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Abstract 

For many years the Gram positive bacterium Bacillus subtilis has been a model 

organism for prokaryotic cell and molecular biology. The asymmetric cell 

division which B. subtilis undergoes during sporulation is a simple system by 

which to study the process of cell differentiation. Sporulation is governed by a 

series of genetic temporal and spatial controls. Gene regulation brought about 

by a series of σ factors and transcriptional regulators is coupled to key 

morphological stages or checkpoints. σF initiates the first step in a cascade of 

complex genetic control which eventually produces a resilient endospore. 

The activation of σF, the first compartment-specific sigma factor, in the 

forespore and its regulation through interaction between three proteins; 

SpoIIAA, SpoIIAB and SpoIIE, is of particular interest.  SpoIIE, a protein 

phosphatase which binds to the asymmetric division septum, is a crucial factor 

in the selective activation of σF in the forespore. Of three putative domains in 

SpoIIE only the C-terminal PP2C phosphatase domain has been structurally 

characterised. The central domain, domain II, of SpoIIE has been assigned a role 

in interaction with the cell division machinery; however mutational studies 

have shown that, in addition, this domain is also responsible for the regulation 

of phosphatase activity.  

This work describes the isolation and characterisation of three new fragments 

of SpoIIE containing elements of the central cytoplasmic domain of SpoIIE. 

These include a fragment found to accurately represent the N-terminal 

solubility limit of domain II which shows a high degree of oligomeric character. 

The fragments isolated show specific phosphatase activity against SpoIIAA~P, 

albeit at reduced rates compared to the free phosphatase domain, which 

indicates an inhibitory role for SpoIIE domain II against the PP2C domain. Three 

ultimately unsuccessful approaches were attempted to isolate a co-complex of 

SpoIIE and SpoIIAA~P for structural characterisation. A tendency for domain II-

containing SpoIIE fragments to precipitate in the presence of Mn2+ is also 

identified. An in vivo investigation into the sporulation efficiencies of amino acid 

substitutions in a potential regulatory interface between domains II and III of 

SpoIIE indicated no strong sporulation defects.  
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Chapter 1: Introduction 

1.1 Spore formation in Prokaryotes. 

The vegetative growth cycle in prokaryotes, involving reproduction by binary 

fission, is well understood and also well conserved in genera of both Gram-

positive and Gram-negative bacteria. Binary fission is a process in which a 

single mother cell undergoes symmetric cell division, producing two identical 

daughter cells. This cell cycle involves repeated iterations of cell elongation, 

chromosomal replication and cell division. While for most species of bacteria, 

cell division always occurs using this pathway, certain Gram-positive bacteria 

are able to undergo cell differentiation which results in the formation of spores. 

In contrast to the daughter cells produced by binary fission during vegetative 

growth, spores are desiccated and metabolically inactive on release. This 

endows them with increased resistance to adverse environmental conditions 

and extended periods of dormancy. 

The Streptomyces genus of Gram-positive bacteria, belonging to the phylum 

Actinobacteria, commonly found in soil [1] undergoes sporulation as a means of 

reproduction. The use of spores in reproduction is commonly seen in species of 

fungi; however this behaviour is not the only peculiarity in the Streptomyces 

lifecycle. The vegetative growth of Streptomyces spp. occurs in repeatedly 

branching filaments, called vegetative hyphae, forming mycelia rather than in 

proliferation by iterative cell division [2]. Spores are developed by extension of 

so-called aerial hyphae, coated in a hydrophobic sheath, out of the liquid media 

(e.g. at the surface of a soil particle). After extension, multiple, simultaneous 

cell-divisions occur along the length of the hyphae resulting in separation into 

up to 50 asexual reproductive spores, or conidiospores [1, 2].  

Conidiospores are released into the environment and each can germinate and 

form a new colony if in contact with a suitable substrate. Metabolically inactive, 

the spores can survive for long periods before germination. They are resistant 

to harmful conditions but far less so than the endospores produced by other 

Gram-positive bacteria [2]. Actinomycetes are biotechnologically and medically 
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important as they produce antibiotics such as erythromycin, streptomycin and 

chloramphenicol [1]. 

Genera of endospore-forming bacteria are large in number including Bacilli and 

Clostridia. In nutrient-depleted media, the formation of endospores allows 

preservation of the genetic information within an extremely resistant particle. 

Germination takes place when nutrient-rich conditions are restored. Dormant 

spores have been successfully revived after extraction from Dominican amber 

over 24 million years old [3]. The resistance of endospores to physical 

challenges such as heat, antibiotics and extremes of pH far surpasses that of 

non-extremophile vegetative cells. 

 

1.2 Bacillus in industry and medicine. 

Strains of Bacillus are commonly used in biotechnological applications. Bacilli 

are naturally found in environments as diverse as soil, the guts of insects and 

hydrothermal vents. The variety of habitats is matched by diversity of metabolic 

capabilities [4]. This results in a diversity of applications of Bacillus spp.; Bacilli 

are used in the industrial production of key enzymes, vitamins, biosurfactants, 

pigments and biopolymers. 

Spores formed by Bacillus thuringensis produce proteinaceous inclusions called 

∆-endotoxins. In certain B. thuringensis strains, these crystal (or Cry) proteins 

have specific insecticidal activities and are hence used as environmentally 

friendly insecticides. In addition the Cry genes have been produced in some 

plant species after genetic engineering to give inherent insecticidal properties 

[5, 6].  

The concept of a probiotic has been in existence since the start of the 20th 

century, the modern definition; “A live microbial feed supplement which 

beneficially affects the host animal by improving its intestinal microbial balance” 

was suggested in 1989 [7, 8]. Species of the Bacilli and Bifidobacteria (a 

reclassification first applied to a Lactobacillus strain) genera represent a large 

portion of those microorganisms being used and studied as probiotics [9]. 

There is evidence that suggests that populations of probiotics in the gut 
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maintain the activity of the immune system allowing rapid response to new 

infections [10]. The therapeutic effects of Lactobacillus strains include 

prevention of antibiotic-associated diahorrea, colon cancer and irritable bowel 

syndrome [11-13]. Lactobacillus reuteri CRL1098 strain and Bifidobacterium 

adolescentis and pseudocatenulatum species have been studied as probiotics for 

long term treatment and prevention of vitamin B12 and folic acid deficiencies, 

respectively [14, 15]. In each case, the bacterium in question is capable of 

synthesising and excreting these valuable molecules directly into the gut.  

The ease of production and especially storage of spores of Bacillus subtilis and 

other endospore forming bacteria may have applications in the dissemination of 

vaccines to poorer areas. Dosing of mice with recombinant B. subtilis spores 

designed to present the tetanus toxin fragment C (TTFC) antigen on the outer 

coat enabled animals to survive a usually lethal challenge of tetanus toxin (50 x 

LD50) [16]. Similar methods have been used to induce immunity against 

Clostridium difficile, necrotic enteritis caused by C. perfringens and rotavirus 

[17-19]. 

  

Figure 1-1: Spores as a vehicle for targeted drug delivery.  
Expression of CotB-streptavidin fusion proteins which are assembled on the surface of spores 
allows association of biotinylated moieties such as drugs and antibodies. Adapted from Nguyen 
et al., 2013 [20]  
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A similar technique using B. subtilis spores employs a killed form as a carrier of 

anti-cancer chemotherapy agents to cancer cells, specifically to target the 

epidermal growth factor receptor on HT 29 colon cancer cells [20]. Streptavidin 

is localised to the spore coat following its expression as a recombinant fusion 

protein with CotB. Any biotinylated moiety (i.e. drug molecules and antibodies) 

can then be attached to the spore surface allowing the system to potentially be 

used as a ‘universal’ targeted drug delivery system (Figure 1-1).  

 

1.2.1 Risks posed by endospore-forming bacteria. 

The increased resilience of endospores makes spore-forming species a potential 

hazard to human health. Common disinfectant techniques are often completely 

ineffective against them.  

Some Bacillus cereus endospores are commonly present in foodstuffs and will 

survive temperatures of 100°C [21, 22]. Thorough cooking is required to 

disrupt the spores which will otherwise germinate in the gut. Enterotoxins 

produced during B. cereus proliferation may be responsible for up to 5% of 

foodborne illness [23, 24]. Endospore forming bacteria are also responsible for 

a number of serious and potentially fatal diseases.  Toxins produced by the 

Clostridium species C. botulinum and C. tetani are harmful to humans and are the 

causes of botulism and tetanus respectively [25, 26]. C. difficile is a major 

concern in hospitals, affecting recovering patients. Resistant to most cleaning 

methods, C. difficile spores can quickly be ingested by multiple patients whose 

gut bacteria have been wiped out by the use of broad-spectrum antibiotics and 

cause severe diarrhoea potentially resulting in death [27]. Bacillus anthracis, the 

cause of anthrax, is the only obligate pathogen of the genus Bacillus [28]. 

Virulence is mediated by genes on two extra-genomic plasmids pXO1 and pXO2, 

allowing the bacteria to produce lethal toxins and evade the host immune 

system, respectively [29]. 
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1.3 Bacillus subtilis 

Bacillus subtilis is the model organism for Gram-positive bacteria. It is a rod-

shaped, Gram-positive, bacterium of the genus Bacillus. Also known as grass 

bacillus and hay bacillus, B. subtilis has been considered as a soil-dwelling 

organism, however it has been argued persuasively that human gut populations 

are at levels suggesting that it can be a normal gut commensal [30].  

 

 

Figure 1-2: Distribution of Gene Functions in B. subtilis.  
The ‘Other Systems’ category consists of genes involved in stress response, antibiotic 
production, detoxification, phage-related functions and some other miscellaneous systems. 
From Kunst et al., 1997 [31]. 

 

The B. subtilis 168 genome consists of 4.214 megabase pairs of DNA comprising 

around 4,100 protein-coding genes with an average GC content of 43.5% [31].  

Much of the genome (Figure 1-2) is devoted to the maintenance of the cell and 

the uptake and metabolism of carbon sources, especially those derived from 

plants. 42% of the genes are of unknown function and of these, more than half 

are not similar to any previously identified coding sequences. In 2003, 192 

genes were shown to be essential, with another 79 predicted to be essential to 

the viability of B. subtilis on LB medium at 37°C [32]. As of February 2013, 261 

genes encoding 259 proteins and two functional RNAs are regarded as essential 

after the elimination of some genes, due to their dispensability in other 
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conditions, and the addition of some genes previously unidentified [33]. These 

essential genes’ functions are focused on protein synthesis, secretion and 

quality control, metabolism, the cell envelope and division, DNA maintenance 

and replication, cell protection and RNA synthesis and degradation. The 

functions of six essential genes remain unknown.  

A factor influencing the use of B. subtilis as the model organism for Gram-

positive bacteria is the ease with which genetic manipulation can be carried out. 

It is thought that natural genetic competence in B. subtilis confers advantages on 

the organism in nutrient limited conditions. The uptake and chromosomal 

inclusion of high molecular weight DNA fragments by recombination may 

provide an advantage to a struggling B. subtilis strain, perhaps exploiting 

previously unavailable metabolic pathways or conferring antibiotic resistance. 

The conditions which induce competence in B. subtilis are well characterised 

and in a laboratory environment are readily exploited to allow the development 

of mutant strains for further experimentation. 

Industrially, B. subtilis is widely utilised and the pathway for secretion of so-

called ‘feeding’ proteases has been used to effect the extracellular production of 

commercially valuable heterologous enzymes. While secreted proteins native to 

B. subtilis and some heterologous proteins can be collected from growth media 

in gram-per-litre quantities, the production of many proteins in this fashion is 

significantly less efficient [34]. The Sec-dependent secretion pathway in B. 

subtilis involves numerous checkpoints including signal peptide recognition, 

chaperones, translocation, propeptide- and enzyme-mediated folding and 

quality control proteases [35]. In order to achieve heterologous protein 

secretion in large quantities, the efficiency of each of these stages must be 

maintained. While the presence of biological regulatory elements currently 

complicates the application of B. subtilis secretion as a means of production of a 

wide range of proteins, strains with protease and chaperone-repression 

knockouts have been engineered. However, problems caused by incorrect 

translocation and extracellular protein folding are still present. In spite of the 

problems preventing the industrial production of many heterologous proteins 

via secretion in B. subtilis, the system is used widely and to great effect in the 
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production of proteases and α-amylases as well as numerous other 

commercially useful enzymes. 

Upon encountering nutrient limitation, B. subtilis attempts to re-establish a food 

source through the development of motility (via flagella development and 

chemotaxis), genetic competence as well as production of extracellular 

hydrolases and antibiotics. The development of competence may allow B. 

subtilis to acquire and incorporate genetic material found in its environment, 

potentially conferring advantage in challenging conditions. Should these 

systems fail to redress the lack of nutrients, either through relocation to 

‘greener pastures’ or the breakdown of material from other bacteria neutralised 

and digested by Bacillus’ antibiotics and macromolecular scavenging systems, 

the bacterium embarks on a complex developmental process involving huge 

changes in morphology and genetic regulation in order to produce heat, 

chemical and irradiation resistant endospores. Over 500 genes are involved in 

the conversion of the vegetative cell into the dormant endospore via 

asymmetric cell division and the establishment of compartment specific gene 

expression [36]. Tight regulation of the processes involved in sporulation is key 

to its success.  
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1.4 Sporulation 

1.4.1 Entry into the spore formation pathway 

During growth, B. subtilis cells undergo binary fission which results in an 

exponential increase in cell density although this is dependent on sufficient 

nutrients being available. As nutrients are consumed, the cell cycle slows down 

and fewer cell division events occur (Figure 1-3). It is at this stage that B. subtilis 

utilises a number of adaptation strategies for re-establishing cell growth. At the 

same time, a process is initiated which will result in spore formation if the lack 

of nutrients persists.  

 

Figure 1-3: Example of a B. subtilis growth profile.  
The various phases of growth are shown on the x-axis. The adaptation strategies and their 
temporal utilisation are shown using grey bracketed arrows. The stages of sporulation are also 
shown indicating when sporulation becomes the sole survival strategy. Adapted from Phillips 
and Strauch, 2002 [37]. 

 

The formation of a resistant spore is energy and material intensive, involving 

the expression of scores of specific genes; furthermore it takes several hours to 

complete and, once Stage III is reached, is irreversible. To ensure that 

sporulation occurs only when all other survival strategies have been exhausted, 

sporulation-related B. subtilis gene expression is under tight transcriptional 

regulation, as described in section 1.4.2. Throughout nature, transcriptional 
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control can be enforced by global transcriptional regulators, a group of DNA 

binding proteins present throughout prokaryotic and eukaryotic biology. When 

these proteins are produced by the cell, they allow repression or activation of 

sub-sets of genes. It is by this mechanism that gene expression is directed 

throughout the stationary phase and towards the potential initiation of 

sporulation. 

On transition into stationary phase, the transcriptional profile of Bacillus subtilis 

changes dramatically. During exponential phase of growth and division, genes 

encoding sugar utilisation and biosynthesis systems, are actively transcribed, 

whereas genes associated with motility, antibiotic production and nutrient 

scavenging are heavily repressed [37]. The opposite is true in stationary phase 

as the cell attempts to maintain resource levels; preserving rather than 

propagating its genetic material. The transition between these two states is 

mediated by global transcription regulators, specifically in the deactivation of 

certain repressors and the subsequent activation of genes related to stationary 

phase survival and sporulation. 

 

1.4.1.1 AbrB 

AbrB, named for its originally identified role in repressing antibiotic resistance, 

is a 10.4 kDa protein responsible for regulating transcription of over 40 

different genes [37]. A number of these genes are themselves transcriptional 

regulators, while the remainder are involved in the majority of the adaptive 

responses that occur in stationary phase B. subtilis populations. This includes 

sporulation, with AbrB exerting repression of a number of sporulation related 

genes (Figure 1-4). abrB expression is autoregulated so as to maintain a stable 

intracellular concentration of the transcription factor throughout exponential 

phase. At the onset of stationary phase, the signal which interrupts expression 

of AbrB, and hence repression of stationary phase genes, is delivered by another 

global transcription regulator, Spo0A, in its phosphorylated form. Spo0A~P 

represses abrB transcription, causing intracellular concentrations of AbrB to be 

lowered and relieving AbrB’s own repression of stationary phase system 

development. In addition Spo0A~P activates the transcription of abbA. The 
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protein, AbbA has been shown to bind directly to AbrB and prevent DNA-

binding. This constitutes a second, parallel, mode of AbrB inhibition by 

Spo0A~P [38]. 

 

Figure 1-4: Schematic representation of key parts of the AbrB regulon. 
A build-up of Spo0A~P causes a self-reinforcing cascade to deactivate repression by AbrB. 
Activation is depicted as black arrows; Repression is depicted as barred black lines. The dashed 
red arrow indicates the Spo0A phosphorelay which, via kinases and phosphoryl transferases, 
focuses nutrient deficiency signals towards the phosphorylation of Spo0A. AbrB is auto-
regulated during the exponential phase. Inhibition of AbrB activity is carried out by Spo0A~P by 
two parallel pathways, by direct genetic repression and by production of AbbA, an AbrB 
inhibitor. Adapted from Philips and Strauch, 2002 [37]. 

 

It has been reported that AbrB is capable of differentially regulating multiple 

promoters. This results in different repressed systems being activated at 

distinct intracellular concentrations of the transcription regulator. Structural 

analyses of the protein have revealed a previously unidentified DNA binding 

motif which has been termed the looped-hinge helix fold [39]. It is thought that 

this fold affords the α-helical and adjacent loop substructures involved in DNA 

binding a degree of flexibility in optimising DNA-protein interactions. The active 

DNA binding unit is a tetrameric species. In addition, a close homologue of 

AbrB, Abh, allows formation of AbrB:Abh heterodimers. As such, it is possible 

that differential transcriptional regulation of promoters affected by AbrB is 
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achieved by a complex system involving homo- and hetero- dimers and 

tetramers of AbrB and Abh, able to interact with a large number of promoters 

with a large range of affinities [40]. Over 40 chromosomal AbrB binding sites 

have been studied with no robust consensus sequence having been determined 

[41]. It is therefore thought that AbrB-DNA binding might also be dependent on 

specific three-dimensional DNA conformation. 

 

1.4.1.2 SigH  

The late stationary phase sigma factor, σH, is key to the transition from 

vegetative growth to sporulation. The transcription of spo0H, which encodes σH, 

rises sharply at the onset of sporulation due to a positive feedback loop caused 

by generation of the activated master sporulation regulator, Spo0A~P. The 

regulon of σH consists of 87 or more genes under the control of up to 49 

promoters [42]. This includes operons controlling genetic regulation (spoIIA) 

and the promotion of asymmetric cell division (ftsAZ) as well as genes encoding 

key components of the sporulation phosphorelay (kinA and spo0F), and racA, 

encoding the chromosomal reorganisation protein, RacA. σH mediated 

regulation is subject to catabolite repression and this regulation is abolished in 

the presence of a combination of 1% glucose and 0.1% glutamine. 

 

1.4.1.3 CodY 

Transition into the stationary growth phase is heralded by a drop in nutrient 

levels such that the bacteria can no longer maintain the rate of replication 

sustained throughout the exponential phase. Changes in intracellular energy 

levels and amino acid pool concentrations are stimuli which the cell responds to 

using a system of repressor:corepressor interactions. In prokaryotes, a 

corepressor is often a small molecule which binds to a repressor protein 

capable of inhibiting DNA transcription. Binding of the corepressor to the 

repressor increases the affinity of the latter for DNA leading to operator site 

binding and inhibition of transcription. Through this mechanism the depletion 

of a specific molecule, causing dissociation of the complex, can be redressed by 
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activation of genes capable of its synthesis or some orthologous method of 

cellular uptake.  

 

Figure 1-5: Overlay of the CodY GAF domain in unliganded and ligand bound states.  
The Isoleucine bound structure (green) shows a significant change in the conformation of 
helices α3 and α4 and the β3-β4 segment when compared the unliganded form (light blue). 
Taken from Levdikov et al., 2009 [43]. 

 

The CodY regulon comprises over 100 genes mainly related to nutrient 

deprivation stress responses and stationary phase. In addition, CodY represses 

production of an enzyme, KinB, and its counterpart, KapB, which promote 

sporulation. CodY is a major element of sporulation inhibition; CodY mutants 

sporulate at high efficiency even in nutrient rich media [44]. It is possible that 

other elements responsible for inhibition of sporulation are inactive in the 

∆codY strain (lacking any starvation stimuli), allowing unchecked Spo0A 

activity to bypass the usually stringent control of sporulation onset. 

CodY is a 259 residue protein with an N-terminal GAF domain (a fold found in 

cGMP stimulated phosphodiesterases, adenylate cyclases and FhalA) and a C-

terminal winged helix-turn-helix DNA-binding domain. It is responsible for the 

repression, during growth, of stationary phase and sporulation genes. CodY 

binds to GTP and the branched chain amino acids (BCAAs) isoleucine, leucine 

and valine, whose concentrations signal the energetic and metabolic status of 
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the cell. The BCAAs and GTP act as corepressors increasing the affinity of CodY 

for its binding sites situated at its target promoters [45]. As the intracellular 

concentrations of the corepressors fall (when the cells enter the transition 

phase) GTP and BCAAs dissociate from CodY leading to derepression of the 

CodY regulon. The corepressors of CodY are involved in protein synthesis: the 

branched chain amino acids being building blocks while GTP hydrolysis is 

responsible for providing the energy required for the initiation, elongation and 

translocation steps during RNA to protein translation [46]. They are hence a 

vital resource in the continuation of the cell cycle.  

The C-terminal DNA-binding domain has a winged helix-turn-helix (HTH) motif, 

a recurring element in DNA binding proteins. The GAF-like N-terminal 

corepressor binding domain is assumed to bind BCAAs and GTP molecules in 

the same channel. Structures of the cofactor-binding domain of CodY in the 

unliganded form and in complex with isoleucine and valine have been 

determined [47]. The α-amino and α-carboxylate groups of the amino acid are 

stabilised by polar interactions with the Arg61 side chain guanidinium group 

and the amide -NH and carbonyl groups of Val100 and Thr96, respectively; A 

hydrophobic pocket is formed by the side chains of Met65, Phe71, Tyr75 and 

Pro99. Comparison of these structures [43] reveals how ligand binding brings 

about drastic changes in the GAF domain (Figure 1-5). In the intact CodY 

molecule, these structural changes are expected to be propagated through the 

molecule to change the juxtaposition of the wHTH domains in the dimer. The 

details of the derepression mechanism remain to be elucidated.  

 

1.4.2 Spo0A 

If stationary phase survival systems fail to reverse the falling intracellular 

nutrient concentration levels, the continued confluence of nutrient deprivation 

signals will cause sporulation to be triggered. These signals are integrated by a 

complex phosphorelay culminating in the phosphorylation of the protein 

Spo0A. The phosphorylated form of Spo0A, Spo0A~P, a global transcription 

regulator, is capable of DNA binding and, as its concentration increases, effects 



27 
 

the activation of stationary phase nutrient deprivation responses. Ultimately, 

attainment of a threshold level of Spo0A~P, will cause the irrevocable initiation 

of sporulation [48]. 

Spo0A is a 29kDa protein which has been termed the master regulator of 

sporulation. A key route of early inquiry into the regulation of sporulation was 

into the spo0 group of Bacillus subtilis mutants identified in the following loci: 

spo0A, spo0B, spo0E, spo0F, and spo0H [49]. These mutants were unable to 

initiate sporulation. Spo0A was identified as a key regulator; being either an 

activator or a repressor, depending on the regulatory target, of a large number 

of genes [50].  

 

Figure 1-6: DNA binding mode of Spo0A~P. 
Dimeric C-terminal DNA-binding domains of Spo0A in complex with two aligned synthetic DNA 
duplexes (PDB: 1LQ1) [51]. Figure created using CCP4MG [52]. The upstream and downstream 
binding monomers of Spo0A are shown as ribbons with colours blended through the model 
from N- to C- termini; blue to magenta and green to blue, respectively. Atoms in the side chains 
of key nucleotide recognition residues Glutamate213, arginine214 and arginine217 are picked out 
as circles coloured by atom. Two duplexes form a long helix by associating in a head-to-tail 
manner; the orientation shows 5’ to 3’ on the sense strand as left to right.  Spo0A boxes are 
shown as ribbons highlighted in green and light green at the upstream site and red and coral at 
the downstream site. The remaining base pairs are shown as partially transparent worms in 
grey. DNA base pairs are represented as nucleic acid blocks (same colours as phosphate 
backbone). (B) The two Spo0A boxes at the AbrB promoter site. The upstream site is shown in 
green and the downstream site in red. The interstitial 3 bases are shown in grey. This spacing is 
in evidence in the structure above.  



28 
 

Deletion of spo0A causes changes in the transcript levels of over 500 genes [36]. 

The 121 directly affected genes are arrayed across 54 genetic loci. Transcription 

of 80 genes expressed during vegetative growth is repressed by Spo0A. 

Conversely, the remaining 41 genes, involved in sporulation, are activated. 25 of 

the regulated genes, both positive and negative, are involved in further 

regulation of transcription. The direct and indirect transcriptional regulation 

effected by Spo0A is absolutely essential to both the initiation of sporulation 

and its successful progress and conclusion. Spo0A binds to a DNA binding site 

with a consensus sequence 5’-TGTCGAA-3’ referred to as a ‘0A-box’ [53]. These 

are present in two or more copies at most Spo0A-regulated promoters. The 

DNA-binding species of Spo0A is a dimer of Spo0A~P, as such Spo0A boxes 

appear in pairs with around 3 base pair separations [51] (Figure 1-6).  

Expression of Spo0A is under transcriptional control of two promoters; one 

recognised by RNA polymerase containing σA, the other is recognised by RNA 

polymerase containing σH. Further regulation is applied by the formation of 

Spo0A~P, creating an autocatalytic feedback loop. A low level of spo0A is 

transcribed during vegetative phase and the transition phase, under regulation 

of σA. Phosphorylation of Spo0A then causes upregulation of production of sigH, 

previously repressed by AbrB. σH is capable of a higher level of spo0A 

transcription than σA allowing a rapid Spo0A build up once a small amount of 

Spo0A~P is created [48]. In addition to indirectly regulating its own 

transcription, via abrB-sigH, Spo0A~P also effects transcription of kinA and 

spo0F, whose protein products are integral parts of the Spo0A phosphorelay.  

  



29 
 

1.4.3 The sporulation phosphorelay 

Spo0A is phosphorylated by an expanded two component system called a multi-

component phosphorelay. This complexity enables the necessary tight 

regulation of Spo0A’s activity (Figure 1-7). 

 

Figure 1-7: The sporulation phosphorelay.  
Lines with arrow heads indicate activation interactions, barred lines indicate inhibitory 
interactions. Solid lines indicate biochemical effects, dotted lines indicate effects on gene 
transcription. Red lines indicate interactions which inhibit the initiation of sporulation, black 
lines indicate interactions promoting the initiation of sporulation. Black text defines proteins. 
Blue text defines regulated genetic loci or wider groups of genes. KinX has been used to denote 
any of the five autokinases capable of phosphorylating Spo0F. KipI is an inhibitor only against 
KinA. As indicated, ATP is required for autophosphoylation of each kinase. Adapted from Philips 
and Strauch, 2002 [37]. 

 

The positive impetus for phosphorylation originates from five sensor kinases; 

KinA, KinB, KinC, KinD and KinE. The activities of these kinases are dependent 

on a variety of signals which serve to monitor the DNA replication status and 

metabolic and nutritional states, although the stimuli relevant to each kinase 

and their mode of transduction are unknown. Upon receipt of the appropriate 

stimulus, each kinase uses ATP to autophosphorylate a conserved histidine. The 

phosphoryl group then can then be transferred first to a conserved aspartate 
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residue of the response regulator, Spo0F, subsequently to a histidine residue on 

Spo0B and finally onto an aspartate on Spo0A.  

Recent work indicates that KinA and KinB, which are under the transcriptional 

control of sigH and sigA, respectively, are capable of more extensive Spo0F 

phosphorylation compared to KinC, KinD and KinE and are responsible for 

driving the initiation of sporulation under laboratory conditions. Production of 

both kinases is affected by the stringent response, signalling nutrient 

deprivation, in which production of ppGpp is triggered. This molecule is capable 

of stalling the ribosome, preventing protein synthesis. There is also repression 

of kinB transcription by CodY [54]. Conversely, kinC and kinD, under the 

transcriptional control of the vegetative and early stationary phase 

transcription controller, σA, have slower kinetics and have been identified as 

maintaining low levels of Spo0A~P in the late exponential phase as well as 

being important for controlling biofilm formation [55, 56]. KinC and KinD have 

been reported to directly phosphorylate Spo0A with low activity in vitro [57]. 

The role of KinE is not known but its rate of phosphorylation is closer to those 

of KinC and KinD rather than those of KinA and KinB. KinA, among the five 

kinases, appears to be the only one with a co-expressed repression system in 

the form of the two proteins KipA and KipI, an anti-inhibitor and inhibitor, 

respectively. KinA and KinB are inhibited by the small protein, Sda, which is 

produced during DNA replication [58]. 

The response regulator, Spo0F, is phosphorylated by the above kinases at a 

conserved aspartate residue (Asp 54) [48]. Negative regulation of 

phosphorylation is exerted by the phosphatases; RapA, RapB and RapE. These 

enzymes are produced with a cognate Phr protein. The Phr proteins are pro-

inhibitors of the Rap phosphatases. Pentapeptides derived from the Phr 

proteins form the active inhibition unit, however, development of these species 

requires sequential cleavage of the Phr protein on secretion from and, 

subsequently, reuptake into the cell. It is likely that this mechanism either 

allows stationary phase B. subtilis to measure local cell density (based on Phr 

derivative concentration) or that the process of secretion and uptake provides a 

timing mechanism for delaying inhibition of the Rap phosphatases [37]. 
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Spo0F~P is acted on by the phosphotransferase, Spo0B which is under the 

transcriptional control of σA. No direct negative regulation of the phosphorelay 

has been identified acting on this factor, although it is considered likely that 

appropriate factors exist. Such a factor might be Obg, which is co-expressed 

with Spo0B, however, this has been found to bind to the ribosome in a guanine 

nucleotide-dependent manner [59]. Spo0B’s activity is complete on transfer of 

the phosphate acquired from Spo0F to the conserved aspartate residue (Asp 

56) of Spo0A. Phosphorylation induces dimerization of Spo0A. 

Once produced, Spo0A~P is able to influence transcription, although further 

negative regulation is effected by the phosphatase Spo0E, and its two 

paralogues, YisI and YnzD, and the Spo0J/soj system. Spo0E, which is repressed 

by AbrB in exponential and early transition phase, is a 9 kDa phosphatase of 

which Spo0A~P is a substrate. Spo0E activity is able to catalyse the hydrolysis 

of the phosphate group from Spo0A~P to prevent Spo0A~P dependent 

regulation of transcription. YisI and YnzD are highly homologous to Spo0E and 

exhibit the same function in Spo0A~P dephosphorylation [60]. This is the last 

element of biochemical regulation of the phosphorelay. Spo0J and Soj mediate 

communication between transcriptional regulation and DNA replication and 

chromosomal segregation near the onset of sporulation. Soj binds to DNA as an 

ATP-bound dimer at a number of promoters regulated by Spo0A~P, causing 

inhibition and potentially capable of displacement of Spo0A directed 

transcriptional regulation [37, 61]. Soj also binds to a large number of sites 

around the origin of replication or to DnaA to promote and inhibit DNA 

replication, respectively [62].  Spo0J disrupts the DNA binding activity of Soj, 

allowing Spo0A-directed transcription to proceed.  
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1.5 Sigma factors 

RNA polymerase (RNAP) is the enzyme responsible for the transcription of DNA 

into RNA, allowing the delivery of genetic information to the ribosome where 

proteins are produced. The template-directed phosphodiester bond formation 

reactions of RNAP are carried out by the ‘core’ enzyme consisting of five 

subunits: αI, αII, β, β’ and ω. For localisation to DNA, upstream of the 

appropriate open reading frame, and initiation of transcription, a sixth, 

dissociable factor, called a σ factor, is required. The sigma (σ) factor consists of 

determinants required for promoter recognition. When formed, the RNAP+σ 

complex, or holoenzyme (Figure 1-8), is capable of initiating transcription 

selectively on σ-specific promoters, by lowering the affinity of RNAP for non-

specific DNA. σ factors belong to either the σ70 or σ54 families. These are 

mechanistically different and possess no sequence homology. Within a single 

organism, there will usually be no more than a single σ54 factor; conversely 

there can be dozens of σ70 factors. Through the conditional expression of 

alternate σ factors, the expression of genes in the cell can be efficiently 

controlled at the transcriptional level.  

  

Figure 1-8: Structures of the Thermus aquaticus (Taq) RNAP holoenzyme with (B) and 
without (A) a visible ∆1.1 truncation of Taq housekeeping σ factor, σA.  
The β and β’ subunits form a claw like cleft through which transcribing DNA is passed. The σ 
factor interacts extensively with the β and β’ subunits of RNAP. Recognition of the DNA 
sequence at the -10 and -35 promoter elements is mediated by the σ domains, σ2 and σ4, 
respectively, indicated in red. PDB ID: 1L9U. 

 

σ factors recognise two DNA sequences upstream of the start site for 

transcription. These sequences are referred to as the -10 and -35 consensus 
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sequences reflecting their upstream location. Association of the holoenzyme 

with the -10 and -35 sequences occurs through the σ2 and σ4 domains of the σ70 

factor, respectively [63]. With a correctly positioned holoenzyme, the 

transcription start site of the target gene is placed in close proximity to the 

active site of RNAP in a so called closed promoter complex [64]. The DNA is 

then melted by RNAP to form the transcription bubble, allowing RNAP access to 

the nucleotide bases of the DNA. Numerous short abortive transcripts are 

produced before RNAP forms a stable functional interaction with both the DNA 

and nascent RNA chains; this forms the active elongation complex. Once 

synthesis of the RNA strand has commenced, the σ factor dissociates. 

Table 1-1: Sporulation related σ factors of Bacillus subtilis. 

σ factor Regulon function 

Promoter sequence 

-35 element 
Spacer 

(bp) 
-10 element 

σA Housekeeping/ early 

sporulation 
TTGACA 17 TATAAT 

σE Early mother cell gene 

expression 
ZHATAXX 14 CATACAHT 

σF Early forespore gene 

expression 
GCATR 15 GGHRARHTX 

σG Late forespore gene 

expression 
GHATR 18 CATXHTA 

σH Post exponential gene 

expression – competence 

and early sporulation 

RWAGGAXXT 14 HGAAT 

σK Late mother cell gene 

expression 
AC 17 CATANNNTA 

Table adapted from Haldenwang, 1995. Nucleotide bases at the -10 site are 

underlined. H = A/C; N = A/G/C/T; R = A/G; W = A/G/C; X = A/T; Y = C/T; Z = T/G. 
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σ factors play a key role in the sporulation pathway of B. subtilis. There are 10 σ 

factors encoded in the genome of this organism [65]. Six of these σ factors play 

key roles in the initiation and completion of endospore formation (Table 1-1).  

σA is the B. subtilis housekeeping σ factor, responsible for directing 

transcription during growth and the early transition phase. The σ factors σE, σF, 

σG, σH and σK direct transcription of stage and/or compartment specific 

sporulation genes and are activated in a sequential and temporal order referred 

to as a σ factor cascade during spore development.   
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1.6 Morphological stages of sporulation 

 

Figure 1-9: The morphological stages of sporulation.  
Chromosomes are shown in dark blue. The cell membrane and peptidoglycan are represented 
by a thin black line. Asymmetric septation is shown by a black dotted line in stage II. DNA 
translocation and cell membrane migration in stage III are represented by solid blue and dashed 
purple arrows, respectively. The spore cortex is shown in stage IV as a thick black line. The 
cortex and spore coat combination is shown as two thick black lines. Transparent elements with 
dashed lines undergo autolysis in stage VII.   

 

Endospore formation, in B. subtilis, is an intricate process which progresses 

through seven morphologically defined stages, taking 7 to 8 hours to complete 

at 37°C (Figure 1-9). These stages were first categorised by electron microscopy 

studies of genetic mutants [66]. Stage 0 is represented by a cell not involved in 

sporulation or binary fission. In stage I DNA replication has been completed and 

the chromosomes have assumed an elongated form called the axial filament 

with their respective origins of replication at each of the cell poles. Stage II is 

defined by the development of the sporulation septum, at a polar site creating a 

small compartment; the forespore, and larger compartment; the mother cell.  
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The polar septum intersects with the extended forespore chromosome so that 

this chromosome is partitioned into both compartments with 70% of the 

chromosome initially occupying the mother cell compartment [67]. This distal 

portion of the chromosome is next translocated to the forespore through the 

action of the septum-located DNA translocase SpoIIIE. In stage III there is 

thinning of the peptidoglycan layer between the two daughter cells and 

migration of the mother cell membrane around the forespore in an engulfment 

process reminiscent of phagocytosis. Engulfment is completed when the 

migrating membranes meet on the distal side of the forespore where membrane 

fission takes place and the forespore is released into the mother cell cytoplasm 

as a cell-within-a-cell. Stages IV and V are characterised by the deposition of 

layers on the outer surface of the forespore; first a peptidoglycan cortex, 

followed by a proteinaceous spore coat. Spore maturation is stage VI, this stage 

exhibits no evident morphological alteration, however, spores which do not 

undergo maturation are less environmentally resistant than those which have 

been allowed to mature. In Stage VII, autolysis of the mother cell occurs; the 

now mature and resistant spore is released into the environment. 

 

1.6.1 Coupling cell cycle to sporulation 

Successful sporulation requires that following the asymmetric cell division, the 

mother cell and the forespore acquire a single complete chromosome. For this 

purpose, mechanisms are in place to ensure that cells undergoing chromosome 

replication do not initiate sporulation. DNA replication is initiated by DnaA, 

which assembles at the origin of replication, oriC, where it recruits the 

components of the replisome. DnaA is also a transcription factor that stimulates 

transcription of sda which encodes the 52 residue protein Sda which has been 

shown to interact with, and inhibit, the sensor kinases, KinA and KinB [68, 69]. 

This inhibition effectively blocks the development of threshold concentrations 

of phosphorylated Spo0A thus preventing initiation of sporulation while DNA 

replication is taking place. Sda inhibition is thought to be relieved by two 

mechanisms. Transcriptional activation of sda by DnaA is ATP dependent. 

DnaA-ATP is capable of initiating replication and activating sda transcription. As 



37 
 

replication continues the concentrations of DnaA-ATP are lowered by ATP 

hydrolysis to yield DnaA-ADP which is not capable of activating sda. Relief of 

KinA/KinB inhibition then occurs because Sda is an unstable protein which is 

susceptible to intracellular proteolysis by the ClpXP system [70, 71]. Once 

replication is complete, the diploid cell is free to pursue spore development. 

1.6.2 Sporulation stage I 

Stage I is the first stage in which a deviation from vegetative growth and 

symmetric cell division can be detected. Medial cell division occurring during 

growth is accompanied by markedly different chromosomal organisation in the 

pre-divisional cell to that in the pre-divisional sporangium (Figure 1-10).  

 

Figure 1-10: Chromosomal organisation in pre-divisional vegetative and sporulating 
cells.  
(A) Vegetative chromosomal segregation with barbell pattern of DNA. Chromosomes are 
represented by tangled lines in two shades of green. oriC regions are represented by green 
hexagons. Spo0J is shown as purple circles. DivIVA is shown as a light blue crescent outlined in 
dark blue. SMC is localised to Spo0J and represented by a yellow translucent circle outlined in 
grey. (B) Axial filamentation in a pre-divisional sporangium. RacA (red diamonds) associates 
DNA close to oriC and binds DivIVA at the cell poles. Adapted from Rudner, 2009; Pavlendova, 
2007; and Errington, 2003. 

 

Vegetative chromosomal segregation is hypothesised to occur throughout, and 

as a product of, replication in which the oriC regions of the nascent daughter 

chromosomes are driven or pulled away from the centre of the cell and 

reorganised by the structural maintenance of chromosomes complex (SMC). 

The exact mechanism by which this is achieved is unknown; however the 

deletion of either the spo0J/soj locus or the genes encoding the actin-

homologues, MreB and Mbl, results in segregation defects. It is thought that 

Spo0J protects oriC from asynchronous replication initiation by forming an 

organised nucleoprotein structure in its vicinity [72], while also recruiting the 

SMC to compact the nascent chromosome [73]. DivIVA, a protein capable of 
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recognising cell membrane curvature [74], which localises in clusters at the cell 

poles, is implicated in the organisation of Spo0J and regulating its interactions 

with Soj, which directs the Spo0J/oriC complexes towards the cell poles [75]. 

The product of this chromosomal reorganisation is a barbell like structure with 

the greater proportion of each chromosome occupying its own half of the pre 

divisional cell.  

Conversely, chromosomal reorganisation before asymmetric division in spore 

development results in a so-called axial filament. This reorganisation is 

dependent on two proteins, RacA and DivIVA. Production of RacA, named for its 

role in Reorganisation and chromosomal Anchoring, is directed by σH. The 

inhibitory effects on Spo0A phosphorylation by both the Spo0J/Soj and 

DnaA/Sda systems ensure that RacA is inactive until it can perform its role on 

the completely replicated chromosomes. The role of RacA is to collapse the 

amorphous nucleoid into a filament aligned with the long axis of the cell, a key 

feature of which is the anchoring of oriC to the cell pole. RacA binds to a number 

of sites on the chromosome close to oriC and also concomitantly to DivIVA [76]. 

This anchoring is also mediated by Soj and Spo0J, which are also required for 

oriC delocalisation from mid-cell.  

 

1.6.3 Sporulation stage II 

Asymmetric cell division (Figure 1-11) results in the formation of a smaller 

forespore and a larger mother cell which are divided by the sporulation septum, 

consisting of two membranes. This process requires a relocalisation of the cell 

division apparatus used in medial cell division. The cell division machinery, 

which is assembled following the formation of a structure called the Z-ring, is a 

complex conglomeration of proteins involved in maintaining localisation, 

gaining purchase on the cell membrane and driving contraction of the cell at the 

point of division. Up-regulation of FtsZ production and the presence of the 

sporulation-specific protein SpoIIE, both resulting from σH directed 

transcription, causes the cell division machinery to assemble around 

repositioned ring-like structures of FtsZ formed near to the two cell poles via a 
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helical intermediate state [77]. The cell division machinery consists of a large 

number of protein elements including FtsZ, FtsA, ZapA, EzrA, DivIB and 

peptidoglycan remodelling enzymes. Only one of the Z-rings will go on to form a 

site of cell division, dividing the mother cell and smaller forespore. The axial 

filament chromosomal arrangement means that the developing septum 

encloses ~30% of the forespore chromosome within that cell compartment.  

 

Figure 1-11: Sporulation stage II.  
(A) The medial Z-ring is formed at the vegetative division site. (B) A helical intermediate allows 
relocation of the Z-ring. (C) Two Z-rings form, one at each pole. Asymmetric cell division occurs 
as one of the two Z-rings contracts and forms a septum. (D) Only 30% of the chromosome is 
initially captured in the forespore compartment following septation. σF transcription, activated 
only in the forespore, signals the activation of σE in the mother cell. Adapted from Ben-Yehuda, 
2002.  

 

Stage II is also characterised by the activation of σF, the first compartment 

specific σ factor, in the forespore. This activation is mediated by a three 

component regulatory system consisting of SpoIIAA, SpoIIAB and SpoIIE. 

SpoIIAB is an anti-sigma factor which can sequester σF in an inactive complex 

[78]. SpoIIAA is an anti-anti-sigma factor which can break the inhibitory 

complex, but only in its dephosphorylated form [79-81]. SpoIIAA is 

phosphorylated and inactivated by SpoIIAB. This inactivation is overcome by 

the PP2C serine phosphatase, SpoIIE which dephosphorylates SpoIIAA~P [82-

84]. Signalling proteins in the σF regulon communicate across the septum to 

activate σE in the mother cell. The mechanism by which σF activation is 
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restricted to the forespore is unknown but hypotheses include transient gene 

asymmetry between mother cell and forespore, the differential volume of the 

two compartments and compartment specific deactivation of SpoIIE [67, 85, 

86]. 

 

1.6.4 Sporulation stage III 

Engulfment of the forespore by the mother cell occurs during the third stage of 

sporulation (Figure 1-12). Before this can occur, the trailing portion of the 

forespore chromosome must be translocated from the mother cell. This is 

accomplished through the activity of the ATP-dependent DNA translocase, 

SpoIIIE. This protein is produced before cell division occurs, under the control 

of σA, and the protein assembles as a complex at the annulus of the contracted 

sporulation septum. It has been shown recently that SpoIIIE multimers actively 

search for DNA sequences called SRSs (SpoIIIE Recognition Sequences) which 

dictate the polarity of translocation which is towards oriC in the forespore [87, 

88]. In addition, SpoIIIE translocation strips RNAP and transcriptional 

regulators from the chromosome, effectively excluding them from the forespore 

[89]. This activity may have a role in the establishment of developmental gene 

expression as latent vegetative σ factors are excluded from the forespore.  

The membrane of the mother cell next migrates towards the distal cell pole 

engulfing the forespore as it does so. Engulfment is complete when the mother 

cell membranes meet and undergo fission releasing the forespore as a cell 

within the mother cell. Membrane migration relies on proteins produced in 

both cell compartments, under the control of σF in the forespore, and σE in the 

mother cell. SpoIIB, SpoIID, SpoIIM and SpoIIP are produced in the mother cell 

and form a peptidoglycan remodelling complex. Null mutant studies show their 

role is in destabilising the sporulation septum to promote membrane migration 

to the cell pole [90].  
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Figure 1-12: Sporulation stage III.  
(A) A SpoIIIE complex forms at the septum’s annulus and translocates the lagging chromosome 
into the forespore. (B) Migration of the cell membrane towards the pole begins at the outer 
edges of the septum, the SpoIIIE locus remains and is carried towards the pole. (C) The 
separation of the membranes converges at the cell pole. (D) Membrane fission occurs 
completing engulfment of the forespore by the mother cell. 

 

A molecular zipper complex formed by SpoIIQ and SpoIIIAH [91, 92], produced 

in the forespore and mother cell, respectively, promotes membrane migration. 

The synthesis of rigid peptidoglycan along the leading edge of the engulfing 

membrane is also thought to play an important role [93]. Membrane fission 

leads to separation of the two cells requiring SpoIIIE, the DNA translocase, 

SpoIIQ and FisB [94].  

The completion of engulfment brings about activation of σG in the forespore, 

allowing expression of a new profile of genes. Similarly, signalling by 

σG-regulated genes causes activation of σK in the mother cell. 

 

1.6.5 Sporulation stage IV 

During stage IV (Figure 1-13A), the peptidoglycan (PG) spore cortex is 

produced  [95]. The enzymes required for synthesis of this layer of the 

developing spore; SpoVB, SpoVD,SpoVE, CwlD and PBP5, are produced in the 

mother cell under the control of σE and localise to the engulfing membrane. 

Development of the spore cortex is, however, delayed until engulfment is 

complete. The enzymes regulated by σE, are unable to proceed due to limited 
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availability of the required substrates, peptidoglycan precursors; UDP-NAM and 

UDP-NAG. This shortage is redressed when the σK controlled genes in the mur 

locus are expressed. The produced enzymes synthesise the PG precursors 

required for construction of the spore cortex.  

 

Figure 1-13: Late sporulation morphological developments.  
(A) Stage IV, cortex formation. σE directs transcription of cortex forming proteins. σK causes 
transcription of the mur locus of peptidoglycan precursor synthesising enzymes, enabling 
cortex production. (B) Stage V, spore coat formation. σE directs transcription of localised spore 
coat scaffolds. σK causes transcription of spore coat proteins, enabling envelopment of the spore 
by the spore coat layers: basement layer; orange, inner coat; green, outer coat; blue, crust; red. 
Adapted from McKenney, 2013. 

 

1.6.6 Sporulation stage V 

Regulation of the construction of the multi-layered, proteinaceous spore coat, 

consisting of the basement layer, inner coat, outer coat and crust, occurs 

similarly to that of the cortex [96]. Clustered hubs of scaffold proteins for all 

four spore coat layers are developed at the mother cell proximal edge of the 

forespore under the transcriptional control of E-σE (RNA polymerase containing 

σE). Transcription control by E-σK leads to the production of coat proteins which 

allow assembly to occur, thus enclosing the forespore (Figure 1-13B). 
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1.6.7 Sporulation stage VI 

The processes contributing to spore maturation are unknown. However, 

investigations into the properties of mature and immature spores have 

suggested that during this stage, chemical modification of the spore cortex or 

coat takes place [97]. Some candidates for the enzymes involved include the 

spore coat proteins, Tgl and YabG. Spores which are not allowed to mature 

exhibit decreased wet heat and hypochlorite resistances. 

 

1.6.8 Sporulation stage VII  

Mother cell lysis is the last stage in endospore formation. The production of the 

peptidoglycan hydrolases, or autolysins, CwlB, CwlC and CwlH is upregulated at 

the point of mother cell lysis [98, 99]. These enzymes break down the mother 

cell wall as part of mother cell apoptosis. The mature spore is released and can 

remain dormant until germinant nutrients are encountered. 
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1.7 The Compartment Specific σ Factor Cascade 

Sporulation is directed temporally and morphologically by four compartment 

specific σ factors. After activation of σF in the forespore, each subsequent σ 

factor relies on transcription and activation by its predecessors. This results in a 

σ factor cascade (Figure 1-14). The activity of each σ factor is also under post-

transcriptional control and each must be activated by intercompartmental 

signals. 

 

Figure 1-14: The cascade of sporulation specific σ factors.  
The activation and control of σ factors and key transcriptional regulators are shown. The polar 
septum is in the centre with the mother cell on the left and forespore on the right, as indicated. 
Green dashed arrows indicate an interaction across the intercellular membranes. Black arrows 
indicate activation, black barred lines indicate repression. Purple circles indicate the 
approximate gene numbers in a regulon. The stages of sporulation are shown at both edges; 
arrows from regulons to a stage indicate that genes in that regulon make a major contribution 
to the stage’s development. Adapted from Kroos et al., 2007 [100] 

 

σF is the first sporulation specific sigma factor to be activated. σF is present in 

the pre-divisional cell and in both compartments following the asymmetric cell 

division but its activation is delayed pending the completion of the septum and 

restricted to the forespore. The protein product of spoIIGB, pro-σE, is similarly 

distributed before the sporulation cell division. The N-terminal 27 residues of 
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pro-σE are removed to generate active σE, which serves as the first mother cell 

specific σ factor. Activation is mediated by SpoIIGA, a protease, which cleaves 

the inhibitory propeptide of pro-σE. For proteolysis to take place, SpoIIGA 

requires a signal from the forespore in the form of SpoIIR [101, 102]. SpoIIR is 

produced in the forespore under direction of σF where it is initially repressed by 

RsfA. Its signal peptide directs it to the intermembrane space, where, by 

mechanisms which are not well understood, it is able to activate SpoIIGA, and 

hence σE.  

The regulons of σF and σE consist of around 48 and 270 genes, respectively, each 

controlling morphogenic proteins and further factors required for 

developmental regulation [100]. Under σF control are the genes sigG and csfB 

(gin), whose products, σG and Gin, form an inhibitory complex preventing 

formation of E-σG. SpoIIQ, which is required for forespore engulfment, and 

SpoIIR are also under σF control and play key roles in intercellular signalling. 

The much larger regulon of σE encodes factors required for largely mother cell 

dependent processes, such as spore cortex and coat formation, occurring in late 

sporulation. The proteins produced under σE control include pro-σK and two 

transcription regulators, GerR and SpoIIID, as well as the spoIIIA operon, which 

codes for the eight proteins involved in engulfment and intercompartmental 

secretion and signalling. 

Post-engulfment gene expression is orchestrated by σG in the forespore and σK 

in the mother cell. The trigger for σG activation in the forespore is the 

completion of spore engulfment. A multi-component secretion system is 

assembled between the two cells consisting of products of the E-σE controlled 

spoIIIA locus in the mother cell and the product of the E-σF regulated spoIIQ in 

the forespore [103]. It is thought that this apparatus plays a key role as a food 

channel in the nurturing of the engulfed forespore by the mother cell as well as 

contributing to signalling in σG activation [104]. Recent work has identified that 

transport might be activated by septal thinning caused by peptidoglycan 

hydrolysis which occurs during engulfment [105].  

Aside from the assembly of the secretion system, the signal directing σG 

activation is not known. The complex formed between the σG specific inhibitor, 
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Gin [106, 107], and σG is disrupted allowing E-σG to form. Auto regulation of 

spoIIIG causes a rapid rise in σG levels and hence in the expression of the σG 

regulon consisting of around 95 genes. Some of these genes encode proteins 

required to protect the DNA in the dormant spore from UV radiation, heat and 

desiccation, such as the small acid soluble proteins (SASPs) [108], or the 

proteases necessary to degrade them upon germination. The transcriptional 

regulator, SpoVT, is also under E-σG control. It inhibits the positive feedback 

loop in σG expression, resulting in a pulse of σG-directed gene expression 

followed by a plateau as SpoVT represses sigG expression [109]. 

The regulatory mechanism preventing incorrect temporal activation of σK in the 

mother cell is more elaborate. Expression of sigK, the gene encoding σK, is 

directed by E-σE. Remarkably, the sigK open reading frame is interrupted by a 

42 kbp segment of DNA, termed the skin (SigK Intervening element which is 

now known to be a cryptic prophage). spoIVCB encodes the N-terminal portion 

of σK, and SpoIVC its C-terminal portion [110]. spoIVCA is located in the 

intervening DNA sequence and under E-σE transcriptional direction, with 

further regulation exerted by SpoIIID. spoIVCA encodes a site-specific 

recombinase, SpoIVCA whose function is to excise the cryptic prophage DNA. 

The post excision chromosomal sequence, sigK, encodes the inactive σ factor 

precursor, pro-σK.  

The processing of the pro-σK involves the removal of 20 residues from the N-

terminus, catalysed by the σE directed gene product, SpoIVFB, an 

intramembrane metalloprotease. SpoIVFB is regulated by a three component 

inhibition system comprising SpoIVFB, BofA and SpoIVFA [111]. This complex 

assembles in the outer forespore membrane and is disrupted by SpoIVB, an 

intramembrane serine protease produced in the forespore under direction of 

σG. SpoIVB selectively degrades SpoIVFA and relieves inhibition of SpoIVFB 

[112]. Recent work has shown that pro-σK is membrane associated and 

proteolysis is accompanied by release of active σK into the cytoplasm [113]. The 

111 gene σK regulon encodes proteins required for cortex precursor synthesis 

(mur genes), spore coat formation (cot genes) and factors involved in apoptosis 

of the mother cell. The transcriptional regulator, GerE, regulates σK directed 
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transcription in the mother cell playing a role analogous to that of SpoVT in σE 

regulation in the forespore. 

It has been suggested that activation of σG or σK is insufficient to account for the 

high rates of σF and σE activity attenuation, respectively[114]. It is therefore 

posited that negative feedback loops are in place to deactivate σF and σE upon 

the advent of their successors’ activity [115]. Fin (YabK) has been found to fulfil 

the role of σF deactivation. Expressed under the control of σG, Fin has been 

shown to inactivate σF selectively allowing σG to monopolise the available core 

RNAP [116]. The mechanism by which σE is inactivated upon σK activation is, as 

yet, not known. 
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1.8 Activation of the First Compartment Specific σ Factor, σF 

The gene expression programme followed by the two cells during spore 

formation relies on the correct temporal and spatial activation of σF in the 

forespore. The activation and control of sporulation-specific transcription 

factors downstream of σF takes place in a cascade. The spoIIA operon (spoIIAC 

encodes σF) is transcribed by RNA polymerase containing σH and activated by 

Spo0A~P. σF is present therefore in the predivisional cell but inhibited in 

directing transcription. Upon asymmetric septation, this inhibition is relieved 

selectively in the forespore but maintained in the mother cell. As a result, 

σF-directed gene transcription is able to occur in a compartment-specific 

manner. Although it remains unknown how this inhibition is selectively 

overcome, the components of σF regulation are increasingly well understood. 

 

1.8.1 Effectors of σF regulation 

 

Figure 1-15: Transcriptional control of the σF regulatory system.  
Solid black arrows show transcriptional activation. The black arrow indicates transcription and 
translation resulting in the four component protein system. The curved grey arrows indicate 
activation, whereas curved grey barred lines indicate inhibition. Adapted from Margolis, 1991. 

 

Early genetic studies of this system identified a simple scheme for σF regulation 

[117] (Figure 1-15). The spoIIA operon consists of three genes; spoIIAA, spoIIAB 

and spoIIAC (sigF) [118]. SpoIIAA and SpoIIAB are an anti-anti-sigma factor and 

an anti-sigma factor, respectively. A third protein, encoded by the remote 

monocistronic spoIIE gene, SpoIIE, plays an important role in promoting 

SpoIIAA activity. Both the spoIIA and spoIIE operons are under the 

transcriptional regulation of Spo0A~P, though spoIIE is transcribed by E-σA, 

rather than E-σH.  
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1.8.1.1 SpoIIAB 

SpoIIAB, a homodimeric protein kinase with 16.2 kDa protomers, has been 

shown to inhibit σF directed transcription in vitro in an ATP-dependent manner 

[78]. This indicates a direct inhibition of σF by SpoIIAB-ATP. Further in vitro 

investigations of the SpoIIAB:σF binding stoichiometry indicate a ratio of one 

SpoIIAB dimer to one molecule of σF in their complex [119]. This stoichiometry 

is observed in the co-crystal structure obtained of SpoIIAB:σF from B. 

stearothermophilus [120] (Figure 1-16). The structure shows that SpoIIAB is a 

member of the GHKL superfamily (named after its members; Gyrase, HSP90, 

histidine kinase and MutL [121]) of phosphoryl transferases, all of which 

transfer the γ-phosphate of ATP to their substrate molecules. Structurally, the 

GHKL family is marked out by the Bergerat fold, an αβ sandwich consisting of 

four antiparallel β-strands and four α-helices, which is important for ATP 

binding. Dimerisation of SpoIIAB occurs through the pairing of β1-strands so 

that a continuous 10 stranded β-sheet spanning the dimer is formed. The small 

α3 and α4 helices form a pocket that constitutes the ATP binding site. The so 

called ATP lid is formed by the α3-α4 loop which caps the pocket. This feature is 

thought to cause open and closed states which mediate nucleotide binding and 

cause a barrier to rapid nucleotide exchange [86].   

σF is largely disordered in the SpoIIAB2:σF crystal structure such that <20% of 

the sigma factor, constituting the σ3 region, is defined in the electron density 

maps. This region, consisting of three α-helices, binds across the interface of the 

SpoIIAB dimer. The σ3 region of σA was shown to be an integral component of 

the interface with the core enzyme in the structure of the RNAP holoenzyme 

from T. aquaticus (Figure 1-8). Therefore SpoIIAB appears to prevent formation 

of the holoenzyme, E-σF. The active site of SpoIIAB consists of ATP and Mg2+ 

binding residues and is remote from the σF binding site. Rather than acting on 

σF, the kinase activity of SpoIIAB has a different substrate, SpoIIAA, the anti-

anti-sigma factor.  



50 
 

 

Figure 1-16: The SpoIIAB2:σF crystal structure from B. stearothermophilus, PDB: 1L0O.  
The two SpoIIAB protomers making up the dimer are coloured separately in green and blue. 
The ATP Lid loops are labelled for each monomer. The active site Mg2+ ions are shown in grey 
and bound molecules of ADP are shown as cylinders coloured by atom. The visible portion of σF 
is shown in red, the rest of σF is disordered in the crystal. 

 

 

 

Figure 1-17: Cα trace superposition of SpoIIAA from B. sphaericus in both phosphorylated 
and unphosphorylated forms. 
PDB IDs: 1H4X and 1H4Y. The Cα traces are coloured in blue and red for the phosphorylated 
and unphosphorylated molecules, respectively.  The phosphorylatable residue, Ser57, is shown 
in cylinder format coloured by atom with and without the phosphate group. The phosphoserine 
has been modelled in two, half-occupancy, conformations. 
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1.8.1.2 SpoIIAA 

SpoIIAA is a small, monomeric protein of 12.9 kDa. It binds to the protein kinase 

and anti-sigma factor, SpoIIAB, in the presence of ATP and ADP and is also its 

substrate [80, 81]. Inhibition of σF directed transcription in vitro, effected by 

SpoIIAB in an ATP dependent fashion, was shown to be relieved on addition of 

SpoIIAA [79]. In addition, it was observed that this relief is temporary, as σF 

inhibition was restored after a few minutes. SpoIIAA induces the release of σF 

from SpoIIAB. Accompanying this release is the phosphorylation of SpoIIAA by 

SpoIIAB on a conserved residue, Ser58 [122].  

 

 

Figure 1-18: The SpoIIAA2:SpoIIAB2 complex from B. stearothermophilus.  
PDB Code: 1TH8. The two SpoIIAB molecules are shown as ribbons in shades of blue, the two 
SpoIIAA molecules are shown as ribbons in red and coral. The two ADP molecules bound by the 
SpoIIAB monomers are shown as spheres coloured by atom. The Ser57 residues are also shown 
as cylinders coloured by atom.  

 

Comparison of crystal structures of B. sphaericus SpoIIAA in its phosphorylated 

and unphosphorylated forms shows very little conformational change which 

might bring about dissociation from SpoIIAB [123] (Figure 1-17). The 

SpoIIAA:SpoIIAB interaction, however, must be short-lived in order for σF 

inhibition to be reinstated after only a short time. The co-crystal structure of 
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SpoIIAA and SpoIIAB:ADP, obtained using proteins from B. stearothermophilus, 

offers some explanation as to how the SpoIIAA:SpoIIAB complex is destabilised 

upon phosphorylation of SpoIIAA [124] (Figure 1-18). The structure shows two 

molecules each of SpoIIAA in complex with SpoIIAB2. SpoIIAB has the same 

conformation as when in complex with σF.  

SpoIIAA molecules interact with SpoIIAB using a surface which is adjacent to 

and overlapping with that used in σF binding with Ser57 (analogous to Ser58 in 

B. subtilis SpoIIAA) positioned near to the -phosphate groups of ADP in the 

kinase active site. It is thought that the phosphorylation of SpoIIAA would result 

in the transferred phosphate group adopting a sterically and electrostatically 

unfavourable position with respect to the ADP β-phosphate and the side chain 

of glutamate-46 on SpoIIAB. 

SpoIIAA is thought to induce release of σF from its inhibitory complex with 

SpoIIAB [124-126] (Figure 1-19). The asymmetry of the SpoIIAB:σF interaction 

results in a larger SpoIIAA binding surface being available on one molecule of 

SpoIIAB than the other. Complete association of SpoIIAA with this SpoIIAB 

subunit cannot occur without dissociation of σF. As SpoIIAA docks with SpoIIAB 

in a zipper-like fashion, electrostatic and steric repulsion develops between 

SpoIIAA and σF. This induces the release of σF from the complex. A second 

molecule of SpoIIAA can then bind to the second SpoIIAB subunit. At this point 

phosphorylation of SpoIIAA can occur. 

 

 

Figure 1-19: Schematic of the induced release of σF from SpoIIAB2:σF by SpoIIAA. 
The stages involved are discussed in the text. 
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1.8.1.3 SpoIIE 

The activation of σF requires the sustained regeneration of SpoIIAA from 

SpoIIAA~P. SpoIIAA~P is the substrate of the protein serine phosphatase, 

SpoIIE [83]. This protein possesses a PP2C (protein phosphatase type 2C) 

phosphatase domain which catalyses the dephosphorylation of SpoIIAA~P. 

Mutational studies of SpoIIE have shown it plays a key role in both activation of 

σF and in the formation of the asymmetric division septum, both of which are 

hallmark features of sporulation stage two. This suggests SpoIIE has a role in 

co-ordinating the completion of asymmetric septum formation with activation 

of σF; this is discussed further in section 1.10. 
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1.9 The Z-ring and Asymmetric Cell Division  

Cell division has been intensively studied, as a key reproductive phenomenon in 

all living systems. In B. subtilis, for cell division during growth and sporulation, 

the cell division machinery is assembled at the site of formation of a ring-like 

structure by the key cell division protein, FtsZ (filamentation temperature 

sensitive Z) [127] (Figure 1-11A). While the machinery used is the same in both 

modes of cell division, the site of assembly is different and relocation must take 

place.  

 

1.9.1 FtsZ 

FtsZ is a protein of 40 kDa with 12% sequence identity to tubulin, a protein 

which forms microtubules during eukaryotic cell division. The level of sequence 

conservation is highest in regions of tubulin which mediate GTP binding. A 

glycine rich motif in FtsZ, GGGTGTG is a close match to the tubulin signature 

motif, (G/A)GGTGST which is part of the GTP binding sequence [128]. FtsZ is 

able to bind and hydrolyse GTP. FtsZ and tubulin-like proteins form a distinct 

family of GTPases with two domains connected by a central helix [129]. 

When the chromosomal copy of ftsZ is deleted and replaced with a copy under 

the control of an IPTG inducible promoter, it is possible to control FtsZ 

production through variation of the IPTG concentration [130]. When such cells 

were grown in the presence of IPTG, normal division was seen to occur, 

however, in the absence of IPTG, the cells were unable to divide and long 

filaments were observed. Sporulation of these cells was also impaired and 

asymmetric division septa were not formed. 

Upon GTP binding, FtsZ forms long straight structures called proto-filaments, 

which have the diameter of a single FtsZ molecule [131, 132]. Under the same 

circumstances, tubulin forms hollow microtubules [133]. Hydrolysis of GTP 

induces curvature in the proto-filament. The formation of curved proto-

filaments can also be induced on addition of GDP. No filament formation is 

induced in the presence of GMP, suggesting that formation of proto-filaments is 
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a product of nucleotide binding, rather than of nucleotide hydrolysis itself 

[134].  

The FtsZ crystal structure (Figure 1-20) has been solved from multiple 

organisms, the first being Methanococcus jannaschii, a thermophilic 

methanogen [135]. The structure shows a highly conserved core consisting of 

two domains entitled Nt and Ct, and a bound molecule of GDP. Flexible peptide 

regions at both the N- and C- termini are not observed in the crystal structure. 

Truncations of FtsZ without the Ct domain are blocked in both polymerisation 

and GTP hydrolysis [136]. The GTP binding motif is present in the Nt domain 

while the key catalytic residue for GTP hydrolysis, Asp238 is in the Ct domain, 

these loci are conspicuously at opposite ends of the molecule.  

 

Figure 1-20: Structure of FtsZ from Methanococcus jannaschii.  
PDB ID: 1FSZ. The Nt and Ct domains are coloured in cyan and purple, respectively. A bound 
GDP molecule is shown as cylinders coloured by atom in the nucleotide binding site. The side 
chain of Asp212 (E. coli numbering; Asp238 in M. jannaschii) is also shown as cylinders 
coloured by atom. Association of Asp212 with the nucleotide binding site completes the GTPase 
active site Lowe and Amos, 1998 [135]. 

 

The binding of GTP allows the Ct and Nt domains of separate monomers to 

associate about the GTPase active site resulting in the formation of a linear 

filament (Figure 1-21A). GTP hydrolysis leads to curvature of the filament as the 
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GDP occupancy increases. Depletion of GTP destabilises the filament causing its 

dissociation [137]. The nucleotide binding site of monomeric FtsZ is solvent 

accessible allowing efficient nucleotide exchange of GDP for GTP so that 

filaments can be reformed (Figure 1-21B). Recent work has indicated that a 

hinge opening mechanism operates in response to GTP hydrolysis [138]. The 

so-called T3 loop mediates binding of the GTP γ-phosphate by adopting a tense 

state which supports hydrophobic interactions with the T7 loop of the 

neighbouring FtsZ subunit. On GTP hydrolysis, the release of the γ-phosphate 

allows T3 to relax disrupting the interaction with T7. A nest of hydrophobic 

interactions on the opposite side of the GTP binding pocket, based around 

Leu296 on one protomer and Phe135, Leu167, Val174 and Leu176 on the other, 

forms a hinge which is pushed open by the disruption of the T3-T7 interface. 

 

Figure 1-21: Functional behaviour of FtsZ proto-filaments.  
The assembly of protofilaments by binding of GTP by the Nt subdomain, cyan, and active site 
completion by the Ct subdomain, purple, of another FtsZ monomer. (B) The GTP hydrolysis 
cycle of FtsZ features filamentation, hydrolysis, curvature, dissociation, nucleotide exchange and 
reassembly. (C) FtsZ drives constriction of the cell membrane towards cell division by 
repetition of the GTP hydrolysis cycle or ‘iterative pinching’.  

 

It has been shown that the assembly, curvature, dissociation and reassembly of 

FtsZ proto-filaments provide all of the force necessary to drive membrane 

constriction at the cell division site through a process termed iterative pinching 

[139, 140] (Figure 1-21C). Although wild-type FtsZ alone is not capable of 
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interaction with the cell membrane, the addition of a C-terminal amphipathic 

helix and an N-terminal YFP (yellow fluorescent protein) domain caused the 

manifestation of indentations in liposomes in the presence of GTP. The 

indentations formed in locations with FtsZ-rings, as visualised by YFP 

fluorescence. The natural anchoring of FtsZ to the cell membrane is enabled by 

interaction with FtsA and numerous other proteins involved in a complex cell 

division machinery assembly.  

 

1.9.2 The B. subtilis divisome 

 

Figure 1-22: The B. subtilis divisome.  
Protein label abbreviations are as follows: Z; FtsZ, A; FtsA, L; FtsL, W; FtsW, IB; DivIB, IC; DivIC, 
IVA, DivIVA. The first proteins to assemble are FtsZ, FtsA, ZapA and EzrA. The remaining 
proteins assemble some time later. Taken from Gamba, 2009 [141].  

 

A complex cell division apparatus, called the divisome, assembles subsequent to 

Z-ring formation. Assembly takes place in two-steps [141]. Initially, FtsA, ZapA 

and EzrA localise with FtsZ. FtsA anchors the Z-ring to the cell membrane, ZapA 

is a promoter of Z-ring formation and EzrA is required for subsequent 

localization of cell-wall synthesis enzymes. A second wave of proteins is co-

opted some time later and includes Pbp2B, FtsL, DivIB and DivIVA the roles of 

which are in cell-wall synthesis, regulation of cell division, coupling to cell cycle 

and division site regulation, respectively [142, 143]. The assembly of the second 
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set of divisome proteins seems highly concerted, suggestive of a complex web of 

interactions [141]. A full schematic of proteins comprising the B. subtilis 

divisome, originally presented by Gamba et al., 2009 [141], is shown in Figure 

1-22. 

 

1.9.3 Regulating Z-ring assembly during growth 

Vegetative cell division requires the assembly of the cell division machinery at 

the middle of the cell. While FtsZ filaments can form only in the presence of 

GTP, which will be abundant in the cytoplasm, for much of the cell cycle Z-rings 

are not observed [144, 145]. This suggests the existence of one or more systems 

negatively regulating Z-ring formation. Two primary regulatory systems, MinCD 

and nucleoid occlusion (Figure 1-23) have been identified in B. subtilis.  

 

Figure 1-23: Direction of Z-ring formation to mid-cell in vegetative cell division by MinCD 
and Noc.  
The medial division site is indicated by the grey dashed line. Red transparent areas indicate 
regions where Z-ring formation is inhibited. (A) The MinCD system. MinC (red circles) and MinD 
(green hexagons) co-localise with DivIVA (light blue crescent) at the cell poles where MinC 
inhibits Z-ring formation. (B) The Nucleoid Occlusion (Noc) protein non-specifically binds to the 
chromosome and prevents cell division machinery assembly in its proximity. Adapted from 
Jamroskovic et al., 2012 [146] and Wu et al., 2004 [147]. 

 

The Min system was first characterised in E. coli and is so called because min 

mutants are associated with the formation of anucleate minicells [148, 149]. 



59 
 

The three component system, encoded by the minB locus, prevents asymmetric 

cell division by localization of the Z-ring formation inhibitor, MinC, to the cell 

poles through interaction with a membrane bound ATPase, MinD, and a cell 

pole localising protein MinE [150-152].  

In B. subtilis, there is an analogous system consisting of MinC and MinD. 

However the MinE is absent and its role appears to be played by DivIVA [146]. 

Interestingly for a protein which anchors proteins to the cell membrane, DivIVA 

does not possess an amphipathic membrane binding region; however, the 

crystal structure of B. subtilis DivIVA reveals a tetrameric assembly containing a 

coiled coil with distinct curvature [153]. The distribution of hydrophilic and 

hydrophobic residues around the helices suggests a directed interaction with 

the polar head groups and surface proximal lipids in the cell membrane, 

allowing recognition of concave cell membrane curvature. DivIVA has also been 

shown to exist as hexamers and octamers [154]. Through interaction with 

DivIVA, MinC and MinD are anchored to the cell poles where they prevent the 

formation of Z-rings (Figure 1-23A). 

The Noc protein, named for nucleoid occlusion, has been observed to bind non-

specifically throughout the chromosome and to prevent the assembly of the cell 

division apparatus (Figure 1-23B) [147]. This association directs cell division to 

the area with the lowest occupancy of chromosome. Post-DNA-replication, this 

uninhibited area is the medial division site. Additionally, Noc has a role in 

concentration of the divisome components by preventing their even 

distribution around the cell. In the absence of both MinCD and Noc, cells do not 

divide at all. In this case there is no preference for any cell division site and cell 

division machinery is too diffuse to allow assembly of a functional divisome. 

 

1.9.4 Relocation of the division site during sporulation 

The relocation of the divisome to a polar site for the asymmetric cell division 

characteristic of sporulation requires the up-regulation of transcription of the 

ftsAZ operon encoding FtsZ and FtsA and the expression of spoIIE. Three 

promoters govern transcription of ftsAZ, one of which, PH, is under the control 
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of σH, and hence activated during the initial stages of sporulation [155]. 

Asymmetric cell division is not severely affected by disruption of this promoter. 

However, when PH disruption is coupled with deletion of spoIIE, the second 

effector of polar cell division, cells are severely deficient in asymmetric septum 

formation [77]. Deletion of spoIIE causes a delay in the formation of polar septa 

in comparison to wild-type. Upregulation of ftsAZ and activation of spoIIE is 

sufficient to force the formation of polar division septa during vegetative 

growth, suggesting that the up-regulation of both is a major driving force for 

divisome relocation.  

In addition to the up-regulation of SpoIIE and FtsZ production, RacA has a role 

in promoting polar division [76]. RacA causes the formation of the axial filament 

in which chromosomal DNA is distributed evenly along the axis of the cell. RacA 

also anchors the chromosomes to opposite cell poles, through an interaction 

with sites around oriC, and DivIVA. This interaction could outcompete MinC and 

MinD resulting in non-specific localisation of the MinCD inhibitory complex 

throughout the cell and preventing Z-ring inhibition at the polar sites. 

As occurs during binary fission, the Z-ring is initially formed at the mid-cell. The 

medial Z-ring disassembles and FtsZ relocates to the polar division sites on a 

helical trajectory. This trajectory is thought to be governed by lipid spirals in 

the cell membrane, to which FtsZ and FtsA are associated. One site develops 

into an asymmetric division septum while the other is abandoned and 

disassembles soon after compartment specific gene expression is established 

[77, 156].  

It is not known how the cell selects a single Z-ring with which to complete 

division while abandoning the other. It seems that the formation of two Z-rings 

provides a safety net should the first division event be abortive. For example, 

RacA mutants fail to sequester DNA in the newly formed forespore. In this 

circumstance the second division site is activated, presumably in the hope of 

capturing a chromosome at the opposite cell pole. Additionally, a number of 

spoII mutant alleles show a phenotype in which two asymmetric septa form 

[157]. These cells are unable to complete sporulation, but the formation of two 

septa proves that both Z-rings are capable of supporting cell division.  
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1.10 SpoIIE, a Key Cell Fate Determinant  

SpoIIE is a 92 kDa, 827 residue protein encoded by the gene, spoIIE. Its 

transcription is directed by E-σA, activated by the master sporulation initiator, 

Spo0A~P [158]. SpoIIE is bifunctional, being required for both correct 

formation of the asymmetric division septum during sporulation, as described 

above, and in the indirect activation of the compartment specific σ factor, σF. 

 

1.10.1 Developmental behaviour of SpoIIE 

The subcellular localisation of SpoIIE and various mutants has been studied 

using GFP-fusion constructs and microscopic visualisation techniques [67, 159, 

160]. SpoIIE, produced prior to the sporulation cell division, promotes the 

formation of a pair of polar Z-rings to which it co-localises [159, 161]. SpoIIE 

remains at the sporulation septum but dissociates from the abortive Z-ring. On 

completion of the asymmetric division septum, activation of σF is observed in 

the forespore. This indicates the release of some block on the phosphatase 

activity of SpoIIE. After activation, SpoIIE delocalises from the division septum 

becoming diffuse in the forespore membranes [162].  

 

1.10.2 Three Domain structure  

SpoIIE is thought to consist of three domains [163] (Figure 1-24). At the N-

terminus, a 32 residue sequence precedes a transmembrane domain of around 

300 residues. This region is highly hydrophobic and sequence analysis and 

topology studies of SpoIIE predicted the presence of 10 putative 

transmembrane helices [163]. The N-terminal peptide is predicted to lie on the 

cytoplasmic side of the membrane, as are the C-terminal domains II and III. This 

domain accounts for around two fifths of the protein.  

The central portion of SpoIIE, from residues ~330 to ~590, is of unknown 

function, its primary sequence shows low homology to non-SpoIIE proteins and 

has the lowest level of conservation of the SpoIIE domains (17% between B. 

subtilis and C. acetobutylicum).  There is evidence that SpoIIE interacts with FtsZ 
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from both yeast two-hybrid assays and size exclusion chromatography analysis. 

Both experiments indicate that domain II is required for this interaction which 

is not formed between FtsZ and the phosphatase domain (domain III) [164].  

The C-terminal region of the protein is more highly conserved and sequence 

analysis indicates a PP2C phosphatase domain constituted of residues 590 to 

810, with a number of highly conserved clusters of residues forming the 

signature of the PP2C family. The PP2C family of phosphatases are part of the 

broader PPM superfamily of serine/threonine phosphatases, found in both 

eukaryotes and prokaryotes. PPM phosphatases are metal dependent and in the 

case of PP2C domains two or three manganese ions are bound by aspartate or 

glutamate residues in the active site. Mechanistically, it is proposed that the 

metal cations activate water molecules for nucleophilic attack at the 

phosphorus of the Ser/Thr-O-PO3 group during dephosphorylation [165, 166]. 

This domain of SpoIIE catalyses the dephosphorylation of the phosphoserine 

(PSer58) of the anti-anti-sigma factor, SpoIIAA~P. 

 

 

Figure 1-24: The three domain structure of the sporulation cell fate determinant, SpoIIE. 
Shown are the three putative domains of SpoIIE. The central region (II) and PP2C binding 
domain are show as purple and green rectangles, respectively. The transmembrane domain is 
shown as a schematic of its membrane association pattern and orientation of the N- terminal 
peptide and C-terminal cytoplasmic domains is shown as in the cytoplasm rather than 
extracellular. The N- and C-termini and the domain boundaries, as well as they are understood, 
are also indicated.  
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1.10.3 How compartment specific activation of σF is achieved 

The mechanism by which activation of σF is confined to the forespore is 

unknown. While it is widely thought that SpoIIE’s phosphatase activity is 

inhibited pending the completion of the sporulation septum, this does not 

explain the directionality of the activation. However, a number of hypotheses 

suggest how this may be achieved.  

 

Figure 1-25: The state of σF regulation equilibria in the sporangium before and after 
asymmetric septation. 
 The ‘SpoII’ prefix has been removed for simplicity. Species labelled in red and green are 
preeminent in the predivisional cell and post divisional mother cell and forespore, respectively 
(A) Before asymmetric division σF is held inactive by SpoIIAB, a build-up of SpoIIAA~P occurs. 
(B) After asymmetric septation, the mother cell equilibrium remains unchanged. In the 
forespore turnover of SpoIIAA~P by SpoIIE results in release of σF. SpoIIAA exists in both free 
and SpoIIAB associated forms. (C) Diagram of the cycle of complexes involved in σF regulation. 

 

Prior to asymmetric septation, equilibrium is established between σF, SpoIIAB 

and SpoIIAA. SpoIIAA is phosphorylated and inactive, SpoIIAB2: σF is stable so 

that σF is sequestered by SpoIIAB and unable to form the E-σF holoenzyme 

(Figure 1-25A). 
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Following asymmetric cell division (Figure 1-25B), dephosphorylation of 

SpoIIAA~P in the forespore by SpoIIE allows the dissociation of SpoIIAB2:σF by 

SpoIIAA. Although SpoIIAB can phosphorylate SpoIIAA, the rate of this reaction 

is limited by slow exchange of ADP for ATP. Thus in the forespore, SpoIIAA~P is 

converted to SpoIIAA by SpoIIE, SpoIIAB is unable to sequester σF, and the 

latter is free to combine with core RNAP and direct transcription (Figure 1-

25C).  The inhibitory equilibrium in the mother cell remains in place, although 

the process by which this is achieved is unknown. 

 

Figure 1-26: Possible mechanisms for the establishment of compartment specific gene 
expression directed by σF.  
Each model is described in the text. (A) Localisation of SpoIIE to only the forespore side of the 
asymmetric division septum. No turnover of SpoIIAA~P occurs in the mother cell. The forespore 
inhibitory equilibrium is disrupted by production of SpoIIAA by SpoIIE. (B) Enrichment of a 
putative SpoIIE inhibitor, X, in the mother cell caused by transient gene asymmetry before 
forespore chromosome translocation. (C) Degradation of SpoIIAB by the ClpCP protease system. 
Transient gene asymmetry causes the presence of two spoIIA operons in the mother cell allows 
replenishment of degraded SpoIIAB. The SpoIIAB in the forespore is not replenished, 
preventing competition for σF. (D) The change in overall SpoIIAA concentration caused by 
SpoIIE activity is much lower in the mother cell than the forespore due to the difference in 
compartment volume.  

 

An early study in which mother cell and forespore compartments were 

converted into protoplasts by lysozyme treatment led to the proposal that 

SpoIIE is confined to the forespore side of the polar septum [84] (Figure 1-26A). 

While this would lead to selective SpoIIAA~P dephosphorylation in the 

forespore, and therefore specific activation of σF in this compartment, later 
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observations indicate that SpoIIE is in fact present on both sides of the septum 

[159].  

Another hypothesis for how SpoIIE might be activated selectively in the 

forespore is based on transient gene asymmetry between the newly formed 

forespore and the mother cell [85]. The asymmetric septum initially traps only 

30% of the chromosome in the forespore [67]. The remaining 70% remains in 

the larger compartment and is pumped into the forespore by the septum 

localising DNA translocase SpoIIIE over a period of 20 minutes. During this 

period the forespore is deficient in genes on the distal portion of the 

chromosome, while the mother cell possesses two copies of these genes. It was 

proposed that an unidentified inhibitor of SpoIIE may be encoded on this region 

of the chromosome (Figure 1-26B). The production of the inhibitor would be 

confined initially to the mother cell allowing SpoIIE at the forespore side of the 

division septum to be activated selectively.  

Another proposal relying on transient gene asymmetry is based on the 

sensitivity of SpoIIAB to proteolysis. The spoIIA operon encoding SpoIIAA, 

SpoIIAB and σF, is in the oriC distal region of the chromosome and will initially 

be present as two copies in the mother cell but absent in the forespore. SpoIIAB 

has been shown to be a target of the ClpCP protease system. It can be therefore 

be envisaged that SpoIIAB would be depleted in the forespore by ClpCP 

degradation leading to σF activation. This would be a selective action as SpoIIAB 

levels in the mother cell would be replenished by spoIIA gene expression [167] 

(Figure 1-26C).  

The volume of the forespore is around one-eighth of that of the mother cell, a 

large disparity [86]. If the number of molecules of SpoIIE is the same on both 

sides of the septum, the concentration of SpoIIE in the mother cell would be 

eight times lower (Figure 1-26D). In vitro experiments have shown that a 10-

fold increase in SpoIIE activity is sufficient to switch F from being fully 

inhibited to being fully activated. The magnitude of this increase is similar to 

the volume disparity between the mother cell and forespore [168]. This 

hypothesis seems to be a very credible explanation of how compartment 

specific gene expression is initiated during sporulation of B. subtilis.  
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1.11 Aims 

SpoIIE has been rigorously studied through genetic investigation [169]. 

However, to date only the C-terminal phosphatase domain has been structurally 

characterised [170]. Domain II of SpoIIE is required for localisation of the 

protein to the asymmetric division septum, but mutations within domain II 

have also been shown to have strong influences on phosphatase domain 

activity. This implies autoregulation of SpoIIE activity. The mutations identified 

require a structural context to be fully explained. Of particular interest is how 

domain II and the phosphatase domain (domain III) interact to inhibit 

phosphatase activity until asymmetric cell division has occurred, this being of 

paramount importance for the correct and compartmentalised activation of σF 

in the forespore. 

The principal aim of my studies has been the cloning, overexpression and 

purification of soluble B. subtilis SpoIIE domain II constructs to allow structural 

characterisation and definition of the interaction between the two cytoplasmic 

domains. This involved the development of a fragment previously identified 

using a library-based fragment solubility screen. An investigation into the 

domain boundary between the transmembrane and cytoplasmic regions of the 

protein yielded a fragment containing the entirety of domain II. An additional 

fragment was developed, potentially isolating a sub-domain in SpoIIE domain II. 

Orthologues of SpoIIE fragments from G. stearothermophilus were also 

produced. This work is detailed in Chapter 3. 

Another interaction in the regulation system of σF is that between SpoIIE and 

SpoIIAA~P. While structures of complexes have been solved to show the 

interactions between σF and SpoIIAB and SpoIIAB and SpoIIAA, the mode of 

interaction between SpoIIE and its specific substrate remains uncharacterised. 

The development of a co-expression system to produce large quantities of 

SpoIIAA~P and some attempts at isolating a SpoIIE:SpoIIAA~P complex for 

structural characterisation are detailed in Chapter 4.  
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Chapter 5 describes an in vivo mutagenesis study carried out, using some 

suppressor mutations identified in SpoIIE domain III, in order to provide insight 

into how domains II and II interact to regulate phosphatase activity. 
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Chapter 2: Materials and Methods 

This chapter covers core cloning, protein production and protein purification 

techniques underpinning the experimental programme of this thesis. The 

results chapters in this work contain additional methods sections specific to the 

investigations described. 

 

2.1 Agarose gel electrophoresis 

Experiments involving the manipulation and modification of DNA, such as 

molecular cloning and mutagenesis, require analysis of DNA fragment size and 

purity. The electrophoretic migration of DNA through a low percentage agarose 

gel matrix is very commonly used for this purpose.  At neutral pH each 

phosphate group on DNA carries a negative charge so that DNA fragments of all 

sizes have a constant mass to charge ratio. As a result many of the most effective 

separation techniques for DNA use electrophoresis. As the negatively charged 

DNA migrates towards the positively charged cathode the larger fragments are 

hindered by the agarose matrix more regularly than the smaller fragments. This 

causes a separation of fragment sizes as the smallest fragments migrate 

furthest. Linear and circular DNA fragments of similar sizes also have different 

migration characteristics. Supercoiled, relaxed circular and linear DNA forms 

are readily resolved owing to their different levels of compactness. Resolved 

DNA species form distinct bands that can be visualised by the inclusion of 

SYBRsafe (Invitrogen), which intercalates the DNA bases leading to enhanced 

fluorescence emission in the visual region of the spectrum on absorbance of UV 

light. A DNA ladder, consisting of DNA fragments of known sizes, which 

encompass those expected of the analyte(s), is typically used to allow 

estimation of unknown DNA fragment sizes.  

A 1% agarose gel is prepared by dissolving 1 g of agarose (a polysaccharide 

extracted from seaweed) in 100 ml of Tris-acetate-EDTA (TAE) buffer (40 mM 

Tris-acetate pH 7.6, 1 mM EDTA) by heating. SYBRsafe DNA stain is added to the 

cooling solution at a 10,000 fold dilution (according to manufacturer’s 

instructions) before it is poured into a casting mould appropriate to the 
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electrophoresis apparatus. A comb is added to form wells for sample 

application. The solidified gel is placed in the electrophoresis apparatus 

containing TAE buffer. Sample preparation involves the addition of 1 µl of a 

sample loading buffer, such as Blue Orange loading dye (Promega), to every 5 µl 

of DNA sample. The sample loading buffer contains glycerol (to lend the 

samples viscosity to keep them in the wells) and visible dyes, indicating the 

progress of species through the gel through a visible dye front. A 100 V 

potential difference is applied across the gel for approximately 60 minutes, 

although this may vary depending on the size of the fragments being resolved 

and the extent of resolution required. DNA bands can be observed using a 

302 nm UV trans-illuminator, as the DNA-bound SYBRsafe dye fluoresces. 

 

2.2 Small Scale DNA Preparation 

The isolation of plasmid DNA from transformed cell cultures is fundamental to 

the molecular cloning process. It is commonly used for screening of 

transformant colonies, in which DNA from 5 to 10 separate colonies is extracted 

for analysis, or for preparation of a plasmid from a previously transformed 

source when DNA from a single culture is isolated. 

For each clone, 10 ml of LB media supplemented with 30 µg/ml kanamycin is 

inoculated with cells from a colony using a sterile pipette tip. After overnight 

growth, the cultures are centrifuged for 10 minutes at 5,000 x g in a benchtop 

centrifuge and the supernatant discarded. The plasmid DNA from each cell 

pellet is then extracted and purified using a QIAprep miniprep kit (Qiagen). The 

concentration of DNA is determined by measuring the absorbance at a 

wavelength of 260 nm. 
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2.3 Construct preparation 

2.3.1 Ligation Independent Cloning 

Ligation Independent Cloning (LIC) is a method of incorporation of one DNA 

fragment (the insert) into a suitable linearised plasmid (the vector) resulting in 

a larger circular plasmid without the requirement of a DNA ligase (Figure 2-1). 

The modified pET-28a vector, pET-YSBLIC3C [171], is designed so the final 

construct encodes a Hisx6 affinity tag and an HRV3C protease (Human 

Rhinovirus 3C protease) cleavage site fused to the N-terminus of the target 

protein.  

  

Figure 2-1: Ligation Independent Cloning.  
A PCR amplified insert (top) and a linearised LIC vector, pET-YSBLIC3C (bottom), are separately 
prepared by exonuclease treatment with T4 DNA polymerase. When mixed, the two reagents 
anneal forming a stable species which can be taken up by cells. 
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The insert is produced by amplification of the target sequence from a DNA 

template by Polymerase Chain Reaction (PCR). By suitable design of the 

oligonucleotide primers used in the PCR, the amplified target DNA sequence is 

bracketed by regions homologous to those in the plasmid. The treatment of 

both the linearised plasmid and the PCR product with T4 DNA polymerase in 

the presence of a single nucleotide, resulting in exonuclease activity, yields 

complementary single stranded overhangs at the strand termini. These 

overhangs are designed to be sufficiently long that the insert and vector anneal 

when incubated together at room temperature. The base pair interactions in the 

annealed plasmid are stable enough to allow direct transformation of E. coli 

cells, after which in vivo ligation is carried out by the host cell. 

 

2.3.2 Polymerase chain reaction 

The amplification of a specific DNA sequence, like a gene of interest, from 

template DNA, such as a chromosome, plasmid or even a previous PCR product, 

can be performed using a Polymerase Chain Reaction (PCR) [172]. This 

technique is capable of biosynthetically producing relatively large quantities of 

the target DNA product, or amplicon, with high-fidelity. Two short single-

stranded oligonucleotide primers are required to define the target region and 

these are extended by DNA polymerase during the reaction. The sequences of 

the primers are designed to match the nucleotide sequences at the extremes of 

the region of interest on opposing DNA strands. Numerous commercial DNA 

polymerases, such as KOD Hot Start Polymerase (Merck) are available, with 

various extension rates, fidelities and temperature optima. These DNA 

polymerases are from thermophilic sources and are active only at high 

temperatures, 72°C in the case of KOD polymerase from Thermococcus 

kodakaraensis.  

The components of a typical PCR reaction are shown in Table 2-1. The forward 

and reverse primers are added in a 106 fold molar excess to the template DNA 

(calculated for the 4.12 Mbp B. subtilis chromosome). This excess ensures that 

the template-primer interaction is favoured over a template-template 
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interaction and that the amount of primer does not limit the yield of the 

experiment. The DNA polymerase substrates dGTP, dATP, dTTP and dCTP, are 

added in equimolar concentrations. DNA polymerase is a magnesium dependent 

enzyme and the concentration of MgSO4 added to a PCR experiment is varied to 

optimise enzyme fidelity, facilitate the production of long amplicons or to 

minimise non-specific primer annealing, incomplete DNA melting and primer 

dimer formation [173-175]. 

 

Table 2-1: Required PCR components 

Component 
Stock 

Concentration 
Volume (µl) 

dNTP mix 2 mM 5 

KOD DNA polymerase reaction buffer 10x concentrate 5 

MgSO4 25 mM 2 

DNA template >50 ng/µl 0.5 

Forward Primer 20 pmol/µl 1 

Reverse Primer 20 pmol/µl 1 

KOD DNA polymerase 1 U/µl* 1 

milliQ Deionised Water - 34.5 

** The enzyme unit (U) is the amount of an enzyme which increases the rate of 

reaction in a system by 1 µmol/minute [176]. 

 

The PCR reaction consists of 3 main steps (Table 2-2) that take place at 

different temperatures. Firstly, the dsDNA (double stranded DNA) template is 

melted at 94°C to produce ssDNA (single stranded DNA). Cooling allows 

annealing of primers to the target regions on the template ssDNA. The 

annealing temperature may be varied according to the primer Tm (melting 
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temperature) values. After the annealing of primers to the template, the 

reaction is heated to the optimal temperature of KOD DNA polymerase, 72°C, 

and extension of the primers occurs in the 5’ to 3’ direction complementary to 

the template DNA and is continued for sufficient time to cover the whole region 

of interest at a rate of around 2 kb/min. Thermal cycling of these stages causes 

amplification of the target fragment and an exponential increase in the 

concentration of product.  

 

Table 2-2: Typical PCR thermocycling parameters 

Step Temperature (°C) Duration (s) No. of Cycles 

Initial Denaturation 94 120 1 

Denaturation 94 30 

35 Annealling 45 30 

Extension 72 40 

Final Extension 72 180 1 

Hold 4 ∞ 1 

These parameters are based on a PCR reaction to generate a 1 kb amplicon 

using KOD hotstart DNA polymerase. 

 

 

2.3.3 Oligonucleotide primers  

The addition of non-complementary nucleotide sequences to the 5’ end of a 

primer leads to the incorporation of these sequences at the termini of the final 

PCR product. These flanking sequences are used in molecular cloning as a 

means of generating compatible ends for ligation of PCR products into 

appropriate vectors. In both LIC and ligation dependent cloning, the addition of 

a specific sequence at the PCR product termini is key to the cloning process.  
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LIC requires that the ends of both the vector and insert possess particular 

sequences. T4 DNA polymerase treatment in the presence of dATP produces 

complementary ends (Figure 2-1). All that is required is that two universal 5’ 

overhang sequences are added to the forward and reverse oligonucleotide 

primers. The reverse primer extension includes a stop codon. 

 

Forward extension   5’ – CCAGGGACCAGCA – 3’ 

Reverse extension  5’ – GAGGAGAAGGCGCGTTA – 3’ 

 

This method greatly simplifies primer design as cloning using restriction 

endonucleases requires consideration of open reading frames when positioning 

cleavage sites in primer overhangs. In contrast, LIC allows a much more 

formulaic approach to primer design making it an appealing strategy for high 

throughput cloning experiments [177]. One consideration is that the first codon 

of the gene of interest must be ATX (where X is any base). This form is required 

to ensure generation of the correct overhangs by T4 DNA polymerase. When the 

sequence in the gene of interest does not allow for this form, a common 

modification is the addition a methionine (Met; M) residue (codon = ATG) to the 

N-terminus of the fragment via further addition to the primer extension.   

Primers for PCR require a length of nucleotide bases complementary in 

sequence to the DNA template. This complementary sequence directs the 

primer to bind specifically to the desired site on the template. The length and 

base composition of the complementary sequence determines the Tm of the 

primer – template DNA duplex. Tm can be calculated using the Wallace-Ikakura 

rule, where G + C is the total number of G and C bases and L is the total length of 

the primer: 
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Both forward and reverse primers must be able to anneal to the template DNA 

simultaneously, so primer pairs should have Tm values within 5°C of one 

another. The annealing temperature used during thermocycling may also 

require modification to accommodate this requirement without allowing non-

specific annealing (low temp.) or preventing annealing (high temp.). Ensuring 

that the terminal base at the 3’ end of a primer is a G or C is also advisable. The 

GC base pair forms three hydrogen bonds rather than two and the additional H-

bond makes a more stable interaction and gives more stable annealing at the 

site of DNA polymerase engagement with the primer-template. 

Primer pairs can be designed to user-defined parameters using web based tools 

such as the NCBI hosted Primer-BLAST tool. These tools are capable of selecting 

priming sequence pairs from a given template sequence with matching Tm 

values and are also designed to identify primer pairs with the risk of forming 

primer dimers and DNA hairpins. 

 

2.3.4 LIC Vector preparation 

The pYSBLIC3C vector, is a kanamycin resistance-conferring, pET-28a plasmid 

derivative (Appendix I) with a modified multiple cloning site (MCS)(Figure 2-2). 

pYSBLIC3C contains an engineered BseRI restriction site which allows plasmid 

linearisation. The DNA sequence encoding the Hisx6 affinity tag has been 

modified to encode a downstream HRV3C protease recognition motif 

(LEVLFQ/GP). This inclusion and further modifications beyond the BseRI 

restriction site provides the sequences necessary for T4 DNA polymerase 

truncation and vector - insert annealing. Growth and recovery of the pET-

YSBLIC3C vector is achieved by transformation of a cloning strain of E. coli, such 

as XL-10 Gold (Agilent), followed by plasmid isolation by DNA miniprep, section 

2.2. Linearised vector is then prepared either by BseRI digestion of 50 µg of 

circular plasmid or by vector PCR using specially designed vector primers. The 

linearised vector is analysed by agarose gel electrophoresis and the appropriate 

band is purified by gel extraction. 
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2.3.4.1 pET-YSBLIC3C Preparation by BseRI digest 

A large scale BseRI (New England Biosciences) digest of 50 µg of plasmid was 

carried out. The reaction mixture contained 50 µg pET-YSBLIC3C plasmid DNA, 

50 U of BseRI restriction enzyme, 100 µl of 10x concentrated reaction buffer 2 

(NEB) and milliQ H2O to a total volume of 1 ml. Reactions were incubated at 

37°C for 110 minutes. 

The reaction products were mixed with 200 µl 6x DNA loading dye and run on a 

1% agarose gel for between 90 and 120 minutes at 110 V to achieve adequate 

separation of cut from uncut vector. The carefully excised band representing the 

linearised plasmid was then purified using Qiagen GenElute gel purification kit 

with elution of the final product in 30 µl of water. 

 

2.3.4.2 pET-YSBLIC3C Preparation by vector PCR  

The linearised vector can also be amplified by PCR. This method is favourable as 

a smaller quantity of template can be used and purification by agarose gel 

electrophoresis is not necessary. The reaction mixture and the thermocycling 

parameters are shown in Table 2-3.  

After PCR the reaction products are analysed by agarose gel electrophoresis and 

treated with DpnI (discussed further in section 2.4.3) to digest the circular 

template DNA. This digest is carried out by direct addition of 2 µl of DpnI (NEB) 

and incubation at 37°C for 120 minutes. The use of DpnI reduces the risk of 

false positives but is not possible when plasmid linearisation is carried out by 

BseRI digest. After DpnI treatment the reaction products can be purified using a 

QIAquick PCR purification kit (QIAGEN). 
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Figure 2-2: The pET- YSBLIC3C LIC cloning site.  
The cloning site of pET-YSBLIC3C is shown in three states; complete, linearised and after T4 DNA polymerase treatment. The BseRI restriction enzyme recognition 
sequence and cleavage site for plasmid linearisation is shown in blue. Beneath the DNA duplex sequences the translated open reading frame sequence is shown. 
The sequence encoding the Human Rhinovirus 3C protease cleavage site is shown in red. The regions to be truncated by T4 DNA polymerase are underlined in 
purple. NdeI and NcoI restriction sites are indicated in grey. 
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Table 2-3: pET-YSBLIC3C linearisation by PCR 

Reaction Mixture: 

Component Concentration Volume (µl) 

dNTP mix 2 mM 5 

KOD DNA polymerase reaction buffer 10x concentrate 5 

MgSO4 25 mM 2 

pET-YSBLIC3C >50 ng/µl 0.5 

Forward Primer 20 pmol/µl 1 

Reverse Primer 20 pmol/µl 1 

KOD DNA polymerase 1 U/µl* 1 

milliQ Deionised Water - 34.5 

Thermocycling parameters: 

Step Temperature (°C) Duration (s) No. of Cycles 

Initial Denature 94 120 1 

Denature 94 30 

30 Anneal 45 30 

Extension 72 120 

Final Extension 72 300 1 

Hold 4 ∞ 1 
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2.3.5 T4 DNA Polymerase Treatment 

T4 DNA polymerase possesses proof-reading 3’-5’ exonuclease activity. In the 

absence of dNTPs T4 DNA polymerase will remove 3’-terminal nucleotides 

processively from DNA fragments generating 5’ overhanging ssDNA ends. In the 

presence of single dNTP the exonuclease cleavage reaction proceeds until the 

enzyme encounters a base on the overhanging strand where its polymerase can 

incorporate the added complementary nucleotide. This is exploited in LIC by 

the absence of the thymine bases on 3’ termini of linearised pET-YSBLIC3C 

which can be digested in this fashion as shown in Figure 2-2. The insert is 

treated with T4 DNA polymerase in the presence of dATP while the linearised 

vector is treated with T4 DNA polymerase in the presence of dTTP. This leads to 

the generation of 5’ overhangs on the insert which are complementary to those 

on the vector. This complementarity also ensures that the insert is incorporated 

into the plasmid in the correct orientation. 

Table 2-4: T4 DNA Polymerase Treatment Reactions for LIC 

Component Insert Reaction Vector Reaction 

Linearised pET-YSBLIC3C  - 4 pmol 

Purified LIC Insert 0.2 pmol - 

2.5U/µl T4 DNA Polymerase  0.4 µl 8 µl 

25 mM dTTP  - 40 µl 

25 mM dATP  2 µl - 

100 mM DTT 1 µl 20 µl 

 10x T4 DNA Polymerase Buffer 2 µl 40 µl 

milliQ deionised water To 20 µl To 400 µl 

 

A large scale T4 DNA polymerase (NEB) treatment was carried out on the 

vector before purification using a PCR purification kit. The prepared vector was 

then stored at -20°C and thawed for use in multiple cloning experiments. 
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Treatment of the LIC insert was carried out for each sample immediately before 

annealing. The reaction mixtures for both reactions are given in Table 2-4. Both 

reactions are incubated at 22°C for 30 minutes followed by thermal inactivation 

of T4 DNA polymerase at 75°C for 20 minutes. 

 

2.3.6 Annealing and transformation  

Annealing of the T4 DNA polymerase treated insert and vector components is 

carried out at room temperature for 20 minutes. During this time the ssDNA 

overhangs on the vector hybridise with those on the insert to form a nicked, yet 

stable, circular DNA complex. 2 µl of T4 DNA polymerase prepared vector at 

around 15 ng/µl is added to 1 µl of the above T4 DNA polymerase LIC insert 

reaction, now at 0.01 pmol/µl, and the mixture is incubated at room 

temperature. After 10 minutes, a further 1 µl of millQ deionised water is added 

before a further 10 minute incubation. The mixture is next used to transform 

competent cells of E. coli. A control reaction is set up with water in place of the 

insert DNA. This control demonstrates the background of false positives given 

by the vector DNA alone.  

Transformation refers to the uptake of foreign genetic material by a cell. E. coli 

cells can be made competent through chemical treatment and commercially 

available competent cells can have very high transformation efficiencies. 

Competent XL-10 gold cells (Agilent) were prepared using the TSS competent 

cell generation protocol as described in section 2.3.6.1 [178]. 

1 µl of the annealing reaction (or control reaction) above is added to a 25 µl 

aliquot of XL-10 gold competent cells pre-incubated on ice. Incubation on ice is 

continued for a further 10 minutes. To enhance the transformation frequency 

the cells are heat-shocked for 30 seconds at 42°C followed by a further 5 minute 

incubation on ice. Competent cells are allowed to recover in 500 µl of a rich 

media, such as SOC, LB (Luria Bertani) or GS96 (QBiogene) at 37°C for 1 hour. 

This step allows the cells to recover metabolically and to express newly 

acquired antibiotic resistance genes, kanR in the case of pET-YSBLIC3C-based 

constructs.  
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After recovery, 100 µl of the culture is spread onto an LB-agar plate containing 

30 µg/ml kanamycin. The plate is incubated overnight at 37°C. Colony-

containing plates can be stored at 4°C for several days. 

 

2.3.6.1 Generation of TSS competent E. coli cells 

The TSS (Transformation and Storage Solution) competent cell protocol is a 

one-step method for generating competence and cryo-protection of E. coli cells. 

Commonly, competent cells are generated by the addition of CaCl2 in a process 

requiring multiple resuspension steps in MgCl2 and CaCl2 containing buffers  

[172], however, for the TSS method transformation efficiencies of >107 colony 

forming units per µg of DNA can be achieved using a single step method [178]. 

This efficiency is only an order of magnitude lower than the efficiencies quoted 

for high transformation efficiency commercial competent cells. 

0.2 ml of an overnight culture of the E. coli strain grown in 10 ml LB media at 

37°C, is diluted into 20 ml fresh LB media and the culture is grown at 37°C for 2 

hours (or 3 hours for XL strains i.e. XL-10 gold), followed by incubation on ice 

for 15 minutes. The culture is then centrifuged at 3500 x g for 10 minutes in a 

temperature controlled centrifuge at 4°C. The supernatant is discarded and the 

pellet resuspended in 950 µl ice cold TSS solution (10% PEG 3.35K and 50 mM 

MgCl2 in LB media at pH 6.5) and 50 µl DMSO. The now competent cells are 

aliquoted in volumes of 25 µl and 100 µl and snap frozen in liquid N2 for storage 

at -80°C. 

 

2.3.7 Assessing Cloning Success 

Colonies of bacteria which grow on the LB agar plates have been transformed to 

kanamycin resistance by uptake of the pET-YSBLIC3C vector DNA. Plasmid DNA 

is extracted from the colonies by miniprep as described in section 2.2. In many 

cases, transformant colonies may be false positives, having acquired a plasmid 

not containing the target insert. There are three main methods for analysing the 

success of a cloning experiment.  
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A plasmid PCR consists of a PCR analogous to that carried out earlier in the 

cloning process to amplify the insert. In this PCR, the template DNA is the 

plasmid DNA derived from the colonies. The primers used can be the insert 

specific primers from the original PCR or vector specific primers, which bracket 

the intended cloning site. The PCR reaction products are analysed by agarose 

gel electrophoresis as described in section 2.1. The observation of an 

appropriately sized fragment is evidence for cloning success.  

Cloning success can also be analysed by restriction endonulcease digestion of 

product plasmids. Restriction endonucleases cleave dsDNA at specific 

recognition sequences. Computational analysis of the desired product DNA 

sequence using Serial Cloner (SerialBasics) generates a map of restriction 

enzyme cleavage sites and predicts the sizes of DNA fragments generated 

digestion by specific restriction endonucleases. The pET-YSBLIC3C plasmid has 

an NcoI restriction site upstream of the cloning site and an NdeI restriction site 

downstream of the cloning site (Figure 2-2) meaning that NcoI/NdeI co-

digestion would generate a fragment of very similar length to the insert. An 

exception would be if the insert contains recognition sequences for these 

enzymes. 100 ng of plasmid DNA is mixed with 1 µl of each of NdeI and NcoI 

(NEB) and 2 µl of NEB buffer 4 (or new CutSmart buffer) in a total volume of 20 

µl. The digestion reaction is incubated at 37°C for 30 minutes. The reaction 

products are analysed by agarose gel electrophoresis.  

The most powerful technique for assessing clones is DNA sequencing, which 

when coupled with vector specific primers which prime outside the cloning site 

provides confirmation that the gene of interest lies within the plasmid. This 

technique is carried out by GATC biotech, a company allowing postal sample 

delivery and result delivery by e-mail. The sample requirements are 20 µl of 

plasmid DNA at 30-100 ng/µl (sufficient for up to 8 reactions). An array of 

common primers is available and the T7 and T7_rev primers recognise the T7 

promoter region and bracket the cloning sites of most pET expression system 

vectors, like pET-YSBLIC3C. The results give accurate DNA sequences as long as 

1 kb if the template is abundant and pure. 
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2.4 Site directed mutagenesis 

The QuikChange method of site-directed mutagenesis (SDM) is a powerful 

technique for the study of protein function and structure. The technique uses 

mutagenic oligonucleotide primers in which a small number of base 

mismatches, which direct the desired mutations, are flanked by regions 

matching the DNA template [179]. This technique can be used to change a single 

codon, multiple adjacent codons or it can be used to effect insertions and 

deletions. The QuikChange site directed mutagenesis kit (Agilent) was used to 

generate mutants in this work. 

 

2.4.1 Oligonucleotide Mutagenesis Primers 

Appropriate base exchanges are devised to implement the desired mutation. 

Mutagenic primers are designed in pairs consisting of 1-3 mismatched bases 

flanked by 10 to 15 bases complementary to the target template. According to 

the manufacturer’s advice, the two primers should be 25-45 bases long, binding 

to complementary sequences on opposite strands of the template. It is also 

suggested that the Tm value for the primer pair should be greater than or equal 

to 78C°.  

 

2.4.2 The Mutagenesis Reaction 

The site directed mutagenesis reaction (Figure 2-3) is similar to a PCR, 

however, rather than amplification of a small portion of the template DNA the 

nascent DNA strand is extended around the entire plasmid stopping only when 

the 5’ end of the initiating primer is reached (Table 2-5).  
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Table 2-5: Reaction Parameters for Site Directed Mutagenesis 

Reaction Mixture: 

Component Concentration Volume (µl) 

dNTP mix 2 mM 5 

polymerase reaction buffer 10x concentrate 5 

Template Construct Plasmid >50 ng/µl 1 

Forward Primer 125 ng/µl 1 

Reverse Primer 125 ng/µl 1 

PfuTurbo DNA polymerase 2.5 U/µl* 1 

milliQ Deionised Water - 36 

Thermocycling parameters: 

Step Temperature (°C) Duration (s) No. of Cycles 

Initial Denature 95 30 1 

Denature 95 30 

12-18 Anneal 55 60 

Extension 68 60/kb* 

Hold 4 ∞ 1 

* This parameter must be adjusted according to the size of the template 

plasmid. 

 

The extension times are typically modified to allow extension round the entire 

template. PfuTurbo DNA polymerase used with the SDM kit extends at 1 

kb/minute, allowing calculation of the appropriate extension time parameter. 

The number of reaction cycles is also modified according to the extent to which 

the mutant primers are mismatched to the template. Extended mismatching, as 

in primers used to introduce deletions or insertions of multiple codons, is more 
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effectively achieved using 18 cycles while a single base mismatch for a point 

mutation requires only 12 cycles. Thermocycling results in amplification of the 

synthesised mutant DNA strand, but the amount of product does not increase 

exponentially as the product strands cannot serve as a template in future 

polymerisation steps. Once the reaction is complete a 10 µl sample is analysed 

by agarose gel electrophoresis to confirm successful amplification of the mutant 

product.  

 

2.4.3 DpnI Treatment 

 

Figure 2-3: Site Directed Mutagenesis procedure. 
 The methylated wild type plasmid DNA isolated from a dam+ E. coli strain is represented in 
black. The mutation site is indicated by triangles which are coloured black for unmutated and 
blue for mutated. DNA synthesised during the mutagenesis reaction is unmethylated and shown 
in green. Digestion of DNA by DpnI is indicated by the use of dashed lines. 
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A key step in the SDM procedure is the digestion of the original template DNA 

by DpnI. The transformation efficiency of nicked DNA is much lower than that of 

closed circular DNA and the presence of template DNA could give rise to a large 

number of wild type clones after transformation and growth. Isolation of the 

template plasmid from a DNA adenine methylation (dam+) E. coli strain, such as 

XL-10 gold, produces DNA in which the adenine base is methylated at the N6 

position in each GATC base sequence. DpnI is a restriction enzyme which 

recognises and catalyses cleavage of a methylated GA(CH3)TC sequence but not 

an unmethylated GATC sequence. As the dATP molecules used in the reaction 

are unmethylated, the DNA synthesised during the in vitro reaction is also 

unmethylated. As a result DpnI treatment causes selective digestion of DNA 

strands synthesised in vivo by E. coli, leaving the newly synthesised DNA 

unaffected. 1 µl of DpnI at 10 U/µl is added to the SDM reaction products and 

the mixture is incubated for 1 hour at 37°C. 1 µl of the reaction products are 

then used to directly transform E. coli XL-10 gold competent cells, which are 

plated and grown on LB agar plates supplemented with kanamycin, as 

described in section 2.3.6. Assessment of the success of the mutagenesis 

reaction is achieved by chain terminating inhibitor-based DNA sequencing of 

plasmids isolated from single colonies. 
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2.5 Protein Expression 

The pET derivative plasmid is introduced into an expression strain, commonly 

E. coli BL21 (DE3). This strain harbours the λDE3 element, a phage lysogen 

which harbours the gene encoding T7 RNA polymerase under the control of a 

lacUV5 promoter. T7 RNA polymerase drives transcription of coding sequences 

downstream of the pT7 promoter on pET-YSBLIC3C. Production of protein 

encoded by a pET construct is inducible by addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG) to a growing bacterial culture. 

 

2.5.1 Culture Growth 

The appropriate pET construct is used to transform competent E. coli BL21 

(DE3) cells. The transformed cells are plated onto LB agar supplemented with 

kanamycin and grown overnight at 37°C. A single colony is used to inoculate 10 

ml of LB liquid media supplemented with kanamycin at a final concentration of 

30 µg/ml; this culture is grown to high cell density overnight at 37°C with 

shaking at 180 rpm. This culture is diluted 100-fold into either 10 ml or 500 ml 

of fresh media for expression testing and large scale over expression, 

respectively. These cultures are similarly grown at 37°C with shaking at 180 

rpm. 

 

2.5.2 Induction of Protein Expression by IPTG 

The pET expression system is based around the induced relief of transcriptional 

repression on a tightly controlled T7 RNA polymerase specific promoter (Figure 

2-4). The T7 promoter is selectively recognised by T7 RNA polymerase encoded 

by bacteriophage T4 gene 1 carried by the DE3 element. The T7 RNA 

polymerase gene and the target gene on the pET vector are under lac operator 

control.  Chromosomal and vector copies of the lacI gene ensure production of 

sufficient Lac repressor to repress transcription. The repression is overcome by 

addition of the non-hydrolysable allolactose mimic, IPTG. This leads to 

transcription of gene1 and production of T7 RNA polymerase which then 
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transcribes the target gene. As the pET T7 promoter is unique within the cell 

the T7 RNA polymerase produced is devoted to the expression of the plasmid-

borne target gene. This generally leads to high level production of the 

recombinant protein which can constitute up to 50% of the total cell protein 

after a few hours of induction [180].  

 

 

Figure 2-4: The pET expression system.  
The host cell shown is harbouring a pET vector. During cell growth the pET vector T7 promoter 
and λDE3 lac promoter are repressed by lac repressor at lacO. IPTG induction causes the relief 
of repression by lac repressor at both sites. T7 RNA polymerase is transcribed from the λDE3 
lysogen and its expression allows transcription of the target gene from the pET T7 promoter. 
The available pLysS and pLysE strains of BL21 (DE3) harbour an additional plasmid which 
encodes T7 lysozyme, an inhibitor of T7 RNA polymerase, which further prevents uninduced 
expression of the target gene. As presented in the Novagen pET System Manual, 2003. 

 

Protein production was induced when the cell culture reached an OD600 of 0.6. 1 

M IPTG was added directly to the growing culture to give a final concentration 

of 1 mM. On occasions, the final inducer concentration was varied in the range 

of 0.1 to 1.5 mM IPTG to control the rate of induction. After induction the 

culture was incubated at 16°C for 16 to 18 hours with shaking at 180 rpm. 

Protein production can also be carried out at up to 37°C for shorter periods 

down to 4 hours as the solubility and yield of overexpressed protein can vary 

greatly with the expression conditions.  
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2.5.3 Harvesting Cells and Lysis by Sonication 

Cells from large cultures were harvested by centrifugation at 4,225 x g for 20 

minutes in a Sorvall centrifuge. The pelleted cells were resuspended in 20 ml of 

lysis buffer by shaking and vortexing with periodic incubation on ice. A typical 

lysis buffer was 50 mM Tris-HCl, and 150 mM to 500 mM NaCl at a pH between 

7.5 and 8.5. The resuspended cells were lysed by sonication at 15 Amplitude 

Microns for eight cycles of 30 seconds separated by 30 second intervals on ice. 

The contents of the disrupted cells, including proteins, membranes and DNA, 

become suspended in the lysis buffer. The insoluble elements are removed from 

the suspension by centrifugation at 35,000 x g for 25 minutes.   

 

2.5.4 Optimisation of Expression and Lysis Conditions 

The yield and solubility of recombinant proteins often varies with expression 

temperature, cell strain, expression media and lysis buffer. In order to 

determine the most appropriate expression conditions multiple 10 ml LB 

cultures with appropriate antibiotic were inoculated with 100 µl of a dense 

culture grown overnight from a single colony (section 2.5.1). These cultures are 

incubated at 37°C and their OD600 monitored until it reaches 0.6. 1 ml of each 

sample was removed as an uninduced control. The remaining 9 ml of each 

culture was induced by addition of IPTG to a final concentration of 1 mM. 

Cultures were allowed to express protein with shaking at 180 rpm at different 

temperatures, most commonly only 16°C and 37°C for 16 and 4 hours, 

respectively. From each culture multiple 1 ml aliquots were taken and the cells 

harvested by centrifugation at 16,000 x g for 10 minutes in a SigmaTM 

microcentrifuge. Both uninduced and induced aliquots were resuspended in 

150 µl of varying buffers and lysed by sonication for a total of 1 minute in 10 

second bursts of 15 Amplitude Microns. A 10 µl aliquot was withdrawn to 

represent the total protein fraction (including both soluble and insoluble 

species). The remaining lysate was clarified by centrifugation in a 

microcentrifuge at 16,000 x g for 7 minutes after which a further 10 µl aliquot 

was taken to represent the soluble fraction. All aliquots were analysed by SDS-
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PAGE (section 2.7.3.1) alongside similarly treated total and soluble fractions 

from the uninduced cell samples. Under ideal conditions there will be a roughly 

equal ratio of target protein in both total and soluble aliquots, indicating a 

negligible loss of protein due to insolubility. The insoluble fraction can also be 

analysed by resuspension of the lysate pellet in fresh buffer followed by a 

similar SDS-PAGE experiment.  
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2.6 Protein Purification 

Structural and biophysical studies often require large amounts of pure protein. 

It is therefore necessary to resolve the target protein from the contaminating E. 

coli cell background. Separation techniques exist that separate proteins based 

on size, charge, hydrophobicity and the presence of engineered affinity tags. A 

two-step purification protocol was routinely used for the protein fragments 

presented in this work. 

 

2.6.1 Immobilised Metal Affinity Chromatography 

The pET-YSBLIC3C vector encodes an N-terminal 6xHis affinity tag which is 

fused to the target protein. This small peptide tag has a high affinity for divalent 

cations such as Ni2+. This affinity is conferred by the multiple imidazole moieties 

of the tandem histidine side chains [181]. Immobilised metal affinity 

chromatography (IMAC) utilises a resin which binds divalent cations via 

chelating groups, commonly nitrilotriacetic acid (NTA), packed into a sealed 

column to separate tagged target protein from untagged impurities. These 

HiTrap columns (GE Healthcare) are produced in volumes of 1 and 5 ml. The 

column resin is loaded with Ni2+ by incubation with 100 mM NiSO4. When 

clarified cell lysate (Figure 2-5) is passed over the column, 6xHis tagged 

proteins are sequestered by the resin while impurities pass through without 

binding. After washing with multiple column volumes of buffer the bound 

protein(s) is eluted with an increasing concentration gradient of imidazole, 

which competes for the nickel with the protein histidine residues. The lysis 

buffer is supplemented with 20 mM imidazole which serves to reduce non-

specific binding to the column [182] and the imidazole elution gradient 

increases to a final concentration of 500 mM. 

The clarified cell lysate, generated in section 2.5.3, is loaded onto the column 

(pre-equilibrated in lysis buffer) at a flow rate of 2 ml/minute using a peristaltic 

pump. The material that does not bind to the column during loading is collected 

and is referred to as the flow-through. An 8 column volume washing step and a 

16 column volume gradient elution are carried out at flow rate of 2 ml/minute 
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on an AKTA purifier system (GE Healthcare Life Sciences). The A280 and the A260 

are continuously monitored to detect the presence of eluting protein and other 

absorbing species such as nucleic acids. The low imidazole concentration in the 

lysis buffer is used to wash the column until a stable baseline is observed, 

indicating that unbound proteins have been eluted from the column. A gradient 

elution of increasing imidazole concentration is achieved by pumping a mixture 

of low imidazole (20 mM) buffer with increasing proportions of high imidazole 

buffer (500 mM) through the column. As the imidazole concentration on the 

column increases, the bound histidine residues are displaced causing elution of 

the 6xHis tagged protein. Elution of the protein can be observed as a peak in the 

A280 trace. Fractionation is also carried out by the AKTA purifier and peak 

fractions are analysed by SDS-PAGE (section 2.7.3.1). Those fractions containing 

the target protein are pooled.  

 

 

Figure 2-5: Purification by Nickel IMAC. 
(A) A resin (grey arc) with attached chelating groups such as NTA (black) is charged with Ni2+, a 
divalent cation (blue). (B) The mixture of proteins in the cell lysate is pumped through the 
column. 6xHis-tagged proteins (green) bind to the Ni-NTA and are immobilised, untagged 
proteins (brown, purple and grey shapes) remain in the mobile phase and are eluted in the flow 
through. (C) Unbound proteins are washed away thoroughly to ensure only sample bound to the 
stationary phase remains. (D) A linear imidazole concentration gradient is applied. As the 
imidazole concentration increases, Ni bound histidine residues are outcompeted and the tagged 
protein re-enters the mobile phase to be eluted. 
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2.6.2 HRV3C Protease Cleavage and Removal of 6xHis Affinity Tag 

After IMAC, the 6xHis affinity tag is cleaved from the target protein by Human 

Rhinovirus 3C protease (HRV3C), a cysteine protease which recognises and 

cleaves the peptide sequence: 

 

LEVLFQ↓GP 

 

The coding sequence for this peptide in pET-YSBLIC3C (Figure 2-2) is flanked 

by 5’ sequence encoding the 6xHis tag and 3’ sequence encoding the 

recombinant protein. Thus HRV3C treatment of the recombinant fusion protein 

results in selective removal of the 6xHis tag, leaving the target protein with a 3 

residue N-terminal addition of the sequence GPA. The HRV3C used in this work 

is produced with its own non-cleavable N-terminal 6xHis affinity tag. A second 

IMAC purification step removes any remaining 6xHis tagged protein including 

HRV3C, the 6xHis tags produced by HRV3C cleavage and any non-specifically 

binding contaminants.  

Pooled peak fractions from the initial IMAC purification are mixed with a 

purified stock of 6xHis-HRV3C protease at 10 mg/ml. The HRV3C added is at a 

1:50 mass ratio of enzyme to substrate.  The cleavage reaction takes place 

during dialysis overnight against lysis buffer containing no imidazole. 10 µl 

samples of the pooled fractions before and after HRV3C treatment are analysed 

by SDS-PAGE (section 2.7.3.1) to assess the progress of the cleavage reaction 

which is evidenced by a decrease in molecular weight of the post cleavage 

sample. The dialysate is then loaded onto a 5 ml HiTrap column equilibrated 

with lysis buffer on an AKTA purifier. Wash and imidazole gradient steps are 

then carried out as before. The cleaved target protein should elute in the flow 

through or early in the imidazole gradient, while contaminants and the 3C 

protease elute at higher concentrations of eluent. Fractions containing target 

protein are pooled. 
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2.6.3 Size Exclusion Chromatography 

Size exclusion chromatography, also known as gel filtration, is a technique for 

separation of protein species based on size and shape (Figure 2-6). A size 

exclusion column is packed with cross-linked beads made from materials such 

as sepharose or superdex. The beads are porous each possessing multiple 

cavities of various sizes. As a mixture of proteins flows through the bead matrix 

or column bed, smaller proteins have lower mobility as they are retarded by 

frequent diffusion out of the mobile phase and into the pores.  Meanwhile larger 

proteins are too bulky to enter many of the pores and thus achieve higher 

mobility. Therefore, elution occurs in the order from large species to small. The 

assorted column bed materials possess distinct pore size distributions and thus 

have capacities to resolve proteins in different size ranges [183]. Each column 

has a void volume, which is the elution volume of large materials that have not 

interacted with the pores. The remainder of the eluted bed volume of the 

column consists of species which have undergone resolution to some extent 

through pore interaction. An S200 HiLoad 16/60 column (GE healthcare), 

routinely used in this work, contains a superdex matrix optimised for 

separation of proteins between 1 x 104 and around 6 x 105 Da in a column bed 

16 mm in diameter and 60 cm long. The total volume, Vt, is 120 ml, and the void 

volume, V0, is 40 ml. To avoid solvent front effects on separation, gel filtration 

columns must be completely equilibrated in running buffer before the sample is 

applied. Diffusion effects reduce peak resolution, therefore, the sample should 

be injected onto the column in as small a volume as is practicable. In the case of 

16/60 columns, the injection volume should be less than 3 ml.  

Protein samples are concentrated to 2 ml and injected onto an S200 HiLoad 

16/60 column pre-equilibrated in 0.22 µm filtered and degassed running buffer 

at a flow rate of 1 ml/minute using an AKTA purifier. The A280 of the eluate is 

continuously monitored. 1.5 ml fractions are collected after 35 mls, and 

fractions with significant A280 readings are analysed using SDS-PAGE, section 

2.7.3.1. Target protein containing fractions are pooled and concentrated for 

snap freezing and storage at -80°C. 
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Figure 2-6: The Principle of Size Exclusion Chromatography.  
(A) Separation of a mixture of differently sized protein species and multimeric states. (i) A mixture of proteins is resolved by retention of smaller species in pores of 
various sizes. The matrix beads (light blue) contain pores of various sizes. Larger species are less frequently retained. (ii) An example A280 trace for the 
demonstrated proteins, the largest species are eluted first with sequential elution of species of decreasing size. A monomer and dimer of the same protein (blue 
circles) can also be resolved. (B) Molecular Weight ranges for Gel Filtration Media. Resolution molecular weight ranges as presented by GE Healthcare [183].
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2.6.4 Ion Exchange Chromatography 

Ion exchange chromatography is a technique which can be used to separate 

molecules such as proteins based on their surface charge. The stationary phase 

is embedded with ionic functional groups which are positively or negatively 

charged in the case of anion and cation exchange, respectively. Molecules of an 

opposite charge will therefore bind to the column. The affinity of an analyte for 

the column matrix is determined by the density and distribution of its charged 

residues. Increasing ionic strength of the mobile phase, effected by a gradient 

increase in NaCl concentration, disrupts the electrostatic interactions between 

the protein and the resin and causes elution of the bound analytes in ascending 

order of affinity for the column. 

The net charge on a protein is pH dependent. The isoelectric point, pI, of a 

protein represents the pH at which the protein has no net charge. Therefore, at 

pHs above the pI the protein is negatively charged and below the pI it is 

positively charged. 

A 5 ml MonoQ (anion exchange) column (GE Healthcare) was equilibrated in 

50 mM Tris-HCl buffer at pH 8.0. The protein sample was also dialysed into this 

salt-free buffer and loaded onto the column. An 8 column volume wash with 

salt-free buffer was used to elute unbound material before the column was 

developed with a 21 column volume 0-1 M NaCl linear gradient with 4 ml 

fractions being collected. The absorbance of eluate was continuously monitored 

at 280 nm and 254 nm. Peak fractions were analysed by SDS-PAGE, section 

2.7.3.1.  
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2.7 Protein Analysis 

2.7.1 Manipulation of Protein Concentration 

Controlling protein concentration is important. Reduction of protein 

concentration simply requires dilution in a suitable buffer. Increases in protein 

concentration were achieved using an Amicon Ultra concentrator (Millipore). In 

these concentrators, a 15 ml sample reservoir is suspended in a 50 ml 

centrifuge tube. The base of the reservoir is constructed from semi permeable 

membrane panels. Concentrators are produced with various membrane 

permeabilities and are graded by Molecular Weight Cut-Off (MWCO), which 

describes the molecular weight above which a protein does not traverse the 

membrane. Centrifugation of the concentrator at 5,000 x g in a Harrier 

centrifuge forces the sample against the membrane which allows passage of 

water and small molecules but not species above the MWCO. The sample is 

retained in the sample reservoir, thus reducing the volume and increasing the 

concentration of the protein. Centrifugation is repeated at 10 minute intervals 

until the sample reaches the desired volume. The required time for 

concentration depends on the sample protein, buffer and concentrator MWCO. 

Between centrifugation steps it is important to check for protein precipitation 

and to resuspend any protein deposits that may build up at the membrane. The 

concentration of a 15 ml sample of protein can be increased 75-fold by 

concentration to 200 µl in a short time without changing the buffer 

composition.   

 

2.7.2 Determination of Protein Concentration 

The UV absorbance of a protein solution at 280 nm can be used to estimate 

protein concentration. Each protein has a molar extinction coefficient (ε), which 

can be calculated based on the protein’s amino acid sequence. Tryptophan, 

tyrosine and cystine residues contribute to ε to different extents, their 

individual molar extinction coefficients are 5500, 1490 and 125 M-1 cm-1, 

respectively. The ε for a protein fragment can be calculated using an online tool, 

Protparam (ExPASy) [184], which determines the relative concentrations of 
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each contributing residue in each mole of protein. The Beer-Lambert law 

(Equation 2-1) can be used to calculate protein concentration; c, based on 

absorbance at 280 nm; A, molar extinction coefficient; ε and photocell 

pathlength; l. A280 readings are taken using an Eppendorf biophotometer, a 

buffer blank is also measured to provide a baseline reading. 

A = ε c l  Equation 2-1 

 

2.7.3 Polyacrylamide Gel Electrophoresis 

Polyacrylamide Gel Electrophoresis (PAGE) is a heavily used tool for analysis of 

proteins throughout expression optimisation, purification and subsequent 

studies. Polyacrylamide gels are produced by polymerisation of a mixture of 

acrylamide and bis-acrylamide initiated by ammonium persulphate and 

tetramethylethylenediamine (TEMED) which forms a matrix of pores of various 

sizes. When a potential difference is applied across the gel protein analytes 

undergo a size filtering effect as with agarose gel electrophoresis of DNA. The 

percentage concentration of acrylamide and bis-acrylamide in the 

polymerisation mixture can be adjusted to give higher or lower crosslinking 

density, thus changing the resolution properties of a polyacrylamide gel. Lower 

percentage gels allow resolution of larger macromoleculaes, while high 

percentage gels are able to separate smaller species more efficiently. Negatively 

charged proteins migrate towards the positively charged cathode at a migration 

velocity based on both the applied potential difference and on each protein’s 

electrophoretic mobility. Gels and sample loading buffers are prepared using 

the components detailed in Table 2-6.  

 

2.7.3.1 Sodium Dodecyl Sulphate (SDS) PAGE  

Polyacrylamide gel electrophoresis is most commonly used to analyse proteins 

in a denatured state where protein mobility is molecular weight dependent. The 

detergent, sodium dodecyl sulphate (SDS), possesses a 12 carbon hydrophobic 

chain that binds strongly to polypeptide chains. When protein is heat denatured 
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in the presence of SDS and a reducing agent, β-mercaptoethanol, a fully 

unfolded protein is uniformly coated with SDS. SDS has a negatively charged 

sulphate head group which masks the intrinsic charge of each protein and 

provides a constant mass to charge ratio amongst all analyte proteins. In SDS-

PAGE, the gels, running buffer and sample loading dye all contain SDS. 

Mini gel kits (Hoeffer) were used for this work to cast 1 mm thickness vertical 

polyacrylamide gels. A discontinuous gel system [185] is constructed by initial 

polymerisation of a resolving gel at pH 8.8, typically at a concentration of 10-

17.5% acrylamide. Subsequently, a stacking gel is cast with 3% acrylamide at 

pH 6.8 and a comb to form sample loading wells. The low percentage stacking 

gel serves to concentrate samples into narrow bands before entry onto the 

resolving gel where the components are resolved, increasing the band 

resolution properties of the gel. Samples are prepared by mixing with 2 x SDS-

PAGE Loading Dye and are boiled at 95°C for 5 minutes alongside a mixture of 

low molecular weight markers (Biorad), consisting of proteins of 14.4 kDa, 21.5 

kDa, 31 kDa, 45 kDa, 66.2 kDa and 97.4 kDa. The marker and samples are 

loaded into the sample wells and a 200 V potential difference is applied for 52 

minutes. On completion gels are stained with Coomassie Brilliant Blue, a 

colloidal dye that binds to protein but not to the gel. The gel is destained using a 

solution of propanol and acetic acid, leaving blue protein bands on the 

colourless and transparent gel. 

 

2.7.3.2 Native PAGE 

Native PAGE is used to analyse proteins in their native state and the 

electrophoretic mobility of a sample depends on both charge and shape. Each 

protein has a pI (the pH at which it has no net charge), which is known as the 

isoelectric point. In the context of native PAGE the pI of a protein determines its 

direction of migration. At a pH above the pI of a protein there is a net negative 

charge and migration occurs in the direction of the cathode. Conversely, 

migration of a protein towards the anode occurs below its pI. This means 

successful analysis may require variation of experimental pH or inversion of the 

anode and cathode. The larger the net charge, the faster migration will occur, 
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however, the size of each protein serves as a retarding factor on migration as it 

is inhibited by the polyacrylamide matrix. As native proteins are much bulkier 

than their denatured counterparts, native gels are cast at lower percentage 

concentrations of acrylamide, namely 5-10%. 

  

Table 2-6: Components for Polyacrylamide Gel Electrophoresis 

Solution Component Concentration 

Resolving Gel 

Tris-HCl pH 8.8 

Acrylamide Stock* 

Water 

SDS 

Ammonium Persulphate 

TEMED 

0.38 M 

10 – 17.5 % 

To 8.2 ml 

0.1 % 

0.025 % 

8 µl 

Stacking Gel 

Tris-HCl pH 6.8 

Acrylamide Stock* 

Water 

SDS 

Ammonium Persulphate 

TEMED 

0.13 M 

3 % 

To 5 ml 

0.1 % 

0.025 % 

8 µl 

Loading Dye [x2] 

Tris-HCl pH 6.8 

Glycerol 

Bromophenol blue 

-mercaptoethanol 

SDS 

30 mM 

5 % 

0.01% 

5 % 

1 % 

Running Buffer 

Tris-HCl pH 8.8 

Glycine 

SDS 

25 mM 

200 mM 

0.1 % 

Components in bold red text are not used when carrying out Native PAGE. 

*The acrylamide stock used contains 30% (w/v) Acrylamide and 0.8% (w/v) 
bis-Acrylamide. 
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 A Native PAGE gel is cast with no stacking gel and its components contain no 

SDS. No protein markers are used but when analysing a mixture of species 

single pure proteins are used as referential controls. Native sample loading dye 

also contains no SDS and samples are not boiled, so that the proteins’ native 

states are retained. The gel is run at 100 V at 4°C for 2 hours; the reduced 

temperature and voltage serves to prevent the temperature rising in the gel that 

would cause sample denaturation. Native gels are also visualised using 

Coomassie Brilliant Blue dye. 

 

2.7.4 Circular Dichroism 

 

Figure 2-7: Example CD spectra of protein secondary structure.  
Spectra shown are recorded for poly-L-lysine in α-helical (1), antiparallel β-sheet (2) and 
extended (disordered) (3) conformations and for collagen in native (triple helical)(4) and 
denatured (5) forms. Taken from by Greenfield, 2006 [186]. 

 

Circular Dichroism (CD) measures the difference in the absorption of right- and 

left-handed circularly polarised light. Asymmetry in protein molecules results 

in a differential absorbance of each polarisation of light by the peptide bond 

chromophore that absorbs in the far UV spectral region (190-250 nm). This 

difference is plotted as molar ellipticity, θ, against the wavelength of the 
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incident light. Various secondary structure elements are defined by different 

alignments of contiguous peptide bonds relative to one another, which causes 

variation in both absorbed wavelength and molar ellipticity (Figure 2-7). Even a 

denatured protein exhibits a CD spectrum due to conformational preferences 

between adjacent residues. 

 

CD spectra were measured with a Jasco J810 CD Spectrophotometer (JASCO 

Inc.). A xenon lamp and prism monochromator were used to select different 

wavelengths. To avoid interference from the short wavelength UV absorbance 

of O2 the chamber was continually swept with N2 during the experiment. 

Temperature control to avoid variations in protein folding was achieved using a 

Peltier temperature control unit. CD spectra were measured at a protein 

concentration of 0.2 mg/ml in 1 mm pathlength quartz cuvettes with a sample 

volume of 400 µl. Data were collected over the wavelengths range 180 - 260 nm. 

A buffer scan was subtracted from the protein spectra as a baseline correction. 

 

2.7.5 SEC-MALLS 

Size Exclusion Chromatography - Multi-Angle Laser Light Scattering (SEC-

MALLS) is a technique which allows molecular weight (MW) estimation of the 

component species of a solution. Particles, such as proteins, which have a 

different polarisability from the solvent they are suspended in will scatter light 

from a beam passed through the solution. The amount of light scattered 

depends on concentration but is also proportional to molecular weight. 

Scattered light is measured by multiple detectors set at various angles to the 

incident light. Concentration is measured by differential refractive index. 

Linking the detection of both concentration and light scattering to gel filtration 

chromatography can be used to estimate molecular weight.  

Experiments were conducted on a system comprising a Wyatt HELEOS-II multi-

angle light scattering detector and a Wyatt rEX refractive index detector linked 

to a Shimadzu HPLC system (SPD-20A UV detector, LC20-AD isocratic pump 

system, DGU-20A3 degasser and SIL-20A autosampler). Work was conducted at 
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room temperature (20 ±2°C). The column used was a Superdex S200 10/300 GL 

column (G.E. Healthcare) unless otherwise stated. The column was equilibrated 

with solvent before use and flow was continued at the working flow rate of 0.5 

ml/min until baselines for UV, light scattering and refractive index detectors 

were all stable. 

The sample injection volume was 100 µl. Shimadzu LC Solutions software was 

used to control the HPLC and Astra V software for the HELEOS-II and rEX 

detectors. The Astra data collection was 1 minute shorter than the LC solutions 

run to maintain synchronisation. Blank buffer injections were used as 

appropriate to check for carry-over between sample runs. Data were analysed 

using the Astra V software. MWs were estimated using the Zimm fit method 

with degree 1. A value of 0.19 was used for protein refractive index increment 

(dn/dc). 

 

  



104 
 

2.8 Protein Crystallisation 

The formation of well-ordered protein crystals can occur when an aqueous 

solution transitions from under-saturation to super-saturation due to a change 

in protein or precipitant concentration, pH or temperature. Several states of 

saturation define the process of crystal formation and are dependent on relative 

protein and precipitant concentration (Figure 2-8). In the precipitation zone 

protein is not stable in solution and precipitates in an amorphous mass. The 

nucleation zone, existing at slightly lower super-saturation levels, results in a 

slower precipitation that can give rise to small ordered crystal nuclei. The meta-

stable zone exists at low levels of super-saturation. In this zone protein is 

unable to form nuclei but can extend crystal nuclei, causing crystal growth.  

 

Figure 2-8: The crystallisation phase diagram.  
The diagram indicates the various levels of super-saturation. Crystal nuclei are formed in the 
nucleation zone and crystal growth occurs in the metastable zone. Amorphous precipitate is 
formed in the precipitation zone.  

 

In a successful crystallisation experiment the precipitant causes the protein 

solution to enter the nucleation zone where a small number of nuclei will form, 

leading to a reduction in the protein concentration. This concentration 

reduction in favourable cases will cause the solution to enter the metastable 

zone at which point the nuclei will slowly grow into large and well-ordered 

crystals suitable for X-ray crystallographic structure determination.  
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The crystallisation experiments in this work are based on vapour diffusion in 

either sitting or hanging drops (Figure 2-9). Both experiments consist of a 

sealed well containing a reservoir of precipitant solution and a separate drop of 

much smaller volume of protein mixed in a 1:1 ratio with the precipitant 

solution. An osmotic gradient is formed between the low precipitant 

concentration drop and the high precipitant concentration reservoir. As a result 

water evaporates from the drop increasing both precipitant and protein 

concentration. 

 

Figure 2-9: Sitting and hanging drop vapour diffusion experiments.  
Schematic diagrams of sitting drop (A) and hanging drop (B) vapour diffusion experiments. 
Purple arrows indicate diffusion of water from the low precipitant concentration drop towards 
the high precipitant concentration reservoir. 

 

2.8.1 Crystallisation Screening 

In order to find conditions in which protein crystals are formed it is necessary 

to test a variety of types and concentrations of precipitants, pHs and additives 

usually requiring 10s of milligrams of protein. Broad ranges of conditions can 

be sampled using commercially available screens. 96-condition screens 

commonly aim to either cover a wide range of precipitants, such as the Index 

and Hampton I & II screens (Hampton Research) or focus on a particular 

chemical subset like PEGs in the PACT premier screen (Molecular Dimensions).  

The solutions from the chosen screen are transferred to an MRC-Wilden 96-well 

crystallisation plate in 54 µl aliquots using a Hydra-96 pipetting robot (Robbins 

scientific). A 300 nl sitting drop experiment is aliquoted using a Mosquito 
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nanolitre pipetting robot (TTP LabTech). 150 nl each of precipitant solution and 

150 nl protein solution are pipetted into raised wells. The plate is sealed using 

an optical grade self-adhesive plastic lid. Plates are stored at 20°C and checked 

for crystal formation at 2 or 3 day intervals.    

 

2.8.2 Crystallisation Optimisation 

Conditions which successfully produce protein crystals, or ‘hits’, are optimised 

to increase the size, quality and reproducibility of the crystals. The 

optimisations in this work were carried out in a 24-well plate (Falcon) with 

hanging drops of 2 µl over a 1 ml precipitant solution reservoir. The precipitant 

solutions in the optimisation plate generally mimic the initial hit with 

modification of one or two variables, such as precipitant concentration and pH. 

Each well can accommodate up to three drops which might be used to optimise 

protein concentration. Drops consisting of a 1:1 ratio of protein and precipitant 

solutions are placed onto the surface of siliconised glass cover slips, prepared 

with Aquasil (Pierce). The cover-slips are sealed over the wells using vacuum 

grease. Plates are incubated at 20°C.   
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Chapter 3: Investigations into SpoIIE fragments 

containing elements of the FtsZ binding domain.   

3.1 Introduction 

The multi-domain protein, SpoIIE, possesses two putative cytoplasmic domains 

in addition to a multiple helix membrane spanning domain. The C-terminal 

cytoplasmic domain is easily identifiable as a PP2Cα protein phosphatase 

domain. However, the remaining 290 residues show little sequence homology 

to proteins of known structure or identified function beyond SpoIIE 

orthologues. This central domain, termed the FtsZ binding domain, is a target of 

great interest for how SpoIIE’s phosphatase activity is regulated. Structures 

have been obtained by X-ray crystallography of every element of the sigF 

regulation system excepting the transmembrane and FtsZ binding domains of 

SpoIIE. This chapter describes the cloning, isolation and characterisation of a 

number of fragments of SpoIIE encompassing the FtsZ binding domain. The goal 

of these studies is the elucidation of the structure of the FtsZ binding domain so 

that its interactions with the PP2Cα phosphatase domain may be understood. 

 

3.1.1 Previous approaches to soluble SpoIIE 

An enduring obstacle to structural studies of SpoIIE has been obtaining enough 

soluble protein to support a programme of protein crystallisation experiments. 

Elucidation of the domain boundaries within a protein chain is often an 

important step on the pathway to the expression of soluble fragments of a 

larger recalcitrant protein. Domain boundaries can sometimes be inferred from 

a bioinformatics analysis by searching for segments of disorder, which may 

constitute inter-domain loops.  Previously, analysis of SpoIIE using the RONN 

disorder predictor, carried out in this lab, yielded 16 possible targets. From 

these the SpoIIE590-810 fragment, encompassing the PP2Cα phosphatase domain, 

proved to be soluble. This construct was modified to include the 17 truncated C-

terminal residues, was successfully crystallised and the structure solved as a 

domain-swapped dimer, discussed further in Chapter 4 [170].  
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Figure 3-1: Soluble SpoIIE constructs identified by ESPRIT. 

 

A truncation library based solubility screen, ESPRIT (Expression of Soluble 

Protein by Random Incremental Truncation) [187], was carried out using a 

cloned spoIIE fragment encompassing base pairs 901 to 2481 in order to 

determine solubility windows across the cytosolic SpoIIE domains [188]. After 

screening and following up hits by recloning and DNA sequencing, the 12 most 

soluble fragments spanning the entire region were studied further (Figure 3-1). 

While these fragments had shown solubility in the library screen, further study 

involving larger scale expression demonstrated that only two of the 6 fragments 

which spanned the FtsZ domain could be overexpressed in E. coli in a soluble 

form; SpoIIE375-827 and SpoIIE412-827, named B2 and H1 respectively according to 

their ESPRIT screen designations. These fragments showed a tendency to 

oligomerise and when examined by Size Exclusion Chromatography formed 

oligomers of molecular mass >600 kDa as well as numerous smaller species. 

Neither the oligomeric fractions of B2, nor the isolatable dimer fractions of H1 



109 
 

yielded any protein crystals in crystallisation screens (Andrea Rawlings, 

unpublished).  

Six constructs, derived by taking the N-termini of ESPRIT hits and coupling 

them with the N-terminal boundary of the PP2Cα domain at residue 590, were 

tested for expression and solubility. Of these only one showed adequate 

solubility for study. This construct comprised SpoIIE residues 375-590 and was 

termed B2-B1 according to the ESPRIT hits it best represented.  
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3.2 Results 

3.2.1 Isolation and Analysis of the B2-B1 fragment: SpoIIE375-590 

The B2-B1 (SpoIIE375-590) fragment had previously been identified in high 

throughput screening as soluble following over-expression in the E. coli BL21 

pLysS expression strain. The construct consisted of the kanamycin resistant 

pET-YSBLIC3C plasmid (pYSBLIC3c_SpoIIE375-590) bearing nucleotides 1126-

1770 of spoIIE from the B. subtilis coding sequence downstream of sequence 

encoding an N-terminal 6xHis affinity tag and a Human Rhinovirus 3C protease 

cleavage site. The encoded protein has a molecular mass of 28.6 kDa with a 

calculated isoelectric point (pI) of 5.52. The solubility screen was carried out in 

high throughput lysis buffer of 20 mM Tris-HCl, 150 mM NaCl at pH 7.4. 

Expression tests were carried out to discover optimum solubility conditions for 

the SpoIIE375-590 fragment.  

Table 3-1: Buffers used in solubility screening of SpoIIE375-590. 

Buffer Insert Reaction pH 

A  50 mM Tris-HCl, 500 mM NaCl, 30 mM Imidazole 8.0 

B 20 mM NaH2PO4, 150 mM KCl, 30 mM Imidazole 7.6 

C  60 mM HEPES, 150 mM KCl 7.5 

D  100 mM BTP, 150 mM KCl 7.5 

E  20 mM K2HPO4, 150 mM KCl,  7.5 

F 20 mM Na2HPO4, 150 mM KCl, 20 mM Imidazole 7.6 

 G 20 mM Na2HPO4 mM, 500 mM KCl, 20 mM Imidazole 7.6 

H 50 mM Tris-HCl, 150 mM KCl 8.0 

I 20 mM Tris-HCl, 150 mM NaCl 7.4 

 

E. coli BL21 pLysS cells harbouring the pYSBLIC3c_SpoIIE375-590 plasmid were 

cultured in 50 ml falcon tubes containing 10 mls of LB with 30 µg/ml 
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kanamycin. Expression was carried out at 16°C overnight after induction at an 

optical density of 600 nm (OD600) of 0.6 with IPTG to a final concentration of 

1 mM as described in section 2.5.2. 1 ml aliquots of cells were spun down for 1 

min at 16,000 x g in a bench top microcentrifuge. Cell aliquots were then 

resuspended in an array of buffers (Table 3-1) before lysis by sonication. A 

‘total’ protein fraction and a ‘soluble’ protein fraction, isolated by centrifugation 

of the lysate, were analysed by SDS polyacrylamide gel electrophoresis (SDS-

PAGE) on a 15% polyacrylamide gel. 

The expression tests indicated that lysis in all the buffers tested led to 

production of soluble SpoIIE375-590 (Figure 3-2). It was decided that buffer B 

(20 mM NaH2PO4, 150 mM KCl at pH 7.6) showed the most equal ratio of soluble 

to total SpoIIE375-590 and shows better solubility than the HiTEL (High 

Throughput Expression Laboratory) buffer used initially. 

 

Figure 3-2: SDS-PAGE gel images showing total and soluble cell extracts from E. coli BL21 
pLysS cultures harbouring the pYSBLIC3c_SpoIIE375-590 plasmid. 
Blue shaped boxes indicate the band associated with SpoIIE375-590 (a) Cells lysed in the 
buffers shown in Table 3-1. (U) indicates an uninduced sample. T and S indicate total and 
soluble cell samples, respectively. The letters A to I indicate the buffers used which can be 
referenced in Table 3-1. M indicates Biorad Low Molecular weight markers. (b) Cells lysed in the 
original screening buffer. (c) Cells lysed in the optimised buffer – B. 
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The SpoIIE375-590 fragment expression tests were scaled up in order to produce 

the quantities of protein required for crystallisation experiments. Four 2 l flasks 

containing 500 ml of LB media were inoculated with E. coli BL21(DE3) pLysS 

cells harbouring the pYSBLIC3c_SpoIIE375-590 plasmid and cultured at 37°C as 

described in section 2.5.1. Production of SpoIIE375-590 was induced with 1 mM 

IPTG when the OD600 reached 0.6 with cultures subsequently being incubated at 

16°C overnight. 

Cultured cells were harvested by centrifugation for 15 minutes at 4,255 x g 

before resuspension in lysis buffer B with the addition of 30 mM imidazole, 

henceforth Buffer A. This modification is to prevent non-specific binding of 

proteins to a Nickel Immobilised Metal Affinity Chromatography (IMAC) 

column, described in section 2.6.1. Resuspended cells were then lysed by 

sonication as described in section 2.5.3. Insoluble factors in the lysate were 

cleared by centrifugation at 30,600 x g for 30 minutes. 

 

Figure 3-3: SDS-PAGE gel image showing IMAC purification of the SpoIIE375-590. 
M indicates Bio-rad broad range Molecular weight markers. Lane 1; Total Cell extract, lane 2; 
Soluble cell extract [Load], lane 3; unbound flow through, lanes 4-8; fractions from Peak A 
eluting at around 60 mM imidazole, lanes 9-14; fractions from Peak B eluting at around 120 mM 
imidazole. 

 

The clarified lysate was applied to a 5 ml HisTrap nickel-charged column (GE 

Biosciences) and washed with Buffer A until to remove unbound proteins. A 

linear gradient 30-500 mM imidazole in buffer A was then used to develop the 

column. The A280 chromatogram revealed protein eluting in two peaks, a small 

peak (Peak A) at around 60 mM imidazole with a second peak (Peak B) at an 



113 
 

imidazole concentration of around 120 mM. When analysed by SDS-PAGE, the 

peak fractions were each shown to contain a strong band at around the 

expected mass of 27.6 kDa (Figure 3-3). The peak fractions were separately 

pooled and concentrated to a volume of < 4 mls for further purification by size 

exclusion chromatography. 

 

Figure 3-4: Size Exclusion purification of SpoIIE375-590 peaks A (blue trace) and B (green 
trace). 

 

Concentrated fractions were loaded onto a Sephacryl S-400 16/60 gel filtration 

column (GE Biosciences) in two separate size exclusion chromatography 

experiments (Figure 3-4), as described in section 2.6.3. The running buffer used 

in this step was 20 mM NaH2PO4, 150 mM KCl at pH 7.6. Peak A resolved into 

five species; two small broad peaks with retention volumes of 59 and 75 mls, 

one major peak at 90 mls and finally two shoulder peaks at 108 and 115 mls. 

SDS-page analysis of these peaks indicated that only the major peak at 90 mls 

contained an appreciable concentration of SpoIIE375-590. In contrast, B resolved 

into four species; one large peak in the column’s void volume at 40 mls, a small 

peak at 59 mls, a major peak at 90 mls and a moderately sized shoulder peak at 

105 mls. SDS-PAGE analysis showed that all of these peaks contained the 

SpoIIE375-590 fragment in a largely pure form, with the exception of the shoulder 

peak (105 mls) which had a number of contaminants including a major band at 
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around 25 kDa. The major peaks, eluting at 90 mls, from each gel filtration 

experiment, were isolated and concentrated to 13.6 and 16.9 mg/ml, 

respectively. The concentrated protein stocks were analysed by SDS-PAGE, both 

showing minor contaminants at lower molecular masses (Figure 3-5). 

 

Figure 3-5: SDS-PAGE gel image of purified aliquots of SpoIIE375-590.  
M represents Biorad LMW protein markers. Lanes 1 and 2; post gel filtration aliquots of protein 
from Peak A at one tenth and one fifth concentration respectively. Lanes 3 and 4; post gel 
filtration aliquots of protein from Peak B at one tenth and one fifth concentration, respectively. 

 

Both of these samples of SpoIIE375-590 were put into crystallisation screens, as 

described in section 2.8.1. The proteins were screened in tandem using an MRC 

Wilden 96-well plate with two sample wells per condition against the Hampton 

I/II (Hampton research), PACT (molecular dimensions), Index (Hampton 

research) and CSS I/II (molecular dimensions) screens. The CSS I/II screen uses 

48 conditions modified by two base buffers giving 96 conditions in total, the 

buffers used were; 1 M Tris-HCl at pH 8 and 1 M Tris-HCl at pH 5.6. Analysis of 

the screens showed a number of seemingly promising conditions. However, 

when tested for X-Ray diffraction, the crystals proved to be salt. Optimisation of 

promising conditions varying precipitant and buffer concentrations and pH 

were unable to reproduce the results shown in the original screens.  

The formation of salt crystals in protein crystallisation screens of SpoIIE375-590 

prompted the removal of a NaH2PO4 based buffer from the later stages of 

purification. Further purification of the fragment following buffer exchange into 

50 mM Tris-HCl, 150 mM NaCl at pH 8.0, a buffer similar to that previously used 

successfully in the purification of the SpoIIE590-827 fragment representing the 

PP2C phosphatase domain.  
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Nickel IMAC purification of cell lysate from 2 l of E. coli BL21 pLysS cells 

induced to produce SpoIIE375-590 was carried out as above. SDS-PAGE analysis 

showed a large portion of SpoIIE375-590 eluting in a peak at around 120 mM 

imidazole. The peak fractions were isolated and buffer exchanged, using a 

12,000-14,000 MW cut off membrane, into the above buffer with the addition of 

20 mM imidazole. A 1:50 ratio of Human Rhinovirus 3C (HRV 3C) protease with 

a 6xHis affinity tag was added to the dialysis in order to effect cleavage of the 

Hisx6 tag from SpoIIE375-590, as described in section 2.6.2.  

The IMAC purified SpoIIE375-590 bears an eight residue protease recognition 

sequence sandwiched between the N-terminal 6xHis tag and the beginning of 

the SpoIIE sequence: 

 MGSSHHHHHHSSGLEVLFQGPA-SpoIIE 

The underlined sequence is the recognition site for HRV 3C protease. It uses a 

catalytic cysteine residue to cleave to substrate polypeptide between the 

glutamine and glycine residues of the recognition site. The remaining SpoIIE 

fragment is represented in bold with a glycine, proline, alanine sequence of 

residues remaining at the N-terminus.  

 

Figure 3-6: SDS-PAGE gel image of HRV 3C cleavage of the 6xHis affinity tag of 
SpoIIE375-590.  
M represents Biorad LMW protein markers. Lane 1 shows the SpoIIE375-590 fragment before 
addition of HRV 3C protease, lane 2 shows SpoIIE375-590 after buffer exchange and HRV 3C 
protease cleavage. The cleaved SpoIIE375-590 fragment shows a lower molecular mass, the HRV 
3C protease is also visible as a band at around 60 kDa. 
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The success of the cleavage of 6xHis-SpoIIE was analysed by SDS-PAGE, 

showing cleavage had occurred efficiently (Figure 3-6). The cleaved SpoIIE375-

590 was applied to a 5 ml Nickel charged HisTrap column and the column 

washed before a linear gradient to a concentration 500 mM imidazole was 

applied. The A280 chromatogram showed a large peak in the low imidazole wash 

with three overlapping peaks eluting from the column at imidazole 

concentrations between 60 and 150 mM. Analysis by SDS-PAGE shows that the 

peaks in the imidazole gradient contained very low concentrations of SpoIIE375-

590 with the large wash peak showing a high concentration of the SpoIIE 

fragment. The high concentration peak was isolated, concentrated and applied 

to a Superdex 200 (S200) 16/60 gel filtration column (GE Biosciences) (Figure 

3-7). The A280 chromatogram and SDS-PAGE analysis revealed a major 

SpoIIE375-590 peak eluting at 90 mls with a much less intense SpoIIE375-590 

containing peak at 78 mls. The major peak, having very minor contaminants, 

was concentrated to 13.6 mg/ml in 400 µl and stored at -80°C, a total yield of 

around 5.5 mg of purified SpoIIE375-590. 

 

Figure 3-7: Size Exclusion purification of SpoIIE375-590 after 6xHis affinity tag cleavage. 
The A280 chromatogram is shown as a blue trace. 

 

The purified SpoIIE375-590 fragment was placed in crystallisation trials against 

the Wizard (emerald biosystems), Natrix (hampton research) and Hampton I/II 
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screens at protein concentrations of 14 and 10 mg/ml (this second 

concentration with added 5 mM TCEP, a reducing agent). Analysis of the screens 

showed no promising hits, with around 50% of conditions yielding amorphous 

precipitate. 

Along with the previously isolated SpoIIE fragment H1 (412-827) and the 

PP2Cα domain (590-827), SpoIIE375-590 was analysed by Size Exclusion 

Chromatography with Multi-Angle Laser Light Scattering, described in section 

2.7.5. This method allows molecular weight calculation of species as they elute 

from a size exclusion column. This calculation is based on the relationship 

between the refractive index of a protein solution and the extent to which larger 

molecules in the solution scatter light. The fragments were injected at a 

concentration of 1 mg/ml onto an S200 10/300 gel filtration column (GE 

Biosciences) equilibrated at 0.5 ml/min with a mobile phase consisting of 

50 mM Tris-HCl and 150 mM NaCl at pH 8.0. The theoretically calculated 

molecular weights of H1, PP2Cα and SpoIIE375-590 are 47 kDa, 26.5 kDa and 25.4 

kDa, respectively. The SEC-MALLS results show that each fragment elutes as a 

single major peak with an experimentally calculated molecular weight close to 

that calculated from their primary sequences; all fragments appear therefore to 

be monomeric (Figure 3-8).  

 

 
Figure 3-8: SEC-MALLS traces of SpoIIE fragments.  
The molecular mass (left vertical axis) and differential refractive index (dRI) (right vertical axis) 
are shown. Experiments carried out using a Superdex S200 column. The bold lines give 
molecular mass of the eluting species calculated from measurements of the refractive index and 
the multi-angle laser light scattering. Three traces for the (i) H1 (red), (ii) PP2C (green) and (iii) 
B2– B1 (blue) fragments are overlaid. 
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3.3.3 Identification of the TM:FtsZ binding domain boundary 

The domain boundaries within SpoIIE are not well defined. Bioinformatics and 

library screen based methods have failed to identify a soluble SpoIIE construct 

containing the whole cytoplasmic domain. The N-terminal membrane-spanning 

domain extends to somewhere between the amino acid residues 300 and 340. 

This section describes multiple bioinformatics analyses which were used to 

guide the design and testing fragments of SpoIIE with the goal of isolating the 

largest possible soluble domain II and III construct. 

The sequence of SpoIIE was analysed using three web based bioinformatics 

tools;  GlobPlot 2.3 [189],TMHMM predictor [190] and PSIPRED [191]. GlobPlot 

2.3 predicts the likely domain distribution in a given amino acid sequence, 

accompanying literature states that GlobPlot excels in identifying linear motifs 

of residues which often constitute domain boundaries. The GlobPlot analysis 

did not predict any disordered regions in the N-terminal 575 residues of the 

SpoIIE sequence. GlobPlot identified nine transmembrane helices at the N-

terminus and the PP2Cα domain (aas 592-804) at the C-terminus. The 

programme further described residues 322-802 as a PP2Cc domain. A search 

for known PP2Cc domains yields no sequences of around 480 residues in 

length, the average being around 240 residues. Numerous BLAST (Basic Local 

Alignment Search Tool) searches have also failed to find any homology for the 

sequence between 322 and 590 of SpoIIE. It is possible that the algorithm has 

recognized a linear motif and assigned a long domain containing homology to a 

PP2Cc domain, another isoform of PP2C. The C-terminal end of the final 

predicted transmembrane helix is at residue 302. 

TMHMM predictor is designed to recognise sequences of around 20 residues 

likely to fold into hydrophobic α-helices which are stabilised in and traverse cell 

membranes. This tool was chosen in order to identify the C-terminal limit of the 

three-hundred plus residue region of SpoIIE consisting of these helices, the 

transmembrane domain. TMHMM predicted nine transmembrane helices, with 

a probability of around 1, ending very close to residue 310. A further 20 residue 

section of the sequence was assigned a low probability of forming a 

transmembrane helix. 
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PSIPRED is a web server which aggregates the results from a number of 

secondary structure prediction algorithms to give a more accurate single 

consensus output. The output predicts 12 helices of varying size in the 1-295 

region of the SpoIIE sequence. While this is at odds with the outputs of GlobPlot 

and TMHMM predictor, PSIPRED would not have taken the architecture of 

transmembrane helices into account. A further three helices are predicted 

between residues 300-319, 322-328 and 340-375. 

The three analyses when considered together (Figure 3-9) offer a better picture 

of the region of interest. Six N-terminal truncations were chosen for 

experimental follow-up based on the calculated positions of the final 

transmembrane helices avoiding disruption of secondary structure elements. 

The N-terminal truncations chosen begin at residues 300, 316, 321, 326, 334 

and 339 and the tested constructs had C-termini at 827. Primers, sequences in 

Appendix I, were designed to amplify the appropriate spoIIE gene fragments by 

Polymerase Chain Reaction (PCR), as described in section 2.3.2, for ligation 

independent cloning into the pYSBLIC3C expression vector.  

 

 
Figure 3-9: Predictions of properties of SpoIIE in the 240 to 360 region with primary 
amino acid sequence. 
 (a) PSIPRED secondary structure predictions; α-helices are shown by the character H and 
schematically in pink cylinders, loops are shown by the character C and schematically as black 
line. (b) GlobPlot 2.3 domain predictions; transmembrane helices are shown in dark blue, the 
predicted PP2Cc domain is shown in green and residues not assigned to any domain are shown 
as a light blue line. (c) TMHMM predictor transmembrane helix predictions; probability of 
transmembrane helix presence is plotted as a red histogram. 
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Figure 3-10: PCR products of spoIIE amplification separated by electrophoresis on 1% 
agarose gels.  
SybrSafe, a DNA binding UV fluorescent dye was used for visualisation. The DNA ladder used is 
the Bioline Hyperladder I. (a) Raw PCR reaction products. (b) Products after purification by Gel 
Extraction. 

 

PCR amplification of the SpoIIE gene fragments was initially carried out with 

the following program: (5 min; 94°C, 35x[40 s; 94°C, 30 s; 40°C, 25 s; 72°C], 3 

min; 72°C, HOLD; 4°C). However, these PCRs failed and fragments of the 

expected length, (~ 1.6 kbp), were absent in some cases. As changing the Mg2+ 

concentration can affect template binding by PCR primers and increase product 

specificity, the PCRs were repeated with the MgSO4 concentration doubled 

[192]. The high Mg2+ concentration PCR produced fragments of the expected 

size as the major product in each case (Figure 3-10). The target bands were 

excised and purified using a QiaQuik Gel Extraction Kit. 

After treatment with T4 DNA polymerase, as described in section 2.3.5, the 

amplified gene fragments were annealed to the pET-YSBLIC3C vector, and the 

products were used to transform competent E. coli XL-10 Gold cells as 

described in section 2.3.6. The sequences of the recombinant plasmids obtained 

were determined to confirm that the expected fragments had been cloned in the 

correct reading frame. Next, the plasmids were introduced into E. coli strains 

BL21 (DE3) and BL21 (Gold) for expression of the target protein fragments. 

Small scale cultures, grown at 16°C overnight and at 37°C for four hours, were 

used to test for expression of soluble protein by SDS-PAGE analysis (Figure 3-

11).  
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 Figure 3-11: SDS-PAGE images of SpoIIE fragment expression tests.  
M indicates Biorad protein markers. Lane headings in blue represent expression carried out at 
16°C overnight. Lane headings in red represent expression at 37°C for four hours. Total and 
soluble cell fractions are shown for each condition. Lysis buffer used is 50 mM Tris-HCl, 150 mM 
NaCl at pH 8.0.  Cell strains are shown by blue or green banners in the bottom of each image. (a) 
Expression tests for fragments beginning at 300, 316, 321, 334 and 339. (b) Expression test for 
fragment beginning at 326. 

 

All test expression cultures were found to contain overexpressed protein of the 

expected molecular weight; however, all but two of the twelve constructs 

showed the target protein to be insoluble. The only soluble SpoIIE fragments 

were expressed at 16°C, these being the two shortest fragments SpoIIE334-827 

and SpoIIE339-827. Both of these soluble fragments have their N-termini in an 

eleven amino acid residue stretch (329-340) that lacks predicted secondary 

structure. The pattern of soluble fragments would suggest that the small α-helix 

predicted between 321 and 327 is the last element of secondary structure 

preventing solubility (Figure 3-12) and suggests the 9 residue putative loop 

preceding 340 as the interface between domains 1 and 2 of SpoIIE.  
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Figure 3-12: The TM domain : Domain II boundary region.  
(a) Schematic representation of the 300 – 340 region of SpoIIE. The PSIPRED secondary 
structure prediction is shown as grey cylinders for α-helices. The constructs studied are 
represented by arrowheads at the relevant N-terminal residue. These arrows are colour coded; 
red for insoluble and green for soluble. The amino acid sequence in this region is also shown. 
(b) SDS-PAGE image of soluble expression of the two constructs; 334-827 and 339-827. 

 

 The SpoIIE334-827 and SpoIIE339-827 fragments represent the longest SpoIIE 

soluble fragments identified to date. While the level of solubility seen in the 

above expression tests was acceptable, it was thought that improved solubility 

would simplify purification and give stable protein. Therefore the SpoIIE334-827 

fragment was screened using the sparse matrix solubility screen, consisting of 

30 lysis buffers [193]. This led to a buffer based on 100 mM triethanolamine, 

50 mM LiCl, 5 mM EDTA at pH 8.5 being chosen for future work. 

E. coli BL21 (Gold) cells harbouring the SpoIIE334-827 and SpoIIE339-827 fragments 

were each cultured in 4 flasks containing 750 ml LB media supplemented with 

30 µg/ml kanamycin. Production of SpoIIE334-827 was induced, as described in 

section 2.5.2, with expression overnight at 16°C before harvesting of cells by 

centrifugation and their lysis by sonication in 100 mM triethanolamine, 200 mM 

NaCl, 30 mM imidazole at pH 8.5. The omission of EDTA from the buffer was in 

order to avoid abstraction of Ni2+ during IMAC column chromatography; no 

adverse effect on solubility was detected. Increasing the salt concentration to 

200 mM NaCl improved the extent of purification achieved by IMAC. Lysate, 

clarified by centrifugation, was applied to a 5 ml HisTrap column for nickel 

IMAC purification. After washing unbound protein from the column with low 

imidazole buffer, bound protein was eluted using a linear (30-500 mM) 

imidazole gradient. Both fragments eluted in the range 125 - 200 mM imidazole 
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as a single broad peak.  Cleavage of the N-terminal 6xHis affinity tag by HRV 3C 

protease led to degradation of the fragments so this step was omitted. One 

observation made throughout the purification was that filters in the AKTA FPLC 

became rapidly blocked, due to either SpoIIE334-827 aggregation, to the high 

viscosity of the triethanolamine in the buffers or to a combination of both. 

 

Figure 3-13: Size exclusion A280 chromatograms of the SpoIIE334-827 and SpoIIE339-827 

fragments with SDS-PAGE gel images.  
(a) SpoIIE334-827. (b) SpoIIE339-827. 

 

The peak fractions from nickel IMAC were concentrated and applied to a 16/60 

S200 gel filtration column (GE Biosciences) with a mobile phase of 100 mM 

Triethanolamine, 200 mM NaCl, 5 mM DTT at pH 8.5. The separation range of 

this column is given as 10 – 600 kDa with the highest selectivity between 30 

and 250 kDa.  The A280 chromatograms of each fragment (Figure 3-13) showed 

a large portion of protein in the void volume of the column, at 45 mls, which 

could consist of species ranging between near the separation limit of 600 kDa to 

multi-megadalton aggregates. A broad shoulder peak to the void volume was in 

the cases of both fragments centred at 56 mls; this elution might suggest 6-

8mer species of around 400 kDa in size. A further two peaks were seen in each 
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chromatogram at 80 and 90 mls, estimated molecular masses for these elution 

volumes would be around 50 and 25 kDa, respectively. The peak eluting at 90 

mls would represent a molecule smaller than a monomer and, indeed, SDS-

PAGE analysis showed no target protein in the peak. The peak at 80 mls is at the 

expected elution volume for a monomeric species, according to manufacturer’s 

calibration data. All other peaks showed the presence of target protein with a 

small impurity at a very slightly lower molecular weight. 

Both the void volume peak and the second peak for each fragment were isolated 

and concentrated. In the case of both fragments the void volume peak 

precipitated to a large extent during concentration and a large amount of 

protein was lost. The final yields were around 5 mg of protein for both 

fragments; the void volume peak could be concentrated to around 6 mg/ml and 

the high MW peak to around 4 mg/ml.  

The protein concentrations achieved are roughly half that used as a starting 

point in protein crystallisation experiments  of around 10 mg/ml; however 

some proteins will crystallise at much lower concentrations. Another 

complication is that the void volume peak could contain any number of species. 

Crystallisation, and more importantly growth of crystals that will diffract, 

requires the slow and ordered assembly of homologous subunits. The subunits 

in large oligomers or aggregates will generally cause problems in this process. 

Regardless, protein from both fractions of each fragment was placed in 

crystallisation trials at the concentrations achieved. The screens used were 

PACT, Hampton I/II and JCSG (molecular dimensions). Analysis of the screens 

showed no promising hits with a large number of conditions demonstrating 

amorphous or sandy precipitate.  

The oligomerisation of SpoIIE has been observed in every fragment with an N-

terminus between 334 and 412. The PP2Cα domain fragment, SpoIIE590-827, did 

not oligomerise. The B2 (SpoIIE375-827) and H1 (SpoIIE412-827) fragments both 

demonstrated oligomeric behaviour, with much protein eluting in the void 

volume of an S200 gel filtration column. These fragments also have a dimer 

fraction (estimated by elution volume). The B2-B1 (SpoIIE375-590) fragment 

eluted in the S200 void volume with what is likely to be a monomeric species 
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eluting at 90 mls. It should be noted that the SEC-MALLS experiments are 

carried out at lower protein concentrations. The 1 mg/ml protein sample 

loaded will have been diluted by a factor of fifteen if it elutes as a 1.5 ml peak; a 

concentration of 0.07 mg/ml. Analysis of the B2 fragment on an S200 gel 

filtration column shows that at an injection concentration of 7.4 mg/ml protein 

elutes in three species including a putative dimer, whereas at a higher injection 

concentration of 20 mg/ml the protein elutes almost entirely in the void 

volume.  Oligomerisation is of course concentration dependent, however the 

SpoIIE334-827 and SpoIIE339-827 fragments of SpoIIE were never observed with a 

major species of lower molecular weight than the void volume. 

The initial aim of this section was to identify long and soluble fragments of 

SpoIIE in order to extend the very small number of SpoIIE reagents available for 

study. This aim was achieved with two constructs being produced which we 

believe to represent the greater proportion of the cytoplasmic domain of SpoIIE. 

The constructs behave as high order oligomers in solution and this is likely to 

cause problems in crystallisation and potentially in biophysical assays where 

precipitation might be a problem. As both constructs seem to behave similarly 

the decision was taken to continue study of the SpoIIE334-827 fragment, the 

longest SpoIIE fragment yet investigated, while delaying work on the SpoIIE339-

827 fragment. During purification it was identified that cleavage of the 6xHis 

affinity tag caused instability and degradation, in uncleaved samples. Whether 

the tag causes misfolding; resulting in instability on cleavage, or the N-terminal 

segment, which is exposed on cleavage, is susceptible to degradation is 

unknown.  

A close collaborator, Niels Bradshaw, from the laboratory of Richard Losick, 

Harvard, communicated his observation that long fragments of SpoIIE form 

oligomers and aggregate in a Mn2+ dependent fashion. A SpoIIE fragment he 

purified using a 6xHis-SUMO domain solubility tag precipitated when exposed 

to millimolar concentrations of MnCl2. Manganese (II) can be chelated by EDTA 

and hence the use of this additive could decrease the fraction of SpoIIE which 

forms oligomers. This assumes, however, that the oligomers seen in size 

exclusion chromatography are due to Mn2+ sequestered by SpoIIE during 
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expression. The addition of 10 mM EDTA to the solution before size exclusion 

chromatography did not alter the observed oligomeric state of BsuSpoIIE334-827 

in subsequent isolations.  
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3.3.3 Analogue of SpoIIE from Geobacillus stearothermophilus 

In an attempt to increase the stability of the SpoIIE334-827 fragment, we sought 

the thermophilic homologue from Geobacillus stearothermophilus (Gst), a spore-

forming thermophile with an optimum growth temperature of between 50 and 

65°C [194]. This strategy has been used successfully in other systems [195, 

196]. 

 

Figure 3-14: Primary sequence alignment of SpoIIE from B. subtilis and G. 
stearothermophilus. 
Alignment carried out using ClustalW [197]. Visualisation and structural annotation of PP2Cα 
domain carried out using ESPript (http://espript.ibcp.fr) [198]. 

 

http://espript.ibcp.fr/
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Sequencing and annotation of the G. stearothermophilus genome is incomplete. 

The greater part of the G. stearothermophilus strain 10 genome has been 

sequenced in the lab of Bruce Roe, University of Oklahoma, and the results 

made available online at http://www.genome.ou.edu/bstearo.html (Bacillus 

(Geobacillus) stearothermophilus Genome Sequencing Project funded by NSF 

EPSCoR Program). In order to find the nucleotide sequence of spoIIE in the un-

nnotated genome sequence, it was necessary to carry out a BLAST search. The 

search algorithm used was tblastx. The input, the BsuSpoIIE amino acid 

sequence, is translated into a nucleotide sequence in every possible 

permutation of codon usage and reading frame; sequences showing good 

alignment to the query are reported to the user. An Open Reading Frame (ORF) 

encoding an 826 residue protein was highlighted in contig.543 encompassing 

bases 109825 to 112275. The predicted protein has 56% sequence identity to 

BsuSpoIIE (Figure 3-14). 

 

 

Figure 3-15: Gel images of GstSpoIIE335-826 cloning and expression.  
(a) PCR amplification products of spoIIE1003-2481 on 1% agarose gel. L represents Bioline 
Hyperladder DNA markers. Lane 1 shows PCR products; the expected fragment size is 1.47 kbp. 
(b) Expression test of GstSpoIIE335-826. M represents Biorad broad range markers; lane 1, 
Uninduced total cell fraction; lane 2, Uninduced soluble cell fraction; lane 3, Induced total cell 
fraction; lane 4, Induced soluble cell fraction. 
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The Gst spoIIE gene fragment encoding GstSpoIIE335-826 was amplified from G. 

stearothermophilus strain 10 genomic DNA by PCR using primers designed to 

facilitate cloning into the pYSBLIC3C expression vector. The nucleotide 

fragment was readily amplified and after cloning and transformation of E. coli 

BL21 (Gold) cells, production of the desired 55 kDa protein was achieved. The 

protein was soluble in a lysis buffer of 50 mM Tris-HCl, 200 mM NaCl at pH 8.5 

(Figure 3-15). 

 

Figure 3-16: Size Exclusion purification of GstSpoIIE335-826. 
The A280 chromatogram is shown as a blue trace. 
 

A large scale preparation of the fragment GstSpoIIE335-826 was carried out from 4 

flasks each containing 750 ml of LB media. Harvested cells were lysed in 50 mM 

Tris-HCl, 200 mM NaCl, 20 mM imidazole at pH 8.5. Lysate, clarified by 

centrifugation, was applied to a 5 ml HisTrap nickel IMAC column. The IMAC 

column was washed to remove unbound protein before a linear gradient to a 

final concentration of 500 mM imidazole was applied. A peak eluting at 140 mM 

imidazole was found by SDS-PAGE analysis to contain the target protein 

fragment. Some protein was lost in the concentration of the pooled peak 

fractions before purification by size exclusion chromatography. After S200 gel 

filtration column chromatography (Figure 3-16) in 50 mM Tris-HCl, 200 mM 

NaCl, 20 mM EDTA at pH 8.5, SDS-PAGE analysis showed a large proportion of 
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protein in the column void volume with a smaller peak eluting at around 75 mls, 

the elution volume expected for a monomer. The addition of EDTA did not 

reduce the formation of oligomers, as judged by the size of the void volume 

peak in a second purification by size exclusion chromatography.  

Comparing the sequences of the two fragments reveals high sequence identity. 

Conspicuously however, the number of cysteine residues differs. BsuSpoIIE334-

827 contains five cysteine residues while GstSpoIIE335-826 contains eight. Four of 

these cysteine residues, in the region between residues 399 and 446 of SpoIIE 

are conserved between species. BsuSpoIIE334-827 has a single cysteine residue in 

the phosphatase domain. It is possible that additional cysteine residues may 

contribute to the thermal stability of the Gst SpoIIE fragment via the formation 

of disulphide bridges.   
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3.3.4 SpoIIE334-827 fragment oligomerisation. 

A parallel purification of BsuSpoIIE334-827 and GstSpoIIE334-827 was carried out; 

the same buffer batches were used over the same time period with the only 

variation being in the FPLC machine used. Cells from 4 x 750 ml cultures, were 

lysed by sonication in 50 mM Tris-HCl, 200 mM NaCl, 2 mM β–mercaptoethanol 

(β-ME), 20 mM imidazole and the clarified lysates were applied to 5 ml HisTrap 

nickel IMAC columns. After washing, bound protein was eluted from the column 

using a linear gradient with a final concentration of 500 mM imidazole. Both 

fragments eluted at around 140 mM imidazole. The nickel IMAC peak fractions 

were pooled, 5 mM (final concentration) EDTA was added the samples were 

concentrated to ~ 3 ml. 

 

 

 Figure 3-17: Parallel purification of BsuSpoIIE334-827 and GstSpoIIE335-826 fragments on 
Superdex 200 gel filtration columns.  
A running buffer of 50 mM Tris-HCl, 200 NaCl, 5 mM EDTA, 2 mM β-ME was used. A280 
chromatograms are shown as blue traces. The BsuSpoIIE334-827 elutes almost completely in the 
column void volume. The GstSpoIIE335-826 fragment elutes as two broad species centred at 60 ml 
and 75 ml, likely representing dimers and monomers, respectively. 
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The concentrated protein samples were each applied to an S200 gel filtration 

column equilibrated in 50 mM Tris-HCl, 200 mM NaCl, 5 mM EDTA, 2 mM β-ME 

at pH 8.5. When compared to previous purifications, the oligomeric behaviour 

of the BsuSpoIIE334-827 fragment was unchanged whereas the behaviour of 

GstSpoIIE335-826 changed markedly; no oligomers were detected in the void 

volume instead two overlapping peaks centred at 60 and 75 ml were observed, 

likely representing dimers and monomers, respectively (Figure 3-17). The 

observed change in the Gst fragment’s oligomeric behaviour may be attributed 

to the inclusion in the buffer of β-ME, a reducing agent.  

The void volume fraction from the Bsu fragment and the combined monomer 

and dimer fractions from the Gst fragment were concentrated to 2.9 mg/ml and 

3.5 mg/ml, respectively. The fragments were next analysed by Analytical 

Ultracentrifugation (AUC) a technique which measures the rates of 

sedimentation of macromolecular species and gives an accurate estimation of 

their size. In order to ensure no variation in components between the baseline 

and sample buffers, dialysis was carried out into freshly prepared 20 mM 

Tris-HCl, 100 mM NaCl, 2 mM DTT at pH 8.5. The same batch of buffer was then 

used for diluting samples and as a baseline cell buffer. Three concentrations of 

each fragment were run at A280 values of 1, 0.3 and 0.1. The extinction 

coefficients of BsuSpoIIE334-827 and GstSpoIIE335-826 differ and the calculated 

protein concentrations of the samples are 1.16 mg/ml, 0.48 mg/ml and 0.16 

mg/ml, respectively, for BsuIIE334-827 and 1.11 mg/ml, 0.33 mg/ml and 0.11 

mg/ml, respectively, for GstIIE335-827. The samples were centrifuged at 20,000 

rpm in a Beckman Optima XL/I analytical ultracentrifuge, using Beckman cells 

with 12 mm path length, double sector charcoal-filled Epon centrepieces and 

sapphire windows, in an AN-50Ti rotor. The collected AUC data were analysed 

by Andrew Leech using sedfit AUC analysis software [199]. Fitting of the data 

was carried out first to calculate the distribution of sedimentation coefficients, 

representing the rates at which different species travel from the inner to the 

outer radii of the cells. 
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Figure 3-18: Analytical Ultra-Centrifugation analyses of the BsuSpoIIE334-827 and 
GstSpoIIE335-826 fragments at A280 = 1.0, 0.3 and 0.1. 
 Fitting and calculation carried out to determine sedimentation coefficient (S), left, and 
molecular weight (Mw), right. (a) Analyses of BsuSpoIIE334-827 show multiple species with a 330 
kDa periodical increase in Mw. (b) Analyses of GstSpoIIE335-826 suggest equilibrium between 
monomeric and dimeric species at the studied concentrations. 

 

The AUC data analysis results (Figure 3-18), in agreement with the size 

exclusion chromatography results, show that BsuSpoIIE334-827 has 

characteristics of a large number of species, whereas the GstSpoIIE335-826 has a 

narrower species distribution. Further analysis of calculated sedimentation 

coefficients was then used to predict the probable molecular weights of the 

species. BsuSpoIIE334-827 shows species at multiples of around 330 kDa. The 

calculated molecular mass is 55 kDa, hence 330 kDa represents a hexameric 

unit. The 660 kDa species might represent two hexameric units stacking 

together. As mentioned, very little is known of the mode of action of SpoIIE in 

vivo other than the requirement of localisation to the forming septum. The 

observed behaviour here could represent functional units of SpoIIE. 
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GstSpoIIE335-826 shows a single different species in each concentration. 

Molecular weight analysis predicts species at around 55, 80 and 110 kDa; 

monomer, 1.5mer and dimer, respectively. The 1.5mer prediction can be 

explained by the monomer and dimer species being in dynamic exchange at this 

concentration. 

 

Figure 3-19: SEC-MALLS analyses of BsuSpoIIE334-827 and GstSpoIIE335-826. 
(A) Differential Refractive Index chromatograms of BsuSpoIIE334-827 at 3 mg/ml (blue line), 1 
mg/ml (green line) and 0.1 mg/ml (red line) as separated by a Superose 6 10/300 gel filtration 
column.  Calculated MW data are show as thick dashed lines with annotated average peak MWs 
in the same colours. (B) Differential Refractive Index chromatograms of GstSpoIIE335-826 at 3 
mg/ml (blue line) and 1 mg/ml (green line) as separated by a Superdex 200 10/300 gel 
filtration column.  Calculated MW data are show as thick lines with annotated average peak 
MWs in the same colours. 
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BsuSpoIIE334-827 was analysed by SEC-MALLS in 20 mM Tris-HCl, 100 mM NaCl, 

2 mM DTT at pH 8.0 using a Superose 6 10/300 gel filtration column (GE 

biosciences), capable of resolving proteins below 40,000 kDa (Figure 3-19A). 

Injections were made at concentrations of 3, 1 and 0.3 mg/ml. Each A280 trace 

showed a single peak eluting after 15 minutes; around the column void volume, 

7.5 mls. Molecular mass predictions for these peaks ranged between 19 and 25 

MDa. This supports observations made regarding the tendency of this fragment 

to form large oligomers. Analysis of GstSpoIIE335-826 by SEC-MALLS was carried 

out with a running buffer of 20 mM Tris-HCl, 100 mM NaCl, 2 mM DTT at pH 8.0 

and separation on an S200 10/300 gel filtration column (Figure 3-19B). 

Injections were made at 1 and 3 mg/ml. Both A280 traces show a range of peaks 

eluting across the separation volume of the column. Predicted molecular masses 

for these species suggest monomer/dimer equilibrium as well as small 

populations of tetramers and higher order species. These observations are at 

odds with those seen by AUC and are unlikely to be explained by the small 

change in pH. 
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3.3.5 Possible homology of SpoIIE to the sporulation stage III 

protein, SpoIIIAH 

A possible homologous relationship between SpoIIIAH, a protein involved in the 

engulfment stage (III) of sporulation, and residues 457-590 of SpoIIE was 

communicated to us by Niels Bradshaw, Harvard (personal communication). 

This was a particularly interesting observation because SpoIIIAH and SpoIIE are 

known and proposed binding partners of SpoIIQ, respectively [91, 162]. 

SpoIIIAH and SpoIIQ associate to form a ‘ratchet-like’ mechanism across the 

intercellular space to assist membrane migration during engulfment and are 

also proposed to be integral components of a feeding tube structure allowing 

nutrient exchange between the mother cell and engulfed forespore. 

Fluorescence microscopy studies have shown that SpoIIE is released from the 

division septum after σF activation, but subsequently relocates to the engulfing 

septum in a SpoIIQ-dependent manner. 

The sequence identity between the SpoIIIAH78-218 and SpoIIE457-590 sequences is 

17% with regions of similarity generally clustered in areas of secondary 

structure (Figure 3-20). The 457-827 fragment of SpoIIE was produced with 

good solubility in E. coli with a 6xHis-SUMO tag (Niels Bradshaw, per. comm.). It 

therefore represents a good candidate for structural studies. 

 

Figure 3-20: Primary sequence alignment of SpoIIIAH78-218 and BsuSpoIIE457-590. 
Alignment carried out using T-Coffee [200]. Visualisation and SpoIIIAH structural annotation 
(PDB ID: 3TUF) carried out using ESPript (http://espript.ibcp.fr) [198].  

 

http://espript.ibcp.fr/
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Fragments encoding SpoIIE457-827 from B. subtilis and SpoIIE457-826 from G. 

stearothermophilus were therefore cloned into the pYSBLIC3C expression 

vector. PCR amplification of the target gene fragments from Bsu and Gst 

genomic DNA produced single products of the expected size; 1.1 kbp. After 

ligation independent cloning, the same fragment could be amplified by PCR 

from the recovered plasmids indicating the presence of the SpoIIE fragment 

insert (Figure 3-21).  

 

Figure 3-21: Images of 1% agarose gels of PCR amplifications of the BsuSpoIIE457-827 

coding nucleotide sequence visualised using SybrSafe DNA dye.  
L represents Bioline Hyperladder I DNA markers (a) PCR amplification from Bsu genomic DNA. 
Lane 1; no template (negative control), lane 2; PCR amplification. (b) PCR amplification from 
plasmid isolated by miniprep after ligation independent cloning. Lane 1; PCR amplification. 

 

Plasmids harbouring the target nucleotide sequences were used in 

transformation of E. coli BL21 (Gold) competent cells and expression of the 

target protein fragments was induced. The BsuSpoIIE457-827 and GstSpoIIE457-826 

fragments have calculated molecular masses of 41.3 and 41.0 kDa, respectively. 

Both fragments were produced at moderate levels but with good solubility 

following cell growth overnight at 16°C and lysis in 50 mM Tris-HCl, 100 mM 

NaCl at pH 8.0.  

The BsuSpoIIE457-827 fragment was overproduced on a larger scale by IPTG 

induction overnight at 16°C in 2 flasks each containing 500 ml LB media. Cells 

were harvested by centrifugation and resuspended in a lysis buffer consisting of 

50 mM Tris-HCl, 100 mM NaCl, 20 mM imidazole at pH 8.0 before lysis by 

sonication. Lysate clarified by centrifugation was applied to a 5 ml HisTrap 
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nickel IMAC column equilibrated in lysis buffer. Unbound protein was washed 

from the column before bound protein was eluted using a linear gradient with a 

final concentration of 500 mM imidazole.  

 

Figure 3-22: Purification of the BsuSpoIIE457-827 fragment.  
(a) A280 and A260 chromatograms of nickel IMAC purification with SDS page analysis. Peak A 
contains a 31 kDa contaminant. Peak B contains mainly target protein. (b) A280 and A260 
chromatograms of size exclusion purification with SDS page analysis. Only a small concentration 
of BsuSpoIIE457-827 is present in peak A with a major concentration of the fragment in peak B. 

 

The IMAC purification A280 chromatogram (Figure 3-22A), showed two peaks 

eluting at around 116, and 164 mM imidazole. The first peak exhibited a strong 

yellow colour. SDS-PAGE analysis of fractions from these peaks shows that the 

peak eluting at 116 mM imidazole contained a high concentration of an 

unknown 31 kDa protein. Fractions from the peak eluting at 164 mM imidazole 

showed a high concentration of protein with a mobility similar to the 45 kDa 

protein marker, consistent with the 41.3 kDa molecular mass of the 

BsuSpoIIE457-827 fragment. Fractions in the second peak contained only small 

amounts of the 31 kDa contaminant and so the two species were easily 

separated. Fractions containing the target protein fragment were concentrated 
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from 16.5 to 3 ml by centrifugation in 10K MWCO Amicon concentration cells. 

The protein was then applied to an S200 16/60 gel filtration column in 50 mM 

Tris-HCl, 100 mM NaCl, 2 mM DTT at pH 8.0 running buffer (Figure 3-22B). The 

A280 chromatogram showed a large void volume peak and a smaller peak eluting 

at 82 ml. SDS-PAGE analysis showed a small concentration of target protein in 

the void volume with a much larger concentration present in the peak eluting at 

82 ml. 

BsuSpoIIE457-827 containing fractions eluting at 82 ml, with an estimated 

molecular weight around 39 kDa, were isolated and concentrated to around 

20 mg/ml. Protein crystallisation screening was carried out on this proteins and 

on a stock of BsuSpoIIE457-827, provided by Niels Bradshaw. The screens applied 

were Hampton I/II, JCSG and PEG/ion (Hampton) with protein concentrations 

at 8 and 15 mg/ml. Condition F7 in the JCSG screen (0.8 M succinic acid at pH 

7.0) showed promising microcrystals for both protein isolations at both 

concentrations after one night. Optimisation was carried out on this condition, 

varying protein and succinic acid concentration, pH and presence of additives, 

yielded larger crystals at protein concentrations around 6 mg/ml. X-ray analysis 

indicated that these were not salt crystals but nor was clear protein crystalline 

diffraction seen. Further optimization yielded no improvement. 

An analogous purification of GstIIE457-826 was carried out. The size exclusion 

chromatogram showed the GstIIE457-826 fragment to elute at 75 ml (Figure 3-23). 

This elution volume corresponds to a molecular weight estimate around 47 kDa. 

A void volume peak was also observed but did not contain any GstIIE457-826, as 

analysed by SDS-PAGE. Peak fractions were combined and concentrated to 

around 20 mg/ml before storage at -80°C. This protein was used to carry out 

crystallisation screening which returned no optimisable hits. 



140 
 

 

Figure 3-23: Size exclusion chromatography of GstIIE457-826.  
The A280 chromatogram of the elution peaks is shown. Purification was carried out using an 
S200 16/60 gel filtration column. 

 

3.2.6 The effect of Mn2+ on SpoIIE Domain II fragments. 

A fragment of BsuSpoIIE consisting of residues 320-827 was observed to 

precipitate on addition of MnCl2 (Niels Bradshaw, Harvard, Personal 

Communication). This was measured by centrifugation and resuspension before 

SDS-PAGE analysis.  

A similar experiment was carried out to analyse how the available domain II 

containing fragments of BsuSpoIIE behave on addition of Mn2+. A final 

concentration of 5 mM MnCl2 was added 50 µl samples of the SpoIIE334-827, 

SpoIIE375-590 and SpoIIE457-827 fragments at 1 mg/ml. A newly produced 

fragment, BsuSpoIIE457-590, not previously discussed in this work, was also 

examined in this way. A visible flocculent precipitate was observed in the cases 

of SpoIIE457-590, SpoIIE375-590 and SpoIIE457-827, but not for SpoIIE334-827. These 

samples were then centrifuged using a benchtop microfuge at 16,000 x g for 5 

minutes. The supernatant was removed and any pellet was resuspended by 

vortexing for 30 seconds in fresh MnCl2-free buffer. 10 µl samples of the 

resuspended pellets were analysed by SDS-PAGE (Figure 3-24). 
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This experiment showed that SpoIIE334-827 exhibits the lowest proportion of 

precipitation on addition of Mn2+. In contrast, the other three fragments, which 

are all monomeric in solution, show a higher proportion of precipitated protein. 

This proportion could be up to 100% in the cases of SpoIIE375-590 and SpoIIE457-

827.  

 

Figure 3-24: SDS-PAGE analysis SpoIIE fragment pelleting on addition of MnCl2.  
M; LMW range markers (Bio-rad), lane 1; 1 mg/ml SpoIIE - no Mn2+ or centrifugation, lane 2; 
1 mg/ml SpoIIE - no Mn2+ with centrifugation, lane 3; 1 mg/ml SpoIIE – with 5 mM Mn2+ and 
centrifugation. (A) SpoIIE334-827. (B) SpoIIE375-590. (C) SpoIIE475-827. (D) SpoIIE457-590. 

 

The circular dichroism (CD) spectra of SpoIIE fragments which contain 

elements of domain II were also shown to change on addition of MnCl2.  

Samples of SpoIIE590-827, SpoIIE334-827, SpoIIE375-590 and SpoIIE457-827 were 

analysed by CD, as described in section 2.7.4. A second set of data was then 
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recorded for these fragments with 2 mM added MnCl2. Comparison of the 

spectra shows (Figure 3-25) a reduction in secondary structure signal is seen 

on addition on Mn2+ for fragments containing elements of SpoIIE domain II but 

not for SpoIIE590-827, which consists of only the phosphatase domain. This 

suggests a change in conformation of the protein induced by the addition of 

Mn2+, but this, strikingly, is caused by domain II rather than the Mn2+ binding 

phosphatase domain. It is unclear whether the detected change in conformation 

is due to protein unfolding or simply a reorganisation of secondary structure. 

 

Figure 3-25: Circular dichroism spectra of SpoIIE fragments on addition of Mn2+. 
Examined fragments: (a) SpoIIE590-827 (B) SpoIIE334-827 (C) SpoIIE457-827. Black traces are 
recorded for protein solutions at 0.2 mg/ml with no added MnCl2. Blue traces are spectra 
recorded in the presence of 2 mM MnCl2. 
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3.3 Summary and Discussion 

The isolation and characterisation of three novel fragments of SpoIIE from B. 

subtilis was carried out. These fragments were produced with the aim of 

carrying out structural studies of SpoIIE domain II. SpoIIE375-590 is a monomer 

in solution but size exclusion chromatography shows some tendency towards 

aggregate formation The difference in the oligomeric behaviour observed for 

these new fragments; SpoIIE375-590, SpoIIE334-827 and SpoIIE457-827, suggests that 

the region between residues 334 and 457 of SpoIIE induces oligomerisation. 

This is supported by the observed behaviour of previously studied fragments, 

H1 (SpoIIE412-827) and B2 (SpoIIE375-827). The secondary structure in the region 

between residues 334 and 375 has been predicted (Appendix I) to consist of a 

long α-helix and the primary sequence shows a roughly even distribution 

between hydrophobic and hydrophilic residues. That SpoIIE457-827 is monomeric 

could suggest that 457-590 is a stable and soluble subdomain of SpoIIE. Recent 

attempts to isolate this fragment on its own, carried out jointly by the author 

and Vladimir Levdikov (unpublished), have been successful and it is thought 

that it might prove to be a good reagent for structural elucidation by NMR, 

being only 14 kDa and monomeric. 

Analogous fragments to SpoIIE334-827 and SpoIIE457-827 were isolated from 

Geobacillus stearothermophilus. The GstSpoIIE457-826 fragment showed similar 

oligomeric character to BsuSpoIIE457-827. Conversely, the oligomeric character of 

BsuSpoIIE334-827 and GstSpoIIE335-826 showed some differences. GstSpoIIE335-826 

did not show the tendency to favour very high MW species exhibited by 

BsuSpoIIE334-827. Instead, this fragment seems to exist in equilibrium between 

monomeric and dimeric states. 

The presence of Mn2+ seems to have a pronounced effect on domain II. 

Fragments which contain elements of domain II showed a change in CD spectra 

and a tendency to precipitate on addition of millimolar concentrations of MnCl2. 

When the sequence of SpoIIE is analysed using Metal Detector, an online tool for 

detecting cysteine and histidine residues which form transition metal binding 

sites, the 4 conserved cysteine residues (399, 402, 408 and 446) are identified 

as forming metal binding sites. It is unlikely that the observed phenomena 
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caused by addition of Mn2+  to SpoIIE domain II fragments is due to this putative 

metal binding site, as it occurs whether or not these residues are present. 

Attempts at protein crystallisation with all fragments discussed in this chapter 

were unsuccessful. 
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Chapter 4: Activity-based and Structural 

Investigations into the Role of SpoIIE as a PP2C 

Phosphatase 

4.1 Introduction 

4.1.1 Serine/Threonine Phosphatases 

Signal transduction by reversible phosphorylation is critical in the regulation of 

cell function throughout nature [165]. Phosphorylation is carried out by protein 

kinases on serine, threonine or tyrosine residues. The induced changes in 

conformation and function of the substrate allows transduction of a signal. This 

method of signalling is made more powerful by its reversibility, which allows 

fine control of downstream effects by competitive dephosphorylation by 

protein phosphatases. The phosphatases which act to dephosphorylate 

phosphotyrosine in proteins, belonging to the Protein Tyrosine Phosphatase 

superfamily (PTP), differ from those which act upon phosphorylated serine and 

threonine residues, which belong to the PPP and PPM families [201]. The most 

prevalent ser/thr phosphatases in eukaryotes belong to the PPP family and are 

separated into PP1, PP2A and PP2B categories while the PPM family mainly 

consists of PP2C phosphatases. Each family possesses strong homology 

suggesting conserved tertiary structures and catalytic mechanisms. Diversity 

between phosphatases of the same family with respect to substrate and activity 

is conferred by regulatory proteins and/or subdomains.  

Although the PP2C phosphatases of the PPM family possess no sequence 

homology with the PPP family, the two families show remarkable structural 

similarity [166]. The PP2C phosphatase domain has an αββα-structure where 

two antiparallel β-sheets are apposed to one another and flanked by α-helices. 

The core PP2C phosphatase domain consists of 6 α-helices and 11 β-strands. 

The active site is positioned at the top of the central sandwich and contains two 

Mn2+ ions and 4 invariant aspartate residues (Figure 4-1). The structure of the 

human PP2Cα phosphatase reveals 3 water molecules interacting with the two 

metal ions. The crystal was grown in 50 mM potassium phosphate and a 
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molecule of inorganic phosphate (Pi) was observed bound in the active site. As 

phosphate is a reaction product its presence provides insight into the active site 

configuration after hydrolysis. The interactions suggest that the reaction 

mechanism could be initiated by nucleophilic attack by a water molecule 

activated by interaction with both Mn2+ ions.  

 

 

Figure 4-1: The phosphate containing active site of human PP2Cα phosphatase.  
As presented by Jackson et al., 2003 [202]. Structure originally presented by Das et al., 1996 
[166]. PDB ID: 1A6Q. The active site contains two Mn2+ ions (M1 and M2) held by conserved 
Asp, Glu and Gly residues. Electrostatic interactions with a bound phosphate group occur via 3 
of the 6 water molecules present. One of these water molecules interacts with both M1 and M2 
and also undergoes by a polarising activation by Asp282. 

 

4.1.2 The SpoIIE PP2C domain structure  

The X-ray structure of SpoIIE590-827 had been solved by Vladimir Levdikov after 

crystallisation from Tris-buffered sodium citrate solutions at pH 8.5 (PDB ID: 

3T9Q, 3T91) [170]. The structure reveals a domain swapped dimer in which the 

β1 - β3 strands of each subunit form part of the central β sandwich of the other 

subunit (Figure 4-3A). The active sites are situated at opposite ends of the 

dimer. In this structure, each active site contains a single Mn2+ ion. Additional 

electron density observed between the two subunits was observed into which a 

molecule of aldohexose was modelled. 

 In [170], a structural search for similar domains yielded human PP2Cα as well 

as the bacterial phosphatases: PstP from Mycobacterium tuberculosis [203], 
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MspP from Mycobacterium smegmatis [204], STP from Streptococcus agalactiae 

[205] and tPphA from Thermosynechococcus elongates [206]. Comparison of the 

MtPstP (PDB ID: 1TXO) and SpoIIE structures shows a close overlay of the β-

sandwich cores, however significant differences can be seen in the surrounding 

regions (Figure 4-2). The bacterial PP2Cα phosphatases of known structure 

each possess 3 active site manganese ions. While the binding site for the third 

manganese ion is largely formed by residues in the β7-β8 region, which is 

truncated in SpoIIE, the binding site for a second manganese ion consisting of 

D628, G629 and D610 is conserved. The lack of a second bound manganese 

atom in the structure could be for a combination of reasons. Firstly, the domain 

swapped dimer configuration of the structure, if not biologically relevant, could 

diminish the Mn2+ affinity of the second metal binding site. One key observation 

in support of this is that D628, G629 and D610 all lie on the domain swapped 

portion of each monomer. Secondly, the crystallisation conditions from which 

the crystal was grown contained 200 mM sodium citrate which can chelate 

manganese and compete with the PP2C phosphatase. 

 

 

Figure 4-2: Structural comparisons between SpoIIE590-827 (PDB ID: 3T9Q) and MtPstP 
(PDB ID: 1TXO) PP2Cα phosphatases.  
(A) Overlay of a reconstituted (non-domain swapped) SpoIIE PP2C monomer (cyan) with 
MtPstP (light green). Manganese ions are indicated as balls coloured purple for SpoIIE and light 
green for MtPstP. The β7-β8 segment is truncated in SpoIIE (blue) in comparison to MtPstP 
(red), this long loop forms part of the third metal binding site which is not present in SpoIIE. (B) 
Active site following overlay as in (A). The manganese atom present in SpoIIE (Mn) overlays 
with Mn1 from MtPstP. Residues Asp610 and Asp628, required for binding of a second 
manganese atom are indicated in grey.  The Mn3 site of MtPStP is formed by the β7-β8 loop and 
Asp118 which aligns with SpoIIE Ser699. The latter residue points away from the active site in 
SpoIIE indicating that it does not play a role in metal binding. 
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A second structure of SpoIIE590-827 has recently been solved, by Vladimir 

Levdikov, in which there is no domain swapping and a different dimer is formed 

(unpublished). In this structure no manganese ions are seen in the active sites 

which point towards, and occlude, each other (Figure 4-3B).  

 

 

Figure 4-3: Structures of the SpoIIE590-827 fragment. 
PDB IDs: (A) 3T9Q and (B) not deposited. Separate subunits are shown in light blue and green. 
The N-termini of each subunit are labelled. (A) The domain swapped dimer. The active sites are 
show by the presence of a single Mn atom (purple). The modelled aldohexose sugar is shown in 
yellow (carbon) and red (oxygen). (B) The occluded active site dimer. No Mn atoms are bound 
in the active sites, which are indicated by transparent labels.   
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4.1.3 The SpoIIE:SpoIIAA~P interaction 

A three-dimensional structure of a PP2C protein phosphatase and its 

phosphoprotein substrate has, to the best of this author’s knowledge, not been 

reported. The structures of the PP2C domain of SpoIIE [170] and SpoIIAA~P 

have been determined [123]. Attempts to generate a convincing model of the 

SpoIIE:SpoIIAA~P interaction have not so far been successful. As described in 

Levdikov et al., 2012 [170], the SpoIIE PP2C and human PP2Cα structures were 

overlaid by least-squares superposition applied to common secondary structure 

elements.  Meanwhile, the phosphate species in the human PP2Cα active site 

was superposed onto the phosphate of the phosphoserine in the 

BsphSpoIIAA~P structure. Of the three possible conformations in which the 

SpoIIAA~P phosphate group O atoms are precisely overlaid with those in the 

human PP2C structure, two lead to large steric clashes between the SpoIIE and 

SpoIIAA domains. The remaining conformation shows no contacts between the 

two proteins. Rigid body energy minimization was attempted by Vladimir 

Levdikov but without success. Possible explanations are:  

(i) The use of a structure from an orthologous rather than native 

substrate - BsphSpoIIAA~P is a poor substrate for BsuSpoIIE.  

(ii) Many of the loops surrounding the active site of SpoIIE are 

disordered in the crystal structure and these loops may become 

ordered upon complex formation.  

(iii) Formation of the SpoIIE:SpoIIAA complex could require 

conformational change in either or both proteins - related to (ii). 
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4.2 Methods 

4.2.2 Native PAGE Phosphatase State Assay  

The phosphatase assays used in this work take advantage of the difference in 

mobility observed between SpoIIAA in its phosphorylated and 

unphosphorylated forms [188]. Except where otherwise stated, a 20 µl 

phosphatase reaction is set up in 20 mM Tris-HCl 100 mM NaCl at pH 8.0 which 

contains: 

 1 µl of 10.2 mg/ml SpoIIAA~P; giving a final concentration of 39 µM. 

 A quantity of the assayed SpoIIE fragment dependent on the required 

enzyme-to-substrate ratio.  

 1 µl of 200 mM MnCl2. 

 The duration of the reaction can be varied. When finished, 10 µl of each 

reaction is analysed by native PAGE on a 7.5% acrylamide gel, as described in 

section 2.7.3.2.   

 

4.2.3 Generation of Transition State Analogues 

The AlF4- and MgF3 transition state analogues are spontaneously generated at a 

concentration of 10 mM in situ by mixing of an equal volume of 20 mM AlCl3 or 

MgCl2 and a three- and four-fold molar excess of NaF, respectively. 

 

4.2.4 Thermafluor Assays 

Thermafluor thermal melting assays use hydrophobic dyes to measure protein 

unfolding as a function of temperature [207]. The dyes exhibit increased 

fluorescence when bound to exposed hydrophobic patches on proteins. In 

analysis of proteins, as the temperature rises stepwise from 25°C to 95°C an 

increase in observed fluorescence can be seen at the melting temperature, Tm, 

as the hydrophobic dye molecules bind to the exposed core of the denaturing 
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sample. After melting, the fluorescence should decrease as the temperature 

increases due to thermal displacement of bound dye molecules. 

In this work 0.5 mg/ml SpoIIE590-827 was analysed in a buffer of 20 mM Tris-HCl, 

100 mM at pH 8.25. The dye used was SYPROOrange (Sigma-Aldrich) added at a 

2000-fold dilution from the commercial stock, as per manufacturer’s 

instructions. The fluorescence of the dye was probed using excitation and 

emission wavelengths of 517 nm and 585 nm, respectively. Temperature and 

fluorescence were controlled and recorded, respectively, at intervals of 1°C 

between 25°C and 95°C using a Mx3005P qPCR system and MxPro QPCR 

software. 

 

4.2.5 Silver Staining of PAGE gels 

Silver staining of PAGE gels provides much more sensitive protein visualisation 

than Coomassie staining [208]. In the process, silver ions are bound by 

carboxylate (Asp/Glu) and sulfhydryl (Cys) groups on amino acid side chains. 

The silver is then reduced to free metallic silver which is visible. 

The gel to be stained is first washed with a solution of 50% (v/v) methanol and 

10% (v/v) acetic acid for 30 minutes. This is followed by 15 minute incubation 

in a solution of 5% (v/v) methanol. The gel is washed by 3 sequential 

incubations in milliQ-H2O for 5 minutes. A 2 minute incubation in 0.2 g/l 

sodium thiosulphate is followed by another wash with H2O for 3 x 30 seconds. 

The gel is then incubated with 2 g/l silver nitrate for 25 minutes and then 

washed with water for 3 x 1 minute. A solution of 30 g/l sodium carbonate, 

0.004 g/l sodium thiosulphate and 0.2% (v/v) formaldehyde is then applied for 

8 minutes. A wash in 14 g/l EDTA over 10 minutes is followed by transfer to 

H2O. Protein containing bands will be stained orange and the gel will be 

otherwise clear.  
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4.3 Results 

4.3.1 Cloning, Expression and Purification of SpoIIAA and 

SpoIIAA~P with SpoIIAB  

The work described in this chapter, up to section 4.3.2.2, was carried out in 

association with Katie Jameson, a final year MChem project student. In order to 

isolate the native substrate of SpoIIE from B. subtilis, the genes spoIIAA and 

spoIIAB were co-overexpressed in E. coli. spoIIAA and spoIIAB are the first and 

second of three cistrons in the spoIIA locus. SpoIIAA, SpoIIAB and σF are co-

expressed by the cell, under the transcriptional control of σH and Spo0A~P. In 

vivo, SpoIIAB phosphorylates SpoIIAA to form SpoIIAA~P and this activity can 

be transplanted into E. coli. Primers were designed to amplify spoIIAA and the 

two cistron segment spoIIAA-spoIIAB for cloning into the pET-YSBLIC3C vector. 

This cloning strategy aimed to produce SpoIIAA~P with an HRV 3C protease 

cleavable 6xHis affinity tag and native SpoIIAB to allow simple separation of the 

co-expressed species. The primer sequences are shown in Appendix I. 

The coding sequences were amplified by PCR, as described in section 2.3.2, with 

a modified annealing temperature of 56°C. Expected product sizes were 340 

base pairs for the spoIIAA only fragment and 750 base pairs for the spoIIAA-

spoIIAB amplicon. The products of both PCRs were analysed by 1% agarose gel 

electrophoresis and showed amplicons of the expected size and good product 

specificity. Purification was carried out by PCR clean-up. T4 DNA polymerase 

treatment of both fragments and annealing with prepared pET-YSBLIC3C was 

carried out as described in sections 2.3.5 and 2.3.6. Annealed samples were 

used to transform competent E. coli XL-10 Gold cells. For each construct, 

plasmid DNA was extracted by miniprep as described in section 2.2. Extracted 

plasmids were identified as AA1 to AA4 for spoIIAA harbouring constructs and 

AAAB1 to AAAB4 for constructs harbouring the dual cistron sequence. Double 

digests using NcoI and NdeI were carried out on around 200 ng of each isolated 

plasmid and analysed by 1% agarose gel electrophoresis (Figure 4-4). 

The expected insert band sizes were 420 bp for the AA construct and 510 + 280 

bp for the AAAB constructs, due to an Nco1 cleavage site within spoIIAB. 
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Analysis of the test digests indicated that constructs AA1, AA2 and AA3 and 

AAAB1, AAAB2 and AAAB3 carried the desired inserts; neither AA4 nor AAAB4 

exhibited the expected DNA fragment sizes, suggesting no insert was present. 

  

 

Figure 4-4: Digests of putative spoIIAA and spoIIAA-spoIIAB containing plasmids. 
4 clones of each construct were analysed after double digest with NcoI and NdeI. (A) SpoIIAA 
production construct analysis: Lane 1; 1 kb DNA ladder, lanes 2-5; constructs AA1-AA4. 
Expected insert length: 420 bps. (B) SpoIIAA+AB production construct analysis: Lane 1; 1 kb 
DNA ladder, lanes 2-5; constructs AAAB1-AAAB4. spoIIAB has an internal NcoI size causing two 
insert bands. Expected insert band sizes: 510 and 280 bps. 

 

The AA1-3 and AAAB1-3 constructs were submitted for DNA sequencing using 

T7 promoter specific primers (primer sequences in Appendix I). The results 

showed that the expected sequences were present in AA1, AA2 and AAAB1. The 

remaining constructs had acquired the following mutations: AA3; point 

mutation encoding G4E mutant (GGA to GAA), AAAB2; silent stop codon 

mutation (TAA to TGA), AAAB3; single base deletion resulting in frame shift 

mutation upstream of 6th spoIIAA codon. 

The AA1 and AAAB1 plasmids were used to transform competent E. coli B834 

(DE3) cells and the transformants plated onto LB agar supplemented with 30 

µg/ml kanamycin. Single kanamycin resistant colonies were used to inoculate 

overnight LB cultures from which expression testing was carried out as 

described in section 2.4.4, varying the expression temperature. Cultures were 

grown to OD600 = 0.6 at which point uninduced samples were collected before 

induction with IPTG (section 2.4.2). Induced cultures for each construct were 

grown at 16°C and 37°C for 22 and 4 hours respectively before harvesting and 
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lysis. The lysis buffer used was 50 mM Tris-HCl, 500 mM NaCl at pH 8.0. Total 

and soluble samples were taken after sonication and after centrifugation 

respectively and analysed by 15% SDS-PAGE (Figure 4-5) as described in 

section 2.6.3. The expected masses are SpoIIAA; 15.3 kDa and SpoIIAB; 16.3 

kDa.  

 

 

Figure 4-5: SpoIIAA and SpoIIAA+SpoIIAB expression tests.  
M indicates Bio-Rad broad range markers, marker masses are listed. U, T and S indicate 
uninduced, total and soluble samples, respectively. 

 

The SDS gels show that SpoIIAA is expressed with around 60% solubility, 

estimated by band intensity, at 16°C but is insoluble when expressed at 37°C. 

Soluble expression of both SpoIIAA and SpoIIAB from the AAAB construct is 

exhibited at both 16°C and 37°C.  The intensity of the SpoIIAA (SpoIIAA~P) 

bands in the total and soluble samples indicate a much higher solubility than is 

exhibited by the construct expressing SpoIIAA alone.  

 

4.3.2.1 Purification of SpoIIAA 

4 flasks containing 500 ml LB media supplemented with 30 µg/ml kanamycin 

were inoculated with 10 ml of LB overnight culture of B834 (DE3) harbouring 

the pET-YSBLIC3C-SpoIIAA construct. The cultures were grown at 37°C to an 

OD600 of 0.6 and protein production induced by addition of IPTG to a final 

concentration of 1 mM. Protein expression was carried out at 16°C for 22.5 

hours. Cells were harvested by centrifugation and combined by resuspension in 
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a lysis and purification buffer of 50 mM Tris-HCl, 500 mM NaCl, 50 mM 

imidazole at pH 8.0. Resuspended cells were lysed by sonication and the 

insoluble materials removed by centrifugation at 30,600 x g for 30 minutes in 

an SS-34 rotor. The supernatant was loaded onto a 5 ml HiTrap (GE Healthcare) 

IMAC column charged with Ni2+ using a peristaltic pump. After a 15 column 

volume wash with loading buffer the column was developed with a linear 50 – 

500 mM gradient of imidazole in loading buffer using an AKTA purifier. 8 ml 

fractions were collected during the wash and 4ml fractions were collected after 

the start of the gradient. The absorbance of the eluate was monitored at 

wavelengths of 280 nm and 254 nm to analyse protein and DNA-containing 

species simultaneously. Two A280 peaks were observed. The first was a large 

peak eluting at 130 mM imidazole which also showed a high A260 indicating that 

the peak likely contained non-protein contaminants. The second peak which 

eluted at 220 mM imidazole was much smaller.  

 

Figure 4-6: Nickel IMAC purification of SpoIIAA.  
M indicates Bio-Rad broad range markers. L, I and F indicate samples of load solution, 
resuspended insoluble lysate and flowthrough, respectively. Fractions from both peaks 
described in the text are indicated. Fraction B6 lay in between peaks 1 and 2. 

 

Samples from the load solution, resuspended insoluble lysate, flowthrough and 

peak fractions were analysed by 15% SDS-PAGE (Figure 4-6). The SDS-PAGE 

gels showed that little SpoIIAA was present in the flowthrough, suggesting tight 

binding to the column. The first eluted peak contained multiple protein species 

with no strong band matching the expected MW of the target protein. The 
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second peak had significant enrichment of SpoIIAA with some medium and low 

molecular weight contaminants. The low A280 measured for the SpoIIAA 

containing peak can be attributed to its very low extinction coefficient; ε = 1615 

M-1 cm-1.  

The fractions comprising peak 2 were combined and treated with HRV3C 

protease to cleave the 6xHis affinity tag, as described in section 2.5.2. The 6xHis 

cleavage was almost complete as analysed by SDS-PAGE. SpoIIAA eluted from a 

second IMAC purification step in a peak at 70 mM imidazole, HRV3C protease 

and some contaminants eluted at 140 mM imidazole (data not shown). The 

peak fractions containing SpoIIAA were pooled and concentrated to ~ 2 mls and 

further purified by size exclusion chromatography using a HiLoad Superdex 75 

PG gel filtration column (GE Healthcare) pre-equilibrated with a running buffer 

of 20 mM Tris-HCl, 150 mM NaCl at pH 8.0 (Figure 4-7). 4 ml fractions were 

collected. SpoIIAA eluted in one major peak after 78 ml. Peak fractions were 

pooled and concentrated to 5 mg/ml, analysed by native and SDS-PAGE, as 

shown later (Figure 4-9), snap frozen in liquid N2 and stored at -80°C.  

 

Figure 4-7: Size exclusion chromatograms showing purifications of SpoIIAA (red) and 
SpoIIAA~P (blue) as separated by a Superdex 75 16/60 gel filtration column.  
The variation in elution volume between SpoIIAA (78 ml) and SpoIIAA~P (60 ml) suggests a 
difference in multimeric state between the two species. SpoIIAA is likely a monomer, while 
SpoIIAA~P is likely to be dimeric. The difference in maximal absorbance a 280 nm highlights 
the difference in expression yield between the two species, whose extinction coefficients are 
equal. 
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4.3.2.2 Purification of SpoIIAA~P and SpoIIAB 

Purification of SpoIIAA~P was carried out in an analogous fashion to that of 

SpoIIAA. SpoIIAB did not bind to the HiTrap IMAC purification column and so 

was easily separated from SpoIIAA~P, which eluted from the column at an 

imidazole concentration of 225 mM. The 6xHis tag was cleaved using HRV3C 

protease. Subsequent purification, using a HiLoad Superdex 75 PG gel filtration 

column, showed SpoIIAA~P to elute after 60 ml; 18 ml earlier than SpoIIAA 

(Figure 4-7). This indicates a significant mobility difference between SpoIIAA 

and SpoIIAA~P, suggesting that SpoIIAA~P forms a dimer while SpoIIAA is 

monomeric, as reported earlier [209]. SpoIIAA~P was analysed by SDS and 

native PAGE (as shown later in Figure 4-9), concentrated to 102 mg/ml and 

aliquoted and stored at -80°C. 

The SpoIIAB containing flowthrough from IMAC purification of SpoIIAA~P was 

purified by Ion Exchange Chromatography using a 5 ml Resource Q anion 

exchange column (GE Healthcare), as described in section 4.2.1. The running 

buffer was 50 mM Tris-HCl at pH 8.0 and an elution gradient between 0 M and 1 

M NaCl was applied. SpoIIAB eluted at around 320 mM NaCl in the second half 

of a broad A280 peak. Purification by size exclusion chromatography, using a 

HiLoad Superdex 75 PG gel filtration column with the running buffer used for 

purification of SpoIIAA and SpoIIAA~P, showed a number of high MW states of 

SpoIIAB eluting from immediately after the 40 ml void volume of the column to 

60 ml (Figure 4-8). The AB containing fractions were combined and 

concentrated to 91 mg/ml before analysis by SDS and native PAGE (Figure 4-9) 

and storage at -80°C. 
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Figure 4-8: Size exclusion chromatogram of SpoIIAB.  
The A280 trace is shown as a blue line. The void volume of the column (40 ml) is indicated. 
SpoIIAB seems to elute as a small number of high molecular weight species. 

 

4.3.2.3 Analysis of Purified SpoIIAA, SpoIIAA~P and SpoIIAB Proteins 

Samples of purified SpoIIAA and SpoIIAB proteins, including the SpoIIAA 

analogue from B. sphaericus, were analysed by SDS and Native PAGE (Figure 4-

9). Both SpoIIAA and SpoIIAA~P from B. subtilis were shown to be pure by both 

SDS and Native PAGE. A significant increase in native gel mobility is seen for 

SpoIIAA~P in comparison to SpoIIAA, which could be attributed to the 

additional negatively charged phosphate moiety. The final yield of isolated 

SpoIIAA~P (~100 mg) far exceeds that of SpoIIAA (~5 mg), agreeing with the 

observations made during expression testing. SpoIIAB was not as pure as the 

SpoIIAA species. Moreover, SpoIIAB does not enter the native polyacrylamide 

gels, this may be due to the high MW species observed during size exclusion.  
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Figure 4-9: SDS- PAGE and Native PAGE analysis of SpoIIAA and SpoIIAB species from 
both B. subtilis and B. sphaericus.  
(A) 15% SDS-PAGE gel with indicated samples each containing approximately 20 µg of protein. 
M indicates Bio-Rad Broad range markers. (B) 7.5% Native PAGE gel with indicated samples. 

 

Figure 4-10: Native PAGE analysis of SpoIIAB kinase activity assay.  
The contents of numbered lanes are given on the right. Molar ratios are shown. 

 

The oligomeric nature of the purified SpoIIAB might suggest some unfolding 

and aggregation which could affect the protein’s enzymatic activity. The kinase 

activity of SpoIIAB against its cognate substrate, SpoIIAA, was analysed by a 

previously unused Native PAGE assay developed specifically for visualising the 

phosphorylation state of SpoIIAA. Varying ratios of SpoIIAA and SpoIIAB were 

incubated at room temperature for 45 minutes in 20 mM Tris-HCl, 100 mM NaCl 

at pH 8.0 with 10 mM ATP. The products were analysed by 7.5% native PAGE 

(Figure 4-10). The gel shows that the purified SpoIIAB is capable of 

phosphorylating SpoIIAA in vitro. Conversion of SpoIIAA to SpoIIAA~P appears 
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complete in reactions with an equimolar ratio or excess of SpoIIAB, both 

reactions with excess SpoIIAA show remaining substrate. The relative band 

intensities allow rough estimation of SpoIIAB activity, and that approximately 

5.5 x 10-4 molecules of SpoIIAA are turned over per SpoIIAB molecule per 

second, this value is comparable to a previously published rate of 8 x 10-4 s-1 

[86].  

4.3.2 The SpoIIAA~P Dephosphorylation Reaction 

4.3.2.1 Cognate vs. Orthologous Substrate  

A Native PAGE phosphatase activity assay comparing the rate at which 

SpoIIE590-827 dephosphorylates BsuSpoIIAA~P and BsphSpoIIAA~P was carried 

out as described in section 4.2.2. Reactions were carried out using 100 and 400 

times molar excess of SpoIIAA~P over SpoIIE(590-827). This experiment showed 

that the rate of BsuSpoIIAA~P dephosphorylation far exceeds that of 

BsphSpoIIAA~P. Full conversion of BsuSpoIIAA~P to product is achieved at 

both enzyme to substrate ratios whereas partial dephosphorylation of 

BsphSpoIIAA~P occurs in both cases (Figure 4-11). 

 

Figure 4-11: Comparison of SpoIIE catalysed dephosphorylation of SpoIIAA~P from B. 
subtilis and B. sphaericus.  
Lane 1; BsuSpoIIAA (16 µg), lane 2; BsuSpoIIAA~P (16 µg), lane 3; BsphSpoIIAA (16 µg), lane 4; 
BsphSpoIIAA~P (16 µg), lane 5; SpoIIE590-827 (20 µg), lane 6; BsuSpoIIAA~P (20 µg) + SpoIIE590-

827 (0.4 µg), lane 7; BsphSpoIIAA~P (20 µg) + SpoIIE590-827 (0.4 µg), lane 8; BsuSpoIIAA~P (20 
µg) + SpoIIE590-827 (0.1 µg), lane 9; BsphSpoIIAA~P (20 µg) + SpoIIE590-827 (0.1 µg).  
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The efficiency of the dephosphorylation reaction catalysed by BsuSpoIIE590-827 is 

much higher for BsuSpoIIAA~P than it is for BsphSpoIIAA~P. The two SpoIIAA 

proteins possess 35% sequence identity and a further 30% sequence similarity. 

When the BsphSpoIIAA~P is coloured by sequence conservation it can be seen 

that the conserved residues are strongly clustered around the loops between β2 

and α1 and β3 and α2 which are in the region of the phosphorylatable serine 

(Figure 4-12). Investigations using NMR into the likely dimer interface of 

SpoIIAA have highlighted these features along with helix α3 as being directly 

involved in dimerisation. It is thought that both the addition of a highly charged 

group and small conformational changes which occur in SpoIIAA on 

phosphorylation determine the higher affinity of SpoIIE for SpoIIAA~P relative 

to SpoIIAA [209]. That the activity of BsuSpoIIE on BsphSpoIIAA~P is so much 

lower compared to BsuSpoIIAA~P suggests that the conformational element of 

the interaction is not adequately mimicked by the orthologue.  

 

Figure 4-12: Sequence conservation of SpoIIAA from B. subtilis and B. sphaericus.  
PDB ID: 1H4Z. Sequence alignment and formatting carried out using CCP4MG. The B. sphaericus 
SpoIIAA structure is shown as ribbons coloured by sequence conservation. Conserved, 
chemically similar and unconserved residues are coloured in green, yellow and red, 
respectively. The side chain of the phosphorylatable serine (Ser58) is shown as cylinders and 
indicated with a purple circle. 
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In order to investigate the enzymatic characteristics of SpoIIE further, 

BsphSpoIIAA was set aside in favour of the native substrate, BsuSpoIIAA. 

Henceforth, unless specified all references to SpoIIAA species are to 

BsuSpoIIAA. 

 

4.3.2.2 Metal Dependence of the SpoIIE PP2C domain. 

The PP2C family of protein Serine/Threonine phosphatases are widely 

understood to be manganese or magnesium dependent enzymes. The 

phosphatase activity of SpoIIE was initially followed in the presence of 2 mM 

MnCl2 [82]. In order to confirm this dependence, the phosphatase activity of 

SpoIIE590-827 was analysed in the presence of six divalent metal cation chloride 

salts. A native PAGE phosphatase assay was carried out, as described in section 

4.2.2.1, with a 1:200 molar excess of SpoIIAA~P to SpoIIE590-827. The various 

metal chlorides were added at a concentration of 10 mM and reactions were 

allowed to proceed for 60 minutes. Of the divalent cations added, only Mn2+ 

supported observable activity in dephosphorylation of SpoIIAA~P as judged by 

the decrease in substrate mobility (Figure 4-13).  

 

 

Figure 4-13: The metal dependence of SpoIIE590-827 phosphatase activity in vitro. 
SpoIIAA~P, SpoIIAA and SpoIIE590-827 are shown, as indicated, on the left hand side. Reactions 
containing no added metal, 10 mM MnCl2, 10 mM MgCl2, 10 mM CaCl2, 10 mM CoCl2, 10 mM 
CuCl2 and 10 mM ZnCl2. 
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It was also noted that in the absence of metal ions, the dephosphorylation 

reaction does not occur. This indicates that Mn2+ ions do not carry through the 

purification steps with the SpoIIE590-827, suggesting their binding is weak. This 

was confirmed by atomic absorption spectrometry analysis of the Mn content of 

a sample of SpoIIE590-827 incubated with 10 mM MnCl2 for 20 minutes followed 

by passage through a Superdex S200 10/300 GL gel filtration column in an 

MnCl2 free buffer. No retained Mn2+ was observed when measured absorbance 

was compared to a Mn2+ standard curve (data not shown). 

Failure to retain Mn2+ may indicate a regulatory mechanism in which the 

affinity of SpoIIE for Mn2+ is controlled. Chelation by citrate notwithstanding, 

low affinity binding would also explain the lack of observed metal ions in the 

crystal structure of SpoIIE590-827. To determine how variation in Mn2+ 

concentration affects the activity of SpoIIE590-827, dephosphorylation of 

SpoIIAA~P was measured over 45 minutes at an enzyme to substrate ratio of 

1:100 with MnCl2 concentrations ranging between 10 µM and 100 mM (Figure 

4-14).  

 

 

Figure 4-14: Manganese concentration dependence of SpoIIE590-827 activity in vitro. 
SpoIIAA~P and SpoIIE590-827 are shown, as indicated, on the left hand side. Reactions containing 
no added metal, 10 µM, 100 µM, 1 mM, 10 mM and 100 mM MnCl2 are shown to the right. 

 

The lowest concentration of Mn2+ to allow full conversion of SpoIIAA~P to 

SpoIIAA was 1 mM. A large degree of conversion was observed at a 

concentration of 100 µM but none at 10 µM. This suggests that the SpoIIE590-827 
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active site is incapable of binding sufficient Mn2+ at 10 µM to support 

dephosphorylation.   

 

4.3.2.3 Phosphatase activity of SpoIIE fragments.  

The in vitro phosphatase activity observed for the SpoIIE590-827 fragment shows 

clearly that the PP2C domain fragment is capable of dephosphorylating 

SpoIIAA~P in the presence of Mn2+. In the assays described above, the Mn2+ 

concentration greatly exceeds that present in a B. subtilis cell. However, the 

level or mechanism of regulation of SpoIIE phosphatase activity cannot be 

determined by observing only the PP2C domain’s behaviour. Genetic 

experiments indicate that the SpoIIE phosphatase activity in vivo is regulated by 

interactions involving residues in other domains of the protein; this is discussed 

in more detail in Chapter 5. Until the completion of the asymmetric cell division 

septum, SpoIIE must remain inactive. Therefore, either SpoIIE must be capable 

of carrying out dephosphorylation in free solution and is inhibited by 

interaction with the cell division machinery until septum completion or it must 

be inactive until activated by a signal communicating septum completion.  

 

Figure 4-15: Comparison of SpoIIE fragment phosphatase activity. 
Control lanes containing SpoIIAA~P (5 µg) and SpoIIAA (5 µg) are on the left. Each subsequent 
pair of lanes hold a control lane of the SpoIIE fragment (5 µg) followed by a sample of the 1:200 
ratio phosphatase reaction.  
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The addition of elements of SpoIIE domain II, which is thought to interact with 

the divisome, to the PP2C domain could have an effect on its phosphatase 

activity. In order to determine whether domain II has an inhibitory or activating 

effect, the phosphatase activity of 3 phosphatase domain containing SpoIIE 

fragments; SpoIIE334-827, SpoIIE457-827 and SpoIIE590-827 was analysed using the 

native PAGE phosphatase assay described in section 4.2.2. A comparative 

experiment was carried out measuring dephosphorylation of SpoIIAA~P at an 

enzyme to substrate ratio of 1:200 over 60 minutes (Figure 4-15). 

The levels of dephosphorylation observed indicate the following activity 

hierarchy: SpoIIE590-827 > SpoIIE457-827 > SpoIIE334-827. These fragments were 

further analysed at a wider range of ratios to gain a better appreciation of 

reaction rates (Figure 4-16).  

The reaction rates were roughly compared by determining the lowest 

concentration of SpoIIE which drove the reaction to completion. This occurred 

at ratios of 1:400, 1:50 and 1:10 for IIE590-827, IIE457-827 and IIE334-827, 

respectively.  

Although these data are only semi-quantitative, it is apparent that SpoIIE590-827 

and SpoIIE457-827 are ~50 and ~5 times more active than SpoIIE334-827. This 

shows that SpoIIE domain II has an inhibitory effect on the PP2C phosphatase 

activity. The data for the SpoIIE334-827 fragment are more difficult to interpret 

due to its oligomeric nature, as detailed in section 3.3.4. SpoIIE457-827 in contrast, 

has been shown to be monomeric, as analysed by SEC-MALLS, supporting the 

observed reduction in phosphatase activity.  
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Figure 4-16: Native PAGE analyses of SpoIIE fragment phosphatase activity at varying 
[Enzyme] to [Substrate] ratios.  
The SpoIIE fragment analysed is indicated to the left of each gel. Either SpoIIAA or SpoIIAA~P is 
used as a control for band mobility in the first lane of each gel. The second lane of each gel 
contains 10 µg of the analysed SpoIIE fragment. Ratios above each lane indicate the tested 
Enzyme:Substrate ratio. All reactions were incubated for 80 minutes before 7.5% Native PAGE 
analysis. 
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4.3.3 Towards the Structural Elucidation of the SpoIIE:SpoIIAA 

Interaction 

An aim of this project was to gain structural insight into the mode of interaction 

between SpoIIE and SpoIIAA. The following section describes attempts to 

isolate the complex using transition state analogues, mutation of Ser58 in 

SpoIIAA and replacement of Mn2+ in SpoIIE with Mg2+, a metal which inhibits 

enzymatic turnover, as described in section 4.3.2.2.  

 

4.3.3.1 Phosphate Transition State Analogues 

The structural study of transition states of nucleotide metabolising enzymes 

commonly exploits charged inorganic moieties which mimic the γ- and β- 

phosphates of the nucleotide [210, 211]. These mimics bind in place of 

phosphate groups to mediate transition state interactions with surrounding 

residues. The use of free serine and AlF3 in a study of phosphoserine 

phosphatase (PSP) showed an AlF3 mediated interaction between the serine 

and PSP (Figure 4-17) [212].  

 

 

Figure 4-17: The transition state structural analogue of PSP. 
PDB ID: 1L7N. AlF3 is shown mimicking a trigonal planar transition state of the substrate 
phosphate group. As presented by Wang et al., 2002 [212]. 

 

While SpoIIAA~P is a much larger substrate molecule than phosphoserine, 

stabilisation of the active site in a transition state conformation might similarly 

promote the interaction between SpoIIE and SpoIIAA. SpoIIE590-827 and SpoIIAA 
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at an equimolar concentration of 80 µM were mixed in the presence of 10 mM 

MnCl2 and transition state mimics AlF4- and MgF3- at varying concentrations. 

The mixtures were incubated at room temperature for 15 minutes before 

analysis by native PAGE as described in section 2.7.3.2. No significant change 

was seen between the bands observed for SpoIIE590-827 and SpoIIAA with or 

without transition state analogue. It is hard to interpret this observation.  

 

 

Figure 4-18: Effect of the phosphate transition state analogue, AlF4
-, on SpoIIE:SpoIIAA 

complex formation.  
Samples analysed by 7.5% Native PAGE. Lane 1; 20 µg SpoIIE590-827 + 10 mM MnCl2, lane 2; 10 µg 
SpoIIAA + 10 mM MnCl2, lane 3; 20 µg SpoIIE590-827 + 10 mM MnCl2 + 2 mM AlF4

-, lane 4; 10 µg 
SpoIIAA + 10 mM MnCl2 + 2 mM AlF4

-, lane 5; 20 µg SpoIIE590-827 + 10 µg SpoIIAA + 10 mM MnCl2 
+ 0.5 mM AlF4

-, lane 6; 20 µg SpoIIE590-827 + 10 µg SpoIIAA + 10 mM MnCl2 + 1 mM AlF4
-, lane 7; 

20 µg SpoIIE590-827 + 10 µg SpoIIAA + 10 mM MnCl2 + 2 mM AlF4
- and lane 8; 20 µg SpoIIE590-827 + 

10 µg SpoIIAA + 10 mM MnCl2 + 3.33 mM AlF4
-. 

 

Primarily, the native gel mobility of SpoIIE590-827 and SpoIIAA are very similar 

and the observation of changes in band strength is difficult. Additionally, any 

newly formed complex might possess a very similar mass to charge ratio and, 

hence, have a similar mobility. The transition state analogues are small 

inorganic anions and when exposed to a potential difference will have a very 

high mobility causing rapid titration away from the proteinaceous species. As 

native PAGE gels are run over two hours, only stable long-lived complexes can 
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be observed by this technique. While the experimental conditions are 

unfavourable to complex formation, the bands observed for SpoIIE and SpoIIAA 

mixed with AlF4- and MnCl2 showed a decrease in band resolution when 

compared to that of the individual proteins (Figure 4-18). This is not strong 

evidence; however, the smearing effect may be due to an equilibrium between 

two species with different mobilities. This effect seemed stronger at 60 molar 

equivalents of AlF4-, the highest concentration used, where some weak band 

separation could be discerned. If this interpretation is valid, it suggests that 

some stable complex may have been formed.  

Native PAGE was unable to provide sufficient evidence for SpoIIE:SpoIIAA 

complex formation in the presence of AlF4-. Size exclusion chromatography was 

therefore used to further investigate whether complex formation might be 

taking place with AlF4-. A 100 µl sample of SpoIIE590-827 and SpoIIAA, each at a 

concentration of 1 mg/ml, with 10 mM MnCl2 and 5 mM AlF4- was injected onto 

a Superdex S200 10/300 GL gel filtration column equilibrated in 20 mM Tris-

HCl, 100 mM NaCl, 10 mM MnCl2 and 5 mM AlF4- at pH 8.0. The A280 

chromatogram indicated protein elution in three partially overlapping peaks. 

The peak fractions were analysed by SDS-PAGE (Figure 4-19).  

 

 

Figure 4-19: SEC analysis of SpoIIE:SpoIIAA interaction in the presence of AlF4
-.  

Peak fraction analysis carried out by 12% SDS PAGE. M represents Bio-Rad Low Range markers. 
Load represents the sample loaded onto the size exclusion column. 
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Peak 2 exhibits a higher A280 signal and the SDS PAGE analysis shows that it is 

dominated by SpoIIE590-827 which has a higher extinction coefficient than 

SpoIIAA. Peak 3 contains the highest concentration of SpoIIAA. The SDS PAGE 

gel suggests that peak 1 is formed by significant constructive interference, in 

which the perceived peak is a sum of the absorbance caused by the large peak 2 

and the much smaller peak eluting immediately before. The first fraction 

analysed from peak 1 shows the presence of SpoIIE590-827, which could 

represent the leading edge of peak 2, however, a band of around half the 

intensity is also seen at the same mobility as SpoIIAA. The presence of SpoIIAA 

in the highest MW peak of the chromatogram suggests that some interaction 

between SpoIIAA and SpoIIE590-827 is occurring which might be attributable to 

AlF4-. However the quantity of material which exhibits this interaction is 

certainly below 2% of the total protein, indicating a very weak interaction. 

Overall the evidence for formation of a stable complex between SpoIIE590-827 and 

SpoIIAA in the presence of inorganic phosphate transition state analogues is 

rather weak although some evidence for a weak interaction does exist. The 

logical next step in this line of investigation is the co-crystallisation screening of 

SpoIIAA and SpoIIE590-827 in the presence of AlF4- generated in situ. The process 

of crystal formation, should it occur, may select for the inclusion protein 

complex under the correct crystallisation conditions. It should be noted that 

this strategy would require large, but not prohibitive, quantities of SpoIIAA and 

SpoIIE590-827 as well as an extended crystal optimisation process and it cannot 

be relied upon to ever produce the desired results. 

 

4.3.3.2 Phosphoserine mimics: Mutation of SpoIIAA 

A phosphorylated serine residue on the surface of a protein presents a doubly 

negatively charged species on the side chain’s δ-position. For this group to be 

removed from SpoIIAA~P, it is anticipated the phosphate moiety must reach 

into the active site of SpoIIE. It is at this stage that the enzyme-substrate 

interaction should be strongest. When a hydrolysable group is replaced by a 

non-reactive mimic, the reaction cannot proceed and a long-lived non-

productive complex may be formed. 
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Glutamate has been seen to mimic phosphoserine in other systems [213]. In an 

attempt to mimic the SpoIIAA phosphoserine, serine 58 was mutated to both 

aspartate and glutamate. Aspartate and glutamate present an anionic 

carboxylate group in the γ and δ positions, respectively, which could interact 

with elements of the active site in an analogous fashion to a phosphate group 

(Figure 4-20).  

  

Figure 4-20: The chemical structures of Serine and Phosphoserine residues with the 
proposed structure mimics, Aspartate and Glutamate.  

 

Oligonucleotide primers were designed to mutate the wild type AGC codon to 

GAC and GAA encoding aspartate and glutamate, respectively. The mutagenesis 

reaction as described in section 2.3 was carried out on the pET-

YSBLIC3C_SpoIIAA vector using site directed mutagenesis.  DNA sequencing 

was carried out on the isolated mutant clones and showed the presence of the 

intended mutation in both cases. 
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Figure 4-21: Native PAGE analysis of SpoIIAA mutant interaction with SpoIIE590-827.  
In each lane IIE indicates 8 µg of SpoIIE590-827. SpoIIAA mutant containing lanes each represent 
10 µg of protein. All samples contained 10 mM MnCl2. 

 

Competent E. coli B834 (DE3) cells were transformed with constructs 

harbouring SpoIIAA(S58D) and SpoIIAA(S58E). Expression and solubility 

testing showed that on induction with IPTG, S58D is isolated with the highest 

solubility at 16°C after 20 hours with lysis in 50 mM Tris-HCl, 50 mM NaCl at pH 

8.0, while the S58E induction proceeded at 37°C for 4 hours with lysis in 50 mM 

Tris-HCl, 500 mM NaCl at pH 8.5. The solubility observed for both mutant 

proteins was notably lower than that of wild type SpoIIAA. A purification 

process analogous to that of SpoIIAA was carried out for both S58D and S58E. 

Both mutants eluted from a HiLoad Superdex 75 PG gel filtration column at 

around 75 ml, consistent with a monomeric species, as seen with SpoIIAA, 

rather than a dimeric, SpoIIAA~P-like, species.  

Native PAGE showed that a mixture of either mutant with SpoIIE590-827 and 

MnCl2 does not result in formation of a new band which might indicate complex 

formation (Figure 4-21). 

As previously mentioned, observation of a species by Native PAGE indicates a 

long lifetime. In order to further investigate potential complex formation, the 

SpoIIAA (S58D) mutant was analysed by SEC-MALLS alongside SpoIIE590-827 as 

described in section 2.7.5. The running buffer used was 50 mM Tris-HCl, 100 

mM NaCl, 10 mM MnCl2 at pH 8.0. Unfortunately, major precipitation of SpoIIAA 
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(S58E) on thawing prevented a parallel investigation with this mutant. The 

differential refractive index chromatogram indicated the elution of three 

protein-containing peaks (Figure 4-22). This chromatogram overlays well with 

a combination of the chromatograms recorded for SpoIIE590-827 and for SpoIIAA 

(S58D) separately. The calculated molecular weights agree well with a 

SpoIIE590-827 dimer (theoretical MW: 53 kDa), a SpoIIE590-827 monomer 

(theoretical MW: 26.5 kDa) and a SpoIIAA (S58D) monomer (theoretical MW: 

13.2 kDa) in order of elution. The calculated mass of a small peak eluting at 33.5 

min in the SpoIIAA (S58D) chromatogram was 27.6 kDa which suggests a small 

proportion of the SpoIIAA (S58D) exists as a dimer (theoretical MW: 26.4 kDa).  

 

 

Figure 4-22: SEC-MALLS analysis of interaction between SpoIIE590-827 and SpoIIAA (S58D). 
Differential refractive index traces for IIE590-827, IIAA (S58D) and IIE590-827 + IIAA(S58D) are 
show as green dashed, blue dotted and purple solid lines, respectively. Peak MW calculations 
from the IIE590-827 + IIAA(S58D) experiment are plotted as red lines, average calculated MW for 
each peak is annotated. All samples contained 10 mM MnCl2. 

 

The evidence suggests that the S58D and S58E mutants of SpoIIAA are unable to 

form a long-lived complex with SpoIIE590-827. Of the two mutants, S58E 

theoretically seemed the more promising as the anionic carboxylate group was 

presented at the same distance from the SpoIIAA backbone as the phosphate 

group. Additionally, the phosphate group presented to SpoIIE on phosphoserine 

is tetrahedral rather than trigonal planar in nature and possesses two formal 
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negative charges rather than one. Stabilisation of the phosphate group by 

residues or water molecules in the active site could very well be inadequately 

mimicked by a carboxylate group’s disparate charge and geometry.  

 

4.3.3.3 Use of an Inactive Active Site Metal to Trap a Pre-turnover Complex 

Earlier, in section 4.3.2.2, I showed that Mn2+ supports much higher reaction 

rates than other divalent cations tested. This observation supports two possible 

explanations: 

1. SpoIIE only binds Mn2+. 

2. SpoIIE may bind other divalent cations but these cannot support 

dephosphorylation of SpoIIAA~P efficiently. 

In order to test which hypothesis pertains, the melting temperature of 

SpoIIE590-827 was analysed in the absence of metal ions and in the presence of 

Mn2+ or Mg2+ using Thermafluor as described in section 4.2.4 (Figure 4-23). The 

data recorded for SpoIIE590-827 with no added metal suggest that either the 

protein is natively disordered or becomes disordered by the addition of the 

hydrophobic dye. This is suggested by the high fluorescence at low 

temperature, indicating that a large quantity of dye is bound to exposed 

hydrophobic residues in the protein. In contrast, a much lower starting 

fluorescence is observed when 10 mM MnCl2 is present. These curves also 

exhibit an increase in fluorescence at around 55°C indicating that spoIIE590-827 

becomes thermally denatured at this temperature. The data recorded from 

SpoIIE590-827 in the presence of 10 mM MgCl2 shows a similar pattern, however 

to a lesser extent. The starting fluorescence is higher than for Mn2+ containing 

samples, suggesting that either partial denaturation of all of the protein, or full 

denaturation of some of the protein has occurred even at lower temperatures. A 

similar increase in observed fluorescence at around 55°C suggests that some 

protein has been stabilised to the same extent observed with Mn2+.  
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Figure 4-23: Fluorescence based thermal shift assays of SpoIIE590-827 stabilisation by Mn2+ 
and Mg2+. 
 Three measured spectra are shown for SpoIIE590-827 in the presence of no added metal (red), 10 
mM MnCl2 (black) and 10 mM MgCl2 (blue). 

  

The thermal melt data suggest that SpoIIE590-827 binds, and is stabilised by, Mn2+ 

and to a lesser extent Mg2+. This, coupled with the relative enzymatic activity of 

SpoIIE590-827 when incubated with these divalent cations, suggests that Mg2+ can 

occupy the active site of SpoIIE but is much less able to turnover SpoIIAA~P 

than Mn2+.  

Co-crystallisation screening experiments were set-up using SpoIIE590-827 and 

SpoIIAA~P including 5 mM and 10 mM concentrations of either MnCl2 or MgCl2. 

Formation of small crystals was observed in both MnCl2 and MgCl2 containing 

conditions. However, the number of hits observed in the presence of both 5 mM 

and 10 mM MgCl2 was over twice that observed for MnCl2 containing 

conditions. The crystals grown were bipyramidal in morphology which is 

similar to the shape observed in past crystallisations of the SpoIIE590-827 

fragment alone. Optimisation of hits in crystal screening produced large 

bipyramidal crystals grown in a hanging drop experiment, as described in 

section 2.8.2, which were grown from a well solution of 50 mM NaCitrate, 15% 

PEG 6K at pH 5 with a protein solution of 5 mg/ml of both SpoIIE590-827 and 

SpoIIAA~P in 20 mM Tris-HCl 100 mM NaCl, 5 mM MgCl2 at pH 8 (Figure 4-24). 

The crystals were tested for X-ray diffraction in house and showed diffraction to 

between 4 Å and 5 Å.  



176 
 

 

 

Figure 4-24: Bipyramidal crystal grown from SpoIIE590-827 and SpoIIAA~P in the presence 
of 5 mM MgCl2 from a well solution of 50 mM sodium citrate, 15% PEG 6K at pH 5.  

 

Two crystals were sent to the Diamond Light Source, UK, for data collection on 

the i04 beamline. The X-ray wavelength used was 0.92 Å. Datasets were 

collected to resolutions of 3.4 Å and 3.8 Å.  The data were processed with XDS 

using the xia2 program [214, 215], which calculated a unit cell with parameters; 

a = 87.14 Å, b = 87.14 Å, c = 159.10 Å, α = 90°, β = 90° and γ = 120° in a primitive 

hexagonal space group (P62/422). These unit cell dimensions are almost 

identical to those of the PP2C domain swapped dimer structure, however in that 

case c = 320 Å; twice the value determined for the co-crystal. A solution by 

molecular replacement was attempted using MOLREP and both the SpoIIE590-827 

domain swapped dimer and active site-occluded dimer co-ordinates, however 

no solution was found. 

In order to determine the protein content of these crystals, two crystals fished 

from the same crystallisation drop as those tested at the synchrotron were 

dissolved in 25 µl of 50 mM Tris-HCl, 100 mM NaCl buffer at pH 8.0. This 

solution was then examined by SDS PAGE alongside SpoIIE and SpoIIAA~P 

(Figure 4-25). 

If the crystals contained a 1:1 complex, a SpoIIAA band with intensity equal to 

roughly half of that exhibited for SpoIIE590-827 would be visible. The lack of a 

SpoIIAA band (lane 5) indicates that the crystals contain only SpoIIE590-827.  
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Figure 4-25: Silver stained SDS PAGE analysis of crystals grown from SpoIIE and 
SpoIIAA~P in the presence of Mg2+.  
The expected SpoIIAA~P band position in lane 5 is highlighted in red. 

 

 

 

 

Figure 4-26: SEC-MALLS analysis of SpoIIE590-827 and SpoIIAA~P in the presence of Mg2+. 
Chromatograms plotting dRI for IIE590-827, IIAA~P and IIE590-827 + IIAA~P are shown as blue 
dashed, green dashed and black solid lines, respectively. Peak MW calculations from the IIE590-

827 + IIAA~P experiment are plotted as red lines, average calculated MW for each peak is 
annotated. All samples contained 10 mM MgCl2. 
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To see if an interaction could be observed in the solution state, SpoIIE590-827 and 

SpoIIAA~P at a 1:2 molar ratio in the presence of 10 mM Mg2+ was analysed by 

SEC-MALLS. This indicated that a species is generated with a calculated 

molecular weight of 13 kDa (Figure 4-26). The peak representing a SpoIIAA~P 

dimer (calculated MW = 21 kDa) was not present suggesting that 

dephosphorylation has taken place to yield an unphosphorylated SpoIIAA 

monomer (as observed in comparable experiments where Mn2+ replaces Mg2+). 

This evidence suggests that while the rate of catalysis carried out by SpoIIE is 

much lower in the presence of Mg2+ than Mn2+ (Figure 4-13) exchange does not 

sufficiently retard the reaction to prevent dephosphorylation of SpoIIAA~P at 

comparable molar ratios over a duration of around 3 hours; the period between 

initialisation of the SEC-MALLS sample batch and injection of this sample. 
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4.4 Summary and Discussion 

The cloning and isolation of SpoIIAA, SpoIIAB and SpoIIAA~P from B. subtilis 

was carried out. The efficiency of SpoIIE590-827 catalysed dephosphorylation of 

BsuSpoIIAA~P was markedly higher than that for BsphSpoIIAA~P. Isolated 

SpoIIAB, despite oligomerisation, was shown to have kinase activity; producing 

SpoIIAA~P from SpoIIAA in the presence of ATP. 

Investigation into the reaction rates of various fragments of SpoIIE indicated a 

drop in activity on inclusion of domain 2 elements. A 50-fold reduction in 

dephosphorylation of SpoIIAA~P was observed between BsuSpoIIE590-827 and 

BsuSpoIIE334-827. An intermediate 10-fold reduction was observed for 

BsuSpoIIE457-827. While the reduction observed for the BsuSpoIIE334-827 fragment 

could, in part, be due to oligomerisation, the activity observed for the 

BsuSpoIIE457-827 fragment clearly suggests direct inhibition of SpoIIE’s 

phosphatase activity by SpoIIE domain 2. Interestingly, this observation is in 

contrast to a previous investigation which showed that full length SpoIIE 

possessed a higher dephosphorylation rate than that observed for a fragment 

representing the PP2C domain alone in the presence of 2 mM Mn2+ [216]. 

 The phosphatase activity of the SpoIIE590-827 fragment was not detectable at a 

Mn2+ concentration below 100 µM. It could be that full length SpoIIE is required 

to create an active site with high affinity for manganese. The optimum Mn2+ 

concentration for sporulation of B. stearothermophilus has been reported as 

between 10 and 30 µM, which supports the hypothesis that a higher Mn2+ 

affinity state for the phosphatase domain must exist [217]. 

Attempts to form a stable SpoIIE590-827:SpoIIAA complex were, unfortunately, 

largely fruitless. Some evidence for a weak interaction in the presence of the 

phosphate transition state analogue, AlF4-, was observed. It is possible that the 

use of this additive in co-crystallisation screening might cause in situ complex 

formation and provide crystals. SpoIIAA mutants designed to be mimics of 

SpoIIAA~P did not show any evidence of interaction with SpoIIE and it is 

thought that while in other systems an interaction has been observed based on 

the use glutamate mimics of phosphoserine, the specificity of interaction 
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between SpoIIE and SpoIIAA~P does not accommodate these variations in 

substrate. The use of a non-native divalent cation to slow the 

dephosphorylation of SpoIIAA~P was unsuccessful.  

The methods which are suitable for attempted isolation of a phosphatase-

phosphoprotein substrate complex are few, explaining to some extent the lack 

of published structures. A promising but impractical system uses a non-

hydrolysable phosphoserine mimic, pCF2-Ser, to construct substrate mimic 

peptides. These mimics have been shown to effect melatonin production and 

p53 tumor suppressor protein activity on interaction with target proteins in 

vivo [218]. This mimic would potentially serve as a tool for isolating a 

SpoIIE:SpoIIAA complex structure as it is reported to support native 

interactions relying on the presence of a phosphorylated serine, however 

introduction of this moiety in place of SpoIIAA Ser58 by recombinant protein 

production techniques or by chemical modification is not possible and it would 

be necessary to carry out a chemical synthesis of the whole protein. 
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Chapter 5: In vivo Investigation of SpoIIE Mutations; 

Regulation of Asymmetric Cell Division and 

Phosphatase Activity by SpoIIE. 

5.1 Introduction 

The importance of SpoIIE in sporulation is not simply underlined by its 

requirement to activate σF, but also in the mediation between the genetic and 

cytokinetic states of the cell through regulation of σF and control of asymmetric 

septation.  

This section describes a number of spoIIE mutant phenotypes which show 

evidence for intragenic regulation of phosphatase activity and inter-

communication between domains. The competence system of B. subtilis is also 

described, as it is of relevance to the in vivo mutagenesis work documented in 

this chapter. 

 

5.1.1 Phenotypes of mutant spoIIE alleles 

SpoIIE’s role in asymmetric septum formation, activation of σF and, importantly, 

coupling of the two has been extensively studied through the identification and 

analysis of mutants. Figure 5-1 shows a representation of some of these 

mutations and their phenotypes. The data shown has been collated from 

various literature sources and from Niels Bradshaw (Harvard, personal 

communication) [159, 163, 219-221].  

spoIIE null mutant cells display aberrant septation, in which roughly 50% of the 

cells fail to form asymmetric septa at T2 (two hours after the initiation of 

sporulation). When cells do form an asymmetric septum, the absence of SpoIIE 

means that σF cannot be activated. Eventually some cells will form a second 

division septum at the opposite cell pole [220, 222, 223]. The asymmetric septa 

of spoIIE null mutants are much thicker than the normal sporulation septa of 

wild type cells. This implicates SpoIIE in structural reorganisation of the 

forming septum. Thick septa are seen in vegetative cell division as a 
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consequence of the higher peptidoglycan content in preparation for cell fission. 

During sporulation the thinner septa are thought to afford elasticity to the 

membrane in order to facilitate engulfment. 

Deletion of the transmembrane region of SpoIIE, spoIIEΔregI, leads to failure of 

SpoIIE to localise to the septum and a reduced frequency of asymmetric division 

[163]. When compared to cells with wild-type spoIIE, a 56% reduction in the 

proportion of cells with σF activated only in the forespore is also observed. 

Other cells showed activation of σF throughout the whole cell. This indicates a 

defect in the regulation of SpoIIE phosphatase activity so that SpoIIAA~P is 

dephosphorylated throughout the cell.  

The replacement of region I with two transmembrane helices from the E. coli 

protein, MalF, shows similar properties to wild type spoIIE in promotion of 

polar septum formation in vegetative cells which overproduce FtsZ [169]. This 

evidence suggests that the role of SpoIIE region I is limited to anchoring the 

protein to the membrane and that the cytoplasmic domains are responsible for 

regulation. In sporulating cells, however, this mutant causes much reduced 

formation of asymmetric septa and σF is prematurely activated throughout the 

whole cell. It was observed that the levels of MalF-SpoIIE present in the cell 

were much higher than those seen for wild type SpoIIE. Therefore, the 

replacement of the transmembrane domain with the MalF helices stabilises 

SpoIIE. An increase in SpoIIE levels is sufficient to explain the 

uncompartmentalised σF activation which would cause asymmetric cell division 

to be abandoned.  

Deletion of the central domain of SpoIIE in the IIEΔregII mutant prevents 

subcellular localisation to the asymmetric septum [169], and the observed 

reduction in the formation of asymmetric septa is ~95% when compared to 

wild type. Localisation experiments in the same work indicated a diffuse 

distribution of SpoIIEΔregII-GFP throughout the cell membranes rather than at 

the sites of asymmetric division. This evidence implicates domain II of SpoIIE in 

interaction with the cell division machinery which seemingly directs 

localisation. 
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Figure 5-1: Location of sites of mutation and the associated phenotypes of SpoIIE Mutants.  
SpoIIE’s three domain structure is shown. Phenotypes associated with mutations in SpoIIE are compared (top) by Spores (%WT); % sporulation efficiency 

compared to Wild Type (where data are available), ; frequency of asymmetric septation and σF ; compartment specific σF activation.  The phenotypes of 
Wild Type (WT), SpoIIE deletion (IIEnull) and domain deletion mutants (IIEΔregI and IIEΔregII) are shown to the left. The phenotypes of SpoIIE point mutations in 
the cytoplasmic domains are given along with an indication of their location in the primary sequence.  For frequency of asymmetric septation,  and  indicate 
frequencies comparable to WT and IIEnull mutants, respectively, D indicates a delay in septum formation which is recovered from over time. For compartment 
specific σF activation, - indicates that little activation of σF is seen in any cells,  indicates that the specificity is comparable to wild type,  indicates that specificity 
is maintained but at a lower level than with wild type and  indicates that specificity is abolished and that σF is activated throughout the cell. 
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Many spoIIE point mutations have been identified and analysed giving insight 

into SpoIIE’s function during sporulation. A number of mutations in the PP2C 

domain (domain III) exhibit defects in σF activation. For example D686A and 

D746A are unable to activate σF [169]. The crystal structure of the SpoIIE 

phosphatase PP2C domain shows that D746 co-ordinates a Mn2+ ion in the 

active site. Mutation of this residue would disrupt metal coordination in the 

active site, explaining the phenotype of the D746A mutation. D686A prevents 

SpoIIAA~P dephosphorylation and causes a severe defect in sporulation 

septum formation; even more pronounced than that shown in a spoIIE null 

mutant. This indicates that elements of region III contribute to and potentially 

co-ordinate cytokinesis and the enzymatic activity of SpoIIE.  

A V697A mutant results in hyperactivation of SpoIIE phosphatase activity. This 

causes σF activity throughout the cell before asymmetric division takes place 

because SpoIIAA~P is dephosphorylated throughout the cell [219]. This 

suggests that this mutant bypasses some form of phosphatase activity 

regulation, which is key for correct asymmetric septation and 

compartmentalised σF activity. This mutation was studied in combination with a 

σF mutant (V233M) which causes large shifts in E-σF affinity for various 

promoters. The phenotype of the double mutant is identical that of V697A. In 

contrast, when spoIIE(V697A) was combined with a σF knockout mutant 

asymmetric septation was restored. This indicates that the signal to abandon 

asymmetric septation is due to a gene which is hyperactivated by the 

σF(V233M) mutant.  

The interdependent roles played by domains II and III of SpoIIE, implied by the 

D686A mutant, are further supported by two key mutations found in region II, 

S361F and Q483A. Each of these mutations prevents activation of σF, and hence 

exerts an effect through the phosphatase domain. However the mode by which 

σF activation is blocked differs for the two mutants. While SpoIIE(Q483A) 

exhibits no in vitro phosphatase activity, explaining σF’s inactive state, 

SpoIIE(S361F) is able to carry out dephosphorylation of SpoIIAA~P indicating 

that perhaps in vivo this mutant is unable to release dephosphorylated SpoIIAA 

after turnover [159, 221]. The Q483A mutant shows no defect in asymmetric 
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septation whereas, the S361F mutant was shown to exhibit delayed asymmetric 

septation. At 90 minutes after sporulation initiation, the fraction of cells that 

had undergone asymmetric cell division was comparable to that seen in a 

SpoIIE null mutant, however, at 150 minutes the number of cells with 

asymmetric septa was similar to wild type strains.  

The S361F and Q483A mutations are suppressed by point mutations elsewhere 

in the spoIIE gene [221]. The sites of the suppressor mutations map to domains 

II and III, again suggesting interaction between these two domains. Of the 10 

identified suppressors of S361F, six are located in the phosphatase domain. 

There were only 3 suppressors identified of Q483A; domain II harbours Q342P 

and R502L, while the previously mentioned V697A mutation suppresses Q483A 

from domain III. Further analysis of the Q342P suppressor showed that the in 

presence of Q342P as a single mutation in spoIIE, σF is activated earlier and to 

higher levels than is normal, as observed with V697A. 

Early observations assigned discrete functions to the putative domains of 

SpoIIE: domain I, membrane association; domain II, interaction with the cell 

division machinery; domain III, σF activation. The phenotypes exhibited by 

spoIIE mutants challenge this assignment. For example, mutations in one 

cytoplasmic domain can have an effect on the assigned function of the other. 

This is indicative of inter-dependency between the roles of both cytoplasmic 

domains of SpoIIE.  Further, this suggests a direct communication of the state of 

septation through domain II to the PP2C domain, a signal which clearly has a 

strong influence on σF activation. There is the possibility that regulation of 

phosphatase turnover is caused by block of SpoIIAA release by SpoIIE after 

turnover, as indicated by the observed S361F phenotype.  There is a notable 

absence of identified mutations in the transmembrane domain, short of its 

deletion, which cause aberrant sporulation phenotypes.  
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5.1.2 Competence in B. subtilis  

B. subtilis cells can develop competence spontaneously as a survival strategy.  

On entry into the stationary phase, the transcription of over 20 competence 

specific or related genes is upregulated under the control of ComK, a master 

transcriptional regulator [224]. Interestingly, only 10-20% of cells in stationary 

phase cultures are generally observed to possess competence. This is due to a 

noise-induced bistability which is explicable through the way comK 

transcription is regulated  [225] (Figure 5-2).  

 

 

Figure 5-2: Regulation of ComK, the master transcriptional regulator of competence in B. 
subtilis.  
Black barred lines represent repression. Black arrows indicate activation. Blue arrows 
represent gene expression. Adapted from Maamar et al., 2005 [225]. 

 

comK is repressed by CodY and AbrB (the activities of which are depleted in 

stationary phase conditions) and by Rok [226]. ComK itself is a repressor of 

transcription of rok. After the relief of AbrB and CodY repression, ComK levels 

might reach a threshold sufficient for the relief of its own repression by Rok 

through a positive feedback loop, much like the relief of AbrB by Spo0A~P via 

σH. Promotion of comK expression is provided by DegU which increases the 

affinity of ComK for its own promoter but cannot cause transcription of ComK in 

its absence. The basal level of the ComK regulator is therefore the determining 
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factor in its own regulation. In a stationary phase culture, the basal levels of 

ComK are in a range where 10-20% of cells can overcome repression and fully 

adopt competence. 

 

5.1.2.1 DNA Uptake Machinery 

In competent cells of B. subtilis, DNA uptake machinery assembles at the cell 

poles and consists of two macromolecular structures [96]. The first, the 

pseudopilus, is responsible for the binding of extracellular DNA termini at the 

cell wall and their direction towards a membrane bound transport apparatus. 

The pseudopilus is a tower-like apparatus constructed from major and minor 

pseudopilins (Major: ComGC – Minor: ComGD, ComGE and ComGG) by the 

assembly and anchoring proteins; ComC, ComGA and ComGB (Figure 5-3). It has 

been argued that the pseudopilus may be able to extend and retract through the 

cell wall to facilitate the relocation of captured DNA to the cell membrane [227]. 

 

 

Figure 5-3: The DNA uptake apparatus produced by competent B. subtilis cells.  
The pseudopilus, left, which recognises dsDNA termini is anchored by ComGB and ComGA. 
Pseudopilins (major – orange, minor – blue) are added to the forming pseudopilus by ComC. 
DNA transport is carried out by ComEC, a membrane channel forming protein, assisted by the 
DNA binding protein, ComEA, and putative ATP-dependent translocase ComFA. NucA (not 
shown), a DNase, is thought to cleave dsDNA to increase the population of DNA termini for 
recognition by the pseudopilus. As presented by Chen et al., 2004 [228]. 

 

Captured DNA is guided to the second structure, a transport portal, through 

which it is taken up by the cell (Figure 5-3). The portal consists of ComEA, a 
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DNA binding receptor; ComEC, a membrane channel and ComFA, an ATP-

binding protein homologous to an E. coli translocase, PriA. Double-stranded 

DNA is bound by ComEA and passed through the membrane channel, ComEC, 

presumably driven by the putative translocase, ComFA. During this process, one 

strand of the dsDNA is degraded and released into the extracellular milieu; the 

remaining ssDNA is transported into the cytoplasm.  

Another protein having a large impact on the efficiency of DNA uptake is, NucA, 

a manganese-dependent DNase, which is believed to play a role in cleavage of 

DNA to provide a larger population of DNA termini for recognition by the 

pseudopili. Deletion of nucA results in a large reduction in DNA uptake. This 

reduction is much more severe during the transformation of large DNA 

fragments and less severe with small DNA fragments.  

 

5.1.2.2 Post-transformational Treatment of Exogenous DNA. 

The roles of the proteins which chaperone acquired ssDNA which has been 

taken up are not well defined, with the exception of RecA, which is directly 

involved in homologous recombination. The internal portion of the DNA uptake 

membrane channel associates with RecA, as well as DprA, SsbB and YjbF. It is 

thought SsbB and DprA, ssDNA binding proteins, play a role in protecting ssDNA 

from nuclease degradation and in mediating the correct formation of a DNA-

RecA filament. The role of YjbF is not well understood; however, a homologue 

from Streptococcus pneumonia, CoiA, has been shown to have no role in 

formation of the DNA-RecA filament and it is argued that its role is in mediating 

the recombination process.  

When exogenous DNA is taken up by the cell a nucleoprotein complex, the DNA-

RecA filament, is produced. This is the active structure which both searches for 

homology between exogenous ssDNA and the cell’s own chromosome and 

initiates recombination. The RecA-ssDNA filament adopts an extended kinked 

conformation in which the average number of nucleotides per turn is 

dramatically increased but local nucleotide triplet configuration (Figure 5-4A) 

is remarkably similar to B-DNA. This conformation is induced by the interaction 

of three RecA protomers with each triplet. When this filament interacts with 
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dsDNA which remains in the native B-configuration at a second RecA binding 

site, the B-DNA like triplets can parse the genomic DNA through Hoogsteen base 

pair interactions to search for homology [229]. False pairings are disrupted by 

the R169 residue of RecA. When identity is found, RecA also mediates a 50 

degree rotation of the complementary strand’s glycosidic bond to cause pairing 

exchange resulting in formation of a double helix with the exogenous DNA [230] 

(Figure 5-4B).   

 

 

Figure 5-4: RecA enables recognition of complementary DNA sequences to initiate 
homologous recombination. 
 (A) The conformation of a B-DNA-like triplet (gold) in the nucleoprotein filament. Three RecA 
protomers induce this conformation: RecA5’ (brown), RecA0 (green) and RecA3’ (light blue). 
Each RecA protomer interacts with three triplets, once in each of the roles. The ssDNA continues 
in the 5’ and 3’ directions (grey). Taken from Chen et al., 2008 [229]. (B) Example of a Watson-
Crick C-G base pair exchange which might be induced by RecA. The RecA-bound exogenous 
cytosine base (Cex) recognises a chromosomal cytosine-guanine base pair (Cch and Gch). A 50° 
rotation of the glycosidic bond of the guanine-containing strand promotes formation of a 
Watson-Crick base pair between complementary chromosomal and exogenous DNA strands. Cch 
is displaced from the newly-formed major grove. Taken from Saladin et al., 2010 [230]. 

 

5.1.2.3 Modes of Homologous Recombination 

In Bacillus, homologous recombination of exogenous DNA can occur in two 

modes: double crossover and Campbell-like, also known as single-crossover, 

integration [231]. The recombination event which takes place in Bacillus is 

dependent on the homology detected in the exogenous DNA.  

Where there is one region of homology, single crossover integration takes place. 

The entire DNA fragment is incorporated into the chromosome starting with the 

homologous segment. It should be noted that because any circular exogenous 
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DNA is linearised before uptake, the single crossover can occur at any point in 

the region of homology. 

 Where there are two regions of sequence homology, a replacement of the 

sequence between the homologous loci, or double crossover, occurs.  

These modes of integration are commonly utilised in the genetic study of B. 

subtilis through introduction of integration vectors which have been engineered 

to harbour sequences homologous to target genes in B. subtilis. Each integration 

vector contains an E. coli oriC region which allows replication of the plasmid in 

E. coli but not in B. subtilis. This means that in order for a strain of Bacillus to 

retain the genetic information on an artificially introduced plasmid it must be 

integrated into the chromosome, hence integration vector. 

In addition to the oriC region, integration vectors have the bla ampicillin 

resistance cassette for selection in E. coli and a second antibiotic resistance 

cassette, abr, for selection in the Gram-positive B. subtilis. The desired 

homologous DNA and any additional features are cloned into the vector at a 

Multiple Cloning Site (MCS). Three hypothetical integration plasmid constructs 

and their uses [232] are described in Figure 5-5. 
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Figure 5-5: Modes of Exogenous DNA Integration by Homologous Recombination in B. subtilis.  
orfA is a hypothetical open reading frame and Porf is its promoter. (A) Single crossover (Campbell-like) integration. Each plasmid has only one region of homology 
(i) Knockout mutation of orfA, a portion of orfA, orfA’, is present on the plasmid, integration results in a displaced full orfA gene being separated from its promoter. 
(ii) Inclusion of Porf on the plasmid and addition of a reporter gene (e.g. lacZ) after the region of homology leads to the one copy of orfA and one reporter gene fusion 
under the same transcriptional control. (B) Knockout by locus interruption. A double crossover occurs which interrupts the chromosomal target gene with orfA and 
abr. The integrant has acquired antibiotic resistance and the insertion of orfA but no longer has a functioning target gene. Taken from Zeigler, 2002 [232].  
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5.2 Methods 

5.2.1 Generation of B. subtilis Competent Cells 

A single colony of the B. subtilis IB333 strain was resuspended in 100 µl LB and 

plated on LB agar. The plate was incubated at 30 °C overnight. The grown cells 

were resuspended in 1 ml LB and used to inoculate 20 ml of freshly prepared 

SpC (Appendix I) medium to an OD600 of 0.4. This culture was then grown for 

approximately 3 hours until the cells reached the stationary phase (i.e. when 

the OD600 remains unchanged for 20-30 min), where they become naturally 

competent. Thereafter, 2 ml of the culture was diluted into freshly prepared and 

prewarmed SpII (Appendix I) medium and allowed to grow for 90 min at 37 °C. 

The cells were then pelleted by centrifugation (2500 x g, 20 min at standard 

temperature) and resuspended in a mixture of 8 ml of supernatant and 2 ml of 

80% glycerol and aliquoted for storage at -80°C. SpC and SpII media are always 

prepared fresh from the sterile stock solutions. 
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5.2.2 The pUK-19 Integration Vector 

The 4172 base pair integration vector used in this work, pUK-19, consists of a E. 

coli ColE1 origin of replication, an ampicillin resistance gene, an aphaA-3 

kanamycin resistance gene and a 104 nucleotide multiple cloning site (MCS) 

between M13 forward and reverse primer binding sites (Figure 5-6). The MCS 

of pUK-19 contains unique restriction endonuclease cleavage sites for enzymes 

including SphI, SbfI, PstI, BspMI, AccI, HincII, SalI, XbaI, BamHI, XmaI/SmaI, 

Acc65I, KpnI, BanII, SacI, Eco53kI and EcoRI. 

 

Figure 5-6: Plasmid map and Multiple Cloning Site of the B. subtilis Integration Vector: 
pUK-19.  
The nucleotide sequence in the MCS is shown. The M13_fwd and M13_rev primer binding sites 
are highlighted in green. Nucleotide sequence, annotation and reagent obtained from Imrich 
Barak, personal communication. 
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5.2.3 Transformation of competent B. subtilis 

250 l of competent cells were thawed at standard temperature and mixed with 

250 l of CaCl2-free SpII with 2 mM EGTA and approximately 1 g of desired 

plasmid or chromosomal DNA in a 1.5 ml Eppendorf tube. Samples were 

incubated at 37°C for 30 min in an orbital shaker. TOP agar (0.7% (w/v) LB 

agar) is melted in a microwave and allowed to cool to 42°C. The transformation 

mix is added to 4.5 ml TOP agar supplemented with 10 µg/ml kanamycin and 

the mix is plated onto LB agar supplemented with 10 µg/ml kanamycin for 

overnight incubation at 37°C. Colonies represent strains which have acquired 

and integrated the plasmid. 

5.2.4 Strains 

The strains of B. subtilis used here are detailed in Table 5-1.  

Table 5-1: B. subtilis strains used in this work. 

Strain Genotype Description 

Obtained:   

IB133 
PY79 and Bacillus subtilis 168 
prototroph 

Wild Type strain 

IB614 thrA5, spo0A::kan 
Spo0A interrupted by 
kan resistance, Spo- 
strain 

Novel:   

JTE001 As IB133, spoIIE kan 
Kanamycin resistant 
spoIIE integrant 

JTE002 As IB133, spoIIE- K649T kan spoIIE K649T mutant 

JTE003 As IB133, spoIIE- I650A kan spoIIE K650I mutant 

JTE004 As IB133, spoIIE- L695W kan spoIIE K695W mutant 

JTE005 As IB133, spoIIE- V697A kan spoIIE K697A mutant 

JTE006 As IB133, spoIIE- V728A kan spoIIE K728A mutant 
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5.2.5 Sporulation Efficiency Assay 

The assay used to determine sporulation efficiency takes advantage of the heat 

resistance of mature spores. Cultures of B. subtilis were induced to sporulate in 

nutrient-limiting DSM (Defined Sporulation Media) as follows. Stocks of B. 

subtilis strains to be tested were streaked onto LB agar plates supplemented 

with appropriate antibiotics (10 µg/ml kanamycin for strains with kanamycin 

resistance) and grown overnight at 37°C.  For each strain, one colony from this 

plate was resuspended in 50 µl LB liquid media and spread onto a fresh LB agar 

plate (with appropriate antibiotics), before incubation overnight at 30°C. 600μl 

of DSM was used to harvest the cells from each LB plate by resuspension with a 

glass spreader. The dense cell suspension was pipetted into an Eppendorf tube 

and used to inoculate a 5 ml DSM culture to OD600 = 0.1 for each sample. This 

culture was grown for 24 hours at 37°C with shaking at 180 rpm. During this 

time sporulation is induced and the final culture consists of a distribution of 

both vegetative cells and spores. 

Sporulation efficiency is calculated in spores/ml. This value was determined 

using the following method. 1 ml of sporulation induced DSM culture was 

heated for 10 minutes at 80°C in a heating block. 10x serial dilutions in 

phosphate-buffered saline (PBS) (0.01 M phosphate buffer, 3 mM KCl and 

140 mM NaCl at pH 7.4) of the heat-treated culture were carried out. 50 µl of 

each dilution was then spread onto a separate LB agar plate supplemented with 

appropriate antibiotics and grown at 37°C overnight. The number of colonies on 

each plate was counted. Where the number of colonies was between 20 and 200 

it was used to determine a value for colony forming units per ml (CFU/ml) with 

the following formula: 

         
[           ]     

[               ] 
 

As this value is determined from a culture in which only spores remain viable, 

this value also represents spores/ml. The sporulation efficiency within a 

culture, when required, was determined by analysis of a non-heat killed sample 

of sporulating culture. The obtained CFU/ml represents both spores and 
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vegetative cells, hence, the proportion of spore vs. vegetative cells can be 

determined. 
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5.3 Results 

5.3.1 The Structural Context of Intragenic Suppressor Mutations in 

the SpoIIE Phosphatase Domain 

A previous experiment seeking suppressor mutations of two key SpoIIE 

mutations in domain II, S361F and Q483A, which cause severe sporulation 

defects, revealed 13 suppressor mutants within the spoIIE ORF [221] (Figure 5-

7A). These mutations, when present alongside either S361F or Q483A, restore 

sporulation. Of the 13 mutants, 7 cause suppression from domain III. That all of 

these inter-domain suppressors are quite localised in the PP2C domain primary 

sequence, between residues 649 and 728, suggests a region through which 

signals might be passed to and from the phosphatase domain. Indeed, when the 

seven suppressor mutations in the PP2C domain are mapped onto the crystal 

structure, they all lie within a relatively small region of the structure around 

helices α1 and α2. Helices α1 and α2 lie across one face of the central β-

sandwich of the PP2C domain. It is on the outer face of these helices and in the 

hydrophobic interaction between the helices and the β-sheet that the mutations 

are located (Figure 5-7B). 

The phenotypes presented by S361F and Q483A, discussed in section 5.1.1, 

strongly suggest signalling between the two cytoplasmic domains of SpoIIE. The 

structural clustering of their suppressor mutations, further suggests that the 

α1-α2 region of the SpoIIE phosphatase domain is responsible for mediating 

this signal transduction. The V697A mutant, a suppressor of Q483A, was shown 

to be hyperactive in σF activation as a single mutant and possess around 1% of 

the sporulation efficiency of wild type SpoIIE [219].  In order to determine if the 

amino acid substitutions in the region around helices α1 and α2 of the SpoIIE 

PP2C are associated with similar sporulation defects when present alone, two 

mutants alleles in the α1/α2 - β-sheet interface; corresponding to substitutions 

L695W and V728A, and the two mutant alleles corresponding to substitutions 

on the outer surface of the α1-α2 segment; K649T and I650A, were analysed. 

Accordingly, single mutants were prepared and the sporulation efficiency was 

determined.  
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Figure 5-7: Distribution of SpoIIE S361F and Q483A Suppressor Mutations.  
(A) Key mutations (red diamonds) and their suppressors (yellow diamonds). (B) Mapping of 
suppressor mutations onto the SpoIIE590-827 domain-swapped dimer structure (PDB ID: 3T9Q). 
The PP2C domain is shown as a blue ribbon. The α1 and α2 helices are labelled. The active site 
residues (cyan cylinders) and Mn atom (magenta) are indicated. The wild type residues for 
suppressor mutations are shown as cylinders coloured by atom. 

 

5.3.2 Cloning of SpoIIE into an Integration Plasmid 

A strategy was devised for cloning a spoIIE gene fragment consisting of base 

pairs 1581-2481 into the pUK-19 integration vector. Mutation of the 

recombinant plasmid by SDM and subsequent transformation of B. subtilis cells 

would result in strains harbouring spoIIE alleles with the selected point 

mutations. 

Amplification of a spoIIE fragment was originally planned with primers 

introducing an EcoRI cleavage site downstream of the SpoIIE stop codon. 

However, the spoIIE sequence has an internal EcoRI site and so this strategy 

was modified in favour of an XmaI cleavage site. The spoIIE(1504-2481) gene 



199 
 

fragment was amplified by PCR, as described in section 2.3.2, using a LIC 

forward primer, IIE_LIC_502F and a reverse primer designed to introduce the 

CCCGGG XmaI recognition sequence. The 5’ end of the insert was generated by a 

BglII site within the amplified spoIIE fragment (at base pair 1580). The PCR 

products were analysed by agarose gel electrophoresis, as described in section 

2.1, and a band was observed matching the expected amplicon size, 977 bp 

(Figure 5-8A). The products were then purified using a PCR purification kit 

(Qiagen). 

 

 

Figure 5-8: Preparation of cloning reagents for the pUK-19-spoIIE plasmid.  
(A) Amplification of the spoIIE(1504-2841) fragment by PCR. Lane 1; Hyperladder I (ladder sizes 
to the left), lane 2; Negative control PCR – no template DNA, lanes 3 and 4; PCR products at 
around 1 kbp in length. (B) Restriction enzyme digests of both pUK-19 vector and the spoIIE 
fragment insert. Lane 1; Hyperladder I (Bioline) (ladder sizes to the left), lane 2; undigested 
insert, lane 3; undigested vector, lane 4; digested insert, lane 5; digested vector. 

 

The pUK-19 vector was isolated by miniprep, section 2.2, from transformed E. 

coli XL-10 Gold cells. A double restriction enzyme digest of 450 µg pUK-19 using 

1 unit each of BamHI and XmaI was set up in a volume of 20 µl. A second double 

digest was set up of 500 ng of the PCR amplified insert using 1 unit each of XmaI 

and BglII in 20 µl. The products of both digestions were separated by agarose 

gel electrophoresis (Figure 5-8B). The products of the insert digest showed a 

band at the expected fragment size, 900 bp, and one below 200 bp, representing 

the cleaved upstream 77 bps, which has been cleaved by BglII. The products of 

the vector digest show a single band at 4 kbp representing the linearised vector. 
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The digest product bands were excised from the agarose gel and purified using 

a QIAquik Gel Extraction Kit (Qiagen).  

XmaI cleaves the sequence CCCGGG to produce 5’-CCGG overhangs. BglII, the 

recognition sequence of which is AGATCT, is an isocaudomer of BamHI, 

GGATCC, and produces the same 5’-GATC overhang on cleavage. Because of this, 

cleavage of the vector with BamHI and the insert with BglII will still yield 

complementary ends allowing ligation of the vector and insert (Figure 5-9). 

 

 

Figure 5-9: Schematic Representation of the XmaI/BamHI strategy for cloning of the pUK-
19-spoIIE integration plasmid. 
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The gel-extracted, purified vector was treated with shrimp alkaline phosphatase 

at 37°C for 45 minutes after which the enzyme was heat inactivated at 65°C for 

5 minutes. This step removes the 5’-phosphate group from the DNA termini of 

the linearised vector in order to prevent self-religation. A ligation reaction 

containing 1 µl T4 DNA Ligase, 65 ng of dephosphorylated pUK-19 vector and 

50 ng digested spoIIE insert in 20 µl was carried out overnight at 16°C. 2 µl of 

the reaction was added to competent E. coli XL-10 Gold cells, following the 

transformation protocol described in section 2.3.6, the cells were plated out on 

LB agar supplemented with 100 µg/ml ampicillin and incubated overnight at 

37°C. No colonies were seen on the plate. 

In order to ascertain whether the restriction enzyme stocks used to digest the 

vector and insert had not lost their activity, separate digests of the vector were 

carried out using XmaI and BamHI (Figure 5-10A). This digest showed that both 

XmaI and BamHI were capable of significant linearisation of pUK-19, and 

therefore should be generating the complementary overhangs for ligation to the 

vector. A test to verify the T4 DNA ligase activity was carried out on cut λ-phage 

DNA. This showed that the T4 DNA ligase was functional as the treated λ-DNA 

showed ligation of smaller fragments into one large species (Figure 5-10B). 

 

Figure 5-10: pUK-19-spoIIE cloning reagent activity tests.  
(A) Test digests of pUK-19 using XmaI and BamHI. Lane 1; Hyperladder I (ladder sizes to the 
left), lane 2; uncut pUK-19, lane 3; pUK-19 after difestion with BamHI, lane 4; pUK-19 after 
digestion with XmaI. (B) Ligase activity test on cut DNA from the 48 kb λ-phage. Lane 1; Cut  λ-
phage DNA, lane 2; Ligated λ-phage DNA, lane 3; Hyperladder I (ladder sizes to the right). 
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As all reagents were shown to be functional, fresh insert was produced by PCR 

and the cloning process repeated with variations in vector to insert ratio during 

ligation of 1:1, 1:3, 1:5 and 1:10. No colonies were seen on the LB agar plates 

after transformation.  

While a small proportion of restriction enzymes will cleave substrate DNA when 

their recognition site is at the DNA terminus, many require a 1-6 nucleotide 

flanking region of double stranded DNA on either side of their recognition site 

[233]. Closer analysis of the pUK-19 multiple cloning site suggested that 

cleavage with either restriction enzyme would cause a disruption in the 

recognition site for the other due to a 1 base recognition sequence overlap. 

Cleavage by either enzyme removes all flanking dsDNA from the second 

cleavage site (Figure 5-11). BamHI has been found to show more than 50% 

reduction in cleavage efficiency of sequences with fewer than 3 flanking bases. 

 

 

Figure 5-11: Restriction Endonuclease flanking region conflict between BamHI and XmaI 
in the pUK-19 multiple cloning site. 
 BamHI and XmaI recognition sequences are coloured blue and orange, respectively. The 
nucleotide belonging to both sequences is coloured purple. Single stranded DNA overhangs are 
coloured red. 

 

A new cloning strategy was therefore devised in which the desired spoIIE 

fragment is generated from a full-length spoIIE harbouring pET-11a expression 

construct. 300 ng of pET-11a-spoIIE was digested using BglII and BamHI to 

yield a 952 bp fragment. This fragment was purified by agarose gel 
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electrophoresis followed by gel extraction purification, and ligated into 

dephosphorylated BamHI linearised pUK-19 vector at an insert to vector ratio 

of 3:1 and digestion products were used to transform competent E. coli XL-10 

Gold cells as described in section 2.3.6. Plasmid DNA from obtained colonies 

was isolated by miniprep, described in section 2.2. The ligation reaction could 

have produced plasmid with this insert in either orientation as all produced 

DNA termini possess the same 5’-GATC overhang. The recombinant plasmid 

was expected to possess two EcoRI recognition sequences; one from the vector 

and one from the insert. The internal EcoRI site is closer to the 3’ end of the 

spoIIE coding sequence and hence the direction of insert ligation into the 

plasmid could be determined from the fragment sizes of the products of EcoRI 

digestion. Test digestion with EcoRI (Figure 5-12) showed that one 

recombinant pUK-19 vector had the desired orientation, exhibiting an excised 

band of approximately 380 bp; the remaining two plasmids exhibited excised 

bands of around 600 bp, indicating that the insert had been ligated in the 

opposite orientation. DNA sequencing of the region between the M13 primer 

binding sites confirmed the correct orientation of the spoIIE sequence into the 

pUK-19 plasmid which showed the EcoRI excision band at 380 bp.  

 

 

Figure 5-12: Digestion to ascertain spoIIE fragment presence and orientation in 
recombinant pUK-19 plasmids.  
Lane 1; GeneRulerTM 1kb DNA Ladder, lanes 2-4; EcoRI digests of isolated recombinant pUK-19 
plasmids. 
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5.3.3 Preparation of B. subtilis SpoIIE Mutant strains 

The plasmid harbouring the desired spoIIE insert was mutated by site directed 

mutagenesis (SDM) to produce the target single residue substitutions as 

described in section 2.4. The nucleotide base exchanges were as follows: K649T; 

AAA to ACG at base 1945, I650A; ATC to GCC at base 1948, L695W; TTG to TGG 

at base 2083, V697A; GTT to GCC at base 2089 and V728A; GTG to GCC at base 

2182. Mutagenic primer pairs were designed using the online PrimerX tool 

[234]. Mutations were checked by DNA sequencing using M13_forward and 

M13_reverse primers. All of the desired mutations had been successfully 

introduced. 

  

Figure 5-13: A schematic diagram of the genomic reorganisation caused by 
recombination of the spoIIE mutant harbouring pUK-19 plasmid.  
The B. subtilis chromosome harbours a single copy of spoIIE (green), the transcription of which 
is dictated by a σH specific promoter (PH). The pUK-19+spoIIE’ plasmid harbours spoIIE’ (blue), a 
mutated gene fragment of spoIIE encompassing base pairs 1504-2481. Due to linearisation of 
the plasmid DNA on uptake, recombination can initiate at any point in the indicated region of 
homology. There is therefore the chance that mutants can be missed during recombination. The 
reorganised genome after recombination possesses a PH-controlled, modified copy of the 
complete spoIIE gene, the upstream and downstream portions of which are from genomic 
spoIIE and exogenous spoIIE’, respectively. The entire sequence of the recombined plasmid is 
incorporated into the genome, resulting in inclusion of the ampicillin (ampR) and kanamycin 
(kanR) resistance cassettes as well as the exogenous oriC. A deactivated gene fragment of spoIIE 
without a promoter is also present. 

The efficient transformation of B. subtilis is aided by a low population of 

multimeric plasmid species. Plasmids isolated from RecA+ strains of E. coli have 



205 
 

a much reduced proportion of multimeric forms compared to those isolated 

from RecA1 (RecA-) strains. The E. coli XL-10 Gold strain has the RecA1 

phenotype and hence plasmids isolated from these cells will produce 

multimeric plasmids and have low transformation efficiency into B. subtilis. In 

order to achieve optimum transformation efficiency, the spoIIE mutant 

containing plasmids were used to transform E. coli MM294 competent cells, 

which have the RecA+ phenotype, and re-isolated by miniprep as described in 

section 2.2.  

Plasmids harbouring mutant spoIIE fragments, isolated from E. coli MM294, 

were used to transform B. subtilis IB333 competent cells as described in section 

5.2.3. Transformants were plated using TOP agar onto LB agar plates 

supplemented with 10 µg/ml kanamycin and incubated overnight at 37°C. 

Transformations carried out using all plasmids were successful with upwards of 

50 colonies on each plate indicating that the B. subtilis competent cells had 

successfully taken up and integrated the applied mutant spoIIE plasmid (as 

depicted in Figure 5-13). Stocks of the new mutant strains (listed in Table 5-1) 

were created by overnight growth in 10 ml LB cultures supplemented with 10 

µg/ml kanamycin at 37°C. 800 µl of this culture was mixed with 200 µl 80% 

glycerol and frozen at -80°C. The genomes of the mutant strains were not 

sequenced to ensure mutations were present in the active spoIIE ORF. However, 

the 441 base pair region of wild-type spoIIE sequence upstream of the first 

amino acid substitution, K649T, is sufficient to make mutant allele inclusion 

very likely. Future experimentation would be required to absolutely confirm 

this. 
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5.3.4 Determination spoIIE Mutant Sporulation Efficiency  

5 ml cultures of DSM in 30 ml Sterilin tubes inoculated with IB333, IB614 and 

JTE001-6 strains of B. subtilis were induced to sporulate and their sporulation 

efficiency was assayed as described in section 5.2.5. The data obtained for the 

wild type strain, IB333, showed that of 2.5 x 108 CFU/ml in the DSM culture, 

only 3.7 x 106 CFU/ml were due to heat-resistant spores. This suggests a 

sporulation efficiency of around 1.46%, much lower than the expected value of 

greater than 70% provided by Imrich Barak (personal communication). It was 

thought that the severely reduced sporulation efficiency might be due to 

incorrectly prepared DSM media or errors introduced during serial dilution of 

the culture, however rigorous examination of these factors showed that the 

sporulation efficiency of the IB333 wild type strain remained at between 0.1 

and 2%. However, an investigation into the effect of container size, and hence, 

aeration of the culture showed that the low sporulation efficiency was exhibited 

in DSM sporulation cultures grown in 15 ml Falcon tubes and 30 ml Sterilin 

tubes, but not in 50 ml Falcon tubes in which sporulation efficiency was found 

to be 83% (Figure 5-14). The investigation showed that cultures grown in 15 ml 

and 30 ml containers showed an almost 10-fold reduction in measured 

vegetative colony forming units and a 3,000-fold lower spore count than those 

grown in 50 ml tubes.  

 

 

Figure 5-14: The effect of culture container size on sporulation efficiency of the wild type 
IB333 strain of B. subtilis.  



207 
 

The JTE001-6 spoIIE mutant strains and the IB614, spo0A knockout, strain of B. 

subtilis were induced to sporulate in 50 ml Falcon tubes and assayed for 

sporulation efficiency, as described in section 5.2.5.  

The JTE001 strain was the product of integration of the unmutated pUK-19-

spoIIE plasmid into the chromosome; this strain has acquired kanamycin 

resistance without mutations in the spoIIE gene. This strain was used as a 

positive control and all sporulation efficiencies reported are normalised to the 

values obtained for this strain. The spo0A knockout strain, IB614, was used as a 

negative control. This strain has the spo0A gene interrupted by a kanamycin 

antibiotic resistance gene resulting in the entry to sporulation being inhibited at 

the earliest stage. Sporulation efficiencies measured in triplicate for the spo0A 

knockout strain were between 5 x 10-4 % and 1 x 10-2 % relative to the JTE001 

wild type strain which consistently formed a fraction of spores/ml to total 

CFU/ml above 70 % between measurements. The relative sporulation 

efficiencies recorded for the 5 mutant spoIIE harbouring strains are shown in 

Figure 5-15. 

 

Figure 5-15: Sporulation efficiencies of spoIIE mutant harbouring strains of B. subtilis 
relative to wild type.  
The green histogram shows the mean value obtained for sporulation efficiency across three 
experiments. Black bars indicate the minimum and maximum recorded relative sporulation 
efficiency recorded for each strain.    
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The strain harbouring the V697A mutant, JTE005, showed sporulation 

efficiencies between 0% and 2.6% of wild type. These values are consistent with 

those expected for this mutant (Figure 5-1). The sporulation defects exhibited 

by the 4 other mutants; K649T, I650A, L695W and V728A, are comparatively 

mild showing reductions in efficiency to between 63.7% and 83.3% of wild 

type. These measured reductions in sporulation efficiency are not significant as 

the sporulating cultures are still producing above 1 x 108 spores/ml. A 

reduction of an order of magnitude or more would suggest a more than a slight 

loss of efficiency in SpoIIE function due to the mutants. The observed 

reductions in sporulation efficiency compared to wild type are sufficient to 

indicate that recombination events including the desired mutations in the 

chromosomal copy of spoIIE have occurred and that recombination events  

were not initiated downstream of the mutant codons which would result in 

chromosomal wild-type spoIIE (as described by Figure 5-13). 
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5.4 Discussion 

The data recorded here show that the S361F suppressor mutations in spoIIE 

domain III; K649T, I650A, L695W and V728A, are not sufficient to show a 

strong sporulation defect when present alone. In contrast, the Q483A 

suppressor mutation in spoIIE domain III, V697A, exhibits a strong sporulation 

defect on the order of a 100 fold reduction in sporulation efficiency, as 

previously reported [219].  

The hypothesis that the α1-α2 region of the PP2C domain acts as an intragenic 

regulatory interface is not challenged by the data collected in this investigation. 

Instead, it suggests that the defects in SpoIIE function caused by the S361F 

mutation require only mild changes to correct the defect in efficient sporulation. 

On the other hand the Q483A mutation is only suppressed by a much more 

severe response in the form, V697A a hyperactive phosphatase activity mutant. 

The SpoIIE V697A mutation has been shown to cause hyperactivation of the 

PP2C phosphatase domain which results in uncompartmentalised σF activation. 

Q483A on the other hand causes a complete loss of phosphatase activity and, 

hence, no σF activation. These phenotypes are diametrically opposed which may 

explain why V697A suppresses Q483A. 

In contrast to Q483A, S361F has been shown to be capable of SpoIIAA~P 

dephosphorylation but it has been proposed that it is unable to release the 

product, SpoIIAA. This observation prompted the notion that wild type SpoIIE is 

capable of dephosphorylating SpoIIAA~P at the septum, but is prevented from 

releasing the product until the asymmetric septum is completed. This would 

require a signal to be passed through SpoIIE domain II to effect release of the 

product, this signal is presumably inhibited in S361F and recovered in the 

mutants tested in this investigation.  
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Chapter 6: Conclusions and Future Work 

6.1 The Behaviour of SpoIIE Domain II 

Three new soluble fragments of SpoIIE have been isolated. A key objective in 

the creation of these fragments was the elucidation of the structure of SpoIIE 

domain II. Unfortunately, structural studies have been stymied by ubiquitously 

unsuccessful protein crystallisation experiments. It was, however, observed 

that the oligomerisation seen in some fragments containing domain II elements 

can be attributed to the sequence between residues 334 and 375. SpoIIE457-827 

has been found to be monomeric in solution; however, SpoIIE334-827 has been 

identified using AUC as forming oligomers which seem to have periodic stacking 

of hexamers. 

 It is possible that this oligomerisation has a functional role. A SpoIIE mutant 

isolated by Niels Bradshaw, Harvard (personal communication), K356D, has 

been observed to reduce the frequency of asymmetric septation and severely 

inhibit the activation of σF during sporulation in vivo. A more interesting feature 

of this mutant is that it shows monomeric, rather than oligomeric, character in 

solution when expressed as part of a SpoIIE320-827 fragment. It is likely that 

multimeric SpoIIE plays a part in function at the cell division septum in addition 

to the expected interaction with parts of the cell division machinery. 

A difference between the oligomeric states of BsuSpoIIE334-827 and GstSpoIIE335-

826 was observed. GstSpoIIE335-826 shows a much reduced tendency to form large 

oligomers, instead favouring monomer/dimer equilibrium. As the two 

orthologues possess a high degree of sequence identity, the cause of this change 

in behaviour is unknown. However, conspicuously, K356 is not conserved and is 

instead arginine in the GstSpoIIE sequence. 

SpoIIE domain II containing fragments showed a tendency to precipitate on 

addition of Mn2+. This does not seem to be an exacerbation of the oligomeric 

character shown by SpoIIE334-827 as the removal of trace manganese using EDTA 

had no discernible effect on this trait. A putative metal binding site was 

identified on analysis of the SpoIIE sequence using a web based tool, Metal 
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Detector. The observed behaviour cannot be ascribed to this however, as even 

fragments without the cysteine residues implicated, e.g. SpoIIE457-827, exhibit it. 

Considering the disparate behaviour exhibited by domain II containing SpoIIE 

fragments it seems likely that domain II might be made of two smaller sub 

domains: an oligomerisation inducing domain between residues 334 and 457 

and a subdomain which might hold similarities to SpoIIIAH from residue 457 to 

the N-terminal limit of the phosphatase domain at residue 590. Amino acid 

substitutions in each of these regions (S361F and Q483A) result in defects in 

the correct activation of σF and these regions can therefore be expected to play 

a role in regulation of the phosphatase domain. 

 

6.2 SpoIIE Phosphatase Activity 

SpoIIE is a key player in the instatement of the complex sporulation sigma 

factor relay, a co-ordination of asymmetric gene expression between two cells; 

the mother cell and forespore. It is crucial to sporulation that σF, the first 

compartment specific sigma factor, is activated only when asymmetric 

septation is complete at which point separate patterns of gene expression can 

be embarked upon. SpoIIE is responsible for activating σF by dephosphorylation 

of SpoIIAA. However, this phosphatase activity must be under regulation until 

cell division occurs as uncompartmentalised σF activity results in abortive 

sporulation. How this regulation is imposed is unknown. 

 The work carried out here has briefly looked at the relative rates of some 

SpoIIE fragments in dephosphorylation of SpoIIAA. The observations made 

have indicated that fragments of SpoIIE with elements of domain II are less 

active than a fragment consisting of only the phosphatase domain.  

Elucidation of the structure of a SpoIIE:SpoIIAA~P complex describing the 

dephosphorylation reaction has not been successful. The structure of such a 

phosphatase:phosphoprotein substrate complex has, to this author’s 

knowledge, never been solved.  
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It has been noted throughout studies of SpoIIE fragments that the affinity of the 

active site for Mn2+ is low. Over 100 µM MnCl2 is required for maximum 

phosphatase activity of SpoIIE590-827. In addition, the X-ray crystal structure of 

this fragment shows only a single manganese atom in the active site. This is in 

contrast to the 2 or 3 manganese atoms observed in structures of other PP2C 

phosphatases. It could be that low manganese affinity provides an inhibitory 

mechanism to phosphatase activity and is reinstated on completion of the 

asymmetric septum or that full length SpoIIE is the species which promotes full 

Mn2+ affinity. The second explanation is supported by previous work [216]. 

A second crystal structure (Vladimir Levdikov, unpublished) has been solved 

showing a dimer in which the active sites are proximate and occluded. No 

manganese ions are seen in this structure. It is possible that this dimer is 

representative of an inhibited phosphatase domain. 

 

6.3 An Interface for Intragenic Regulation of the 

Phosphatase Domain 

Strains of B. subtilis which harboured mutations in the phosphatase domain of 

SpoIIE known to suppress domain II mutation phenotypes showed no 

significant defects in sporulation. A likely explanation for this is that these 

mutations behave only as corrections and are not prohibitive to normal 

function in the absence of S361F. One hypothesis which has been presented 

based on observation of SpoIIE(S361F) is that wild type SpoIIE’s phosphatase 

activity is not inhibited but release of dephosphorylated SpoIIAA is prevented. 

It is therefore suggested that the signal from completion of asymmetric cell 

division serves to allow release of SpoIIAA which has been turned over. The 

suppression of the S361F phenotype could simply be due to a reconstitution of 

this release mechanism, through modification of the phosphatase domain.   
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6.4 How PP2C regulation might be achieved 

 

Figure 6-1: A hypothesis for regulation of SpoIIE phosphatase activity. 
Before and during septum formation, SpoIIE phosphatase activity is held inactive by inhibition 
from domain II which in turn is controlled by an interaction with the divisome. On septum 
completion, the interaction controlling inhibition is removed or modified resulting in the relief 
of phosphatase activity inhibition. The oligomeric state of SpoIIE is likely to play a key role in 
regulation of phosphatase activity.  

 

The evidence presented in previous studies of SpoIIE indicates that SpoIIE’s 

phosphatase activity is held in check until cell division is complete. They also 

support a mechanism where the phosphatase domain is inhibited by domain II. 
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A signal for relief of this inhibition could be passed through the cell division 

machinery. Based on the two crystal structures obtained of the phosphatase 

domain, it is hypothesised by the author that an inactive and active form exists 

and that this state is controlled by interaction with domain II (Figure 6-1). The 

oligomerisation observed for SpoIIE fragments containing regions of domain II 

could be a functional element of this regulation, especially if the oligomerisation 

state of SpoIIE can be controlled through an interaction with the divisome. The 

significance of Mn2+ dependent precipitation of SpoIIE is a mystery. However, a 

feature of the oligomerisation of SpoIIE could be the storage of manganese to 

ensure a high local concentration when inhibition of the phosphatase domain is 

relieved. 

6.5 Future work 

Recent work has produced a new soluble fragment of SpoIIE: SpoIIE457-590. 

Crystallisation attempts of this fragment have not been successful, however the 

fragment is small enough (14 kDa) to consider structural characterisation by 

NMR. To date, the fragment has been shown to be structured by CD and both 1H 

one dimensional and 1H/15N HSQC NMR experiments have been carried out. 

These preliminary results show promise (Figure 6-2) and a solution state 

structure of this domain could therefore be solved in the not too distant future. 

 

Figure 6-2: Preliminary data gathered on SpoIIE457-590, a target for NMR structural 
characterisation. 
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Another fragment representing only SpoIIE domain II (SpoIIE334-590) has also 

been successfully expressed recently as an MBP (maltose binding protein) 

fusion. While the requirement for chimeric construct suggests the fragment 

might be heavily oligomerised, this is yet another fragment with which to study 

the behaviour of SpoIIE.  

The behaviour observed for the SpoIIE(K356D) mutant by Niels Bradshaw 

provides an interesting line of inquiry for structural characterisation. If this 

substitution is applied to the SpoIIE334-827 fragment, and also now potentially 

MBP-SpoIIE334-590, it should promote a monomeric state which will be a much 

more promising prospect for crystallisation. 

The currently used native gel assay for determining phosphatase activity 

provides highly qualitative results which are based upon visual analysis of 

relative band intensities corresponding to SpoIIAA and SpoIIAA~P. The 

establishment of a more quantitative assay would allow a more rigorous 

approach to determination of the kinetics involved in dephosphorylation of 

SpoIIAA~P by SpoIIE. Two colorimetric assays are commercially available for 

the detection of free phosphate, another stoichiometric product of the 

desphosphorylation reaction: PiColorLock Gold (Innova Biosciences), a 

malachite green end point assay; and EnzChek (Molecular Probes), a real time 

assay utilising purine nucleoside phosphorylase. Either could be used 

effectively to gain a more comprehensive understanding of the enzyme kinetics 

specific to different fragments of SpoIIE.  

The data presented in this thesis represent an important advance in terms of 

the production of soluble fragments of the cytosolic domains of SpoIIE for 

functional and structural studies. The identification of the TM:Domain 2 

solubility boundary at residue 334 will allow future investigators to approach 

structural characterisation of domain 2 with fragments representing the whole 

domain. The characterisation of fragments in this work also means that 

oligomerisation observed amongst SpoIIE domain 2-containing fragments can 

now be attributed to the residues between 334 and 457. Studies of the 

dephosphorylation reaction between SpoIIE fragments and SpoIIAA~P have 

indicated an inhibitory effect by SpoIIE domain 2 on the activity of the PP2C 
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phosphatase domain. This observation supports the hypothesis that PP2C 

activity is held in check through interaction with domain 2 before asymmetric 

septation is complete.  
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Appendix I 

The pET-28a Vector Map 

 

(From the Novagen catalogue)  
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Fragment Parameters (calculated using ProtParam 

(ExPASy)) 

Protein Fragment Cleaved 

6xHis Tag 

Theoretical 

MW (Da) 

Theoretical 

pI 

ε(A280) 

(M-1 cm-1) 

Organism: B. subtilis 

SpoIIE 

590-827 
No 28654 5.76 16960 

Yes 26508 5.32 16960 

334-827 
No 58540 5.49 34630 

Yes 56393 5.32 34630 

457-827 
No 43888 5.52 19940 

Yes 41742 5.29 19940 

375-590 
No 25522 5.23 16180 

Yes 27669 5.52 16180 

SpoIIAA 
- No 15361 6.28 1615 

- Yes 13215 5.90 1615 

SpoIIAB - N/A 16335 4.58 4595 

Organism: G. stearothermophilus 

SpoIIE 

335-826 No 58224 5.18 50310 

457-826 No 47378 5.25 36245 

457-826 Yes 45231 5.04 36245 
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SpoIIE Secondary and Tertiary Structure Predictions 

PsiPred (Secondary Structure) 
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GlobPlot 2.3 (Globular Domains and Transmembrane Helices) 

 

 

TMHMM predictor (Transmembrane Helices) 
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Oligonucleotide Primer Sequences 

Cloning 

BsuSpoIIE 

Tm : Domain II boundary fragment 

IIE_300_3C_FWD CCAGGGACCAGCAATGTCTGCCGGTCTGATG 

IIE_316_ 3C_FWD CCAGGGACCAGCAATGCTGTTTTTGCTCACACC 

IIE_321_ 3C_FWD CCAGGGACCAGCAATGCCTCAATCTATTACGAGG 

IIE_326_ 3C_FWD CCAGGGACCAGCAATGAGGAAAGTGGCGAG 

IIE_334_ 3C_FWD CCAGGGACCAGCAATGGGAACTGTCGAGCATC 

IIE_339_ 3C_FWD CCAGGGACCAGCAATGCTTCAAGAGCAACAGC 

IIE3C457_FWD CCAGGGACCAGCAATGGAGGATGAGCTCGCACATCATCATGC 

GstSpoIIE 

GSIIE3C335FWD CCAGGGACCAGCAATGGGCACGGCAGAATATATC 

GSIIE3C457FWD CCAGGGACCAGCAATGATTGAAAAAGAGATGGTTG 

GSIIE826LICRV GAGGAGAAGGCGCGTTATTGCGCCTTTTTCATATAC 

 

BsuSpoIIAA + BsuSpoIIAB 

 

S2AX_0_LICp _FWD CCAGGGACCAGCAATGAGCCTTGGAATTGACATGAATG  

S2AA_LIC _REV GAGGAGAAGGCGCGTCATGATGCCACCCCCAGTGT 

S2AAB_LIC_REV GAGGAGAAGGCGCGTTAATTACAAAGCGCTTTGCTTTTTG 
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Mutagenesis 

BsuSpoIIE 

In vivo investigation mutagenic primers 

S2E_V697A_FWD GTAAATTTTTGAAGGCCGGATCGACGCCCAG 

S2E_V697A_REV  CTGGGCGTCGATCCGGCCTTCAAAAATTTAC 

S2E_L695W_FWD  CCAGCTGTAAATTTTGGAAGGTTGGATCGAC 

S2E_L695W_REV  GTCGATCCAACCTTCCAAAATTTACAGCTGG 

S2E_V728A_FWD GTATTATTAATGAATTCGATGCCGAGGTTGTGAG 

TGAACAGCTG 

S2E_V728A_REV CAGCTGTTCACTCACAACCTCGGCATCGAATTCAT 

TAATAATAC 

S2E_I650A_FWD  CAAGCTTCTTGAAAAAGCCCTTGAATCGGGCATTG 

S2E_I650A_REV  CAATGCCCGATTCAAGGGCTTTTTCAAGAAGCTTG 

S2E_K649T_FWD  CGATCAAGCTTCTTGAAACGATCCTTGAATCGGGCATTG 

S2E_K649T_REV  CAATGCCCGATTCAAGGATCGTTTCAAGAAGCTTGATCG 

 

 

BsuSpoIIAA 

S2AA-S58D_FWD  CTTTCCTTTATGGACGACTCGGGGCTTGGCG 

S2AA-S58D_REV  CGCCAAGCCCCGAGTCGTCCATAAAGGAAAG 

S2AA-S58E_FWD GAGGACCTTTCCTTTATGGACGAATCGGGGCTTGG 

CGTTATTTTAG 

S2AA-S58E_REV CTAAAATAACGCCAAGCCCCGATTCGTCCATAAAG 

GAAAGGTCCT 
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Solutions for generation of B. subtilis Competent cells 

T base 

0.20% (w/v) (NH4)2SO4 

1.83%(w/v) K2HPO4.3H2O   

0.60% (w/v) KH2PO4 

0.10% (w/v) trisodium citrate.2H20 

SpC 

20 ml   T base 

0.2 ml   50% (w/v) glucose 

0.3 ml   1.2% (w/v) MgSO4.7H20 

0.4 ml   10% (w/v) bacto yeast extract 

0.5 ml   1% (w/v) casamino acids 

SpII 

100 ml  T base 

1 ml   50% (w/v) glucose 

7 ml   1.2% (w/v) MgSO4.7H20 

1 ml   10% (w/v) bacto yeast extract 

1 ml   1% (w/v) casamino acids 

0.5 ml   0.1 mol/l CaCl2 
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Liquid Difco Sporulation Medium (DSM) a.k.a. Schaeffer’s 

Sporulation Medium  

Recipe for 1L of DSM Base [231]: 

8 g  Bacto-nutrient broth 

10 ml  10% (w/v) KCl 

10 ml  1.2% (w/v) MgSO4.7H2O 

0.5 ml  NaOH 

 

Additional solutions are to be autoclaved separately and added to autoclaved 

DSM base immediately before use of the DSM: 

 1 ml  1 M Ca(NO3)2 

 1 ml  0.01 M MnCl2 

 1 ml  1 mM FeSO4 

 

When autoclaved, FeSO4 forms a pinkish precipitate, this precipitate should be 

resuspended by thorough vortexing prior to addition to DSM base. 
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List of abbreviations 

aas Amino Acids 

ADP Adenosine di-phosphate 

ATP Adenosine tri-phosphate 

BCAA Branched Chain Amino Acid 

bp Base pairs 

Bsph Bacillus sphaericus 

Bsu Bacillus subtilis 

Da Dalton 

DNA Deoxyribonucleic acid 

dsDNA Double Stranded DNA 

DTT Dithiothreitol 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethyleneglycoltetraacetic acid 

FPLC Fast Protein Liquid Chromatography 

GDP Guanosine di-phosphate 

GFP Green Fluorescence Protein 

Gst Geobacillus stearothermophilus 

GTP Guanosine tri-phosphate 

HRV3C Human Rhinovirus 3C protease 
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IMAC Immobilised Metal Affinity Chromatography 

IIAA SpoIIAA 

IIAA~P Phospho-SpoIIAA 

IIAB SpoIIAB 

IIE SpoIIE 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

kbp Kilo-Base pairs 

kDa Kilo-Dalton 

LD50 Median Lethal Dose 

M Molar 

MDa Mega-Dalton 

mM Millimolar 

nM Nanomolar 

MW Molecular Weight 

MWCO Molecular Weight Cut-Off 

NMR Nuclear magnetic resonance 

PCR Polymerase Chain Reaction 

pI Isoelectric point 

PG Peptidoglycan 

RNAP RNA Polymerase 

SDS Sodium Dodecyl Sulphate 
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spp. Species 

SRS SpoIIIE Recognition Sequence 

ssDNA Single Stranded DNA 

TM Transmembrane 

TTP Thymidine tri-phosphate 

WT Wild-type 

μM Micromolar 
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