to demonstrate the large scale applicability of maximum en-
tropy deconvolution to raw solute transport data; infer the mixing processes oc-
curring in angled and un/benched manholes through CRTD analysis; and to fur-
ther investigate the link between energy losses and mixing processes in manholes.

8.2 Methodology

Raw experimental data has been previously collected by Dennis (2000) and Saiy-
udthong (2003) on both a benched and unbenched 388 mm manhole with an
88 mm diameter pipe and outlet angles of 0°, 30°, 60°, and 90° at varying flow
rates and surcharge depths. Fluorometers were placed 1.35 m up- and downstream
of the manhole centre and dye tracer tests were run. The experimental apparatus
is shown in Figure 3.1, and the benching in Figure 8.5. The experimental con-
figurations are shown in Figure 8.6, indicating where head loss and solute tracer
data were collected. The 0° unbenched data consists of 5 repeat trials, while the
rest of the data consists of 3 repeat trials. The 0° benched data was unavailable
for reanalysis. Data was not collected at combinations of low surcharge depth and
high flow rate due to pipe friction losses. (At high flow rates, friction losses in the
downstream pipe were so great as to cause additional surcharge in the manhole
irrespective of system configuration for low surcharges.) The 1 l/s data of Saiy-
udthong (2003) for the 30°, 60°, and 90° outlet angles was previously analysed as
pre-processed data in Chapter 3.
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Figure 8.6: Data set summary
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8.2.1 Maximum entropy deconvolution

In Chapter 5, 40 sample points, the slope-based sample point distribution, 350
iterations, and the R2

t constraint function were recommended as robust configur-
ation settings, and these have been used. In Chapter 7 raw data was deconvolved
successfully with only minimal pre-processing applied. This has been used to re-
duce potential errors that may otherwise be introduced during pre-processing.
The minimal pre-processing used was the recommended background concentra-
tion level subtraction as a linear function from the mean of the first 5 seconds
of data to the last 5 seconds of data. Additionally, due to the record length and
high sampling frequency in comparison to the experimental event, the record has
been trimmed. The cut-offs were conservatively determined as the first ten data
points below 0.5% of peak concentration from profile peak outwards.

8.2.2 Scaling and normalisation of CRTDs

As the data is deconvolved without calibration, the sum of the CRTD will not
equal one (as should be the case). For most data, mass-balance can be assumed,
and therefore the deconvolved RTDs can be scaled so that

´∞
0
E(τ)dτ = 1. After

scaling the RTDs and converting them to CRTDs, the CRTDs from each trial of
each experimental configuration were averaged on a cumulative percentage basis,
i.e. the mean of the residence time (tx) for each 0.1% mass fraction has been
calculated. They have then been temporally normalised according to Equation 2.5
to allow cross-comparison of different surcharge depths and flow rates.

8.2.3 Additional CRTD scaling

In some cases, scaling the CRTD to one produces an inaccurate result, e.g. Fig-
ure 8.7. In the scenario shown, Trial 1 varies significantly from Trials 2 and 3.
Whilst it is possible that this is a genuine result, visual examination of the up-
stream and downstream data shows similar concentration profiles for all three
trials. As such, similar mass recovery levels would be expected across the three
repeats even though it is raw data. However, Table 8.1 shows that Trial 1 has a
much higher mass-balance ratio.
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Figure 8.7: Inaccurate CRTD scaling

Trial Upstream Downstream Ratio

1 486.0 712.4 1.466

2 476.0 432.2 0.908

3 429.4 393.4 0.916

Table 8.1: Raw-data mass-balance for Figure 8.7

Further inspection shows that this is due to a background concentration level
offset in the downstream data, but not in upstream data. In order for the decon-
volution goodness-of-fit constraint to be met, the RTD ‘creates’ extra mass, i.e.´∞
0
E(τ)dτ � 1. This causes the scaling to produce the inaccurate result as the

mass-balance assumption is no longer true.

The mass creation effect is in direct contrast to results presented in Chapter 7,
which showed that small background offsets still produced an RTD close to the
known RTD. The mass creation effect was unobserved as for that comparison the
RTD was cut-off at the end point of the known RTD. Therefore the deconvolved
CRTD is still representative of the system hydraulics if the cut-off point can
be determined. An accurate guess of true CRTD length (the necessary cut-off
point) can be made by scaling it to achieve the balance shown in Figure 8.4 via
Equation 8.5. The scaling process is outlined below and shown in Figure 8.8.

• Assume the CRTD is scaled based on factor f , i.e. F̂ = F ×f , where F̂ is a
scaled estimate of the CRTD. The initial estimate of f , f0 = 1/

´∞
0
E(τ)dτ .

If
´∞
0
E(τ)dτ � 1 then f0 is an under estimation, which explains the sig-

nificantly different shape of Trial 1 in Figure 8.7.

• Let the end of the CRTD, L, occur when F̂ (tnz) = 1. This will be the last
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point in the CRTD when F is scaled with f0.

• Let the area under the left side (tnz ≤ 1) of CRTD
´ tn
0
F̂ (τ)dτ be “left”

and the area over the right side (tnz > 1) of the CRTD
´∞
tn

[1− F̂ (τ)]dτ be
“right”.

• Increase f in small increments until left ≥ right, recalculating L with each
increase in f as the new point at which F̂ (L) = 1.

The results of this process are shown in Figure 8.9. It has been used on the few
(5 out of 1378) trials where normal mass-balance is not appropriate, rather than
discarding the data. These trials have been identified manually as those having
significantly higher mass-balance than other repeats, e.g. a single mass-balance
of 0.9 compared to two of 0.7.

8.2.4 CFD modelling

CFD modelling on two configurations (32 mm and 330 mm surcharge depths in
the unbenched 90° outlet angle manhole) has been carried out as part of this
chapter to gain additional insight into the flow fields that deconvolved CRTDs
represent. The modelling was carried out in ANSYS Fluent 14.5 (ANSYS, Inc.,
2012) according to Stovin et al. (2013). Specifically, previously validated model
parameters were used, including the k−ε Realisable turbulence model and a fixed
lid (friction free) approximation of the free surface. The mesh size used follows
the approximate recommendation of Dp/8, for a mesh size of 10 mm. Particle
tracking of very small neutrally buoyant particles was used to obtain theoretical
CRTDs. These settings have been validated by Bennett (2012).

1

F 
[-

]

0 1

"Left"

"Right"

Time (normalised)

f0

f

In
cr
e
a
si
n
g

Figure 8.8: CRTD scaling process
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Figure 8.9: Corrected CRTD scaling

8.2.5 Energy dissipation

Equation 8.2 has been applied to obtain G values for each outlet angle, flow
rate and surcharge depth, using t50 instead of tn as the latter does not take
into account the reduced mixing that arises due to deviation from plug flow, e.g.
short-circuiting. Mean values of 4h across repeat trials are used.

8.3 Deconvolution results

Averaged deconvolved CRTDs are presented in this section. As the first large
scale application of the novel deconvolution of raw data, a visual comparison has
been made to the results previously presented in Chapter 3. Equivalent plots of
the pre-processed unbenched 30°/60°/90° 1 l/s data shown in Figures 3.5/3.6/3.7
are shown in Figures 8.12a/8.13a/8.14a.

The four key CRTD shapes previously identified using pre-processed data are
visible in the new figures derived from raw data. At low surcharge depths (s <
60 mm) CRTDs exhibit short-circuiting characteristics with a steep rise in CRTD.
At high surcharge depths (s > 300 mm) CRTDs also exhibit short-circuiting char-
acteristics. CRTDs similar to the complete mixing shape occur at other depths
(60 < s < 270 mm). A transitional CRTD is present in both the pre-processed and
raw data at s ≈ 270 mm, occurring in between the high surcharge short-circuiting
and the lower surcharge complete mixing. The overall similarity of CRTD shapes
deconvolved from both pre-processed and raw data demonstrates that successful
applicability of the novel deconvolution of raw data for large data sets.
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Larger versions of the plots shown in this section are presented in Appendix C.

8.3.1 CRTDs for unbenched manholes

8.3.1.1 0° outlet angle

0° outlet angle normalised CRTDs are presented in Figure 8.10. In general the
normalised CRTDs show a trend of decreasing first arrival time with increased
surcharge depth, which indicates volume independent flow. As volume increases,
the travel time does not, resulting in a lower tnz. This is consistent with the
above-threshold surcharge hydraulic regime. Travel time is lower as it is the jet
core passing through the manhole, which will be travelling at greater than the
mean velocity. Degree of short-circuiting increases with increased surcharge depth.

The CRTDs do not collapse, indicating Type I short-circuiting. Non-normalised
CRTDs have been plotted in Figure 8.11. The steep rises clearly overlap for each
flow rate. Mean pipe travel times have also been plotted and they are similar to
the steep rise in CRTD, particularly at higher flow rates. The steep rise and its
position are further consistent with Type I short-circuiting. The CRTDs indicate
that the mixing volume is bypassed almost entirely.

A well-mixed condition (below-threshold) is expected at lower surcharge depths
(s′ ≤ 0.258D) (Stovin et al., 2010a), however this data set has only one straight
through configuration at the sub-100 mm surcharge level, which is 28 mm at
1 l/s. While the CRTD does indicate more thorough mixing occurs, it is unclear
to what extent this is related to the below-threshold surcharge condition as it is
only one configuration.

8.3.1.2 30° outlet angle

30° outlet angle normalised CRTDs are presented in Figure 8.12. There appear
to be 4 types of CRTD, and hence mixing conditions present, at 1 l/s: a low
surcharge Type I short-circuiting condition (s < 60 mm) similar to that observed
by Stovin et al. (2013); a well-mixed condition (60 < s < 250 mm); a transitional
condition (s ≈ 270 mm); and a Type II short-circuiting condition (s > 300 mm).
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Figure 8.10: Unbenched 0° outlet angle normalised average CRTDs

March 2014



132 CHAPTER 8. MIXING IN SURCHARGED MANHOLES
A
v
e
ra

g
e
 F

 [
-]

Time (seconds)

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 l/s

3 l/s

6 l/s

8 l/s

28 mm

Equivalent pipe travel times

Surcharge depth (mm)

0 1400

Figure 8.11: Unbenched 0° outlet angle non-normalised average CRTDs
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The well-mixed CRTDs almost entirely overlap, although the first arrival times
(e.g. t5) seem to transition smoothly to the Type II short-circuiting CRTDs. The
overlap of the high surcharge CRTDs indicate that the mixing processes scale as
the mixing volume increases and hence these CRTDs are inferred to correspond
to Type II short-circuiting.

At 2 l/s, only three conditions are observed, with no low surcharge Type I short-
circuiting. The well-mixed, transitional, and Type II short-circuiting conditions
are still clearly defined. At 4 l/s there is more variation in the well-mixed CRTDs
and there is no transitional CRTD. Four CRTDs here were identified for the
additional RTD scaling (Section 8.2.3), one of the three trials each at surcharge
depths of 290 mm, 322 mm, and two trials at 360 mm. Results for 6 l/s and 8 l/s
appear to show only Type II short-circuiting. One CRTD at 6 l/s and 296 mm
surcharge depth was identified for the additional RTD scaling.

The lack of the low surcharge Type I short-circuiting CRTDs at flow rates greater
than 1 l/s and the lack of well-mixed CRTDs at 6 and 8 l/s is attributable to the
lack of experimental configurations for lower surcharges at high flow rates. How-
ever, these conditions are assumed to be present as previous work has indicated
that below- and above-threshold flow regimes occur at all flow rates (Guymer &
Stovin, 2011) and therefore that flow field is flow rate independent, which must
be true in order for normalisation of CRTDs to apply.

8.3.1.3 60° outlet angle

60° outlet angle normalised CRTDs are presented in Figure 8.13. Only three
CRTD shapes, and hence flow regimes, are present at 1 l/s. These follow the
same surcharge cut-offs as for the 30° outlet angle. The three shapes present
are for low surcharge Type I short-circuiting, well-mixed, and Type II short-
circuiting. There are no transitional CRTDs. Instead, the well-mixed CRTDs
gradually shift towards the transitional CRTD shape. All four CRTD shapes are
visible at 2 l/s, back down to three shapes at 4 l/s, 6 l/s, and 8 l/s, with no low
surcharge Type I short-circuiting. Similar to the 30° outlet angle there were no
experimental configurations at these low surcharge depths for higher flow rates.
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Figure 8.12: Unbenched 30° outlet angle normalised average CRTDs

March 2014



CHAPTER 8. MIXING IN SURCHARGED MANHOLES 135

A
v
e
ra

g
e
 F

 [
-]

Time (normalised)

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

(a) 1 l/s
A
v
e
ra

g
e
 F

 [
-]

Time (normalised)

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

(b) 2 l/s

A
v
e
ra

g
e
 F

 [
-]

Time (normalised)

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

(c) 4 l/s

A
v
e
ra

g
e
 F

 [
-]

Time (normalised)

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

(d) 6 l/s

A
v
e
ra

g
e
 F

 [
-]

Time (normalised)

0.0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

(e) 8 l/s

Surcharge depth (mm)

0 500

Figure 8.13: Unbenched 60° outlet angle normalised average CRTDs
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8.3.1.4 90° outlet angle

90° outlet angle normalised CRTDs are presented in Figure 8.14. At 1 l/s there are
three CRTD shapes visible: the low surcharge Type I short-circuiting; well-mixed;
and Type II short-circuiting. The latter is poorly defined at 1 l/s, as the rise in
CRTD is not very steep. At 2 l/s all four shapes are again visible. 4 l/s, 6 l/s, and
8 l/s do not show the low surcharge Type I short-circuiting condition as there
were no experiments at those surcharge depths, otherwise the three conditions,
with multiple transitional CRTDs are shown.

8.3.2 CRTDs for benched manholes

8.3.2.1 0° outlet angle

As previously mentioned, the benched 0° outlet angle data is unavailable for
reanalysis.

8.3.2.2 30° outlet angle

Benched 30° outlet angle normalised CRTDs are presented in Figure 8.15. Similar
to the 0° outlet angle unbenched manholes, the normalised 30° CRTDs shown
a trend of decreasing first arrival time with increased surcharge depth. Again
similarly, the CRTDs do not collapse, indicating Type I short-circuiting. Short-
circuiting fraction increases with surcharge depth from at least 65%.

Non-normalised benched 30° outlet angle CRTDs are presented in Figure 8.16.
The steep rises with short-circuiting clearly overlap. First arrival time is consist-
ently less than the equivalent pipe travel time. There is also a CRTD (6 mm
surcharge depth and 1 l/s) that is similar to the unbenched 30°, 60°, and 90°
outlet angle results, indicating low surcharge Type I short-circuiting.
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Figure 8.14: Unbenched 90° outlet angle normalised average CRTDs
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Figure 8.15: Benched 30° outlet angle normalised average CRTDs
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Figure 8.16: Benched 30° outlet angle non-normalised average CRTDs
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8.3.2.3 60° outlet angle

Benched 60° outlet angle normalised CRTDs are presented in Figure 8.17. The
decreasing travel time with increased surcharge depth is the normalised equivalent
of the overlapping lines shown in the 0° unbenched and 30° benched results. This
is indicative of Type I short-circuiting. At the 1, 2, and 4 l/s flow rates, there is
a gradual transition in CRTD shape from low surcharge Type I short-circuiting
at s ≤ 100 mm to CRTDs with both the rise indicative of Type I short-circuiting
and an overlapping exponential tail at s > 100 mm. The Type I short-circuiting
rise and the exponential tail combined indicate a two-part bifurcating flow. In
bifurcating flow, water takes two distinct paths that do not directly interact. The
fraction of short-circuiting is significantly lower (around 55%).

The 1 l/s 1 mm and 2 l/s 12 mm surcharge depth CRTDs appear to be almost
cumulative Gaussian in shape and similar to pipe flow, showing the low surcharge
Type I short-circuiting in this case to be almost purely an effect of the benching.
There were no experimental configurations conducted, but this is expected at the
higher flow rates as well. In contrast to the unbenched 60° outlet angle results,
there are no CRTDs that indicate well-mixed flow.

8.3.2.4 90° outlet angle

Benched 90° outlet angle normalised CRTDs are presented in Figure 8.18. They
follow the same pattern as the benched 60° outlet angle CRTDs, but with a lower
fraction of short-circuiting (around 40%). At 2 l/s the 4 mm CRTD, indicative of
low surcharge Type I short-circuiting, is almost perfectly cumulative Gaussian in
shape. In contrast to the unbenched 90° outlet angle results, there are no CRTDs
that indicate well-mixed flow.

8.3.3 Retention time values

8.3.3.1 Unbenched manholes

Normalised t50 values for the unbenched manholes are shown in Figure 8.19. They
can provide an indicator of hydraulic regime with respect to surcharge depth,
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Figure 8.17: Benched 60° outlet angle normalised average CRTDs
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Figure 8.18: Benched 90° outlet angle normalised average CRTDs
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e.g. indicate the presence of short-circuiting (Bennett, 2012; Stovin et al., 2013).
Immediately apparent is a difference between the 0° outlet angle and 30°/60°/90°
outlet angle results. The 0° outlet shows a steady decay in t50 with increasing
surcharge depth, which is consistent with the shifting in the normalised CRTDs
caused by increasing surcharge volume in the denominator of Equation 2.5. For
the 30°/60°/90° outlet angles though, the t50 lines are consistent across surcharge
depth, i.e. they scale with surcharge volume as the complete mixing volume.

At non-zero outlet angles, there appears to be a consistent decrease in t50 at
s > 300 mm, which is consistent with the transition in CRTD shape from those
representing well-mixed flow to those indicating Type II short-circuiting. The less
clear transition at the 90° outlet angle is due to the t50 value occurring in the
exponential tail of the CRTD. As a result, t20 values are shown in Figure 8.20,
where the decrease at s > 300 mm is more readily apparent. Both t50 and t20

values at s < 60 mm for the 60° and 90° outlet angles give some indication of the
low surcharge Type I short-circuiting.

The differences in t50 and t20 values between the straight and angled manholes,
combined with the differences in how the normalised CRTDs collapse and the pipe
travel times confirms a difference in flow field between straight through and angled
manholes. The higher tx values for the angled manholes compared to the straight
through manhole indicate a longer flow path. That the values are near constant
with surcharge depth is consistent with utilising the full surcharge volume for
mixing (e.g. the collapsing of normalised CRTDs). Similarities between the 30°,
60°, and 90° times correspond to visual similarities between the CRTDs providing
additional evidence of similar flow fields despite differing outlet angles.

8.3.3.2 Benched manholes

t50 values for the benched manholes are shown in Figure 8.21 and t20 values
are shown in Figure 8.22. There is overall the same exponential decrease with
increasing surcharge depth as with the straight through unbenched manhole for
all outlet angles. This corresponds to Type I short-circuiting.

The t50 values at the 90° outlet angle start to level out at s > 150 mm. This is
due to the fraction of short-circuiting being less than 50%. At surcharge depths
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Figure 8.19: Unbenched normalised t50 values
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Figure 8.20: Unbenched normalised t20 values
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Figure 8.21: Benched normalised t50 values
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Figure 8.22: Benched normalised t20 values
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around 100 mm for the 60° outlet angle, a slight discontinuity in both t20 and
t50 values is present. This is consistent with the transition from CRTD shapes
indicating low surcharge Type I short-circuiting (s < 100 mm) to the CRTDs
showing combined Type I short-circuiting and a well-mixed tail (s > 100 mm).

8.3.3.3 Variation in repeat trials

The tx values of individual trials can be used to give an indication of the re-
peatability both of the experiments and of deconvolution. Figures 8.23 shows
the standard deviation between repeat trials of t20/t50/t80 values divided by the
length of the longest RTD for each trial. Higher values indicate that repeats were
less consistent. σt20 and σt50 values are consistently low. σt80 values are typically
higher as a result of the variation present in CRTD tails. The maximum σt80 is
less than 0.1. As most CRTDs are longer than tnz = 3, at worst variation between
the CRTDs deconvolved from repeat trials is around 3.33̇%. Overall the standard
deviation values indicate that both the experimental trials and the deconvolution
process produce consistent and repeatable results.

8.4 Energy

8.4.1 Energy loss coefficient

Energy loss coefficients (K values) derived from laboratory manometer data by
Dennis (2000) and Saiyudthong (2003) are shown in Figure 8.24 for unbenched
and Figure 8.25 for benched manholes. It is unclear to what extent the high
variation visible is related to mixing characteristics, but previous research does
indicate more consistent values should be expected. In particular, the 1 l/s K
values for the unbenched 0° outlet angle are inconsistent with those of the 3, 6, and
8 l/s values, as well as those in other literature (e.g. Pedersen & Mark, 1990; Arao
& Kusada, 1999).

Variation in energy loss with surcharge depth may be consistent with different
flow fields. 0° outlet angle values are all similar (ignoring 1 l/s), which could
correspond to a similar flow field across surcharge depth. A decrease in K for
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Figure 8.24: Unbenched K values
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the the 1, 2, 4, and 6 l/s flow rates at the unbenched 60° and 90° outlet angles
at s > 300 mm indicates there is a change in head loss with surcharge depth,
which could be associated with the transition from well-mixed flow to Type II
short-circuiting CRTDs.

In general benched manholes have lower K values than their unbenched coun-
terparts, indicating lower energy losses overall. This could be attributed to the
confinement and flow direction provided by the benching.K values at s < 100 mm
depth in the benched manholes at 1 and 2 l/s in the 90° outlet angle, and slightly
lower K values in the 60° outlet angle could correspond to low surcharge Type I
short-circuiting CRTDs.

8.4.2 Energy dissipation

Velocity gradient (G) values are presented in Figures 8.26 and 8.27. A line for
mean value at each flow rate is also plotted. Due to the high variability in the
energy loss data, it is uncertain as to how reliable the obtained G values are, but
there is a clear trend of higher G with higher flow rates.

The lowest G values are found for the straight through manhole, which due to
Type I short-circuiting, has relatively low head loss and short travel times. G
value rises greatly at the 30° outlet angle, and then drops as outlet angle in-
creases. This is likely due to longer travel times at higher outlet angles. There
is no large systematic variation with surcharge depth, and specifically nothing
that corresponds to the previous established s′ = 0.258D (100 mm) threshold
depth (Stovin et al., 2010a) or any of the other transitional depths identified.
Considering the magnitude of the values obtained, any variation could be lost in
noise.

Figure 8.28 shows mean G values for each combination of benching, outlet angle,
and flow rate. From this, it may be possible that G value could be used as a rough
estimate of t50 provided an estimate of head-loss was also feasible.
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Figure 8.26: Unbenched G values
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Figure 8.27: Benched G values
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8.5 Previous data set analyses

The current data set has undergone two previous related analyses. The deconvo-
lution analysis undertaken in Chapter 3, and a traditional ADE/ADZ analysis
by Saiyudthong (2003).

8.5.1 Comparison to Chapter 3

In Chapter 3, the unbenched 1 l/s 0°, 30°, 60°, and 90° outlet angle configurations
were analysed. Short-circuiting fractions and surcharge depths for the below-
/above-threshold transition were proposed. This analysis relied on an assumption
that below-threshold well-mixed and the above-threshold Type I short-circuiting
flow fields were applicable to angled manholes. The threshold depth was found to
increase with increased outlet angle, and short-circuiting fraction to decrease with
increased outlet angle. Based on the results obtained and assuming jet deflection,
the work proposed horizontal and vertical flow fields.

The current work analyses a more comprehensive data set and clearly indicates
that what was considered the threshold in Chapter 3 occurs at a consistent sur-
charge depth across outlet angle and flow rate in angled manholes. Furthermore, a
greater understanding of CRTD shapes indicates that the flow fields that develop
in angled manholes are not the previously assumed below- and above-threshold
fields. Instead, well-mixed flow transitions to Type II short-circuiting. The frac-
tion of short-circuiting otherwise is consistent with the new results. The low
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surcharge Type I short-circuiting CRTDs previously found at the 30° outlet angle
is found at other angles and flow rates. The low surcharge Type I short-circuiting
was also reported by Stovin et al., 2013.

8.5.2 Comparison to Saiyudthong (2003)

Saiyudthong (2003) both collected and analysed the current data set. The analysis
was carried out across flow rate, surcharge depth, outlet angle and benching. K
values and optimised best-fit Aggregated Dead Zone (ADZ) model parameters
were used to compare the differences between configuration. Some CFD work
and comparison of G values was also carried out.

K values were identical to those presented here, and a comparison was made to
theoretical and empirical models predicting K. No correlation between K and
flow field (e.g. below-/above-threshold) was made. Instead K was examined in
comparison to a CFD simulation, and only with reference to unbenched man-
holes. Minor trends in K value previously unexplained have now been referenced
to potential flow fields according to CRTD results. As a result, the previous re-
commendation of mean K values for each outlet angle across surcharge depth can
no longer be made.

The G values that were calculated show similar patterns to the current work.
A better appreciation of the implications of G value remaining constant across
surcharge depth can also therefore be developed, although it still needs further
investigation.

Of particular interest the comparison of mixing processes inferred from ADZ
model parameters to those indicated by the deconvolved CRTDs and therefore of
any potential limitations of traditional parameter analysis.

8.5.2.1 Travel times

Travel time t̄ is the time from the centroid of the upstream concentration pro-
file to the centroid of the downstream concentration profile. Saiyudthong (2003)
analysed best fit values to the data and in general found travel time to increase
linearly with surcharge depth. For the unbenched 30° and 60° manholes, travel
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time dropped to a constant value when surcharge depth exceeded 275 mm and
325 mm, respectively. This corresponds to the 300 mm change in shape observed
in the deconvolved CRTDs, which was otherwise unobservable with travel time
analysis. Saiyudthong (2003) wrote that this...

“...might suggest that after the surcharge was above the threshold
[between linearly increasing and constant travel time], the travel time
was independent of the surcharge and influenced by the dominant core
zone. In other words, it may be interpreted that after the surcharge
pass the threshold, it was beyond the effective mixing volume by the
diffusion of solute.”

CRTD analysis has indicated that this effect is due to Type II short-circuiting.
While it is controlled by a dominant core zone, it also utilises the full manhole
volume at all surcharge depths.

No similar drop in travel time is shown for the benched manholes at the 60° or
90° outlet angle. As they result in bifurcating flow, the well-mixed volume that
increases with surcharge depth will increase the travel time, which cancels out the
portion of solute that arrives earlier due to short-circuiting. Benched manholes
in general had lower travel times, which...

“...might be caused by the benching confining the jet diffusion zone.
In other words, the benching reduced the volume of the diffusion...”

This can be confirmed by the Type I short-circuiting portion of the CRTDs
from benched manholes in comparison to the well-mixed flow of the unbenched
manhole, i.e. the benched manhole is shown to have a shorter flow path, shown
in Figure 8.29. This is also reflected in lower t50 values for benched manholes.

8.5.2.2 Reach time delay

Reach time delay is the difference in first arrival time, i.e. the time it takes for the
first dye observed at the upstream fluorometer to be observed at the downstream
fluorometer. Saiyudthong (2003) reports that optimised values of reach time delay
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Figure 8.29: 60° unbenched 265 mm vs benched 241 mm 4 l/s manhole average
CRTDs

is roughly constant for the unbenched 0° outlet angle manholes, but for the 30°,
60°, and 90° angles increases with surcharge depth up to around 300 mm and then
decreases to a roughly constant value. This is consistent with the transition from
well-mixed flow to Type II short-circuiting observed in the deconvolved CRTDs.

At the benched 30° outlet angle, reach time delay was observed to be constant,
which is consistent with and indicative of the Type I short-circuiting observed in
the deconvolved CRTDs. At the benched 60° and 90° outlet angles, reach time
delay decreased with increasing surcharge depth, which is inconsistent with the
deconvolved CRTDs (predicting roughly constant first arrival time.) Saiyudthong
(2003) theorised that the decreasing reach time delay could be due to flow directly
over the benching, but there is no CRTD evidence to support this.

8.5.2.3 Dispersive fraction

Dispersive fraction is the ratio of residence time to travel time. Saiyudthong
(2003) reports optimised values to be higher in all unbenched than benched man-
hole configurations, except for surcharges of 100–300 mm in the 60° and 90°
benched configurations. The increase in dispersive fraction could be related to
the change from low surcharge Type I short-circuiting, to well-mixed flow, to
Type II short-circuiting. In the benched manholes dispersive fraction could break
down into a linearly increasing trend from 0–100 mm then a second linear trend
with lower slope after 100 mm. The link to flow field is only apparent however
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after having the additional insight provided by the deconvolved CRTDs.

Saiyudthong (2003) hypothesised that...

“This may be because the benching at the moment worked as a baffle
to provide a circulation or secondary flow in the manhole. [...] The
circulation made more mixing in the benched manholes than in the
unbenched manholes.”

The first statement reflects the flow field inferred from the benched CRTDs, but
the second does not accurately reflect the differences in mixing between benched
and unbenched manholes. Comparing unbenched and benched CRTDs, e.g. Fig-
ure 8.29, the unbenched CRTDs are more exponential in shape, indicating more
mixing in the benched manholes. The greater dispersive fraction of the benched
manholes from 100–300 mm is therefore not an accurate indicator of the mixing
taking place in this scenario.

8.5.2.4 Two-cell ADZ

Saiyudthong (2003) suggested and demonstrated that a two-cell ADZ model could
be used to better model solute transport in unbenched manholes at surcharge
depths exceeding 300 mm, i.e. Type II short-circuiting. A...

“Head profile will be dominated by the advection process as it comes
first and contains the peak of the downstream profile. Meanwhile,
Tail profile is the remaining part of the whole downstream profile, in
which dispersion might be a major process. In other words, this two
cell technique was to quantify the amounts of solute concentration
travelling in the core zone, dominated by advection process, and the
diffusion zone, dominated by dispersion process, in jet flow...”

This is in effect a model and description of the two separate processes identified
through examination of the deconvolved CRTDs. The sharp rise in CRTD of
short-circuiting as the Head advection dominated process and the exponential
Tail dispersion dominated process.
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8.6 Flow fields

It is possible with the aid of the CRTDs to infer what flow fields might be occur-
ring at different surcharge depths, at different outlet angles, and with or without
benching. Six characteristic CRTD shapes have been observed to occur at differ-
ent configurations in the data analysed here:

1. Type I short-circuiting flow (above-threshold)

2. Low surcharge Type I short-circuiting flow

3. Type II short-circuiting flow

4. Well-mixed flow (below-threshold)

5. Transitional flow

6. Bifurcating flow, combining Type I short-circuiting and well-mixed flow

Representative CRTDs for each are shown in Figure 8.30. The figure also has
the two representative CRTDs presented by Stovin et al. (2010a) for comparison.
The 2010 CRTDs have had pipe mixing effects subtracted, and so do not directly
match the other CRTDs shown here. Pipe subtraction can be thought of as a shift
on the time axis towards zero for making a quick comparison. The different CRTD
shapes and their associated flow fields are discussed in the following sections.

8.6.1 Type I short-circuiting flow (above-threshold)

Type I short-circuiting flow CRTDs are present in the straight through unbenched
and benched 30° outlet angle manhole results. They are consistent with what
have been previously shown to be above-threshold CRTDs, shown in Figure 8.30.
The Type I short-circuiting flow field they represent occurs at s > 0.285D in 0°
unbenched manholes according to Stovin et al. (2010a), and has been found here
at surcharge depths greater than 6 mm (s > 0.025D) in the benched 30° manhole.

In short-circuiting flow the majority of the solute passes directly through the
manhole. A small portion of the solute enters the storage volume to be released
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again slowly. This indicates very little shear interaction between the inflow jet and
storage volume. In the straight through unbenched manhole this can be attributed
to confining pressure and in the benched manholes to the confinement provided
by the benching.

8.6.2 Low surcharge Type I short-circuiting flow

Low surcharge Type I short-circuiting CRTDs occur at s < 0.025D in straight
through manholes according to Stovin et al., 2013. They have been observed at
below 60 mm (s < 0.155D) in angled unbenched manholes and below 100 mm
(s < 0.258D) in angled benched manholes in the results. They are characterised
by their occurrence at low surcharge depths, and in angled manholes by a higher
short-circuiting fraction than the Type II short-circuiting that occurs at higher
surcharge depths.

Particle tracking in a CFD model allows for a comparison between experimental
and theoretical CRTDs and can be used to verify flow fields that have been in-
ferred from the CRTDs. The unbenched 90° outlet angle 1 l/s 32 mm surcharge
configuration has been modelled with a CFD simulation, and the CRTD obtained
from the model is shown in Figure 8.31a. The theoretical CRTD obtained from
the CFD shows good agreement with the deconvolved experimental CRTDs, par-
ticularly in the reproduction of the amount of short-circuiting and the variation
in the exponential tail.

Figure 8.31b shows velocity vectors in the horizontal plane section at mid-pipe
depth. The bulk of the flow is shown to directly short-circuit due to jet deflection
and a recirculation zone forms. Both the short-circuiting and the recirculation
are shown in the CRTD. The latter is represented by the small variations in the
CRTD tail, the frequency of which are probably consistent with the recirculation
time as tracer is entrained from the jet into the zone then back into the jet after
a complete circulation. This can be thought of as an effective dead zone, with cell
size increasing with surcharge depth until well-mixed flow develops.

The presence of primarily horizontal recirculation rather than vertical recircu-
lation is what distinguishes low surcharge Type I short-circuiting from regular
Type I short-circuiting.
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Figure 8.31: CFD model of 32 mm surcharge in a 90° unbenched manhole at 1 l/s,
showing low surcharge Type I short-circuiting

8.6.3 Type II short-circuiting flow

CRTDs indicating Type II short-circuiting occur in unbenched angled manholes
at surcharge depths greater than 300 mm (s > 0.773D). Type II short-circuiting
is distinguished from Type I by the collapse of the CRTDs when normalised,
showing that the flow path passes through the surcharge volume.

A CFD model of the unbenched 90° outlet angle 1 l/s 330 mm surcharge configur-
ation was run to verify the presence of Type II short-circuiting. Model results are
shown in Figure 8.32. The theoretical and experimental CRTDs show reasonable
agreement with similar first arrival times. The tail of the CRTD is slightly delayed
in the CFD model, but is of a similar shape. The velocity vectors in the vertical
section through the inlet pipe (cutting the pipe diameter) show a circulating field
forms, covering the entire volume. The jet impacts the far wall then curls around.
The core of the jet travels through this field, resulting in a mass of solute with
similar travel time and corresponding rise in CRTD.

The formation of the recirculating field may be due to water depth reaching
manhole diameter, i.e. s+Dp ≈ D. It is possible that at lower surcharge depths
there is interaction between the jet curling around and the water surface that in
this case prevents the circulation zone from establishing.
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Figure 8.32: CFD model of 330 mm surcharge in a 90° unbenched manhole at
1 l/s, showing Type II short-circuiting

8.6.4 Well-mixed flow (below-threshold)

Well-mixed CRTDs have only been observed in unbenched manholes. They occur
in straight through unbenched manholes below-threshold (s < 0.2D) (Stovin et al.,
2013) and occur in angled unbenched manholes at surcharge depths between
60 mm and 250 mm (0.155D < s < 0.696D) in these results.

According to previous work, at a range of surcharge depths an expanding jet
meets the water surface promoting mixing, i.e. well-mixed flow (Stovin et al.,
2013). In angled manholes D/Dp < 4.4 the jet is theorised to hit the far wall
as jet length is greater than manhole diameter, causing turbulence. As flow rate
increases there is likely to be increased turbulence as the inlet velocity of the
water is dissipated. This is reflected in the tx times in Figures 8.19 and 8.20 that
do not collapse perfectly on top of each other for angled manholes, but instead
increase slightly with flow rate.

The 2010 below-threshold CRTD shown in Figure 8.30 appears to be more consist-
ent with the Type II short-circuiting CRTD. The more drawn out tail indicates a
greater dead zone effect occurring. As the 2010 CRTD is from a straight through
manhole, the dead zone effect may be due to the areas either side of the jet,
similar to what is shown in Figure 8.31b.
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8.6.5 Transitional flow

Transitional CRTDs have been found in these results in angled unbenched man-
holes around the surcharge depth of 270 mm (s ≈ 0.7D). They are exponential
in shape, similar to the well-mixed CRTDs, but are characterised by earlier first
arrival times.

The transitional CRTD shape between well-mixed and Type II short-circuiting
CRTDs may be an effect of averaging CRTDs. However, investigation of the re-
peat trials before averaging indicates that this is not the case as CRTD shape is
consistent between repeats. The CRTDs may potentially indicate oscillation in
the manhole between the two neighbouring mixing conditions, in effect an aver-
aging taking place at the system level. Alternatively, the transitional CRTDs may
otherwise indicate some sort of unique flow field occurring. It is not understood
what mechanism may cause this.

8.6.6 Bifurcating flow

CRTDs indicating bifurcating flow have only been observed to occur in these
results for the benched 60° and 90° outlet angle manholes at surcharge depths
greater than 100 mm (s > 0.258D). In bifurcating flow, the flow path splits.
Bifurcating CRTDs indicate a flow field combining Type I short-circuiting with
well-mixed flow, characterised by a roughly 50/50 split, i.e. a consistent 50%
short-circuiting mass fraction.

In bifurcating flow CRTDs, the steep rise associated with short-circuiting clearly
shifts in normalised time, with higher surcharges having earlier normalised first
arrival times. Simultaneously, the normalised exponential portions of the CRTD
collapse nearly perfectly when normalised. The combination of these two separate
CRTD characteristics indicates bifurcating flow. Saiyudthong (2003) hypothesises
the Type I short-circuiting component is caused by the inlet jet being redirected
to the outlet by the benching. The well-mixed component occurs as a portion of
the jet not redirected by the benching enters the surcharge volume.
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8.6.7 Flow field summary

6 different CRTD shapes have been identified, indicating different combinations
of Type I short-circuiting, Type II short-circuiting, and well-mixed flow. While
some of these CRTDs reflect fundamentally similar flow fields, they are caused
by different hydrodynamics. The flow fields are summarised in Table 8.2 and
Figure 8.33.

Of the different experimental configurations, the 30° benched manhole has the
simplest flow field, consisting entirely of short-circuiting flow. The 60° and 90°
benched manholes transition from low surcharge Type I short-circuiting to a bi-
furcating flow field combining Type I short-circuiting with well-mixed flow. The
0° unbenched manhole transitions from low surcharge Type I short-circuiting to
below-threshold well-mixed flow to above-threshold Type I short-circuiting flow.
The 30°/60°/90° unbenched manholes experience the most complicated mixing
processes, from low-surcharge Type I short-circuiting to well-mixed flow to trans-
itional to Type II short-circuiting.

These flow fields have been inferred from the CRTDs deconvolved from raw data
at one manhole diameter (D/Dp = 4.4). However, given the results of Stovin et al.
(2013) showing changes in flow field with manhole diameter, these flow fields may
not form at all ratios of D/Dp. Type II short-circuiting may not form at higher
diameter ratios as it may depend on jet impact on the far wall. Redirection of
the jet for very low surcharge short-circuiting in angled manholes may also not
form at higher diameter ratios due to jet core dissipation.

Figure 8.33 also shows results from Arao & Kusada (1999) where changes in K
value may indicate a change in hydraulic regime. These values provide supporting
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Figure 8.33: Flow field summary
^Arao & Kusada (1999), *Stovin et al. (2010a), #Stovin et al. (2013)
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evidence for a relationship between head loss and flow field.

8.7 Conclusions

In general, the current work elaborates on previous results and provides additional
insight into hydrodynamic processes occurring in angled and benched manholes.
A review of existing solute transport and manhole flow field research was carried
out and a need for a comprehensive analysis identified. The novel deconvolution
of raw data was used to extract Cumulative Residence Time Distributions from
previously collected raw solute transport data. The deconvolution of raw data
was verified by comparison to the deconvolution of identical, pre-processed, data.
CRTD scaling was successfully applied as necessary. Additional understanding of
how the CRTD reflects flow field was used to identify how mixing characteristics
vary with surcharge depth, outlet angle, and benching. Analysis of retention times
was carried out to further examine differences in mixing characteristics. Similar
analyses of energy losses (K) and energy dissipation (G) were carried out.

Retention time values match mixing characteristics. t50 and t20 were found to be
reliable indicators of change in flow field. Similar retention time values across ex-
perimental trials indicate consistent repeatability of both the experimental data
and the deconvolution analysis. The experimental K values are inconsistent for
some configurations, but to some extent also reflect differences in mixing charac-
teristics. Experimental G values do not show much variation, and may therefore
hint at a link between 4h and t50. More work in this area is required to better
establish the link between energy losses and mixing characteristics.

Comparison with traditional ADZ model parameter analysis, Saiyudthong (2003),
reveals that while it does not fully capture the differences in mixing character-
istics observed through CRTD analysis, several key features were observed with
both analyses. Travel time analysis suggested that constant values in unbenched
manholes were due to a dominant core zone, which has been confirmed by the
presence of short-circuiting. Similarly, lower travel times in benched manhole
suggested that benching confined the jet, confirmed by the presence of short-
circuiting in the deconvolved benched manhole CRTDs. Changes in reach time
delay also reflected changes in mixing characteristics in some cases.
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Saiyudthong (2003) found dispersive fraction to be higher in benched manholes,
indicating greater mixing. However, the comparison of benched and unbenched
CRTDs shows lower short-circuiting fractions for unbenched manholes, indicating
greater mixing taking place.

Overall, six characteristic CRTDs were identified, reflecting different mixing con-
ditions. Based on these, a Type I short-circuiting flow field can be inferred to
occur at s > 0.258D in straight through unbenched manholes and at s > 0.025D

in 30° benched manholes, characterised by a steep rise in the CRTD close to the
equivalent pipe travel time. Low surcharge Type I short-circuiting can be inferred
to occur at s < 0.025D in straight through manholes and in 30° benched man-
holes, at s < 0.155D in 30°/60°/90° unbenched manholes and at s < 0.258D in
60°/90° benched manholes.

Well-mixed flow has been inferred to occur in 0° unbenched manholes at 0.025 <

s < 0.258D and in 30°/60°/90° unbenched manholes at 0.155D < s < 0.696D,
but not in benched manholes. It is caused by jet expansion reaching the surface
resulting in turbulence that promotes mixing. Deconvolved CRTDs also infer a
transitional flow field forming in surcharge depths between well-mixed flow and
Type II short-circuiting flow at s ≈ 0.7D, characterised by lower first arrival
times. It is potentially due to an oscillation between the neighbouring flow fields.

Type II short-circuiting can be inferred to occur at s > 0.773D for all of 30°/60°/90°
unbenched manholes. This is in contrast to results from Chapter 3 that indicated
that the threshold depth varied with outlet angle. Type II short-circuiting is
a circulating flow field that carries mass through the surcharge volume at sim-
ilar travel times. A bifurcating flow field can be inferred to form in 60° and 90°
benched manholes, combining Type I short-circuiting flow and well-mixed flow
at s > 0.258D. This flow field is caused by portions of the jet being redirected by
benching, either towards the outlet or upwards into the surcharge volume. As it
is caused by the benching, it does not occur in unbenched manholes.

These flow fields have been observed only at D/Dp = 4.4. It is possible they
may not form at all manhole to pipe diameter ratios. However, results from Arao
& Kusada (1999) with D/Dp = 4.1 concur with those obtained for the straight
through and unbenched 90° outlet manholes.
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Chapter 9

Conclusions and further work

This chapter summarises the work carried out within this thesis. Afterwards con-
clusions are presented, and then suggestions for possible further work are outlined.
Finally, key outcomes of this thesis are listed.

9.1 Summary

The introduction of Chapter 1 provides background information and establishes
the wider context for the research undertaken. It introduces the concept of the
Residence Time Distribution as a potential means of increasing the understand-
ing of the mixing processes underlying solute transport, and deconvolution as a
potential means of obtaining an RTD from experimental data.

Chapter 2 specifically described how deconvolution and RTDs fit within the con-
text of solute transport research and hydraulic modelling. The RTD was presented
and compared to the Advection-Dispersion Equation and Aggregated Dead Zone
models in Figure 2.4, showing how the RTD is an improved way to describe
mixing processes and potentially therefore infer hydrodynamic processes. Decon-
volution in general is outlined, and maximum entropy deconvolution specifically
is explained as a means of obtaining an RTD from experimental data. The aims
and objectives of this thesis are also listed in Chapter 2.
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Objective 1 was to develop and convey an understanding of maximum entropy
deconvolution, which was partially carried out in Chapter 2. In addition, a prac-
tical examination of how maximum entropy deconvolution functioned was made
through a study of the effects on solute transport of varying manhole outlet angle,
presented in Chapter 3. This helped to build an understanding of how maximum
entropy deconvolution works, as well as establishing the guiding questions for
what parts of deconvolution needed to be examined in greater detail.

Objective 2 involved conducting sensitivity analyses to verify the suitability of
maximum entropy deconvolution as applied to solute transport data. As a res-
ult of the work carried out for Chapters 2 and 3, two analyses were conducted
in support of Objectives 1 and 2. A detailed examination of correlation meas-
ures was undertaken in Chapter 4, and a detailed examination of deconvolution
configuration options was undertaken in Chapter 5.

The detailed examination of correlation measures provides an understanding of
how differences between recorded and predicted concentration profiles are reflec-
ted by a single value. This is fundamental to any model fitting exercise, and in
a deconvolution context is partially responsible for ensuring that a realistic RTD
is generated (Equation 5.5). Correlation measures are also used for evaluation of
the resulting RTDs, i.e. by comparing the fits of the predicted downstream profile
across repeated trials.

The second sensitivity analysis conducted for Objective 2 forms the core of the
thesis. In Chapter 5, maximum entropy deconvolution is fully and completely
outlined, finally satisfying Objective 1. The potential configuration options for
maximum entropy deconvolution are tested with a range of representative solute
transport data. The purpose of this is two-fold: to simultaneously verify the ap-
plicability of maximum entropy deconvolution; and to identify a single set of
robust configuration options. Both purposes are realised, and credence is lent to
those results as Chapter 5 has been published as a peer reviewed journal article
(Sonnenwald et al., 2013a).

Chapters 2 to 5 established the suitability of maximum entropy deconvolution.
At this point, as part of Objective 3, improvements to the methodology were
considered and two explored. Chapter 6 addresses RTD smoothness. By default,
maximum entropy deconvolution uses linear interpolation between sample points,
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which results in sharp changes in the RTD that are inconsistent with natural
mixing processes. Alternative RTD interpolation functions remove this effect,
and simultaneously reduce the effects of over-sampling. Chapter 7 investigates
the deconvolution of raw data. Data pre-processing is often time consuming and
complex. A sensitivity analysis was conducted to find out the limits to data that
can be deconvolved without pre-processing.

Objective 4, the demonstration of maximum entropy deconvolution to obtaining
new results, is addressed in the penultimate chapter (Chapter 8). Recommended
deconvolution settings from Chapter 5 are combined with the ability to decon-
volve raw data from Chapter 7 to perform a complete reanalysis of the data that
was partially analysed in Chapter 3. The refined and validated deconvolution
methodology is used to recover RTDs and analyse the affects of benching and
outlet angle on mixing characteristics in surcharged manholes. Energy loss data
is also combined with the analysis. Comparisons are made to the original data
analyses.

9.2 Conclusions

Several conclusions can be drawn relating to maximum entropy deconvolution
and RTDs. Other conclusions about the systems under investigation can also
be drawn. Conclusions regarding maximum entropy deconvolution and RTDs in-
clude:

• Correlation measures used for model identification should be insensitive to
noise, while remaining sensitive to transformation and transformation mag-
nitude. 8 correlation measures examined in this thesis meet these criteria:
BLC, χ2, FFCBS, R2, RMSD, R2

t , ISE, and APE (Chapter 4).

• Correlation measures used for model evaluation should share characteristics
with those used for identification, but additionally be non-dimensional in
order to allow for the relative comparison of model fit across different data
sets. The R2, R2

t , and APE correlation measures meet these criteria, with
varying sensitivity to different time-series characteristics. Of the three: R2

is extremely sensitive to overall profile shape; APE is sensitive to small dif-
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ferences in profile; and R2
t is flexible, indicating greater differences between

profile are similar (Chapter 4).

• Maximum entropy deconvolution has several configuration options, of which
four were found to have significant impact on the deconvolved RTD. These
are: number of sample points; sample point distribution; maximum number
of iterations; and constraint function (Chapter 5).

– Greater numbers of sample points result in RTDs that have better
predictive capability. However, greater numbers of points also result
in RTD entropy further from zero—they are less smooth. Numbers of
sample points below 40 in many cases result in reduced predictive cap-
ability, and so 40 sample points was recommended as the best balance
of RTD predictive capability and smoothness (Chapter 5).

– Sample point distribution has a significant impact on RTD quality as
it fundamentally changes the deconvolution problem. Of the six dis-
tributions examined, two performed poorly in almost all cases, the
equally spaced and downstream log distributions. The remaining four
(the double log, double cubic, slope-based, and log from zero) distri-
butions all produced RTDs with excellent predictive capability. The
double log and double cubic distributions, however, had significantly
reduced smoothness and the log from zero distribution had poor mass
balance. As a result, the new slope-based distribution was recommen-
ded as a robust configuration option (Chapter 5).

– Maximum number of iterations had the smallest impact on RTD qual-
ity. Any number of iterations greater than 150 produced an acceptable
result. RTD smoothness varied inconsistently with increased iterations.
However, in some cases predictive capability continued to increase with
more iterations, so 350 iterations was recommended (Chapter 5).

– Constraint function affected RTD predictive capability. Of the 8 tested
constraint functions (determined in Chapter 4), 4 performed equally
well. These are the R2, RMSD, R2

t , and APE constraint functions.
Although there is some indication that constraint function is linked
to data characteristics, it is weak and so R2

t is recommended as a
function, based on it being a well understood and used measure in
solute transport research (Chapter 5).
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• Maximum entropy deconvolution works with a range of source data types.
Manhole, storage tank, channel, and pipe data (Table 5.1) were all success-
fully deconvolved with high predictive capability shown by the deconvolved
RTDs (Chapter 5).

• Interpolation function was investigated as a means of producing smoother
RTDs and two alternate interpolation functions were suggested to replace
the original linear interpolation: Gaussian Influence Estimation (GIE); and
Linear interpolation with an Applied Moving Average (LAMA). Both pro-
duce RTDs of similar quality with entropy closer to zero (smoother) and low
Numbers of Inflection Points. Their performance was far superior to both
linear interpolation and the third alternate, cubic interpolation (Chapter 6).

• Fewer sample points can also result in smoother RTDs without affecting
predictive capability. This additionally confirms the suitability of the slope-
based sample point distribution (Chapter 6).

• The use of a smoothing interpolation function can effectively eliminate any
effects of over-sampling, where higher numbers of sample points negatively
impact upon RTD smoothness (Chapter 6).

• Changing interpolation function or reasonably reducing number of sample
points does not adversely impact upon the predictive capability of decon-
volved RTDs. It affects only RTD shape, giving smoother RTDs that ar-
guably better reflect mixing processes in detail. However, as CRTD shape
remains unaffected, GIE or LAMA need be used only when a smooth RTD
is specifically required (Chapter 6).

• Data pre-processing comprises several different steps. These can be reversed
to evaluate whether raw can be directly deconvolved. Data extension, addi-
tion of noise, addition of background concentration, and reverse calibration
have been examined in a sensitivity analysis. The analysis has demonstrated
that raw data can be successfully deconvolved, provided sensors with a lin-
ear response are used (Chapter 7).

• The predictive capability of an RTD deconvolved from raw data decreases
with increases in noise and background concentration level. The latter has
greater impact, and particularly sloped background concentration levels will
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negatively impact the deconvolved RTD. Differences in uncalibration and
extension also affect predictive capability, but do so in an unsystematic
fashion (Chapter 7).

• Comparison of the deconvolved RTD with its known counterpart was made
to directly evaluate RTD quality. This shows similar trends to predictive
capability and the two are clearly linked. However, even with perfect input
data, there is still a slight degradation in deconvolved RTD quality. This
degradation doubles with either 10% noise or a mean background concen-
tration level of 10% (Chapter 7).

• Combining predictive capability and RTD quality results, 10% noise and
10% mean background are recommended as minimum quality limits for
raw data. However, higher noise levels may be acceptable with lower mean
background concentration levels. Minimal pre-processing is recommended
to subtract background, particularly to take into account changes in back-
ground concentration level with time (Chapter 7).

• Deconvolution of raw data with only minimal pre-processing was applied
on a large scale. Comparison to identical pre-processed data showed that
the novel deconvolution of raw data was successful (Chapter 8).

• A CRTD scaling algorithm can be applied to CRTDs when the input data
has a background offset resulting in ‘mass creation’ (Chapter 8).

• CRTDs, and other CRTD based parameters (e.g. t20), were successfully used
to infer flow fields and underlying system hydrodynamics (Chapter 8).

• CRTD analysis provides understanding that is consistent with traditional
ADZ parameter analysis. It also provides additional insight into the changes
in ADZ parameters caused by changes in flow field (Chapter 8).

Conclusions regarding mixing processes:

• Short-circuiting fraction decreases with increased manhole outlet angle in
unbenched manholes (Chapter 3).

• Six CRTDs were identified as representing the range of flow fields that
could be inferred in surcharged, unbenched 0°/30°/60°/90° outlet angle and
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benched 30°/60°/90° outlet angle, manholes with D/Dp = 4.4 at a range of
flow rates (Chapter 8).

– At surcharge depths of s > 0.258D in straight through unbenched and
s > 0.025D in 30° outlet angle benched manholes, CRTDs indicate
Type I short-circuiting. In this flow field the majority of the solute
passes directly through the manhole at close to equivalent pipe travel
times. It has been previously referred to as above-threshold short-
circuiting (Chapter 8).

– At surcharge depths of s < 0.025D in straight through unbenched
manholes (Stovin et al., 2013), s < 0.155D in angled unbenched man-
holes, and at s < 0.258D in angled benched manholes, CRTDs indicate
low surcharge Type I short-circuiting. In the unbenched manholes it
is caused by the inlet jet core passing directly to the outlet as a result
of horizontal recirculation zones forming. In the benched manhole the
field forms as a result of the benching confining the jet (Chapter 8).

– At surcharge depths of s > 0.773D in angled unbenched manholes,
CRTDs indicate the formation of a Type II short-circuiting flow field.
In this flow field, a vertical circulation field forms throughout the man-
hole volume. It entrains the jet, and as a result, a bulk of mass entering
the circulation exits with similar residence times (Chapter 8).

– At surcharge depths of s < 0.2D in straight through unbenched man-
holes (Stovin et al., 2013) and 0.155D < s < 0.696D in angled un-
benched manholes CRTDs indicate well-mixed flow. In this flow field,
additional turbulence caused by the inlet jet interacting with the sur-
face or far wall keeps the recirculation zones from forming (Chapter 8).

– At surcharge depths of s ≈ 0.7D in angled unbenched manholes,
CRTDs indicate a transitional flow field forms, with characteristics
of both well-mixed flow and Type II short-circuiting CRTDs. It is not
understood what causes this (Chapter 8).

– At surcharge depths of s > 0.258D in 60° and 90° outlet angle benched
manholes, CRTDs indicate a bifurcating flow field forms. Part of the
flow experiences Type I short-circuiting as a result of the benching and
passes directly through the manhole. The other part of the flow im-
pinges upon the benching and is deflected upwards into the surcharge
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volume resulting in a well-mixed flow portion (Chapter 8).

• Energy loss co-efficient K values recorded by Arao & Kusada (1999) in a
manhole with D/Dp = 4.1 change at s = 0.278D in a straight through
unbenched manhole, and at s = 0.833D in a 90° outlet angle unbenched
manhole. These correspond with results obtained from CRTD analysis,
providing evidence for a link between mixing processes and energy losses
(Chapter 8).

9.3 Suggestions for further work

There are several additional areas of research that could be followed up directly.
Topics that have been either briefly touched upon or otherwise not included in
the thesis are discussed in this section.

9.3.1 Dynamic sample point spacing

Currently, maximum entropy deconvolution uses sample point positions based on
assumed RTD characteristics. The slope-based sample point distribution is the
main exception to this, which uses a quick FFT-based deconvolution to estimate
sample point positions. There is no reason that a quick maximum entropy de-
convolution could not be used instead. Alternatively, dynamic spacing could be
achieved through the inclusion of additional optimisation constraints, allowing for
more optimal sample point positioning. A genetic algorithm approach to sample
point positioning might also be suitable.

9.3.2 Pipe subtraction

All of the RTDs deconvolved from experimental manholes data take into account
the mixing volume between two fluorometers. This includes a short segment of
pipe on either side of the manhole. While the manhole is the controlling structure,
all of the RTDs presented within this thesis include the small amount of dispersion
taking place in each short reach of pipe. Guymer & Stovin (2011) introduce
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the concept of subtracting the pipe dispersion to give an RTD that reflects the
mixing processes occurring in the manhole only. This would be a step towards
the application of manhole RTDs in larger network models.

Unfortunately while conceptually simple, the practical application of pipe sub-
traction is significantly more complex. Currently it appears to require significantly
more accurate flow data than is available. The validity of applying the ADE model
at such a short scale needs more investigation within the deconvolution context.
A vena contracta is also observed to form in the manhole’s downstream pipe in
PLIF images and CFD models. In angled manholes, momentum from within the
manhole also continues to affect the flow in the downstream pipe. All of these
effects must be considered in more detail.

9.3.3 Stepped manholes

Dennis (2000) collected solute transport data for a 388 mm straight through man-
hole which was analysed in Chapter 8. He also collected data with a downstream
step height of 0.5Dp, 1.0Dp, 1.5Dp, and 2.0Dp. The analysis of mixing character-
istics could easily be extended to include the effects of step change to give further
information about mixing processes in manholes. In general, additional manhole
configurations could also be analysed.

9.3.4 LAMA window size

GIE interpolation works well, but is complex and slow. LAMA interpolation is
much faster, but requires manual specification of a window size for the moving
average. Work carried out for Chapter 6, as well as other work not contained
within this thesis, suggests that optimal window size may be a function of sample
point spacing and other data set characteristics, e.g. the difference in first arrival
times. It may be possible to automatically determine window size, which would
make the application of LAMA far more generic.
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9.3.5 CRTD scaling

The algorithm used in Chapter 8 to identify the end of the CRTD when the
mass-balance was incorrect was applied manually in specific instances. Defining a
specific criterion for its application would allow for it to be included as an optional
automatic part of the deconvolution software. Determining exactly to what extent
the resulting CRTD is still an over-estimation could be used to further improve
the scaling algorithm as well.

9.3.6 Engineering application of Chapter 8

Work in Chapter 8 identified several flow fields which develop as a function of
manhole outlet angle, the presence of benching, and surcharge depth. This is in
contrast to the previously identified two mixing regimes (below-/above-threshold)
and could potentially increase the complexity of manhole solute transport mod-
elling. An analysis of to what extent this additional refinement benefits practical
modelling outcomes should be conducted so that a unified modelling guideline
can be produced.

9.3.7 Energy losses

Head loss data has been collected simultaneously with solute transport data in
a number of instances in order to try to establish a link between the two. If a
link is successfully established, a well calibrated hydraulic model could result in a
significantly improved linked water quality model. The theoretical basis for such
a relationship is that the hydrodynamic processes occurring within a manhole
control both the energy losses and mixing characteristics.

To a certain extent this was investigated in Chapter 8. However, this was an
empirical approach that did not produce particularly clear results. Other research,
e.g. Pedersen &Mark (1990); Arao & Kusada (1999); Stovin et al. (2013), suggests
that a better link should be possible.

The proper starting point for additional investigation of the link between energy
losses and mixing characteristics should be through a theoretical examination
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of the ADE work of Taylor (1954), which effectively produces an RTD, and the
Darcy-Weisbach equation (Prasuhn, 1987), which gives energy losses due to fric-
tion in pipes. Denbigh & Turner (1984) suggest that such a link exists, but it needs
to be examined in greater detail. If successfully linked, RTD or CRTD parameters
(e.g. t50) should be linkable to head loss characteristics for pipes. This could then
be applied to deriving RTDs for more complex structures.

9.4 Key outcomes

Key outcomes of this research are:

1. A demonstration and explanation of maximum entropy deconvolution as
a robust means of obtaining an RTD from experimental solute transport
data.

2. A recommended set of configuration options for maximum entropy decon-
volution, including the R2

t constraint function, 40 sample points, the new
slope-based sample point distribution, and 350 iterations.

3. Refinements to maximum entropy deconvolution to enable the deconvolu-
tion of smooth RTDs.

4. A demonstration that maximum entropy deconvolution can successfully be
applied to either raw or minimally pre-processed solute transport data.

5. A new examination of the effects of outlet angle and benching on mixing
processes in surcharged manholes.
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Appendix A

Mean normalised correlation
value plots

These plots show the full range of correlation values for the analysis carried out in
Chapter 4. Horizontally, different transformations are shown, while the different
profiles are shown vertically.
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Figure A.1: Legend
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Figure A.2: Mean normalised correlation values for BLC
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Figure A.3: Mean normalised correlation values for χ2
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Figure A.4: Mean normalised correlation values for FFCBS
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Figure A.5: Mean normalised correlation values for R2
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Figure A.6: Mean normalised correlation values for PMCC
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Figure A.7: Mean normalised correlation values for RMSD
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Figure A.8: Mean normalised correlation values for R2
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Figure A.9: Mean normalised correlation values for SimilB
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Figure A.10: Mean normalised correlation values for YIC
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Figure A.11: Mean normalised correlation values for CORR2
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Figure A.12: Mean normalised correlation values for ISE
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Figure A.13: Mean normalised correlation values for APE
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Appendix B

GIS interpolation functions

Inverse Distance Weighting (IDW) and Kriging Estimation Method (KEM) are
introduced in Chapter 6. Like the other interpolation functions, they are a po-
tential means of obtaining a smoother RTD, but are rejected as being unsuitable
for maximum entropy deconvolution. The detailed evaluations of both functions
are covered in this appendix.

B.1 Inverse Distance Weighting

In IDW, Equation B.1, the point being interpolated zj is defined as the summation
of neighbouring points zi relative to the distance d between the point zj and the
other points zi to the power of a, where a is a factor typically between 1 and 2,
although higher values can be used (Armstrong & Marciano, 1994). The number
of neighbouring points k can vary, ranging from a fixed number of points or even
all points (Jarvis & Stuart, 2001). IDW results in a smoothed line where closer
points have a greater influence than further points on the value being interpolated.

zj =

∑k
i=1 zi/d

a∑k
i=1 1/da

, d = |i− j| (B.1)

An example of IDW when applied to the RTD from Figure 6.1 as a post-processing
operation is shown in Figure B.1. IDW shows a similar flaw to spline interpolation
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where a catenary (or inverted catenary) effect is visible between some sample
points. These interpolated values are unrealistic for an RTD and so IDW was
judged unsuitable.

B.2 Kriging Estimation Method

The KEM is a more complex interpolation method where the data points being
interpolated are calculated based on a model of the data (Jernigan, 1986). The
existing data is used to generate a semivariogram using Equation B.2, where d
is lag distance and n(d) is the number of points at that lag. Lag is the x-axis
difference between two points and γ is the semivariance at a given lag, which is
half the squared difference in value. There is often only one lag value for each
precise distance, so lag bins are used, grouping together lags so that a mean
semivariance value is taken for that lag range. The semivariance is a measure of
the similarity between values with respect to the distance between them.

γ(d) =
1

2

1

n(d)

n(d)∑
i=1

(zi+d − zi)2 (B.2)

After creating the semivariogram, a semivariogrammodel is fit to it. Most semivari-
ogram models have three properties, the nugget (C0), sill (C1), and range (a).
This is illustrated in Figure B.2, which shows the spherical semivariogram model,
Equation B.3 (Jernigan, 1986). The nugget value is indicative of discontinuities
in the data (at very small lag distances a non-zero semivariance). The sill is the
point at which the semivariance stabilises, usually the maximum semivariance
value. The range is the distance at which the stabilisation of semivariance takes
place.

γ(d) =

Co + C1 (3d/2a− d3/(2a3)) d ≤ a

Co + C1 d > a
(B.3)

Once the model is fit, it allows for the semivariance to be predicted at any arbit-
rary lag distance. This can be turned into covariance with respect to lag by using
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Figure B.1: IDW interpolation applied to Figure 6.1, predictive R2 = 0.9611,
k = 40, a = 2

Lag (seconds)

S
e
m

iv
a
ri

a
n
ce

 [
-]

0 5 10 15 20
0.0

0.5

1.0
Sill (C1)

Range (a)Nugget (C0)
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the sill minus the semivariance (C1 − γ). Covariance beyond the range is 0. The
covariance is used to determine the weighting factors λ through Equation B.4,
where K is a NxN matrix of semivariance values for the lag distances between
sample points and k is a Nx1 matrix of semivariance values for the lag distances
between the point being interpolated and the sample points. The weighting values
are then used in Equation B.5 to calculate the final interpolated value, similar to
IDW.

Kλ = k (B.4)

zj =
N∑
i=1

λizi (B.5)

As the first step to applying KEM interpolation to the RTD from Figure 6.1
for evaluation, a semivariogram must be generated. The expected shape of the
semivariogram normally increases with lag then levels off, indicating a decreas-
ing relationship between sample point values with sample point separation. Fig-
ure B.3 shows the semivariogram for the sample points underlying Figure 6.1. It
demonstrates a “hole effect” where semivariance rises then lowers, which is typic-
ally associated with periodic data (Pyrcz & Deutsch, 2003). In this scenario, the
semivariogram indicates that points further apart are more similar than points
closer together, which is unrealistic.

There are two potential courses of action when the hole effect makes it difficult
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Figure B.3: RTD semivariogram for Figure 6.1 using 5 second bins
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to fit a semivariogram model. The semivariogram could be considered to be cut
at the peak of the hole, i.e. fixing the range and fitting a simple model until that
point only. Alternatively, additional post-processing could be used to compensate
for the low semivariance values obtained through some sort of averaging. The
general complexity of KEMmakes KEM interpolation unsuitable for an automatic
process like maximum entropy deconvolution.
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Appendix C

Large normalised CRTD plots
for Chapter 8

This appendix contains larger and more detailed deconvolved CRTD plots cor-
responding to those presented in Chapter 8 (Figures 8.11 to 8.18). They show
mean, normalised CRTDs for each surcharge depth at each outlet angle and flow
rate.
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Figure C.1: 0° unbenched, 1 l/s
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Figure C.2: 0° unbenched, 3 l/s
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Figure C.3: 0° unbenched, 6 l/s
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Figure C.4: 0° unbenched, 8 l/s
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Figure C.5: 30° unbenched, 1 l/s
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Figure C.6: 30° unbenched, 2 l/s
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Figure C.7: 30° unbenched, 4 l/s
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Figure C.8: 30° unbenched, 6 l/s
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Figure C.9: 30° unbenched, 8 l/s
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Figure C.10: 60° unbenched, 1 l/s
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Figure C.11: 60° unbenched, 2 l/s
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Figure C.12: 60° unbenched, 4 l/s
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Figure C.13: 60° unbenched, 6 l/s
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Figure C.14: 60° unbenched, 8 l/s
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Figure C.15: 90° unbenched, 1 l/s
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Figure C.16: 90° unbenched, 2 l/s
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Figure C.17: 90° unbenched, 4 l/s
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Figure C.18: 90° unbenched, 6 l/s
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Figure C.19: 90° unbenched, 8 l/s
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Figure C.20: 30° benched, 1 l/s
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Figure C.21: 30° benched, 2 l/s
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Figure C.22: 30° benched, 4 l/s
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Figure C.23: 30° benched, 6 l/s
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Figure C.24: 30° benched, 8 l/s
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Figure C.25: 60° benched, 1 l/s
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Figure C.26: 60° benched, 2 l/s
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Figure C.27: 60° benched, 4 l/s
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Figure C.28: 60° benched, 6 l/s
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Figure C.29: 60° benched, 8 l/s
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Figure C.30: 90° benched, 1 l/s
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Figure C.31: 90° benched, 2 l/s
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Figure C.32: 90° benched, 4 l/s
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Figure C.33: 90° benched, 6 l/s
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Figure C.34: 90° benched, 8 l/s
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