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A history of vegetation and climate change during the last two millennia is elucidated 

from ombrogenous blanket peat sequences from the central and eastern North York 

Moors. The evidence is derived from five mires Harwood Dale Bog, May Moss, Fen 

Bogs, Yarlsey Moss and Bluewath Beck. May Moss received particular attention 

because it is the only remaining unmodified blanket mire on the North York Moors. All 

the sites were cored, with May Moss yielding seven cores, four of which were extruded 

along a five metres transect. The cores were selectively analysed for plant macrofossil, 

testate amoebae, humification and pollen. Chronologies were constructed using 14C 

dating and the judicious use of biostratigraphic marker horizons. Comparison of 14C 

dates obtained on bulk peat samples and on pure Sphagnum remains encountered 

substantial differences, which raises anxieties about 14C dating of a material as 

heterogeneous as peat. 

The regional vegetation history elucidated from the pollen evidence reflects changes in 

the demography, culture, economy and climate of the North York Moors. Evidence of 

woodland decline and abundant agricultural taxa are attributed to phases of increased 

agricultural exploitation of the uplands in response to a commercial approach to farming 

during the Romano-British period, population expansion during the Anglo-Scandinavian 

period, and attempts to exploit the moorlands during the boom periods of the 12th_13th 

and 15th_16th centuries. Conversely, phases of woodland expansion and agricultural 

decline are associated with the Roman withdrawal from England, the 'harrying of the 

north' in AD 1069-70 and demographic collapse during the 14th century. 

T estate amoebae, plant macrofossil and humification stratigraphies provide a record of 

mire palaeohydrology, which is used to infer a history of effective precipitation. There is 

a broad consistency within the palaeohydrological indications from a single core, which 

indicates that the techniques support each other. Furthermore, similar testate amoebae, 

plant macrofossil and humification stratigraphies were encountered in adjacent cores at 

May Moss. There is evidence of pronounced shifts to wetter/cooler conditions circa 500 

BC, AD 450, 850, 1400, 1625 and 1825 separated by unambiguously drier/warmer 

phases circa AD 200-450, 700-800, 1100-1200, 1550-1600 and 1750-1800. The 

palaeoclimate time series displays a strong correlation with the record of solar variability; 

however, biosphere, atmosphere and oceanic interactions in the North Atlantic region 

and global volcanism also affect regional climate. 
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Introduction 

1.1 Introduction and objectives of this research 

Since the early 1900s the North York Moors have been a popular region for palaeoenvironmental 

research. Much of this popularity stems from the abundance of organic sediment, peat, that 

blankets much of the upland moor. There is an abundance of palaeoenvironmental data available 

from the North York Moors, mainly in the form of pollen diagrams, which has produced a 

reasonably comprehensive regional vegetation history (Simmons et al., 1993). Peat is an 

extremely useful sediment for palaeoenvironmental research because it contains a wealth of well­

preserved fossil material, including leaves, seeds, flowers, stems and roots. These plant 

macrofossils are the main sedimentary components of peat~ however, there is also a diverse range 

of micro-fossils within the sedimentary matrix, including pollen grains, fungal spores and various 

micro-organisms. Many of these remains are identifiable in a subfossil condition and are the 

subject for palaeoecological investigations of peat deposits. 

The palaeoenvironmental information contained within this fossil archive is clearly controlled by 

the environmental parameters that affect the floral, faunal and mycological communities. This 

thesis concentrates upon two lines of palaeoenvironmental inquiry utilising the fossil record of 

pollen grains, plant macrofossils, testate amoebae and the degree of decomposition within several 

peat sequences. The first objective is to uncover a vegetation history for the central and eastern 

North York Moors using pollen analysis to provide regional and local information, and plant 

macrofossil analysis to provide purely local information. The second objective is to uncover a 

history of mire hydrology using moisture-related changes in local plant and testate amoebae 

communities, and moisture-driven fluctuations in the degree of peat humification. This 

environmental archive forms part of a project developing a climate and landscape history for the 

North York Moors. 

A parallel component of this research involves the archive of documentary evidence for landscape 

and climate change collated by Noel Menuge during 1995-1996. The documentary evidence 

concentrates upon the last 1500 years (James Menuge, 1997); consequently a broadly equivalent 

time period was adopted for the palaeoecological analysis targeting the last two millennia. 
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1.2 Peat: an environmental archive 

Peat is an organic sediment, with organic matter contributing at least 30% of the total dry weight. 

In the peat sequences utilised in this thesis organic matter typically forms 75-100 % of the total 

dry weight (Heathwaite et ai., 1993a). Peat accumulates because dead plant matter is rapidly 

incorporated within an oxygen-deficient sedimentary system which inhibits further decay. When 

mires exist for long periods of time deep peat sequences are produced, with the peat stratigraphy 

reflecting the development of a mire. The speed of accumulation is controlled by a balance 

between net productivity of plants on the mire and net losses through decomposition processes. 

However, accumulation of biomass is primarily the result of poor rates of decomposition, because 

mires are not noted for high rates of productivity. Decomposition processes are the critical 

control upon the nature of peat deposits (Clymo, 1991), with the rate of peat decomposition in 

turn controlled by surface saturation. 

Peat sequences divide into two distinct layers. The uppermost surface layers are aerobic and the 

majority of decomposition occurs within this horizon. The deeper layers are anaerobic within 

which comparatively little decomposition occurs. Ingram (1978) termed these two layers the 

acrotelm and catotelm respectively. The boundary between these two horizons occurs at the mean 

minimum summer water table, which is the maximum depth beneath the mire surface 

experiencing aerobic decay. The depth of the acrotelmlcatotelm boundary is a fundamental 

control upon the rate of peat accumulation, with surface saturation of the mire controlling the rate 

of decomposition. 

Mires are very diverse and have been subject to a range of classification schemes (Heathwaite et 

ai., 1993a; Grosse-Brauckman, 1996). Sub-divisions using hydrochemical criteria or trophic 

conditions are particularly pertinent to this research. Minerotrophic mires or fens derive their 

water from both rainfall and surface flow from surrounding mineral soils or rocks, and are rich in 

nutrients and minerals. Ombrotrophic mires or bogs receive water solely through precipitation 

and are deficient in both minerals and nutrients. In ombrotrophic mires surface wetness is more or 

less directly coupled with rainfall, or more accurately "effective precipitation", which is the 

amount of water received as precipitation minus losses through evapotranspiration. Fluctuations 

in mire surface wetness, and by inference climate, have considerable impact upon both the degree 

of peat decomposition, and the flora and fauna inhabiting the mire. Evidence of these fluctuations 

can be incorporated with peat stratigraphy by the sedimentary process, providing a record of mire 

palaeohydrology. Careful analysis of the stratigraphy within a peat bog may uncover a history of 

moisture fluctuations, which in the case of ombrotrophic mires will reflect climate change. This 

precept is the foundation to peat-based palaeoclimate research. 
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Ombrotrophic mires include lowland raised bogs, which are domed shaped and raised above the 

mineral water table, and blanket bogs located in the water-shedding parts of the uplands. Both 

these environments reduce the water received as surface flow to negligible quantities and render 

the peat stratigraphy at these mires suitable for palaeoclimate research. Climate information is 

elucidated from ombrogenous peat stratigraphy using the history of surface moisture conditions 

reconstructed from the fossil record of mire plants, micro-organisms and the sedimentary 

characteristics of the peat matrix. In summary, peat bogs are an archive of environmental 

information, with the palynostratigraphy providing information about vegetation changes around 

the mire, and with the plant remains and other fossils providing information about environmental 

conditions on the mire (Barber, 1993). 

1.3 Mire development and palaeoecology 

Raised mires do not occur on the North York Moors. However, they warrant further comment 

because the vast majority of peat-based palaeoclimatic research has been centred on raised mires, 

for example in Cumbria (Barber, 1981: Barber et al., 1994a) and the Netherlands (Aaby, 1976). 

Raised mires are domed lowland features likened to inverted "frying pans" (Heathwaite et al., 

1993a). The dome raises the peat above spring, soil or mineral water; consequently raised mires 

have an independent water table fed primarily by precipitation and can only form where 

precipitation exceeds evaporation and run-off. Rainfall is deficient in minerals and nutrients, and 

so the nutrient status of raised mires is poor. Acidic, oxygen -poor and nutrient -poor conditions 

inhibit the growth of many plant species, resulting in a distinctive low-diversity raised mire flora 

dominated by heather, sedges and bog-mosses. 

Blanket mires cover large areas of north-west em and upland Britain. They tend to form in areas 

of high precipitation, with accumulation initially centred where drainage is impeded. However as 

peat accumulates the mire spreads over the surrounding topography forming a "blanket" over 

large areas of land. Blanket mires consist of a mixture of ombrotrophic and locally rheotrophic 

facies. Ombrotrophic tracts of blanket mires are similar to raised mires in that they are 

characterised by acidic, nutrient-poor and oxygen-poor water conditions, and by a low-diversity 

flora dominated by heather, sedges and bog-mosses. Blanket mires do occur on the North York 

Moors and are utilised in this thesis. 

Not all the changes within peat stratigraphy are a response to climate, with other sources of 

environmental change also important. This is clearly exemplified by the variety of reasons 

proposed as causes of the inception of peat accumulation. The initiation of peat accumulation is 
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indicative of a change in the hydrological budget, with increased moisture availability (Moore, 

1986). In the case of upland blanket mires on the North York Moors, peat inception occurs in 

response to a complex array of factors, with the formation of the wet mire habitat referred to as 

paludification. Inception of peat accumulation in upland Britain has been attributed to a 

combination of climate change, woodland clearance and pedological factors (Moore, 1986; Smith 

& Taylor, 1989). Particular climatic periods appear to favour the inception of peat accumulation, 

but climate is not the only factor. Forest clearance and subsequent pedological changes are 

believed to be important causes of peat inception and create favourable circumstances for the 

expansion of peat from accumulating centres (Smith & Taylor, 1989). 

Hydrology is an important control upon peat stratigraphy. after the blanket mire facies has 

become established. Hydrological changes on blanket mires arise owing to variations in either the 

net moisture gained or the net moisture shed by the mire. In the case of ombrotrophic mires, net 

moisture gained can only be affected by changes in effective precipitation, which could occur as 

the result of climate change or by increasing evapotranspiration around the mire. Moisture losses 

from ombrotrophic mires can only occur by means of natural or anthropogenic drainage of the 

mire. Elucidating the nature and origin of hydrological changes is a fundamental component of 

this thesis, which, given the use of ombrotrophic tracts of blanket mires, will contribute an 

understanding of climate history. 

1.4 Organisation of the thesis 

The thesis is divided into three sections. The first involves chapters two, three and four, which 

introduce and define the research strategy, objectives and methodologies. They also provide a 

review of previous research both within the region and research elsewhere using a similar 

methodological approach. The second involves the presentation of the results. Chapter five 

presents, interprets and discusses the results of the pollen analysis and formulates a regional 

vegetation history for the last two millennia. Chapter six presents the results of the peat 

stratigraphic research, and formulates a hydrological history for each of the mires. The final 

section, chapters seven and eight, presents a detailed discussion of the evidence for climate 

change on the North York Moors during the last 2000 years, which is discussed in relation to 

previous peat stratigraphic research, established histories of late Holocene climate and 

hypothesised forcing agents of global climate change. The implications of the research are also 

reviewed in terms of future moorland management and conservation, future peat stratigraphic 

research and predicted future climate changes. 
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Introduction to the North York Moors 

2.1 The Physical Environment 

The North York Moors is an isolated upland area located in the north-east of Yorkshire. The 

moors cover a large area stretching over 60 km from east to west and 35 km from north to south. 

The topography of the North York Moors is displayed in figure 2. L which also identifies the 

locations referred to in this chapter. In the east the North York Moors are bounded by high cliffs 

overlooking the North Sea, which reach 210m at Boulby - the highest cliff in England. In the 

north and west the moors are bordered by a steep 300m escarpment, which overlooks the Vale of 

York the Vale of Mowbray and the lower Tees valley. The Hambleton, Tabular and Hackness 

Hills form the southern border of the North York Moors, sloping gently into the Vale of 

Pickering. 

The moors can be divided into three broad upland areas. The Cleveland Hills to the north of 

Eskdale, rising to 328m on Guisborough Moor. have a Middle and Upper Jurassic bedrock. 

However. it is the central Middle Jurassic sandstone plateau covered by heather and peat that 

popularly characterises the North York Moors. The central belt is heavily dissected by broad, 

steep-sided dales, which drain to the north and south off this gently inclined plateau. Erosion of 

these dales has divided the central plateau into four upland masses aligned east to west across the 

moors. 

In the east near the coast are Stainton Dale and Harwood Dale Moors, which rise to 266m. Six 

miles further inland is the Fylingdales Moor upland mass rising to 299m, bordered in the east by 

the headwaters of the river Derwent and in the west by the deeply incised Newtondale proglacial 

valley. Further west, the main upland massif of the North York Moors extends from Wheeldale 

Moor in the east to Urra Moor in the west. The majority of this plateau is over 300m rising to 

454m at Urra Moor. ~he highest point on the North York Moors. The farthest-west upland area 

includes Bilsdale West Moor. Whorlton Moor and Snilesworth Moor. rising to 404m at Noan 

Hill. and is bordered by Bilsdale in the east and by the steep western escarpment. 

The central platea'-l slopes gently southwards towards the Tabular Hills, Hackness Hills and part 

of the Hambleton Hills. which border the southern edge of the moors. These hills seldom exceed 
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200m and have an Upper Jurassic limestone and grit bedrock. Resistant layers within the 

stratigraphy control the topography, for example the 60-70m high north-facing escarpment that 

delimits the north edge of these southern hills is capped by the resistant Lower Calcareous Grit. 

The Hambleton. Tabular and Hackness Hills slope gently southwards into the lowland expanse of 

the Vale of Pickering. 

2.2 Geology of the North York Moors 

The North York Moors have a sedimentary bedrock deposited during the Jurassic Period (195-

135 million years ago) in the episodically marine Cleveland basin, which developed due to 

subsidence during the late Triassic. The strata of the North York Moors have attracted the 

attention of geologists since the early nineteenth century (Young & Bird. 1822: Phillips, 1829). 

The region is geologically important because it displays a virtually complete sequence of Jurassic 

strata (Hemmingway et aI., 1963). 

Recently the strata of the North York Moors have attracted renewed attention, because it is a 

critical region for comparison with the off-shore geology, which is of particular interest to the oil 

industry. The following description of the geology draws heavily on two syntheses of recent 

research, which provide the current consensus on the Jurassic stratigraphy of the North York 

Moors. namely Rawson & Wright (1992) and Scrutton (1994). The Jurassic strata were 

deposited horizontally within the Cleveland basin and consist largely of marine. littoral and 

deltaic sediments. Rawson & Wright (1992) divide the sedimentary stratigraphy of the North 

York Moors into the four broad groups listed in table 2.1. 

The central massif of the North York Moors forms the broad anticline of the Cleveland and 

Eskdale domes, \yhich is responsible for the present drainage off the central plateau. Differential 

rates of erosion during the late Tertiary and Pleistocene have removed the centre of the anticline 

creating three geological regions with a different type of bedrock, which are identified in figure 

2.2. Lower Jurassic Lias Group sediments are exposed in the centre of the Cleveland Dome. 

where the deeply incised broad flat-bottomed dales have cut through the Middle and Upper 

Jurassic strata. The Lias Group consists of a mixture of marine and shallo\\' marine sandstones 

and shales. which \\'ere easily eroded after the rivers and streams of the dales broke through 

resistant Middle Jurassic strata. Middle Jurassic Ravenscar Group strata form the bedrock of the 

central moorland massif. The Ravenscar Group consists of fluvial to shallow marine sandstones 

mostly deposited in a deltaic environment. Ravenscar Group sandstones provide the resistant cap­

rock for the central moorland plateau and the steep escarpment to the north and west of the 
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Table 2.1. Geological subdivision of the Jurassic strata of the North York Moors. 

GROUPS AGE FORMATIONS 
Kimmeridge 140Ma 
Clay Group Kimmeridge Clay Formation 

Amnthill Clay Formation 
~ Upper Calcareous Grit Fm ~ 
~ Coralline Oolite Formation 
~ Middle ~ Oolite 

Lower Calcareous Grit Fm 
Oxford Clay Formation 

Group Osgodby Formation 
Cayton Clay Formation 
Cornbrash Limestone Formation 

160Ma Scalby Formation C,J .- ~ Ravenscar Scarborough Formation rn ...... 
~ "0 Group Cloughton Formation "0 
~ ...... 

Eller Beck Formation 
~ ~ Saltwick Formation 

Dogger Formation 
182Ma Blea Wyke Sandstone Formation 

~ Lias Group Whitby Mudstone Formation 
~ Cleveland Ironstone Formation 
3 Staithes Sandstone Formation 

204Ma Redcar Mudstone Formation 

Table 2.2. Meteorological information available for the North York Moors. 

Weather Grid Rainfall Relative Wind Snow Sunshine 
Station Ref. (mm) Humidity speed lying (hours) 

~%~ Q2!ots~ ~da~s~ 
Fylingdales SE 862 262m 1984 to 1984 to 1984 to 1984 to no data no data 

971 1997 1997 1997 1997 

Pickering SE 795 44m 1962 to 1962 to no data no data 1971 to no data 
842 1981 1981 1981 

Silpho Moor SE957 203 m no data no data no data 1970 to no data no data 
946 1986 

Scarborough TA044 36m no data no data no data no data no data 1931 to 
884 1986 

Whitby NZ904 41 m no data no data 1983 to 1983 to no data 1976 to 
114 1997 1997 1997 
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moors. Upper Jurassic Middle Oolite Group rocks have been eroded from the central plateau and 

are only exposed on the southern dip-slope of the Cleveland anticline. Middle Oolite Group strata 

form the bedrock of the Hackness. Tabular and Hambleton Hills. 

The north-facing scarp slope forming the northern edge of the Tabular Hills is capped by 

resistant Lower Calcareous Grit. The formation of the escarpment \yas assisted by rapid erosion 

of the less resistant Oxford Clay exposed to north of the Lowcr Calcareous Grit outcrop. More 

recent sediments from the Kimmeridgian sub-stage and the Cretaceous Period are absent from the 

North York Moors. However. the soft Kimmeridge Clay Formation forms the sub-surface 

bedrock of the Vale of Pickering. albeit buried under Pleistocene alluvium. lacustrine and glacial 

sediments. 

During the Pleistocene the North York Moors were affected by the vast climatic fluctuations. 

which almost certainly were responsible for substantial erosion of the uplands shaping the current 

landscape. The Pkistocene was characterised by severe climatic fluctuations that produced vast 

ice-sheets that blanketed much of the British Isles. The North York Moors were not covered by 

ice during the last glacial. \vith ice-sheets only impinging on the edges of the moors on the \vay to 

maximum limits in th,e Vale of York and on Holderness (Rose. 1985). Although Devensian ice 

only skirted around North York Moors. directly affecting the edges of the moors. the Cleveland 

Hills and Eskdale. proglacial drainage and out-wash associated with deglaciation had a profound 

impact on the landscape (Gregory. 1962: 1965). Proglacial and sub-glacial drainage produced 

numerous deeply incised valleys across the moors. including NC\v10n Dale. Lady Bridge Slack. 

Moss Swang and Tranmire Slack. to name but a few (Gregory. 1962). 

It is possible the North York Moors were covered with ice during previous glacial advances. 

possibly during the preceding Saalian glaciation (8180 stage 6-8) and almost certainly during the 

Elster glaciation (OHIO stage 12). Catt (1987) attributes glacial deposits on the North York Moors 

to earlier pre-Devcnsian cold stages. However, considering the consensus is that the moors were 

not glaciated during many of the numerous cold stages of the Pleistocene. they did experience 

vigorous periglacial activity and proglacial fluvial erosion. which have assisted \vith formation of 

the current landscape. 

2.3 Present day vegetation and landscape of the North York Moors 

The mixture of Ycgetation and land-use covering the present day landscape of the North York 

Moors to some extent is controlled by the physical environment and bedrock geology. but mostly 
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by the activity of people. Elgee (1908) thought the North York Moors \\ere a natural landscape 

covered with a relict tundra flora. HO\yevec thirty years of palynological research reveals that 

people have interacted with and changed the vegetated landscape of the North York Moors 

throughout the last 9000 years (Simmons, 1995). A review of 15,000 years of vegetation history 

and palaeoecological research on the N orth York Moors is presented in chapter 2.5. 

The high moorland \\"ith a Middle Jurassic sandstone bedrock is covered with the characteristic 

flora of the North York Moors, the heathec cotton-grasses. purple moor grass and mosses. The 

former Nature Conservancy Council survey the vegetation of the North York Moors in great 

detail in the Phase 1 Habitat Survey revealing substantial variation in the flora across the moors. 

The typical moorland plants prefer wet acidic conditions growing on deep peat deposits (3-5 

metres) and in association \yith raw peat soils and stagnohumic gley soils that occur across the 

high moorland (Carroll & Bendelow. 1981). The peat and peat soils characterise the centre of the 

basins. with the stagnohumic gley soils around the margins. 

This association of vegetation and soils is not the natural environment of the North York Moors. 

but is the product of human interference through woodland clearances during the last 8000 years 

and particularly due to land-use changes during the 19th century. Grouse rearing became the 

dominant land-use activity on the North York Moors and involved regular burning of the 

moorland to encourage a high density of heather. Land management practices have maintained the 

heather-covered moors since the late 19th century and encouraged the development of peat and 

stagnohumic gley soils that are little suited for utilisation other than as moorland or forestry. 

The drier edges of the moorland and the steep valley sides are covered with a mixture of bracken. 

grassland and remnants of woodland. The soils of these areas vary from stagnohumic gley soils 

on the edge of the moors. which only sustain rough grazing, to loamy brown earths which sustain 

both pastoral and arable agriculture. Obviously in these valley side and moorland edge 

environments steepness of the slopes is an important factor controlling utilisation of the 

landscape. Much of the woodland that once covered the North York Moors has been cleared 

gradually during the last 8000 years. \\"ith the only remnants of the broad-leaved \\"oodland 

remaining today hmited to the steep valley sides and maintained woods located on the Tabular 

Hills (Atherden & Silllillons. 1989). Woodland on the North York Moors has been supplemented 

\\"ith t\yentieth century conifer plantations. initially in the Dalby. Bickley and Hackness area. but 

later expanding into Wykeham. Cropton and Harwood Dale (Statham. 1989). 
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Farmland, including pastoral grassland and arable fields is restricted to specific areas within the 

North York Moors. The majority of arable activity on the moors is limited to the fertile soils. 

gentle slopes and 100ver rainfall of the Hambleton. Tabular and Hackness Hills. These areas 

sustain brov"n earth soils offering a soil-type better suited for arable and pastoral activity. which 

explains \\hy the majority of arable cropping within the North York Moors takes place on the 

southern limestone hills. The coastal plain has also been improved for agriculture sen'ing coastal 

fishing communities in Staithes. Runswick Bay and Robin Hood's Bay. The dominant land-usc in 

the Dales and on areas of reclaimed moorland is livestock farming \\ith fields developed for 

grazing and silage cropping. with the higher edges of the moors used as rough grazing. 

The moors. particularly the higher moorland plateau and steep valley sides, have never been ideal 

for agricultural use. Statham (1989) suggests use of the moorland edge has fluctuated between 

exploitation during periods of agricultural boom and virtual abandonment during periods of 

agricultural depression. An important objective of this research is to investigate the 

palaeoecological evidence for landscape evolution on the North York Moors. Palaeoecological 

sites on or near the moorland edge may be ideally located for the identification of fluctuations in 

land-use pressure. between extensive use during favourable economic, social and climatic 

conditions, with perhaps virtual abandonment under inclement conditions. 

2.4 Climate of the North York Moors 

Located on the East Coast of England, the North York Moors are one of the driest uplands 

sustaining peat accumulation in the British Isles. Conditions favouring peat accumulation require 

a saturated environment caused either by impedance of drainage or by wet climatic conditions. 

The amount of rainfall received by the North York Moors indicates the region is currently 

marginal for the accumulation of peat. 

Climatic information for the North York Moors is derived from recordings at five \\eather 

stations located at Fylingdales. Silpho Moor. Pickering. Whitby and Scarborough (information 

provided by the Meteorological Office). The locations of the \\eather stations are identified on 

figure 2.1. Unfortunately, a complete range of meteorological information \\as not available from 

all of the sites. The most complete set of data \\as obtained from the Fylingdales \\cather station 

located high on the ~ylingdales upland massif (262m) and closc to the palaeoecological sites. 

Relatively detailed records from Pickering provide a useful 10\\ land comparison \vith the upland 

data. The type and duration of the information obtained from the weather stations are listed in 

table 2.2. 
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Figure 2.3. Meteorological data provided by the Met. Office. a) Average monthly 
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13 

The average and range of temperatures measured at Fylingdales and Pickering weather stations 

are disp la yed in figure 2.3. During the measurement period F y lingdales recorded an average 

annual temperature of 7.5°C. which is cooler than the 8.39°C recorded at Pickering. FyIingdales 

received an annual average rainfall of 908.8mm and a range of IOO1.8-727.8mm. The average 

monthly distribution of rainfall. displayed in figure 2.3. highlights the marked dry summers 

experienced by the North York Moors. Pickering, in the lowlands to the south of the moors. 

receives an average annual rainfall of 686.6mm, with a range of 877-455.6mm. This evidence 

demonstrates that the high moors are on average 1°C cooler and receive 220mm more rainfall 

than the surrounding lowland areas. Furthermore the conclusion that the upland moors experience 

a \vetter micro-climate is supported by the comparison of the annual average relative humidity of 

87.50/0 at Fylingdales. with only 80.81 % at Whitby. 

Little information has'been recorded about snowfall on the North York Moors. An average of 19 

days per year with snow lying was recorded at Pickering between 1971-1981. The number of 

days with snow lying for upland sites is likely to be much higher. Wind-speed measurements are 

available for Silpho Moor, Fylingdales and Whitby. The highest annual average \\'ind-speed (11.8 

knots) was recorded on the coast at Whitby, with 11.3 knots recorded on the exposed Fylingdales 

Moor. Silpho Moor, which is at a lower altitude and less exposed than Fylingdales. recorded a 

much lower average wind-speed (6.29 knots). 

The meteorological data provide useful information on the climatic parameters affecting the 

North York Moors and identify clear differences with other peatland sustaining enviromnents in 

the British Isles. Areas of north-west Scotland. including the peatlands of Caithness and 

Sutherland: Wales: the Cumbrian lowlands: the Lake District and the west of the Pennines all 

sustain active peat accumulation and typically receive annual rainfall in excess of 1200mm and 

up to 2000mm. The ~verage annual rainfall of 900mm on Fylingdales Moor suggests the North 

York Moors are not a prime region for the accumulation of blanket peat. Consequently peat 

stratigraphy on the North York Moors may be suited for the identification of significantly drier 

phases. because the impact of dry/hot climate on mire ecology \\'ill be magnified in a region 

marginal for peat accumulation. A principal aim of this research is to investigate the 

palaeoecological response of peatlands to drier climatic periods. perhaps providing an important 

analogue for environmental management in response to future climate change. \\'hich is 

particularly significant gi\L~n the paucity of blanket mire on the North York Moors. 
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2.5 Published palaeoecological research from the North York Moors 

2.5.1 Introduction 

The North York 1\100rs is one of the most intensively palaeoecologically investigated areas of the 

British Isles. Erdtman (1927) carried out the earliest palaeoecological research. and the North 

York Moors have attracted the attention of palaeoecologists throughout much of the last 70 years. 

This research has generated a large number of pollen diagrams produced with the aim of , 

uncovering the post-glacial vegetation history of the North York Moors. Currently there are in 

excess of 30 published pollen profiles from the North York Moors. which are listed in table 2.3. 

The distribution of palaeoecological sites is displayed in figure 2.4, which reveals the coverage of 

sites across the moors is not uniform. The majority of sites are on the central moorland plateau. 

\vhich has a Middle Jurassic sandstone bedrock and is typically covered \vith a blanket of peat. 

There is distinctly less peat in the lower dales and on the southern limestone hills. \\hich explains 

the comparative lack of palynological analysis. 

The initiation of peat formation is not synchronous across the moors. 'rvith peat deposits 

accumulating over differing periods of time. Consequently the peat stratigraphic record from the 

palaeoecological sites pertains to different sections of the Holocene. Figure 2.5 shows the 

duration of each peat profile and identifies extremely good coverage of the late Mesolithic. 

Neolithic. Bronze Age and Iron Age. and a comparative paucity of material pertaining to the 

Palaeolithic, early Mesolithic and post Iron Age. This is of particular significance for this project. 

with the current understanding of vegetation changes during the last 2000 years based on a small 

number of sites. Consequently there is considerable scope for further analysis. \vhich \\ill 

improve this database and address problems \vithin the palynological record. Unfortunately the 

paucity of palaeoecological profiles covering the last 2000 years raises questions about the 

availability of peat stratigraphy of an appropriate age. A further limitation \vith current 

understanding of the vegetation history of the North York Moors is that the chronologies derived 

for the pollen diagrams are based on a relatively small number of radiocarbon dates. The extent 

of radiocarbon dated stratigraphy is also identified on figure 2.5. 

The discussion above identifies previously published palaeoecological sites on the North York 

Moors. which provide the basis of current understanding of the region' s vegetation history. 

However. nothing has been said about previous research on the North York Moors elucidating 

climatic changes fron~ the peat stratigraphy. a palaeoecological approach \\idely applied to other 

peatlands in the British Isles. for example the Cumbrian lowlands (Barber. 1981: Barber et 01.. 

1993: 1994a: 199.+b). Prc\ious research of this type is remarkably limited on the North York 
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Table 2.3. Sites with published palaeoecological research from the North York Moors 
identifying the key publications. 

Palaeoecological 
Site 

Botany Bay 
Bonfield Gill Head 

Blakey Landslip 
Bluewath Beck 

The Carrs, Pickering. 
Collier Gill 

Dargates Dykes 
Ewe Crag Slack 

Evan Howe Slack 
Fen Bogs 
Foul Sike 

Glaisdale Gill 
Gale Field 

Harold's Bog 
Howdale Hill 

Harwood Dale Bog 
Kildale Hall 

Lady Bridge Slack 
Loose Howe 
May Moss 

Moss Swang 
Moss Slack Goathland 

North Gill 
Potter House Bog 

Seamer Carr (Stokesley) 
Small Howe 

St Helena 
Simon Howe Moss 

Seavy Slack 
Tranmire Slack 
Wheel dale Gill 

West House Moss 
White Gill 

Y ondhead Rigg 
Yarlsey Moss 

Key Publications 

Simmons & Innes, 1988c 
Simmons & Innes, 1988c 
Simmons & Cundill, 1974b 
Innes, 1981 
Cloutman, 1988a; 1988b; Cloutman & Smith, 1988 
Simmons, 1969 
Simmons et ai., 1993 
Jones, 1978 
Atherden, 1989 
Atherden, 1976a; 1976b 
Atherden, 1989 
Simmons & Cundill, 1974a 
Atherden, 1979 
Blackford & Chambers, 1991; in press 
Simmons & Cundill, 1974a 
Atherden, 1989 
Jones, 1977a; Keen et al., 1984 
Simmons, 1969 
Simmons & Cundill, 1974a 
Atherden, 1979 
Simmons, 1969 
Atherden, 1979 
Simmons, 1969; Simmons & Innes, 1988a; 1988b; 1988d 
Blackford et aI., in press 
Jones, 1976 
Simmons & Cundill, 1974a 
Simmons & Cundill, 1974b 
Atherden, 1979 
Simmons et aI., 1993 
Jones, 1978 
Simmons & Cundill, 1974a 
Jones, 1977b 
Simmons & Cundill, 1974a 
Simmons et aI., 1993 
Simmons & Cundill, 1974a 
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Figu re 2.S. Duration of peat sequences investigated in previous research. Solid 
lines denote stratigraphy secured by radiocarbon chronology, whereas the 
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identified in figure 2.4. The publications presenting the palaeoecological 
information are listed in table 2.3. 
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Moors. perhaps reflecting the absence of raised mires. the conventional environment for this type 

of research. In recent years increased attention has been paid to the palaeoclimate record 

contained in blanket peat sequences (Blackford. 1989: Tallis 1994). an em ironment the North 

York Moors has in abundance. Blackford & Chambers (1991: in press) analysed the peat 

stratigraphy from a blanket bog called Harold's Bog on Conisor Ho\yL East Bilsdale Moor. The 

degree of humification within a peat profile was utilised to identify fluctuations in mire surface 

wetness and this record \yas interpreted as a proxy-record of climatic fluctuations between 3170-

300 years BP. This is the only example of research of this type previously carried out on the 

North York Moors. 

2.5.2 Historiography of palaeoecological research on the North York Moors 

The history of palaeoecological investigation of peat deposits on the North York Moors divides 

into three phases of research activity that may be termed the pioneer. proliferation and critical 
. 

phases. Boundaries between the phases are diffuse reflecting the evolution in established 

knowledge. the scientific process. and gradual improvements \vithin research techniques and 

methodologies. 

Early palaeoecological investigations on the North York Moors demonstrate the importance of 

palynology as a tool for environmental reconstruction. Erdtman (1927) identified that trees were a 

component of the past vegetation, falsifying the traditional view that the heather moor and open 

grasslands were relict tundra ecosystems preserved by an upland climate since the last Ice Age 

(Elgee. 1912). Dimbleby (1961: 1962) and Simmons (1969) presented the earliest attempts to 

formulate a complete Holocene vegetation history of the North York Moors based upon pollen 

analysis of peat sediments. which included evidence of the post -glacial climatic amelioration and 

early Holocene forest development predominantly controlled by climate change and differential 

speeds of tree illlinigration. Additionally a series of subsequent episodic forest clearances was 

identified throughout ·the Holocene, and have been attributed to the activity of prehistoric and 

historic populations. 

Palaeoecological analysis on the North York Moors proliferated during the 1960s and 1970s. 

encouraged by the research of these early pioneers. This proliferation involved three doctoral 

research theses (CundilL 197 L Jones. 197 L Atherden. 1972) supervised by Simmons at Durham 

University. This \yealth of palaeoecological research based on a large number of sites from across 

the moors. generated a detailed vegetation history of the North York Moors from 16.000 BP to 

the present day. The impro\"(~d spatial coverage of palaeoecological sites has enabled 
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identification of regional variations in vegetation cover. The detailed regional vegetation history 

has been interpreted in the light of established archaeological (Jones et a/.. 1979). historical 

(Atherden. 1976a) and palaeoclimatic knowledge (God\yin. 1975: Lamb. 1977). 

Detailed scientific investigation often identifies as many problems and gaps in knmvledge as it 

provides answers. The final and theoretically limitless phase of research involves detailed critical 

analysis targeting id~ntified problem areas. thereby filling gaps in current understanding and 

providing further critical evaluation of the established knowledge. This phase has already 

included a number of research initiatives extending the temporal coverage. for example using 

palaeoecological and archaeological techniques to investigate the natural and cultural 

environment of upper Palaeolithic and Mesolithic sites in the Vale of Pickering. namely at 

SeameL Star and Flixton Carrs (Cloutman. 1988a~ 1988b~ Cloutman & Smith. 1988). 

Simmons & Innes (1988a~ 1988b: 1988d) applied fine-resolution pollen analysis to North Gill 

and other sites on the central \yatershed. in an investigation of the nature of MesolithiclNeolithic 

woodland disturbances on the upland moors. Further improvements in the spatial coverage of 

palaeoecological sites "ere made investigating peat sequences on the coastal fringe of the North 

York Moors (Atherden. 1989: Simmons et aL 1993). and on East Bilsdale Moor (Simmons & 

Innes. 1988c). Turner et af. (1989) carried out a critical evaluation of the accuracy of 

palynological investigation by analysing replicate profiles from the same peat sequence. which 

assesses "ithin-site variation in the pollen record. Blackford & Chambers (199 L in press) 

extended the range of palaeoecological procedures applied to peat sequences on the North York 

Moors by using analysis of the degree of peat humification to elucidate palaeoclimatic 

information from the peat stratigraphy. 

The research in this thesis is a further addition to the "critical" phase, contributing to the 

understanding of the environmental history of the North York Moors. Pollen analysis is utilised to 

investigate a series of sites. concentrating solely on peat stratigraphy post-dating the Iron Age. 

Additionally all of the sites are located in the eastern half of the North York Moors. Furthermore 

a wider range of palaeoenvironmental techniques. namely testate amoebae. plant macrofossil and 

humification analysis. are applied to these peat sequences as an integrated strategy for the first 

time on the North York Moors. Each of these paiaeoen\'ironmental procedures prmides 

infonnation about mire palaeohydrology. which in the case of ombrotrophic peat stratigraphy is a 

proxy record of climate change. 
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2.5.3 Vegetation history of the North York Moors 

Uninterrupted peat stratigraphy covering the entire period from the termination of the Devensian 

Ice Age to the present day is not abundant on the North York Moors. Consequently the \'egetation 

history of the North York Moors is derived from analysis at over thirty sites each covering 

differing parts of the Holocene. The pollen diagrams from these sites are interpreted to form a 

composite vegetation history formulated b:y correlating changes in the palynostratigraphy bet\\een 

peat sequences. However the reconstruction of Holocene vegetation history is assisted by the 

presence of three pollen profiles that extend from the base of the Holocene to the present day. 

namely Fen Bogs (Atherden. 1976a: 1976b). May Moss (Atherden, 1979) and West House Moss 

(Jones. 1978). Vegetation history research relies heavily on independently dated pollen diagrams 

and the 14C dated peat sequences are identified on figure 2.5. Unfortunately Fen Bogs. Harwood 

Dale Bog. Wheeldale Gill, North Gill and Bonfield Gill are the only peat sequences secured with 

a reasonable number of 14C dates. 

Termination of the Devensian Ice Age 

The earliest palaeoecological record on the North York Moors began ca. 16.700 BP at Kildale 

Hall (Jones. 1977a). In the Devensian. glacial ice reached the northern and eastern flanks of the 

North York Moors, filling the Leven-Esk valley, but it did not mount either the prominent western 

escarpment or the high massif of the moors during the advance to glacial maximum limits in the 

Vale of York (Gregory. 1965). Despite the absence of glacial activity there are relatively fe\\ 

sites with a complete record of the complex vegetational and climatic changes associated \\ith this 

period. These sites are Kildale Hall (Jones. 1977a: 1977b: Keen et 01.. 1984). Seamer Carr near 

Stokes lev (Jones. 1976) and Seamer. Flixton and Star Carr in the Vale of Pickering (Cloutman. 

1988a: 1988b). These organic and inorganic sediments yielded substantial quantities of 

palaeoecological evidence. specifically pollen, plant macro-fossils and molluscs. which ha\l~ 

provided a relatively complete history of the climate and vegetation changes associated \\ith the 

late Devensian climatic amelioration. A chronology for this period is available at Kildale HalL 

Seamer Car near Stokesley and the Carrs in the Vale of Pickering. The late Devensian 

environmental history for the North York Moors is summarised in table 2.4. This late Devensian 

vegetation sequence confomls with the established vie\\ of climatic change found in areas 

adjacent to the North Atlantic (Lo\\e et 01.. 1994). 

Holocene vegetation history of the North York Moors 

The Holocene vegetation history for the North York Moors is derived from over thirty pollen 

profiles generated across the region. A summary of the Holocene vegetation history is presented 
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Table 2.4. Summary of Late Devensian climatic and vegetation changes on the North 
York Moors. Location and citation for the 14C ages a Kildale Hall (Jones, 1977a). 
b Seamer Carr near Stokesley (Jones, 1976). C Seamer Carr in the Vale of Pickering 
(Cloutman, 1988b). 

Stratigraphy Age (BP) North York Moors Vegetation Climate 
Holocene Characteristic Flandrian vegetation Warm 

changes 

"Younger 10,350 ±200a Herbaceous and shrub heath 
Dryas Stadial" communities, with limited tree Cold 

growth in isolated sheltered 
12,010 ±130c localities. 

Late Glacial Open birch woodland, with diverse 
Interstadial herbaceous and shrub heath Warm 
"Allerod" communities. 

"Older Dryas 13,042 ±140b Reduction in tree birch, with Cold or 
Stadial" increased abundance of open unstable 

habitat shrubs and herbs. environment 

"Bolling Species-rich shrub and herb 

Interstadial" communities, with stands of tree Warmer 
birch. 

Devensian 16,713 ±340a Sparse herbaceous and shrub heath 

Glaciation. communities. Cold 
Ice Covered in some places. 
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in figure 2.6. During the early Holocene the climate continued to improve and the landscape of 

the North York Moors was altered by the immigration of tree species. eventually leading to the 

formation of a mixed deciduous forest during the Mesolithic. Kildale Hall. Seamer Carrs 

(Stokesley).Tranmire Slack. West House Moss (Jones. 1976: 1977a: 1977b. 197X). Fen Bogs. 

May Moss. Haf\\ood Dale Bog. Foul Sike (Atherden. 1976a: 1976b: 1979: 19X9) and Moss 

Swang (Simmons. 1969) all contain evidence of woodland colonisation during the early 

Holocene. Woodland immigration commenced \\ith pioneer colonising species producing a birch 

forest. Colonisation of the upland areas lagged behind the lowlands. \\ith the development of a 

species-rich heath scrub and scattered Betula woodland. How·ever. as the climate ameliorated 

Betula \\'Oodland covered the upland areas. 

Cor.vllls avellana infiltrated the Betula forests circa 9500 BP during the early Holocene. and 

subsequently after 9000 BP this Betuia-loryilis avellana association was succeeded by a PinllS­

Corylus avellana forest. With the exception of the 6550 BP Alnus rise~ the chronology of early 

Holocene \\oodland colonisation on the North York Moors is not secured by I~C dating and is 

derived by correlation with a standard British chronological sequence derived by pollen analysis 

(West 1970: Godwin. 1975). The thermophilous trees. Ulmus. Quercus. Tilia and Alnus. began 

to invade the lowlands surrounding the North York Moors around 8000 BP. shortly after the 

establislunent of the Pinus / Corylus avellana forest at higher altitudes. Between 8000 and 6600 

BP the flora of the North York Moors evolved from a Pinus / C()lylus avellana forest to a mixed 

deciduous woodland dominated by Ulmus. Quercus. Tilia and Alnus. \\ith an under-storcy of 

Cory/us avellana. 

A large part of the palaeoecological research on the N orth York Moors has concentrated upon thc 

late Mesolithic. primarily after the development of this mixed deciduous forest. This research has 

produced a vast archivc of palynological data from North Gill (Simmons. 1969: Simmons & 

Innes. 1988a: 1988b: 1988d: Simmons et al.. 1989: 1993: Turner et al.. 1993). other sites on 

Glaisdale Moor (Simmons & Innes. 198X d) and Bonfield Gill Head on East Bilsdale Moor 

(Simmons & Innes. 1988 c). These pollen profiles identify a number of episodic woodland 

clearances. which have been divided into stability and disturbance phases (Simmons ef al.. 1993). 

These phases are related to the activity of Mesolithic people clearing and thinning \\oodland to 

encourage larger accessible populations of game. Woodland clearance appears to be partially 

responsible for the onset of peat accumulation at sC\'eral sites. especially in poorly draincd 

localitics. In summary. the Mesolithic vegetated landscape of the North York Moors can bc 

described as an 2vcr-changing mosaic of open \\oodland. cleared ground and regenerating 
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\\oodland conununities. with semi-pennanent areas of bog. heath and clearcd ground (Simmons. 

1995). This landscape has changed and evolved in response to a complex mixture of climatic 

change. migration of Mesolithic people, pedogenic factors and vegetational succession. 

The cultural change to a fanning economy associated \yith the Mesolithic-Neolithic transition had 

a significant impact on the vegetation of the North York Moors. The elm decline is a 

characteristic feature of north-\ycst European pollen diagrams. On the North York Moors it is I~C 

dated to 4767 ±60 BP at North Gill (Jones ef af.. 1979) and 4720 ±90 BP at Fen Bogs (Atherden. 

1976a). There are also declines in other arboreal species during the Neolithic, \yith significant 

woodland clearances identified at Fen Bogs. May Moss. Hanyood Dale Bog (Atherden. 1976a: 

1976b: 1979: 1989). Collier Gill. North Gill and Bonfield Gill Head (Simmons. 1969: Sinml0ns 

& Innes, 1988a: 1988b: 1988c: 1988d). The Neolithic woodland clearances \yere by no means 

comprehensive. and woodland disturbance probably \yas only occurring on a limited and sporadic 

scale (Atherden. 1976b). Peat accumulation began at a number of sites during the Neolithic. 

including Bonfield Gill Head. Ho\ydale HilL White Gill and Moss Slack Goathland. which 

perhaps reflects a causal link between forest clearance and the inception of peat accumulation 

(Moore. 1986). The initiation of peat accumulation is the product of a number of factors. which 

include forest clearance. wetter climatic conditions and local impedance of drainage. 

The first \videspread destruction of woodland on the North York Moors occurred during the 

Bronze Age. Although woodland clearance had occurred during the Mesolithic and Neolithic. thc 

decline in Bronze Age arboreal pollen and the abundance of Bronze Age archaeological remains 

on the moors denote woodland clearance and human activity on a much larger scale. Declines in 

arboreal pollen frequencies are evident at several sites including Fen Bogs. May Moss. Moss 

Slack Goathland. Hanvood Dale Bog (Atherden. 1976a: 1976b: 1979: 1989) Wheeldale Gill and 

Loose HO\\c (Simmons & Cundill. 1974a). These clearances have been 14C dated to 3210 ±90 BP 

at Wheeldale Gill (Simmons & CundilL 1974a) and 3400 ±90 at Fen Bogs (Atherden. 1976a). 

These woodland clearances are the result of human pressure on the landscape. and although 

pastoralism probably' \\as the dominant agricultural activity on the moors during this period. 

cereal pollen grains signify arable activity (Sinunons ef al.. 1993). TO\yards the end ofthc Bronze 

Age there is evidence of limited \yoodland regeneration. reflecting a reduction in agricultural 

pressure. This \\oodland regeneration may also reflect the impact of a climatic deterioration circa 

3250-3000 BP during the late Bronze Age (Barber ef a1.. I 994a). \\hich would havc had a 

considerable impact on subsistence communities exploiting the upland moors. 
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A series of temporary \yoodland clearances characterises the early Iron Age. These clearances are 

evident in peat sequences from across the moors including the radiocarbon-dated profiles at Fen 

Bogs and Han\'ood Dale Bog (Atherden. 1976b: 1989). The most significant decline in the 

arboreal population of the North York Moors visible in pollen profiles occurs during the late Iron 

Age. This massive clearance has been I~C dated to 2280 ±120 BP at Fen Bogs (Atherden. 

1976b). 2190 ±90 BP at Harwood Dale Bog (Atherden. 1989) and approximately 2390-1570 BP 

at Wheeldale Gill (Simmons & CundilL 1974a). During the Iron Age and the subsequent 

Romano-British period the population of the North York Moors increased, expanding the area of 

the landscape exploited for pastoral or mixed agricultural activity (Simmons et a/.. 1993). 

Archaeological e,-idence suggests the population mainly occupied the southern hills and the 

bottoms of the dales. These settlement patterns probably represent the culmination of a trend 

begun in the Neolithic (Spratt, 1993). Low arboreal pollen frequencies occur at all palynological 

sites across the North York Moors throughout the Romano-British period, reflecting increased 

agricultural activity stimulated by economic prosperity during the period of Roman occupation. 

The last 2000 years are of most interest in terms of the focus of this thesis. and the remainder of 

this section synthesises current understanding of vegetational and environmental changes during 

this period. The North York Moors at the end of the Iron Age was a largely treeless agriculturally 

exploited landscape. with remaining woodland limited to steep valley sides and the moorland 

edge. Figure 2.5 indicates palaeoecological evidence pertaining to the last 2000 years is available 

at several sites: however. only peat profiles from Fen Bogs. and to a lesser extent Wheeldale Gill 

1~ and Harwood Dale Bog are secured by C dates. 

The Iron Age / Romano-British clearance phase terminates sharply at many sites. "ith an 

increase in the abundance of arboreal species recorded at Fen Bogs. May Moss and Harwood 

Dale Bog (Atherden. 1976b: 1979: 1989). The woodland regeneration is 14C dated to 1530 ±130 

BP at Fen Bogs. which is broadly synchronous with the Roman withdrawal from Britain. 

Although increases in the heliophytic trees, Betula and Fraxinus. are accompanied by a 

regeneration of Querclls. Alnus and COlylus avellana. pollen frequencies do not return to the 

levels in existence before the Iron Age/Romano-British clearance. Atherden (l976b) suggests 

that. although the Roman \\'ithdrawal had a significant impact on the land-use of the North York 

Moors. continued exploitation by native Britons. albeit at a reduced level. only allowed limited 

regro\\ 1h of woodland in marginal areas. for example the steep sides of the dales and the 

moorland edge. 
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After the initial woodland regeneration following the Roman \\ithdrawal arboreal pollen 

frequencies begin to decline during the Anglo-Scandinavian period. This decline is eyident at 

numerous sites on the' North York Moors: however. only Fen Bogs has I-+C dates for this period. 

Atherden (l976b) found the woodland regeneration \\as particularly noticeable in helioph~1ic 

species. specifically Betula. Fraxinus. Salix and COITlus avellana. and that there was a 

subsequent decline in arboreal species extending up to 1060 ±160 BP at Fen Bogs. Atherden 

(1976a: 1976b) attributed the Anglo-Scandinavian woodland clearances to a period of more 

intensive agricultural activity. perhaps related to monastic settlement encouraging increased 

exploitation of upland marginal agricultural land and the peripheral lowland areas of the North 

York Moors. 

Atherden (1976a) links historical records of tree felling \vithin the Royal Forest of Pickering 

during the late Medieval period to further declines in arboreal frequencies. The Royal Forest is in 

the pollen catchment area for peat sequences at Fen Bogs, May Moss. Simon HO'we Moss. Gale 

Field and Moss Slack Goathland. All of these sites display evidence of woodland clearance during 

the Medieval Period. ~vhich has been I-+C dated to 1060 ±160 BP at Fen Bogs (Atherden. 1976a: 

1976b: 1979). There is a minor expansion of trees towards the end of the Medieval Period. 

evidenced at Fen Bogs. Gale Field and Moss Slack Goathland. \vhich has been attributed to the 

impact of the Dissolution of the Monasteries in cal. AD 1536. \vhich encouraged a reduced scale 

of agricultural activity in upland areas as the monastic estates were dispersed amongst lay 

farmers (Atherden. 1976a: 1979). 

A decline in woodland species and an expansion of ('alluna vulgaris can be identified to'<vards 

the top of the pollen diagrams from Fen Bogs. May Moss. Simon Howe Moss (Atherden. 1976b: 

1979), West House Moss (Jones. 1977) and Yarlsey Moss (Simmons & CundilL 1974a). This 

arboreal decline is attributed to extensive \voodland exploitation during the 17th and 18th 

centuries. and the Calluna vulgaris rise is the product of moorland expansion during the 19th and 

20th centuries. produced by management of the upland moors to raise grouse. A further 

palynological change visible in peat sequences on the North York Moors entails an increase in 

pine frequencies and ~ccasional spruce and fir towards the top of pollen diagrams. The increase 

in conifer populatlOns is the product of modem commercial afforestation across the moors from 

the 1930s on\\·ards. 

Published palaeoclimate research on the North York Moors is not as comprehensivc as 

investigations into the ycgetation history. Previous analyses are limited to a single peat profile 
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from Harold's Bog on Conisor HowL East Bilsdale Moor (Blackford & Chambers. 1991: in 

press). This research analysed the degree ofhumification in a peat sequence and the humification 

stratigraphy \\as used to identify changes to a wetter mire surface. The palaeohydrological 

history is used to identify several shifts to wetter conditions circa 900-600 cal. BC. between 16X 

cal. BC and cal. AD 130. cal. AD 540-730.890-1160. 1000-1260 and 1565. \\hich are attributed 

to climatic change (Blackford & Chambers. in press). 

2.6 Gaps in the palaeoecological history 

The previous discussion identifies a considerable quantity of research carried out on the North 

York Moors: hm\ever. gaps can be identified in this established knowledge. At present. 

understanding of the vegetation history is hampered by a paucity of 14C dates and an absence of 

fine-resolution pollen analysis pertaining to most of the Holocene, \\ith the noticeable exception 

of the Mesolithic period where the North York Moors has both in abundance. There are fe\\ 

pollen sites m\ay from the central sandstone moorland plateau and this lack of a complete 

regional coverage especially on the southern limestone hills is keenly felt (Simmons. 1995). A 

further gap involves the virtual absence of palaeoclimate research utilising the evidence contained 

within peat stratigraphy. with the exception of the research on East Bilsdale Moor (Blackford & 

Chambers. 1991: i.n press). 

There is considerable scope for further research on the North York Moors using fine resolution 

pollen analysis and detailed 14C dating to investigate Neolithic, Bronze Age. Iron Age and 

Historic peat sequences. Research of this type would redress an imbalance in palynological 

research on the Nort~ York Moors by concentrating on parts of the Holocene other than the 

Mesolithic. Simmons (1995) links the comparative lack of palynological investigation of the post­

Iron Age to a relative absence of peat profiles pertaining to this period. and this problem may 

hamper future research. Research extending the spatial range of palynological sites would also be 

usefuL however. this \yill be hampered by a paucity of peat a\\ay from the central sandstone 

plateau. Furthermore. peat stratigraphies on the North York Moors have been under-utilised as a 

source for palaeoclimate research and there are several ombrogenous peat sequences suitable for 

research of this type. 

This thesis addresses 1\\0 of these gaps. by carrying out a detailed palaeoclimatic reconstmction 

utilising the peat stratigraphy from five sites on the North York Moors. Previous palaeoclimate 

research is limited to stratigraphic analysis of a single site. \\hich identities changes to a \\ etter 

climate circa 16X cal. BC - cal. AD 230. cal. AD 54()-7~O. X90-1160 and 1565. Additionall\ 
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pollen analyses supplemented by I~C dating will address the relative lack of radiocarbon dated 

palynological profiles pertaining to the last 2000 years. Current understanding of the vegetation 

history for the last 2000 years identifies \\"oodland clearance phases circa 400 cal. BC - cal. AD 

450. cal. AD 900-1450 and from cal. AD 1600 on\vards. separated by limited woodland 

generation cal. AD 500-900 and AD 1500-1600. These vegetation changes are correlated \yith 

periods of either enhanced or reduced agricultural exploitation of the uplands. \\"hich arise for a 

variety of reasons discussed in the previous sections. This thesis contributes a detailed regional 

climatic history elucidated from peat stratigraphy and improves current understanding of the 

regional vegetation history during the last two millennia on the North York Moors. 

1 
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Peat stratigraphy: an archive of climate 
history 

3.1 An introduction to peat-based palaeoclimate research 

There is a vast amount of published research that uses the stratigraphy of ombrotrophic peat bogs 

to reconstruct past climate. Although palaeoclimate research utilising peat sequences began in the 

late 19th century, it is a resurgence of interest during the last 20 years that is responsible for 

many of the procedures currently applied in peat stratigraphic research. This resurgence of 

interest has seen a number of methodological advances within the field of mire palaeoecology. A 

semi-quantitative method of analysing the degree of peat humification popularised by Aaby 

(1976), has been rigorously assessed and improved by Blackford & Chambers (1993). Barber 

and a series of doctoral students have developed plant macrofossil analysis as a tool for 

identifying moisture shifts within peat stratigraphy (Barber, 1981; Haslam, 1987; Stoneman, 

1993; Barber et al. 1994a; 1994b). Testate amoebae have long been utilised in investigations of 

peat stratigraphy (Tolonen, 1966; Aaby, 1976), but recent ecological research has enabled 

quantitative reconstruction of past environmental characteristics, for example the depth of the 

mire water table (Warner & Charman, 1994; Woodland et aI., 1998). 

Van Geel (1978; 1986) attempted to identify and record all the micro-fossils encountered within a 

palynological preparation, which include numerous fungal and algal remains, an approach he 

complemented with plant macrofossil analysis of several Dutch peat sequences to produce 

detailed environmental histories. A different procedure for elucidating a climate history from peat 

deposits has recently been developed, which involves isotopic analysis. Brenninkmeijer et al. 

(1982) used 2H/H and 180/60 ratios determined from analysis of cellulose to reconstruct climatic 

variations. Subsequent research has tentatively linked fluctuations in isotope stratigraphies to 

changes in temperature and precipitation (Dupont & Brenninkmeijer, 1984; Dupont, 1986; van 

Geel & Middeldorp, 1988), thereby providing the most specific climatic information that has 

currently been obtained from peat sequences. This variety of palaeoenvironmental techniques 

allows detailed reconstruction of mire surface conditions and in some cases allows investigation 

of the precise nature of an environmental or climatic change, for example the depth of the water 

table or temperature. Peat stratigraphic research currently involves the utilisation of several 

palaeoecological techniques to investigate a sequence. This multi-proxy approach has the 

advantage that it increases confidence in the eventual environmental reconstruction, and it is now 
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rare to find palaeoecological research investigating mire environments relying upon a single 

procedure. 

During the past 120 years, like many sciences, peat stratigraphic research has experienced a 

number of paradigm shifts. The earliest palaeoclimate research using peat sequences divided the 

Holocene into the five broad climatic periods listed in table 3.1 (after Blytt, 1876; Semander, 

1908). This research held that layers of poorly decomposed Sphagnum-rich peat were indicative 

ofa wetter, colder climate and well decomposed horizons of peat were attributed to drier, wanner 

periods, using evidence derived from the peat humification and plant macrofossil stratigraphy. 

The Blytt & Sernander scheme was not initially universally accepted and now is generally 

regarded as an oversimplification (Smith, 1981; Bell & Walker, 1993; Blackford, 1993; 

Ballantyne & Harris, 1994). However, the Pre-Boreal, Boreal, Atlantic, Sub-Boreal and Sub­

Atlantic climatic periods are a cornerstone of Holocene research. Even though anxieties regarding 

regional correlation, stratigraphic resolution and geochronology reduce the value of the scheme 

(Smith & Pilcher, 1973; Birks, 1975; Smith, 1981; Blackford, 1993), it is still referred to in 

recent palaeoecological publications Simmons et al., 1993 for example. 

Table 3.1. The Blytt & Semander post-glacial climatic periods (after Semander, 1908). 

Climatic Period 

Sub-Atlantic 

Sub-Boreal 

Atlantic 

Boreal 

Pre-boreal 

Climatic Conditions 

Humid and at the beginning cool. 

Dry and wann. 

Maritime and mild, probably with wann and long autumns. 

Dry and wann. 

Undetermined climatic conditions. 

Early research using peat stratigraphy to elucidate climate history concentrated upon features 

called recurrence surfaces (Weber, 1900). Recurrence surfaces are stratigraphic changes, in 

which well humified peat is succeeded by poorly humified Sphagnum-rich peat. Recurrence 

surfaces reflect an ecological and diagenetic response to increased availability of water on the 

mire surface (Blackford, 1993). Much of the peat-based palaeoclimatic research during the first 

half of the twentieth century concentrated upon identifying and correlating these recurrence 

surfaces between mires across north-west Europe, a strategy Barber (1982) describes as a 

"search for fixed points". 

The other foundation to peat stratigraphic research during the first half of the twentieth century 

was the autogenic theory of bog evolution, which held that bogs were self-perpetuating systems 
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with changes in peat stratigraphy reflecting replacement of a hollow environment with that of a 

hummock (Osvald, 1923; 1949). Tansley (1939) and Godwin & Conway (1948) have 

subsequently perpetuated the theory. The autogenic theory has also been referred to as the 

regeneration cycle theory or complex (Barber, 1981), and as the hummock-hollow cycle or 

complex. Figure 3.1 displays a diagrammatic representation of the autogenic theory, which 

demonstrates how a hollow through comparatively rapid peat accumulation can reach 

topographic parity with the surrounding hummocks and ridges, eventually transforming into a 

hummock. This process of mire evolution involves a change in local surface moisture conditions, 

which occurs independently of any external influences, for example mire drainage or climate. The 

autogenic hummock-hollow cycle is a neatly encapsulated closed system. Plant macrofossil and 

humification analyses were an integral part of research identifying these autogenic cycles 

(Osvald, 1923). 

Clearly the existence of recurrence surfaces constitutes an interruption to the autogenic process of 

bog evolution, thereby denoting an allogenic impact on the mire environment. It became the 

established scientific orthodoxy that recurrence surfaces, the major changes in peat stratigraphy, 

were the only evidence of climate fluctuations contained within peat sequences, with the majority 

of the stratigraphic changes being the product of the hummock-hollow cycle (Barber, 1981; 

1982). Recurrence surfaces were first identified by Weber (1900), who termed the major change 

in peat decomposition in north-western and central European mires the Grenzhorizont. Granlund 

(1932) developed this theme identifying five recurrence surfaces in Snoeroms Moss, a raised mire 

in Sweden. The recurrence surfaces were numbered RY I to V, and they occurred circa. 2300 

BC, 1200 BC, 500 BC, AD 400 and AD 1200. This chronology was based upon correlation of 

palynological and archaeological evidence. Recurrence surfaces have been identified within the 

humification (Weber, 1900; Granlund, 1932), plant macrofossil (Granlund, 1932; Nilssen, 1935; 

1961; Tolonen, 1966; Dickinson, 1975) and testate amoebae (Tolonen, 1966) stratigraphies of 

peat sequences across Europe. 

The development of 14C dating as a routine tool in palaeoecological research led to the 

questioning of regional correlation of recurrence surfaces. Features perceived to be an equivalent 

horizon yielded a variety of 14C ages (Frenzel, 1983; Barber, 1981; 1982; Blackford, 1993). 

Haslam (1987) used a detailed program of 14C dating to confirm a wide spread of ages for the 

Main Humification Change in mires across northern Europe. Despite the realisation that 

recurrence surfaces were not always regional phenomena and were an unsuitable basis for 

correlation of peat sequences, the detailed research involved in their identification had a number 

of benefits. Blackford (1993) ascribes a change in focus associated with this phase of research, 
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a). A schematic stratigraphic cross-section across a hummock / hollow 
microtopography demonstrating the pattern of changes expected through time under 
the autogenic theory of mire evolution (after Osvald, 1923). 
b). A schematic stratigraphic cross-section across a hummock / hollow 
microtopography, identifying the expansion (blue) and contraction (red) of habitats 
expected in a system controlled by climatically driven moisture changes (after 
Walker & Walker, 1961 ~ Aaby, 1976~ Barber, 1981). Also demonstrating the 
hypothetical distribution of Sphagnum communities expected on the North York 
Moors, under wet, average and dry conditions. 
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concentrating upon local fine-resolution variations in the recurrence surface record, which clearly 

contrasts with the regional low-resolution approach of the Blytt and Sernander scheme. This local 

emphasis is partially responsible for a greater understanding of mire hydrology, and for a focus 

upon minor features and local differences within peat stratigraphies. There are some drawbacks 

with this paradigm mainly involving the concentration on a narrow chronological period around 

the major recurrence surfaces, and arising from the imprecise and problematic climate history 

yielded by recurrence surface research (Barber, 1981; 1982; Blackford, 1993). 

Despite research indicating that chronological correlation of peat sequences using recurrence 

surfaces is unsound, as discrete features they do represent shifts to wetter mire surface conditions 

and are an important focus for palaeoclimate research. Several studies have used humification 

analyses often integrated with other palaeoecological procedures to identify a number of periods 

favouring the formation of recurrence surfaces, circa 3850 BP, 3500 BP, between 2800-2200 

BP, 2050 BP and 1400 BP (Tolonen, 1966; Dickinson, 1975; Blackford, 1993). The broad 

consensus unaffected by the chronological controversies is that recurrence surfaces form due to 

increased availability of water on the mire surface and they reflect a wetter climate. 

Doubts about the validity of the hummock-hollow theory as a main cause of changes within peat 

sequences began to surface as researchers failed to find stratigraphic evidence of the hummock­

hollow cycle (Walker & Walker, 1961; Aaby, 1976; Barber, 1981). It was becoming evident that 

hummocks had the ability to persist for long periods of time, with the hummock habitat 

expanding and contracting in response to climatic change or moisture availability. Barber (1981) 

formally tested the hummock-hollow theory investigating the plant macrofossil stratigraphy of 

Bolton Fell Moss, a raised mire in Cumbria and claimed to have falsified the hummock-hollow 

theory. Subsequently he proposed an alternative theory, the "Phasic" theory of bog evolution, 

which holds that mire growth is controlled above all by climate, with stratigraphic changes 

reflecting expansion and contraction of drier habitats in response to phases of dry or wet climate. 

The evolution of a mire conforming to the phasic theory is displayed schematically in figure 3.1. 

Implicit in the phasic theory of bog evolution as proposed by Barber (1981), is that the plant 

macrofossil communities evidenced in the peat stratigraphy of an ombrotrophic mire will contain 

a continuous record of climate-driven moisture changes. This record will include climate 

fluctuations of the magnitude of recurrence surfaces and a series of less visual yet significant 

stratigraphic changes. Aaby & Tauber (1975) and Aaby (1976) suggest that climate was the 

major factor behind changes in the peat humification, plant macrofossil and testate amoebae 

stratigraphy of six Danish mires, supporting the view that climate is perhaps the most important 
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factor controlling bog development. There has been a wealth of research on the mire environment 

since doubts were expressed about the chronology of recurrence surfaces and the validity of the 

hummock-hollow theory in the 1960s. This research includes attention to present day 

hydrological, chemical and ecological characteristics of the mire ecosystem, which have been 

synthesised in a number of excellent texts (Moore & Bellamy, 1974; Gore, 1983; Heathwaite & 

GOttlich, 1993). 

The majority of peat-based palaeoclimate research has concentrated upon raised mires. However 

in recent years there has been an increase in research investigating the climate signal contained 

within ombrotrophic blanket peat. Tallis (1985; 1987; 1991; 1994; 1995) and Tallis & Livett 

(1994) present detailed analyses of the stratigraphy of blanket mires in the south Pennines, which 

include quantitative analysis of plant macrofossils. Tallis (1994) identified a series of shifts in 

mire surface wetness within the macrofossil stratigraphy at Alport Moor. There is a broad 

agreement between the climate curves generated from raised mire stratigraphies (Barber, 1981; 

Barber et aI., 1994a; 1994b) and the moisture signal identified in the peat stratigraphy at Alport 

Moor (Tallis, 1994). Blackford & Chambers (1991; 1993; 1995) and Chambers et al. (1997) 

used a humification procedure and uncovered evidence of changes in palaeohydrology within 

blanket mire peat sequences across the British Isles. These studies demonstrate the potential of 

upland ombrotrophic blanket peat, which currently is an under-exploited resource for 

palaeoclimate research. 

The wealth of peat stratigraphic research has made substantial contributions to the understanding 

of climate history. This palaeoclimate history is more appropriately discussed alongside the 

research on the North York Moors in chapter 7. Recent methodological advances within the field 

of palaeoecology offer a range of opportunities for palaeoclimate research utilising blanket mire 

stratigraphy. Research of this type has not previously been applied to blanket mires of the North 

York Moors. The research presented in this thesis utilises three palaeoenvironmental procedures, 

assessing sub-fossil testate amoebae, plant macrofossils and the degree of peat humification to 

reconstruct mire palaeohydrology, and by inference past climate. 

3.2 Analysing the degree of peat humification 

Peat humification stratigraphy became a focus for palaeoenvironmental investigation because 

researchers became aware of a propensity for prolonged periods of dry climate to produce highly 

decomposed peat. Conversely, prolonged wet climate produces saturated mire surface conditions, 

which inhibit decay processes producing poorly decomposed peat. A logical progression of this 

state of affairs is that in fossil peat, well-humified layers will reflect a dry or hot climate and 

I 
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poorly humified layers will identify periods with a cold or wet climate. Two main processes of 

decomposition operate within peat bogs. Humification is the process by which organic matter is 

converted into humic substances, thereby losing cellular and tissue structure. Mineralisation 

involves microbial utilisation of organic matter, releasing carbon dioxide, water and other 

nutrients from the original plant material (Eggelsmann et al., 1993). Both of these decomposition 

processes require the presence of active microorganisms to breakdown organic matter (Kuster, 

1993). Peat comprises a mixture of primary or partially decomposed plant material and various 

humic substances, which accumulate because decomposition processes are negligible or occur 

extremely slowly under anaerobic conditions. 

The abundance and composition of the microbial population varies with depth and the degree of 

aeration of the peat profile. Aerobic micro-organisms are responsible for humification, and so this 

only occurs in the aerobic surface layers of a mire. Anaerobic bacteria are not very abundant in 

peat, but they can occur throughout the peat sequence and are essential for the mineralisation 

processes to take place. Ingram (1978) termed this aerobic zone the "acrotelm" and the lower 

anaerobic zone the "catotelm". Many researchers indicate the rate of decomposition in the 

catotelm is either extremely slow or negligible, and the actual processes and rate of 

decomposition within the catotelm are poorly understood (Eggelsmann et ai., 1993). The 

transition from the acrotelm to the catotelm occurs within the surface layers of peat and the 

boundary is typically located at the depth of the average minimum summer water table (Ingram, 

1978). The state of decomposition displayed by fossil peat reflects endurance of relatively rapid 

acrotelmic decay and slow/negligible catotelmic decay, both experienced during the sedimentary 

process. 

The majority of decomposition experienced by peat appears to occur in the acrotelm above the 

water table prior to further burial, and so the degree of peat decomposition broadly corresponds 

to the amount of time spent in the acrotelm. The degree of humification displayed by deep peat 

reflects the depth of the acrotelm at the time of sedimentation. If peat is poorly humified the 

acrotelm was probably quite shallow and the water table was close to the surface, whereas well­

humified peat is produced by a greater duration of acrotelmic decay indicating that the water 

table was deeper. In summary the degree of peat humification can be regarded as a semi­

quantitative proxy record of average minimum summer water table depths, which if the mire is 

ombrogenous will reflect climatic conditions (Aaby & Tauber, 1975). 

Early research assessed the degree of decomposition by means of visual examination of the peat 

sediment, which typically involved description of colour, identification of the main plant species 
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and qualitative assessment of the degree of preservation displayed by the plant remains. Von Post 

(1924) developed a 10-point categorical scheme to describe the degree of peat humification 

qualitatively. Von Post's scheme is based on several descriptive characteristics, including colour, 

texture and the state of physical deterioration of plant remains, and has been widely used to 

describe sedimentary sequences normally in association with other palaeoecological techniques, 

for example pollen analysis. 

In the wake of the falsification of the autogenic theory of bog evolution and chronological debate 

about recurrence surfaces, a new approach to peat-based palaeoclimate research has developed. 

The approach relies upon detailed systematic analysis of entire peat sequences, producing high­

resolution palaeoenvironmental histories. In this context there are several methodological 

problems with the von Post peat humification classification, which arise because it is a 

classification producing qualitative results not recorded on a continuous measurement scale. 

Measurements on a continuous numeric scale are essential for the detection of short duration 

changes in peat humification. The von Post scheme is also subjective and dependent on the 

judgement of the individual researcher, an approach that is inadequate for identification of small­

scale or cyclic changes in peat humification. Furthermore, the von Post scheme is reliant on 

Sphagnum remains for categories one to seven, which renders it of limited use in peat where 

Sphagnum species are either rare or absent. In some blanket mires the entire peat sequence will 

fall into categories 8-10, in which case the von Post scheme is of limited value for analysing 

small-scale changes in peat humification. 

Various methods of quantifying the degree of peat humification have been developed, which 

assess the colour either of extracted peat water or a chemical extraction of humic acid. Troels­

Smith (1955) devised a method for assessing humification, which involved squeezing the peat and 

dividing the extracted peat-water into five colour classes. Similarly Stoneman (1993) devised a 

"turbidity index" of peat humification, which assesses the quantity of dis aggregated peat required 

to obscure a mark on the base of a water-filled measuring cylinder. Both these methods operate 

with the premise that the degree of humification is reflected in the abundance of dark humic 

substances contained within peat. The most significant methodological development in the 

analysis of peat humification, involved the creation of a technique that assesses humification on a 

continuous numeric scale. Aaby (1976) applied a chemical procedure, originally developed by 

Overbeck (1947) and Bahnson (1968), to assess the degree of humification in peat sequences 

from raised mires in Denmark. Aaby and Tauber (1975) used time series analysis of this 

humification signal to infer hydrological and climatic changes with a 260-year periodicity. 
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Humic acids are produced by decomposition of organic matter, with the quantity of humic acid 

increasing as plant remains decompose. The amount of humic acid in peat could provide a 

measure of the degree of humification. Humic acids are complex compounds and typically are 

dark brown in colour. The alkali extraction produces a brown solution and the darkness of this 

solution reflects the concentration of humic acid. The darkness of the solution can be measured 

on a spectrophotometer, which assesses the quantity of light either transmitted through, or 

absorbed by the alkali solution. The percentage of light transmission recorded on a 

spectrophotometer through an alkali extraction of humic acid is used as a semi-quantitative 

estimate of the degree of peat humification (Aaby, 1976; Blackford & Chambers, 1993). High 

percentages of light transmission identify a low humic acid content, and conversely low 

percentage light transmission indicates the extract is rich in humic acids. The percentage light 

transmission curve for a peat profile will identify changes in peat humification, which in tum will 

reflect changes in mire surface wetness. Blackford & Chambers (1993) rigorously tested the 

alkali-extract procedure and improved the methodological integrity of the technique, 

recommending several modifications. 

Rowell & Turner, (1985), Blackford & Chambers (1991; 1993; 1995; in press), Chambers et al. 

(1997) and Caseldine et al., (1998) have used the alkali extraction procedure in 

palaeohydrological investigations of mires across the British Isles. Humification stratigraphies 

have been used to reconstruct a Holocene climatic history for the British Isles, and have identified 

several phases of wetter climatic conditions during the last two millennia, circa 1450 BP, 550 BP 

and 300 BP (Blackford & Chambers, 1991; 1995). Wet climatic periods signified in peat 

stratigraphies appear to be concurrent with phases of reduced sunspot activity, and solar forcing 

has been proposed as a possible cause of climate change during the late Holocene (Blackford & 

Chambers, 1995). Linking the palaeoclimate history derived from peat stratigraphy with factors 

hypothesised as potential agents affecting or forcing global climate change is not without 

problems. A discussion of these issues at this stage is premature and the debate is presented in the 

context of the palaeoclimate history for the North York Moors in chapter seven. 

3.3 Plant macrofossil analysis 

The principal aim of plant macrofossil analysis is to reconstruct a history of the local mire 

vegetation from a palaeoecological sequence. The vegetation of an ombrotrophic mire is a 

complex community, which prefers environmental conditions that are inhospitable to a large 

number of species. These saturated acidic nutrient-poor conditions encourage the development of 

a low diversity flora dominated byericaceous shrubs, sedges and bryophytes. The Sphagnaceae, 

a group of mosses particularly abundant on ombrotrophic mires, dominate the bryophyte 
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community. Less abundant members of this blanket mire community, include Drosera spp., 

Narthecium ossifragum, Molinia caerulea and Myrica gale, amongst others (Heathwaite et al., 

1993a). The flora of blanket mires is not uniformly distributed across a complex micro­

topography consisting of hummocks and hollows. Furthermore, each mire has individual 

environmental characteristics that affect the composition of plant communities. 

Surface moisture conditions are identified as a critical factor controlling the distribution of plants, 

with certain species preferring specific environmental habitats - for example the tops of 

hummocks, sides of hummocks, hollows and pools. Individual species often prefer an 

environmental habitat a specific distance from the water table, and the abundance of plant species 

with specific moisture requirements can allow mire surface wetness to be monitored through 

changes in the composition of the mire flora. Changes in the mire flora have been used as a tool 

for monitoring a variety of environmental changes, including the assessment of hydroseral 

changes (Tallis, 1983) and the success of mire restoration schemes (Heathwaite et al., 1993b; 

Buttler et a/., 1996). 

The mire vegetation is transformed into peat through sedimentary and decompositional processes. 

The nature of the eventual peat sediment is controlled by the composition of the bioceonosis 

combined with the vigour of diagenetic processes. Dead plant matter loses cellular structure and 

mass as it is incorporated into the acrotelm, until after further sedimentation the plant remains 

reach the relative safety of the catotelm. The majority of decay experienced by dead plant 

material must occur before reaching this anaerobic zone, because rates of decomposition in 

catotelmic peat are very slow (Eggelsmann et aI., 1993). Despite the decomposition involved in 

transforming plant material into peat sediment, a large proportion of plant remains is preserved as 

fossils within the peat stratigraphy, and many of these sub-fossils are identifiable to species or 

sub-genus level (Barber, 1993). 

Changes in the mire flora elucidated from the sub-fossils contained within peat sequences reflect 

the response of species or communities to various environmental parameters. Reconstructing 

climate change through analysis of plant macrofossils contained within peat stratigraphy is based 

upon two underlying precepts. Firstly, the mire under investigation must be ombrogenous, which 

provides a more or less direct link between surface wetness conditions and effective precipitation. 

Secondly, changes in mire surface wetness must be identifiable through ecological interpretation 

of the plant macrofossil history. In the absence of human interference, changes in mire surface 

wetness most likely reflect fluctuations in effective precipitation, thereby providing a proxy 

climatic record. 
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The change in emphasis associated with the establishment of the phasic theory (Barber, 1981), 

has necessitated a number of methodological advances in plant macrofossil analysis. Analysis of 

small-scale fluctuations in peat stratigraphy requires sequential sampling at a fine-resolution, and 

furthermore the abundance of plant macrofossils has to be assessed quantitatively. Traditionally, 

the abundance of plant macrofossils has been recorded either qualitatively as presence/absence 

data, or semi-quantitatively using a "rare, occasional, frequent, common and abundant" 

categorical procedure (Walker & Walker 1961; Tolonen, 1966; van Geel, 1978; Barber 1981). In 

fact much of the research questioning the synchrony of recurrence surfaces and the validity of the 

autogenic regeneration model relied on this semi-quantitative categorical scale (Walker & 

Walker, 1961; Aaby, 1976; Barber, 1981). In comparison with other palaeoecological 

techniques, for example pollen analysis, plant macrofossils have proved relatively difficult to 

quantify (Birks & Birks, 1980). 

There are a number of problems with the rare, occasional, frequent, common, abundant scheme, 

which arise because the classification is dependent on the researcher's judgement of the 

abundance of plant remains. Additionally the scheme produces categorical data, which hinders the 

identification of small-scale fluctuations in the composition of Sphagnum communities and 

furthermore it is difficult to carry out quantitative analysis on categorical data. There are further 

problems arising from the unsystematic manner in which this categorical procedure has been 

used, with one or two samples extracted within pre-determined stratigraphic units (Barber, 1981). 

In order to extract fine-resolution climatic data, the peat stratigraphy must be sampled 

systematically using a close sampling interval. 

Recent research at Southampton University has put plant macrofossil analysis of mire sediments 

firmly on a quantitative footing (Haslam, 1987; Stoneman, 1993). Haslam (1987) developed a 

"Quadrat and Leaf Count" method, in which the main peat components; Unidentified Organic 

Matter (DOM), Monocotyledonous remains, Ericaceae remains and Identifiable Sphagnum are 

identified and quantified. The Sphagnum leaf counts and estimated abundance of the main peat 

components are expressed as percentages. Stoneman (1993) modified the quadrat and leaf count 

method by expressing the Sphagnum leaf counts as percentages of the total identifiable 

Sphagnum, which gives the Sphagnum leaf counts equal weighting with the percentages of the 

main peat components. Barber et al. (1994b) used a weighted average ordination technique on 

this quantitative data to generate palaeohydrological curves, by giving each species a value 

reflecting respective moisture tolerance. 
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Barber et af. (1994a) used a different ordination technique, unconstrained detrended 

correspondence analysis (DCA), as a tool to interpret the macrofossil data objectively. Axis 1 of 

the DCA summarised the majority of the variation within the data set and appeared to identify a 

moisture gradient, with species preferring wetter environmental conditions (e.g. Sphagnum 

section Cuspidata) located at one end of the axis and species preferring drier environmental 

conditions (e.g. Ericaceae and Sphagnum section Acutifolia) grading to the other end. If DCA 

axis 1 does represent a moisture gradient the scores for each fossil sample on this axis provide a 

record of changes in mire surface wetness and by inference palaeoclimate. The sample scores on 

DCA axis 1 of a core from Bolton Fell Moss have been proposed as a more accurate model of 

Holocene climate change than produced by previous methods of interpreting peat sequences, 

namely recurrence surface stratigraphy and the Blytt-Semander scheme (Barber et aI., 1994a). 

Methodological developments improving the plant macrofossil analysis procedure have provided 

a means of quantitatively assessing the relative abundance of components within peat sequences. 

Perhaps more importantly, it has also become possible to analyse changes in plant macrofossil 

communities statistically and present semi-quantitative moisture gradients using various 

ordination techniques. This approach has the advantage of providing a long and continuous 

history of mire evolution, which in the case of an ombrotrophic mire can be viewed as a proxy­

history of climate change. 

3.4 Analysis of sub-fossil testate amoebae 

3.4.1 Introduction 

Protozoa in the subphylum Sarcodina and the superclass Rhizopodea are a group of freshwater 

organisms that produce tests or shells. These tests are readily incorporated and preserved within 

aquatic and semi-aquatic sedimentary sequences. They are the subject of a palaeoecological 

technique colloquially referred to as "testate amoebae analysis" (Warner & Charman, 1994) or 

"rhizopod analysis" (Tolonen, 1986). Research on testate amoebae is limited to mire, lacustrine 

and soil environments. However, this thesis relies entirely on analysis of peat sequences, and so 

the remainder of this section concentrates upon testate amoebae analysis as a palaeoecological 

tool for analysing peat sequences. Peat stratigraphic research using testate amoebae was first 

applied by Steinecke (1927) and subsequently testate amoebae analysis has been utilised by 

various researchers to investigate mire palaeoecology (Harnisch, 1927; Grospietsch, 1958; 

Tolonen, 1966; Aaby, 1976; Beyens, 1985; Warner & Charman, 1994; Woodland et al., 1998). 

Testate amoebae are a very abundant component of the microfauna of Sphagnum mires, with a 

biocoenosis of circa 1.6x 107 live organisms m-2 and a necrocoenosis of circa 2.0x 10
7 

individuals 
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m-2 (Heal, 1962). This level of abundance combined with the fact that many species are readily 

preserved within peat, allows quantitative investigation of sub-fossil communities. Testate 

amoebae have a number of advantageous characteristics that render them an extremely useful tool 

for palaeohydrological research; for example a wealth of research into ecology of modem testate 

amoebae suggests that mire surface wetness is the most important control on the occurrence of 

species and the composition of communities (Heal, 1961; 1962; 1964; Meisterfeld, 1977; 

Harnisch, 1927; Schonborn, 1962; Tolonen et al., 1992; 1994; Warner & Charman, 1994; 

Woodland et al., 1998). Systematic accumulation of peat converts the necrocoenosis into a 

representative fossil assemblage, with no significant loss of species during the fossilisation 

process (Woodland et al., 1998). The diversity of sub-fossil communities is typically high with 

circa 15 species per sample, with most testate amoebae taxonomically identifiable to species level 

in a sub-fossil condition. Additionally, many testate amoebae species display a reasonable 

turnover along a number of environmental parameters. These factors render testate amoebae 

analysis an extremely valuable tool for the interpretation of peat sequences. 

Testate amoebae are unicellular organIsms, which consist of a cytoplasm surrounded and 

protected by a single chamber test or shell. In the case of smaller testate amoebae the cytoplasm 

fills the test chamber. However, species with larger tests only partially fill the test chamber, 

attaching themselves to the wall with cytoplasmic strands extended from the cytoplasm (Ogden & 

Hedley, 1980). Typically the tests have either one or two openings which are utilised for both 

movement and feeding. Testate amoebae achieve mobility using flowing extensions to the 

cytoplasm, which are projected through an aperture. These cytoplasmic strands are called 

pseudopodia and are also used to adhere the test to the substrate. Taxonomic classification of 

testate amoebae is based on the form of the pseudopodia; however, this is of little use when 

analysing sub-fossil assemblages because the soft body parts are not preserved. The formation of 

the test is tied in with the reproductive cycle, with identical tests constructed on daughter cells 

prior to mytosis. In sub-fossil testate amoebae the manner of test construction, the sculpture, 

shape and size of the test and test aperture are used as taxonomically diagnostic features 

(Grospietsch, 1958; Ogden & Hedley, 1980; Heathwaite et al., 1993). 

Detailed ecological research on modem testate amoebae populations in Britain identifies that 

most species are active between May and October, followed by death or encystment during the 

winter (Heal, 1961; 1962; 1964). Testate amoebae appear to feed on bacteria, algae and fungi, 

with larger species preying upon other testate amoebae, diatoms and rotifers (Heal, 1964; Corbet, 

1973; Ogden & Hedley, 1980). In addition some species, including members of the genus 

Amphitrema, digest symbiotic zoochloroellae, which live within tests, and derive food and energy 
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directly from sunlight. Heal (1962) and Meisterfeld (1977) found that no living testate amoebae 

occur beneath the brown undecomposed section of Sphagnum moss, which can vary from a depth 

of 10-15 cm in very wet Sphagnum carpets to just beneath the mire surface in dry dense 

hummocks. The lack of living testate amoebae at depths in mires is due to the lack of interstitial 

gaps and the anoxic conditions prevalent in deep peat (Tolonen, 1986). There is vertical variation 

in the occurrence of species in the surface layers of Sphagnum moss, with species sustained by 

symbiotic zoochloroellae displaying a maximum abundance in the top 6 cm, because they require 

light to survive. Species without symbiotic zoochloroellae have their maxima at depths between 

6-12 cm, perhaps reflecting a need for peat and mineral particles for test construction 

(Meisterfeld, 1977). Beneath circa 15 cm very few living testate amoebae occur and the 

necrocoenoses are gradually converted into fossil assemblages. 

3.4.2 Ecology of modern testate amoebae 

Palaeoecological research requires a full understanding of the ecological and environmental 

requirements of modem populations. Tolonen (1986) and Warner & Charman (1994) recommend 

caution in the use of sub-fossil testate amoebae until more is known about the distribution and 

ecology of modem communities. This caution is surprising given that testate amoebae have been 

a subject for research since the early 20th century (Steincke, 1927). There is a substantial body 

of published literature on the ecology of modem testate amoebae (Harnisch, 1927; 1951; 

Schonborn, 1962; 1964; 1967; Grospietsch, 1953; 1958; Meisterfeld, 1977; 1979). A problem 

arises because few ecological measurements of the habitats preferred by modem testate amoebae 

have been obtained by direct field analysis (Heal, 1964; Meisterfeld, 1977). This imbalance has 

been recently re-addressed to some extent (Tolonen et al., 1992; 1994; Charman & Warner, 

1992), and continues to be addressed in research (Woodland, 1996; Woodland et al., 1998). 

Despite these problems there is a broad agreement that habitat moisture conditions are the most 

important of the environmental parameters affecting the distribution of species. Many species are 

sufficiently stenotopic to be placed within substrate moisture categories and early research on 

their ecology concentrates on analysing the species assemblages associated with specific moisture 

conditions (Harnisch, 1927; Grospietsch, 1958; Schonborn, 1963). Other environmental factors 

affecting the distribution of testate amoebae include acidity of the mire water, the trophic 

conditions and, in the case of testate amoebae that construct their tests from detritus, the 

availability of material. 

Early research on the ecology of testate amoebae communities assigned species to categories 

using a long-established moisture-conditions classification scheme, with each category possessing 

a distinctive assemblage of testate amoebae (Harnisch, 1927; Grospietsch, 1958). The testate 
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amoebae communities associated with the four categories are displayed in table 3.2, alongside a 

description of the moisture conditions. Harnisch (1927) and Grospietsch (1958) also proposed a 

series of diagnostic communities for a variety of mire habitats including forested mires, fen mires, 

bog pools and bog hummocks. Schonborn (1962) and Meisterfeld (1977) improved the 

classification of testate amoebae communities by linking the occurrence of species to moisture 

conditions, using the eight-point categorical scheme displayed in table 3.3. Direct linkage of the 

occurrence of testate amoebae species with specific ecological conditions is a preferable 

interpretative tool to the broad groups devised by Harnisch (Heathwaite et al., 1993a; Tolonen, 

1986). The moisture classes and representative testate amoebae assemblages form the ecological 

basis for much of the published palaeoecological analyses of subfossil testate amoebae (T olonen, 

1966; Beyens, 1985). 

The resurgence of interest in peat-based palaeoclimate research during the last decade has had a 

particular focus upon methodological advances (Blackford, 1993). In the case of testate amoebae 

analysis this has necessitated comprehensive quantitative assessment of the environmental 

preferences of modem testate amoebae. Surveys carried out in Finland (Tolonen et al., 1992; 

1994), Canada (Charman & Warner, 1992) and Great Britain (Woodland, 1996; Woodland et 

al., 1998) have quantified the average ecological preferences and the range of environmental 

conditions tolerated by most testate amoebae species. 

Tolonen et al. (1992; 1994) assessed the impact of water table depth, percentage moisture 

content of the substrate, trophic conditions, acidity of the mire water, electric conductivity of the 

mire water, peat bulk density, calcium content, nitrogen content, the carbon:nitrogen ratio and 

quantity of dissolved organic carbon upon the distribution of testate amoebae at ninety micro­

sites from six mires in Finland. Two of the mires were ombrotrophic raised mires and the other 

four displayed a wide range of trophic conditions. Tolonen et al. (1992) suggest this selection of 

sites is representative of the range of unmodified mires in this area of Finland. Detrended 

correspondence analysis of the data attributes 70% of the variation in the distribution of testate 

amoebae species to these environmental parameters (Tolonen et al., 1994). The most important 

factors in decreasing order of importance were identified as the depth of the water table, soil 

moisture content and trophic conditions. Charman & Warner (1992) carried out a similar survey 

on 107 microsites representative of a wide range of managed and unmanaged habitats on a 

forested peatland in north-eastern Ontario, Canada. The distribution of testate amoebae species 

was most strongly affected by depth of the water table, moisture content of the substrate and 

acidity of the mire water (Charman & Warner, 1992). Both these studies converted the raw data 

summarising the environmental conditions tolerated by individual testate amoebae species into 
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Table 3.2 Moisture categories and typical testate amoebae species assemblages (after 
H . armsch, 1927; Grospietsch, 1958). 

Moisture Moisture Characteristic species 
Category Conditions 
Tyrphoxene Dry or drained peat Hyalosphenia subflava, Bullinularia indica, 

or moorland Trif(onopyxis arcula 
Xerophilous Moderately dry Bullinularia indica, Assulina muscorum 

mire habitat 
Hygrophilous Damp to wet mire Nebela collaris, Assulina seminulum 

habitat 
Hydrophilous Very wet mire Amphitrema flavum, Amphitrema wrightianum 

habitat 

Table 3.3. Testate amoebae communities associated with the average water content of 
the substrate categories of Jung (1936), according to Schonbom (1963) and Meisterfeld 
(1977). 

Moisture 
Category 

I 

II 

III 

IV 

V 

VI 

VII 

VIII 

Average water content of the substrate 

Open water or submerged vegetation. 
>95% 

Floating vegetation, partly submerge and 
partly at the surface. >950/0 

Emerged vegetation, very wet, water 
drops out without pressure. >95% 

Wet, water drops out with weak pressure. 
~95% 

Halfwet, water drops out with moderate 
pressure. 95-85% 

Moist, water drops out with strong 
pressure. 90-85% 

Half dry, a few drops with strong 
pressure. <80% 

Dry, no water drops out with strong 
pressure. <50% 

Characteristic species. 

Arcella disco ides 

Amphitrema stenostoma 
Amphitrema wrightianum 

Hyalosphenia papi/io 
Amphitrema flavum 

Hyalosphenia elegens 
Hyalosphenia papilio 

Arcella artocrea 

Arcella artocrea 

Corythion dubium-type 
Assulina muscorum 
Assulina seminulum 

Assulina muscorum 

Bullinularia indica 
Trigonopyxis arcula 

Hyalosphenia subflava 
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weighted averages and weighted standard deviations. These values are quantitative estimates of 

the optimum environmental preferences and the range of environmental conditions tolerated by 

testate amoebae species. 

The ecological research of Woodland (1996) is particularly pertinent for this research project, 

because it involves quantitative assessment of the environmental preferences and the range of 

environmental conditions tolerated by testate amoebae in the British Isles. The survey utilised 163 

micro-sites from nine peatlands distributed across England, Scotland and Wales. The survey 

assessed the impact of the mean annual water table depth, percentage moisture content of the 

substrate, bulk density, vegetation cover, acidity, electric conductivity and temperature of the 

mire water, and the Cll-, sole, Ca2+ and Mg2+ ionic content of a mire water sample on the 

occurrence of testate amoebae. Canonical correspondence analysis of the data indicated that mean 

annual water table depth and percentage moisture content of the substrate were the most 

important environmental parameters controlling the distribution of species (Woodland et al., 

1998). 

This research in Finland, Canada and Britain has moved understanding of testate amoebae 

ecology from the qualitative base of the 1960s and 1970s (Harnisch, 1927; Grospietsch, 1958; 

Schonborn, 1962; Meisterfeld, 1977). Currently testate amoebae analysis is based on a rigorous 

quantitative ecological approach, which potentially renders it an invaluable tool for environmental 

monitoring of peatlands (Buttler et al., 1996). Numerical estimation of the environmental 

conditions preferred by testate amoebae species has allowed quantitative reconstruction of 

palaeohydrology using ecological transfer :functions (Warner & Charman, 1994; Woodland et al., 

1998). Quantitative coupling of the ecological tolerance and sub-fossil abundance of testate 

amoebae has greatly advanced testate amoebae analysis as both an ecological and 

palaeoecological tool. 

3.4.3 Testate amoebae analysis as a palaeoecological tool 

Testate amoebae were first utilised in palaeoecological research by Steinecke (1927), and by 

Harnisch (1927) and Grospietsch (1958). Early palaeoenvironmental research using testate 

amoebae concentrated on clarifying the changes in mire surface wetness integral to the 

BlyttJSemander scheme. Testate amoebae analysis has proven useful in peat-based research 

investigating recurrence surface stratigraphy (Frey, 1964; Tolonen, 1966). Tolonen (1966) used 

testate amoebae stratigraphy to identify the regeneration or 'hummocklhollow' complex in a 

Finnish peat sequence. It should be noted that Barber (1981) suggests this site is different from 

most raised mires, and regional correlation of recurrence surfaces and the status of the 'cyclic 
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regeneration theory' are difficult to sustain in the light of subsequent research (Walker & Walker, 

1961; Aaby, 1976; Barber, 1981; 1985; Haslam, 1987). 

Aaby & Tauber (1975) and Aaby (1976) made use of testate amoebae, alongside pollen analysis, 

humification analysis and quantification of the abundance of Sphagnum remains to reconstruct a 

5,500 year surface moisture history for raised mires in Denmark. Aaby identified units where 

Assulina spp. and Amphitrema flavum were abundant, which were interpreted as indicative of a 

wetter mire surface. Aaby attributed fluctuations in mire surface wetness to cyclic climate 

changes, not to the autonomic wet/dry fluctuations of the hummocklhollow regeneration cycle. 

Unfortunately, Aaby (1976) eliminated a number of species by using a pollen preparation 

procedure, which selectively removes species by sieving and chemically destroying certain tests 

(Hendon & Charman, 1997). However, only two genera were counted and both do not appear to 

be affected by this procedure; consequently these results are of interest identifying a broad 

agreement between surface moisture information derived from testate amoebae and other 

palaeoenvironmental procedures. Beyens (1985) reconstructed climatic conditions from a Sub­

Boreal peat sequence in Belgium, by assigning moisture content classes developed by Meisterfeld 

(1977) to the peat stratigraphy based on the sub-fossil testate amoebae communities. The 

moisture classes were assigned to the sub-fossil testate amoebae assemblages allowing the 

generation of a relative surface wetness curve, which summarised mire surface moisture 

conditions between circa 4680 and 3200 BP. 

Palaeoecological research prior to the 1990s was based on qualitative or semi-quantitative 

assessment of the present-day ecology of testate amoebae. Warner & Charman (1994) used 

transfer functions to link the optimum environmental tolerances of modem testate amoebae with 

sub-fossil assemblages to reconstruct the moisture content of the substrate and depth to the water 

table for a mire in north-west Ontario during the last 6500 years. This procedure aided the 

interpretation of the palaeoecological sequence by examining the evolution of a mire from a 

limnic environment to a relatively wet Sphagnum-dominated peatland. Using the optimum 

ecological tolerances of modem testate amoebae to reconstruct past environments from sub-fossil 

assemblages in this manner is at an embryonic stage as a quantitative palaeoecological tool. 

Warner & Charman (1994) demonstrate the considerable potential of this approach, but they 

suggest that much more research is required on the ecology of testate amoebae, and at this 

developmental stage they recommend that these surface wetness curves are only used as a semi­

quantitative aid to palaeoenvironmental reconstruction. 
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Woodland et al. (1998) used a British ecological data-set to reconstruct water table depth 

fluctuations during the last 1,500 years from sub-fossil testate amoebae communities based upon 

analysis of a peat core from Bolton Fell Moss, Cumbria. Quantitative reconstruction of 

environment parameters of this type is a significant development in peat-based palaeoclimate 

research, because the magnitude of moisture changes can now be assessed rather than relying 

upon the semi-quantitative assessments produced by plant macrofossil, humification and until 

recently testate amoebae analysis. The reconstructions of water table depth derived from testate 

amoebae allow the comparative performance of other palaeoecological procedures to be assessed 

against a quantitative palaeoenvironmental parameter. Research of this type is currently at an 

embryonic stage and is further advanced in the context of ombrotrophic blanket mires in this 

thesis. 

3.4.4 Problems and limitations with testate amoebae analysis 

The previous two sections discuss a series of recent developments in testate amoebae analysis, 

which suggest that the future of palaeoecological research reconstructing mire water table depths 

lies in quantitative environmental estimations derived using modem ecological data (Charman & 

Warner, 1992; Warner & Charman, 1994; Woodland et al., 1998). In spite of a resurgence of 

interest in testate amoebae and these methodological developments a number of problems remain. 

Firstly, there are only three data-sets describing the environmental conditions preferred by 

modem testate amoebae, measured in Finland (Tolonen et ai., 1992), northern Ontario, Canada 

(Charman & Warner, 1992) and Britain (Woodland et al., 1998). This record of modem testate 

amoebae communities is by no means comprehensive and data from a wider set of geographical 

locations and environmental conditions is required before testate amoebae analysis can offer a 

reliable quantitative model for reconstructing past environments. Quantitative reconstruction of 

environmental parameters should only be attempted if there is modem ecological data for that 

particular region. 

The multivariate statistics, employed by Charman & Warner (1992), Tolonen et al. (1994) and 

Woodland et al., (1998), reveal that not all the variation in the distribution of species can be 

attributed to the environmental parameters assessed. It is possible this may be due to the 

incomplete geographical and environmental coverage within the ecological data, but there are also 

problems with the individual ecological data-sets. Charman & Warner (1992) obtained more 

samples from micro-sites with a 75-95% moisture content, because testate amoebae were more 

likely to occur than at drier sites. Although this selection procedure introduces an inherent bias in 

the weighted averages, it should be overcome as research progresses increasing the range of 

habitats or environmental conditions sampled. 
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The response or distribution of testate amoebae along an ecological or environmental gradient can 

be modelled by a Gaussian curve, with a species most abundant at the ecological optimum and 

decreasing away from the optimum (Birks, 1995). The weighted standard deviations express the 

range of environmental conditions tolerated by testate amoebae, which indicates that some species 

are extremely stenotopic, whereas others are eurytopic, with an optimum occurrence over a wide 

range of environmental conditions. The ecological transfer functions use the entire fossil 

assemblage to generate a weighted average reconstruction of an environmental parameter. 

Therefore this reconstruction is based on a range of stenotopic and eurytopic species, and 

consequently it will be an approximation. Eventually, after substantial improvements in the 

knowledge of testate amoebae ecology, it may be possible to base an environmental 

reconstruction solely on stenotopic species, but at present this is an inadvisable approach 

(Woodland et aI., 1998). 

The mIre surface wetness data are presented as estimates of both water table depth and 

percentage moisture content (Charman & Warner, 1992; Tolonen et aI., 1992). This is a 

problem, because the assessments of the ecological parameters were derived on single field visits, 

producing 'snap-shot' ecological data. The degree of surface wetness will be affected by the 

season in which the measurement was made and by antecedent weather conditions. Surface 

wetness should be measured continuously over several years, but in many cases this would be 

prohibitively expensive and time consuming. 

Woodland et al. (1998) address this problem in the context of the British data-set, by basing the 

ecological research at sites recording mean annual water table information. For the first time the 

occurrence of testate amoebae species are linked with a meaningful environmental parameter - the 

mean annual depth of the water table. It is possible to calculate numerical estimates of 

environmental parameters from sub-fossil testate amoebae, which are broadly equivalent to the 

reconstructions of salinity possible using sub-fossil diatom assemblages and palaeotemperature 

histories derived using sub-fossil Coleopteran communities. One reservation with these numerical 

estimates arises because testate amoebae are active between May and October, which implies that 

perhaps mean summer water tables operate a greater control over testate amoebae communities 

than the mean annual water table. Consequently at sites with pronounced seasonal water table 

variations the value of the reconstructed mean annual water table depths can be questioned. At 

present it is difficult to envisage or realise a solution to some of the problems introduced above, 

but fortuitously for this research the geographical range of ecological data does cover the British 

Isles (Woodland et aI., 1998). Despite the remaining problems testate amoebae analysis offers a 
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great deal to the mire palaeoecologist, because this type of 'quantitative' reconstruction out­

performs many other palaeoenvironmental techniques. 

3.5 Problems with peat-based palaeoclimate research 

The resolution and precision of the palaeoclimate signal available from peat causes problems. 

The taxonomic and ecological resolution of palaeoecological analysis affects the sensitivity of the 

climate signal yielded by ombrotrophic peat stratigraphy. This problem is best exemplified by 

species within Sphagnum section Acutifolia, which contains a number of species capable of 

inhabiting a wide range of moisture conditions. Unfortunately it is not possible to identify sub­

fossil Sphagnum section Acutifolia leaves to species level, and so Sphagnum section Acutifolia 

are of limited value for palaeohydrological research. The ideal palaeoecological site will have a 

stratigraphy containing several identifiable species which clearly fluctuate in response to changes 

in bog surface wetness (Barber, 1993). 

Accumulation and decay rates in peat bogs are so slow that potentially not all the climatic shifts 

will be represented in the peat stratigraphy. The degree of peat decomposition depends on the 

depth of the water table or acrotelm over a long period of time, and so peat humification 

effectively summarises average surface wetness conditions over a decade or more, thereby 

reducing the resolution of the climate signal. Precision in this type of research is inherently 

constrained, because a definitive climatic variable cannot be elucidated from peat stratigraphy. 

Humification, plant macrofossil and testate amoebae analyses effectively only identify qualitative 

oscillations between a dry mire surface and a wet mire surface, and it is impossible to identify 

whether these conditions arise from changes in precipitation or temperature (Aaby, 1976). A 

palaeoecological technique reconstructing mire surface wetness only provides a history of 

precipitation received by the mire surface after losses through evapotranspiration, surface flow 

and mire seepage. 

Problems arise from anxieties about the link between surface wetness and the evidence recorded 

in peat stratigraphy. Environmental factors other than mire surface wetness can affect peat 

stratigraphy. The plant remains forming the peat will affect the rate of decomposition, because 

some species decay more rapidly than others. Coulson & Butterfield (1978) measured the rates of 

decay of different plant species, revealing that Calluna vulgariS and Eriophorum vaginatum 

decay more rapidly than Sphagnum, which has implications for plant macrofossil and 

humification analysis. Blackford & Chambers (1993) suggest the impact of plant species may 

actually enhance the palaeohydrological signal contained in the humification record. Peat 

stratigraphy dominated by Sphagnum is likely to have accumulated under relatively wet 
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conditions, which is an environment likely to produce relatively poorly humified peat. The 

tendency of Sphagnum remains to decompose slowly will contribute to the formation of poorly 

humified peat, thereby enhancing the indication of a wet environment. The reverse is true of 

Ericaceae remains, which decay rapidly and are typical of a drier mire environment. This is a 

combination of environmental conditions and plant species likely to encourage the production of 

well-humified peat. 

There is also considerable variation in the rate of decay between sections of the same plant. 

Aerial parts of vascular plants decay rapidly, for example the cotton-grasses (e.g. Eriophorum) 

and Ericaceae (including Calluna vulgaris, Erica tetralix, Vaccinium oxyCOCCUS, Andromeda 

polifolia), whereas Sphagnum remains decay relatively slowly (Coulson & Butterfield, 1978). 

Consequently the proportions of leaves, twigs and stem fragments of vascular plants preserved in 

peat may not be an accurate reflection of their past abundance. Despite these problems 

assessment of the varying proportions of plant remains, the quantity of Unidentifiable Organic 

Matter and the degree of peat humification allow the generation of a detailed local vegetation 

history (Barber, 1993). 

The importance of mire surface wetness as a factor controlling the nature of peat stratigraphy 

should not rule out the possibility of other factors affecting changes. Stoneman et al. (1993) 

discuss the problematic decline of Sphagnum imbricatum, a species that is very abundant in 

Holocene peat. A variety of reasons has been proposed to explain the decline of Sphagnum 

imbricatum, for example it is possible that in hollow or lawn environments Sphagnum 

imbricatum has been out-competed by other species, e.g. Sphagnum magellanicum. The 

environmental niche occupied by Sphagnum imbricatum may have contracted during the late 

Holocene, becoming limited to hummock tops. Anthropogenic industrial pollution during the last 

200 years contributing additional nutrients into the system is another possible cause of the decline 

in Sphagnum imbricatum. It is difficult to prove any of these theories conclusively, but perhaps 

more importantly this issue indicates that changes in the ecological preferences of species and a 

wide range of environmental changes must be considered when interpreting palaeoecological 

profiles. 

Mires are characterised by an uneven surface covered with hummocks, ridges, hollows and pools. 

This microtopographic variation controls local surface moisture conditions, which has an impact 

on the distribution of plant and testate amoebae species. Peat stratigraphy may vary across a mire 

because of differences in the depth of the acrotelm beneath an undulating surface topography. 

The possibility of local variations in acrotelm depth affecting the humification signal suggests 
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reconstruction of mire palaeohydrology should not be based on a single humification profile. This 

problem can be overcome by description of the detailed field stratigraphy if a cut-section is 

available; however, in actively accumulating mires cut-sections are seldom available. Detailed 

analysis of several closely spaced cores extruded along a levelled transect describing the current 

micro-topography would assess whether the humification stratigraphy is representative of the 

mire as a whole, improving confidence in eventual palaeoenvironmental interpretations. 

The various microenvironments have differing degrees of sensitivity to climate change. An 

outcome of the falsification of the autogenic regeneration theory, was that hummocks are viewed 

as more stable long-lived features (Aaby & Tauber, 1975; Aaby, 1976; Barber, 1981), with the 

hummock habitat expanding and contracting from a stable centre in response to climatic change. 

Barber (1981) suggests that hollows or Sphagnum lawns will be more sensitive to moisture 

changes than the relatively stable hummock centres. The palaeohydrological record beneath a 

hollow or Sphagnum lawn will display a greater range of fluctuations than peat stratigraphy 

beneath a hummock, where the hydrological record may be more subdued due to the stability of 

hummock centres. The topographic high of a hummock perhaps acts as a natural buffer to the 

extremes of surface saturation caused by climatic fluctuations. Tallis (1994) contests this view 

holding that wet shifts recorded in hummock stratigraphy are undeniably a response to an 

allogenic change in the mire hydrological budget and the record of major hydrological changes is 

recorded with greater clarity because of the stability of hummock centres. 

Changes in the composition of the mire vegetation and surface moisture conditions do not always 

occur in response to climate change. Under stable climatic conditions due to the accumulation of 

sediment, growth of the mire surface could out-pace upward migration of the mire water table 

(Aaby, 1976), which would produce a drying trend in the peat stratigraphy identical to that 

produced by a drier climate. Aaby (1976) suggested that only changes to a wetter mire surface 

could be attributed to climate with any degree of confidence. This point emphasises that whilst 

many researchers have rejected "cyclic regeneration" as a mechanism for mire evolution, 

autogenic processes remain an important component affecting mire evolution. Heathwaite et al. 

(1993a) assert that it is impossible in analysis of peat stratigraphy to tell whether a change to a 

wetter or drier mire surface was caused by autogenic or allogenic factors. However, if a 

substantially drier mire surface can be identified in peat stratigraphy across a mire, it probably 

reflects a large-scale change in the mire moisture budget, which implies an external cause. 

Palaeoecological analysis of mires across Northern Europe indicates that some regions are more 

sensitive to climate change than others. Haslam (1987) found that bogs in Poland and Germany 



52 

endure a continental climate experiencing less frequent and lower magnitude changes in surface 

wetness than bogs formed under the oceanic climate of western Europe and Britain. The 

geographical location of a mire must be considered when interpreting the climatic signal. This is 

particularly pertinent with regard to this project investigating upland blanket mires on the drier 

east coast of Britain, which will provide a valuable contrast with much of the published peat­

based palaeoclimate research in the British Isles, which typically utilises raised mire peat 

stratigraphies in the wetter west. 

The problems introduced in this section are not insurmountable and peat stratigraphies have been 

used with considerable success in Holocene palaeoclimate research. To generate an accurate 

hydrological and climatic history it is important to assess whether the stratigraphic changes occur 

across the mire, either by recording a detailed field stratigraphy or by analysing several cores. 

The consistency of stratigraphy can be assessed if cut sections are available by recording the field 

stratigraphy or by analysing a series of closely spaced cores extruded along a levelled transect 

describing the current microtopography. Either approach will assess whether stratigraphic 

changes occur independently of microtopography. If the peat stratigraphy across a mire contains 

evidence of fluctuations in surface wetness, this indicates that significant changes have occurred 

within the hydrological budget of the mire. An allogenic change of some magnitude is required to 

alter the hydrology of a mire, by altering either the amount of water received or the ability of the 

mire to retain water. Drainage of a mire, by either unnatural alteration (human induced) or 

natural processes (bog-bursts), and climatic fluctuations are the only likely causes of changes in 

the hydrological budget of a mire. 

The research strategy employed in this thesis ensures that environmental and ecological factors 

are not overlooked in the quest for a palaeoclimate history. This is achieved by using a series of 

cores along a levelled transect, which will assess the permanency of hummocks and hollows, and 

identify whether autogenic changes in mire microhabitat are responsible for changes in moisture 

conditions. External forcing of changes in the mire moisture budget is more likely when surface 

wetness changes occur across the mire within adjacent microhabitats. Regional climate change 

and drainage arising from land-use changes are the most likely allogenic factors affecting mire 

hydrology. Additionally, several palaeoecological techniques are integrated to corroborate the 

surface wetness signal, which involves analysing sub-fossil plant and testate amoebae 

communities, and analysis of the degree of peat humification. This integrated and rigorous 

approach should ensure that analysis of peat stratigraphy will provide a valuable record of past 

environmental conditions and specifically a history of surface saturation. 
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3.6 Objectives and context for palaeoclimatic research of the North York Moors 

Peat stratigraphic research has had an important role in unravelling a history of Holocene climate 

change in the British Isles. Methodological advances during recent years have allowed detailed 

fine-resolution climatic histories to be reconstructed from peat stratigraphy in various locations 

across the British Isles, including Cumbria (Barber, 1981; Haslam, 1987; Stoneman, 1993; 

Wimble, 1986), the Scottish Borders (Chambers et al., 1997), the Humberhead Levels (Smith, 

1985), the Pennines (Tallis, 1994) and Ireland (Blackford & Chambers, 1995; Caseldine et al., 

1998). The quality of this palaeoenvironmental research has improved in many ways over the 

years, with now virtually all the palaeoenvironmental techniques recording information on a 

continuous numeric scale. This approach has the advantage that it is possible to discern relatively 

minor fluctuations in palaeoenvironmental histories, which is a clear improvement upon 

concentrating on the major stratigraphic events, such as recurrence surfaces and the 

BlyttiSemander zones. This numeric approach has encouraged fine-resolution sampling within a 

peat sequence, because if relatively minor stratigraphic changes can be identified, detailed 

analysis is worthwhile. In the past the constraints inherent in qualitative and categorical data have 

rendered systematic high-resolution analysis of limited value. 

Despite the advances of recent years it is not possible to elucidate a direct unproblematic climatic 

variable from peat stratigraphy. The foundation of palaeoclimatic interpretation of peat sequences 

remains unchanged, which is that mire surface wetness reflects the amount of effective 

precipitation received by a site, but there have been considerable improvements in the power of 

each palaeoenvironmental technique. The nature of the palaeoenvironmental signal derived from 

each technique is the basis for the division of the techniques into three distinct categories. The 

first category of technique allows the direct numerical reconstruction of a climate variable, such 

as temperature for example. At present, isotopic analysis of cellulose remains from within peat 

sequences is the only technique that allows direct reconstruction of specific climatic parameters -

in this case, temperature and precipitation. It was not possible to use isotopic analysis within this 

research, because of a lack of time and the appropriate equipment. The second category includes 

techniques that allow the numerical reconstruction of environmental parameters, such as salinity 

or acidity, for example. Testate amoebae analysis is the only technique that falls within this 

category, because it currently allows mean annual water table depth and percentage moisture 

content of the substrate to be reconstructed using ecological transfer functions. The third category 

of technique allows inferences to be made about specific environmental parameters, without 

producing a quantitative estimate of that environmental parameter. The degree of peat 

humification is controlled by the mean summer water table and, by inference, effective summer 

rainfall (Blackford, 1993). The distribution and occurrence of Sphagnum species, Calluna 
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vulgaris, Cyperaceae and other mire plants is controlled by the mean height of the water table. 

The data produced by these techniques will reflect responses to climate change, and 

methodological advances within each technique have allowed production of data on a continuous 

measurement scale. However, data of this type do not provide a direct reconstruction of an 

environmental parameter, but allow a series of changes to be inferred from a proxy 

palaeoenvironmental curve. 

Despite a wealth of research, the range of techniques currently available and a reasonable 

geographical distribution of peat sequences, the potential of the palaeoclimate history contained 

within peat has yet to be fully realised. This thesis addresses several gaps within peat 

stratigraphic research, for example by redressing an understandable spatial imbalance within 

peat-based palaeoclimate research. The eastern half of Britain is not a prime site for the 

accumulation of peat deposits, and it displays a paucity of raised and blanket mires in 

comparison with the wetter west. Previous peat-based palaeoclimate research in eastern England 

is limited to the investigation of single peat sequence on East Bilsdale Moor on the North York 

Moors (Blackford & Chambers, 1995; in press) and extensive analysis of the Humberhead Levels 

(Smith, 1985). 

The contribution made by this thesis is to produce a palaeoclimate history for the North York 

Moors, expanding a growing database of peat stratigraphic research within the British Isles. The 

results from the North York Moors must be viewed in the context of the range of climatic 

conditions that occurs across the British Isles. Annual rainfall on the North York Moors is 

currently around 1000mI, which is substantially less than that received by mires in western 

Britain. This research examines the response of an endangered habitat to climatic changes within 

a comparatively dry region. Peat stratigraphies of mires in eastern Britain may contain clearer 

evidence of the impact of drier climatic periods than sites in the wetter west. 

The majority of peat-based palaeoclimate research has utilised raised mire peat sequences. This 

tendency has been redressed to some extent in recent years (Blackford & Chambers, 1991; 1993; 

1995; in press; Tallis, 1994; Chambers et aI., 1997) and this thesis contributes to this process by 

targeting upland ombrotrophic blanket mires on the North York Moors. Using a combination of 

testate amoebae, plant macrofossil and humification analysis to elucidate climate history from 

blanket peat is a development upon previous research, and should provide a rigorous test of the 

performance of blanket peat stratigraphy and the palaeoecological procedures used to uncover 

climate histories from peat. 
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The multiple technique approach utilising testate amoebae, plant macrofossil and humification 

analysis assesses the comparative performance of the palaeoenvironmental approaches. This will 

address some important questions including: 

• Do the environmental signals respond at the same time or is there a time-lag between different 

techniques? 

• Do the techniques identify the same environmental changes or do they have different 

thresholds before a change is recorded in the fossil record? 

Combined with the integrated palaeoecological strategy is a multiple-profile approach, in which 

several cores are analysed from the same site. Analysis of several profiles will identify whether 

there are significant variations across a mire and will assess whether the information derived from 

a single core is a representative sample of the stratigraphy as a whole. The strategy designed to 

analyse peat sequences on the North York Moors attempts to assess the consistency of the 

stratigraphies at each site and provide a comprehensive test of the comparative performance of 

each palaeoenvironmental technique when investigating ombrotrophic blanket peat stratigraphy. 
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Research methodology 

4.1 Introduction 

The research ob~'ectives of this thesis divide neatly into two broad areas. Firstly. peat 

stratigraphies on the North York Moors are analysed in order to reconstruct regional vegetation 
, 

history. Secondly, several palaeoenvironmental procedures are utilised to elucidate a history of 

surface moisture conditions at several ombrogenous blanket mires, thereby providing a record of 

climatic fluctuations. This thesis concentrates upon the last 2000 years of vegetation and climate 

history, because this time period proved logistically possible in terms of the available peat 

sequences. AdditlOnal research paralleling the palaeoecological analysis, investigates the 

historical evidence for landscape and climate change on the North York Moors and only identifies 

sufficient coverage of documentary material during the last 1500 years (James Menuge, 1997: 

unpublished). The vegetation history of the North York Moors is reconstructed from the results of 

palynological investigations, supplemented with macrofossil analyses of the local mire flora. The 

pollen analysis has two main objectives: firstly to provide a chronological framework for 

correlation of peat sequences, and secondly to redress an imbalance in previous palynological 

research on the North York Moors. which apart from a few notable exceptions (Jones. 1977b: 

Atherden. 1976a: 1979), concentrates extensively on the earlier periods of the Holocene. The 

palaeoclimate research utilises testate amoebae, plant macrofossil and humification analysis to 

investigate the surface \vetness history of a mire. 

This chapter presents research methodology. defining the rationale for site selection and the field 

sampling methodology. The five palaeoecological sites are introduced, presenting information 

about location. topography. sedimentary evolution and present vegetation cover of each mire. The 

pollen. plant macrofossiL humification and testate amoebae analysis laboratory methodologies are 

introduced. with r,~ference to previous research and recent methodological developments. Dating 

the peat sequences relies on 14C age determinations and palynological marker horizons. The 

geochronological strategy utilised for each peat sequence is defined in the following sections. 

Finally the format used to present the palaeoenvironmental results is introduced. which defines 

the anal) tical process and statistical procedures utilised to assist \yith interpretation. 
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4.2 The criteria and methodology of site selection 

Mires intended to produce palaeoclimatic information should all be ombrotrophic, because there 

is link between mIre surface saturation and effective precipitation. Effective precipitation exerts 

considerable control ~pon mire surface wetness, which in tum affects the peat stratigraphy. The 

principal aim of this research is to uncover detailed vegetation and climate histories for the last 

two millennia. and so the peat sequences must have been accumulating throughout the period. 

Rapidly accumulated peat offers the best stratigraphic resolution for uncovering palaeoecological 

histories. The requirements outlined above present problems for palaeoecological research on 

mires in Britain today. The blanket mire habitat is under threat at a regional, national and 

international level (Heathwaite et aL 1993a). In Britain 900/0 of the area formerly covered by 

blanket mire has been lost with currently only around 125,000 hectares remaining (Royal Society 

for Nature Conservation, 1990). Blanket mires on the North York Moors are under attack on 

several fronts. Peat extraction or cutting is a major threat to the mire habitat at a national leveL 

but is only a minor player in the contlict on the North York Moors. 

There is currently low key hand-cut extraction taking place at Harwood Dale Bog and evidence of 

unmechanised peat extraction elsewhere on the central watershed of the North York Moors. It is 

possible that peat extraction may have occurred on a larger scale in the past but several factors 

argue against widespread peat extraction on the North York Moors. Firstly. peat does not 

accumulate evenly or to great depths across the topography of the moors. with areas of deep peat 

either localised or limited to the tlat plateau of the central watershed. Secondly. peat is not a 

particularly good fuel in comparison to \-"ood or coaL consequently it is regarded as an emergency 

fuel for use when other sources are either in short supply or prohibitively expensive, and apart 

from during the last few centuries there has been plenty of wood available on the North York 

Moors (James Menuge. 1997). 

The major assault on the peatlands of the North York Moors involves changes in land-use 

activity. Between 1853 and 1986 the area of moorland vegetation boundaries of North York 

Moors National Park has declined from 49% to 35% (Statham. 1989). The moorland landscape 

has been gradually converted into improved farmland and forestry. Since 1853 the area of 
, 

improved farmland within the boundaries of the current National Park has tluctuated around 40% 

of the total area. which may retlect recent attempts to conserve the moorlands and perhaps more 

significantly that famling on the improved farmland proved far from lucrative. Between 1904 and 

1986 the area of land covered with forestry in the National Park has increased by 15%. which 

identifies commercial forestry as most significant threat to peatlands on the North York Moors 
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(Statham, 1989). [n the 1920's the Forestry Commission purchased land and commissioned vast 

conifer plantations on the moors at Dalby, Bickley and Hackness. Further plantations followed at 

Wykeham and Cropton. with smaller plantations across the Tabulae Cleveland and Hambleton 

Hills. In some areas these plantations threaten and have damaged areas \\ith deep peat for 

example on Harwood Dale Moor and at May Moss. In recent years there has been a growing 

awareness of the value and rarity of unmodified mires: consequently various methods havc been 

used to try and protect these endangered habitats, for example conferring SSSI status on Fen 

Bogs and May Moss. Additionally bodies like Forest Enterprise ha\'c become involved in thc 

conservation of the remaining mires and are even contemplating clearing planted trees around 

May Moss. expanding the area of blanket moor. 

Large areas of the remaining moorland are managed for grouse-reanng. Management of 

moorland involves regularly burning the heather to maintain a vegetated environment blanketed 

with young heathee mainly Calluna vulgaris. Regularly burning the surface of mires will reduce 

the amount of organic matter deposited inhibiting peat accumulation and may actually damage 

the mire surface. This process also reduces the floristic diversity on the moors producing an 

artificial Calluna vulgaris monoculture. Management for grouse-rearing has also involved 

drainage of boggy areas and the construction of grouse-butts across deep peat sites. as for 

example on Yarlsey Moss in October of 1996. Severe fires have also damaged large areas of the 

mOOL as for example the fires on Wheeldale Mooe in the dry summer of 1976, which damaged 

deep peat sites at White Moor and Blue Man-i'th'-Moss. 

In summary. the picture for actively accumulating ombrotrophic peat on the North York Moors is 

very bleak. This project entails palaeoecological investigation of recently accumulated 
, 

ombrotrophic peat and unfortunately the land-use history of the North York Moors suggests this 

type of environment is very rare. Consequently several strategies were used to identify potential 

sites rapidly. The large quantity of published palaeoecological research on the North York Moors 

\\as reviewed. identifying sites with a sedimentary history for the last 2000 years. The vegetation 

history of the N orth York Moors is discussed in chapter two, and age range of the peat sequences 

examined in previous research confirms the anxiety that palaeoecological profiles pertaining to 

the last 2000 years are not abundant. 

The NCC Phase I Habitat Survey contains information about the distribution of blanket mire on 

the North York T\loors (Nature Conservancy Council, unpublished). This survey examined thc 

entire National Park. assessing the current vegetation and grouping areas into a series of habitat 



59 

categories. The category of interest (E I) identifies unmodified bog, blanket bog and raised bog. 

which typically have a Sphagnum-rich vegetation over peat deposits more than 0.) metres deep 

(Nature Conservancy Council. 1990). This category is subdivided into four units. Raised bogs 

are ombrotrophic mires and have been the basis for the majority of palaeoclimate research using 

peat stratigraphy (Barber. 1981: Aaby 1976). However. these are typically lowland features and 

do not occur within the North York Moors National Park. The category blanket bog will identify 

actively accumulating ombrotrophic peat sequences on the North York Moors, especially if they 

occur in water-shedding locations. The final t\\O categories are wet and dry modified bog. 

referring to former blanket mire affected by peat cutting. heavy grazing, burning or drainage. 

Modified mires will have peat deposits of over O.S m, but unfortunately the potential of the 

stratigraphy may be reduced by truncation of the peat sequence. 

The NCC Phase 1 habitat maps identified that the majority of the actively accumulating deep peat 

sites are located in the eastern half of the North York Moors and most have been investigated 

before. Much of the published palaeoecological research on the North York Moors used pollen 

analysis to reconstruct vegetation history~ whereas the intention of this research is to reconstnlct 

mire palaeohydrology from peat stratigraphy. This thesis uses a series of sites in the east of the 

North York Moors. all of which have been previously investigated using the technique of pollen 

analysis. May Moss SSSI, Fen Bogs SSSL Yarlsey Moss, Harwood Dale Bog and Bluewath 

Beck are the sites that form the basis of the research and these sites are identified on figure 4. I . 

Several other sites. also identified on figure 4. 1, received a preliminary investigation to assess 

their viability for further research. 

4.3 Palaeoecological sites 

4.3.1 May Moss SSSI 

May Moss SSSI covers almost 1 km:: centred on the grid reference SE 876960 and is identified 

on figure 4.2. The site is the largest remaining area of actively accumulating blanket mire on the 

North York Moors and probably in eastern England. The site is an ombrotrophic watershed mire 

at an altitude of 244 metres. accumulating on the headwaters of the southward-flowing Long 

Grain and Grain Beck. and the northward-flowing Eller Beck. The topography and drainage 

patterns suggest that the site is both \yater-shedding and largely ombrotrophic. The peat has 

accumulated directly 'over a bedrock of weathered Middle Jurassic sandstone of the Osgodby 

Fonllation. Atherden (1972: 1979) used pollen analysis to construct an ~WOO-year vegetation 

history for May Moss. 
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Figure 4. 1. Location of the main palaeoecological sites; May Moss (MM), Fen 
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a). Location of May Moss and Fen Bogs, North York Moors, northeast England. 
b). Location of the core sites, and the landscape around May Moss SSSI. 



62 

Sedimentary Evolution of May Moss 

Atherden (1972) extruded thirty test cores to investigate the peat stratigraphy and peat depths 

across the site. These investigations identified peat depths of over five metres (max. 6.4 m) in the 

valleys of Eller Beck and Long Grain, which indicates peat accumulation probably initiated in 

these wet areas, with Monocotyledonous peat accumulating over bedrock and a basal detrital soil 

rich in wood and charcoal fragments. In time peat accumulated covering the mire watershed: 

consequently the peat depths are shallower with only 3 metres on the ,yatershed. Atherden (1972: 

1979) analysed a core from the deepest part of the Eller Beck basin. identifying that during the 

last 2000 years over two metres of peat had accumulated. Further investigation during this 

research indicates that on the mire ,vatershed similar accumulation rates operated. This supports 

the interpretation of the sedimentary history, in which peat accumulation initiated in cham1els 

eventually spreading ~p over the shallow incline blanketing the watershed. Currently the mire 

surface is broadl) flat although the mire does slope towards Eller Beck and Long Grain. The 

stratigraphic borings made by Atherden (1972) and borings made during this research reveal the 

peat stratigraphy consists of alternating layers of Sphagnum-rich and monocotyledonous peat 

confirming that the mire was covered with a typical blanket bog flora throughout the sedimentary 

history. 

The present-day vegetation 

The surface vegetation of May Moss is dominated by Calluna vulgariS and Eriophorum 

vaginatllm. Sphagnum species and Erica tetralix are also abundant. Additionally there are 

occasional to locally abundant occurrences of Empetrum nigrum, Eriophorum angustUhlium, 

Narthecium ossUiAagum, Drosera rotllnd~folia, Vaccinium OXYCOCCllS, Vaccinium myrtillllS, 

Andromeda polUolia and Rubus chamaemorus. The distribution of plant species is by no means 

uniform across May Moss and a series of habitat types can be identified. Moisture conditions 

appear to control the' composition of the vegetation in each habitat. Local moisture conditions 

across May Moss are controlled by the hummock-hollow micro-topography. 

Pools or saturated hollmys are typically colonised by Sphagnum cuspidatum and Sphagnum 

recurvum. Drosera rotund~folia is not widespread. but it typically occurs around pools. 

,Sphagnum papillosum and Sphagnum magel/anicum either form large hummocks or occur 

around the base of hununocks close to the water table. Cal/una vulgariS'. Erica tetralix. 

Eriophorum vaginatllm. Eriophorum angllst~folium. Vaccinium oxycoccus. Andromeda 

polUhlia, Ruhus chamaemorus and Narthecium oss~lragum tolerate a range of moisture 

conditions. but thev tend to avoid the wetter hollmys or pools. Sphagnum capillUi.Jlium is 
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common on hummocks in the drier parts of May Moss. The driest parts of May Moss are covered 

by Hypnllm jutlandicum, lichen and liverworts under a canopy of Cal/una vulgaris. These 

species only occur in the driest of habitats. which are becoming increasingly abundant as May 

Moss is affected by drainage and increased evapotranspiration associated \,"ith the conifer 

plantations. Monitoring of the vegetation at May Moss over the last twenty years and observation 

of the current flora id~ntifies significant drying of the mire surface (Atherden. pers. com.). 

Field Sampling 

The criteria for site selection requires that peat profiles analysed in this research should be from 

the ombrotrophic water-shedding areas of blanket mires. Consequently peat cores from May 

Moss were extracted from the mire watershed, which is the highest point at the centre of the mire. 

These core sites receive water solely through precipitation. Eight cores were extracted from four 

sites on an east-wl~st transect across May Moss. The locations of the core sites are identified on 

figure 4.2. The core numbers, core site location, the date sampled, the type of peat borer. the 

micro-environment of each core site and depth of peat sampled ""ithin each core are listed in table 

4.1. Core site C is a five metre transect which was surveyed to record the current micro­

topography. Four cores were extracted along this transect sampling peat beneath present-day 

hummocks and hollovvs. The cores were extracted \,"ith either a 5 x 5 0 cm or a lOx 3 0 cm Russian 

peat borer. Each core section \vas extruded in the field, wrapped in cling-film, stored in plastic . 
guttering to protect the peat and then sealed in polythene bags. The samples were stored under 

refrigeration until required for analysis. 

Table 4.1. Peat borings extruded from May Moss. 

Core Site Core Date Type of Micro-environment Depth of peat 
Number Sampled Corer sampled 

A 1 19/11/95 50x5 cm Hollow 2.30 m 

B 1 19/11/95 30xl0 cm Hollow 2.75 m 

C 1 15/04/96 50x5 cm Hummock 2.10 m 

C 2 IS/04/96 30xl0 cm Hollow 2.10 m 

C -, lS/04/96 30xl0 cm Hollow 2.10 m _1 

C 4 IS/04/96 SOxS cm Hummock 2.10 m 

D 1 29/0S/95 SOxS cm Hollow 2.75 m 

D 2 09/10/96 30x 10 cm Hollow 2.10 m 

May Moss is the best example of an ombrotrophic mire remaining on the North York Moors and 

it is the main sit~ used in this research. The purpose of the detailed multi-profile sampling 

strategy was to address a series of problems perceived in peat-based palaeoclimate research on 

UlUl10dified mires discussed in chapter 3. It is difficult to record the stratigraphy in unmodified 
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mires because of a lack of cut -sections. Extracting series of cores increases the size of the sample 

upon which palaeoecological analysis is based. thereby improving the confidence in eventual 

palaeohydrological histories. Analysing a series of cores extracted across the watershed of Mav 

Moss assesses whether the moisture shifts are cross-mire phenomena: if so. whilst this is not 

proof of allogenic forcing of moisture fluctuations it is the logical explanation. 

The transect sequence at site C is designed to throw further light on the allogenic/autogenic 

debate. This approach potentially investigates the permanency of mire micro-habitat by assessing 

whether the peat beneath a present -day hollow was produced by a consistently wetter 

environment than peat extracted from beneath a hummock. Additionally the plant macro-fossil 

evidence may identify whether hummock species, for example Sphagnum section AcutUi.J1ia. 

persist throughout or dominate the fossil record beneath present-day hummocks. This approach is 

by no means ideal. but in the absence of open sections in the field it is the only alternatin:. 

Assessing either the present -day hydrology or the palaeohydrology along a transect it may be 

possible to identify whether moisture changes occur independently of micro-habitat. If moisture 

changes occur in all the cores along the transect this perhaps indicates that an allogenic impact 

on the mire moisture budget is a more likely cause of the change in surface saturation. In 

summary. both the multiple profile and the transect sampling procedures attempt to define 

whether the moisture changes identified across a range of hummock-hollow micro-environments 

represent changes in the overall mire moisture budget. In the absence of evidence of human 

interference on the mire and considering the ombrotrophic nature of May Moss. any oscillations 

in the mire \vater budget are more likely to be the product of changes in effective precipitation. 

thereby providing evidence of climate change. 

4.3.2 Fen Bogs SSSI 

Fen Bogs is 1.5 km in length and 0.2 km in width covering about 300 m2 centred on the grid 

reference SE 853 97~. and the location is identified on figure 4.3. The site is a valley mire 

designated with SSSI status, and part of the mire is o~l1ed and managed as a nature reserve by 

the Yorkshire Wildlife Trust. The former Nature Conservancy Council regarded the site to be the 

best British example of an upland valley mire. v,;ith both ombrogenous and soligenous facies 

(Atherden. 1976b). The mire developed on the watershed in the deeply incised fluvioglacial 

channel of Ne\\ton Dale. \vhich currently contains Pickering Beck. The surface of Fen Bogs is 

flat at an altitude of 164 metres and bordered by steep slopes rapidly rising 90 metres on both the 

east and west sides of the mire. Atherden (1976a: 1976b) investigated the pollen record contained 

"ithin the peat stratigraphy. Fen Bogs contains the deepest peat deposits on the North York 
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Moors with over nme metres of peat. \vhich have accumulated from the beginning of the 

Holocene to the present -dav. 

Sedimentary evolution of Fen Bogs 

Ne\\;ton Dale is a former glacial drainage channel cut in a north-south direction across the main 

watershed of the North York Moors. This central plateau has a bedrock of Middle Jurassic 

deltaic sandstone and the Ne\\ton Dale gorge has cut through alternating layers of sandstone and 
, 

shale of the Ravenscar Group. Gregory (1962~ 1965) attributed the formation of this gorge to 

sub-glacial and proglacial fluvial activity in the Devensian and probably earlier glaciations. The 

current steep-sided gorge certainly appears to be a temporal misfit. when the small stream 

flowing from the vvatershed today is considered. 

Atherden (1972: 1976b) extensively cored the mire assessing the post-glacial stratigraphy, \\hich 

revealed a maximum peat depth of 11.6 metres. The basal sediments were blue-grey clays 

believed to be solifluction deposits associated with the termination of the Devensian glaciation. 

Subsequently a carr or fen woodland deposited peat sediments containing abundant Betula 

remains, and fragments of Salix and Alnus. The wood peat was succeeded by bro\\;TI peat 

dominated by Phragmites and other monocotyledons. Throughout much of the sedimentary 

history of Fen Bogs, the mire was a Phragmites-monocotyledonous swamp or bog. At the east 

and west edges of the mire near the steep slopes there are in-wash stripes of pale grey clay within 

the peat stratigraphy, \vhich have been attributed to periods of increased erosion (Simmons et aI., 

1975). 

At approximately one metre beneath the mire surface there is an abrupt change in stratigraphy. 

with Sphagnum and Eriophorum vaginatum peat replacing the Phragmites peat. This represents 

a change from a predominantly soligenous to ombrogenous environment, which Atherden (1976b) 

linked \vith drainage schemes associated \\'ith the construction of the Whitby-Pickering raih\ay in 

1 X36. The radiocarbon chronology indicates that Sphagnum species became a significant 

component of the mire stratigraphy bet\\'een 1060 ±60 BP and 390 ±100 BP. and although 

construction of the raih\av did affect mire hydrology, the change to an acidophilous mire \\ ith 

ombrogenous facies occurred during the Medieval period. Atherden (l976b) obtained six 

radiocarbon dates to secure a chronology for the most complete Holocene vegetation history 

uncovered on the North York Moors. The chronology indicates that the top 2 metres of pcat 

accumulated during t~e last 2000 years. with an average accumulation rate during the Holocene 

of I metre per millennium. 
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The present-day vegetation 

The mosaic of ombrogenous and soligenous tracts across Fen Bogs has encouraged the 

development of a diverse community of acidic fen and bog plants unrivalled on the North York 

Moors. The location of ombrogenous communities that cover the majority of the mire are 

identified on figure 4.3 (Atherden, 1976b) and can be further divided into two sub-communities 

typically inhabiting \\"etter and drier environments. Sphagnum recurvum. Sphagnum cuspidafum 

and Eriophorum angusfUolium dominate the wetter locations: \\"hereas the hummocks and drier 

environments sustain a mixed community containing Sphagnum capillUolium. Molinia caerulea. 

Calluna vulgaris and Myrica gale. Additionally along the eastern edge of the mire there are 

soaks and pools of standing water inhabited by true aquatic species- POfamogefon poligonUolia 

and Menyanthes trUoliata. There are numerous other less abundant species within this 

ombrogenous community, including Erica tetralix. Vaccinium oxycoccus. Drusera rotundUhlia. 

Potentil/a erecta. Polygala serpyllUolia. Narthecium ossUragum. Eriophorum vaginafllln. 

Rhynchospora alba and numerous Carex species. 

The southern section of Fen Bogs is an eutrophic mire dominated by Phragmites communis \\"ith 

occasional Schoenus nigricans and Potentilla erecta. This eutrophic community is associated 

with increased surface flow and input of mineral material near the headwaters of Pickering Beck 

and is perhaps an example of what the peat stratigraphy indicates the entire mire was like in the 

past. Towards the southern edge of the mire the eutrophic communities grade into a birch, \\"illow 

and alder carr woodland \\"ith a Phragmites australis herb flora. Fen Bogs has a long history of 

human interference. which includes the development of the raih\"ay during the nineteenth century. 

Part of the mire south of Pickering Beck, indicated on figure 4.3, has been drained and improved 

for agricultural use. The drainage channels are currently inhabited by Juncus spp .. as are the 

natural channels of Eller and Pickering Beck and drainage channels alongside the raih\ay. The 

steep slopes bordering the mire support remnants of a Quercus and Alnus woodland. especially 

to\vards the southern end of Fen Bogs. There are also small recently planted tree plots along the . 
eastern slopes of the mire. However the slopes are for the most part covered \\"ith Pteridillm 

aquilinum. Vaccinium m,Jwtillus, ('alluna vulgariS and Erica cinerea. 

Field sampling 

Three replicate cores were extracted from the ombrogenous section of Fen Bogs on 27
th 

April 

199). The three cores \\"ere extracted from the centre of the valley to reduce the impact of surface 

tlow from the steep slopes bordering the mire. The location of the core site is indicated on figure 
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4.3. The individual cores were located within two metres of each other. The cores \vere extracted 

\\ith a Russian p'~at borer (5)(50 cm). sampling to a depth of three metres beneath the mire 

surface. This length of core was judged sufficient to obtain peat stratigraphy pertaining to the last 

2000 years, according to the radiocarbon chronology de\-eloped by Atherden (l976b). The cores 

were extruded in the field. wrapped in cling-film, sealed in polythene and stored under 

refrigeration until required for analysis. 

4.3.3 Harwood Dale Bog 

Harwood Dale Bog \\'as originally an extensive area of peat approximately 1 km north-south and 

up to 0.5 km east-west. centred on grid reference NZ 967 988. Currently the bog is covered by 

the Harwood Dale Forest conifer plantation, \vith only a clearing of 300 x 150 m of peat 

currently still visible. The bog was first described by Elgee (1912). as a 'saucer-shaped' lens of 

peat. The mire accumulated at an altitude of 200 metres on a flat plateau \vith a bedrock of 

Jurassic deltaic sand and silt-stone of the Ravenscar Group. The plateau is largely \vatcr­

shedding. with drainage to the south-east in Thorn\' Beck and to the \\'est in Black Sike. Peat 

extraction for domestic fuel has taken place for many centuries. which when combined with the 

impact of the conifer plantations has severely truncated the palaeoecological record and probably 

irrevocably damaged the mire habitat. A pollen profile produced from the remaining sediment 

reveals peat accumulation initiated in the early Holocene and the record terminates bet\veen circa 

AD 800-1200 (Atherden, 1989). The pollen record from Harwood Dale Bog is secured \vith five 

radiocarbon dates. providing a chronology for the vegetation history of the eastern North York 

Moors (Atherden. 1989: Simmons ef al., 1993). , 

Sedimentary evolution of Harwood Dale Bog 

There are extensive peat cuttings currently visible at Harwood Dale Bog. \\hich allow detailed 

examination of the peat stratigraphy. Atherden (1989) presented a four metre pollen profile 

extracted from a peat cutting of 2.35 metres, with the remainder sampled with a Russian peat 

corer. The stratigraphy reveals that during the early Holocene peat accumulated over bedrock and 

mineral charcoal-rich soil. The earliest peat was dominated by monocotyledonous remains: 

although abundant wood remains suggests the mire \\as wooded during its early history. Around 

5310 ±80BP woodland appears to die out and the site \\as colonised by Eriophorum. although 

the bog probably remained partially wooded. The top 0.70 metres of peat contains e\ idence of a 

further stratigraphic change between circa 2190-1500BP. \vith Sphagnum remains becoming 

increasingly abundant. Subsequently the bog was colonised by a characteristic ombrogenous mire 
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flora dominated by the Ericaceae. Eriophorum. Sphagnum section AcutUolia and ,\'phagnum 

papillosum. 

The present-day vegetation 

Currently the surface of Harwood Dale Bog is substantially damaged. the result of centuries of 

peat extraction and e;\.'tensive recent plantation of conifer forests. The present-day flora is affected 

by that damage. \\'ith large areas of the cut-over peat surface lacking in vegetation and the 

remainder covered with Calluna vulgaris, Erica tetralix. Erica cinerea, Eriophorum vaginatum, 

Polytrichum spp. and Sphagnum spp. Little of the original bog surface remains, and these areas 

are dry and covered with Calluna vulgaris. 

Field sampling 

Previous palynological research at Harwood Dale Bog indicates the peat stratigraphy is 

truncated. The vegetation history includes evidence of the Iron Age/Romano-British woodland 

clearances at a depth of 0.75 metres. Consequently only the top 1.06 metres of peat were sampled 

to provide the stratigraphy required for this research. In October 1994 four monoliths of peat 

(25 x 15 xl Ocm) were taken from a cleaned surface of a north-south peat cutting. approximately 

15 metres from the eastern edge of the plantation at the northern end of the clearing. The location 

of the core site is i.dentified on figure 4.4. The peat samples were wrapped in cling film. sealed in 

polythene and stored under refrigeration until required for analysis. 

4.3.4 Yarlsey Moss 

Yarlsey Moss is an extensive area of deep peat covering circa lkm2 on the high central watershed 

of the N orth York Moors at an altitude of 3 12 metres centred on the grid reference N Z 760 005. 

The location of Yarlsey Moss is identified on figure 4.5. The NCC Phase I Habitat Survey 

(Nature Conservancy Council, unpublished) describes sections of Yarlsey Moss as wet modified 

bog. However the majority of Yarlsey Moss is blanket bog. in spite of current management 

practices maintaining the moor for grouse. Drainage channels and grouse butts were cut in 

October 1996 and this interference must be affecting moisture conditions on the moss. The centre 

of Yarlsey Moss is dmbrotrophic. which is largely the result of its location on the watershed 

between Wheeldale Gill and Winter Gill. Peat accumulated over a Middle Jurassic Ravenscar 

Group sand and silt-stone bedrock. Cundill (1971) extracted a peat profile from grid reference 

NZ 762 005. recovering 2.13 metres of peat from the \\'estern part of the moss. An undated pollen 

diagram indicates peat accumulation began slightly before the Iron Age-Romano/British 

\voodland clearances and the presence of a Pinus rise near the top of the profile reflects twentieth 
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century commercml conifer afforestation and indicates peat accumulation continues to the 

present-day (Sinullons & CundilL 1974a). 

Sedimentary evolution of Yarlsey Moss 

The peat stratigraphy is dominated by monocotyledonous remains. \yith 1\yO bands of Sphagnum. 

The surface layers of peat contain fresh rootlets and Cal/una vulgaris leaves. seeds and flm\crs. 

Peat accumulation appears to have been initiated on the wet spring-head of Wheeldale GilL and 

expanded to blanket the plateau. forming an extensive area of deep peat. The stratigraphy is 

dominated by plant remains typical of a blanket mire: Eriophorum vaginatZlm. Ericaceae and 

Sphagnum spp. 

Present-day vegetation 

Yarlsey Moss is currently a managed moorland maintained primarily for grouse shooting. There 

is a series of grouse butts dug into the peat and drainage channels cut to prevent water-logging of 

the grouse-butts and to ease access to the moor. Cyclical burning of the moorland controls the 

composition of the vegetation and has encouraged the development of a Cal/una vulgariS 

monoculture. 

Field sampling 

A peat profile 2.4 metres in length was taken from Yarlsey Moss on 23rd October 1996 (NZ 755 

077). The location of the core site is identified on figure 4.5. The core was taken from the centre 

of the flat watershed av.·ay from any evidence of peat cutting. drainage channels and disturbance 

associated with the construction of grouse butts. The core-site is water-shedding and fulfils the 

criteria of an ombrotiophic mire. The core was extracted \yith a 10x30 em Russian peat corer. 

The core sequences "ere wrapped in cling-film, sealed in polythene and stored under refrigeration 

until required for analysis 

4.3.5 Glaisdale ~\1oor 

An extensive area of deep peat has accumulated at an altitude of 340 metres over the flat plateau 

of Glaisdale Moor. which forms the headwaters of Bluewath Beck and North Gill. Peat has 

accumulated over a bedrock of Middle Jurassic Ravenscar Group sandstone centred on grid 

reference NZ 730 0 10. The location of the moorland is identified on figure 4.5. Although the mire 

is a mixture of ombrogenous and soligenous facies. large sections of the moor are \yater-shedding 

with drainage to the south in North Gill. to the south-east do\\n Bluewath Beck and to the north 

through Glaisdale Beck. The Bluewath Beck catchment has been exploited for fuel O\cr many 
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years leaving an extensive 1.5 metre peat cutting. This area of the moors has attracted 

considerable attention from palynologists. North Gill is a key site for studying the impact of 

Mesolithic communities on upland environments in the British Isles. The site has yielded 

numerous pollen profiles and is the most intensively analysed area of peatland on the North York 
, 

Moors (Simmons, 1969: Simmons & Innes, 1988a: 1988d: Simmons et al.. 1989: Turner et al.. 

1989). Simmons & Cundill (l974a) analysed a peat profile from Glaisdale Moor. and Innes 

( 1981) produced a pollen profile from the headwaters of Bluewath Beck. These pollen profiles 

indicate the earliest peat accumulation within the catchment began around 6500 BP and has 

continued to the present -day where undisturbed. 

Sedimentary evolution of Glaisdale Moor 

Previous research on Glaisdale Moor indicates peat depths vary between 1-4 metres. and this 

variation is probably controlled by sub-surface topography and sedimentary evolution (Simmons 

& Innes, 1988a: 1988d). The earliest peat accumulated over a charcoal-rich mineral soil. The 

basal charcoal-rich peat has been attributed to the clearance of woodland by Mesolithic people. 

Fire-assisted woodland clearances are widely interpreted as an important factor causing the 

inception of peat accumulation (Moore, 1986: Simmons et aI., 1993). During the late Mesolithic 

and Neolithic Glaisdale Moor was probably covered with a mixture of oak and carr \yoodland. 

with ruderals and hazel scrub in the clearings. Peat accumulation was initiated in the wetter 

cleared basins. These spring-head basins once cleared of woodland. are ideal sites for peat 

initiation. because of the waterlogged nature of the environment. Additionally after the initiation 

of peat accumulation it requires a long period without human interference for woodland to re­

established itself to the dominance achieved during the early Mesolithic. because the waterlogged. 

acidic and nutrient poor conditions in these peat basins inhibit the re-growth of \yoodland. 

Gradually the depth of the peat deposits increased and the area covered by blanket bog expanded 

covering the landscape. The expansion of the peat basins continued blanketing Glaisdale Moor 

and connecting the original centres of peat accumulation in the North GilL Bluewath Beck and 

Glaisdale Beck catchments. Simmons & Innes (l988a) suggest unconfined blanket peat covered 

most of the plateau after circa 5000 BP and the peat stratigraphy indicates Eriophorum 

vaginatum, Ericaceae and Sphagnum dominated the mire vegetation. 

Present-day vegetation 

The head of Bluewath Beck has been exploited for peat over a number of years. Approximately 

500 metres from the road \yhich parallels Bluewath Beck there is a long north-\yest/south-east 

peat cutting. The peat surface lying between the cut-face and the road is a substantially damaged 
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cut-over bog covered by Calluna vulgaris, Eriophorum vaginatum. Junclls. Sphagnum and 

Polytrichum. Although beyond the peat cutting the moor is largely undamaged, it is vcr\' dry 

o\\'ing to a lowering of the water-table caused by peat extraction. This largely undamaged 

moorland extends over into the North Gill catchment and is covered by the ('alluna vulgaris 

monoculture typical of the moors today. Glaisdale Moor is managed for grouse and is regularly 

burned to maintain a cover of young Calluna vulgariS. Beneath the Call1lna vulgariS canopy. 

Hypnum jutlandicum, Polytrichllm and various species of Liverwort dominate the ground-flora. 

Field sampling 

A peat profile was sampled from the headwaters of Bluewath Beck in October 1994. A series of 

monoliths (25 x 15;< 10cm) was extracted from the peat cutting approximately 500 metres from the 

road. The core site is located at grid reference NZ 742 007 at an altitude of circa 350 metres and 

the location is identified on figure 4.5. The monoliths were wrapped in cling film. sealed in 

polythene and stored under refrigeration until required for analysis. 

4.3.6 Palaeoecological sites receiving a preliminary investigation 

The palaeoecological sites introduced in the previous section are aligned in an east -west direction 

across the eastern North York Moors. These peat profiles offer the opportunity to reconstruct 

palaeoenvironmental conditions on the main upland masses of the North York Moors. They 

include two peat sequences on the main central watershed. on Glaisdale Moor and Egton High 

Moor: a peat sequence at May Moss on the Fylingdales Moor watershed: and a peat sequence 

from Harwood Dale Moor on the eastern most upland plateau of the North York Moors. This 

sampling strategy includes all of the upland masses between the coast and Glaisdale Moor. \\ith 

the exception of SImon Howe Rigg. 

Preliminary investigations were made at a number of locations to identify furthcr 

palaeoecological sites. These investigations assess the potential of peat deposits on Simon Ho\\c 

Rigg and investigate further catchment-head sites on Fylingdales Moor. Four sites \\cre 

investigated: 

• Simon Howe l\toss on Simon Howe Rigg (SE 833 974). 

• Worm Sike on Fylingdales Moor (SE 880 972). 

• E\\c Pond Slack on Fylingdales Moor (SE 905 0(2). 

• Blea Hill Beck on Fylingdales Moor (SE 887 998). 
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These sites were targeted to assess the peat deposits on Simon Howe Rigg. the only upland mass 

not yielding a peat profile on the east -west transect and to identify further profiles from 

Fylingdales Moor supplementing the main site utilised in this research, May Moss. 

Preliminary coring across the Blea Hill Beck and Worm Sike catchments yielded disappointingly 

thin deposits of peat and clearly were unsuitable for further analysis. This is particularly 

disappointing in the case of Worm Sike. because the site is \vithin the perimeter fences of RAF 

Fylingdales Early Warning Station, and has been unaffected by moorland management practices 

and grazing since the fences were erected in 1962. The site is of tremendous ecological interest. 

because it is one of the few unmanaged and ungrazed areas of moorland on the North York 

Moors. Comparatively deep peat deposits, reaching depths of 1.9 metres near Worm Sike, are not 

ombrotrophic. but potentially could be used to uncover a recent palaeoecological history for an 

unmanaged moorland. Coring and preliminary pollen analyses at Simon Howe Moss and E\\c 

Pond Slack were also disappointing. Simon Howe Moss is in a substantially drier state than when 

encountered in previous research (Atherden, 1979), with evidence of erosion and gullying in the 

headwaters of Blawath Beck. The palynostratigraphy of Ewe Pond Slack indicates the peat 

deposits are very recent, pertaining at most to the last 500 years. In summary none of these sites 

is ombrotrophic. and so all were unsuitable for further analysis. 

4.4 Laboratory Methods 

4.4.1 Humification analysis 

The sampling interval used for the humification analysis was controlled by a number of factors. 

The degree of hurnification is controlled by the amount of time that fossil peat spent within the 

acrotelm, with dead organic matter subjected to rapid decomposition during its passage to the 

catotelm. Humification changes within peat stratigraphy reflect fluctuations in average moisture 

conditions over a couple of decades. Ombrogenous peat typically accumulates at a rate of I mm 

per year. and so 2 cm of peat would represent circa 20 years of peat accumulation. The degree of 

peat humification to some extent is subject to a natural smoothing process. because it can take 

newly deposited plant material up to 20 to 30 years to reach the relative safety of the catotelm. 

The resolution of the humification record is reduced. because movement of the acrotelmlcatotelm 

boundary will aB:ect more than just the surface layers of peat. Consequently. humification 

changes may reflect fluctuations in the depth of the \vater table over several decades. This natural 
, 

buffering means the degree of peat humification provides a proxy record of variations in the depth 

of the average minimum sununer \vater table. Fine resolution sampling for humification analysis 

therefore \vas not necessary. and the cores \vere divided into either a series of I or 2 cm 
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contiguous samples. producing either 100 or 200 samples from a 2 metre core. Sampling at a 

finer resolution would be an unnecessary luxury and of limited value within the constraints of the 

teclmique. The location, length and sampling interval utilised for the humification analysis of 

each core are listed in table 4.2. 

Table 4.2. The cores. depth of sediment and sampling interval used in the humification analysis. 

Location Core Number Depth of Sediment Sampling Interval 

Mav Moss 
May Moss 
May Moss 
May Moss 
May Moss 

Yarlsey Moss 
Harwood Dale Moor 

Blue\vath Beck 

B 
C2 
C3 
DI 
D2 

2.3 metres 2cm 
2.1 metres 2cm 
2.1 metres 2cm 
2.7 metres 2cm 
2.1 metres 2cm 
2.4 metres 3cm 
1.1 metres Icm 
1.3 metres 2cm 

The laboratory procedure follo\\s methodological recommendations made by Blackford & 

Chambers (1993) and the procedure is listed below. 

1. Contiguous samples of peat were dried in an oven at 50°C. Matty sedge peat was cut with 

scissors to dis aggregate the samples. The dried samples were ground Vvith a pestle and 

mortar. If necessary the samples were dried until no further weight loss occurred. 0.2 g of 

powdered peat was mixed with 100 ml of freshly mixed 80/0 NaOH in a 200 ml volumetric 

flask. recording the time of mixing. 

2. The samples \\ere heated on a hot-plate. On boiling the temperature of the hot-plate was 

lowered and the samples simmered for one hour. After one hour the samples were removed 

and allowed to cool. The samples were topped up with distilled \vater to a 200 ml mark and 

well shaken. The solutions were filtered through Whatman Qualitative No. 40 filter papers. 

A 50 ml sample of the filtrate was diluted with one part distilled water and one part 

solution. 

3. Percentage Light Transmission through the alkali extract was measured on an Elmer 

Perkin Visual/Ultra-Violet Light Spectrophotometer at a light \\avelength of 540 nm. The 

consistency of the procedure was secured by regularly zeroing the spectrophotometer \\"ith 

distilled wa~er and by running several replicate analyses of some of the samples. All of the 

analyses from a core were completed \\"ithin an uniform time limit. typically t\VO hours and 

up to a maximum of four hours. thereby avoiding fading of the extract after prolonged 

exposure to sunlight. 
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The maximum variation in percentage light transmission in samples from the North York Moors 

was detected between wavelengths of 520 and 590 nm. A high degree of variation is required for 

the identification of sequential changes in humification, and a \yavelength within this range is 

recommended (Blackford & Chambers, 1993). Brown humic acid is a relatively complicated 

colour. produced by a mixture of the primary colours: red. yellow and blue. There is no light 

wavelength particularly well absorbed by a brown medium. However. above 500 nm there is an 

inflection in the absorption curve which identifies a rapid increase in the percentage of light 

transmitted by samples displaying a range of strengths of humic acid. These results support the 

findings of Blackford & Chambers (1993), who identified that wavelengths above 500 nm close 

to the inflection point on the absorption curve \vill identify most variability in strength of the 

humic extract. 

Following the recommendations of Blackford & Chambers (1993) the results of the humification 

analyses are expressed as percentage light transmission and not converted to a percentage 

humification value sensu Aaby (1986). The raw data curves were spiky. reflecting minor 

variations in humic acid content. Consequently the data were smoothed using a three point 

moving average to dampen the background noise and produce a clear humification signal. The 

humification data are presented as "humification diagrams". The diagrams include three curves 

presenting: (a) the raw percentage light transmission data. (b) the raw data smoothed using an 

unweighted three point moving average reducing the amount of background noise. and (c) the 
I 

smoothed data passed through a high pass filter emphasising low frequency events. LO\\' 

percentages of light transmission denote \yell humified peat and high percentages poorly humified 

peat. Additionally, part (d) of the humification diagrams. if present. displays the results of the 

spectral analysis. with a graph identifying the peaks on the spectral density function. and a table 

listing the periodicity's signified by the main spectral peaks. 

4.4.2 Plant Macrofossil Analysis 

Methodology 

Plant macrofossil analysis was applied to the peat sequences \yith the intention of reconstnlcting a 

local vegetation history for each mire. The methodology utilised quantifies the abundance of the 

various components within each macrofossil assemblage. The methodology is adapted from a 

"'Quadrat and Leaf Count" procedure developed by Stoneman (1993) and will produce a 

numerical evaluatlOn of the composition and nature of fossil vegetation communities. The plant 

macrofossils \vithin e~ch peat sequence were analysed using a variety of sampling intervals. The 

highest resolution sampling was at -+ cm intervals and the coarsest at 10 cm intervals. These 
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intervals were selected because a finer resolution would be an unnecessJf)' luxuf)' and of limited 

value within the constraints of the technique. The location. length and sampling interval of each 

core utilised for the plant macrofossil analysis are listed in table 4.3. A minimalist preparation 

procedure was adopted for the plant macrofossil samples. following the recommendations of 

Stoneman (1993). The samples \yere not subjected to any of the conventional macrofossil 

preparation procedures typically involving maceration in NaOH or HN03• \yith the samples 

simply disaggregated in distilled water and then sieved to remove fine particulate matter. This 

procedure reduces the likelihood of damage to the macrofossil remains. The anal) tical procedure 

divides into two stages and is listed in table 4.4. 

The first stage quantified the abundance of the main components in each peat sample and these 

components \\ere identifiable Ericaceae, identifiable Monocotyledonous. identifiable Sphagnum. 

any other Bryoph)tes and Unidentifiable Organic Matter. The second stage quantified the relative 

abundance of .)'phag,?um species. and these values were expressed as percentages of the total 

identifiable S'phagnum derived in the first stage of the macrofossil procedure. Carrying out three 

replicate analyses on a series of fossil samples assessed the consistency of the method. Analysis 

of the variance \\ithin replicated analyses revealed no significant difference (p>O. (1) in the 

composition of the samples. which suggests the methodology produces a replicable assessment of 

the plant macrofossil stratigraphy. Diagrams presenting the results of the plant macrofossil 

analyses were constructed using the TILIA and TILIAGRAPH computer packages (Grimm. 

1993). The first stage of the macrofossil analysis quantifies the abundance of unidentified organic 

matter. identifiable monocotyledons. identifiable Ericaceae, identifiable Sphagnum and other 

Bryophytes, and the results are expressed as percentages of the total volume of peat. The second 

stage quantifies the abundance of Sphagnum branch leaves. with the raw counts converted into 

percentages and then moderated by expressing them as percentages of total identifiable 

c~'phagnllm estimated in the first stage of the analysis. In light of the problems with the taphonomy 

of leaves. seeds and flowers of the various vascular plant species encountered in this research the 
. 

results of this analysis are presented as raw counts. 

Taxonomy and ecological rationale for the macrofossil analysis 

Plant species that contribute substantially to the formation of peat \\"ill produce the most 

abundant macrofossil remains. Ombrotrophic mires are characterised by a low diversity plant 

community. "ith ·:crtain species "cll adapted to the ecological conditions prevalent on blanket 

mires. This section revie\\"s the taxonomy and criteria used to identify the plant macrofossils 

found within peat sediments on the North York Moors. In addition. the ecology and typical 
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Table 4.3. The cores, depth of sediment and sampling interval used in the plant 
macrofossil analysis. 

Location Core Number Depth of Sampling 
Sediment Interval 

May Moss B 2.3 metres 8cm 
May Moss Cl 2.1 metres 10 cm 
May Moss C2 2.1 metres 8cm 
May Moss C3 2.1 metres 4cm 
May Moss C4 2.1 metres 10 cm 
May Moss Dl 2.7 metres 4cm 
May Moss D2 2.1 metres 6cm 
Fen Bogs 2.7 metres 4cm 

Yarlsey Moss 2.4 metres 8cm 
Harwood Dale Moor 1.1 metres 8cm 

Bluewath Beck 1.3 metres 8cm 

Table 4.4. Laboratory and analytical procedure for the plant macrofossil analysis. 

Laboratory preparation. 
A 3 cm~ sub-sample of peat was extracted from the core and placed in a centrifuge tube 
with 10-20 ml of distilled water. The samples were boiled in a hot water bath until the 
peat disaggregated. The disaggregated samples were washed through a 200 11m sieve 
mesh with distilled water. The sieve residues were transferred to large vials and stored 
under refrigeration until required for analysis. 
First Stage. 
Each sample was diluted in a petri dish with distilled water, producing a single layer of 
macrofossils. The petri dish was marked out with a grid of centimetre squares and fifteen 
of these squares are annotated. The samples were examined under low power 
microscope and the percentage cover of the different components was estimated for each 
of the annotated squares. At least three petri dishes were examined for each sample, 
which in most cases required all of the macrofossil residue. The abundance of each 
macrofossil component was expressed as a percentage, thereby providing a replicable 
semi-quantitative estimate of the abundance of each peat component. 

Second Stage 
A sub-sample of loose Sphagnum branch leaves was extracted from the annotated grid 
squares. The leaves were mounted on a microscope slide using glycerol as the mounting 
medium. The slides were traversed systematically and the leaves identified at x 50 
magnification, with critical determinations on leaf cell structure made at x400 
magnification. A minimum of 100 Sphagnum leaves were counted for each sample. 
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environmental tolerance of the mire plant species are discussed. thereby presenting a rationale for 

palaeoenvironmental interpretation of the plant macrofossil stratigraphy. 

The Bryophyte flora of a blanket mire 

Bryophytes, specifically the genus Sphagnum, are a ver\, important component of the 

ombrotrophic mire flora. The Sphagnum species commonly found on acidic ombrotrophic mires 

in the British Isles are listed in table 4.5. Species of Sphagnum prefer quite different ecological 

conditions and significantly for this research wetness of the mire habitat is a particularly 

important control on the distribution of species. Individual species prefer a particular topographic 

position on the undulating sequence of hummocks and hollo'ws that typify blanket mires. 

Consequently the moss flora is distributed accordingly across the complex micro-topography of 

ombrotrophic mires. Figure 4.6 displays a theoretical distribution of Sphagnum species in 

relation to the \vater table across a hummock-hollo\\ sequence. Forty species of 5phagnum occur 

in Europe and are spread across ten different taxonomic sections: l)phagnllm. ACllt~lolia. 

Cuspidata. Subsecunda. Rigida. Mollusca. Squarrosa. Insulosa. Polyclada and Hemitheca 

(Daniels & Eddy. 1990). Furthermore Smith (1978) identifies 30 species of Sphagnum that can 

be found in the British Isles. This is an extensive number of species. but fortunately not all of 

these species occur on ombrotrophic mires, and several species can be removed from 

consideration in the macrofossil analysis on the grounds of rarity, present-day geographical 

distribution and ecological tolerance (Barber, 1981). Some species of Sphagnum are extremely 

unlikely to be encoun~ered in peat stratigraphies on the North York Moors. because they \\ill not 

inhabit acidic nutrient-poor ombrotrophic peat bogs. 

Only species in ,\~')hagnllm sections .sphagnum. AcutUolia. Sllbsecunda. Cu.spidata and Rigida 

are likely to occur on the North York Moors, and unfortunately some are difficult to identify in a 

sub-fossil condition to species level. Fortunately some species within these sections can also be 

discounted in the light of their ecological requirements~ current geographical distribution and 

rarity (Barber. 1981: Stoneman, 1993: Daniels & Eddy, 1990). There are four species. 

Sphagnum imbricatllm. Sphagnum papillosum. Sphagnum magellanicum and '\IJhagnllm 

paillstre. within ,\j'Jhagnum section Sphagnum and these are the dominant peat-forming Sphagna. 

Fortuitously these species are relatively easy to identify in a sub-fossil state. \vith cymbifolian or 

"boat-shaped" leaves. and additionally they have taxonomically diagnostic ornamentation on the 

\\alls of photosynthetic cells. Furthermore Sphagnum paillstre is unlikely to occur on blanket 

bogs. because it is limited to mesotrophic fen peatlands (Smith. 1978: Daniels & Eddy. 19(0). 

\\hereas ,\/Jhagnlll11 i~nhricafllm. ,\/Jhagnllm papillosum and ,\/Jhagnllm magellanicllln are all 



80 

SJlhllrnum I'IIJ1i11.sum I SJlhllrnum 1'"j1i1l.sum 
S"hllrnum mIIreUllnicumlS"hllrnum mllreUllnicum I 

Sjlhllrnum imiJriClltum • Sjlhllrnum imiJl'iclltum • 
Sl'hllpum cIIJlilIij.lium I 

Sjlhllrnum recurvum 
S"hllrnum cUSJli."tum 

I 
Sjlh"rnum cII,illij.lium 

I S"h"rnum """iII.sum 
• Sl'hllrnum mlltelJllnicum 
I SJlh.rnum imilric.tum 

I 
Lar:e aense I Mire lawn Mire ,eeler 

wet hel1ew 
Hummeck 

hummeck I 

Figure 4.6. Typical distribution of Sphagnum speCIes across a hummock hollow 
topography on the North York Moors. 

Table 4.5. Sphagnum branch leaves identifiable as sub-fossils in peat on the North York 
Moors, listing the taxonomically diagnostic features (after Daniels & Eddy, 1990). 

Species or Section 
Sphagnum imbricatum 

Sphagnum papillosum 

Sphagnum magellanicum 

Sphagnum section 
Cuspidata 

Sphagnum section 
Acutifolia 

Sphagnum section 
Rigida 

Diagnostic characteristics of branch leaves 
Large (1.4-2.0 mm) cucullate or ''boat-shaped'' hooded 
leaves. Photosynthetic cells are exposed on both leaves 
surface, but broadly exposed on the concave surface. 
Photosynthetic cells are bordered with comb-like fibrils, 
which appear to project into the hyaline cells. 

Large (1.4-2.0 mm) cucullate or ''boat-shaped'' hooded 
leaves. The walls of the photosynthetic cells are coarsely 
papillose. 

Large (1 .4-2.0 mm) cucullate or "boat -shaped" hooded and 
often crimson leaves. Photosynthetic cells not or rarely 
exposed on the concave surface, often totally enclosed by 
hyaline cells. 

Branch leaves are lanceolata, often more than twice as long 
as wide. The photosynthetic cells are more widely exposed 
on the convex surface, often not reaching the concave 
surface. 

Branch leaves often small, under 1.4 mm. Photosynthetic 
cells are trapezoid, with the widest exposure on the concave 
leaf surface. 

Branch leaves are very large, often exceeding 3 mm. 
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speCIes commonly found on blanket mIres. These specIes occur either forming large dense 

hummocks or fOlmirig broad la\\11s or carpets and ecologically they prefer relatively \\d 

conditions. typically located above the mire water table. 

,Sphagnum section AcutUc)lia is a large section \\"ith eleven species currently extant in Europe. but 

only ,Sphagnum ii:scum and ,Sphagnum capillifolium are likely to contribute substantially to the - . 
sub-fossil and pr~sent-day flora of ombrotrophic blanket mires on the North York Moors . 

. Sphagnum ii/scum is rare to locally frequent on mid-altitude bogs in northern England and 

Scotland. The branch leaves of ,Sphagnum section AcutUolia are notoriously difficult to identify 

to species level in a sub-fossil condition (BarbeL 1981; Stoneman, 1993): consequently in this 

research the species are aggregated on macro-fossil diagrams as ,Sphagnum section AcutUolia. In 

the context of the North York Moors this group could consist of .Sphagnllln capillUhlillln and 

Sphagnum ji/scum. although Sphagnum capillUolium is a more likely candidate. ,Sphagnum 

capillifolium is a very important member of the present-day Sphagnum flora on the North York 

Moors. Ecologically.. sub-fossil ,Sphagnum section AcutUolia remains are interpreted as 

indicating a dry environment with species typically forming dry hummocks and preferring a 

relatively dry mire surface. 

Sphagnum cuspidatum and ,Sphagnum recurvum are the only species within .Sphagnum section 

Cuspidata likely to occur within blanket mire peat stratigraphies on the North York Moors. They 

are both currently a component of the flora at May Moss and Fen Bogs. In the macrofossil 

analysis it is difficult to differentiate these two species. and the fossil remains are aggregated as 

Sphagnum section C'uspidata. Both species inhabit wet sites colonising inundated ho11O\\s and 

occurring as floating vegetation in pools. with Sphagnum cuspidatum preferring slightly wetter 

conditions (Daniels & Eddy. 1990). In this research the presence of ,Sphagnum section Cuspidata 

in peat stratigraphies indicates that the mire \\as relatively wet. The remains of ,Sphagnum section 

Subsecunda are only identified to section level. HoweveL Sphagnum auriculatum is the only 

species in ,Sphagnum section Subsecunda likely to contribute to the ombrotrophic mire flora of 

the North York Moor~. ,Sphagnum section Subsecunda are interpreted as indicating the presence 

of a relatively \yet environment because the only likely species. ,Sphagnum auricu/atllln. typically 

inhabits \\et inundated hollo\\"s on oligotrophic mires. Sphagnum strictum and Sphagnum 

compactllm are the only species \\"ithin "Sphagnum section Rigida that occur in Europe. Both 

species could inhabit ombrotrophic blanket mires on the North York Moors. but ,S/)hagnum 

strictum is intoler.:mt of subzero temperatures and is currently limited to the western extremities 

of the British Isles. Fossil remains of this section are not identified to species ie\ d. but grouped 
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as Sphagnum section Rigida. Ecologically the section is tolerant of a \vide range of moisture 

conditions. located mainly above the water table. 

The Sphagnum leaves encountered in the macrofossil analysis are identified and grouped into 

eight species or sections: Sphagnum imhricatum. Sphagnum papillosum. '~l)hagnllm 

magellanicum .. Sphagnum section AcutUolia. l~phagnum section Cll5pidata. ,~phagnllm section 

Rigida. Sphagnum section Suhsecunda and 5Jphagnum undetermined. The identification of sub­

fossil l~phagnllm :eaves \\as undertaken with reference to taxonomic keys in Smith (1978) and 

Daniels & Eddy (1990). and to a modem reference collection held in the PLACE Research Centre 

(University College of Ripon and York St John). The descriptions and diagnostic taxonomic 

characteristics of the ,\phagnum species or sections identified in the course of this research are 

listed in table 4.5 (after Smith, 1978~ Daniels & Eddy. 1990). The bryology was undertaken 

after tuition from Philip Bowes. an experienced Bryologist who has worked on the contemporary 

moss flora of the North York Moors. During the early stages of this analysis effort \vas expended 

in identifying anomalous forms: however. this proved unproductive. 

Other bryophytes were encountered during the macro-fossil analyses. but these occurrences were 

infrequent and associated with periods when the mire surface \vas believed to be particularly dry. 

Identification and confirmation of the bryophyte types was carried out by Philip Bowes. with 

further identifications made \vith reference to the keys of Smith (1978) and type material held in 

the PLACE reference collection. Only three non-Sphagnum species \vere encountered during this 

research- 1f.)'pnu111 jlltlandicllm. Pleurozium schreheri and Polytrichllm commune. Hypnllm 
. 

jutlandicum and Pleurozium schreheri are typically moorland species. which often occur together 

under a canopy of ('alluna vulgariS in the drier parts of blanket mires (Hill et a/.. 1996). Macro­

fossil assemblages containing or dominated by these three species are interpreted as indicating a 

relatively dry envi ronment. The abundance of these bryophytes was quantified in the first stage of 

the macro-fossil analysis, in which the relative abundance of the main peat-forming components 

was assessed. The branch leaves of these other bryophytes "ere not counted alongside the 

'~l)hagnum leaves. because of difficulties in integrating the data. 

The vascular plant flora of a blanket mire 

Vascular plants are an important component of the floral community on ombrotrophic mires. 

although there is considerable variation in the degree to which they are preserved \\ithin peat 

sequences. The YZlscular plant species that are most abundant as sub-fossils \vithin blanket peat 

are the members of the Ericaceae. Cyperaceae and Poaceae. The species that are routinely easily 
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preserved in peat are Cal/una vulgaris and Eriophorum vaginatum. A number of less frequent 

plant remains are also preserved. including the leaves. stems and flowers of Erica 1£!lralix and 

Vaccinium oxycoccwr The remains of Drosera intermedia, Andromeda polUolia, Taccinillm 

myrtillus, Narthecillm oss~lragum and Ruhus chamaemorlls. \yhich are all components of the 

current ombrotrophic mire flora on the N orth York Moors. typically are not preserved "ithin peat 

sequences. Consequently an absence of evidence \yithin a fossil record cannot be used to identify 

that a plant species did not occur on a mire, because differential preservation of organic matter in 

the diagenetic process could be selectively removing certain species. 

The taphonomy of plant remains is an important factor. which may control the composition of 

macrofossil assemblages. Different species \yill not be preserved to the same degree "ithin peat. 

and so the eventual macrofossil assemblage may not be representative of the original bioceonosis. 

It is difficult to summarise the taphonomic controls on plant preservation, \\ith considerable 

variation occurring across a mire and between different mires. because preservation is controlled 

by a combination of internal (plant) and external (environment) factors (Eggelsmann el of.. 

1993). The resilience ,of Sphagnum may be due to the presence of lignin-like substances that are 

resistant to the processes of decay (Eggelsmann et al .. 1993). Furthermore the growth habit of 

Sphagnum encourages the preservation of sub-fossils. with the base of ,\phagnum stems dying as 

the tops continue to grow. Consequently peat forms immediately beneath the living carpet of moss 

due to the sequential groV\th of living moss, which enhances the chances of preservation. thereby 

producing well preserved plant remains (Eggelsmann el al .. 1993). 

Both aerial and subterranean parts of vascular plants are preserved in peat deposits and obviously 

they are subject to quite different taphonomic controls. The aerial parts of vascular plants fall 

onto the mire surface and experience a period of rapid aerobic decay. Variation in the potential 

for preservation \yill also be produced by the environment of deposition. for example pools. dry 

hollows and hummocks. If plant remains fall on rapidly growing Sphagnum or in a water-filled 

hollow or pool the period of exposure to oxygen and the amount of aerobic decay "ill be reduced. 

thereby improving the chances of preservation. Subterranean remains of vascular plants must 

also be interpreted ~·ith caution. because these remains are not contemporaneous "ith the 

surrounding fosslls. Rootlets can penetrate into older plant communities. although the 

subterranean remains of all vascular plants must be viev,;ed as non-contemporaneous with the 

remainder of the macro-fossil assemblage. 
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In the light of the taphonomic problems quantifying the remains of yascular plants. it appears 

impossible to r .;construct past bioceonoses accurately. Consequently the macrofossil 

stratigraphies are interpreted \vith due caution. Quantification of \ascular plant fragments is 

limited to estimation of the relative contribution that Monocotyledons and Ericaceae remains 

make to the overall peat sediment. In addition leaves. flo\\crs and seeds of Cal/una vulgaris. 

Erica tetralix and Vaccinium oxycoccus were counted. Despite uncertainty in how representatiYe 

these fossil remains are of the original bioceonoses these counts have proved usefuL because they 

supplement quantitative estimations of the abundance of identifiable Ericaceae. Identification of 

vascular plant remains \yas undertaken with reference to Stace (1991) and to type material 

derived from vegetation currently growing on the North York Moors. The taxonomy and 

nomenclature of the vascular plant remains follows Stace (1991). Ecologically the abundance of 

various vascular plants has proved particularly useful. Cal/una vulgariS, Erica tetralix and 

Vaccinium OXYCOCCllS typically occur on hummocks, and so they are utilised as indicators of a 

relatively dry environment. The ecology of Eriophorum vaginatum is more complicated. because 

although able to tolerate relatively wet conditions, it \yill avoid areas \yith deep standing \yater. 

Eriophorum vaginatum typically forms large dense tussocks. which can persist for a long period 

of time producing a fossil record dominated by fibrous Eriophorum vaginatwn remains. 

4.4.3 Testate anloebae analysis 

The testate amoebae stratigraphies were investigated at May Moss and Yarlsey Moss. The 

analysis at May 1\10ss assessed the testate amoebae stratigraphy in five cores distributed across 

the mire. The analysis at Yarlsey Moss utilised a single core. Previous research has not attempted 

to assess the consistency of the testate amoebae sub-fossil record across a peat bog. which is , 

surprising considering the potential for micro-topographically driven variations in surface 

\\etness across an ombrotrophic mire. The mire environment contains a variety of habitats "'ith 

quite different moisture conditions. 

Table 4.6. The cores. depth of sediment and sampling interval used in the testate amoebae 
analysis. 

Location Core Number Depth of Sediment Sampling Interval 

May Moss B 2.3 metres Scm 
May Moss Cl 2.1 metres 10 cm 
May Moss C3 2.1 metres 4cm 
May Moss C4 2.1 metres 10 cm 
May Moss D2 2.1 metres 6cm 

Yarlsey Moss 2.4 metres Scm 
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Previous ecological research has identified that testate amoebae speCIes are not unifonnh 

distributed across a mire (Grospietsch, 1958~ Tolonen. 1986). and this multiple profile approach 

is a valuable assessment of the internal integrity of sub-fossil testate amoebae analysis. The 

sampling interval adopted in this research differs between the cores. with the highest resolution 

sampling at 4 cm intervals and the lowest resolution sampling at 10 cm intervals. The location. 

core numbec total depth of sediment and the sampling interval adopted for each core are listed in 

table 4.6. 

Methodology 

The laboratory procedure is very simple. processmg 3 cm·' sub-samples of peat. Two 

Lycopodium clavum spore tablets were added to each sample and disaggregated in 20 ml of 

distilled water (Stockmarr. 1971). The samples were boiled for between 15-20 minutes to 

thoroughly mix the exotics with the peat. The samples were stirred regularly to ensure that the 

peat and exotics spores were \yell mixed. The solution was then \yashed through a 500 ~m sicvc­

mesh with distilkd watec retaining the finer residue in small beakers. This residue was 

centrifuged to concentrate the material, stained with safranine and stored in glycerol. Solely 

boiling the samples in water avoids the problem of chemical damage to the sub-fossils. 
, 

Additionally certai.n testate amoebae species are small, typically between 10-450 ~m in long axis. 

and so sieving at 5 00 ~m renders it highly unlikely that any testate amoebae species will be 

retained in the sieve-mesh~ consequently the prepared samples will be representative of the fossil 

assemblage. 

Well-mixed sub-samples of the residue were mounted on mIcroscope slides and examined 

systematically with an Olympus CH Microscope at x400 magnification. Identification of sub­

fossil testate amoebae \\'as carried out with reference to a series of texts, taxonomic keys and 

atlases of modenl testate amoebae (Grospietsch, 1958~ Corbet 1973~ Ogden & Hedley. 1980). 

Reference \\as made to comments on testate amoebae taxonomy within a number of recent 

ecological publications (Warnec 1987: Charman & Warnec 1992; Tolonen ef al .. 1992). 

because the ecological statistics presented in these publications form the basis for reconstructing 

past environmental conditions and a comparable taxonomy is essential. The testate amoebae 

samples were counted until 200 exotic spores had been encountered. which typically produced a 

sample size of between 100-150 tests. Woodland (1996) indicates a sample size of this magnitude 

will produce a representative assessment of the entire fossil assemblage. Diagrams of the sub­

fossil testate amoebae stratigraphies were constructed using TILIA and TILIAGRAPH computer 

packages (Grinull. 1993). The abundance of individual testate amoebae species \yere expressed as 
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percentages of the total number of tests encountered \vithin each sample. The speCIes \\ere 

arranged along th~ diagram according to their respective tolerance of water table depths (after 

Woodland et aI., 1998). with species preferring very \-vet conditions at the left end of the diagram 

grading to species preferring dry conditions on the right. The species not included in the 

ecological database generated by Woodland eta 1. (1998) have an uncertain relationship to water 

table depth. and they were grouped together on the right of the diagrams. 

4.4.4 Palynology 

Methodology 

The pollen diagrams were produced by sampling a peat profile at systematic intervals. The 

sampling intervals can vary considerably according to the purpose of the research. A coarse 

sampling interval reduces the chronological resolution of the analysis and may fail to identify 

short duration events. These problems can be overcome by contiguous sampling of the entire peat 

profile or by fine resolution pollen analysis (FRP A) which uses sample intervals of I mm or 3 

mm, which decreases the duration of time contained within each sample (Simmons et al., 1989). 

However FRP A is very time consuming, and the la\\' of diminishing returns must come into play. 

and chronological resolution may be relinquished in favour of achievability and conmlon sense 

(Barber. 1981). The pollen samples were extracted from freshly exposed surfaces of the cores. 

The samples were extracted with a volumetric sampler designed to a give consistent replicable 

quantity of peat. with a volume of I cm3
. The sampling intervals and depth of peat analysed 

varied between cores. and this information is recorded in table 4.7. The samples were extracted 

and prepared in the PLACE pollen laboratory minimising contamination by modenl airborne 

pollen. A standard preparation procedure was utilised for all of the samples. but omitting 

treatments with hvdrochloric and hydrofluoric acid because the peat contained no carbonate or . . -

mineral material (Moore et al., 1991). The residues were stained with Safranine and stored in 

glycerol. Silicone oil was not used as a mounting medium. because the samples \vere not intended 

for long-term storage. thereby avoiding the lengthy dehydration procedure required for storage in 

silicone oil. 

The pollen samples were counted under an Olympus CH Microscope at x400 magnification \\'ith 

critical determinations made at xl 000 magnification under oil immersion. The identifications 

\\'ere made \\'ith reference to a number of specialist keys. photographic monographs and the 

PLACE research centre pollen reference collection. The main keys used \vere Moore et al. (1991) 

and Faegri & Iversen (1989). The photomicrograph volumes published by the Lahoratoire de 

Botaniqlte. Historiqlle & Palynologie. in Marseilles were also an invaluable resource (Rcillc. 
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1992: 1995). A standardised fonnat \\"as used to present the various pollen diagrams. The raw 

counts of tree. shrub and non-mire herb pollen are all converted into percentages of the pollen 

sum. The ra\\ counts of the aquatics, sedges and spores are converted to percentages of the pollen 

sum plus aquatics. sedges and spores. The taxa are arranged along the pollen diagrams in a 

conventional order. The pollen diagrams \\"ere constructed using the TILIA and TILIAGRAPH 

computer packages (Grimm. 1993). 

Taxonomy and the pollen sum 

The taxonomy of plant species follows the recommendations of Bennett et al. (l994). The 

classification of vascular plants follows Stace (1991) and bryophytes follO\\"s Smith (1978). The 

pollen classification includes several family names. \vhich differ from those traditionally used by 

palynologists and these alterations are listed in table 4.8. Identification to species level is not 

al\\ays possible \\"ith pollen. and so certain types are only identified to genus or family. The 

classification of certain pollen grains is complicated: therefore the procedure used is clarified 

below. The Poaceae consists of both wild grasses and cereals. Faegri & Iversen (1989). Andersen 

(1979) and Moore et af. (1991) present keys \yhich enable the identification of various cereal 

pollen grains. In this research grass pollen grains are divided into wild grasses and cereal-type on 

the basis of size and the diameter of the annulus. Grains less than 40 ~lm in length \\ith a small , 

annulus are likely to be wild grasses. and tenned "Poaceae <40 ~m". Grains larger than 40 ~m in 

length and with an annulus larger than 1 0 ~m are almost certainly cereal-type and referred to as 

--Poaceae >40 ~m -. (Moore et a1.. 1991). 

Thc nature of the pollen sum has attracted considerable comment in the literature (Birks & Birks. 

1980: Barber. 1981: Faegri & Iversen, 1989; Moore et aL 1991). Basically in this research the 

pollen sum is intended to provide realistic assessment of the regional vegetation. In previous 

research various taxa have been excluded from the pollen sum to achieve this objective. For 

example, mire taxa could be excluded from the pollen sum, because they will reflect the local 

vegetation and the aim may be to reconstruct changes in the regional landscape. Therefore a 

pollen sum containing trees. shrubs. grasses and all non-mire herbs would achieve this objective. 

Throughout the last 2000 years. the North York Moors have been a deforested landscape. 

increasingly covered 'by Ericaceae moorland. Consequently some of the species- specifically 

Call1/no vll!gor;.~·- are a significant component of the regional vegetation contributing pollen rain 

on to the palaeoecological sites. On an open upland moor like the North York Moors it is difficult 

to justify excluding \vind-pollinating species like Call1lna nt/garis, l~'rica tetralix and the 
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Table 4.7. The cores!, depth of sediment and sampling interval used in the pollen 
analysis. 

Location Core Number Depth of Sampling Interval 
Sediment 

May Moss B 2.3 metres 8cm 
May Moss Dl 2.7 metres 4cm 
Fen Bogs 2.7 metres 4cm 

Yarlsey Moss 2.4 metres 8cm 
Harwood Dale Moor 1.1 metres 8cm 

Bluewath Beck 1.3 metres 4cm 

Table 4.8. Nomenclature changes in plant/pollen taxonomy (after Bennett et aI., 1994). 

Families (after 
Clapham et aI., 

1987) 

Gramineae 

Cruciferae 

Umbelliferae 

Leguminosae 

Compositae 

Compo sitae 

Compo sitae 

Not listed 

Not listed 

Conventional Palynological Usage 
(after Moore et ai., 1991) 

Gramineae 

Cruciferae 

Umbelliferae 

Leguminosae 

Compositae Liguliflorae 

Compositae Tubuliflorae 
(including Carduus, Cirsium and 

Centaurea) 
Compositae Tubuliflorae 
(including Aster-type and 

Anthemis-type 
Filicales (Monolete) 

Filicales (Trilete) 

Recommended Usage (after 
Stace, 1991; Bennett et aI., 

1994) 

Poaceae 

Brassicaceae 

Apiaceae 

Fabaceae 

Asteraceae (Lactucae) 

Asteraceae tribe Cardueae 

Asteraceae subf Asteroideae 

Pteropsida (monolete) indet. 

Pteropsida (trilete) indet. 
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moorland grasses on the grounds that they are solely local in origin. Additionally. certain species 

that are components of the regional vegetation. including birch. rowan and pine. are capable of 

inhabiting a mire environment. The pollen sum utilised in this research excludes only th~ true 

aquatics. sedges and spores. because other pollen types conceivably could be regional in origin. 

This approach accepts that the pollen sum \yill include locally derived pollen grains. as a 

mechanism to get around this problem is difficult to envisage and it appeared sensible to deri\l~ 

percentages from a relatively complete fossil assemblage rather than arbitrarily excluding species. 

Pollen counting continued until a minimum of 150 arboreal pollen grains had been encountered 

and a pollen sum of at least 400 grains had been achieved. Both these limits \yen: achieved in 

virtually all the samples and in many cases surpassed. 

4.4.5 Geochronolo~ical analyses 

Obtaining an independent chronology for sedimentary sequences is a critical component of 

Holocene palaeoenvironmental and palaeoclimate research. In comparison \\"ith many sedimentary 

deposits peat is particularly well suited for analysis by a number of geochronological procedures. 

A chronology for peat sequences that have accumulated during the last 2000 years can be derived 

using two radiometric decay techniques, radiocarbon and 21°Pb dating. Furthermore two 

stratigraphic procedures can assist with the production of a chronology for a peat sequence. 

Tephrochronology involves identification of volcanic ash layers \\"ithin sedimentary sequences. 

\\hich can then be related to a specific source eruption providing an age for the horizon. 

Significant changes in the vegetation can also operate as marker horizons if they are readily 

identifiable \yithin the palynostratigraphy of peat sequences across a region. The chronologies 

derived for peat sequences on the North York Moors rely entirely upon radiocarbon dating and 

the use of palynostratigraphic marker horizons. 

Tephrochronology is 'a relatively inexpensive geochronological technique that has been applied 

with some success to peat sequences in Ireland (Pilcher & Hall. 1992~ Caseldine et aL 1998) and 

north-west Britain (Dugmore. 1989: Blackford et al.. 1992: Pilcher & Hall. 1996: Dugmore et 

a 1.. 1995). The presence of tephra layers within peat sequences on the North York Moors was 

assessed in two cores from May Moss. namely D 1 and B. The samples \\"ere prepared using a 

rapid combustion technique introduced by Pilcher & Hall (1992). and examined under a light 

microscope. Unfortunately no significant concentrations of tephra \\"ere identified \\"ithin the peat 

sequences and tephrochronology \\as abandoned as a geochronological technique. The North 

York Moors are not a prime site for receiving volcanic ash falls from Iceland. because of the 

substantial deposition of ash that occurs within rainfall as the dust cloud crosses the British Isles 
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and the comparatively low quantity of rainfall received by the North York Moors. Even if 

weather conditions and structure of North Atlantic pressure systems were appropriate for ash 

deposition on the North York Moors, the quantities would be quite small in comparison with 

western Britain. 

Twenty-four radiocar~on dates \"ere obtained in the course of this research. The samples selected 

for radiocarbon assay are listed in table 4.8, which identifies the core, the sample level. the 

sample material. the method used to obtain the date. the laboratory number. the 81.'C ratio and the 

radiocarbon age determination. Seventeen of these dates are conventional radiometric decay 

determinations carried out on bulk peat samples, but seven others are AMS dates on hand-picked 

Sphagnum leaves. There is considerable debate about the accuracy of radiocarbon dates obtained 

on peat samples. Peat is a heterogeneous deposit consisting of a mixture of short-lived 

components (Sphagnum and other bryophytes), the remains of older components such as Cal/una 

vulgaris and the roots of younger plants penetrating the sediment from above (Pilcher. 1991). A 

growing consensus in recent research is that AMS dating of plant components selected on the 

grounds of contemporaniety with the horizon of accumulation is the best approach to dating peat 

sequences (Kilian et aI., 1995: Shore et al., 1995~ Oldfield et al.. 1997). 5;phagnum remains meet 

this criterion, because as Sphagnum grows it systematically buries older material and is gradually 

converted into peat. 

Sphagnum grows sequentially, "ith living moss immediately above dead leaves and stems. 

Consequently Sphagnum remains are always contemporaneous \"ith the horizon of accumulation. 

\"hich is not the case with rootlets of vascular plants and long-lived stems of Cal/una vulgariS 

often encountered in fossil peat. This has obvious implications for this research, and so 

conventional radiometric decay dates were only carried out on samples dominated by Sphagnum 

remains. Furthemlore seven AMS dates \"ere obtained upon samples that had been dated using 

the conventional radiometric technique and these AMS dates analysed pure hand-picked 

Sphagnum remains. thereby providing the most accurate age estimates available from peat. 

Comparison of the results of the radiometric and AMS technique for these seven samples 

provides a preliminary assessment of the accuracy of conventional radiocarbon dating of peat 

deposits. 

The samples utilised to obtain the radiometric l-+C dates. SRR 5920 to SRR 5930. are all of 3 cm 

vertical thickness from core sections taken \"ith a 10 cm diameter Russian peat corer. These 

samples "ere pre-treated and dated at the NERC Radiocarbon Laboratory. East Kilbride. The 
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samples \yere all Sphagnum-rich peat. extracted from the centre of the cores avoiding potential 

contamination at the edges of peat sampled with a Russian corer. The samples \yere digested in 

2M HCI (at 80 O( for 24 hours). \\"ashed free of acid. filtered and dried to a constant weight in a 

drying oven. 

The samples used to obtain the radiometric 14C dates. BETA 106589 to BETA 106594. are of 

either 3 or 4 cm thickness, taken either from monolith tins (25 x 15 x 10 cm) or cores extntded with 

a 10 cm diameter Russian peat corer. The samples were all Sphagnum-rich peat. extracted from 

the centre of the peat sections avoiding potential contamination at the edges. These samples 

received a full acid/alkali/acid pre-treatment at the BETA ANALYTIC Radiocarbon Laboratory. 

\\"hich involved washing in hot HCI to remove carbonates. a further wash in hot NaOH to remove 

secondary soluble organic acids and a final HCI wash to neutralise the samples. During the 

washing obvious rootlets \yere removed from the samples. The acid/alkali/acid \yashing removes 

soluble organic acids. which are believed to produce age estimates younger than the true 14C age 

of the horizon of accumulation (Dresser. 1970: Pilcher et al .. 1995: Shore et af., 1995). 

The samples used to obtain the AMS 14C dates. AA-24208 to AA-24214. \yere all Sphagnum 

remains extracted from 1 cm vertical thickness slices of peat. The samples were prepared to 

graphite at the NERC Radiocarbon Laboratory. The samples were almost entirely composed of 

5,phagnum leaves and stems (estimated 99-1000/0). Samples producing the dates AA-2420X to 

AA-24214 consisted of Sphagnum section Acutifolia and "ere extracted by boiling the peat 

samples in distilled water to disaggregate the samples. followed by sieving at 200 and 500 !-!m 

mesh apertures to concentrate the ..sphagnum remains. Further concentration of the samples was 

carried out by hand-picking the Sphagnum remains and by removing non-Sphagnum organic 

material. The sample producing the date AA-24208 consisted of c~phagnum imhricatum and 

.\phagnum section Acutifolia remains. "hich \yere hand-picked from the disaggregated peat 

samples. At the NERC Radiocarbon Laboratory. the samples \yere digested in O.5M HCl (80°C 

for 10 hours) and then rinsed free of mineral acid with distilled \vater. The samples were 

homogenised. combusted to CO2 in sealed quartz tubes and converted to graphite by FdZn 

reduction. The samples \yere analysed by the AMS 14C procedure at the University of Arizona 

NS F facility. 

The radiocarbon dates both obtained for this research and referred to in discussion of pre\ious 

research are presented following the recommendations of the 1 t h International Radiocarbon 

Conference (Mook. 19X6). The laboratory numbers of the radiocarbon dates are listed in table 
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4.8. The original l-lC measurements are presented as years BP. with their 1 sigma errors. An 

important facet of both the palaeoclimate and vegetation history research involves comparison 

with historical events necessitating calibration of the radiocarbon dates to calendar Years. The 

radiocarbon dates both obtained for this research and referred to in discussion of previous 

research are calibrated against a decadal tree-ring data-set utilised to generate the Pretoria 

calibration curve (Vogels et al .. 1993). Calibrated dates are quoted in years cal. AD and cal. BC. 

and always list the intercept with the calibration curve and the 2 sigma range for the calibrated 
, 

date, e.g. [cal. AD 1640(1650) 1665]. 

The radiocarbon dates were not obtained solely to age specific events, but to generate time series 

for the peat sequences. These time series allowed investigation of any cyclic structure within the 

palaeohydrological histories and provide a chronological basis for discussion of the climate and 

vegetation histories in comparison with previous research and other sources of evidence. To this 

end the radiocarbon dates were supplemented with various palynostratigraphic marker horizons. 

and an age/depth model was produced for each peat core. A simple linear regression model was 

used to generate the time-series and the calculations \vere performed using the calibrated dates 

and marker horizons in the TILIA computer package (Grimm. 1993). In certain cores there are 

insufficient chronological horizons. and so there are problems \vith the age/depth model. 

However. they have been calculated and are utilised on the palaeoecological diagrams. because 

the value of these interpolated time series outweighs problems caused by inherent inaccuracies. 

4.5 Interpretative procedures 

The large number of cores and range of techniques utilised in this research has produced a wealth 

of data. A consequence of this wealth is that the interpretation and discussion of the results could 

become very cumbersome, and so the interpretative procedure is clearly defined. This section 

presents the rationale for presentation and discussion of the results. and introduces the 

quantitative methods utilised to assist \\ith interpretation of the data. 

4.5.1 Zonation of the peat profiles 

A current convention \\ithin palaeoecology is to subdivide fossil sequences. including pollen. 

diatoms. plant macrofossils and testate amoebae into assemblage zones. primarily to facilitate 

description and interpretation. Typically these zones group samples containing a similar 

assemblage of fossils. so that the zone boundaries identify the major changes in the fossil record 

for each core. SeveraL techniques have been utilised to investigate peat sequences from the North 

York Moors. and so a zonation scheme could be created for each palaeoecological record. 



Table 4.9. ~Eart one2· Radiocarbo.n dates obtained for Eeat seguences on the North York.Moors. 

Laboratory Peat Bog Sample Sample Material 14C analysis 813CPDB Conventional 
Number Depth procedure 14C age 

!Years BP + tal 
Beta 106589 Yarlsey Moss 76-80 cm Sphagnum section Acutifolial standard -28.0 590 +80 BP 

Monocotyledonous peat radiometric 
Beta 106590 Yarlsey Moss 126-130 cm Sphagnum section, Acutifolial standard -26.6 740 + 80 BP 

Monocotyledonous peat radiometric 
Beta 106591 Yarlsey Moss 175-179 cm Sphagnumpapillosum I standard -27.6 1280 +60 BP 

Monocotyledonous peat radiometric 
Beta 106592 Bluewath Beck 60-63 cm Monocotyledonous peat standard -26.6 1290 +60 BP 

radiometric 
Beta 106593 Harwood Dale Bog 30-34 cm Monocotyledonous I standard -27.3 1460 +60 BP 

Sphagnum papillosum peat radiometric 
\.0 

Beta 106594 Harwood Dale Bog 56-60 cm Monocotyledonous I standard -27.6 1790 +70 BP w 

Sphagnum papillosum peat radiometric 
SRR 5920 May Moss Core C3 49-52 em Sphagnum imbricatum standard -28.7 410 +45 BP 

peat radiometric 
SRR 5921 May Moss Core C3 64-67 cm Sphagnum section standard -27.7 470 +45 BP 

Acutifolia peat radiometric 
SRR 5922 May Moss Core C3 75-78 cm Sphagnum section standard -26.8 840 +50 BP 

Acutifolia peat radiometric 
SRR 5923 May Moss Core C3 95-98 cm Sphagnum section standard -26.0 760 +50 BP 

Acutifolia peat radiometric 
SRR 5924 May Moss Core C3 110-113 cm Sphagnum section standard -26.8 875 +50 BP 

Acutifolia peat radiometric 
SRR 5925 May Moss Core C3 125-128 cm Sphagnum section standard -25.6 745 +50 BP 

Acutifolia peat radiometric 



Table 4.9. (part two ). 

Laboratory Peat Bog Sample Sample Material 14C analysis 813CPDB Conventional 
Number Depth procedure 14C age 

(Years BP + ta} 
SRR 5926 May Moss Core C3 138-141 cm Sphagnum section standard -27.6 1055 +45 BP 

Acutifolia peat radiometric 
SRR 5927 May Moss Core D2 80-83 cm Sphagnum imbricatuml standard -26.5 685 +50 BP 

Monocotyledonous peat radiometric 
SRR 5928 May Moss Core D2 120-123 cm Sphagnum imbricatuml standard -26.3 1195 +50 BP 

Monocotyledonous peat radiometric 
SRR 5929 May Moss Core D2 131-134 cm Sphagnum imbricatuml standard -27.0 1305 +50 BP 

Monocotyledonous peat radiometric 
SRR 5930 May Moss Core D2 171-174 cm Sphagnum section Acutifolial standard -25.0 1640 +55 BP 

Monocotyledonous peat radiometric 
AA24208 May Moss Core C3 52-53 cm Sphagnum imbricatum leaves Accelerator Mass -27.8 265 +40 BP \0 

~ 

and stems Spectrometry 
AA 24209 May Moss Core C3 63-64 cm Sphagnum section Acutifolia Accelerator Mass -25.87 310 +40 BP 

leaves and stems Spectrometry 
AA 24210 May Moss Core C3 74-75 cm Sphagnum section Acutifolia Accelerator Mass -26.22 450 +55 BP 

leaves and stems Spectrometry 
AA 24211 May Moss Core C3 94-95 cm Sphagnum section Acutifolia Accelerator Mass -25.92 620 +40 BP 

leaves and stems Spectrometry 
AA 24212 May Moss Core C3 113-114 cm Sphagnum section Acutifolia Accelerator Mass -25.57 765 +40 BP 

leaves and stems Spectrometry 
AA 24213 May Moss Core C3 124-125 cm Sphagnum section Acutifolia Accelerator Mass -26.18 680 +40 BP 

leaves and stems Spectrometry 
AA 24214 May Moss Core C3 141-142 cm Sphagnum section Acutifolia Accelerator Mass -28.66 825 +40 BP 

leaves and stems Spectrometry 
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Zonation of the palaeoecology based on the composition of fossil assemblages was not used in 
, 

this research. because creating three of four sets of assemblage zones for a single profile would 

be an unwieldy and confusing procedure. hindering interpretation of the peat stratigraphy 

HO\\-evec dividing a palaeoecological profile into zones is a useful process. because it pro\ides a 

structure for the discursive and interpretative process. The palaeoenvironmental data presented in 

chapters five and six were graphed against y-axes. \vhich identify the depth and the chronology 

generated for each peat profile. These chronologies are not without problems. but they do provide 

a simple method for zoning the diagrams. Each peat profile is divided into zones with a duration 

of 500 years using the respective time-series. The zone boundaries are cal. AD 2000. cal. AD 

1500, cal. AD 1000, cal. AD 500. cal. AD 0 and 500 cal. BC. and are the same for all of the 

cores and palaeoecological techniques. A zonation based on chronology avoids potential 

confusion inherent in schemes based on palaeoecology and has the advantage that the zones assist 

with comparison between the various palaeoenvironmental techniques and with correlation 

between peat sequences. 

There are flaws \\ ith this approach arising mainly from anxieties about the accuracy of the time 

series derived from the 14C dates and the chronological marker horizons. Ho\vever these 

boundaries are not cast in stone and they are not proposed as exact ages. but as estimates with all 

the inherent errors of a time series interpolated from calibrated radiocarbon dates. The major 

advantage of this approach is the clarity offered by adopting a unifornl structure. Diagrams 

presenting the results of the pollen. testate amoebae. plant macrofossil and humification analysis 

are annotated \vith these chronological periods, \vhich provide a structure for interpretation. 

discussion and the eventual environmental reconstruction. 

4.5.2 Statistical analysis 

The quantity of numerical palaeoecological data generated in the course of this research renders 

quantitative analysis, an essential part of the interpretative procedure. Furthennore the 

palaeoenvironmental techniques \vere only selected if capable of producing numerical data 

susceptible to quantitative analysis. This quantitative approach has been assisted by a series of 

improvements to various palaeoecological techniques. \vhich allow the production of quantitative 

data (Barber ef a/.. 1994a: Warner & Channan. 1994: Blackford & Chambers. 1993)_ Pollen. 

testate amoebae and plant macrofossil analyses all produce multivariate data. \\hereas the 

humification analysis produces univariate data. Interpretation of multivariate palaeoecological 
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data can be hind~red by the fact that it is inherently difficult to visuallv appreciate internal 

patterns and structure in multivariate data (Maddy & Brew. 1995). 

Two broad methods of multivariate data analysis are utilised to assist with the interpretation of 

the palaeoecology. namely cluster analysis and ordination analysis. Cluster analysis encompasses 

a number of numerical techniques. which when applied to palaeoecological data will attempt to 

divide either or both the fossil samples and fossil species into discrete groups. These groups \vill 

contain members that are numerically similar: consequently the boundaries between these groups 

may represent significant differences within the data. Ordination analysis is a statistical 

procedure that summarises the most significant relationships within the data. which \\hen applied 

in palaeoecology may identify the response of fossil communities to various environmental 

characteristics. Essentially ordination analysis in summarising the main trends. reduces the 

number of dimensions required to express the variation \vithin a multidimensional data-set to 

three or four key axes. Each of these ne\\' axes produced by the ordination analysis expresses a 

calculable percentage of the overall variation within the data-set. Ordination analysis is a group 

of multivariate procedures. which identify and model the major changes within a palaeoecological 

sequence. 

A further quantitative tool used to discern environmental information from palaeoecological data 

involves the use of ecological transfer functions. Transfer functions are used to couple the 

environmental tolerance displayed by extant species with the abundance of the organism in a 

fossil profile. Diatolt\s are unicellular aquatic algae. \vhich have a fossil record that has been 

numerically linked using transfer functions to the optimum and range of salinity conditions 

tolerated by extant species to produce quantitative estimates of salinity conditions in the past. 

This type of approach would be invaluable in the investigation of mire palaeohydrology. if a 

group of organisms can be numerically associated with a specific moisture parameter. This is the 

case with testate amoebae. which can be linked numerically to the depth of the mean annual wat~r 

table (Woodland et al.. 1998). 

The three procedures introduced above assist with the interpretation of palaeoecological data and 

aid the reconstnlction of environmental histories. A further area of quantitative analysis attempts 

to examine these ~nvironn1ental histories in the context of time. Chronologies were derived for 

each peat profile com'erting the palaeoenvironmental data into a time series. Analysis of these 

time series can identify and model the changes \vithin palaeoenvironmental histories. perhaps 

throwing light on any periodicity. forcing and causes of environmental change (Green. 1995). 
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The quantitative procedures introduced above are utilised to varymg degrees to assist with 

interpretation of the palaeoenvironmental techniques applied at each site. The follo\\ing sections 

provide a more detailed introduction to each quantitative procedure. and outline how and if the 

quantitative procedures are applied to the pollen. testate amoebae. plant macrofossil and 

humification results. Furthermore the section explains ho\\ the rcsults of the quantitati\,e analysis 

are presented in later chapters. and sets out a rationale for interpretation and utilisation of these 

results. 

Cluster Analysis 

Cluster analysis is used to investigate structure within the pollen. testate amoebae and plant 

macrofossil data. The purpose of cluster analysis is to statistically identify either species that 

often occur together or groups of samples \\ith a similar fossil assemblage (Kovach, 1995: 

Manly. 1994). In palaeoecological research the cluster analyses are often constrained by applying 

a predefined order to the samples. Stratigraphically constrained cluster analysis retains the 

stratigraphic order of ,the samples and the results of the cluster analysis will reflect the similarity 

of adjacent samples. which is particularly useful enabling the identification of significant changes 

\\ithin a stratigraphic profile. The results of cluster analyses are often presented as dendrograms. 

with the various branches of the dendrogram grouping similar members and the gaps bctween the 

larger branches often reflecting major stratigraphic changes. 

There are various methods of carrying out cluster analysis, which are expertly reviewed in Birks 

& Gordon (1985) and Maddy & Brew (1995). The procedures utilised in this research are 

stratigraphically constrained sum of the squares cluster analyses implemented through the 

CONISS computer package (Grimm. 1987). Several other methods of cluster analysis were tested 

using the MVSP computer package (Kovach. 1993). and although there were occasional minor 

differences bet\\cen the techniques. the major stratigraphic changes \\ere almost al\\ays 

identified. In order that consistency is maintained within the statistical analysis. the procedures 

available in the CONISS computer package were utilised to analyse all the data. \\hich has the 

further advantage that the results can be displayed as a dendrogram on palaeoecological diagrams 

produced using TILIAGRAPH (Grimm. 1993). 

Most multivariate statistical procedures require certain characteristics within the object under 

investigation. which includes the requirement that the data should be normally distributed. 

Ho\\c\'er most multi\'ariate procedures can be successfully applied to data that depart from 
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normality (Kovach. 1995). There are numerous methods of data transformation a\ailable. \\hich 

can be used to modify a dataset: for example, square root and logarithmic transformations are 

typically used to counter severe departures from normality. The pollen. testate amoebae and plant 

macrofossil data are all expressed as percentages and there are various methods of data 

transformation appropriate for percentage data. Aitchison' s log-ratio transformation counters the 

effects of closure inherent in percentage data-sets, which arise because an increase in abundance 

of one species will cause a decrease in all others when expressed as percentages (Aitchison, 1986: 

Kovach. 1995). Standardised euclidean distance transformation gives all species equal weighting 

regardless of their actual abundance, which is particularly useful if changes in species with a lo\', 

abundance are important for a particular inquiry. , 

Several methods of data transformation were tested using the CONISS and MVSP computer 

packages. However. they produce broadly similar results from the eventual cluster analysis. In 

the interests of consistency the standardised euclidean distance transformation \\'as adopted. 

primarily because species \\'ith low abundance are an important component of the pollen. plant 

macrofossil and testate amoebae analysis, and furthermore the transformation procedure is easily 

performed within CONISS and the results displayed using TILIAGRAPH (Grimm. 1987~ 1993). 

The effects of closure within percentage data were checked by carrying out minimum variance 

cluster analysis on log-ratio transformed data implemented using MVSP (Kovach. 1995), but the 

results were very similar. 

Species with 100v or limited occurrence can have a detrimental effect on the results of a cluster 

analysis. A large number of taxa were encountered in the pollen analysis and some pollen taxa 

only occurred in a single sample. Consequently only pollen taxa achieving a minimum abundance 

of 1 % within a profile are included in the data receiving a cluster analysis. Fewer species were 

encountered in the testate amoebae and plant macrofossil profiles. and there are virtually no 

species with a 10\,\' or limited occurrence. Consequently. in the case of the testate amoebae and 

plant macrofossil results all the species present are included for the cluster analysis. 

Ordination Analysis 

Ordination analysi s is a multivariate statistical procedure used to summarise the most significant 

relationships within the plant macrofossil and testate amoebae stratigraphies. and these 

relationships may reflect the response of fossil communities to various environmental parameters. 

Detrended Correspondence Analysis (DCA) is a standard multivariate tool ideal for summarising 

the main trends \\ithin data collated in the form of contingency tables. \\'hich includes the results 
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of testate amoebae and macrofossil analyses (Hill & Gauch. 1980: Kovach. 1995). The technique 

assumes that stnlcture \\ithin the data-set occurs in response to a number of unknown 

environmental parameters and that the various species display a simple Gaussian response along 

these parameters. wi~h maximum abundance at the environmental optima of each individual 

species. Basically DCA reduces the numbers of dimensions within a multidimensional data-s~t. 

expressing the most significant structure on a series of ordination axes (Kovach. 1995). 

Each axis is described by an eigenvalue. which identifies the amount of variation within the data­

set expressed on each individual axis. DCA generates a series of eigenvectors. which are scores 

on the new DCA axes for each object in the original data-set. DCA produces two series of 

eigenvectors. a set of scores for the fossil samples and a set for the species. DCA has a particular 

advantage over other ordination procedures, namely Principal Components Analysis and 

Principal Coordinates Analysis. because both sets of eigenvectors are ordinated together. 

Consequently the eigenvectors for the fossil samples and species have equivalent scaling and can 

be graphed together. This approach has been used in previous research. v\'ith DCA used to 

summarise the variations within macrofossil profiles from Bolton Fell Moss (Barber ef 01.. 

1994a: 1994b). Axis 1 of the DCA identified the most significant changes \\'ithin the data-set and 
, 

the axis appears to identify a water-level gradient. with dry environment species at the opposite 

end of the axis to species preferring wet environmental conditions. Consequently the scores on 

axis 1 generated £x each fossil sample may also summarise the moisture conditions. and a graph 

of the fossil samples scores on DCA axis 1 against depth has been proposed as a 

palaeohydrological history for Bolton Fell Moss (Barber ef al .. 1994a: 1994b). 

DCA was perfornled on percentage data of all the plant macrofossil and testate amoebae data 

using the MVSP computer package (Kovach. 1993). DCA was performed on percentages of the 

main macrofossil components: Identifiable Monocotyledons, Ericaceae and non-Sphagnum 

bryoph)1es~ Unidentifiable Organic Matter: and the percentages of the various ,\/)hagnllm 

species. In the case of testate amoebae the DCA v .. as perfonned on the percentages of all species 

present within the fossil profile. The results of the DCA include eigenvalues for each axis. the 

percentage of total variation explained by each axis signifying the most important ordination 

axes. and a series of eigenvectors for both samples and species on the DCA axes. 

The species eigenvectors on DCA axes 1 and 2 are displayed as X/Y scatter-plots. enabling the 

identification the relationships bet\\een the main species. The location of species along detrended 

correspondence analysis axes 1 and 2 may reflect the distribution of individual species along 
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specific environmental gradients. Careful ecological interpretation of these trends present on 

DCA axes may enable an axis to be identified as modelling a specific environmental parameter. 

Correlation coefficients were produced to assess the association between the percentages of fossil 

species and the axes generated by the DCA. which identifies the species that contribute the most 

significant structure within the data set. If the correlation coefficients and visual examination of 

the position of species on the DCA axes indicate that an axis clearly identifies an environmental 

gradient then eigenvectors for the fossil samples on the same axis \yill also be on this 

environmental gradient. The eigenvectors generated for the fossil samples. if graphed against 

depth or a time series. model the most significant structure \\ithin the sub-fossil dataset. \yhich 

mayor may not reflect a response to one or more environmental gradients. 

Ecological Transfer Functions 

Transfer functions have been used to provide quantitative estimates of environmental variables 

from the composition of sub-fossil communities across a range of palaeoecological techniques. 

including foraminifera. diatoms and coleoptera (Birks, 1995). Ecological transfer functions using 

the sub-fossil testate amoebae data were carried out following a simple weighted averaging 

procedure. Weighted averages are used to generate a history of mean annual water table depths 

for the sub-fossil profiles on the North York Moors. The ecological data used for the transfer 

functions were kindly provided by Wendy Woodland. and are the subject of on-going research at 

Plymouth University and the University of the West of England. The environmental optima and 

tolerance ranges of the testate amoebae species are displayed graphically in figure 4.7. 

The formula used to carry out the weighted average calculations is given belo\y: 

x = } 

n 'J 

Xj is the inferred d.epth to water table in sample j 

Wai is the weighted average \yater table for species i 

Yij is the percentage abundance of species i in sample j 

n is the total percentage of tests in the fossil sample included in the analysis for sample j. 

The optimum. maximum and minimum \yater table depth values for each species were input into 

the equation providing an estimation of the average water table depths and displaying the 

potential range or error of the \yater table depth reconstnlction for each sub-fossil sample. The 
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Figure 4.7. Individual species optima and tolerance range for mean annual 
water table, derived by assessment of extent testate amoebae communities in 
the British Isles (after Woodland et al. 1998). 
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three curves are appended to the testate amoebae diagrams in chapter six. and clearly identify 

fluctuations in n:oisture conditions at each site. The curves are not proposed as precise 

reconstructions of water table depth. but they do summarise changes in mire surface \vetness. 

Time Series Analysis 
, 

Investigations of peat deposits on the North York Moors and quantitative analysis of the results 

thereof. have enabled the production of three summary palaeoenvironmental curves. which can be 

viewed as hydrological histories. Humification curves broadly respond to fluctuations in mean 

sununer water table. The water table depth curves generated using fossil testate amoebae model 

changes in the mean annual water table. Axis one of a DCA of both the plant macrofossil and 

testate amoebae fossil records may also model fluctuations in mire surface moisture conditions. A 

program of 14C dating and the judicious use of chronological marker horizons has allowed the 

peat sequences to be converted into time series. Time series analysis can be used to examine 

trends and cyclic structure within the three types of palaeohydrological curve (Green. 1995). 

There are often three components to any time series: a long term trend \vithin the data. a series of 

cyclic fluctuations and background noise. These features are obviously combined. which renders 

time series often difficult to comprehend. There are numerous methods of filtering or smoothing 

time series to enhance or emphasise either the trends. cycles or noise (or short period cycles). 

without introducing new trends or noise. Noise is a particular problem in time series \\ith 

numerous closely spaced samples: for example, the humification analyses utilise 1 to 3 cm 

contiguous samples. In essence. a large number of samples \\ill increase the amount of noise. 

producing spiky curves. The moisture curves derived from the testate amoebae and plant 

macrofossil analyses \vill also contain noise, although the samples are spaced at 4 to 10 cm 

vertical intervals and this \vider interval may reduce the impression of noise. 

Palaeoecological data can be filtered prior to further time series analysis. LO\v pass filters are 

used to smooth high frequency cycles, thereby reducing the amount of noise within the time 

series: for example. a three point moving average \\ill remove the extremes within time series 

(Green. 1995). A high pass or difference filter is used. when applied to the smoothed data. to 

emphasise remaining high frequency events and de-emphasise long term trend (Green. 1995). 

Time series analysis of a series filtered by this process should enable the identification of cyclic 

stnlcture. Spectral analysis is the tool used to identify the periodicity of any cyclic structure 

within a dataset. To carry out spectral analysis the time series must have sample intervals 
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representing similar time periods. and in the case of palaeoecological data any variations in the 

rate of sediment accumulation will preclude direct time series analysis. 

Time series anal) sis is used to investigate cyclic structure \\ithin suitable palaeohydrological 

curves generated during palaeoenvironmental analysis. The time series analysis procedure is only 

applied if there is ;} statistically significant linear relationship between the interpolated chronology 

and depth. and if there is reasonable confidence in the geochronology. A further limitation to the 

application of time series analysis arises from a combination of the resolution of the 

palaeoenvironmental data and the purpose in applying the time series analysis. The rationale for 

time series analysis is to identify cyclic structure within palaeoenviromnental data pertaining to a 

2000-year period. Clearly structure occurring at 500-year or above periodicities will only be 

represented on circa three occasions within the sequence, and this provides an upper limit to the 

periodicities identifiaole by time series analysis. 

In addition, the sampling interval provides a lower limit affecting the stnlcture identifiable \\ ith 

shorter periodicities. The testate amoebae and plant macrofossil data \\cre collected at 4 to R cm 

intervals, which at May Moss site D corresponds to 35 to 65 year intervals respectively. The 

age/depth model for May Moss site D signifies the stratigraphy is susceptible to direct time series 

analysis. Howevcr time series analysis of the testate amoebae and plant macrofossil 

palaeohydrological curves cannot be used to identify stnlcture close to the sampling interval. 

because structure at 35-120 year periodicities will only reflect differences bet\\ccn a few fossil 

samples. The solution to this problem is fine resolution sampling at 0.5-1 cm intervals, but this 

was not possible ,\ithin the time constraints of this thesis. These limitations reduce the value of 

time series analysis of the testate amoebae and plant macrofossil data. and this not been carried 

out in this research. 

The humification data. sampled at 1-2 cm intervals equivalent to 8-16 years. is not susceptible to 

the problems discussed above. and spectral analysis was carried out on humification data for thc 

North York Moors. There is a clear set of protocols followed in application of the time serics 

analysis. 

• Constant Linear Sediment Accumulation Rate. A least squares regreSSIOn equation IS 

generatcd for the relationship between depth and the interpolated chronology. If the coefficient 

of variation (r:) approaches 100%. then the relationship between depth and the intcrpolated 

chronology is broadly lincar and further time series analysis can proceed. 
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• Filtering the Time Series. A t\\'o stage filtering procedure is applied to the yarious time 

series. Firstly. a lo\\" pass filter is used to smooth the data reducing the amount of noise. The 

100y pass filter calculates an unweighted three-point moving average for the time series. 

Secondly. a high-pass filter is used to remove long-term trends and emphasise the remaining 

high frequency structure. A difference filter is used to perform this transformation. applying 

the following formula. 

x = yet) _ vCt-1) 
- -

where x = the filtered value: ylt) = the unfiltered value at time t : yet-I) = the unfiltered value at 

time (t-l). 

• Spectral Analysis. Spectral analysis proceeded following the Fourier transformation method 

and the spectra were smoothed using a Daniell smoothing \\indO\\ (Green. 1995). The main 

spectral peaks are identified and the number of cycles per sampling interval of the peaks is 

converted using the regression equation between depth and the interpolated chronology to 

calculate the number of years within an individual cycle. The number of years within each 

cycle signifies the periodicities of the cyclic structure with the data. 
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: A-2000 year regional vegetation history 

5.1 Introduction 

This chapter is a detailed account of the vegetation history of the central and eastern North York 

Moors during the last two millennia. Reconstruction of regional vegetation history is based on 

palynological analyses at May Moss, Fen Bogs, Yarlsey Moss, Harwood Dale Bog and Bluewath 

Beck. The palaeovegetation information contained within the six palaeoecological profiles is 

integrated to produce a picture of vegetation changes across the region. This chapter is divided 

into two sections: the first presents the results of the pollen analyses and defmes the chronology of 

the vegetation changes; the second section synthesises the palynological results, formulating a 

regional vegetation history for the North York Moors. The regional vegetation history IS 

discussed in relation to anthropogenic activity, and environmental and climatic changes. 

Human impact on the vegetated environment is controlled by changes in regional politics, 

popUlation levels, and variations in settlement patterns, the amount of industrial activity and the 

intensity of agricultural activity. These factors impact on the vegetated landscape, and are 

pertinent to the interpretation and discussion of the vegetation changes identified in the pollen 

diagrams. Climatic change is an important factor affecting the type of agrarian activity, and the 

occupation and settlement of areas marginal for agriculture (Higham, 1985; Parry, 1976; 1978). 

The parallel histories of human activity and anthropogenic vegetation change derived from pollen 

stratigraphies and documentary sources are discussed in the light of the climate history uncovered 

from peat deposits on the N orth York Moors. 

The pollen rain received by a sedimentary system is derived from a wide source or catchment 

area, thereby incorporating pollen grains produced by the local mire vegetation, vegetation 

surrounding the mire and a wind-blown regional component. Consequently each pollen profile, to 

some extent, presents a picture of regional vegetation change; however, it is important to base an 

investigation of regional vegetation history on several pollen profiles spaced across the region. 

Additionally, analysing more than one profile at May Moss assesses the consistency of the 

palynostratigraphy within a single site. If there are differences in the palynostratigraphy within an 

individual mire this is more likely to reflect variations in local pollen production than variations in 
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the regional pollen ra~ which should be broadly similar on a broad open moor like May Moss. If 

the palynostratigraphy is similar, this lends support to the view that the palynological history 

reflects changes in the regional vegetation. 

5.2 Results of the palynological analyses 

5.2.1 May Moss 

The vegetation history uncovered from the May Moss peat stratigraphy is based on pollen 

analysis of two sequences, core B and core D 1. The core B pollen profile is displayed in figure 

5.1 and the core Dl profile in figure 5.2. Cumulative curves on the far right of the pollen 

diagrams summarise fluctuations in the relative abundance of trees, shrubs, dwarf shrubs and 

herbs, thereby assisting with identification of major changes in the regional vegetation. 

Neither profile has been directly 14C dated, but core Dl is immediately adjacent to a further core, 

D2, which has been 14C dated. The stratigraphies of both cores are virtually identical. 

Consequently the four dated horizons are confidently correlated to 1 0 cm vertical units of peat on 

the undated profile, and these four horizons are the basis of the chronology developed for the D 1 

peat sequence. Furthermore the palynostratigraphy contains evidence of two significant events in 

the regional vegetation history, which can be used lS chronological marker horizons. Near the 

base of Dl, the beginning of the Iron Age and Romano-British woodland clearances is clearly 

evident and this event has been 14C dated at Harwood Dale Bog to 2190 ±90BP [400(200)5 cal. 

BC] (Atherden, 1989). There is a sharp increase in Pinus frequencies near the top of the pollen 

profile, which is attributed to modem conifer afforestation from the 1930s onwards (Statham, 

1989). 

The chronology derived for the site B peat profile is based entirely on correlation with 

palynostratigraphic events, which are used as tentative chronological marker horizons. These 

palynostratigraphic events are the beginning of the Iron AgelRomano-British woodland 

clearances 14C dated at Harwood Dale Bog to 2190 ±100BP [400(200)5 cal. BC] (Atherden, 

1989), the beginning of the post-Roman woodland regeneration dated at May Moss site D to 

1640 ±50BP [cal. AD 260(420)555], a medieval woodland decline 14C dated at May Moss site D 

to 685 ±50BP [cal. AD 1260(1293)1405] and the Pinus rise attributed to the onset of modem 

conifer afforestation after 1930 (Statham, 1989). The mire surface at May Moss provides another 

convenient chronological horizon, because the mire is actively accumulating. Consequently the 

surface of both profiles has a present-day age, AD 1995. The 14C dated horizons and the 
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Figure 5.1. (part i). Pollen diagram from May Moss core B. Taxa are expressed as 
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pollen sum plus aquatics and spores. Circles signify frequencies amounting to less than 
1 % of the sum. The dendrogram presents the results of a sum of the squares cluster 
analysis. 



~ _. 
CJQ 

= ~ 
u. • ..... 
• .-. 
"0 = :l -. -. ~ · 

u 
co 
............ 
Q 
-< 

/ ~ Herbs ';/ Aquatics & Spores 

/ .~~~ ~~ / ~. 

~~ 
.~ 

fJl 
1-0 
C'd 
(l) 

>- -. 

~c""'~ %"~ ~ 
/ ~~ 'V'r7~ ~'r7 <r:,~ 

\. ~.~~.:::; ~C:> ~ ~ .!\,c ~~' 
~ :§> \:'Yq,; ~'r7~ ~q,; ~q,; 'S-~ 'r7~ ct:.S ~ ~ 

(l) 
~ 

C'd 
1-0 

.&:l 

~ "i" 'V, 'r7V 'r7~ 'l)-V ~~ 'V~ &> o~"y? ~ 
~ ~ ~<r:, . ~'r7 ~<r:,~ ~<r:,~ ~<r:, ~ c'iY 'V~ ~ ,c ~q,; .~' ~. O:>~ .~ ~ ~<r:,~ 

..c= ~q,; ~~ ,,=$ 'r7V 'r7\.J .§ ~q,; o~ .~'Vq,; if ~<r:, ~<r:, ~'V ~'V A~~ .y c~. ~~ <r:,\.J 

8 
c:,) 

~ 'l)-\.J &~ ~~~,~, ,,<r:, 'l)-\.J ~ O;,"i ~c O:>~ ~~ ~.;s; ~ ... ~c; ~~~..... ~, 
~ ~c~ ~~ ~~ ~ ~"-J ~~ ~~ ~~ <Q'''b' ~~ 'V,c 'V,c ~~ ~~ ~~ c>. ~(§ ~,,~ ~{i. 

...... -C'd 
U 

-2000 o 
-1000 10 
-1800 20 
-1700 30 
-1800 
-I~OO 40 
-1400 ~ 

-1300 60 
-1200 
-1100 70 
-1000 80 
-900 90 
-BOO 1: 100 
-700 
-800 
-500 

110 

120 

-400 { ISO 

-300 
-200 
-IDa 

o 
100 
200 
SOO 
400 
500 
800 
700 

140 

I~O 

160 
170 ~ I. 

160 

190 

200 

210 II 220 

230 

I ! I I I I I I I I 

l I. I l 
20 40 60 

~<$' 
~<r:,~ 

s~ 

20 40 60 

~~ 
~~ 

~c ~C:> c ~ 

\§' 0/ ~~ 
.~<r:, ~~ ~~ 

!Q q,; ~ 
~c~ ~~ ~ ';<:::J~ 

~,,~ ,,-,flj 'V."b' ~~' 

/ 

--CONlSS o 
00 

/1 
I, ... 200 400 600 

Tolal sum of squares 



109 

11111111111111111111111111111111111111111111111 !: 

, .,' hili' Ii 111111111111111111111,11 "I dl III II I: 

I ,10 ,II II 1111 III hi II! I I III 111"1 1.1 hi III II f'~ 
, ... • • ......... .".. " .. ,.... ".'.., E 

I III III 111111111 111,1, III I I III hi III , I hi III .. t&l 

'" 

.,' "' .. , .. ' ," "II ... , I I h. 1,1 .. '" ,h h. I. r
N 

. . ., ." ... "" ... " . ,.. ,. .... , .. ,r 
(ill;)) qtdaa ;"~"~"~";"~"~"~"~"~"~"i~r~"~"~"~"~"~"~"~"~"~"~"~"~"m 

'.,."1' I' 'I"I'Y '1"1' 'I' '/"1' I' 'I'V'I'I'I VI'I'II'I' I" 1" "/"1' "I ".,. "1"'1" I" 'I 'I' ",' "I" '1"1"1"'1' 'I' "I" I" I'"'' '" "" 
.0 0 0 0 2 S!: 2: OOOOc g '" '" gog CI CI 

Ja/av SJ-eaA. pal-eJq~fl?J ~ ~ ~ ~ ! !! :!: ~~g, "', ~ Y ",' r '? ~ ~ '" ~ ~ 
I I I , I I I I I I I 

- "" I "" "" "" .. ,," ".' " ! , , ",, , • ,!! , I! 
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palynostratigraphic marker horizons on cores Band D 1 are listed in table 5.1. Linear 

interpolation between these chronological horizons is used to generate time series for both peat 

sequences. 

Both peat sequences cover the last two millennia, with the base of the core B sequence equivalent 

to 700 cal. BC and the base of the core Dl sequence equivalent to 250 cal. BC. The 

palynostratigraphy contains a series of fluctuations in the abundance of arboreal pollen, with the 

phases of woodland decline mirrored by expansions of non-arboreal pollen, mainly cleared 

ground indicators, agricultural weeds and moorland taxa. The cluster analyses of both pollen 

profiles signifies that the most significant changes within core D 1 occurred circa 100 cal. BC, 

cal. AD 300-400, cal. AD 900, cal. AD 1450, cal. AD 1700 and cal. AD 1950, and the most 

significant changes within core B occurred circa 100 cal. BC, cal. AD 400, cal. AD 300 and cal. 

AD 1950. The most abundant tree species were Quercus, Betula, Alnus and Fraxinus. High 

frequencies of C orylus/ Myrica type pollen imply there were substantial stands of hazel, although 

Myrica gale is currently locally abundant at Fen Bogs and may contribute quantities of pollen to 

this Corylus/Myrica group. Cal/una vulgaris, Cyperaceae and Sphagnum, the dominant mire and 

moorland taxa, are abundant throughout the pollen profile. Sphagnum spores vary in abundance, 

and are particularly frequent between cal. AD 100 and 750, and from cal. AD 1300 to the 

present-day. 

Between 800 cal. BC and 200 cal. BC, arboreal species and Corylus/Myrica are particularly 

abundant, with corresponding low frequencies of herbs and dwarf shrubs. After circa 200 cal. 

BC woodland trees and shrubs decline sharply. Herbs species are particularly abundant between 

200 cal. BC and cal. AD 400, dominated by the Poaceae, Plantago lanceolata and Brassicaceae. 

A further important palynostratigraphic change identified by the cluster analysis, involves 

arboreal pollen frequencies increasingly sharply, an event which is 14C dated to circa cal. AD 420 

at site D. During this phase the most abundant woodland taxa are Betula, Alnus, Quercus and 

Corylus/Myrica-type. Paralleling the increase in trees and shrubs is a decline in herb species. 

Trees and shrubs species remain abundant until circa cal. AD 750, when there is a gradual 

decline. Subsequently tree and shrub species increase in abundance between cal. AD 900 and 

1400, which is followed by a gradual decline after cal. AD 1100. From cal. AD 1400 onwards, 

moorland and herbaceous taxa dominate the palynostratigraphy, with Poaceae, cereal pollen, 

Plantago lanceolata and Rumex the most abundant of the herb taxa. The final change in the 



Table 5.1. Chronological horizons on the May Moss peat profiles. 1 age of the current mire surface. 2 onset of commercial conifer afforestation 
(Statham, 1989). 3 14C dates obtained from May Moss core D2 during this research. 4 14C date obtained at Harwood Dale Bog (Atherden, 
1989). 

Lab. No. Depth Equivalent Equivalent Conventional Calibrated range BP (20-) Calibrated range ADIBC 

onD2 depth on Dl depth on B C14 age (with the intercepts) (20-) 

(with the intercepts) 

n/a 0 0 0 n/a n/a 19971 

n/a 10-15 10-15 10-15 n/a n/a 19402 

..-

..-

SRR 59273 80-83 75-85 52-62 685 ±50 690(657)545 cal. AD 1260(1293)1405 
tv 

SRR 59283 120-123 105-115 n/a 1195 ±50 1260(1167,1163,1079)984 cal. AD 700 (870) 975 

SRR 59293 131-134 125-135 n/a 1305 ±50 1306(1260,1196,1192)1080 cal. AD 650 (690) 860 

SRR 59303 171-174 165-175 125-135 1640 ± 50 1690(1530) 1407 cal. AD 260 (420) 555 

HAR 59164 n/a 250-260 180-190 2190 ±90 n/a 400 (200) 5 cal. BC 
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palynostratigraphy occurs towards the very top of the pollen profiles, with increases in the 

frequencies of Pinus and Picea during a phase when the majority of tree taxa decline. 

5.2.2 Fen Bogs 

The vegetation history uncovered from Fen Bogs is based on pollen analysis of a single peat core. 

The pollen diagram is displayed in figure 5.3. The Fen Bogs profile has not been 14C dated, but a 

series of 14C dates was obtained for a pollen profile sampled in close proximity to the current 

profile (Atherden, 1976a; 1976b). Depths equivalent to four of the horizons dated in the earlier 

research can be identified in this current pollen profile. These horizons occur at similar depths to 

those in the previous research and they are utilised to provide a chronology for the current pollen 

profile. A cautious approach is used, correlating these dates with a 10 cm vertical interval of peat 

across the stratigraphic event. The 14C chronology is calibrated to an absolute chronology using a 

decadal tree-ring data-set (Vogels et at., 1993). Additionally there is a sharp increase in Pinus 

frequencies near the top of the pollen profile reflecting modern conifer afforestation from the 

1930s onwards. Fen Bogs is an actively accumulating mire, therefore the mire surface has a 

present-day age, AD 1995. All these chronological horizons are listed in table 5.2, and linear 

interpolation between the horizons is used to generate a time series for the peat sequence. 

The Fen Bogs pollen diagram pertains to the last two millennia, with the base of the core 

equivalent to 100 cal. BC. The palynostratigraphy contains a series of clear fluctuations in the 

abundance of woodland trees and shrubs. Cluster analysis identifies six main clusters with similar 

pollen assemblages, and signifies that the most significant changes within the palynostratigraphy 

occurred circa cal. AD 500,850, 1300, 1700 and 1950. The most abundant woodland taxa are 

Betula, Quercus, Alnus and Corylus avellana. However it must be noted that the taxonomic 

status of Corylus/Myrica type pollen presents problems at Fen Bogs, because Myrica gale is 

currently an important component of the flora, and may have also contributed quantities of pollen 

in the past. It is impossible to be certain whether the substantial quantities of CorylusiMyrica 

undiff. represent a local Myrica gale population or the presence of substantial stands of Corylus 

avellana within the pollen catchment area of Fen Bogs. 

Between 150 cal. BC and cal. AD 500, near the base of the pollen profile tree populations were 

very low and herbaceous pollen dominates the assemblages, specifically the Poaceae, cereal 

pollen, Plantago lanceolata and the Brassicaceae. There were also substantial quantities of 

Pteridium. Cluster analysis identifies a significant change in the palynostratigraphy around cal. 

AD 500, which involves an expansion in the tree population and a decline in herb communities. 



if). 

~ 

114 

~~ 
'~ti 

~ 
6>c.) 

.y.~ 

· . . 
: : : r~ 

Ie : .. , ........ r .... " .. 1 i.,F . . 
~. ... . .. ~---=-:-w. 
· . . · . . · . . · . . · . . · . . · . . · . . · . · . · . · . 

tiib 
4} ~.f: 

, .... 0 
&q, V ..1..BLh..ll.llladUll 

&q, 9 .... 0 
~~0' f :" ...... ': 

.... 6> •• 
&..., () f .. ...... .... .. ..... ... • ... 1. .. .. : .. £ 

& '/.Jl .. . 
1~ ~ f. . ........ .. ~ ... . .. !.~~~J 
.~ . .. 
~f ......... : ......... : ...... : ...... : .. .F . ., 

&1; .•.. ~ 

&1; ~p J,.. ' ............ i , ... 11 .. , II .. II(, .. II .. uJd' .. i" ....... i.u£ % ,. . 
&q, /J f _ ... : , ..... :.. • ... i ... ~ .. £ 

c.) •••• ... '/.:, f . . . . f'" ""~ . . d' . 
~.. ...... ,h,11 h, .... d 11""~"'I",gl '''Uh .. " .. t,II 

~ ... . 
'9tii f : : : : £~ 
.0 ~ f ..... " III'; , .... III 1111 • .,:11," ... " .. 111[ ......... , " .. r 
"OI~ :::. 
6>' 9p f. : : : : r 
(;Iv 
·V f.. ~J. 

&Q~~ f l ",", , .. ,.... ........ L.r 
(ill:» lfldaa ~ ~ ~~; ~ ~~~ ~ ~ ~ ~ ~ i§ ~ ~~ ii ~ ~ ~ ~ ~ ~ ~ 

I , I i'i \ I i'i I ii i ii I iii I ii i ~ : iii I iii I iii fdill II .Jili " Ii 

Ja/av SleaA palelqneJ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~o~~ 
t , I I , , I I , ""'" , ",' ". ", t, ,,',,'''''''',,' 

Figure 5.3. (part i). Pollen diagram from Fen Bogs. Taxa are expressed as percentages of the 
pollen sum. Aquatics and spores are expressed as percentages of the pollen sum plus aquatics and 
spores. Circles signify frequencies amounting to less than 1 % of the sum. Charcoal frequencies 
are expressed as the number of shards per 50 exotics. The dendrogram presents the results of a 
sum of the squares cluster analysis. 
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Figure 5.3. (part ii). 



Table 5.2. Chronological horizons on the Fen Bogs peat profile. 1 age of the current mire surface. 2 onset of commercial conifer afforestation 
(Statham, 1989).3 14C dates obtained at Fen Bogs by Atherden (1976). 

Lab No. Depth Central Conventional Calibrated range BP (20) Calibrated range ADIBC (20) 
range (em) depth (em) C14 age (with the interee~ts} {with the interec~ts} 

n/a 0 0 n/a n/a 19951 

n/a 5-15 10 n/a n/a 19402 

T1151 3 75 - 85 80 390 ±100 619 (464) 0 cal. AD 1331 (1486) 1954 

TI0873 150 - 160 155 1060 ±160 1295 (995) 667 cal. AD 655 (955) 1283 

TI0863 205-215 210 1530 ±130 1707 (1408) 1177 cal. AD 243 (542) 773 

TI0853 280 - 290 285 2280 ±120 2714 (2325, 2319, 2313, 2214) 1951 764 (376, 370, 364, 265) 1 cal. Be 

I---" 

I---" 

0\ 
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Tree pollen frequencies remain high until circa cal. AD 800, when a gradual decline is initiated, 

which continues until circa 1000. After circa cal. AD 1000 there is a clear increase in the 

abundance of tree species and a rapid expansion of moorland communities, name Iv Cal/una 

vulgaris and other Ericaceae. These changes are preceded by a sharp charcoal spike around cal. 

AD 1000. 

Trees, specifically Betula, Quercus and Alnus are particularly abundant between cal. AD 1100 

and 1400, after which there is a clear reduction in woodland communities and a concurrent 

expansion of herb and moorland taxa. Cereal pollen, Plantago lanceolata and Brassicaceae 

display their highest frequencies between cal. AD 1400 and the present-day. The cluster analysis 

dendrogram identifies this change as a highly significant event in the palynostratigraphy. Tree 

taxa remain in decline throughout the remainder of the profile, with the exception of a minor peak 

around cal. AD 1500-1600 and a substantial increase in Pinus and Picea within the surface 

layers. 

5.2.3 Yarlsey Moss 

The palynostratigraphy at Yarlsey Moss was uncovered through the analysis of a single peat 

profile. The pollen diagram is displayed in figure 5.4. Three horizons from the Yarlsey Moss peat 

profile were sampled for conventional radiometric 14C analysis. The 14C dates were calibrated to 

an absolute chronology using a decadal tree-ring data-set (Vogels et a/., 1993). In addition to the 

14C dated horizons, the palynostratigraphy contains evidence of two significant events in the 

regional vegetation history, which can be used as chronological marker horizons. Near the base of 

the peat profile there is a massive reduction in arboreal pollen frequencies, which represents the 

Iron Age and Romano-British woodland clearances, and this event has been 14C dated at 

Harwood Dale Bog to 2190 ±80BP [400(200)5 cal. BC] (Atherden, 1989). The subsequent 

woodland regeneration is 14C dated, although the dated horizon is 10 cm above the base of the 

increase in arboreal pollen. The increase in arboreal pollen is broadly linked to the Roman 

withdrawal from Britain, and has been 14C dated in this project at May Moss site D to 1640 

±50BP [cal. AD 260(420)555]. These two palynostratigraphic horizons are used to supplement 

the 14C chronology. Furthermore, Yarlsey Moss is an actively accumulating mire, consequently 

the mire surface has a present-day age, AD 1996. 

The palynostratigraphic horizons and the 14C dates are listed in table 5.3. Linear interpolation 

between these chronological marker horizons produced a time series for the peat sequence. The 

time series is displayed on the pollen diagram, which shows that the accumulation of peat at 
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Figure 5.4. (part i). Pollen diagram from Yarlsey Moss. Taxa are expressed as percentages of 
the pollen sum. Aquatics and spores are expressed as percentages of the pollen sum plus aquatics 
and spores. Circles signify frequencies amounting to less than 1 % of the sum. 14C dates are 
expressed in years BP. The dendrogram presents the results of a sum of the squares cluster 
analysis. 
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Table 5.3. Chronological horizons on the Yarlsey Moss peat sequence. 1 age of the current mire surface. 2 14C dates obtained at Yarlsey Moss 
during this research. 3 14C date obtained at May Moss. 4 14C date obtained at Harwood Dale Bog (Atherden, 1989). 

Lab. No. Depth Conventional C14 age Calibrated range BP (20) Calibrated range ADIBC (20) 
(cm) {with the interce~ts} {with the intercepts} 

n/a 0 OBP n/a AD 1996 

BETA 106589 76-80 590 ±80 BP 671 (618,608,555) 504 cal. AD 1275 (1400) 1450 

BETA 106590 126-130 740 ±80 BP 793 (668) 545 cal. AD 1170(1280) 1400 

BETA 106591 176-179 1280 ±60 BP 1304 (1235, 1204, 1181) 1009 cal. AD 650 (720, 735, 760) 885 

SRR 59303 185-195 1640 ±50 BP 1690(1530) 1407 cal. AD 260 (420) 543 

HAR 59164 220-230 2190 ±80 BP n/a 5 (200) 400 cal. BC 

....... 
tv 
0 
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Yarlsey Moss has been far from consistent. A slower rate of accumulation clearly occurs at the 

base of the profile, if the palynostratigraphic horizons are to be believed. However this view is 

also supported by the plant macrofossil stratigraphy. The basal peat is highly humified with few 

recognizable plant remains, which are typical characteristics of peat that has accumulated slowly. 

After cal. AD 650 there is a stratigraphic change to poorly humified Sphagnum-rich peat, which 

typically accumulates relatively rapidly. These stratigraphic changes account for the variations 

identified in the peat accumulation rates and provide an explanation for the variations in the time 

senes. 

Peat accumulation at Yarlsey Moss was probably initiated around 400 cal. BC, and the 

stratigraphy covers the period from 400 cal. BC to the present-day. The cluster analysis identifies 

four main clusters with similar pollen assemblages, and signifies that the most significant changes 

within the palynostratigraphy occurred circa cal. AD 0, 500 and 1650. Trees are only abundant 

at the base of the profile and after a sharp decline around 50 cal. BC the percentages of tree 

pollen are very low, not exceeding 20%. The decline in woodland species is mirrored by a rise to 

dominance by mire and moorland taxa. Calluna vulgaris, Cyperaceae and Sphagnum are very 

abundant throughout the remainder of the profile, perhaps reflecting an absence of woodland on 

the central moorland plateau, which almost certainly was blanketed by heather moorland. 

The sequence of vegetation changes is more complicated than indicated in the broad synthesis 

above, with tree taxa declining around 50 cal. BC and replaced by herb taxa, specifically the 

Poaceae, Plantago lanceolata and Potentilla. Around cal. AD 500 these herb taxa decline and 

there is a massive expansion of Calluna vulgaris. Additionally there are minor increases in the 

abundance of several tree taxa around cal. AD 500 Betula, Quercus and Alnus. The cluster 

analysis identifies the oscillations in tree frequencies between 100 cal. BC and cal. AD 700 as 

the most significant changes in the palynostratigraphy. Moorland taxa dominate the remainder of 

the pollen profile. However further fluctuations in the abundance of non-moorland taxa can be 

detected in the palynostratigraphy. Frequencies of tree pollen remain relatively constant between 

cal. AD 500 and 1200, even increasing slightly around 1000. However between cal. AD 1200-

1300 there is a further decline in tree pollen, followed by subsequent expansion in tree pollen 

frequencies 14C dated to 590±80 BP [cal. AD 1275(1400)1450]. This expansion was short-lived 

and followed by a gradual decline in tree species, which is mirrored by increases in the Poaceae, 

cereal pollen, Plantago lanceolata and Brassicaceae. These herb taxa are abundant from circa 

cal. AD 1400 to the present-day. The fmal event visible within the palynostratigraphy is the 

increase in Pinus frequencies towards the top of the pollen diagram. 
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5.2.4 Harwood Dale Bog 

The vegetation history uncovered from Harwood Dale Bog is based upon pollen analysis of a 

single peat profile and the pollen diagram is displayed in figure 5.5. Two horizons from the 

Harwood Dale Bog peat profile were sampled for conventional radiometric 14C analysis. The 14C 

dates are calibrated to an absolute chronology using a decadal tree-ring data-set (Vogels et a/., 

1993). In addition to the 14C dated horizons, in previous research the entire Harwood Dale Bog 

peat sequence was analysed, a process that included 14C dating of the palynostratigraphy 

(Atherden, 1989). These five 14C dates are older than the 2000 year time frame that is the subject 

of this thesis, spanning the period from 5310 ±80 BP to 2190 ±80 BP. However the youngest 14C 

date provides an age estimate for the base of the massive Iron Age and Romano-British woodland 

clearances, and these woodland clearances are visible in the current profile. Consequently the 14C 

date obtained for this event by Atherden (1989) is applied to the current peat profile. 

The palynostratigraphic marker horizon and the 14C dates are listed on table 5.4. The three 

chronological horizons are evenly spaced down the profile, identifying a relatively uniform 

accumulation rate of 1 cm per 13.84 years. Linear interpolation between the chronological 

horizons generated a time series for the peat sequence, which is displayed on the pollen diagram. 

This time series indicates the peat stratigraphy is truncated, reflecting the impact of centuries of 

peat extraction at the site. The base of the pollen sequence is equivalent to circa 500 cal. BC and 

the truncated top of the sequence is equivalent to circa cal. AD 1100, with the palynostratigraphy 

containing approximately 1500 years of information. 

Moorland taxa dominate the entire peat sequence, with Cal/una vulgaris exceeding 20% 

throughout the profile; furthermore Cyperaceae and Sphagnum are also abundant. However, 

there are also significant fluctuations in the abundance of woodland species. The cluster analysis 

identifies four main clusters with broadly similar pollen assemblages, and signifies that the most 

significant changes within the palynostratigraphy occurred circa 150 cal. BC, cal. AD 400 and 

cal. AD 950. Tree species were abundant prior to 50 cal. BC, especially Betula, Quercus and 

Alnus. CoryluslMyrica-type was also abundant probably reflecting the presence of hazel within 

the region's woodland. Between 50 cal. BC and cal. AD 400 tree species decline sharply in 

abundance and herbs increase in abundance, with the Poaceae and Plantago lanceolata the 

dominant taxa. After cal. AD 400 tree species increase and remain abundant until circa cal. AD 

950, when there is a further decline in arboreal ponen that extends to the top of the diagram. 
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Figure 5.5. (part i). Pollen diagram from Harwood Dale Bog. Taxa are expressed as percentages 
of the pollen sum. Aquatics and spores are expressed as percentages of the pollen sum plus 
aquatics and spores. Circles signify frequencies amounting to less than 1 % of the sum. Charcoal 
frequencies are expressed as the number of shards per 50 exotics. 14C dates are expressed in years 
BP. The dendrogram presents the results of a sum of the squares cluster analysis. 
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Table 5.4. Chronological horizons on the Harwood Dale Bog peat profile. 1 14C dates obtained at Harwood Dale Bog during this research. 2 14C 
date obtained at Harwood Dale Bog (Atherden, 1989). 

Lab. No. Depth Conventional Calibrated range BP (20") Calibrated range ADIBC 
(em) C14 Age (20") 

BETA 1065931 30-34 1460 ±80 1408 (1338, 1322, 1314) 1294 cal. AD 430 (620) 695 

BETA 1065941 56-60 1790 ±80 1878 (1706, 1645, 1635) 1531 cal. AD 85 (245) 415 

HAR 59162 90-100 2190 ±80 n/a 400 (200) 5 cal. BC 

Table 5.5. Chronological horizons on the Bluewath Beck peat profile. 1 14C dates obtained at May Moss. 2 14C dates obtained at Bluewath Beck 
during this research. 3 14C date obtained at Harwood Dale Bog (Atherden, 1989). 

Lab. No. Depth Conventional Calibrated range BP (20") Calibrated range AD/BC 
(em) C14 Age (20") 

SRR 59271 5-15 685 ±50 690 (657) 545 cal. AD 1260 (1293) 1405 

BETA 1065922 60-63 1290 ±60 1341 (1262) 1077 cal. AD 650 (705) 885 

SRR 59301 70-80 1640 ±50 1690 (1530)1407 cal. AD 260 (420) 555 

HAR 59163 95-105 2190 ±80 n/a 400 (200) 5 cal. BC 

....... 
tv 
VI 
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5.2.5 Bluewath Beck 

The vegetation history uncovered from Bluewath Beck is based on pollen analysis of a single peat 

profile and the pollen diagram is displayed in figure 5.6. A single horizon from the Bluewath 

Beck peat profile was sampled for conventional radiometric 14C analysis. The 14C date was 

calibrated to an absolute chronology using a decadal tree-ring data-set (Vogels et al., 1993). 

Furthermore the palynostratigraphy contains evidence of three significant events in the regional 

vegetation history, which can be used as chronological marker horizons. Near the base of the peat 

profile there is a decline in arboreal pollen frequencies, which represents the Iron Age and 

Romano-British woodland clearances 14C dated at Harwood Dale Bog to 2190 ±80BP 

[400(200)5 cal. BC] and at Fen Bogs to 2280 ±120BP [407(377)189 cal. BC] (Atherden, 1976a; 

1989). The subsequent woodland regeneration was 14C dated, but the dated horizon is 10 cm 

above the base of the increase in arboreal pollen. This woodland regeneration has been 14C dated 

in the course of this research at May Moss site D to 1640 ±50BP [cal. AD 260(420)555]. There 

is a further reduction in arboreal pollen in· the top 10 cm of peat, which is correlated with a 

woodland clearance during the Medieval Period, also 14C dated at May Moss site D yielding an 

age estimate of685 ±50 BP [cal. AD 1260(1293)1405]. 

The 14C date and the three palynostratigraphic marker horizons utilised to provide a tentative 

chronology for the peat sequence are listed in table 5.5. Linear interpolation between these 

chronological horizons generated a time series for the peat profile, which is displayed on the 

pollen diagram. This chronology indicates that peat accumulation extends up to circa cal. AD 

1350, with the stratigraphy truncated a hypothesis that is supported by evidence of extensive peat 

cutting across the Bluewath Beck basin. The base of the pollen sequence is broadly equivalent to 

400 cal. BC and the top of the profile is truncated with an age of approximately cal. AD 1400. 

Moorland taxa dominate the pollen sequence, with Calluna vulgaris fluctuating around 40% of 

the pollen sum. The cluster analysis identifies four main clusters with broadly similar pollen 

assemblages, and signifies that the most significant changes within the palynostratigraphy 

occurred circa cal. AD 0, 500 and 1100. 

The base of the profile between circa 400 cal. BC and cal. AD 0 contains high frequencies of tree 

pollen, although they decline gradually after cal. AD O. Tree pollen frequencies are low between 

cal. AD 0 and 500, with a concurrent increase in herb species, especially the Poaceae, cereal 

pollen, and Plantago lanceolata. This phase with reduced tree pollen frequencies is also mirrored 

by a substantial charcoal peak. After cal. AD 500 tree pollen frequencies increase and remain 

around 20% almost to the top of the profile, with the exception of a minor decline cal. AD 950-
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Figure 5.6. (part i). Pollen diagram from Bluewath Beck. Taxa are expressed as percentages of 
the pollen sum. Aquatics and spores are expressed as percentages of the pollen sum plus aquatics 
and spores. Circles signify frequencies amounting to less than 1 % of the sum. Charcoal 
frequencies are expressed as the number of shards per 50 exotics. 14C dates are expressed in years 
BP. The dendrogram presents the results of a sum of the squares cluster analysis. 
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1100. Tree pollen frequencies increase between cal. AD 1100 and 1300, before beginning a 

gradual decline towards the top of the profile. Plantago lanceolata, cereal pollen, Brassicaceae 

and wild grasses increase in abundance after circa cal. AD 1350, and remain abundant up to the 

top of the profile. 

5.3 Synthesis of the regional vegetation history 

The palynological history contained in the six palaeoecological profiles comprises a detailed 

picture of vegetation changes across the region during the last 2000 years. Summary diagrams 

expressing the relative abundance of trees, shrubs, mire shrubs and herbs from the six profiles are 

displayed in figure 5.7. The y-axis of figure 5.7 is re-scaled using the chronology derived for each 

site and the pollen profiles are correlated on the basis of the chronology. The profiles are divided 

into 500-year periods to facilitate comparison between the sites and the following synthesis of the 

vegetation and landscape history of the North York Moors is divided into these 500-year periods. 

The initial impression from figure 5.7 is that the palynostratigraphy is broadly similar across the 

region, which tends to support the hypothesis that the pollen profiles present a regional picture of 

the vegetation history. 

Producing a regional vegetation history from a series of pollen profiles has a number of inherent 

methodological constraints. It is impossible to reconstruct the spatial distribution of the 

vegetation, because the pollen assemblages will be derived from local mire plants, vegetation 

surrounding the mire and also a wind-blown regional component. Despite this problem it may be 

possible qualitatively to assign vegetation changes to specific areas. The plant macrofossil 

stratigraphies indicate that the palaeoecological sites have been largely de-forested throughout the 

last 2000 years, and so the arboreal pollen present in the profiles must originate from the 

moorland periphery, and the dales and lowlands surrounding the North York Moors. 

Frequencies of Pinus, a pollen type dispersed by wind typically over large distances, do not 

exceed 20% of the pollen sum in the surface layers at Fen Bogs. These low quantities are 

surprising considering the substantial plantations to the south of the North York Moors. Perhaps 

transfer of pollen from the surrounding lowlands and the southern hills, whilst important should 

not be overemphasised. This state of affairs also applied in the past, with high frequencies of non­

mire pollen still relatively local in origin. Arable crops and weeds are not common on blanket 

mires and the pollen fossil record of these taxa probably reflects their abundance across the 

region. However this pollen could still be relatively local in origin reflecting agricultural 

exploitation of the moorland edge, thereby signifying exploitation at high altitudes. The 
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Figure 5.7. Correlation of the summary pollen diagrams, signifying the relative 
proportions of trees, shrubs, dwarf shrubs and herbs. The y-axis is a time series 
sca1ed in calibrated years ADIBC. The diagram is divided into 500 year segments, 
and is annotated with the main cultural and archaeological periods. Radiocarbon 
dates securing the palynostratigraphy are identified, listing the age estimates in 
radiocarbon years BP. 
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abundance of these arable indicators can be used to estimate the intensity of arable activity 

around the North York Moors. The pollen from mire plants, on the other hand, will for the most 

part be entirely loca~ admittedly with the exception of substantial quantities of wind-blown 

heather and moorland grass pollen. 

In elucidating the factors controlling regional vegetation change, the range of ecosystems within a 

region must be taken into account. The non-moorland areas are likely to sustain a mixture of 

pastoral and arable activity, with non-agricultural land covered by woodland, scrub and heath. 

Fluctuations in the tree and shrub pollen fossil record probably reflect changes in the density and 

spatial extent of non-agricultural land, perhaps providing a semi-quantitative measure of the 

intensity of agricultural activity. Land-use on the North York Moors clearly falls into the 

category of marginal or frontier agriculture, because it has never been and probably never will be 

a prime site for agricultural endeavour. Higham (1985) identifies the North York Moors as a 

region in which environmental characteristics, for example altitude, soil type and climate, render 

pastoralism the most suitable land-use. However, arable cropping of barley and wheat is possible 

at lower altitudes on well drained soils receiving lower rainfall. This means that the southern 

limestone hills, well-drained areas of the dales and the surrounding lowlands offer the prime 

agricultural land. 

The degree of agricultural exploitation on the North York Moors is unlikely to have remained 

constant throughout the last 2000 years, considering the region's demographic, political, and 

cultural history (Spratt, 1993; Spratt & Harrison, 1989). The evolution of the vegetated 

landscape of the North York Moors during the last 8000 years has broadly been in response to 

human activity, with the majority of vegetation changes during the last 2000 years almost 

certainly the product of anthropogenic activity. Previous palynological research on the North 

York Moors identifies three broad phases with reduced woodland, which have been attributed to 

human activity and specifically agricultural expansion (Simmons et al., 1993). However a 

chronology for these vegetation changes was only available at Fen Bogs, which enabled these 

woodland reduction phases to be linked with the late Iron AgelRomano-British period, to the late 

Viking period and to a period of intensive agricultural activity in the early Medieval period. It 

should be noted that the chronology for these vegetation changes contains a considerable error, 

with the standard error of ± 160 years on the 14C date obtained for the Viking woodland decline. 

The following sections discuss vegetation changes in the light of changes in human activity. The 

intensity of human impact on the landscape is controlled by a combination of, amongst other 
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factors, environmental constraints on communities and economic activity, the political system, 

demographic change, technological developments and cultural traditions. Consequently 

interpretation and discussion of regional vegetation changes must draw on climatic, demographic, 

economic and social histories of the North York Moors. 

500 cal. BC to cal. AD 0 (Iron Age) 

The Iron Age palynological history identifies that great changes occurred on the landscape of the 

North York Moors, principally involving a massive reduction in the tree population. Evidence of 

this woodland clearance is present in all the pollen profiles and the cluster analyses signify that it 

represents one of the most significant changes in the palynostratigraphy at all the sites. The age of 

the base of this woodland clearance is secured to the middle of the first millennium cal. BC by 14C 

dates at Fen Bogs and Harwood Dale Bog (Atherden, 1976a; 1989). The absence of dating on the 

higher altitude central moorland plateau is unfortunate, because assuming constant accumulation 

rates at Bluewath Beck the woodland clearance appears to occur later than at Fen Bogs and 

Harwood Dale Bog. 

The decline in arboreal pollen is mirrored by an increase in herbs, particularly species associated 

with human activity. The most abundant herb taxa include the Poaceae, Plantago lanceolata, 

Rumex spp. and Chenopodiaceae, which have all been identified as indicators of pastoral activity 

(Turner, 1964; Behre, 1981). However some of these pastoral indicators typically associated with 

grasslands may have been grown as crops. Pteridium spores are also abundant, perhaps 

encouraged by increased grazing pressure within and near the edges of woodlands. Furthermore, 

some of these agricultural taxa, specifically cereals, Brassicaceae and Asteraceae pollen, have 

been proposed as diagnostic indicators of arable land-use (Turner, 1964; Behre, 1981). These 

arable indicators are present throughout the clearance phase, becoming increasingly abundant in 

the late Iron Age and during the Roman period. 

Grazing pressure within and around the remaining woodland was probably a key mechanism 

responsible for the woodland decline, with herds grazing on young tree shoots, admittedly 

alongside physical felling and removal of trees to clear land for agricultural use. Additionally, 

trees would be felled to provide building materials and as a source of fuel. Wood was a valuable 

fuel for domestic use; furthermore it would have been converted into charcoal for the iron 

smelting industries clearly visible within the region's archaeological history (Spratt, 1993). 

Microscopic charcoal fragments in the Fen Bogs and May Moss peat stratigraphy may reflect the 

burning of wood to produce charcoal. 
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Spratt (1993) and Spratt & Harrison (1989) attribute the massive woodland decline to the 

activities of a substantial Iron Age population inhabiting traditional settlement sites on the North 

York Moors. Communities were distributed following spatial patterns initiated in the Neolithic, 

with concentrations in the lowlands surrounding the moors, in the broad flat dales, in Eskdale and 

with the largest populations on the better agricultural soils of the Tabular Hills. Traditionally, 

information about settlements, the population and land-use during the Iron Age has been difficult 

to fmd on the North York Moors. Elgee (1930) proposed that Bronze Age-type cultures persisted 

until the Roman period, but subsequent archaeological research and palaeobotanical evidence 

identifies that the Iron Age contains the most significant anthropogenic woodland clearances to 

have occurred on the North York Moors during the Holocene (Spratt, 1993; Simmons et al., 

1993). 

Spratt (1993) synthesises Iron Age archaeological research carried out on the North York Moors, 

which reveals a relative paucity of material when compared with, for example, the Bronze Age. 

Concentrations of settlements are identified in the east of the Tabular Hills, at Levisham Moor, 

Cawthorn, Coombe Hill and Thornton Dale, and the agricultural activities of these communities 

would certainly have affected the pollen catchments of F en Bogs, May Moss and Harwood Dale 

Bog. The pollen evidence identifies that a mixed arable and pastoral economy operated on the 

North York Moors throughout the Iron Age and the archaeological evidence tends to support this 

conclusion. Iron Age enclosures, probably used as livestock stockades, have been identified on 

Levisham Moor, Coomb Hill, Thornton Dale and Roxby (Spratt, 1993). Archaeological evidence 

of arable activity consists of numerous "Beehive Quem" finds, particularly concentrated in 

Eskdale and the Tabular Hills. These querns were used to grind grain indicating the presence of 

local arable cropping across the moors. Many of the querns were produced in local factories at 

Goathland, Spaunton Moor and Bransdale, although a large number came from further afield in 

the Pennines (Hayes et al., 1980). Numerous querns across the region have been interpreted as 

indicating the intensification of agricultural activity in the late Iron Age and during the Roman 

period. Spratt (1993) suggests ninety-mile quem trade links to the Pennines indicate a vibrant 

agricultural economy. 

A combination of arable and pastoral farming is probably responsible for much of the Iron Age 

decline in woodland, although industrial activity will also have affected the vegetated landscape. 

Iron ores are readily available on the North York Moors and three iron-working sites have been 

identified, at Levisham Moor, Roxby and Crown End on Westerdale (Spratt, 1993). These sites 
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are probably all Iron Age and required wood resources to produce the charcoal that fired the 

primitive furnaces. The site at Levisham Moor would have drawn on the woodlands within the 

pollen catchment areas of Fen Bogs and May Moss. 

In summary, the period 650 cal. BC to cal. AD 0 contains a vast woodland clearance, indicating 

an increase in the amount of land in agricultural production. Woodlands were under pressure 

from a variety of activities including increased in agricultural activity, increased grazing pressure 

on marginal agricultural land, and felling of trees for the iron smelting industry, domestic fuel and 

for building materials. Increased pressure on the woodland ecosystem arose, because a relatively 

large population was inhabiting the dales, the Tabular Hills and the lowlands surrounding the 

moors. A large or increasing population during the Iron Age is required to explain the vast 

reduction in woodland and this view is supported by a number of authors (Spratt, 1993; Fowler, 

1978). Viewed in the context of demographic expansion at a national level, then population 

expansion in N ortheast Yorkshire is not surprising. 

Peat stratigraphic evidence from the North York Moors identifies substantially wetter conditions 

600-200 cal. BC followed by drier conditions during the late Iron Age, circa 200 cal. Be. The 

combination of an expanding population and environmental conditions not really conducive for 

optimum agricultural production probably necessitated the use of more extensive areas of land. 

This process may have been compounded by land degradation in response to intensive 

exploitation and poor climatic conditions. Improved climatic conditions during the late Iron Age 

probably encouraged continued use of marginal land; however, it is implausible to attribute 

settlement and agricultural expansion into the marginal areas of Britain entirely to advantageous 

climatic conditions (Higham, 1985). The demographic expansion associated with this period 

probably necessitated exploitation of the agricultural frontier (Fowler, 1983), with a relatively 

warm and dry climate during the late Iron Age assisting the process of agricultural expansion 

around the North York Moors. 

Cal. AD 0 to 500 (Romano-British Period) 

The Romans arrived in northeast Yorkshire around AD 70, and largely without interruption 

politically controlled the region until AD410, when the Romans withdrew from Britain. The 

palynology indicates the Romans invaded a thriving mixed pastoral and arable landscape. 

Disruption of this mixed agricultural economy would be manifest in pollen profiles as increases in 

the abundance of trees, produced by limited regeneration of woodlands on marginal agricultural 

land. A detailed chronology of the vegetation changes during this period has previously been 
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unavailable on the North York Moors. However this has been rectified by 14C dating the later 

stages of the Romano-British period at Harwood Dale Bog. There is an absence of evidence of 

interference with the pastoraVarable economy around the time of the Roman invasion, which 

whilst not completely conclusive, implies the arrival of the Romans had little effect or only a 

short-lived impact on the native Brigantian communities. 

Abundant weed species, specifically Poaceae, Plantago lanceolata, Rumex spp. and Pteridium, 

indicate pastoral activity continued to be an important land-use activity on the North York 

Moors. However cereal, Asteraceae and Brassicaceae pollen are more abundant during the 

Roman period, perhaps reflecting intensification of arable activity. The palynological evidence 

indicates the mixed pastoral and arable economy continued to thrive on the North York Moors, 

maintaining pressure on the remaining woodland. Exceptionally high frequencies of Potentilla, 

exceeding 10%, occur at Yarlsey Moss during the Romano-British period, which, given that 

species in the genus Potentilla are insect pollinated and a poor rate of dispersal, must reflect 

substantial local occurrences. The species of Potentilla likely to inhabit acidic peat bogs or 

moorlands are Potentilla erecta and Potentilla palustris. However Potentilla erecta is the more 

likely candidate inhabiting moorland, heaths and the drier areas of blanket bogs. Moore et al. 

(1986) found that the abundance and flowering of Potentilla erecta is enhanced by intensive 

sheep grazing, and so high frequencies of Potentilla pollen may indicate grazing on the moorlands 

and in the case of Yarlsey Moss grazing pressure at a relatively high altitude. 

Circa cal. AD 500, a sharp increase in tree populations is evident in all the pollen profiles. This 

arboreal regeneration is at the expense of the agricultural weeds and crops. This event clearly 

represents a major land-use change, with a decline in arable and pastoral activity reducing the 

pressure on the remaining woodlands and allowing the regeneration of trees on marginal 

agricultural land. A consequence of this research is that the post-Roman woodland regeneration is 

now one of the most intensively dated horizons on the North York Moors, with 14C dates from all 

the sites. These dates suggest that the woodland regeneration occurred during the 5
th 

and 6
th 

centuries cal. AD, linking the event with the aftermath of the departure of the Romans. 

Assessing how this palaeoecological history conforms with other sources is difficult given the 

paucity of Roman archaeological remains on the North York Moors. The North York Moors 

were an economic backwater of Britain during the Roman period, and so the degree of 

romanisation would not have been great (Hartley, 1989). Hartley (1989; 1993) suggests little 

opposition was met during the invasion, to some extent supporting the palynological evidence of 
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no major landscape changes. Furthermore the distribution of settlements probably was little 

different to the previous Iron Age patterns, concentrated in the Dales, Eskdale, the Tabular Hills 

and lowlands surrounding the moors. The small number of romanised settlements and the 

backwater nature of the North York Moors probably means the majority of sites were occupied 

by native Brigantian communities. 

Military archaeological remains are the most visible symbols of Roman occupation, with the main 

forts at York and nearby Malton. On the North York Moors, military incursions were staged 

through forts at Lease Rigg (Hartley, 1993) and at Cawthorne (Richmond, 1930; Hartley, 1993). 

Both these forts were abandoned before the 2nd century AD, perhaps further testament to the 

peaceful nature of Roman occupation within the region. Other military installations include the 

coastal stations at Scarborough, Ravenscar, Goldsborough and Huntcliff, which were manned in 

response to raids from the continent around 367 AD (Hartley, 1989). Route-ways developed 

initially for military purposes would also have been of tremendous value to local communities, 

encouraging trade links. Wade's Causeway is one of the best exposed examples of a Roman road, 

which probably connected forts at Lease Rigg, Cawthorne and a terminal coastal fort, with a road 

between Malton and Hovingham (Hartley, 1993). 

These military installations would have had little direct impact on the vegetated landscape. 

However, the development of route-ways, the presence of garrisons at Malton and periodic 

smaller units present at the other sites, may have created conditions ideal for a market economy. 

Musgrove (1990) suggests northern Britain thrived economically during the Roman period, which 

combined with palynological evidence of more intensive pastoral and arable farming, indicates a 

strong agricultural economy encouraged by a commercial outlook afforded by military grain 

markets at Malton. The peat stratigraphies at May Moss, Harwood Dale Bog and Yarlsey Moss 

all indicate that a dry mire surface persisted throughout the Romano-British period, which is 

interpreted as denoting a dry or warm climate. Favourable climatic conditions increase the 

agricultural potential of the N orth York Moors, perhaps rendering arable production more widely 

sustainable on suitable soils across the region. 

The most significant changes in the vegetated landscape involve substantial increases in tree 

species. This event is identified by cluster analysis at all the sites and occurred circa cal. AD 

400-500. The woodland expansion is broadly equivalent with the departure of the Romans. The 

withdrawal of the Romans around AD 410 caused the disruption of commercial agricultural 

markets, and perhaps forced a return to a subsistence agricultural economy. The loss of demand 
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for agricultural produce probably resulted in a reduced scale of arable and pastoral activity. 

These changes are a useful mechanism for explaining the regeneration of woodland associated 

with this period. Existing woodlands could expand, and heliophytic trees and shrubs, Retula and 

Corylus avellana, were able to invade marginal agricultural land successfully, in the wake of a 

reduction in grazing pressure and clearance activity. 

Cal. AD 500 to 1000 (Anglian and Scandinavian Periods) 

Tree pollen frequencies continue the increases initiated around cal. AD 450, which are attributed 

to social, economic and political turmoil in the wake of the departure of the Romans. Previous 

research identified this woodland regeneration suggesting that it was initiated shortly after the 

Roman withdrawal and continued until the late Viking period (Atherden, 1976b). However it 

appears that this woodland regeneration was actually relatively short-lived, and after circa cal. 

AD 650 arboreal pollen frequencies at May Moss, Fen Bogs and Harwood Dale Bog begin to 

decline. The decline continues up to cal. AD 950-1100, when arboreal taxa at May Moss, Fen 

Bogs and Yarlsey Moss increase sharply in abundance. A similar sequence of events occurs at 

Bluewath Beck, although the chronology for this peat sequence is less secure. The increase in tree 

frequencies at May Moss occurs above a 14C date of 1195 ±50 BP [cal. AD 700(870)975], 

equivalent to a horizon yielding a 14C age of 1060±160 BP [cal. AD 655(955)1283] at Fen Bogs 

(Atherden, 1976a) and below a 14C date of 740 ±80 BP [cal. AD 1170(1280)1400] at Yarlsey 

Moss, placing the woodland expansion firmly in the centuries around cal. AD 1000. 

Poaceae, Brassicaceae, Plantago lanceolata, Rumex acetosa and Pteridium are the most 

abundant agricultural indicators throughout the period, and they are believed to be indicative of 

pastoral land-use (Turner, 1964; Behre, 1981). The arable indicators, cereals, Chenopodiaceae 

and Asteraceae, are distinctly less abundant than during the preceding Roman period, but they 

become more frequent after cal. AD 750. Furthermore Potentilla is distinctly less abundant at 

Yarlsey Moss perhaps reflecting a reduction in the intensity of grazing at higher altitudes. The 

balance of the evidence indicates that despite the collapse of the Roman economy and a return to 

a more subsistence based economy, pastoral and arable farming remained important land-use 

activities within the environs of the North York Moors. 

A deterioration to a wetter climate circa cal. AD 400-500 is evident in the peat stratigraphies at 

May Moss, Yarlsey Moss, Harwood Dale Bog and Bluewath Beck. This climatic deterioration is 

discussed further in chapter 6. In a region marginal for arable production a climatic deterioration 

of this type may have rendered arable cropping untenable or at least difficult. Pastoral farming 
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would also have been adversely affected. Environmental conditions unfavourable for agriculture, 

when combined with the political, economic and social disruption caused by the departure of the 

Romans, probably resulted in partial abandonment of marginal land. The better soils and 

sustainable agriculture in the Tabular Hills and lowlands surrounding the North York Moors 

offered a more suitable alternative. During the 7th and 8th centuries cal. AD there was a further 

decline in tree pollen frequencies and an increase in the abundance of arable indicator species 

probably produced by agricultural expansion, which continued until circa cal. AD 1000. 

The period AD 500-1000 has been referred to as the Dark Ages, which is a reference to the lack 

of historical records rather than a comment about political, social and economic order. 

Archaeological remains are also scarce, especially during the 6th and 7th centuries. However 

abundant place-name evidence pertaining to this period implies the moors were well populated, 

with settlements concentrated in the traditional areas of the Tabular Hills, the Dales, the coastal 

fringe and lowlands surrounding the North York Moors (Lang, 1989). Yorkshire was a focus for 

Anglian and Scandinavian settlement of Northern England, however the relief, climate and 

inhospitable nature of North York Moors renders it likely that they would have remained an 

economic and cultural backwater. 

In addition to continental immigration, Bede in his "Ecclesiastic history of the English people" 

records the arrival of Christianity and monastic settlements at Whitby in AD 657, Hackness after 

AD 657 and Lastingham in AD 659, perhaps providing early evidence of localised immigration 

and population expansion (Colgrave & Mynors, 1969). Demographic and agricultural expansion 

between cal. AD 650 and 850 overlaps with peat stratigraphic evidence of very dry mire surface 

conditions at May Moss and Yarlsey Moss, with cal. AD 650-850 containing perhaps the driest 

period during the last 2000 years. Although, a climate advantageous for agricultural endeavour 

probably encouraged expansion into the uplands, demographic growth during this period would 

have been the major factor behind increases in pastoral and arable activity (Lang, 1989). 

The few Anglian settlements identified on the North York Moors at Wykeham, Seamer and 

Roxby, and burial sites at Saltburn and Robin Hood's Bay are all on former Romano-British 

sites. Lang (1989) warns against using this scant evidence to suggest continuity of settlement 

from earlier periods; however, using existing or former settlements probably appeared a sensible 

strategy to the population of Anglian Britain. The palaeoecological evidence hints at renewed 

intensity of agriculture during the 7th century, which is in keeping with the limited historical 

evidence; for example Gildas describes a British landscape populated with arable and pastoral 
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communities (Winterbottom, 1978). This indicates the rural landscape continued relatively 

unaffected by political and economic trouble caused by the withdrawal of the Romans and wars 

with the Picts and the Scots. After circa AD 850, Scandinavian colonisation supplemented the 

population of the North York Moors, but probably with little impact on the distribution of 

settlements and land-use activity. Lang (1989) uses the profusion of churches and sculpture from 

this period as evidence of a population expansion during the 10th and 11 th centuries, concentrated 

in the southern hills, on the coastal fringe and in the lowlands surrounding the North York Moors. 

The palynological evidence does not contradict this, with high frequencies of arable and pastoral 

indicators implying agricultural expansion (Behre, 1981), which probably reflects the activities of 

an expanding population (Fowler, 1983; Lang, 1989). 

Cal. AD 1000 to 1500 (Medieval Period) 

Vegetation changes during this period are recorded in pollen profiles at May Moss, Yarlsey 

Moss, Fen Bogs and Bluewath Beck. Unfortunately, the Harwood Dale Bog profile terminates 

shortly after cal. AD 1000. Tree species increase in abundance around cal. AD 1000, and 

although this is followed by a minor decline, tree pollen frequencies remain relatively high until 

around cal. AD 1500. Poaceae, Plantago lanceolata, Rumex acetosa, Brassicaceae, Potentilla­

type and Pteridium increase in abundance between cal. AD 1000-1500, which is indicative of 

intensification of pastoral agriculture (Behre, 1981). Cereal and Asteraceae pollen also increase 

markedly during this period, reflecting expansion and intensification of arable farming. 

It is difficult to gauge the extent of variations in agricultural land-use from the palaeoecological 

curves of arable and pastoral indicator species, other than to say a mixed arable/pastoral 

economy persisted on the North York Moors. Fortunately the abundance of woodland taxa also 

provides a measure of agricultural intensity. The remaining areas of woodland on the North York 

Moors in post-Norman Conquest England were limited to the steep valley-sides, the north facing 

scarp slopes of the Tabular hills and to the edges of the moors (Hodgeson, 1966). Consequently 

fluctuations in the amount of woodland may reflect expansion of agriculture into these marginal 

areas, which probably would only occur during economic and demographic boom periods. 

Therefore frequencies of tree pollen can tentatively be used to identify fluctuations between a less 

and more intensive agricultural economy. The chronology developed in previous research at Fen 

Bogs indicates that a woodland decline initiated in the late Viking period continues into the 

Medieval period, up to a subsequent woodland regeneration, which has been 14C dated to 

390±100BP [cal. AD 1331(1486)1954] (Atherden, 1976b). 
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The palynological history uncovered in this research indicates the picture maybe more 

complicated, which is not unexpected considering that the period AD 1000-1500 contains a series 

of demographic, political, economic and social fluctuations, which will have affected the 

landscape of the North York Moors. Documentary evidence pertaining to this period becomes 

increasingly abundant, providing a great d~ul of information about settlements, the population 

and land-use. The Domesday Book surveyed in AD 1085-86 shows that settlements were 

concentrated in the Tabular Hills, the dales, the coastal fringe and lowlands surrounding the 

North York Moors (Harrison, 1993; Harrison & Roberts, 1989; Hodgeson, 1966). The 

population of these settlements probably was engaged in a mixture of arable and pastoral 

farming, and although the central moorlands were not inhabited, they were annexed by 

surrounding settlements and exploited as summer grazing. 

The period immediately after the Norman Conquest was a fraut time for the inhabitants of the 

North York Moors. The "scorched earth" policy, carried out by William I's army in the winter 

1069-1070, devastated large areas of Yorkshire (Palliser, 1993; Harrison & Roberts, 1989). 

Additionally, the Anglo-Saxon Chronicles and William of Malmesbury's Chronicles record 

several incidents of pestilence, poor harvest and famine between AD 1066 and 11 00 (James 

Menuge, 1997). A sequence of events of this magnitude would cause a decline in population and 

a reduction in intensity of agricultural activity especially in marginal areas. Landowners 

unaffected by this sequence of events would have moved their tenants to the better soils on the 

Tabular hills and at lower altitudes, to ensure the most productive land was fully exploited at the 

expense of marginal areas (Harrison & Roberts, 1989). This would encourage limited re-growth 

of trees and woodland expansion on the edges of the moors, on the steep valley sides and on 

north-facing slopes on the Tabular hills, perhaps accounting for the minor increases in tree 

frequencies identified in the pollen profiles. 

The economic and demographic malaise of the late 11 th century was followed by a period of 

revival during the 12th and 13th centuries (Hodges on, 1966; Harrison & Roberts, 1989). 

Colonisation by tenant farmers on privately owned land and by monastic communities shortly 

after the Norman Conquest, transformed parts of the North York Moors into an intensively 

exploited landscape. Settlements admittedly were concentrated in the traditionally populated 

areas, but with frontier settlements on the moorland fringe up to altitudes of 240 m (Hodges on, 

1966; Harrison & Roberts, 1989). This expansion of population and agricultural activity may 

account for the increases in arable and pastoral indicator pollen taxa during this period. The 

expansion of cereal pollen indicates intensification of arable farming to a scale previously not 
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seen within the region. This period of arable expansion is synchronous with a climatic period with 

conditions favorable for agricultural expansion, referred to as the Medieval Warm Period. Peat 

stratigraphies on the North York Moors signify that warm or dry conditions persisteti between 

cal. AD 1200-1400. This period contains demographic, economic and climatic conditions that are 

all favourable for colonisation and agricultural expansion of the marginal agricultural frontier 

(Parry, 1976; 1978; Higham, 1985). 

There are substantial reductions in tree pollen frequencies associated with this demographic and 

agricultural expansion; however, it is relatively short-lived with a further woodland expansion 

during the 14th and 15th 
centuries. This increase in tree pollen is probably caused by a reduction 

in agricultural activity in the wake of demographic collapse during the late 14th century. The 

Anonimalle Chronicle records a pestilence in AD 1346, and the first instance of the Black Death 

in AD 1348, with recurrences in AD 1361, 1369, 1373 and 1378 (Galbraith, 1927). The late 14th 

century is also the beginning of climatic deterioration that extends into the "Little Ice Age" sensu 

stricto (Grove, 1988). Peat stratigraphies across the North York Moors contain evidence of a 

broad deterioration in climate after cal. AD 1350. 

The combination of the Black Death and the results of an unfavorable climate, which include 

failed harvests and famine (James Menuge, 1997), decimated the popUlation of Yorkshire 

(Harrison & Roberts, 1989). Mackay & Tallis (1994) refer to a "Malthusian"-type crisis, 

affecting the population of the Forest of Bowland in Lancashire, which caused an increase in 

arboreal pollen frequencies, probably in response to a reduction in land-use pressure. The North 

York Moors are a similar marginal or frontier region and a demographic collapse could be 

responsible for increases in arboreal pollen frequencies on the North York Moors during the late 

14th and the 15th century. There was a further reduction in woodland towards the end of the 15th 

century and continuing throughout the 16th century. This woodland decline is synchronous with 

increases in arable and pastoral indicators, reflecting further intensification of agriculture. 

Demographic and economic growth during the 16th century allowed the resumption of agricultural 

expansion associated with the 12th and 13th century boom period (Hodgeson, 1966). 

Cal. AD 1500 to the present-day 

Palaeoecological records pertaining to the last 500 years are available at May Moss, Fen Bogs 

and Yarlsey Moss. Frequencies of tree pollen are low at all the sites reflecting a reduction of 

woodland area across the North York Moors. Turton (1894) encountered numerous accounts of 

tree felling within the Royal Forest of Pickering between AD 1252 and 1707 in charters, forest 
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records and Duchy of Lancaster estate records. Woodland clearance continued to such an extent 

that only unimproveable land on very steep valley sides remained wooded (McDonnell, 1989). 

The impoverished state of woodlands was the product of a combination of factors including 

commercial harvesting of trees for trade, agricultural expansion and the abandonment of positive 

forest management techniques associated with the decline of charcoal-burning iron furnaces. 

Industrial wood reserves and coppicing practices were no longer necessary and many of the 

coppiced woodlands were eventually cleared (McDonnell, 1989). 

Herbaceous pollen types, particularly those of the arable or pastoral weeds and crops are very 

abundant, exceeding 50% of the pollen assemblages. The most abundant taxa are the Poaceae, 

Plantago lanceolata and Rumex acetosa, which are all indicative of pastoral activity (Behre, 

1981). However cereal pollen and the arable weeds, the Asteraceae, are also very abundant, 

reflecting intensification and improvements within the arable sector. The balance between arable 

and pastoral agriculture is supported by tithe records of rural land-use from Eskdale, which 

indicate that two-thirds of agricultural land was used for pastoral farming, with the remaining 

third for arable crops. This balance is probably representative of agricultural land-use across the 

region during the 19th century (McDonnell, 1989), revealing that even with intensive exploitation 

of the landscape the North York Moors remained marginal for arable production (Higham, 1985). 

The agricultural expansion evident within the pollen records is probably the result of a steadily 

increasing population and a more commercial approach to farming. The Dissolution of the 

Monasteries, after AD 1536, freed more agricultural land, which allowed established landowners 

and new freeholders to purchase land. Parliamentary Enclosure between AD 1748-1864 had a 

profound impact on much of Britain, but was less extensive on the North York Moors, which had 

experienced "assarting" and piece-meal enclosure since the Middle Ages (Harrison & Roberts, 

1989; McDonnell, 1989; Harrison, 1993). Woodlands were not the only part of the vegetated 

landscape to give way to the agricultural economy, with attempts to turn moorland into 

agricultural production on Commondale Moor, Lockton Moor and around Langdale during the 

17th and 18th centuries. 

Moorland plants, particularly Cal/una vulgaris, became very abundant during the 19
th 

and 20
th 

centuries. The expansion of moorland reflects management practices maintaining the moors, 

partly for grouse rearing and partly as rough grazing for sheep. Cyclical burning of the heather 

encourages young shoots which the grouse prefer, and has helped produce and maintain a virtual 

Cal/una vulgaris monoculture on the central plateau since the 19th century. The most recent 
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change in the landscape of the North York Moors, evident in pollen profiles, is an increase in tree 

frequencies during the 20th century. In the case of the deciduous trees- birch, oak, alder and ash­

this represents the onset of positive woodland management techniques, as awareness of the 

conservation value of these habitats has increased during the late 20th century. However the most 

significant woodland expansion involves the conifer species, Pine, Spruce and Fir trees, which 

were introduced into the region in vast commercial plantations by the Forestry Commission, 

initially at Dalby, Bickley and Hackness during the 1920s (Statham, 1989). 

5.4 Conclusions 

The evidence presented in this chapter modifies the traditional view of vegetation changes on the 

N orth York Moors during the last 2000 years and contributes a substantial improvement to the 

independent chronology that is critical for the understanding of vegetation histories. All of the 

pollen profiles contain the woodland clearances initiated in the Iron Age, which clearly is the most 

significant anthropogenic vegetation change during the late Holocene (Atherden, 1976b; 1979; 

1989). The dates obtained for the Romano-British period at Harwood Dale Bog indicates the 

arrival of the Romans had a less significant impact on the vegetated landscape, merely continuing 

the Iron Age trend of woodland decline. The woodland regeneration associated with the Roman 

withdrawal is now supported by a 14C chronology from five sites on the North York Moors. 

The vegetation history, uncovered for the period AD 500 to the present-day, appears to be 

substantially more complicated than revealed in previous research. Phases with reduced and 

extensive agricultural activity have left a clear imprint in both the pollen derived history of 

woodland expansion and contraction, and in the fossil record of arable/pastoral indicator taxa. 

Phases with a reduced scale of agriculture are linked to economic malaise in the aftermath of the 

Roman withdrawal, the devastation of the "harrying of the north" and demographic collapse 

during the 14th century. On the other hand, phases of increased agricultural activity are attributed 

to population expansion, favorable climatic conditions and an economic revival during the 

Anglian and Scandinavian periods; and to upland settlement, favorable climatic conditions, and 

economic and demographic growth during the 12th and 13th centuries, conditions that were 

resumed from the 15th century onwards. These results indicate that utilisation of the landscape of 

the North York Moors was controlled by a diverse array of factors, ranging from climatic 

conditions controlling the nature of agricultural endeavour to the economic, technological, 

demographic and political controls that affected the population of the North York Moors. 
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Reconstructing mire palaeohydrology 

6.1 Introduction 

Information about mire surface wetness is elucidated from testate amoebae. plant macrofossil and 

humification analysis of peat stratigraphies on the North York Moors. The results are presented 

on a site-by-site basis. In the case of May Moss three core sites ,vere used. which at sites C and 

o involved more than one core profile. The May Moss data are also presented on a site-by-site 

basis . The results are presented in the order testate amoebae, plant macrofossil and then 

humification, if applied at each site. Results are presented independently for each core site. 

because a critical evaluation of the comparative performance of the techniques is an important 

objective of this research. 

The palaeoenvirorunental data are presented against both depth and time axes . The chronologies 

for May Moss sites Band D. Fen Bogs, Yarlsey Moss, Haf\vood Dale Bog and Bluewath Beck 

were defined in chapter five. The chronology for May Moss site C is based upon seven I-+C dated 

horizons. The AlVIS age estimates are used in preference to the parallel radiometric assays for 

reasons discussed in chapter seven. In addition a present-day age is applied to the mire surface. 

and the Iron Age/Romano-British woodland clearance occurs at depths of 180-190 cm in May 

Moss site C cores 2 and 3. These nine chronological horizons can be identified in the other cores 

at site C with a reasonable degree of confidence. It is acknowledged that there will be some error 

in correlation of the stratigraphy~ consequently the correlated dates are applied to 10cm vertical 
I 

intervals of peat and the eventual time series is only proposed as a tentative chronology for each 

undated core . 

The chronologies for each site ,vere produced by linear interpolation behveen the vanous 

chronological horizons for all the sites, transforming the palaeoenvironmental data into time 

series. Correlation analyses identify that a broadly linear age/depth relationship only exists for 

May Moss core B (r2=0 .9999). core 01 (r2=0 .989). and core D2 (r2=0 .992) . and Harwood Dale 

Bog (r2=0.998) . A linear age/depth relationship is a prerequisite for direct time series analysis of 

palaeoenvironmental data. and so only the palaeohydrological information from these cores \\ ere 

susceptible to direct time series analysis . A further prerequisite to time series analysis is that the 
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data should be of fine temporal resolution. otherwise the results \yill be of limited value. In the 

case of this research only the humification data at the above sites meet both these criteria and are 

subjected to time series analysis. 

None of the palaeoenvironmental profiles is subdivided into faunal or environmental zones. which 

vyould be the conventional approach within palaeoecological research, because the number of 

cores and palaeoenvironmental procedures necessitates several zonation schemes for the same 

core. Instead the profiles are discussed using the chronologies as a means for comparison between 

cores and sites. To ease visual appreciation of the palaeoenvironmental data the diagrams are 

annotated with lines denoting the 500-year periods utilised for interpretation of the palynological 

data. The section presenting the results for each core site concludes with a synthesis. which 

highlights the comparative performance of the palaeoenvironmental procedures utilised. 

Furthermore the disparate palaeohydrological information is collated to produce a surface 

moisture history for each core site. \vhich in the case of ombrogenous sites provides a proxy 

record of climate change. Whilst clearly the intention of this research is to uncover surface 

wetness histories. any evidence of other environmental changes is invaluable and is also 

discussed. 

6.2 May Moss 

The reconstruction of the palaeohydrology at May Moss draws upon investigation of the 

stratigraphy at three locations: site B. site C and site D. A single core was extruded from site B. 

Four peat cores were extruded at site C, which were evenly distributed along a five metre levelled 

transect. Two adjacent cores were extruded at site D. Three palaeoenvironmental procedures 

were used to elucidat~ hydrological histories. Radiocarbon dates have been obtained for cores C3 

and D2. 

The follo\\'ing sec:ions present the palaeoecological and palaeohydrological data from each core. 

and this information is synthesised to produce a surface wetness history for sites B, C and D. The 

respective palaeohydrological histories generated for each core site are integrated. thereby 

contributing a detailed reconstruction of changes in the hydrological budget of May Moss. In the 

light of the ombrotrophic status of May Moss, the mire palaeohydrological history can be vie\yed 

a proxy record of climatic change. The use of several cores to elucidate the palaeohydrological 

information allmys detailed assessment of the consistency of blanket mire peat stratigraphy and 

critical testing of the value of blanket peat as a source of palaeoclimatic information. 
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6.2.1 May Moss Site B 

The site B peat core is 2.3m in length and was extracted with a IOx30cm Russian corer. A 

second core \yas extracted within one metre of core B~ just to assess the consistency of the 

stratigraphy. A summary of the field stratigraphy is presented in table 6. 1. The peat profile 
I 

received sub-fossiL testate amoebae, plant macrofossil and humification analysis. 

Table 6.1. Peat stratigraphy recorded in the field at site B. 

Mire surface 

0-20 cm 

20-95 cm 

95-230 cm 

A dry hollow covered by Cal/1lna vulgaris and Eriophorum 
vaginatum, with occasional Eriophorum angustifolia. Erica 
tetralix, and a ground flora of Hypnum jutlandicum and .s'phagnum 
capi llifolium. 

Poorly humified Eriophorum vaginatum and Ericaceae peat.. 

Poorly humified Sphagnum and Monocotyledonous peat. 

Well humified Monocotyledonous peat with occasional layers of 
Ericaceae remains. 

6.2.1.1 Testate amoebae data 

Quantitative analysis 

The testate amoebae stratigraphy is presented in figure 6. 1. The species scores on the first two 

axes of a detrended correspondence analysis of the sub-fossil data are displayed as an XN biplot 

in figure 6.2. The first two axes of the DCA have eigenvalues of 0.609 and 0.283 respectively. 

which signifies that they summarise the most significant structure within the dataset and that the 

amount of variation explained by further DCA axes is minimal. Correlation coefficients between 

the testate amoebae taxa and the DCA axes, listed on figure 6.2, identify the species involved in 

the most significant changes in the sub-fossil stratigraphy. 

The most abundant testate amoebae species appear to be arranged along DCA axis 1 according to 

their tolerance of habitat wetness. Taxa that typically inhabit drier environments. for example 

Hyalo.sphenia subflava. occur at the opposite end of DCA axis 1 to species that prefer \vetter 

conditions. for example Amphitrema flavum and Amphitrema wrightianum (Woodland. 1996: 

Woodland et af.. 1998). The correlation analysis supports this conclusion \yith DC A axis 1 

summarising sub-fossil variations between a " "\yet environment"" assemblage and a --drY 

enviromncnC assemblage. The wet indicators are Amphitrema jlavllm. Amphitrema 

H'rightianllm. Ass.'llina mllscorllm and Assulina seminulum. \yhich all display a strong positi\c 
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Figure 6.1. May Moss site B testate amoebae diagram. The species curves are arranged from left to 
right according to preference of habitat moisture conditions. On the far right the reconstructed mean 
annual water table depths are present~ including upper and lower limits based on the ranges tolerated 
by individual species; the sample scores on the first axis of a DCA are expressed in standard deviation 
units (x 100); and the dendrogram presents the results of a sum of the squares cluster analysis. 
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Plagiopyxis callida Peal 0.275 0.655 e 

Bullinularia indica Bind -0.143 -0.327 
Trigonopyxis arcula Tare 0.037 0.206 

Centropyxis cassis -type Ccas -0.086 0.463 a 

Hyalosphenia subflava Hsub -0.912 e -0.534 e 

Hyalosphenia papilio Hpap 0.141 0.426 a 

Hyalosphenia elegens Hele 0.392 a 0.012 
Heleopera sphagni Hsph -0.154 0.648 

Nebela undifJ. Nund 0.412 a 0.038 
Nebela collaris Neol 0.382 a 0.113 
Nebela griseola Ngri 0.012 0.238 
Nebela militaris Nmil 0.048 0.181 
Nebela tubulata Ntub -0.121 0.65 e 

Nebela vitraea Nvit 0.012 0.238 
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Figure 6.2. (a) Detrended correspondence analysis ordination diagram showing the 
species weighted averages on the first two axes for the site B testate amoebae data. The 
axes are scaled in standard deviation units xl 00. (b) Identifies the species labels on part 
( a), lists the eigenvalues for and percentage variation explained by each DCA axis and 
lists the correlation coefficients between DCA axes and the testate amoebae species. The 
correlations are not statistically significant unless annotated by either, a = significance at 
the 950/0 level, b = significance at the 99% level or C = significance at the 99.9% level. 
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correlation with DCA axis 1. whereas the dry indicator Hyalosphenia su~tlava displays a strong 

negative correlation. 

The other DCA axes are difficult to interpret ecologically. DCA Axis 2 is negatively correlated 

with Hyalosphenia su~tlava. and positively correlated with nine taxa only abundant in isolated 

layers within the peat stratigraphy. The axis appears to summarise a relationship between the 

most abundant species and a series of occasional or outlier species. Further DCA axes 

individually only explain minor amounts of variation within the sub-fossil dataset. DCA axis 1 

represents the most significant variation within the dataset and clearly appears to identify a 

moisture gradient. Consequently. mire surface wetness appears to be the most important 

environmental fae-wr affecting sub-fossil testate amoebae at site B, and DCA axis 1 is proposed 

as a semi-quantitative model summarising fluctuations betw'een wet and dry conditions at site B. 

The sample scores on DCA axis 1 are plotted stratigraphically on figure 6. L "ith high values 

identifying wetter conditions and lower values drier conditions. The optimum. maximum and 

minimum mean annual water table depths tolerated by extant species were used to generate three 

palaeohydrological curves identifying the potential range of moisture conditions. These curves are 

displayed stratigraphically on figure 6.1. The fluctuations in mean annual water table depth and 

DCA axis 1 reveal an interesting palaeohydrological history at site B containing pronounced wet 

shifts and drier periods. 

Palaeoecology 

Of the twenty-four species encountered in the site B profile, only six occur in any great number: 

Amphitrema f1av,',{}n, Amphitrema wrightianum, Assulina muscorum, Assulina seminulum, 

Hyalosphenia subtla~a and Centropyxis cassis-type. The sub-fossil record is characterised by 

fluctuations between two groups of species. The first group contains one species. Hyalosphenia 

sll~tlava, which typically is associated \\"ith dry environments (Woodland, 1996). The second 

contains Amphitrema jlavum, Amphitrema wrightianum, Assulina muscorum and Assulina 

seminulum. and these taxa are typically associated with wetter environments (Woodland et a/., 

1998). The palaeoecology reveals that the sub-fossil testate amoebae community has been 

dominated by these 1\\'0 groups throughout the last 2500 years. Cluster analysis signifies that the 

most significant changes in the testate amoebae stratigraphy occurred circa 400 cal. BC. cal. AD 

700. cal. AD 1400 and cal. AD 1900. 

The stratigraphy between 600 cal. BC and cal. AD 700 is dominated by Hyalo.\phenia su~tlava. 

"hich appears to signify a period "ith broadly dry conditions. Hm\,ever circa 400 cal. Be 
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Amphitrema flavum and Asszdina muscorum appear for the first time and this increase in 

diversity signifies wetter conditions. Between circa 100 cal. BC and cal. AD 700 species 

diversity is very low. with Hya/osphenia su~flava the only species, perhaps signifying a return to 

drier conditions. Hyalosphenia su~flava begins a sharp decline circa cal. AD 700, and there are 

corresponding increases in Arce//a discoides, Amphitrema wrightianum. Amphitremaflavum and 

Assuli na muscoru m. These stratigraphic changes are augmented circa cal. AD 1400. with the 

most significant change in the testate amoebae stratigraphy. namely further increases in 

Amphitrema wrightianum and Amphitremapavum, and a decline by Hyalosphenia sll~flava. The 

replacement of Hya/osphenia su~flava dominated stratigraphy with comparatively high diversity 

communities is clearly a response to increased surface wetness. The final stratigraphic changes 

occurred circa cal. AD 1900, with Amphitrema wrightianum. Amphitrema flavum and Assulina 

muscorum declining sharply. replaced by Hyalo.\phenia su~flava. This change near the mire 

surface appears to identify a shift to drier mire surface conditions during the last 100 years. 

6.2.1.2 Plant macro-fossil analysis 

Quantitative analysis 

The plant macrofossil stratigraphy of the core B peat sequence is presented in figure 6.3. The 

scores of the main macrofossil components on the first two axes of a detrended correspondence 

analysis of the sub-fossil data are displayed as an XN biplot in figure 6.4. These first two axes 

of the DCA have eigenvalues of 0.534 and 0.193 respectively. signifying that they summarise the 

most significant structure within the dataset and that the amount of variation explained by further 

individual DCA axes is minimal. Correlation coefficients between the main components of the 

plant macrofossil stratigraphy and the first two DCA axes, listed in figure 6.4. identify the 

components involved in the most significant changes within the macrofossil stratigraphy. 

The main macrofossil components appear to be arranged along axis 1 according to their tolerance 

of habitat wetness. Dry indicators such as Unidentified Organic Matter occur at the opposite end 

of DCA axis 1 to the wet indicator Sphagnum section Cuspidata. The correlation analysis 

supports this conclusion with DCA axis 1 summarising sub-fossil variations between a "wet 

environment" assemblage and a "'dry environment" assemblage. The \\"et indicators are thc 

Sphagnaceae, which all display a strong positive correlation \\"ith DCA axis 1. whereas the dry 

indicator Unidentified Organic Matter displays a strong negative correlation. This cvidence 
I 

identifies the most significant changes \\"ithin stratigraphy are from \\ell humified peat to poorly 

humified .. \phagnl.'m-dominated peat. which are stratigraphic changes typically associated \\"ith 

increased surfacc wetness. DCA axis 2 appears to summarise an inverse relationship bct\\"cen 

,\phagJ7um imhricatllm and ,\phagnllm section Rigida. which are only abundant in isolated laycrs. 
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Figure 6.3. May Moss site B plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> 100 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a DCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results of a sum of the squares cluster 
analysis. 
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Figure 6.4. (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the site B plant macrofossil data. 
The axes are scaled in standard deviation units x 100. (b) Identifies the species labels on 
part (a), lists the eigenvalues for and percentage variation explained by each DCA axis 
and lists the correlation coefficients between DCA axes and the plant macrofossil 
components. The correlations are not statistically significant unless annotated by either, a 

= significance at the 950/0 level, b = significance at the 99% level or C = significance at the 
99.9% level. 
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and other Sphagnum species. Further DCA axes individually only represent comparatively minor 

amounts of variation within the sub-fossil dataset. 

DCA axis I represents the most significant variation within the dataset and appears to identify a 

moisture gradient. Consequently mire surface wetness may be the most important environmental 

factor affecting the plant macrofossil stratigraphy. and in theory DCA axis 1 could be used as a 

model summarising fluctuations between wet and dry conditions on the mire surface. The sample 

scores on DCA axis I are plotted stratigraphically on figure 6.3~ with high values signifying 

wetter conditions and lower values drier conditions. There are problems with using DCA axis 1 in 

this manner, principally because the peat between 90-230 cm is dominated by Ericaceae and 

Monocotyledonous remains. with no discernible changes in the diversity and abundance of 

species. Macrofossil stratigraphy of this type is difficult to interpret in terms of changes in 

surface moisture conditions. Palaeohydrological interpretation of the DCA results can only be 

tentative, because DCA axis 1 solely models the main change \yithin the macro-fossil 

stratigraphy. which is the arrival of ,Sphagnum. 

Palaeoecology 

Cluster analysis signifies that the most significant changes in the plant macrofossil stratigraphy 

occurred circa cal. AD 900~ cal. AD 1600 and cal. AD 1800. The peat stratigraphy betv~een 800 

cal. BC and cal. AD 850 contains substantial quantities of UOM and is dominated by 

Monocotyledonous and Ericaceae remains. with Calluna vulgariS leaves particularly abundant. 

This evidence indicates the mire surface was relatively dry, sustaining a mixed community of 

Calluna vulgariS. Eriophorum vaginatum and other monocotyledonous taxa. The first significant 

change in the peat stratigraphy occurs circa cal. AD 900. with the expansion of Sphagnum 

section Acut~folia. However this expansion is relatively short-lived. followed by a decline in the 

abundance of .Sphagn1fm section ACllt~folia and expansion of Ericaceae remains between cal. AD 

1150 and cal. AD 1400. 

There were further increases in Sphagnum section AcutUhlia and .Sphagnum section ('llspidata 

after circa cal. AD 1400. ,Sphagnum section CU5pidata is a wet environmental indicator typically 

inhabiting pools, hhereas ,Sphagnum section AcutUhlia typically inhabit drier hummock-top sites. 

This association of taxa. combined with abundant Ericaceae remains. is in keeping "ith an 

enviromnent consisting of a mixture of hummocks and hollmvs. Circa cal. AD 1600 ,SI)hagnllm 

imhricatum and ,\phagnum papillosum increase in abundance at the expense of '\I)hagnllm 

section ('uspidata and ,S/Jhagnum section AcutUhlia. However. the decline of ,Sphagnum section 

Cllspidata is shOI1:-li\'ed expanding again between cal. AD 1650-1800. During the last 150 years 
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there is a further major change in the peat stratigraphy at site B. namely the decline of 

,)phagnum. All species of Sphagnum decline circa cal. AD 1800 and are replaced by Ericaceae 

remains. especially Calluna vulgaris. The composition of macrofossils in the surface layers of 

peat reflects the current mire flora, with a mixture of Calluna vulgaris and Eriophorum 

vaginatum, which reflects the current dry conditions at site B. 

, 

6.2.1.3 Humification analysis 

The results of the humification analyses are displayed in figure 6.5. The humitication profile 

contains seven significant shifts to poorly humified peat which are interpreted as indicating 

changes to wetter conditions on the mire surface circa 700 cal. BC, 50 cal. BC, cal. AD 400. cal. 

AD 900. cal. AD 1100 and cal. AD 1300. Phases of well humified peat signifying comparatin-:ly 

dry conditions occur between 1100-800 cal. BC, cal. AD 0-400, cal. AD 700-900, cal. AD 1000-

1100, cal. AD 1200-1300 and cal. AD 1500-1600. 

Regression analysis of the age/depth model for the core B peat profile revealed a broadly linear 

relationship, and so the humification data was susceptible to time series analysis. The data series 

that produced the smoothed and high-pass filtered curve \vas subjected to spectral analysis using 

the Fourier transformation method and a Daniell smoothing window. The spectral density 

function displayed in figure 6.5(d) identifies several peaks. with the most significant t\\O centred 

at 0.09 cpi (cycles per sampling interval) and 0.13 cpi. The linear age/depth model indicates these 

frequencies correspond to 260 and 185-year cycles respectively. A caveat to this analysis 

reiterates that the chronology for this core sequence is very tentative. based solely upon 

correlation of the palynostratigraphy and this analysis must be viewed in that context. HO\\CVCf 

the periodicities identified in the humification changes are interesting and discussed further in 

later sections. 

6.2.1.4 Reconstructing mire surface wetness 

Palaeoecological investigation of the peat stratigraphy at site B reveals evidence of a changeable 

hydrological history. The fundamental problem with this palaeohydrological history arises from 

the chronology, which can only be regarded as tentative. Comparison of the hydrological signals 

yielded by the three palaeoenvironmental procedures identifies broad similarities. The cvidence 

for wet shifts and unambiguously dry conditions present in the palaeoenvironmental data is 

summarised on figurtf 6.6. which demonstrates the correlation bet\veen the hydrological signal 

yielded by each technique. Humification shifts to poorly humified peat appear to occur slightly 

before equivalent changes in the testate amoebae and plant macrofossil stratigraphy. This is not 

unexpcctcd. because if the main environmental control mcr humification. the depth of thc a\cragc 
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Figure 6.5. Humification data from May Moss core B displaying; (a) the raw 
percentage light transmission values, (b) the raw data smoothed using an unweighted 
three point moving average, (c) the smoothed data series subjected to a high pass 
filter emphasising the key shifts, In all three curves higher values denote poorly 
humified peat and are interpreted as signifying wetter conditions_ (d) Results of the 
time series analysis, which includes the spectral density function for the smoothed 
high-pass filtered data series displayed on graph (c). The table in part (d) converts 
the spectral peaks into years using the age/depth model derived for the peat profile_ 



156 

May Moss Site B 
Calibrated r-----..,.-------r-------1 

Years 
ADfBC 

1800 

1600 

1400 

1200 

1000 

800 

600 

400 

200 

o 

200 

400 

600 

Testate 
amoebae 

) 

) 

) 

Plant 
macrofossils 

) 

Peat 
Humification 

J 

J 
Figure 6.6. Summary of the moisture fluctuations signified in peat stratigraphies at 
May Moss site B. Red lines denote dry conditions and blue lines wet conditions. The 
blue arrows signify changes to wetter conditions. Grey zigzag lines denote 
stratigraphy with an ambiguous hydrological signal. 
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mInImum summer water table, nses then previously accumulated acrotelmic peat will be 

absorbed by the rising catotelm. smearing evidence of the hydrological change \\ithin peat pre­

dating the event. 

There are further problems, which centre on the stratigraphy pertaining to the period 800 cal. BC 

to cal. AD 800. The basal 180 cm of peat is comparatively \\ell humified and dominated by 

Monocotyledons and Ericaceae remains. Consequently the turnover of identifiable plant 

macrofossils within the profile is low: furthermore the diversity of the testate amoebae 

assemblages is low. It is difficult to elucidate surface wetness changes from stratigraphy of this 

type. Fortunately the humification stratigraphy appears to contain evidence of moisture changes 

during this period. identifying relatively wet conditions between 700-50 cal. BC and from cal. AD 

400-700. These wet phases are separated by a dry phase broadly concurrent \vith the Roman­

British period, cal. AD 0-400. The testate amoebae stratigraphy corroborates part of this 

moisture history~ identifying wetter conditions and a fluctuating shallow \vater table in the period 

500-0 cal. BC. 

The upper 120 cn;, of peat stratigraphy is better suited for palaeohydrological research, \\ith both 

the plant macrofossil and testate amoebae stratigraphies characterised by a higher diversity 

community and a reasonable turnover of species. The balance of the ecological evidence indicates 

that the most ir.:1portant environmental factors affecting past plant and testate amoebae 

communities at site B is habitat wetness. The increase in diversity of the testate amoebae 

community and the expansion of Sphagnum are broadly synchronous. which is not unexpected 

because testate amoebae are more abundant on Sphagnum mires. These changes occurred around 

cal. AD 800-900 after a brief drier phase between circa cal. AD 700-800. and parallel a shift to 

\\etter conditions identified in the humification stratigraphy. 

There is a broad agr.eement in the palaeohydrological interpretation of the plant macrofossil. 

testate amoebae and humification stratigraphies after this major stratigraphic change. Wet 

conditions persist until circa cal. AD 1100, v;ith reconstructed mean annual \\ater table depths of 

circa 6 cm. Bet\vcen cal. AD 1100-1300 the plant macrofossil and testate amoebae stratigraphies 

contained evidence of a broad drier phase. The period between cal. AD 1300-1900 appears to be 

broadly \\et. evidenced by a reconstructed mean annual water table depth of circa 4 cm and plant 

communities dominated by .)'phagnum section Cuspidata. There is evidence of a brief drier phase 

around cal. AD 1550 "ithin the plant macrofossil. testate amoebae and humification 

stratigraphies. The final hydrological event involves changes in the plant macrofossil and testate 
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amoebae stratigraphy pertaining to the last 100 years, signifying a drying trend in the surface 

layers of peat. 

6.2.2 May Moss, Site C 

Introduction 

Palaeohydrological investigation of the site C peat sequence is based on the analysis of four 

cores, 'which are all ~.l metres in length. A summary of the field stratigraphy synthesised from 

the four cores is presented in table 6.2. Cores 1 and 4 received both plant macrofossil and testate 

amoebae analysis. Core 3 received plant macrofossil. testate amoebae and humification analysis, 

and yielded the samples for 14C dating. Core 2 received both plant macrofossil and humification 

analysis. The results of the plant macrofossil, testate amoebae and humification data are graphed 

against both depth and a time series calculated using the methodology introduced in chapter four 

utilising the chronological horizons defined at the beginning of this chapter. 

Table 6.2. Peat stratigraphy recorded in the field at site C. 

Mire surface 

0-75 cm 

75-90 cm 

90-145 cm 

145-210 cm 

A transact over a hummock and hollow sequence covered by 
Calluna vulgaris and Eriophorum vaginatum, with occasional 
Eriophorllm angustifolia and Erica tetralix. The ground flora 
consists of Hypnum jutlandicum and Sphagnum capillUolillm, \\'ith 
Sphagnum section Cuspidata in the hollows. 

Poorly humified Sphagnum and Monocotyledonous peat. 

Poorly humified Eriophorum vaginatum and Ericaceae peat. 

Poorly humified c)'phagnum and Monocotyledonous peat. 

Well humified Monocotvledonous peat with occasional lavers of 
Ericaceae remains. 

6.2.2.1 Testate amoebae data 

Quantitative analysis 

The testate amoebae diagrams are presented in figures 6.7-6.9. The species scores on the first 1\\0 

axes of a detrendcd correspondence analysis of the core 1, 3 and 4 sub-fossil data are displayed 

as XN biplots in figures 6.10-6.12. The eigenvalues for the first 1\\'0 DCA axes for each core are 

also listed on figures 6. 10-6. 12 and signify that the first two axes summarise the most significant 

stnlcture \\ithin each sub-fossil dataset. The amount of variation explained by further DCA axes 

is small. Correlation coefficients calculated for each core bet\\een the testate amoebae taxa and 
, 

the first 1\\0 DCA axes are listed in figures 6.10-6.12. The correlation analysis identifies the 

species imolved in the most significant changes in the testate amoebae stratigraphy. 
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Figure 6.7. May Moss core C I testate amoebae diagram. The species curves are arranged from left to 
right according to preference of habitat moisture conditions. On the far right the reconstructed mean 
annual water table depths are presented, including upper and lower limits based on the ranges tolerated 
by individual species; the sample scores on the first axis of a DCA are expressed in standard deviation 
units (x 100); and the dendrogram presents the results of a sum of the squares cluster analysis. 
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Figure 6.8. May Moss core C3 testate amoebae diagram. The species curves are arranged from left to 
right according to preference of habitat moisture conditions. On the far right the reconstructed mean 
annual water table depths are presented, including upper and lower limits based on the ranges tolerated 
by individual species; the sample scores on the first axis of a OCA are expressed in standard deviation 
units (x 100); and the dendrogram presents the results of a sum of the squares cluster analysis. 
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Figure 6.9. May Moss core C4 testate amoebae diagram. The species curves are arranged from left to 
right according to preference of habitat moisture conditions. On the far right the reconstructed mean 
annual water table depths are presente<L including upper and lower limits based on the ranges tolerated 
by individual species; the sample scores on the first axis of a DCA are expressed in standard deviation 
units (x 100); and the dendrogram presents the results of a sum of the squares cluster analysis. 
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DCA axis 1 (eigenvalue 0.274) 

b). 

Testate Amoebae species Graph label DCA axis 1 DCA axis 2 
Eigenvalue 0.274 0.106 
% variance 25.59 9.88 

Arcella discoides Adis 0.8522 c 0.0406 
Arcella artocrea Aare 0.4307 0.0924 
Arcella catinus Aeat 0.2794 0.0872 

Centropyxis cassis -type Ceas 0.5361 a -0.2232 
Plagiopyxis callida Peal -0.3219 -0.0627 
Bullillu/aria indica Bind -0.1057 0.0924 
Trigonopyxis arcula Tare -0.0522 -0.4348 

Hyalosphenia subflava Hsub -0.8855 c 0.1050 
Hyalosphenia papilio Hpap 0.1749 -0.0818 
Hyalosphenia e/egans He1e -0.0865 0.2891 

Heleopera sphagni Hspb 0.1842 -0.5536 a 

Heleopera petricola Hpet 0.2337 -0.2126 
Nebela undiff Nund 0.2933 -0.5133 a 

Difflugia undiff Dund 0.4446 a -0.5535 a 

Amphitremaflavum Afla 0.3449 0.6414 b 

Amphitrema wrightianum Awri -0.0279 0.4934 a 

Amphitrema stenostoma Aste 0.1444 0.4545 a 

Euglypha strigosa Estr 0.3662 0.0924 
Euglypha tuberculata Etub 0.0139 -0.2343 

Euglypha rotunda Erot 0.3495 -0.2087 
Assulina muscorum Amus -0.2934 -0.3856 
Assulina seminulum Asem 0.1200 0.2274 

Corythion dubium -type Cdub 0.4708 a -0.2820 

Figure 6.10. (a) Detrended correspondence analysis ordination diagram showing the 
species weighted averages on the first two axes for the core C 1 testate amoebae data. 
The axes are scaled in standard deviation units xl 00. (b) Identifies the species labels on 
part (a), lists the eigenvalues for and percentage variation explained by each DCA axis 
and lists the correlation coefficients between DCA axes and the testate amoebae species. 
The correlations are not statistically significant unless annotated by either, a = significance 
at the 950/0 level, b = significance at the 990/0 level or C = significance at the 99.90/0 level. 
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DCA axis 1 (eigenvalue 0.510) 

b). 

Testate Amoebae species 
Eigenvalue 
% variance 

Arcella discoides 
Arcella artocrea 
Arcella catinus 

Plagiopyxis callida 
Bullinularia indica 
Trigonopyxis arcula 

Centropyxis cassis -type 
Centropyxis aculeata -type 

Hyalosphenia subjlava 
Hyalosphenia papilio 
Hyalosphenia elegens 

Heleopera sphagni 
Heleopera petri cola 

Nebela undiff. 
Nebela collaris 

Graph label 

Adis 
Aare 
Acat 
Peal 
Bind 
Tare 
Ccas 
Cacu 
Hsub 
Hpap 
Hele 
Hsph 
Hpet 
Nund 
Neol 

Nebela vitraea Nvit 
Amphitrema jlavum Afla 

Amphitrema wrightianum Awri 
Euglypha rotunda Erot 

DCA axis 1 
0.510 
39.62 

-0.3325 a 

-0.2669 
-0.2457 
-0.1382 
-0.1047 
0.0935 
-0.2540 
0.2355 

0.9805 c 

0.0514 
-0.1550 
-0.3012 
-0.1501 

-0.3350 a 

-0.2499 
-0.2738 

-0.7895 c 

-0.6365 c 

-0.3281 a 

300 350 

DCA axis 2 
0.144 
11.22 

-0.6231 c 

0.0940 
0.5569 c 

-0.2043 
0.5616 c 

0.1417 
0.0923 

0.4954 c 

0.0417 
..().0664 
-0.0789 
0.1238 
0.2475 
-0.2123 
-0.1843 
-0.0131 

-0.5427 c 

0.3600 a 

0.2295 

Euglypha strigosa Estr -0.0602 0.2613 
Assulina muscorum Amus -0.5039 c 0.0350 
Assulina seminu/um Asem -0.7582 c 0.1343 

Corythion dubium -type Cdub -0.2609 0.0533 

Figure 6.11. (a) Detrended correspondence analysis ordination diagram showing the 
species weighted averages on the first two axes for the core C3 testate amoebae data. 
The axes are scaled in standard deviation units xl 00. (b) Identifies the species labels on 
part ( a), lists the eigenvalues for and percentage variation explained by each DCA axis 
and lists the correlation coefficients between DCA axes and the testate amoebae species. 
The correlations are not statistically significant unless annotated by either, a = significance 
at the 950/0 level, b = significance at the 990/0 level or C = significance at the 99.90/0 level. 



164 

a). 

260r-----~----~----~----~----~~--~----~ 

Qj = . Hele • 

~ 140 ································r····················· ........... l··················~···········I······_···· ..................... i ............................. -r ............................................................... . 

Qj :. j C~t 

~ 1 00 ··········~.:~········ .. ·:·····························T~c··-························I······- .. ·······~··· .. ·A~ ......... . 
~ : B~d r ~~[ I ¥ i "r'....... ..] 
~ 60 ............................... + .............................. +·····-........ · .. ···· .. ···· .. ··f······-·~ .. ····· .. ··i .. ··AS·em··· .. ·· .. · .. ·· .. t···Aart····················; .... ······ .. ···· .... ··· ........ . 

cS . j : . Alste j + Aila . 

c::I 20· ........................ + ................ ··1.: .................. J. .. . [. +.-.~ + ~~;. . 

+ • 

-20~----~--~~----~----~----~----~----~ 

-20 20 60 100 140 180 220 260 
DCA axis 1 (eigenvalue 0.431) 

b). 

Testate Amoebae species Graph label DCA axis 1 DCA axis 2 
Eigenvalue 0.431 0.075 
% variance 45.20 7.88 

Arcella discoides Adis 0.6045 c 0.1044 
Arcella artocrea Aarc 0.6621 c -0.2557 
Arcella catinus Acat 0.3602 0.2290 

Plagiopyxis callida Peal 0.0499 -0.0542 
Bullinularia indica Bind -0.2193 -0.0717 
Trigonopyxis arcula Tarc -0.0745 0.0208 

Centropyxis cassis -type Ccas 0.4409 0.3479 
Centropyxis aculeata -type Cacu 0.0165 -0.0162 

Hyalosphenia subjlava Hsub -0.9363 c 0.2201 
Hyalosphenia papi/io Hpap 0.3566 0.5643 b 

Hyalosphenia elegens Hele 0.0583 0.3270 
Heleopera sphagni Hspb 0.4480 a -0.1161 

Heleopera petricola Hpet 0.4342 -0.0883 
Nebela undi./J. Nund 0.2187 0.5736 c 

Amphitremajlavum Afla 0.8528 c -0.4196 
Amphitrema wrightianum Awri 0.6028 c -0.5091 a 

Amphitrema stenostoma Aste 0.5230 a -0.3875 
Euglypha rotunda Erot 0.2332 0.3502 

Euglypha tuberculata Etub 0.1893 0.6192 b 

Assulina muscorum AInus 0.6299 c -0.5129 a 

Assulina seminulum Asem 0.5967 c -0.3735 
Corythion dubium -type Cdub 0.0290 -0.0456 

Figure 6.12. (a) Detrended correspondence analysis ordination diagranl showing the 
species weighted averages on the first two axes for the core C4 testate amoebae data. 
The axes are scaled in standard de~1 :ation units xl 00. (b) Identifies the species labels on 
part (a), lists the eigenvalues for and percentage variation explained by each DCA axis 
and lists the correlation coefficients between DCA axes and the testate amoebae species. 
The correlations are not statistically significant unless annotated by either, a = significance 
at the 95% level, b = significance at the 99% level or C = significance at the 99.90/0 level. 
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Some of the most abundant testate amoebae species in core 1 appear to be arranged along DCA 

axis 1 according to their tolerance of habitat wetness. Dry indicator taxa such as Hyalwphenia 

su~flava occur at the opposite end of axis 1 to the \yet indicators Arcella discoides. Amphifrema 

flavum and Amph/trema wrighfianum (Tolonen ef aI., 1992~ 1994: Woodland ef al.. 1998). The 

correlation coefficients support this conclusion with axis I appearing to summarise sub-fossil 

variations between a "wet environmenC assemblage and a "dry environmenC assemblage. The 

\\et indicators are Arcella discoides and C'enfropyxis cassis-type, \yhich display a strong positive 

correlation with axis I, whereas the dry indicator Hyalo5phenia sll~flava displays a strong 

negative correlation. However, some of the species typically found in \yetter environments arc not 

correlated with axis 1, for example Amphifrema spp. and ASSlllina mllscorllm. DCA axis 1 

appears to solely model the relationship between Hyalo5phenia subflava. and An'ella discoides 

and Centropyxis cassis-type. 

Although DCA axis 1 summarises the most significant structure. it only accounts for 25 .59~) of 

the total variation within the dataset. Although DCA axis 1 could be used as a model identifying 

a series of wet and dry phases. it is important to remember that the axis only really summarises 

the relationship between Hyalosphenia su~flava. and Arcella discoides and Cenfropyxis cassis­

type. A consequence of three species contributing the most significant structure, is that 7 4~) of 

the variation is explained by further DCA axes. However. the amount of variation explained by 

these DCA axes becomes increasingly small. DCA axis 2 accounts for 9% of the overall structure 

and the correlation analysis identifies that it summarises the relationship between a wet 

environment assemblage containing Amphitrema spp. and a dry environment assemblage 

containing Heleopera .sphagni, Nebela spp. and Dutlugia spp .. The sample scores of DCA axis 

1 are plotted stratigraphically in figure 6.7, and although it is of limited value as a 

palaeohydrological curve, it does identify the most significant changes in the sub-fossil 

stratigraphy. 

The most abundant testate amoebae species in core 3 appear to be arranged along DC A axis 

according to their tolerance of habitat wetness. The dry indicator taxon, Hyalo.\phenia suhflava. 

occurs at the opposite end of axis I to the \vet indicator. Arcella discoides, Amphifrema flavum, 

Amphifrema wrighffanum and Assulina spp. (Tolonen ef aI., 1992: 1994: Woodland ef aI., 

1998). The correlation coefficients support this conclusion \\ith DCA axis I summarising sub­

fossil variations b.;t\\'een a "\yet environmenC assemblage and a "dry environmenC assemblage. 

The \yet indicators are Arcella discoides, Amphifrema jlavum. Amphitrema wrighfianum and 

Asslliina spp., \yhich display a strong positive correlation \\ith axis l. \\'hereas the dry indicator 
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Hyalosphenia suhflava displays a strong negative correlation. Further DCA axes individually 

explain less significant amounts of variation within the sub-fossil dataset \\ith DCA axis I 

accounting for 39.620/0 of the total. The axis appears to identify a moisture gradient: 

consequently, mire surface wetness appears to be the most important environmental factor 

affecting the sub-fossil testate amoebae stratigraphy. DCA axis 1 is proposed as a model 

summarising fluctuations between wet and dry conditions on the mire surface. The sample scores 

on DCA axis 1 are plotted stratigraphically in figure 6.8. \vith high values identifying \\'etter 

conditions and lower values drier conditions , . 

The most abundant testate amoebae species in core 4 also appear to be arranged along DCA axis 

I according to tl;.eir tolerance of habitat wetness. Dry indicator taxa such as Hyal(}~phenia 

su~flava occur at the opposite end of axis 1 to the \vet indicators Arcella discoides, Amphitrema 

flavum, Amphitrema wrightianum and Assulina spp. (Tolonen et aL 1992: 1994: Woodland et 

aI., 1998). The correlation coefficients support this conclusion \vith DCA axis 1 summarising 

sub-fossil variations between a "wet environment'" assemblage and a "dry environment'" 

assemblage. The wct indicators are Arcella discoides. Amphitrema flavum. Amphitrema 

wrightianum, Amphitrema stenostoma and Asslllina spp.. all displaying a strong positive 

correlation with DCA axis L whereas the dry indicator Hyalmphenia suhflava displays a strong 

negative correlation. 

Further DCA axes individually only explain minor amounts of variation within the sub-fossil 
, 

dataset. with DCA axis 1 summarising 45.20% of the variation in the dataset. The axis appears 

to identify a moi~ture gradient. Consequently. mire surface wetness appears to be the most 

important envirorunental factor affecting the sub-fossil testate amoebae stratigraphy. and so DCA 

axis I is proposed as a model summarising fluctuations between \vet and dry conditions on the 

mire surface. The sample scores on DCA axis I are plotted stratigraphically in figure 6.9, with 

high values identif)'ing wetter conditions and lower values drier conditions. 

Each DCA curve can only be viewed as a semi-quantitative model of moisture conditions. The 

DCA analyses indicate that the significant structure within the core 3 and 4 data. appears to 

reflect a clear response to surface \vctness. whereas the link between the DCA axes and surface 

wetness is less apparent. Core 1 \vas extruded from beneath a hummock. \vhcreas core 3 \vas 

extruded from ber.eath a hollow. The macrofossil stratigraphy at site C indicates that hummocks 

and hollo\\ s appear to be long-lived features. expanding and contracting in response to surface 

saturation. Assuming ,the surface topography at site C has been comparati\eiy similar throughout 
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during the last 2,000 years. then the testate amoebae stratigraphy beneath a hollo\y appears to 

record hydrological changes more clearly than stratigraphy beneath a hummock. 

The optimum. maximum and minimum reconstructed mean annual water table depths tolerated by 

extant species were used to generate three palaeohydrological curves. \yhich identify the potential 

range of moisture conditions for each core at site e. These curves are displayed stratigraphically 

in figures 6.7-6.9. The fluctuations in reconstructed mean annual water table depth signify a very 

changeable hydrological history at site e. The fluctuations in reconstructed mean annual \\ater 

table depth are more pronounced in core 3 than in core I, perhaps providing further evidence of a 

discrepancy between the testate amoebae stratigraphy beneath hummocks and hollows. 

Palaeoecology 

The testate amoebae stratigraphy at site e contains twenty three speCIes, of which nine are 

particularly abundant. Two distinct sub-fossil assemblages of testate amoebae occUI- \yith the 

first dominated by I wet environment species, namely Arcella discoides. Amphitrema 

wrightianum, Amphitrema jlavum. Centropyxis cassis-type and Assulina spp. (Woodland ef 

al..1998~ Tolonen et aL 1992~ 1994). The second is a dry environment assemblage dominated by 

Hyalosphenia slll~flava, with occasional Trigonopyxis arcllla, Corythion dubium-type and 

Bullinularia indica (Woodland et a!.. 1998). 

The most significant changes in the testate amoebae stratigraphy identified by the cluster analyses 

occurred circa cal. AD 500, cal. AD 1100, cal. AD 1300, cal. AD 1500 and cal. AD 1700. The 

stratigraphy pertaining to the period 600 cal. Be to cal. AD 1200 is dominated by Hyalosphenia 

subjlava. which is indicative of relatively dry conditions. Assulina muscorum and Trigonopyxis 

arcula are more abundant between cal. AD 400-800 perhaps reflecting increased surface 

wetness, which allowed a more diverse testate amoebae community to develop. However, between 

cal. AD 800-1000 the stratigraphy is dominated by Hyalosphenia sll~flava reflecting a return to 

drier conditions. 

The most significant change in the testate amoebae stratigraphy occurs circa cal. AD 1100. and 

involves a marked increase in the diversity of testate amoebae at site e. Increases are displayed in 

the palaeoecological curves of Arcella discoides. Amphitrema H'rightianllm. Amphitrema jlavllnl, 

Centropyxis cassis-type and ASSlllina spp. on all three cores. and there is a corresponding decline 

in the abundance of Hyalosphenia su~flava. This event signifies a change to a \vetter 

enviromnent. which is below a 14e date of 825±40 BP lcal. AD 1165(1230)12751· Species 

particularly indicative of \yet conditions. namely Arcella discoides. Amphifrema wrightianwn 



168 

and Amphitrema flavllm, decline bet\yeen cal. AD 1200-1300 and there is a resurgence in 

frequencies of }!.yalo.sphenia sll~flava, identifying a return to drier conditions. This drier phase is 

short-lived. followed by increases in Arcella discoides, Amphifrema wrightianllm, Amphitrcmo 

flavum. C'entropyxis cassis-type and Asslllina spp .. reflecting a return to \vetter conditions. 

The beginning of this wetter phase is 14C dated to 620±40 BP [cal. AD 1275(1295)13951 and the 

end is 14C dated to 31 0±40BP [cal. AD 1475(1640)16651. There is brief drier phase signified by 

a further expansion by Hyalosphenia subjlava. particularly evident on core 3. \vhich nestles 

between t\VO 14C dates of 310±40BP Ical. AD 1475(1640)1650] and 265±40 BP [cal. AD 

1515(1650)1950]. After circa cal. AD 1650 a decline in }!.yolo~phenia sll~flava signifies a return 

to wetter conditions, a view corroborated by high frequencies of Arcella discoides. Amphitremo 

wrightianum. Amphitrema jlavum and Assulina spp., and these broadly \vet conditions persist to 

the present-day. 

An important outcome of the analysis at site C arises from the consistency identified in the testate 

amoebae stratigraphy. The testate amoebae stratigraphy in all three cores located beneath both 

hummock and hollO\v environments is very similar. \\hich indicates that microtopography appears 

to have little impact on the testate amoebae stratigraphy. This cannot be used to suggest that 

testate amoebae stratigraphies are consistent across a mire. because variations in testate amoebae 

communities in response to environmental differences will occur across a topographic mIre. 

However. the consistency over short distances (circa 5 metres) indicates that cores from 

hummocks and hollows can provide a representative assessment of the testate amoebae . 
stratigraphy at a particular location. This homogeneity contrasts \\ith early research on testate 

amoebae ecology. which identified testate amoebae assemblages typical of hummock and hollO\\ 

environments (Schbnborn. 1963). 

6.2.2.2 Plant macrofossil data 

Quantitative analysis 

The plant macrofossil stratigraphy from cores 1-4 are displayed in figures 6.13-6.16. TI1C scorcs 

of the main macrofossil components on the first t\\"o axes of a detrended correspondence analysis 

performed on the sub-fossil data for each core are displayed as XN biplots in figures 6.17-6.20. 

Thc eigenvalues for the first t\\O DCA axes generated for each core are also listed on figures 

6.17-6.20 and signify that the first t\\"o DCA axes summarise thc most significant stmcture 

\yithin each individual data-set. The amount of variation explained by furthcr individual DC A 

axes is small. Correlation coefficients bet\\"een the main components of the plant macrofossil 

stratigraphy and the t1rst two DC A axes generatcd for each core arc listcd on figures 6. I 7 -6.20. 
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Figure 6.13. May Moss core C 1 plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a OCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results ofa sum of the squares cluster 

analysis. 
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Figure 6.14. May Moss core C2 plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abWldances based on leaf counts of a random 
selection of branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a DCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results of a sum of the squares cluster 

analysis. 
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Figure 6.15. May Moss core C3 plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a OCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results of a sum of the squares cluster 

analysis. 
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Figure 6.16. May Moss core C4 plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a DCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results of a sum of the squares cluster 

analysis. 
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DCA axis 1 (Eigenvalue 0.570) 

b). 

Macrofossil components DCA axis 1 DCA axis 2 
Eigenvalue 0.570 0.357 
% variance 29.83 18.68 

Unidentified Organic Matter UOM 0.0436 -0.6619 c 

Monocotyledons Mono -0.0890 -0.1021 
Ericaceae Eric -0.4367 a -0.5013 a 

Polytrichum commune Pcom -0.3673 0.0180 
Hypnum jutlandicum Hjut -0.3417 -0.1091 

Total identifiable Sphagnum Spha 0.4746 a 0.8058 c 

Sphagnum section Acutifolia Sacu 0.0353 0.6498 c 

Sphagnum imbricatum Simb -0.2238 0.6957 c 

Sphagnum magellanicum Smag 0.9432 c 0.0044 

Figure 6.17. (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the core C 1 plant macrofossil 
data. The axes are scaled in standard deviation units xl 00 . (b) Identifies the species 
labels on part (a), lists the eigenvalues for and percentage variation explained by each 
DCA axis and lists the correlation coefficients between DCA axes and the plant 
macrofossil components. The correlations are not statistically significant unless annotated 
by either, a = significance at the 95% level, b = significance at the 990/0 level or C = 
significance at the 99.9% level. 
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DCA axis 1 (Eigenvalue 0.221) 

b). 

Macrofossil components 
Eigenvalue 
% variance 

Unidentified Organic Matter 
Monocotyledons 

Ericaceae 
Polytrichum commune 
Hypnum jutlandicum 

Total identifiable Sphagnum 
Sphagnum section Acutifolia 

Sphagnum imbricatum 
Sphagnum magellanicum 

Sphagnum section Cuspidata 

Graph labels 

UOM 
Mono 
Eric 

Pcom 
Hjut 
Spha 
Sacu 
Sinlb 
Smag 
Scus 

DCA axis 1 
0.540 
35.55 

-0.7250 c 

-0.1031 
-0.1527 
0.0392 
-0.0277 
0.7565 c 

0.0258 
-0.0163 
0.5886 c 

0.8495 c 

550 

DCA axis 2 
0.221 
14.53 

-0.0768 
-0.6453 c 

-0.1250 
0.5197 b 

0.0257 
0.6862 c 

0.8759 c 

-0.0846 
-0.1198 
0.0266 

Figure 6.18. (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the core C2 plant macrofossil 
data. The axes are scaled in standard deviation units xl 00. (b) Identifies the species 
labels on part (a}, lists the eigenvalues for and percentage variation explained by each 
DCA axis and lists the correlation coefficients between DCA axes and the plant 
macrofossil components. The correlations are not statistically significant unless annotated 
by either, a = significance at the 95% level, b = significance at the 990/0 level or C = 
significance at the 99.9% level. 
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DCA axis 1 (Eigenvalue 0.453) 

b). 

Macrofossil components 
Eigenvalue 
% variance 

Unidentified Organic Matter 
Monocotyledons 

Ericaceae 
Polytrichum commune 
Hypnum jutlandicum 

Total identifiable Sphagnum 
Sphagnum section Acutifolia 

Sphagnum imbricatum 
Sphagnum magellanicum 

Sphagnum section Cuspidata 

Graph labels 

UOM 
Mono 
Eric 

Pcom 
Hjut 
Spha 
Sacu 
Simb 
Smag 
Scus 

DCA axis 1 
0.453 
29.52 

-0.3801 b 

-0.5673 c 

-0.3779 b 

0.1346 
-0.0531 
0.6901 c 

-0.0907 
0.9408 c 

0.2331 
0.2921 a 

350 

DCA axis 2 
0.179 
11.67 

0.7063 c 

0.3870 b 

0.1442 
0.0423 

0.4136 b 

-0.7103 c 

-0.9084 c 

0.0543 
0.0563 
-0.0489 

Figure 6.19. (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the core C3 plant macrofossil 
data. The axes are scaled in standard deviation units xl 00. (b) Identifies the species 
labels on part (a}, lists the eigenvalues for and percentage variation explained by each 
DCA axis and lists the correlation coefficients between DCA axes and the plant 
macrofossil components. The correlations are not statistically significant unless annotated 
by either, a = significance at the 95% level, b = significance at the 990/0 level or C = 
significance at the 99.9% level. 
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DCA axis 1 (Eigenvalue 0.466) 

b). 

Macrofossil components Graph labels DCA axis 1 
Eigenvalue 
% variance 

Unidentified Organic Matter 
Monocotyledons 

Ericaceae 
Polytrichum commune 
Hypnum jutlandicum 

Total identifiable Sphagnum 
Sphagnum section Acutifolia 

Sphagnum imbricatum 
Sphagnum magellanicum 

Sphagnum section Cuspidata 

UOM 
Mono 
Eric 

Pcom 
Hjut 
Spha 
Sacu 
Simb 
Smag 
Scus 

0.466 
31.79 

-0.6877 c 

-0.7382 c 

-0.0129 
0.1342 
-0.2141 
0.8722 c 

0.1855 
0.6177 b 

-0.0242 
0.6753 c 

DCA axis 2 
0.118 
8.06 

-0.0433 
0.0317 
-0.4265 
0.6206 b 

-0.4736 a 

0.1404 
-0.2824 
0.3108 

0.5128 a 

-0.0002 

Figure 6.20. (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the core C4 plant macrofossil 
data. The axes are scaled in standard deviation units xl 00. (b) Identifies the species 
labels on part (a}, lists the eigenvalues for and percentage variation explained by each 
DCA axis and lists the correlation coefficients between DCA axes and the plant 
macrofossil components. The correlations are not statistically significant unless annotated 
by either, a = significance at the 95% level, b = significance at the 990/0 level or C = 
significance at the 99.9% level. 
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The correlation analysis identifies the components involved in the most significant changes in the 

plant macrofossil stratigraphy. 

A common problem with detrended correspondence analysis anses because the procedure is 

inherently susceptible to dominance by occasionally abundant or outlier species (Kovach. 1995). 

This is clearly evidenced by the core 1 stratigraphy, where Sphagnum magellanicum exceeds 

600/0 of the assemblage for only 30 cm of peat. DCA axis 1 identifies these fluctuations as the 

most significant structure within the sub-fossil data: however. DCA axis 1 onl\' summarises 30%) 

of the total variation. DCA axis 2 summarises 19% of the overall structure and models an inverse 

relationship between a dry environment stratigraphy dominated by Unidentified organic matter 

and Ericaceae, and a wet environment stratigraphy dominated by :.,phagnum species. Both these 

DCA axes emphasise stratigraphic changes that cumulatively contribute 500/0 of the overall 

structure in the plant macrofossil data. and these changes can be broadly related to fluctuating 

moisture conditions. Similar problems arise in plant macrofossil stratigraphy of all four cores. 

with DCA axis 1 primarily summarising the relationships between occasionally abundant 

components and i.t i~ difficult to link the DCA axes with a meaningful ecological gradient. 

Consequently. the DCA axes are not used as a semi-quantitative palaeohydrological model sensu 

Barber et af. (l994a). However, detrended correspondence analysis does identify and emphasise 

the most significant structure or changes \\'ithin a dataset. and so DCA axis 1 is displayed 

stratigraphicall y in figures 6. 13 -6 .16 to assist with interpretation of the peat stratigraphy. 

Palaeoecology 

An important feature of the plant macrofossil stratigraphies is that core sites 2 and 3 appear to 

have consistently sustained wetter communities than core sites 1 and 4. This is emphasised by a 

.sphagnum flora containing Sphagnum section Cuspidata at cores sites 2 and 3. a group of 

species that typically occur as submerged or floating vegetation in pools or hollows. Conversely 

the core 1 and 4 stratigraphy is dominated by the hummock-building Sphagna. namely Sphagnum 

section AcutUolia and .sphagnum imbricatum. The stratigraphic evidence appears to indicate that 

the topography currently at site C has been broadly similar since at least circa cal. AD 1100. 

The most significant changes in the plant macrofossil stratigraphy identified in the cluster and 

detrended correspondence analyses occurred circa cal. AD 500. cal. AD 1100-1200. cal. AD 

1400-1450. cal. AD 1600. cal. AD 1700 and around cal. AD 1800. The most significant change 

in the site C peat stratigraphy involves the expansion of a Sphagnum community circa cal. AD 

1200. Prior to this event the stratigraphy is dominated by Monocotyledon and Ericaceae remains. 

mixed \\'ith substantial quantities of decomposed Unidentified organic matter. There is a 
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comparatively minor expansion of Sphagnum in the cores (I and 4) extracted from beneath 

present-day humrnocks circa cal. AD 500, but this expansion is not evident in the core 2 and core 

3 peat stratigraphy. The major expansion of Sphagnum occurs in all four cores. identifying 

substantially wetter conditions at site C belO\\ a 14C date of 825 ±50BP [cal. AD 

1165(1230)1275]. 

A drier phase between cal. AD 1250-1450 is also evident in all four cores. with the Sphagnum 

communities declining in the hollows and Sphagnum section Acut~folia surviving on the drier 

hummocks. This perception of a drier environment is enhanced by the presence of H.1pnum 

jutlandicum and Polytrichum, which typically occur in the drier parts of blanket mires. \\ith 

Hypnum jutlandicum perhaps covering the mire surface beneath a Cal/una vulgaris canopy in 

drier locations. After cal. AD 1400 there is a return to wetter conditions evidenced by a further 

expansion of Sphagnum. This return to \yetter conditions is 14C dated to 450 ±55BP [cal. AD 

1410(1445)1630]. A short-lived drier phase is evidenced by a decline by Sphagnum 

magellanicum in core 1. and the decline by Sphagnum species in general on the other cores circa 

cal. AD 1650. These dry conditions are corroborated by the expansion of Ericaceae and H.vpnum 

jutlandicum communities. The chronology for this dry phase is secured by h\o 14C dates of 310 

±40BP [cal. AD 1475(1640)1665] and 265 ±40BP [cal. AD 1515(1650)1950]. 

Subsequently. \\et communities dominate the peat stratigraphy at site C. with Sphagnum 

imbricatllm the dominant hummock-forming Sphagna and Sphagnum section Cuspidata in the 

hollows. These environmental conditions persist largely uninterrupted to the present-day. \\ith the 

exception of a brief undated drier phase circa cal. AD 1800, \\hich is evidenced by the expansion 
I 

of Sphagnum section Acutdolia at the expense of Sphagnum section Cuspidata. This fluctuation 

is short-lived with Sphagnum section Cu~pidata dominating the stratigraphy betvveen circa cal. 

AD 1850 and the present-day. The final feature in the site C stratigraphy involves evidence for a 

change to drier conditions in the surface layers of peat. H.vpnum jutlandicum and Ericaceae 

remains increase m abundance at the expense of the Sphagnaceae, perhaps reflecting a drying 

trend in the recent history of May Moss. This drying trend of the last 100 years affects both 

hummock and hollow habitats. 

6.2.2.3 Humific.ation data 

The humification curves from cores 2 and 3 are displayed stratigraphically in figures 6.21 and 

6.22 respectively. Comparison of the two profiles reveals that the stratigraphy is broadly 

identical. and this corroboration signifies that the profiles provide a representative assessment of 

the humification stratigraphy. The humification stratigraphy is derived from 1\\0 hollo\\ peat 
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Figure 6.21. Humification data from May Moss core C2 displaying; (a) the 
raw percentage light transmission values, (b) the raw data smoothed using 
an unweighted three point moving average, (c) the smoothed data series 
subjected to a high pass filter emphasising the key shifts. In all three curves 
higher values denote poorly humified peat and are interpreted as signifying 
wetter conditions. 
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Figure 6.22. Humification data from May Moss core C3 disp1aying; (a) the 
raw percentage light transmission values, (b) the raw data smoothed using an 
unweighted three point moving average, (c) the smoothed data series 
subjected to a high pass filter emphasising the key shifts. In all three curves 
higher values denote poorly humified peat and are interpreted as signifying 
wetter conditions. 
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sequences. with each profile containing six major changes to poorly humified peat. which occur at 

similar depths within the peat sequence. The shifts to poorly humified peat are particularly \\"ell 

emphasised in graph (c). the smoothed and low-pass filtered data. and are interpreted as 

indicating changes to 'wetter conditions on the mire surface circa cal. AD 500. 800. 1100. 1400. 

1625 and 1800. P-:1ases of well humified peat signify comparatively drier conditions between cal. 

AD 200-450,700-800.950-1100. 1250-1400, 1550-1600 and 1725-1775. 

6.2.2.4 Reconstructing mire surface wetness 

The palaeohydrological history at site C draws upon evidence uncovered in all four cores. The 

chronology for the peat stratigraphy is secured by a series of 14C dates on core 3 _ Utilising se\'eral 

cores and palaeoenvironmental procedures allows both the consistency of the peat stratigraphy 

and the comparative performance of each palaeoecological procedure to be assessed. The 

following synthesis of the palaeohydrology at site C places particularly emphasis on surface 

moisture changes identified by all the palaeoenvironmental procedures and changes evidenced in 

more than one core. The evidence for wet shifts and unambiguously dry conditions present in the 

palaeoenvironmental data is summarised on figure 6.23. Periods containing conflicting 

palaeohydrological indications are extremely important. because they identify stratigraphy 

produced under indeterminate moisture conditions and emphasise fallibilities \\ithin the 

palaeoenvironmental procedures. 

The testate amoebae and plant macrofossil stratigraphy is very similar in all the site C cores. This 

broad uniformity of the stratigraphy occurs even though cores 2 and 3 \vcre wetter environments 

throughout the period of peat accumulation. Consequently, it appears that both hummock and 

hollow peat sequences are useful for palaeohydrological research. However. it should be noted 

that a clearer hydrological history was elucidated from the core 3 testate amoebae stratigraphy 

than from cores 1 and 4. which tends to support a view that the hollow environment is more 

sensitive to hydrological changes and that hollow stratigraphy provides a clearer record of mire 

palaeohydrology (Barber. 1981). This opinion is not unanimously-held, Tallis (1994) asserts that 

hummock stratigraphy can provide a clear record of moisture fluctuations. \\"ith \yet shifts 

signifying substantial changes in mire surface wetness. These views are equally valid. with both 
, 

hollO\\ and hummock stratigraphy capable of yielding meaningful palaeohydrological and 

palaeoclimate infoIDlation. The boundary bet\\cen a hummock and a hollo\\" arguably should 

provide the clcar~st record of moisture changes. recording the expansion of dry and wct­

indicating stratigraphy in response to climatic fluctuations. 
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Figure 6.23. Summary of the moisture fluctuations signified in peat stratigraphies at 
May Moss site C. Red lines denote dry conditions and blue lines wet conditions. The 
blue arrows signify changes to wetter conditions. Grey zigzag lines denote 
stratigraphy with an ambiguous hydrological signal. 
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Figure 6.23 demonstrates that the hydrological indications. yielded by the different procedures are 

broadly identical. The obvious exception to this involves the stratigraphy pertaining to the period 

cal. AD 0-1150. The palaeohydrological history derived from the basal 80 cm of peat is 

interpreted from the humification stratigraphy, because the testate amoebae and plant macrofossil 

stratigraphy is hydrologically ambiguous. The stratigraphy above 140 cm is better suited for 

palaeohydrological research \yith a higher diversity and a greater turnover of plant and testate 

amoebae species. which importantly includes species \yith precise moisture requirements. 

Notwithstanding the problems identified above there is clear correlation and uniformity \yithin the 

hydrological signal at May Moss site C. There are significant shifts to wetter conditions. three of 

vvhich have been 14C dated. Circa cal. AD 400-500 the humification stratigraphy provides 

unequivocal evidence of a change to wetter conditions. \yith corroborating evidence provided by 

minor increases in the abundance of Sphagnum and increased diversity of testate amoebae 

communities. Circa cal. AD 750-800 there is a further undated \yet shift evident in humification 

stratigraphies. The most significant change in the stratigraphy at site C. which involves the 

accumulation of Sphagnum-dominated peat and high diversity testate amoebae communities. 

occurs below a 14C date of 825±40BP [cal. AD 1155(1220)1284]. A reconstructed mean annual 

water table for the subsequent period of 5 cm indicates the mire surface was very wet. The 

reconstructed mean annual water table curve prior to this point is probably flawed. because the 

reconstructions are based on one or two taxa which is far from ideal. 

The stratigraphy pertaining to the period from cal. AD 1100 to the present-day contains three \vet 

shifts: occurring 450 ±55BP [cal. AD 1407(1441)1627].265 ±40BP [cal. AD 1521(1651)19541 

and a further undated shift circa cal. AD 1750-1800. The reconstructed mean annual \yater table 
I 

depths of 5-6 cm during these wet periods quantify moisture conditions on the mire. The periods 

after these shifts are probably the wettest phases in the palaeohydrological history. signified by 

abundant Sphagnum section Cuspidafa remains. which typically are pool species. Dry events in 

the stratigraphy at site C prior to cal. AD 1000 are rather equivocaL largely due to the ambiguity 

of the stratigraphy. After cal. AD 1000 there is clear evidence of drier periods: 680 ±40BP [cal. 

AD 1264(1294)1396] to 450 ±55BP [cal. AD 1407 (1441)1627], 310 ±40BP [cal. AD 

1477(1638)1664J to 265 ±40BP [cal. AD 1521(1651)1954] and an undated drier phase circa cal. 

AD 1700-1800. The reconstnlcted mean annual \yater table values signify water table depths 

only 2 cm deeper than during the wetter periods. The expansion of Hypnllm jllflandicum and 

Calluna vulgaris during these three phases also signifies a comparatively dry en\ironment. 
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The final event in the hydrological history occurs in the surface layers of peat. where the testate 

amoebae and plant macrofossil stratigraphy signify a change to substantially drier conditions. 

The decline in diversity of testate amoebae communities and higher frequencies of Ericaceae 

remains and Hypnum jutlandicum provide clear evidence of drying of the mire surface in recent 
, 

years. This drying trend is more severely manifested in hummock stratigraphy than the ho11O\\"s. 

which still sustain 5;phagnum communities. 

6.2.3 May Moss Site D 

Palaeohydrological research at site D is based on the analysis of t\\O cores, D 1 and D2. 

Additionally three parallel cores were extruded, from \\ithin a 1.5x 1.5 metre area during the 

sampling of the D 1 core, to assess the consistency of the stratigraphy. Both the D 1 and D2 cores 

were analysed to assess consistency of the palaeohydrological signal at site D. D 1 \\as extracted 

with a 5 x 5 0 cm Russian corer and D2 with a lOx 3 0 cm Russian corer. A summary of the field 

stratigraphy is presented in table 6.3. 

Table 6.3. Field stratigraphy at May Moss site D. 

Mire surface 
0- 12 cm 

12 - 28 cm 

28 - 34 cm 

34 - 70 cm 

70 - 85 cm 

85 - 110 cm 

110-130cm 

130 - 150 cm 

150 - 175 cm 

175 - 275 cm 

, 

Sphagnum recurvum in the hollows. with Sphagnum papil/osum 
and Eriophorum vaginatum. Cal/una vulgaris and Sphagnum 
capillUolilim covers the hummocks. 

5YR 4/4. Poorly humified Sphagnum and Monocotyledonous peat. 

5YR 3/4. Monocotyledonous peat. 

5YR 4/4. Sphagnum and Monocotyledonous peat. 

5YR 3/3. Monocotyledonous and Ericaceae peat. 

5YR 4/4. Sphagnum and Monocotyledonous peat. 

5YR 3/4. Monocotyledonous peat. 

5YR 3/4. k)phagnum and Monocotyledonous peat. 

5YR 4/4. Poorly humified Sphagnllm peat. 

5YR 3/3. Well humified Monocotyledonous/Ericaceae peat. 

The D 1 peat profile received both plant macro-fossil and humification analysis. The D2 profik 

received testate amoebae. plant macro-fossil and humification analysis. Further analysis in\'ohcd 

the constnlction of the D 1 pollen profile presented in chapter 5. 



6.2.3.1 Testate amoebae data 

Quantitative analysis 
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The testate amoebae stratigraphy is presented in figure 6.24. The species scores on the first two 

axes of a detrended correspondence analysis of the sub-fossil data are displayed as a XN biplot 

in figure 6.25. The eigenvalues for the first two DCA axes are 0.505 and 0.051 respectively. 

which signify that they summarise the most significant structure \yithin the dataset. The amount 

of variation individually explained by further DCA axes is minimal. Correlation coefficients 

between the actual abundance of testate amoebae taxa and the first two axes of the DC A are 

listed on figure 6.25. The correlation coefficients identify the testate amoebae species involved in 

the most significant changes in the sub-fossil stratigraphy. 

, 
The most abundant testate amoebae species appear to be arranged along DCA axis I according to 

their tolerance of habitat moisture conditions. Dry indicator taxa such as Hya/osphenia sll~tlava 

occur at the opposite end of axis 1 to the wet indicators Amphitrema flavllm. Amphitrema 

wrightianum and Assulina spp. (Tolonen et 01.. 1992~ 1994~ Woodland et 01.. 199R). The 

correlation coefficients support this conclusion \"ith axis 1 summarising sub-fossil variations 

between a "\vet environment" assemblage and a "dry environment" assemblage. The \\ct 

indicators~ Amphitrema flavum, Amphitrema wrightianum and Assulina spp .. are negatively 

correlated with axis 1. whereas the dry indicator Hyalosphenia subflava is positively correlated. 

Further individual DCA axes only explain minor amounts of variation. with DCA axis 1 

accounting for 3R.59% of the total structure. DCA axis 1 appears to identify a moisture gradient. 

and this appears 1:0 be the most important environmental factor affecting the sub-fossil testate 

amoebae. DCA axis 1 is proposed as a model summarising fluctuations between \yet and dry 

conditions on the mire surface. The sample scores on DCA axis I are plotted stratigraphically on 

figure 6.24. \yith high values denoting drier conditions and lower values wetter conditions. The 

DCA palaeohydrological curve is only proposed as a semi-quantitative model of mire surface 

wetness. 

The optimum. maximum and minimum reconstructed mean annual water table depths tolerated by 

extant species were used to generate three palaeohydrological curves, \yhich identify the potential 

range of moisture conditions at site D. The curves are displayed stratigraphically on figure 6.24 

The fluctuations in reconstnlcted mean annual water table depth signify a very changeable 

hydrological history. Figure 6.24 displays a broad agreement between DCA axis I and the depth 

to \vater table reconstnlction. The significance of this agreement \\as tested using Spearman 

Rank correlation analysis for non-parametric data (P2:0. 000 L correlation is significant at the 

99.99%> level). which indicates there is a strong agreement between the 1\vo signals. Assuming the 
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Figure 6.24. May Moss core D2 testate amoebae diagram. The species curves are arranged from left to 
right according to preference of habitat moisture conditions. On the far right the reconstructed mean 
annual water table depths are presented, including upper and lower limits based on the ranges tolerated 
by individual species; the sample scores on the first axis of a DCA are expressed in standard deviation 
units (xlOO); and the dendrogram presents the results ofa sum of the squares cluster analysis. 
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b). 

Testate Amoebae species Graph label DCA axis 1 DCA axis 2 
Eigenvalue 0.504 0.051 
% variance 38.59 3.94 

Arcella discoides Adis -0.0078 0.5035 c 

Arcella artocrea Aare 0.0589 0.4650 c 

Arcella catinus Acat 0.1714 0.4328 c 

Arcella conica Aeon 0.1665 0.0811 
Arcella vulgaris A vul O. 1096 -0.1786 

Centropyxis cassis -type Ccas -0.0818 -0.0652 
Centropyxis aculeata -type Caeu -0.1761 0.0389 

Plagiopyxis callida Peal 0.1082 -0.2174 
Bullinularia indica Bind -0.0043 -0.3969 a 

Trigonopyxis arcula Tare 0.0897 -0.0947 
Hyalosphenia subflava Hsub 0.8908 a -0.0894 
Hyalosphenia papilio Hpap 0.0458 -0.0682 
Hyalosphenia elegans He1e -0.1965 0.3801 a 

Heleopera sphagni Hsph 0.0130 -0.0925 
Heleoperapetricola Hpet -0.1951 -0.3244 

Nebela undiff Nund -0.1845 -0.0823 
Amphitremaflavum Afla -0.7296 c 0.1602 

Amphitrema wrightianum Awri -0.8627 c -0.1167 
Amphitrema stenostoma Aste -03013 0.2122 

Euglypha strigosa Estr -0.0099 0.0654 
Euglypha tuberculata Etub -0.0309 0.0575 

Euglypha spinosa Espi 0.1389 -0.1762 
Euglypha rotunda Erot -0.3494 a 0.2738 

Assulina muscorum AInus -0.6924 c -0.4782 c 

Assulina seminulum Asem -0.6944 c -0.4867 c 

Corythion dubium -type Cdub 0.0975 0.0607 

Figure 6.25. ( a) Detrended correspondence analysis ordination diagram showing the 
species weighted averages on the first two axes for the core D2 testate amoebae data. 
The axes are scaled in standard deviation units xl 00. (b) Identifies the species labels on 
part (a), lists the eigenvalues for and percentage variation explained by each DCA axis 
and lists the correlation coefficients between DCA axes and the testate amoebae species. 
The correlations are not statistically significant unless annotated by either, a = significance 
at the 95% level, b = significance at the 99% level or C = significance at the 99.90/0 level. 
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reconstructed mean annual water table depths are accurate this provides further evidence that 

DCA axis 1 represents a moisture gradient and that the major control on testate amoebae 

communities is mire surface wetness. 

Palaeoecology 

Of the twenty-six species encountered in the peat profile, only nine occur in any great number: 

Arcella discoides, A mphifremaflavum, Amphifrema wrightianum. Asslllina muscorum. Assulina 

seminulum, Hyalosphenia su~flava, Trigonopyxis arcula, Heleopera petricola and Centropyxis 

cassis-type. The s'lb-fossil record is characterised by fluctuations between 1\\"0 groups of species. 

The first group is dominated by Hyalosphenia sll~flava and occasional Trigonopyxis arcllla. 

which typically are associated with dry environments (Woodland. 1996). The second contains 

Amphitrema flavum, Amphitrema wrightianum, Assulina muscorum and Assulina scminulllln. 

and these taxa are typically associated with wetter environments (Woodland ct aI., 1998). The 

sub-fossil testate amoebae community has been dominated by these two groups throughout the 

last 2000 years. The most significant changes in the testate amoebae stratigraphy identified by the 

cluster and detrended correspondence analyses occurred circa cal. AD 400, 600, 1000, 1300, 

1450 and 1900. 

From cal. AD 0 to .400 testate amoebae are very sparse. and the number of tests counted 

occasionally fails to achieve a minimum of 100 tests. The diversity of species \\ithin these layers 

is also 1m\". dominated by Hyalo.sphenia subjlava, \\"ith occasional Asslilina mllscorllm. 

Amphitrema flavum and Centropyxis cassis-type. Perhaps the most significant change in the sub­

fossil fauna occurs circa cal. AD 400 and is an event synchronous with the initiation of 

,-~phagnllm-dominated stratigraphy at site D. Prior to this change the stratigraphy consisted of 

\\'ell humified peat dominated by monocotyledonous and Ericaceae remains. Testate amoebae 

become more abundant and as the diversity of the assemblages increases Hyalosphenia slL~flava 

declines sharply and is replaced by Amphifrema jlavum, Amphifrema wrightianum, ASSlllina 

mllscorllm and Asslilina seminulum. This species association is joined by Centropyxis cassis­

type. Arcclla discoides and Heleopera spp. circa cal. AD 600. This assemblage of species is 

typically associated with a \\"et enviromnent. 

Circa 700 cal. AD Amphifrcma jlavllm. Amphitrema wrightianllm and Assldina scminlllllm 
I 

decline. and Hyalosphenia su~flava increases in abundance to dominate the sub-fossil 

community. Ccntropyxis cassis-type. Trigonopyxis arclila. Bllllinlilaria indica. Arcclla calinllS 

and Asslilina I1111SCOrlll11 arc also relatively abundant. Hyalo.\phenia sll~flava dominates the 

stratigraphy bct\\"een cal. AD 700-900. which signifies comparatively dry conditions, Bet\\cen 
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cal. AD 1000-1250 Hyalosphenia sll~flava declines gradually. and Amphitrema flavllm. 

Amphitrema vvrightianum. Assulina muscorum. Assulina seminulum and C'entropytis cassi.\'­

type dominate the peat stratigraphy. reflecting a return to \vetter conditions. 

Between cal. AD 1300-1450 the previously diverse testate amoebae community is replaced by an 

association of Hyalo.sphenia su~flava and Arcella catinllS. \vith occasional tests of Trigonopyxis 

arcula. Bullinulal'ia indica. Assulina muscorum and Heleopera .sphagni. This assemblage is 

indicative of comparatively dry conditions. However, after cal. AD 1450 the Hyalosphenia 

su~flava dominated community declines and is replaced by an association of A mph itrema flavllm. 

Amphitrema wrightianum. Assulina muscorum. Assulina seminulum and Arcella discoides. 

which dominate the peat stratigraphy between cal. AD 1450-1900 and signify wet conditions. 

During the last 100 years Amphitrema jlavum. Amphitrema wrightianllm. Asslllina mllSCOrlll11 

and Assulina semimflul11 disappear from the fossil record. Hyalo.\phenia sll~flava. Arcella 

catinus and Trigonopyxis arcllla increase in abundance and dominate the surface layers of peat 

signifying a drying trend in the recent hydrological history. 

6.2.3.2 Plant macro-fossil data 

Palaeoecology 

The plant macro-fossil stratigraphy from Dl is displayed in figure 6.26 and D2 is displayed in 

figure 6.27. The scores of the main macrofossil components on the first two axes of a detrended 

correspondence analysis performed on the sub-fossil data of both cores are displayed as XN 

biplots in figure 6.28 and 6.29. The eigenvalues for the first t\\O DCA axes generated for each 

core are also listed on figure 6.28 and 6.29, and signify that the axes summarise the most 

significant structure within both data-sets. The amount of variation explained by further 

individual DCA axes is minimal. Correlation coefficients between the main components of the 

plant macrofossil stratigraphy and the first two DCA axes generated for each core are also listed 

on figures 6.28 a:Gd 6.29. The correlation coefficients identify the components involved in the 

most significant changes in the macrofossil stratigraphy. 

The main compor.ents of the plant macrofossil stratigraphy in D I appear to be arranged along 

DCA axis I according to their tolerance of moisture conditions. Dry indicator components such 

as the Ericaceae and Unidentified Organic Matter occur at the opposite end of axis I to the \vet 

indicators. the Sphagnaceae (Daniels & Eddy. 1990: Barber. 1981). The correlation coefficients 

support this conclusion with DCA axis 1 summarising variations between a "\vet environment'" 

stratigraphy and a "dry environment" stratigraphy. The wet indicators are the Sphagnaceae. 
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Figure 6.26. May Moss core 01 plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a OCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results of a sum of the squares cluster 

analysis. 
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Figure 6.27. May Moss core D2 plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a DCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results of a sum of the squares cluster 

analysis. 
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b). 

Macrofossil components 
Eigenvalue 
% variance 

Unidentified Organic Matter 
Monocotyledons 

Ericaceae 
Total identifiable Sphagnum 
Sphagnum section Acutifolia 

Sphagnum imbricatum 
Sphagnum mage/lanicum 

Sphagnum papi/losum 
Sphagnum section Rigida 

Sphagnum section Cuspidata 

Graph labels 

UOM 
Mono 
Eric 
Spha 
Sacu 
Simb 
Smag 
Spap 
Srig 
Scus 

DCA axis 1 
0.602 
34.39 

-0.6937 c 

-0.6957 c 

-0.6363 c 

0.8762 c 

0.1719 
0.9430 c 

0.1755 
0.0135 

0.2544 a 

-0.2084 

300 

DCA axis 2 
0.059 
3.36 

0.5552 c 

-0.1616 
-0.4889 c 

-0.0299 
-0.0176 
0.0045 
0.1252 

0.3524 c 

-0.0513 
-0.0720 

Figure 6.28 (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the core D 1 plant macrofossil 
data. The axes are scaled in standard deviation units x 100. (b) Identifies the species 
labels on part ( a), lists the eigenvalues for and percentage variation explained by each 
DCA axis and lists the correlatlon coefficients between DCA axes and the plant 
macrofossil components. The correlations are not statistically significant unless annotated 
by either, a = significance at the 95% level, b = significance at the 99% level or C = 
significance at the 99.9% level. 
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b). 

Macrofossil components Graph labels DCA axis 1 DCA axis 2 
Eigenvalue 0.668 0.292 
0/0 variance 27.38 11.98 

Unidentified Organic Matter UOM 0.2974 0.1625 
Monocotyledons Mono 0.2873 0.0519 

Ericaceae Eric 0.5543 c 0.3018 
Hypnum jutlandicum Hjut 0.2755 0.4619 c 

Total identifiable Sphagnum Spha -0.5518 c -0.3099 
Sphagnum section Acutifolia Sacu -0.0539 0.1144 

Sphagnum imbricatum Simb -0.9207 c 0.2428 
Sphagnum papillosum Spap 0.5383 c -0.6893 c 

Sphagnum section Cuspidata Scus 0.2369 -0.4694 c 

Figure 6.29 (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the core D2 plant macrofossil 
data. The axes are scaled in standard deviation units x 100. (b) Identifies the species 
labels on part (a), lists the eigenvalues for and percentage variation explained by each 
DCA axis and lists the correlation coefficients between DCA axes and the plant 
macrofossil components. The correlations are not statistically significant unless annotated 
by either, a = significance at the 95% level, b = significance at the 99% level or C = 

significance at the 99.9% level. 
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\yhich display a strong positive correlation with DC A aXIS 1. whereas the dry indicators. 

Unidentified Organic Matter. Ericaceae and Monocotyledonous. display a strong negative 

correlation. 

DCA aXIS 1 accounts for 34.290/0 of the total structure: consequently. further DCA axes 

individually explain less significant amounts of variation within the plant macrofossil 

stratigraphy. DCA axis 1 appears to identify a moisture gradient. which appears to be th~ most 

important envirorunental factor affecting the D 1 stratigraphy. DCA axis 1 is proposed as a model 

summarising fluctuations between \yet and dry conditions on the mire surface. In order to use the 

DCA axes as semi-quantitative moisture curves. the peat stratigraphy should ideally contain an 

interchange of species \yith specific envirorunental preferences. In the case of the site D 1 plant 

macrofossil stratigraphy this does occur, and so the DCA axis 1 curve is a useful tool assisting 

with the interpretation of the palaeohydrological history. The sample scores on DCA axis I are 

plotted stratigraphically on figure 6.26. 

The results of the detrended correspondence analysis of the D2 data are more complicated. The 

correlation coefficients identify that Ericaceae remains are positively correlated \yith DCA axis 1. 

whereas Sphagnum imbricatum is negatively correlated. The ecological relationship between 

these components is strongly affected by moisture conditions. \yith Sphagnum imbricatum 

indicative of \yetter conditions. Ho\yever. in this case the detrended correspondence analysis 

appears to be affected by components that are abundant in isolated layers~ for example. 

Sphagnum papi Ilosum is a significant component of the structure represented on DCA axis 1. but 

is only present in the top 20 cm of peat stratigraphy. The behaviour of three further outliers. 

Hypnum jutlandicum, Sphagnum section Cuspidata and Sphagnum papillosum. is represented 

on DCA axis 2 and is a significant component of the overall structure within the sub-fossil data. 

In theory the DCA axis 1 generated for D2 models variations between a "\yet envirorunent 

stratigraphy and a "dry envirorunenf' stratigraphy. However. the occasionally frequent 

components are a significant part of the structure identified by the DCA. which. combined \yith 

the fact that DCA axis 1 only summarises 27.380/0 of the overall structure. questions the validity 

of using DCA axis 1 as a hydrological model for the D2 data. Nevertheless detrended 

correspondence analysis does identify and emphasise the most significant structure or changes 

within a dataset consequently the sample scores on DCA axis 1 are displayed stratigraphically 

on figure 6.27 to assist with interpretation of the peat stratigraphy. 
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Palaeoecology 

Ecologically the Sphagnum taxa identified in the fossil record are associated \yith substantially 

different environr.:1ental micro-habitats. Sphagnum section lwpidata contains pool species. 

Sphagnum imbricatum and Sphagnum papillosum typically form low dense hummocks or ridges. 

and Sphagnum section AClltifolia are typically hummock-top species. The D2 profile consistently 

contains taxa that typically would inhabit a position located further above the water table than 

D 1. This evidence suggests that D2 has been a topographically higher palaeohabitat than D 1 

throughout the period of peat accumulation, which is in keeping with the current state of affairs at 

site D. The current flora at D I is dominated by the pool species Sphagnum reCllrVllm (Sphagnum 

section Cuspidata), and D2 is dominated by Sphagnum papillosum. Hypnum jutlandicllm and 

Ericaceae, \vhich are hummock-forming species. typically elevated above the water table. 

However, despite slight differences in the palaeohabitat yielding the cores, the plant macrofossil 

analysis has revealed a virtually identical sequence of stratigraphic changes. 

The most significant changes in the plant macrofossil stratigraphy identified by the cluster and 

detrended correspondence analyses occurred circa cal. AD 400. 700-750. 900. 1250. 1400 and 

1750. Between 300 cal. Be - cal. AD 350 the peat stratigraphy contains substantial quantities of 

Unidentified Organic MatteL and is dominated by Ericaceae and Monocotyledonous remains. 

Additionally the raw counts Ericaceae leaves are very high. identifying comparatively dry 

conditions. After cal. AD 400, Sphagnum section AcutUo/ia increase in abundance. dominating 

the peat stratigraphy. This expansion of Sphagnum is indicative of a wetter environment and is 

14e dated to 1640±50 BP [cal. AD 260(420)555] on the D2 profile. Sphagnum imbricatllln 

replaces Sphagnum section AcutUolia in both cores. dominating the peat stratigraphy until circa 

cal. AD 750. Between cal. AD 550-650 there is a short-lived decline in the abundance of 

Sphagnum. and corresponding increases in Ericaceae and Monocotyledonous remains. After this 

fluctuation ,)'phagnum imbricatum appears for the first time in the D2 profile. Unidentified 

Organic Matter and Ericaceae dominate the peat stratigraphy between cal. AD 700-900. perhaps 

reflecting a return to drier conditions. an interpretation supported by the absence of ,\'phaRnllm 

remains during this period. The chronology of these changes is secured by a lower 14e date of 

1305±50 BP [cal. AD 650(690)860] and an upper 14e date of 1195±50 BP [cal. AD 

700(870)975]. both obtained for the D2 core. 

Between cal. AD 900-1200. 5'phagnum imbricatum dominates the stratigraphy in both cores 

identifying a return to wetter conditions. Between cal. AD 1200-1300 '\IJhagnum imhncafllm 

declines and is replaced by ,)'phagnllln section AClltUc)lia and Ericaceae remains signifying a 

return to drier conditions. The beginning of this drier phase is 14C dated to 1 195±50 BP Ical. AD 
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1260(1295)1400]. Subsequently ,)'phagnum imbricatum dominates the 01 stratigraphy from cal. 

AD 1400 until circa cal. AD 1750: however. on 02 betvveen cal. AD 1650-1750 Sphagnum 

section AcutUolia increases in abundance at the expense of Sphagnum imbricatum. identifying a 

brief drier phase. ,S'phagnum section Cuspidata dominates the 01 peat stratigraphy bet\\e-:n cal. 

AD 1800 and the present-day. ,)'phagnum section Cuspidata dominates the 02 peat stratigraphy 

between cal. AD 1750-1900. after \\hich it is replaced by ,)'phagnllm papillosum. Sphagnum 

section Cuspidata is the wettest environmental indicator encountered at site D. and its presenc-: in 

the stratigraphy pertaining to the period cal. AD 1750-1900 signifies the mire was vcry \yet. The 

final event in the stratigraphy at site 0 involves the replacement of Sphagnum species by 

Hypnum jutlandicllm~ which signifies a drying trend in the surface layers of 02. There is no 

evidence of this drying trend in the D 1 hollow sequence. 

6.2.3.3 Degree of peat humification 

The humification curves for cores Dl and D2 are displaycd in figures 6.30 and 6.31 respectively. 

The humification stratigraphy contains several significant shifts to poorly humified peat. which 

signify changes to wetter conditions circa cal. AD 400. 600. 800-850. 1300. 1600-1650 and 

1800. Phases of \yell-humified peat signifying comparatively drier conditions occurred circa cal. 

AD 100-400. 750-850, 1250-1300 and 1550-1600. 

Regression analysis of the age/depth models for core D 1 and D2 identified broadly linear 

relationships. and so both humification profiles \yere subjected to direct time series analysis. The 

smoothed and high-pass filtered data series displayed on graph (c) of figures 6.30-6.31 \yere 

examined with spectral analysis using the Fourier transformation method and a Daniell smoothing 

\\indo\v. The spectral density function for D L displayed in part (d) of figure 6.30. identifies 

several peaks. with the most significant centred on 0.08. 0.12 and 0.18 cpi (cycles per sampling 

interval). The line,lr age/depth model indicates these frequencies correspond to 205. 141 and 90-

98 year cycles respectively. The spectral density function for 02. displayed in part (d) of figure 

6.31. identifies several peaks. \yith the most significant centred on 0.2. 0.14 and {)'09 cpi (cycles 

per sampling interval). The linear age/depth model indicates these frequencies correspond to 92. 

138 and 208-240 year cycles respectively. The time series analysis identifies virtually identical 

periodicities in t\VO adjacent cores. which is clear endorsement of the identified cyclicity. 

6.2.3.4 Reconstructing bog surface wetness 

The palaeohydrology uncovered from peat stratigraphies at site D dra\vs upon eyidence from both 
, 

cores. The chronology for the stratigraphy is secured by the I-+C dates on core D2. Thc c\ idence 

for shifts to \\cttcr conditions and that for unambiguously dry conditions present \\ithin the 
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Figure 6.30. Humification data from May Moss core Dl displaying; (a) the raw 
percentage light transmission values, (b) the raw data smoothed using an unweighted 
three point moving average, (c) the smoothed data series subjected to a high pass 
filter emphasising the key shifts. In all three curves higher values denote poorly 
humified peat and are interpreted as signifying wetter conditions. (d) Results of the 
time series analysis, which includes the spectral density function for the smoothed 
high-pass filtered data series displayed on graph (c). The table in part (d) converts 
the spectral peaks into years using the age/depth model derived for the peat profile. 
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Figure 6.31. Humification data from May Moss core D2 displaying (a) the raw 
percentage light transmission values, (b) the raw data smoothed using an 
unweighted three point moving average, (c) the smoothed data series subjected 
to a high pass filter emphasising the key shifts. In all three curves higher values 
denote poorly humified peat and are interpreted as signifying wetter conditions. 
(d) Results of the time series analysis, which includes the spectral density 
function for the smoothed high-pass filtered data series displayed on graph (c). 
The table in part (d) converts the spectral peaks into years using the age/depth 
model derived for the peat profile. 
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palaeoenvironmental data is summarised in figure 6.32. Comparison of two cores and sevaal 
I 

procedures assesses the consistency of the stratigraphy and the performance of th~ 

palaeoenvironmental procedures. The macrofossil stratigraphy in both cores is broadly identical 

\yith the slight discrepancies attributable to differences in the location of the core sites in relation 

to the \yater table. Site D I currently is a hollo\\" and appears to have been consistently wetter than 

site D2. which was sampled from the edge of a Sphagnum papillosum hummock. 

The humification stratigraphies are not consistent. Admittedly there are features common to both 

humification profiles. namely the wet shifts circa cal. AD 600-650, 800-850 and 1600-1650. 

However, the D I humification stratigraphy between cal. AD 0 and 600 is hydrologically 

equivocal and fails to register a pronounced wet shift evident in all the other palaeoenvironmental 

records circa cal. AD 400. In addition the D2 stratigraphy bctween cal. AD 900 and 1400 is 

equally hydrologically ambiguous. This inconsistency poses questions about the reliability of the 

hydrological signal yielded by humification analysis and indicates that more than one profile 

should be used tOlnvestigate the humification stratigraphy of a peat sequence. 

Despite these discrepancies figure 6.32 demonstrates that the hydrological signals yielded by the 

different procedures on both profiles are broadly consistent. The major stratigraphic change 

within the peat profile is I-+C dated to 1640±50BP [cal. AD 265(420)555], and appears to signify 

a change to substantially wetter conditions. The response of the testate amoebae and plant 

macrofossil stratigraphy is synchronous. although the \\et shift is only recorded in the D2 

humification stratigraphy. After this stratigraphic change a series of moisture fluctuations is 

recorded. with five \\ct shifts circa cal. AD 600-650. 800-850. 1300-1400, 1600 and 1800. 

Reconstructed mean annual water table depths during the wetter period of circa 5 cm indicate the 

mire surface \yas very wet. Unequivocally dry conditions are evident between cal. AD 200 and 

400. A pronounced dry phase. which the palaeoecology signifies was perhaps the driest recorded 

in the stratigraphy. is evidenced by the decline of Sphagnum and a reconstructed mean annual 

water table depth of 8 cm. This dry period is delimited by I-+C dates of 1305±50BP [cal. AD 
I 

670(690)775] and 1 195±50BP [cal. AD 700(870)975]. Three further dry phases occur circa cal. 

AD 1250-1400. 1550-1600 and 1750-1800. of which the later t\\O fall within a long cal. AD 

1400-1900 wet phase. 

The final evcnt in the hydrological history occurs towards the surface of D2. where the plant 

macrofossil and the testate amoebae stratigraphy to a lesser extent register a drying trend. This 

drying is not evident in D 1. which indicates that at present pool or hollow stratigraphy is 

comparatively unaffected by this drying trend. The ability of hollows to be unaffected by a drying 
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Figure 6.32. Summary of the moisture fluctuations signified in peat stratigraphies at 
May Moss site D. Red lines denote dry conditions and blue lines wet conditions. The 
blue arrows signify changes to wetter conditions. Grey zigzag lines denote 
stratigraphy with an ambiguous hydrological signal. 
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trend that is also evident at sites Band C. offers a possible explanation for some of the minor 

inconsistencies in the hydrological signal. The D 1 hollow stratigraphy does not always record 

drier events and the subsequent \\ct shifts as well as D2. Perhaps sites located on the threshold 

between the hollow and hummock environment are \vell positioned for identifying expansion and 

contraction of dry hummock ecology from the hummock centres in response to climate-driven 

moisture fluctuations. It is also possible that testate amoebae. plant macrofossil and humification 

stratigraphies have differing thresholds before a \vet shift is recorded. in \vhich the case some of 

the comparatively minor discrepancies encountered at site D are not unexpected. 

6.2.4 Stratigraphic variations across May Moss 

Correlation of the hydrological indications between the May Moss core sites is discussed in 

relation to climate change in chapter seven, together \vith evidence from the other sites. HO\\l~n:r. 

there is a major stratigraphic change evident at all three May Moss core sites. \vhich is 

synonymous with a hydrological event that is not directly attributable to climate change. The 

appearance of J..)'phagnum-rich peat as the dominant component of the stratigraphy is not 

synchronous across May Moss. The stratigraphic event is 14C dated at sites C and D. yielding age 

estimates of 825 ±50BP rcal. AD 1165(1230)1275] and 1640 ±50BP [cal. AD 260(420)555] 

respectively. At site B the palynostratigraphy indicates an age of circa cal. AD 1100-1300. 

Additionally the change occurs at differing depths \\ithin the stratigraphy. being present at 95 cm. 

140 cm and 180 cm at sites B. C and D respectively. 

Peat accumulation at May Moss initiated in the Eller Beck and Long Grain basins. \\ith 

monocotyledonous peat dominating the basal stratigraphy. which eventually is succeeded by 

.Sphagnum-dominated peat (Atherden. 1979). Previous research in the centre of the Eller Beck 

basin encountered the Sphagnum expansion at depths of 195 cm, within stratigraphy attributed an 

age of circa cal. AD 400-500 (Atherden. 1979). This sequence represents a facies change. \vith a 

drier monocotyledonous-Ericaceae community succeeded by a Sphagnum mire ecotype by means 

of a process referred to as lateral paludification (Smith & Taylor. 1989). The Sphagnum mire 

facies expanded from the wct inhibited drainage of the Eller Beck basin over the surrounding 

watershed. reaching site D and eventually along a water-shedding ridge to sites C and B. This 

type of facies change is a feature of the evolution of a topographic blanket mire. Underlying 

topography is an important influence on blanket mire development. and is almost ccrtainly 

responsible for the delayed arrival of .Sphagnum-dominated stratigraphy at sites Band C. locatcd 

away from the Eller Beck basin. 
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This facies expansIon has implications for palaeohydrological interpretation of the peat 

stratigraphy, because this particular event must be treated \\"ith caution. However. the initiation of 

Sphagnum dominated stratigraphy at site D appears synchronous to that encountered in the centre 

of the Eller Beck basin. The initial formation of the Sphagnum mire facies is almost certainly in 

response to substantially wetter environmental conditions, which given the w'atershed location of 

May Moss may reflect wetter climatic conditions. The l-lC chronology at site D attributes the 

climatic deterioration an age of 1640 ±50BP [cal. AD 260(420)555]. 

6.3 Fen Bogs 

Introduction 

Palaeoecological research at Fen Bogs uses a 2.7 metres sequence sampled from the deepest peat 

in the centre of the mire. Three cores were extracted from within t\\O metres of each other to 

assess the consist,~ncy of the stratigraphy. A summary of the field stratigraphy is presented in 

table 6.4. Fen Bogs differs from the other palaeoecological sites investigated in the course of this 

research, which are all plateau-top water-shedding ombrogenous mires. Fen Bogs is located at the 

headwaters of Newtohdale fonning the watershed between Eller Beck and Pickering Beck. The 

mire is located in a deeply incised gorge. with steep slopes rapidly rising 60 m from the flat mire 

surface. Fen Bogs receives a substantial amount of water as surface \\"ash from the surrounding 

slopes. Consequently, Fen Bogs is not strictly an ombrotrophic mire, even though there are 

ombrogenous facies currently in the centre of the mire (Atherden, 1976b). Abundant Phragmites 

australis remains occur at depths of 1.4 m and deeper. \\"hich indicate that in the past the mire 

probably was a classic minerotrophic upland valley fen. 

Peat -based palaeoclimate research relies on reconstructing mire surface wetness, which in the 

case of ombrotrophic localities can provide a "proxy" record of climate change. The Fen Bogs 

peat sequence cannot be used in this manner. because the site is not ombrotrophic. Hov.ever. the 

mire is topograph:tcally and spatially located 1.5 km from and 100 metres below the edge of the 

hydrological catchment. Surface moisture conditions at Fen Bogs \\ill reflect the antecedent 

climate within this re~atively small area: consequently, the hydrological history of Fen Bogs may 

contribute information useful for the palaeoclimate research. 

The Fen Bogs peat profile was only analysed for plant macrofossil content because of the limited 

value of a full palaeohydrological investigation and time constraints. Plant macrofossil analyses 

\,"ill not only provide useful palaeoenvironmental information. but also investigate vegetation 

changes on the mire surface contributing to the understanding of the sedimentary history of Fen 

Bogs. Humification analyses \\"ould be of limited value. because of difficulties in identifying the 
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causes of \;vater table fluctuations in minerotrophic valley mires~ compounded by evidence of 

human interference at the site. Palaeohydrological reconstruction based on testate amoebae 

analysis would be complicated by other environmental controls on the composition of sub-fossil 

communities. namely nutrient and mineral supply, which typically are higher on mires receiving 

substantial quantities of surface run-off. The chronology of the Fen Bogs peat sequence defined 

in chapter five. relies largely upon correlation of palynological marker horizons \\ith a l-lC 

chronology obtained in earlier research at Fen Bogs and \vith key historical events (Atherden. 

1976b). 

, 
Table 6.4. Field sTratigraphy at Fen Bogs. 

Mire Surface 

3-21 cm 

21-96 cm 

96-120 cm 

120-140 cm 

140-270 cm 

Surface vegetation of Sphagnum papillosum. Eriophorllm vaginatllm. 
Calluna vulgariS and Erica tetralix. 

Dark brown (5YR 3/2) \\ell humified Monocotyledonous peat. 

Yellow brown (1 OYR 5/6) poorly humified ,-';phagnllm and 
Monocotyledonous peat. 

Dark Brown (1 OYR 4/3) Monocotyledonous peat. 

Dark yellow brown (10YR 4/4) poorly humified Sphagnum and 
Monocotyledonous peat. 

Reddish brown (5YR 3/3) Phragmites australis peat. 

6.3.1 Plant macrofossil analysis 

The plant macrofossil stratigraphy is displayed in figure 6.33. Cluster analysis signifies that the 

most significant stratigraphic changes occurred circa cal. AD 1150, 1600, 1700 and 1850. 

Between 200 cal. BC and cal. AD 1100 the peat stratigraphy is dominated by Monocotyledonous 

remains. particularly Phragmites australis and Eriophorum vaginatum. The remains of other 

mire plants are not abundant. The most significant event in the plant macrofossil stratigraphy 

occurred circa cal. AD 1150. This change involves the first appearance of Sphagnum. \\hich 

increases in abundance to exceed 500/0. The most abundant Sphagnum species were Sphagnum 

section AcutUolia and Sphagnum papillosum. perhaps identifying the formation of ,\phagnllm 

hummocks within a Phragmites-Cyperaceae fen community. This expansion of ,~phagnllm is 

short-lived. declimng between circa cal. AD 1200 and 1400. 

Monocotyledonous remams. particularly l,-'riophorum vaginatllm and Phragmites australis 

dominate the peat stratigraphy between cal. AD 1200 and 1400. A further significant change in 

the Fen Bogs macrofossil profile occurs around cal. AD 1400. \\hen Sphagnum papillos11m 



r:n --c: 
Cl.) 

c: 
o 
0... 

a 
o 

u 

-­ctS 
Cl.) 

~ 

~ 
.~ 

co 
::;E 

204 

CI) 
CI) z 
o 
u 

Figure 6.33. Fen Bogs plant macrofossil diagram. Main peat components are expressed as percentages 
of the total volume of peat, with Sphagnum abundances based on leaf counts of a random selection of 
branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, flowers and 
selected insect remains. The dendrogram presents the results of a sum of the squares cluster analysis. 
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replaces the Er/ophorum vaginatum and Phragmites australis communit\,. ,\iJhagnum 

papillosum dominates the peat stratigraphy between cal. AD 1400-1600. Sphagnum papillosllm 

can inhabit acidic fe~s. but it is only usually found where the peat surface is raised above the 

water table (Daniels & Eddy_ 1990). Consequently. it is possible that the presence of ,~phagnllm 

papillosum in the fossil record signifies the occurrence of a locally ombrogenous flora and 

ombrogenous facies on the mire surface. This represents an important change in the history of 

Fen Bogs. The mixture of ombrotrophic and minerotrophic facies currently found on the mire 

surface might owe its existence to environmental changes during the lOth and 15th centuries_ 

Between cal. AD 1600 and 1700 .Sphagnum papillosum declines and is replaced by .\phagnum 

section AClltUolia. After circa cal. AD 1700 ,Sphagnum section Cu,spidata increase in abundance 

replacing Sphagnum section AcutUolia. Sphagnum section lll5pidata probably consists of the 

species Sphagmwl cu,spidatum and Sphagnum recurvum (Daniels & Eddy. 1990: Smith, 1978). 

In the surface layers of peat (5-30 cm). Sphagnum remains become virtually absent. before re­

appearing on the mire surface. The decline of Sphagnum is not dated: however. the chronology 

developed for the peat sequence indicates that the changes probably occurred during the 

nineteenth century. This palaeoecological change is broadly synchronous with the construction of 

the Whitby to Pickering railway across the western edge of the mire in AD 1836. Drainage 

schemes associated with railway construction and perhaps physical damage of the mire surface 

may be responsible for the decline in Sphagnum. However. Eriophorllm vaginatum. Ericaceae 

and ,Sphagnum papi llosum become more abundant in the top 10-15 cm of peat. reflecting the 

recovery of a typical mire flora. 

6.3.2 Reconstructing mire surface wetness 

The stratigraphy pertaining to the period 100 cal. BC to cal. AD 1100 is dominated by 

Phragmites australis and sedges, which reveals very little information about moisture conditions 

on the mire surface other than to identify that the mire was a wet upland valley fen. The site is a 

more useful palaeohydrological archive after the mire was colonised by an ombrogenous mire 

flora circa cal. AD 1100. The expansion of Sphagnum bet\\een cal. AD 1100 and 1200 reflects 

this colonisation proc€ss. The decline in Sphagnum between cal. AD 1200 and 1400 could reflect 

a drying of the mire surface. a view supported by a minor expansion of Ericaceae and 

Monocotyledonous remains. The massive expansion of ,\phagnum papillosum circa cal. AD 

1400 is probably a response to increased availability of \vater on the mire surface. These 

relatively \vet conditions persist between cal. AD 1400 and 1600. when the drier em ironment 

indicator .\iJhagm.'111 section AcutUolia replaces Sphagnum papillosllIn. identifying a drier mire 

surface between cal. AD 1600 and 1700 . • \phagnum section AcutUhlia typically prefer drier 
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habitats, with the section including a number of hummock-top species and have been interpreted 

in previous plant macrofossil research as a dry environment indicator (Barber, 1981: Stoneman, 

1993). 

The cal. AD 1600-1700 dry phase is relatively short-lived and terminates with a return to wetter 

conditions evidenced by the replacelnent of Sphagnum section Acutifolia with the wet 

environmental indicator, Sphagnum section Cuspidata, between cal. AD 1700 and 1850. The last 

150 years of peat stratigraphy contains evidence of interference with the mire flora and the 

process of peat accumulation. This interference is almost certainly related to drainage schemes 

and the process of building the Whitby to Pickering railway in 1836 (Statham, 1989). Mires are 

an easily damaged environment and this unprecedented scale of human activity on the western 

edge of Fen Bogs could quite conceivably have had a catastrophic impact on the hydrology and 

flora. Human interference is the driving force behind changes in the uppermost peat stratigraphy 

and it is impossible to elucidate any evidence of climate-driven palaeohydrological change. 

6.4 Yarlsey Moss 

Introduction 

The palaeoecological history reconstructed from the Yarlsey Moss stratigraphy is based on 

analysis of a peat core sampled with a 10x30cm Russian corer from the deepest peat in the centre 

of the mire. A summary of the field stratigraphy is presented in table 6.5. The 2.4 m peat profile 

was analysed for plant macro-fossil content, sub-fossil testate amoebae and for the degree of peat 

humification. Further analysis involved the construction of a pollen diagram. Three 14C dates and 

further palynostratigraphic marker horizons were used to generate a time series for the peat 

sequence. The rationale behind the chronology was introduced in chapter five. 

Table 6.S Field stratigraphy at Yarlsey Moss. 

Peat surface Dry mire surface covered with a Calluna vulgaris monoculture. 

5 - 130 cm 

130 - 152 cm 

152- 185 cm 

185 - 240 cm 

Poorly humified Sphagnum and Monocotyledonous peat, with bands 
of Monocotyledonous and Ericaceae peat between 20-28 cm and 44-
54 cm. 

Well humified Monocotyledonous and Ericaceae peat. 

Moderately humified Sphagnum and Monocotyledonous peat. 

Well humified Monocotyledonous and Ericaceae peat. 

There are problems with the time series generated for the peat sequence, with a very slow rate of 

peat accumulation indicated in the chronology for the stratigraphy between 170-250 cm. Peat 
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accumulation appears to have been initiated at Yarlsey Moss probably in response to woodland 

clearance during the Iron Age. The peat stratigraphy at Yarlsey Moss supports this theory, with 

well humified peat dominated by UOM and Ericaceae remains near the base of the peat profile. 

This sequence reflects the comparatively dry Calluna vulgaris heath with a shallow peaty­

mineral soil being swamped by Sphagnum peat, which typically accumulates more rapidly. 

Further uncertainty with the base of this time-scale is created by the possibility that the tree 

decline identified as an Iron Age and Romano-British woodland clearance event, may be limited 

solely to the Roman-British period. Pre-Roman woodland clearance clearly has affected the 

central plateau of the North York Moors encouraging peat accumulation at North Gill and 

Bluewath Beck (Simmons & Innes, 1988d); however, it is likely that the steep slopes bordering 

the central moorland and the land surrounding these early peat sites remained forested until the 

major Iron Age and Romano-British woodland clearances. 

Unfortunately the 14C dates of this woodland decline are obtained from lower altitude sites at Fen 

Bogs and Harwood Dale Bog (Atherden, 1976b; 1989). The massive reduction in tree pollen 

traditionally associated with Iron Age and Romano-British woodland clearances may be 

staggered across the North York Moors, with landscape exploitation gradually extending on to 

the higher moors, forced by demographic and economic growth. It is possible the tree pollen 

decline at Yarlsey Moss and elsewhere on the high moors may reflect pressure on remaining 

woodlands during the economic boom of the Roman-British period, perhaps associated with 

greater access to the uplands after construction of the nearby Wheeldale Roman road or the result 

of construction of the road itself. Further 14C dates investigating the chronology of this major 

woodland clearance are required to test this hypothesis, particularly using higher altitude peat 

sequences. 

6.4.1 Testate amoebae analysis 

Quantitative analysis 

The testate amoebae stratigraphy uncovered at Yarlsey Moss is displayed in figure 6.34. The 

species scores on the first two axes of a detrended correspondence analysis of the sub-fossil data 

at Yarlsey Moss are displayed on a XN biplot in figure 6.35. The first two DCA axes have 

eigenvalues of 0.594 and 0.052, which signify that they summarise the most significant structure 

within the dataset, and that the amount of variation explained by further DCA axes is minimal. 

Correlation coefficients between the actual abundances of testate amoebae taxa and the DC A 

axes, listed on figure 6.35, identify the species involved in the most significant changes in the 

sub-fossil stratigraphy. 
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Figure 6.34. Yarlsey Moss testate amoebae diagram. The species curves are arranged from left to right 
according to preference of habitat moisture conditions. On the far right "e reconstructed mean annual 
water table depths are presented, including upper and lower limits based on the ranges tolerated by 
individual species; the sample scores on the first axis of a DCA are expressed in standard deviation units 
(x 1 00); and the dendrogram presents the results of a sum of the squares cluster analysis. 
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b). 

Testate Amoebae species Graph labels DCA axis 1 DCA axis 2 
Eigenvalue 0.594 0.052 
% variance 48.96 4.30 

Arcella discoides Adis 0.037 -0.346 
Arcella artocrea Aarc 0.468 a -0.398 a 

Arcella catinus Aeat 0.062 -0.033 
Arcella vulgaris Avul -0.027 0.321 
Arcella gibbosa Agib 0.078 0.207 

Centropyxis cassis -type Ccas 0.518 b -0.221 
Plagiopyxis callida Peal 0.144 0.010 
Bullinularia indica Bind 0.263 -0.400 a 

Trigonopyxis arcula Tare -0.206 0.205 
Hyalosphenia subflava Hsub -0.959 e -0.058 
Hyalosphenia papi/io Hpap 0.414 a -0.200 
Hyalosphenia elegans Hele 0.208 0.122 

Heleopera sphagni Hsph 0.537 b 0.677 e 

Heleopera petricola Hpet 0.385 a 0.095 
Nebela undiff. Nund 0.312 0.111 
Nebela col/aris Nco1 0.047 -0.006 
Nebela vitraea Nvit -0.054 -0.236 

Amphitremaflavum Afla 0.925 e 0.155 
Amphitrema wrightianum A\\-Ti 0.808 e -0.243 
Amphitrema stenostoma Aste 0.613 e -0.069 

Euglypha strigosa Estr 0.180 0.536 b 

Euglypha tuberculata Etub -0.033 -0.128 
Euglypha rotunda Erot 0.348 0.131 

Assulina muscorum Amus 0.749 e 0.298 
Assulina seminulum Asem 0.656 e 0.167 

Corythion dubium -type Cdub -0.254 -0.044 

Figure 6.35. (a) Detrended correspondence analysis ordination diagram showing the 
species weighted averages on the first two axes for the Yarlsey Moss testate amoebae 
data. The axes are scaled in standard deviation units xl 00. (b) Identifies the species 
labels on part ( a), lists the eigenvalues for and percentage variation explained by each 
DCA axis and lists the correlation coefficients between DCA axes and the testate 
amoebae species. The correlations are not statistically significant unless annotated by 
either, a = significance at the 95% level, b = significance at the 990/0 level or C = 
significance at the 99.90/0 level. 
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The most abundant testate amoebae species at Yarlsey Moss appear to be arranged along DC A 

axis 1 according to their tolerance of habitat \Yetness. Dry indicator taxa. such as Hyalo5phenia 

sll~flava and Trigonopyxis arcllla. occur at the opposite end of axis 1 to the wet indicators 

Amphifrema j7avllm. Amphifrema wrighfianum and Asslilina spp. (Tolonen ef af.. 1992: 1994: 

Woodland ef af.. 1998). The correlation coefficients support this conclusion. \\ith axis 1 

summarising sub-fossil variations between a "wet environment" assemblage and a "dry 

enviromnenf' assemblage. The \vet indicators are Amphifrema jlavllln. Amphifrema 

wrighfianllm, Assulina muscorum and Assulina seminulllm. \yhich display a strong positive 

correlation with axis 1. \\hereas the dry indicator Hyalosphenia sll~t7ava displays a strong 

negative correlation. 

DCA axis 2 only displays a significant correlation with four speCIes. \\hich are limited in 

occurrence to isotated layers \yithin the fossil record. DCA axis 2 appears to sunmlarise the 

behaviour of these occasionally frequent outlier species. DCA axis 1 clearly identifies a moisture 

gradient, which appears to be most significant environmental factor affecting sub-fossil testate 

amoebae at Yarlsey Moss. DCA axis 1 accounts for 48.96% of the total structure. Further DCA 

axes only explain minor amounts of variation \\ithin the sub-fossil dataset. DCA axis I is 

proposed as a semi-quantitative model summarising fluctuations between \\ct and dry conditions 

on the mire surface. The sample scores on DCA axis 1 are plotted stratigraphically in figure 6.34. 

\vith Imv scores identifying drier conditions and higher scores \\etter conditions. 

The optimum. maximum and minimum reconstructed mean amlUal water table depths tolerated by 

extant species were used to generate three palaeohydrological curves. identifying the potential 

range of moisture conditions at Yarlsey Moss. These curves are displayed stratigraphically in 

figure 6.34. The fluctuations in reconstructed mean annual water table depth reveal an interesting 

palaeohydrological history. with pronounced \yet and dry phases. Figure 6.34 demonstrates the 

broad agreement between DCA axis I and the water table depths. \vhich assuming the 

reconstructed mean annual water table values are accurate provides further evidence that DCA 

axis 1 represents a moisture gradient and that the dominant control on testate amoebae 

communities is mire surface wetness. 

Palaeoecology 

Cluster analysis signifies that the most significant changes in the testate amoebae stratigraphy 

occurred circa cal. AD 1100. 1300. 1600 and 1700. The basal peat deposits contain yay Im\ 

quantities of testate amoebae: furthermore the diversity of the testate amoebae communities 
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behveen cal. AD () and 450 is very low and dominated by Hyalosphenia su~tlava. which signifies 

a comparatively dry environment. Hyalosphenia sll~flava is also the most abundant species 

behvccn cal. AD 450 and 1300: however, additional low frequencies of Trigonopyxis arell/a. 

Heleopera sphagni and Amphifrema flavllm from cal. AD 450 to 1000 signify \yetter conditions. 

These additional species are absent behveen cal. AD 1100 and 1300. \vith the peat stratigraphy 

solely dominated by Hyalosphenia su~tlava identifying a comparatively dry environment. 

After cal. AD 1300 there is a major change in the testate amoebae stratigraphy as l/.yo/mphenio 

su~tlava declines. and Arcella spp .. Amphitrema flavum, Amphitrema wrighfianllm, ASSlilina 

muscorum. Assuli'1a seminulum and Cenfropyxis cassis-type increase in abundance cumulati\'ely 

to dominate the peat stratigraphy reflecting substantially wetter conditions until circa cal. AD 

1450. This major stratigraphic change is 14C dated to 740 ±80BP [cal. AD 1170(1280)14001-

Circa cal. AD 1450 Amphifrema flavum, Amphifrema wrighfianum and Asslllina muscorum 

decline in abundance and are replaced by Hyalosphenia subjlava. 

Hyalo,sphenia su~flava is the most abundant species between cal. AD 1450 and the present-day. 

which signifies a return to drier conditions. A subsequent decline by Hyalosphenia su~tlava and 

the expansion of an Amphifrema flavum, Assulina muscorum and Cenfropyxis cassis-type 

community signifies wetter conditions. This stratigraphic change is 14C dated to 590 ±80 BP fcal. 

AD 1275(1400)14501. This wet indicator suite of species is abundant until circa cal. AD 1850. 

when Amphifrema flavum. Asslllina muscorum and ASSlllina seminu/um decline and there is a 

further expansion of H)'alosphenia subjlava. \yhich signifies drier conditions behveen cal. AD 

1800 and the present-day. This dry shift is corroborated by minor increases in the abundance of 

Bullinularia indica, Trigonopyxis arcula and Arcella catinllS. \\hich alongside Jf.valo,sphenia 

su~f7ava dominate the peat stratigraphy up to the mire surface. 

6.4.2 Plant macro-fossil data 

Quantitative analysis 

The plant macrofossil stratigraphy is displayed in figure 6.36. The scores of the main macrofossil 

components on the first h\o axes of a detrended correspondence analysis performed on the 

Yarlsey Moss data are displayed on a XN biplot in figure 6.37. The first two axes of the DCA 

have eigenvalues of '0.449 and 0.214 respectively. signifying that they summarise the most 

significant structure \\ithin the data-set. Consequently. the amount of variation explained by 

further individual DCA axes is minimal. Correlation coefficients between the main components of 

the plant macrofossil stratigraphy and the first t\\'o DCA axes. listed on figure 6 J 7. identify the 

components involved in the most significant changes in the macrofossil stratigraphy. 
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Figure 6.36. Yarlsey Moss plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a DCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results of a sum of the squares cluster 

analysis. 
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b). 

Macrofossil components 
Eigenvalue 
% variance 

Unidentified Organic Matter 
Monocotyledons 

Ericaceae 
Polytrichum commune 
Hypnum jutlandicum 

Total identifiable Sphagnum 
Sphagnum section Acutifolia 

Sphagnum magellanicum 
Sphagnum papillosum 

Sphagnum section Cuspidata 

Graph labels 

UOM 
Mono 
Eric 

Pcom 
Hjut 
Spha 
Sacu 
Smag 
Spap 
Scus 

DCA axis 1 
0.559 
31.11 
0.234 
-0.099 
0.667 c 

0.345 
-0.028 

-0.784 c 

-0.454 b 

-0.704 c 

-0.223 
-0.407 a 

DCA axis 2 
0.214 
11.92 
-0.217 
-0.275 
-0.305 
0.790 c 

0.481 b 

0.273 
0.277 
0.033 
0.231 
0.162 

Figure 6.37 (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the Yarlsey Moss plant 
macrofossil data. The axes are scaled in standard deviation units xl 00. (b) Identifies the 
species labels on part (a), lists the eigenvalues for and percentage variation explained by 
each DCA axis and lists the correlation coefficients between DCA axes and the plant 
macrofossil components. The correlations are not statistically significant unless annotated 
by either, a = significance at the 95% level, b = significance at the 99% level or C = 
significance at the 99.9% level. 
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The main components of the YarIsey Moss plant macrofossil stratigraphy appear to be arranged 

along DCA axis 1 according to tolerance of surface wetness. Components indicatin: of dry 

environments. such as the Ericaceae, occur at the opposite end of DCA axis 1 to the \yet 

cnvironment components. for example Sphagnum section Cuspidata. The correlation coefficients 

support this conclusion with DCA axis 1 summarising variations between a "wet environment" 

stratigraphy and a "dry environment" stratigraphy. The wet indicators include the Sphagnaceae. 

\\hich display a strong negative correlation \\"ith DCA axis 1. whereas the dry indicator. the 

Ericaceae, displays a strong positive correlation. This evidence suggests the most significant 

stratigraphic changes are from an Ericaceae-dominated to a ,,~phagnllm-dominated community. 

and ecologically this signifies a shift from a dry to a wet environment. 

DCA Axis 2 is positively correlated with Polytrichum commune and negatively correlated \yith 

Unidentified Organic Matter. and appears to summarise the impact of 1\yo components that are 

only abundant in occasional layers \yithin the peat stratigraphy. These outliers have a significant 

impact on the overall data structure (11.92%). but unfortunately DCA axis 2 appears to have 

little palaeoenvironmental value. 

The first two axes account for 43% of the total structure and further DCA axes individually 

explain less significant amounts of variation \\;ithin the plant macrofossil stratigraphy. DCA axis 

1 appears to ident tfy a moisture gradient. which may be the most important environmental factor 

affecting the plant macrofossil stratigraphy. DCA axis 1 is proposed as a semi-quantitative model 

summarising fluctuations between \yct and dry conditions on the mire surface. The sample scores 

on DCA axis 1 are plotted stratigraphically in figure 6.36. \\ith high scores identifying \\etter 

conditions and lower scores drier conditions. 

Palaeoecology 

Cluster analysis signifies that the most significant changes in the plant macrofossil stratigraphy 

occurred circa ca',. AD O. 500, 1250. 1350. 1400 and 1900. The peat between the base of the 

profile and circa cal. AD 550 contains large quantities of Unidentified Organic Matter. and is 

dominated by Ericaceae and Monocotyledonous remains. JunCliS seeds are also very abundant. 

This assemblage of macro-fossil remains indicates the mire \vas probably covered with a mixture 

of Ericaceae heath. with JunCliS dominated soak-\\ays. After cal. AD 550 a more characteristic 

ombrogenous flora developed. evidenced by abundant Ericaceae. Eriophorum vaginOfllm. 

,,)'phagnunl section AcutUolia and Sphagnum magellanicllm remains. The appearance of 

,)'phagnum is just below a l-lC date of 1280 ±60BP [cal. AD 650(720.735.760)8851. This suite of 
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macrofossil rema;.ns dominates the peat stratigraphy bet\\een circa cal. AD 600 and 1100 

reflecting a change to a wetter environment. 

5;phagnum remains disappear between cal. AD 1000 and 1250. succeeded by Ericaceae and 

Monocotyledonous remains. Sphagnum species reappear above 130 cm. with Sphagnum section 

AcutUolia initially dominating the peat stratigraphy. but is later joined by a mixed community of 

Sphagnum section Cuspidata, .Sphagnum papillosum and ,~phagnllm magellanicum. This 

reappearance of Sphagnum reflects a shift to wetter conditions and is l-1C dated to 740 ±80BP 

lcal. AD 1170(l2:~0)1400]. This suite of Sphagnum species inhabits environments ranging from. 

pools and hollows in the case of ,Sphagnum section Cuspidata, 10\\ hummocks or lawns in the 

case of Sphagnum papillosum and Sphagnum magellanicum. to hummock-tops in the case of 

,)phagnum section AcutUolia. Yarlsey Moss displays the classic characteristics of an 

ombrotrophic mire. with an ombrotrophic flora distributed over a mosaic of hummocks and 

hollows. 

The diversity of the ,Sphagnum flora declines after cal. AD 1350, \yith only ,~phagnltm section 

AClltUolia remainmg. Polytrichum commune and Hypnum jutlandicllln appear and increase in 

abundance bet\\een cal. AD 1350 and 1400. Polytrichum commune declines circa cal. AD 1400. 

and there is an expansion of Monocotyledonous remains and l-)phagnum section AcutUhlia. This 
I 

expansion of ,Sphagnum is l-1C dated to 590 ±80BP [cal. AD 1275(1400)1450J. ,\/)hagnllm 

section AcutUolia and Monocotyledonous remains dominate the peat stratigraphy between cal. 

AD 1400 and 1600. Subsequently circa cal. AD 1600-1700 Sphagnum declines. replaced by 

Ericaceae and Polytrichllm commune remains. perhaps reflecting a return to drier conditions. 

Ho\vever. this change is short-lived, followed by increases in the abundance of ,~phagnllm section 

AcutUolia and .Sphagnum magellanicum. which dominate the peat stratigraphy bet\\een cal. AD 

1700 and 1900. signifying a return to wetter conditions. The surface layers of peat contain 

evidence of a further change. becoming dominated by CaUuna vulgariS remains. These changes 

are consistent \yith the composition of the current flora at Yarlsey Moss. 

6.4.3 H umification data 

The results of the humification analyses are displayed in figure 6.38. The humification profile 

contains six major shifts to poorly humified peat. \\hich are interpreted as identifying changcs to 

\yetter conditions circa 200 cal. BC. cal. AD 500. cal. AD 800. cal. AD 1200. cal. AD 1350 and 

cal. AD 1400. Phases of well humified peat signify comparatively dry conditions bet\yccn cal. 

AD O<~OO. 600-800. 1000-1100. 1250-1350 and 1600-1700. 
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Figure 6.38. Humification data from Yarlsey Moss displaying; (a) the raw 
percentage light transmission values, (b) the raw data smoothed using an 
unweighted three point moving average, (c) the smoothed data series subjected to a 
high pass filter emphasising the key shifts. Tn al1 three curves higher values denote 
poorly humified peat and are interpreted as signifying wetter conditions. 
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6.4.4 Reconstructing mire surface wetness 

Moisture changes are difficult to elucidate from the basal stratigraphy at the Yarlsey Moss. The 

stratigraphy reflects the early stages of peat accumulation at Yarlsey 1\10ss. which initially - . 

consisted of Ericaceae and Juncus reed-swamp communities. After circa cal. AD 550 a more 

typical ombrogenous mire flora develops, containing Sphagnum species, Eriophorum vaginafuJl7 

and Ericaceae. The initial expansion of Sphagnum and accumulation of Sphagnum peat could 

indicate a change to wetter conditions (Moore. 1986). However. it may equally be an early phase 

in the establishment of a blanket mire at Yarlsey Moss. The early history of testate amoebae at 

Yarlsey Moss is closely linked to the establishment of a Sphagnum flora, with higher frequencies 

of testate amoebae as the Sphagnum mire develops. 

Subsequent hydrological changes at Yarlsey Moss are evidenced by fluctuations in the abundance 

of Sphagnum. changes in the diversity and composition of testate amoebae communities and 

humification changes. Hydrological indications in the peat stratigraphy are summarised on figure 

6.39, which demonstrates the broad concordance between the three palaeoenvironmental 

procedures. The humification signal appears to recognise some moisture shifts before the other 

techniques, but this may reflect the impact of \yater table changes upon peat already within the 

acrotelm smearing evidence of the hydrological change several centimetres dO\vn the peat profile. 

The stratigraphy pertaining to the period cal. AD 500-1000 accumulated \cry slO\yly and is 

difficult to interpret palaeohydrologically. The testate amoebae and plant macrofossil stratigraphy 

signify relatively \\et conditions. but re-scaling the humification stratigraphy against time 

indicates the pala,~ohydrology maybe more complicated. The reconstructed mean annual water 

table values from Yarlsey Moss are problematic and should be treated \\ith caution mainly 

because until cal. AD 1400 the diversity of sub-fossil communities is poor and dominated by 

Hyalo.\phenia su~flava. The ecological transfer functions for this stratigraphy \\ill solely be 

based on the envl.fonmental tolerance of the Hyalosphenia sll~flava. which is circa 11-6 em 

(Woodland ef al.. 1998). Using the reconstructed mean annual water table depths derived for 

stratigraphy of this type is unwise. probably both in terms of mathematics and ecology. 

Evidence of shift:s to \yetter conditions occurs between cal. AD 400 and 600. \\ith the 

establishment of a. c~/)hagnlim mire clearly synonymous with much \vetter conditions. HO\yeyer. 

the causes of this event are integrally involved \yith the process of mire inception. \\hich mayor 

may not be climatically driven. Subsequent wet shifts occurred circa cal. AD ROO. 1200-1400 

and 1750-1800. The humification stratigraphy indicates hydrological conditions bct\\een cal. AD 

1200 and 1400 may have been vcry changeable. ,vith scvcral clear ,vet shifts separatcd by drier 
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Figure 6.39. Summary of the moisture fluctuations signified in peat stratigraphies at 
Yarlsey Moss. Red lines denote dry conditions and blue lines wet conditions. The 
blue arrows signify changes to wetter conditions. Grey zigzag lines denote 
stratigraphy with an ambiguous hydrological signal. 
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phases. Evidence of drier conditions \vithin the stratigraphy occurs circa cal. AD 1100-1200. 

1350-1400 and 1650-1775. There is evidence of anthropogenic drying of the mire surface in the 

top 10 cm of peat evidenced by the decline of Sphagnum and the expansion of Ericaceae. These 

changes reflect management of the moors for grouse during the last 100 Years. which is 

responsible for the: CaUuna vulgaris monoculture covering Yarlsey Moss today. 

6.5 Harwood Dale 'Bog 

Introduction 

Palaeohydrological investigation of the Harwood Dale Bog stratigraphy utilises a series of four 

monoliths (lOx 10x30 cm) sampled from the fresh face of a peat cutting. and entailed plant 

macrofossil and humification analysis. Visual examination of the exposed face demonstrated the 

peat stratigraphy \\as consistent along the cutting. A summary of the field stratigraphy is 

presented in table 6.6. 

Table 6.6. Field suatigraphy at Haf\\;ood Dale Bog. 

Peat surface Dry mire surface covered \vith Cal/una vulgaris and Eriophorum 
vagina tum . 

0-6 cm Fresh humus dominated \vith Cal/una vulgaris rootlets. leaves and 
stems. 

6-60 cm Poorly humified Sphagnum and Eriophorum vaginatum peat. 

60-108 cm Well humified Ericaceae and Eriophorum vaginatum peat. 

Further analysis involved the construction of a pollen diagram. T\vo 14C dates and 

palynostratigraphic marker horizons \vere used to generate a chronology for the peat sequence. 

The rationale behind the chronology was introduced in chapter fin> Correlation analysis 

identifies that a broadly linear age/depth relationship exists for the Harwood Dale Bog sequence 

(r2 = 0.998). This linear age/depth relationship renders the palaeoecology and any eventual 

palaeohydrological reconstruction from Harwood Dale Bog susceptible to time series analysis. 

6.5.1 Plant macrofossil data 

Palaeoecology 

The plant macrofossil stratigraphy is displayed in figure 6.40. The scores of the main macrofossil 

components on the fIrst t\\O axes of a detrended correspondencc analysis pcrfomlcd on the 

Harwood Dale Bog data are displayed on a XN biplot in figure 6.-+1. The first 1\\0 a:\cs have 

eigenvalues of 0.479 and 0.192 respcctively. signifying that they summarise the most significant 

stnlcturc \\ithin the data-set. The amount of \ariation explaincd by further individual DC:-\. a:\es 
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Figure 6.40. Harwood Dale Bog plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> 1 00 per sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The sample scores on the first axis of a DCA are expressed in 
standard deviation units (x 100); and the dendrogram presents the results of a sum of the squares cluster 

analysis. 
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b). 

Macrofossil components Graph labels DCA axis 1 DCA axis 2 
Eigenvalue 0.479 0.192 
% variance 52.58 21.04 

Unidentified Organic Matter UOM -0.649 b -0.482 
Monocotyledons Mono -0.519 a -0.164 

Ericaceae Eric -0.304 -0.350 
Total identifiable Sphagnum Spha 0.682 b 0.541 a 

Sphagnum section Acutifolia Sacu -0.317 0.913 c 

Sphagnum imbricatum Simb 0.636 b 0.026 
Sphagnum papillosum SEaE 0.961 c 0.005 

Figure 6.41 (a) Detrended correspondence analysis ordination diagram showing the 
component weighted averages on the first two axes for the Harwood Dale Bog plant 
macrofossil data. The axes are scaled in standard deviation units xl00. (b) Identifies the 
species labels on part (a), lists the eigenvalues for and percentage variation explained by 
each DCA axis and lists the correlation coefficients between DCA axes and the plant 
macrofossil components. The correlations are not statistically significant unless annotated 
by either, a = significance at the 95% level, b = significance at the 99% level or C = 
significance at the 99.9% level. 
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is minimal. Correlation coefficients between the mam components of the plant macrofossil 

stratigraphy and the first 1\yO DCA axes. listed on figure 6.41. identify the components inyoln.:d 

in the most significant changes in the macrofossil stratigraphy. 

The main components of the Hanvood Dale Bog plant macrofossil stratigraphy appear to bc 

arranged along DCA axis 1 according to tolerance of surface \\etness. Components indicative of 

dry environments. such as the Ericaceae. occur at the opposite end of DCA axis 1 to the \\et 

environment components. for example Sphagnum section Cuspidata. The correlation coefficients 

support this conclusion with DCA axis 1 summarising variations between a "wet environment" 

stratigraphy and a '-dry environment"' stratigraphy. The \vet indicators included the Sphagnaccac. 

which display a strong negative correlation with DCA axis 1. \vhereas the dry indicators. such as 

Unidentified Organic Matter and the Ericaceae. display a strong positive correlation. 

The ecological status of Eriophorum vaginatum is more complicated. because the species is 

capable of tolerating a range of moisture conditions (Heath\vaite et af.. 1993a). Eriophorum 

vaginatllm tussocks also have a reputation for being very resilient and long-lived (Barber. 1981: 

Heathwaite et af .. 1993a). These characteristics render palaeoenvironmental interpretation using 

Eriophorum vaginatum difficult. because dense layers of Eriophorum vaginafllm \\ithin thc 

fossil record have an uncertain palaeoenvironmental status. This is particularly pertinent \\ith 

regard to the stratigraphy betwecn 60-110 cm on the Harwood Dale Bog peat profile. The 

palaeoenvironmental discussion in the following section treats Eriophorum vaginafum cautiously. 

\\ith surface wetness reconstructions based on the other five components. 

The balance of the evidence suggests that the most significant stratigraphic changes are from 

Ericaceae- and Unidentified Organic Matter dominated to a Sphagnum-dominated stratigraphy. 

and ecologically this signifies a shift from a dry to a \\et environment. DCA axis I accounts for 

52.580/0 of the 10ta~ structure: consequently. further DCA axes individually explain less 

significant amounts of variation within the plant macrofossil stratigraphy. DCA axis I identitics 

a moisture gradient. which appears to be the most important environmental factor affecting thc 

Hanvood Dale Bog plant macrofossil stratigraphy. 

DCA axis I is proposed as a semi-quantitative model summarising fluctuations bet\\ een \\ct and 

dry conditions on the mire surface. The sample scores on DCA axis I are plotted stratigraphically 

in figure 6.40. with high scores signifying \yetter conditions and 100vcr scores drier conditions, 

There are problems \vith using DCA axis I as a proxy palaeohydrological cun'e. because 

detrended correspondence analysis is more ecologically interpretable on protiles containing a 
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greater interchange of species and larger number of samples than encountered at Hanyood Dak 

Bog. It is possibk the detrended correspondence analysis on the Han\'ood Dale Bog data just 

identifies the appearance of Sphagnum. and \\"hilst this may be related to a moisture change. 

using the detrendcd correspondence analysis axes sensu Barber et af. (1994a: 1994b) is not 

appropriate. In subsequent discussions of the palaeohydrology at Hanvood Dale Bog. changes in 

mire surface \vetness are largely identified by qualitative ecological interpretation of the 

macrofossil stratigraphy. "ith reference to the DCA axis 1 cuneo 

Palaeoecology 

Cluster analysis signifies that the most significant changes in the peat stratigraphy occurred circa 

cal. AD 300, 500 and 950. Between 400 cal. BC and cal. AD 300 the peat stratigraphy is 

dominated by Unidentified Organic Mattec Monocotyledons and Ericaceae. The raw counts of 

Ericaceae leaves, particularly Calluna vulgariS, are high. indicating the mire probably \vas 

comparatively dry. The most significant change in the Harwood Dale Bog peat stratigraphy 

involves the expansion of Sphagnum at the expense of Monocotyledons and Ericaceae remains 

between cal. AD 300-500. The expansion of the Sphagnum flora initially involves ,\iJhagnlll17 

papillosum. although Sphagnum section AClltZfolia succeeds Sphagnum papillosllm bet\nx~n cal. 

AD 400-500. l\phagnum section Acut~folia are typically associated "ith drier habitats than 

5phagnllm papillosum. and this change maybe indicative of a shift to drier conditions. After cal. 

AD 500 ,\phagnum papillosum expands signifying a return to "etter conditions until c[rco cal. 

AD 900. The upper 20 cm of peat stratigraphy is dominated by 5phagnum section AClItij(J/io 

signifying a retUITl to drier conditions betw'een cal. AD 900 and the top of the peat profile. circo 

cal. AD 1100. 

6.5.3 Degree of peat humification 

The results of the humification analyses are displayed in figure 6.42. The humification 

stratigraphy contains three shifts to poorly humified peat, \\"hich are attributed to changes to 

wetter conditions. circa 200 cal. BC. cal. AD 400 and cal. AD 500. Well humified peat signities 

periods of comparatively dry conditions circa cal. AD 100 to 400 and cal. AD X50 to 1100. The 

smoothed and high-pass filtered humification data. displayed on graph (c) of figure 642. \\as 

subjected to spectral analysis using the Fourier transfonnation method and a Daniell smoothing 

window. The spectral density function. displayed in part (d) of figure 642. identities sen~ral 

peaks "ith the most significant two centred at 0.15 cpi (cycles per sampling interval) and 0.06 

cpi. The linear age/d~pth model indicates these frequencies correspond to 94-X3 and 202 \ear 

cycles respecti\cly. 
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Figure 6.42. Humification data from Harwood Dale Bog displaying; (a) the raw 
percentage light transmission values, (b) the raw data smoothed using an unweighted 
three point moving average, (c) the smoothed data series subjected to a high pass 
filter emphasising the key shifts. In all three curves higher values denote poorly 
humified peat and are interpreted as signifying wetter conditions. (d) Results of the 
time series analysis, which includes the spectral density function for the smoothed 
high-pass filtered data series displayed on graph (c). The table in part (d) converts 
the spectral peaks into years using the age/depth model derived for the peat profile. 
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6.5.4 Reconstructing mire surface wetness 

Figure 6.43 presents the hydrological indications m the plant macrofossil and humification 

stratigraphy. Comparison of the two palaeoecological techniques identifies a problem ,yith the 

interpretation of plant macro-fossil stratigraphies. When stratigraphy is dominated by resilient 

long-lived taxa, in this case Eriophorum vaginatum. palaeoenvironmental changes can be masked 

within peat layers dominated by a single species. This is exemplified by the humification shifts 

between circa 400 cal. BC and cal. AD 200, \\hich occur within peat dominated by Eriophoruln 

vaginatum and containing no plant macrofossil evidence of hydrological changes. Clearly there 

are methodological advantages in applying more than one palaeoecological technique to a fossil 

sequence. because comparison of approaches highlights discrepancies. thereby entailing a more 

rigorous assessment of environmental change. 

Figure 6.43 summarises the broad concordance ,yithin the remainder of the stratigraphy. The 
, 

palaeoecology contains evidence of a series of wet and dry phases, which are delimited by marked 

shifts to wetter or drier conditions. The earliest change in moisture conditions is only evidenced in 

the humification curve, ,yith a shift to wetter conditions circa 200 cal. BC clearly not evidcnt 

within thc Eriophorum vaginatum-dominated plant macrofossil stratigraphy. The shallowing of 

the mean summer minimum water depth responsible for the humification change appears to have 

had little impact on the surface vegetation. Wet conditions persist until there is an increase in the 

degree of peat humification signifying drier conditions. ,yhich persist between cal. AD 0 and 350. 

The most significant stratigraphic change involves the appearance of Sphagn1lm papillosum and 

a shift to poorly humified peat. These changes are attributed to a substantially wetter mire 

surfacc. which is I.+C dated to 1790 ±80 BP [cal. AD 85 (245) 4151· 

This ,vetter period is relatively short-lived, with an expansion of Sphagnum section AcutU()/ia 

and a return to well humified peat. signifying drier mire surfacc conditions bet\yeen cal. AD 400 

and 500. There is a' further ,Yet shift evidenced by poorly humified Sphagnum papillosum­

dominated peat just belO\y a I.+C date of 1460 ±80 BP [cal. AD 430 (620) 6951. Wet conditions 

persist up to cal. AD 850. when Sphagnum section AClltUo/ia dominates thc macrofossil 

assemblages signifying an expansion of drier habitats. The humification curve contains little 

evidence of this moisture shift: huwever. the palaeohydrological signal maybe obscured by 

subsequent interference "ith the surface layers of peat. This change to drier conditions has not 

been I.+C dated. but the chronology developed for the peat scquence indicates that it occurred 

bet\yccn circa cal. AD 800-900. 
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Figure 6.43. Summary of the moisture fluctuations signified in peat stratigraphies at 
Harwood Dale Bog. Red lines denote dry conditions and blue lines wet conditions. 
The blue arrows signify changes to wetter conditions. Grey zigzag lines denote 
stratigraphy with an ambiguous hydrological signal. 
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6.6 Bluewath Beck 

The palaeoecological history of the Bluewath Beck peat sequence is reconstructed from a profile 

sampled from ex::ensive peat cuttings near the headwaters of the catchment. The peat \vas 

sampled in five monolith tins (lOx IOx30cm) from the fresh face of a peat cutting. Field 

examination of the exposed face demonstrated the peat stratigraphy \\as consistent along the 

cutting. A summary of the field stratigraphy is displayed in table 6.7. Palaeoemirolilllental 

analysis entailed an assessment of the plant macrofossil and the peat humification stratigraphy. 

Further analysis entai~ed the construction of a pollen diagram. 

A chronology for the Bluewath Beck peat sequence is developed in chapter 5. This chronology is 

based on a l~C dated horizon and correlation with three palynological marker horizons dated 

elsewhere on the North York Moors. The time series \vas produced by linear interpolation 

between the various chronological horizons transforming the palaeoecological data into time 

series. Correlation analysis identifies that a linear age/depth relationship does not exists for thc 

Bluewath Beck sequence. and so the palaeoecology is not susceptible to direct time series 

analysis. 

Table 6.7. Field suatigraphy at Bluewath Beck. 

Peat surface 

0-22 cm 

22-159 cm 

159-259 cm 

Dry mire surface covered \vith Calluna vulgariS. 

Poorly humified Sphagnum and Monocotyledonous peat. 

Eriophorum vaginatum peat. \vith occasional layers of Ericaceac 
and Sphagnum. 

Very \\cll humified black peat. containing occasional wood remains. 

6.6.1 Plant macrofossil data 

The plant macrofossil stratigraphy is displayed in figure 6.44. Cluster analysis significs that the 

most significant changes in the peat stratigraphy occurred circa 200-0 cal. BC. cal. AD -iSO-550. 

900-1000 and during the Medieval period. The entire Bluewath Beck macrofossil protile is 

dominated by Monocotyledonous remains, which consistently contribute over SO°/c) of thc 

assemblage. The plant macrofossil stratigraphy does not contain the tUffiO\er of species esscntial 

for semi-quantitative palaeohydrological interpretation. and so Detrended Correspondence 

Analysis ,vas not performed on the plant macrofossil stratigraphy. Quantities of Unidentified 

Organic Matter are also relatively high throughout the profile. Despite the dominance of 

Monocotyledonou s rcmains. there are lavers of Ericaceae and Sphagnum. \\·hich mav be of 

palaeocnvirolUllcntal significance. 
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Figure 6.44. Bluewath Beck plant macrofossil diagram. Main peat components are expressed as 
percentages of the total volume of peat, with Sphagnum abundances based on leaf counts of a random 
selection of branch leaves (> lOOper sample). The other curves display raw counts of leaves, seeds, 
flowers and selected insect remains. The dendrogram presents the results of a sum of the squares cluster 
analysis. 



229 

,~phagn1tm-dominated, stratigraphy is typically associated \yith \Yetter conditions than Ericaceae­

dominated stratigraphy. The ,~phagnllm-rich layers may signify wetter conditions circa 300-0 cal. 

BC. cal. AD 400-600. cal. AD 900-1000 and cal. AD 1200-1400. The intenening periods are 

dominated by either Ericaceae or Monocotyledonous remains. and whilst not providing equi\'ocal 

evidence of dry conditions. the indications are that the environment \\as almost certainl" less \\et. 

Peat deposits blanketing the Bluewath Beck catchment have been affected by peat cutting and the 

peat profile appears to terminate during the late Medieval period. Unfortunately the chronology of 

the upper stratigraphy is not secured by independent dating of the peat and so the chronology of 

palaeohydrological history can only be regarded as tentative. 

6.6.2 Peat humification data 

The results of the humification analyses are displayed in figure 6.45. The humification 

stratigraphy contains three shifts to poorly humified peat. \\hich are attributed to changes to 

wetter conditions, circa cal. AD 400, 600. 900 and during the late Medieval Period. Phases of 
, 

well humified peat signify comparatively dry conditions between cal. AD 100-350. 700-900 and 

1000-1200. 

6.6.3 Reconstructing mire surface wetness 

There are two major problems \"ith the palaeoecological record at Blue\\ath Beck. but despite 

this the stratigraphy manages to yield useful palaeohydrological information. The first problem 

stems from difficulties in elucidating palaeoenvironmental information from plant macrofossil 

stratigraphy dominated by a single fossil group and containing little interchange of species. The 

second problem arises from uncertainties regarding the chronology of the Bluewath Beck profile. 

Although a 14C date does anchor the chronology developed for the profile. the remainder is largely 

estimated from palynological marker horizons that are less clear than at the other sites. Despite 

these problems. a series of fluctuations in mire surface \\etness is evidenced in the peat 

stratigraphy and summarised on figure 6.46. 

Comparison of the hydrological indications identifies a broad agreement bct\\een the 

palaeoenvironmental procedures. k\phagnllm-rich stratigraphy circa 300-50 cal. Be signifies 

wetter conditions during the Iron Age. Subsequently \yell humified Ericaceae-rich peat identifies 

comparatin~ly dry conditions during the Roman period. Circa cal. AD 400-~OO a shift to poorly 

humified peat and the expansion of ,\phagnum signify a wetter cnvironment. ('irca cal. AD 600-

700 \ycll humified Ericaceae-rich peat appears to identify drier mire surface conditions. There are 

a series of shifts to poorly humified peat bet\yeen cal. AD 700 and 1000. \\ ith the most 
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Figure 6.45. Humification data from Bluewath Beck displaying; (a) the raw 
percentage light transmission values, (b) the raw data smoothed using an unweighted 
three point moving average, (c) the smoothed data series subjected to a high pass 
filter emphasising the key shifts. In all three curves higher values denote poorly 
humified peat and are interpreted as signifying wetter conditions. 
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Figure 6.46. Summary of the moisture fluctuations signified in peat stratigraphies at 
Bluewath Beck, Glaisdale Moor. Red lines denote unequivocal dry conditions and 
blue lines wet conditions. The blue arrows signify changes to wetter conditions. Grey 
zigzag lines denote stratigraphy with an ambiguous hydrological signal. 
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significant change circa cal. AD 900. The humification plateau and abundant Ericaccac rcmains 

may signify a drier phase between cal. AD 650 and 900. Stratigraphy dominated by ,\j)hagnllll1 

magellanicllm provides evidence of a change to wetter conditions supported by the humification 

change circa cal. AD 900. Well-humified Ericaceae-rich peat signifies a drier phase during thc 

early Medieval period. A subsequent expansion of Sphagnum section AcutUc)lia and shift to 

poorly humified peat signifies a return to wetter conditions during the late Medic\'al Pcriod. This 

phase with a relatively \yet mire surface continues up to the surface of the peat profile. \yhich is 

believed to terminate circa cal. AD 1400-1500. 
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-- Proxy evidence of climate change 

7.1 Introduction 

The palaeohydrological history developed for the North York Moors in chapter six was 

elucidated using the peat stratigraphy of five mires. With the exception of Fen Bogs these mires 

are all ombrotrophic; consequently, fluctuations in mire surface wetness for the most part will 

reflect a response to climatic wetness or more accurately "effective precipitation". Theoretically, 

interpretation of the palaeohydrological record derived for each site should provide an invaluable 

record of climate change, but in practice the interpretative procedure is far more complex. These 

complexities are mostly unavoidable, involving uncertainties with; 

• inferring palaeohydrology from peat stratigraphy, and uncertainty in the link between mire 

hydrology and climate; 

• problems with the chronologies generated for the peat sequences and particularly problems 

with 14C age determinations. 

Testate amoebae, plant macrofossil and humification stratigraphies not only combine to produce 

a palaeohydrological history for a particular location on a mire, but double as a quality assurance 

exercise to assess the comparative performance of each palaeoenvironmental technique. This 

process should identify circumstances and types of stratigraphy in which the palaeoenvironmental 

procedures record little or no hydrological information. Palaeoenvironmental research utilising 

peat stratigraphy is hampered at the outset by the lack of analytical procedures that can 

reconstruct a specific climatic or environmental parameter, for example precipitation. There are 

limitations to all the palaeoenvironmental procedures and they constrain palaeohydrological 

interpretation of peat stratigraphy. Precision of palaeohydrological interpretation of peat 

stratigraphy is traditionally limited to identification of fluctuations between wet or dry conditions. 

It is difficult to envisage methodological developments that will substantially alter these 

circumstances. 

Utilising the hydrological histories of several ombrogenous mires to identify climatic fluctuations 

is a well established procedure. It is tempting in the wake of this wealth of published research to 

ignore other causes of hydrological change, which include mire drainage either through human 

activity, mire erosion or bog-bursts; the accumulation of peat altering the surface topography, for 
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example in-filling of hollows and migration of soak-ways; and features integral to the 

development of a mire, for example transgressive hydrological events associated with mire 

expansion. In the case of blanket mires some of the above factors are controlled to some extmt by 

sub-surface topography and can be identified by careful interpretation of the sedimentary history 

of a mire. The hydrological indications derived from several mires are integrated to produce a 

palaeoclimate history for the North York Moors. However, there are problems with correlation of 

peat sequences, because the correlations rely upon independent chronologies derived for each peat 

sequence, and unfortunately there are uncertainties with 14C dating of peat sequences. 

Despite the problems introduced above the evidence from peat sequences on the North York 

Moors is drawn together producing a climate history for the region. This climate history bears 

interesting comparison with previous peat stratigraphic research, especially from mires 

experiencing a wetter climate than the North York Moors. Comparison with other types of 

palaeoclimatic information is also of interest, involving a variety of sources that reconstruct 

specific climatic variables, for example temperature or precipitation. The discussion of other 

types of palaeoclimate evidence focuses upon climate variations identified in north-west Europe. 

Finally the issue of the causes of climate change is discussed, with the 2000-year effective 

precipitation history derived for the North York Moors displaying extremely interesting parallels 

with hypothesised forcing agents of global and regional climate change. 

7.2. Palaeohydrological interpretation of peat stratigraphy 

The principal method of obtaining quality assurance in peat stratigraphic research involves using 

several analytical procedures and several core profiles to corroborate the stratigraphic history. 

The use of replicate profiles and several palaeoenvironmental procedures addresses several 

important issues, which include 

• is any individual or combination of palaeoenvironmental procedures essential for uncovering 

the hydrological history of a blanket mire? 

• are there circumstances hI which moisture changes fail to leave an imprint within the testate 

amoebae, plant macrofossil and humification stratigraphy? 

• does a particular technique perform better than the others, either consistently or in specific 

circumstances? 

• should the variability of blanket peat stratigraphy be assessed? and how many sites are 

required to uncover the hydrological history of a blanket mire? 
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Investigations at May Moss uncov~red significant stratigraphic differences across a blanket bog, 

and some of these variations cannot be solely linked to climatic forcing of mire palaeohydrology. 

The expansion of Sphagnum-rich peat over monocotyledonous and Ericaceae peat spreading from 

accumulating centres in the Eller Beck and Long Grain catchments is a stratigraphic change that 

does not solely occur in response to climate change. The expansion of Sphagnum-rich peat, circa 

cal. AD 400, could have been triggered by climate, but the continued expansion of the Sphagnum 

mire facies entails a hydrological change that is not directly related to a climatic fluctuation 

(Heathwaite et al., 1993a; Smith & Taylor, 1989). Lateral paludification of Sphagnum peat in 

this case over a mor humus soil also affects the basal stratigraphy at Yarlsey Moss. 

Blanket mires differ from raised mires in that topography plays a greater role in controlling peat 

stratigraphy. Raised mires are dome-shaped lowland f~tures that expand over the surrounding 

landscape by lateral paludification from the mire centre. The initial centres for peat accumulation 

are typically flat and poorly drained. Upland blanket peat also initially accumulates in poorly 

drained areas, for example in basins and in low gradient channels. As peat accumulates the mire 

expands from these centres by lateral paludification over an undulating topography and 

subsequent changes in mire facies may operate in a similar manner. Clearly the subsurface 

topography of blanket mires is an important factor that will affect the eventual stratigraphy, 

because it controls local drainage and governs the lateral paludification process. 

In summary, substantially different stratigraphic records can be produced from different locations 

across a blanket mire. Consequently, an understanding of the sedimentary evolution of a mire is 

critical and the location ofrore sites is an important decision for palaeoenvironmental research. 

In the case of Yarlsey Moss, Bluewath Beck and Harwood Dale Bog hydrological histories are 

based upon a single peat profile, and corroboration of the stratigraphy is provided by using 

several analytical procedures and by thoroughly assessing the stratigraphy in the field. 

Four adjacent peat profiles at May Moss site C reveal a broadly identical sub-fossil testat~ 

amoebae and plant macrofossil stratigraphy, which indicates that a single peat profile is capable 

of yielding a representative assessment of the stratigraphy at that particular location. This 

uniformity of the stratigraphy supports the findings of previous plant macrofossil analysis of 

blanket peat sequences in the south Pennines (Tallis, 1994). However, this type of replicate 

analysis has not previously been applied to testate amoebae analysis and the uniformity of the 

stratigraphy encountered at May Moss is reassuring. Despite the broad uniformity of sub-fossil 

stratigraphy, there are distinct differences in the clarity of the moisture signal available from 
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hollow and hummock peat sequences. Moisture changes are less evident ill hummock 

stratigraphy, perhaps reflecting the topographic buffer afforded by a hummock. 

The subdued nature of fluctuations in sub-fossil stratigraphies beneath hummocks supports a 

widely held view that hollow peat sequences are more suitable for palaeohydrological research 

(Aaby, 1976~ Barber, 1993~ Stoneman, 1993). Water table fluctuations are controlled by a 

combination of moisture availability and the hydrological capacity of the mire~ consequently, the 

level of the water table is partially controlled by permeability of the acrotelm (Ingram, 1983). 

Flat water tables tend to occur within mires with a highly permeable acrotelm, whereas mires 

with lower and variable permeability of the acrotelm have an undulating water table (Ingram 

1983). At May Moss dense Sphagnum capillifolium hummocks, perhaps with a less permeable 

acroteIm, are surrounded by Sphagnum papillosum and Sphagnum recurvum hollows with a 

more permeable acroteIm, providing circumstances that could produce an undulating water table 

(Ingram, 1983; Eggelsmann et aI., 1993). 

Fluctuations in sub-fossil testate amoebae assemblages reflecting moisture changes appear more 

clearly in hollow peat sequences, with Hyalosphenia subflava abundant in hummock stratigraphy 

whatever the conditions. Local topographic control of testate amoebae communities is not a new 

idea. Grospietsch (1958) erected habitat categories distinguishing between hummock and hollow 

testate amoebae communities. Investigations at May Moss support this to some extent, even 

though water table depth and the hydrological balance of the entire mire are the dominant factors 

controlling both hummock and hollow testate amoebae stratigraphy. Mire topography exerts a 

similar control over the distribution of plant species, with Sphagnum capillifolium, Sphagnum 

papillosum and Sphagnum imbricatum dominating the stratigraphy beneath hummocks and 

Sphagnum recurvum mosty occurring within stratigraphy beneath present day hollows. 

A similar degree of uniformity does not occur in the humification stratigraphy. The majority of 

humification changes at May Moss are evident in adjacent profiles~ however, occasionally 

humification shifts are present in one core and not present or are of a different magtlitude in the 

other: for example the shift to poorly humified peat circa cal. AD 500 is not represehted in both 

cores at site C and there are differences between the two humification profiles before cal. Ai> 800 

at site D. Localised variations in rates of acrotelmic decay and imprecision in the theasurement 

procedure could explain these inconsistencies. Errors could arise from differential rates of decay 

between certain plant species, although this should not be to the detriment of the 

palaeohydrological record (Blackford & Chambers, 1993). In any case the plant macrofossil 
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stratigraphy is very similar in profiles at May Moss sites C and D, alongside these inconsistencies 

in the humification stratigraphy. 

Percentage light transmission through an alkali extract of humic acid is only a semi-quantitative 

estimation of the degree of peat humification, and the complexity of humic compounds renders it 

difficult to envisage improvements to the analytical procedure. Blackford & Chambers (1993) 

rigorously tested the alkali extraction procedure finding the methodology capable of producing 

sound replicable results, a view confirmed in this research. Adjacent blanket peat sequences in 

western Eire yielded broadly identical humification stratigraphies, although the magnitude and 

character of some of the humification shifts is clearly variable (Blackford & Chambers, 1995). 

Caseldine et al. (1998) encountered a deterioration to wet climatic conditions circa 2200 cal. BC, 

contemporaneous with the Hekla 4 volcanic ash layer, in humification stratigraphies from Corlea 

raised mire, county Longford, Eire (Caseldine et al., 1998). However, the humification shift is 

not evident in all peat profiles, and further research on an adjacent mire encountered similar 

inconsistencies with Iron Age humification stratigraphies (Caseldine et al., 1998; unpublished). 

It is difficult to account for the discrepancies encountered in the humification stratigraphy at May 

Moss. However, it is possible that local circumstances including variations in the permeability of 

the acrotelm, topographic variations of the water table, and fluctuations in the abundance of 

micro-organisms and bacteria, could be responsible for these inconsistencies in the humification 

stratigraphy of a mire. The potential for variations in humification stratigraphy indicate that a 

minimum of more than one core should be used to uncover the humification stratigraphy of a 

particular location. 

Comparison of testate amoebae, plant macrofossil and humification stratigraphies within a single 

core reveals slight discrepancies in the response to moisture changes. There is a broad degree of 

parallelism between the moisture signal within testate amoebae, plant macrofossil and 

humification stratigraphies, exemplified by the association between abundant Sphagnum remains 

and high diversity testate amoebae communities. The majority of testate amoebae species 

typically inhabit Sphagnum mires (Tolonen, 1986; Tolonen et al., 1992), and so this association 

is not unexpected. However, the testate amoebae sub-fossil record occasionally a!,pears to be 

affected by moisture shifts, when no significant change is recorded in the plant macrofossil 

stratigraphy. 

The timing of the moisture shifts appears to vary slightly between techniques, although by no 

means consistently. The humification signal in many cores appears to respond before the other 
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techniques. However, this may be illusory, because water table fluctuations and movements of the 

acrotelm/catotelm boundary will affect peat that has already accumulated. This means a 

hydrological change may affect the degree of humification of peat predating the hydrological 

event. Discrepancies in the timing of moisture shifts between the techniques reflect; 

• the ability of plants and organisms to tolerate adverse environmental conditions· , 

• variations in the speed of response to hydrological changes; 

• differences in the environmental parameters that affect the testate amoebae, plant macrofossil 

and humification stratigraphies. 

Testate amoebae are seasonally active, and they potentially are susceptible to rapid environmental 

changes. Plants and notably some Sphagnum species are capable of surviving adverse conditions, 

recovering after seasonal desiccation (Daniels & Eddy, 1990). Furthermore changes in plant 

communities typically take time (Wheeler, 1993), whereas changes in testate amoebae 

communities can occur rapidly (Buttler et ai., 1996). Humification changes occur in a completely 

different manner, because the degree of peat humification reflects several decades spent under 

aerobic conditions in the acrotelm; consequently, the humification signal reflects average moisture 

conditions over several years. Clearly differences in the speed of ecological and diagenetic 

response to moisture fluctuations affects the consistency of the moisture signal within a single 

core, indicating that several palaeoenvironmental procedures should be used to analyse a peat 

sequence. 

The degree of peat humification broadly reflects fluctuations in the acrotelmlcatotelm boundary, 

which typically is located at the depth of the mean minimum summer water table (Ingram, 1978; 

Clymo, 1984). Consequently, humification analysis semi-quantitatively models changes in the 

depth of the summer water table. The hydrological changes elucidated from plant macrofossil 

stratigraphy are only qualitative, derived using the environmental preferences of specific plant 

species. The occurrence of testate amoebae species is controlled by water table depth and this 

association is used quantitatively to model the depth of mean annual water table. The 

hydrological link between testate amoebae communities and mean annual water table bears 

further scrutiny. Testate amoebae communities are active between May and October, with the 

reproductive cycle occurring during summer months. Mean annual water table depths inferred 

from testate amoebae stratigraphy (sensu Woodland et ai., 1998), could be improved by using 

seasonal mean water tables, because testate amoebae communities are more likely to be affected 

by environmental conditions during summer months. 
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Nevertheless, the reconstructed mean annual water table depths inferred from testate amoebae 

stratigraphy are the most precise of the environmental reconstructions presented in this thesis. 

However, precision and accuracy are not the same thing, and the reconstructed mean annual 

water table values are perhaps best regarded as a semi-quantitative indication of moisture 

conditions. Water table reconstructions generated for stratigraphy dominated by a single species, 

as occurs in drier stratigraphy on the North York Moors, should be treated cautiously. The 

accuracy of the estimated values can also be challenged, because average water table depths 

during the active part of their life cycle are more likely to control the abundance of testate 

amoebae species than annual averages, especially with mires affected by pronounced seasonal 

water table fluctuations. 

Reservations over the accuracy of the water table values do not detract from their 

palaeoenvironmental value as a semi-quantitative tool, and clearly confidence is increased when 

the reconstructed mean annual water table depths are derived from more diverse sub-fossil 

assemblages. Plant macrofossil and humification analysis only provide semi-quantitative and 

qualitative information about past moisture conditions, which is perhaps why palaeoclimate 

histories uncovered from peat stratigraphy concentrate upon major hydrological changes, the wet 

shifts (Barber, 1981; Barber et al., 1994a; 1994b; 1994c; Blackford & Chambers, 1991; 1995; 

Tallis, 1994). 

Dry events are particularly clearly represented in peat stratigraphies on the North York Moors. 

Dry conditions are evidenced by either abundant Sphagnum section Acutifolia remains or the 

replacement of Sphagnum dominated stratigraphy with Ericaceae-Monocotyledonous peat, with 

occasional Hypnum jutlandicum remains. Drier conditions are evidenced the testate amoebae 

sub-fossil record by low diversity communities dominated by Hyalosphenia subjlava. All the peat 

sequences contain evidence of a series of fluctuations between wet- and dry-indicating 

stratigraphy. Peat bogs on the North York Moors appear to be particularly affected by drier 

periods, with radical changes in the testate amoebae and plant macrofossil communities. The 

evidence for drier conditions circa cal. AD 200-400, 700-800, 1100-1200, 1300-1400 and 1550-

1600 is particularly clear. These changes are too severe to be caused by autogenic bog growth 

and almost certainly are the product of climate change. 

Moisture shifts to particularly dry conditions of this magnitude have been encountered elsewhere 

in the British Isles, but they are under-used in terms of elucidating climate histories. The reasons 

for this are understandable, because under stable climatic conditions a mire should grow 

gradually and it is possible that the rising mire surface may outpace corresponding upward 
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movement of the water table, and the stratigraphy produced will be very similar to that signifying 

a change to a drier climate (Aaby, 1976; Blackford, 1993). This cautious approach is particularly 

pertinent at sites with stratigraphy that only allows, the application of a single 

palaeoenvironmental procedure; for example, well humified peat will have few discernible 

macrofossils, where humification analysis may be the only possible methodology capable of 

elucidating meaningful palaeohydrological information. In the case of poorly humified peat, rich 

with plant macrofossils, testate amoebae and other micro-fossils, the wealth offossil evidence and 

comparatively excellent chronological resolution of the stratigraphy enables the nature of drier 

events to be investigated. Rapid expansion of vegetation and testate amoebae communities which 

prefer drier environments are more likely to arise in response to climate changes. The 

humification signal, particularly in mires with a season of unwaterlogged surface conditions, 

should also identify phases of wetter and drier climate (Blackford, 1993). 

Unfortunately the identification of wet and dry events polarises palaeohydrological interpretation 

of peat stratigraphy to fluctuations between moisture extremes, and albeit indirectly, this avoids 

the issue of periods with average moisture conditions. However, at present the precision of 

palaeohydrological information hampers fine-tuning the hydrological signal, with, accepting the 

problems discussed above, the reconstructed mean annual water table depths available from 

testate amoebae analysis providing the clearest and most precise evidence of moisture conditions. 

Ostensibly the best approach for elucidating climatic information from ombrogenous peat 

deposits is to use as many techniques as possible, uncovering the environmental history of the 

mire. This process can only be aided by including as many components of the mire ecosystem and 

diagenetic history in the palaeoenvironmental assessment. 

The scale of the investigations at May Moss has implications for future research using blanket 

peat stratigraphy. The broad uniformity of the hydrological signal encountered in adjacent cores 

indicates that a single profile should be sufficient to provide a hydrological assessment of a site, 

with hollow stratigraphy providing the clearer record. However, minor discrepancies and the 

fallibilities of palaeoenvironmental procedures indicate that assessment of the uniformity of the 

stratigraphy is prudent. This can be achieved either by corroboratory analysis of an adjacent core 

or by recording the field stratigraphy in detail. Analysis of adjacent cores obviously increases 

confidence in the eventual hydrological interpretation of the stratigraphy. The investigations at 

May Moss identify a complex evolutionary history, which demonstrates that stratigraphic 

changes are produced within the process of mire development. Understanding the sedimentary 

history of a mire is critical, particularly if the intention is to link hydrological changes with 

climate. The hydrology of upland blanket mires can be affected by factors other than climate~ 
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consequently, a knowledge of the development of a mire is critical, because topographically 

controlled mire expansion and probably erosion will have an impact on peat stratigraphy. 

Testate amoebae, plant macrofossil and humification analysis as palaeohydrological tools are not 

without problems and all have circumstances when the yielded hydrological signal is unclear; for 

example, tes,tate amoebae are less abundant and the communities less diverse in peat lacking 

Sphagnum remains and perhaps of more concern humification stratigraphies are occasionally and 

inexplicably inconsistent. In essence the mUltiple technique approach provides several lines of 

evidence and is the best option. In terms of the precision of the hydrological signal the 

reconstructed mean annual water table derived from sub-fossil testate amoebae is best and , 

although palaeohydrological value of testate amoebae, plant macrofossil and humification 

stratigraphies are all subject to limitations, they all provide indications of wet and dry conditions. 

7.3 14C dating blanket peat sequences 

The time series generated for peat sequences on the North York Moors are secured by 14C age 

determinations. However, as a geochronological procedure 14C dating of peat has attracted 

critical reappraisal in recent years. This reappraisal questions both the accuracy and precision 

within conventional applications of the 14C procedure. Three different 14C methodologies have 

been utilised in this research. The 14C age determinations on peat from Yarlsey Moss, Harwood 

Dale Bog and Bluewath Beck were radiometric decay assays utilising the alkali- and acid­

insoluble humin fraction of bulk peat samples. The 14C age determinations on May Moss cores 

C3 and D2 were radiometric decay assays utilising the acid-insoluble fraction of bulk peat 

samples, which includes both humic acid and the humin fraction. 

A further suite of 14C age determinations from May Moss core C3 were AMS assays analysing 

virtually pure hand-picked Sphagnum remains (circa 99%). Both radiometric and AMS 14C age 

determinations on May Moss core C3 were from the same horizons, differing only in that the 

radiometric dates utilised a 3 cm vertical interval of peat, with the AMS dates utilising a I cm 

vertical interval from immediately above or below the conventional sample. The reasons for 

obtaining the AMS dates were introduced in chapter four. Basically this approach assess~~ 

whether dates obtained upon Sphagnum remains differ from 14C age determinations on bulk peat 

samples. Peat is a heterogeneous sediment and dating Sphagnum remains may signify whether the 

relative ages of different components affects the accuracy of radiometric dates on bulk peat 

samples. Should discrepancies occur then a formal and comprehensive assessment of 14C dating 

of peat may be in order. 
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The 14C dates are listed and displayed graphically against a dendrocalibration curve in figure 7.1, 

which compares the radiometric and AMS age determinations. Comparison of the two suites of 

dates from May Moss core C3 reveals substantial differences, with only the 14C age 

determinations from horizon six overlapping at the 1 sigma error. There are fundamental 

problems with the set of 14C age determinations, with the radiometric dates between 65-390 years 

older than the AMS determinations. These discrepancies cannot really be explained by the 

differences in sample size and minor differences in the stratigraphic location of the samples. 

Furthermore assays 3-6 overlap within their respective 2 sigma range, which indicates that the 

differences between the assays are not statistically different. The radiometric 14C age 

determinations are also not in a chronological order. The AMS 14C age determinations behave 

better in terms of chronological order, with assay six out of sequence. The 2-sigma ranges of 

AMS 14C age determinations four, five and six also overlap, indicating that there is little 

statistical difference between the age estimates. 

Accounting for these inconsistencies is not easy, although they almost certainly arise because peat 

is a heterogeneous sediment. Basically different components within a unit of peat can yield 

substantially different age estimates. Radiometric 14C age determinations on the fulvic acid, 

humic acid and humin fractions within bulk peat samples identify that fulvic acid typically 

produces age estimates younger than the horizon of accumulation, because fulvic acid is highly 

mobile and can be leached down peat profiles (Dresser, 1970; Shore et al., 1995). However, this 

should not affect the radiometric 14C age determinations in this research, because the samples 

were pre-treated with an acid wash removing this acid-soluble highly mobile component. The 

humin and humic acid fractions of bulk peat samples have also yielded substantially different 14C 

age determinations (Dresser, 1970; Shore et al., 1995). This has implications for the 14C age 

determinations on May Moss cores C3 and D2, which utilise the acid-insoluble fraction 

containing both the humic acid and humin fraction; however, unfortunately there was insufficient 

peat to assess this problem and analyse all three components (fulvic acid, humic acid and humin). 

Consequently it is stressed that the radiometric 14C age determinations at May Moss are based 

upon the analysis of two components that could individually yield substantially different age 

estimates. 

Components that are not contemporaneous with the horizon of accumulation can be introduced to 

a peat sample in several ways. Downward penetration of roots is an obvious source of younger 

material, and these rootlets will eventually decompose contribut~lg both humin and humic acid 

younger than the horizon of accumulation. Stem fragments of long-lived plants, for example 

Cal/una vulgariS, are a further source of non-contemporaneous material being older than the 
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Figure 7.1. 14C age estimates for May Moss core C3 displayed against the decadal 
dendrocalibration curve (Stuiver & Becker, 1993). i). AMS age estimates on virtually 
pure Sphagnum remains. ii). Radiometric age estimates on bulk peat samples. iii). Table 
of the age estimates identifying the horizon number signified on the dendrocalibration 
graphs. 
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horizon of accumulation (pilcher, 1995). Mires on the North York Moors have experienced 

substantial climatic fluctuations during the last 2000 years, which has had a clear impact upon 

the depth of the water table. It is impossible to assess what impact water table movement has 

upon the 14C ages of different components of blanket peat. Fulvic acids are known to be mobile 

within peat sequences; however, the mobility of humic acid particularly in the light of water table 

fluctuations is an unknown factor. 

Kilian et al. (1995) identify a further problem that may afflict the 14C procedure. Comparison of 

AMS 14C age determinations on samples containing pure Sphagnum remains and samples of 

mostly Sphagnum with 2-4% fine Calluna vulgaris rootlets identified that samples containing 

fine Calluna vulgaris rootlets yield ages 100-150 years too old. Kilian et al. (1995) do not offer a 

conclusive explanation for this problem, which they refer to as a "reservoir effect", tentatively 

linking the chronological disparity with alternative sources of carbon. Trace gases, carbon 

dioxide and methane, produced at depth in mires are an obvious source of old carbon. They 

suggest methane is a more likely cause, and in theory, en route to the surface methane could be 

oxidised by bacteria near the acrotelmlcatotelm boundary, providing a "reservoir" of older carbon 

in the root zone. Methane could be fixed by the mycorrhizal fungi associated with Ericaceae 

roots. However, Kilian et al. (1995) indicate that unpublished AMS measurements on living 

Calluna vulgaris and Erica tetralix yield modem age determinations, which conflicts with this 

theory. Methane need not be fixed by living rootlets, with the methane-derived carbon simply 

utilised by fungi (Kilian et al., 1995). Largely taxonomically unknown fungi are found in massive 

quantities in peat sequences (van Geel, 1978), and could produce this reservoir effect, although 

AMS dating of fungal remains is essential to test this hypothesis (Kilian et aI., 1995). 

Fungal remains were encountered within the stratigraphy at most of the sites, and the remains 

were counted sensu van Geel (1978) in the May Moss core D 1 revealing substantial quantities of 

fungal remains. Non-pollen palynomorphs were not counted at all sites, because the taxonomic 

uncertainty involved in the analysis of these remains currently reduces their palaeoenvironmental 

value and the technique was abandoned in favour of more profitable palaeoenvironmental 

procedures. However, a reservoir effect of this type could contribute uncertainty to the 

radiometric 14C age determinations obtained in the course of this research, but it should not affect 

the AMS 14C age determinations on virtually pure Sphagnum remains. This provides a tentative 

explanation as to why the radiometric bulk assays are up to 300 years older than the AMS 

assays. 
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In terms of confidence in the contemporaniety of the dated material with each horizon of 

accumulation, the AMS 14C age determinations are clearly the better option, negating many of the 

problems associated with the heterogeneous nature of peat deposits. The problems highlighted 

above could explain the absence of a correct chronological order in both the radiometric and 

AMS 14C age determinations on May Moss core C3. However, it is probably unreasonably 
. . . 14 

optmnstlc to expect seven C age determinations within a 500-year period to produce age 

estimates in a chronological order. Discussion at the beginning of this section highlighted the 

overlap of the 2-sigma range of the 14C age determinations. Furthermore AMS 14C age 

determinations four to six overlap at the 1 sigma range, which means there is little difference 

between the age estimates. Providing a chronology at this resolution may only be possible by 

means of wiggle-match dating; however, this would require a substantially larger number of 

dates, probably a similar interval to that obtained for May Moss site C, but spread over a longer 

period. 

Further chronological uncertainty stems from the absence of a dynamic equilibrium between the 

decay of 14C and production of 14C in the high atmosphere. Unfortunately the production of 14C 

has not been constant owing to variations in the intensity of cosmic rays reaching the Earth, with 

the variations controlled by changes in sunspot activity (Stuiver & Brazuinas, 1993; 1994). 

Linking the 14C chronology with the calendrical chronology of tree-rings can correct for 

variations in 14C production. The dates obtained in the course of this research have been 

calibrated either using a decadal tree-ring dataset or a smoothed version of the decadal tree-ring 

dataset (Stuiver & Becker, 1993). The 14C age determinations are plotted on calibration curves in 

figures 7.1 to 7.4. The important implication of the calibration procedure is that a single 14C age 

determination clearly could represent a wide range of true ages. Throughout this thesis the 2-

sigma range is given when referring to calibrated 14C age estimates. 

Despite the problems the AMS 14C age determinations provide a chronology for the May Moss 

site C peat sequence. Linear interpolation between these dates, excluding horizon six, was used to 

generate an age/depth model for the peat sequence, which is used in subsequent interpretation. 

The 14C age determinations from May Moss core D2 are in a chronological order; however, they 

may suffer the same problems that afflict the radiometric assays from May Moss core C3. The 

radiometric 14C age determinations from the other sites, Yarlsey Moss, Harwood Dale Bog and 

Bluewath Beck, analyse the acid- and alkali-insoluble humin fraction of bulk peat samples, which 

Dresser (1970) suggests with blanket peat is more likely to reflect the true age of the horizon of 

accumulation. However, Shore et al. (1995) encountered discrepancies between the humin and 

humic acid fractions of bulk peat samples, and recommend obtaining 14C age determinations for 
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Figure 7.2 14Cage estimates for May Moss core D2 graphed against a smoothed 
decadal dendrocalibration curve (Stuiver & Becker, 1993). The boxes identify the 
I-sigma range of the 14C age estimate in years BP and the 2-sigma range of the 
calibrated ages. 
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all fractions within bulk peat samples, which would allow a more complete assessment of the l~C 

procedure. Unfortunately this approach was not possible in this research owing to budgetary 

constraints and the size of the sample available. 

The comparison of radiometric 14C age determinations on acid-insoluble residues and AMS 14C 

age determinations on hand-picked Sphagnum remains, supports a view gaining increasing weight 

in the scientific community, that great care should be taken with 14C dating of peat (Dresser, 

1970; Shore et al., 1995; Kilian et al., 1995; Oldfield et al., 1997). The implication of the 

analyses at May Moss is that material should be selected for 14C dating only if it is likely to be 

contemporaneous with the horizon of accumulation. Short-lived above-ground components are the 

best material and if Sphagnum remains are available, then pure hand-picked samples of 

Sphagnum leaves and stems are the most suitable material for 14C dating peat. With the 

development of AMS technology, analysis of this type is becoming economically feasible and in 

the future may be the only approach scientifically. 

7.4 Climate change on the North York Moors 

The hydrological budget of a mire is a balance between moisture gained and moisture shed. There 

is no evidence of natural changes in mire drainage at any of the sites, for example bog-bursts or 

extensive gully systems. There is also no evidence of drainage initiatives associated with 

agricultural improvement at most of the mires, with the obvious exception of Fen Bogs where 

there is considerable evidence of human inference, associated with the construction of a railway 

opened in 1836 and improvement of southern sections of the mire creating land suitable for 

agriculture. In conclusion, it appears likely that the hydrological signal recorded in the peat 

stratigraphies will reflect changes in effective precipitation. Replication of the moisture signal at 

several sites across the region implies a regional phenomenon is responsible for surface wetness 

changes, with climate the most likely candidate. 

Analysis of blanket peat from upland sites on the North York Moors has produced detailed 

palaeohydrological records for the last 2,600 years. The clarity and precision of the record is 

better during the last 1500 years, because at most sites the stratigraphy pertaining to this period 

is more suitable for palaeohydrological research. The hydrological changes are summarised in 

figure 7.5, which demonstrates that the moisture changes are evident in the stratigraphy at most 

sites. Notwithstanding the problems inherent in 14C dating the chronologies for the peat sequences 

introduced in chapters five and six are used to generate a climate history for the North York 

Moors. These chronologies must be viewed against a backdrop of problems with 14C dating~ 

however, at present it is the only means of ageing the peat sequences. 
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Figure 7.5. Summary of the moisture fluctuations signified in peat stratigraphies on 
the North York Moors, displayed against the timescale derived for each peat sequence 
(Years ADIBC). Solid lines denote moisture conditions signified by several 
techniques. Dotted lines denote less certain moisture conditions only evidenced by a 
single palaeoenvironmental procedure. Red lines denote dry conditions and blue line 
wet conditions. Grey zigzag lines denote stratigraphy with an ambiguous 
hydrological signal. 14C age determinations obtained in during this research are 
signified in Calibrated Years ADIBC, identifying the intercept or the range of 
intercepts with the calibration curve and the 2-sigma range. 
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The data generated for the North York Moors imply changes to wetter climate circa 500-400 cal. 

BC, cal. AD 400-600, 800-900, 1000, 1250-1300, 1400-1450, 1600-1650 and 1800-1850 , and 

of these the cal. AD 400-600, 800-900 and 1400-1450 events are most marked. In addition to the 

wet phases that are the traditional focus for peat-based palaeoclimate research, mires on the 

North York Moors are well suited for the identification of drier conditions. The driest phase 

recorded in peat stratigraphies occurred cal. AD 700-800, evidenced by Calluna vulgariS and 

Hypnum jutlandicum communities, low diversity testate amoebae communities dominated by 

Hyalosphenia sUbflava and by well humified peat. Subsequent drier phases do not appear as 

severe as the cal. AD 700-800 event, but are clearly signified circa cal. AD 1100-1200, 1550-

1600 and 1750-1800. Earlier events are less clearly represented in peat stratigraphies on the 

North York Moors, although dry conditions are signified during the Roman period, cal. AD 200-

400. 

Despite the broad agreement in the palaeohydrological signal from the different sites across the 

North York Moors signified on figure 7.5, there are some discrepancies. Some of the 

discrepancies could reflect uncertainties in the chronologies; however, the palaeohydrology at 

May Moss is more complicated than at the other sites between cal. AD 1000 and 1400. The 

sequence at May Moss, of a dry phase circa cal. AD 1000-1100, wetter conditions cal. AD 

1100-1200 and drier conditions cal. AD 1200-1400, is at odds with the palaeohydrology at 

Yarlsey Moss and Fen Bogs, which signify a single dry phase during the first three centuries of 

this millennium. This discrepancy could reflect the greater stratigraphic resolution available at 

May Moss. Furthermore at this time Yarlsey Moss had only recently become a typical 

ombrotrophic blanket mire and the ombrotrophic status of Fen Bogs is clearly debatable. 

Consequently, it is possible that the climatic changes between AD 1100 and 1400 had no 

discernible impact on the stratigraphy at Yarlsey Moss and Fen Bogs. However, it is also 

possible the hydrological fluctuations recorded at May Moss arose from climatic change of 

insufficient magnitude to be recorded at the other sites. 

The climate history for the North York Moors is compared in figure 7.6 with preVIous 

palaeohydrological investigations of peat stratigraphy. Comparison with previous peat-based 

palaeoclimate research in eastern England is limited, because the only studies available are from 

Harold's Bog on the North York Moors (Blackford & Chambers, 1991; in press) and the 

Humberhead Levels (Smith, 1985). The palaeohydrological indications at these sites corroborate 

the circa 500 cal. Be, cal. AD 400-600, 800-900 and 1600-1650 shifts to a wetter climate 

signified in this research. However, the climate history presented in this thesis is more 
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Figure 7.6. Comparison of moisture fluctuations signified on the North York 
Moors with evidence of wet shifts identified within peat stratigraphies across 
north-west Europe. The data for the North York Moors is expressed as incidences 
of unequivocal wet shifts and extremely dry conditions. The arrows signify 
regionally significant wet shifts, which only include events evidenced at more 
than one site. Correlation of moisture shifts across north-west Europe is 
emphasised by blue shading identifying coincident wet shifts, Three of these are 
broadly equivalent with recurrence surfaces RY ITI, RY II and RY I (sensu 
Granlund, 1932), 
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complicated with further short-lived shifts to a wetter climate circa cal. AD 1000, 1300 and 

1800. Furthermore comment about drier conditions is scarce, with Blackford & Chambers (l991~ 

in press) avoiding the issue on the grounds that drier shifts are more ambiguous than wet shifts, 

because continual growth away from the water table producing well humified peat can occur 

under stable as well as drying conditions. Smith (1985) identifies drier conditions immediately 

prior to an cal. AD 400-500 wet shift, with further dry periods circa cal. AD 700-900 and 1000-

1300. 

The point made about the hydrological ambiguity of dry stratigraphy is valid; however, the driest 

events signified on the North York Moors are severe and more likely to reflect drier climatic 

conditions than autogenic bog growth. Peat stratigraphies on the North York Moors signify drier 

conditions circa cal. AD 200-400, 700-800, 1100-1200, which are contemporaneous with drier 

events recorded in Humberhead raised mire peat stratigraphies (Smith, 1985). The stratigraphies 

at both May Moss and Yarlsey Moss in contrast to the Humberhead mires, Thome and Hatfield 

Moors, extend up to the present day, and identify two further drier events circa cal. AD 1550-

1600 and 1750-1800. 

Palaeoclimate information has also been elucidated from other raised mires and blanket mires 

distributed across Northwest Europe. Figure 7.6 shows that a large number of moisture shifts 

identified on the North York Moors are contemporaneous with wet shifts across Northwest 

Europe and this corroboration supports the belief that they represent changes in climate. The 

changes to a wet climate signified on the North York Moors circa 500-400 cal. BC, cal. AD 400-

600 and 1250-1300 stand out in this regard, because they are contemporaneous with recurrence 

surfaces RYIII, RYII and RYI (sensu Granlund, 1932). Using recurrence surfaces as a rationale 

for correlating peat sequences is an outdated concept, although these features are clearly 

associated with a shift to a wetter climate and appear broadly contemporaneous in 14C dated peat 

sequences (Dickinson, 1975; Rowell & Turner, 1985; Smith, 1985). 

Clearly the palaeohydrological history for the North York Moors also contains shifts that do not 

conform to the traditional sequence of recurrence surfaces. Elucidation of continuous proxy 

climate records from peat stratigraphy has only really occurred since the 1970s, and so the 

potential high-resolution moisture signal available in peat stratigraphy has only begun to be 

realised during the last twenty years. Continuous palaeoclimate histories have been elucidated 

from raised mire peat stratigraphies across north-west Europe, but with a particular concentration 

upon mires in Cumbria and southern Scotland (Haslam, 1987; Stoneman, 1993). Changes to a 

wetter climate have been the principal focus; however, the plant macrofossil analyses integral to 
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these researches are capable of identifying drier phases. Stratigraphies at Bolton Fell Moss and 

Walton Moss contain clear evidence of drier phases circa cal. AD 70-400, 700-800 and 1345-

1450. 

There are clear differences between the palaeoclimate signal on the North York Moors and the 

long established record from Cumbria. The sites on the North York Moors are blanket mires, 

with a less pronounced interchange of Sphagnum species. Drier events on the North York Moors 

are evidenced either by a decline in Sphagnum or by abundant Sphagnum section Acutifolia. 

Cumbrian raised mires are characterised by a more complex suite of changes in the Sphagnum 

flora, within which moisture shifts can be difficult to interpret. However, drier climatic periods on 

the North York Moors are signified by a combination of testate amoebae, plant macrofossil and 

humification stratigraphies, which increases confidence in the moisture signal. The majority of 

peat-based climate research until recently typically has utilised a single palaeoenvironmental 

procedure- for example plant macrofossil analysis (Stoneman, 1993) or humification analysis 

(Blackford & Chambers, 1991)- whereas using several procedures on the North York Moors has 

produced clearer hydrological histories. 

The comparative simplicity of the stratigraphic changes on the North York Moors oscillating 

between Sphagnum-rich to Sphagnum-poor peat renders identification of drier phases easier. The 

sites on North York Moors are all blanket mires, which could explain the differences with the 

palaeoclimate histories elucidated from raised mires, except that the stratigraphy consists of 

poorly humified peat that has accumulated at a similar rate to lowland raised mires. The sites on 

North York Moors are not typical slowly accumulating shallow blanket mires, but comparatively 

deep rapidly accumulating sites with stratigraphy containing a diverse range of fossils. The 

stratigraphy at these sites is not that dissimilar to raised mire peat stratigraphy. The main reason 

for the variance between the palaeoclimate signal on the North York Moors and that from raised 

mires in western Britain is probably due to the climatic differences between the regions. The 

North York Moors is one of the driest peat-forming areas in Europe, and as such, the mires are 

susceptible to pronounced ecological changes during drier periods. This is clearly evident on the 

moors today, with contraction of Sphagnum habitats and expansion of Hypnum jutlandicum at 

May Moss reflecting the current dry climate. 

In addition to the climate archive elucidated from raised mire stratigraphies, in recent years 

upland blanket peat sequences have yielded continuou..; palaeoclimatic information. 

Palaeoclimatic evidence from the south Pennines is of particular interest, because this research is 

unusual in investigating the plant macrofossil stratigraphies of upland blanket peat sequences 
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(Tallis, 1994). Sphagnum-rich and Sphagnum-poor layers of peat were used to signify shifts to 

wetter conditions circa cal. AD 470, 1300 and 1550, with drier phases cal. AD 200-450, 1150-

1275 and 1450-1550. This sequence of events is in agreement with the sequence proposed for the 

North York Moors. 

Humification analysis has been utilised to investigate well humified slowly accumulated peat 

sequences from most upland areas of Britain including the North York Moors, south Pennines, 

Brecon Beacons, Snowdonia and Letterfrack, western Ireland (Blackford & Chambers, 1991 ~ 

1995) and southern Scotland (Chambers et aI., 1997). The well humified condition of the 

stratigraphy at these renders them unsuitable for plant macrofossil analysis. Testate amoebae 

analysis is a possibility in stratigraphy of this type, but it is more likely to be useful in 

Sphagnum-dominated stratigraphy or former Sphagnum-dominated stratigraphy currently in a 

highly decomposed condition. There is clear evidence of shifts to wetter conditions at all the sites 

listed above, with a cal. AD 400-600 climatic deterioration a particularly significant event that is 

signified in stratigraphies across the North York Moors. Subsequent wet shifts are also signified 

circa cal. AD 900-1000 and 1500-1600, which also correspond with wet shifts on the North 

York Moors. 

Of the blanket mires mentioned above, the Letterfrack site in western Ireland warrants further 

comment, because it has been used to elucidate a detailed climate history for the last 2000 years 

extending up to the present day (Blackford & Chambers, 1991 ~ 1995). In addition, within the 

British Isles it offers a complete contrast in terms of climate with mires on the North York 

Moors. The chronology for the sequence is only secured by two 14C dates and a present-day age 

of the mire surface on each of two separate peat profiles. However, the stratigraphy reveals clear 

evidence of changes to wetter conditions circa cal. AD 500-700, 1050, 1300-1400, 1660-1720 

and 1800-1850, with evidence of drier conditions cal. AD 1230-1380, 1560-1650 and 1730-

1780. This sequence of events displays an excellent correlation with the climate history derived 

for the North York Moors. The North York Moors climate history obviously has the advantagf> 

that the palaeohydrological information is derived from five sites and uses a suite of 

palaeoenvironmental techniques upon stratigraphy ideally suited for the identification of dry 

periods. 

The corroboration for the North York Moors palaeoclimate history provided by previous peat 

stratigraphic research is reassuring, because it indicates that the climate changes are regional 

phenomena. It must be emphasised that the chronologies for all these palaeoclimate records are 

based upon 14C dated peat profiles and are inherently susceptible to errors from a variety of 
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sources. The imprecision of 14C dating hampers correlation of peat stratigraphy, a VIew 

exemplified by the wide spread of ages obtained for the Grenzhorizont recurrence surface. Whilst 

the horizons dated as the Grenzhorizont may not have been the same feature, the spread of 14C 

ages may also be the result of a plateau in the radiocarbon calibration between 800 and 400 cal. 

BC (Pilcher, 1991). Notwithstanding the problems with 14C dating and the tentative nature of 

correlation between wet shifts signified in the previous discussion, there is evidence of national 

climate changes within the peat stratigraphies across the British Isles. 

The stratigraphic resolution of the palaeohydrological data for the North York Moors means that 

only the humification stratigraphies are susceptible to time series analysis. The four to eight 

centimetre sampling intervals of the plant macrofossil and testate amoebae analyses are 

equivalent to a chronological interval of 20 to 40 years, which negates the value of time series 

analysis within a 2000-year period. Fine resolution testate amoebae analysis would circumvent 

this problem, but this was not possible within the time constraints of this research. A further 

constraint is that a uniform sampling interval and a uniform sediment accumulation rate are 

essential for direct time series analysis, accordingly the humification stratigraphies at May Moss 

site B and D, and Harwood Dale Bog were the only data receiving time series analysis. 

The dominant periodicities identified at Harwood Dale Bog and May Moss site D are centred on 

80-95 and 200-240 year cycles. Previously published time series analyses of peat-based 

palaeoclimate histories are not abundant. Aaby (1976) identified an, as yet, unreplicated 260-year 

periodicity in a 5,500-year humification record from Draved Moss, Denmark. However, the main 

spectral peak in the 2600-year humification stratigraphy from May Moss site B signifies a 260 

year periodicity. Chambers et al. (1997) encounter a 210-year periodicity in a 5000-year 

humification stratigraphy at Talla Moss, southern Scotland, which is similar to the most 

significant periodicity identified on the North York Moors. The fine resolution 6500-year plant 

macrofossil history from Bolton Fell Moss appears to contain an 800-year periodicity. A 

periodicity of this magnitude was unlikely to be encountered on the North York Moors, because 

the peat profiles for the most part are only 2000 years in duration. All these previous 

investigations only utilise the highest peak within the spectral density function, and do not discuss 

other peaks or the composite nature of certain peaks (Barber et al., 1994a; Chambers et aI., 

1997). It must be emphasised that the time series analyses of the North York Moors data and 

analysis in previous research are inherently constrained by the limitations of 14C dating. Despite 

this, two periodicities are clearly represented in the humification stratigraphies at several sites on 

the North York Moors, centred on 80-95 and 200-240 years. 
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In summary the palaeohydrological record in peat stratigraphies from the North York Moors 

sheds new light upon the climate history for the last 2000 years. Some of the hydrological 

changes have been evidenced elsewhere in the British Isles, which gives further credence to the 
-

view that they represent significant changes in regional climate. The susceptibility of stratigraphy 

on the North York Moors to ecological changes in response to drier conditions gives the climate 

history considerable clarity and highlights differences with peat stratigraphic research elsewhere. 

The climate history appears far more complicated than previously encountered. Climatic 

conditions signified in peat stratigraphies on the North York Moors are summarised in figure 7.7, 

which also identifies the main climate changes and the 14C ages obtained for these changes. 

7 .5 Late-Holocene climate history 

In addition to peat stratigraphic research a variety of approaches has been utilised to uncover 

Holocene climate histories for north-west Europe. Sources of regional climate information include 

instrumental measurements, historical documents, the width of tree rings, a history of glacial 

advances, movements in the altitude of the tree line, water levels in lakes and records of 

heightened geomorphic activity, to name but a few. These data sources are based upon research 

across Europe from areas currently experiencing distinctly different climatic conditions~ 

consequently, there are variations between these climate histories. A further potential source of 

variance arises from the climate variable reconstructed by a particular analytical approach. 

Palaeohydrological indications in ombrogenous peat are used to infer a history of effective 

precipitation, and can only distinguish between cold or wet and hot or dry conditions. Beyond 

these coarse indications the peat stratigraphic climate signal cannot really be more specific. 

Other sources of Holocene climate histories reconstruct different variables. Instrumental 

measurements record quite specific climatic variables, but they are only available for the last 

200-300 years. Precipitation and temperature measurements provide some of the longest records, 

with temperature measurements in central England between 1659 and 1973 (Manley, 1974), and 

equivalent precipitation measurements between 1760 and 1980 (Wigley et ai., 1984~ Jones & 

Bradley, 1995a). Climatic information in historical documents can be very variable, often 

providing information about extreme events. Dendroclimatology allows the reconstruction of 

climatic variables that control tree growth. In Scandinavia the limiting factor is temperature 

(Briffa et al., 1990), whereas in arid areas precipitation is a more important factor. In Britain and 

other areas with an oceanic climate tree growth is controlled by a combination of precipitation, 

temperature and other edaphic factors. The altitude of the tree line and the position of glacial 

margins in the Alps and in Scandinavia are clearly controlled by temperature. This arrav of 
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Figure 7.7 Summary of the climate changes signified on the North York Moors. 
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climatic variables elucidated in research focusing upon the Holocene provides an invaluable 

archive for comparison with the palaeoclimate history generated for the North York Moors. 

Of particular pertinence to the palaeoclimate history generated in this thesis is the archive of 

documentary information collated by NOel Menuge. This archive draws upon documentary 

evidence pertaining to the North York Moors specifically, collateQ in an unpublished database 

and summarised in PLACE Research Centre Occasional Paper No.1 (James Menuge, 1997). 

This database is a parallel component to this thesis, forming a research project aimed at 

elucidating a climate history for the North York Moors. The documentary evidence, summarised 

on figure 7.8, provides some flesh to the skeleton climate history derived from peat stratigraphy. 

Documentary evidence is available for the period AD 458 to the present day, but is constrained 

by gaps where the historical information is either not available, is unreliable or is difficult to 

interpret. The sources of evidence include chronicles' ecclesiastical histories' monastic , , 

chartularies; estate, court, forest and tithe records; and a diverse range of personal, farming, 

school and newspaper records (James Menuge, 1997). 

The nature of the climatic information is diverse and includes incidents of extreme events, for 

example heavy snow and great storms; and indirect climatic information elucidated from crop 

yields and occurrences of famine and diseases, for example murrain which afflicts livestock 

during periods of drought. The database is constrained by gaps in the historical record and by the 

regionally non-specific nature of the evidence until the eleventh and twelfth centuries. In records 

not specific to the North York Moors, Bede and the Annals of the Britons record several 

incidences of severe drought during the eighth century, which coincide with evidence of a very dry 

climate in peat stratigraphies. Documentary evidence pertaining to the period from the ninth to 

the eleventh century is lacking in climatic information, with the exception of reference to a severe 

winter in AD 991. This exemplifies the problem of regionally unspecific documentary evidence 

and it proved impossible to discern meaningful climatic information from documentary sources 

pertaining to the North York Moors between AD 800-1050. 

Documentary evidence pertaining to the period AD 1050-1300 signifies several climatic 

fluctuations and the palaeohydrological evidence does not contradict this, signifying dry climate 

cal. AD 1100-1200, wet climate cal. AD 1200-1300 and dry climate cal. AD 1300-1400. There 

is also inconsistency within these wet and dry periods, possibly arising from differences in the 

ecological response to moisture change and uncertainties inherent in histories based upon 14C 

chronologies. If the climate was changeable the peat stratigraphies produced under these 

conditions might reflect this, with variations present between the stratigraphies at different sites. 
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Quality and quantity of climatic 
information 

7 entries containing generalised information not 
specific to the region and only 3 references to 

climate. 

11 ~tries with no reference to climate. The plague 
m AD .664 or 682, in response to crop failure 

and famme, could have been triggered by either 
an extremely wet or dry summer. 

11 entries with 4 references to climate. 
Incidents of drought and dysentery, a disease more 

commonly associated with warmer climes in AD 721 
737,741 and 759-761.' , 

3 entries containing no reference to climatic 
conditions. 

5 entries identifying a famine in AD 976 and disease 
amongst cattle in AD 986. The winter of AD 991 

was unusually severe, wet and cold. 

17 references to climate - some specific to the region. 
The data identifies a country blighted by cold and wet 
weather, which produced famine and poor crop yields. 

122 entries mostly specific to the region, but 
concentrating upon the landscape with only 

14 references to climate. 

42 entries mostly specific to the region, which 
identify a climate fluctuating between wet winters 

and dry summers. 

21 entries concentrating upon the landscape and 
plagues, with only 5 references to the climate. 

8 entries containing information about land-use, with 
no reference to climate. 

13 entries containing information about livestock and 
the landscape, but with no reference to climate. 

18 entries containing information about livestock and 
the landscape, but only 3 references to climate. 

7 entries, with specific references to climate and the 
earliest meteorological records - AD 1788-1792. 

43 entries containing specific references to climate and 
the early meteorological records from Whitby. 

AD 1900 Good regional coverage and continuous meteorological 
-1996 records. Alternating wet and dry weather throughout the 

century, but with a concentration of wet and cold 
events AD 1900-1950. 
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Figure 7.8 Summary of the climatic information pertaining to the North York Moors 
collated from documentary sources (James Menuge, 1997; unpublished). 
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It is not possible to attribute the minor discrepancies between the palaeohydrological records from 

different mires definitively to either changeable climate, variations in the ecological response to 

climate change or to uncertainties in correlation between sites arising from the 14C chronologies. 

The fourteenth to sixteenth centuries are not well served in terms of climatic information with , 

documentary records focusing upon landscape and woodland management. After AD 1600 there 

is more in the way of regionally specific climate information, with a wet or cold climate between 

AD 1620 and 1640, which supports the palaeohydrological evidence of wet or cold conditions 

between cal. AD 1600 and 1700. There is further evidence of very cold and wetter climate in the 

latter half of the nineteenth century, after a comparatively dry or warm first quarter (Tuke, 1800), 

and this sequence of events strongly supports the palaeohydrological evidence. In conclusion, 

notwithstanding the gaps in and limitations of the documentary evidence, and the chronological 

uncertainty inherent in the peat stratigraphic record, there is good agreement between the 

historical and palaeoenvironmental evidence for climate change on the North York Moors. 

The expanSIon and contraction of glaciers, combined with other indications of climatic 

fluctuations, including the altitude of the tree line and water levels in Alpine lakes, have been used 

in the Alps and Scandinavia to elucidate Holocene climate history (Grove, 1988~ Lamb, 1977). In 

fact, the broad subdivision of the Holocene into warm and cold phases has been largely based on 

histories of ice advance. Climate histories of this type are inherently of poor chronological 

resolution, because, although ice advances can be identified by the geomorphology at the 

maximum extent of the glacier and in the recent past from historical records, little information is 

gathered about climate fluctuations within a phase of ice advance. A climate history based upon 

identification of high-magnitude events will include the major changes, but miss finer detail and 

short duration events. 

Research in Scandinavia (Karlen & Kylenstiema, 1996) and from the Alps (Grove, 1988~ 

Magny, 1993; 1995) identifies colder climate signified by phases with advanced glacial margins 

and high lake levels circa 800-300 BC, AD 300-1000 and AD 1300-1900, with intervening warm 

periods. This sequence of events conforms with syntheses of late-Holocene climate research 

(Lamb, 1977; Grove, 1988), which identify warm climate during the Roman occupation of 

Britain, cooler climate between AD 400 and 1000, and a pronounced Medieval warm period AD 

1100-1300 followed by climatic cooling into the Little Ice Age. The Little Ice Age is poorly 

defined chronologically, covering the period AD 1200/1300 to 1900 if viewed purely in terms of 

advanced glacial margins (Magny, 1993; 1995; Karlen & Kuylenstiema, 1996). Lamb (1977) 

and Grove (1988) confine the Little Ice Age to the period AD 1550-1850, with a main phase AD 
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1550-1700. The period 800-300 BC is also a widely identified cooler or wetter period, with 

evidence ofa deterioration in climate provided by advanced glacial margins (Magny, 1993; 1995; 

Karlen & Kuylenstiema, 1996), by higher tree lines (Bridge et al., 1990; Karlen & 

Kuylenstiema, 1996), evidence of wetter mire surface conditions across Northwest Europe (van 

Geel et al., 1996) and by heightened geomorphic activity in upland Britain (Ballantyne, 1991; 

1993). 

The climate history derived for the North York Moors is in agreement with the established 

perception of late-Holocene climate (Lamb, 1977). The main changes to a wetter climate circa 

600 cal. BC, cal. AD 400 and cal. AD 1200-1400 clearly correspond with the beginning of 

phases of colder climatic conditions 800-300 BC, AD 300-1000 and AD 1300-1900. However, 

the finer resolution of climate histories derived from peat stratigraphy contains considerably more 

variations. The most notable of these variations involve a pronounced drier phase cal. AD 700-

800. The Medieval warm period appears more complicated than the established definition of a 

AD 1100-1300 warm or drier period, with wetter conditions until circa cal. AD 1000, warmer or 

drier conditions cal. AD 1000-1200, a wetter or cooler phase cal. AD 1200-1300 and a short­

lived drier or warm phase cal. AD 1300-1400 followed by a pronounced major deterioration to 

wetter or cooler conditions. The cooler and wetter period cal. AD 1400-1900 has obvious 

parallels with the traditionally defined Little Ice Age; however, the peat stratigraphic signal 

indicates the climate history for this period is more complicated. There are pronounced wetter 

phases cal. AD 1400-1550, 1625-1750 and 1800-1900, separated by periods with warmer or 

drier conditions circa cal. AD 1550-1625 and 1750-1800. Clearly the resolution of the peat­

based palaeohydrological record for the North York Moors signifies a climate history of greater 

complexity than traditionally defined. 

Peat stratigraphies are not alone in discerning greater complexity within late-Holocene climate 

history. A recent synthesis of research investigating climate during the last 500 years, drawing 

upon historical, ice core and tree ring evidence, also indicates the broad 400-500 year Little Ice 

Age has greater complexity than previously envisaged (Bradley & Jones, 1995). Tree rings like 

peat stratigraphy can yield fine-resolution climate information and are ideally suited for 

elucidating structure within the broad divisions of late-Holocene climate. Briffa et af. (1990) 

using detailed palaeotemperature records derived from tree rings, signified that the warmest 

periods during the last 1500 years occurred AD 749-768, 1087-1106, 1158-1106, 1551-1570 

and 1748-1767, which correspond with dry indications on the N\;rrh York Moors circa cal. AD 

700-800 1000-1200 1550-1600 and 1750-1800. The coolest periods recorded in the , , 

dendroclimatology are AD 795-814, 848-867, 1344-1363 and 1601-1620 (Briffa et aI., 1990~ 
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Briffa & Schweingruber, 1994), and are contemporaneous with significant wet shifts on the 

North York Moors circa cal. AD 800, 1300 and 1600. A comparatively dry and warm climate 

during the Little Ice Age is also evident in long instrumental measurement temperature records 

from central England (Manley, 1974), which signify a warm climate AD 1780-1850 during a 

broadly cooler period. 

The climatic infonnation derived from peat stratigraphy on the North York Moors clearly 

confonns with the established history of late-Holocene climate. However, this proxy record of 

effective precipitation reveals greater complexity within the climate history for the last two 

millennia. This complexity may be beyond the resolution possible with traditional approaches to 

elucidating Holocene climate. Palaeohydrological interpretation of peat stratigraphy is one of a 

number of sources of palaeoclimate information, alongside tree rings, ice cores and historical 

sources, capable of producing fine resolution climate histories. The peat stratigraphic record 

differs from the published dendroclimatology derived in Fennoscandinavia in that it records 

climatic wetness opposed to temperature, which is the dominant control upon tree growth in 

cooler climate regions. Despite the oceanic climate of the British Isles and the comparative aridity 

of the North York Moors within this climatic region, the proxy effective precipitation record has 

a great deal in common with both continental and global climate histories. However, the 

susceptibility of peat stratigraphy on the North York Moors to drier climatic events is invaluable, 

elucidating wann or dry phases within the cooler climatic conditions of the post thermal optimum 

late-Holocene. 

7.6 Forcing of late-Holocene climate change 

Notwithstanding some inherent uncertainties mainly stemming from the 14C chronology, the 

climate history generated for the North York Moors can be used to address the causes of climate 

change during the last two millennia. The dominant force controlling the climate on Earth is the 

Sun (Trenberth et al., 1995). The amount of solar energy received by the Earth has been far from 

constant and this is an obvious origin for climate changes during the late-Holocene. The solar 

constant, or perhaps more appropriately inconstant, is modulated by a variety of factors that 

operate over distinctly different periodicities and by completely different mechanisms. Orbital 

forcing is an important control upon climatic fluctuations throughout geological time moderating 

the solar constant; however, orbital parameters operate over longer periodicities than the 2000 

year focus of this research. 

Changes in the intensity of the Earth's dipole and non-dipole magnetic field occur at similar 

periodicities (2300 years) to climatic changes throughout the Holocene (Magny, 1993). Changes 
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of this frequency will not be discernible within the 2000-year focus of this research; furthennore 

a plausible theory and mechanism for a geomagnetic influence on climate is not available. Having 

indicated that it is difficult to discern periodicities of climate change attributable to Milankovitch 

scale forcing or to geomagnetic fluctuations, changes in these factors may affect climate during 

the late-Holocene. Changes in orbital parameters have been linked with the 9000-6000 BP 

Holocene thermal optimum and the subsequent late-Holocene climatic deterioration, which 

prevails throughout the chronological focus of this research (Harvey, 1979). 

Decadal and centennial variations in the solar energy received by the Earth, basically entail 

increased energy associated with periods containing a large number of sunspots and less energy 

associated with sunspot minima (Eddy, 1976). This periodic modulation of solar energy or 

efficiency has been proposed as a cause of climate change (Eddy, 1976; Magny, 1993; 1995; 

Stuiver et al., 1995). Further modulation of solar efficiency involves the impact of volcanic 

aerosols and greenhouse gases, which are hypothesised causes of regional and global climate 

change (Hammer et al., 1980; Bradley and Jones, 1995). Variations in the production of solar 

energy occur independently of the Earth's climate system. However, this system is complex, and 

there are features and feedback mechanisms that also affect regional and global climate. 

Comparatively minor changes in a single feature can trigger a series of feedback mechanisms 

affecting a much greater climate change. In fact, researchers supporting solar forcing of Holocene 

climate invoke feedback mechanisms to amplify the comparatively minor ±O .12°C temperature 

fluctuation directly attributed to oscillations between sunspot minima and maxima (Stuiver & 

Brazuinas, 1993). 

Understanding of variations in sunspot activity is based upon a number of sources. Direct 

measurements exist only for the last 15 years and historical records of sunspot frequencies exist 

for the last 300 years (Eddy, 1976). Consequently the Holocene history of solar activity is 

inferred from cosmogenic isotopic records in tree-rings and ice cores. The amount of atmospheric 

14C (~14C) is affected by solar modulation of 14C production, and this infonnation is accessed by 

14C analysis of tree-rings. Corroboration of a solar control upon ~14C is provided by comparison 

with the historical record for the last 300 years and additional comparison with the abundance of 

cosmogenic lOBe recorded in ice cores (Stuiver & Quay, 1980; Oeschger et al., 1987). Both the 

~ 14C tree ring and lOBe ice core records unambiguously reconstruct fluctuations in solar 

magnetism, and by inference sunspot activity (Oeschger et al. 1987; Stuiver & Braziunas 1993). 

The ~ 14C record derived from bidecadal tree-ring data (Stuiver & Braziunas, 1993a; 1993 b) is 

compared in figure 7.9 with the palaeoclimate history elucidated for the North York Moors. Blue 
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Figure 7.9 Tentative correlation between the atmospheric 14C variations (14C) 
and moisture indications in peat sequences on the North York Moors. The 14C 
fluctuations are derived from a smoothed decadal dendrocalibration curve 
(after Stuiver & Becker, 1993) and are believed to reflect a response to 
changing frequencies of sun-spots, with high values denoting sun-spot minima 
and low values sunspot maxima (Stuiver & Brazuinas, 1993). The main named 
sun-spot periods are annotated. Significant wet shifts and unequivocal 
evidence of dry conditions from all five sites are signified by blue and red lines 
respectively. Concentrations of wet events evidenced at several sites are 
highlighted with blue shading to assist comparison with the solar record. 
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shading denotes the wet climatic periods and red lines signify drier phases, and in addition the 

main named phases of solar activity are clearly annotated. The climatic fluctuations on the North 

York Moors appear to coincide with the solar record. Cool or wet shifts coincide with periods 

with reduced sunspot activity and the warm or dry phases coincide with heightened sunspot 

activity. This broad overlap provides tentative evidence for a relationship between solar activity 

and the palaeoclimate record derived from peat stratigraphies on the North York Moors. The 

correspondence between the records appears better for the last millennium; however, this may be 

illusory, reflecting better stratigraphic resolution of the palaeoclimate signal for the North York 

Moors during this period. 

The visual correlation between solar activity and mire palaeohydrology is clear; however, in 

addition the 80-90 and 200-240 year periodicities identified in peat stratigraphies on the North 

York Moors overlap with periodicities signified in spectral analysis of the ~ 14C signal. The 

Gleissberg 88-year and the Suess 208-year cycles are components of the harmonics in the ~ 14C 

record that have been directly attributed to fluctuations in the solar constant (Damon & Jirikowic, 

1992; Stuiver & Braziunas, 1993). This concordance between palaeohydrology and solar activity 

appears to signify that solar forcing may be partially responsible for forcing of late-Holocene 

climate on the North York Moors. The main caveat to this association, apart from anxieties over 

the chronologies of peat sequences, stems from the view that only a circa ±0.12°C fluctuation in 

global temperature can be directly attributed to the difference between sunspot minima and 

maxima (Stuiver & Brazuinas, 1993). 

If solar fluctuations are forcing late-Holocene climate change, mechanisms within a system that 

involves the atmosphere, hydrosphere and biosphere must be amplifying the net impact of solar 

fluctuations. A complete discussion of the complexities of the climate system is beyond the scope 

of this thesis; however, the discussions in Stuiver & Braziunas (1993) and Chambers et al. (in 

press) identify a number of theories providing a mechanism for amplifying the impact of solar 

fluctuations have been postulated: 

• A small change in the properties of clouds could have a considerable impact upon global and 

regional climate (Karlen & Kuylenstiema, 1996). Solar activity affects the global magnetic 

field with a knock-on impact upon cloud physics, which could affect the global albedo 

(Tinsley, 1994). 

• Fluctuations in solar ultra-violet radiation also affect the production of ozone. Ozone 

fluctuations have been linked to climate change (Hood et al., 1993). 
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• Minor changes in global irradiance can cause a resilient temperature change of 0.1-0.30C, 

which could affect North Atlantic circulation, triggering thermohaline oscillations. Any 

change in North Atlantic oceanic circulation could have a knock-on impact upon atmospheric 

circulation, thereby causing or amplifying climate change (Stuiver & Brazuinas, 1993). 

The literature on this subject is far from conclusive and this prohibits complete confidence in the 

association between late-Holocene climate and the solar record (Chambers et al., in press). It is 

probable that several of these mechanisms and a series of as yet unknown factors combine to 

control climate in north-west Europe. Fluctuations in the abundance of volcanic aerosols and 

greenhouse gases also affect global climate. Greenhouse gases are inherently linked to the climate 

system and increased water vapour has already been identified as a mechanism for amplifying the 

impact of solar oscillations upon climate (Tinsley, 1994). Carbon dioxide is one of the most 

significant greenhouse gases and is apparently linked to anthropogenic global warming 

(Houghton et a/., 1990). However, CO2 fluctuations are of insufficient magnitude to account for 

the climatic variations identified during the last two millennia, with the obvious exception of 

changes in the twentieth century (Bradley & Jones, 1993). 

The climatic impact of volcanic aerosols has long been acknowledged (Lamb, 1970), but there is 

considerable debate about the duration and magnitude of climate changes in the wake of volcanic 

eruptions (Bradley & Jones, 1995; Rampino & Self, 1984). Climatic changes directly attributed 

to volcanic eruptions appear very short-lived, with temperature variations undetectable from 

background noise after 2-3 years. A more complete understanding of volcanic history, 

particularly identifying S02 rich eruptions, is essential before the contribution volcanic aerosols 

make to global and regional climate can be properly addressed. Zielinski et al., (1994) 

encountered a 4-5 year impact by forty-three climatically significant eruptions during the last two 

millennia in the 8180 temperature record in the GISP2 ice core. These eruptions are believed to 

cause an average 1°C fall below mean temperature for the last two millennia (Stuiver et al., 

1995). Hammer et al. (1980), in a record that is not without detractors, identified periods with 

intensive volcanic activity using acidity peaks in Greenland ice cores, AD 500-850, 900-1050, 

1300-1700 and 1800-1900, which broadly overlap with wet periods on the North York Moors. 

Volcanic eruptions ejecting large quantities of sulphur dioxide into the stratosphere may cause 

cooler wetter climatic conditions; however, analysis of eruptions during the last 300 years 

indicates the intensity of the climatic impact is variable and short-lived (Rampino & Self, 1984). 

Nevertheless, the climatic impact of a volcanic eruption of tb.~ right magnitude, in the right 

location and at the right time could combine with other factors including solar forcing and 

feedback mechanisms within climate systems, effecting a greater and sustained climate change. 
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The discussion above highlights the complexities of regional climate and the scale of uncertainty 

in understanding forcing of palaeoclimate. There is a clear parallel between climate change on the 

North York Moors and solar forcing, which appears a likely factor behind climate change in 

north-west Europe. However, other factors will obviously affect this relationship, with feedback 

mechanisms inherent in ocean, atmosphere and biosphere interactions further clouding this issue, 

and volcanic eruptions unequivocally contributing to climate fluctuations in north-west Europe. 

At present it is not possible to link climate histories definitively to particular forcing agents. 

Furthermore, in balancing the complexity of the climate system against both spatial and temporal 

inadequacies, and the imprecision inherent within proxy climate histories, conclusive 

identification of the forcing agents behind climate change may never be entirely possible. 
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Synthesis 

8.1 Implications and directions for future research 

The conclusions of this thesis in relation to the vegetation and climate history for the North York 

Moors during the last two millennia are presented in chapters five, six and seven respectively. 

However, the ramifications of this research go beyond vegetation history and palaeoclimate 

research. The wealth of analysis on the North York Moors has implications for; 

• future palaeoenvironmental research on the North York Moors· , 

• 14C dating of peat sequences; 

• future peat-based palaeoclimate research and predicting future climate change; 

• moorland management. 

Furthermore, as with all research, the process of investigation uncovers as many questions as it 

provides answers. There are a number of areas of research that clearly require further analysis, 

and these areas broadly occur within the four categories listed above. 

8.2 Future palaeoenvironmental research on the North York Moors 

The principal discoveries of palaeoenvironmental research on the North York Moors presented in 

chapters five, six and seven, entail a greater complexity to the regional vegetation history and the 

development of a 2000-year climate history. One of the main improvements on previous research 

this thesis has contributed is through the judicious use of 14C dating to secure the 

palaeoenvironmental histories. A further advantage involves the availability of an archive of 

documentary material pertaining to the last 1500 years, which is an invaluable source of 

landscape and climatic information (James Menuge, 1997). 

The pollen analyses uncovered evidence of a sequence of events reflecting changes in the 

demographic, cultural, economic and climatic history of the North York Moors. These events 

include woodland expansion as the result of reduced agricultural activity in the wake of 

population declines due to the Roman withdrawal from England, the 'harrying of north' and the 

Black Death. Furthermore, there is clear evidence of increased agricultural exploitation of the 

uplands as the results of a more commercial approach to farming during the Roman-British 

period, population expansion during the Anglo-Scandinavian period and due to concerted 
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attempts to develop the North York Moors for agriculture during the 12-13th and 15-16th 

centuries. The climatic history discussed in chapter seven is the first attempt to elucidate 

palaeoclimate information from peat stratigraphies located across the eastern North York Moors. 

Despite the concerted effort to develop a comprehensive vegetation and climate history for the last 

two millennia, there is still potential for further research on the North York Moors. Within the 

time constraints of this thesis fine-resolution palaeoecological analysis was not possible~ 

However, the sequence of events uncovered in the pollen, testate amoebae and plant macrofossil 

analyses indicates this maybe a worthwhile approach. Fine-resolution analysis at sampling 

intervals of circa 1-3mm through significant events would improve understanding of the process 

and 'nature of change. This approach could target features like the woodland expansions linked to 

the Roman withdrawal or to the Black Death or particularly severe climatic fluctuations, and 

assess the speed of palaeoecological change and the structure within changes. Fine-resolution 

analysis may identify differential response by certain testate amoebae or plant species to climatic 

changes, that are not visible at the current resolution of analysis. 

If fine-resolution palaeoecology could be coupled with judicious use of 14C dating, 

notwithstanding the problems encountered with 14C dating in this research, it would contribute 

greatly to understanding of environmental changes on the North York Moors. The great potential 

for research of this type lies with coupling the palaeoecology with the archive of historical 

information (James Menuge, 1997). The chronological accuracy of palaeoecological histories 

could be improved by recognising the pattern of 14C wiggles, which reflect variations in 

atmospheric 14C activity, in time series generated by fine resolution AMS 14C dating of peat 

deposits (Kilian et al., 1995; van Geel & Mook, 1989). If particular wiggles or plateaux occur in 

the time series generated from peat deposits, these can be directly correlated with the 

dendrocalibration record of atmospheric fluctuations in 14C. Wiggle-match dating potential could 

greatly improve the accuracy of palaeoenvironmental histories elucidated from peat stratigraphy. 

In summary, there is still great potential for palaeoenvironmental investigation of peat 

stratigraphies on the North York Moors, particularly targeting specific events or features with a 

combination of fine-resolution palaeoenvironmental analysis and wiggle-match AMS 14C dating 

of peat deposits. 

In addition to a focus on the finer structure within the climate and vegetation histories elucidated 

in this research, there are other spatial and temporal gaps within the body of palaeoenvironmental 

research on the North York Moors. Pollen analysis of profiles within the southern hills of the 

North York Moors would investigate the vegetation changes in an important agricultural area. 
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Virtually all previous vegetation history research on the North York Moors utilised profiles from 

the central moorland, which are not prime land for agriculture. Sites located in the agricultural 

areas would be invaluable and provide more information about past land-use around the North 

York Moors, but unfortunately there is little peat remaining in the southern hills. In terms of 

climate history research, the only sites used for palaeoecological investigation are those in this 

thesis from the eastern and central North York Moors and the site utilised by Blackford & 

Chambers (1991) on East Bilsdale Moor. There are further potential sites on the central plateau 

of the North York Moors, which includes deep peat sites on the North Gill to Bluewath Beck 

plateau, and parts of Westerdale and East Bilsdale Moors. However, these sites may not 

necessarily yield stratigraphy pertaining to the late Holocene. 

The other gap within palaeoclimate research on the North York Moors involves stratigraphy 

pertaining to the remainder of the Holocene, which, with the exception of the profile from East 

Bilsdale Moor (Blackford & Chambers, 1991), have not been investigated before. Much of early­

and mid-Holocene stratigraphy is well humified and is not the Sphagnum-rich peat likely to 

contain large quantities of identifiable plant macrofossils or testate amoebae. Palaeohydrological 

analysis of stratigraphy of this type is likely to be limited to humification analysis. However, 

there are profiles covering the mid- and late Holocene in water-shedding locations across the 

North York Moors, in particular the basal stratigraphy at May Moss and Harwood Dale Bog, 

and peat sequences on the North GilllBluewath Beck plateau and on East Bilsdale Moor. 

8.3 The future for radiocarbon dating peat sequences 

Preliminary assessment of the contemporaniety of different components within peat at May Moss 

highlights the heterogeneous nature of the sediments and indicates there are problems with 

radiometric assays obtained upon bulk peat samples. The principal recommendation of this 

research is that components should be selected from peat on the basis of contemporaniety with the 

horizon of accumulation. Furthermore, pure Sphagnum remains, if present, are perhaps the most 

suitable materials for dating peat. Unfortunately this analysis at May Moss is only a preliminary 

assessment of the impact that the heterogeneity of peat has upon the 14C age ofa sample of peat. 

Future research further addressing this problem is essential and should analyse humic, humin and 

fulvic fractions and a bulk peat sample by the radiometric method. In addition, AMS dates should 

be obtained for all components identifiable and extractable within each selected horizon. 

Comparison of the variations in 14C ages obtained in this may formally identify the most suitable 

material for 14C dating peat and identify the level of inaccuracy present within existing 14C age 

determinations. Ideally, research investigating this problem should utilise a range of different peat 

sequences, including raised mires, blanket mires and fens. Selecting sites with other means of 
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ageing the peat sequences would enhance a formal test of this type. Volcanic ash layers, if 

present, within the stratigraphy offer this opportunity, as would 21OpB, 241Am and 137CS dating the 

surface layers of actively accumulating mires as a part of an integrated geochronological strategy. 

8.4 Future peat-based palaeoclimate research 

The most important outcome of this research in terms of the process of elucidating climate history 

from peat stratigraphy, is the broad consistency of the hydrological signal yielded by the three 

approaches. There are circumstances when the hydrological signal yielded by a particular 

technique was ambiguous, with humification stratigraphy occasionally and inexplicably variable. 

The multi-proxy approach, utilising several palaeoecological procedures, represents the future for 

peat-based palaeoclimate research, because there is greater clarity and confidence in a 

hydrological signal derived by several lines of inquiry. The performance of testate amoebae as a 

palaeohydrological tool is excellent, with the broad degree of consistency between hollow and 

hummock sequences indicating a single peat profile is capable of providing an assessment of the 

sub-fossil testate amoebae stratigraphy at a particular location. 

Research at May Moss provides further evidence that hollow stratigraphy is more suitable for 

palaeohydrological investigation than hummock stratigraphy. The location of the core sites is also 

critical for research on blanket mires. Topography and differential mire development over this 

topography can produce pronounced variations in the stratigraphy across a mire. Understanding 

the sedimentary history is critical for deciding upon core sites. For palaeoclimate research the 

core site should be located within ombrogenous facies on the mire watershed; however, the 

stratigraphy can still be affected by changes elsewhere on the mire. At May Moss the expansion 

of a Sphagnum-dominated facies from the Eller Beck basin has affected the stratigraphy on the 

mire watershed. An understanding of mire evolution is critical for interpreting stratigraphic 

changes with topographically controlled upland blanket peat. 

Using poorly humified rapidly accumulated blanket peat sites, containing a wealth of macro- and 

micro-fossils, has advantages over palaeoclimate research utilising typical comparatively shallow 

well humified slowly accumulated blanket peat. Clearly a greater chronological resolution is 

available from rapidly accumulated stratigraphy. Furthermore the comparative wealth of fossil 

evidence favours a range of palaeoenvironmental procedures increasing confidence in the eventual 

palaeohydrological signal. Peat sequences formed under the oceanic climate of the British Isles 

are well suited for palaeoclimatic research, whereas peat sequences experiencing a continental 

climate in central Europe appear to record less in the way of climate change (Haslam, 1987), 

Within the British Isles there are considerable variations in climate, and research on the North 
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York Moors reveals peat stratigraphies from drier regions are well suited for the elucidation of 

climate history, particularly for identifying dry periods. 

The benefits of palaeoclimate research utilising upland blanket peat sequences have only been 

realised during the last decade, and there is a large resource still to be utilised. This thesis 

signifies that future research should target; 

• poorly decomposed rapidly accumulating upland ombrogenous peat sequences, because of the 

wealth of sub-fossil material within the peat and the potential for using several techniques to 

elucidate hydrological and climate history; 

• sites in the drier parts of the British Isles clearly warrant further attention, because the oceanic 

nature of the British climate and the comparative aridity of eastern Britain appears a 

particularly fruitful combination for palaeoclimate research. 

Further testing of the multi-proxy approach is warranted, because the testate amoebae, plant 

macrofossil and humification analyses utilised in this thesis could be supplemented with non­

pollen micro-fossils (fungi, algae, etc.) (van Geel, 1978) and isotope geochemistry (van Geel & 

Middledorp, 1988). Basically, future improvements to the process of elucidating climate 

information from peat stratigraphy must entail both improving the precision of 

palaeohydrological interpretation of mire palaeoecology, and assessing the accuracy of 

temperature and precipitation values elucidated by means of isotopic analysis of cellulose within 

peat. 

Improving the precision within reconstructions of mire hydrology may involve testate amoebae 

analysis, because it is the only technique currently allowing the quantitative estimation of 

environmental parameters. Environmental reconstructions using testate amoebae could be 

improved by ecological research quantifying the environmental parameters controlling the 

occurrence of testate amoebae from different regions across the globe. Furthermore, the link 

between the occurrence of testate amoebae and mean annual water tables can be challenged, 

because testate amoebae are only active during the summer months; consequently, mean depth of 

the summer water table may be more appropriate. Isotopic analysis of cellulose within peat is the 

only approach with the ability to produce tentative estimations of specific climate parameters, but 

is hampered by a species effect on the isotopic signal (van Geel & Middeldorp, 1988). Isotopic 

analysis was not attempted in this research owing to the unavailability of appropriate laboratory 

resources. 
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Elucidating periodicities within climate histories IS another important objective for peat 

stratigraphic research. By necessity this requires fine-resolution palaeohydrological analysis and 

14C da· accurate tmg to transform the sub-fossil profiles into time series. However, the 

investigations in this thesis and research elsewhere in the British Isles (Chambers et aI., 1997~ 

Barber et aI., 1994b) are beginning to encounter similar periodicities within palaeohydrological 

signals, and a synchrony between solar fluctuations and the peat stratigraphic signal (Blackford 

& Chambers, 1995). Chambers et aI. (in press) express concern that solar forcing is 

acknowledged in IPCC reports (Intergovernmental Panel on Climate Change) as a comparatively 

minor component affecting global climate (Houghton et al. 1990; 1995). If the association 

between late-Holocene climate changes recorded in a considerable number of palaeoclimate 

proxies and solar forcing is real, then there maybe substantial errors within predictions of future 

climate change (Chambers et aI., in press). 

In conclusion there is a clear need for future research elucidating fine-resolution multi-proxy 

palaeoclimate histories from across the British Isles. Spectral analysis of these 

palaeohydrological data should identify whether there are dominant periodicities within the peat­

based palaeoclimate signal, which may shed further light upon the agents forcing Holocene 

climate. Furthermore there is an onus upon those engaged in future climate research to uncover a 

plausible mechanism for amplifying the minor direct impact of fluctuations in solar activity upon 

global climate. The nature and magnitude of potential indirect effects of solar fluctuations upon 

the Earth's climate system have considerable implications for accuracy in predicting future 

climate change. 

8.5 Moorland management 

Mire conservation is an issue of paramount importance at a national level, and should be a major 

concern on the North York Moors. The status of the North York Moors as the driest upland area 

in the British Isles sustaining blanket mires, places peat accumulation under threat at the outset 

because the climate is so dry. The threat to mires on the North York Moors is amplified by the 

potential for anthropogenically induced climatic warming and by drying in response to land-use 

changes. Of the sites selected in this research, May Moss and Yarlsey Moss are the only areas of 

deep (>2 metres) actively accumulating blanket mire that are not affected by peat extraction. The 

sites are still under threat, with Yarlsey Moss currently managed as grouse moorland. In addition 

to the cyclical burning of the moor to maintain a monoculture of younger Calluna vulgariS 

plants, certain areas of the mire have been drained to assist construction of grouse butts. This 

interference is unfortunate because the Yarlsey Moss to Pike Hill Moss expanse of blanket moor 

is the largest unprotected area of blanket mire on the North York Moors. 
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May Moss is protected by both its status as a SSSI and by being surrounded by conifer 

plantations and RAF Fylingdales Early Warning Station. The site currently is not grazed by 

sheep and is not managed for grouse, and is the only area of unmodified blanket mire on the 

North York Moors. Lowering of the water table particularly from the edges of the mire near the 

conifer plantations and associated drainage schemes is the only real threat to May Moss. Levels 

of evapotranspiration will be higher around May Moss because of the quantities of trees, which 

will affect the mire water balance (Heathwaite et al., 1993b). 

Both Harwood Dale Bog and Bluewath Beck have been severely damaged by peat cutting and 

land-use changes. The situation at Harwood Dale Bog is irreversible, with much of the peat cut 

and the remaining moorland covered by conifer plantations. The situation at Bluewath Beck is 

equally bad; however, beyond the peat cutting there is a large expanse of moorland stretching 

from Bluewath Beck to North Gill. If peat cutting in this area was abandoned and the moorland 

was not subjected to further inference in terms of drainage and cyclical burning, ecologically it 

may eventually recover. Fen Bogs is in the best condition of the sites utilised in this research, 

mainly because it is protected as a SSSI and Yorkshire Wildlife Trust nature reserve. The site is 

not under threat from land-use change and its importance ecologically renders future interference 

unlikely. 

Palaeoenvironmental research at these sites has implications for future moorland management at 

these and other sites across the North York Moors. All the sites have been through pronounced 

environmental changes in the past, which have largely been attributed to climate for example the 

ecological changes at May Moss and Yarlsey Moss in response to an cal. AD 700-800 drier 

climatic period. The ecological changes in these cases involved a radical alteration to the flora, 

with Sphagnum species declining. There were also significant changes in the testate amoebae 

communities and almost certainly with equivalent changes in communities not assessed in this 

research, for example other micro-organisms, insects and macro-fauna. 

The most important implication of the palaeoenvironmental research in terms of mlfe 

conservation and management is the apparently ubiquitous capacity for mires to recover from 

ecological changes during adverse conditions. The high-diversity valley mire flora currently 

extant at Fen Bogs exemplifies this and represents a considerable recovery from the damage 

incurred during the construction of the Whitby-Pickering railway in 1836. However, this potential 

for recovery should not be used as a justification for taking no immediate action regarding mire 

conservation for two reasons. Firstly, the recovery of a mire after environmental damage or 
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adverse climatic conditions takes time. Secondly, the situation at Harwood Dale Bog indicates 

there are thresholds beyond which conservation is impossible, rendering mire restoration the only 

alternative. The expense in terms of finance and man-power required for mire restoration means 

once these thresholds are crossed the mire is irrevocably damaged. 

The environmental and ecological histories developed at the five sites demonstrate the condition 

of the mires in an unmodified state, which provides a target ecology for restoration and 

conservation projects. Future research investigating the nature of severe environmental change 

and the subsequent recovery period may shed further light on the process of mire restoration. 

Fine-resolution testate amoebae and plant macrofossil analyses at circa 1-5mm intervals across 

the environmental changes signified in this research, may also allow these techniques to be used 

as tools for monitoring the success of future attempts at mire conservation or restoration. Using 

uniformitarianist principles, a detailed understanding of the response and recovery of the mire 

ecosystem from severe dry events may also provide an analogue for future environmental changes 

in the response to either anthropogenically induced climate change or future land-use changes and 

mire drainage. The potential threat posed by future "global warming" is particularly important in 

an already dry upland area like the North York Moors. Mires in this comparatively arid part of 

Britain are perhaps already close to the precipitation threshold for the accumulation of blanket 

peat. Clearly understanding ecological changes during previous dry climatic periods will stand 

conservationists in good stead, providing an analogue for mire ecology during future climate 

changes (sensu Houghton et al., 1990; 1996). 

Directions for future research on moorland management include a need for future fine-resolution 

palaeoecological investigation of the changes identified in this research. In particular, 

investigating the response and recovery of plant macrofossil and testate amoebae communities to 

dry climatic periods circa cal. AD 700-800, and the complex suite of changes circa cal. AD 

1000-1500. In addition there are several ecological projects for which monitoring extant testate 

amoebae and plant communities would be invaluable. May Moss is adjacent to Fylingdales 

meteorological recording station; consequently there is considerable potential for investigating 

long-term ecological response to climatic variations, particularly if coupled with monitoring of 

the water table. Research of this type achieves further significance in the light of proposed 

clearance of forestry around May Moss and the willingness of Forest Enterprise to see the cleared 

land return to moorland. Coupling the proposed land-use changes with long-tenn water table and 

ecological monitoring offers not only the chance for assessing the impact of future climate change 

upon the mire ecosystem, but offers a rare opportunity to assess the success of a mire restoration 

scheme scientifically. 
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