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Abstract
Due to the high demands of organic synthesis, creating large libraries for biological testing in drug design is laborious and cost inefficient. As a consequence, medicinal chemists use computational resources to screen large libraries in early phase drug discovery to produce a list of hits for synthesis and further analysis. These computational methods may use a field-based approach to screen for novel drug candidates.
	The thermodynamic properties of molecular interaction sites can be characterised experimentally, for example, through measurement of association constants for the formation of simple complexes that feature a single hydrogen bonding interaction. We have found a good correlation of experimentally determined solution-phase hydrogen-bond parameters with gas-phase ab initio calculations of maxima and minima on MEPS (Molecular Electrostatic Potential Surface). This provides a method for converting gas phase calculations on isolated molecules into parameters that can be used to estimate solution phase interaction free energies. This approach has been generalised using a footprinting technique that converts a MEPS into a discrete set of SSIPs (Surface Site Interaction Points). These SSIPs represent the molecular recognition properties of the entire surface of the molecule. For example, water is described by four SSIPs, two hydrogen bond donor sites and two hydrogen bond acceptor sites.
	Our industrial collaborators also allowed us to analyse their interaction analysis method which distils molecular mechanics electrostatic potentials into field points which reveal interaction points. Comparison of these field point scores with experimentally determined hydrogen bond parameters revealed a poor correlation.
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Section 1: Background
1.1: Interactions & Drug Compounds
Protein-protein interactions, protein folding and DNA (Deoxyribo Nucleic Acid) replication are just a few of many important processes in life which all rely on non-covalent interactions. The strength of these interactions can vary, from very weak vdW (van der Waals) interactions of 4-8 kJ mol-1 to hydrogen bonds of 8-30 kJ mol-1.1-2 Interactions are also extremely important in medicinal chemistry and drug design. Understanding these types of molecular interactions could give a useful insight into drug design and aid the further development of tools and techniques available to the medicinal chemist in the rational development of drug compounds.
	Many interactions in drug discovery concern protein side chains and the ligand itself. X-ray analysis is most commonly used to study these interactions in which a co-crystal of the protein and the ligand is first isolated and then studied. One example of this would be a study of HIV-1 (Human Immunodeficiency Virus) integrase protein inhibition with 5CITEP.3 The important interactions are mainly hydrogen bonds (figure 1). 


[bookmark: _Ref373181769][bookmark: _Ref373181754]Figure 1: Some of the interactions between the HIV-1 integrase protein and the inhibitor 5CITEP.
An X-ray study of an AChE (acetyl cholinesterase enzyme) protein and the inhibitor E2020 showed the interactions between the inhibitor and the protein.4-5 Two π–π stacking interactions, and a cation-π interaction was observed (figure 2). The binding of this drug is being driven by the hydrophobic effect as the binding involves displacement of water molecules from the active site and the creation of hydrophobic interactions between the drug and protein complex. The observed π-stacking interactions are an example of this.


[bookmark: _Ref373181865][bookmark: _Ref373242702]Figure 2: Interactions between E2020 and acetylcholinesterase found in the X-ray crystal structure of the complex.
The MEK-1 (Mitogen-activated Enzyme Kinase) inhibitor (figure 3), inhibits the hCatl (human cathepsin L) active site through a covalent bond involving a sulphur residue.6-7 This mechanism is guided by a couple of key hydrogen bonds in neighbouring hydrophobic pockets and a special type of interaction known as a halogen bond between an amino acid carbonyl and the C-X bond of the drug. In this particular example the drug activity increased up to two orders of magnitude by increasing the size of the halogen from chlorine to iodine.


[bookmark: _Ref373181929]Figure 3: Mode of action for the MEK1 inhibitor determined by X-ray analysis. The activity of the inhibitor increases in the order F << H < Cl < Br < I. Y = H/F.
Sometimes proteins may not necessarily be the desired target. One example of this is intercalating anticancer drugs which work by targeting DNA. They contain a hydrophobic aromatic moiety which intercalates between the DNA base pairs and forms π-π stacking interactions. Intercalating drugs usually contain a polar side chain so as to make the drug more soluble. In some cases even a metal is used as the polar group.8 In the case of Doxorubicin (figure 4), the orthoquinone section is hydrophobic and the sugar residue will act as the polar group.9


[bookmark: _Ref373181969]Figure 4: Left: An example of the DNA intercalating drug Doxorubicin. Right: Computer model of Doxorubicins intercalating mode of action with the DNA in green and Doxorubicin represented in a sphere model.9

1.2: Computational Drug Design
An increasing knowledge of receptor sites has paved the way for knowledge based drug design. Computational approaches can be used to screening for hit compounds which can then be developed further into lead compounds and also potentially more novel drug compounds (figure 5). This not only gives the medicinal chemist tools to use in early phase drug discovery but also reduces time in systematically screening compounds.10
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[bookmark: _Ref373182035]Figure 5: How computational analysis fits into the early phase drug design pipeline.
Computational analysis may be used to screen vast libraries of drug like compounds to identify a small number of potential drug candidates that can then be synthesised by a medicinal chemist and studied experimentally. Knowledge that already exists as well as data from drug candidates studied later in the pipeline can be fed back into the computational approach in an iterative manner.
	Therefore, it is important to develop a high degree of accuracy for computational analysis, so that reliable reproducible results can be obtained with a high efficiency. Empirical observations coupled with the knowledge of the nature of these interactions can provide extra resources for the medicinal chemist in a computational analysis on a series of drug candidates for drug discovery. Such computational analysis can be; similarity scoring, drug-receptor docking and QSAR (Quantitative Structural Activity Relationships).

1.2.1 Structure Based Design
Similarity scoring algorithms screen libraries of compounds and rank the compounds in order of how similar the compounds are to the input molecular scaffold.11-12 These algorithms work by accessing the structural similarity between the input molecule and the screened molecule and scoring them on how well they overlay. For 2D similarity this can be done by either scoring a perfect match of atom type as a 1 while mismatched atom types or a missing atom is scored as a 0. A coefficient score can then be derived for that particular compound ranging from 0 (no similarity) to 1 (exact overlap). For 3D similarity, a root mean squared score is derived based on how well the atom coordinates overlap in 3D space. 
	One example of such computational analysis is pharmacophore design. It can be said that structurally similar compounds will have similar activity. For example, procaine has a structure scaffold in common with cocaine and both have local anaesthesia effects (figure 6). 


[bookmark: _Ref373182076]Figure 6: Similarity overlay of cocaine and procaine. Red highlight indicates the common scaffold which could be the common pharmacophore.
The red highlighted scaffold in figure 6 could be the part of the drug responsible for the anaesthetic effects of the compound and is known as the pharmacophore. A pharmacophore can be generated in an algorithm by assigning key interaction points on a molecule. The distances between these points can then be measured so that this basic template can be used to screen compound libraries for similarity (figure 7).12


[bookmark: _Ref373182152]Figure 7: Generation of a 2D pharmacaphore scaffold. The distances between and coordinates of the atoms highlighted in red are recorded and used as parameters in screening for other similar compounds.
An example of 2D pharmacophore generation is a study on AChE (Acetyl Cholinesterase Enzyme) inhibitors.13 From a library of 56 thousand compounds a total of 8 AChE inhibitors were obtained through high-throughput in vitro screening. A pharmacophore model of key areas that these eight compounds had in common, such as hydrophobic and hydrophilic moieties and distances between these points along the scaffold was built (figure 8). This pharmacophore model was then used to computationally screen a library of over 162 thousand compounds of which 117 matched this pharmacophore. Further docking, bioavailability and in vitro experiments on these 117 compounds then led to 2 lead compounds.


[bookmark: _Ref373182187]Figure 8: An example of a pharmacophore design using existing AChE inhibitors.13

1.2.2 QSAR
It is possible to generate a QSAR (Qualitative Structural Activity Relationship) model from a series of drug like compounds with a similar biological activity to act as training set. In a QSAR model a property of a series of compounds is plotted against experimentally measured parameters, for instance logIC50 (minimum required dose for an effective response of 50% of a test population) against number of rotatable bonds. If a relationship exists there will be a strong correlation (equation 1). This model can then allow the chemist to predict how chemical changes to the structure will affect the activity of the compound.14
[bookmark: _Ref373182251]	(1)
X,Y = molecular descriptors	a,b,k = constants	n,m = exponents
This analysis suggests that the activity of the compound can be predicted based on a set of molecular descriptors such as logP (drug lipophilicity) or the Hammett substituent constants (drug electronic properties). The analysis can be simple and have a small number of these terms, or be complex and have a large number of these terms each with different coefficients and powers.
	A 3D QSAR model can also be developed by generating a common pharmacophore from a set of active molecules using their 3D structure. The molecules are aligned based on their pharmacophore fields and enclosed in a 3D grid. A probe atom then moves along the grid and scores each grid section surrounding the molecule on favourable and unfavourable interactions depending on the charge of the probe atom (figure 9). This is referred to as CoMFA (Comparative Molecular Field Analysis).14-15 The recorded interaction strengths are then fitted to a model using a partial least squares method. This then allows the chemist to be able to predict the effect of structural changes on the activity of a drug.


[bookmark: _Ref373182372]Figure 9: 3D QSAR CoMFA analysis of the generalized pharmacophore of a steroid. A probe atom measures the molecular field at each grid point. In this case bioisoteric replacements on green highlighted areas leads to improved activity, and poorer activity on yellow areas based on a neutral probe atom. Adding electronegative groups to blue area leads to increased activity and on red areas poorer activity.14

1.2.3 Docking
Another example of computational involvement in drug design is molecular docking. The aim of molecular docking is to optimise the geometry of both the receptor, drug and their orientation so that the Gibbs free energy of the system is minimised.12,16 Docking assesses how well the compound fits into the active site of the receptor based on shape complementarity, conformation and the energy of interactions made with the receptor. The molecule with the best fit is then optimized to ensure that all other possible binding orientations have been considered as more than one conformation of the molecule may fit into the active site. The docked molecule is then simultaneously further analysed by adding or removing functionality, the program can then score how this affects the docking score and flag any potential lead compounds for further investigation.


[bookmark: _Ref373182334]Figure 10: Generalized scheme showing how docking works. The ligand is assessed on how well it fits into the active site. Steric clashes or large interaction distances between the ligand and protein are scored poorly (adding to the Gibbs free energy). Unfavourable interactions between the drug scaffold and the protein are also scored poorly. Favourable interactions such as the arrows are scored highly as they will contribute to the stability of complex.
A widely used docking algorithm is known as DOCK.17-18 This was designed for de novo drug design in which fragments are combined to form a potential drug candidate based on how well they will fit into the receptor site. This algorithm works by mapping suitably sized spheres on the surface of the receptor active site (figure 10). The algorithm then scores what types of drug fragment and connectivity best maps into the receptor based on how well they overlap these spheres. Initially, the DOCK algorithm only considered the shape and size of the fragments. DOCK was later developed further to include molecular mechanics force fields to include some electronic properties of the potential drug molecule and the receptor to allow the additional scoring of the interaction energies between the drug fragments and protein receptor.17
	The receptor and ligand can adopt many conformations. In order to conserve computational time most docking searches consider the protein as structurally rigid and the ligand has full conformational freedom. This means that some binding modes where there is a different protein conformation maybe missed. Docking algorithms such as GOLD (Genetic Optimisation for Ligand Docking) use a genetic algorithm to screen more binding modes by allowing flexibility of the protein active site. This effectively allows the structure of the protein active site to simultaneously evolve as the conformation of the ligand is changed. GOLD also allows the user to consider water-mediated binding between the drug and the receptor.19

1.2.4 Field Based Design
In some cases, structurally diverse compounds may have similar activity.20 For instance, methadone has similar biological activity to that of diacetylmorphine and is quite often used as a treatment in the rehabilitation of heroin addicts (figure 11).21 Structures 1-3 all have a common pharmacophore and a high 2D structural similarity whereas methadone does not. Methadone also possesses a different 3D molecular shape to these three structures. Using a structure-based approach alone in early phase drug discovery may mean that structurally diverse novel drug compounds such as methadone may be missed.


[bookmark: _Ref373182405]Figure 11: Bioisoteres of morphine left to right: morphine, 3-methylmorphine, diacetylmorphine, methadone. Notice that morphine, 3-methylmorphine and diacetylmorphine all appear similar in structure whereas methadone is more distinct.
Diverse drug structures may interact with the target in a similar fashion. By using molecular mechanics it is possible to predict interaction sites across a molecule from the molecular fields that the structure generates (figure 12).22-23 The application of molecular mechanics is especially beneficial for efficiency so that screening vast libraries of potential drug compounds can be done rapidly to potentially find more drug leads. The electrostatic extremes from molecular mechanics can be distilled down to individual contact points represented as spheres using post molecular mechanical algorithms.


[bookmark: _Ref373182443]Figure 12: 3D representation of molecule with interaction field points; negative potential (blue), positive potential (red), vdW (yellow), hydrophobic (gold).
The information regarding these interaction points are encoded in the electrostatic potential of the molecule. In order to parameterise the force field the energy of interaction between a charged probe and the molecule is calculated (the probe atom has the same vdW radius as oxygen, this ensures that only accessible sites on the molecule are assessed. Also oxygen is a good probe atom as it is a common atom in most drug functional groups). The vdW and hydrophobic potentials require the use of a neutral probe. These points provide information regarding the shape and the hydrophobicity of the molecule.
	AAC (atom centred charges) in most molecular mechanics methods provide a poor description of the molecular electrostatic potential as the charge is described as a localised point located on the atom itself.24 The directionality of lone pairs is neglected which leads to one electrostatic field point for sp2 or sp3 oxygen, when in fact two or three contact points should be found. Instead, the charge distribution around an atom is better described as a set of multipoles such as charges, dipoles and quadrupoles.2,25 Using this idea a special kind of force field has been developed known as the XED (extended electron distribution) force field (figure 13).26-27 This force field uses a set of seven point charges at defined distances from the nuclei to describe the anisotropic electron distribution around an atom. This special type of force field is has been shown to give a more accurate description of intermolecular interactions.


[bookmark: _Ref373182486]Figure 13: XED point charges with defined distances and distributed charges for an ether type oxygen. There is an atom-centred charge on the oxygen and 6 surrounding negative point charges. Notice these charges correctly predict the number of contact points on the oxygen atom which are the lone pair electrons.
Field points can be compared to other molecules which may not necessarily be related in structure, but may have similar field point arrangements (figure 14). A similarity score between molecules can then be made using this overlap of fieldpoints (equations 2-3).
[bookmark: _Ref373182570]	(2)
[bookmark: _Ref373182572]	(3)
SfpBfpA = similarity score	fpA = fieldpoint A	fpB = fieldpoint B 	EA→B = energy of fieldpoint overlaps.
FB(x) = value of the field at position x



[bookmark: _Ref373182522]Figure 14: Comparison of similarity for N-methyl formamide and imidazole using their fieldpoint data alone. Note the overlap of field points on the converging arrows.

1.3: Hydrogen Bonding Scale
Consider the following hydrogen bond equilibrium between the hydrogen bond donor 4-fluorophenol (blue) and the hydrogen bond acceptor acetone (red) (figure 15).


[bookmark: _Ref373241270]Figure 15: The 1:1 hydrogen bond equilibrium between a donor molecule 4-fluorophenol (highlighted in blue) and the acceptor molecule acetone (highlighted in red) forming a donor-acceptor complex.
The equilibrium constant KHB for the hydrogen bond acceptor can be measured and converted into pKHB (equations 4-5) and also for the hydrogen bond donor (equations 6-7). Increasing the polarity of either or both the donor and acceptor will increase the pKHB value.
[bookmark: _Ref373241320][bookmark: _Ref373241313]	(4)			(5)
	(6)			(7)
In figure 16 the two chlorines are identical, which means they can both interact with the hydrogen bond donor. When measuring the pKHB values for compounds containing more than one identical acceptor or donor functional group statistical corrections have to be made as an interacting molecule will bind to both chlorines giving a larger KHB, normally a logn correction (where n is number of identical sites) is applied.


[bookmark: _Ref373241474]Figure 16: The equilibria for the 1:1 complex formed between 4-fluorophenol and 2,2-dichloropropane. Here the donor can either bind to the red chlorine or the blue chlorine.
The first pKHB scale was devised by Taft et al.28 Their studies involved 19F NMR (Nuclear Magnetic Resonance) titrations. This type of technique observes the fluorine nucleus being deshielded upon binding giving rise to a change in chemical shift (Δδ) between the bound and unbound 4-fluorophenol. The Δδ is measured for different concentrations of acceptor until saturation occurs. This data can then be fitted to obtain KHB. These studies required the use of an internal/external reference standard which was 4-fluoroanisole as this closely resembled 4-fluorophenol without the hydroxyl proton to make a hydrogen bond. This allows calibration for the hydrogen bond equilibria studied and proved to be a suitable internal reference even for weak bases where higher concentrations were required to achieve saturation. Further work using 19F NMR was conducted using 5-fluoroindole as an N-H donor.29 Here Δδ could also be used as a measure of the extent of proton transfer with complete transfer occurring with a Δδ ~9 ppm. The pKHB values obtained from the study agreed with the values obtained from Taft’s earlier work.
	One method for obtaining pKHB values is via IR (Infrared) studies.30-34 This is done by measuring the difference in IR stretch (ΔνOH), between the free and bound donor. The greater the ΔνOH, the higher the pKHB. In these studies it was also shown that there is a functional group dependent correlation between ΔνOH and pKHB) (equation 8).
[bookmark: _Ref373241518]	(8)
A = gradient co-efficient	B = offset on pKHB axis
This is particularly advantageous as additional pKHB values can be estimated for a donor that has poor solubility. pKHB values obtained in this way are secondary values and the accuracy depends on the quality of the correlation between the ΔνOH and pKHB for that particular functional group.
	UV/visible absorption spectroscopy can also be used to measure pKHB.35-36 Pyridine N-oxide shows a weak absorption (λmax) at 330-350 nm, and upon addition of a hydrogen bond donor such as an alcohol the λmax decreases. By measuring the change of absorption over different concentrations, a titration curve can be constructed and KHB can be obtained using the appropriate fitting methods. Conductance titrations can be used to measure KHB values for charged compounds in solution.37-38 A small amount of free ions exists without the addition of a donor molecule. However, upon addition of a donor there is an increase of anions in solution leading to an increase in conductance. This conductance can then be measured over varying concentrations and fitted to obtain a KHB value. 
	There is a relationship between the binding constant of one hydrogen bond donor and acceptor to the binding constant of the same hydrogen bond donor with a different acceptor (equation 9).39-40 When these relationships are plotted for a number of different hydrogen bond donors, the lines intercept at the point of -1.1 on the logKHB scale (y axis). This -1.1 intercept (DB) is the pKHB value obtained for a ‘true’ hydrogen bond interaction between two atoms with no polar functional groups (no polar driving force towards an interaction). 
[bookmark: _Ref373241602] 	(9)
LB = hydrogen bond donor dependant constant	 DB = constant
Because of this intercept a hydrogen bond scale can be derived known as Abraham’s parameters, α2H for hydrogen bond donors, and β2H for hydrogen bond acceptors (equations 10-11).
[bookmark: _Ref373243552][bookmark: _Ref373241655]	(10)			(11)
[bookmark: _Ref373241728]		(12)
α2H = hydrogen bond donor constant	β2H = hydrogen bond acceptor constant	c1 = solvent dependant constant		c2 = constant
Equation 12 shows that increasing either or both α2H/β2H leads to a higher equilibrium constant K. c1 is solvent dependent and will increase in apolar solvents and decrease in more polar solvents. Tetrachloromethane was used as the reference solvent to develop these hydrogen bond scales as tetrachloromethane is non-polar, its’ participation in the equilibrium illustrated in figure 15 is minimised. However, other non-polar solvents have been used where the solubility of either the donor or acceptor in tetrachloromethane is poor.41 The c2 term is solvent independent and indicates the energy cost of restricting bimolecular motion in the donor-acceptor interaction this coincides with the -1.1 intercept in equation 4 above.
In a recent study K values have been measured using IR in the gas phase.42 The c1 coefficient measured was greater than that measured in tetrachloromethane which demonstrates the influence of the solvent in the binding equilibrium. As there is no solvent present in the gas phase, there is no competition from surrounding solvent molecules.
	Interactions between donor and acceptor groups have been linked to the electrostatic interactions between the positive and negative extrema on the calculated MEPS (Molecular Electrostatic Potential Surface).30,43-44 Areas of high electron density (electronegative atoms/groups) will have a negative electrostatic potential and are likely to be good hydrogen bond acceptors. Areas of low electron density will have a positive electrostatic potential and are likely to be good hydrogen bond donors. In figure 17 the red colour represents the negative electrostatic potential, which will act as the hydrogen bond acceptor (fluorine) and the blue colour is the area of high electrostatic potential which will act as the hydrogen bond donor (aromatic protons).High electrostatic potential, Hydrogen bond donor.
Low electrostatic potential, Hydrogen bond acceptor.



[bookmark: _Ref373241824]Figure 17: MEPS of 1,2-difluorbenzene, generated using an AM1 semi empirical calculation. Areas of blue are positive electrostatic potential (low electron density) and act as a hydrogen bond donor, areas of red are negative electrostatic potential (high electron density) and act as a hydrogen bond acceptor.
Emin (Electrostatic Minimum) and pKHB correlate well with each other. In an empirical study on primary amine interactions,30,44 a PM3 semi empirical calculation was used to obtain the Emin. The relationship between the calculated Emin and the experimental pKHB was good, as the pKHB of the molecule increases the electrostatic potential decreases. This correlation can be used to predict the pKHB of molecules which may be difficult to observe empirically. 
	In a similar study using the electrostatic potential from an AM1 semi empirical calculation, the α2H of the functional group correlates well with Emax (Electrostatic Maximum) and β2H correlates well with Emin (figure 18). a)
b)


Figure 18: Electrostatic potentials from AM1 calculations plotted against; a) α2H parameters, b) β2H parameters.43
The correlation between Emax and α2H does not intercept the y-axis at the origin. This is because tetrachloromethane was used as the solvent to measure α2H and this has an Emax of 84 kJ mol-1. Any donor molecule with a smaller Emax cannot compete with tetrachloromethane and so an interaction is not detected. Extrapolation of this graph along the α2H axis to include less polar donors (Emax smaller than 84 kJ mol-1) reveals the intercept to be -0.33. These correlations can be used to derive a new hydrogen bond scale α and β (equations 13-14).43 In this scale all forms of interactions can be treated as a hydrogen bond and free energies of interaction can be calculated from electrostatic potentials. In equation 15, αs and βs represent the solvent hydrogen bond parameters.
[bookmark: _Ref373241876]	(13)		 	(14)
[bookmark: _Ref373241934]	(15)
α/α2H = hydrogen bond donor constant	β/β2H = hydrogen bond acceptor constant	αs = solvent hydrogen bond constant
βs = solvent hydrogen bond constant	Emax = electrostatic potential maximum	Emin = electrostatic potential minimum


1.4: Hydrogen Bond Properties of Different Functional Groups
Many of the studies in the literature report cases where electronic effects predominate over steric effect of a molecule. Resonance effects were observed in a study on amides.32 Tertiary amides have a higher pKHB than secondary amides due to more electron releasing alkyl substituents. A back donation effect is also observed when attaching phenyl rings to the nitrogen. Increasing phenyl substitution leads to an increased conjugation of the nitrogen lone pair (figure 19).


[bookmark: _Ref373241996]Figure 19: Delocalisation of nitrogen lone pair and steric hindrance. The curly arrows indicate resonance flow, in substituting the methyl groups with phenyl rings back the flow changes direction.
A study on para and meta substituted acetophenones showed that in para substituted acetophenones the main contributor to pKHB was π-conjugation,34 this effect being slightly smaller in meta substituted systems. In both cases the substituents can also donate electron density through the σ-bonding framework inductively, but for para substituents resonance effects predominate. But in meta substitution these inductive effects are more profound.
Extending the conjugation of a system leads to an increase or decrease in pKHB depending on whether EDGs (Electron Donating Groups) or EWGs (Electron Withdrawing Groups) are attached. This due to resonance effects (figure 20).


[bookmark: _Ref373242023]Figure 20: Effects of vinylogy and benzology in esters (top) and nitriles (bottom), resonance arrows drawn to show push/pull effect on the conjugated systems.
Both trends above suggest that vinylology (addition of a double bond in between a heteroatom and a carbonyl leading to extended conjugation) has a more profound effect on pKHB than benzology (addition of a benzene ring between a group and a carbonyl) as some resonance forms of the benzene system result in the breaking of aromaticity and hence will be higher in energy. 	The basicity of primary amines is predominantly determined by pyramidalisation of the nitrogen which will increase the basicity of the nitrogen lone pair.30,43 Cyclisation can also influence the pKHB of a molecule, both diethyl ether and triethylamine (pKHB 1.01 and 1.93 respectively) are poorer hydrogen bond acceptors than their cyclic counterparts tetrahydropyran and quinuclidine (pKHB 1.23 and 2.63 respectively). This is because the alkyl chains are tied back allowing better access to the lone pairs for accepting hydrogen bonds.
	Intramolecular hydrogen bonding can make a significant difference in the hydrogen bond donating and accepting strength of a molecule.45 In phenyl ester 4 (figure 21), the two carbonyl lone pairs are available for making a hydrogen bond. Upon substituting the ortho position with a hydroxyl group, an intramolecular hydrogen bond in phenyl ester 5 increases the electrostatic potential around the carbonyl oxygen hence reducing the hydrogen bond acceptor ability of the carbonyl. Replacing this hydroxyl in phenyl ester 6 removes this intramolecular hydrogen bond, while the methoxy group is also electron donating via π-conjugation, so the basicity of the carbonyl is increased.


[bookmark: _Ref373242081]Figure 21: Intramolecular effects on basicity of a functional group. Hydrogen bonding in 5 reduces the electron density on the carbonyl oxygen. Resonance effects increase electron density on the carbonyl oxygen in 6.
For hydrogen bond donors, the same steric argument as for acceptors applies (figure 22). Larger groups surrounding the hydrogen will weaken the hydrogen bond. A study using azide and cyanate ions as the acceptor revealed alcohol acidity to follow the order increasing in hydrogen bond acidity tertiary, secondary and primary.36 Adding EWGs such as chlorine increased the hydrogen bond acidity further. Phenols were found to be more acidic than alcohol groups as π-conjugation makes the hydroxyl group more positive.


[bookmark: _Ref373242124]Figure 22: The steric and electronic effects on hydrogen bond acidity.
The electronic effects on hydrogen bond acidity were also observed in a study on substituted alkynes.46 The inductive ability of the groups is the main contributor to the overall acidity with EWGs increasing the acidity of the C-H group. Deviations from this trend are due to the substituted groups being able to increase or decrease the electron density around the C-H via resonance (figure 23).


[bookmark: _Ref373242165]Figure 23: Electronic effects on the hydrogen bond acidity of substituted alkynes.

1.5: Other Functional Group Interactions
Tetrachloromethane is equivalent to a weak hydrogen bond donor.43 This is somewhat surprising considering that chlorine is an electronegative element. However, halogens possess a positive electrostatic component as well. This enables hydrogens to form a special class of interaction known as halogen bonding.6-7
This can be rationalised by looking at the electrostatic potentials of some organo halides (figure 24).47-50 A positive electrostatic potential known as the ‘σ hole’ is formed at the end of the C-X bond. As the halogen becomes larger the positive potential increases.


[bookmark: _Ref373242251]Figure 24: Left to right electrostatic potential of: CF3H, CF4, CF3Cl, CF3Br and CF3I along the C-X axis, where blue indicates a more positive electrostatic potential. Notice the σ-hole grows in size as the halogen atom becomes larger and polarisable. Vicinal fluorine atoms inductively withdraw electron density from the halide atom along the C-X bond.47
The origins of this σ hole are due to the degree of hybridisation between the s and p orbitals of the halide atom.46 Computational studies suggest that sp hybridisation in halogens is minimal. The electronic configuration of the halides will be s2px2py2. There is an area of high electron density surrounding the x axis and y axis of the halogen. This generates a belt of electrons or low electrostatic potential. The σ hole is generated from low electron density along the z axis. 
	The relationship between the Emax and experimental binding constants has been demonstrated using a phosphine oxide group as the acceptor and a series of substituted iodophenyl rings acting as the halogen bond donor (figure 25).51 The measured binding constants were in good agreement with the Emax obtained from quantum mechanical calculations.


[bookmark: _Ref373242290]Figure 25: The substituent effects on halogen bonding. Electron donating groups lead to a smaller Emax on the iodine and hence a smaller binding constant.
Another special kind of interaction involves π systems that can form aromatic interactions.52-53 The planes above and below the π ring have a low electrostatic potential due to the delocalised π electrons and an area of high electrostatic potential around the C-H groups. The three possible geometries are face to face π-π stacking, offset face to face or an edge to face C-H π (figure 26).


[bookmark: _Ref373242343]Figure 26: The three modes of aromatic interactions left to right: face to face (π-π); offset face to face; edge to face (C-H-π).
Electrostatically, the face to face interaction is the least stable interaction as this would result in repulsion between the negative π electrons. In the offset face to face and the edge to face interactions, the positive σ framework can interact with the negative π electrons. 
	A model system was designed to rationalize the geometry of aromatic interactions using defined point charges around an aromatic ring.2 This model argues that offset geometries are favoured due to the positive C-H periphery of the ring interacting with the negative charge on the π electrons. π-π stacking becomes favourable in rings with EWGs as the π-electron density is reduced and repulsion is minimised (figure 27). Point charges like this were used in the development in the XED force field.26-27


[bookmark: _Ref373242421]Figure 27: The use of point charges to rationalise the geometry of aromatic interactions. The face to face structure has negative point charges which will repel each other. Adding EWGs reduces this repulsion.
The polarisation of the aromatic ring can be influenced by EWGs or EDGs. EWGs will make the electrostatic potential of the π system positive. This will mean face to face π electron interaction repulsions are minimised and face to face stacking may become more favoured compared with offset interaction geometries. Replacing the EWGs with EDGs such as an alkyl group will decrease the electrostatic potential of the π ring to a more negative value and destabilise face-to-face interactions (figure 28).54


[bookmark: _Ref373242616]Figure 28: The effect of polarisation. Adding EWGs to the ring will increase the electrostatic potential in the π systems. Adding EDG will decrease the electrostatic potential. Rectangle box represents the σ C-H framework of the aromatic ring, the oval shapes represent the π system.
Polarisation in substituted benzene has a significant effect on the overall energy of interaction. The stability of π stacking interactions follows the order:
π deficient-π deficient	>	 π deficient-π rich	>	π rich-π rich
An example of this was reported in a study of substituted, 1,8-diarylnaphthalenes.54 Three types of systems were studied; π-rich using OMe groups, π-deficient using both CO2Me and NO2 groups, and π-rich/π-deficient using OMe and CO2Me groups (figure 29). 


[bookmark: _Ref373242660]Figure 29: Substituted systems studied: X=Y=OMe (π rich-π rich); X=OMe, Y=CO2Me (π rich-π deficient); X=Y=CO2Me (π deficient-π deficient); X=CO2Me, Y=NO2 (π deficient-π deficient). The rotational barrier was measured in a temperature dependant 1H NMR study.
The phenyl rings are forced into a face to face conformation. Upon studying the epimerisation (rotation) barrier using NMR, it was found that the highest barrier (slowest rate of rotation) was the system with two EWGs CO2Me and NO2. Systems with two EDGs such as OMe proved to be the lowest barrier (fastest rate of rotation) suggesting that repulsion in the π rings is large and destabilising. This suggests that electrostatics is the main contributor to the interaction energy. Other studies using different types of naphthalene system with a perfluorinated ring and an electron-rich ring also suggested that the dominant contributor to these interactions is electrostatics.55
	A cation-π interaction is observed between the AChE and the inhibitor E2020 (figure 2).4-5 The interaction between the acetylcholine neurotransmitter and a hydrophobic receptor model system demonstrated the importance of the cation-π interaction (figure 30).56 In the bound state the pyridinium molecule cannot fluoresce, but upon addition of acetylcholine to this system the pyridinium molecule is displaced and then fluoresces. 


[bookmark: _Ref373242792][bookmark: _Ref373242785]Figure 30: Model system developed to mimic acetylcholine binding to a hydrophobic pocket via cation-π interactions. The binding process was observed through fluorescence spectroscopy.
Anion-π interactions have also been observed experimentally, however these systems require electron deficient aromatic systems in order to become stable.57-58 Although they are comparable to the binding strengths of cation-π systems they are less common in nature and therefore less important in drug discovery.

Using Ab Initio Methods for the Calculation of Molecular Interaction Points 	Section 1: Background

Section 2: Research & Progress
2.1: Aims
It has been previously discussed that semi empirical AM1 and PM3 electrostatic potential maxima and minima reasonably correlate with the experimentally determined hydrogen bond donor and acceptor constants α2H and β2H.30,43-44 Based on AM1 methods and using these correlations, new hydrogen bond parameters have been developed known as α and β. We are now interested in:
· Developing a library of compounds with experimental α2H and β2H values of many functional groups. 
· Correlating the electrostatic potentials from DFT calculation parameters with the experimental α2H and β2H parameters will lead to an improved α and β scale.
· Incorporation of this improved scale into an empirical method for predicting molecular interaction points.
· Correlate the XED field points with the experimental data available. 
We will be using DFT (Density Functional Theory) as our electronic structure method to obtain the electrostatic potentials. DFT uses functionals to obtain the electrostatic potential of the molecules, the functional is the electron density. DFT requires approximated functionals for correlation and exchange of electrons and in this case the approximation will be the B3LYP (Becke 3 parameter Yee-Lang-Parr), this approximation incorporates additional HF (Hartree-Fock) and ab initio functions thus making this a hybrid approximation to give an improved calculated molecular property.
	In this study we will be using the 6-31G and 6-311G** basis sets. These are a set of functions which describe the atomic orbitals of an element. These functions are GTOs (Gaussian Type Orbitals) as their functionals are easier to treat mathematically. To compensate for the loss in accuracy using GTOs more functions can be added. The difference between these basis sets lies within the valence electrons of the particular element being described. In both basis sets the core electrons are considered less important in molecular bonding and are described by the linear combination of six GTOs. In the 6-31G basis set the outer valence electrons are described by three GTOs plus an additional GTO, and in the case of the 6-311G** basis set this has one more additional GTO added.
	The second difference between these basis sets is polarisation, this is denoted by the double asterisk in the nomenclature. 6-31G does not add any additional polarisation functions whereas 6-311G** adds an extra five d orbital type polarisation functions to heavier elements such as carbon and nitrogen and a set of three p orbital type polarisation functions to hydrogen atoms (figure 31).59


Figure 31: Top: polarisation effects of combining s functions with p functions; Bottom polarisation effects of adding p functions with d functions.
Using polarised basis sets will give a better representation of charge density as orbitals can share the characteristics of others such as, sp hybrid p orbitals and also give a better representation of polarisation when atoms are brought together distorting the shape of the molecule creating a polarisation effect.


2. 2: Data Collection
[bookmark: _Ref373243752]A library of hydrogen bond measurements was collected from the literature. pKHA, pKHB, α2H and β2H parameters as raw data were converted into α and β using equations 10-11 and equations 13-14. Data was collected for 1113 compounds of which 325 were hydrogen bond acceptor type groups and 788 had hydrogen bond donor type groups. A variety of functional groups are well represented. For donors, phenols and alcohols are the most studied functional group. Carbonyls were the most common group studied hydrogen bond acceptors (figure 32). 
b)
a)

[bookmark: _Ref373243755]Figure 32: Demographics of functional groups collected in the literature survey; a) hydrogen bond donor groups, b) hydrogen bond acceptor groups.


Additional information from the literature was collected such as;
· Solvent in which the measurement was conducted.
· Method of how the binding constant was measured.
· Binding partner used.
· Temperature of the experiment.
· If the measurement was a primary value (directly observed binding constant from a titration). secondary value (from a correlation) or statistically corrected by the number of equivalent sites).
Most of the binding constants obtained used IR either through primary or secondary methods. For charged compounds only a small sample set of data was available which used conductance studies to obtain these binding constants. The most common solvent used was tetrachloromethane. In one case no solvent was used when studying interactions in the gas phase. The most common binding partners used were 4-fluorophenol for hydrogen bond accepting compounds. For hydrogen bond donor groups there was more variation: dimethylsulfoxide, hexamethylphosphoramide, pyridine N-oxide and N-methylpyrrolidinone.
Where hydrogen bond donor/acceptor information from two different studies were reported, both were recorded; in order to preserve consistency, studies that involved 4-fluorophenol as the donor, tetrachloromethane as the solvent and IR as the method were used in preference where possible. Compounds with multiple equivalent binding sites were statistically corrected. Values that were statistically corrected are the highlighted in green in the appendix.

2.3 DFT Calculations
Compounds were drawn using Spartan, Fieldview or Torch and energy minimised through molecular mechanics. DFT B3LYP geometry optimisations were performed and the molecular electrostatic potentials were calculated using Gaussian ‘09. Both 6-31G and 6-311G** basis sets were used. In the case of iodine containing compounds only the 6-311G** basis sets were used. The relationship between the maxima and minima in the molecular electrostatic potential calculated using the 6-31G and 6-311G** basis sets can be seen in figures 33-34. Generally, 6-311G** basis sets electrostatic potentials were ~10% greater than the 6-31G basis sets.
[image: ]
Figure 33: Comparison of Emax using 6-31G and 6-311G** basis set potentials. 6-311G** generally calculates ~10% higher potentials to that of 6-31G basis sets.
The Emin for phosphorus oxide, phosphorus sulphide and sulphur oxide type groups using the 6-311G** basis sets are offset by ~20 kJ mol-1 (figure 34). This is due to the hypervalency of both sulphur and phosphorus atoms. 6-311G** uses a set of d functions for heavier atoms such as phosphorus and sulphur which impacts on the geometry optimisation of the molecule.60-61
[image: ]
Figure 34: Comparison of Emin using 6-31G and 6-311G** basis sets. Where; P=X (X = O, S) (yellow), S=O (green). 
Where possible, a fully extended conformation of flexible compounds with a large number of rotatable bonds was used. Conformational searches were performed on compounds in which two polar groups perturbed each other as each conformer will give different electrostatic potentials. For example there are two conformations of 2-hydroxybenzaldehyde (figure 35). The conformation on the left is the most stable conformation due to an intramolecular hydrogen bond. However, this may not be the required conformation for acting as a donor. The conformation where the hydroxyl proton is not forming an intramolecular hydrogen bond, although higher in energy may be the preferred conformation for acting as a hydrogen bond donor as the proton is not tied up by the carbonyl group. 


[bookmark: _Ref373249028]Figure 35: Two extremes of conformation and their effects on the electrostatic potentials. The conformation on the right with the exposed hydroxy group may be the conformation in the hydrogen bonded complex.
XedeX was used to perform the conformational search. Electrostatic data for compounds where an alternative conformation such as the one in figure 35 exists can be seen in the appendix, highlighted in orange. 

2.4: Comparison of DFT Calculations with Experimental Hydrogen Bond Parameters
2.4.1: 6-31G Basis Sets
The maximum and minimum values of electrostatic potential, Emax and Emin, were extracted from the MEPS calculated using 6-31G basis sets, and the results are compared with the corresponding experimental values of α and β.
[image: ]
Figure 36: Comparison of Emax with experimentally derived α parameter, the outlying group highlighted in red belong to the heterocyclic class of compound illustrated in the figure. The line of best fit is quadratic.
There is a good correlation between the calculated value of Emax and the experimental value of α. There is one class of compounds that appear to be outliers (figure 36). These are heterocyclic compounds of the general formula shown in figure 36, and where the N-H group is a significantly better hydrogen bond donor than expected based on the value of Emax. Acyclic amide and thioamide hydrogen bond donors follow the same trend as the majority of the compounds, so the reason for the discrepancy in the behaviour of the heterocycles may be due to through space effects of the neighbouring carbonyl oxygen or thiocarbonyl sulphur on the electrostatic potential at the surface of the N-H group. The relationship between Emax and α is non-linear, and the best fit quadratic that passes through the origin is shown in figure 36. The equation of this line can be used for converting a calculated electrostatic potential into a value of α (equation 16).
 	(16)
α = hydrogen bond donor parameter	Emax = maximum electrostatic potential
The correlation between the calculated value of Emin and the experimental value of β is also non-linear, and the best fit quadratic that passes through the origin is shown in figure 37. 
[image: ]
Figure 37: Comparison of Emin with experimental derived β parameters; the outliers are: nitro groups (black), nitrile groups (red), secondary and tertiary amine groups (purple) and aniline groups (dark blue). The line of best fit is quadratic.
The correlation found for the hydrogen bond acceptors is not as strong as for the hydrogen bond donors. However, closer examination of the data reveals that there are systematic differences in the behaviour of different functional groups. Figure 37 highlights some examples: nitrile (red), secondary and tertiary amine (purple), aniline (dark blue) and nitro groups (black) It had already been previously documented that nitro and nitrile groups were outliers.62 The data for nitriles follow a similar trend to the best fit quadratic but are displaced to lower values of β, whereas the amine data are displaced to higher values of β. This observation provides us with a straightforward empirical method for correcting for some of the scatter in figure 37. We will use the equation of the best fit line in figure 37 to convert a calculated electrostatic potential into a value of β, but with an additional functional group-dependent scaling factor, c, to correct for differences in the trends observed for different functional groups (equation 17). Values of c that give the best fit of the experimental data to equation 17 are listed in table 1.
	(17)
β = hydrogen bond acceptor parameter	Emin = minimum electrostatic potential	c = function group correction constant
Table 1: Optimised functional group corrections used in equation 15
	Functional Groups
	c

	nitrile nitrogen
	0.77

	primary amine nitrogen
	1.00

	secondary amine nitrogen
	1.25

	tertiary amine nitrogen
	1.41

	pyridine type nitrogen
	1.08

	ether type oxygen
	1.16

	alcohol type oxygen
	0.95

	aldehyde carbonyl oxygen
	0.89

	ester carbonyl oxygen
	0.96

	carbonate carbonyl oxygen
	0.96

	nitro oxygen
	0.80

	any oxygen atom bonded to sulphur
	0.99

	any oxygen atom bonded to phosphorus
	1.09


Figure 38 compares the values of α calculated using equation 16 with the corresponding experimental data and gives a correlation co-efficient of r2=0.88. 
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Figure 38: Comparison of experimentally derived α constants with calculated α using equation 16.
Figure 39 compares the values of β using equations 17 with the corresponding experimental data and gives a correlation co-efficient of r2 = 0.86.
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Figure 39: Comparison of experimentally derived α constants with calculated α using equation 15. The point highlighted in red is 9,10-phenanthraquinone in which the two polar carbonyl groups are perturbing each other.
For compounds that have polar functional groups that are very close in space, the MEPS does not provide a good prediction of the hydrogen bonding properties. Figure 39 illustrates one example, where the contributions to the electrostatic potential due to the two carbonyl groups reinforce each other, leading to an overestimate of the calculated value of β for this compound. However, Figures 38-39 show that for most compounds equations 16-17 can be used to convert the calculated electrostatic potential into the corresponding hydrogen bond parameter with a reasonable degree of accuracy.

2.4.2: 6-311G** basis sets
The comparisons between the experimentally derived α and β and the MEPS calculated using the 6-311G** basis sets were performed in similar fashion.
[image: ]
Figure 40: Comparison of Emax with experimentally derived α parameter, the outlying group highlighted in red belong to the heterocyclic class of compound illustrated in the figure. The line of best fit is quadratic,
There is also a good correlation between the calculated value of Emax and the experimental value of α. The same class of heterocyclic compound is outlying due to the possibility of the through space effects between the amide group and the neighbouring carbonyl or thiocarbonyl sulphur leading to a higher calculated MEPS. The relationship is also quadratic and the best fit line is illustrated on figure 40. The equation of this line can be used for converting a calculated electrostatic potential into a value of α (equation 18).
	(18)
α = hydrogen bond donor parameter	Emax = maximum electrostatic potential
The correlation between the calculated value of Emin and the experimental value of β is also non-linear, and the best fit quadratic that passes through the origin is shown in figure 41.
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Figure 41: Comparison of Emin with experimental derived β parameters; the outliers are: nitro groups (black), nitrile groups (red), amine groups (purple), aniline groups (dark blue), P=X (X = O, S) (yellow) and S=O (green). The line of best fit is quadratic.
Similar to the previous section, the correlation for hydrogen bond acceptors is not as strong as for hydrogen bond donors. There are also systematic differences in the behaviour for some of the functional groups. Figure 41 highlights some of these groups: nitriles (red), amines (purple), anilines (dark blue), phosphorus oxides (yellow) and sulphur oxides (green). As for the 6-31G basis set results we will use the equation of the best fit line in figure 41 to convert a calculated electrostatic potential into a value of β, but with an additional functional group-dependent scaling factor, c, to correct for differences in the trends observed for different functional groups (equation 19). Values of c that give the best fit of the experimental data to equation 19 are listed in table 2.
	(19)
β = hydrogen bond acceptor parameter	Emin = minimum electrostatic potential	c = function group correction coefficient







Table 2: Optimised functional group corrections used in equation 19
	Functional Groups
	c

	nitrile nitrogen
	0.84

	primary amine nitrogen
	1.18

	secondary amine nitrogen
	1.38

	tertiary amine nitrogen
	1.38

	pyridine type nitrogen
	1.14

	ether type oxygen
	1.00

	alcohol type oxygen
	1.00

	aldehyde carbonyl oxygen
	1.00

	ester carbonyl oxygen
	0.87

	carbonate carbonyl oxygen
	0.84

	nitro oxygen
	0.76

	any oxygen atom bonded to sulphur
	0.84


Figure 42 compares the values of α calculated using equation 18 with the corresponding experimental data and gives a correlation co-efficient of r2 = 0.88.
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Figure 42: Comparison of experimentally derived α constants with calculated α using equation 18.
Figure 43 compares the values of β using equations 19 with the corresponding experimental data and gives a correlation co-efficient of r2 = 0.87. Figures 42-43 show that for most compounds equations 18-19 can be used to convert the calculated electrostatic potential into the corresponding hydrogen bond parameter with a reasonable degree of accuracy.
[image: ]
Figure 43: Comparison of experimentally derived β constants with calculated β using equation 19. The point highlighted in red is 9,10-phenanthraquinone in which the two polar carbonyl groups are perturbing each other.

2.5: Conversion of the MEPS to a set of SSIPs
Identification of the most appropriate set of SSIPs (Surface Site Interaction Points) to represent the MEPS of a molecule is not a straightforward task. The simplest approach would be to locate local maxima and local minima in electrostatic potential and to assume that these sites represent the best locations for SSIPs. However, water provides a simple illustration of the problem with this idea. Structural data on water molecules in the solid state and simulations of the liquid show that it has 4 main hydrogen bonding sites: two hydroxyl donor sites and two oxygen acceptor sites (figure 44). However, the calculated MEPS of water shows that although there are two local maxima over the hydroxyl donors, there is only one local minimum over the oxygen. The MEPS provides a reasonable estimate of the magnitude of hydrogen bond interactions formed with a specific functional group, but figure 44 shows that the MEPS does not provide a reliable way of identifying the number of hydrogen bond interactions that the functional group can make. This is a particular issue with extended regions of negative electrostatic potential: for example, the face of an aromatic ring usually has a single minimum in the MEPS, but a surface area that corresponds to the footprint of 2-3 SSIPs. This is a limitation of the assumption that hydrogen bond interactions sites are determined by electrostatics alone. We have therefore adopted an empirical approach to correcting for this problem.


Figure 44: Description of the MEPS of water as a set of SSIPs. Water has four hydrogen bond interaction sites indicated by arrows. The Emin (~-200 kJ mol-1) has one local minimum (red). The Emax (~200 kJ mol-1) has two local maxima (blue). A cartoon of the flattened skin of a water molecule shows how the surface could be divided into four SSIPs, represented by the areas enclosed in the four black boxes. The two positive SSIPs each enclose a local maximum on the MEPS, but the two negative SSIPs share the minimum on the MEPS.
Each SSIP represents a specific surface segment on the MEPS, so SSIPs must be separated by a minimum distance, d, related to the surface area of the SSIP footprint (9.35 Å2). If the molecular surface were perfectly flat, d would be  for a square footprint or  for a circular footprint, i.e. 3.1-3.5 Å. For water, location of an SSIP on each of the local maxima on the MEPS and a third SSIP on the minimum would not leave room for a fourth SSIP. In other words, there is a choice between one large negative SSIP located at the minimum on the MEPS or two less negative SSIPs located closer to the lone pair sites, but displaced from the minimum. The choice between these two options must be based on the total interaction energy with the environment, which is proportional to the sum of the corresponding β values after conversion of the electrostatic potential using equations 16-17 or 18-19. In the case of water, this criterion favours two less negative SSIPs compared with one large negative SSIP, and this provides a strategy for determining the appropriate number of SSIPs to represent a specific functional group. Identifying the combination of SSIPs that maximises the sum of α and β values is a complex global optimisation problem, but we have adopted the relatively straightforward approach outlined below, which works well in practice.
1. The total surface area, AvdW, is used to determine the number of SSIPs by using equation 20 and rounding the value of N to the nearest whole number. The fraction of the total surface area that has a negative electrostatic potential is used to determine the number of negative SSIPs, and the remaining SSIPs are allocated as positive.
	(20)
N = total number of interaction sites	AvdW = the van der Waals surface area of molecule
ASSIP = the van der Waals surface area of one interaction point
2. The values of positive and negative electrostatic potential are converted to values of α and β by using equations 16-17 or 18-19 respectively. Each point on the MEPS is assigned to the nearest atom in the molecular structure, and this assignment is used to identify the appropriate correction factor, c, for use in the calculation of β using equations 17 or 19.
3. One of the MEPS points is selected to be the first positive SSIP, and all the remaining positive points on the MEPS are ranked in order of decreasing α. The point highest in the list that is more than d away from the first SSIP is selected as the second positive SSIP. The next point in the list that is more than d away from both the first and second SSIP is selected as the third positive SSIP, and so on. This procedure is repeated until either the required number of positive SSIPs has been identified, or there are no points more than d away from the SSIPs that have already been identified. In the latter case, any remaining positive SSIPs are allocated a value of α of zero.
4. The procedure in 3 is repeated using every positive point on the MEPS in turn as the starting point to define the first positive SSIP. The sum of the values of α is calculated for each starting point and the set of SSIPs that maximise this sum is selected.
5. Steps 3 and 4 are repeated for the β sites.
As explained above for a flat molecular surface, the minimum distance between two SSIPs on the MEPS, d, will be of the order 3.1-3.5 Å depending on the shape of the footprint. However, molecular surfaces are not flat, and the shape of the footprint is not defined. We have therefore determined an optimum value of d empirically. The distribution of negative SSIPs is much more sensitive to the value of d than the distribution of positive SSIPs, because the latter are generally located at well-defined local maxima on the MEPS. Figure 45 illustrates the distribution of negative SSIPs obtained by footprinting the MEPS of diethyl ether using various values of d. The condition for diethyl ether to have two large negative SSIPs is d < 3.3 Å: larger values of d give one large hydrogen bond acceptor SSIP associated with the ether oxygen. By a similar examination of the outcome of footprinting a range of simple functional groups with predictable hydrogen bond acceptor patterns, we arrived at an optimal value of 3.2 Å for d.
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Figure 45: Optimisation of d. Relationship between the value of d and the distribution of negative SSIP β values calculated for diethyl ether. Values of β for three negative SSIPs are shown using a different colour, a) βcalc using equation 17, b) βcalc using equation 19.
This approach ensures that the surface segments used to define SSIPs provide a reasonable description of the number of hydrogen bond interaction sites around common functional groups. However, these surface segments are not necessarily centred on local maxima or minima on the MEPS. For example, figure 45 shows that d = 3.2 Å results in two large hydrogen bond acceptor SSIPs for diethyl ether, but the value of β at these sites is approximately half the value at the minimum on the MEPS (β = 4.8 at the minimum compared with β = 2.5 and 2.9 when d = 3.2 Å). A strategy is therefore required to select the value of electrostatic potential that falls within the footprint of an individual SSIP that best represents the interaction properties of that segment of the MEPS. The Boltzmann-weighted sum over all possible points of contact within a specific surface segment is heavily weighted towards the maximum or minimum electrostatic potential within that region, and so we will use the maximum or minimum value of electrostatic potential that falls within an appropriate radius, r, of the point on the MEPS identified using the procedure outlined above. Figure 46 illustrates the principle for two spherical atoms that make intermolecular contacts at two adjacent SSIPs on a flat molecular surface. The distance between the spherical atomic surface and the flat molecular surface increases on going from the centre of the footprint of the atom to the periphery. 


Figure 46: Cartoon of two spherical atoms making intermolecular contacts at adjacent SSIPs on a flat molecular surface. The centres of the points of contact on the molecular surface are separated by a distance d, the diameter of the atoms. The surface elements shaded in red, within a radius r of the centres of the points of contact, are considered to make intermolecular contact with the atoms. The surface elements shaded in blue are occluded by the footprints of the atoms but are considered not to make intermolecular contacts.
When the radius , the atomic surface changes from being more parallel to more orthogonal to the molecular surface, and this suggests that there is a region of the MEPS that is occluded by the footprint of the SSIP but not accessible for intermolecular contact (shaded blue). For example in water, the two negative SSIPs represent surface segments that meet at the minimum on the MEPS (figure 44). However, if we have an occluded zone at the interface of two surface segments (figure 46), we will ensure that the two SSIPs do not duplicate the same point on the MEPS. The geometric relationship in figure 46 suggests that r is likely to be of the order 1.1 Å if d = 3.2 Å. As the molecular surface is not flat, and the shape of the footprint is not defined, we have determined an optimum value of r empirically.
Figure 47 illustrates the outcome of footprinting the MEPS of diethyl ether using d = 3.2 Å and various values of r. As r increases, the values of β calculated for the two large negative SSIPs that represent the two hydrogen bond acceptor sites on the oxygen increase from 2.5 and 2.9 to a value more representative of the minimum on the MEPS: in the limit at r = 1.6 Å, β = 4.8, which coincides with the value obtained from the minimum on the MEPS. However, figure 47 shows that the value of β calculated for the third negative SSIP, which represents the most negative part of the hydrocarbon surface, also starts to increase significantly when r > 1 Å.
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Figure 47 Optimisation of r. Relationship between the value of r and the distribution of negative SSIP β values calculated for diethyl ether. The values of β for three negative SSIPs are shown using a different colour, a) βcalc using equation 17, b) βcalc using equation 19.
There is a compromise to be reached between a value of r that results in a realistically large value of β for the polar hydrogen bonding sites and realistically small value of β for the non-polar SSIPs. By a similar examination of the outcome of footprinting a range of functional groups with predictable hydrogen bond acceptor patterns, we arrived at an optimal value of 1.1 Å for r.
	The full set of hydrogen bond donors and hydrogen bond acceptors were footprinted using d = 3.2 Å and r = 1.1 Å, and the maximum values of α and β obtained for each compound were compared with the corresponding experimental values. The values of the rmsd between the experimental and calculated values of α and β obtained using this approach were 0.32 and 0.65 respectively, which are practically identical to the rmsd values obtained using values of α and β calculated from the maxima and minima on the MEPS. 
	Figure 48 shows the SSIP representation for diethyl ether for both basis sets. The 6-31G MEPS calculates there to be two contact points (blue spheres) near the oxygen with β values of 4.36. The 6-311G** MEPS also gives two contact points in similar locations with β values of 4.63.
b)
a)

Figure 48: Visual representations of the SSIPs for diethyl ether, both basis sets give  two hydrogen bond acceptor contact points (blue spheres), a) β value of 4.36 using 6-31G basis sets; b) β value of 4.63 using 6-311G** basis sets.
This approach therefore provides a reasonably reliable method for converting the calculated MEPS of a molecule in the gas phase into a set of SSIPs that are representative of the molecular recognition properties of the compound in solution.

2.6: Comparison of XED Field Points with Experimental Hydrogen Bond Parameters
The energy minimised structures from Gaussian where then exported into FieldView and Torch. The structures were energy minimised with XED2 and the newer XED3 force field and the field points were calculated. For each compound the value of the largest positive field point calculated with the XED2 and XED3 and the values obtained with the two force fields are compared in figure 49.
[image: ]
Figure 49: Comparison between the value of the largest positive field point calculated with the XED2 and XED3 force field; phenol groups (red) and amide groups (purple).
The greatest difference between these two force fields is the calculation of interaction points over electron deficient phenol compounds. In figure 50 the XED2 force field doesn’t calculate a donor field point on the phenol hydroxyl but instead over the π deficient ring.
b)
a)

Figure 50: Visualisations of the XED field points of β-heptafluoronapththol; a) XED2, b) XED3.
The compounds highlighted in purple in figure 48 are all amide type compounds where the XED3 force field gave bigger positive field points on the N-H donor (figure 51).a)
b)


Figure 51: Visualisations of the XED field points of N-methyl-tert-butylamide; a) XED2, b) XED3.
The most negative field points from the XED2 and XED3 force fields are compared in (figure 52). 
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Figure 52 Comparison between the value of the largest negative field point calculated with the XED2 and XED3 forcefield; ester groups (red), nitro groups (black), amine groups (purple) and carbonyl groups (green).
Differences between the XED2 and XED3 force fields include esters and nitro groups, in which XED2 gives more negative field point and amines and carbonyls in which XED3 gives more negative field points.
	Figure 53 shows the relationship between the value of the most positive field point calculated with XED2 and XED3 force fields with the experimentally available α values. Both relationships are poor compared to the results obtained using DFT methods. The relationship shows the phenols and amides described in the previous section to lie in the middle of the cluster of compounds. Using the XED3 force field (figure 53b) the amide cluster appears to scatter more and deviate from the phenols.
b)
a)

Figure 53: Relationship between of the most positive field point using the XED force fields and the experimental α parameters; a) XED2, b) XED3; aromatic groups (red) and amide groups (purple).b)

Figure 54 shows the relationship between the value of the most negative field point calculated with XED2 and XED3 force fields with the experimentally available β values. Both of these figures show a poor relationship.
	In both figures 53-54 the field points calculated using the XED2 and XED3 force fields don’t correlate very well with the experimental parameters. The is reason is that in order to conserve computational time molecular mechanics is employed to predict these scores and this is not as accurate as quantum mechanics. In order to improve the relationship extra parameterisation is required.
b)
a)

Figure 54: Relationship between of the most positive field point using the XED force fields and the experimental α parameters; a) XED2, b) XED3; amide groups (purple), P=O (yellow), ester groups (red) and nitro groups (black).

2.7: Summary & Future Research
2.7.1: Summary
We have established that there is a strong relationship between DFT calculated values of Emax and Emin with the corresponding experimental α and β values. This has been demonstrated using a library of over 1000 compounds with experimental binding constant data obtained from a literature survey.
Initially we set out to study the relationship between molecular electrostatic potentials from a DFT B3LYP calculation using 6-31G basis sets. However, these basis sets don’t include iodine so 6-311G** basis set expansions were also used. The correlations between the Emax and Emin and the experimental α and β values appear to have a quadratic relationship, as opposed to prior research done within this group on a smaller subset of compounds in which a linear relationship was observed for molecular electrostatic potentials using the semi empirical method AM1. The values of the most positive and most negative field points calculated using the XED2 and XED3 force fields correlated poorly with the experimental α and β values. There appears to be no improvement between the XED2 and XED3 force field correlation. The main observations are noted as follows:
· Correlations between the experimental α and the maximum positive electrostatic potential calculated using 6-31G and 6-311G** basis sets for hydrogen bond donors are very good.
· Nitriles and nitro groups are severely overestimated in their negative electrostatic potentials using both basis sets. 
· Phosphorus oxide and sulphur oxide groups give a more negative Emin when using 6-311G** basis sets compared to 6-31G basis sets.
· There are some variations in the relationship between Emin and β for different classes of compound, these differences can be accounted for by using scaling factors for particular functional groups.
· There is poor correlation between both XED force fields and the experimental data, and there is little difference between the XED2 and the XED3 force fields.
The correlations provide the basis for a footprinting technique that converts an MEPS into a discrete set of SSIPs that describe all the interactions that a molecule makes with its environment. The number of SSIPs required to describe a molecule is defined using water as a reference point: water is assumed to have four SSIPs (four hydrogen bond interaction sites), which gives a footprint of 9.35 Å2 per SSIP. The MEPS of a molecule is sampled to generate the required number of SSIPs such that the polarity of the set of SSIPs is maximised and the SSIPs are separated by at least 3.2 Å. An SSIP represents an area on the surface of the molecule that would be occluded by a single point interaction or hydrogen bond with another molecule or solvent, preventing interaction with a second solvent molecule within that footprint. Each SSIP represents the maximum or minimum electrostatic potential that can be contacted within the footprint. Simple compounds with well-defined recognition properties were used to empirically determine the contact area of a footprint as any point on the MEPS within 1.1 Å of the centre of the footprint. The more peripheral regions of the footprint are considered inaccessible. This approach was applied to more than 1,000 organic compounds. There are a small number of compounds where the method does not work well: in molecules where two polar functional groups are very close in space, the MEPS is perturbed by through space effects which leads to unrealistically polar sites. However, for the majority of compounds tested the results are excellent: the interaction parameter for the most polar SSIP agrees well with the experimentally determined hydrogen bond interaction parameter, and visual inspection of the distribution of SSIPs agrees with chemical intuition.

2.7.2: Future Research
Now that we have firmly established correlations between the electrostatic potentials obtained from quantum mechanics we would like to be able to develop our α and β scales, so that we could predict α and β values for drug like compounds. These interaction sites could then be used in similarity scoring algorithms or could be useful for docking algorithms when calculating the Gibbs free energy of interaction between a drug molecule and target site.
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Appendix
· Please read the readme file attached with this appendix, as this contains additional information.
· The library file attached with the Appendix Zip file contains all the compound information used in all the graphs in section 2 of this document. 
· Compounds highlighted in green are compounds which required a statistical correction. Please refer to the discussion in section 2.2 on page 25.
· Compounds highlighted in orange are compounds that had multiple conformations. The electrostatic potential that of the conformation that agreed with the experimental hydrogen bond parameter was used. Please refer to the discussion in section 2.3 on pages 27-28.
· The Appendix Zip file contains the following files
· DFT optimised files (pdb) and electrostatic potential information (values) for both basis sets.
· Compound library (xls), with alternative conformational data in the orange tabs and non-statistically corrected data on the green tab.
· SSIP empirical optimisation files (xls) for basic functional groups. Please refer to the discussion in section 2.5 on pages 37-42.
· The files associated with the discussed algorithm on page 38.
· The files associated with the XED study in section 2.6.
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