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AssTrAcT. This Thesis studied two forms of Stochastic Landau-Lifschitz equa-
tions and proved the existence of the weak solution and some regularity proper-
ties.

The first form is given by

du() = {du() x [Au() - Vg (u(®)]
—Aau() X (u() X [Au(r) = Vo(u(®)])} dr
+u(e) x bl o dW(2)
u
avlop
u@  =uo
which is a similar form as in BrzeZniak and Goldys and Jegaraj’s paper [13] but
with relatively more general energy.
The second form is given by

dM(@t) = [ M(1) X p(t) = M) X (M(1) X p(t))] dt
+ 2521 [aM(0) X hj + BM(t) x (M(2) X hj)] o dW(t)
dB(t) = -VXE@)dt
dE() = [VXH(@) - 1,EQ) - f@®]dt, te[0,T]
which is the full version of the stochastic Landau Lifschitz equation coupled with
the Maxwell’s equations.
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1. INTRODUCTION

The ferromagnetism theory was first studied by Weil3 in 1907 and then further
developed by Landau and Lifshitz [33] and Gilbert [24]. By their theory: there is
a characteristic of the material called the Curie’s temperature, whence below this
critical temperature, ferromagnetic bodies which are large enough would break up
into small uniformly magnetized regions and separated by thin transition layers.
The small uniformly magnetized regions are called Weill domains and the transi-
tion layers are called Bloch walls. Moreover the magnetization in a domain D c R3
at time ¢ > 0 given by M(z, x) € R? satisfies the following Landau-Lifschitz equa-
tion:

dM(t, x)

(1.1) "

= LM, x) X p(t, x) = LM(1, x) X (M(1, x) X p(t, x)).
The p in the equation (1.1) is called the effective magnetic field and defined by
(1.2) p=-Vyé&,

where the & is the so called total electro-magnetic energy which composed by
anisotropy energy, exchange energy and electronic energy. As explained in [13],
in order to describe phase transitions between different equilibrium states induced
by thermal fluctuations of the effective magnetic field p, we introduce the Gaussian
noise into the Landau-Lifschitz equation to perturb p and which should have the
following form:

dM(t) = [ M(1) X p(t) — AaM(t) X (M(2) X p(1))] dt + (M(t) X h) o dW(7).

This is the form of stochastic Landau-Lifschitz which will be studied in this thesis
(but with different forms of p, & and W(z)).

The structure of this thesis is as following:

Section 2 contains some basic knowledge for reading this thesis and the Lemmas
which will be referred in the following sections.

Section 3 gives details of explanation of the evolution situation in the Visintin’s
paper [51], which studies the deterministic Landau-Lifshitz Equation coupled by
Maxwell’s equations with the following form:

dB=-VXx Edt
dE =V x Hdt — (1pE + f)dt

{ dM = 4ZM X pdt — M X (M X p) dt
(1.3)

where M is the magnetization, p is the effective magnetic field, E is the electric
field, H is the magnetic field and B is defined by B := H + M, the tilde here means
extend a function defined on D c R? to R? with value 0. This section will help us
to understand the next two main sections of this thesis.
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BrzeZniak and Goldys and Jegaraj [13] studied the Stochastic Landau-Lifschitz
Equation with only the exchange energy taken into account:
(1.4)
du(?) = (Qu(t) X Au(t) — Au(t) X (u(t) X Au(t))) dt + (u(t) x h) o dW (1),
,x)=0, t>0,x€dD,
u(0, x) = up(x), x€D.

where Au stands for the exchange energy. In section 4, a stochastic Landau-Lifshitz
equation with a more general exchange energy has been studied, which has been
formulated by:

du() = {Aau(t) x [Au(t) - Vo (u(n))]
—dqu(t) X (u(®) X [Au(t) = Ve(u(®)])}dt

(1.5) +u(r) x h} o dW(r)
g_'; oo =0
uQ) =ug

where ¢ : R> — R™ defined as a C* function which satisfies: ¢’ ¢” and ¢® are
bounded. The existence of the weak solution has been concluded and some similar
regularity properties as in BrzeZniak and Goldys and Jegaraj’s paper [13] has been
obtained.

In Section 5, a full stochastic Landau-Lifthitz equation coupled by the Maxwell’s
equations has been studied which formulated by:

dM(t) = [ M(t) X p(t) = A M(1) X (M(1) X p(1))] dt

+ Z;‘;l [aM(t) X hj + BM(t) X (M(t) X hj)] o dW;(t)
dB(t) = -V XE(@)dt
dE(t) = [VxH() - 1pE®) — f(]dt, te]0,T].

The M, p, E, H, B have the same meaning as in Section 3. As previous section, the
existence of the weak solution as well as some regularity have been obtained.

The Sections 3, 4 and 5 were written separately with independent notations. The
proof of the existence of the weak solutions are all followed by two steps:

(1.6)

Ist Step: Using the Faedo-Galerkin approximation to get a series of SDEs on finite
dimensional spaces which have unique solution. Then prove some uniform (with
respect to n) bounds in various norms of the solutions.

2nd Step: Using some compactness results and Skorohod’s Theorem to show that
there is another probability space in which there are some processes can be identi-
fied as a weak solution of the original equation.
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2. PRELIMINARIES
2.1. Linear operators.

Definition 2.1 (relation). Let X, Y be nonempty sets, a relation on X X Y is a
nonempty subset of X X Y.

Example 2.2.(a). Identity relation:
R ={(x,x): x e X}.
). Let X =R, R ={(x,y) : x < y}.

Definition 2.3 (function). Let X, Y be nonempty sets, a function f on X X Y is a
relation, such that

(x5, y1), (x5, y2) € f = y1 = ya.
We also define
D(f):={xeX:3yeY (xy) € f}
R(f):={yeY:dAxe X,(x,y) € f}.
And we denote f : D(f) — Y and f(x) = y means that (x,y) € f .

Definition 2.4 (linear operator). Let X, Y be two Banach spaces, a linear operator
A from X to Y is a function X D D(A) — Y which is linear and bounded.

Definition 2.5 (symmetric). Let H be a Hilbert space, a densely defined linear
operator A : H D D(A) — H, is called symmetric iff for any x,y € D(A),

(Ax,y) = (x,Ay).
Lemma 2.6. Let H be a Hilbert space, then the functions,
¢, y):H—C, and (y,): H— C, y € H,
are continuous on H.

Lemma 2.7. Let H be a Hilbert space, if for some y € H,

2.1) (x,y) =0, Vx e H,
theny = 0.
Proof. From (2.1), (y,y) = 0, hence y = 0. O

2.1.1. Adjoint operator.

Definition 2.8. Let H be a Hilbert space and A be a densely defined linear operator
on H, then we define:

2.2) DA") :={ye H:dze HVx e DA),(Ax,y) = (x,2)}.

Definition 2.9 (adjoint operator on Hilbert space). Let H be a Hilbert space and A
be a densely defined linear operator on H, then we define the adjoint operator A*
of Aby A* : D(A*) — H, and for x € D(A), y € D(A"),

(Ax,y) = (x,A%y).
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Remark 2.10. The A* defined in Definition 2.9 is really a function. And this is why
we need D(A) is dense in H.

Proof. Suppose that (Ax,y) = (x,z1) = (x,22), Vx € D(A)in (2.2), then (x,z1—22) =
0,¥Yx € D(A).
Actually (x,z1 — z2) = 0,¥x € H. Because D(A) is dense in H, for x € H, there

exists a sequence {x,}>” | such that lim, .« x, = x, and from Lemma 2.6,

(x,21 —22) = lim (x,,21 — 22) = 0.
n—oo

Then from Lemma 2.7, z; = 22, so by Definition 2.3, A* is a function, this com-
pletes the proof. O

Definition 2.11 (adjoint operator on Banach space). If A is a linear operator on
Banach space X, and D(A) is dense in X, X* is the dual space of X then we define:
DA™ :={x" € X" : Ay" € X*",¥x € D(A), x"(Ax) = (Ax, x™) = (x,y")}.

Then we define
A'x* = y".
Proposition 2.12. Let H be a Hilbert space, if A is symmetric, then A C A™.

Proof. To prove this, we just need to show that

e D(A) C D(A¥);

e Vye D(A), Ay = A¥y.
Firstly, if y € D(A), then because A is symmetric, for x € D(A), (Ax,y) = (x,Ay)
which implies that y € D(A*), hence D(A) C D(A¥).
Next, if y € D(A), then for x € D(A), (Ax,y) = (x,Ay) = (x,A"y), and because
D(A) is dense in H, (x,Ay) = (x,A*y) for all x € H, hence Ay = A*y,Vy € D(A).
This completes the proof. O
Definition 2.13 (self-adjoint). Let H be a Hilbert space, a density defined operator
A on H is called self-adjoint iff

A=A"

Example 2.14. H = L*(D,R), where D is open in RY. Let D(A) = Cy (D), and
Au = Au. It is easily seen that A is symmetric, but A # A*, because D(A*) D C2 2
Cy’ = D(A). But there exist operators B, such that B > A, B* = B.

Proposition 2.15. Let H be a Hilbert space, then if the linear operators Ay, A; are
densely defined and Ay C Ay, then A C A]. In particular, D(A%) C D(AY).

Proof. Let us take and fix y € D(A,*). Then

(Arx,y) = (x,A%y), Vx € D(A)).
Since D(A1) € D(A5), it follows that

(Arx,y) = (x,A%y), Vx € D(A)).
Since A C A;, we infer that

(A1x,y) = (x,A%y), Yx € D(A)).
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Thus by the definition of adjoint operator, y € D(A]), and Ay = A%y. So we proved
that A5 C A7. O

Proposition 2.16. Let H be a Hilbert space and A : D(A) — H be a symmetric
operator on H, 1 € R, then Al — A is a symmetric operator on H.
Proof. Let us take x,y € D(A), then for A € R, we have
(AU = A)x,y) = (Ax,y) — (Ax,y)

= Ax,y) — (x,Ay)

= (x, y) — (x,Ay)

= (x, (U — A)y)
So, Al — A is also symmetric, which completes the proof. O

Proposition 2.17. Let H be a Hilbert space and A : D(A) — H be a linear
operator on H, if R(A) = H, then ker(A*) = {0}.

Proof. Let us consider y € D(A*) such that A*y = 0. Then for any x € D(A),
(x,A*y) =0, but (x,A*y) = (Ax,y), for x € D(A), hence
(Ax,y) =0, ¥Yx € D(A),

and because R(A) = H,
(x,y) =0, Vx e H.
Therefore y = 0.
So ker(A*) = {0}, which completes the proof. O

Proposition 2.18. Let H be a Hilbert space and A : D(A) — H be a symmetric
operator on H that satisfies R(A) = H, then A is self-adjoint.

Proof. Suppose that y € D(A*), since R(A) = H, there exists x € D(A) such
that, Ax = A*y. From Proposition 2.12, D(A) c D(A*), so A*x = A"y, that is
A*(x —y) = 0. And from Proposition 2.17, because R(A) = H, ker(A*) = {0},
soy = x € D(A), hence we proved D(A) D D(A*). Therefore A = A*, which
completes the proof. O

Corollary 2.19. Let H be a Hilbert space, A : D(A) — H be a symmetric opera-
tor on H and for a certain A € R, R(Al — A) = H, then A is self-adjoint.

Proof. From Proposition 2.16, Al — A is also symmetric and from Proposition 2.18,
Al — A is self-adjoint. Notice that

D((A - A))={yeH:3z€ HVx e DA — A) = DA), (Al — A)x,y) = (x,2)}.
Suppose that y € D(A*), then Az € H, Yx € D(A), (Ax,y) = (x, z), then
(U = A)x,y) = Ax,y) = (Ax,y)
= Ax,y) — (x,2)
=(x,Ay-2)
Hence y € D((AI — A)*), so
D(A) c D(A™) € D((AI — A)") = D(AI — A) = D(A).
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Therefore D(A) = D(A*), which means that A is self-adjoint, and this completes
the proof. O

2.1.2. Closed operator.

Definition 2.20 (closed). Let X be a Banach space, then a linear operator A :
D(A) — X is closed iff A is a closed subset of X2.

Proposition 2.21. Let X be a Banach space, then a linear operator A : D(A) — X
is closed iff: if {x,} € D(A) and x, — x, Ax, — Y, then x € D(A), and Ax = y.

Proposition 2.22. Let X be a Banach space, if A is a bounded linear operator and
D(A) = X, then A is closed.

Proof. If {x,} C X, and x, — x, Ax, — y € X, then because D(A) = X, so x € D(A)
and because A is bounded, so as n — oo,
lACY) =yl < [JAx) = ACe)I] + [[ACx,) = i
< AL lIx = xall + [[ACxR) = VI
-0
Hence A(x) = y, and therefore A is closed. O
Definition 2.23 (closable). Let X be a Banach space, then the linear operator A :

D(A) — X is closable iff the closure of A in X? is some linear operator S :
D(S) — X.

Definition 2.24 (smallest closed extension). Let X be a Banach space, A : D(A) —
X is a linear operator. We define S as the smallest closed extension of A by

2.3) D(S) := {x € X : A:x,} c DA), x, — xand lim Ax, =y exists},
n—oo

and for such x, y in (2.3), we set
Sx=y.

Remark 2.25. (2.3) is equivalent to
D(S) = {x € X : d{x,} ¢ D(A),y € X, such that lim (x,,Ax,) = (x, y)}.

Proposition 2.26. Let X be a Banach space, A : D(A) — X be a linear operator.
Then the smallest closed extension of A is closed.

Proof. Letw, € D(S), w, — w and Sw, — u. Then by Proposition 2.21, we
only need to prove w € D(S) and Sw = u.

Notice that w, € D(S) means that there exists {x,,,} C D(A), limy—c Xnm = Wy
and limy,—,e0 AXym = Swy. So VYw, € D(S), dx, € D(A), such that

1 1
X, = wull < — and ||JAx, —Sw,||l < —.
n n

Hence

lim x, = limw, =w and lim Ax, = lim Sw, = u.
n—-oo0 n—oo n—-oo n—oo

So S is closed. This ends the proof. O
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Proposition 2.27. Let X be a Banach space, then the linear operator A : D(A) —
X is closable iff: if {x,} € D(A) and x, — 0, Ax,, — y theny = 0.

Proof. We need to prove: A =S forsome S : DS)—> X ifDA)>x, — 0
and Ax,, — y exists, then y = 0.

“=": If (x,, Ax,) — (0,y), then (0,y) € A=S,s0S8(0) = v, because § is linear,
soy =0.

“«=": We prove that is satisfied for S is the smallest closed extension of A.
If x € D(A), then let x, = x, V¥n, then x, — x and Ax, — Ax, so x € D(S) and
Sx =Ax. Hence A C S and from Proposition 2.26, S is closed, so AcCS.
On the other hand, ¥(x,y) € S, 3{x,} € D(A), such that (x,, Ax;) — (x,y). Hence
(x,y) €A,s0ADS.
Therefore A = S, this completes the proof.

O

Lemma 2.28. Let X be a Banach space and A : D(A) — X be a linear operator
such that D(A) is a subspace of X, A is invertible and A" is bounded. Then there
exists 6 > O such that if a linear operator B : X — X is bounded and ||B|| < 6,
then A — B with D(A — B) = D(A) is also invertible and (A — B)~! is also bounded.

Proof. Let¢6 = ||AIT||’
the following steps:

then for ||B|| < 6, |A~'B|| < 1. We will prove this Lemma by

Step 1: Z,‘:’:O(A‘lB)k is converge to some element in H*.
For any m € N,

N+m N+m
1Y @'BfiI< > IATBIF— 0, as N — oo,
k=N+1 k=N+1

SO (ZkN:O(A_lB)k)::O is a Cauchy sequence in H*, but H* is complete, hence
Y oA B)F is convergence.

Step2: (I-A7'B)™' = 32 (A7'B.
That is because:

N
(I-A"'B) (Z(A—lB)"]
k=0
N N
=1+ [Z(A‘IB)"] - {Z(A*B)"]
k=1 k=1
=1

Step3: (A—B)"! =1 -A"'B)"!A~! is bounded. Because (I — A~'B)~! € H*, it s
bounded, and A™! is bounded, so (A — B)~! is bounded.

This completes the proof. O
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2.1.3. Compact operator.

Definition 2.29 (precompact). Let X be a Banach space, A C X is called precom-
pact iff A is compact.

Definition 2.30 (Compact operator). Let X, Y be Banach spaces, T : X — Y
be a linear operator, 7T is called compact iff T(B(0, 1)) is precompact in Y, where
BO,1)={xeX:|x]| <1}.

Proposition 2.31. Let X, Y be Banach spaces, if T : X — Y is compact, then T is
bounded.

Proof. We prove this by contradiction. Suppose that T is not bounded, then there
exist {x,}>7, € B(0,1), such that T'(x,) > n. T(x,) € T(B(0,1)) and T(B(0, 1))
is compact, so there is a convergent subsequence {T'(x,,)};>, € {T(x,)};",. But
T(x,,) > ny, so it is not possible to converge. Hence we have got the contradiction,
which completes the proof. O

Lemma 2.32. Let H be a Hilbert space and dim H < oo, then B(0, 1) is compact;
Conversely, if B(0, 1) is compact, then dim H < co.

Proposition 2.33. Let H be a Hilbert space and dimH = nand T : H — H is
linear, then T is compact.

Proof. Because H has only finite dimensional, 7' is bounded. Hence 7(B(0, 1)) is

a closed and bounded subset of a finite dimensional Hilbert space H. So T(B(0, 1))
is compact. Therefore T is compact, which completes the proof. O

Proposition 2.34. Let H be a Hilbert space and dimH = co and T = Al, A € C,
then T is not compact.

Proof. Notice that

T(B(0,1)) = B(0, ),
and because dim H = oo, B(0,]|1]) is not compact. So 7 is not compact. This
completes the proof. O

Proposition 2.35. A linear operator with a finite dimensional range is compact.
If X, Y are Hilbert spaces, T : X — Y is a linear bounded operator such that
dimT (X) is finite, then A is compact.

Proof. Suppose that A C X is bounded. Since T is bounded, 7'(A) is bounded in Y,
therefore T'(A) is bounded too.

We can also prove that m C T(X). Assume that T(x) = lin{e;,...,e,}, Y =
linfer,...,en, ...}, y = X2 viei. If y € m, but y ¢ T(x), then Ik € N,k > n,
such that y; # 0. Hence

IT(x) =yl = Y& VxeX.

This is contradict to y € T(A). Therefore T(A) C T(X).
T(A) is a closed and bounded subset of a finite dimensional space, hence it is
compact. Therefore T is compact. O
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Proposition 2.36. If T, : X — Y is a compact operator for eachn, and T : X —
Y such that lim, . ||T, — T|| = O, then T is compact.

Proof. Let B be the unit ball in X. For ¢ > 0, AN > 0, N € N, such that if k > N,
1
2.4) |Tpx — Txly < 58, Vx € B.

And Ty is compact, so T¢(B) is precompact in Y, hence there exist {y; ;’:1 C Y, such
that Ti(B) € UL, B, 38).
Hence for x € B, Ti(x) € B(y;, %s) for some i € N, and by (2.4),
1
|Tx — Tix| < 58, Vk > N.

So Tx € B(y;, &), therefore T(B) c |J_, B(yi, &), which means that T'(B) is pre-
compact, hence T is compact. O

Example 2.37. Let

:{ ixle, §:| |2<oo}: ,

=

1
where {e;} is the ONB in H, so {e;} doesn’t contain a convergent subsequence.

:{ ix,e, Z%m <oo}

i= =

8

Y is also a Hilbert space and

[Se] 1 (o)
Il = Z‘ il < Z; il® = Il
i= i=
Hence H — Y is continuous. And also we can prove:
(a) : The imbedding T : H — Y is compact;
(b) :e, —0inY.
Proof.(a) : Let us define T, := m, o T. Then T}, is a bounded operator with a finite
dimensional range, so from Proposition 2.35, T}, is a compact operator. And

hm T, —T|| = lim sup E |x,| < lim - E |x,-|2 =0
n—o0 i n—oon
{2 xil? =1} j=p+1 i=n+1

hence from Proposition 2.36, T is compact.
(b) : | .
leally = =17 = ~ — 0.
n n
This completes the proof.
o

Lemma 2.38. Suppose that X and Y are Banach spaces such that the embedding
X <= Y is compact. Assume that {x,},” | C X is a sequence such that ||x,||x < R for
alln € Nand R > 0. Then there is a subsequence {xn ey Clxnl,_, anday €Y,
such that x,, — yinY.
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Proof. By the Definition 2.30 of a compact operator, {x € Y : ||x||x < R} is compact
in Y, but {x,}> C {xeY:|xllx <R} C Y and for metric space, sequentially

compact is equivalent to compact. Hence there is a subsequence {x,, };2, C {xn},,

and ay € Y, such that x,, — y in Y, which completes the proof. O

Lemma 2.39 (Schauder, p.282 in [53]). Let X, Y be Banach spaces, an operator
T € L(X,Y) is compact iff its dual operator T’ is compact.

Lemma 2.40 (Lemma 2.5, p.99 in [28]). For every separable Hilbert space H,
there is another Hilbert space U C H, such that the embedding U — H is compact
and dense.

2.1.4. Resolvent.

Definition 2.41. Let X be a complex Banach space and A : D(A) — X be a linear
operator, D(A) be a subspaces of X, we define the resolvent set p(A) of A by

p(A) = {/l € C: R(AI — A) is dense in X and Al — A is invertible
and (A - A)™" is bounded}.
And we define the resolvent by
R(;A) = (Al - A~

Proposition 2.42. Let X be a complex Banach space and A : D(A) — X be a
closed operator, D(A) is a subspaces of X. If 1 € p(A), then the resolvent (11 -A)~!
is defined on X, i.e. R(AI — A) = X.

Proof. Because the operator (4] — A)~! is bounded, there exists ¢ > 0, such that

(AT =AY 'yl <clyl,  VyeR@I-A)
, then
[|(AT — A)‘l(/ll = A)x|| < ||(AT — A)x|l, Vx € D(A).
SO
(2.5) llxll < ell(AT — A)xll.

Let us take y € X, because R(AI — A) is dense in X, I{x,} € D(A), such that
lim, (A — A)x, = y. Hence {(4 — A)x,} is a Cauchy sequence, and by (2.5), we
infer that {x,} is also Cauchy. X is complete, lim,_,« X, = x for some x € X. Hence
because A is closed, x € D(A) and (4] — A)x = y. This means that y € R(AI — A).
So we proved that R(A — A) = X, which completes the proof. O

Proposition 2.43. Let X be a complex Banach space and A : D(A) — X is a
closed operator, D(A) is a subspaces of X. Then the resolvent set is an open set of
the complex plane.

Proof. From Proposition 2.42, R(1; A) is an everywhere defined continuous opera-
tor. Let Ay € p(A), and consider

S (D) = R(do; A) {1 + > (0 = V"R A)"} .

n=1
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S (1) convergence and so bounded iff

|40 — Al - [IR(A0; Al < 1,
and notice that multiplication by (1o — A)(I — (19 — A)R(Ap; A)) = Al — A on the
left or right of S (1) gives I. So S (1) = R(4; A).
And because R(4;A) is densely defined, from the construction of S (4), it is also
densely defined. Hence we have got: if 1y € p(A) and

[0 = Al < ———,
IR(A0; Al
then A € p(A). So p(A) is open. This ends the proof. O

2.1.5. Spectrum.

Definition 2.44. Let X be a Banach space, and T : X — X is linear, p(T) is the
resolvent of 7', then we define:

(a) o(T) = p(T)* as the spectrum of T

(b) An x # 0 which satisfies Ax = Tx for some A € C is called an eigenvector of
T and A is called the corresponding eigenvalue. The set of all the eigenvalues is
called the point spectrum of T, which denoted by o ,(T).

(c) If Ais not an eigenvalue and if R(A — T) is not dense, then A is said to be in the
residual spectrum.

Lemma 2.45. Let H be a Hilbert space and A : D(A) — H is a compact operator,
then o (A) is a discrete set having no limit points except perhaps A = 0. Further,
any nozero A1 € 0(A) is an eigenvalue of finite multiplicity.(i.e. the corresponding
space of eigenvectors is finite dimensional).

Corollary 2.46. Let H be a Hilbert space and T : H — H is a linear operator, if
T is compact and A € o,(T)\{0}, then dim ker(Al —T) < co.

Proof. On ker(Al —T) which is also a Hilbert space, T = A/, then from Proposition
2.34, dim ker(Al—T) < co. Or T should not compact. This completes the proof. O

Proposition 2.47. Let H be a Hilbert space and T : H — H is a linear operator,
if T is bounded, then o(T) C B(0,||T|)).

Proof. To prove this, we only need to prove that if || > ||T||, then A € p(T).

If |4] > ||T||, then the series:
1 o (T
-1+ - ¢
e 5 )

n=1

converges to a bounded operator in norm. Then we can deduce that

I - T)% {1 + i (%)n} - % {1 + i (%)n} A -T)=1,

n= n=

hence (Al — T) is invertible and (A — T)~! is bounded. This means that 1 € p(T),
so the proof has been complete. O
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Lemma 2.48. Let X be a Banach space and T : X — X is linear. Then,

(a) If A is in the residual spectrum of T, then A is in the point spectrum of T*;
(b) If A is in the point spectrum of T, then A is in either the point spectrum or the
residual spectrum of T*.

Lemma 2.49. [42] Let H be a Hilbert space and T : H — H is a self-adjoint
operator, then

(a) T has no residual spectrum;
(b) o(T) cR.
(c) Eigenvectors corresponding to distinct eigenvalues of T are orthogonal.

Remark 2.50. If we define the resolvent as
p(T) ={1 € C: Al — T bijective and (A — T)_1 is bounded}.

If Al —T is injective and R(AI — T) is dense which means that A neither in the point
spectrum nor the residual spectrum, then from Proposition 2.22, Al — T is closed,
and from Proposition 2.42, Al — T is bijective.

Definition 2.51 (projection). Let X be a Banach space, then the linear operator
A : D(A) — X is a projection iff A% = A.

Definition 2.52 (orthogonal projection). Let X be a Banach space, then the linear
operator A : D(A) — X is a orthogonal projection iff A is a projection and A = A*.

Theorem 2.53. [42]/continuous functional calculus] Let A be a self-adjoint oper-
ator on a Hilbert space H. Then there is a unique map

¢ : C(o(A) — ZL(H),
with the following properties:

(a) ¢ is an algebraic *-homomorphism, that is

¢(fe) = d(Hd(e)  ¢Af) = A6(f)

sy =1 ¢(f)=o(f)
(b) ¢ is continuous, that is, ||p(f)ll. 2y < Cllfllso-
(c) Let f be the function f(x) = x; then ¢(f) = A.
Moreover, ¢ has the additional properties:
(d) If Ay = A, then ¢(f)y = f(DY.
(e) ole(H)] ={fD) : A € o(A)}[spectral mapping theorem].
® If f =0, then ¢(f) = 0.
(&) N¢Ol.zy = flloo- [This strengthens (b)].

Definition 2.54. Let A be a self-adjoint operator on a Hilbert space H, f € C(a(A)).
Then we define

f(A) = ¢(f),
where ¢ : C(0(A)) — Z(H) is the one in Theorem 2.53.
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Lemma 2.55 (Riesz-Markov theorem). [42] Let X be a compact Hausdor{f space.
For any positive linear functional | on C(X) there is a unique Baire measure y on

X with
Kﬁ=£f@-

2.1.6. Spectral Theorem: bounded operator.

Definition 2.56 (spectral measure). Let A be a bounded self-adjoint operator on
Hilbert space H, ¥ € H, then

f = W, f(Ay),

is a positive linear functional on C(c(A)). Thus by the Riesz-Markov theorem 2.55,
there is a unique measure y, on the compact set o(A) with

w.saw) = [

o(

£Q) duy.
A)

Then the measure p,, is called the spectral measure associated with the vector .

Definition 2.57. Let A be a bounded self-adjoint operator on Hilbert space H,
g € A(R). It is natural to define g(A) such that

W, g(A)) = f

o(

L EVd. e,

Theorem 2.58 (spectral theorem-functional calculus form). [42] Let A be a bounded
self-adjoint operator on Hilbert space H. There is a unique map

¢ BR)— ZL(H),

such that

(a) ¢ is an algebraic *-homomorphism, that is

¢(fe) = d(Hd(e)  ¢Af) = Ap(f)

o) =1 ¢(f) = ()
(b) ¢ is continuous, that is, |l¢(l. 2wy < Il flleo-
(c) Let f be the function f(x) = x; then ¢(f) = A.
(d) Suppose f,(x) — f(x) for each x and ||f;|| is bounded. Then ¢(f,) — ¢(f)
strongly.

Moreover, ¢ has the additional properties:

(©) If Ay = Ay, then ¢(f)y = f(DY.
®) If f =0, then ¢(f) = 0.
(g) If BA = AB, then ¢(f)B = Bg(f).

Definition 2.59 (cyclic vector). A vector ¢ € H is called a cyclic vector for A if

finite linear combinations of the elements {A"/}” ) are dense in H.
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Theorem 2.60 (spectral theorem-multiplication operator form). [42] Let A be a
bounded self-adjoint operator on a separable Hilbert space H. Then there exist
measures {,u,,}ﬁlv:1 (N=1,2,...,00)0n o(A) and a unitary operator

N
U:H— @ LR, duy),

n=1
such that
(UAUT'Y(D) = W(D,  A€R,
where we write an element y € EBQ’: ILZ(R, du,) as an N-tuple (Y1 (), ..., Yyn(D)).

This realization of A is called a spectral representation.

Definition 2.61 (spectral measures). The measure y;,, as in Theorem 2.60 are called
spectral measures; they are just u,, for suitable .

Corollary 2.62. [42] Let A be a bounded self-adjoint operator on a separable
Hilbert space H. Then there exists a finite measure space (M, u), a bounded func-
tion F on M, and a unitary map:

U:H— L*(M, duw),
such that
(UAU™' f)(m) = F(m)f(m), me M.

Definition 2.63 (spectral projection). Let H be a Hilbert space and A : H D
D(A) — H is a bounded self-adjoint operator and D a Borel set of R. Pp := 1p(A)
is called a spectral projection of A.

Definition 2.64 (projection valued measure). A family of projections obeying

(a) Each Pp is an orthogonal projection;
(b) Pyp =0, P_4q = I for some a;
(¢) If D = ;. Dy, with D, N D,, = 0 for all n # m, then

N
Pp = s—}\llgrgo{zlPDn].
n=

is called a projection valued measure.

Remark 2.65. If {Pp} is a projection-valued measure, then for ¢ € H, (¢, Pp¢) is a
Borel measure on R, which we denote by d(¢, P,¢).

Theorem 2.66. [42] If {Pp} is a projection-valued measure, and f a bounded
Borel function on supp Pp, then there is an unique operator B which we denote
i £(A)dP; such that,

(¢, Bo) = fR F)d(¢, P9), ¢cH.
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Theorem 2.67 (spectral theorem-p.v.m. form). [42] There is a one-one correspon-
dence between (bounded) self-adjoint operators A and (bounded) projection valued
measures {Pp} given by:

A (Pp) = {1p(A))
{PD}r—>A=f/ldP/1
R

2.1.7. Spectral Theorem: unbounded operator.

Theorem 2.68. [42]/spectral theorem-multiplication operator form] Let A be a
self-adjoint operator on a separable Hilbert space H with domain D(A). Then
there is a measure space (M, u) with u a finite measure, a unitary operator

U:H— L*(M, du),

and a real-valued function f on M which is finite a.e. such that
(@) ¥ € D) iff fFO)UY)() € L (M, du).
(b) If ¢ € UID(A)], then (UAU™'¢)(m) = f(m)$(m).

Theorem 2.69. Let A be a self-adjoint operator on a separable Hilbert space H
with domain D(A). Then there is a measure space (M, 1) with u a finite measure,
an isometric isomorphism

U:H— L*(M, duw),

and a measurable function f : M — R, such that there is an operator B on
L*(M, ), defined by

D(B) = {geL2<M,m : fM lg(0)I* £2(x) due < oo},

Bg = fg, g € D(B).
And

|D(A) - D(A) —> D(B),

is bijection. And
Au=U""BU.

Example 2.70. Let H = L>(R), A = —A, D(A) = H*(R). U is the Fourier trans-
form, f(x) = x°.

—Au = F(|x[*0)
= F (P Fu).

Theorem 2.71 (spectral theorem-functional calculus form). [42] Let A be a self-
adjoint operator on Hilbert space H. Then there is a unique map

¢ BpR) — ZL(H),

such that
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(a) ¢ is an algebraic *-homomorphism, that is
¢(f8) = p(N)p(g)  dAf) = Ap(f)

p)=1  ¢(f)=o(f)

(b) ¢ is continuous, that is, [|p(ll.zy < | flloo-

(c) Let f, be the sequence of bounded Borel functions with lim,_,« f,(x) = x for
each x € R and |h,(x) < |x| for all x € R and n € N. Then for any € D(A),
im0 (f)Y = A

(d) Suppose f,(x) — f(x) for each x and ||f;||~ is bounded. Then ¢(f,) — ¢(f)
strongly.

Moreover, ¢ has the additional properties:

(e) If Ay = A, then ¢(f)yp = f(.

®) If f =0, then ¢(f) > 0.

Theorem 2.72 (spectral theorem-projection valued measure form). [42] Let H be
a Hilbert space, A : D(A) — H is a self-adjoint operator, {Pp} are projection-
valued measures on H, then
A= f AdP,.
R

And if g(+) is a real-valued Borel function on R, then

g(A) = f gD dp,,
R

D<g>={¢: f |gu>|2dm<oo}.

o0

is self-adjoint on

And if g is bounded,
8(A) = ¢(g),

where ¢ is as in Theorem 2.71.
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2.2. Sobolev space.

2.2.1. Definitions.

Definition 2.73 (Weak derivative). Let D be a nonempty open subset of R". f €
Llloc(D), if there exists a function g € LIIOC(D) such that

f F)D*p(x)dx = (=1)* f gp(x)dx, ¢ e Cy(D),
D D
then we say that D f = g in the weak sense.

Definition 2.74 (Sobolev space). Let us suppose that D ¢ R" open, p > 1 and k a
non-negative integer, we define the Soblev space as

wkP(D) = {f € LP(D) : D” f exitsts in weak sense and D f € LP(D), |a| < k}.
The space W*P(D) is equipped with the norm

Il = ( [ >

lal<k

1

»
D 1P dx] .

Definition 2.75. For k =0, 1,2,..., we define:
HN(D) = {u € L* : D% € L? in weak sense, V|| < k},
Hy(D) = C7(D) c HX(D).
Informal interpretation:
HY(D) = {ue H* : Dulgp = 0,la] < k- 1}.
Theorem 2.76. If f € W'2(a, b) then f is a.e. equals to a function

for= e+ [ ©pmd. we @b
which is continuous on [a, b].

Remark 2.77. So f € W'2(a, b) can be identified with this continuous version of
it. And we can define a map:

W'2(a,b) — C([a,b])
f — f,
which is linear and continuous.

Proposition 2.78 ([1] Th. 3.3). W™?(D) is a Banach space.

Proposition 2.79 ([1] Th. 3.6). W™P(D) is separable if 1 < p < co. And W"™P(D)
is uniformly convex and reflexive if 1 < p < oo.

Proposition 2.80 ([1] Th. 3.6). Wk2 s a separable Hilbert space.

Definition 2.81. For a < 1, we define

C“[a,b]::{fGC[a,b]: sup M<w}.

asx;<xy<b |x2 —X] |Q
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Definition 2.82. If p = 2 and u, v € CX(D), we define:

U, V)i = f Z D*uD?v dx.
D joj<k
Theorem 2.83.
1
W'%(a,b) = C2[a,b].
Proof. Suppose f € W'2(a, b). Take f to be continuous, then
X
f Df(y)dy

X1

lf(x2) = f(xp)l =

< ( f DG dy)é ( f lzdy)z

b 2 .
s( f IDf(y)Izdy) 2 —

1
< fllwrzlez — xa?

Thus,
|f(x2) = f(x1)l

< [l
ey — x1)2
This ends the proof. O

Definition 2.84. Let D c R” be a bounded domain, for 0 < 0 < 1, we define
u € CYD), iff
lu(x) — u(y)l

sup |u(x)| + sup =T

x X,y |

Theorem 2.85. [20]/Characterization of H* by Fourier transform] Let k € N, then
a function u € L2(R") belongs to H*R™Y) iff

(2.6) (1 +1&5a e LARY).

Remark 2.86. Equation (2.6) also make sense for k € R, so we have the following
definition.

Definition 2.87. For 6 € R, we define u € HY(R") iff u € L>(R") and
(2.7) (1 + |&Ma(¢) € L*R").
Theorem 2.88. [36] If0 < 6 < 1, then u € H'(R") iffu € L>(R") and

u(x) = u()*
ff Ty e

Definition 2.89. [36]If0 < 8 < 1 and D c R”, we define u € W?P(D)iff u € LP(D)

and )
f —|u(x) —uQ)l dxdy < co.
pJdp |x—ylt+ro
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Lemma 2.90. [10] If u is a function from the interval [0, T] to R, (if T = oo, then
we consider [0,T),) and
O=ty<ty < <ty,=T,

u e Wi, 1), j=1,....m,

J = u|[tj_1,tj]
and uj(t;) =uj1(tj), j=1,...,m—1,u1(0) = up € R. Then
ue W0, 7).

Proof. We must show that u € L?(0,T;R) and u’ € L*(0,T;R), where «’ is the
weak derivative of u. If we define

w(t) = u'(), te(tji1,t)),

where u}(t) is the weak derivative of u;(r). And

T m tj
f lw(®)ldr < ZZf W) di < oo,
0 =1

So now we have two facts: u € L2(0, T;R) and w € L*(0, T; R). Thus it suffices to
prove that w = u” in (0, T).
In other words, we have to show that

T T
(2.8) - f & (Hu(r) dt = f p(w(t)dr, ¢ CTO,T).
0 0

If supp¢ C (¢j-1,1;), then from the definition of u, we see that (2.8) is true. If
¢ =Y + ¥ and (2.8) is valid for | and ¥, then it is valid for ¢ too.

Therefore it is enough to show that (2.8) is true for the case supp ¢ C (¢j-1,%11).
For simplicity we take j = 1. Then

T 153
f ¢’ (Hu(r)dt = f ¢’ (Hu(r) dt,
0 0

T 1>
f d(Ow(t)dr = f d(Hw(t) dt.
0 0

Let us take ¢ € CF(R), such that 0 < y(r) < 1 foreveryr € Rand y(r) = L if [¢] < %
and y(r) = 0if [¢f] > 1.
For £ > 0, we define y.(¢) := ¢ (é(t - tl)), then we have
d=¢ Yo+ —yg) ¢,
¢ =" et @Y+ (1 =) + p(=).
If & < 1 min{t, — 11,11}, then ¢(1 — yY.)(t1) = 0, so supp (1 — ¢,)  (0,11) U (t1,12)
and by previous part

- fo [¢()(1 = o)) u(t) dr = fo A1 — Ye(0))w(r) dr.
Let us observe that

f ¢’ (tu(t)dt = f [6()(1 — (1)) u(r) dt + f (@O (1)) u(t) dt,
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—f¢(t)W(t)dt= —fff)(t)(l —%(t))W(t)dt—f@f’(l)lﬁs(t)W(t)dt,

and the first summants of right hand side of both equations are equal. Since ¢ - .
is bounded, supp (¢ - ¥,) C (] — &, t; +€) and w € L*(0, T;R) ¢ L'(0, T; R), we get

f POWe(W(r)dt — 0,  ase — 0.

Similarly, we get

f¢/(t)l//s(f)u(l) dr — 0, ase — 0.

f p(O (Hu(t)dt — 0, ase — 0.
Hence
f [¢(De(1)] u(t) dt — 0, as & — 0.

Then the proof is complete. O

Lemma 2.91. [[1], p.67, Thm 3.17] Let D be an nonempty open (unbounded)
subset set of R", 1 < p < co. Then C™(D) N W™P(D) is dense in WP (D).

2.2.2. Embedding Theorems.

Definition 2.92. [23][cone property] A bounded domain D is said to have the cone
property iff there exist positive constants a, / such that for any x € D, one can
construct a right spherical cone V, with vertex x, opening a and height /4 such that
Vy C D.

Proposition 2.93. [23] Let D be a bounded domain, then D has

() If 0D is of class C', then D satisfies the cone condition.
(i) If D is a convex domain has the cone property.

Theorem 2.94 ([23] Th. 11.1). Let D C R" be a bounded domain satisfies the cone
condition. If a function u € WP with j > m + % for some nonegative integer m,
then u € C"™(D).

Theorem 2.95. H/(R) — C"(R), if j—m > 3.

Theorem 2.96 ([23] Th. 10.2). Let D c R" be a bounded domain with D € C',
and let u be any function in W""(D), 1 < r < oo. Then for any integer j with
0<j<m,

|M|Wj,p(D) < Clulwmr(p)
wherem — % = j — g, provided p > 0. The constant C depends only on Q, m, j, r.

Theorem 2.97 ([23] Th. 11.2). Let D c R”" be a bounded domain with 6D € C'.
Let r be a positive number, 1 < r < oo, and let j,m be integers, 0 < j<m. Ifg > 1
is any positive number satisfying
n_ . n
m——>j——,
r q
then the imbedding W™ (D) — W/P(D) is compact.



A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 27

Corollary 2.98. [23] Let D c R" be a bounded domain with D € C'. Let r be a
positive number, 1 < r < oo, and let j,m be integers, 0 < j < m. If g > 1 is any

positive number satisfying
n_ . n
m——>j--,
r q

then W' (D) < W%4(D) continuously.
Proof. By Theorem 2.97, if

n_ ., n
m——>j——,
r q
W™ (D) < W/4(D) continuously. And by Theorem 2.96, if
n . n
m——=j--,
r q
W™r(D) — W/4(D) continuously. Hence the proof has been complete. O

Theorem 2.99 ([26], Th. 1.6.1). Let D C R" is an open set having the C™ extension
property. 1 < p < oo and A is a sectinial operator in X = LP(D) with D(A) = X'
W"™P(D) for some M > 1. Then for0 < a <1,
Xt c WhD), ifk-"<ma-", gz p,
q p
X c (D), if0<v<ma—2
p

Lemma 2.100 (Sobolev-Gagliardo inequality). [23] Assume that q,r € [1, 0] and
Jom € Z satisfy 0 < j < m. Then for any u € Ci(R"),

(2.9) D ull oy < CID"ullf, ol gy

1 _J 1 1 J : :
where »=at a(y — %) +(1- a)a foralla €[, 1] and C is a constant depending
only on n,m, j,q,r,a with the following exception. If m — j — % is a nonegative

integer, then the equality (2.9) holds only for a € [ni;, D).

Lemma 2.101. [23] Let D be an open bounded subset of R" and u € wkr(D). If
k> %, then there exists it € C(D) C L™, such that u = it almost everywhere.
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2.3. Existence Theory for PDE.
Theorem 2.102 (Lax-Milgram). Let H be a Hilbert space, Blx,y] be a bilinear

form in H. And we assume that
|Blx.y1| < Cillxlllyll,  Vx.y € H,
and
|Blx,x]| > Callxl’,  VYxeH,
for some constants C1,Cy > 0. Then every bounded linear functional F(x) in H
can be represented in the form
F(x) = B[x,v]
for some v € H uniquely determined by F.

Proof. Fix v € H, then B[x,v] is a bounded linear function on H, so by Riesz
Lemma, there is a unique y € H such that B[x, v] = (x,y), for all x € H. Then we
can define a linear operator

A:H— H
Vb y
We claim that A is a bijection from H to H. That is because: If Av = 0, that is
B[x,v] = (x,0) = 0, so B[v,v] = 0. But B[v,v] > Ca|v|*>, sov =0. Hence Ais 1 — 1.
If R(A) # H, then there exists z ¢ R(A), such that (z,y) = 0 for all y € R(A). Since
(z,y) = (2, Av) = Blz,v],

for some v € H, we have B[z,v] = 0 for all v € H. Take v = z, then B|z,z] = O,
so z = 0. This contradict to z ¢ R(A). Hence A is a surjection. Therefore A is a
bijection.

Since F(x) is bounded and linear, by Riesz Lemma, there is a unique y € H such
that F(x) = (x,y) for all x € H. For A is bijection we have

F(x) = {x,y) = (x,Av) = B[x, V], x € H.

If v’ satisfies F'(x) = B[x, V'] forall x € H, then take x = v—V’, we have B[v—V',v] =
Blv—-Vv V]=Fyv-Vv),soBlv—-v,v—v]=0. But Blyv—v,v—=Vv] > C2|v -V,
so v = v'. Hence such v is unique. This completes the proof. O
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2.4. Probability.

2.4.1. Uniform Integrability.

Definition 2.103. Let {£,} be a series of random variables. They are said to be
uniformly integrable ift

r—00 n

lim supf |&| dP = 0.
{1€nl2r}

Theorem 2.104. If p > 1, sup, El&,|P < oo, then (&} is uniformly integrable.

Proof. By the Cauchy-Schwartz inequality, for g satisfies % + é =1,

1 1
f &, dP < ( f EalP dP)" ( f 1‘1dP)q
{I€n|>r} {I€nl>r} {I€nl=r)

1 1
< (BIEal")? P ({Igal 2 rhe .
By the Chebyshev’s inequality, we have

1
P({lgal 2 7)) < —E(al”).
r

Then let us assume that sup, E|&,|P < M < oo, then

n

1 1
sup L | }IntdP < sup (Elgal”)? sup P ({I€,] > r})e
En|>r n n

<— —0, asr— oo
rd
This concludes the proof. O

Theorem 2.105. [[5] Th. 6.5.4] Let {&,}, be a series of random variables. If {£,},
is uniformly integrable, and lim,,_,, &, = &, P-a.s., then

lim E(&,) = E©).
2.4.2. Tightness.

Definition 2.106 (Tight). Let X be a Polish space, a family A of probability mea-
sures on (X, A(X)) is tight iff for arbitrary £ > 0, there exists a compact set K, C X,
such that

uKy) > 1-¢, Yu € A.

Theorem 2.107. Let X,Y be separable Banach spaces and (Q,F,P) be a prob-
ability space, we assume that i : X — Y is compact and the random variables
u, : Q — X, n € N, satisfy the following condition: there is a constant C > 0,
such that

E(lualx) < C, V.
Then the laws {L(i 0 uy)}, e is tight on Y.
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Proof. Let w, = L(uy), vo, = L(i o uy).
For € > 0, there exists R > 0, such that % < &. By the Markov inequality Lemma
2.133,

1 C
tn()xlx > R) = P(lu,) > R) < EE(Iunl) < z <g, VYn

Let K. = {x € X : |x|x < R}, it is a compact subset of Y. K, is bounded in X which
is compactly embedded in Y, so K, is pre-compact in Y, but it is also closed, hence
it is compact in Y.

vn(Kg) = ﬂn(i_l(Ks)) = ,un(Ks)
=1 —wu,(lxlx >R) > 1 —¢, Vn
Therefore {v,} = {L(i o u,)} is tight on Y. This completes the proof. O

Lemma 2.108. Let X, Y be separable Banach spaces and (Q, F, P) be a probability
space, we assume that f : X < Y is continuous and the laws {L(u,,)} of the random
variables u, : Q — X, n € N, is tight on X. Then the laws { L(f o u,)} is tight on
Y.

Proof. For g > 0, there is a compact set K, C X such that
P(u, ' (K)) > 1 - &, Vn,

hence
P((f o un) ™ (f(Ke) = P(u, (Ke) > 1 =&, Vn.

And since f is continuous, f(K) is compactin Y. So { L(f ouy,)} is tight on Y. This
completes the proof. O

Theorem 2.109. Let X be a separable Banach space. A is a collection of proba-
bility measures on X. A, B are subspaces of X. If A is tight on both A and B, then
A is tight on A N B.

Proof. For & > 0, there exist compact sets K! c A and K> C B, such that
u(Kp) > 1 —g and  u(Ky) > 1 — g Vi € A.

Then K1 N K; € AN Bis compact and for u € A,

u(Ky N K>) = 1—u((Ki NK>)°)
=1 - u(Kj UK5)
> 1 - u(KS) - p(KS)
>1l-¢
Hence A is also tight on A N B. This completes the proof. O

Theorem 2.110. Let (Q, 7 ,P) be a probability space, X and Y be two Polish
spaces, &, - Q — X NY, n = 1,2,... be a series of random variables. Then
if the laws of &,, (L(&n))n is tight on X NY, it is also tight on X.
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Proof. Suppose that (L(&,)), is tight on X N Y, we will show it is tight on X. Let
us fix € > 0, we need to find a compact K C X, such that L(£,)(K) > 1 — &, for all
n. But (L(&,)), is tight on X N Y, so there exists a compact K’ € X N Y, such that
L(&D(K') > 1 —¢, for all n. Since K’ is compact in X N'Y, K’ is also compact in X.
Therefore we can take K = K’. This completes the proof of Theorem 2.110. O

Definition 2.111. [18][convergence weakly] Let X be a metric space and {u,} is a
sequence of Borel probability measures on X, we say p, — u weakly (written as
pn —> ) iff
[ o — [ ran vrecuxm.
X X

Definition 2.112 (converges in distribution). Let X be a metric space and &, &1, &7, ...
be random elements with values in X, we say that &, converges in distribution to &

(written as &, N &) iff L(&,) = L(&).

Definition 2.113 (relatively compact). Let X be a separable Banach space, a family
of measures A is called relatively compact iff an arbitrary sequence {u,} C A
contains a subsequence which convergence weakly to a measure on (X, A(X)).

Theorem 2.114 (Prokhorov). [18] Let X be a separable Banach space, a set of
probability measures A on (X, (X)) is relatively compact iff it is tight.

Lemma 2.115. [49] Let X and Y be two (not necessary reflexive) Banach spaces
with Y < X compactly. Assume that p > 1, let 4 be a set of functions in L'(R; Y)N
LP(R, X), with

(a) ¢ is bounded in L'(R; Y) N LP(R, X);

(b) fR |g(t +5)— g(s)|§ ds — 0, as t — 0, uniformly for g € 4,

(¢) The support of the functions g € 9 is included in a fixed compact subset of R.
Then the set 9 is relatively compact in L (R; X).
Lemma 2.116. [22] Assume that By C B C By are Banach spaces, By and B

being reflexive. Assume that the embedding By C B is compact. Let p € (1, ) and
a € (0, 1) be given. Then the embedding

LP(0,T; Bo) N W*P(0,T; By) — L7(0,T; B)
is compact.

Lemma 2.117. [22] Assume that By C B, are two Banach spaces with compact
embedding, and a € (0,1), p > 1 satisfy a — % > 0. Then the space W*P(0,T; B})
is compactly embedded into C([0, T]; By).

2.4.3. Ito formula and SPDE.

Definition 2.118 (progressively measurable process). A stochastic process (X(7))r>0
is called progressively measurable with respect to the filtration (F;)s»¢ if and only
if:Qx[0,7T] 3 (w, 1) — X,(w) € Ris B([0,T]) ® Fr measurable.

Proposition 2.119. If X; is F;-measurable and the trajectories of X; are a.s. con-
tinuous ( or lefi\right continuous) then (X;);>o is progressively measurable with
respect to (F1)r>0.
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Definition 2.120 (The o-algebra BF).
BF ={AC[0,T]xQ:Vt<T,AN([0,t] x Q) € B[O, 1] ® F;}.
Proposition 2.121. For T > 0, (F;):eq0,1) is a filtration on €, the random process

X = (Xp)r0 is progressively measurable iff X : [0, T] X Q > (t,w) — X (w) € Ris
BF measurable.

Proof. First we can show that: for any Borel set B C R,
X' (B) N (10,11 X Q) = X' ;1o (B)-
That is because
X (B ={(s,w): s€[0,T],w € Q,X,(w) € B,
X'B) N (0,11 X Q) = {(s,w) : s € [0,1],w € Q, X(w) € B} = X|g! 1, o(B)-

Then X is progressively measurable iff X|jp qxq is B[O, f] ® F;-measurable iff for
any Borel set B C R, Xl[_olerQ(B) € 8B]0,t] ® ¥, iff for any Borel set B C R,

X1(B) N ([0,7] x Q) € B[O, 1] ® F; iff X is BF -measurable. O

Definition 2.122 (Itd process). A stochastic process {£(f)}> is called an It0 pro-
cess iff it has a.s. continuous paths and can be represented as

T T
&(T) = £0) + f a(t)dt + f bt dW(®),  a.s.
0 0

where b(¢t) € M% for all T > 0, that is

T
E( f Ib(1)? dt) < o0, VT >0,
0
and a(r) € L} forall T > 0, that is
T
f la(?)|dt < 0, a.s. YT > 0.
0

Definition 2.123. Let H be a Banach space and let M>(0, T'; H) denote the space of
H-valued measurable process with the filtered probability space (2, (F¢)ici0.77, P)
which satisfy: ¢ € M*(0, T; H) if and only if
(1) ¢(¢) is F; measurable for almost every f;
(i) E [ 1p(r) df < oo.
Theorem 2.124 (It6 Lemma). [16] Let &(¢) be an Ito process satisfies
dé(t) = a(r) de + b(r) dW (1),

where a € L} and b € M,2 for all t > 0. Suppose that F(t,x) is a real-valued
Sfunction with continuous partial derivatives F;, F and F'/. for allt > 0 and x € R.

We also assume that the process b(t)F'(t,£(t)) € M2, for all T > 0. Then F(t,&(t))
is an Ito process such that
1

dF(t,&@)) = (F,'(t, &) + Fi(t,£(0)a(r) + EF;’x(t, f(t))b(t)Z) dr

+F (8, £@)b(r) AW (2).
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Theorem 2.125 (high dimensional 1t6 Lemma). [52] Let £(z) := (&), be an It0
process satisfies

m

d&i(1) = a( dt+ ) by dWin),  i=1,....n,

j=1
where a; € Lt1 and b;; € Mt2 for all t > 0. Suppose that F(t,x), t > 0, x € R" is

. . . . L 2
a real-valued function with continuous partial derivatives F;, % and 62~ g{ - for all
i i0Xj

t > 0and x;, x; € R. We also assume that g_f,- are bounded. Then F(t,&(t)) is an Ito
process such that

|~ OF
dF(t,&(1) = Z [Z —(t, f(t))bij(t)l dW;(1)
j=1

= 0xi

+

OF - OF
rHEO)+ ) T et

i=1

1 <~ 0*F u
+3 i; m(h &) kz:; bik(f)bjk(t)] dr.

Theorem 2.126. [52] Suppose that there exists a constant L such that for any
x,yeR,Yi,j=1,...,n

|gij(x) = gi;)| < L|x -y,

|[fi0) = i) < Ljx -y

and a random variable n with values in (R",8") is Fs-measurable and square

. 2 . . . . .
integrable: E|n| < oo. Then there exists a solution of stochastic equation with
initial value problem:

{ d&i(0) = XL, gij(€0)dW,(0) + fién)dt, 1<i<nit>s,
&) =mn.

And E|§(l‘)|2 is bounded on any finite segment of variation of f.

Lemma 2.127 (Burkholder-Davis-Gundy Inequality). [30] Let H be a Hilbert
space, 0 < T < oo, jO))ejo,r, j = 1,2,-+- are a series of H-valued ran-
dom process, (Wi())o,r), J = 1,2,--- are Brownian motions. Let us denote
&) = Z;‘;l fol n;(s)dW;(s). Then for p > 1, there exists some K, only depend on
p such that:

0<t<T

E sup [€(0y; < K,E [fo ij(s)l%] ds) .
=1
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2.4.4. Other Relevant.

Lemma 2.128 (Chebyshev inequality). Let (Q, F,P) be a probability space and X
is an random variable. Then

E(X])
PR

P(X| = a) < > 0.

Theorem 2.129. [[5] Th. 6.5.4] Let {&,}, be a series of random variables. If {£,},
is uniformly integrable, and lim,_,, &, = &, P-a.s., then

lim (&) = E(&)-

Theorem 2.130. [19]/Th 4.1.1] Let (), F,u) be a finite measure space, X be a
Banach space, 1 < p < oo. Then the dual space of LP(Q,X) is L1(Q; X*) for
% + (1; = 1 if and only if for each u- continuous vector measure G : ¥ — X" of
bounded variation, there exists g € LY(Q; X*), such that G(E) = fE gdu, for all
EecT.

Lemma 2.131 (Lomnick and Ulam). [[29], Thm 3.19, page 55] For any probabil-
ity measures 1, U3, ... on some Borel spaces X1, Xy, . . ., there exist some indepen-
dent random elements £1,&;, . .. on ([0, 1], B([0, 1]), 1) (where A is the Lebesgue’s
measure) with distributions uy, Uy, . . ..

Lemma 2.132 (Skorohod). [[29], Thm 4.30, page 79] Let u, u1, o, . .. be proba-
bility measures on a separable metric space with the Borel o-field (X, B(X)) such
that u, SN u. Then there exist some random elements 1,11,12, ... on the proba-
bility space ([0, 1], B([0, 1), 1) with values in X such that L(n)=u and L(n,)=un,
n € N, such that n,, — n almost surely.

Lemma 2.133 (Chebyshev inequality). Let (Q, F,P) be a probability space and X
is an random variable. Then

E(X]
P(X| = a) < ( l), a>0.
a

Lemma 2.134 (Kolmogorov test). [18] Let {u(t)}e[0,1] be a stochastic process with
values in a separable Banach space X, such that for some C > 0, € >0, 6 > 1 and
allt,s € [0,T],

E|u(t) - u(s)|y < Clr - 5/,
Then there exists a version of u with P almost surely trajectories being Holder
continuous functions with an arbitrary exponent smaller than %.

Lemma 2.135 ([22], Lem 2.1). Assume that E is a separable Hilbert space, p €
[2,00) and a € (0, %). Then there exists a constant C depending on T and a, such
that for any progressively measurable process & = (¢ j);il’

E
T > 2
EEyan 7z < CE fo [Z Ifj(r)ﬁz] dr,
j=1
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where 1(&)) is defined by
1&) = Z j(; £i()dWj(s), 12 0.
j=1

In particular, P-a.s. the trajectories of the process 1(€;) belong to W20, T; E).

35
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2.5. Other Lemmata.

Definition 2.136 (principal part of differential operator). Let D C R" be a open
bounded domain of R", with smooth boundary dD. Consider the differential oper-
ator of order 2k,

A(x,D) = Z 4 (X)DY,
lol<2k
where the coefficients a,(x) are sufficiently smooth complex-valued functions of
x € D. Then we define the principal part A’(x, D) of A(x, D) by

A(x,D)= " au(x)D".
la|=2k
Definition 2.137. Let D c R" be a open bounded domain of R", with smooth

boundary dD. The differential operator A(x, D) is said to be strongly elliptic iff
there exists a constant ¢ > 0 such that

(2.10) Re(-1DFA' (x,&) > cle*,  xeD,£eR"

Lemma 2.138. [39] Let D C R" be a open bounded domain of R", with smooth
boundary dD. If A(x, D) is a strongly elliptic operator of order 2k, then there exist
constant co > 0 and g > 0 such that for every u € H*(D) N H’é(D) we have the
Garding’s inequality:

(2.11) Re(Au, u)o > collull 5 — Aollulfj ,.-

And for every A satisfying Red > Ao and every f € L*(D), there exists a unique
u € H*(D) N Hy(D) such that
(Al + A(x,D))u = f.
Example 2.139. Let D c R” be a open bounded domain of R”, with smooth bound-
ary 0D. We consider the operator A given by (in weak sense)
D(A) = H*(D) n Hy(D),
noo92
0“u
Au = Au = —_—, Yu € D(A).
Z; 7 (4)

Then A is self-adjoint.

Proof. Because —A(x, &) satisfies (2.10) for ¢ = 1, —A is strongly elliptic. And we
notice that

Re(—Au,u)y = (-Au,u)g = — f uAu dx
D

= f Vi Vudx = |ulli, - lull,,  Yue CyD)
D

where the third equality is from the integration by parts and the forth equality
is from the definition of the norms. CF(D) is dense in Hé(D) as a subspace of
H' (D), so —A satisfies (2.11) for all u € D(A) and with ¢y = A9 = 1. Hence from
Lemma 2.138, (Al — A) is surjective if 4 > 1. Then from Corollary 2.19, A is
self-adjoint. O
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Lemma 2.140 (Poincaré’s Inequality). ([20], P265, Thmn 3) Let us assume that D
is an open bounded domain of R". Suppose that u € W(;’p (D) for some 1 < p < n.
Then we have the estimate

lellapy < ClIVullpzp)s
for each q € [1, p*], the constant C depending only on p,q,n and D.

Lemma 2.141 (Holder’s inequality). Let X, u be a measurable space, we assume
that u € LP(u), v € Li(u), where % + (1; = % Then uv € L"(u) and the following
inequality holds:
levller < lleellzelVIlza,

the equality occur iff

I _ pl?

lulle— IVllze
Theorem 2.142 (Kuratowski Theorem). [41] Let X1, X, be Polish spaces equipped
with their Borel o-field B(X1), B(X,), and ¢ : X1 —> X, be a one to one Borel
measurable map, then for any E1 € B(X), E> := ¢(E1) € B(X>).

u—a.e.

Lemma 2.143 (Banach-Alaoglu [45] Th3.15). Let X be a topological vector space,
K is the closed unit ball in X*, i.e.

K={AeX :|Allx <1}
Then K is compact with respect to the weak*-topology.

Remark 2.144. Hence, if a sequence in a reflexive Banach space is bounded, we
can assume the sequence is convergent weakly.

Lemma 2.145. Let D be a bounded domain in R, {u,} ¢ W*P(D), 1 < p < o, and
u, — u weakly in LP(D). Then u € W/P(D) and for any « satisfies 0 < |a| < j,
D%, — D%u weakly in LP(D).

Proof. Since {u,} is bounded in W/*P(D), and for 0 < |a| < j, D%uy,lrr < lttnlyyiv
{D%u,} is bounded in LP(D) which is reflexive. Then By the Banach Alaoglu’s

Theorem 2.143, we can assume that {D%,} is weakly convergent to some u® €

LP(D). Then for any ¢ € C;’(D),

f u¢dx = lim | D%,¢dx = lim (-1 f uD% dx = (-1) f uD%¢ dx.
D n= Jp k=00 D D

Thus u has weak derivatives D%y = u® = lim,_ D%u,, for all || < j. And it

follows that u € W/P(D). This completes the proof of Lemma 2.145. O

Lemma 2.146 (Mazur Theorem [37] Th2.5.16). The closure and weak closure of
a convex subset of norm space are the same. In particular, a convex subset of a
norm space is closed iff it is weakly closed.

Theorem 2.147 ([1] Th. 3.6). Let O C R" be an arbitrary domain. W™P(0O) is
separable if 1 < p < oo, and is uniformly convex and reflexive if 1 < p < oo.

Definition 2.148. A subset of a topological space X is called nowhere dense if it’s
closure has empty interior.
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Definition 2.149. A subset of a topological space X is called:
(a) of first category in X if it is a union of countably many nowhere dense subsets;
(b) of second category in X if it is not of first category in X.

Lemma 2.150 (Baire’s Theorem). [[45], P43, 2.2] If X is either

(a) a complete metric space, or
(b) a locally compact Hausdorff space,

then the intersection of every countable collection of dense open subsets of X is
dense in X.

Corollary 2.151. Complete metric spaces as well as locally compact Hausdorff
spaces are of second category of themselves.

Proof. Let X be a complete metric space or a locally compact Hausdorft space, {E,,}
be a countable collection of nowhere dense subsets of X, V,, be the complement of
E,. Then V,, is dense and open in X. Hence by the Baire’s Theorem 2.150, (), V,,
still dense in X. Therefore | J, E, = (N, Va)° # X. So X can not be union of
countable collection of nowhere dense subsets, hence it is of second category in
itself. This completes the proof. O

Theorem 2.152 (Banach-Steinhaus). [[45], P44, 2.5] Let X and Y be two topolog-
ical vector spaces, I be a collection of bounded linear mappings from X to Y. We
define
I'(x) :={A(x): 1 €T}, xe X
B :={x € X : I'(x) is bounded in Y}.
Then if B is of second category of X, then B = X and U is equi-continuous.
Proposition 2.153. Let (X, u) be a measurable space, u, : X — R, n=1,2,....
Then if limy,_, fX |uy(x)|dx = O, then there exists a subsequence {uy,} C {u,} such
that
Jim fun, ()] = 0,
for almost every x € X.
Proof. Since lim,—,« fxlun(x)ldt = 0, the subsequence {u,,} can be chosen by
the following way: we choose n; such that if n > ny, fX g, (%) dx < %, and for

k > 1, we choose n; > ni_; such that if n > ny, fxlun(x)ldx < k—ék Then let
Ag = U2 dx g, (0] > 1}, Then since

i

LI f e, (0] dx > ~1 ({|un,,(x)| > 1})
2! X i i

we have 1 ({lu (0] 2 1}) < % and u(Ap) < 7. Let A = (2 Ay, then u(A) = 0.

Qk=1"*
Then for x ¢ A, there exists k; such that x ¢ Ay for k > &y, so |up, (x)| < % for all
k > k1. Hence lim,,_, |1, (x)| = O, for all x ¢ A. This completes the proof. O

Definition 2.154. If X and Y are Hausdorft spaces and if f : X — Y, then f
is said to be sequentially continuous provided that lim,_,., f(x,) = f(x) for every
sequence {x,} in X that satisfies lim,_,« X, = x.
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Lemma 2.155 (p.395, A6 in [45]). Let X and Y be Hausdorff spaces and f :
X — Y is sequentially continuous. If every point of X has a countably local base
(in particular, if X is metrizable), then f is continuous.

Lemma 2.156 (Jensen’s inequality). [6] Let f be a measurable function on a prob-
ability space (Q, F,P) with P(f € (a,b)) = 1 for some interval (a,b), — < a <
b < oo and let ¢ : (a,b) — R be convex, then

¢(£fdP)§£¢(f)dP, AceF,

provided [}, |f1dP < oo and [ |¢(f)|dP < oo,

Lemma 2.157 (Gronwall inequality). [43] If ¢ is a positive locally bounded Borel
function on R* such that

t
o) <a+ bf @(s)ds,
0
for every t and two constants a and b with b > 0, then
P(1) < ae”.
If in particular a = 0, then ¢ = 0.

Lemma 2.158. If (M, d) is an incomplete metric space, then we can find a complete
metric space (M’,d") such that M is isometric to a dense subset of M.

Proof. Let us consider the Cauchy sequences of elements of M. We say that two
Cauchy sequences {x,}, {y,} are equivalent iff

lim d(x,,y,) = 0.

n—oo
Let M’ be the family of equivalence classes of Cauchy sequences. Since for any
two Cauchy sequences {x,}, {y,}, lim,_,o d(x,, y,) exists and depends only on the

equivalent classes of {x,}, {y,}. This limit defines a metric on M’ and M’ is com-
plete. Finally, the map

itM— M
x B {x,; = x}
is isometric. And i(M) is dense in M’. O

Remark. The proof of the above Lemma is similar to the construction of the set R
of real numbers from the set Q of rational numbers.
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2.6. Definition and Properties of —Laplacian with Neumann Boundary Con-
dition. The —Laplacian operator with the Neumann boundary conditions acting on
R3 valued functions, denoted A, will be used a lot in next few main sections, so we
will list the definition with notations and properties here for convenience.

In order to have the definition of A, we need some preparation:

Notation 2.159. For O = D or O = R3, let us denote

LP(0) = LP(O;R?),  LP(O) := LP(O;R).

WEP(0) = WHP(O;R),  WRP(0) := WEP(O;R).
HY(0) = H'(O:RY),  H"0) := HY(O:R).
H:=L*D), V:i=W"D).
Definition 2.160. [48] Let us define a space E(D) by
ED) :={uecl*D):V-ucL*D)).
Proposition 2.161. [48] The E(D) defined in Definition 2.160 is a Hilbert space
with the inner product:
(W, V)ED) = W, V)2py + (V- 1, V- V)12

Lemma 2.162 ([48], p.6, 1.3). Let D be an open bounded domain in R3 with C?
boundary I'. Then there exists a linear continuous operator yy € L(H L(D); L*())
(the trace operator) such that

@)
you=ur,  ueH(D)NCHD);
(1)
keryg = Hy(D);
(iii)) We denote
H(T) := yo(H' (D)),

which is dense in LZ(F )s
(iv) The space H %(F) can be equipped with the norm carried from H' (D) by yo;
(v) There exists a linear bounded operator lp € L(H > (I'); HY (D)) (which is called

a lifting operator), such that yy o lp = id on H%(F).

Lemma 2.163 (Stokes theorem in the weak sense). [[48], p.7, Thl.2] Let D be an
open bounded domain in R> with C* boundary T. n is the outward normal vector
on I'. Then there exists a linear continuous operator y, € L(E(D),H _%(F)) such
that

Ynu = (M, n)|1", uec C(‘;O(D)
The following generalized Stokes formula is true for all u € E(D) and g € H' (D):
(u, Vg)gs + (V- u, ©)r = (Ynlt, Y08)-

Now we are ready to define A.
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Definition 2.164. Let D be an open bounded domain of R with C? boundary, we
define a linear operator A in the Hilbert space H by

D(A) = {u = (U)ie123 € H*X(D;R?) : a”’|(9 = o} c IX(D,RY),

= —(Auy, Aus, Aug), Yu € D(A).

Remark 2.165. In Definition 2.164, 6“' is an element of the dual space of H'(D)
such that

Ou;
<—u,v> = (v, Vu;, yov), veH! (D).
on

Proposition 2.166. Let D be a bounded open domain in R® with C*> boundary,

u € HA(D;R?), v € H'(D;R?), and 3|, = 0 then we have

(Au,v)2 = f (Vu(x), Vu()

RSX%

Proof. Letu € D(A), v e H'(D,R?). Then

(Au,v)r2 =f((Au)(x) v(x) ZfAu (x)vi(x) dx.

Thus by the Stokes Theorem, see Lemma 2.163, we get, for each i = 1,2, 3.

f Au;vidx = f divVu,v; dx
D D

- f (Vati(x), Vi) dx + Vit youi)
D

- f (Vi) Vv e+ (24
D on

—f(Vl/t,',Vvi)R3 dx
D

The last equality above follows from the Neumann boundary condition satisfied
by u:

8u,~
— =0, Yi=1,2,3.
on !
Hence,
3 3
(Au,v),2 = Zf(Vu,,Vv,)d :fZ(Vul,Vv,)dx— f(Vu o) dx,
i=1 YD Dz
and this completes the proof. O

Proposition 2.167. Ifv € V and u € D(A), then

2.12) f () X Au(x), v(x))gs dx = Z f <—( ), G(VX”)( )> dx.
R3
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Proof. First of all, we need to check wether the integrals on both sides of equality
(2.12) make sense. To do this let us fix v € V and u € D(A).

ueH>=W>?and?2 > 5, so by Lemma 2.101, we infer that u € L*(D, R?). And
since u € H?, Au € LZ(D RS). Notice that

2 2 2
fD Ju x Auls dx < ullZ. - A, < oo,

SO u X Au € LZ(D, R3). Moreover since V C LZ(D, R3) and v € V, the left hand
side of the equality (2.12) is well defined. In respect to the right hand side of the
equality (2.12), since u € H?*(D,RY), 6“ (x) € L*(D,R3). Moreover in the weak
sense,

ovxu) 0Ov Uty X c')_u
ax,- Bxl “ axl

Now we prove the equality (2.13).

Since D;v € L*(D,R%) and u € L® we infer that D;v x u € L*(D,R?). From
Sobolev-Gagliardo inequality 2.100,let p =6, j =0,m = 1,r = g = 2 in (2.9), we
getve LOD,R}) andwith p =6,j=1,m =2,r =g = 2in (2.9), we get Diu €
L%(D,R?), which implies that v x Dju € L3(D,R?) ¢ L*(D,R?). By Lemma 2.91,
C'(D;R* n H'(D;R3) is dense in H'(D;R?), so we can find sequences u,, v, €
CY(D,R?), such that u, and v, converges to u and v in V. It follows that

(2.13)

lim | (v, X u,)D;¢pdx = f(v X u)D;¢ dx, ¢ € Cy (D, R3).
n—o0 D D

Indeed we have,

flanun—vXuldx

f|v,,><un—v><un|+|v><un—v><u|dx

flvn = vl |uy|dx + f V] - u, — uldx
1 1
2 2
(f vy, —v|2 dx) (f Iunl2 dx) + (f |v|2 dx) (f |ty —ul2 dx)
D D

as n — o0,

Thus, we have

f (vn X un)Di¢p — (v X u)Djp dx
D

- f (v X 14) = (v X )] Dygp dx
D

SMfIanun—VXMldx—>0,
D
where M = sup,p [Di¢(x)|. So we have proved that

lirr(l) (v X uy)Dip dx = f(v X u)D;¢ dx, ¢ € Cy(D).
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Similarly we can prove that

lim | (Djv, X u,)¢pdx = f(Div X u)¢ dx,
= Jp D

and
lim | (v, X Dju,)¢dx = f(v X Dju)¢ dx.
D D

n—oo

Hence we infer that
f(v X u)Dip dx = — f(Div xu+vxDupdx,  ¢eCy(D,R).
D D

Hence we proved identity (2.13) in the weak sense. Notice that (g—)’:i, v X %) =0,
so we only need to check wether g—; xu € L*(D,R%). Since v € H'(D,R?), we
have % e L*(D,R?). Moreover as observed earlier u € L*(D,R?), so % Xu €
L*(D,R%), hence by the equality (2.13), v x u € H'(D,R?). Therefore the right
hand side of equation (2.12) is also well defined. Since by an elementary property
of inner product in R,

(axb,c)gs = (b,c X a)gs, a,b,c€R3,

we infer that

(u X Au, v) = (Au, v X u) = j; (Au(x), v(x) X u(x)) dx.

I2(D,R%) L*(D.R3?)

Next because v x u € H'(D,R?) as just proved, by the Proposition 2.166,
fD (Au(x), v(x) X u(x)) dx = (Vau, V(v X ”>)L2<D,R3xs)'
Thus we have
(X Au V)2 sy = (V. V(v x u))LZ(D’W).

This completes the proof. O
Corollary 2.168. Ifv € V and u € D(A), then

> ou ov
(2.14) j};(u(x) X Au(x), v(x))dx = Z j}; <(9_x,~(x)’ G—Xi(x) X u(x)> dx.

i=1
Definition 2.169 (Fractional power space of A; := I+A). For any non-negative real
number 3 we define the space X# := D(Af ), which is the domain of the fractional
power operator Alf with the graph norm | - [y = IA'? - |g. For positive real 3, the
dual of X is denoted by X and the norm | - |y-s of X7# satisfies |x|y-s = IAIﬁ Xlg
when xisin H. And X3 — H = H* — X7# is a Gelfand triple.

Lemma 2.170. [20] The A defined in 2.164 has the following properties:
0. D(A) is dense in H := L*(D;R>).
1. A is symmetric;
2. RU+A)=H =L*D;R%;
3. A is self-adjoint;
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4, (I+A)7is compact.

Proof.0. This will not be proved here.
1. Let us assume that u, v € D(A), then

3 0*u 3 &
A ) =\~ ) = s ~ = 9A .
(Au,v)g < E ax% v>H <u E 6xl.2> (u, Av)yg

i=1 i=1 H
Hence A is symmetric.

2. By the Lax-Milgram Theorem 2.102, we have: for any f € H, there exists a
unique u € H%(D) C D(A) such that

(u+Vu,v+ Vg = (f,vyy,  veH D).

Hence
(d + Au, vy ={f,v)u,  veHD),

since Hg(D) is dense in H, we have
({ + A, vyg ={f,V)H, veH.

Therefore (I + A)u = f in H. Hence R(I + A) = H.

3. By Lemma 2.140 and the Lax-Milgram Theorem 2.102, in the same way of the
proof of 2, we can see that R(A) = H. Then by Proposition 2.18, we see that A is
self-adjoint.

4. If  + A)u = 0, for some u € D(A), then u = Au. Hence

0<u,uyy ={Au,u)yg = —(Vu,Vu)y < 0.

Sou = 0. Hence (I + A) : D(A) — H is a bijection. Therefore (I + A)~! exists.
By Theorem 2.97, H?(D) is a compact subspace of H. So any closed subset of
H?(D) is compact in H. But

(I+A)': H— D(A) c H¥(D),

so(I+A)7is compact.
O

Lemma 2.171 (Eigenvalues of Laplace operators). [[20], p.335] Let A as be de-
fined in 2.164. Then the following properties hold:
(i) There exists an orthonormal basis {ex};” | of L*(D;R3), such that e; € C®(D) for
allk=1,2,...,
(ii) There exists a sequence { A}y, | in R*, such that

O=4 <A<,
and
lim A = oco.
fim 4 = o0
(ii1)

Aer = Aeg, k=1,2,....
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Proposition 2.172. [[50],4.3.3] Let A as be defined in 2.164, then

6D:0}’ 2y >
2y <

ueH %

XV:D(A{)={{ " on
H?,

[NS][SVIN \O] 98]

Proposition 2.173. Let A| = I + A. For a Borel function g : R — R,

D(g(Al)) = {h = Z h,-ei € H: Z |g(ﬂ,)|2h12 < OO} .
i=1 i=1
Proof. By Theorem 2.72,

D(g(A1) = {h €H: flg(/l)l2 d(h, Pah) < 00}.
R

For h € H, by Theorem 2.71 and Theorem 2.72,

(h, Ppy) = (b, 1p(ADY) = 1p(A) ) hiei = > 1p(Ahie;.
i=1 i=1

=
Hence
- . 2,2
D(g(A)) = {h € H: ) |g(A)Ph} < oo}.
i=1
This completes the proof. O

Proposition 2.174. For a > B > 0, the embedding .9 : D(A]) — D(A'/f) is
compact.

Proof. By Proposition 2.173, we have

¢ . 2072
D(All):{h:zlhiEieH' Zl/liahi <oo}’
= =

and 1
sl 2
|h|D(A(lZ) = (Z /llzahlz] .
i=1

Since 4, /" o0 asn — o0, |h|D(A‘l') > Ith(Af), so D(A]) — D(A[f). Let

Sy =m,0F D(A(ll) B D(Af)’

where
m,:H— H,,
n
Tta(x) = Z(X, euei, X € H,
i=1
is defined as the orthogonal projection. Since the dimension of the range of .#,,
dim .7,(D(AY)) < oo, by Proposition 2.35, .#, is compact. Moreover,

(I — I)h = Z he,  heH.

i=n+1
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Hence
(o)
i ; 28,2
Hm |7, — N o pyoaay meafyy = iIMm su AP I
poo T LDANDAD) T o {h:Z/liz”IZizzl},';l i i
[ee)
lim  sup 2p?
n—eo . 27,2 _ .
{hz/l, h,'_]}l:n+1
<1 1
im —— =
< lim ———
n— /ln(a )

1
/lf(a—ﬁ)

IA

Thus by Proposition 2.36, .# is compact. This completes the proof. O
Lemma 2.175. For > 0, let|-|_g be a norm on H defined by

2 _ =28 2
By =D 4%
j=1
Then (H,| - |-g) is not complete and the completion is DA ) = X5,
Proof. H € D(A™), hence there exists a x € D(A?) but x ¢ H. So

2 _ =28 2
|x|_ﬁ = Z/lj xj < oo,
j=1
but -
2.2 _
Z /ljxj = 00,
j=1
So {x = mu(x)}7  is a Cauchy sequence in (H, | - |-g), but do not converge to any

element in H.
For any x € D(A7P), |7Tn(x)|%_1 = ;?:1 A?x? < 00,80 m,(x) € H. And

[
=m0y = Y 42 —0, asn— .
Jj=n+1

Hence D(A) is the completion of (H, | - l-5)- O
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3. Lanpau-LirsHiTz EQuAaTION

This section is a detailed explanations of the Visintin’s paper [51], which is
about the deterministic Landau-Lifshitz Equation and it will help us to understand
the following main sections of this thesis.

3.1. Statement of the Problem.

Definition 3.1. Let D c R? be an open and bounded domain with C! boundary.

(i) Suppose that ¢ € C%(]R3; R*). For a magnetization field M € H' (D), we define
the anisotropy energy by:

Eun(M) = fD (M) dx.

(ii) We define the exchange energy by:
1 2 1 2
G.1) Eur) 1= 5 [ MO dx = SITMIE,

(iii) For a magnetic field H € L*(R?), we define the energy due to the magnetic field
H by:

1 2 1 2
(3.2) Sri(H) = 3 fR3 |[H(x)|" dx = EIIHIILZ(Rg)-
Definition 3.2. Given vector fields M : D — R3 and H : R? — R?, we define a
vector field B : R? — R3 by
(3.3) B:=H+M,

where
~ ] M(x), xeD;
M(x) = { 0, x ¢ D.

Definition 3.3.(iv) We define the total magnetic energy as:
Smag(M, B) := Eun(M) + Eer(M) + 8fi(B - M)

1 1 _
= | o) dx+ SITMIE , + S5 = 1

(v) Finally, for an electric field E € L2(R3), M € HY(D), B € L>(R?), we define the
total electro-magnetic energy by

8el.mag(lw’ B, E)
1
(BA) = Eag(M, B) + Sz,
1 1 - 1
- fD HM) dx + SIVMIL, ) + S11B = Mgy + SIEI g

Notation 3.4. For simplicity, we define V := H](D), H = LZ(D), & = Celmag
¢ :=Ve¢. And Q :=[0,T] x D, Qo := [0, T] x R3.
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Proposition 3.5. For M € V, if we define AM € V' by
(35) V’<AM, M>V = —<VM, VM>L2(D;R3><3), YuelV.

Then the total energy & : V x L2(R?) x L2(R®) — R defined in (3.4) has partial
derivative with respect to M and satisfies

o5
(3.6) (9_M(M’ B.E) = ¢’(M) —(1pB—-M) - AM, inV’.
Proof. For M,u €V, B,E € L>(R%).
EWM +u,B,E)— &M, B,E)
1 1
= f HM(x) + u(x)) = H(M(x)) dx + Z[[VM + Vull?, - §||VM||%,
D
1 -
_IIB=M —
+2|I

5 1 -
BllE2 g2y = 1B = MG,

where

1
fD (M (x)+u(x))—p(M(x)) dx = fD ¢'(M(X))(M(X))+5¢"(M(X)+9(X)M(X))(M(X),M(X))dx,

0(x) € [0,1] for x € D. We assumed that ¢’ is bounded, so there exists some
constant C > 0 such that

1
| [5¢7 00+ 60ouenuco. uco

dx<C f () dx = Cllully; = o(lully)-
D
Hence
EM +u,B,E)—EM,B,E)

1
= fD (¢ (M(x)), u(x)) dx + o(llully) + (VM, Vu) 2 g3y + EIIVMI@

1
~(1pB — M, u)y + §||u||%,
= (¢'(M) — (1pB = M), uyy + (VM, Vi) 2 ppss)y + ollully)

This implies that gT‘Z(M, B, E) exists.
Hence as an element in V’,

0& ’
v <(9—M(M’ B,E), u> =(¢'(M) — (1pB = M), uyyy + (VM, Vu) 2 p.gixs.
1%

We have defined AM € V' by
V’<AM, M>V = _<VM, V”>L2(D;R3X3)’ YuelV.

So
o0&

3 (M.B.E) = ¢/ (M)~ (IpB~ M) =AM, inV".
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Proposition 3.6. Foru,v eV,
Pe
OM?
Proof. By equality (3.6), we have

(3.7) (M, B, E)(u,v) = L ¢" (M (x))(u(x), v(x)) dx + (u, v)y.

0E 0E
(9_M(M +u, B’ E)(V) - a_M(M’ B’ E)(V) = <¢/(M + M) - ¢/(M)’ V)H + <M, V>V-

And by
(¢'(M +u)— ¢'(M),v)n
= fD [¢"(M(x) + u(x)) = ¢"(M(x)](v(x)) dx
= jl; ¢ (M) (u(x), v(x)) dx + o(llullv),
The proof is complete. O

Proposition 3.7. For the total energy & : V x L2(R?) x L2(R?) — R defined in
(3.4), we have:

(1)
68 _ _ ~ . 2 3
(3.8) GpM.B.E)=B-M.  inL’®),
(ii)
98 _ 00
(3.9) SpMBE)=E  inL2®).

Proof.(i) Forv e L2(R3),
&M, B +v,E) - &M, B,E)

1 . 1 _
SNB +v = M) = SIB +v = Ml g

= <B - M, V>L2(R3) + %”V”H%Z(R%
Hence
g—‘Z(M, B,E)=B- M, in L2RY).
(ii)
&E(M,B,E) — &M, B,E +v)
= S+ P~ SR
1 2
= (E,V)r2@s + §||V||L2(R3)
Hence

0E _ . 2,3
sp(M.BE)=E  inL*®).
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Now we state the main problem which we are going to study in this section:

Problem 3.8. Given the following objects:

My eL¥(D)NV;

ByeL*®RY): V-By=0 inD'[R*R);
Ey € L2(R%);
f € L¥0,T;L*(D));

¢ € CH(R*;R");

/11 € R, /12 > 0.
Find M : [0,T]xD — R3, B : [0,T]xR?> — R3, E : [0, T]xR3> — R3 such that
M e L*(0,T;V)NL®(0,T;L®(D)), B € L*(0, T; L*(R?)) and E € L*(0, T; L*(R?)),
satisfying the following system of integral equations: for every ¢ € [0, T],

f(M(t)—Mo,u> dx

D

(3.10) :ff{(B—M—(zb'(M),/lluxM—/lz(uXM)XM>
0o Jp

—(VM,V[Ajux M — Ay(ux M) X M])}dxds, ue C8°(Q;R3);

(3.11) f (B(t) - By, u) dx = —f (E,V xuydxds, ueCyR;R);
R3 0 R3
(3.12)
f (E(t) - Eo,uy dx = f f (B - M,V xu) dxds—f f<E+f, uydxds, ueCyRY;RY),
R3 0 R3 0 D

and such that
(3.13) IM(x, 1) = |My(x)|, a.e. in Q.

Remark 3.9. Suppose that the functions M, B and E are sufficiently regular , then
fort€[0,T],

i[<‘5(M<r>,B(z),Em)]=<a‘8 dM> +<58 dB> +<08 dE
dr . .

oM’ dr 4B’ dt @’E>L2(R3)
(=p- M X p = M X (M % p))y + (B~ M, -V X E)

L2(R3)

+ <E, VX (B-M)-1p(E + f)>L2(R3)

~lIM x pli2, — |EI3, = (E, f)u.

Hence we infer that for ¢ € [0, T'],

E(M(1), B(1), E(1))-E(M(0), B(0), E(0)) = — fo DlIM(s)xpll3+HIES)I5+ES), £(5))u ds.
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Therefore, taking into the definition of &, we get

1 1 . 1
fD HMD) dx + SIVMOIG; + SIUBE) = MOl ga) + SIEOlla)
[ 2G6) % pF + NEGIE, + (B F5Dnds

1 1 - 1
= ~E)fb(M(O)) dx + EIIVM(O)II%I +51B(0) - M(O)Ilﬁz(Rg) + SIEOl2s).

In the following section we will show the existence of a solution to Problem 3.8.
To do this, we need the Galerkin Approximation:

3.2. Galerkin Approximation and A’priori Estimates.
Definition 3.10. We define

W= {u e LAR?) : V xu e LAR?)}.
Proposition 3.11. W is a Hilbert space with the inner product:

(U, viw = f ((u(x), v(x)) + (V X u(x), V X v(x))) dx.
R3

Proof. We need to prove W is complete. Suppose that {u,} is a Cauchy sequence
in W. By definition of W,

2

2 2
”un - ”m” = ”un - MM||L2(R3) + ||V XUp — V x umIILZ(R3)'

Hence {u,} is a Cauchy sequence in L2(R3) and {V X uy,} is also a Cauchy sequence
in L2(R?). L2(R3) is complete, so there are u € L*(R?) and v € L*(R?) such that
u, — uin L>(R3) and V x u,, — v in L>(R?). Hence for ¢ € C8°(R3),

<V, ¢>]L2(R3) = nll_)n()l@(V X Uy, ¢>L2(R3) = nll_)l’lolo<l/£n, V % ¢>L2(R3) = (u, V x ¢>L2(R3)'

Hence V X u exists and V x u = v. Therefore u, — u in W. This completes the
proof. O

Let A as be define in Definition 2.164, by Lemma 2.171, we can define H, :=
linspan{ey, ..., e,}, where {e,} | are eigenvectors of A. And since W is a separable
Hilbert space, we can find {w,} >, C C8°(R3;R3) such that {w,} is an orthogonal
basis of L2(R?). We define W,, := linspan{wy, ..., w,}. Let us define the orthogonal
projections

m,: H— H,,
Y LARY) — W,

Let us denote by &, the restriction of the total energy function & to the finite

dimensional space H,, X W, X W,,, i.e.

811:HnXWnXWn_>R>

1 2 1 W 2 1 2
Sn(M’ B’ E) = L ¢(M(-x)) dx + EHVM“LZ(D) + EHB -, M||L2(R3) + 5||E||L2(R3)
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Proposition 3.12. The function &, is of class C' and for M € H,, B,E € W, we
have:

@)

(3.14) (VuE)M,B,E) = ¢ (M) — (1pB -1 M) =AM, € H,.
(i1)

(3.15) (VgEDM,B,E) = B— M, in W,.
(iii)

(3.16) (VEE)M,BE)=E,  inW,.

Proof.(i) For M,u € H,, B,E € W,. H, is a finite dimensional space, so || - ||z =
Il llv in Hy, so

EM+u,B, E)-&E,(M,B,E)

1 1
= f oM +u) — p(M)dx + EIIVM + Vullfq - §||VM||%1
D

T P,
+§”B -M- u”LZ(R3) - E”B - M”H

1
— [ @O0+ o) + (M Tz i, + 519l
D

1
~(IpB = M uyy + 5 lully

= (¢'(M) — (1pB — x) M), u) + (VM, V)2 ppssy + o(|lull)
= (¢'(M) - (1pB — ) M) — AM, uypy + o(||ully).

Hence by the definition of the gradient,
(VuE)(M,B,E) = ¢/(M) = (IpB—m,/M) =AM, € H,.
(i1) Forv e W,

En(M,B +v,E) - E,(M, B, E)

1 _
SIB + v = M7,

1 _
= FIB+ v = Ml o,

B-M L
(B=M.v) 0+ 5 s,

= <B - ﬂ'l‘,iVM, v>L2(R3) + O(HVHLZ(RS)).
So

(V3E)M,B,E)=B-n)M,  inW,.
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(iii)
E,(M,B,E +v) — E,(M, B,E)
=§M+m@m—%wﬁmﬁ
1 2
= (E,v)L2@s) + §||V||L2(R3)
= (E, )23y + oVllL2gs))-
So

(Ve&n)(M, B, E) = E, in W,.
m

To solve the Problem 3.8, we first consider the following problem in finite di-
mensional spaces:

Problem 3.13. Given are the following objects:
My eL®(D)NnV;
By € L2(RY); V-By=0, in?D'[R*R);
Eg e L’ (R7);
MO,n =, Mo;
By = m) Bo;
_ Wp.
EO,n - ﬂ-n E()’
A eER, A >0;
[ €L, T;H);
¢ € CC(RMRY);
Find Mn : [O’ OO) — Hn’ Bn : [Oa OO) — Wn7 En : [09 OO) — Wn’ forT € [0’ OO],
satisfying the following system of differential equations:

dﬂfir;(t) = N7 (Mu(t) X pn(My, Bp)(1))

(3.17) — 7 (Mp(2) X [My(£) X pu(My, By)(D)]), € Hy,
where p,, : H, X W,, — H,, is a map defined by
pn(Mne Bn) = _(VMnan)(Mna B, En) = _¢,(Mn) +AM, + lD(Bn - ﬂy‘:VMn) € H,.

(3.18) Bulh) o WV xE). €W
dE, ; 3
(3.19) dt(t) =1 [V X (Bu(t) — 7)) (M) — 7)) [LD(En(D) + fu(0)], € W
And
(3.20) M,(0) = Mo,
(321) Bn(o) = BO,ne

(3.22) E,(0) = Eqp.
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Lemma 3.14. Let X, Y be Banach spaces, Y : X¥ — Y be a separately continu-
ous k-linear functional. Then yy, is continuous.

Proof. X is a Banach space so by Lemma 2.155, we only need to prove  is se-
quentially continuous. And we will prove it by induction.

When k = 1, the continuity of ¢; followed by the separate continuity.

Assume the conclusion is true for kK = m, we prove it is also true for k = m + 1.
Let us assume that x)"*! — x7"*! in X"*!, and we denote x"*! = (x,, x), xp*! =
(x0, x), then x;' — x{ in X™ and x,, — xo in X. We define g, : X — Y by

8n(X) = Y1 (x, X)), xeX.

Then g, is linear and bounded by the separate continuity of ,,+;. For fixed x € X,
Umi1(x,7) © X™ — Y is a separately continuous m-linear functional, which is
continuous by our assumption. So for fixed x € X, limy—co g4(X) = Ym+1(X, X) €
Y. Hence for fixed x € X, {g,(x)}, is bounded in Y. Moreover by Corollary 2.151,
X is of second category in itself. Hence by the Banach-Steinhaus Theorem 2.152,
{gn} is equi-continuous. Then we prove limy, e Ym+1(xXg) = 1 (X)) = 0.

lﬁm+l(xnm+l) - ‘/’m+1(x6n+l) = Wm+1(xn’xz1) - (ﬁm+1(x05x81)
= gn(Xn — Xx0) + Ym+1(x0, x;ln) = Ym+1(x0, Xf)")

By the equi-continunity of g,, g,(x, — xo) — 0 as n — oo. And if we define

Wm()’) = lﬁm+1()€0, .)’)a y € Xm’
then
Yms1(X0, X)) = Y1 (X0, X)) = Ym(x))) = Ym(xy),

which goes to 0 as n — oo by the assumption. So when k = m + 1, ¥4 1S
continuous. This ends the proof.
O

Lemma 3.15. Let X, Y be Banach spaces, k < oo, Y : X¥ — Y be a separately
continuous k-linear functional. Then there exists C > 0, such that

[i(xts .o x| < Cloxy| -« [xgl,
where |- | .= - lIx.

Proof. We prove by contradiction. Let us denote | - [ := || - ||xx. Suppose that
for any n € N, there exists some x, € X*, such that |x,|; = 1 and Wi (xn)| > n.
So Wi(x,)] — o0 asn —> oo, Butas k < oo, {x € XK xy = 1) is compact.
Hence there exists xo € X* such that |xoly = 1 and there is a subsequence of {x,}
which we can still denote by {x,} which satisfies x, — x¢ in XK asn — oo, By
Lemma 3.14, ¢ is continuous. So yi(x,) — Yi(xg) € Y, this is contradict to
[ (x,)] — o0 as n — co. Hence there exists a C > 0, such that for x € Xk,
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Ixlx < 1, [Yr(x)| < C. Hence for x = (xq,...,xz),
k k
X1 Xk
g | LIt <€] [
This completes the proof. O

Lemma 3.16. Let X, Y be Banach spaces, X has finite dimensional, y : X* — Y
be a bounded k-linear functional. If we define f(x) := yi(x,...,x), then f is a C!
function, so it is Lipschitz on balls in X.

Proof.(i) Proof of f € C'.
For x,y € X,

k
FE+) = f) = Y x5y % 2) + olly).
i=1
Hence
k
() = Z Ur(X, .o XV, Xy e, X).
i=1

And for x,z € X,
|f c+2) - @)

k k
= sup wk(x,...,x+z,y,x+z,...,x)—Zt//k(x,...,x,y,x,...,x)
yeX |I'3q i=1
= 0(2)).

Hence lim,_o ||f"(x + 2) — f’(x)|]| = 0, so f’ is continuous.
(ii) Proof of f is Lipschitz on balls.
For 0 < R < oo, suppose that a,b € B(0,R) C X, then by Lemma 3.15,

lf(a) - f(D)
1
- U f'(a+6(b—a)(b—a)do
0

1 k
f Dlwa+0b-a),- b-a--a+0(b-a)df
0 =1

< CkR*'|b - al,
where y(a +0(b —a),--- ,b—a,--- ,a+ 60(b — a)) means b — a at the ith position,
and all the other positions are a + 8(b — a).
This completes the proof. O

Proposition 3.17. Define the maps
(3.23)
Fl: HxW,xW, 3 (M, B, E) > A170,(Mxp,(M, B))—As7,(MX[Mxp,(M, B)]) € H,,

(3.24) F2:H,xW,xW,3(M,B,E)— —1"(VXE)e W,
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(3.25)
F3:H,xW,xW, 3 (M,B,E) )/ [Vx(B-r) (M) -7 [1p(E + f,())] € W,.

The maps F), F? and F?> are Lipschitz on balls.

Proof. H, and W, are finite dimensional spaces, so all the norms on them are equiv-
alent. Hence there are some constants C;, C, > 0, such that

CillMllL=y < IMllz, < CollMllL=),  CillBllzo@3:r3) < lI1Bllw, < C2llBllzo@3:r3),

Cill(M, B, E)llg,xw,xw, < IMllLen)+1Bllpem@sr3) HIEl Lo ®3:r3) < C2[(M, B, E)||H,xw,xw,
forall (M,B,E) € H, X W,, x W,.
Assume that ||(M, B, E)||g,xw,xw, < R for some R > 0.

@) :

Let us denote:

FY(M,B,E) := M x p,(M, B),

F2(M,B,E) := M x [M x p,(M, B)].
Then
|Fs' (M1, Bi, Ey) = F,)' (M2, Bo, Ex)|,
= [|My X[ = ¢’ (M) + AMy + (1pB1 = M1)] = Ma X [ = ¢/ (M2) + AM> + (1pBy = M),
< [[M1x [ = ¢/ (M) + AMy = Mi] = Mo x [ = ¢/ (M2) + AM, = M|,
+||My X 1pBy — My X 1pBslly, -

In finite dimensional case, all the linear maps are bounded, so by Lemma 3.16
and since linear combination of Lipschitz continuous functions is Lipschitz, there
exists L; > 0, such that

[M1x [AMy = Mi] = Mo x [AMa = M5,
< LilIMy — Mz,

< LiCy||(My, By, Ey) - (My, B, Ez)”anwann-

M1 x ¢' (M) = Mo x ¢ (M),
< ||My < [¢' M) = ¢ M|, + [|(M1 = M) x ¢ (M),
< Rll¢"|lr=lIM1 = Mallg, + ¢ llz=l|M1 — Ma|| 1
< C2 (RII" Iz + 116 llz=) || (M, Br, Ev) = (M2, B, )|y e
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And
IMy X 1pB1 — M2 X 1pBa||y,
= ||My X (1pBy — 1pB2) + (M1 — M2) X 1pBs||y,
< Rll1pB; — 1pB;||u, + RIMy — Ma||n,
< CoR(I1B1 = Ballp oz, + 1M1 = Mallie)
= CoR||(M1, By, Ey) - (M, Bz,Ez)”Hannan-
Hence,

|3 (M, Bi, EV) = Fy'(Ms, Ba, Ea)|,.

< Co (L1 + R+ RIS s + 11 lle=) (M1, Bis ED) = (M2, B2 B2y -

And
|F22 (M1, BY) = F, (Mo, By,

= || < (0 < [ M) + AMy + (181 = M)

=M X (M2 X [~/ (M2) + MMz + (1pB> = M)} |,

n

< [|My X (M1 x [=¢' (M) + AMy = M1} = M2 x (M2 % [¢'(M2) + AM> = M),
+[My X {My X 1pB1} — My X {M> X 1pBa}l|y, -

By Lemma 3.16 and since linear combination of Lipschitz continuous functions
is Lipschitz, there exists L, > 0, such that
[M1 x (M) x [-¢/ (M) + AMy = My]} = My X {Ms X [-¢/ (M) + AM; — M2]}||Hn
< LMy — Ma|l,
< C3L,||(M,, By, E1) — (Ma, Bz,Ez)Hanwnan-

And
1My X {M; X 1pB1} — My X {M3 X 1pBo}||y,
< [IMy x{My X (1pBy — 1pB)}lg, + 1My X {(M1 — M2) X 1pBa}lly,
+ (M — Mz) X {M> X 1pBo}lly,
< R*1pBi — 1pBall, + 2R%|IM) — M|,
< 3C3R(|(M1, Bi, Ev) = (M2, B2, E2)||y Ly -

Hence

|F)> (M1, B1, Er) = F, (Mo, Bo, E)||,, < C3(La+3R%)|(My, By, ED=(Ma, Ba, Eo)||y -
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F) is a linear combination of F!!' and F!? and both F)! and F!? are Lipschitz on
balls, therefore F' ,i is Lipschitz on balls.

(ii) F? is a bounded linear map, so it is Lipschitz on balls.

(iii) Except the term 7)Y £,(1), F ,3, is a linear combination of bounded maps on M, B
and E. So there is some constant L3 > 0 such that,

|Fa(My, B, Ev) = F(Ma, B, B,

w9 [(B) ~ By~ (i1, — 112)]}) — ¥ [1p(Es — B

Wa
< L3 (IMy — Mallg, + 1By — Ballw, +11E1 — Ezllw,)
< C3Lsl(My, By, Ev) = (M2, Ba, B2l xw,xW,
Hence F? is Lipschitz on balls.
This completes the proof. O

Definition 3.18 (Definition of solution of Problem 3.13). We say that a function
(M, By, Ey) 1 [0,00) — H, X W, X Wy, is the solution of Problem 3.13 iff

f
M,(t) = Mo, + f FY (M, (s), Bu(s), En(5)) ds,
0
Tt
B,(#) = By, + f F2(My(s), Bu(s), Eq(5)) ds,
0

Ey(1) = Eop + fo FML(), Bals), Eal5)) s,
for ¢ € [0, o).
Lemma 3.19. The problem 3.13 has a unique solution.
Remark 3.20. The result of Lemma 3.19 is well known, see for example [3].
Theorem 3.21. Foralln € N,
(3.26) 1Myl = [|Mn(0)l|a-
Proof. By (3.17), we have

dIIMn(t)II%,_ dM, (1)
P _2< % ,Mn(t)>H-

And

< dM, (1)

dr Mn(t)> = Al(”n(Mn(t) X pn(Mns Bn)(t))s Mn(t»H

H
_/12<7Tn(Mn(t) X [My(2) X pp(Mp, Bn)(t)])’ M, (D))y

Since 7, : H — H is self-adjoint and by the fact (a X b, a) = 0, we get
(”n(Mn(t)xpn(Mn’ Bn)(t))a M,())y = <7Tn(Mn(t)x[Mn(t)xpn(Mm Bn)(t)])’ M, (1)) = 0.
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Therefore
dIM, I3, dM, (1)
= 2 M t = 0
dl’ dl’ ] n( ) "
Hence [|M,(Dllz = [|M,(O)l|x. o

Theorem 3.22. There is a constant C > 0 such that for every n € N,

(3.27) IMpllz~0.175v) < C;
(3.28) 1By — 7)) Myl 071283 < Cs
(3.29) IEnll= 0,123y < C;
(3.30) 1My X pullr20,7.m) < C.

Proof. By the equations (3.17)-(3.22), we have

d&, _ (06, aM,\ |98, dB, . (36 dE,
de \oM," 0t [y \OB, dt [agsy \OE,  df [1oms

= (=P M7 (Myy X 1) = 7(Myy X (Myy X p)) g + (Bo = 7 My, =1} (V X E,))

L2(R%)
+(En ) (VX (B, = 7} (M) = 1p(En + f1)))

~LlIMy, X pall3 = WEAZ = Ens fida-

L2(R3)

Hence we get the energy estimate:

En(1)=E,(0) = — fo DM ()X (5 HIEn ()3 +(En(S), () ds, t€[0,T].
Therefore
1
f P(M,(t)) dx + 5||VMn(r)||§
D

1 W a7 2 1 2
+§”Bl’l(t) - ﬂ-n Mn(t)llLZ(R3) + EHEH(I)”LZ(R?)

(3.31) + fo IMyu(5) X pu(IZ + 1Ea(S)IZ + (En(S), f2(5))a ds

1 1 _ 1
= fD (M) dx + SV Mol + S1Bon = 1 MonliZaga) + 5 1E0nlagea),
forall r € [0, T].
With the fact that

1 !
<5 [ VB 1o 0

fo (En($), fu(s))g ds
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we have

1 1 _
fD SMu(0) dx + SIVM Ol + S11Ba(t) = 7 MOl g,
1 2 ' 2 1 2
+§||En(t)”]L2(R3) + o || M (s) X pn(S)HH + _”En(s)”H ds

1
(3.32) < f d(Mo,,) dx + EIIVMo,nIIE, IIBon—n MOnll]Lz(R3
D
1 5 1 (T 5
+5||Eo,nlle(R3)+5 ; Ifn()llF; ds, te€[0,T].

Since we assumed that ¢ is bounded, so there exists C; > 0, such that |¢p(Mp ,(x))|g3 <
C,, hence

fD #(Mo,,) dx < C (D).

And
IVMoullg < lIMollv;

1Bos = 7 Mol 2 gy < 2 (1Boall 2y + 1Mol 2 gs) < 2 (1Boll 2 s, + 1Moll;)

IE0.nlle2r3)y < IEollL2(m3);

T

[ U ds < W7
Take C2 = Cupa(D) + IMolFy + 2 (IBolR s, + Mol ) + 1Bl + 1Rz g 1
then by (3.32), we get the inequalities (3.27)-(3.30). O

Theorem 3.23. There is a constant C > 0 such that for all n € N,

(3.33) ”Mn”Hl(O,T;]L%(D)) =G

(334) ”Bn”Wl*‘x’(O,T;W') S C,
(335) ||Eﬂ||Wl'°°(O,T;W’) < C
Proof of (3.33). By Theorem 2.96, there is a constant C; such that

lellpspy < Cillully, u€V.
So

T
My (Mo x ol o = f 1My X (M x )l dr
L%(0,T;L2 (D)) 0 L2(D)

IA

T
[ 10128, 0
0

IA

sup 1M1y f 1M, X pully de
te(0,T

CIHM ||L°°(OTV)”M ><pn”

IA

.2
L2(0,T;H) 'C2'
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By theorem 2.98, there exists C3 > 0 such that

llull, 3 < Cslluel, ueH.

3
2

Hence

||7Tn[Mn X (M, Xpn)] - M, X (M, Xpn)”]]_,%(D)

<C3 ””n[Mn x (M, Xpn)] - M, x (Mn Xpn)”H — 0, asn — oo,
So there exists a constant C, > 0, such that there is a N € N for n > N, we have
ea[ Mo x (M, x p)]|

120.7:L3 (D))
< [lrmal M x (M x )] = Mo X M X P 3 )+ M X (M X P g
< 2Cs.
Similarly, by (3.30) there is some C4 > 0 such that for all n € N,
”7Tn(Mn xpn)lle(O,T;]L%(D)) < C4.
Therefore by (3.17), we have
‘ dMm,
dr ll2o.ri o)
< M X ol 3+ Ao el M X M o) 30
< |A42C, + A2Cy4.
Together with (3.27), we get that there is some C > 0 such that
IMall, orLiop
dMm,,
< IMyll I 3
L2(0,T;L2 (D)) dr 200,102 (D))
<C.
This completes the proof. O
proof of (3.34). By (3.18),
= sup ||, (VX E,®)|,,
H dr lle=,r;w)  refo.1) e ! “W

w (T (¥ % Ef0),w), |
sup sup
€[0T weW lwllw

[(En(0), ¥ x 7l w)

12 (R3)

sup sup
1€[0,T] weW [Iwllw

IA

IEnllze0.7:123))-

Then by (3.29), we get: there exists some C; > 0 independent of #n, such that
dB,

’ dr

<Cj.
L>(0,T;W")
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And
lw (B (1), wwl
sup sup —————""-
1€[0,T] weW wllw

1Bl ze=0,1;w7)

A

< IBullz=,7:12®3))
< 1By = Myllp=(o,r:2®3y) + IMnll 1= 0,7:02(D))-

Then by (3.28) and (3.27), we have: there exists some C, > 0 independent of n,
such that

IBullL>.1:w) < Ca.
Hence let C := C| + C,, we have got,
”Bn”WI*‘X’(O,T;W’) S C
This completes the proof. O
proof of (3.35).
OE,
ot lr=,T;w")
0 |V % (By =7} (W) | = 7 [1pEn + 1]

L>(0,T;W")
w! [ @0 = mr ), + s [ {1080 + Zo]],,

IA

sup
1€(0,T)

(Bu(t) = )/ (My(1)), V X 7T W23y

lIwllw

|

.
1Ba = 73 M| o 72083 + WEnllzso 723y + Whlliso.riz20)

IA

sup sup (
te(0,T) weW

(1pE,(@) + [0, 1) Whr2m3)
lIwllw

IA

In the proof of (3.34), we have proved that 3C; > 0 independent of n, such that
||Bn||L°°(0,T;L2(]R3)) < C].
aVM, — M, in L>(R?) and by (3.27), we get: for n large enough, there exists
some C; > 0, such that
W
””n M”||L°°(O,T;L2(R3)) <G
SO
W
”B" — Ty M”||L°°(0,T;L2(R3)) <Ci+ (.
By (3.29), 4C5 > 0 independent of n, such that
IEnllzo0,7:12®3) < C3

, by our assumption, f € L*(0,T; LZ(D)), hence there exists C4 > 0 independent
of n such that

“fn||L°"(O,T;L2(D)) < Cy.
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And
[KEx (1), w)]
IEullz=.r:w = sup sup ——=—= < ||E,llr~(.r12@3) < C3»
) we0  Wiw
Hence
1
IEallw1o@.r:wn < [(C1 + C2 + C3 + C)* + C3]? =: C.

This completes the proof. O

3.3. Proof of Limit is a Weak Solution. L*(0,7;L?(R?)) is the dual space of
LY(0, T;L*(R3)) and L®(0, T; W’) is a dual space of LY0,T;W). By the Banach-
Alaoglu Theorem (Lemma 2.143), and (3.27)-(3.30) and (3.33)-(3.35), we have:
There exist H, E, M, P such that for taking some subsequence,

(3.36) B, - M, — H weakly star in L*(0, T; L*(R*)) n L*(0,T; W’),
and

d(B, — 7" M,)

(3.37) -

dH
— o weakly star in L=(0, T; W’).

(3.38) E, — E weakly star in L*(0, T; L*(R*) n L*(0, T; W"),

and

dE, dE .
— weakly star in L=(0, T; W’).

(3.39) T &

(3.40) M, — M weakly star in L™ (0, T; V), weakly in H'(0, T;]L%(D)).

(3.41) M, x p, — P weakly in L*(0, T; H).

The proof of (3.37) and (3.39) are the same, so we will only prove (3.39).

|

By the Banach-Alaoglu Theorem 2.143 and L*(0, T; W’) is a dual space of LY, T; W),
there is some F € L*(0,T; W’) such that

dE,
dr

Proof of (3.39). By (3.35),

<C.
L=(0,T;W")

dE,
dr

—> F weakly star in L*(0,T; W’).
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Then we only need to prove F = £ in L0, T; W").
For any u € C3(0,T; W), we have
T T
j(; wH{E®),u' ())w dt = lim | W En(t), W' ()w dt
T
= —lim | < dE.0) u(t)> dt
n—oo J dr w

T
- j(; wr(F (1), u(1))w dt.

Hence F = 4£ in L°(0, T; W’). And the proof has been complete.

We define B := M + H, then
(3.42) B, —> B weakly star in L*(0, T; L*(R?)).
Proof of (3.42). Foru € L'(0, T;L*(R%)), by (3.36) and (3.40),

T T
f dr | (B,u)ydx = f <M+H uydx
0 R3

zf f{M u)dx+f dtf(Hu)dx
R3

= lirnf dtf <7r,‘iVA7In,u>+<Bn—7r,leA7ln,u>dx
0 R3

n—oo

T
lim dtf (B, u)dx.
0 R3

n—oo
This completes the proof.
Theorem 3.24. (M, B, E) in (3.36)-(3.40) is a solution to Problem 3.8.
Proof of (5.16). By (3.36) and (3.19), for u € CSO(R3;R3), t € [0, T], we have

t
f (B—- M,V xu)ydxds
0 Jr3

!
lim (B, — 1"V M,,V x u)dxds

n—oo R3
= lim (VX (B, —m, M) uydxds
n—oo 3

Y(1pE, +fn),u> dxds

R
limff<
n—o0 R3

t
= lim (En(t) Eo . u)dx + lim f f (7 pE, + f),u) dxds
R3

n—oo n—oo

:f(E(t)—Eo,u)dx+ff (1pE + f.u) dxds.
R3 0 R3

This completes the proof.
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Proof of (5.15). By (3.38), (3.18) and (3.42), we have: for u € C3°(R*; R?),

!
f (E,qu)dx
0

= lim (E,,V Xu)dxds
n—oo R3

= lim f f (7" (V x E,), u)dxds
n—oo

dB
= limff <— n,u>dxds
n—oo )y Jp3 dr

= lim — | (Bn(?) — By, u)ydx
R3

= —f (B(t) — Bo, u) dx.
R3

This completes the proof. O

Lemma 3.25 ([48],Th 3.2.1). Let Xy, X, X| be three Banach spaces such that Xy —
X — X, where the embeddings are continuous. And Xy, X1 are reflexive and the
embedding Xo — X is compact. Let T > 0 be a fixed finite number, and let ag, o
be two finite numbers such that a; > 1, i = 0, 1. We consider the space

Y= {v € L™(0,T; Xo), v = % e L (0, T;Xl)},

with the norm
IVlly = Vllz2o0,7:%0) + IV Il 0,75,
Then Y c L*(0,T; X) and the embedding Y — L*(0,T; X) is compact.
Proposition 3.26.
(3.43) nh—{?o IM — Myllpsg) = 0.
Proof of (3.43). By Theorem 297, V — L*(D) is compact. Let Xo =V, X =

L*D), X, = L%(D). Then Xg — X <— X;. By Theorem 2.147, Xy and X; are
reflexive. Let ap = 4, @; = 2 and

d
Y = {v e 140, T; V), é e 120, T;Li(D))} .
Then by Lemma 3.25, for T < oo, the embedding ¥ < L*(Q) is compact.
By Theorem 2.98, V < L*(0) continuously, so by (3.27), we get
(344) ||Mn”L°°(0,T;L4(0)) < C, Vn

By (3.44) and (3.33), |[M,|ly < C. So {M,} has a subsequence converges (still
denoted by {M,}) in L*(Q). Let us assume this limit is M’. Now we need to show
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M = M. L*Q) — L*Q) continuously, so M, also converges to M’ in L3(Q).
Hence by (3.40),

1M - M|,

(M - M/, M — M,)]LZ(Q)
= lim (M - Mn,M— M,)ILZ(Q)

n—oo
Jim gy (M = My, M = M) 1o 12v7)
=0.

Therefore M = M’ a.e. and both in L*(Q), so M = M’ in L*(Q). This completes
the proof. O

()

Proposition 3.27. For almost everyt € [0,T], u € Cg" (D),

(3.45) f(M(t)—M(O),u)dx:/llf f(P,u)dxds—/lzf f(P,uxM)dxds.
D 0 D 0 D

Proof of (3.45). By the Holder’s inequality (Lemma 2.141), for M € L*(D) and
P € H we have
IM Pl g < UMl lIM ¢ Pl

Hence
4 T 4
IMxP|, = IMxP|*, dt
L3(Q) 0 L3(D)
T Mol ]
< [ IO, 1000 x PO
4
<

4 T 4
sup [IMOII 4, f IM(@) x P@)llp; dt
te[0,T] 0

4 T 4 % 3 1
||M||Zm(O’T;L4(D)) (v[; (IIP(I)HZ) dt) -T3 (again by Holder’s inequality)

4
— 3
= WM o s

4
3.

T3
By (3.40) M € L™(0,T; V) c L™(0, T;L*(D)) and by (3.41) P € L*(0, T; H) =
L2(Q). Hence M x P € L3(Q). Similarly M, X (M, X p,) € L3(Q) too.
For any u € L*Q), by (3.43) and (3.41),

L%(Q)(Mn X (Ml’l Xpn) — M X P, u>]L4(Q)‘

s (M, — M) X (M, Xpn)+MX(Mnxpn_P)al'i)L“(Q)’

L3(Q)
T T
< f dzf|<Mnxpn,ux(Mn—M)>|dx+f dtf(M,,Xpn—P,uxMNx
0 D 0 D
1 1
< 1My X pallzgyllull?, 1My = MI2, -+ |(My X py = P X M)p2p)|

LYQ) LYQ)

— 0, asn — oo.
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Hence we have
.4
(3.46) M, X (M, X p,) — M x P weakly in L3(Q).

By (3.43), we have lim, o [|My (1) — M(D)ll 4py = O for almost every 7 € [0, T].
Hence for u € Cg"(D), ae. te[0,7T],

f(Mn(t) — M(1), u)dx
D

< IM(0) = MOllsipyllal 3, — .

Therefore by (3.17), (3.41) and (3.46),

f(M(t) — M(0), uydx
D

lim | (M,(t) — M,(0),u)dx
D

n—oo

'
= lim ds f</ll77n(Mn X pn) — /127Tn(Mn X (M), X pn))> uydx
0 D

n—oo

! !
/Ilf f(P,u)dxds—/lzf f(P,uxM)dxds.
0 JD 0 JD

This completes the proof. O

Proof of (5.14). By (3.43), M, — M ae. in Q, and by our assumption ¢’ is
continuous, so ¢’ (M,) — ¢’(M) a.e. in Q. And we assumed that ¢’ is bounded,
so for p € [1,0), ¢'(M,) € L? (Q) and ¢’ (M) € L’ (Q). Hence

loc loc

(3.47) ¢’ (M) — ¢’ (M) strongly in LY (Q), Y0 < p < co.

loc

Hence similarly as before, we have
(3.48) )
My, X [1p(By = 1 My) = ¢/ (My)] — M x [1p(B = M) = ¢/(M)] weakly in L (Q).

Then since M, x AM,, = M,, X p, — My, X [1p(B,, — 7l M,,) — ¢’ (M,))], (3.41) and
(3.48) yield

(3.49) M, x AM,, — P — M x [1p(B — M) — ¢'(M)] weakly in L%(Q).

Soforte[0,T],ue€e C8°(Q), we have

n—oo

(3.50) lim f f(M,,xVM,,,Vu)—(P—Mx[lD(B—A7I) = ¢/(M)],u)dxds = 0.
0 JD
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For u € L*0,T; WD), let X := W'*(D), by (3.40), (3.43), we have: for
ue L%0,T;X),

) <VM,1 X Mn - VM x M, V’/‘>L4(0,T;X)

4
L3(0,T;X’

T
f dtf(VMann—VMXM,Vu) dx
0 D

T
f dtf (VM,, — VM) x M,Vu) dx
0 D

S (”VM"!”ILZ(Q) ”Mn - M”L4(Q) ||VM||]L4(Q) + LN(O,T;LZ(D)) <VMn - VM, M X Vu)Ll(O,T;LZ(D)))
— 0, asn— oo

T
< f dtf KVM, x (M,, — M), Vu)| dx +
0 D

So forz € [0,7T], u € Cy(Q), we have

n—oo

!
(3.51) lim f f (VM, x M, — VM x M,Vu) dxds = 0.
0o Jp
Comparing (3.50) and (3.51), we get
t
f f(P— M x [1D(3— M) —¢’(M)],u> — (M X VM, Vu) dxds = 0.
0 Jbp

Hence for 7 € [0, 7] and u € L*(0, T; W'*(D)) we have
(3.52)

! !
ff{P,u)dxds:f f(MXVM,Vu)+<1D(B—1\7I)—¢’(M),u><M}dxds.
0o Jp 0o Jp
We can define AM € L*(0,T; H) by
! !
f dsf(MxAM,u)dx::f dsf(VMxM,Vu)dx, u € W (D),
0 D 0 D
then

fdsf(P,u)dxzf dsf<Mx[1D(B—A7I)—¢’(M)—AM],u> dx, ueW"(D).
0 D 0 D

Hence for u € C7(Q),
(3.53)

ff(P,uxM)dxds:f f(MxVM,V(uxM))+<1D(B—M)—¢’(M),(uxM)xM)dxds.
0o Jp 0 JD
Therefore by (3.52), (3.53) and (3.45), we get

f<M(t)—M0,u> dx
D
!
=ff{(B—M—¢'(M),/11u><M—/lz(uxM)xM>
0o Jp

—(VM,V[Ajux M — Ay(ux M) X M])}dxds, ue C8°(Q;R3);
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This is (5.14). O
Proof of (3.13). Letu € C(D,R). Then we consider
V:H>Mv— (M,uM)p € R.
Forve H,
Y(M +v) - (M)
=dM+v,.M+vyg— (M, M)y
= Q2¢M,v)u + ¢V, V)n.

Since H* = H, we can see that /(M) = 2uM.
Hence by (3.17),

(M, (1), uM, (1)) — <M0,n, uMO,n>H
= Y(M(1)) — (Mo )

! dm,
- f <w’<Mn<s)), o > ds
0 S |H

!
:f<2uM(s), dM"> ds
0 ds [y

=0, te[0,T].

Hence

fD u(x) (Mo (8, )1 = 1Mo p(0)I) dx

= f (My(t, x), u(x)M,(t, x)) dx — f (Mo (t, x), u(x)Mo 5 (t, x)) dx
D D

= (M), uMp (D)) — <M0,n’ uMO,n>H
=0, te[0,T].

u € Cy(D;R) is arbitrary, so [M,(t, x)| = |[Mo.(x)| a.e. in Q. And by (3.43), we
have lim,,_,.o M,, = M a.e. in Q. So

M, 0] = lim [M (1, )| = Tim [Mo,(t, )| = [Mo(0l,  ae. in Q.

This completes the proof. O
Theorem 3.28.

(3.54) E(0) = Ep.

Proof. Lety € C'([0,T]; R3) such that Y(0) =1 and Y(T) = 0. Then

T T
)" f (E@0), ' O)V)2@3)
0

T |6E
f < 0] W)v> dt = (E@), p(tW)12ws)
0 ot L2(R3)

T
= —(E(0), V)13 _fo (E@), ¢/ (V)23 dt.
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Hence by (3.38), we have:

(E(0),v)

T T
f (E(0), ¢ (Hyvydr - f <@ W(t)v> dr
0 0 ot

T T
lim ( f (En(0) 0/ (6v) dt f <‘9E”(”,w<r>v> dz)
n—oo 0 0 a[

li_)m (En(0),v)

lim (7! E°, v)
n—o00

(Eop, V), Yve W

Hence E(0) = E). O

Definition 3.29 (Lower semicontinuous). A function f from a topological space X
to R is called lower semicontinuous iff for a € R, the set {f > a} is open in X.

Lemma 3.30. Let X be a Banach space, then the norm on X* is a lower semicon-
tinuous function with respect to the weak star topology.

Proof. For a € R, we have

yeX*: sup Ky, x)|>a}

lIxllx=1

) bex 1yl > ah

lIxllx=1

ye X" : yllx- > al

For x € X, {y € X* : [{y,x)| > a} is open in the weak star topology of X*, so
{y € X* : ||yllx+ > a} is also open. Hence || - ||x+ is lower semicontinuous. O

Lemma 3.31. Let X be a Banach space, if f : X — R is lower semiconinuous,
then if x, — xg in X, we have

f(xo) < liminf f(xy).

Theorem 3.32.
(3.55)

t
&)+ fo (NpES)IIZ, +IM(s) X p()IZ + (f(5), 1pE(s))m)ds < EQO), 0<t<T.
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Proof. For r € C([0, T];R), by (3.31) we have
T T
f f S(Mu(D)2(D dx dt + f IV MAOrOIE, di
0 D 2 0
1 r W 1 2 1 r 2
+§ L ”[Bn(t) - 7Tn Mn(t)]r(t)”LZ(R}) dt + 5 L ”El’l(t)r(t)”LZ(RS) dt
T !
+ fo fo POIMAS) X pu(IE + PONESSIE + POE(s), £()) ds d
T 1 T
- f f (Mo (t)dxdt + - f IV Mo I dr
o Jp 2 Jo

I . I
+§ f(; ”[BO,n - ﬂr‘:VMO,n]r(t)“]iZ(RB) dt + 5 ‘f(; ”EO,nr(I)Hiz(Rz) dt9 te [Oa T]

By (3.36)-(3.41), we have
(3.56) r[B, —n M,] — rH weakly star in L*(0, T; L*(R*)) n W10, T; W").

(3.57) rE, — rE weakly star in L(0, T; L*(R*)) n W0, T; W’).
(3.58)

1

T 2 T 2
( f (1) dt) E, — ( f (1) dt) E weakly star in L*(0, T; L2(R*))nW">(0, T; W").
(3.59) rM, — rM weakly star in L*(0,T; V), weakly in Hl(O, T; L%(D)).

(3.60) rM,, X p, — rP weakly in L*(0, T; H).

And by (3.43), we have M, (t,x) — M(¢, x) almost everywhere in Q together
with the continuity of ¢, we have

T T
liminf f f S(M,(1))r*(r) dx dt = f f H(M(0)r*(¢) dx dr.
n—e - Jo Jbp 0 JD

Then with Lemma 3.30 and Lemma 3.31, we have

T T
f IVM(0)r(0)|7 dt < lim inf f VM, (OrDI13, dt.
0 n—e - Jo
T T
f ILB() — BEOIAOIE, dr < liminf f IEB(0) — 7 B, 1FOIE
0 n—eo - Jo

T T
f IE(@0)r(0)lI7 dt < lim inf f IE,(Or@lI3, dt.
0 n—oo O
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T 1
fo fo POIM(s) x p(s)l; + P OIS ds di

T t
< liminf f f POIMy(5) X pu(S)I3; + P(ONEn(8)II2, ds dt.

n—oo

And
llmlnff f 2(t)(E (8), fu(s))g dsdt = f f 2(t)(E(s) f(s))y dsdr.

n—oo

Hence
f ' f (M(D)r*(r) dxdr + 1 f ' IVM()r(0)][2, dr
f IEB(®) = SOOI 5o At + 5 f IE@OIEa g, di
¥ fo fo POIMCs) X p()IE + PONES)F + rAOCE(s), £(s))n ds de
) hm}f{f Tf oo dxar 5 [ ML OOl

f BAO) = 7 OO d + f V(OO g

+ fo fo POIMy(5) X pu()Z + PPONE ()2 + P2 (OEn(S), fu($))p ds dt}

T T
1
= lim inf {f f H(Mo)r*(t) dxdr + = f IV Mo (DI dt
n—o0 0 D 2 0

1 ! W 1 2 1 ’ 2
+§ L ||[BO,n - ﬂn MO,n]r(t)HLz(R3) dt + E fov ||E0,nr(t)||L2(R3) dt

T T
= f f ¢>(M0)r2(z)dxdr+1 f IVMor(Dl1Z dt
0o Jp 2 Jo

1 (T - ) 1 (T )
+§ f(; ||[BO - MO]r(t)”LZ(RS) dr + 5 f(; ||EQF(I)||L2(R3) dr
This holds for all the r € C([0, T]; R) hence we get

1 1 . 1
fD HM®) dx + SIVMOIl + SIBE) = MOy gy + S IOl
+ fo M) X p(; + IE()Ilfy + (E(s), £(9))a ds

1 1 1
< f $(M(0)) dx + EIIVM(O)I@ +51B(0) - M(O)IILZ(Rs SIEOl 2.
D

This completes the proof. O
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4. StocHAsTIiCc LANDAU-LIFscHITZ’ EQUATION WiTH GENERAL ENERGY

Brzezniak and Goldys and Jegaraj [13] studied the Stochastic Landau-Lifschitz-
Gilbert Equation with the following version:
4.1)
du(t) = (Qu(®) X Au(t) — u(t) X (@) X Au(r))) dt + (u(t) X h) o dW(2),
ui,x)=0, t>0,x€dD,
u(0, x) = up(x), x€D.

where Au in the Equation (4.1) stands for the exchange energy. In this section we
will consider a similar version of Stochastic Landau-Lifschitz-Gilbert Equation as
(4.1) but with a more general exchange energy: Au — Vo (u).

4.1. Statement of the problem.
Notation 4.1. For O = D or O = R3, let us denote
LP(0) = LP(O;RY), LP(0) := LP(O;R).
WhP(0) = WEP(O;R?),  WRP(0) := WHP(O;R).
H*(0) = H*(O;R?),  H*0) := H*(O;R).
H :=L*(D), V= Wh(D).

Assumption 4.2. Let D be an open and bounded domain in R? with C* boundary
I' := dD. n is the outward normal vector onT. 11 € R, 1, > 0, h € L*(D) N
W3D), ug € V. ¢ : R3 — RY* U {0} is in C* and ¢, ¢/, ¢"" and ¢ are
bounded. And we also assume ¢’ is globally Lipschitz. Moreover, we also assume
that we have a filtered probability space (Q,F ,(F1)=0,P), and this probability
space satisfies the so called usual conditions:

(1) P is complete on (Q, F),

(i) for each t > 0, ¥, contains all (¥, P)-null sets,

(iii) the filtration (F;)»0 is right-continuous.
We also assume that (W(t));»0 is a real-valued, (F;);>0-adapted Wiener process
defined on (Q, F , (F1)=0, P).

The equation we are going to study in this section is:

du(r) = {Ayu(t) x [Au(t) - Vo(u(®))]

—Aqu(t) X (u(®) X [Au(t) — Ve(u(®)])} dt
(4.2) +{u(t) x b} o dW (1)
g_ﬂr =0
u) =ug

The solution u of the Equation (4.2) will be an H-valued process.
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Remark 4.3. In the Equations (4.2) we use the Stratonovich differential and in the
Equation (4.10) we use the It6 differential, the following equality relates the two
differentials: forthemapG: Hsu— uxhe H,

(Gu)o dW(r) = %G'(u)[G(u)] dt + G(u) dW(1), ueH.

Remark 4.4. Since ¢ : R?> — R, for every x € R? the Frechet derivative d,¢ =
#'(x) : R® — R is linear, and hence by the Riesz Lemma, there exists a vector
V¢ (x) € R3 such that

(Vo(0),y) = dig(y), y € R’.
Definition 4.5 (Solution of (4.2)). Let (', ¥',F’, P") be a filtered probability space,
W is an F’-adapted Wiener process. We say that an F’-progressively measurable
process u = (u,-)?=1 1 Q' x[0,T] — V NL>(D) is a weak solution (in both prob-

abilistic sense and partial differential equation sense) of (4.2) if and only if for all
the ¢ € CX(D;R?), 1 € [0, T, we have:

<M&WM==WmWH—ﬂaﬁQWKﬁV¢XuUMAQWWdS
[ ) X Vouts), i ds
43) wbl}VMﬂVWX¢X@XMQMMWMﬂU
+bl?M@XW®XVMM®MMmh
+ fo t<u(S) X h, Yy o dW(s).

4.2. Galerkin approximation. Let A := —A be a linear operator as defined in
Definition 2.164. As in Lemma 2.171, we set H,, = linspan{ey, es, ..., e,}, where
e1,...,en,...are eigenvectors of A. Let m, denote the orthogonal projection from
H to H,. Then we consider the following equation in H,, (H, C D(A)):

dup(t) = 1a{ = Ayun(1) X [Attn(t) + 70 (V$(un (1))
+ At (1) X (un(1) X [Atn(1) + (Ve (un())|)} i
(4.4) 11|t (1) X h] © W (2)

u,(0) = muu

In what follows, in order to simplify notation, instead of V¢(u) we will write

¢’ (u).
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Let us define the following maps:

(4.5) F!: H,3u+— —m,(uxAu) € H,,

(4.6) F?: H,3ur —m,(ux (uxAu)) € H,,

(4.7) F3 : H, 3 uvr— —m,[u X 1,(¢' )] € Hy,,

(4.8) Fy: Hy 3w —my(u X [u X 7(¢' w))]) € H,,

(4.9) G, : H, 3 uv— m,(uxh) € H,, h € L(D) N W"3(D).

Since A restrict to H,, is linear and bounded (with values in H,) and since H,, C
D(A) c L™(D), we infer that G, and F}, F2, F3, F} are well defined maps from
H, to H,.

The problem (4.4) can be written in a more compact way

duy (1) = Aa[F (un(1)) + Fp(ua(0)] dt = A [F3(un(D)) + Fp(un(0))] dt
(4.10) +%G,21(un(t)) dt + G, (u, (1)) dW (1)
u,(0) = muuo
Remark 4.6. As the equality (1.2), we have
_VH,,S(”n) = Au, + ﬂ'n¢,(un),

so with the “mr,”’s in the equation (4.4), our approximation keeps as much as possi-
ble the structure of the equation (4.2).

Now we start to solve the Equation (4.10).

Lemma 4.7. The maps F', i = 1,2,3,4 are Lipschitz on balls, that is, for every
R > 0 there exists a constant C = C(n,R) > 0 such that whenever x,y € H,, and
x|z < R, lylg £ R, we have

IF,(x) = Fy0li < Chx =yl
The map G, is linear and
(4.11) |G nttlp, < |h|zelulp, u € H,.

Proof.Step 1: We will show that F! and F2 are Lipschitz on balls.
For u € H,, = linspaniey, ..., ey}, there exist ky, ..., k, € R, such that

n
u= Z kie;,
i=1

and by Lemma 2.171, there exist u1,. .., i, such that
Ae; = pie;.

So we have

n n
Au=A Z k,-e,- = Z kiu,-e,-.
i=1 i=1
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Put 11, := max;<;<, |u;|. Then we have

n n
Aulyy, = > Ku? <fin” Yk =l
i=1 i=1
Hence we proved
|Aulp, < palulh,, u € Hy.
Nextif R > O, for u;, uy € H, satisfying |u;|g,, |u2|g, < R, we have
|F (1) = F(u2)l, = ln(uy X Awy) = 70a(uz X Aua)lm,
< up X Auy —ug X Auplg = lug X Auyp — uy X Aup + uy X Aupy — uy X Auplg
< fup X (Auy — Aup)|p + [(ur — uz) X Aup|y
< luile - [Auy = Aualy + |Auzlie - lur — ualy
< AR|u; — ulen + AR|u; — ”2|H,, =2AR|u; — ulen
Similarly, we get
IFa(u) = Fy@o)ly, < 3AR%u; — waly,, i uz € Hy.
Therefore F)! and F?2 are Lipschitz on balls.
Step 2: We will show that F> and F# are Lipschitz on balls.

Since 7, is a linear contraction in H it is enough to consider the functions without
the external —,, in the definition of F> and F#. Then we have

|Fa) = Fauo)|,, < [ X 7@ (i) = y X ma(¢' )

|Gy = u2) X (@' (1)) 12 + [y X (1a(@' (1)) = 7 (2))) 2
< @ @) lur = ol + [yl |ma(@ (1) — (' (2))|12
|6 )| 2 N1 = ol + Iyl |6 (ur) = ¢/ ()]

Since by assumptions the function ¢’ : R? — R3 is globally Lipschitz and
bounded, we infer that there exists C > 0, such that

i = [ Wwkarsc uen

IA

IA

and similarly,

¢ (1) — ¢" ()l < Cluy — uzlg,  uy,up € H.
And since H, = linspan{ey,...,e,} and e; € D(A) C H?, and by Theorem 2.94,
H? c C(D;R3). In particular, H,, ¢ L®(D). Since H, is a finite dimensional space,
all norms on it are equivalent. In particular, there exists C = C(n) > 0 such that

lulpe < Clulg, u € H,.
Therefore, we infer that for R > 0, there exists Cg > 0: if |u1|g, |u2lg < R, then

|Fiun) - Fiw)|,, < |6/ ()| lur — wal + lualps |¢ (1) = ¢ (w2)|»

< Crlur — uzly.
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And similarly we get, for R > 0, there exists Cg > O: if |u1|g, [uz2|g < R, then
|Fr) - Fro)|,
< Juy X [y X 70 ( )] =y X [y X 700(¢ )|,
< = ug) X [ur X (@ ())] + 1z X [ur X 70 (1)) = uz X 700(8" 2],

< Juy = wls gl |@ )|, + ks (ln = uales |8 @), + lualis 67 (ur) = ¢ ()] )

< Cglur — uz2ln.

Step 3: We will show that G, is linear and satisfies the inequality (4.11).
We have

Gn ()7, < lux hlj;

= f lu % h|? dx
D

< f lu|?|h|? dx
D

2 2
< |h|Lw|”|H

Hence
|Grttlp, < |hlruly, u € Hy.

This completes the proof. O
Let us define functions F,, and F,, : H, — H, by
R 1
Fo=AM(F + Fy = (F? + FH, and F,, = F,, + EGﬁ.

Then the problem (4.4) (or (4.10)) becomes

(4.12) dun () = Fp(un (1)) dt + G (un()) dW(2).
Lemma 4.8. Assume that h € L™. Then
G = -G,,

and in particular for all u € H,
(Gpu,uyy = 0.
Moreover fori=1,2,3,4, we have
(Fiw),u), =0.
Proof. Let’s assume that u, v € H,. Then we have
(G, V), = (Guu,v)g = (m,(u X h),v)y
= wXhmvg=—(uvxhpy

= —(mu, v X g = —(u, m,(v X h))
—(u,Gyv)g = —(u, Gy,
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Thus G;, = —G,,. Therefore,

(Gn(u), u)y = (u, Gyu)y
= —(u,Guu)y = —(Gpu,u)y = 0.

Moreover, for u € H,, we have

(Fp(u), )y = (mra(u X Au), u)y
= (uX Au,muu)y = (u X Au,u)y =0,

(F2(u), w)y = (m(u X (u X Au)), u)y
= (u X (u X Au), mou)y = (u X (u X Au),u)y =0,

Finally, using the fact (a X b, a)y = 0, we have:
(Fau),upy = (—u[u X 1,(¢' )], upyy = —(u X m(¢ (W), wutt) 1
= —(u X my(¢' (), uyy = 0,
and

(FiH(u), u)y

(=1t X [ X 7, (¢" @)])s 0y = —Cu X [u X 70(¢" )], Tptt) 1
—(u X [u X 7, (¢" u))], uyyr = 0.
This completes the proof. O

The following existence and uniqueness Theorem is followed by Lemma 4.7 and
Lemma 4.8.

Theorem 4.9. [3] The Equation (4.4) has a unique global solution u, : [0,T] —
H,.

Proof. By the Lemma 4.7 and Lemma 4.8, the coeflicients F ,"1, i=1,2,3,4and G,
are locally Lipschitz and one side linear growth. Hence by Theorem 3.1 in [3], the
Equation (4.4) has a unique global solution u,, : [0,T] — H,. O

4.3. a’priori estimates. In this subsection we will get some properties of the so-
lution of Equation (4.4) especially some a’priori estimates.

Theorem 4.10. Assume that n € N. Let u, be the solution of the Equation (4.4)
which is constructed earlier. Then for every t € [0,T],

(4.13) (Ol = (O, a.s.
Proof. Letus definey : H, > u +— %Iul%{ € R. Since
lu+ gl7, — |ul2, = (up + g u+ gp — (u,udp
= (u+g 8n+(guy=2ugn+lgly ugeH,.

and
<M+k7g>H_<uag>H:<keg>H7 M,g,kEHn-
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We infer that

W' w)(@) = u,g)n, and Y w)(g, k) =k gu.
By the It6 Lemma 2.124, we get

%cﬂun(mz ((una), Flun(0)),, + % (Gaun®)), Gn(un(z>)>H) dr

+ (tn(1), G(un(D)) y AW,

2 (0 G2s@)) + (G att+ 0w,
=0

Hence fort € [0, T],

lun (Dl = lun(0)lH, a.s..

Lemma 4.11. Let us define a function ® : H, — R by
1
(4.14) Du) := 5 f IVu(x)? dx + f d(u(x)) dx, u€ H,.
D D

Then ® € C%(H,) and foru, g,k € Hy,,

4.15)  d,D(g) = D' (u)(g) = (Vu, Vg)2p ey + fD (Vo(u(x)), g(x)) dx

(A )iz + fD (Vp(u()). g(0) dx,

(4.16) (). k) = (Vg V)20 505 + fD ¢ (u(0)(g(0), k() dx.

Proof. Let us introduce auxiliary functions ®g and @, by:

Dy(u) := f d(u(x)) dx, ueH,.
D

1
Dy (u) := E|Vu|§2 u € H,.

(D,R3X3)’

It is enough to prove the results of @y and ©;.
Both @ and @, are of C2-class and

D1 (u)g = (Vu, Vg)12(praay and O (u)(g, k) = (Vg, VK)o (pp3ay,  Vu, g,k € Hy.

That is because

Qy(u+g) — Oy(u)

1 1
5V + Vgl = S IVulz,

1
(Vu, Vg)p2 + 5(V8. Vo) 12
and by Proposition 2.166,
(Vg, V@) 2(prixsy = (Ag, &)H-
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By the Cauchy-Schwartz inequality

(8,A9)n < IglulAglH,

and since g € H,, by Lemma 2.171, we have g = 3" | gie;, & € R, then Ag =
Z;’zl Aigie; where A; are eigenvalues of A at e¢;. Let K = max<;<, |4;], then

n
Agly = > gl < K2 g = K2Igl,

n
i=1 i=1

Therefore |Agly < K|glu, hence

“4.17) (Vg, V@) prisy < KlgI%{ = o(lgln)-
Therefore q)ll (u)g = (Vu, Vg)LZ(D,R3X3)'
Moreover,

(1 + K)(g) — P1(u)(g) = (V8. VK)2p ).

The right hand side of the above equality is a linear map with respect to &, so
@Y (u)(g)(k) = (Vg,Vk)2(pr3s). Next we consider the parts related to ®y. For
u,g € H,, by the mean value theorem, we have

Do(u + g) — Do(u)
- f D(u(x) + g() dx - f o(u()) dx = f [6(u(0) + 5() — Bu(v)] dx
D D D

1
= [[[orwenteen+ [ a- 0w senen.sas| ax
1
- [ s [ 0= 000 + sgo)em. s dsds
Since we assumed that ¢”” is bounded, there is some Cy4» > 0 such that

6" (x)(h, h)| < Cyrll*,  x,h e R

Thus we have

1
‘ fD fo (1— 96" (u(x) + s8(0)(g(x). g(x)) ds dx

IA

1
fD fo (1= ) |6 (u(x) + 58(0)(x), ()| dsdx

1
< 5Colglyy = ollgln).
Hence we infer that
d,Do(g) = fD ¢’ (u(x))(g(x)) dx = fD (Vo(u(x)), g(x)) dx, u,g € Hy.

Next we compute @ (u). We have the following inequalities:
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f & (u(x) + K(0)(g() dx - f ¢ (u()(5(0) dx
D D
- fD [ () + k() — & (W)I(g(0) dx

1
= fD ¢” (u(x))(g(x), k(x)) dx + fD fo (1 = )¢ (w(x) + sk(x))(k(x), k(x)) dsg(x) dx,
And since we assume that ¢ is bounded, so there is C # > 0 such that

BV @0 NE)| < CablPlel,  xy.zeR.
Then we infer that

fD ¢ (u(x) + k(0)g() dx — fD & (u(x))g(x) dx — fD ¢ (u(9)(g(0), k() dx

1
f f (1 = 996D () + k() (k(0), k(1)) dsg(x) dx
D JO

IA

1
f f (1= )6 ) + k@)K k(0)g()| ds dx
D JO

IA

1
SCao fD KGO, g0l d.

Summarising we proved that

Eoue = [ # Gk ke Hy
This ends the proof of Lemma 4.11. O

Proposition 4.12. Let u, be the solution of the Equation (4.4). Then there exist
constants a, b,ay, by > 0 such that for alln € N, s € [0,T],

(4.18) VGouta(9)|2, < alVun(s)[; + b,
and
(4.19) VG2u,(9)[3, < ar|Vun(s)[2 + b1.

Proof. By the Proposition 2.166,

2
VGutta(9)] 2 = (AGutta(s), Gattn(9)), < (A1Gttn(5), Gpitn(s))
Since A| = I + A is self-adjoint,

I's

(A1Gta(5). Gattn(s)),, = A} Guttn(5) = |7 7aan(s) x )
Thus |
|VGnun(s)|i2 < |A2 7 (un(s) x h)liz-

1
Since A 12 and m,, commute, we have

|VGnu,,(s)|i2 < 'Alénn(un(s) X h)ﬁ_] = |7rnA1%(un(s) X h)l; < |A1%(u,,(s) X h)|i]
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1
Moreover, |A12 (un(s) X h)|z = |un(s) X hﬁ/, thus we get

VGtta()[3s < |un(s) x B
Hence
VGotta(9)[7, < Juns) X B[}
= [V (un(s) X W), + [utas) % .,
< 2[|Vun(s) X h|i2 + |u,,(s) X Vh|iz] + |un(s) X h|2
By the Holder’s inequality,
() % Vi[5 < (1 (5). VA)., < Jua5)] [V

Since 0 — % >1- %, by Theorem 2.98, H' < L° continuously. Hence there exists
¢ > 0, such that

|un(s)|i6 < c(|Vun(S)|i2 + |”n(s)'i2)'

Together with [u,(s) X [, < [1a(5)[ ][> and [Vitn(s) X B2, < [Vutn()[2o|[-... we
can get

VGun(9)|s < 2{ |y [Vua(9)]}> + c([Vun(9)]> + |un(5)]1)| V[ ]
= 2(|h2 + c|Vh|ig)|Vun(s)|iz + (2c|Vh’i3 + |h‘im)|un(s)|iz
By (4.13), it is
VG ()|}, < 2(|n. + c|Vh|i3)|Vun(s)|iz + (26|Vh|i3 + |h’iw)|u0|i2
= a|Vu,(s)|, + b
where
a = 2| +|VA[,).
b= el + Il

We can see that a and b depend only on 4 and ug, but do not depend on n.
By (4.18), we can get

VG2un(5)[7s < alV(Guitn(9)[1 + (26| VA[ + |} )| Gt
< a(a|Vun(s)[> + ) + (2e|VA[ s + 1[}..)|Gutto].»
= a1|vun(s)’iz + by

where

a) = az,

b1 = b+ (2| VA[}, + 1]} )| Gutol .

a; and b; also depend only on 4 and ug, but do not depend on 7.
This completes the proof of the inequalities (4.18) and (4.19). O
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Remark 4.13. The previous results will be used to prove the following fundamental
a’prior estimates on the sequence {u,}.

Theorem 4.14. Assume that p > 1, 8 > }l. Then there exists a constant C > 0,
such that for all n € N,

P
(4.20) E sup {|Vun(r)’iz + f P(un(r, X)) dx} <C, tel0,T],
D

rel0,t]

T p
(4.21) E[( f |ua(®) X [Aun(t) - V¢(un(t))]|2 dt) ] <C,
0
T ) p
(4.22) E [(f |”n(t) X (”n(t) X [Aun(t) - V¢(un(t))])'L% dt) ] <C,
0
T 2
423) B fo I i 0) X (10(0) X [Dttn(5) — VD). it < C.

We will prove the inequalities (4.20) and (4.21) in Theorem 4.14 together and
prove (4.22) and (4.23) in Theorem 4.14 separately. In the argument below we will
frequently use, without referring to this, that mr,, is an orthogonal projection from H
onto H,.

Proof of (4.20) and (4.21). Let us define a function ® same as in the Equation
(4.14). Then by the Itd Lemma 2.124,

@(”n(t)) - @(”n(o))

t
620 = [ (PO + 38 G0 ) 0
0

+f gt’/(Mn(s))Gn(”n(s)) dw(s), te[0,T].
0

Then we consider each terms of the Equation (4.24),

& (u)Eu(u) = — Aol x (Au = mal W)

(4.25) - %(Au — 1,(¢" (W), mp(u X h) X hyy
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Let us now prove the equality (4.25). Since
Fy= L(F! + F}) = (F2 + F}) + 1G2, for u € H, we have,

@ () Ep() = 1,0 W) (w) — P u)FAu)
b LB WF ) ~ L WP + 38 WG
= 1@ (W)[m,(u X Au)| = @' (W)[m,(u X (u X Au))]
+ 1P @) [7a(1e X 7u(~¢' )] = P ()] 7(1 X (10 X 70~ W))))]
b 3 l(rGex b x )]
= —A1{Au, 7, (u X Aw)) + o{Au, m,(u X (u X Au)))
=0, (1 X T (= (1)) + (A, T (10 X (10 X T (=4 (1))

- %(Au, (it X 1) X 1))

LA fD (VA u(x)), 7u(u X Au)) dx

- A L(V¢(u(x)), 7(u X (u X Au)))y dx

e 1 [ (T80, 7m0 )

- o [ (Tou0). a3 (0 m— @) d

1
# 5 [ o).zl 1)
D
In above (-, -) is either the inner product in H = L?>(D,R?) or in R3.
Since 7, (Au) = Au, for u € H,,, we infer that
I = (Au, 7, (u X Au)y = (Au,u X Auy = 0,

Next, since (a,b X ¢) = —(c,bx a) = —(b X a,c) and {a, b x (b X a)) = —|a x b|?
fora,b,c € R3, we get

II = <Au, ﬂn(u X (u X Au))> = (Au,u X (u X Au))

= —(u X Au,u(x) X Auy = — Ju X Aul*,

T = (Au, (1 X 70(=¢' W) = (At e X 7= W) g
= —(7(=¢" (), u X A,

1V = <Au, ﬂn(u X (u X 7r,,(—¢'(u))))> = (Au, u X (u X 1,(—¢" (1))))

= —(u X Auyu X 71y(—=¢" (U))y
V = (Au, 7ty (7, (u X h) X b)) = (Au, 7,(u X h) X h)
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Since all the integral terms are simply appropriate scalar products in the space
L? we infer that

' (u)F (1) = =2 |u X Aul® + Ay (=' (W), u X Auy = Ay (u X Au,u X (= ¢ (w)))
- %(Au, m,(u X h) X h)

+ A (mald’ W], u X Auy + Ao(ma(—¢" (W), u X (u X Au))
— A ma(=¢" (W), u X [=¢"W)]) + Ao {mn(=¢' W), u X (u X 1y (=9’ (W))))

b S @), ) X
= — 2| i X Auf + (u X Au,u X 7,(=¢' (u)))
— (a(=¢' (), 1 X (16 X Aw)) = (o (= (), u X (1 X 70,(~¢ ))))]
+ 1 [ra(=4 ), 1 X Auy = (=4 (w)), u X Au)
(= (), 1 X 7a(—¢' ()]

1 ,
- E[<Au, a1 X ) X B + (a( = ¢ (), Tt X ) X )]
Using again the classical identities

{a,bxc)y=—(bxa,c), fora,b,ce R3,

(a,bxa) =0, fora,b € R?,
the equality (4.25) has been obtained.

Similarly,

D' (u)[G,(u)] = &' (u)my(u X h) = —(Au, m,(u X h)) + f(Vqﬁ(u(x)), [, (u X B)](x)) dx
D
(4.26) = —(Au,u X hy +{¢' (), m,(u X h))

" (W)[Gp(u)*] = D" W)(Gn(w), Gu(u)) = D" () (7n (1t X h), 7, (1t X h))

= (V7 X ), Ve (u X )y + f ¢ (u(x)) (7 X B)(X), Tt X B)()) dx
D

4.27) = Vru(ux b}, + fD " () (7 (u X 1)(x), 7, (ut X R)(x)) dx
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Therefore by the Equations (4.14), (4.25), (4.26) and (4.27), the Equation (4.24)
becomes:

1 1
Vil + 5 fD B(un (1, X)) dx
+2 fo 4 (5) X (Attn(5) = 72 (1 ()% ds
= SV + 5 fD H 0,2 dx — 3 fo (Bt (5). Tian(5) X h) X iy s
(4.28) +% f (¢ (uy(5), p(up(s) X h) X hyy ds + % f |V, (u,(s) X h)l%2 ds
0 0
+% f f ¢ (7a(s, )7 (1t (5) X M)(x), T(1n(5) X h)(x)) dx ds
0 JD
- fo (At (5), un(5) X hygg AW (s) + fo (@ (n(5), Tt (5) X 1)) AW(s).

Next we will get estimates for some terms on the right hand side of Equation
(4.28).
For the first term on the right hand side of Equation (4.28), we have
(4.29)

1 1 1
2 2 2 i LI L) 2
IVun(0)l7, = [Vruuol,, < |mauolyy = 1A7 mastolyy = |mnAj uoly < 1ATuolyy = luoly-

We assumed that ¢ is bounded, so there is a constant Cy > 0, such that |¢(y)| <
Cy, fory € R3. So for the second term on the right hand side of Equation (4.28),
we have

(4.30)

f 0(1a(0, ) dx
D

We assume that ¢” and ¢ are bounded, so there exist constants Cy > 0 and
Cg > 0, such that

< Cyu(D).

(4.31) I’ < Cy,  yeR?,
and
(4.32) 16" (), ) < Corly?,  x,y e R

For the third term on the right hand side of Equation (4.28), by (4.19) and
Cauchy-Schwartz inequality, we have

KAUA(S), Ta(ttn(s) X 1) X BYp] = [(Vitn(5), VGun()) 12|

b
@3 < Nl Nl +br < VAN + 5=

For the fourth term on the right hand side of Equation (4.28), by the equalities

(4.31), (4.13) and Cauchy-Schwartz inequality, we have
(4.34)

(B (n(9)), Tt (5) X B) X B)p1 < Cor (D)) X 1 X hlr < Corpt(D)lutopal il .




A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 87
For the fifth term on the right hand side of Equation (4.28), by (4.18), we have

(4.35) V7 (ttn(8) X )87 = IVG(un($)))32 < alVun(s)7, + b.

For the sixth term on the right hand side of Equation (4.28), we have
f |[¢” (s, 20)] [a(ttn(s) X h)(x), Tu(utn(s) X B)(X)]| dx
D
(4.36) < Cyr f T (1t (5) X BY))* dx = Cyr 70 (un(s) X D)%,
D

< Cyr () X h, < Corlhl3lutol.

Then by the equalities (4.28)-(4.36), there exists a constant C, > 0 such that for
alln e N, t € [0, T] and P-almost surely:

1 1
S VO + 5 fD & (un(t, 1)) dx

+A fo () X (At (5) = 7,0 ()3, ds

IA

2
1 ! 2
+§ Vay Vi, (s)|ds +
0

1 1 T T
§|uo|zv + =Cyu(D) + Ec¢f|uo|ﬂ|h|%m + 5c¢~|uo|%,|h|im

Th
2

by 1 2
4\/a_1T+ 2aj(; IVM,,(S)IL2 ds +
! 1 !
(4.37) +j(; (Vun(5), VG (un(5))) 2 dWS+§j; (9 (un(5)), Gu(un(s)))y dWy
t '
= %(\/a+ a)f IVun(s)Ilzq ds +f (Vun(5), VGu(un(s))) 2 dW;
0 0

1 f
+§L <¢,(un(s))9 Gn(un<s))>H dW; + C.

Therefore for all n € N, ¢ € [0, T'] and P-almost surely:

IVun (07, + fD B(un(t, x)) dx

+245 fot lin(5) X (Attn(5) = 700 (10 ()], dis
(4.38) < (aj + a) fo t IVin(s)[7, ds + C2

72 [ V(5. VG a2 Wi

!
+\f(; <¢,(un(s))an(un(S))>H dW(s).
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Hence for p > 1,

! P
E sup {|Vun(r)|§2+ f G(un(r, %)) dx + 225 f |un<s)><(Aun(s)—nn¢'(un<s)>>|%,ds}
D 0

re[0,7]

< E sup {(\/a_l +a) f IVin(s)[3, ds + C2
0

rel0,1]

r r P
+2f0 (Vun(5), VG (un(5))) ;2 dWS+£ (@' (un(5)), Gu(un(5))) dWS}

!
< 4p—1(\/a_1+a)ptp_lE( f Vun(s)ly2 dS)
0

P
+4P712F sup
rel0,t]

fr <Vun(s)’ VGn(Mn(S)»Lz dW;
0

p
-1 Va4
+4P7'E sup +477°C,

rel0,]

j; (¢ (un()), Gn(”n(s)»LZ dW;

By the Burkholder-Davis-Gundy inequality (Lemma 2.127), there exists a con-
stant K > O such that for all n € N,
P
2

bl

E sup f(Vun(s),VGn(un(s)))Lz dw;,
re[0,7]1 1JO

V4 t
< K]E‘ f (Vitn(5), VGo(ttn(5)))7> ds
0

14
2

r p J
E sup fo (& (1a(5)). Gulitn(5))) 2 AW, SKE‘ fo (@ (1a(5)). Gulitn(5)) ds

re[0,7]

By the inequality (4.18) we get, for any € > 0,
P

2
<E

sup [Vien(PP, ( fo VG ()2 dsﬂ

rel0,f]

E‘ f (Vita(5), VG (it (5)))3> ds
0

4 !
< E[s sup |Vun(r)|if + - (f IVGnliz ds) }
rel0,1] €\Jo

4 J 4
< sE( sup IVun(r)Ii’;) + -2 'a’E ( f IVita(5)2% ds) + —2P L (pryP .
ref0,1] & 0 &

And

14

< B sup 16 () ( fo |VGn<un<s>)|izds”

E‘L <¢,(un(s))’ Gn(un(s)»iZ ds

4 f 4
< s[c¢,ﬂ(D)]2p +-Q"a"E ( fo Vi (s)[35 ds) + 22y,



A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 89

Hence we infer that for r € [0, T'],

p

E sup
re[0,f]

4K !
(4.39) < KSE( sup |Vun(r)|if] + — Q)P 'aPE (f |Vun(s)|i[2’ ds)
re[0,] € 0

fr <Vun(s)’ VGn(Mn(S)»Lz dW;
0

4K
+—2"Y by,
&

and similarly for ¢ € [0, T],

p
(4.40) E sup

rel0,f]

fo (& (1a(5)). Golitn(5))) 2 AW,

4K J 4K
< Ke [c,p,y(D)]z” + ?(2t)ﬁ—‘al’E ( f |Vun(s)|i§ ds) + ?2p“(bz)P.
0

Hence for every t € [0, T,

re[0,f]

t )4
E sup {|Vun(r>|§2+ f G(u(r, x)) dx + 2 fo |un<s>><<Aun<s)—nn¢'(un<s>>)|%,ds}
D

!
2
< 4" (\ar + )Pt 'E ( f Vit (5)I2% ds) + KSE( sup IVun(r)IiI;] + Ke|Cyu(D)| P
0 re[0,z]

8K ! 8K
+— Q0P aPE (f IVu,,(s)IiIZ7 ds) + —2"Y(bry?
& 0 &

Sete = % in the above inequality, we have:

E sup {|Vun(r)|§2 + fD B(un(r, x)) dx

re[0,f]

t p
20 f 1tn(5) X (At () = Tt (tin (D)3 ds}
0
441) < [2-47N(Var + a7 + 32K2(2z)P—1aP]E( f Vun(s)[75 ds)
0
+[CouD)|” + 326227 iy

!
= C5E ( f Vita(5)2% ds) +Cy.
0

where the constants C3 and C4 are defined by:
C3 =247 Y(ay + a)P P~ + 32K>20)P~1a?,

2
Cy = [Cou(D)| ™ + 32K227 by,
note that they not depend on n.
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And since [, ¢(un(r, x)) dx and fO’ | (5) X (Attn(5) = 7@’ (4 ()))|% dss are non-
negative, so by the inequality (4.41), we have

B sup {|wn<r>|iz+ | ot 0 ax

rel0,1]

t p
+242 f Iun(S)X(Aun(S)—ﬂnqﬁ'(un(S)))li,dS}
0

!
“442) <G f E sup {|Vun(r)|§2 + f B(un(r, x)) dx
0 D

rel0,s]

r p
+21> f g, (T) X (Auy(7) — ﬂngb'(un(r)))llzq dT} ds + C4.
0

Let us define a function y by:

y(s) = E sup {iwnmﬁz + fD S (r, x)) dx

rel0,s]

r p
20 f |un(r)><(Aunm—nn¢'<un(r))>|%,dr}, s€[0,T].
0

Then by the inequality (4.42), we deduce that:

U() < Cs ‘fot Y(s)ds + Cy.
Observe that ¢ is a bounded Borel function. The boundedness is because
IVun(r)lz2 < lun(Dly < Colun(Mlg < Caluoln,
and
[ (5) X (At () = 70’ (D)),
< (9l oy (Aun () + 17029 (n(5))11r)
< Calun()lt (Caltn(er + Cor (D))
< Culuols (Caluols + 2Cy (D)) .
where Cj, is from the norm equivalent in n-dimensional space. Therefore
WO < (CRluoly + CoD) + 25T Cluofy (Coluoly + 2CoD))')
Therefore by the Gronwall inequality Lemma 2.157, we have
W(t) < C3e, t€[0,T].

Since C3 and Cy4 are independent of n, we have proved that for 7' € (0, 00),

r p
E sup {IVun(r>|§2+ f $(un(r, x)) dx + 225 f 1 (T) X (Att(T) = 78’ (U (D)) dr}
D 0

rel0,1]
< C3e%T =y, r€[0,T]
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where Cr independent of n. Therefore we infer that

P
E sup {|Vun(r)|i2 +f¢(un(r, X)) dx} <Cr,
D

rel0,1]
and
T P
E(f ln () X (At (T) = T’ (un (D)l dT) <Cr.
0
This completes the proof of the inequalities (4.20) and (4.21). O

Proof of (4.22). By the Holder inequality and the Sobolev imbedding Theorem
2.94 of H' < LS, we have that for some constant ¢ > 0

() X (1 (1) X [Attn () = 8 (D], 3 < [ttn (@] |1 (®) X [Attn(1) = &' (un(D)]] »
< clun(®)] g1 |n () X [Attn(2) = ¢ (un ()], 2.
Then by (4.13), (4.20) and (4.21), there exists some constant ¢; > 0, such that

' p
- [(fo a0 5 a0 [B10a) = ¢ Gen DD 3 dt) }
4 P
< C1E[ sup |Mn(l’)|]?-]5 (fo‘ 'un(t) X [Aun(r) — (]3’(un(t))]|]Lz dt) }

re(0,T]
1
2

Note that C is independent of n. This completes the proof of (4.22). O

1

T 2p\2
(f(; 'un(t) X [Auy(2) - ¢’(un(f))]|Lz dt) D <C,

4p
<c (E[ sup |un(r)|H1
rel0,T]

Proof of (4.23). By Proposition 2.172, if 8 > 1, X# < H?(D) continuously. And
by Theorem 2.98, if 8 > 1 H#(D)is continuously imbedded in L3(D). Therefore
L%(D) is continuously imbedded in X . And since for ¢ € H,

Mallxs = sup |y-s(m, @dxs| = sup Kmué, o)l
lelyp<1 lolyp<1

= sup K&l < sup  |x-s(& mugdye| = IElx-s.
lelyp<1 [mnl <1

Therefore we infer that

T
EI} |7Tn(un(t) X (”n(t) X [Aun(t) - ¢,(”n(t))]))|x—/f dr

IA

T
E fo (1) X (1 (0) X [Attn(0) — & Gen(D)]) .

IA

T
G [ 0 (nt) < [0y (6) = & Can DD 5 .

Then (4.23) follows from (4.22). O
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Proposition 4.15. Let u,, for n € N, be the solution of the equation (4.4) and

assume that a € (0, %), B> Y p>2. Then the following estimates holds:

(4.43) SUp Eltnl o 0 7:x-8)) < 0
neN

Proof. Letus fix @ € (0,1), 8 > 1, p > 2. By the equation (4.10), we get
! !
(1) = o + Ay f [F(ua(5)) + Fa(un())] ds = 2 f [F7(un(s)) + Fp(un(s))] ds
0 0

t Tt
+l f G2 (un(s)) ds + f G (ttn()) dW(s)
2 Jo 0

4
= ug, + Z Wi,  tel0,T].
i=1

By Theorem 4.14, we have the following results:
(1) There exists C > 0 such that for all n € N,

E [|u;|$v.,2(O’T;H)] <C.

(2) There exists C > 0 such that for all n € N,

22
E [lu”|W1’2(O,T;X*ﬁ)] =C
(3) There exists C > 0 such that for all n € N,
312
|un|Wl'2(0,T;H) < C, P—-a.s..

Moreover, by the equality (4.13), there exists C > 0 such that for all n € N,

E[ sup Iun(t)IZ} = E[lun(0)lf;] < C.
te[0,T]

By the inequality (4.11) and Lemma 2.135, we have: there exists C > 0 such that
forallme N
4p
. [lu’f'W"vP(o,T;X-ﬁ)] =¢
Therefore since H < X and by Theorem 2.98, H! 0,T;XP) — WP, T; XP)
continuously, we get

2
sup E(|unlwa,p(0 T-xfﬁ)) < 0.
neN T

This completes the proof of the inequality (4.43). O

4.4. Tightness results. In this subsection we will use the a’priori estimates (4.13)-
(4.23) to show that the laws { £(u,) : n € N} are tight on a suitable path space.
Now we are going to prove our tightness result.

Lemma 4.16. Forany p > 2, g € [2,6) and B > }L the set of laws {L(u,) : n € N}
on the Banach space

LP(0, T;LYD)) n C([0,T]; XF)
is tight.



A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 93

Proof. Let us choose and fix p > 2, g € [2,6) and 8 > %,' Since g < 6 we

can choose y € (% - %], %), B € (i,b), a € (%, 1). Then by Proposition 2.174,
H' = D(A%) — X7 = D(A?) is compact, hence by Lemma 2.116, the embedding
LP(0,T;HYY N W*P(0,T; X ) — LP(0,T: X")

is compact. We note that for any positive real number r and random variables & and
1, since

{w Eé(w) > g} U {w cn(w) > %} D {w é(w) +n(w) > r},
we have
P(|”n|LP(o,T;H1)mWW(o,T;X—ﬁ/) >Tr )

= P(I”nlLﬂ(O,T;Hl) + [l ero. x5 > r)

IA

r r
P(|“n|Lv(0,T;H') > 5) +P (|”n|me(o,T;X-b’) > E)

IA

then by the Chebyshev inequality in Lemma 2.133,

4 2 2
< 5B (10 + B )

By the estimates in (4.43), (4.13) and (4.20), the expected value on the right hand
side of the last inequality is uniformly bounded in n. Let X7 := LP(0,T;V) N
WeP(0, T; X#'). There is a constant C, such that
C

P(llunllx, > r) < L Vr, n.
Since .

Bl = [ 2QM > )

0

we can infer that

e
E(llunllxr)sl+f —dr=1+C<oc, VYneN.
1 r

Therefore by Theorem 2.107 the family of laws {L(u,) : n € N} is tight on
LP(0,T;X”). By Proposition 2.172, X? = H?'(D). Therefore since by the as-
sumption y > % - %1, ie.
3 3

2y > >0 7
by Theorem 2.97 we deduce that X” — L9(D) continuously. Hence L?(0,T; X”) —
LP(0,T;L4(D)) continuously. By Lemma 2.108, {L(«,) : n € N} is also tight on
L?(0,T;L4(D)).
Since 8’ < B, by Lemma 2.117, W“’p(O,T;X‘ﬁ') — C([0,T]; XP) compactly.
Therefore by the estimates in (4.43) and Lemma 2.107, we can conclude that
{L(u,) : n € N} is tight on C([0, T]; XP).
Therefore by Theorem 2.109, { £(u,) : n € N}is tight on LP(0, T; LY)NC([0, T]; X 7).
Hence the proof of Lemma 4.16 is complete. O
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4.5. Construction of new probability space and processes. In this section we
will use Skorohod’s theorem to obtain another probability space and an almost
surely convergent sequence defined on this space whose limit is a weak martingale
solution of the equation (4.2).

By Lemma 4.16 and Prokhorov’s Theorem, we have the following property.

Proposition 4.17. Let us assume that W is the Wiener process and p € [2,0),
q€[2,6)andp > %. Then there is a subsequence of {u,} which we will denote it in
the same way as the full sequence, such that the laws L(u,, W) converge weakly to
a certain probability measure yon [LP(0, T; LY(D))NC([0, TT; XP)xC(0,T];R).

Proof. By Lemma 4.16 and Theorem 2.114, the laws L(u,) converge weakly to
a certain probability measure u; on LP(0,T;L9) N C([0, T]; X®). Thus the laws
L(u,, W) converge weakly to a certain probability measure u on [LP(0,7T;L7) N
C([0,T); X )] x C([0, T]; R). O

Next by the Skorohod’s theorem, we have the following proposition.

Proposition 4.18. There exists a probability space (', F',P’") and there exists a
sequence (u,, W") of [L*(0, T; L*(D)) N C([0, T1; X )] x C([0, T1; R)-valued ran-
dom variables defined on (', F',P") such that

() On [L*(0, T;L*(D)) N C(I0, T]; X #)] x C([0, T]; R),
Ly, W) = L(u,, W), VneN
(b) There exists a random variable
W', W) (Q,F,P) — [L*0, T; LY(D)) N C([0, T]; X #)] x C([0, T]; R)
such that
(i) On [L*0,T;L4D)) N C([0, T]; X#)] x C([0, T];R),
LW, W) =p,

where u is same as in Proposition 4.17.
(i) w, — o’ in L*0, T;LY(D)) N C([0, T1; X P) almost surely
(iii) W, — W’ in C([0, T]; R) almost surely.

Proof. Since LY0,T;LHNC(0,T]; X P)xC(0,T];R) is a separable metric space
, this proposition is a direct result from the Skorohod Theorem (Lemma 2.132). O

Notation 4.19. We will use F’ to denote the filtration generated by #’ and W’ in the
probability space (', F’,P").

From now on we will prove that u’ is the weak solution of the equation (4.2).
And we begin with showing that {u]} satisfies the same a’priori estimates as the
original sequence {u,}.

Proposition 4.20. The Borel subsets of C([0, T1; H,) are Borel subsets of L*(0, T; L*)N
C(10. T} X7).
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Proof. Since H, c H!, and by the Sobolev imbedding Theorem 2.98, H' c L*,
we infer that H, c L*. Hence C([0,T]; H,) c L*O0,T;L*). Moreover D(A%) =
H!' c L% sothat H, c L% c X~2. Hence C(0,T1; H,) c C([0, T];X‘%). Therefore
C([0,T); Hy) € L*0, ;L% N C([0, T]; X 2).

By the Kuratowski Theorem 2.142, the Borel subsets of C([0, T]; H,) are Borel
subsets of L*(0, T; L% N C([0, T]; X~7). This concludes the proof. O

Corollary 4.21. u), takes values in H, and the laws on C([0,T]; H,) of u, and u,,
are equal.

Proof. Since u,, is the solution of the equation (4.4), we infer that P{u,, € C([0,T]; H,)} =
1. Hence by Propositions 4.20 and 4.18 (a), P’'{u;, € C([0,T]; H,)} = 1. So we can
assume that u;, takes values in H,, and the laws on C([0, T']; H,) of u, and u;, are
equal. O

Lemma 4.22. The {u,} defined in Proposition 4.18 satisfies the following esti-

mates:
(4.44) sup |u, (0|, < |uol,» P -a.s.,
sup i, <
(4.45) sup]E’[ sup |u;l(t)|§ﬁrl]<oo, Vr> 1,
neN t€[0,T]

(4.46) supE’
neN

T r
(f |uy, (1) X [Au,, (1) — ¢'(u;(t))]|i2 dt) ] < 00, Yr>1,
0

T
(4.47) sugE’ fo i () x (u (1) x [Au;l(t)—¢’(u;,(t))])|i% dr < oo,

T
(4.48) sup E’ fo I [,(1) () X [Aul () = &' (D)D) [y df < 0.

Proof of (4.44). By (4.13), |ua(0)|,, = |(0)|,,. P—a.s. and together with the Corol-
lary 4.21, u,, and u,, have the same distribution on C([0, T']; H,), we have
P’ (luylcqo,11:0,) < luole) = P(ualcqo,r;a, < luols) = 1.

Hence
P —a.s..

sup (0] < Juo] -

te[0,T
Proof of (4.45), (4.46), (4.47) and (4.48). The maps:
ue C([0,T];Hy,) — L¥0,T;V) 3 u,
ue C([0,T]; Hy) — L20,T; H) 3 u X (Au + ¢ (w)),
we C(0,T1; Hy) — LX0,T;L3) 5 ux {u x (Au+ ¢ ()},
ue C([0,T1; Hy) — L*(0,T; XP) 3 my(u X {u x (Au+ ¢’ (w))}),
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are continuous so they are measurable. Hence by Corollary 4.21, we have
L(uy) = L(uy) on L¥(0,T5 V),
Lty X (Dtty + ¢’ (un))) = L), X (Aut, + ¢ (1)) on L*(0, T H),
Lty X [ty X (At + ' )] = LG}, X [, X (At + ¢ (1 )]) on L2(0, T3 L3),
Lttt X [t X Dtt+ ¢ )))) = Lttt X [ty X (Aaty +¢ @ ))D) on L20, T3 X 7).
Therefore we get the estimates (4.45), (4.46), (4.47) and (4.48). O

Now we will study some inequalities satisfied by the limiting process u’.

Proposition 4.23. Let u’ be the process which defined in Proposition 4.18. Then
we have

(4.49) esssup |u' (D)2 < lugl2, P —a.s.
1€[0,T]
(4.50) sup |u'()|x-+ < clugl2, P —a.s.
1€[0,T]

Proof of (4.49). Since u/, converges to u’ in L*(0, T; L*) N C([0, T]; X ) P’ almost

surely,
T

lim | |- @, dt=0, P -as.
0

n—oo

Since L*(D) < L2(D), we infer that
T
lim lup, (1) — ' (17, dt = 0.
n—oo 0

Hence u/, converges to «’ in L?(0, T;1.?) P’ almost surely. Therefore by (4.44),

esssup |u (D)2 < lugly 2, P —a.s.
t€[0,T]

O

Proof of (4.50). Since L?(D) — X7, there exists some constant ¢ > 0, such that
|, (D)|x-s < clu,(f)| 2 for all n € N. By (4.44), we have

sup |u,()lx-s < ¢ sup |lu, (D2 < luol2, P —as.
1€[0,T] 1€[0,T]

And by Proposition 4.18 (ii) u;, converges to " in C([0, T']; XP), we infer that

sup |u'()|x-+ < clugl2, P —a.s.
1€[0,T]

O

We continue with investigating properties of the process u’. The next result and
it’s proof are related to the estimate (4.45).

Proposition 4.24. Let u’ be the process which defined in Proposition 4.18. Then
we have

4.51) E’[ess sup |u’(t)|%,’] <oo, r>2.
t€[0,T]
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Proof. Since L2 (Q'; L*(0, T; V)) is isomorphic to [L7T(Q'; L'(0, T; X~2))]", by
the Banach-Alaoglu Theorem (Lemma 2.143), we infer that the sequence {u],} con-
tains a subsequence, denoted in the same way as the full sequence, and there exists
anelement v € L (Q; L*(0, T; V)) such that u, — vweakly” in L¥(Q; L>(0,T; V)).
In particular, we have

W) > (v.g),  @e LT (LY, T; X 2))).

This means that

T T
f f (u (1, ), (t, w)) dt dP" (w) — f f (t, w), ¢(t, w)) dt AP’ (w).
 Jo o Jo

On the other hand, if we fix ¢ € L*(Q’; L3 (0, T;L3)), by the inequality (4.45)

we have
T
’
[ widtel g o

sup .
n ’
2 2

2 2 / ’
< su [T RN 17 dP’(w) < suplupl7s oy oo 70 a0 1€
» fQ m0r il o s oD @m0 gty

2 2

dP'(w)

dP’'(w) < sup f

n

T
f L, (1), 90(t)>L% dr
0

< 00.

So by Lemma 2.104 the sequence fOT L, (1), go(t))L 4 dt is uniformly integrable

on Q. Moreover, by the P’ almost surely convergence of u), to u’ in L*0,T;L%Y),
we get P’-a.s.

T T
f L4ty (0, (1)) 4 di = f L' (0, (1)) 4 dr
0 ; 0 ;

T T
sf msfﬁ%m—wmmmmﬁm
0 0

< ’ _ ’
< |I/ln(t) u (t)|L4(0’T;L4)|QD|L%(O’T;L%) e 0

ey, (1) — (1), SO(I)>L%

Therefore we infer that fOT pa{u, (1), go(t))L% dr converges to j(;T pa{u’ (1), t,D(t))L% dr
P’ almost surely. Thus by Lemma 2.129,

T T
f f LU, (1, w), p(t, w))_ 4 dt dP'(w) — f f 14t (8, ), p(t, w)) 4 dt dP'(w).
rJo L3 o Jo L3

Hence we deduce that
T T
f f LVt w), (t, w))_ 4 dt dP’(w) = f f L4t (1, ), (t, w))_ 4 dt dP’(w)
» Jo L3 » Jo L3

By the arbitrariness of ¢ and density of L*(Q’; L3 (0, T;L3)) in L1 (Q'; L1(0, T; X~2)),
we infer that ' = v and since v satisfies (4.51) we infer that &’ also satisfies (4.51).
In this way the proof (4.51) is complete. O

Now we will strength part (ii) of Proposition 4.18 about the convergence of u),
tou.
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Proposition 4.25.

(4.52) lim E’ f (1) — ' (DI, dt = 0

n—oo

Proof. Since u;, — u’ in L*0,T;LY N C([0, T]; X#) P’-almost surely, u), — u’
in L*(0, T; L*) P’-almost surely, i.e.
T
lim luj (1) = ' (D)7 4 dt = 0, P —a.s.,

and by (4.45) and (4.51),

2
SUPE (f s (0) = 1 () dt) <2’ SuP('” |L4(OTL4(D)) +lu’ |L4(0TL4(D))) %

by Theorem 2.129 we infer that

T
lim E/ f luj, (1) = ' (D)l d = 0
0

n—oo

This completes the proof. O

By (4.45), {u},}*° | is bounded in L*(Q'; L*(0,T;H')). And since u/, — u’ in

n=1

L(QY; L*(0,T; L2)) by Lemma 2.145,

ouy, ou’

(4.53) — — weakly in L*(Q'; L*(0,T;L?), i = 1,2,3.
axi ax,’

Lemma 4.26. There exists a unique A € L*(Q'; L*(0,T; H)) such that for v €
LX(Q; L*(0, T; W4(D))),

T 3 T
(4.54) E’ f (A@®),v(t))yg dt = Z E’ f (Diu’ (1), u' () X Dyv(t))g dt.
Proof. We will omit*“(¢)” in this proof. Let us denote A, := u; X Au,. By the
estimate (4.46), there exists a constant C such that
IAull2r 20y <G neN.

Hence by the Banach-Alaoglu Theorem, there exists A € L>(Q; L*(0,T; H)) such
that A, — A weakly in L>(Q’; L*(0, T; H)).

Let us fix v € L*(Q';L*0,T; W'*(D))). Since u/(t) € D(A) for almost every
t € [0, T] and P’-almost surely, by the Proposition 2.167 and estimate (4.46) again,

we have
T 3 T
E’ f (A, vygdet = Z E f (D,-u;l, I/t;l X D;jvyy dt.
0 P 0
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Moreover, by the results: (5.80), (4.45) and (4.52), we have fori = 1,2, 3,

T T
E’ f (Diu', u' X D)y dt — E f (Diu;,, u;, X Div)yy dt
0 0

IA

T T
E’ f <Dl'Lt, - D,’M,’,l, u' X D)y de| + E f (Diu;, (l/t’ — u;l) X Divyy dt
0

IA

f (Di — Diu,,u’ X Dvyy dt

(E’ f 1Dt dt) = f I = 1y, d )( f 1D, d ) 0.

Therefore we infer that

n—oo

T 3 T
lim Ef (An,v)Hdt=Z]Ef (Dl ,u’ x D) dt.
0 ~ Jo

Since on the other hand we have proved A, — A weakly in L>(QY;L*(0,T; H)) the
equality (5.81) follows.

It remains to prove the uniqueness of A, but this, because ? (' ? 0, T; Wl ’4(D)))
is dense in L*(Q'; L*(0, T; H)), follows from (5.81). This complete the proof of
Lemma 5.53. O

Notation 4.27. We will use u’ X Au’ to denote A in Lemma 5.53 which is an element
of L*(Q’; L*(0, T; H)) such that the following identity is satisfied: for all v in a class
of test functions includes L*(Q'; L*(0, T; W'*(D))):

T 3 T
E’ f (U x Au (@), v())g dt = Z E f (D;u' (1), u' () X Div(t))y dt.
0 e 0

Next we will show that the limits of {u], X [Auj, — 71,0’ (u),)]},,, {u, X (u}, X [Auj, —
o (u)DY and e X (u, X [ A, — 7 () DY), are equal t0 u’ X [Aud — ¢ (1)),
W X (W X [Auw —¢'()]) and u’ X (' X [Au' — ¢’ (u")]) respectively.

By (4.46)-(4.48), the sequence {u/, x[Au! —¢’ (u,())]}, is bounded in L>(Q'; L*(0, T;1L?))
for r > 1, {u, x (u, X [Au, — ¢'(u,(®)])}» is bounded in LA(QY'; L3(0,T;L3))
and {m,(u}, x (), X [Au, — ¢’ (,,(t))]))}, is bounded in L*(Q'; L*(0, T; X#)). And
since L¥(Q'; LX(0,T;L2)), LA(Q'; L3(0,T;L3)) and L2(Q; L*(0, T; X)) are all
reflexive, by the Banach-Alaoglu theorem 2.143, there exist subsequences weakly
convergent. So we can assume that there exist Y € L¥(Q; L*0,T;L?), Z €

L2(QY: L2(0, T;L3)) and Z; € L2(Q'; L*(0, T; X)), such that
(4.55) w, x [Au, — ¢'(u))] — ¥ weakly in L¥(Q'; L*(0, T; %)),

4.56)  u, x (ul, x [Au, — ¢'(u)]) — Z weakly in L2(Q'; L2(0, T; L?)),

(4.57) 7, (u, x (u, x [Au, — ¢'(u)])) — Z; weakly in L*(Q'; L*(0, T; XP)).
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Remark. Similar argument (but with less details) has been done in [13] for terms
not involving ¢’. Our main contribution here is to show the validity of such an
argument for term containing ¢’ (and to be more precise). This works because
earlier have been able to prove generalized estimates as in [13] as in Lemma 4.22.

Proposition 4.28. IfZ and Z, defined as above, then Z = Z; € L>(Q'; L*(0, T; X))

Proof. Notice that (L%)* = L3, and by Proposition 2.172, X# = H*. By Theorem
298 XPcL? for B > 1 hence L% c X%, so0

L2(Q: 120, T; L2)) c L2(Q: LX0, T; X P)).

Therefore Z € L*(Q'; L*(0, T; X?)) and also Z; € L*(Q'; L*(0, T; X P)).
Since X? = D(Af ) and A is self-adjoint, we can define

n o)

B _ — o 28,2

X, =4mx = xje; /lj xj <oop.
Jj=1 Jj=1

Then X# = | le, LXQL20,T; XP)) = U, LAY 120, T; XP)). We have
for y, € LA(Q'; L*(0, T; X5)),

12 1200,7:x -8y Tty X (g, X [Autyy — ¢ (uy, (D) D)5 Ynd 120120, 7:x8)

T

=F f(; 8l (0) X (U, (£) X [Aul, — ¢ (U, (D)), Wn(0)) xs dt
T

i Efo (1) X (1 (0) X [Auty = ¢ @, (D])- Yn(D) iz dt

T
=F fo i (8) X () X [Aaty = &' (uy (D)D), Y (1)) e

T
E’ fo x-4uy (1) X (up (1) X [Auy, — ¢ (uy,())]), (1)) o dt

120:1200.7:x -8y Uy X (U X [Ny, — & (D) Ds ¥nd 120120, 7:x8))-

Hence
L2120, XB) L1 Wnd 12(Qrs120,T:%8)) =12 s120,7:x8)) $Zs Wn) [2(0v:12(0,7:XP))

Vi, € LH(Q; L*(0,T; Xg)). For any ¢ € L*(Q'; L*(0, T; XP), there exists L>(Q'; L*(0, T; Xf)) EY
Yn — Y as n —> oo, hence for all y € L*(Q; L0, T; XP),

v@rorxs)ZuWrerorxy = M poieorx-s)&Zsn rarorxe)
= m ponp20r:x-6)Z Ynd 2@ :20.:x8)
= 120 120,T:X )L WD 12(Q:12(0,T:XP))

Therefore Z = Z; € L*>(Q’; L*(0, T; X #)) and this concludes the proof of Proposi-
tion 4.28. O
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Lemma 4.29. For any measurable process y € LY LY0, T; W'*), we have the
equality

T
lim E/ fo () X [Au(s) = & (ul,(D)], () ds

n—oo

T
= E'f (Y(s5), () ds

o 0
f Z< u(S) W Ms)),,d E’f W' ()X ¢' (W 1), ¥y dt.

Proof. Letus fix ¢ € L*(Q'; L*(0, T; W'#)). Firstly, we will prove that

T rd '
lim B f Ul (1) X Aul (£), 1))y 2 dt = B f Z <8u (t)’u’(t 5W(l)> dr.
0 0 i=1 aXi g

n—oo c')x,

For each n € N we have

3 ’
(4.58) W0 X A D)z = Y <‘9un(t) (0 x aw(t)>
L2

=1 é?x,- T axi

for almost every ¢t € [0,7] and P’ almost surely. By Corollary 4.21, P(u, €
C([0,T]; Hy)) = 1. For each i € {1, 2,3} we may write

ou, , O o', oY
4.59 Ly x —) == x =
( ) <8x,~ Un x ax,- >L2 <(9x,- wx 8x,- >L2

ou,, ou y &p ou,, ,. oY
= — S + , Mn - Uu ) X —
ox;  0x; 8xl 12 ox; 0x;[12
Since L* < L2 and W!# < 1.2, 50 there are constants C; and C, < co such that
Ouy (¢ ) oY (1) ‘ Ou, (1)
t < ||—
< ax; x| =1 ox
< ||un<r)||H, Cillu (1) =t D)llps Collg Dl

(1)
0x;

(u, (D) — ' () X ——

L2 L2

Hence

dr

“J;

< ClCzE'j(; [, Ol e (1) = 0’ Ol g Dl d.

O, (1) (1)
<6 s (1) — ' (D) % ax; >]L2
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Moreover by the Holder’s inequality,

T
B fo W Oll D) = o Ol Dlkgs e

T
s(E' fo oI, dz) (E f (1) - O, dr) (E f I d )
<T? (E’ sup ||u;,<r)||§{l) ( f 1, (0) = ' DI dr) (E' f g% d )
t€[0,T]

By (4.45), (4.52) and since ¢ € L*(Q'; L*(0, T; W'*)), we have

,}L‘EO(E’ sup I, (r)nHl] (E f (1) - DI, dr) (E f ||w<r)||wl4dt) -0

te

Hence

(4.60) lim E’f
n—oo 0

Both «’ and j—f are in LX('; L*(0, T; L)), so u’ x 2 6‘” e L2(Q'; L2(0, T;L?)). Hence
by (5.80), we have

dr=0

o , (up (1) — ' () X o,

<(’3u (D) (44 )>
L2

T ’ ’
4.61) lim ]E'f <8un(t) - Ou (t), u' () X 6d]<t>> dr=0.
n—00 0 5Xi 6Xi 6-xi L2
Therefore by (4.59), (4.60), (4.61),
(4.62)
R A R () Y (O I ()
nh_}n;)E j; < a.Xi ,Mn(t) X 6_xi>L2 dte=E L < aXi ,u (t) X (9_xi>L2 dr
Then by (4.58), we have
(4.63)
T T3 ,
- , , o ou'(r) oy(1)
,}LIEOE vfo (u, () X Au, (), Yy(O))2dt = E ﬁ Z< o u (1) X ox; > i dr

i=1
Secondly, we will show that

T T
lim E’ fo (U)X 7000 (Ul (1)), )y dt = B fo W@ x ¢ (W' @), ¢)y dt.

n—oo

Since

[t (2) X 70’ (U (D), )11 — Gt (8) X & (' (1)), ) |
[0 = & )] X 7029 (ur, (D), Yy | + [’ (@) X [’ (1)) = ¢ (W ()], ) 1|
ol @) = w ] |6 e onl,, + el

<
<
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we have

T T
B fo L0 X 7t (1), )yl — B fo WO X G D))y di

T
=5 f (Il llano> = O ll& Ceonl,y + Wl Ol nd @0) = &G O )

T 1 T 4 i T , !
< (2 [ Wtea) (5 [ o -wola) (& [ lowola)
oo i T L\ T A
+(E’\f(; ||¢||W1,4 dt) (E’fo ”u,(t)”L“ dt) (E’L ”ﬂ"‘ﬁ’(u;z(t))_¢’(M’(t))||Hdl) 0.

We need to prove why

T
(4.64) B fo e ) - & )| dt > 0

This is because
r L
(E’ fo ||nd’ () = &' (W D)) dt)

1
2

1
T 2 T
’ ’ ’ ’ ’ 2 ’ ’ ’ ’ 4 2
< (E [ ot G0 = mat dz) + (E [ e -swwl, dt) <o
0 0

Since ¢’ is global Lipschitz, there exists a constant C such that

r L r L

.<C (E’ f |Jur, (8 = O, dt) + (E’ f |lend’ (' 1)) = ¢’ (' D[, dt) :

0 0
By (4.52), the first term on the right hand side of above inequality converges to 0.
And since ’|7r,,¢’(u’(t)) - ¢’(u’(t))||12q — 0 for almost every (¢, w) € [0, T] x Q, and
since ¢’ is bounded, ||7rn¢5’(u’(t)) - ¢3’(u’(t))“2 is uniformly integrable, by Lemma
2.129 the second term of right hand side also converges to 0 as n — oo. Therefore
we have proved (4.64).

Hence we have
(4.65)

T T
lim E’ j; (U (0) X 7000 (Ul (D)), )y dt = B/ fo W@ x ¢ W @), g)y dr.

n—oo

Therefore by the equalities (4.63) and (4.65), we have

T
(4.66) lim E’ f (up (1) X [Auy (1) = 7pp” ()], (1)) it
n—oo 0

T 3 o’ 0 T
-7 [ Zl< 0w x B [ X s oy
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Moreover, by (4.55),
4.67)

Hence by (4.66) and (4.67),
T
lim B fo (1) X [ A (1) = 70 @, ()], 05D
T
- E f (YO, (D)

T
=F f Z<aum )x%> dr + B’ fo (' () x ¢ (' (1), (1)) dit.

This completes the proof of Lemma 4.29. O

Lemma 4.30. For any process y € L*(Q; L*(0, T; L*)) we have

T
tm 2[5 % (05 % [0, = ¢ ) D61

T
4.68) =F f L3{(Z(), Y(s)s ds
0
T
4.69) = E"fo 3 W' (s) X Y(s), y(s))ys ds.
Proof. Letus take y € L*(Q'; L*(0, T;1L*%)). Forn € N, put Y, := u/, x[Au,+¢'(u)].
LAQ; L40, T;LY) c L2(Q; LX(0, T;L3)) = [LZ(Q'; 120, T;L3 ))]'. Hence (4.56)

implies that (4.68) holds.
So it remains to prove equality (4.69). Since by the Holder’s inequality

ly > u'll?, = fD () X o’ () dx < fD WO’ O dxe < WA Ml 1174 < W1, + 11

And since by (4.52), u’ € LY(Q; L*0, T; L*)), we infer that

T
fuwxun2 dt<Ef 769 dr+E’f Il dr < co.
0

This proves that yxu’ € L*(Q'; L*(0, T;1L?)) and similarly yxu/, € L*(Q'; L*(0, T;1L?)).
Thus since by (4.55), Y,, € L>(Q'; L*(0, T; L?)), we infer that

X Vs = [ X V(0,000 d
D

(4.70) - fD (a0 X (0 dx = (Yoot X sl 2.

T T
tim & [ 0x{u,0-m G 01 = [ Oy v e @O,
0 0
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Similarly, since by (4.55), Y € L>(Q'; L*(0, T; L?)), we have

X Yoy = fD (0 () X Y(x), () dx

@71 = [ w0 ey ar = ity
Thus by (4.70) and (4.71), we get
(36 X Y, Yhps = 3 X Yys = (Yo X e = (Y X ')y
= (Yo = Yy xu' Y2 + (Yo, 0 X (g, — t'))p2.

In order to prove (4.69), we are aiming to prove that the expectation of the left
hand side of the above equality goes to 0 as n — oco. By (4.55), since ¢ X 1/ €
LX(Q'; L*(0, T; L?)),

T
lim E f (Yu(s) = Y(5),¥(s) X u'(s))2ds = 0.
0

n—oo

By the Cauchy-Schwartz inequality and the equation (4.52), we have
E (Yot X (), = )72) < B (IVallZallyr X @, = w)I,) < B (IVullE (Al s - Nl = 1))

T
<8 [ IOl - o] ds

, L o %
S(]E’ [ Il ds) (E [ ||;b(s)||14ds) (E [ i -l ds) 0.

Therefore, we infer that

T T
lim E’ f 3 (XU ()X (5)), ()} ds = B f XY (), ()i ds.
n—-oo 0 0
This completes the proof of the Lemma 4.30. O

The next result will be used to show that the process u’ satisfies the condition
|t/ (¢, x)lgs = 1 for all € [0, T], x € D and P’-almost surely.

Lemma 4.31. For any bounded measurable function  : D — R we have
(Y(s, ),y (s, w))u = 0,

for almost every (s, w) € [0,T] x Q.

Proof. Let B C [0, T] x Q' be a measurable set.

T T
E'f(; 15(s) (uy (5) X [Auty,(5) = 708" (1, (5))], Yy, (5)) gy ds — E'jo‘ 1(s)Y (), g’ (5))m ds

T
= |E’ fO (U, (s) X [Auy, () = 1" (u;,(5))] — Y (), WQ(S»H +(Y(s), Yt (s) — Yl (5)) ds

IA

+

T
Efo (Y(s), Yru () = Y’ (5))p ds| -

T
B fo (U (5) X [ AU (8) = 7a ()] = Y(5), () dis
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Y’ (s) € H, by (4.55) and (4.46) and (ii) of Proposition 4.18, we have

T
B fo U (5) X [ (8) — 7 Gl ()] — Y(5). i (5))y ds

<

T
E'j; (up,(8) X [Auty, () = 7,0 (uy,(5))] = Y (), Y’ () ds

+ — 0.

T
B fo (W (5) X [AU(5) = 7 (5))] = Y(5), 0l (5) — ()] s

And since ¢ is bounded and L* — L2, by (4.52), we have

T
<E fo KV (5), it (5) — ' ()| dis
T\ T , \?
< (E’ fo |Y(s)|Hds) (E’ fo |¢u;(s)—w’(s)|Hds)
T , \? T 4\ T I
< (]E’ f |Y(s)|Hds) C (E’ f |, () = ' (9)|, 4 ds) (E’ f 14ds)
0 0 0

T .\ T .\
< C(]E’ f |Y(s)|Hds) (E' f |u;(s)—u’(s)|L4ds)
0 0
- 0.

Therefore

T
E fo (V($), il (s) — ' () ds

T
0 = lim E’f 15(5) S (5) X [Auty,(5) = 0’ (3, (5)) ], Y1t (5))y ds
n—0oo O
T
=E f Lp(s)XY (), yud' (5))p ds.
0
This concludes the proof of Lemma 4.31. O

4.6. Conclusion of the proof of the existence of a weak solution. Our aim in this
subsection is to prove that the process u’ from Proposition 4.18 is a weak solution
of the equation (4.2).

We define a sequence of H-valued process (M,,(t)).c[o,r] on the original probability
space (Q, F,P) by

Ma®) = un(t) = n(0) = Ay fo o () X [Atin() = 70 (un())]) ds
!
4.72) +A; f 7 (U (5) X (u(8) X [Auy(5) — 10 (1 (5))])) ds
0

. f Al GaCitn(s) 1) X ] ds.
2 Jo
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By (4.4), we have
un(1) = un(0) + A1 fo t T (tn(8) X [Atn(5) = a9 (n(5))]) ds
s [ a5 1) % [ (9) = 7 (D) i
+1 j: 7, (7, (1 (s) X h) X h)ds + fot 7, (U, (5) X h) dW(s).

2

Hence we have
N f

4.73) M, (1) = Zf Tn(un(s) X hj)dWi(s), 1€[0,T].
j=1 0

It will be 2 steps to prove u’ is a weak solution of the Equation (4.2):

Step 1 : we are going to find some M’(f) defined similar as in (4.72), but with v’
instead of u,,.

Step 2 : We will show the similar result as in (4.73) but with «’ instead of u, and
W;. instead of W;.

4.6.1. Step 1. We also define a sequence of H-valued process (M;(1)),c(o.r; On the
new probability space (Q, ¥, P’) by a formula similar as (4.72)

M (1) := u, (1) — u,(0) — A4 jo‘ 7t (U, (5) X [Auy(s) — ' (u),(5))]) ds
t
(4.74) iy f T 1, (5) % (1 (5) X [ (5) = 7t/ () ())])) s
0

! f [ (7, (u),(s) X h)) X h]ds.
2 Jo

It will be natural to ask if {M,} has limit and if yes, what is the limit. The next
result answers this question.

Lemma 4.32. For each t € [0,T] the sequence of random variables M,(t) con-
verges weakly in L>(Q; XP) to the limit

M) = () — up — A fo (u'(s) X [Au'(s5) — ¢' (W' (5))]) ds
t
A fo (W (5) X (i (5) X [Au(5) — 7u ((sD)])) ds

—lf(u'(s)xh)xhds
2 Jo

as n goes to infinity.
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Proof. By Theorem 2.130, the dual space of L>(Q'; X #) is L>(Q'; XP). Lett €
(0,T] and U € L*(Q'; XP). We have

LZ(Q';X—ﬁ)<M;l(t), U>L2(Q’;Xﬁ) =F [X_ﬁ<Mr,l(t)’ U>X/;]
= E’I:X,ﬁ<u;z(t)’ U>X/3 —XB <Mn(0), U>X/;

-1 j(; (up(s) X [Auy(s) — mu (uy(5))], ma U )y 2 ds
‘
[ (@09 % (0 % [8056) = 1 (D). U ds

! f (au(s) X 1) X h, Uy 2 dis |-
2 Jo

We know that u;, — u’ in C([O, T]; XP)P'-as., so

sup |u, (1) —u@®|ys — 0, P —a.s.
t€[0,T]

so u,(t) — u/(t) in X P’-almost surely for any ¢ € [0, T]. And y-s(-, U)ys is a
continuous function on X, hence

Jim s (1), Uys = 5o’ (0, Udys, B —as.

By (4.44), sup,c(o.7) lup(Dla < luoly, since H — X~ continuously, we can find a
constant C such that

’ ’ 2 ’ ’ 7’
sup E [|X7ﬁ(un(t), U x| ] < sup E'|UE ), (DI s
n n

< CE'|U,E sup [u) (1)l < CE'|ULE uglf; < oo.

Hence the sequence y-s(u,,(t), U)xs is uniformly integrable. So the almost surely
convergence and uniform integrability implies that

lim B[y, (1), Udxs] = B [’ (1), U)o

By (4.55),

lim E’f (up(8) X [Au(s) — ¢ (' (5))], 7, U)o ds = E f (Y(s), U)pa.
0 0

n—oo

By (4.57)

! !
lim E’ f(; x-8 {7t (), (5) X (0, (5) X [Auy,(5) — 70" (u,(5))])) . U)yp ds = E f(; (Z(s), Uyxs ds.

n—oo

By the Holder’s inequality,

luy, (1) = ' (D), < lup(0) =/ (D).
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Hence by (4.52),

!
E f (T (U (s) — u'(s)) X h) X by, U2 ds
0

1

! 2
< |U|L2(Q’;L2(0,T;L2)) (E’ f (ﬂnl(l/t;l(s) - M’(S)) X h) X hliZ ds)
0
‘ 3
< hE Ul (E’ f 1y (5) = ' ()17 5 ds)
0
2 ! 2 :
< Al Ul 220,712y (E' f |y, (5) — ' ($)I 4 dS)
0

1

! i

< |h|]iw|U|LZ(Q,;L2(0,T;L2))(E’t fo Iu;(s)—u’(s)|14ds)
— 0.

The last “<” is from the Jensen’s inequality.
Hence

lim 12 x-8) M0, U) 120 x8)
t
= E,[X—ﬂ<u,(t), U>X,8 - X—ﬁ(l/to, U>X,8 - /11 f <Y(S), U>L2 ds
0

+A fo x5(Z(5), Uyxs ds—% f(; (/' (5) X h) X h, Uy ds.

Since by Lemma 4.29 and Lemma 4.30, we have Y =/ X Au’ and Z = v’ X (1’ X
Au’). Therefore for any U € L*(QY'; XP),

Tm g5 (M0, U prixs) = p2erix) (M (0, U rxs)-
This concludes the proof of Lemma 4.32. O

Before we can continue to prove u’ is the weak solution of equation (4.2), we
need to show that the W’ and W, in Proposition 4.18 are Brownian motions. And
that will be done in Lemma 4.34 and Lemma 4.35. And we need Lemma 4.33 to
prove Lemma 4.34.

Lemma 4.33. The Borel o-field B and the cylindrical o-field C on C([0, T];R) are
identical.

Proof.(i) We will show that C c 8.
We claim that all the cylindrical sets are Borel sets. For some n € N, let

C={x:(x(t),...,x(t,)) € A},

for some open set A € B(R"). For any y € C, (y(¢1),...,y(t;)) € A, and since A is
open, Jde > 0, such that if x satisfies

(x(t1), - x(1)) = Ot - (@] < &,
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then (x(¢1),...,x(t,)) € A, so x € C. But
[(x(t1), . .., x(20) = (V(t1), - . .. ()| < nllx = Yo, 71:R)

hence if ||x — yl| < £, then x € C. So we proved that if A is open, then C = {x :

(x(t1), ..., x(t,)) € A} is also open. And notice that
{x:(x(t),...,x(t) € A} = {x: (x(11), ..., x(t,)) € A°},

s e, xt) € A = s o), - xe) € | A,
k=1 k=1

therefore if A is a Borel set, then C is also a Borel set, which means that all the
cylindrical sets are Borel set. Hence C C 8.

(i1)) We will show that 8 C C.
We only need to prove all the open sets are in C. And since C([0,T];R) is a
separable metric space, any open set is a countable union of open balls. Hence we
only need to show all the open balls belong to C. Let us first consider

B, = {x Slxll = sup [x(@)] < 8},
t€[0,T]

for some £ > 0. Suppose that {#;} is countable and dense in [0, T'], then we have

sup |x(f)] = sup [x(#)].
€107} i

By the definition of cylindrical set, the set {x : x(#;) € A} for some Borel set A is
cylindrical. So the map

fi: C(0,T;R) — R
x — x(t;)
is (C, B(R))-measurable. And by the propositions of measurable maps, the map
f:C(0,TI;R) > x — sup|fi(x)| € R
l

is also (C, B(R))-measurable. Since B, = f~1([0, €)), B, € C. So B c C.
This concludes the proof if Lemma 4.33. O

Lemma 4.34. Suppose the W, defined in (Y, ', P") has the same distribution as
the Brownian Motion W defined in (Q,F ,P) as in Proposition 4.18. Then W), is
also a Brownian Motion.

Proof. We prove W, is a Brownian Motion. By Lemma 4.33, we can use the
cylinder subsets as the Borel subsets in C([0, T]; R).
(1) W, (0) = 0 P’-almost surely.
P (W,(0) = 0)
=Pw' : W) (-, ") € {xeC0,T];R) : xo = 0}
=Plw: W(,w)e{xeC(0,TLR) : xo = 0}}
=P(W0)=0)=1.
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(ii) W, has independent increment.
ForO0<t <th <t3<t4 <T,any A, B € BR).
{(Wi(t2) = W, (t1) € Ay N {W,(tg) — W, (13) € B}

={ €eQ W () e{x:x, —x, €A} N{x:x, — x4, € B}
A,B € BR), so{x: x, —x; €A}, {x : x;, — x4, € B} are cylindrical sets, so
{x:xp —xy €A} {x: Xy — x4, EB} € AT . Since W, and W have the same law,

P’({w’ eQ W (,)efx:x, —x, €AY N{x:x, —x, € B}})

= P({w €eQ:W(tw)el{x:x, —x, € AyN{x:x, — x4, € B}}).
Hence
P'({W,(12) — Wy (t1) € A} N {W,(ta) — W, (13) € B})

= P({w eQ:Wtw)el{x:x, —x, € AyN{x: x;, — x4, € B}})
= P({W(2) - W(t)) € A} 0 {W(tg) — W(13) € B})
= P({W(t2) - W(t1) € AYP({W(t4) — W(t3) € B})
=P(We{xeCIO,TI;R) : x;, — x;, € A))P(W € {x € C([0,T];R) : x1, — x1, € B})
=P (W e{xeC(0,T;R) : x,, — x;, € AYP' (W' € {x € C([0,TL;R) : x;, — x;;, € B})
= P'({W,(t2) — W, (t1) € ADP({W,(14) — W, (13) € B})

Hence W) (#;) — W) (t1) and W, (z4) — W/ (t3) are independent.
(iii)) W, (r) ~ N(0,1) for t € [0, T]. Similarly as before, we have

1 f 2
e 7z dx,
V21t JA

Hence W, (¢) is a Brownian Motion. This concludes the proof of Lemma 4.34. O

P'(W, (1) e A) =P(W(r) € A) =

forA € Z(R)and € [0,T].

Lemma 4.35. The process (W’ (t))ic[o.1] is a real-valued Brownian motion on (', F',P")
and if 0 < s <t < T then the increament W' (t) — W (s) is independent of the o-
algebra generated by u’(r) and W'(r) for r € [0, s].

Proof. We consider the characteristic functions of W’. Let k € Nand 0 = 59 <

s; <---< s <T.For(ty,..., 1) € Rk, we have for each n € N:

B [ei o r,-(W,',(x,-)—W,;ch))] = o3 i Bl

-k ) PN (. .
Notice that |esz=1 1 Wals) W”(sf’l))| < 1, by the Lebesgue’s dominated convergence
theorem,
B [eiz§:1 r,»(W'(s,—)—W’(sH»] - lim B [eizﬁ:ln—(vv,;(s,-)—W,:(sH)) = o 1T s
n—00

Hence W’'(¢) has the same distribution with W (¢) for r € [0,T]. Since random
variables are independent if and only if the characteristic function of the sum of
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them equals to the multiplication of their characteristic functions, here

k
- vk ’ ’ . ’ ’
E elzj:l ti(W(sj)-W (s_,-_|))] — | | E [eztj(W (s))-W (Sj,l))] )
j=1

Hence W’ has independent increments.
And

W'(0) = lim W,(0) =0, P -a.s.,
n—oo

s0 (W'(#))sef0.7] s a real-valued Brownian motion on (Q', ', P").
The law of (u,, W) is same as (u;,, W,) and if > s > r, W(t) — W(s) is independent
with u,(r), so W, (t) — W, (s) is independent with u,,(r) for all n. By Proposition
4.18, lim, e [y, (P)llyr = [l (Mlly and lim, 00 (W) — W, () = W' (1) — W'(s),
hence by the Lebesgue’s dominated convergence theorem we have

B (Ol W O-W @) iy 7 (15Ol W50 W)

n—oo

= fim B’ (01 B (MO0 = g (oI Olv)) g (@i 0-W (),

n—oo

So W’ (t)—W’(s) is independent of u’(r). Hence this completes the proof of Lemma
4.35. O

Remark 4.36. We will denote F’ the filtration generated by («’, W’) and F), the fil-
tration generated by (u;,, W;). Then by Lemma 4.35, u’ is progressively measurable
with respect to F’ and by Lemma 4.34, u), is progressively measurable with respect
to .

4.6.2. Step 2. Let us summarize what we have achieved so far. We have got our
process M’ and have shown W’ is a Wiener process. Next we will show a similar
result as in equation (4.73) to prove u’ is a weak solution of the Equation (4.2).
But before that we still need some preparation. The following estimate will be used
to prove Lemma 4.38.

Proposition 4.37. For every h € L® N'W'3, there exists ¢ = c(h,8) > 0 such that
for every u € L2, we have

(4.75) | X hly-s < cluly-s < oo.
Proof. Letz € H!, h e L N W3, Then
le X Ay = V@ X DI, + 12X Al

< 2(IVz X hi, + |2 X VAE,) + |2 X gy < 20 <IV2E > + VAR 12 o) + 5l o 2l

< 2(|hlw + CIVAE DI,
so the map

H!'s5zr>zxheH!

is linear and bounded. And so for u € L2, 7 € XP.

Ix-su X h, 2) x| = |x-s{u, 2 X hyys| < \/2(|h|ioo + C2|Vh|]2L3)|Z|Xﬁ|u|X—B.
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Letcy, = \/2(|h|im + c2|Vhli3), we have get

lu X hly-s < cpluly-s < 0o, uel?
This completes the proof of Proposition 4.37. O

Lemma 4.38. For each m € N, we define the partition {s’}’ =
[0, T]). Then for any € > 0, we have the following results:

(1) We begin with the proof of part (i).
We can choose m € N large enough such that

2 2
! m—1
lim |[E’ f (Tt (5) X 1) = 3" 7a(ut (87) X )L 1(5)) AW (5) U <%
n—oo 0 j=0 Xﬁﬁ
(i1)
m—1
lim E’[ D A (S X Wit A S 1) = Wit A 5)
Jj=0
m—1 2
= D Tl (S X WA ST ) = Wt A ST) ] = 0;
Jj=0 X8
(iif)
f m—1 2 %
lim {E f (au () X 1) = 3" 7 (1) X W) gz, () AW (5) H <
n 0 = o
(iv)

2

} _o
X8

f (' () X h) = (' (5) X 7)) AW’ (s)
0

lim E’
n—oo

Proof.(i) By the It6 isometry,

[ ¢ m—1 2 %
E’ f (Tt (5) X h) = Z (it (s5) X W) gm 5 1(5)) AW (5) U
[0 j=0 X+
[ ! m—1 2 ] %
= |E j; (Tt () X 1) = D" T (sT) X )L gn.gn ()| ds ]
i J=0 x5

1

INA

1
t 3 ! m—1
(]E’ fo luj (5) X b~ u' () X B, ds) + [E’ fo W (5) X B = D @ () X ) L. ()5 ds]
=0

1

¢ m—1 1

+[E’L IZ(u'(s;-")—u;(s'}l))xhl(s’}l,s;"ﬂ](s)@ﬁds] _
Jj=0
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Note that by Jensen’s inequality,

! !
f I, (5) X b — ' (5) X h%_» ds < CP[hl} f lup(s) — ' (s)|7 4 ds
0 0
1

t 3
< Czlhlim \/;(f |y, (5) — u’(s)l]i4 ds) — 0, P —a.s.
0

and by Sobolev embedding, (4.44) and (4.50),

t 2 t
sup E/ ( f () X h— ' (s) X hl3 ds) < sup CHhlf B/ ( f lup,(s) = ' (5)I7 ds)
n 0 n 0

< YAl T sup sup B lu) (1) — ' (017, < CHhlf T sup sup B (u, (012, + ' ()],
n t n t

2

< C*lf T sup (sup E'Juj, (), + sup E'Iu’(t)liz) < CYhltT (E’|uo|]i2 + sup E’Iu’(t)liz)
n t t t
< CHAE T + Alugl?, < oo.

Hence fot |uy, (s) X h —u'(s) X hl?{-ﬂ ds tends to 0 almost surely as n — oo and the
sequence is uniformly integrable. Thus

!
lim E/ f luj,(s) X b= u' (s) X hl},_, ds = 0.
0

n—oo

w xheC(0,T]; XP) P’ — a.s., next since

m—1
lim sup lu'(s)xh— > W (s]) X W)l ()] =0, P —as.
m— oo se[0,T] P Jor+ s

Hence

m—1 2

W (s) X h — Zo(u’(s’}’) X I)Lgn g (5)
]:

ds— 0, P —a.s.

[

And by Sobolev embedding,

X8

t m—1 2 :
supE/ f W' (s) X h— Z(u'(s;f') X W) 1(s)  ds
m 0 = JUHl
Jj= X8
2 2
f m—1
< 62 supE’ f u'(s) — Z MI(ST)I(ST’STH](S) ds]
m 0 -
Jj=0 XA

2

2
X8

Then by (4.50), sup,cjo 7 [’ (Dlx-s < cluoly2, P'-almost surely,

m—1

D g 1(5)

/=0

T
< 02 supE’ f 2|u’(s)|§,ﬁ +2
m 0
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- < 16T¢)E (uol},) = 16T2c4|u0|42 < 0.

Hence fo w(s)x h-— Z (u (sm) X h)l(s 5 +1J(s) ds is uniform integrable.
Therefore
2
!
lim E’ f w(s)xh-— Z(u (sm) X h)l(sm A ](s) ds|=0.
m—0oo
Jj=0 X8

Hence for € > 0 we can choose m € N such that

D=

SRRV

f m—1
[E’ f ()X h = @ () X ) g () ds | <
0 3
j=0

Again since u;, — u’ in C([O0, T1; X#), we have

¢ |m—1 2
[ - st of ds
J=0 X8
2
m—
< ﬁf Z W () = (S ngn 1) ds
j=0 X8
m—1
2 m m T 2 ’
=c |u(s)—u(s )lxﬂ <cj, sup |u(s)—u(s)|X/3—>0 P’ —a.s.
j=0 s€[0,T]

Then by (4.50), sup,eo 7y [’ (D)lx-s < clugly2, P’-almost surely, we have

2
sup ]E’( sup |u'(s) — u;,(S)@-ﬂ)
n s€l0.T]

2
< supE'( sup |u’'(s)|x-s + sup |u;z(s)|§(ﬂ] §4c4|u0|12-

n s€[0,T] s€[0,T]
Hence
2 2
t |-
sup B/ f Z(u'(s?)—u;,(s?))xhl(sgn’sﬁl](s) ds| < co.
n 0 3
Jj=0 X8

So fo |Z’" L/ (s’") —u (s’”)) X hl(gm s ](s) ds is uniformly integrable. Hence

2

! m—1
nh_{?o E’ j(; Z(;(u’(s'}’) - u;l(s;.")) X hl(s;n,sz_nﬂ](s) ds|=0.
J:

X8
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Therefore we have get for any € > 0 we can choose large enough m, such that

1
2
J .
(i) Next we will deal with the proof of part (ii).
Since u;, — u’ in C([0, T]; R) P" almost surely and W, — W’ in C([0, T]; R) P’
almost surely,

m—1 2

!
fo (i () X 1) = > Tt (s7) X W)L g, 1(5)) AW (5)
=0

’

N M

n—oo

lim [E’

m—1
D (S X Wt A S 1) = Wit A 5T)
=0

m—1

- Z T/ (51 X YW/ (L A 57 ) = W (2 A 8™)

J=0 X#
m—1
< |3 T (S X Wi A ST ) = W (A ST = Wit A ST+ WA S)) ﬁ
j=0 X7
m—1
| D T = (8T X YW (U A Sy) = W A 7))
j=0 X
m—1
< cn| D Tt (YWt A ST ) = WA ST = Wit A ST+ Wt A sT))
J=0 x*
m—1
+cy, Z ﬂn(u;,(s;”) - u'(s;f’))(W’(t A STH) -Witn ST)) ; — 0, P -a.s.
j=0 X

And since W, are Brownian Motions and we have prove W’ is also Brownian
Motion, together with (4.50), we have

m—1
sup E’[ D A (S X Wit A S 1) = Wit A 5)
" Jj=0
m—1 4
= D T () XYW (A ST ) = W (A ST
Jj=0 X5
m—1
< cjsup E’[ Dt (SEYW (e A ST y) = Wit A sT)
n ]:0
m—1

4
xlj

m—1 4
cne*luol? supE'[ DUAWHE A ST = Wit A S+ IW (A ST) = W (A S| < .
n ]:O

- Z Tatd (STYW' (2 A ") = W/ (2 A $)
=0

IA
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So
m—1
D (ST X Wyt A ST y) = Wit A 5T)
j=0
m—1 2
- nn(u'(s’]”) X (W' (t A s7+1) -W A ST))
J=0 X+
is uniform integrable. Hence we have
m—1
,}Lrgo ]E’[ Z nn(u,;(s;.") X h)(W, (1 A ST+1) - Wt A s;-"))
j=0
m—1 2
- Z n,,(u’(s?) X h)(W'(t A STH) -W (A s’]’?)) ] =0.
J=0 X+

(iii) Next we move to the proof of part (iii).
By the It6 isometry and the result in (i):

~

] 5wk
f m—1
E f (70, (' (5) X ) — Z (U’ (57) X M1sr.sm 105)) dW’(s) B
0 =0 :
[ !
Il
(iv) Finally, we will prove part (iv).
By It6 isometry,

2
ds

I
&=

 —
ol—
A
N ™

X8

m—1
(W' () X 1) = )" 7 (1) X W)L g g ()
j=0

2

y

E [l fo () ) = (0 (5) % ) AW ()
- F [ fo t I’ () X ) = @' (5) X D) ds]

By the Sobolev embedding L7 < X7,
fo [ I () X h) — /() X hf3 ,ds < C fo t I (5) X ) = ' (5) X I}, ds.

Since 7, (i (s) X h) — /(s) X h in L? P’ almost surely,

!
f (' (5) X ) — ' (s) X hf3 s ds — 0, P —a.s.
0
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And by (4.49), (4.50) and (4.75),
t 2
supE/ [ f I’ () X ) = (@' (5) X D) ds}
n 0

t 2
< 2supE’ f I (5) X D)5y + |0 (5) X )5 ds]
n 0

2

!
2072 2 2002 2072 21 4 2
< 2supFE’ [f Colhl IuolL2 +cj, IuolLz ds| =(Clhle + cp) IuoleT < 00,
n 0

So fot |7, (' (s) X h) — (1’ (s) X h)|§_ﬁ ds — 0 P’ almost surely and uniform inte-
grable, hence

1 2
lim E’ f (a1 (s) X h) — (' (s) X h)) dW' () =0.
n—00 0 X8
This completes the proof. O

Now we are ready to state the Theorem which means that u’ is the weak solution
of the equation (4.2).

Theorem 4.39. For each t € [0, T] we have M'(¢) = fot(u’(s) x h) dW’(s).

Proof. Firstly, we show that My(t) = 3| [('7,(u}(s) X hj)dW’,(s) P’ almost
surely for each r € [0, 7] and n € N.

Let us fix that r € [0, 7] and n € N. Let us also fix m € N and define the partition
{s;" = %,i =0,... ,m} of [0, T]. Let us recall that (u),, W,) and (u,, W) have the

same laws on the separable Banach space C([0, T]; H,) x C([0, T]; RY). Since the
map

¥: C([0,T];H,) x C(0, TI;RY) — H,
m—-1 N

(1, W) = My(t) = D> matn(s") X hp)(Wi(t A siy) = Wil A s])
i=0 j=1

is continuous so measurable. By involving the Kuratowski Theorem we infer that
the H-valued random variables:

m—1 N

Mu(0) = 3" Talan(s) X )W (E A sy) = WGt A $T)
i=0 j=1
and
m-=1 N
MO = D73 i (1) X )W (2t A 1) = Wit A 5T)

~
Il
(=)

J=1
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have the same laws. Let us denote i, := Z;'Q)l un(s;”)l[slm,sﬁ - By the It6 isometry,
we have

m—1 ! 2
Z Tu(un(s7) X h)(Wi(t A 57 ) = Wit A sT)) — f T (up(s) X hj) dW;(s)
pary 0 L2(Q:H)

2

= EHfo (70t X ) = 0 (un(s) X hj)] AW(s)|| < IIhjlliw(D)EfO i (5) — n(s)|I3; ds.
H

Since u, € C([0, T']; H,) P-almost surely, we have

t
lim f () = tn(s)|I%, ds =0, P—a.s..
n—o0 0

Moreover by the equality (4.13), we infer that

2
<supE
n

2

supE fo i2(5) — tn($)II2, dss fo 2l ()12, + 2l (s)II2,] ds

2
< E|dlluol3, T|" = 16lluolify T2 < co.

Therefore by the almost surely convergence and uniformly integrability, we have

m—1 ; 2
ry{glgo Z T (un(s7) X h) (Wit A sTy) = Wit A s)) = f T (un(s) X hj) dW,(s) =0.
i=0 0 L2(Q:H)
Similarly, because u,, satisfies the same conditions as u,, we also get
m—1 ‘ 2
”111320 Z Ty, (7 X h)(W}n(t Asty) = W]’»n(t A si) = f 7, (u,(8) X hj) dW;-n(s) =0.
i=0 0 L2(Q:H)

Hence, since L? convergence implies weak convergence, we infer that the ran-
dom variables M,,(1) = X [ ma(uta(5) x ) dW(s) and My (0) = XL [ (1 (5) X
hj) dW]’.n(s) have same laws. But Mn(t)—zyz1 fot 7u(uy(s)Xhj) dW;(s) = 0 P-almost

surely, so

N t
M (1) = Zj(; Tu(u, () X hj) dW]'-(s), P’ —a.s.
=1



120 LIANG LI

Secondly, we show that M, (¢) converges in L2(Q; X7P) to fot(u’(s) X h)dW’(s) as
n — oo, Notice that

2 \2

XA )

f 7 (1, (8) X h) dW, (s) — f W' (s) x h)dW'(s)
0 0

~

E M,’,(t)—f(u'(s)xh)dW’(s)
0

1

2 2
X‘ﬂ]
m—1

f (1, (8) X h) AW, (s) — Z Jrn(u;z(s;”) X )L g () dw, (s)
0

i
J=0

I
=

~

IA

E

2
XB ]

+(E’

m—1
D (ST X Wit A S 1) = Wit A 5T)
j=0

2 \1
xﬁ)
B 2 \2
t m
+ [E' f (7ra(u' (5) X h) — Z (' (s7) X W)L (gn.5n 1(5)) AW (s5) ]
0 Jj=0 X8
2 3
+ (E J ’
X-B

And then by Lemma 4.38, we complete the proof of Theorem 4.39. O

m—1
- Z T () X YW/ (£ A $™,1) = Wt A 5™))
=0

~

f (i (5) X 1) = (i () X 1)) AW (5)
0

Summarizing, it follows from Theorem 4.39 that the process u’ satisfies the fol-
lowing equation in L>(Q’; X#) for ¢ € [0, T]:

(4.76) u'(t) = uy + A f (' x [Au" — @' (W)]) (s)ds
0
) f u'(s) X (u' x [Au’" — ¢’ (u)]) (s)ds
0

+ f @' (5) X h) o AW’ ()
0

4.7. Regularities of the weak solution. Now we will start to show some regular-
ity of u’.

Theorem 4.40. The process u’ from Proposition 4.18 satisfies:
4.77) |u'(t,X)|gs = 1, for Lebesgue a.e. (t,x) € [0,T] X D and P’ — a.s..

To prove Theorem 4.40, we need the following Lemma:
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Lemma 4.41. [40](Th. 1.2) Let (Q, (F;),P) be a filtered probability space and let
V and H be two separable Hilbert spaces, such that V — H continuously and
densely. We identify H with it’s dual space and have a Gelfand triple: V — H =
H' — V'. We assume that

ue M*0,T;V), ug € H, ve M*0,T;V’), ze M*(0,T; H),

foreveryt e [0,T],

! t
u(®) = ug + f v(s)ds + f z(s)dW,, P-a.s..
0 0

Let y be a twice differentiable functional on H, which satisfies:

1) ¥, ¥ and " are locally bounded.

(i) ¥ and ¥’ are continuous on H.

(iii) Let L'(H) be the Banach space of all the trace class operators on H. Then
VO e LY (H), Tr[Q o y'] is a continuous functional on H.

v) Ifu eV, y'(u) € V; u — ' (u) is continuous from V (with the strong topology)
into V endowed with the weak topology.

(v) 3k such that ||y’ w)lly < k(1 + ||lully), Yu € V.

Then for every t € [0,T],

wult)) = wuo) + fo Vo (V(8), W (u(5))y ds + fo W (u(5)), 2(5)) i AW,

2
Proof of Theorem 4.40. Let £ € Cy(D,R). Then we consider a function
v H>u— (u,éuyy € R.

It’s easy to see that y is of C? class and ' (u) = 2&u, Y (u)(v) = 2&v, u,v € H.
Next we will check the assumptions of Lemma 4.41. By previous work (see details
below), u’ satisfies:

1 t
+_£H<¢,’(M(S))Z(S),Z(S)>Hds, P-a.s..

E’ j;T ||u'(t)||%, df < 00, by (4.51),
E fo U1 X A+ G OD DI di < oo, by (4.55),
E fo 0% 0 X (A + GO Oy i < oo, by (45T),
E’ j: 1@ () X h) x h||§_5 dt < co, by (4.49),

T
E’ f |l (s) x hII%{ dr < co, Dby (4.49).
0
And  satisfies:

(1) ¥, ¢, ¥ are locally bounded.
(i) Since y’, ¥" exist, Y, ¥ are continuous on H.
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(iii) YO € Z(H),
Tr{Q oy @] = ) (Q oy (@ej,ep)n =2 ) (Oe)), ej)u,
j=1 j=1

which is a constant in R, so the map H 3 a — Tr[Q o ¥/ (a)] € H is a continuous
functional on H.

(v) Ifu e V,y¥/'(w) € V; u — ¢'(u) is continuous from V (with the strong topology)
into V endowed with the weak topology.
This is because: For any v* € X7, we have

s (U +v) = (W), v)xs = xs2pv, v )xs

< 2€lcor)xe v, V) x5,

hence ¢’ is weakly continuous. Let us denote 7 as the strong topology of V and 7,
the weak topology of V. Take B € 1,,, by the weak continuity (¢')~'(B) € T,,, but
7, C 7. Hence (1,//’)‘1 (B) € 7, which implies (iv).

(v) Jk such that ||y’ (w)lly < k(1 + |lu|ly), Yu e V.

Hence by Lemma 4.41, we have that for 7 € [0, T], P’ almost surely,

(1) &0 (O — S, Euod

= [ st 6 X 80 = 6D 9~ Al 5 % 0 x [

B GODS) + 0 (9) X h) X h 260 () s

+ fo "l (51,1 () x By AW (5) + fo 6l (5) % o (5) x g .
By Lemma 4.31,

oG (X [A + ¢ )]) (5), 260 (5)) o = 0.
And since
oo Gt (5) X (' X [ A+ ¢/ )]) (5), 260 (5))ys = 0,
Ko (5) X ) X B 0l (o = —x 50 (5) % B €0 () X iy,
26l (5), 1/ () X hyyg = O,

we have

W' (), &' () — (uo, Eugdy =0, P/ —a.s.

Since ¢ is arbitrary and |ug(x)| = 1 for almost every x € D, we infer that |u’(z, x)| =
1 for almost every x € D as well. This completes the proof of Theorem 4.40. O

By Theorem 4.40, we can show that:
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Theorem 4.42. The process u’ from Proposition 4.18 satisfies: for everyt € [0, T],

4.78) W) = ug + A f ' % [Ad — &' )]) (s)ds
—/lzfo u'(s) X (u' x [Au’" — ¢’ (u")]) (s)ds

+ f (' (s) x h)y o dW'(s)
0

in L*(Q; H).

Proof. By (4.55) and Lemma 4.29,

(4.79) (f | x [Aw = ¢' () )(t)|H dt) <oo, rx1.
And then by (4.77), we see that

(4.80) [/ (t, ) X (' X [Au' = ¢ u)]) (1, ) | < | X [Au’ = ¢/ (W)]) (¢, ),

for almost every (¢, w) € [0, T] X Q’. And so

T
E f /(1) x (' X [Au’ + ¢ )]) (D)}, df < oo,
0

Therefore all the terms in the equation (4.78) are in the space L*(QY; H). This
completes the proof the Theorem 4.42. O

Theorem 4.43. The process u’ defined in Proposition 4.18 satisfies: for every a €
0, 3),

(4.81) ' € CY0,T]; H), P —a.s..

We need the following Lemma to prove Theorem 4.43.
Lemma 4.44 (Kolmogorov test). [18] Let {u(t)}ci0,r] be a stochastic process with
values in a separable Banach space X, such that for some C >0, & >0, 6§ > 1 and
allt,s € [0,T],

E|u(d) - u(s)fy < Clr - 5/,

Then there exists a version of u with P almost surely trajectories being Holder
continuous functions with an arbitrary exponent smaller than %.
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Proof of Theorem 4.43. By (4.76), we have
u'(t) — u'(s)
“an [ x [ gD @ar- 2 [ x - W) e

+ f @' (t) X ho dW'(1)
t !
:/l1f(u X [Au" = ¢'(u)]) () dr — /lzfu(r)x(u X [Au" = ¢ (W))]) () dr

1 ! !
+§f(u’(7)><h)><hdr+fu’(r)xde’(T), 0<s<t<T.

N

Hence by Jensen’s inequality, for g > 1,

E [|u'(t) - u'(s)|2q]

sE'(wf | x [Au’ = ¢ )] ()|, dT+|/12|f ' () x (' x [Au" = ¢’ )]) (D), dr

2q
H)

!
+1f |u’(r)><h><h|HdT+

f u' (1) X hdW' (1)

N

2q
4qE'(u |24 (f | x [ ¢>(u))(T)|HdT)
2q
+A (f |/ (1) x (' x [Aw = ¢ )]) (D), dr)

1 2
+— ( dr) +
49\ Jy

2q
)
By (4.79), there exists C! > 0, such that

2q
(f|(u x| ¢ ()] (T)|HdT) <(t—s)qE'(f|(u x| ¢ ()] (T)der)

< Cl(r—s)1.

ft ' (t) X hdW' (1)

By (4.80)
t 2q 1 2q
E’ ( f |/ (@) x (' x [Ad = ¢’ ()]) (7], dT) <FE ( f | x [Ad' = ¢’ )] (7], dr)
<(t—s)‘7]E’(f |(u x| &' ()] (T)|Hd7') <Cl- 9.
And by (4.49),

2q
(f 4 (T)XhXh|HdT) <(t—s)"E’(f | (T)xhxh|HdT) < luol 24 TIRIL (t — 5)7.
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By the Burkholder-Davis-Gundy Inequality (Lemma 2.127),

2q t
< KqE' (f
H s

2 4 2,2
Therefore, let C = 2C§1 + IuolllehlL‘Zo + quuollflhlLi, we have

|

Then by Lemma 4.44,

q
W' (7) % h[}, dT) < K luol2A 1%, ( - ).

E If ' (t) X hdW' (1)

u'(t) - M'(s)ﬁ{q] <C@t-99, g>1.

ueCY0,TI;H), «ac (O, %)

This completes the proof of Theorem 4.43. O

4.8. Main theorem. Summarizing, we state all the results of this section of the
thesis in one Theorem:

Theorem 4.45. There exists a probability space (', F',P’) and there exists a pro-
cess u’ in the probability space such that:

(i) u’ is a weak solution of (4.2)
(i) Foreveryt e [0,T],

u'(t) = uy + A f (' x [Au" — ¢ (u))]) (s)ds
0
t
) f u'(s) X (u' x [Au’ — @' (u")]) (s)ds
0

+ J:(u'(s) X h) o dW’(s)
in L>(Q; H). And this implies that ' is a weak solution of the equation (4.2);
(iii)
lu'(t,X)|gs = 1, for Lebesgue a.e. (t,x) € [0,T] X D and P’ — a.s..
(iv) Forevery a € (0, %),
u € C%0,T]; H), P —a.s..

Proof. The three results in Theorem 4.45 are from Theorem 4.42, Theorem 4.40
and Theorem 4.43. O
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5. FuLL StocHasTic LANDAU-LIFsHITZ’ EQuaTION COUPLED WITH MAX-WELL
EquaTtions

A stochastic Landau-Lifthitz equation with full energy coupled by the Maxwell’s
equations will be studied in this section.

5.1. Statement of the problem.

Definition 5.1. Let D c R? be an open and bounded domain with C? boundary.

(i) Suppose that ¢ € C%(R3; R*). For a magnetization field M € H'(D), we define
the anisotropy energy of M by:

Eun(M) = L(b(M(X)) dx.

(i) We define the exchange energy of M by:
1 1
5.1) Eus) 1= 5 [ [WMOP dx = SIVMIE,

(iii) For a magnetic field H € L*(R?), we define the energy due to the magnetic field
H by:

1 2 |
(52) &) 1= 5 [ IHOOP dx = SIHIE, .,
Definition 5.2. Given a magnetization field M : D — R3 and a magnetic field
H : R? — R3, we define a vector field B : R? — R? by
(5.3) B:=H+ M,

where

- | M), xe D,

M(x) := {O, x¢ D.
Definition 5.3.(iv) We define the total magnetic energy as:

amag(M, B) := Ean(M) + Eex(M) + Sfi(B - M)
1 s 1 -
= fD M) dx + SIVMIP, py + 518 = Ml

(v) Finally, for an electric field E € L2(R3), a magnetization field M € H'(D) and
a magnetic field H € L2(R3), so the vector field B € L*(R?), we define the total
electro-magnetic energy by

1
(54)  EtnaeM. B.E) = Enag(M. B) + SIIE 55,
1 1 _ 1
- f HM(x) dx + SIIVMIE, ) + SI1B = My g, + SIEIE: g,
D
Notation 5.4. For simplicity, we denote V := HY(D), H := L*(D), the dual space

of V by V' and the dual space of H by H’,so V <— H ~ H' — V’. We also denote
&= ael.maga ¢ :=Vp, 0 :=[0,T| XD, O :=[0,T] x R3.
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The total energy & is the generalization of the exchange energy which has the
density: Au — V@ (u) used in Section 4. We begin with investigation of some prop-
erties of &.

Proposition 5.5. For M € V, if we define AM € V' by
(55) V'<AM, I/l>V = —<VM, Vu>L2(D;R3X3)’ YuelV.

Then the total energy & : V X L3R} xL*R3}) — R defined in (5.4) has partial
derivative with respect to M which satisfies

&
(5.6) a—M(M, B,E)=¢' (M) - (1pB— M) — AM, inV'.
Proof. For M,u € V, B, E € L?>(R?).
&M +u,B,E) — &M, B, E)

1 1
= fD HM(x) + u(x) — JM(0) dx + S|VM + Vull?, - §||VM||%,

Lo I,
+E”B -M - u”LZ(R3) - EHB - M||L2(R3)’

where

1
jl; (M (x)+u(x))=Pp(M(x)) dx = fD ¢'(M(X))(M(X))+5¢"(M(X)+0(X)M(X))(M(X),M(X))dx,

0(x) € [0,1] for x € D. We assumed that ¢”’ is bounded, so there exists some
constant C > 0 such that

1
fD §¢"(M (x) + 0C)u(x))(u(x), u(x))

Hence

dx<C f lu(x)* dx = Cllull?, = o(llully).
D

EM +u,B,E)-EM,B,E)

1
= fD<¢'(M(X)), u(x)) dx + o(llullv) + (VM, Vuyr2prasy + EIIVMII%{

1
~(1pB - M, u)y + Enuni,
= (¢ (M) — (1pB = M), uyyg + (VM, Vuy 2 pr3ay + o(|lully)

This implies that %(M, B, E) exists.
Hence as an element in V’,

o0& /
v’ <(9_M(M’ B,E), M> =(¢' (M) — (1pB — M), uyyg + (VM, Vuy2(pr33).
\%4

We have defined AM € V' by
Vf<AM, I/t>V = —<VM, Vu>L2(D;R3X3)’ YuelV.

So
0&

W(M’ B,E)=¢' (M) - (1pB— M) — AM, inV’.
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O
Notation 5.6. We will denote
5.7 p:=¢'(M)-(1pB— M) - AM, inV’,
Proposition 5.7. Foru,v eV,
9*E
(5.8) W(M’ B,E)(u,v) = f ¢" (M(x))(u(x), v(x)) dx + (u, v)y.
D
Proof. By Proposition 5.5, we have
o0& 0&E
—(M+ u, B, E)(v) - —(M B,E)v) =(¢'(M +u) — ¢'(M),v)n + (u, v)y.
And by
(¢'(M +u) — ¢ (M), v)n
= fD [¢"(M(x) + u(x)) — ¢"(M(x))](v(x)) dx
= fD ¢ (M(x))(u(x), v(x)) dx + o(|lullv),
The proof is complete. O

Proposition 5.8. For the total energy & : V x L>(R?) x L2(R}) — R defined in
(5.4), we have:

(i)

(5.9) @(M B,EY=B-M, in L2 (R).
(ii)

(5.10) g—i(M, B,E) = E, in L2(R?).

Proof.(i) Forv € L2(R3),
EM,B +v,E) - &M, B E)

1
= EHB +v-—- M”]LZ(R3 ”B M”]LZ(R%
= (B~ M.v) 0 + 5||v||L2(R3)
Hence P
-5 M B.E) =B - M, in L>(R?).
(ii)
8(MB E) - 8(MB E+v)
= ”E + VHLZ(RE ”E”LZ(RE

1
<E V>L2(R3) + = IIVHLZ(R?)



A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 129

Hence a8
_— = 1 2 3
3 (M,B,E)=E, in L°(R°).
O

After having finished with studying the basic properties of the total energy &, we
are ready to state the main problem with assumptions which we are going to study
in this section. But before that we need one more notation:

Notation 5.9. We also define
Y :={uel’RY: Vxuecl’R),
with the inner product
(u, V)y := (U, V)2wsy + (VX U, VX V)12 p3).
Problem 5.10. Let D be an open bounded domain in R? with C? boundary. Let
(Q,F,F = (F)r0, P) be a filtered probability space, (Wj)‘;‘; , be pairwise indepen-

dent, real valued, F-adapted Wiener processes. Given T > 0 (we are interested in
global solutions for all time ¢ > 0, but we fix T > 0 for simplicity) and

My € L¥(D);
By € L’(R); V-By=0, inD'[R*R);
Eo € L*(RY);
h; e L>(D)NW'3(D), for j=1,...,00, such that ¢, := Z 111yt 3y < ©0,
j=1
f € LX0, T; L*(D));
¢ € CH(R*;R");
A eR, >0, apfck

Find F-progressively measurable processes M : [0, T]xQ — V, B : [0, T]xXQ —
L2R3), E : [0,T] x Q — L2(R3) such that the following system is satisfied: for
te[0,T],

(5.11) M(t):M0+f [AM X p — 1M X (M X p)] ds
0

+i{ft[a,Mxhj+,8Mx(Mxhj)]o de(s)},
=1 W0

in L2(Q; V), where V’ is the dual space of V.

!
(5.12) B(t) = By —f VxE(s)ds, €Y, P-a.s.
0

! !
(5.13) E(t) = Eo+f Vx[B(s)—M(s)] ds—f [IDE(s)+f(s)] ds, €Y, P-a.s..
0 0
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Remark 5.11. The “o dW;(s)” in the equation (5.14) denotes the Stratonovich dif-
ferential, in our case it relates to the Itd differential by the following formula:

|aM 5 hj+ BM x (M x hj)| o dW;(s)
- %[cﬁ (M x hj)x hy| + aB[[M x (M x hj)] x h]
+B7 | M X [M X (M X hj) X hj]| + o |M x [(M x hj) x hj]|

+52 [Mx(Mxhj)x(Mth)]]ds+ o [M x| + B [M x (M x by dWics).

Remark 5.12. (5.12) infers that V - B(z) = 0.

Remark 5.13. The Problem 5.10 is a generalised version of equation 4.2. Some
methods of dealing with it are similar to the methods used in Section 4. In particu-
lar, we will use the Galerkin approximation and get some a’priori estimates.

Definition 5.14 (Solution of Problem 5.10). A weak solution of Problem 5.10 is
system consisting of a filtered probability space (Q', ¥',F’, P’), an co-dimensional
F’-Wiener process W’ = (W;‘);i1 and an F’-progressively measurable process

M =M}, Q' x[0,T] — VNL(D)
such that for all the u € CS"(D; R3), t € [0, T], we have, P'-a.s.,

(5.14) f{M’(t)—Mo,u> dx
D

1
Zff{(B'—M’—¢’(M’),/11u><M’—/lz(uxM')xM’)
0 JD

, ou , oM’ ,
XM — A 8_XM +u><a x M") »dxds

_,/l —
6)6,' laxi

Xi Xi

3 <5M' ou
=1

+ift<aM><hj+ﬁMx(M><h‘,),u>o dW;(s);
j=1 0

(5.15) f (B'(t) — B, u) dx = —f f (E',V x uy dxds;
R3 0 JR3
(5.16)

f(E’(t)—Eo,u)dx=ff<B’—1\7I,V><u>dxds—ff{E’+f,u>dxds.
R3 0 JR3 0 JD

5.2. Galerkin Approximation. Let A := —A be a linear operator as defined in
Definition 2.164. As in Lemma 2.171, we can define H, := linspan{ey,..., ey},
where {e,}° | are eigenvectors of A. Since L?(R?) is a separable Hilbert space, we
can find {y,}> , c C7 (R3; R?) such that {yx} is an orthogonal basis of L2(R3). We
define Y, := linspan{yy, ..., y,} and the orthogonal projections

T, H— H,,
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al D LARY) — Y.

Remark 5.15. The processes B and E will take values in L2(R3),s0 Vx B € Y’ and
VXEeY'.

mtly Y — Y,

On H, and Y,, we consider the scalar product inheritted from H and Y. Let us
denote by &, the restriction of the total energy function & to the finite dimensional
space H, X Y, X Y, i.e.

E, H, xY,xY, —R,

1 2 1 Y 1112 1 2
an(M’ Ba E) = L¢(M(x)) dx + E”VM”]Lz(D) + z”B - ﬂ-n M”]LZ(R3) + E”EHLZ(R3)

Proposition 5.16. The function &, is of class C* and for M € H,, B,E € Y, we
have:

(1)
(5.17) (VuE)M, B,E) = my[¢(M) — (1pB - n’ M)| - AM, € H,.
(ii)

(5.18) (VsE)(M,B,E) = B—n' M, inY,.
(iii)
(5.19) (Ve&E,)(M,B,E) = E, in v,
@iv)
&,

(5.20) (M, B,E)(u,v) = L ¢" (M(x))(u(x), v(x)) dx + {u, v)y.

oM?

Proof.(i) For M,u € H,, B, E € Y,,. H, is a finite dimensional space, so ||-||g = ||-|lv
in H,, so

EW(M + u,B,E) — E(M, B, E)
1 1
= f H(M + u) — ¢(M) dx + §||VM + Vull%, - §||VM||§,
D

1 - 1 ~
+511B = M = il s = 5B = M
, 1
= f (@' (M), uy dx + o(llullir) + VM, Vi) 2 gy + 511Vl
D

1
~(IpB = M, uyy + 5 lully

= (¢'(M) = (1pB — 7ty M), uypy + (VM, Vuy 2 paay + ollullg)
= (ma[¢' (M) = (1pB — my M)] = AM, uypz + o(|lully)-
Hence by the definition of the gradient,
(VuED)M, B,E) = my[¢/(M) — (1pB -y M)] =AM, € H,.
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(i) Forv € Y,,

SH(M’ B+ v, E) - SH(M’ B’ E)
1

. 1 .
= 1B+ v = M) = 511 = Ml g,

=<B—1\71,v> 2

1
) + E”v”ILZ(R3)

L2(R3

= <B - ﬂ:l/M, V>L2(R3) + 0(||v”IL,2(R3))-

So
(VsE)(M,B,E) = B - n) M, inY,.
(iii)
EM,B,E +v)—-E,(M,B,E)

1 1
SIE + Vi = 51BNz ga)

1 2
<E’ V>L2(R3) + EHVHLZ(R3)
= (E,V2ws) + o(lVllL2w3))-

So
(VeEW)(M,B,E) = E, iny,.

Notation 5.17. There exists a function ¥ : R3 — [0, 1] such that:
(i) y € C'®Y).
(i1)
L K =3,
#x) = {0, x> 5,

(iii) [Vy| < 1.
Remark 5.18. The ¢ defined here is to make sure we can get the estimates in
Proposition 5.23 below. By Theorem 5.70, we will prove that |[M(¢, x)] = 1 for
almost every x € D, therefore we can remove this ¢ at the end.
Let us define the function p, : H, X Y,, X Y,, — H,, which corresponds to p by:
(5:21) pn = ~(VuE)(My, By, En) = 7l =" (M) + 1p(By 1, My)] + AMy, € H,.
To solve Problem 5.10, we first consider the following problem with values in

finite dimensional space:

Problem 5.19. Let D be an open bounded domain in R? with C? boundary. Let
(Q,F, (Fi)=0) be a filtered probability space, (Wj);il are pairwise independent,
real valued, (7;) adapted Wiener processes. Given
My € L*(D);
By € L2(RY); V-By=0, in?D'[R*R);
Ep € LA(RY);
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hj e L*(D)N W!'3(D), forj=1,...,00, and ¢y := Z 1AL (pynw 3y < ©0,
=1

f € L*0,T;L*(D));
¢ € C3(RYRY);
LHeR, A,>0, apBeR.

For T € [0,00], find M,, : [0,T]xQ — H,, B, : [0,T] x Q — Y,, E,
[0,T] x Q — Y, such that the following system has been satisfied: For ¢ € [0, T],
P almost surely on Q,

dM, = {ﬂ'n [0 M, X pn] — o7y [M, X (M, X pp)] dt
+Z {{@m [ My x hj| + By [ (M) My x (M, x || o dW)
j=1
(522) = {ﬂn [/lan Xpn] - /127711 [Mn X (Mn Xpn)]

i [oz 7 | (M X ) X B
=1

+aBy (M)t [ M,y X (M, X hj)] X hj
B UM [ My X [Myy X (M X ) X ]|
+aBy (M), [Mn X [(Mn X h]) X hj]]

UM, | My (M X ) X (M X ) ]} a

+i [a’ﬂn M xh]+,87rn[w(M WM, X (M, Xh)]] dW}
j=1

(5.23) dE,(t,w) = =7 [1 p(E(t, w) + )] dt + 7Y [V X (Bu(t, w) — 1} (M, (1, w))] dt

(5.24) dB,(t,w) = 7 [V x E,(t, w)] dt,
(5.25) M,(0) = 7, Mo,
(5.26) E,(0) = 7, Eq,
(5.27) B,(0) = Bo,

Remark 5.20. The Equations (5.22), (5.23) and (5.24) should be understood in the
integral form.
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Notation 5.21. Let us define vector fields F,,,G,; : H, — H,, j=1,2,..., by

F, = m, [0 M, X pn]| = Aoy [My, X (M, X py)]
1<,
+§JZ:;[Q’ b [(Mnth)th]

+aBY (M)t [[My X (My X )] X |
(5.28) B2 (M)t | My X [ My X (M, X ) X |
Y (M)t | My X [(My X ) X |

B M, [ My (M X R x (M, x )] |

(5.29) Gij = @ty | My X hj| + By [y(My) My X (M, X )]

Then the equation (5.22) becomes

(5.30) dM, () = F, dt + Z G j dW;(0),
j=1

which as always has to be understood in the integral form.
Hence the system (5.22), (5.23) and (5.24) becomes:

Mn(t) 0 an
d En(t)]: [ 0 ]de(t)
J

B,(t) =1\ 0

F,
(531)  +| ="lp(E.(t) + f()]dt + 7L [V X (B, (t) — x¥ (M, ()] | dt.
—nY [V X Eq(8)]

Finally we define the following vector fields:

F,:H,xY,xY, — H,xY,xY,

M, F,
(5.32) [ E, J — | = [1p(E, + /] dt + 7Y [V x (B, — n¥ (M,,))] |,
B, Y[V x E,]

Gnj i Hy X Y, x Y, — Hy X Yy X Y,

M, Gy
(5.33) { E, ] — | 0 ]
0

By,
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Use (5.32) and (5.33), the system (5.22), (5.23) and (5.24) becomes:

M,(2) M,(2) M,(1)
(5.34) d[E,,(t) =Fn[En(t) dr+an(En(z)]de(t).
Bn(t) Bn(t) Bn(l‘)

The next result corresponds to Corollary 4.9 from Section 4.

Proposition 5.22. [3] F, G, j defined in (5.32) and (5.33) are Lipschitz on balls
and one side linear growth. And hence there exists a unique global solution (M, By, E};)
of the Problem 5.19. Moreover, (M,, By, E,) € CY([0,T]; H, X Y, X Yy), P-almost
surely.

5.3. a’priori estimates.

Proposition 5.23. Forp > 1, b > }1, there is constant C = C(p, b) > 0 independent
of n such that:

(5.35) IMallz=.reny < IMoller, P - as.,
Yrr
(5.36) ElB, - m, M"||L°°(0,T;L2(R3>) <G
p
(5.37) EIIE”"Lw(O,T;Lz(R3)) <G
4
(5.38) ElIMully w0 7200y = €
(5.39) E||M, X'O"HIZZ(O,T;LZ(D)) =G
p
(5.40) E||B"||L°°(O,T;L2(R3)) =G
’ 5
(5.41) E(f IM() X (M (D) X pu()I?;  dt] <C,
0 L2(D)
T 2
(5.42) E [ lma 4,00 x 0 % puo)]f s 0t <
0
dE, ||P
(5.43) EH - =G
dt llz=©1:v"
dB, ||’
(5.44) E H - <G
dr llz~,r;y)

where X7 is the dual space of X" = D(AY).
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Proof of (5.35). By the Itd formula from Lemma 2.125, we have

UMy, F)ir + ) 11Gajll | dt

=1

dIM,G = D 2AMy, Gju dW; +
=1

- ]2 e [ M < 1y + Brea | (MM x (M x B J)]”Z

+ Z {(afzﬂ'n[(Mn X hj) X hj], M)
=

H(BPY (MR M, X (M X hj) X (M, X hj)], Mn>H}

= 0.
Therefore
1M1, = IMu (O = l7.Moll2, < IMoll,,  t2=0.

The proof of (5.35) has been complete. O

Proof of (5.36), (5.37), (5.38), (5.39). By the Itd Lemma 2.125 and using (5.30),
(5.23), (5.24) we get:

dE, (M (1), By(1), En(1))

[ o&, 1 626, 0E, v
o Fr®) + 5 ; 313 (G- Gy (0) = ZEI(V X Ex(1)

0E, - -
tor (7Y [V X (Bu(t) = 1} (Mu(D))] = 7k [1p(En(8) + F(£)]) | dt

> 68,
+ Z‘ H—Mn(Gn, () dW ().
]:
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Then by (5.17)-(5.20) and (5.21), we have
Sn(t) - 8,,(0)

(5.45) = f {—f{pn(s,x),Fn(s,x»dx
0 D

+% Z fl; " (M,(s, 0))(Gy, (s, x), Gp, j(s, X)) dx

1 (o)
EZ G j (), = (Ba(s) = ) My (5), 73 (V X Ey(5)))

L2(R3)

+(En(5), 1, IV X (Bu(s) = 7, (Mu()D] = 1y [Lp(Ens) + FON) 5 s, } s

—Zf f(pn(s,x),Gn,j(s,x))dxde(s).
‘=1J0 Jp

Now let’s consider each term in the equality (5.45).
For the term on the left hand side of (5.45),

(5.46) En(t) = E,(0)
1
_ f O (1,2)) dx + 5 IVM O,
D

1 Y, 2 1 2
5 [1Ba® = 2 W@ gy + 5 NERDIE2 )

1
—( f ¢<Mn<0,x)>dx+5||VMn<0)||%,
D
1 -
+5 [[Ba(®) = 7y E/A(0)) ||E (O] oS )

For the 1st term on the right hand side of (5.45), by (5.28),
—on> Fn)g = —a{on, mn[My X )i — BOn, Tn[My X (M, X pp) D1

(o8]

1
-5 {a (O Tal(Myy X hj) X 10
j=1

+ B (M, Yo, T [ [Myy X (Myy X 1) X ]+ 0 [ My, X [(Myy X 1)) X 1)
+B2U (M, Y0, Tta[ My X [My, X (M, X hj) X hj]]

+7Tn[[Mn X (Mn X hj)] X (Mn X h])]>H}
Since 7, : H — H is a self-adjoint operator,

©n> T [My X oD = {on> My X pry = 0.
Ons Tn[Myy X (M X p) D = P, My X (M X pp)Yer = —||M,, Xpn”%]-
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So
_<pn, Fn>H

1 (o8]
(5:47)= BIM, % pally = 5 Zl {a2 (on mal (M, x ) x Bj1)
j:

+y(My) (pns Tl [My X (Myy X BT X ] + 7 [ My X [(Myy X ) X Byl )

+182¢(Mn)<pns7rn[Mn X [M,, X (M, X hj) X h]]]

+70n[[My, X (M, X hj)] X (M, X hj)]>H}.

For the 2nd term on the right hand side of (5.45), by (5.29),

1 (o9
(5.48) 5 fD ¢ (My(5, 2))G (5. ). G (5. X)) dx
j=1
1 [Se]
EZIW'(M (5, ) @ma(Myy X hj) + B[y (M) My X (M, X B,
j=1

arty(My X ) + Braly(Ma)M,, X (M, X hj)]) dx

For the 3rd term on the right hand side of (5.45),

1 (o)
(5.49) 5 Z IG (Il
1 oo
-3 | (@210 = oot o1, )

[V (@M X hj + By(M) My X (M, X j))|2 dx.

j=
1 (o]
22,

For the 4th and 5th terms on the right hand side of (5.45), let us notice that

— (Bu(s) = 7} Miu(5), 71} (V X En(9))). s, + (En(5), 1y [V X (Bu(s) = 7k (M(s))])

b

L2(R?) L
= = (Bul) = Ty Mu5). ¥ X En(5))y gy + (En(5), ¥ X (Buls) = 2 (W) g, = 0.
Therefore,
- <Bn(s) — 7ty M (s5), 7t (V X E"(S))>L2(R3)
(550)  +(En(s), 1} [V X (By(s) = 7} (Mn(s))] = 7} [1p(En(s) + f(s))]>L2(R3)

= ~(En(5), 1p(En(5)) + F())2@s) = —IpEallfy = (. IpEn)n.
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For the 6th terms on the right hand side of (5.45),

650 =) [ @G ds
=1
= f Py My X 1) + Blp (MM, X (M, X 1)) dx.
j=1vP

By (5.46)-(5.51), the equality (5.45) becomes
1
(5-52)f A(My(t, x)) dx + 3 IVM,(@)lI7;
D

1 Y, 2 1 2
5 [1Ba® = @) [ L2 gy + 5 WEOI 2,

!
+ﬂff|Mn><pn|2dxds

0 JD
+1iftf{2< Mxhxh>
z 2 (o, <l
2j:1 o Jo no M 2 Mj 21

+0B (P (M) ([Myy X (M, X )] X hj + My, X (M, x ) X hj]))
87 (pus W(M,) (M, X [Myy X (My, X hj) X Bj])

+M,, X (M, X hj) X (M, X hj))} dxds

—% Z ‘[Ot L (a/2|Mn X hj’2 +,32|¢(Mn)Mn X (M, X hj)’z) dxds
=

i j; t fD [V (M x By + Bu(M )M, x (M x )| dxds
=)

| =

1 [
3 Z‘f; fD(pu(Mn)(cmn(Mn X hj) + Br,[y(M,)M, X (M, X hj)],
j=1
anty(My X hj) + Bra[y(Mp)M, X (M, X h.,-)]) dxds

¥ fo (MDEsl; + (£, Endnr) ds
+2 fot fu | (s Mo 5 1) + B s (MM X (M, X )| dxdW(s)
j=1

1
_ f G0, ) dx + 5 VMO,
D

1 _ 2 1
+5 [1Ba(0) = 7 (O [ 2 g3, + 5 NEOEaeay» V1€ O T).

139
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Now let us consider some terms in the equality (5.52).
By the definition of p, in (5.21), we have

f(pn,(Mnth)th> dx

D

= —f<nn[¢'<Mn)],<Mnxhj)xh,->dx+f<AMn,<Mnxhj>xhj>dx
D D

+ f(;r,,[Bn — Y M), (M, % b)) X hj) dx.
D

By the Proposition 2.166, we have

f (AM,,, (M, hj) x hj) dx
D

< VMR ) + 20V Mall 2l Ml s oyl IV ks )
< IMAl A oy + 2NMallG gl o) IV Al 3 -

Next we have

f ([ By — 72 (M), (M, X j) X Iy dx
D

= (VM. VUM, ) 5 |

< SRy (1081 = ][] + o).

Since we assume that ¢’ is bounded, there exists some constant C; > 0 indepen-
dent of n such that

f (eald (M), (Mo X ) X ) dx
D

< Com(D)|[jlIf o )| Mall .

Hence by the last four inequalities, there exists constant C; > 0 independent of
n such that

1 © t
EQZ;IOL<pmMnthth> dxds

(5.53) < Lo2ec fof (” M3 + ||1 b |Bn — ) (,)]

|Z) ds.

Similarly as before, we can find a constant C3 > 0 independent of n, such that
1 < (!
SaB ) f f (ons WM){[M, X (M, X )] X by

+ My, X [(My x hj) x hj]}) dxds

2

(554) < Cgchaﬁfof (||Mn||2V + ||1D[Bn — 7y (M,)] 2

| ) ds + Czcpafs.
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We continue and find C4 > 0 such that

2| &= t
% Z\f()‘ fl; <pn, l;l’(Mn){Mn X [[Mn X (M, X h/)] X hj]
=1

+[My X (My X )] X (M, X hj)}) dx ds

2 2
|H) ds + C4Ch%

2
6555 = Caor [ (10 + 1o]8, - xcin)
Next, we can find a constant C5 > 0 independent of n such that

D ftf (asz,, X hj[* + By (MM, x (M, x h,-)|2) dxds
‘=1 Jo Jp

+% i fof fD [V (M, x by + Bo(M)M, x (M, x )| dxds
=

lw (!
+—Zf f¢’(Mn)[a2|M,,xhj|2+,82|zp(Mn)Mnx(Mnxhj)|2]dxds
2+ Jo Jp
!
(5.56) scschfuMnuzvdHcsch..
0

Remark 5.24. Please notice that we need to use the boundness property of i to get
the inequalities (5.54), (5.55) and (5.56). And this is the role ¢ played.

Next, let us notice that by the Cauchy-Schwartz inequality,

! !
ff(f,En)dxds < lf f(|f|2+|En|2) dxds.
0o Jp 2Jo Jp

By (5.52) and (5.53)-(5.57) we infer that there exists a constant Cg > 0 indepen-
dent of n such that

(5.57)

1 _ 1 !
5 (1B4(0) = 7 (WL, ) 5, + IEAOIE 2 55)) + 5 fo IEIE s, ds
!
1
+8 f 1M X pall7y ds + f HM(1) dx + = IMuDI
0 D

<1 f (|[B,,—n,f(zm)](o)F+|E,,<0>|2>c1x+l f f |f1> dxds
2 R3 2 0 D

2
|H) ds + Cocy,

+ f (¢<Mn<0)) + |VMn(0>|2) dx + Cec f (1007 + |10 [ B, - =2 1)
D 0

+ , Yte (0,T).

Z f(: fR3 a’<pm M, x hj> +B<pna Y(Mp)M,;, X (M, X hj)> dxdW;(s)
j=1
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We are going to estimate the stochastic integral term in the above inequality,
but before that let us take the supreme for r € (0,7) on both sides of the above
inequality where ¢ € [0, T'] is fixed. Then we get

1
5 sup (1Bu(r) = 708 (MW (NI 2oy + NER(PF 2 ) + f IEAII s, ds
re(0,1)
s
+B f My, X pull7; ds + sup f ¢(Mn<r>>dx+§||Mn<r>||2V
0 re(0,t) JD

IA

f
! f ([By = 7L (IO + [En(O)P) dx + ~ f f 1 deds
2 R3 2 0 D

+ f (¢<Mn(0)>+1|VMn<0>|2) dx
D

+CgCp j;t sup (”M “V ||1D[B )dS+ Cocy,

re(0,s)

+ sup
re(0.0) |

f f s | @My X hj + BY(My)Myy X (Myy X 1)) dxdW(s)|.

Now let us fix p > 1 and rise both sides of the above equation to power p for
p > 1 and then take expectation on both sides, so for some constant C7, we have

(5.58)

t p
E sup (||[Bn = 70 (MDD 23 + VEROIE 2z + IMa(PI + 28 f 1My, X pall} ds)
re(0,1) 0

! p
< Crep [ fo s}(l)p)(uM WO+ 1By = 7 (NI o)) ds}
P

+ C7Ch

f f (pn [My X hj + BUM)ME X (M, X )]} dx dW(s)
R%

re(0, l‘)

+E[ sup

Then by the Burkholder-Davis-Gundy inequality (Theorem 2.127), there exists
an constant K = K(p) > 0 independent of n such that:
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}p

Zf fw (pn [My X hj + BY(M)M,y X (Myy X j)]) dxdW;

rE(O 1)

[STps}

SKEfZ o @M, X hj + BY(M,)M,, X (M, ><h)>L2(R3 ds

SKEfZ O @M, X hj + BY(M)M,, X (M, xh))MR} ds| +K

Hence we can find Cg > 0 independent of n such that

(5.59)
p
[rig)pt) Zf jl; (pn. [ @M, hj + By(M)M, x (M, % 1)) dxdw]
< Cgch(f 2 sup (IMIF + |15 B2 - 741, (r)“ )ds) + Csen
0 re(0,s)

Hence by (5.58) and (5.59) there exists Cy > 0 independent of n such that,

t p
E sup (n[Bn = 7 (MDD 2y + IER(DIE 253, + IMa (DIl + 28 fo 1My X pall72 5, dr)
re(0,1)

< Cocy ft sup (||M I +|[15] B2 = 7l (41,) (r)” ) ds + Cocy
0 re(0,s)

Hence by the Gronwall inequality 2.157, with C = Coc,e®*T, we get the fol-
lowing four a’priori estimates,

Y

EllEn ||L°°(O reey <6

E”M IILW(OTHI(D)) - C

EHM Xpn||L2(0TL2(D)) — C

And since L2(Q) — LP(Q) continuously, these four inequalities imply the in-
equalities: (5.36), (5.37), (5.38), (5.39). O

We continue with the proof of Proposition 5.23.
Proof of (5.40). As before we fix p > 1.

P —
BB ey < 27 (BIB = AL GIDIED )+ BIMAED, 1)
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By the above inequality (5.36) and (5.38), there exists some C > 0 independent of
n such that

2
EllBull,”

L2(0,T;LAR3)) <C

Together with the fact L2P(Q) — LP(Q) continuously, we complete the proof of
(5.40). O

Proof of (5.41). Applying Theorem 2.96, withn =3, m=1,r =2,s0 p = 6. We
infer that there is a constant C, such that

M|, 6 < Cl|Mallgy.  VYun € H'(D,R).

Therefore by the Holder inequality:

M0 x (M0 x pu@)| 3 < [MaO] 4l |M0) % P10 2 < MO [ M0 X 0]

Hence, by Cauchy-Schwartz inequality,

r
2 2

3 dl‘) }
L2

T 5
)4 2
n 1 n n 2 d
s ol ([ o, o) |

) T ’
<CP (E{ sup ||M,1(z)||;1‘j]) (E [( fo [|M,() x p,1(z)||i2 dt)

te[0,7]

E

T
( fo M5 x (4,0 x pu0)

< CPE

) <.

The last inequality above is from the Cauchy-Schwartz inequality.
By Jensen’s inequality 2.156,

Il = (Imal + V) < 277 (gl + 9 aa00]2)
Moreover, since
M7 = MO = raddo 72 < [|M0][5-

We infer that,

1
2

3 T P
< [Emoff? + & sup ||VMn(t)|'i‘Z] (E [ [ o xpuolf dt] ) .
t€[0,T] 0
Then by (5.38) and (5.39), we get (5.41). O

Proof of (5.42). By Theorem 2.99, X’ — L3(D) continuously if b > ‘—1‘. Hence
L3 is continuously embedded in X~?. Thus there is a constant C; independent of n



A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 145

such that

T
E fo [ [Ma(0) X (Mo0) X paeD]|[3
T
<E fo M6 X (M(t) % o] dt

T
<CE fo [, (1) x (M (1) % pn(t))]”i% dr.

Then by (5.41), we get (5.42). O
Remark 5.25. From now on we need to assume that b > %.
Proof of (5.43) and (5.44). By (5.23)

p

dE,
E
s

— Y Y, Y »
LoOT:¥") - E”ﬂ'n (V X [Bn - 7Tn (Mn)]) - 7Tn [ID(En + f)]||L°°(0,T;Y')

< C,E sup IV X B,() — m} (Mu))II5, + C,E sup [[1p(En(0) + fFE)II,
te(0,T) 1€(0,7)

< C,E sup sup (Bu() — 1y (Mn(0)). V X Vi) " (Ip(E, + Py
T 0 50 Ibily bily

Y 1 P
< CoBIIBy = Ty W g 12y + CoBUEMY w7y + CollF I g

Hence, since f € L*(0, T;L*(D)), by (5.36) and (5.37), we get (5.43) and similarly
(5.44). O

After so many pages of long calculation, the proof of Proposition 5.23 has been
finished.

Lemma 5.26. Ifa € (0, %) and p > 2, there exists a constant C > 0 such that for
alln e N,

(5.60) E

Z; fof {BU(M(5))m, | Ma(s) X (My(s) X 1))
=

p
<C.

+amy [M(s) X hj] | dW(s)
War(0,T;L2(D))

)
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Proof. By Lemma 2.135, there exists constant C; > 0, such that

E

i f(;t {cmn [Mn(s) X hjﬂn]
=

HBY(Mu(5))m, [ Mi(s) X (My(s) X hj)]| | dWj(s)

p

Waer(0,7;L2(D))

[S1aS)

2
L%(D)

T (o)
< CiE f [Z ||0/7rn(Mn X ) + BU(My)y [ My x (M, % 1))
0 -
j=1
© T
<2718 | S fo IMIL, , + PP di| < C.
=

where the last inequality followed by (5.38). This completes the proof of the
estimate (5.60). O

Remark 5.27. From now on we will always assume a € (0, %), b > % and p > 2.

Lemma 5.28. For a € (0, %), b > Alf, p = 2, there exists C > 0 such that for all
neN,

(561) E HM”H%V‘%P(O,T;X‘}’) < C.

Proof. By (5.22),

EMall}yan o 7o) = E‘

! (o)
f nn{aM,, X P — BMy X (M, X py) + Z [az(Mn x hj) X hj
0 1

1
2 4

=
+aBy (M) [My, X (My, X hj)] X hj + BAy(My)My, X [My, X (My, X hj) X hj]
+aBY(Mp)My, X [(My, X ) X hj] + BPy(My)My X (Myy X ) X (M, X h,-)]} ds

2

+ Z f t || @M, X hj + Bu(M)M, x (M x hj)| dW;) .
=10 Wear(0,T;X)

We assumed that @ € (0, 1), p > 2 > 0, so by Theorem 2.98, H'(0, T; X ™) —
WP, T; X7b) continuously. And since L*(D) — X7* continuously, there is a
constant C independent of n such that
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EMall}yap o 7ox-5) < CE‘

t 1 ©
j(; nn{aMn X on + 3 ; [a/z(Mn X hj)Xh;
+aBY (M) [ My X (My X hj)] X hj + BPy(My) My X [My X (My X 1)) X hj]
2
+BU (M) My, X [(Myy X 1j) X hj] + BU(My) My X (M X hj) X (My X h j)]} ds

HY(0,T;L*(D))
2

[
+C]EHf B, [ M, X (M, X p,)] ds
0 H'(0,T:X~b)
2
+CE

> 7 ff ([ x hj + Bu(MIM, x (M, hy)| dW)
=1 0 Wap(0,T;L2(D))

To prove (5.61), it is enough to consider each term on the right hand side of the
above inequality. By (5.39), (5.42) and (5.60), we can conclude (5.61). O

5.4. Tightness results. In this subsection we will use the a’priori estimates (5.35)-
(5.44) to show that the laws {L(M,,, B,, E,,) : n € N} are tight on a suitable path
space. Then we will use Skorohod’s theorem to obtain another probability space
and an almost surely convergent sequence defined on this space whose limit is
a weak martingale solution of the Problem 5.10. Now let’s state and prove our
tightness Lemma.

Lemma 5.29. Forany p > 2, q € [2,6) and b > le the set of laws {L(M,,) : n € N}
on the Banach space

LP(0, T;LY(D)) N C([0, T]; X)
is tight.

Proof. Let us choose and fix p > 2, g € [2,6) and b > %. Since g < 6 we

can choose y € (% - 237,’ %), b e (4—1‘,[9), a e (%, 1). Then by Proposition 2.174,

H' = D(A%) — X” = D(A?) is compact, hence by Lemma 2.116, the embedding
LP(0,T; HY n W0, T; X%y — LP(0,T; X")

is compact. We note that for any positive real number » and random variables & and
7, since

{a) é(w) > %} U {w :n(w) > %} D {w é(w) +n(w) > r},

we have
P(|Mﬂ|LP(0,T;H1)ﬂW"’P(O,T;X—b/) > r)
= P(|Mn|LP(O,T;H') + |Mn|Wa,p(O’T;X—b’) > I")

r r
S P(lM”llLP(O,T;HI) > 5) + P(|Mn|W”’1’(0,T;X’h/) > 5) S .o
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then by the Chebyshev inequality in Lemma 2.133,

4 2 2
. S r_zE (|Mﬂ|Lp(07T;H1) + |M”|W“’l’(O,T;X’h’)) .
By the estimates in (5.61) and (5.38), the expected value on the right hand side of
the last inequality is uniformly bounded in n. Let X7 := LP(0,T; H HNWer(0,T; X ‘b’).
There is a constant C, such that

P(|Myllx, > r) < rgz Yr,n.
Since .

B = [ EM >
we can infer that

M
]E(lanlle)sl+f —dr=1+M<co, YneN.
1 r

Therefore by Theorem 2.107 the family of laws {£(M,) : n € N} is tight on
LP(0,T;X”). By Proposition 2.172, X” = H?'(D). Therefore since by the as-

sumptiony > 3 — 2 i.e.

4= 2q°
3 3

2y > >0 e
by Theorem 2.97 we deduce that X” < L9(D) continuously. Hence L7(0,7; X”) —
LP(0,T; L) continuously. By Lemma 2.108, {£(M,) : n € N} is also tight on
LP(0,T; L?).
Since b’ < b, by Lemma 2.117, W*?(0, T;X"") — C([0, T; X compactly.
Therefore by the estimates in (5.61) and Lemma 2.107, we can conclude that
{L(M,) : n € N} is tight on C([0, T]; X~°).
Therefore by Theorem 2.109, { £L(M,,) : n € N} is tight on LP(0, T; L))NC([0, T]; X°).
Hence the proof is complete. O

Remark 5.30. From now on we will always assume that p > 2, and g € [2,6) and
b > }‘. Here g > 2 is because we want M, (1) € H = L*(D), g < 6 is because we

need to find some y < % (X” — H'(D) compactly) and X” < L9 continuously.

Definition 5.31 (Aldous condition). [14] Let (2, ¥, P) be a probability space with
a filtration F. Let (S,p) be a separable metric space, we say that the sequence
{X,(D}, t € [0,T], of S-valued random variables satisfies the Aldous condition iff
Ye > 0, Yn > 0, 36 > 0 such that for every sequence {7,,} of F-stopping times with
T, < T one has:
(5.62) sup sup P{o(X,,(t, + 6), X, (1)) =} < &.

neN 0<0<6
Lemma 5.32 (Tightness Criterion). [14] Let (Q, 7, P) be a probability space with
a filtration F. Let H be a separable Hilbert space, U be another Hilbert space
such that U — H compact and dense, U’ be the dual space of U. Let {X,,(!)}nen,
t € [0, T] be a sequence of continuous F-adapted U’ valued process such that
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(a) there exists a positive constant C such that

supE[ sup ||Xn<s>||H} <C
neN s€[0,T]

(b) {X,}nen satisfies the Aldous condition (5.62) in U’.

Then if we denote the law of X,, by P, then for every & > 0 there exists a compact
subset K. of C([0,T]; U’) N Lgv([O, T);Hyn C(0,T]; Hy,) such that

P.(Ky)>1—-¢, Vn.
where L2 and H,, means the spaces L* and H equipped with the weak topology.

Lemma 5.33. The sets of laws {L(E,)} and { L(B,)} on the space L2,(0, T; L*(R?))
are tight.

Proof. We will only prove the result about {£(E},)}, the proof about {L(B,)} is
exactly the same.

In order to use Lemma 5.32, we put H = L%(R?). Let us recall that Y is introduced
in Notation 5.9. Then by Lemma 2.40, we can choose an auxiliary Hilbert space U
such that the embedding U < Y is compact. Since the embedding ¥ < L2(R?) is
bounded, the embedding U < L?(R?) is compact.

Firstly let us observe that by the estimate (5.37), condition (a) of the Lemma 5.32
is satisfied.

Secondly we will check the Aldous condition in Definition 5.31. Let us fix £ > 0
and 7 > 0. The embedding Y’ < U’ is compact so bounded and thus there exists
a constant C; > O such that || - ||[y» > Cy|| - ||y-. Hence together with the Chebyshev
inequality and estimate (5.43), we have,

P(”En(Tn + 0) - En(Tn)”U’ 2 77)

PUIE.(th + 60) — Ey(T)llyr = C11)

1
C—E (IEx(tn + 0) — Ex(T)lly)
177

1 T, +60
g f
Cin Ty

Soifo < %sn, then we have

IA

IA

dE,(s)
ds

co
ds <

< < —.
Y Cin

sup sup IP(”En(Tn + 0) - En(Tn)HU’ 2 77) <e
neN 0<6<6

Hence the Aldous condition (5.62) has been verified.
Therefore by Lemma 5.32, the laws { L(E,,)} are tight on C([0, T']; U’)ﬁLfV(O, T;H)N
C([0,T]; H,). And the result follows. O

Remark 5.34. If we define a map
byt Ly(0, T3 LARY) 3 f — iy(f) € L0, TT X RY),
by setting
i(N(Ex) = O,  (x) € [0, TIXR.

Then i is a homeomorphism.
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Proof. Actually the map

i L0, T;L*(RY) 3 f — i(f) e L2(10, TI X RY),
with

i), %) = fO),  (6,x) €[0,T] xR,

is a homeomorphism. So i,, is a homeomorphism. O
Proposition 5.35. There is a subsequences of {(M,, B,, E,)}, which we will still
denote them as same as the original sequence, such that the laws L(M,,, By, E,,, W)
(W; is the Wiener process) converge weakly to a certain probability measure i on
LP(0,T;L9) N C([0, T]; X~°) x L2(0, T; L*(R?)) x L2 (0, T; L*(R%)) x C([0, T]; R),
where p € [2,), g € [2,6) and b > %.

Proof. If p € [2,00),q €[2,6)and b > }‘, by Lemma 5.29, Lemma 5.33 and Theo-
rem 2.114, there is a subsequence of L(M,, By, E,;) and there exist certain probabil-
ity measure 1 on LP(0, T; LY)NC([0, T1; X ?)x L2 (0, T; L2(R3))x L2,(0, T; L*(R?))
such that:
w
-L(Mn’ Bn’ En) — M1,

Let u; := uy x L(W;), we have
L(My, By, Ey, Wj) - Hj
on LP(0, T; LY)NC([0, T]; X *)x L2 (0, T; L>(R*)x L2 (0, T; L>(R*))x C([0, T1; R).
This ends the proof of Proposition 5.35. O

5.5. Construction of new probability space and processes. Now we are going
to use Skorohod Theorem to construct our new probability space and processes as
the weak solution of Problem 5.10.

Theorem 5.36. For p € [2,00), g € [2,6) and b > %, there exists a prob-

ability space (Q',F',P") = ([0,1],B([0, 1]), Leb.) and there exists a sequence
(M. E}. B, W)} of
LP(0, T;L4(D) N C((0, T1; X"
x L2(0, T;L*(R?))
x L2(0,T;L*(R?))
x C([0,T];R)
-valued random variables defined on (', ¥, P’) such that
(a) On
LP(0,T;L9) N C([0,T; X?)
x L2(0, T; L*(R?))
x L2(0,T;L*(R))
x C([0,T]; R),
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'L(Mn’ El’l’ Bn’ W]) = L(M;p E,,,l, B;p W;I’l)’ vn € N
(b) There exists a random variable (M’,E’, B’, W;.) :

Q' F',P") — LP(0,T;L) N C(0,T]; X"
x L2(0,T;L*(R%))
x L2(0,T;L*(R%))
x C([0,T];R),

such that
(i) On
LP(0,T;LY) N C(0,T]; X%
x L2(0, T; LA(R?))
x L2(0, T; L*(R?))
x C([0,T];R),

L(M'E', B, W;.) =,
where u; is same as in Proposition 5.35. And
(i) M, — M’ in LP(0,T;L9(D)) n C([O, T1; X~ P’ almost surely,
(iii) E, — E’ in L2(0,T;L*(R%)) P’ almost surely,
(iv) B, — B’ in LfV(O, T:L2(R3) P’ almost surely,
) W}n — W;. in C([0, T];R) P’ almost surely.

To prove Theorem 5.36, we need the following Lemma.

Lemma 5.37 ([15], Thm A.1). Let X be a topological space such that there exists
a sequence {f,,} of continuous functions f,, : X — R that separates points of X.
Let us denote by S the o-algebra generated by the maps { f,u}. Then

(1) every compact subset of X is metrizable,

(i1) if Wy is a tight sequence of probability measures on (X, S), then there exists a
subsequence (my), a probability space (Q,F,P) = ([0, 1], B(]0, 1]), ) with X val-
ued Borel measurable variables &, & such that p,,, is the law of & and & converges
to & almost surely on Q. Moreover, the law of & is a random measure.

Proof of Theorem 5.36. LP(0,T;L4(D))nC([0,TT; X"y and C([0, T];R) are sepa-
rable metric spaces, so (ii) and (v) of the Proposition are followed by Lemma 2.132.
To prove (iii) and (iv) we will use Proposition 5.35 and Lemma 5.37. For this aim
we only need to prove that there exist a sequence {f,,}, fin : L%V(O, T:L?) — R
continuous, {f,,} separates points of L2 (0, T;L?) and generates the Borel o-field
on LgV(O, T;L?).

Let X be a separable Hilbert space, so there is a sequence {u,,} dense in X. Let us
define f, := {uy, )x, then f,,, m = 1,2,... are continuous on X,,.

Suppose that f;,(v) = (u,,,v) = 0 for all m. Let us fix u € X, since {u,,} dense in



152 LIANG LI

X, there exists a subsequence {u,,, } such that u,,, — uin X, so (up,,v) — (u,v).

Hence (u, v) = 0, which implies that v = 0. Therefore {f,,} separates points in X.

For any U open in X,,, by the definition of the weak topology, U will be the com-

bination of unions and finite intersections of the following sets:
U={xeX:(ux)eV}

for some u € X and V is open in R. Next we will prove U can be generated by f,,.
Suppose that u,,, — uin X, so forany i > 0, f,, — (u, -) uniformly for [|x||x <
i. So there exists some N; € N such that if k£ > N;, then f,, (x) = (up,,x) € V for

lxllx <i. So
0 c|J M) [ V) 0 il < ],

i=1 k>N;

If x € U2y Nk [ £ (V) 0 {llxllx < i3], then ||y < i for some i > 1 and f,, (x) =
(U, x) € Viorall k > N, so (u,x) € V,so x € U. Hence

05 () [t V)0 llxllx < ).

i=1 k>N;
So -
0 =J ) [l ¥ il < ],
i=1 k>N;
But - -
U o ntiddix <t = () fal .
i=1 k>N; i=1 k2N;

So U = U2y Mien; f,,;kl(V). Therefore the Borel o-field B(X,,) C o{fu}, but the
Borel o-field is generated by all the continuous functions and f,,, are continuous, so
B(X,,) D o{fyn}, hence B(X,,) = o{f,}. And since L>(0,T;L*(R%)) is a separable
Hilbert space, the proof of Theorem 5.36 has been complete. O

Let M}, B;, and E;, be as in Theorem 5.36, we have the following result:

Proposition 5.38.(i) M, € C([0,T]; H,) almost surely and L(M,) = L(M,) on
C([0,T]; Hp);

(ii) E; € C([0,T1; Yy) almost surely and L(E,) = L(E,) on C([0,T]; Yy,);

(iii) B;, € C([0,T1; Yy) almost surely and L(B;) = L(B,) on C([0,T]; Y,).

To prove Proposition 5.38, we need the following Lemma:

Lemma 5.39 ([45], Page 66, Thm 3.12). Suppose E is a convex subset of a locally
convex space X. Then the weak closure E,, of E is equal to its original closure E.

Proof of 5.38.(1) By the Kuratowski Theorem 2.142, the Borel sets in C([0, T']; H;)
are the Borel sets in L”(0, T; L' (D)) n C([0, T1; X*). By Theorem 5.36, L(M)) =
L(M,) on LP(0, T;LY(D)) N C([0, TT; X™°), so L(M}) = L(M,) on C([0, T; H,).
And by (5.22), P{M,, € C([0,T]; H,)} = 1. Hence P'{M, € C([0,T]; H,)} = 1.
That is M, € C([0, T]; H,) almost surely.
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(i) By the Kuratowski Theorem 2.142, the Borel sets in C([0,T];Y,,) are Borel
sets in L*(0,T;Y,). And since L*(0,T;Y,) is closed in L*(0, T;L*(R%)), by the
Lemma 5.39 L*(0,T;Y,) is also closed in the space LfV(O, T:L2(R?)). Hence the
Borel sets in L2(0,T;Y,) are also Borel sets in LEV(O, T:L%(R3)). Therefore the
Borel sets in C([0, T']; Y,,) are the Borel sets in LEV(O, T;L2(R3)). By Theorem 5.36,
L(E}) = L(Ey) on Lj,(0, T; LARY)), so L(E},) = L(E,) on C([0,T]; Yy).

And by (5.23), P{E, € C([0,T1]; Y,)} = 1. Hence P'{E; € C([0,T]; Y,)} = 1. That
is E) € C([0,T]; Y,,) almost surely.

(iii) Exactly the same as the proof of (ii).

This complete the proof of 5.38. O

Lemma 5.40. Let X be a metric space, A is openin X. Let A; .= {f € C([0,T]; X) :
f(t) € A}, then A, is open in C([0,T]; X).

Proof. Letus fix t € [0, T]. Then the map
ir : C(0, T]; X)> fr— f(n)e X

is linear and bounded and so is continuous. Thus it‘l(A) is open in C([0, T']; X).
The equality

i '(A) = {f € CUO, TL: X) : f() € A}
concludes the proof of Lemma 5.40. O
Proposition 5.41. For t € [0,T], L(E/ (1) = L(E,(t)) on Y, and L(B, (1) =
L(B, (1) on Y.

Proof. We will only prove L(E/ (1)) = L(E,(1)), the proof of the result corresponds
B,, is the same.
For t € [0, T], we only need to show that for all A C Y,, open, we have P(E,(?) €
A) =P'(E/ (1) € A). Let us fix such an open set A and let A; := {f € C([0,T]; Y,) :
f(t) € A}, then by the Lemma 5.40, A, is open in C([0, T']; Y,;). We have
{E,(0) e A} = {weQ: E,(t,w) € A}

={weQ:E, € C([0,T]; Yn), Ex(t, w) € A}

={weQ: E,(w) € A}
Hence

P({E,(r) € A}) = P{E, € Al}).
By Proposition 5.38, L(E,) = L(E}) on C([0, T]; Y,), so

P({E, € A}) = P'({E, € AD).
Therefore

P{E.(t) € A} = P{E, € A} = P{E} (1) € A}.

This completes the proof of Proposition 5.41. O

The next result shows that the sequence (M, B;,, E,) satisfies the similar a’priori
estimates as (M, B, E,) in Proposition 5.23.
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Theorem 5.42. Let us define
0= nn[ — ¢ (M) + 1p(B, — nt M) + AM.,,

Then for allm > 1, b > 7, there exists C > 0 such that for all n € N,

(5.63) IMllz=0.r:m) < I Mollz, P’ —a.s.,
(5.64) E|B, = 7, M o 7120 < €
(5.65) E'llE, ”Lw(OTLZ(R*)) =G

(5.66) E'IM; 7 <G

L>(0,T;HY(D)) —

(5.67) E' M, X 0720 72 20 < Co
(568) E”B/ ”L°°(0 T: ILZ(RZ)) = C
%
(5.69) ( f (|7, x (M, (1) x pn(t))HM(D) ) <C,
T 2
(5.70) E’ f 700 [M;,(1) X (M(2) X p,(0)]|| - d < C,
0
dEl m
(5.71) E ’ ¢ <C.
dr llz=(,r:v7)
dBl m
(5.72) E || == <C.
L>(0,T;Y”)

Proof. H, and Y, are finite dimensional spaces, so the norms on them are all equiv-
alent. Therefore by the Proposition 5.38 and Proposition 5.23, we got the estimates
(5.63)-(5.72). O

Notation 5.43. We will use F’ to denote the filtration generated by M’ and W’ in
the probability space (Q', 7', P’).

Remark 5.44. From now on will set p =g =4and b = % And that will be enough
to show the existence of the solution of the Problem 5.10.
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Proposition 5.45. As defined in Theorem 5.36, the M’ satisfies the following esti-
mates:

(5.73) esssup |[M'()llz < [IMollx, P’ -a.s.,
te[0,T]

And for some constant C > 0,

(5.74) esssup ||M'(®)||x-» < Cl|Mollu, P —a.s..

1€[0,T]
Proof of (5.73). Since M/, converges to M’ in L*(0, T:L% n C([0,T]; X7 P'-
almost surely,

T
lim M () - M’ (1)}, dt =0, P —a.s.

n—oo

Since L* < L2, we infer that

T
lim |M’ (1) - M'(t)IH dr =

n—oco

Hence M, converges to M’ in L2(0, T;1L?) P’-almost surely. Therefore by (5.35),
esssup | M’ (D)2 < Mol 2, P —a.s.
1€[0,T]
O

Proof of (5.74). Since L> — X~ continuously, there exists some constant C > 0,
such that |M; (#)|x-» < C|M,(t)l;» for all n € N. By (5.35), we have

sup |M,(0)|x-» < C sup M, (D)2 < |Moly2, P —a.s.
1€[0,T] te[0,

And by Theorem 5.36 (ii), M, (t) converges to M’(¢t) in C([0, T]; X~") we infer that

sup |M'(D)y-» < C|Mpl2, P —a.s.
1€[0,T]

O

We continue with investigating properties of the process M’, the next result and
it’s proof are related to the estimate (5.66).

Proposition 5.46. The process M’ define in Theorem 5.36 satisfies:

(5.75) E'[esssup |M'(1)|[F] < 0o, 7> 2.
t€[0,T]

Proof. Since L¥(Q'; L*(0,T;V)) is isomorphic to [Lz%l(Q’;L](O, T;X_%))]*, b
the estimate (5.66) and the Banach-Alaoglu Theorem we infer that the sequence
{M;} contains a subsequence, denoted in the same way as the full sequence, and
there exists an element v € L2 (Q/; L®(0,T;V)) such that M; — v weakly” in
L?"(Q; L™(0, T;V)). In particular, we have

(M, @) > (v,0), @€ L¥T(Q;(L0,T; X ).
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This means that

T T
f f (MI)(t, w), (1, )) di AP’ (w) — f f v(t, ), B(1, w)) dt dP’ (w).
 JO Q' JO

On the other hand, if we fix ¢ € L*(QY'; L%(O, T; L%)), by the inequality (4.45)
we have

sup f
n Q

2 2
< supf M5 ol
n o nL (O,T,L4) LI(O

2 2

dP’(w)

T
[ el g o

2
4
LHQLY(0,T5L3))

T
f LM (D), (1)) 4 di
0 3

dP'(w) < sup f

n

< 00.

2
‘) dP’(w) < sup L P 2

T L

So by Lemma 2.104 the sequence fOT (M (1), (p(t))L% dt is uniformly integrable

on Q. Moreover, by the P’ almost surely convergence of M/ to M’ in L*(0, T; L*),
we get P’-a.s.

T T
f L (My(1), (D) 4 di = f LM (1), p(0)) 4 di
0 ) 0

T T
= fo (M (1) = M'(1), p(0)) 4| di < fo M, (0) = M (D)lslp(0)], s dt

< |Mj(1) - M,(t)|L4(O,T;L4)|‘p|L%(O rid) -0

Therefore we infer that fOT 4{M (1), t,D(l))L% dt converges to fOT 14{M' (1), gp(t))L 4 dr
P’ almost surely. Thus by Lemma 2.129,
T T
f f LM (1, w), o(t, W))_ a1 dtdP'(w) — f f (M’ (1, w), p(t, w))_ 1 dt AP’ (w).
rJo L3 o Jo L3

Hence we deduce that

T T
f f L4 {v(t, ), (t, w))_4 dt AP’ (w) =f f (M (t, w), o(t, w))_s dt dP’(w)
Q' JO L3 o Jo L3

By the arbitrariness of ¢ and density of L*(Q’; L3 (0, T;1L3)) in L77(Q'; L1(0, T; X~?)),
we infer that M’ = v and since v satisfies (5.75) we infer that M’ also satisfies
(5.75). In this way the proof (5.75) is complete. O

We also investigate the following property of B’.

Proposition 5.47.

T
(5.76) E’ f ||B’(t)||i2(R3)dt<oo.
0

Proof. Since L*(Q'; L*(0, T; L*(R?))) is isomorphic to the dual space of itself, by
the Banach-Alaoglu Theorem we infer that the sequence {B]} contains a subse-
quence, denoted in the same way as the full sequence, and there exists an element
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v e L*(Q; L*(0, T; L*(R?))) such that B, — v weakly* in L2(Q’; L*(0, T; L*(R%))).
In particular, we have

(Bl ) = (v,9), @€ LXQ;LX0, T;LARY))).

This means that
T T
f f (B)(t, w), ¢(t, W)y dt AP (w) — f f W(t, w), ¢(t, w)) dr AP’ (w).
o Jo o Jo

On the other hand, if we fix ¢ € L*(Q'; L*(0, T; L>(R?))), by the inequality (5.68)

we have
f 1Bl dr

sup f

2 2
= sup f LA |L°°(0TL2)|‘10|L2(0,T;H_,2) dP’(w) < sup M, |L4(Q/ o1l @irorir) <

2 2

dP'(w)

f <B (t) (p(t))LZ(RS dt dP ((1)) < sup f,

n

So by Lemma 2.104 the sequence fOT(M,’,(t), @(£))12 dt is uniformly integrable

on Q'. Moreover, by the P’ almost surely convergence of B, to M’ in L2 (0, T;L?)
and by Lemma 2.129,

T T
L/ f(; (B (t, w), p(t, W) 2 dt dP'(w) — f j; 12{B'(t, w), p(t, w)); 2 dt dP" (w).
Hence we deduce that
T T
f f W(t, w), p(t, w)) 2 dt AP (w) = f f (B'(t, w), ¢(t, w)); 2 dt AP’ (w)
r Jo o Jo

By the arbitrariness of ¢ and density of L*(Q'; L*(0, T;1L?)) in L*>(Q’; L*(0, T; L*(R%)),
we infer that B’ = v and since v satisfies (5.76) we infer that M’ also satisfies (5.76).
In this way the proof (5.76) is complete. O

Next we will strength part (ii) and (iv) of Theorem 5.36 about the convergence.

Proposition 5.48.
577 i [0 - MO =0

Proof of (5.77). By the Theorem 5.36, M, (t) — M’(¢) in LY0, T:LYHNC(0,T]; X~)
P’-almost surely, M/,(f) — M’(t) in L*(0, T; L*) P’-almost surely, that is
T
lim | My -M@®F,d=0, P -as,
n—oo 0

and by (5.66) and (5.75),

2
SupE/ (f |M/(t) M,(t)|4 dt) S Sup (lM/ |L4(0TL4(D)) + |M’|L4(0TL4(D))) OO,
hence by Theorem 2.129,

T T
lim E’ f M) - M (D)t dt = E/ ( lim f M (1) - M (D)t dt) = 0.
n—oo 0 n—oo 0
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This completes the proof. O

Corollary 5.49. There is a subsequence of {M,} which we can still denote by {M,},
such that M|, — M’ almost everywhere in Q' x [0, T] X D.

Proof. By (5.77), we have
f M) (w, t, x) — M (w, 1, O* dxdrdw — 0.
Q'x[0,T1xD

Then by the Proposition 2.153, there is a subsequence of {M),} which we can still
denoted by {M,}, such that M, — M’ almost everywhere in Q' x [0, T] x D. O

Proposition 5.50.
T
(5.78) lim E’ f lltad’ (M;,()) = ¢’ (M’ ()7 ds = 0.
—00 0

Proof of (5.78). By Corollary 5.49, M, — M’ almost everywhere in Q' x [0, T'] x
D. And since ¢’ is continuous,

lim |¢'(M;) — ¢/ (M)
almost everywhere in Q" x [0, T] X D. Moreover, ¢’ is bounded, so there exists

some constant C > 0 such that |¢’(x)] < C for all x € R3. Therefore for almost
every (w, s) € Q' x[0,T],

2:0’

f ¢’ (M (@, 5, %)) = ¢ (M (, 5, 0)| dx < 16C*m(D) < oo,
D

Hence |¢/(M(w, 5)) — ¢/ (M’ (w, 5))|” is uniformly integrable on D, so
Tim [l¢' (M@, 5) = &' (M (@, [, =0, Q' x[0,T]-ae.
Therefore for almost every (w, s) € Q' x [0, T],
7ad’ (M (@, ) — &' (M (@, 5))|[,
< 2||¢ (M@, ) — 8 (M (@, )| + 2 ||ud’ M (@, 5)) = &' (M (@, )|, = .

Moreover since

T
E f [7ad’ (M, 5)) = & (M (@, $))|[3, ds < 16TC*m(D) < oo,
0
||7rn¢’(M,’1) —-¢'(M ’)HZ is uniformly integrable on Q' X [0, T']. Hence

T
lim E' fo 7’ (M (5)) = ¢ (M’ (s))II7 » ds = 0.

n—oo

This completes the proof of (5.78). O
Proposition 5.51. For any u € L*(0,T; H), we have

(5.79) lim E’

n—oo

T
f (u(s), m,1p(B), — B')(s))y ds| = 0.
0
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Proof of (5.79). By (iv) of Theorem 5.36, we have
=0, P —a.s.

lim

T
n—oo J(; <M(S)7ﬂn1D(B;l - BI)(S»H ds

Moreover, by (5.68) and (5.76) we have

2
El

T
fo (u(s), 1, 1p(By, — B')(s))y ds

T T
sﬂmﬁmwﬂﬁ(j“ntxw@ds+j‘mDH@mzm)<m.
o 0 0

Hence | fOT (u(s), my1p(B;, — B')(5))y ds| is uniformly integrable on Q’, so

T
lim E’ f (u(s), 1, 1p(By, — B')(s)) ds| = 0.
n—o00 0
The proof of (5.79) has been complete. O
Proposition 5.52.
oM’ oM’
(5.80) LN weakly in L*(QY; L*(0, T;L?)), i = 1,2, 3.
(9)6,' Gx,-

Proof. Letus fix ¢ € L*(Q'; L*(0, T; V)), then since M/, — M’ in L>(Q'; L*(0, T; L*(D))),
we have:

T T T /
%) 0 oM,
E’f <M',_9"> dx = lim E’f <M,’Z,—"D> dx = — lim E’f < ",90> dx.
0 oxi [y n—eo o Oxi| gy nooo o\ Oxi [y

By the estimate (5.38), {M}}*, is bounded in L*(Q'; L*(0, T;H")), so the limit of
the right hand side of above equation exists. Hence the result follows. O

Lemma 5.53. There exists a unique A € LX(QY; L*(0,T; H)) such that for v €
LX(Q'; L0, T; W'4(D))),

T 3 T
(5.81) E’ f (A@), v(t)yy dt = Z E’ f (D;u/ (1), u' (1) X Div(t))y dt.
0 = 0

Proof. We will omit“(#)” in this proof. Let us denote A, := M, x AM,. By the
estimate (5.39), there exists a constant C such that

||Al’l”L2(Q’;L2(O,T;H)) < C, neN.

Hence by the Banach-Alaoglu Theorem (Lemma 2.143), there exists A € L>(Q’; L*(0, T; H))
such that A,, — A weakly in L>(Q’; L*(0, T; H)).

Let us fix v € LX(Q'; L*(0,T; W'*(D))). Since M.(t) € D(A) for almost every

t € [0, T] and P’-almost surely, by the Proposition 2.167 and estimate (5.39) again,

we have

T 3 T
E’ f (Apidr= Y B f (DiM!,, M, x Dyvyy dt.
0 P 0
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Moreover, by the results: (5.80), (5.38) and (5.77), we have fori = 1,2, 3,

T T
E,f <DiM’,M, XDiv>Hdl‘—E,f <D,’M;I,M;l X D;jvyy dt
0 0

T T
< E’f (D,‘M’ —D,'M,;,M/ X Djvyy dt| + E’f <D,‘M;1,(M/ —M;)XD,'\/)H dr
0 0

T 1
+ (B fo DM |7, de)?

1

T
< Elf <DiM’ - DiM;p M’ x Div)H dr
0

T 1 T i
X(E,f M = MiIi ) ) (E' f IDiVIIF 4 1, dt) - 0.
0 0

Therefore we infer that

n—oo

T 3 T
lim Ef (An,v)Hdt=ZEf (D;M’, M’ x Dyv)dt.
0 = Jo

Since on the other hand we have proved A, — A weakly in LX(QY;L*(0,T; H)) the
equality (5.81) follows.

It remains to prove the uniqueness of A, but this, because [? (; [? 0,T; Wl ’4(D)))
is dense in L*(Q'; L*(0, T; H)), follows from (5.81). This complete the proof of
Lemma 5.53. O

Notation 5.54. The process A introduced in Lemma 5.53 will be denoted by M’ x
AM'’. Note that M’ x AM’ is an element of L>(Q’; L*(0, T; H)) such that for all test
functions v € L2(QY; L2(0, T; W'*(D))) the following identity holds

T 3 T
E f (M’ x AM)(@), v(2))gy dt = Z E’ f (D;M’(t), M’ (t) X D;v(t))y dt.
0 P} 0

Notation 5.55. Since by the estimate (5.38), M’ € L*(Q’, L(0, T; V)) and by No-
tation 5.54, A € L2(Q'; L*(0, T; H)), the process M’ x A € L3 (Q'; L*(0, T; L3 (D))).
And M’ x A will be denoted by M’ X (M’ x AM").

Let us denote:
o ==¢'(M)+ 1p(B)— M + AM’.
Next we will show that the limits of {M;, X p;,},., {M,, X (M, X p})}, and {m,,(M;, X
(M;, X p}))}, are actually M’ x p’, M’ x (M’ x p’) and M’ X (M’ X p").

Proposition 5.56. For p > 1, we can assume that there exist Zy € L*’(Q'; L*(0, T; H)),
Zp € L2(Q; L2(0, T; L)) and Zy € LX(Q'; LX(0, T; X)), such that

(5.82) M. x pl, —s Z; weakly in L*(Q'; L*(0,T; H)),
(5.83) M, x (M, xpl,) — Z» weakly in LA(QY'; X0, T; L?)),

(5.84) Ta(M! X (M!, % pl)) — Z5  weakly in L*(Q'; L*(0, T; X%)).
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Proof. By Theorem 2.147, the spaces L2(Q; L2(0, T; H)), L*(Q'; L*(0, T;L3))
and L*(Q'; L*(0, T; X)) are reflexive. Then by equations (5.67), (5.69), (5.70)
and by the Banach-Alaoglu Theorem (Lemma 2.143), we get equations (5.82),
(5.83) and (5.84). O

Proposition 5.57.
Zy = Z3 € L*(QV; LX(0,T; X7?)).
Proof. Notice that (L%)* = L3, and by Proposition 2.172, X? = H?’. By Theorem
298, X? c L3 for b > %, hence L% cX? so
L2(QV: 120, T: L2)) c L2 LX0, T; X%)).

Therefore Z, € L*(Q'; L*(0,T; X)) as well as Z3 € L2(Q/; L*(0, T; X~?)).
Since X? = D(A?) and A is self-adjoint, we can define

n o)

b _ _ o 2.2
X, = ﬂnx—Zx]e].Z/ljxj<oo ,
Jj=1 Jj=1

where e;, j = 1,2,... are eigenvectors of A, A; are eigenvalues of A and x; =
(X, ej)12py- Then X? = U2 X2, L2(Q; L*(0, T; X%)) = US| LA(Q; L*(0, T XD)).
For u, € L*(Q'; L*(0, T; XS)), we have for m > n,

126v:120,7:x-0) ST (Myy, X (M, X pp), tn)120r:12(0.7:x%)

T

- F fo x0T (M, () X (M, () X (1)), (D)) xo dt
T

- fo (T (M, () X (M}, (1) X P, (D)), ()12 dt
T

=F j()‘ <Mr,n(t) X (Mr,n(t) X pr,n(t))s Mn(t)>L2(D) dr

T
=F f x-b{M, () X (M}, (1) X p,, (1)), un () x» dt
0
= 2@220.1:x-0) Mo X (My, X pp)s Un) 12(007:12(0.7:x7) -
Hence
L@20,7:X )23 Un) 2@ 20.T:x0) TL@Q20.7:X ) (25 Un) [2(@r:120.T3X0))s

Yu, € L*(Q'; L*(0, T; X2)). For any u € L>(Q'; L*(0, T; X?), there exists L2(Q'; L*(0, T; X2)) >
u, —> u as n — oo, hence for all u € L2(Q’; L*(0,T; X?),

r@:20r:x)Z3 P rx@iorxey = 1M 2oi20rxn)$ 23, Un) 2@ or:x0)
= m poorp20.7:x-0) (%20 ) 2@120.7:x7))
= 12@s20,mx-0) (2 W r2r120,7:x0)

Therefore Z, = Z3 € L>(Q’; L*(0, T; X?)) and this concludes the proof. O



(5.86)

>L2
Since L* < L2 and W!# < 1.2, 5o there are constants C; and C, < oo such that

Hence
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the equality

Lemma 5.58. For any measurable process u € L*(Q'; L*(0, T; W'4(D))), we have

lim E’
n—oo

T
L <M;1(s) X ,0;,(5)7 M(S»]LZ(D) ds
T
= E’fov (ZI(S),I/[(S»LZ(D) ds

T

= E, f (M’(S) Xp’(S), M(S)>L2(D) dS.
0

Proof. Firstly we show that

lim E’

n—oo

T T

f (M (1) X AM, (1), u(t))y 2 dt = E’ f (M'(t) x AM' (1), u(t)); 2 dt.
0 0

For each n € N we have

(5.85)

(')M,’T(t)’ M (1) au(z)>
axl' L2

3
(M., () X AM(8), )y = Z<

i=1

8x,~
for almost every ¢t € [0,7] and P’ almost surely. By Propostion 5.38, P'(M, €
C([0,T]; Hy)) = 1. For each i € {1, 2,3} we may write

oM, ‘
0]
axi L2

ou
M x —
" Ox; Ox;’ % Ox; >L2
oM, oM’ ou oM’ ou
— n _ M/ - n M/ _ M/
<8x,~ c')x,-’ xaxi>L2+<8x,- ’( " )X

c')x,-

oM, (1)
8x,- ’
< ‘8Mn(t)

: kmm—me&“
Xi L2

axl‘ L2
< M)\ CLIM(0) = M D)lps Colu(Dl s

T
0 i

T
scmﬁfﬁ%@@%@—wwmwmm
0

i

(M@—me&m>
L2

oM, (1)
8)61' ’

(M.(t) — M'(1)) x 8”(t)> dr
LZ
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And by the Holder’s inequality,

T
E’ fo |My (Dt [M, () = M (D) [u(t) .4
T 3 T i T i
(E’ | o, dz) (E | NCACER dz) (E [ o, dt)
0
Tz(E s[gg]w <z>|H1]( f \M;(1) - M’ (1), dr)( f ()1 d )

By (5.38), (5.77) and u € L*(Q'; L*(0, T; W'*)), we have

T i
lim (E sup |M/, (t)|H1) ( f M, (1) = M’ ()4 dt) (E' f Iu(t)lgvl"‘dt) =0
n—oo t€[0,T] 0

Hence

(5.87) lim E’ f
n—oo 0

Both M’ and are in L2(Q; L%(0,T;L?)), so M’ x 57“ e L2(QY;L*0,T;L%).
Hence by Lernma 2.145, we have

TIOMI() oM’ 9
(5.88) lim E’ f o) O iy 5 24O g2 g,
n—oo 0 8-xi ax,- 6)61' L2

IA

IA

dr=0

M, (1) Ou(7)
< ax; L (M (1) = M'(1) X ox; >L2

Therefore by (5.86), (5.87), (5.88),
(5.89)

T / ,
lim E’ f M, Mr/z(t) x Au(t) dr = F f oM’ (¢) M) X ou(t) dr
n—oo 0 a)Ci 8x,- L2 0 axl axl_ L2

Then by (5.85), and Notation 5.54 we have

T 3 ’
oM’ (1) ou(t)
=F .M dt
L ; < (9)6,' (t) % axi >L2

T
(5.90) = E’f (M’ (1) x AM' (1), u(t)); > dt.
0

T
lim E/ f (M(1) X AM',(0), u(t)); dt
0

Secondly we show that

T T
lim B/ f (ML(1) X 00 (ML, (D)), u(D))y 2 dt = B/ f (M’ (1) X ' (M’ (1)), u(t))2 dt.
0 0

n—oo
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Proof of the above inequality: By (5.77) and (5.78), we have

T
E’ fo (M, (5) X a@’ (M}, (5)) = M (5) X ¢ (M'(5)), u(5))ps ds

T
<FE fo KIM;(5) = M ()] X (), a’ (M ())na| ds

T
+E’f (M (5) X u(s), Tugy (M (5)) = ¢ (M (5)))sz| ds

(E’ f 1M, (s) = M ()7 4 ds) ( f (I 4 ds) (E f ll¢" (M (sDIIZ > ds)
(E' f 1M (I s ds) (E' f (I s ds) (E' fo llad’ (M, () — ¢' (M’ (s))II2 ds) - 0.

Finally, we will show that

T . T -
lim E’ f (M (t)xm, 1 p(B,—rt M",)(t), u(t)y;2 dt = E/ f (M’ (t)x1p(B'=M")(t), u(t)) 2 dt.
0 0

n—oo

Proof of the above equality: By (5.77) and (5.79), we have

T
E' f (M}(5) X 70,1 p(Bl, = 7l M/,)(5) = M'(5) X 1p(B' = M')(5), u(s))z ds
0

T
< E'f |([M;l(s) - M'(s)] X u(s), m, 1 p(B;, — n,{M’n)(s)>H| ds
0

T
+E’ f (M’ (s) X u(s), ty1 p(B, — m¥ M",)(s) — 1p(B’ — M")(s5))y ds

: :
(E’ f 1M (5) — M (o), ds) (E fo ||u<s)||14ds)

1
2
(E' f I1p(B, — 7y M, )(s)II7, ds)
1

T i T 3
(E'f IM (I s dS) (E'f [ dS) (E'f a1 prey M u(s) = 1M (s)II2, dS)
0 0

+F’ f (M’ (s) X u(s), my 1 p(B;, — B')(5)) ds
0

— 0.

Hence

T T
lim E’ j(; (M (5) X P (), u(s))12(py ds = E’ L (M’ (5) X p' (), u($))12(p) ds.

n—oo

This completes the proof. O
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Lemma 5.59. For any process n € LY LY0, T; L*(D)) we have

T
lim E’ j(; 3 (M (5) X (M;(5) X pp(8)), () 3(p) ds

n—o00
T
(5.91) =FE f L 3$2(8), n()3p) ds
0
T
(5.92) =F f L%<M/(S)XZI(S)’U(S»M(D) ds
0
Proof. PutZy, := M!xp/, foreachn € N. L*(Q'; L*(0, T; L*%)) ¢ L*(Q'; L*(0, T;1L%))
which is the dual space of L2(Q’; L2(0,T;L>)). Hence (5.83) implies that (5.91)
holds.
mx M|}, = f In(x) x M’ (x)* dx
D
< [ PP as
D

, 2
= |- 1w

By the Holder’s inequality

vl < PR
T] L2 — T]L4 L4

Therefore

Inx M, < Il M, < ity + 1M
By (5.77) M’ € L*(Q'; L*(0, T; L*)). Then we have
T
E/ f Inx M'[2, dt
0
T T
< E’f Il de + E’f IM'I, dt < oo
0 0

Sonx M’ € L*(Q'; L*(0,T;1L?)) and similarly n x M’ € L*(Q'; L*(0, T; L?)).
By (5.82), Z1, € L*(Q'; L*(0,T;1L?)). And n x M/, € L*(Q'; L*(0, T;L?)). Hence

M X2 = [ 0,00 2100y

(5.93) = f(Zln(X),n(X) X My (x)) dx
D
= Zin, 1 X Mp)y2
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By (5.82), Z; € L*(Q; L*(0, T;L?)). And p x M’ € L*(Q'; L*(0, T;L?)). So

L MOXZys = fD<M’(X) X Z1(x),1(x)) dx

(5.94) = j; (Z1(x),n(x) x M’(x))y dx
=(Zi,nx M)
By (5.93) and (5.94),
L} (M, X Zyp, )3 — Lg<M' X Zi,Ms = Zins ) X My)12 = (Z1,n X M)
= Zin=Zi,n X M) 2 + (Zip,n X (M), = M'))y2.
By (5.82), and since n x M’ € L>(Q'; L*(0, T; L?)),

T
lim E’ f (Z1n(5) = Z1(5),n(s) X M'(s))p2ds = 0.
n—oo 0

By the Cauchy-Schwartz inequality
(Zinsn X (M}, = M),
< |Zulaln x (M), — M),

L
< |Zunl2o (it + 1M, - M'IE )
- 0, asn — oo.
Hence
T
lim E’ f (Zin(s),n x (M) — M")(s))12ds = 0.
n—oo 0
Therefore,
T T
Tim B f (ML (X M ()X07, (), () ds = B f 1M (9XZ1(5),n(s))s ds.
This completes the proof of the Lemma. O

Remark 5.60. Lemma 5.59 has proved that
Zy=M x(M' xp")
in L2(Q'; L0, T;L3)). So
M, x (M, xpl) — M’ x (M’ xp') weakly in L2(Q'; L*(0, T; L?)).

The next result will be used to show that the process M’ satisfies the condition
M’ (t, x)lgs = 1 for all ¢ € [0, T], x € D and P’-almost surely.

Lemma 5.61. For any bounded measurable function ¢ : D — R, we have
(Z1(s,w), oM’ (5, W) 2(p) = 0,
for almost every (s, w) € [0,T] x Q.
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Proof. Let B C [0, T] x ’ be a measurable set and 1 be the indicator function of
B. Then

T
E'f |1390M,’l(l‘) — IBQOM,(t)hLz dr
0
T
_E f LaeIML(0) — M/ (D]l di
0
T
< lplinE’ f ML) - M/ (D) dr
0

T
< Clph~E' f M) (1) — M/ (D)l dr,
0

for some constant C > 0. Hence by (5.77), we have

T
lim B/ f 11 oM (£) — 1M’ ()| dt = 0.
0

n—oo

Together with the fact that M/, x p/, converges to Z; weakly in L>(Q'; L*(0, T; L?))
we can infer that
T

T

0= lim E’f 1g(s){M,(5)%0,(5), oM, ($))2ds = E’ f 1g(s)Z1(s), oM’ (s)); 2 ds.
n—o00 0 0

This proves the Lemma. O

5.6. Prove that the limit process is a weak solution. Our aim in this subsection
is to prove that the process (M’, B’, E’) from Theorem 5.36 is a weak solution of
the Problem 5.10.

We define a sequence of H-valued process (£,(f))«o,r7 on the probability space
(Q,F,P) by

t
fn(t) = M,() - M,(0) - L {ﬂn [/11 M, Xpn] - lomy [Mn X (M, Xpn)]

+

Me

[aznn [(M x 1) x iy

1l
—_

1
2 J
+apY (M), | [My % (My X )] % )]

B2 (M)t | My X [Myy X (Myy X hj) X hj |
+aBY (M), | My X [(My X j) |

B2 (M)t | My X (M X hj) X (Myy X )] ]} ds.

By (5.22), we have

(o8]

AOEDY { fo t |y [ M,y x | + B, (M) M, x (M, x 1)) dWJ-(s)} :

=1
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We also define a sequence of H-valued process (&(t)):cjo.r] on the probability
space (Q', 7', P’) by

E(1) = M(1) — M,(0) - fo {n,, (M, % pl)] = domy [M!, x (M., % pl))]

+% > [a/2ﬂn [, x 1) x iy
=1

+aBu(My)m, | [M], X (M},  hy)] % hj]
B M), [ My, x [M}, x (M},  hj) % hj |
+aBY(M)y, | My, X (M}, X hj) X hj]

+B2 (M), [M,’1 X (M, X hj) x (M}, x hj)] ]}ds.

Lemma 5.62. Foreacht € [0, T] the sequence of random variables & (t) converges
weakly in L*(€'; X7?) to the limit

E(1) == M (1) - Mo - fo {[/hM’ Xp'| =2 [M x (M xp)]

+% > [a2 (M7 x hj) x
=1

+aBy (M) [[M” x (M" X hj)] X hj]
+B2Y(M) | M X [M' X (M’ X hy) X hj]|
+aBy(M') [M" X [(M' X ) % hj]|

+B2y(M”) [M' X (M X hj)x (M x hj)] ]}ds.

asn — oo,

Remark 5.63. There is term B’ in p’, so we can not simply repeat the argument in
Section 4. However, the terms contains B), have already been dealt with in Lemma
5.58 and Lemma 5.59.
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Proof of Lemma 5.62. By Theorem 2.130, the dual space of L>(Q’; X~?) is L?(Q’; X).
Lett € (0,7]and U € L*(Q'; X*). We have

LZ(Q';X—b)<§;(t)’ Udr2vxt
= B’ [x-0(&,(0), Uy ]

= E'{<M,'z(t), Un — (M, (0),Uln
!
—/hf(M,’,(S)Xp;(S),ﬂnUmds
0

2 fo (M(5) X (M}(5) X pl,())), muUgy ds

!
-5 [a2 f (ML(s) % ) % iy, Uy ds
=1 0

+aof f()[(%b(M,'l(S))[M;,(S) X (My($) X hp)] X hj, m, Uy ds

+p? f;(alf(M;(S))[M,Q(S) X [M;(s) X (M;(s) X hj) X h;l], 1y Up ds
+aofs fotW(M,'l(S))[M;,(S) X [(My () X hy) X hjl], ,Uyp ds

+5° fot<w(M,'l(S))[M§z(S) X (My(5) X hy) X (M (5) X hp], maUdr dS]}-

By the Theorem 5.36, M, — M’ in C([0, T']; X)) P'-as., so

sup |[M,(t) — M(®)|y-» — 0, P’ —a.s.
1€[0.7]

so M/ (1) — M’(t) in X~? P’-almost surely for any ¢ € [0, T]. And y-s(-, U)ys is a
continuous function on X~?, hence

lim X—b(M;l(t), U>Xb = X—b(M/(t), U)Xb, P - a.s.
n—oo

By (5.63), sup;cjo.r] M, (H)|g < |Molg, since H — X continuously, we can find a
constant C such that

’ /4 2 ’ ’ /4
upE! | [x-+M (1), e < sup BNUIR, B MG 01
n n

< CE'||UIR,E sup [IM ()|l < CE'||UIZ,E |Moll% < oo.
n

Hence the sequence y-»(M,,(t), U)y» is uniformly integrable. So the almost surely
convergence and uniform integrability implies that

y}1—>nolo E’[X—b<M;l(t), U>Xh] = ]E,[X—b<M/(t), U>Xb].
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By (5.82),

lim E’ f (M () X p)(s), 1, Uy ds = E' f (Z1(5), U)g.
0 0

n—oo

By (5.84)

lim E f x-o{Tn (M () X (M,(5) X p;,(5))), Uyx» ds = E’ f (Zr(5), Uyxs ds.
0 0

n—oo

By the Holder’s inequality 2.141,
M) = M’ (), < M (1) = M' (D).

Hence by (5.77) and Z;’;l IIthIim < oo,

Z E’ j(; (M (s) — M'(5)) X hj) X hj, 1, U)p ds
j=1

1

< ”U”LZ(Q’;LZ(O,T;H))Z(E,f(”(M;l(s)_M,(s))th)thH}qus)
=1 0
0 ’ %
< Z“hj”]iw ||U||L2(Q’;L2(O,T;H))(E/f ||M;(S)—M'(S)||12L1ds)
j=1 0
< lehjllim ||U||L2(Q’;L2(O,T;H))(E,f ||M;,(S)—Ml(s)“i4 ds)
=1 0
S 2 ! 4 :
< Z”hj”Loo ||U||L2(Q';L2(o,T;H))(E'lf||MZ(S)—M'(S)|L4dS) — 0.
=1 0

By Corollary 5.49, M/, — M’ almost everywhere on Q' x[0, T]1xD. ¢ : R} — R
18 continuous, SO

B fo W) — (M ()] ds — 0, asn —s co.



A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 171

So

D [ oo x ) x ] <y
=1

(M ()[M'(5) X (M'(s) X h)] X hj, 1, U)p dss

© !
< Wl Y Wilko [ i, o1, x i)
=1 0
UMM X (M x b ds
s t
< NUllp@zormy Y Whjll=mE f W (M) — w (M) ||, > (M, > (M, % b,
0

=1
+ |05 (0 x ) = M (M7 x b, ds

IA

IMIE

!
”U”LZ(Q’;LZ(O,T;H))E’f |l//(M;l)—l//(M')
0

2 2 2 2
HIM, = MR (M2 ) + IME, ) ds D AR ) — O,
=1

Noticed that we can assume that |M)|zs < 5 and |M’|g3 < 5, we also have:

D [ 00M(5) < M5 % ) % ) )
=1

—y(M'(s))M’ x [M () X (M’ (s) X hj) X h;], 7y U)g ds — 0,

o !

SE fo WML(HM(s) X [(ML(5) % hj) % ]

=1

—p(M'(s))M’ x [(M'(s) X hj) X hj],m,Uyg ds — 0,

and

DU [ M) X (5050 )] ¢ M1
=

—(M'())[M'(s) x (M'(s5) X hj)] x (M’ X hj),7,U)p ds — 0.
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Hence
,}I_{EO 2@ x-&®), U
= E[x-o(M'(0). U)o — x-5{Mo. Uy
!
-4 f (Z1(s), Uy ds
0

t
+/12 f X#;(Zz(s), U>Xh ds
0

1< '
-3 [OﬁfO«M’(s)xhj)xhj, Unds
j=1

+ap fo WM (HIM'(5) X (M'(5) X h)] X I, Uy ds

!
+,82 ﬁ (lﬂ(M’(S))[M’(S) X [M’(S) X (M’(S) X hj) X hj]], Uyyds
+ap fo WM ()M (5) X [(M(8) X ) x 1], Uy ds

!
+,32j;<¢(M'(S))[M'(S)><(M'(S)th)X(M'(S)th)],UmdS]}-

Since by Lemma 5.58 and Lemma 5.59, we have Z; = M’ X p’ and Z, = M’ X
(M’ x p). Therefore for any U € L2(QY; XP),

’}l_)ngo LZ(Q’;X’]’)<§;1(I)’ U>L2(Q';Xh) = LZ(Q’;X’h)<§,(t)’ U>L2(Q';Xb)'

This concludes the proof. O

Lemma 5.64. For j = 1,2,..., suppose the W;.n defined in (Q', 7', P’) has the
same distribution as the Brownian Motion W; defined in (Q, ¥, P) as in Propsition
5.36. Then W;.n is also a Brownian Motion.

Proof. This is same as the proof of Lemma 4.34. O
Lemma 5.65. For j = 1,2,..., the processes (W}'.(t)),e[o,r] are real-valued Brown-
ian Motion on (', F',P") and if 0 < s < t < T then the increment W;.(t) - W;.(s) is
independent of the o-algebra generated by M'(s1) and W’ (s) for s1 € [0, s].

Proof. This is same as the proof of Lemma 4.35. O

Lemma 5.66. For each m € N, we define the partition {s]" := i j=0,...,m}of

m’

[0, T]. Then for any € > 0, We can choose m € N large enough such that:
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(1)
lim {E Z fo t |, | My (5) x By | + B (M} ()M (5) x (M (s) x )|
j=1
m—1
= [ema [ M5y X By + Brea|w (M (s M ()
i=0
2\
X(My(s) % )| [ Lo, 1(5) AW, () ) < g;
X-b
(i)
oo m—1
m, (E D D lam [ M7y X ] + Bralw (M (s ) M (5"
j=1 i=0
X(My (57 X RN (W7, (& A s7p) = Wi (2 A sT))
oo m—1
E |y [ M(s") X | + Brea w (M (s7) M (s
i=1 i=0
J ) %
X(M}(s") X hp||(Wite A S = Wite A s)) ) = 0;
xX-b
(iii)
¢ oo m—1
lim (E' f D2 [oma [ M5y x )]
e Uy g

HBIA[ WM (STNM(sT) X (M) X )| L o 1)

1

(o] 2 2
_ Z |, [M;(5) % ;| + g [W (M ()M (5) X (M}, (5) X )] | dW/(s) Xh) < g;

=1

(iv)

lim (E/ fo t Z |, [M;(5) X j| + Bra (M ()M (5) x (M (5) % 1|
j=1

oo 2 %
— Z [a/M’(s) X hj+ By(M'(s))M'(s) x (M'(s) X hj)] dWJ’-(s) ) =0.
J=1 X

Proof.(i) Firstly let us consider:

oo t -1 1
lim (B|| " [ am, [My(s7) x | [ama [My(s1) 5 ] L 1) AW, (5) :
= 0 pary i Y+l J b

n—oo
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By the It6 isometry,

m—1
{E' D= D M) X ) g g 1(5)) AW, ()
i=0
) 2
o ' m—1
< Z E’ f (7ta (M (5) X hj) = Z 7o (M3 (57 X R ) s 1(9)) ds‘
= 0 7=0 xb
oo [ : m—1 2 %
<S|e fo M) X b= " My X il 1 (5) ds”
=1 J=0 X
0 2
< Z(E’ f [55) 5y = ') x )
j=1
o " m—1 2 %
) |E fo M'(s)x hj= > (M'(]) X h)l(ngn 1(5)]|  ds
= i=0 X
%) ! m—1 2 %
+ Z E’ fo Z (M'(s}") = My (s7)) X hjL (s, s7 ()| ds
j=1 i=0 X

There exists some constant C > 0 such that

lim (E:f”M%@xh-M(@thxb )

n—oo

j=1

1
1

< >l ||Wmhm( f IM;(s) - M’(s)nxbds)
j=1

f 2
< c;uhjnwl,w Tim (E’ fo ||M;<s)—M'<s>||§4(D)ds)
1

<y ||WmThm( f IM; () = M (., ds )

j=1
= 0.

M €C(0,T; X ®) P —a.s., so

m—1
lim sup (M'(s)= > M'(sS")lgngn ()| =0, P -as.
m=00 ¢c[0,T] =0 x-b
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Hence
2

!
f ds— 0, P —a.s.
0

And by Sobolev embedding,

m—1
M/(5)= ) M(s]) g 1(5)
i=0

X0

t m—1 2 2
sup E/ f M'(s)= > M/ (S ()] ds
m 0 i=0 X
T m—1 2 2
’ ’ 2 1
< supE f AM DI, +2[ D Ml ()] ds
" 0 i=0 X-b

Then by (5.63), sup,o.7) [IM’(D)||x-» < ||Mollgr, P’-almost surely,
- < 16TE (IMoll3,) = 16T?||Mo|l}; < oo.

Hence fot ||M’(s) - l’.'g)l M/(S,m)l(s,’.”,sﬁl](s)“;b ds is uniform integrable. There-
fore
1

2 2
ds
X—b

1

m—1
M'(s) X hj = > (M'(s1) X )1 sm.gn 1(5)
i=0

[ee)

t
lim » |E’ f
m—o0 4 1 0

J:

© !

< Zlnh,-nwl,w lim |E/ fo
J:

Hence for € > 0 we can choose m € N such that

2

2
ds| =0.
X-b

m—1
IM'(S) - Z M (s (s s 105)
i=0

1

s ¢ m—1 2 2
D lE f M@ x hj= 3 (M) X hplegan ((9)|  ds| < ==
j:1 0 pary i Vit b 40’

Again since M, — M’ in C([0, T]; X7?), we have
lim sup [|M’(s) - M’(s)|>_, = O.

,b =
= 4el0,T] X

There exists a constant C > 0 such that sup,c(o 7 [IM’(D)llx-» < Cl|Mo||x, P’-almost
surely, we have

2
sup ]E’( sup |[|M'(s) — M,;(S)”i'—h)
n s€[0,T]

2
< supE’| sup [IM'(s)llx-> + sup ||M,;(s>||§_,,] < 4CHIMolly; < 0.
n 5€[0,T1] s€[0,T]
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Hence by Theorem 2.104, sup g 7y [|M’(s) — M;l(s)lli_b is uniformly integrable.
Hence

1

2 2
ds]

X_p
2 3
ds]

Xop

2
(s, — SB[ M (1) — M,’,(s;?f)||§_,,] = 0.

o0 t m—l
lim [E’ f Z (M’ (s]") = My, (s7") X hjlggn g 1(5)
n—oo £ o (|4

Jj=1 i=0
< Zuh oo lim [

< > Ihjlhe lim [
=1

Z (M'(s") = My(sT) 1 m1(5)
i=0
m—1

i=0

Therefore we have get for any & > 0 we can choose large enough m, such that

21\2
&
lim |E’ < £
nLnolo[ ]] da

1 m—1
fo (rn (M (5) X hj) = Z (M (s7) X hj)Lgm g 1(5)) AW, (5)
i=0

Secondly, we consider

lim (E’

n—oo

) Tl (M ()M}, (5) X (M (5) X hj)]

1

m—1 2 3
= > Tl MM X (M (57 X B )] g 1(5) AW, (5) ) .
Xt

i=0
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Similar as before, we have

g
=1

PN R CACACR AT

1

X-°

—

m—

= > Tl M SIM(ST) X (M (87 X B )] 1) AW, (5)

i=0
Y[
0

J=1

IA

WMy ()M, () X (M;(5) X hj)

2 2
ds)
X-b
(E’f \[e(M, ()M (5) X (M[,(8) X hj) = y(M’ ()M’ (s) X (M (s) X h >||x b )
t
2
—1 0
((SPIM(s7) X (M (5] X R Ly 1(5)
el t
+Z(E J
=

—W (MMM (S X (My(s") X )| L sm 1(5)

m—1
= > WMSTOM(ST) X (M (5T X )L g 1(5)

=0

1

gk

.
1l
—_

+

M

Y(M' ()M (5) X (M'(s) X hy)

&‘

1

2 2
ds)
X0

D[ ()M (T x (M (51 x )
i=0

1
2 2
ds| .
X—b

3

]
5
<

There exists a constant C > 0, such that
1

Z (E' ﬁ ||‘/’(M;1(S))M;;(S) X (M;(S) X hj) — Ql’(M/(S))M'(s) % (M'(s) % hj)”ifb ds)
j=

1

<C (E fo M) (5) — M () x (M) % [, ds)

M

1

( f oMy ()DM(5) % (My(s) = M'(5)) x k[, dS)

Mx

C

+

1

.
1l

1

( f (M (5)) = WM DIM(5) x (M (5) % B, ds) — 0, asn— oo,

+
A
M8

.
1l
—_
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For

Y(M' ()M’ (s) x (M'(s) X hy)

i(E’ )

Jj=1
m—1 2 %
Y(M'(s7)M'(s7) X (M (s]") X hj)L(gmsm 1(s) dS)
i=0 X
There exists a constant C > O such that:
© !
D sup (E fo WM ()M (5) X (M'(5) X h)
=t "
m—1 2 %
= 3 WM (SIM (S X (M (") X B L 1(5) ds)
i=0 X—b
2 1
2
<C Z sup {(]E' j ds)
H

j=r "
1

)

m—1
D UM (SIOM (] X (M (8] X )L, 1(5)
i=0

]

Since
¢ 2 3
(E’f Y(M'(s))M'(s) x (M'(s) X hj) ds)
H
T 1
( f WM M S, ds) (E fo ||M'<s)||14||hj||imds)
( f 1M (I} s ds) (LS
and
2 l
( (SIOM () X (M (s1) X )L, gm 1(5) ds)
( Z f (M (s, )P IM (7, )] |h,<x>|2dx—]
< T%Rznh,nﬂ,



A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 179

we have

Y(M' ()M’ (s) x (M'(s) X h;)

Sl [

-1

1
2 2
ds
X—h

v
’ g ’ 4 1 152
E IM7 (Il 4 ds E”hj”ILf’“ + T2R|hjllg ¢ < oo,
0

(M (s{OM(s7) X (M (s7") X hj)Lensn 1(5)

i=0
0
<C
J=1

Let us denote

Y(M' ()M’ (s) x (M'(s) X h;)

5
Njm = (E' f
0

m—1

_ Z WM (sP)M (s7') X (M (5]") X hj)Lgm g 1(5)
i=0

N
ds) > 0.
X-b

Then we have 312 | sup,, 7;,m < co. And since y(M")M’X(M’xh;) : [0,T] — X~*
is continuous and Z;’;B] Y(M'(s!)M (s7') X (M’ (s7") X hj)1(gngn | is the approxi-
mation function of Yy(M" )M’ x (M’ x hj), we have lim,, 77;,» = 0. So by the
Lebesgue’s Dominated Convergence Theorem, we have lim,,,_, Z;’;l njm = 0. So
we can choose m large enough such that

=)

m—1

= D WM (SIM (5] X (M (") X B g 1(5)
i=0

i

Y(M' ()M (s) x (M'(s) X h;)

2 1

2
ds) < i.
X-b 4ﬁ
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And there exists some constant C > 0 such that

(o)

t
lim (E’ f
n—oo 4 0

J=1

m—1
D [p ()M (ST X (M (51 x )
i=0

I
ds)
h

00 m—1
< lim \[L Y { (E D ([ sm sy — pam(senm ] o' (s x by
=1 i=0

—Y(M,,(s7) My (1) X (M (s7") X h])]l(sm s 108)

1

2 2
X-b

1

m—1 1

m—1 2
+ (E' Z v s csmy x [y sy - My hj]”i,,] }
>3 (& ey - syl ) (& <)

\f ,}L“;(Fl
+RmZ[Z||h ||Lw] E

() - M) ) =0.

1
i=0

So, we can choose m large enough such that

§
j=1

; T WMy ()M} (5) X (M, (5) X h)]

m—1 2 3
- Z [ W (M (SPDM (7)) X (M (s7) X h )] Lgm g 1(5) AW, () ) < 5
i=0 Xt

Therefore, we can choose m large enough such that

lim (E'

n—-oo

om0 ]+ 0559 10 )|

m—1
= D o [ M5y x| + B[ M sTOM (T
i=0

1
2 2
) <
Xt

XM (7 X ) | [ L () AW/, ()

N M

(ii)) We only need to prove:
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(a)
oo m—1
nh_)nolo (E’ Z Ta[ M, (s") X hj](WJ'»n(t ASE) - W;-n(t A s)
j=1i=0
oo m—1 2 %
= Dl MY X R A ST = Wi A 1) ) = 0.
j=1 i=0 Xt
And
(b)
oo m—1
lim (E’ D0 malw M (SIYM(S) X (M (5T X AW, (e A s y) = Wi (e A S1)
j=1 =0
oo m—1 2 %
= 3 Rl M(SIIM (1) X (M (1) X RTIW (2 A 1ty = Wi A 5) ) = 0.
j=1 i=0 xb
Proof of (a) :
oo m—1
(E’ Dl MY X B JW (e A sy) = WG A ST)
j=1 i=0
0 m-1 2 \1
= ml MY X B A S = WG A S )
j=1 i=0 X0
oo m—1 5
<y (E’ o [ M s [ W5 A s = Wi m s
j=1 i=0
1
, , 2\?
—Wit A sty) + Wit A s )
oo m—1 5
<> (E’ M WA o [W2 A S = W2 A s
j=1 i=
1
) 2
—Wit A )+ Wi A s )
00 m—1 4 %
< D e (E’ ||M;,(s;")||x_h) (E’|W;.n(z ASi) = Wi A st
j=1 i=0
! m ! m 4 %
~Wit A sty) + Wit A s )
By (5.66),

supE/ [|M; (1) [y < oo
n
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By Theorem 5.36, W}n — W;. in C([0, T']; R) P’ almost surely, so

Lim [W/, (1 A s72) = Wit A SP) = WA s?) + Wi A s = 0.

n—oo

And since

/ ’ 4 8
sng|W (A S = Wit A Sy = WA S + WA S < oo,

i+1

4
’W’ (tASh) = W;.n(t A st = W;.(t AT+ W;.(t A s;”)| is uniformly integrable.

lim B W/, (t A s}y ) = Wi, (t A s = Wit A s+ Wi A s} )| = 0.
n—oo

Therefore
oo m—1
lim (E’ Z T (M, (57 M, (s7) X (M (s7") X h; )](W (tASsh) - W;-n(t A sih)
j=1i=0
0o m—1 2 %
= mlp MM ST X (M5 X hTIOW G2 A SJLy) = Wit A s) )
Jj=1i=0 X-b
) m—1
< lim Y il ) (B My )||Xb) (B W) te A 52) = WG A )
Jj=1 i=0
4 m 4 %
Wi A s+ Wi asmf) =0
Proof of (b) :
oo m—1
( E/ 2271' [W (M (DM X (M) X B)I(W/ (2 A S ) = Wit A sT)
j=1 i=0
oo m—1 1

Z Tl (MMM X (M (1) X R [(WiCE A s = Wi A s™)

X

-1
( WM OM X (M) % s
i=0

1

)+ Wit A s )2

Wit A st = Wi A ST = Wit A ST,

i+1

oo m—1 L
= Z] 2. (E [ (M (57 M (57 X (M () X j)||;_,,)4
Jj=1i=

( WGt A ST = Wi A ST = Wi A ST + Wi A 5| )
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Because we can find some constant C > 0 such that
’ /4 /4 /4 4
E | w (M (P M (57 x (M (57 X )|
’ ! ! ! 4
< CYB/ |wM (P M (s7) x (M (s7) x )|, < CHIRglIE R (D) < oo

And since we have proved

1

lim (E’ ’W}n(t A sty = W;n(t A sty — W;-(t AST)+ Wj/-(t A s;”)|4)Z =0

n—oo i+1

in part (a), we have

—_—

Z T W (M (PN M () X (M (s7) X h)J(W, (8 A sTyy) = Wi (8 A s7)

1=

~

1l
—_

lim (E’
n—o00

J
1

X-b

00 1
< CRu(D)? ) llhjllu lim (E’ W2 A ) = Wi(e A ST = WiEA ST + WiE A s;")j“)“ = 0.

oo m—1
= D D Tl UM (DM (T X (M) X RDTICWS(E A S72) = Wi A 571)
j=1 i=0

i+1
=1

Hence we have proved (ii).
(iii) The proof of (iii) is same as the proof of (i).
(iv) By the Itd isometry, we have

5

= D7 [aM(9) 5y + By (MU DM (5) X (M (5) X ] aW s
=

= (E/ f

0

= > |aM () 5 hj + By (M (s)M' () x (M (5) X h)]
j=1

!

< a|FE f

0

+,8(]E’ f

0

Hence to prove (iv), we only need to prove

[0e]

fo t |y | M;(5) X | + Bra (M ()M (5) X (M (5) % 1|
=1

J
1
2 )2
Xt
=)

Z; |, [M;(5) X j| + Bra|w (M ()M (5) x (M (5) % 1]
=

1

d(s)) '

2
x-

2 3
d(s)]
X0

Tu ) WM (DM() X (M() X )] = 3 w(M (DM (5) x (M () x ||, ds) .
j=1

=1

7w > [My(s) X hj] = > M'(s) X b
= =1
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lim [
n—0o0

(a)

1

d(s)] =0,

2
Z [M}() X hj] = > M'(s) X h;
=1 =1 P

(b)

lim (
n—o0o

Z [(M ()M (5) X (M;(s) X h)]
Jj=

- Z sOr M) ' x ), as) =o.

Proof of (a). Notice that

t (o)
lim ZM(s)xh ZM(s)xh ds = 0.
n—00 0
] 1 X-b
This is because
1
s 2
f w > (M} (5) x ZM’(S) xhj| ds
0 ]:1 b
. . 2 3
< f 2 > M) X ] =700 Y M'(5) X b ds]
0 Jj=1 J=1 X
N . 2 3
Tw . M'(s)xhj= > M () x byl ds
J=1 J=1 X-b
00 1
<> Wil ( f 1M (s) - MR ds)
j=1
f (o) [ee) 2 %
+C{f 7y > M(5) X hj= D M'(5) X I dsJ - 0.
0 ry -
j=1 j=1 H

And

2

2
!
sup E’ d(s)| <
n 0 x-b

T > [My(s) X hj] = > M'(s) X hj
= =
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This is because: By (5.63) and (5.74), there exist some constant C > 0 such that

) 2
supE’ [ f d(s)]
n 0

X0

0 2 T 2 T 2
S[Z”hjuwhw] supE'[( fo ||M,;<s)||§(bds) +( fo ||M'(s>||§,,ds)l
J=1 "

2
< 16[2 ||h‘,-||W],m] T2CH M|l < co.
=1

2

(59

7 > [My(s) X hj] = > M'(s) X by
j=1

=

IA

A

2
So fot Ty Z;‘;l (M} (s) x hj] - Z;‘;l M’ (s5) x hj”x-b ds is uniformly integrable. Hence
we have
t (59 (59 2 %
lim [E’ f 7 > [My(s) X hj] = > M'(s) X by d(s)] =0.
n—oo 0 - -
J=1 J=1 X-b

Proof of (b). Similar as the previous proof. Notice that

!
lim

n—-oo

7o ) WM ()M (5) X (M} (5) % )]

J=1

= WM (5) M (5) X (M (5) X h j)||i_h ds = 0.
=1

And
sup E( fo T 3 [WM(S)M;(5) X (My(5) X )]
" =1
- Z l,b(M’(S))M’(S) X (M’(s) X hj)“X‘” ds) < 00,
=1
So

[

s 2
= D UM )M () x (M () x b, ds
=1

7o ) WM ()M} () X (M (5) X h))]
j=1
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is uniformly integrable. Hence we have

!
lim (]E’ f
n—00 O
1

= T UM ()M (5) X (M (5) X h ﬂ“i_h ds) = 0.
=1

7 ) (WM ()M (5) X (M (5) X )]

J=1

Therefore we have proved (iv).

Lemma 5.67. For eacht € [0,T], we have

(o)

&) = Z { fo t || M x j| + Blum" M x (M x | dWJ’.(s)} ,

Jj=1
in L2(Q; X7P).

Proof. Firstly, we show that
HOEDY { fo |, [M;(5) X hj| + g [W (M ()M (5) x (M3 (5) X )| dW, ,.<s>}
=1

P’ almost surely for each ¢ € [0, 7] and n € N.
Let us ﬁx that + € [0,7] and n € N. For each m € N we define the partition
{(s":= L i=0,...,mof[0,T]. M, W;.n) and (M,, W;) have same distribution

i m’

on L*(0, T;L*) N C([0, T]; X*) x C([0, T1; R), so for each m the random variables
in H = L2(D):

00 m—1
R { | (M5 1) +
=0

j=1 Vi

B WMDY X (M) X )] [OWe A ) = W s;"»}

and

o m—1
HOEDY { > [an,,(M,;(s;") X hj) +

j=1 \i=0

Bra| p (M (sT)Mu(sT) X (M (') X h,-)]](W,; JEA ST = WG A s;"))}
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have the same distribution. For each j, we have

m—1

> [ann(Mn(s,m) X hj) + Bra[ (M ()M (s1") X (Mo (s") X ,-)]]
i=0

(Wit A s™ ) = Wit A s™)

lim
m—oo

=0
L2(Q;H)

t
- fo | (M (5) X )+ B[ M) M (5) X (M) 5 ]| a5

and

m—1

> [ann(M,;(s;.") X hy) + Bra| WM ()M (1) X (M (") X h j)]]

1

lim

m—00

(W,;j(t Asty) = W,;j(t KS))

=0,
L2(Q3H)

- j; [a/yrn(M;,(s) X hy) + Brea| WM} ()M} (5) X (M;(s) X h ,-)]] AW, (s)

& - i fo t [ann(Mnu) X hj) + B[y (M ()M (5) X (My(s) X ,-)]] dW(s)
£
and
& - il fo t | (M) 5 ) + B WM DM ) % (M (5) x| AW c5)
£
have the same distribution. But
& = 2 fo t | (M (5) X )+ B[ Ma(s)M5) X (M) ]| 45
<
P-almost surely, so we have
& = i fo t | (01,51 % )+ B WM )M 5) X (M 5) ]| a9
£
P’-almost surely. Secondly, we show that £/ (¢) converges in L>(Q'; X ) to

Z f(; [“M’(S) X hj+ By(M' ()M’ (s) x (M'(s) X hj)] dW]’-(s)
=1
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as n — oo. Notice that

2 3
Xt

_ (E

j=1

> fot |, [M,(5) | + B [w M ()M (5) (M () x B | AW (s)

HAOEDY fo | M’ () x j + By(M' ()M’ (s) x (M'(5) X )| dW(s)
j=1

1

2 )2
X-b

0’ [ [M;(5) x Iy | + Brea [ (M ()M () % (M () % )]

-, fo @M (5) 5 hj + By(M' ()M (s) X (M (s) X h)| dW/(5)
Jj=1

< (]E
j=1

1
2
x-b )

a/ﬂn M’(sm) X h ] + B [W(M;, (sT)M; (57 x (M (s") X h;j )]](W (tA S - W’-n(t A sT)

1
2 )2
x-b

3

HMS
NMe LD

| @ [ M3 (7) 5 | + B WM (TIM (T X (M3 (s X ||, 165) AW/ ()

Jj=

E

+
&=

I}
(=]

=1

—_ L

m—

|, [ M (s X | + Brea| WM (sPNM(S) X (M (S X B)||(Wie A sty = Wit A s)

+(]E’

- Z |, [M;(5) % j| + g [ WM ()M (5) X (M}, (5) X )] | dW/(s)

j=1
+(E’

- Z @M (5) 5 hj + By(M' ()M’ (s) X (M (s) X h)| dW/(s)

j=1

2

i=0

fo Z | | M (s) X | + Bra| (M (SPNM(ST) X (M) % ) || s 1)

2)2
b

fo Z |, | M (5) 5 hy| + Bra (M (s) M (s) x (M;(5) x )|

1

2 )2
X

And then by Lemma 5.66, we conclude the result. O
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Remark 5.68. Observe that the Lemma 5.67 means that:
!
M'(t) = My +f {[/ﬁM' Xp'| =M x (M xp)]
0
1 o0
(5.95) =9 [az (M ) x |
j=1

+aBy(M') [[M' x (M" X hj)] X hj]
+B2 (M) [M’ X [M' x (M’ X hj) x hj]]
+aBu(M') [ M’ X [(M” X j) X ]

+BAY(M) [ M’ 3 (M x hj) x (M x b)) ]} ds

+ Z { fot o[ M x hj| + Blu" M x (M x | dwjf.(s)} ,
j=1

in L2(Q; X7).

Lemma 5.69. [40](Th. 1.2) Let V and H be two separable Hilbert spaces, such
that V. — H continuously and densely. We identify H with it’s dual space. And
let M*(0, T; H) denote the space of H-valued measurable process with the filtered
probability space (8, (F)iei0,11. P) which satisfy: ¢ € M?(0,T; H) if and only if

(1) ¢(t) is F; measurable for almost every t;
(i) E [ 160 dr < co.
We suppose that

ue M*0,T;V), uyeH, veM*O0,T;V),
T o0
E f Dl o)l dr < oo,
0o =<
j=1

with

u(t) = uy + jo‘ v(s)ds + /Z:;‘j(; Zj(s) dW;(s).

Let y be a twice differentiable functional on H, which satisfies:

(1) v, v andy" are locally bounded.

(ii) y and y’ are continuous on H.

(iii) Let L' (H) be the Banach space of all the trace class operators on H. Then
VO e ZLY(H), Tr[Q o] is a continuous functional on H.

i) Ifu eV, ¥'(u) € V; u v v'(u) is continuous from V (with the strong topology)
into V endowed with the weak topology.

(v) 3k such that ||y’ (wlly < k(1 + |lully), Yu e V.
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Then P almost surely,

yu() = y(uo) + fo v (u(s), Y (u(s))y ds + ) fo a(Y ((s)), 2j(s)u AWj(s)
j=1

1 ("
) Z fo Y W())z;(5), 2j(s))n ds.
j=1

Theorem 5.70. The M’ defined in Theorem 5.36 satisfies: for eacht € [0,T], we
have P’'-almost surely

(5.96) IM'(t, x)|gs = 1,  for Lebesgue a.e. x € D.

Proof. Letn € C7(D,R). Then we consider
v:H>Mv— (M,nM)y € R.

It’s easy to see that y is of C? class and y/(M) = 2nM and y” (M)(v) = 2nv for
M,v e H.

Next we check the assumptions of Lemma 5.69 with u,v,z; in Lemma 5.69 from
(5.95). By previous work (See details below), we can see M’ satisfies:

T
B f 1M @, di < o0, by (5.66),
0
T 2
E’ fo (M’ x p")(#)|[yp dt < o0, by (5.67),

T
E’j; 132ty x (M” x ") D|[5.5 di < c0, by (5.70),

and by the assumption Z‘]’i] || j||]im ) < and the definition of ¢, we have

2
T [o0]
E’ f DM () x hp) xhjf| - dr < oo,
o 5= o
T || 2
E’ f Z (M ()M’ (s) X (M'(s) X hj)] X hj||  dt < oo,
0 |I5=T s
T || X2 2
E’ f DM (sHM' () X [M(s) x (M'(s) x hj) x Ryl dt < oo,
0 5= s
T || 2
4 f D WM (HM(5) X [(M'(5) X hj) x byl dr < oo,
0 =1 -
T || > 2
E’ f DM (sHIM () X (M'(5) X h)] X M'(s) X || dt < oo,
o ||

X
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and
2
T [e6]
]E’f DM () x| dr < oo,
0 J=1 H
2
T [ee]
B f Z WM’ ()M’ (s) X [M’(s) X hj]|| dr < oo.
And vy satisfies:
(i) v, v,y are locally bounded.
(ii) Since v/, y” exist, v, v’ are continuous on H.
(iii) VO € ZY(H),
TriQ oy (@] = ) (Q oy (@ej, e =2 Y (QGe)), ej)u,
=1 =1

which is a constant in R, so the map H 3 a — Tr[Q o y”(a)] € R is a continuous
functional on H.

@v) fu e V,y'(u) € V; u — y'(u) is continuous from V (with the strong topology)
into V endowed with the weak topology.
This is because: For any v* € X?, we have

xo Y (U +v) =y (W), vy = 5020y, v x-s < 2Mle,ryxe (v, v ) x-,

hence y’ is weakly continuous. Let us denote 7 as the strong topology of V and 7,
the weak topology of V. Take B € t,,, by the weak continuity (y")~!(B) € T,, but
7,, C 7. Hence (y")"!(B) € t, which implies (iv).

(v) dk such that ||y’ (w)lly < k(1 + [lully), Yu e V.

Hence by Lemma 5.69, we have that for ¢ € [0, T] and P” almost surely,
(M'(t),nM’ (1)) — (Mo, nMo)n
!
= f X_h</11M’ xXp' =M x (M xp)
0

1 (o]
+§ Z [aZ(M’ X hj) X hj+ afy(M")[[M x (M’ X hj)] x hj]
=1

+B2Y (MM’ x [M' X (M’ X hj) X hj]] + efy(M") M’ x [(M’ X h;) X h;]]

+B2Y (MM X (M" X hj)] X (M X h;)

, 27]M’(s)> ds

xb

£ fo M’ (s),aM’ X hj +By(M )M’ X (M’ X hj))r dW(s)
=1

© !
+ Z f (naM’ x hj+By(M M’ X (M' X hj),aM’ x hj+By(M )M’ x (M’ X hj))pds = 0.
10
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Hence we have
0, 1M (02, = M) iy = (MU (@), nM ()1 = (MG, aMp)s = 0.

Since 7 is arbitrary and |[My(x)] = 1 for almost every x € D, we infer that
M’ (¢, x)| = 1 for almost every x € D as well. O

Finally we are ready to give the proof of the main result.

Theorem 5.71. The process (M',E’, B") is a solution of Problem 5.10. That is,
(M, E’, B') satisfies the following equations: (5.14), (5.12) and (5.13).

Proof of (5.14). By Lemma 5.67 and Lemma 5.70, we have y(M’'(t)) = 1 for
t € [0,T]. Hence we deduce that for ¢ € [0, T'], the following equation holds in
L2(Q; X7b).

M'(H) = My + fot { (UM X p'] = 2 [M X (M % p)]
+%2[a2 [(M" X j) x hj| + aB|[M x (M x hj)] x hj]
+ﬁ21[M’ X [M" x (M" x hj) x hj]] +ap [M’ X [(M’ % hj) x hj]]
+87 | M X (M x hj) x (M X b)) ]} ds
+2{f0l o [M s h| + B[ M x (M x )| dw;(s)}
= Mo+ fot (UM X p' = .M x (M xp')] ds

+2{fot M’ x j+ M x (M x hp)] o dW]’.(s)}.
=

Proof of (5.12). By Proposition 5.41 and the equation (5.24), we have

t
(5.97) B, (1) — B, (0) = —f n[V x E/(s)] ds, P’ —a.s.
0
By Theorem 5.36, we also have

(a) E;, — E’"in L2(0, T; L?*(R?)) P’ almost surely, and
(b) B, — B’ in L2 (0, T;L*(R?)) P’ almost surely.
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Hence for any u € H'(0,T;Y),

t o du(s) : t o du(s)
f()(B (S),T%Lz(ﬂgz)ds=nll_>IIolojO‘<Bn(S),T>L2(R3)ds

tdB/
tim [ (25D

—00
n 0

t
, M(S)>]LZ(]R3) ds = lim f <7T,)1/[V X E;(S)], M(S)>L2(R3) ds
n—o o

! !
= lim f (VX Ep(s), myu(s)) 2@ ds = lim f (Ej(5),V X myu(s))p 23 ds
0 n—o00 0

n—o00
Since

!
lim ‘f <E;1(S), V x HZM(S)>L2(R3) — <E,(S), V x M(S)>L2(R3) ds
Nn—>00 0

IA

ds

t
lim fo |<E;,(s),vx(n,{u(s)—u(s))>L2(R3)

n—oo

+ lim

n—oo

f
[) (E;(s)— E'(5),V x u(s))r2gs) ds

1

1
t 3 t 3
lim ( f IIE,'l(s)Iliz(R3)ds) ( f 7Y u(s) — u(s)|1% ds) +0=0, P -as.,
n—oo 0 O

IA

we have

! !
lim f (E(5),V x n,{u(s))Lz(Rs) ds = f (E"(5), V X u(s))2(r3) ds.
0 0

n—oo

Therefore

t d !
f <B/(S), lzl(S) >L2(R3) ds = f <E,(S), V % M(S)>L2(R3) dS,
0 § 0

forallu € H'(0,T;Y).
Hence for t € [0, T],

!
B'(t) = By — f VX E'(s)ds, €Y', P —a.s.
0
o

Proof of (5.13). Similar as in the proof of (5.12). Let p = ¢ = 2 in Theorem 5.36,
we have

(a) M/, — M’ in L*(0, T;L?(D)) P’ almost surely,
(b) E/, — E’in L2(0, T; L*(R*)) P’ almost surely, and
(c) B, — B’ in L2(0, T; L?(R?)) P’ almost surely.
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Hence by (5.23) we have for all u € H'(0,T; Y),

L du(s) o dus)
v[(;(E (S), T>L2(R3)ds:JL%jg(En(s),T)LZ(RS)dS

!
= lim ) [p(E () + f(5)] =, [V X (B () = 7, (ML ()], ())rzgus) ds

fo (B(s) = M (). V X u())i2z) = (1pE'(5) + F(5). u(s))2qae ds.

Hence for t € [0, T],
! Tt
E'(t) = E +f V X [B'(s)—M'(s)]ds — f [1pE’'(s) + f(s)lds, €Y', P —a.s.
0 0
o

Next we will show some regularity of M’.

Theorem 5.72. Fort € [0, T] the following equation holds in L>(Q'; H).
!
M'(t) = Mo + f {[/ﬁM' Xp'| = [M x (M xp)]
0
1 S 2 / / ’
+3 ; [a [ x hj) x hy| + @ [[M7 5 (M x )] % b

+4? [M' X [M' X (M’ X hj) xhj]] +a/,8[M’ X [(M’ x h)) th]]

+7 | M" X (M x hj) x (M' x b)) ]} ds

+]2{j;t[a/[M’ X hi| +B[M x (M x hy| dW]’.(s)}
(5.98) = Mo+ fo t (UM X p' — LM’ x (M xp)} ds

+2{f0t[az\4’xhj+,3M'x(M'><hj)]o dW;.(s)}.

Proof. By (5.67) and (5.96), there exists some constant C > 0 such that

T
E f 1M, (t) X p,()II3, dt < C*, Vn.
0
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By Lemma 5.58, for u € L*(Q'; L*(0, T; H)) we have

1 T
(E’llM’x p'||iz(0T,H))2 - sup E f (M'(t) X p' (1), u(f)) g dt
T A

lleel 2 @12 0,711y

T
sup lim E f (M(1) X pl(0), D)y dt
n—oo 0

letll 20712 0,717

sup (B'1I1M;, % 01172 7.4 < C-
n

IA
Dl

Hence for almost every ¢ € [0, T], M'(t) X p’(¢) € L*(QY; H). Again by (5.96) we
have

1M (1) % (M (1) X p"ODIIF2 0y gy = B fD M’ (1, x) X (M' (1, %) % ' (£, ))I* dx

<E fD M (1, )PIM (2, %) X ' (8, OF dx < 1M (1) X p' DI} 2 g, < ©0-

Therefore all the terms of (5.98) are in L*(Q'; H), so the proof has been complete.
O

Finally we will prove that M’ has more regularity time-wise.

Theorem 5.73. The process M’ introduced in Theorem 5.36 satisfies the following
condition: for 6 € (0, %),

M’ e C%0,T; H), P —a.s..

Proof. The proof is based on the Kolmogorov test (Lemma 2.134). By (5.98), we
have

M (H) — M'(s) = f {[/llM' Xp'] = [M' x (M xp"]

+

| =

> [a2 (M7 5 hyp) x ] + aB|[M X (M” % hj)] x
=1
+4° [M’ X [M' X (M’ X hj) x hj]] +ap [M/ X [M x ) hj]]

+3 [M’ X (M’ X hj)x (M’ x hj)] ]} dr

' Z‘ {fst |a[M7 % hj| + B[M" > (M x| dW}(T)},
= U
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for0 < s <t<T,in L*(Q'; H). Hence for fixed ¢ > 1, we have

2q 21?

+ [ E
H
2q i
H

f (M'(t) X [M'(7) X hj]) X hjdt

(5w o2}

< |A4] {E'
+laf2 i {E'
2
j=1
1 (o)
+3laBl ) {E
j=1
+1/32 i {E’
2
j=
1 [ee)
+3laBl ) {E
j=1

+%/32 2 {E’ f (M’ (1) X [M'(x) X hj]) X [M' (1) X hj]d7
=1 '

0o 2q 2q
+|a|2{ } +1 {E
J=1 j=1

We also have the following results: By (5.82), 3C > 0 such that

2q

1
29\ 2¢
H

ft M (t) x [M' (1) x p'(7)]dt

f M (t)x p'(r)dr

!
If [M'(t) X hj]l x hjdt

2q 217;
p
2q ﬁ
f {M' () x (M’ (1) x [M'(t) X hj])} X hjdt }
H
2q ﬁ
h
2q 2%
h

If M’ (1) x [M' (1) X h; ]dW’(T)

!
f M () % (IM(2) X hyj) % hj) x hjdr

1
29\ 2¢
H

fM’(T)xh dW’(T)

t t q
E f M (t)xp'(n)dr|| < (- $)E (f 1M’ (1) Xp'(T)II%, dT) < Ct - )1,

H
By (5.96), M’ (1) x (M"(1) X p' I, < 1M' (1) % p' (D)lIF;. So

f 2q
M’ (1) x (M’ (1) X p'(£))dr|| < Ci(t— 5)1.
s H
By (5.73),
= 24 Ziq = ! : 1 1 1
Z{ f M’(T)Xh])(h dr } SZth”Lw(D)(E’f ||M’(T)||%1d7') (t—25)2 <C2(t— ).
Jj=1 s H j=1 s

Using (5.96) and similarly as before we also have:

>f

=1

t 2q\ 24
(M’ (t) X [M'(7) X h;]) X h; dr } <Ci(t-s)7,

S

H



A STUDY OF STOCHASTIC LANDAU-LIFSCHITZ EQUATIONS 197

> 24 2171 1 1
Z B <Ci(t-5)2,

J=1

f (M (2) x (M () X [M'(¥) x hj])} x h; dr

H

f 2q
f M’ (7) X ([M' () X hjl1 X hj) X h;dt

J

S|

J=1

Z 1 1
<Ci(t- )2,

H

2q

2%1 i 1
<C2(t-9)2.

H

t
f (M'(7) X [M'(7) X hj]) X [M'(7) X hj]ldt
By Theorem 2.127,

>f

2) %
Jj=1 H}
L2 VL ! )\
<ea- 0! (525) Y ([ e <o o)
q — s

00 2q

1 2 1 1 1

< lluollr ) jll=(g(2g = 1))? (qu 1) (1= 8)3 <C2(t=9)2.
j=1

f M’ (1) X h; dW/(7)

And

) f 2q 2]71
> {E’ f M'(1) % [M' (1) X hj] dW/(7) } < C1(t - 9)2.
s H

J=1

Therefore there exists C; > 0 such that

|

|M (1) - M’(s)”ilq] <Cit-s5)1, g=1.

Then by the Kolmogorov test (Lemma 2.134),

1
M € CY0,TL;L?), ae (o, E)‘

This completes the proof of Theorem 5.73. O

5.7. Main theorem. Summarizing, we state all the results in this section in the
following Theorem:

Theorem 5.74. There exists a filtered probability space (', F',F' = (F/ )0, P’)
with pairwise independent, real valued, F'-adapted Wiener process (W;');‘ir And
there exist processes M’ : Q' x [0,T] — V, B : Q' x[0,T] — L*(R?) and
E': Q' x[0,T] — L*(R?) in this probability space such that:
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(i) Foreveryte [0,T],

!
M (1) = M, +f (UM xp" — M x (M xp')} ds
0

+Z {L [aM' X hj+BM x (M x hj)] o dW;.(s)}.
Jj=1
in L*(Q'; H).

!
B'(t) = By — f VXE'(s)ds, €Y', P —a.s.
0

t t
E'(t) = Ey +f V X [B'(s)— M'(s)]ds — f [1pE'(s)+ f(s)]ds, €Y', P —a.s..
0 0
(i1)
|M'(t, X)|gs = 1, for Lebesgue a.e. (t,x) € [0,T] X D and P’ — a.s..
(ili) For every 0 € (0, 1),
M e C%[0,T:H), P -a.s..

Proof. The claim (i) is from Theorem 5.71 and Theorem 5.72. The claim (ii) is
from Theorem 5.70 and the claim (iii) is from Theorem 5.74. O
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