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Abstract 

 

The impact on listening difficulties in children due to impaired central auditory processing is 

currently a topic of considerable interest. This is due to the high reported incidence of deficits 

in auditory processing ability (the main deficit reported being poor speech discrimination 

ability in background noise in the classroom setting (Witton, 2010), and potential impact on 

reading deficits, through poor auditory temporal processing skills impacting on phonological 

awareness and reading abilities (Tallal et al, 1980; Stein et al, 1997; Goswami, 2011). There is 

currently a lack of consensus regarding the underlying cause of these listening difficulties, 

including the impact of higher order cognitive function (attention) and test materials used to 

diagnose impaired auditory processing function. Despite this lack of consensus, there are 

currently several commercially available systems claiming to improve reading and listening 

skills. These include the use of spectrally filtered classical music to reportedly improve neural 

synchrony of the central auditory system, an example is that of “The Listening Programme® 

(TLP)” produced by Advanced Brain Technologies. The British Society of Audiology and 

American Speech and Hearing Association currently report these interventions as 

experimental with little high quality scientific evidence.   

 

The aim of this study to investigate whether TLP® could affect an advance in auditory 

processing and reading skills in typically developing school age children (aged 8-9 years) 

compared to non-filtered classical music and a non-music control group.  

 

This study used a pseudo-random control trial design involving 21 participants. A series of 

auditory processing tasks including speech discrimination in noise, auditory attention and 

Backward Masking (a test of auditory temporal resolution) and reading tasks (including task of 

phonemic decoding; a test of a participant’s phonological awareness) were performed at pre 

and post intervention stages. All subjects were of average/above average readers. This study 



 

 IX 

was underpowered and therefore concrete conclusions regarding the efficacy of the use of 

TLP® to improve auditory processing and reading skills in typically-developing children cannot 

be made. Correlations between temporal resolution and reading ability were not seen, as had 

previously been suggested (Tallal et al, 1980). The development of further research is 

discussed. 
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Communication is a key aspect of human existence, of which spoken language is the most 

used form of communication. The development of spoken language is a continuous process 

from birth, for which the earliest years are of most importance (Jackendorf, 1993). Before 

speech is processed at a linguistic level, it must be processed by the auditory system. Such 

transference through the peripheral and central auditory systems results in transformation, 

divergence and convergence of varying perceptually salient cues in speech prior to the 

involvement by linguistic levels of processing. This results in the need for a functioning 

peripheral and central auditory system as a prerequisite for the development of speech. This 

chapter aims to offer a synopsis of the subsequent chapters:  

 

Chapter 2 offers a rationale for the need of the current investigation. It starts with an 

overview of the auditory system, in particular the central auditory nervous system (CANS) and 

its role in the transduction and processing of sound. The focus of the chapter is on the effects 

of subtle deficits in the CANS and its impact in the development of reading skill. Finally this 

chapter will examine the current evidence regarding remediation methods for such 

difficulties, focussing on the role of music in these interventions; in particular new 

commercially available systems. It concludes with a discussion of a gap in current knowledge 

which this investigation attempts to answer. 

 

Chapter 3 presents details of the methodology of the current study, including the rationale for 

each experimental measure performed, as well as a discussion of the methods used and 

information regarding participant selection and recruitment.  

 

Chapter 4 aims to disclose the results of the current. Statistical analyses of these results are 

highlighted. 

 

Chapter 5 is a detailed examination of the results obtained during data collection in relation to 

current evidence, drawing conclusions and suggesting requirements of future work. 
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2.1  Overview of anatomy and physiology of peripheral auditory system 

 

The peripheral auditory system (Fig 2.1) is comprised of the structures of the ear prior to the 

Auditory Nerve (Cranial Nerve VIII). These structures act as a sound collection and transducer 

system converting the acoustic energy of the incoming signal into electrical impulses that are 

then conveyed by the Auditory nerve to the Central Auditory Nervous System (CANS). The 

peripheral system consists of the external, middle and inner ear. 

 

Fig 2.1 Diagram of the Peripheral Auditory System 

 

www.listenandlearn.com.au (accessed 7/3/13) 

 

The external ear, or pinna, acts as a sound collection device, funnelling acoustic energy 

towards the Tympanic Membrane and middle ear system via the external auditory meatus 

(Pickles, 1988). This funnelling effect has two main consequences on the incoming signal. 

Firstly, natural resonances of the pinna, concha and meatus produce an increase in sound 

pressure of 15-20 dB between approximately 2000 and 7000 Hz (Yost, 2000). The second 

effect is caused by the angle of reflection of incoming acoustic signal by the external ear, 

resulting in the modification of the acoustic signal by the pinna and concha (Yost, 2000). These 

http://www.listenandlearn.com.au/
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modifications create differences between time and intensity of the signal at both ears and 

play an important role in the ability of the auditory system to localise sound in the horizontal 

plane (Pickles, 1988). 

 

The middle ear acts as a first phase transduction device converting acoustic energy in the air 

into mechanical energy in the cochlea overcoming the impedance mismatch between the low 

impedance medium of air and the high impedance medium of the cochlea fluids (Yost, 2000). 

This is achieved through a number of specific mechanical functions of the middle ear system 

which produce a force multiplier effect to overcome the impedance mismatch (Pickles, 1988). 

 

The middle ear transfer function also has an effect on the spectral properties of the 

transferred system by essentially acting as a band pass filter, reducing transmission of sound 

at low and high frequency (<100 Hz and >10,000 Hz). This however has very little impact on 

the spectral content of speech, which lies within this band pass filter, but rather minimises the 

effect of unwanted noise outside this filter band (Yost, 2000).  

 

The transmission of mechanical energy through the stapes footplate into the oval window 

occurs in a complex piston-like movement which is dependent on intensity and frequency of 

the incoming signal. The piston-like movement creates a travelling wave throughout the 

cochlea (Yost, 2000) 

 

The Cochlea acts as the second stage transducer converted mechanical energy into electrical 

impulses which can be decoded by the CANS. It is comprised of three passages; the Scala 

Vestibuli, Scala media and Scala Tympani. The Scala Vestibuli extends from the oval window to 

the apex of cochlea where it connects with the Scala Tympani which run parallel to the Scala 

Vestibuli to the round window. The Scala media is a completely enclosed membranous duct 

that separates the Scala Vestibuli and Tympani. It is separated by the Scala Vestibuli by 
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Reissener’s membrane and from the scale Tympani by the Basilar membrane, along which the 

auditory sensory organ known as the Organ of Corti lies (Yost, 2000) 

 

Cochlear fluids are virtually incompressible (Pickles, 1988), therefore as the travelling wave 

conducts up the Scala Vestibuli and through the Scala Tympani the round window bulges into 

the middle ear space allowing pressure to be relieved (Pickles, 1988). The actions of the 

travelling wave cause displacement of the basilar membrane, with the rate of displacement 

altering along the membrane in accordance with frequency of the travelling wave. The basilar 

membrane is not a uniform shape or thickness therefore each region of the membrane 

responds best to a specific frequency known as its characteristic frequency (Pickles, 1988). 

 

Within the organ of Corti reside two types of hair cell structure; Inner and Outer hair cells (IHC 

and OHC) with OHC being more numerous by a ratio of approximately 3:1 (Demanez and 

Demanez, 2004). As the travelling wave passes along the Basilar membrane, the hairs, or cilia, 

of the IHC are displaced creating action potentials within the cells, which cause the connected 

auditory neurones to fire. Basilar membrane displacement is not a purely passive system but 

includes active amplification due to the movement of the OHC (Kim et al, 1986). 

 

In summary, the peripheral auditory system provides a transduction system from acoustic (air-

borne) energy to electro-chemical energy seen in the Auditory Nerve. The Cochlea also 

provides a primary auditory processing stage prior to the CANS which is important for 

frequency selectivity and sound localisation. The following section will discuss the anatomy 

and physiology of the CANS, and its ability to process the auditory information received from 

the Auditory Nerve. 
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2.2  Introduction to the anatomy and physiology of Central Auditory Nervous System 

 

The anatomy and physiology of the CANS is far less well understood than that of the 

Peripheral Auditory System. Despite this, there has been a dramatic increase in knowledge 

over the last 50 years.  

 

The anatomical limits of the CANS (Fig 2.2) start at the Cochlea Nucleus and end at the 

Primary Auditory Cortex (AI). Between the two limits of the CANS several relay stations 

located within the Brainstem and midbrain conduct information both up (afferent) and down 

(efferent) throughout the CANS. The Auditory Nerve is the primary innervation from the 

peripheral auditory system to the CANS, as such it will be discussed with CANS. 

 

Figure 2.2: Schematic diagram of the CANS (Yost, 2000; fig 7.10, p121) 

 

 

Figure 2.2 shows the complexity of the ascending CANS, including the 3 main relay centres 

prior to cortical involvemnt; the Cochlear Nucleus (CN), Inferior Colliculus (IC) and Medial 

Geniculate Body (MGB) between the Cochlea Nerve and AI. Further to these main afferent 

relay centres, numerous neurones also connect to the Superior Olivary Complexes (SOC) and 
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Lateral Lemiscus (LL) (Yost, 2000). There is a bilateral projection of ascending neurones 

(primarly through the SOC and LL within the lower CANS and through the Corpus Callosum at 

the cortical level, with a significant contralateral dominance (Demanez and Demanez, 2004).  

 

The detailed analysis of the anatomy and physiology of the subsections of the CANS is beyond 

the remit of this dialog, as such the discussion will focus on a brief overview of each 

subsection’s key contribution to auditory processing. 

 

The Human Auditory Nerve contains approximately 30,000 individual neurones (Harrison & 

Howe, 1974), which provide the direct synaptic connection between the Inner, and Outer Hair 

Cells located within the Cochlea (Peripheral Auditory System) and the Cochlea Nucleus (CANS). 

There are two types of neurone within the Auditory Nerve; Type I and Type II, with Type I 

being myelinated exclusively innervating IHC and compromising 95% of the overall number of 

Auditory Nerve neurones (Morrison, 1975). Each IHC is innervated by approximately 20 Type I 

fibres (Pickles, 1988) thus creating a high degree of redundancy, and thus are shown to be the 

primary afferent pathway to the CANS (Demanez and Demanez, 2004).  

 

As well as acting as the transmission path (afferent and efferent) from peripheral to central 

auditory systems, the Auditory Nerve acts as the first level of auditory processing of the signal. 

At the level of the Auditory Nerve, the incoming electro-chemical signal from the Cochlea is 

broken down into constituent components via phase-locking (entrainment of the neural firing 

of the auditory neurones to the frequency of the signal), and tonotopic organisation (Bamiou 

et al, 2001). The efferent role of Type II neurones allow for the adaptation and suppression of 

the afferent auditory signal due to their involvement in regulating cochlea mechanical 

response (Demanez and Demanez, 2004). 

 

The Cochlear Nucleus is the primary site for all afferent connections of the Auditory Nerve to 

the CANS, and is divided into 3 main areas:  the Anterior Ventral Cochlear Nucleus, the 
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Posterior Ventral Cochlear Nucleus and the Dorsal Cochlear Nucleus (Yost, 2000). The multiple 

interconnectivity of Auditory Nerve and Cochlea Nuclei neurones create a high degree of 

redundancy of signal, and concept of convergence/divergence seen throughout the rest of the 

CANS (Demanez and Demanez, 2004). The Cochlear Nuclei contain multiple cell types with 

differing neuronal response patterns. These are localised to specific areas of the Cochlear 

Nucleus (Yost, 2000) and are hypothesised to relate individual specialities of the sub-nuclei 

(Musiek et al, 2000).  

 

The structure of the Cochlea Nuclei allows for the enhancement of modulations and transient 

structures of the incoming signal via the role of multiple cell responses and the 

convergence/divergence of the innervation between Auditory Nerve and Cochlear Nuclei 

(Musiek et al, 2000). These roles also allow for a preliminary feature extraction process 

(Masterton, 1992). 

 

The afferent projections from the Cochlear Nuclei to the Superior Olivary Complex occur from 

all subsections of the Cochlear Nuclei, with afferent innervations occurring bilaterally (Yost, 

2000). The bilateral innervations result in the Superior Olivary Complex becoming the first 

level of the auditory system for binaural input and a pivotal input for the detection of 

interaural time and intensity differences the basis of spatial mapping of the acoustic 

environment and a key contributor to auditory processing (Moore, 1994). The tonotopicity of 

the afferent signal is also preserved at this level (Demanez and Demanez, 2004), as well as 

playing a feedback control mechanism for cochlear mechanics via the efferent auditory 

pathway (Yost, 2000). 

 

The afferent projections from the Superior Olivary Complex innervate bilaterally to the 

Inferior Colliculus via the Lateral Lemniscus, resulting in the Inferior Colliculus being a major 

relay station of the central auditory system (Pickles, 1988). These bilateral afferent 

innervations allow the Inferior Colliculus to continue the coding of binaural cues (Litovsky et 
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al, 2002; Skotun et al, 2001), as well as providing sensitivity to amplitude modulation of 

incoming stimuli (Krishna and Semple, 2000). 

 

The Inferior Colliculus is split into three main nuclei; the central, external and dorsal (Yost, 

2000). The central nuclei are shown as the primary auditory nuclei within the Inferior 

Colliculus and have a high degree of tonotopicity (Merzenich and Reid, 1974). The external 

and dorsal nuclei do not hold the higher degree of tonotopicity seen at the lower levels of the 

CANS, but rather receive inputs from other sensory and cognitive processes (Chermak et al, 

1997; Bellis, 1996). These inputs result in the Inferior Colliculus providing the first-stage of 

multi-modal integration to other somato-sensory systems, dividing the afferent pathway into 

the primary and diffuse auditory systems (Demanez and Demanez, 2004). 

 

The afferent pathways of the Inferior Colliculus innervates the Medial Geniculate Body, which 

provides the last of the three obligatory relay stations of Brainstem CANS prior to cortical 

involvement (Yost, 2000), of which all afferent fibres of the Inferior Colliculus synapse (Yost, 

2000). As with the Inferior Colliculus, the Medial Geniculate Body contains several 

subsections;  

 

The ventral region is characterised as the primary auditory relay station (containing a high 

degree of tonotopicity) which is particularly sensitive to slowly changing temporal structure, 

important for syllable contrasts (von Kriegstein, Patterson and Griffiths, 2008). In comparison, 

the medial and dorsal regions act as multi-modal integration centres, and are innervated by 

both the ventral region and other somatosensory systems. The Medial Geniculate Body is 

thought to play an important function in auditory attention (Demanez and Demanez, 2004). 

 

The afferent connections of the Medial Geniculate Body to the Auditory Cortex arise from 

each subdivision. Projections from the ventral Medial Geniculate Body provide the primary 

afferent auditory pathway and synapse solely with the Primary Auditory Cortex providing a 
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“core” afferent pathway. In contrast, secondary afferent pathways are seen to arise from the 

medial and dorsal MGB providing multi-modal afferent input to the Auditory Cortices 

(Demanez and Demanez, 2004; Yost, 2000, Pickles, 1988).  

 

The Auditory Cortex is a series of subsections within the temporal lobe of the brain that 

responds to auditory information, and represents the principal site of cortical processing of 

sound with inter-hemispheric communication provided through the Corpus Callosum. The 

Auditory Cortex is represented by a three tier hierarchical system involving the three 

individual subsections of the Auditory Cortex: the primary (AI), secondary (AII) and tertiary 

cortices (AIII). In addition to temporal lobe activation, both the frontal and parietal lobes are 

also responsive to auditory stimulation (Demanez and Demanez, 2004). 

 

The AI represents the “core” region of tonotopic processing of sound within the Auditory 

Cortex building on the high degree of frequency specific information received from the ventral 

Medial Geniculate Body (Demanez and Demanez, 2004). In addition to the frequency 

selectivity seen within the AI, there are several subsections that code specifically for other 

dimensions such as amplitude and temporal characteristics of sound (Musiek et al, 2000). 

 

The AII region represents the second tier of cortical auditory processing, and obtains the 

majority of afferent information from the AI and the medial and dorsal Medial Geniculate 

Body (the latter via a secondary afferent auditory pathway from the brainstem), as well as 

lesser innervation from the ventral Medial Geniculate Body (Pickles, 1988). 

 

The AII also shows evidence of tonotopic organisation, but to a lesser extent than that seen in 

the AI for pure tones (Pickles, 1988). Neural excitation has been shown to be greater for 

complex sound and also for speech vocalisations in this region (Patterson et al, 2002; Zatorre, 

Berlin and Penhune (2002). The greater excitation of the AII region to more complex tones of 
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multiple frequencies suggests a convergence of frequency based information from the AI 

(Pickles, 1988; Demanez and Demanez, 2004) 

 

The AIII represents the third stage of cortical auditory processing within the AC and is the least 

tonotopically organised. It is supplied primarily by the AII, as well as from the dorsal and 

medial nuclei of Medial Geniculate Body. This allows for both AII and thalmic input to be 

processed in parallel (Bellis, 1996). Further to its innervations from within the CANS, the AIII 

region also synapses with several non-auditory sites in the frontal and parietal lobes. It is 

through these synaptic connections that auditory processing continues outside the AC, thus 

acting as the primary multimodal cortical relay station resulting in the influence on the 

Auditory Cortex from arousal, general attention, auditory attention and task demand. (Bellis, 

1996; Chermak, 1997). 

 

2.3 Hemispheric Asymmetry of Auditory Cortex 

 

While both the left and right Auditory Cortices respond to both temporal and spectral acoustic 

information (Berlin, 1998), there is considerable evidence supporting the role of hemispheric 

specialisation of Auditory Cortices. These findings come from anatomical, pyscho-acoustic and 

imaging investigations. 

 

Anatomically, Geschwind and Levitsky (1968) showed that the planum temporale was larger 

on the left hemisphere. Musiek and Reeves (1990) reported on a relationship between the 

length of planum temporale and the sylvian fissure, showing a significant difference in size 

between the left and right in all specimens studied. In addition, Musiek and Reeves (1990) also 

showed that the length of Heschl’s gyrus was longer on the left. The implications of this prove 

significant when discussing theories on hemispheric specialisation of the cortical auditory 

system (Chermak, 1997).  
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With the introduction of improved imagery techniques, numerous studies have reported a 

difference in functional output between the two hemispheres dependent on the auditory 

stimuli used. Berlin et al (1998) used Positron Emission Topography to investigate the role of 

temporal processing in language lateralisation. Good temporal resolution has been previously 

shown to play a key role for speech recognition (Shannon et al, 1995). The results from Berlin 

et al (1998) showed an increased activation in the left Auditory Cortex for temporal cues, and 

the high activation of the right for spectral cues. 

 

These findings complement results from behavioural studies of individuals with damaged 

auditory cortices, with left temporal lobe damage related to impairment in temporal 

processing manifested as speech disorders (Tallal, 1993; Efron, 1963). In contrast, lesions of 

the right Auditory Cortex caused deficits in spectral processing and pitch perception 

(Johnsrude et al, 2000). Kimura (1962) provided evidence of a right ear advantage for speech 

in a behavioural dichotic listening paradigm, suggesting that due to the contralateral 

dominance of the CANS, the left auditory cortex was responsible for speech. 

 

The right sided specialisation for pitch is supported by imaging studies (Griffiths et al, 1999; 

Hugdahl et al, 1999) showing increased activation of the right temporal lobe in response to 

pitch perception. These findings are also supported by electrophysiological evidence showing 

left cortical involvement for the encoding of rapid temporal changes in Voice-onset Time 

required for consonant perception (Liegeois-Chauvel et al, 1999). These rapid temporal 

changes having been theorised to be the underlying mechanism behind Specific Language 

Impairment and Dyslexia (Tallal et al, 1974; Tallal et al, 1980). Auditory Evoked Potentials were 

shown to be sharply tuned to frequency in right temporal lobe (Liegeois-Chauvel, 2001), 

providing further evidence for the role of the right auditory cortex in spectral perception.  

 

These investigations highlight auditory hemispheric asymmetry with regards to speech, 

however further inferences can be made by investigations of auditory hemispheric asymmetry 

with regards to music. Koelsch (2005) showed that the right hemisphere is more responsive to 



 

 14 

pitch recognition and melody (rhythm) as a response to musical stimuli.  This has specific 

relevance to recent developments in theories in reading deficits, particularly with regards to 

role of rhythm perception on the perception of the speech envelope and problems with 

prosody as the underlying cause of reading deficits (Goswami et al, 2011).  

 

Complementary evidence investigating phonemic contrasts in neonates using imaging 

techniques (Arimitsu et al 2011) has revealed a right hemispheric advantage for prosodic 

processing, suggesting that while rapid transient changes in acoustic signal (important for sub-

syllabic speech perception) are processed by the left auditory cortex, rhythmic perception 

(linked to modulations of the speech amplitude envelope) important to prosody are processed 

primarily by the right hemisphere. (For further discussion regarding the role of rapid auditory 

temporal cues and amplitude modulations of the speech envelope, see section 2.7.6). 

 

2.4  Neuro-maturation of the Central Auditory Nervous System 

 

The structures of the of the peripheral and central auditory systems are present at relatively 

early gestational age, with evidence of primitive hearing being possible from approximately 20 

weeks gestational age (Hall, 2000). By birth, a full-term neonate possesses a highly functional 

peripheral auditory system that is adult like within the first four months of life (Graven, 2008). 

 

The maturation of the CANS is more complex. There are numerous morphological changes 

within the central nervous system that influence the CANS. The most prominent of these 

changes is that of myelination.  Myelin provides a multi-layered sheath around a neurone in 

order to protect and insulate the fibre allowing for efficient conduction of the electrical 

impulse (Counter, 2010). Electrophysiological evidence of the presence of adult-like 

myelination at the level of the AN within the first three months of birth (full-term), however 

myelination of the higher CANS continues for a considerable time (Moore, 2002; Demanez and 

Demanez, 2004). Within the CANS, myelination is a complex process but generally follows a 
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progressive pattern that shows increased myelination from periphery to central structures, 

with higher order central structures not being fully mature until the second decade of life 

(Bellis, 2003).  

 

A second prominent factor in the neuro-maturation of the CANS is that of arborisation 

(dendrite branching). Dendrites are extensions of individual nerve fibres that form the 

synapses between neurone cell bodies allowing transfer of electro-chemical information 

(Moore, 2002). These dendrites synapse with a multiple of the other cell bodies, however not 

all synapses provide an efficient progression of signal. Throughout maturation, activity of the 

individual neurones along the CANS allows for dendrite “pruning”, resulting in inefficient 

synapses being discarded, thus allowing for effective transfer of information through highly 

myelinated synapses between neurones. While this effect occurs throughout time (and in 

some situations continues indefinitely), it is based upon regular activation of that neurone. 

This fact is extremely important when discussing the effects of hearing loss on the ability of 

CANS to efficiently transmit stimuli. The lack of regular activation (as with hearing impairment, 

even transient hearing impairment) creates a deprivational effect, resulting in a reduction of 

effective arborisation and reduced efficiency of the auditory system (Bellis, 2003; 1996; 

Chermak, 1997) 

 

2.5 Summary of CANS 

 

This chapter has attempted to describe the anatomy and physiology of the CANS. The CANS is 

a complex system involving both afferent and efferent pathways both of which are shown to 

have a highly complicated system of ipsilateral and contralateral innervations. In addition, 

there is a plethora of individual neurone responses to specific stimuli throughout and within 

each level of the CANS, allowing for complex analysis of acoustic stimuli.  

 

The tonotopic arrangement seen in the Auditory Nerve, is preserved throughout the entirety 
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of the CANS via a core ascending pathway. At higher levels of the CANS (Inferior Colliculus, 

Medial Geniculate Body and Auditory Cortex) the development of a diffuse/secondary 

pathway allows for multimodal integration with auditory analysis and has been shown to have 

an important implication on higher cognitive involvement (attention and memory) in the 

CANS.  The descending pathway offers the higher levels of the CANS the ability to some extent 

control input into the lower levels of the CANS.   

 

2.6  Perception of Speech 

 

Spoken language is the primary measure of communication for humans (Diehl, 2004). It is a 

highly complex process that not only involves the role of the peripheral ear as a spectro-

temporal analyser and CANS as a complex neural auditory processing unit, but also a higher 

order language processing system. There is still much debate regarding how speech is 

decoded and processed to give it’s final percept to the listener (Samuel, 2011). The detailed 

examination of speech perception theories is beyond the remit of this discussion (for recent 

review, see Samuel (2011) and Diehl (2004). This discussion will rather focus on the acoustic-

phonetic properties of speech and their impact on speech perception.  

 

There are numerous acoustic percepts of speech that are used as perceptual cues by the 

listener. These include spectral and temporal information.  

 

Speech is produced by the modification of pulmonary air pressure by the vocal tract system, 

including the temporal and spectral changes to the output signal (Pisoni and Remez, 2008). 

While the source of energy is created by the release of pulmonary air pressure, major 

modifications to the sound energy are the result of the physical changes of the structures of 

the larynx (Fant, 1960). Within the larynx lay the vocal folds, with the space between the folds 

known as the glottis (Gick et al, 2012). For voiced sounds, the vocal folds are adducted 

(brought together), temporarily block the flow of air from the lungs. This leads to an increase 
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in subglottal air pressure which builds until it overcomes the resistance offered by the vocal 

folds, forcing the folds open. These then close due to the reduced subglottal air pressure, 

vocal cord tension and elasticity. This occurs repeatedly modulating the air flow creating 

pulses of air. The frequency of these air flow pulses determines the fundamental frequency of 

the speech sound (FØ). For voiceless sounds, the vocal folds do not adduct, creating little 

resistance to the air pressure. This results in voiceless sounds having no FØ.  

 

Following its passage through the larynx, the air pulse passes through the supralaryngeal vocal 

tract, consisting of the oral and nasal airways.  The role of the supralaryngeal vocal tract is to 

act as an acoustic filter and resonator of the incoming air pulses from the lower vocal tract. 

The supralaryngeal tract modifies the vocal note due to the effect of resonances and anti-

resonances, creating concentrations of acoustic energy known as formants, thus modifying 

the utterance. There are multiple formants present in a single spoken utterance as a result of 

the effect of the acoustic-filter mechanism of the supralaryngeal tract created by the 

alteration of the shape of the supralaryngeal tract.  

 

The alteration of the supralaryngeal vocal tract by movement of structures within the tract 

(known as articulators) allows for changes in formants and therefore of the overall utterance, 

with the articulation pattern of an utterance used to classify consonants in English (Table 2.1 

Cawley, 1996).  
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Table 2.1 showing manner and place of articulation of consonant sounds in English. 

 

 

(Cawley, 1996). 

 

An utterance can be visualised using a speech spectrogram. This is a visual recording of the 

utterance as a function of frequency versus time as a function of intensity. An example can be 

shown below for the two-phoneme utterances /ba/ /da/ /ga/ below (figure 2.3). 

Fig 2.3 Diagram showing actual and schematic spectrograms of formants 
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Fig 2.3 shows examples of spectrograms for two phoneme utterances. The top spectrogram 

shows an artificial spectrogram for the utterances of /ba/ /da/ /ga/. The bottom spectrogram 

shows a realistic recording of a spectrogram for the same utterances. Each horizontal shaded 

line represents a formant. Formants are classified by number based on their frequency. The 

lowest frequency formant is known as F1, with further frequencies numbered accordingly as 

frequency increases. In this case, all the formants (minus the initial transient shift) have the 

same values in relation to the fundamental for the sound “ah”. Formant frequencies have 

been shown to be crucial in vowel characterisation, with vowel perception shown to be reliant 

on F1 and F2 (Fox, 1982; 1983; Rakerd & Verbrugge, 1985).  

 

The spectrogram also offers temporal information of an utterance. Speech is a complex 

acoustic signal that does not run as a simple succession of individual sounds but rather 

individual sounds overlap producing a entity that does not just run in series (i.e. one sound 

follows the previous, as can be seen in written language) but also in parallel. The ability of the 

speech production system to articulate the following sound while completing the previous 

allows humans to produce a high number of sounds in very quick succession, This 

phenomenon is known as co-articulation (Diehl et al, 2004). 

 

In the case of this example, all vowels are preceded by a stop consonant/ plosive. The 

transition between the consonant and following vowel are shown by the slopes on Fig 2.3. 

These slopes are known as formant transitions. Formant transitions have been shown to 

important acoustic cues to place the articulation of stop-vowel syllables (Kewley-Port, 1982), 

with their coding reliant on the rapid temporal processing of the auditory system. Deficits in 

rapid temporal processing in the auditory system has been suggested as the possible 

underlying deficit in both Specific Language Impairment and Dyslexia (Tallal, 1974;1975; 

1980). 
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While the spectrogram offers an important representation of rapid acoustic cues required for 

consonant-vowel perception, it does not represent the rhythmic information of the speech 

signal. Rhythm is the property of the amplitude envelope of the speech signal (Rosen, 1992). 

In contrast to rapid acoustic cues,  the amplitude envelopes of speech relate to low frequency 

fluctuations that arise from cyclical opening of the jaw coupled with voicing (Peelle and Davis, 

2012) that are associated with physical events that occur once every syllable. This results in 

syllabic information dominating the amplitude envelope of speech (Greenberg, 1999).  

 

Figure 2.4 Multiple representation of acoustic and linguistic information of a single sentence 

 

At top is a spectrogram, showing power in different frequency ranges over the course of a 

sentence. The middle row shows the changes in sound pressure over time, as occur at the 

Tympanic membrane. The bottom row shows the amplitude envelope of the sentence, 

corresponding approximately to the syllable rate, and created by half-wave rectifying and low-

pass filtering the speech signal (Peelle and Davis (2012) p2). 

 

The importance of low frequency rhythmic structures in speech has been shown to be relied 

upon heavily by listeners. Disrupted amplitude modulation of a speech signal caused by the 
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deletion of short segments of the signal at regular intervals has been shown to have significant 

impact on syllabic perception (Nelson and Jin, 2004; Wang and Humes, 2010). The removal of 

different speech modulation frequencies have also shown to have also offered an insight in 

the perception of spoken language, with listeners able to show remarkable speech recognition 

in the presence of low frequency temporal cues (even when all spectral cues were removed) 

(Van Tassel et al, 1987).  

 

The amplitude modulations in speech that code for the low amplitude modulation rhythm 

perception has recently been shown to have an important role for the neural entrainment 

within the cognitive system (Lakatos et al 2008, 2005). Impaired neural entrainment has been 

suggested as the underlying cause for poor phonological ability and Dyslexia (Goswami, 2011) 

(see section 2.7.6.2 for further discussion of the role of neural entrainment on phonological 

and reading abilities).  

 

The role of amplitude modulation on speech recognition was also revealed by Zeng et al 

(1999) who used a temporal smearing technique in order to distort the amplitude modulation 

of an incoming speech signal. The smearing technique used was based on the temporal 

modulation transfer function of a cohort of patients with Auditory Neuropathy1. A cohort of 

normal-hearing listeners was presented with the temporal envelope smeared signal, resulting 

in the cohort showing reduced speech recognition scores. In addition, performance on speech 

recognition of the normal hearing cohort listening to temporally smeared speech predicted 

the speech recognition scores of patients with Auditory Neuropathy. 

 

This discussion has focussed primarily on the temporal and spectral changes in speech 

required for speech perception showing that the auditory and linguistic systems use the 

                                                             
1 An umbrella term for a cohort of central auditory disorders characterised by dyssynchrony of the CANS in the 

transmission of an auditory signal, in the presence of a functional peripheral auditory system (BSA, 2008) 
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complex acoustic properties of the incoming signal to provide an accurate recognition of the 

signal. Despite this complexity, evidence has suggested that despite auditory speech 

perception continuing to develop throughout childhood it is well developed within early 

infancy (Cunningham et al, 2000). 

 

Prior to birth, a foetus has been shown to be able to able to recognise familiar speech 

patterns. DeCasper et al (1994) showed that when pregnant women recited nursery rhymes 

daily between gestational weeks 33 and 37, their unborn child was able to discriminate 

between the recited nursery rhyme and novel control rhyme. The recited nursery rhyme 

elicited a decreased foetal heartrate, whereas the control rhyme did not. This suggests that 

prior to birth a foetal already has awareness and auditory memory of the speech rhythm of 

their mothers native language (note that the fetal acoustic environment is dominated by low 

frequency information (Armitage, 1980). 

 

Kuhl (1993) suggests that when born, infants are “citizens of the world”, and have the ability 

to learn any language rather than be predisposed to that of their parental language. Eimas et 

al (1971) revealed that by 4 weeks, infants were able to discriminate speech sounds on a 

phonetic level. Lasky (1975) showed that infants were also able to discriminate speech sounds 

that are absent in the native language of their environment. This suggests that although an 

infant is able to percieve phonetic contrasts, they are not perceiving the signal as a linguistic 

token (as an adult does) but rather as auditory tokens (Gerkin and Aslin, 2005).  

 

The development of infant speech perception from a generic acoustic percept into a 

linguistically meaningful percept is driven by statistical learning (Curtin and Hufnagel, 2009) 

with acoustic percepts of the speech signal that are statistically more recurrent forming 

linguistic percepts relevant for speech, and also for music (Hanon and Trehub, 2005b). 
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By 4 months, infants are able to perceive phonemic boundaries in their native langauge 

(Eimas, 1971) with infants at this age eliciting preferences for rhythmically structured speech, 

specifically to the rhythmical structure of their native language (Cutler et al, 1994). By the age 

of 7 months Infants able to cluster syllabic structures that tend to occur together, and are able 

to use syllabic stress patterns of their native language to guide lexical segmentation (Swingley, 

2000). Curtin (2010) using a word-object association paradigm found that infants aged 14 

months were able to store stress information of the speech signal to form prosodically rich 

lexical representations. By the age 4 years, children are typically able to produce and 

understand large, complex sentences, making use of a vocabulary of thousands of words 

(Bishop and Leonard, 2000).  

 

For spoken language development to progress, it is clear that an infant requires the ability to 

efficient relay and analyse auditory information prior to any analysis from language processing 

centres. In recent years, the role of subtle deficits in the ability of the auditory system to 

process incoming acoustic information has become a topic of interest. The following sections 

will examine these deficits and their relationship with other neurodevelopmental deficits, 

specifically reading ability and finally describe methods suggested to remediate these auditory 

deficits.  

 

2.7  Auditory Processing Disorder (APD) 

2.7.1  Definition 

 

APD is generally described as “persistent difficulties in sound perception despite normal 

peripheral hearing” (Kimura, 1962. Hinchcliffe, 1992). Initially this term was confined to adults 

who presented with known lesions of the CANS. In later years, this definition has been 

widened included all those who presented with listening difficulties despite normal peripheral 

hearing (Jerger, 1998).  
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This broad definition has raised several concerns regarding its suitability due to the potential 

application to other developmental conditions, leading to professional bodies proposing an 

alternative, more restrictive definition of APD. In 1996, the American Speech-Language-

Hearing Association (ASHA) offered a more restrictive definition. By first defining “auditory 

processing” as the auditory mechanism responsible for the following processes:  

 

 Sound localization and lateralization 

 Auditory discrimination 

 Temporal aspects of audition including: temporal resolution, temporal masking,  temporal 

integration and temporal ordering. 

 Auditory performance with competing acoustic signals 

 Auditory performance with degraded signals 

 

Therefore deficits in one or more of those behavioural phenomena seen above can be 

categorised as an indicator for APD. 

 

The definition of APD by ASHA has been criticised for several failings: Firstly, the definition 

states a list of possible behavioural auditory dysfunctions that critics have argued does not 

present APD as a coherent syndrome (Chermak, 2001). This criticism has been expanded 

stating that the definition lacks suitable refinement that would separate APD from other more 

generalised higher order cognitive deficits (involving attention and memory), which would 

result in a  multi-modal deficit rather than a specific auditory deficit (Cacace and Macfarland, 

2005). 

 

Cacace and Macfarland (2005) argue that the ASHA definition would result in over-inclusion of 

multiple deficiencies that were not auditory in cause. The authors further suggest that any 

definition must be modality specific, resulting from impairment in auditory processes only. 
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However, higher order structures of the CANS also interact with other modalities (such as 

attention, working memory and language) and therefore it is unlikely that deficits in auditory 

processing can be truly labelled as “pure” APD.  

 

The second criticism of the ASHA produced APD definition involves the use of speech stimuli. 

The rationale behind this criticism is similar to that voiced by Cacace and Macfarland (2005) in 

that use of speech stimuli involves higher centres of the brain and hence poor performance on 

speech based stimuli could be the result of a purely language based disorder. In view of the 

criticism received by the original definition, ASHA revised the definition of APD that aimed to 

focus the definition towards to the purely auditory deficit by stating that “APD may be defined 

as a deficit that is most pronounced in the auditory modality” (ASHA, 2005). 

 

The British Society of Audiology (BSA) issued an alternative definition, which although similar 

to that from ASHA differed initially in one primary component by focusing on the ability of the 

subject to process non-speech sounds. This non-speech based definition aims to categorise 

APD as a pure processing deficit in the auditory modality, thus removing compounding effects 

of higher order impairments (such as language impairment, developmental delay).  

 

However, there has also been criticism of APD definitions based purely on non-speech stimuli. 

These critics suggest that it is impossible to categorize APD based purely on non-speech due to 

the influence of higher order cognitive processes seen on the CANS (Bellis, 2003). In more 

recent years, BSA state that the deficit may occur using speech and non-speech stimuli  as part 

of an overall listening disorder (BSA, 2011). 

 

In summary, although definitions of APD share a degree of homogeneity, there are significant 

differences that influence the diagnosis of deficits in auditory processing. Until recently, 

deficits in auditory processing lacked a common definition and as such caution must be used 
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when analysing evidence relating to “pure” APD. The following section will attempt to provide 

a historical perspective of deficits in AP.  

 

2.7.2  Historical Perspectives of APD 

 

The investigation of the effect of CANS dysfunction has been on-going since the 1950’s. Early 

research primarily focussed on adults with known neurological lesions involving the CANS 

(Bocca et al 1954, 1955). These early works on assessment strategies in adults has formed the 

basis of a number of auditory processing tasks used today (Chermak, 1997). 

 

The investigation of auditory processing skills in children developed later in comparison to 

adult studies (Chermak & Musiek, 1997). Children have been shown to perform poorly on a 

myriad of auditory processing tasks compared to adults; this has been demonstrated by 

behavioural and electro-cortical investigation (Sans and Woolley, 2011). The umbrella term of 

“Auditory Processing Disorder” was coined in 1977 (Keith 1997) to describe specific listening 

difficulties, as such investigation into the audiological field of APD in its own right developed 

relatively late. This was despite the emergence of several studies linking auditory processing 

deficits with other neurodevelopment conditions prior to this (Tallal et al, 1973, 1974, 1975) 

(see sections 2.7.5 and 2.7.6 for detailed analysis). 

 

The investigation of deficits in auditory processing can be roughly categorised as being either 

audiological or speech and language based, however there is some overlap between these. 

 

Audiological investigations have focused primarily on understanding the CANS, the maturation 

effects that are demonstrated and listening difficulties that result from deficient auditory 

processing. In contrast, Speech and Language based investigations have focused on the 



 

 27 

association between auditory processing skill and language development (both written and 

verbal) and other neurodevelopmental social communication disorders.  

 

Despite interest in the 1970’s and 1980’s, the research into the area of auditory processing 

difficulties gained popularity in the early 1990’s, and has remained a subject of substantial 

investigation since. This rise in prominence can be attributed to three main factors (Witton, 

2010): 

 

Firstly, the emergence of an increased body of evidence proposing a high incidence of 

comorbidity of auditory processing deficits and other neurodevelopmental conditions such as 

Dyslexia and Specific Language Impairment (SLI) (Tallal, 1974; Tallal, 1980); secondly, the 

impact of the high incidence of neurodevelopmental deficits in the paediatric population, 

including the impact on educational and social performance (Chermak and Musiek, 1997); and 

finally, the development and introduction of commercially available auditory remediation 

programmes, such as FastForWord (Tallal, 1996) that claiming to improve auditory processing 

and hence remediate its associated neurodevelopmental conditions such as SLI (Tallal, 1996, 

Witton, 2010).   

 

The most common reported symptom of auditory processing difficulties in children is that of 

poor listening skills in the presence of background noise within the classroom (Witton, 2010). 

The following section aims to detail the acoustic properties of the classroom environment and 

their links to educational performance. 

 

2.7.3 The effect of the Acoustic Environment on listening and educational performance 

 

Listening to speech in adverse acoustic conditions is one of the most common reports of 

children who have listening difficulties (Lagace et al, 2008; Bellis et al 2003) with the school 
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classroom environment often reported as a main setting of such difficulties (Witton, 2010). 

The effect of adverse listening conditions on the performance of children in the educational 

setting is well documented, with particular focus on the effect of noise and reverberation 

(Shield and Dockrell, 2003).  

 

The speech signal received by a child within a classroom is dramatically affected by the 

acoustic properties of the environment, principally; distance between sound source and 

listener, early and late reverberation and background noise (Boothroyd, 2002). This 

examination will first discuss these important acoustic properties prior to the investigation of 

their impact on children.  

 

The distance between the listener and sound source is a primary variable affecting how well 

the listener perceives a signal (Boothroyd, 2002). As an acoustic signal leaves the source, its 

acoustical energy disperses into the environment (Yost, 2000). This reduces the intensity of 

the signal as distance increases. This effect is known as the 6dB rule (Madell and Flexor, 2008), 

whereby a doubling of distance between sound source and speaker results in deterioration of 

6dB in signal intensity.  

 

This 6dB rule applies to a direct speech signal, however as this signal disperses, it comes into 

contact with other physical surfaces within the room  such as tables, chairs, walls, ceilings, 

floors, other listeners (Bradley et al, 1999). The acoustic signal is reflected back off these 

structures into the acoustic space of the original acoustic signal (Berg and Stark, 1982). These 

multiple reflections that persist within the room are referred to as Reverberation and are 

“relatively independent of distance” (Boothroyd, 2004).  

 

The level of reverberation is dependent on the size of the room, acoustic properties of the 

reflective boundaries and direction of the sound source (Davis and Davis, 1997). When the 

production of the original direct acoustic signal ceases, the reverberation signal begins to 
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decay, although it may remain audible for some time. The time taken for the reverberation to 

decay by 60dBSPL is known as the Reverberation Time (Boothroyd, 2004). Therefore at any 

point the listener will receive both a direct and reverberant input; a listener close to a sound 

source will detect the direct signal above that of the reverberation, whereas if the listener was 

further away the reverberation signal will be greater than the direct signal (Fig 2.5). The 

distance at which the intensity of the direct signal and reverberation signal are equal is known 

as the critical distance, past which the signal of the reverberation is higher than that of the 

direct signal input. 

 

Fig 2.5 Diagram showing impact of direct signal and reverberation in a classroom as a function 

of distance 

 

       (Boothroyd, 2002; figure 2, p5) 

 

Reverberations can be classified into two categories; early and late. Early reverberations 

(often referred to as “reflections”) are characterised as a reflective signal that reaches the 

listener within 50 milliseconds of the direct signal (Bradley et al, 2003), with late reverberation 

characterised as any reverberation past this. Early reflections arrive at a point soon enough 

after the arrival of the direct signal that the listener is able to integrate them with the direct 
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signal in order to enhance intelligibility and audibility (Bradley et al, 1999, Bradley et al, 2003). 

In contrast, late reverberations arrive too late for the listener to integrate them with the 

direct signal or early reflections (Klatte et al, 2010), and therefore effectively act as a masking 

noise.  

 

The fourth primary acoustic property of a listening environment is the level of background 

noise. Background noise can be created internally (e.g. the hum of a radiator within a 

classroom) or externally (e.g. traffic noise from a nearby road) (Shield and Dockrell, 2003). It 

has a detrimental impact on the perception of the direct signal (Shield and Dockrell, 2003; 

Boothroyd, 2004; Bradley et al 2003), with particular importance on the interaction between 

the two demonstrated by the ratio between the intensity of the effective signal (direct signal + 

early reflection) and effective noise (noise + late reverberation) (Boothroyd, 2002).  This ratio 

is known as the Signal to Noise Ratio (SNR).  

 

Children do not have the same perceptual ability as adults with regards to listening to speech 

(Sussman, 1993), with poorer sensitivity to small differences in acoustic cues such as VOT 

(Elliot, 1986) and formant frequency transitions (Elliot and Hammer, 1988). Furthermore 

children assign differing perceptual weights to certain acoustic cues than adult listeners 

(Nittrouer and Studdert-Kennedy, 1987; Sussman, 2001; Mayo and Turk, 2005). Children are 

also poorer than adults in speech perception in noise (Elliot, 1979; Fallon, 2000; Hall, 2002; 

Picard and Bradley, 2001) and reverberation (Newman, 1983; Finitzoheber and Tiblman, 

1978). Nabelek and Mason (1981) showed that the effects of reverberation and noise were 

worse than each condition separately, while Johnson (2000) showed that the effects of speech 

perception performance were correlated with age, with constant recognition maturing at 

approximately 13 years old for reverbatory conditions, and 13 to 15 years in noise.  

 

Fallon (2000) suggests that difficulties in adverse conditions related to immature central 

auditory processing abilities in younger children, and maturation of the central auditory 

system resulted in improvements in speech perception in adverse listening conditions. A 
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similar theory is proposed by Sussman (2001) with regards to the shift in perceptual weighting 

as a correlate of listener age. Sussman (2001) suggested that use of differing perceptual cues 

in speech was a result of sensory immaturities of the central auditory system resulting in 

children being less able to use quieter, shorter, spectrally informative cues leading to heavier 

use of the perceptual cues that were better defined by the auditory system at that time. 

However, Mayo and Turk (2005) showed that not all perceptual differences were as a result of 

a general auditory processing, and that its effect was only seen for certain contrasts.  

 

Immature cognitive capacity and less well developed coping strategies have also been 

suggested to cause reduce performance in speech perception in adverse conditions (Stansfield 

and Mathesson, 2003). Cacace and Macfarland (2005) stress the role of higher order cognitive 

capacities such as attention on perception of speech in noise. Elliot (1979) suggests immature 

linguistic competencies as the overriding factor in poor speech in noise performance in 

children.  

 

Boothroyd and Nittrouer (1988) proposed that an individual’s speech perception abilities were 

also impacted by the speech material used, with recognition ability for Consonant-Vowel-

Consonant syllables predicted by recognition of the constituent phonemes. This resulted in 

the recognition of one phoneme in the word leads to an expectation of other possible 

phoneme, thus increasing the probability of rapid recognition. Therefore if the word is 

unfamiliar, word recognition would require the correct independent perception of each 

phoneme. Word recognition therefore is dependent both the language knowledge of the 

individual and the acoustic complexity and structure of the signal. As language knowledge, 

acoustic-phonetic representations and sentence familiarity increases with age, less pressure is 

placed on the need of the auditory system to represent every individual phoneme within a 

sentence presented in degraded acoustic conditions, as they may be resolved using top-down 

processing thus resulting in adults managing with a poorer signal to noise ratio to hear 

adequately compared to younger children (Boothroyd, 2002).  
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However, this explanation does not categorise the important cognitive involvement in the task 

of listening in adverse acoustic conditions. Auditory Memory is important in retaining acoustic 

cues required for speech and language development. Presence of background noise has been 

shown to affect the process of committing auditory stimulus to short-term memory in young 

adults (Suprenant, 2007). The author argues that if such difficulty occurs in young adults then 

children should show greater difficulty. McCormack et al (2000) showed that short-term 

memory improved in typically developing school-age children from 7 years to 11 years old. 

However, the recall paradigm used was also sensitive to the effect of lexical knowledge 

(Edwards et al, 2004).  

 

Work by Gathercole et al (2006) suggests that Auditory Working Memory plays an essential 

component in the process of analysing acoustic-phonetic representations and integrating 

them into existing phonological representations of the lexicon. Such effect is known as the 

“Phonological Loop” (Gathercole et al, 2006). In addition, Gathercole et al (2006) 

demonstrated an advantage for novel (non-word) targets with higher “phonotactic 

probability” or that the target words included cues with a higher relative frequency of co-

occurrence of known phonemic sequences to the subject. Storkel et al (2006) also suggested 

that the phonotactic probability was influenced by lexical neighbourhood density (number of 

words similar to the target word), and suggested both phonotactic probability and lexical 

neighbourhood density may affect the integration of words into the mental lexicon and 

therefore offers a cognitive insight into the phonemic recognition effects seen in Boothroyd 

and Nittrouer (1988). 

 

A further impact of noise on auditory memory was provided by Wong et al (2008). This study 

used a word recognition task (based on reaction time) and brain activation during functional 

Magnetic Resonance Imaging. Reaction time has been previously used as an index of cognitive 

processing (Whelan, 2008) although it is known to be linked to task complexity, sensory 

modality, age, arousal state and attention (Luce, 1986). The task involved acoustically 

presented target words at various SNRs, with the subject required to press a response button 

at the location of the target word that was displayed visually in one of three boxes on a 
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monitor. Results showed that when the SNR decreased, the response time of the subjects 

increased, suggesting that the increased response time was due to the greater listening effort 

of the subject.  

 

While the general effects of adverse acoustic conditions on learning and school attainment 

show that increased noise levels have a detrimental effect on learning and attainment 

including reading ability (Picard and Bradley, 2001; Shield and Dockrell, 2003), higher order 

cognitive demands such as attention and memory appear the most affected by noise exposure 

(Shield and Dockrell, 2003). 

 

While this discussion has reported difficulties in speech perception and academic abilities in 

adverse acoustic environments including noise, it has not referred to the type of noise 

involved. Dockrell et al (2003) found that the type of noise had an important effect on the 

classroom environment and childhood educational attainment; while Nabelek and Nabelek 

(1994) state that the spectral characteristics of target signal and noise significantly affect the 

interference caused. Noise sources (as previously stated) can be external or internal to the 

classroom environment, with overall classroom noise consisting of both. Shield and Dockrell 

(2000) in a survey of London primary schools found the primary external source to be road 

traffic, followed by aircraft and railway noise, while Shield et al (2002) found the dominant 

source of internal classroom noise came from the students themselves. The intensity of the 

overall noise in the classroom was affected by the presence of students even if silent (Picard 

and Bradley, 2001), age of students (Picard and Bradley, 2001), level of activity of the class 

(Shield and Dockrell, 2003; Moodley, 1989) and teacher experience (Hay, 1995).  

 

Acoustic treatment of classrooms was also shown to have a significant effect on performance 

in children. Bronzaft and McCarthy (1975) compared cohorts of children from within the same 

school but with classrooms based close to or far away from an overhead railway line. The 

cohort based closer to the railway line presented with significantly poorer reading scores 
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compared to the quiet classroom cohort. This difference was not seen between the cohorts 

following a noise abatement programme which reduced the high intensity railway noise. 

 

Temporary noise events such as aircraft noise resulted in a detrimental effect that was 

disproportionate to their overall contribution of the overall listening environment (Dockrell et 

al, 2003). Lundquist et al (2000) revealed a significantly stronger relationship between student 

annoyance caused and performance than noise level and academic performance. In addition, 

younger subjects (12 year olds) considered the noise to be more intrusive than older subjects 

(15 years old). Dockrell and Sheild (2003; 2002; 2001) also showed that annoyance caused to 

students was negatively correlated with age of students. Younger children were most 

annoyed, whereas older students showed an awareness of sound but were not reported to be 

annoyed by it. These findings support those of Stelmachowitz et al (2000) who showed that 

the greatest detrimental effect of noise and reverberation was shown by younger children, 

who Jamison (2004) reported to also have the noisiest classrooms. 

 

In conclusion, the effect of classroom acoustics on children is multifactorial; dependent on 

acoustical properties of the room, characteristics of the wanted signal and noise (including 

spectral similarity), task required of the students (reading, mathematics, memory or 

attention), age of students and their level of irritance. 

 

These findings illustrate that the acoustic environment of the classroom has a significant 

effect on the educational performance of typically developing children. For individuals with 

auditory processing difficulties, the situation is reported to be considerably more challenging. 

The following section details the attempt to assess auditory processing function within the 

clinical environment. 
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2.7.4  Assessment of Auditory Processing Deficits 

 

The complexity of the acoustic stimuli requires the CANS to perform a wide variety of 

processing tasks; these include frequency, intensity and temporal coding, as well as binaural 

integration relating to differences in time, intensity and phase (important for sound 

localisation and lateralisation; Yost, 2000), binaural summation (the ability of the CANS to 

input stimuli binaurally and integrate them to give a total that is greater than the sum of the 

two individual stimuli), and dichotic listening (Chermak, 1997). The term APD therefore 

provides an umbrella term for numerous subtle manifestations of poor auditory processing. 

 

There are many tests available to examine auditory processing function (Emanuel, 2002). 

These tests aim to examine individual sub-processes of the CANS, however there is no 

consensus between professionals regarding which tests should be performed, despite several 

attempts to do so (Bellis and Ferre, 1999; Chermak and Musiek, 1997)  

 

There are several reasons for the lack of a consensus regarding testing. The first is the lack of a 

clear definition of APD creates difficulties in designing tests to examine central auditory 

function. The use of speech tests versus non-speech tests is an example of the impact of the 

lack of consensus, with speech-only test batteries theoretically allowing a subject with normal 

auditory function and higher order purely linguistic deficits to be diagnosed with APD (Katz 

and Tillery, 2005).  

 

Secondly, it’s widely recognised that there currently lacks a “gold standard” in auditory 

processing tests with which to compare other auditory processing tests (BSA, 2011). The lack 

of a behavioural “gold standard” is unsurprising given the (until recent) lack of a coherent 

definition, and the compounding influence of higher order deficits on the performance on 

behavioural tasks (Moore, 2010). Musiek (1999) suggests the closest to a behavioural “gold 

standard” is the psycho-acoustic performance of subjects with well-defined CANS lesions. The 



 

 36 

use of specific electro-physiological measurements as an objective method of auditory 

processing investigations offers the potential to act as a reference point against which to 

compare other behavioural tests of auditory processing (Banai et al, 2009; 2005), however 

with exception of the BioMARK electrophysiological test system there are no commercially 

clinical systems available to test auditory processing abilities.  

 

Finally, as APD is an umbrella term to describe a heterogeneous group of conditions and as 

such there are a vast number of tests available aimed to test these subtle individual deficits. 

There are also numerous tests available to test each specific process, with little investigation 

between differing tests of the same topic. It is widely recognised that many AP tests lack 

required normative data to make valid comparisons with appropriate control subjects (BSA, 

2011), as well as not producing the required test-retest validity needed (Keith, 2009).  

  

Despite these significant barriers to providing standardised tests of AP, the use of a test 

battery approach has been repeatedly recommended (Bellis and Ferre, 1999; Jerger and 

Musiek, 2000; ASHA, 2006; BSA, 2011). These test batteries differ in complexity but offer 

some degree of consensus regarding the detailed inspection of the peripheral system prior to 

any APD tests. However it is at the analysis of the peripheral hearing system that this 

consensus ends.  

 

The vast majority of tests recommended are behavioural including non-speech tests such as 

measures of temporal discrimination, as well as speech based measures such as monaural low 

redundancy and binaural interaction (dichotic listening) tests (Emanuel, 2002) . The rationale 

for the repeated use of such tasks is discussed below.  

 

Non-speech tests are reported to provide evidence of a deficit that cannot be attributed to 

purely linguistic deficits (Cacace and MacFarland, 2005). Of these, temporal processing tests 

provide the primary non-speech test in the majority of APD test batteries (Emanuel, 2002).  
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Despite the limitations of speech-based tests due to the influence of linguistic factors, 

monaural low-redundancy speech tests play an important role in recommended APD test 

battery (ASHA, 2004; BSA, 2011). One of the most common reports from patients with 

suspected APD is difficulty in listening to speech in adverse listening conditions (Dawes et 

2007), therefore the use of such tests allow for functional assessment of these reported 

difficulties.  

 

The CANS operates with a high degree of redundancy (Bamiou et al, 2001). This is also true of 

spoken language (Bellis, 1997). In situations where the incoming acoustic signal is not 

compromised, subjects with auditory processing deficits are not reported to function 

dissimilarly to typically developing listeners (Bamiou et al, 2001; Dawes et al, 2008). In adverse 

listening situations (e.g. speech in background noise) the speech signal may be compromised, 

thus creating a  reduction in the available information in the signal thereby reducing the 

information (bottom-up) entering the higher centres of the auditory system, placing greater 

emphasis on the top-down processing system. Typical listeners are able to achieve auditory 

closure and make correct discriminations even in the presence of a degraded signal, but those 

with APD show significantly poorer auditory closure skills (Jerger and Jerger, 1982). There are 

currently several methods of reducing the redundancy of speech for clinical assessments, 

including frequency filtering, time compression and the addition of an unwanted signal such 

as background noise or reverberation (Bellis, 1997).  

 

2.7.5  Incidence of APD and link with other neurodevelopmental conditions 

 

The exact nature of APD remains a topic of controversy.  Behavioural listening difficulties 

related with APD have been typically associated with other neurodevelopmental and language 

disorders such as Autistic Spectrum Disorder (ASD), Attention Deficit Hyper Activity Disorder 

(ADHD), Dyslexia, Specific Language Impairment (SLI) (Dawes and Bishop, 2009), with Chermak 

and Musiek, 1997 suggesting an incidence approximately 2-3% of all children will present with 

APD.  
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As well as difficulties listening in complex acoustic environment, children with APD are often 

described as having numerous behavioural problems, including being inattentive, easily 

distractible and disruptive in class situations (Dawes, 2009). Both ASHA and BSA recognise that 

these non-auditory behaviours are also characteristic of ADHD. Riccio et al (1994) showed that 

over 50% of children with APD could also be diagnosed with ADHD (cited in Dawes, 2009).  

 

This potential co-morbidity of symptoms could be potentially explained by the effect of task 

demand in the classroom situation. Reiss-Jones (2000) suggested that task difficulty has an 

impact on attentional resource allocation, and that selective attention is modulated by the 

demand placed on the perceptual and cognitive systems. Therefore if a child has a deficit for 

listening to speech in adverse listening conditions such as a classroom, that same child would 

allocate greater attentional resources due to the perception of difficulty than those children 

who do not. Attention is theorised to have a finite capacity (Kahnerman, 1973), resulting in 

that capacity being drained sooner when there is a greater allocation of attention resources. 

In children with auditory processing difficulties, performance and behaviour will drop 

compared to those children who did not find the situation as perceptually taxing as their 

attentional capacity has been drained. 

 

Attempts have been made by Chermak and colleagues in 1999 and 2002 to ascertain the 

relationship between APD and ADHD by the use of a behavioural checklist. Chermak et al 

(2002) argued that individuals with ADHD produced an exclusive set of behaviours compared 

to those with APD. Cacace and McFarland (2005) reanalysed the data from Chermak et al, 

concluding that the exclusive behaviours shown for subjects with ADHD and APD were far 

more overlapping than previously suggested, citing that Chermak et al (2002) had focused 

heavily on the behaviours commonly associated with the most inattentive subtype of ADHD.  

 

Behavioural checklists have been used previously is diagnosis of APD. The development and 

analysis of the Children’s Auditory Performance Scale (CHAPS; Smoski, Brunt and Tannerhill, 

1998) previously attempted to ascertain behavioural cues to diagnose APD, however recent 
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studies have shown that behavioural checklists (including CHAPS)  do not correlate with 

diagnostic testing (Wilson, 2011), thus questioning the use of behavioural checklists in 

diagnosis of APD.  

 

An alternative effort to separate APD and ADHD listening behaviours has been provided by 

use of visual attention tasks (acting as a generalised attention variable) in comparison to tests 

of AP function. Riccio et al (2005) showed no relationship between AP and visual variables, 

concluding that APD and ADHD were separate entities. This view has been recently challenged 

by a large scale prospective study by Moore et al (2010) who used a detailed battery of 

auditory and cognitive (including visual and auditory attention) tests. The results show that 

behavioural symptoms were “largely unrelated to sensory auditory processing” but rather 

based on cognitive factors, predominately attention (Moore, 2010).  

 

The links between APD and ASD are less well understood than the relationship between APD 

and ADHD. Dawes et al (2009) showed that children who were diagnosed with co-morbidity of 

APD and ASD were overrepresented (by 9%) in a specialist clinic at Great Ormond Street 

Hospital, London, UK. This study also noted that children who were diagnosed with APD but 

not ASD presented with behavioural features characteristic of ASD but had not received a 

formal diagnosis. Dawes (2009) cites recent electrophysiological studies (Whitehouse and 

Bishop, 2008) to show that impaired auditory behaviour is related to deficits in cognitive 

behaviours rather than deficits in low level auditory dysfunction.  

 

A higher order cognitive deficit would more readily explain the findings of enhanced and 

impaired auditory function, rather than a “mixed auditory processing profile” which relates to 

a global deficit which spares detailed processing as suggested by Mottron et al (2006). This 

would further be supported by Moore et al (2010) and the evidence of impaired higher order 

functioning as the primary deficit in auditory processing. 
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However, caution must be taken when interpreting the incidence of co-morbidity in Dawes et 

al (2009) between APD and ASD as the incidence was based on the referrals received to a 

single specialist paediatric centre. An argument could be put forward that children with ASD 

would be more likely to be referred to a specialist paediatric centre due to their behavioural 

difficulties, therefore resulting in an overestimation of incidence. 

 

2.7.6  Language impairments (LI) and APD 

 

The relationship between LI and APD has been and remains highly controversial (Ramus, 

2012). The examination of this relationship dates back prior to the 1977 conference where the 

term APD was first coined. There are many LIs; however this section will limit the discussion to 

the two most common developmental impairments; Dyslexia/ Specific Reading Disability 

(Dyslexia/ SRD) and Specific Language Impairment (SLI), with the focus being on the former. 

Dyslexia is defined as “a deficit in reading and spelling despite adequate intelligence and 

access to conventional instruction” (Rosen, 2003). In contrast SLI refers to impaired spoken 

language abilities, in the presence of typical cognitive ability, but without the causal factor of 

neurological impairment or hearing loss (Bishop et al, 1997 cited in Rosen, 2003). 

 

Prior to exploring the theoretical link between APD and Dyslexia, it is pertinent to first 

examine the typical development of reading. There are several theories with regards to the 

development of reading; the standard psychological model of reading acquisition was 

proposed by Frith (1985, 1986). Frith (1985) proposed that there are three main stages in 

reading development; Logographic, Alphabetic and Orthographic. 

 

Preceding reading acquisition, language acquisition and development is reported to be a 

critical precursor to developing literacy (Joseph, 2006). Through early language development, 

young children acquire knowledge of important structures of speech including syntax 

(sentence structure) and semantics (meaning; Golinkoff and Hirsch-Pasek, 1995 cited in 
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Joseph, 2006) as well as gaining an increased vocabulary (McCormick, 2003).  Early language 

development has been shown to be strongly related to sufficient stimulation, especially 

related to both quality and quantity of verbal interaction with caregivers (Nelson, 1996; Hart 

and Risley, 1995). 

 

In the Logographic stage, the child develops the concept of printed words, but processes 

words visually based on the child’s recognition of salient graphic features within the word. 

Hence recognition is based on logographic features such as shape or length of the word (Frith, 

1985). This usually occurs relatively early in life, and is influenced by the child’s speech and 

language development, as well as the quality and quantity of the child’s interactions with print 

(Mason & Allen, 1986). As the child’s familiarity with printed occurs progresses, it is 

postulated that the child reaches a maximum capacity for the storage of words based on 

visual cues, causing confusion between visually similar words. This critical capacity for the 

visual storage of words drives the need for the creation of a more detailed reading strategy 

(Joseph, 2006). 

 

The Alphabetic stage gives rise to the development of the relationship between printed letters 

and sounds in speech, thus requiring letter to sound analysis by the child (Torgeson and 

Mathes, 2000). At this stage, it is essential that the child is able to visually represent words in 

a different format from that of the Logographic stage by representing ordered sequences of 

letters (or groups of letters), which must correspond with sounds in the child’s phonological 

representation (grapheme to phoneme correspondence). The underlying critical component 

of this stage is the successful development of a child’s phonological awareness (Griffith, 1991). 

 

Lundery, Frost and Peterson (1998) postulated a four stage model of the development of 

phonological awareness, where the earliest form of phonological awareness is that of the 

awareness of Rhyming. Lane et al (2002) suggest that it is at this earliest stage that a child 

becomes aware that speech flow is a collection of individual words. At the Syllable stage of the 

development of phonological awareness, a child has the ability to distinguish syllables in 
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spoken words, followed by the development of onset-rime awareness (third stage) which 

allows the child to distinguish the initial sounds of spoken words (and as been reported as the 

level of the theoretical deficit in phonological processing linked with poor rhythmic perception 

as described by Goswami, 2011). Finally, the fourth stage results in the child to code for 

individual sounds within words, leading to the child to be have phonemic awareness (Lane et 

al 2002). Griffith (1991) reports that phoneme awareness is the central precursor (of 

phonological development) required for the development of the alphabetic stage, and is 

reported to arise in typical developing children around the age of 6 years (Ramus, 2012). 

 

With these mechanisms in situ, the child can read by sounding out sequences of letters and 

merging the corresponding spoken phonemes into words, thus recoding the printed word 

back into its oral representation (Share et al, 1995), therefore aiding in the decoding of 

written language (Chase and Tallal, 1991). Thus word recognition occurs through the 

phonological lexicon (Ramus, 2004).  

 

In addition, Wagner and Torgesen et al (1993) reported a strong link between phonemic 

awareness and working memory, proposing that ability to store phonological codes in working 

memory is crucial when confronting new, complex words. Munter and Snowling (1998) further 

argued that impaired storage of phonemes into the working memory may result in the 

individual being able to blend the sounds together to form the whole word. 

 

Although the use of grapheme to phoneme correspondence allows for word recognition 

through the phonological lexicon, it is relatively inefficient (Ramus, 2004). The final 

“Orthographic” stage refers to the development of the child forming the orthographic lexicon, 

based upon repeated exposure to words which lead to the storage of whole-word grapheme 

sequences (Frith, 1985; Ramus, 2004). Therefore word recognition can occur through links 

between orthographic and semantic lexicon, rather than requiring grapheme to phoneme 

conversion that is followed by links between the phonological and semantic lexicon.  
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It is widely accepted that SRD is caused by an underlying deficit in phonology (Bryant et al, 

1989; Goswami and Bryant, 1990; Bryant et al, 1996; Snowling, 2001), although the exact 

nature of the deficit in phonological awareness remains uncertain (Manis, Seidenberg and Doi, 

1999). Repeated findings show deficits in phonology can be categorised into 3 areas; 

phonemic awareness, working memory and rapid recall (Wagner and Torgesen, (1987). 

Whether these competencies are independent or are a result of an underlying deficit is still 

unknown (Ramus, 2012). Ramus (2003) reports that an individual’s reading development 

require grapheme to phoneme correspondence (Alphabetic stage), therefore if an individual 

possesses poor phonological representation and/ or recall this will have a detrimental effect 

on their ability to learn and spell.  

 

Frith (1995) offered a shared theoretical framework for reading deficits, acknowledging the 

potential of multiple factors that may result in an individual poor reading/ phonological 

awareness. Frith (1995) categorised these framework as three sections: biological, cognitive 

and behavioural. A further adjoining section (environmental) was added (Fig 2.6) 

Fig.2.6 Frith’s causal model of Dyslexia (Frith, 1995; figure 2, p 8) 
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Frith (1995) suggests that poor phonological awareness and grapheme to phoneme 

correspondence are cognitive deficits that lead to behavioural difficulties in reading. However, 

it is postulated that the underlying cause of these cognitive deficits is biological (i.e. abnormal 

physiological function of the brain). However, Frith acknowledges that there are major 

interactions between environmental and biological influences, suggesting that behavioural 

signs of poor reading are not necessarily related to impaired physiological function. Frith 

(1995) theorises that an individual with a biological impairment may not present with reading 

deficits given there was suitable remedial training (environmental influence). Alternatively, an 

individual who presents with poor reading may not have an underlying biological impairment 

but rather their deficit may be as a result of environmental factors leading to poor alphabet 

knowledge. Therefore Frith concludes that a reading deficit cannot be specifically categorised 

as a physiological deficit in all cases. 

 

In addition, Frith (1995) suggests the roles of additional factors such as poor attention and 

subtle visual deficits such as visual stress, which is reported to a condition which provokes 

visual distortions and impaired reading fluency (Wilkins, 1995). This has been shown to be 

improved using coloured overlays (Wilkins et al, 2001). These additional factors could 

theoretically result in a reading deficit but without causing a deficit in phonological awareness 
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(for further discussion, see section 2.7.6.2, regarding the “Magnocellular Deficit” theory). 

Furthermore, Firth (1995) suggests that the underlying biological deficit leading to poor 

phonological awareness and reading deficits is impaired speech processing.  

 

Whether the underlying cause of phonological deficiency is a result of a specific impairment in 

speech processing remains controversial (Ramus, 2012). Alternative theories have suggested a 

more basic deficit in sensory perception in the auditory modality as the underlying cause of 

phonological deficit found in individuals with Dyslexia. The most prominent deficit in auditory 

processing linked to Dyslexia is that affecting temporal cues. However, there is a lack of 

consistency between theories regarding the underlying nature of these temporal deficits. The 

three most prominent theories were reported by Tallal et al (1980) who reported a rapid 

temporal deficit, Stein (2001) who reported a general rapid temporal deficit in both auditory 

and visual domains, and Goswami et al (20011) which reported a deficit in rhythmic 

perception. The following subsections will examine the relationship between underlying 

auditory and reading deficits. 

 

2.7.6.1 Language impairment and rapid temporal auditory processing deficits 

 

The connection between auditory processing and language impairment was first suggested by 

the study by Efron (1963) which showed deficits in auditory processing (specifically deficits in 

auditory temporal processing) in a group of adults with acquired aphasia, following brain 

injury. This was proposed following findings that  the aphasic group performed significantly 

worse on an auditory temporal order judgement task than a non-aphasic control group (who 

also had brain trauma) leading Efron to conclude: ‘‘we should not look upon the aphasias as 

unique disorders of language but rather as an inevitable consequence of a primary defect in 

temporal analysis’’ (Efron, 1963). 
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The role of rapid temporal auditory processing was later emphasised by the work of Tallal and 

colleagues who produced a series of papers comparing dysphasic children (former term for 

those with SLI) and typically developing children. Tallal et al (1973) used modified temporal 

order judgement (TOJ; named the Auditory Repetition Task or ART) and discrimination tasks to 

compare dysphasic children against an age matched control group. The task required 

participants to discriminate between a series of synthetic stimuli using both “long” and 

“short” inter-stimulus-intervals (ISI). Stimuli included complex tones, steady-state vowels and 

stop-vowels (/ba,da/ continuum with “short” and “long” formant transitions (F1, F2, F3)). 

Dysphasic children performed significantly worse on short stimuli including tones, vowels and 

consonant transitions with short ISI but not long stimuli or ISI. The authors concluded that 

dysphasia resulted from the inability of the central auditory system to sufficiently process 

rapid temporal speech cues (Consonant-Vowel syllables).  

 

Tallal et al (1974) found similar results using speech stimuli, whereby dysphasic children 

showed poorer performance on rapid-formant transitions compared to a control group. Tallal 

et al hypothesised that by lengthening the transition, individuals with dysphasia would 

perform better and this proved to be the case (as seen by the findings of Tallal, 1975).  

 

Tallal et al (1980) explored the possibility that rapid temporal auditory dysfunction could 

explain reading deficits. This study used the same tasks used previously with children with SLI, 

comparing a group of children with impaired reading ability with an age matched typical 

reading control group (mean 9.6 years). Those with reading deficits were shown to produce 

similar results to the control group on long ISI (428msec) for both TOJ and same/different 

task. However the reading impaired group scored significantly lower on shorter ISI. Further 

support of these findings was produced by Reed (1989) who compared 23 reading impaired 

children compared to age and gender controls using a variety of stimuli. The reading impaired 

children performed significantly worse on both rapid tone and stop-consonants with brief ISI. 

However there was no difference between groups from longer duration vowel stimuli, nor 

with rapid visual stimuli suggesting that the deficit was primarily auditory and temporal in 

nature. Despite the suggested deficit in rapid auditory processing in individuals with Dyslexia, 
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only 45% of the Dyslexic sample in Tallal et al (1980) showed evidence of poor performance 

on the auditory tasks, thus the claim that an underlying auditory temporal processing deficit is 

the cause of phonological deficit in Dyslexia seems implausible. In addition, there are several 

limitations of the initial methodology; these include a small number of participants, a low 

number of trials per subject, and poor reliability in the tasks used, thus leading to high degree 

of measurement error. 

 

There are further criticisms of the rapid auditory processing theory as described by Tallal et al; 

primarily the failure of further studies to replicate the original findings, using a range of 

various temporal processing assessments. McAnally and Stein (1996) showed no significant 

difference between typical developing and dyslexic participants on gap detection testing (the 

most direct assessment of auditory temporal processing). Bishop et al (1999) found no 

significant difference between typically developing control group and SLI on a range of 

temporal processing measures including the ART stating that individual differences found 

were influenced more on nonverbal (cognitive) ability that language impairment. A potential 

confounding factor involved in the study (Bishop et al, 1999) was the poor definition of the SLI 

group, as although all in the group showed reduced performance on language tasks, some did 

not show the substantial mismatch between verbal and non-verbal ability required to be 

diagnosed with SLI with only 6/14 children within the SLI group having significant mismatch 

between verbal and non-verbal abilities. The findings of Share et al (2002) contradicted Tallal 

et al’s work as it showed that poor readers at school entrance struggled with long ISI rather 

than short.  

 

Mody et al (1997) investigated the role of temporal processing deficits in poor and typically 

developing age matched controls by using acoustically matched sine-wave representations of 

/ba/-/da/ and TOJ of /ba/-/da/ (non-synthetic speech). The study found no significant 

difference between the sine-wave representations, but significant differences of the TOJ for 

the speech /ba/-/da/. Mody et al concluded that difficulties seen were due to speech specific 

difficulty not a more basic underlying auditory perceptual deficit. This study has more recently 

been criticised by Denenberg (1999) citing that the “poor readers” were not significantly poor 



 

 48 

readers compared to average readers, but rather that the control group displayed above 

average reading. Therefore Denenberg states that the findings cannot be used to infer the link 

between temporal auditory processing and individuals with SRD.  

 

The criticism of Mody et al (1997) by Denenberg (1999) does not explain the difference 

between the groups. It is important to state that a correlation between factors does conclude 

causation, even if the “poor” readers group were too proficient at reading to be labelled as 

having SRD (as criticised by Denenberg, 1999), if a rapid auditory temporal processing deficit is 

the underlying causative mechanism in SRD then it would be reasonable to assume individuals 

with better reading should also perform better on auditory temporal tasks and therefore the 

poor reading group should perform poorly compared to the good reading group. However, 

this is not the case.  

 

Ahissar et al (2000) showed a link between auditory temporal processing and reading ability in 

adults but correlation between the “poor” reading ability and poor auditory temporal 

processing was weak. Ahissar et al (2000) suggested that this may due to amelioration of 

reading difficulties in the adult listeners within the sample group. However, analysis of the 

original study by Tallal et al (1980) with children with SRD showed only 8 out of the 20 of the 

SRD group exhibited listening difficulties with short ISI, hence such amelioration may be 

plausible for those exhibiting auditory processing deficits but would be unlikely to explain why 

the remaining 12/20 SRD participants showed no evidence of a temporal auditory processing 

deficit. McArthur (2000) suggested a confounding variable that may possibly offer an 

explanation in the relatively good performance of some SRD children in Tallal (1980). 

McArthur suggested that poor auditory processing score in the SRD group is not due to rapid 

auditory temporal processing deficit but rather in a deficit in auditory discrimination that 

becomes apparent when increasing the task demand on the listener’s auditory discrimination 

ability. 
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Ahissar et al (2000) also showed a significant effect of poor cognitive ability (short term 

memory) in adults with childhood reading impairment. This poor cognitive ability was deemed 

to be the cause of the high variability of poor psycho-acoustic performers in this group. The 

role of cognitive ability on psycho-acoustic performance has been discussed previously, 

however with specific regards to TOJ tasks (Tallal et al’s ART); Locke (1998) showed that TOJ 

performance was strongly associated with cognitive capacity (attention) suggesting that the 

results of TOJ task used by Tallal et al could possibly be explained by reduced attentional 

capacity. In addition, the SRD group performed more poorly on a range of auditory processing 

tasks that were based on rapid temporal changes (frequency discrimination) and that these 

additional deficits in auditory performance were seen in the participants with poorer cognitive 

abilities.  

 

Rosen (2003) reported a limitation in ART test by participants in both the SRD and control 

group reaching a performance ceiling and therefore differences between the SRD and control 

group cannot be inferred. Several studies investigating rapid auditory temporal performance 

in SRD (without the impact of a ceiling effect) showed similar difficulties at long ISI as well as 

short for those individual participants (Nittrouer, 1999).  

 

An enhanced temporal processing theory was suggested by Wright et al (1997), who 

investigated the relationship between a masking noise and short probe tone in SLI individuals. 

This relationship was examined by presentation of a short probe tone in the presence of a 

masking noise located in one of three conditions; backward (tone precedes masking noise), 

forward (masking noise precedes tone) and simultaneous (probe is presented in the middle of 

the masking noise). Results showed little difference between groups in forward masking and 

simultaneous masking paradigms but showed a large, significant deficit within the SLI group 

compared to the control counterparts for a backwards masking condition.  

 

From this backward masking effect, Wright et al. suggest that the masking noise was 

perceptually interfering with the earlier tone, thus the earlier findings by Tallal et al using ART 
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(stimuli /ba/-/da/) could be explained by the vowel masking the earlier formant transitions of 

the consonant (Wright et al, 1997). 

 

The implication of the backward masking effect seen in Wright et al (1997) offers a simple 

theoretical link between auditory temporal processing and language difficulties, but 

unfortunately further analysis between backward masking and language impairments has not 

yielded such significant findings. Bishop et al (1999) found no significant difference on a 

backward masking task in a twin study (n=28) comparing language impaired twins with non-

language impaired twin controls (matched for age and non-verbal IQ). 

 

The impact of cognitive ability (attention, working memory and non-verbal IQ) on the 

performance of individuals undertaking psycho-acoustic tasks is known well known (Moore, 

2010; Lum and Zarafa, 2010; Banai and Ahissar, 2004) as well as reading (Snowling, 2000). 

When comparing the control groups of Wright et al (1997) and Bishop et al (1999) there are 

group differences on non-verbal IQ tasks, with the control group of Bishop et al (1999) 

showing poorer performance (m=99.1 SD=14.6) compared to Wright et al (1997) (m=105.1, 

SD=6.5). Therefore, the lack of significant difference between the reading impaired group and 

control group in Bishop et al (1999) could be potentially explained by the impact of non-verbal 

IQ on the control group’s poorer performance of psycho-acoustic measures.   

 

There have been several other studies investigating the relationship between backward 

masking and language impairment, Rosen and Manganari (2001) showed a difference 

between dyslexic teenagers and age matched controls on backward masking but not forward 

or simultaneous masking. Montgomery et al (2005) showed similar distributions between 

dyslexic and control groups of younger children (age7-10 years, n=52). Ahissar et al (2000) 

however showed no significant difference in backward masking in adults with childhood 

reading difficulties. Rosen and Manganari (2001) provided evidence that refutes the 

theoretical link between masking of the consonant formant transition by the preceding vowel. 

The study used synthetic /ba/-/da/ and /ab/-/ad/, the former being representative of 
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backward masking and latter of forward masking. Deficits on a backward masking paradigm 

compared to forward masking were associated with similar findings using synthetic speech. 

Further analysis shows that difficulty seen using speech-based stimuli disappeared using a 

non-speech paradigm, leading the authors to suggest that rather than basic auditory 

perception deficits at least a degree of linguistic deficit is seen as suggested by Mody et al 

(1997).  

 

More recently, Rosen (2009) reanalysed the initial report by Wright et al (1997) citing 

statistical shortcomings of the original analysis. Reanalysis showed a large significant 

difference on backward masking but also a smaller yet significant difference between SLI and 

control groups for both simultaneous and forward masking. This reanalysis suggested that 

although deficits were seen primarily on backward masking, the significant difference 

between groups on both forward and simultaneous masking suggests that the auditory deficit 

seen cannot be categorised as a temporal processing deficit. 

 

In a further experiment, Rosen et al (2009) used a four group design including a SLI group 

(n=14, mean age=15:8), non-verbal IQ and age matched control group (n=14, mean age 16:2) 

and two younger control groups matched on differing aspects of language development 

(grammar and single word vocabulary). Findings show that SLI group performed worse for 

both backward and simultaneous masking (not every participant in the SLI group showed 

deficits in masking threshold) compared to the age matched control group but not the 

language based younger controls. There was no correlation between the masking paradigm 

and measures of language.  

 

An alternative theory of an underlying sensory deficit was put forward by Stein et al (Stein and 

Walsh, 1997; Stein 2001) describing the “Magnocellular Deficit”. The “Magnocellular Deficit” 

theory offers an elegant sensory-deficit origin for Dyslexia attempting to unify visual and 

auditory deficits theories under a single theory, based on deficits in the magnocellular system 

situated in the Cerebellum, which incorporated deficits in rapid auditory processing and visual 
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deficits. Stein et al (2001) suggests that reading requires good orthographic (visual) and 

phonological (auditory) skills. The magnocellular system is reported to be responsible for 

timing visual events while reading (Stein and Walsh, 1997). In particular, the visual 

magnocellular system is thought to be responsible for maintaining both eyes onto a visual 

target, and therefore important for binocular fixation (both eyes focusing on the same target) 

and vergence control (the movement of eyes to focus on objects) (Stein, 2001). Deficits in the 

visual magnocellular have been suggested to lead to instability in binocular fixation and poor 

vergence control (Stein, 2001; Stein and Walsh, 1997; Stein, Riddell and Fowler, 1988). As 

reading is characterised by brief fixations followed by small saccadic movements (Rayner, 

1978), such deficits are reported to leading to inability to efficiently visually fixate on a target 

and move on the next). Deficits in the magnocellular system were also reported to lead to 

impaired temporal auditory processing, thus leading to impaired phonological awareness 

(Stein, 2001). The magnocellular system codes for rapid temporal changes (Stein, 2001), and 

therefore deficits in this system would lead to deficits in the processing of rapid auditory 

temporal processing. 

 

There are several criticisms of the visual impairments reported in the magnocellular deficit 

theory, including finding inconsistent with a specific rapid temporal visual deficit specific to 

the magnocellular system. Amitay et al (2002a) performed a series of visual tasks to a group of 

adults with Dyslexia (n=30). A series of visual tasks were designed to examine the Dyslexic 

group on temporal visual processing. Findings revealed that only a small subsection showed 

deficits based on rapid temporal visual impairment (6/30), but many showed deficits in non-

rapid temporal processing, suggesting that as well as findings being inconsistent with the 

presence of rapid temporal visual processing, when present visual processing deficits cover a 

wide range of temporal and spectral frequencies.  

 

The underlying mechanism of the visual magnocellular deficit theory has also been 

questioned. Stuart et al (2001) propose that visual processing deficits attributed to rapid 

temporal deficits in visual processing could be explained by poor attention. As poor cognitive 

abilities including attention have been raised in rapid temporal auditory processing tasks, an 
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alternative explanation to rapid deficits due to deficits in the magnocellular system could be 

due to poorer attentional capacity in subgroups of Dyslexics. 

 

There are major inconsistencies between empirical findings and the “Magnocellular deficit” 

theories based on investigations in the auditory domain. While the deficit in rapid auditory 

processing has been discussed earlier in this section (lack of consistency in results suggesting 

individuals with dyslexia suffer from a rapid auditory processing deficit, methodological 

limitations, including several studies (including Tallal et al (1980) suffering from small sample 

size and ceiling effects, reported issues with statistical analysis), there are additional criticisms 

that can made; 

 

Amitay et al (2002b) examined an adult sample of dyslexic individuals on a wide range of 

auditory processing tasks including temporal discrimination tasks (amplitude modulation and 

a discrimination task between two tones with varying ISI), frequency discrimination, tone 

detection in narrow-band-noise and perception of lateralised position of sound based on 

interaural phase differences. Results revealed a subsection of the sample struggled on a 

variety of auditory processing tasks, however there was a lack of consistency in findings 

between temporal processing tasks with individuals who were deemed as poor auditory 

processors (based on performance on a myriad of auditory processing tasks) showed no 

deficit in the two tone temporal discrimination task at brief intervals as expected (based on a 

theoretical rapid temporal deficit). Alternatively, those individuals who were deemed to not 

have poor auditory processing did struggle on the two-tone discrimination task but did not 

struggle on the temporal task of amplitude modulation. Additionally, auditory processing 

ability was related to the cognitive abilities of the individual, with those showing poor auditory 

processing skills also scoring more poorly compared to their typical auditory processing 

dyslexic counterparts.  

 

There is also evidence to suggest a lack of correlation between rapid auditory processing and 

measures of phonological skill or reading ability (Mody et al, 1997; Ahissar et al, 2000). It is 
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plausible to argue that the importance of auditory processing for the development of 

phonological skills and reading skill is age dependent and that rather than a deficit in rapid 

temporal auditory processing skills, these skills may be delayed and therefore by adulthood, 

the auditory processing delay may been mature, and hence would not be present (or of 

limited presence in cases of more severe rapid temporal auditory deficits that may not fully 

reach maturity), resulting in the underlying deficit in phonological skill. In order to investigate 

whether rapid auditory processing deficits have an effect on phonological skills in children 

over a period of time, it would be pertinent to perform a longitudinal study assessing 

phonological and auditory processing skills. Share et al (2002) investigated the role of auditory 

processing, phonological and reading skills in children in a unique longitudinal study. 500 

participants were investigated from Kindergarten (age 5) to Grade 2 (age 7). Importantly this 

age group were at the age that children are typically in the alphabetic moving to the 

orthographic stages of reading development. In addition, this study utilized the rapid auditory 

processing task performed by Tallal et al (1980). Results showed impaired auditory processing 

at long ISI compared to short ISI (in contradiction to the rapid auditory temporal deficit). 

Interestingly, there was a significant correlation between deficit in long ISI auditory temporal 

processing and phonological ability at age 5; however deficits in temporal auditory processing 

were not predictive of later phonological impairment.  

 

Despite numerous criticisms, there is further support for the rapid temporal auditory deficit 

theory from the use of intervention studies designed to remediate rapid temporal auditory 

processing (Tallal et al, 1996), with intervention studies offering a further insight into the 

underlying issue of causation through attempted to remediate a specific component (unlike 

correlation-based studies that although report on relationship, cannot report on causation).  

 

Tallal et al developed FastForWord (Scientific Learning Corporation), a computerised 

intervention programme designed to remediate rapid auditory processing deficits through the 

use of artificially temporally elongated speech sounds (spectral content is undisturbed). As the 

participant moves through the training programme, the temporal elongation becomes less 

therefore the “games” becoming more challenging to the user. Tallal et al (1996) reported the 
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successful use of this programme with children with rapid temporal auditory processing 

deficits and language learning abilities. Results suggested that significant improvements in 

speech discrimination and language as a result of the intervention,  however this study did not 

utilize a control group, therefore leading to the possibility of the improvements being a result 

of a placebo effect. 

 

Additionally, independent studies examining FastForWord have not yielded such positive 

findings. Gillam et al (2001) summarised 5 small scaled, independent assessments of 

FastForWord. Whilst the designs suffered from small sample sizes (and therefore statistically 

underpowered), the paper investigated FastForWord against conventional remediation 

programmes. Results indicated that while participants who undertook FastForWord showed 

positive results, there was no significant difference compared to conventional programmes. 

More Recently, Strong et al (2011) provided a meta-analysis investigated the effectiveness of 

FastForWord. Six studies (published 2005-2009) met the inclusion criteria for inclusion. Results 

indicated that there was no evidence that FastForWord was effective in treating language and 

reading abilities in children compared to active or untreated control groups.  

 

More recently, an alternative auditory temporal processing theory has been proposed based 

on larger temporal scales (Goswami et al) as opposed to rapid temporal auditory processing 

deficit. The following subsection aims to examine this theory. 

 

2.7.6.2 Language impairment and deficits in auditory rhythmic perception 

 

Goswami et al (2002) suggested that processing at larger temporal scales in this clinical 

population was the underpinning deficit. Goswami et al (2002) investigated the amplitude 

modulation/ beat perception between 24 children with diagnosed Dyslexia and age/ reading 

match controls. Comparisons between the groups were also made for a TOJ task, rapid 



 

 56 

frequency discrimination, as well phonological tasks examining phonological awareness, short 

term memory and rapid naming.  

 

The Dyslexic group presented with significantly poorer amplitude modulation detection 

compared to superior reading counterparts. To a lesser extent, this was also true of the TOJ 

task and rapid frequency discrimination. All three auditory measures were shown to predict 

phonological awareness and memory but only the amplitude modulation task predicted rapid 

naming. 

 

These findings led to Goswami et al (2002) to hypothesise that amplitude modulation/ beat 

perception with long temporal aspects relates to the detection of amplitude envelope of 

speech signal in particular detection of perceptual centres or “p”-centres which are the 

perceptual moments of speech and non-speech and in speech are typically associated with the 

onset of a vowel. Goswami et al (2002) argued that amplitude modulation/ rhythm perception 

offered a non-speech specific mechanism for segregating syllable onset and rhyme. In contrast 

rapid spectral changes would account for temporal fine structure changes that would be 

perceived by a subject as changes in speech at the segmental level (e.g. /p/ – /b/ or /b/ – /d/). 

Developmentally this infers that as rhythm awareness precedes awareness of onset and rimes, 

which precede phonemic awareness difficulties in rhythm awareness (as demonstrated by 

amplitude modulation) would be the primary underlying deficit in reading impairment. 

 

Goswami et al (2002) also offered this as the theoretical basis underlying the focus on rhyme 

and rhythm in pre-school and later literacy development. Furthermore they suggested that 

findings within this reading impaired population for other auditory tasks such as backward 

masking was due to the inclusion of “p”-centres in the stimuli presented rather than a 

perceptual deficit.  
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Criticism of this theory was proposed by Rosen (2003) who argued that when the dyslexic 

group was considered in isolation then Amplitude modulation/beat detection did not 

correlate with non-word reading (Goswami et al, 2006).  

 

Goswami et al (2006) reported further investigations into the role of amplitude modulation 

comparing a group of children with diagnosed Dyslexia against age matched and reading 

matched younger age control groups. Using an adaptive computer-based forced choice 

paradigm Goswami et al (2006) tested performance of the groups for amplitude modulation 

and other auditory processing tasks including TOJ. Both verbal and non-verbal IQ were 

controlled for in contrast to Goswami et al (2002). 

 

Dyslexic participants performed poorly on many auditory processing tasks including TOJ task 

and amplitude modulation compared to control groups. Analysis of individual task variance 

showed the TOJ task did not predict phonological skill or literacy unlike amplitude modulation, 

thus supporting Goswami et al (2002) that amplitude modulation/beat detection is the 

primary causal auditory deficit in reading impairment (Goswami et al 2006). 

 

More recently Goswami et al (2010) examined the role of amplitude envelope rise times in 

relation to prosodic sensitivity and phonological ability. A cohort of 56 typically developing 

and dyslexic children was measured on tasks of auditory temporal processing (amplitude 

modulation), prosodic sensitivity using tests modelled on earlier tests by Kitzen (2001) and 

phonological awareness. Dyslexic children showed significantly poorer performance on 

phonological and prosodic sensitivity tasks. Perception of amplitude envelope rise times was 

predictive of both phonological and prosodic sensitivity tasks as well as reading and spelling.  

 

Amplitude rise time deficits have also been shown to present universally in Dyslexic 

individuals across multiple languages. Goswami et al (2011) compared children with diagnosed 

developmental Dyslexia across English, Spanish and Chinese languages. These children were 
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compared to two control groups (reading age and chronological age) from their own 

languages. Amplitude rise time sensitivity proved to be the only consistent predictor of 

phonological awareness and reading ability across languages despite the phonological and 

orthographic differences between the languages.  

 

These findings led to Goswami to refine her earlier work and propose a new causal theory 

between auditory processing and developmental Dyslexia. The “Temporal Sampling 

Framework” theory (TSF) (Goswami, 2011) offers a neural basis for the amplitude envelope 

deficits seen in earlier work with the reading impaired population.  Goswami (2011) states 

that temporal coding is accounted for by the synchronous neural firings at different frequency 

bands (Delta 1.5-4Hz, Theta 4-10Hz and Gamma 30-80Hz) such as phase-locked firing of neural 

fibres to an incoming acoustic signal such as amplitude modulations.  The neural firings allow 

for coding of amplitude modulations used for dissemination of prosody and syllabic 

segmentation of speech, shown to be an important predictor of phonology and reading skill. 

Goswami (2011) states that from her earlier work and adapting the Multi-time Resolution 

Model (MTRM) of Poeppel et al (the auditory system analyses the incoming signal on multiple 

temporal scales, i.e. Delta, Theta and Gamma) that the underlying neural deficit in Dyslexia is 

a “rightward lateralised deficiency in Theta and Delta networks in the auditory cortex”. Theta 

oscillatory networks have been shown to be important in syllabic (Luo et al, 2007; Poeppel, 

2008) and prosodic perception (Ghitze et al, 2009). Furthermore, the TSF is stated to offer a 

causal effect to attentional difficulties seen in dyslexia (such as wide variety of multiple 

auditory processing abilities seen within this population). Goswami (2011) states that as 

attention is enhanced when stimuli arrive in phase with neural oscillations then an impaired 

ability of this system to phase-lock would result in poorer attentional capabilities compared to 

individuals whose phase-locking ability was un-impaired.  

 

This theory offers a more detailed and comprehensive argument for reduced auditory 

processing performance as the cause of reading deficits (namely reduced amplitude-rise time 

perception caused by impaired neural phase locking within the Auditory Cortex). However this 
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has seen recent criticism from Ramus et al (2012) stating that findings from Huss & Goswami 

(2011) which showed reduced frequency discrimination as well as reduced slow temporal 

processing implies that in the absence of a clear relationship between frequency 

discrimination and temporal processing, attentional capabilities should be questioned. 

Furthermore, Ramus et al (2012) states that low frequencies “may categorise attentional 

processes required for perceptual integration”. In addition Ramus et al (2012) suggests that 

the reduced temporal abilities may be categorised by slower identification rather than a more 

basic segmentation process.  

 

In summary, auditory processing abilities have been proposed as the causal deficit for reading 

impairment; specifically deficits in auditory temporal acuity have dominated these 

propositions. However limitations in study design, inconsistent differences between studies 

(including a lack of consistent correlations between auditory skills and reading/phonological 

skills), heterogeneous subpopulations within the reading impaired group and poorly defined 

control groups have resulted in a lack of acceptance of a single theoretical link. In addition, 

there are very few longitudinal studies regarding links between auditory processing and 

reading skills, with evidence for/against this theoretical link based on studies in a wide range 

of ages. This seems somewhat unusual given the development of auditory processing, reading 

and phonological skills over childhood; one may expect that key auditory processing skills 

would alter over time dependent on age/ developmental stage of the child. Regardless of 

these criticisms, there have been several suggested remediation programmes reported to 

improve auditory processing abilities. The use of intervention studies involving an intervention 

designed to alter/alleviate one specific area of potential benefit may provide an alternative 

way of investigating the issue of the underlying cause of Dyslexia. Unfortunately, studies so far 

published have proved controversial, lacking in consistent findings, with significant 

methodological limitations (i.e. use of control groups and blinding).  

 

One of the more prominent themes has been the use of music to enhance auditory processing 

capabilities, with several remediation strategies supporting use of music. The following 
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sections will discuss the role of music processing and potential remediation benefits for 

individuals with deficits in auditory processing ability. 

 

2.8  The Relationship between music and speech 

 

It is widely suggested that music and speech share several structural similarities (Anvari et al, 

2001); both are predominately auditory in modality involving a sequence of sounds, and 

involve combining a number of small singular elements in series (according to rules) to 

produce a larger structural percept. Music, for example uses the combination of individual 

notes to produce melodies; whereas speech combines individual phonemes to produces 

syllables and further to words. Both require a normalisation process to achieve perceptual 

consistency. In speech, perception of individual phonemes remains constant despite individual 

changes in duration, intensity, timbre and pitch. Such constancy can also be found in music, 

with melodies providing a same perceptual constant despite these changes in aspect, as long 

as intervals between pitch remain equal (Downing and Harwood, 1986). Furthermore, both 

require substantial memory capacity for storing representations whether it is words 

(language) or melodies (music) (Jackendoff, 2009). 

 

Lamb and Gregory (1993) suggest that auditory analysis skills used in speech perception (e.g. 

segmenting and blending) are similar to those used for rhythmic, harmonic and melodic 

discrimination. Saffran et al (1999) builds upon these similarities by proposing that despite 

different elements between music and language, these similarities allow learning music and 

language to be achieved using the same principles. Furthermore recent advances in neuro-

imaging using functional MRI have shown that music and speech share several common 

cortical mechanisms (Patel and Peretz, 1997).  

 

Fernald (1989; cited in Anvari et al, 2002) states that speech directed to young children is 

often referred to as “musical speech” due to its musical characteristics such as slow tempo, 
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high pitch and volume of repetition. This musical speech has been shown to be present 

throughout different cultures (Fernald, 1989; 1991) and that its use is intuitive with young 

children, regardless of relationship with the child (Dunn and Kendrick, 1982 cited in Anvari, 

2002). Furthermore, Patel (2003) suggests that the linguistic rhythm of a culture leaves an 

imprint on its musical rhythm, therefore enhancing the link between music and linguistic 

features in that cultural relationship. Patel (2008) offers further evidence for this link stating 

that note length in a culture’s music correlates with the length of syllables in spoken language.  

 

Hannon and Trehub (2005a) offer further evidence in support of cultural bias in perception of 

music with an experience dependent tuning of musical rhythm developing over the first year 

of life. At 6 months of age, infants (who have no previous exposure) are able to distinguish 

rhythmic variations of both isochronous and non-ischronous (Ischronous rhythm is typical in 

western music, whereas non-ischronous rhythm is typical of eastern European music) rhythms 

in music. By 12 months of age, infants have developed an adult-like cultural-specific bias in 

music rhythm (Hannon and Trehub, 2005b). This development is presumably due to statistical 

learning from the infant’s typical environment (Hannon and Trehub, 2005b). However, such 

cultural-biases are easily ameliorated by exposure to foreign music structures for a relatively 

short space of time in infants (10 minutes a day for two weeks), unlike adults. This finding 

suggests that infant representations are perceptually different than adults, indicating a 

sensitive period for acquiring rhythm which may be as a result of infants not having the same 

degree of perceptual rhythmic entrainment due to lack of experience, and therefore are more 

easily able to modify rhythmic perception. 

 

Despite these similarities, there are several differences noted. Firstly, many of the shared 

characteristics such as the use of memory and learning in a social context are domain-general 

characteristics involved in other sensory systems such as vision (Jackendoff, 2009) and 

therefore not specifically related between music and language. Secondly, despite both music 

and spoken language using an auditory-based hierarchal structure, use of individuals percepts 

in rhythm and pitch differ significantly (Jackendoff, 2007). 
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2.9  Impact of musical training 

 

There is a now a plethora of investigations examining the role of musical training in enhancing 

the development of cognitive skills including language, auditory processing and motor control. 

The term “musical training” implies the active process of learning to play music (either 

through instrument or singing). The following section examines the evidence relating to the 

impact of musical training and aptitude on cognitive abilities. 

 

Anvari et al (2002) investigated the role of musical ability in children using a cross-sectional 

correlational study design implementing two groups of 4 and 5 year olds (n=50). These groups 

underwent a series of comparisons for tasks of phonemic awareness, musical ability, reading, 

auditory memory, maths and vocabulary were performed. Musical skills correlated 

significantly with reading and phonological awareness in both age groups, as well as reading in 

its own right. This suggests that there is a partially overlapping auditory mechanism common 

to music and reading beyond that phonological awareness. 

   

In addition, auditory memory proved to be correlated with both music and reading in the four 

younger age groups only and only for pitch discrimination in the older group, suggesting that 

auditory memory is important for younger children but is less so for the older group. The 

authors suggest this finding could be explained by tapping the development of the 

phonological system throughout childhood, with younger children with less proficient 

phonemic decoding abilities therefore requiring more reliance on memory.  

 

A series of studies by Foreguard et al (2008) confirmed the findings of Anvari et al (2002). 

Foreguard initially investigated the relationship between phonological awareness and musical 

ability (as measured by a pitch processing task) between musically trained and non-musically 

trained groups of children. All participants were recruited from an on-going study (Foreguard 
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et al, 2007) with the musically trained children had a mean of 35 weeks of musical training 

(SD= 52), the non-musically trained group were not enrolled on any form of musical training.  

A correlation between musical ability and phonological awareness was seen for both groups 

but with a significantly stronger correlation in the musical group. In a further study, musical 

skills in typically reading children related strongly to reading ability. Unfortunately, this second 

study suffered from very small group sizes (music, n=6, non-music, n=4) making generalisation 

difficult to justify.  

 

Foreguard et al (2008) also investigated the link between musical ability and language in 31 

children with diagnosed SRD by comparing melodic and rhythmic discrimination against 

standardised normative values of the Primary Measures of Music Audiation (Gordon 1986)2 

and phonological ability.  Results showed the SRD children to perform more poorly compared 

to age-matched norms in both melodic and rhythmic discrimination. Furthermore, regression 

analysis showed phonological ability to predict reading, with musical ability predicting 

phonological ability but not reading ability directly.  

 

In a further study, Foreguard et al (2008) investigated a musically trained control group 

(normal reading ability) against a non-musically trained (normal reading ability) control group 

and a non-musically trained SRD group (in all three groups n=5). All children were matched 

age, gender and non-verbal ability, and were tasked with the same investigations as in study 

3. The results showed the SRD group too performed poorly on tasks of musical and reading 

performance compared to the normal reading control groups. The musically trained group 

performed significantly higher than the non-musically trained typically developing reading 

group and SRD group on melodic discrimination but no significance differences were seen 

between typically developing reading groups (musically trained against non-musically trained).  

                                                             
The Primary Measure of Music Audiation (Gordan, 1986) is a test of music aptitude for tone and 

rhythm designed for typically developing children aged 5-9. The test involves a picture based (to 

remove literacy skills) same/different task for two subtest; tone and rhythm. This involves the listener 

to responding to a set of stimuli (tone or rhythmic) and reporting whether the stimuli sets are 

same/different. Differences in sets of stimuli alter becoming increasingly complex throughout the 

series of stimuli sets. (Walters, 1991) 



 

 64 

 

Foreguard et al (2008) suggested that use of musical training may improve deficits of rhythmic 

and melodic deficits shown in children with SRD. However, the study suffered from several 

short-comings. The small sample numbers used creates difficulty in inferring results for a 

larger population, given the lack of statistical power would not rule out Type 2 experimental 

error (Field, 2005). Furthermore, with the music groups being trained prior to the baseline 

assessment could further cast doubt on the results as group differences could have occurred 

prior to the initial assessment (unfortunately, pre-post assessment scores were not disclosed).  

 

In an earlier study, Atterbury (1985) also suggested use of musical training as a remediation 

for poor reading performance. Atterbury (1985) compared groups of poor readers against age 

matched control group (age: 7-9 years) on a series of musical tasks; tonal discrimination, 

rhythm production and rhythm perception. Results again showed musical skill to be poorer in 

the reading deficit group, leading to the author’s suggestion that improving musical ability 

would also improve reading skill.  

Despite limitations discussed for behavioural tasks, the use of imaging studies has revealed 

several anatomical differences between musicians and non-musicians. Musicians have been 

shown to have a higher density of gray matter in motor, auditory and visual regions, with the 

density correlated with musical proficiency and also starting age of musical training (Gaser and 

Schlaug, 2003). Heschl’s gyrus (location of the AI) was shown to be larger in musicans than 

non-musicians; size was also correlated to musical proficiency (Schnieder et al., 2002).  The 

left Planum temporale (area of temporal lobe, which contains AII and AIII), known to process 

complex acoustic stimuli has been shown to be larger in professional musicians than the right 

Planum temporale (Schlaug, 2001). The Corpus Callosum has also been shown to be larger in 

musicians than non-musicians (Schlaug (1995). In addition, neural connections between the 

primary motor cortex, spinal cord and areas involved with the secondary and tertiary AC differ 

in musicians and non-musicians (Bengtsson et al, 2005) thus providing a possible link for 

increased behavioural abilities of musicians in rhythmic production such as finger tapping 

(Hund-Geogiadis, 1999; Hutchinson et al, 2003). 
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These anatomical differences may offer some insight into the functional differences seen 

between musicians and non-musicians for speech and language processing and reading ability. 

Gray matter density responds to the density of neuronal cell bodies present (Purves et al, 

2008); therefore musicians have higher density/more neurones than non-musicians. This 

could impact the amplitude of neuronal firing patterns in response to incoming stimuli, 

creating increased correlation of neuronal activation compared to non-musicians, leading to a 

potential impact on increased synchrony and coding of stimuli, thus creating better neural 

synchrony for important perception abilities, in particular rhythmic perception (Peelle and 

Davis, 2012). Rhythmic perception has been linked to prosodic perception required for reading 

(Goswami et al, 2011). As this increased density occurs in both visual and auditory cortical 

areas, this has the potential to impact on the cortical system in response to bimodal 

stimulation which is required in reading.  

 

The relative difference in size of the left than right AII and AIII regions in musicians compared 

to non-musicians may also offer some anatomical basis to improved behavioural performance 

of musicians over non-musicians. It has previously been noted that the AII and AIII code for 

complex stimuli (Demanez and Demanez, 2001) and also receive non-auditory innervation 

Demanez and Demanez, 2001). Although AII and AIII occur bilaterally, Wernicke’s area is 

typically located within in the same region of the left temporal lobe (Bogen and Bogen, 1976). 

Wernicke’s Area is known to be the primary site of spoken and written language perception 

and comprehension (Fridriksson et al, 2008) and hence increased capacity of this region could 

potentially result in increased neural integration between auditory and language perception 

centres.  

 

As previously noted, there are some rhythmical similarities between music and spoken 

language, and perception of these rhythms is based on cultural bias (Hannon and Trehub, 

2005a). Therefore if musical training increases the neurological entrainment of important 

cultural rhythmic perceptions in music, this could also potentially increase the neurological 

entrainment of important rhythmic perception in culturally relevant speech.  
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The use of electrophysiological measures to investigate the neurological effects on musical 

training has indicated several physiological differences between musically trained and non-

musically trained populations. Electrophysiological measurements such as 

Electroencephalogram (EEG) have been used to investigate neural synchrony of the cognitive 

system (Ward, 2003).  Moreno et al (2009) utilised a control study experimental design to 

investigate the effect of musical training in school children. 32 children without previous 

musical tuition were “pseudo-randomly” assigned to either a music or painting intervention 

group. Unfortunately, there was no information regarding the randomisation procedure. The 

intervention groups were matched for language, socio-economic status and all subjects were 

right handed. Pre and post intervention test batteries were performed for IQ, verbal short 

term memory, working memory, reading skill and pitch discriminations using both speech and 

music stimuli. In addition, EEG traces were recorded during behavioural testing to compare 

electrophysiological and behavioural changes.  

 

The intervention period lasted 6 months, consisting of bi-weekly 75 minute training sessions. 

Findings revealed that the musical group showed enhanced abilities on reading and pitch 

discrimination measures (with speech stimuli) with specific components of the EEG waveform 

amplitude (N300) being greater in the music group. The study concluded that musical training 

improves basic auditory analysis and development of phonological representations required 

for reading. Electrophysiological differences between groups were suggested to be as a result 

of increased efficiency in neural networks. However, Fujioka et al (2006) suggested that N300 

component on the EEG trace was related to increased attentional capability and rather an 

alternative conclusion could be argued that musical training increases attentional capacity 

within the auditory domain.  

 

Wang et al (2009) also suggested that musicians were able to detect a series of sound patterns 

over a longer duration than non-musicians. 20 adolescents (all within normal hearing) were 

defined as either “musician” (n=10) or “non-musician” (n=10) based on whether the 
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participant was currently undergoing musical tuition. The Mismatch Negativity (MMN)3 

component of the EEG recordings was elicited using sequentially repeated tonal patterns 

including an odd tone in the sequence (a tone that differed in frequency compared to the 

others in the sequence). In addition, the gaps between tones between the various tonal 

sequence trains were also varied.  

 

Findings from Wang et al (2009) showed that musicians elicited MMN over longer duration 

tonal sequences compared to non-musicians, suggesting that musicians are able to detect 

patterns of sound input over longer durations, a skill required for detecting melodies over 

longer durations. 

 

Parbery and Clark et al (2009b) also showed significant differences between musically trained 

and non-music adult populations in both speech in quiet and noise, using a cohort study 

design.  Comparisons between “musician” (n=16) and non-musician (n=15) groups were made 

on speech in quiet and multi-talker babble (noise) elicited by the stimuli syllable /da/ using 

Auditory Brainstem Response (ABR) testing. ABR results were analysed by 2 examiners who 

were blinded to group. An independent third examiner was used if there was a disagreement 

between the initial examiners. Musicians were found to have faster neural timings, enhanced 

representations of speech harmonics and less degraded waveform morphology in the 

presence of background noise, related to temporal aspects of the stimuli rather than spectral 

aspects. 

 

These findings were then correlated to results obtained in an earlier study (Parbery and Clark 

2009a) which examined behavioural differences between musicians and non-musicians in 

speech in quiet and noise. Findings suggested strong correlations between more robust ABR 

results and better SIN performance. This has lead the authors to conclude that more robust 

speech-evoked ABR results in background noise and better performance on behavioural 

                                                             
3 Mismatch Negativity is a component of an ERP waveform elicited by a deviant stimulus in a sequence of 

stimuli. It occurs after an infrequent change in a stimuli sequence and is elicited regardless of attentional state 

(Näätänen & Alho, 1995). 
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speech in noise tasks were as a result to the greater ability of the musician to phase-lock to 

the tempo of the stimuli waveform. However, the authors acknowledge that study lacks the 

ability to define whether such benefits are a result of bottom-up or top-down processing, or a 

combination of the two.  

 

This study also could not account in potential participant selection bias, with regard to 

potential differences in population sampling pools for “musicians” and “non-musicians”. The 

definition of the “non-musician” group was of participants with less than 3 years musical 

training, which last occurred greater than 7 years prior to their enrolment on the study. 

Moreno et al (2009) suggested that changes as a result of musical training can occur relatively 

quickly (within 6 months of training), and therefore this leads to the possibility that some 

participants in the “non-musician” group could have some degree of musical influence 

compared to those without any musical tuition at all. However, the author has acknowledged 

that in order to compensate for these variables would be to run a prospective study with all 

participants initially having no musical training (similar to Foreguard et al, 2008). 

 

Low level synchronisation in the Alpha band has been shown to be specifically linked to 

attentional state (Cooper et al, 2003). Musicians are required to actively attend to incoming 

acoustic stimuli in order to perceive and manipulate the musical instrument played (or sound 

production by the vocal system in the case of singing). The recurrent activation of neuronal 

tracts is required for efficient processing via neural synchronisation (Gotts et al, 2012). 

Musicians require recurrent dedicated sessions in order to enhance their musical abilities, 

leading to the potential improvement of neural entrainment in response to the stimulus for 

Alpha band activation levels.  Wrigley and Brown (2010) suggest a neural oscillation model as 

the basis for auditory attention, particularly in response to auditory scene analysis (the 

analysis of several competing auditory streams of information). If Musicians have better 

attentional related neural synchrony to auditory attention, it would be reasonable to presume 

that this increased ability would relate to improvements in their ability to pick out wanted 

streams of auditory information from unwanted (such as listening to speech in adverse 

listening conditions such as multiple speakers in a classroom). Therefore, this could 
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theoretically underlie the electrophysiological and behavioural measurement shown by 

Parnaby and Clark (2009) in response to speech in noise tasks.  

 

Musicians have been shown to have anatomical and physiological differences compared to 

non-musicians as a result of their active musical training. In addition, these anatomical and 

physiological differences have been related with improved behavioural performance on 

auditory tasks and reading measures.  Similar claims of improvement on behavioural tasks 

have also been made as a result of listening to music, despite listening to music being 

suggested to be a more passive process. The following section examines the impact of 

listening to music. 

 

2.10  Impact of listening to music 

 

The reported relationship between listening to music and academic achievement/ intelligence 

is long standing; however it is only in more recent years that this relationship has been 

investigated. Rauscher et al (1993) compared spatial-temporal reasoning abilities in 36 college 

students following listening to music for 10 minutes, namely Mozart. Students who had 

listened to the classical music performed significantly better on these tasks. These findings led 

to Rauscher et al (1993) suggesting that listening to classical music leads to temporary 

heightened spatial temporal abilities (the ability to mentally manipulate objects in three-

dimensional space) coining the term “Mozart Effect”. The participants were noted to have an 

8-9 point increase in scoring on Stanford-Binet Intelligence Test which includes the spatial-

temporal reasoning task. It has however been noted that the 8-9 point increase is within the 

15 point standard deviation of scores (Chabris et al, 1999). 

 

Hetland (2000) provided a large-scale meta-analysis involving 31 experiments between 1993 

and 1999, investigating the impact of listening to classical music on the performance on 

spatial-temporal tasks. Hetland (2000) showed that listening to music provided a significant 
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improvement, with a medium effect size (d= 0.47) reported. Hetland (2000) included the use 

published and unpublished studies in the meta-analysis in an attempt to avoid publication 

bias, but did not analyse the implication of publication bias. 

 

More recently, Pietshnig et al (2010) provided a large scale meta-analysis investigating the 

impact of the “Mozart Effect”. Pietshnig analysed 39 studies between 1993 and 2007, 

including 19 unpublished studies (obtained from Hetland, 2000). While listening to Mozart 

provided a significant improvement on spatial tasks, the effect size was small (d=0.15). In 

addition, comparison of other music stimuli compared to no stimulus provided an overall 

effect that was comparable to the Mozart effect. Of particular interest was the analyse of 

“published versus unpublished” on effect size with effect sizes being far higher for published 

studies suggesting that those studies showing significant results with large effect sizes were 

more readily published. 

 

Further investigation into the role of Mozart Effect has resulted in conflicting data, with no 

further studies being able to replicate the largest increase in spatial-temporal abilities seen in 

the original study (e.g. Chabris et al, 1999). An alternative hypothesis to explain this increase 

was put forward by Thompson et al (2001) who suggested that improvements on intelligence 

tests were not due to improvements in neural priming (as suggested by Rauscher et al 1993) 

but rather from an increased arousal state caused by listening to music. Thompson et al 

(2001) compared spatial test results of participants who had either listening to a happy piece 

of a Mozart symphony (from Rauscher et al, 1993), Albinoni’s Adagio (a sad-sounding piece of 

music), or silence. Only the Mozart group performed higher on task of spatial awareness, with 

changes closely paralleling changes in mood and arousal. In addition, following hierarchal 

regression analysis removing mood and arousal, no significant variance was found to music. 

These findings were shown to be consistent with conclusions from Chabris et al (1999) who 

performed meta-analysis of “Mozart Effect” research. Thompson et al (2001) suggested that 

initial findings shown in Rauscher et al (1993) could be explained by the Mozart Sonata being 

more arousing than silence.  
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Hussain et al (2002) further investigated the impact of musical mode and tempo on mood and 

arousal. 36 Participants (age: 18-27) completed a  pre and post-test battery including the 

same spatial-temporal task performed in Rauscher et al (1993) and questionnaire related to 

mood and arousal. Four versions of Mozart’s sonata K448 was created; fast major, fast minor, 

slow major, slow minor.  Performance on the spatial task was superior for the faster tempo 

and major mode rather than the slow tempo, minor mode. Responses from the mood and 

arousal questionnaire correlated with performance on the spatial-temporal task.  

 

Nantais and Schellenberg (1999) showed that similar enhancements on spatial tasks using 

lively music from a different composer (Schubert), suggesting that the enhancements noted 

by Rauscher et al (1993) were not specific to Mozart composed symphonies. Schellenberg and 

Hallam (2005) re-analysis of a large school-based study (n=8000) investigating the role of 

music on childhood academic attainment showed little or no “Mozart Effect” on spatial-

temporal task compared to when the participants listened to popular music of the era (“Blur” 

and “PJ and Duncan”). Despite limitations of the initial study with regards to control for 

compounding variables in a large sample size (including individual differences, but also group 

differences due to school teaching, and also potentially, group differences due to differing 

teaching focus within groups of schools in different Local Educational Authorities), the authors 

suggested that this effect was due to the increased arousal to well-known and popular music, 

citing that a “Blur” effect was also noted.  

 

As the initial Rauscher et al (1993) study focused solely on spatial-temporal reasoning abilities, 

there has been little investigation of the role of music on other tasks of cognitive 

performance. Schellenberg et al (2007) investigated the role of tempo and mode on a range of 

cognitive abilities using subtests of the Wechsler Adult Intelligence Scale. Results indicated 

similar findings to previous studies relating to mood and arousal on several intelligence 

subtests, leading authors to conclude that tempo and mode, linked to arousal and mood were 

the causative factor behind enhancements on intelligence scores.  
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The impact of music on mood and arousal has been previously well established. Gabrielsson, 

2001; Krumhansl, 1997; Mitterschiffthale et al, 2007; Peretz, 2001a; Schmidt & Trainor, 2001) 

have shown physiological changes in response to mood patterns caused by music, including 

changes in pulse and respiration rate (Krumhansl, 1997), and activity of the cerebellum 

(Peretz, 2001a; Schmidt & Trainor, 2001). In addition, Mitterschiffthale et al, 2007 showed 

changes in activation of emotional centres within the brain as well as increased auditory 

activity.  

 

There are currently several commercially available listening programmes designed for the 

remediation of difficulties such as language impairments and auditory processing deficits. The 

following section will discuss music-based interventions focusing on auditory processing and 

reading deficit remediation. 

 

 

2.11  Music-based listening programmes 

 

The role of musical-listening interventions gained popularity in the 1990’s (Mudford and 

Cullen, 2005) with several varying therapy regimes being reported. Despite differences 

between individual treatment regimes, there are several theoretical similarities. All musical-

listening regimes claim to remediate numerous neurodevelopmental difficulties via listening 

to music that is spectrally filtered, which in turn is claimed to improve the neural-

synchronisation of the auditory pathway and associated neurological systems. Of the 

programmes available, the two most prominent theories are based on the work of Bérard and 

Tomatis. One of the most prominent commercial programmes available is “The Listening 

Programme®” (TLP®) by Advanced Brain Technologies, which is based upon the “Tomatis 

theory”.  
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The “Tomatis theory” describes the theory put forward by Alfred A. Tomatis, a French 

otorhinolaryngologist. Tomatis theorised that different frequencies of audible sound acted 

upon different functions of human physiology. Tomatis described that low frequency sound 

were associated with balance and rhythm as well as direction, co-ordination and localisation. 

Mid-high frequencies were associated with cognitive abilities such as memory, attention, 

speech and language capabilities and concentration. In addition, higher frequencies were 

reported to elicit improved auditory cohesion (Jeyes et al, 2010).  

 

 

The “Tomatis theory” was first described by Alfred A. Tomatis, a French Otorhinolaryngologist 

during the 1950’s, Tomatis theorised that different frequencies of audible sound acted upon 

different functions of human physiology. Tomatis suggested that a person can only 

deliberately vocalise a sound that falls within the limits of an individual’s ability to monitor 

their own voice, and therefore improvements in a person’s auditory skills of self-monitoring 

would allow greater control of their own voice (www.Tomatis.com [date accessed 12/12/13]) 

 

Tomatis stated that the ear has the ability to attune itself to the entire sound spectrum of an 

incoming acoustic stimulus, and that it was required to do so with maximum speed and 

precision. In order to achieve optimum perception, the ear would need a typical response to 

sound (the typical characteristics of the external and middle ear such as increased high 

frequency resonance and correction of the impedance mismatch by the middle ear, as 

described in section 2.1) and the absence of distortion in these characteristics. Additionally, 

right-ear dominance to the control and analysis of sound was required, due to earlier claims 

that the right ear was more important for sound analysis (see section 2.3 for further 

discussion) (Heath, 2008) 

 

Tomatis suggested that individuals with listening difficulties had a psychological refusal or 

reluctance to accept certain stimuli from the acoustic environment by “locking” the ear via the 

lack of tension of the middle ear muscles, thus creating impeding the conduction of acoustic 

stimuli (Heath, ). Tomatis further claimed that different frequencies of sound had differing 

http://www.tomatis.com/
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effects on the body; the higher density of inner hair cells at the basal end of the Basilar 

membrane in the Cochlea suggested that more impulses to high frequency sound than low 

frequency in the Cochlea, and that these were essential in speech. Furthermore, Tomatis 

stated that the Vestibular system (also situated within the inner ear) responded to lower 

frequency acoustic innervation, therefore linking low frequency spectral content of a signal 

with body rhythm and coordination.   

 

Tomatis also placed considerable emphasis on the role of the Auricular branch of the Vagus 

Nerve (CN X), which innervates the Pinna, External Auditory Canal and Tympanic Membrane. 

Tomatis proposed using spectrally filtered music would increase the tensions of the Tympanic 

membrane “unlocking” the ear to allow acoustic information to move freely through the 

auditory system and therefore improve listening skills. Tomatis also reported that through the 

innervation of the Auricular branch of the Vagus Nerve(www.advancedbrain.com [accessed 

12/12/13]), this allowed a direct link between an individual’s own vocalisations and what was 

heard. In order to innervate these different frequency bands, Tomatis suggested the use of 

three listening zones (Jeyes et al, 2010): 

 

 The Sensory Zone, which contained low frequency acoustic information less than 750 

Hz and was designed to innervate balance and coordination.  

  The Language Zone, which contained acoustic information between 750Hz to 4000Hz 

and was designed to innervate speech and language progression 

  The High Spectrum Zone, which contained information between 4000Hz and 20,000Hz 

and was designed to innervate the brain and increase electrical potential needed for 

energy and idea formation. 

 

Using this theory Tomatis developed the “Electronic Ear” to deliver spectrally filtered music. 

This involved a specialised headphone set utilizing both bone conduction and air conduction 

transmission. Traditionally, this treatment involved an 80 minutes per day listening phase for a 

30 day listening period (Kershner, 1986a). During this time, the input was electronically gated 

in order to contract and relax the middle ear muscles. In addition, timing between bone 

conduction and air conduction stimulation methods were altered in order to train for more 

rapid response to the auditory system, and that the intensity level to the left ear was reduced 

http://www.advancedbrain.com/
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in order to provide the listening with a right ear dominance (based on increased exercise of 

the middle ear system) (Heath, 2008). 

 

Despite these claims, there are several criticisms of the Tomatis method. Primarily, there a 

several major theoretical flaws: Firstly, a right-ear dominance as described by Tomatis does 

not exist, with advantages being shown for both left and right ears based on the 

characteristics of hemispheric specialisation (for further details, see section 2.3). In addition, 

Tomatis uses a musical based intervention programme, by the nature of the incoming 

stimulus, it would be perhaps more reasonable to suggest a left ear dominance would be 

more likely than right ear due to right hemispheric specialisation for melodic sequences. 

 

Secondly, Tomatis theory was based on the “exercise” of the middle ear muscles (namely the 

Stapedius and Tensor Tympani). While the Tensor Tympani and Stapedius muscles contract in 

order to add extra stiffness to the middle ear system to reduce the system’s conduction of 

high intensity energy (known as the Acoustic Reflex), these muscles are not contracted in 

response to low level stimuli (Katz, 2000). This questions why the involvement of this element 

of the middle ear system requires “exercise” if it is only implemented in the presence of sound 

that are approximately greater than 80dB (Katz, 2000). In addition, to cause excitation of the 

Acoustic Reflex, the intensity of the incoming sound stimuli must be greater than that 

required to elicit it (greater than 80dB), therefore raising the question of whether the 

intervention is safe or whether it poses a risk of noise-induced hearing loss/ Cochlea hair cell 

damage. 

 

In addition, the inclusion of the importance of the innervation of the Tympanic Membrane 

and external ear by the Vagus Nerve seems unusual, as this does not provide sensory input to 

the brain in the auditory modality (Yost, 2000), and therefore the suggestion that its input is 

important in the connection between the external ear and the larynx via the Vagus Nerve in 

order to help with self-monitoring appears implausible. It would appear more plausible to 

suggest the improvement of the effect the vocalisation-induced acoustic reflex (Borg, 1984), 

however this is innervated by the Facial Nerve (CN VII) (Yost, 2000).   Furthermore, recent 

published articles have suggested a different underlying mechanism from the original theory 

suggesting that the underlying mechanism is a result of increased neural myelination of the 
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central auditory nervous system in response to appropriate stimulation, increasing neural 

synchrony and speed within the auditory system (Sacarin, 2009). 

 

While there are multiple subjective reports of the benefit of the Tomatis method, there is no 

known high level scientific evidence in peer-reviewed journals provided in support of the 

Tomatis theory. Most support for the Tomatis method is in the form of low-level anecdotal, 

unpublished evidence lacking in strong experimental design (ASHA, 2004). Currently, 

professional recommendations do not endorse the use of the Tomatis method (and other 

music-based therapies) stating safety concerns (including the sound intensity levels used) and 

lack of sufficient high level evidence (BSA, 2011; ASHA, 2004). 

 

Despite the criticisms of the “Tomatis” theory, TLP® (developed by Advanced Brain 

Technologies) is based upon the earlier work of Tomatis, suggesting that different frequencies 

impact on differing physiological functions. TLP® uses “psycho-acoustically” modified classical 

music (recorded using a 24bit, 192kHz sampling rate) to “exercise” the ear 

(www.advancedbrain.com [accessed 15/12/13]). While there are several versions of TLP®, the 

classic TLP® involves the listener to listen through headphones (does not involve direct bone 

conduction transmission as required in Tomatis’s Electronic Ear) and is played at a 

“comfortable listening level”. 

 

TLP® uses a 20 week programme consisting of 2 repetitions of a 10 week listening schedule, 

with each listener required to listen for 15 minutes twice a day. Each 10 week session is 

divided into 4 listening phases or “zones” with weeks 1 and 2 described as “Full Spectrum” 

and consists of listening to classical music that is unfiltered. Weeks 3-4 are described as “Zone 

1” and involve listening to classical music that has filtered through a low pass filter at 750Hz 

(therefore attenuating frequency content above 750Hz). This Zone is based upon the 

“Sensory” zone of the “Tomatis” theory, and is reported to improve balance and coordination. 

Zone 2 occurs in weeks 5-6, whereby classical music is filtered through a bandpass filter (a 

high pass filter at 750Hz and a low pass filter at 4000Hz), and is based upon the “Language” 

zone of the Tomatis theory focussing on Memory, Concentration, Speech and Language. Zone 

3 involves classical music filtered through a high pass filter at 4000Hz and is based on the 

http://www.advancedbrain.com/
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“High Spectrum” zone of the Tomatis theory, reported to improve energy, intuition and ideas 

(Heath, 2008).  

 

In addition, to spectral filtering, Advanced Brain Technologies report that TLP® also uses a 

modular “ABC” design to each listening session, whereby each listening period (approximately 

15 minutes) can be split into 3 phases. Phase A acts as a “warm up” and is reported to relax 

the listener and prepare the auditory system for more intense stimulation in Phase B. Phase B 

is reported to a more “intensive” listening experience designed to “exercise” the auditory 

system, while Phase C acts a “cool down” period returning the listener to a relaxed state. 

Further information regarding the modular design of TLP® and the musical filtering is not 

available due to the commercial sensitivity of the information (www.advancedbrain.com 

[accessed 15/12/13]) 

 

TLP® is reported has been claimed to make significant improvements in a wide variety of skills 

(Table 2.2) as is currently marketed to a wide range of ages including “children, teens, adults 

and seniors” (www.advancedbrain.com [accessed 23/12/13]). 

 

 

Table 2.2 Areas of reported improvement following TLP® 

 

Learning Listening Self-Regulation 

Attention Sensory Processing Musical Ability 

Communication Social Engagement Brain Fitness 

Reading Behaviour Daily Living 

 

 

Despite the claims of multiple improvements, Advanced Brain Technologies provide an 

insufficient theoretical basis for these improvements, offering a very limited synopsis of the 

“Tomatis” theory. In addition, evidence provided in support of TLP® is anecdotal, low level 

scientific evidence with the majority being from unpublished sources provided by Advanced 

Brain Technologies. 

http://www.advancedbrain.com/
http://www.advancedbrain.com/


 

 78 

 

Treharne (2003, unpublished) investigated the role of TLP® in a cohort of 10 children (aged 8-

16) referred to the department of Human Communication Sciences (University of Sheffield) 

for assessment of auditory processing difficulties. Participants had a wide range of non-verbal 

IQ scores at pre-intervention test stage and provided their own control group (given the wide 

range of performance on varying tasks performed).  

 

Pre-post intervention data was compared showing a significant improvement of detection of 

speech in steady state (pink) noise on the Goldman, Fristoe  & Woodcock, Auditory Skills 

Battery, Selective Attention subtest, (Woodcock 1974). However a high degree of variability of 

results was shown for other aspects of the selective attention subtest, with no significant 

differences noted between pre-post-tests scores in these other aspects. Participants provided 

their own control group (given the wide range of performance on varying tasks performed).  

 

Further support is provided for the use of TLP® by Francis (unpublished), investigating the use 

of TLP® with children with “profound and multiple learning difficulties”. This study involved a 

school-based case series/ cross over design of 12 students (including 5 with Rett syndrome) 

who participated in TLP. All undertook a modified TLP (15 minutes a day, 5 days a week, for 16 

weeks) with a randomly allocated regular music period for 4 weeks pre or post TLP 

(Programme total= 20 weeks). Participants were videoed for 15 minutes at regular intervals 

throughout the intervention period, with 2 hour classroom observation made post listening. In 

addition, educational progress was noted through the use of the participant’s annual school 

review and also observations noted by both parents and teachers.  

 

Improvements in mood only were noted for the music group, with increased engagement 

noted with only TLP. However there are several methodological limitations of the study. 

Firstly, despite the age range (12-18 years) little is known of the participants in the sample, 

except that none had profound hearing impairment. The author admits that obtaining reliable 

data was difficult due to the nature of the participants complex needs, as such there is no 

access to standardised data but all results were based on observations.  

The observation process is not well defined, without any evidence of the use of blinding or 

secondary observation leading to the possibility of examiner bias. It is also unclear of the 
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timing of the parental/teacher feedback, and also of the use of blinding of these groups to 

which intervention was currently employed. In addition, there no details were given regarding 

the “modifications” made to TLP®. 

 

Jeyes (2009, unpublished) investigated the role of TLP in improving auditory processing 

abilities in a sample of children with Downs Syndrome using a case series design. A sample of 

9 participants (age 5-12) undertook TLP with pre-post measures using a series of standardised 

tests including; TraCol (Treharne, 1999), CELF Receptive and Expressive Language, Digit Span 

and Naglieri Non Verbal Cognitive Ability Test.  

 

Despite the attempted use of these tests, most were unable to be completed by the sample 

population, with a small number able to perform on the Mispronunciation Test. Parental 

observations were also recorded. Despite these limitations, subjects able to perform on the 

Mispronunciation Test did show a small improvement at the post-intervention stage, however 

without the use of a control group, it is impossible to infer if these improvements were due to 

the intervention or test-retest.  

 

Furthermore, lack of control groups and bias create difficulties when analysing observations of 

the subjects. There was also no inclusion/exclusion criteria noted, in particular there is no 

mention of audiological examination. This is particularly important for this sample population 

due to the well reported higher incidence of hearing impairment, including fluctuating 

conductive hearing impairment (Shott et al, 2001), and therefore possible confounding 

variable when providing an auditory intervention. 

 

Butler and Clarke (2003, unpublished) investigated in the impact of TLP on auditory processing 

skills in school age children using a case series approach using pre-post measurements of 

auditory processing using SCAN C (Keith, 2000). 20 participants (m=11, f=9 ,age 5-10 years) 

underwent a 10 week TLP intervention programme. In addition, the majority of the subjects 

were part of sensory programme for concentration and listening.  

 

Participants were shown to generally improve in auditory processing abilities as shown on 

SCAN C subtests, but with no consistency to which subtests the participants improved in. In 
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addition, some participants showed reduced thresholds at the post-intervention stage. As this 

study lacked any control groups, inferences regarding improved auditory processing abilities 

following TLP must be treated with caution, especially as many of the individuals were 

included in a sensory programme for concentration and listening therefore it is impossible to 

show whether improvements seen were due to TLP or rather the sensory programme. 

.  

 

Further unpublished pilot studies have been put forward as evidence pertaining to the 

benefits derived from TLP. Harris (unpublished, undated) provided a small case series of 4 

children aged (12-13) based within the same class at school. All children were currently 

undergoing speech and language intervention at school. All children underwent a pre-post 

test battery of standardised auditory processing tests including SCAN A (Keith, 2000) and TAPS 

R & TAPS UL. All children showed very significant improvement in auditory processing as 

shown by performance of the test battery, however caution must be taken when interpreting 

these findings due to the lack of control groups and possible confounding variable of ongoing 

speech and language intervention.  

A larger school based study was provided by Jeyes (2002, unpublished) using a case series 

design with 38 pupils of a primary school (aged 7-11). A pre-post test battery was performed 

including the Quest test of pre-reading skills to assess auditory discrimination and memory. 

No standardised auditory processing tasks were performed. Reading age was also calculated 

using either the Schonell or Salford sentence tests, unfortunately the author states that the 

same where applicable was used at the pre and post test battery, implying that different tests 

were potentially used at pre and post test level with little information given about inter-test 

reliability. Educational progress was assessed using the National Foundation for Educational 

Research progress tests performed at the end of each academic year to track academic 

progress.  

 

Large differences were seen on experimental data, however all subjects did not make uniform 

improvements. In addition, despite the relatively large sample size, no statistical analysis was 

reported for the study in the report published by Advanced Brain Technologies. Parental and 

teacher reports showed improvements but without a placebo control it cannot be truly 
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ascertained if the noticed improvements were truly due to improvements caused by TLP or a 

placebo effect and in fact improvements were down to the maturity of the child. 

 

Nwora and Gee (2009) offered the only known published article investigating the use of TLP®; 

a case study of a 5 year old child diagnosed with ASD, specifically “pervasive developmental 

disorder”. In particular, the study focused on the participants sensory processing and 

receptive/expressive language. Data was collected via video footage, standardised carer 

questionnaires (The Listening Checklist and The Sensory Profile) and clinical observation at pre 

and post intervention stages. Video footage was examined by both authors independently and 

data compared to establish inter-rater reliability.  

 

Improvements were noted in almost every aspect in this case, including posture and 

handwriting, as well as reported language skills and sensory processing. Unfortunately the 

study revealed little information regarding the child and school interventions (assuming that a 

child with a diagnosis of ASD would have on-going support in a school-based setting). 

Furthermore, the investigation is limited by the use of a single case, as cannot be generalised 

to a wider population, but rather acts as a pilot study that warrants further investigation with 

a 5 year old child diagnosed with ASD, specifically “pervasive developmental disorder”. In 

particular, the study focused on the participants sensory processing and receptive/expressive 

language. Data was collected via video footage, standardised carer questionnaires (The 

Listening Checklist and The Sensory Profile) and clinical observation at pre and post 

intervention stages. Video footage was examined by both authors independently and data 

compared to establish inter-rater reliability.  

 

The current evidence advocating the use of TLP is anecdotal, with investigations used suffering 

from several experimental design flaws such as small sample size, lack of control groups, 

involvement of compounding variables such as other ongoing interventions and lack of 

statistical analysis.  

 

 

2.12  Gap in knowledge 
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Deficits in auditory processing and reading difficulties are reported to have a high incidence in 

the paediatric population, with several theories proposing a causative link between the two 

conditions. In addition, it is now known that higher order cognitive function plays an 

important role in perceived deficits of auditory processing ability. Despite current controversy 

in academic circles regarding this link (or whether auditory processing deficits are true 

auditory deficits or auditory manifestations of higher order cognitive impairments), there are 

now several remediation therapies available that claim to alleviate such difficulties via the 

improvement of the CANS ability to efficiently transmit neural responses.  

 

The use of classical music has been suggested to improve cognitive abilities and more recently 

a spectrally enhanced classical music programme (TLP®) has claimed to improve auditory 

processing abilities, reading ability, academic achievement, attention, and memory, although 

the underlying theory of such improvements appears implausible. Additionally, while most 

research using TLP® focuses on its use in remediation of individuals with known deficits in one 

or more of the aforementioned skills, Advanced Brain Technologies does not make distinctions 

regarding its use for individuals without deficits in these skills. This appears especially 

poignant with regards to the large prospective commercial market of typically developing 

children. 

 

Currently, there are no well-designed control trials published to investigate the ability of 

spectrally enhanced classical music (TLP®) to improve auditory processing and reading ability 

in typically developing school age children. Interestingly, TLP® is marketed to people of all 

ages “children, teens, adults and seniors” (www.advancedbrain.com). It would appear that 

impact of a listening programme would be dependent on the age, given the development of 

both auditory processing skill and reading in childhood. Presumably, improved neural 

synchrony as a result of auditory stimulation (Sacarin, 2009) would drive improved auditory 

processing skills, including those linked to phonological awareness and then to reading 

development (however, the underlying theoretical link for the impact of TLP® on the auditory 

processing skills in relation to reading improvement is unpublished). Given the importance of 

the development of auditory processing skills incumbent in phonological development, this 

would seem most appropriate at the age when phonological awareness is the key 

http://www.advancedbrain.com/
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requirement for reading development (Alphabetic stage of reading) and therefore 

approximately aged 5-6 years (Stuart, Mastertson and Dixon, 2000). 

 

Behavioural tests of auditory processing have been shown to be unreliable in younger age 

groups less than 7 years old (Moore et al, 2010) suffering from large intra-subject reliability. In 

addition, auditory processing skills, including speech discrimination in noise (the most 

common report of subjective listening difficulty (Witton, 2002) and temporal discrimination 

skills (controversially linked with reading deficit (Tallal et al, 1980; Wright et al, 1997)) are still 

developing throughout later years of the first decade of life (Hartley and Moore, 2001; Keith, 

2000). In addition, given the class design of the schools interested in potentially being involved 

in the study (7 year old children grouped in the same class as younger children, and 8 to 9 

years olds grouped in a separate classroom), it was more difficult to access 7 year old children 

in the classroom setting for the intervention. Therefore, based on the continued development 

of auditory processing skills, lack of age related definition linked to the administration of TLP® 

and ease of study design; the age range of 8-9 year old was chosen. 

2.13  Aims of Current Study 

 

The aim of this study to investigate whether the use of TLP® could affect an advance in 

auditory processing and reading skills in typically developing school age children (aged 8-9 

years) compared to unmodified classical music and a non-music control group? 
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3.1  Research Questions 

 

Does the use of TLP® affect an advance in auditory processing skills in typically developing school 

age children (aged 8-9 years) compared to unmodified classical music and a non-music control 

group? 

 

Does the use of TLP® affect an advance in reading skills in typically developing school age children 

(aged 8-9 years) compared to unmodified classical music and a non-music control group? 

 

Is there a relationship between advancements in reading ability and auditory skills of school aged 

children (aged 8-9 years) measured at the pre and post intervention stage? 
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3.2  Hypotheses 

 

Typically developing children (aged 8-9 years old) that have undertaken music based auditory 

stimulation training (The Listening Programme®) will show significant advancements in auditory 

skills compared to children who listen to unmodified classical music, including improvement in 

auditory temporal resolution (Backward Masking) and speech discrimination in noise (Scan C 

Auditory figure-ground subtest) 

 

Typically developing children (aged 8-9 years old) that have undertaken music based auditory 

stimulation training (The Listening Programme®) will show significant advancements in reading 

(sight word reading and phonemic decoding) skills compared to children who listen to unmodified 

classical music. 

 

There is a significant correlation between reading (phonemic decoding) and auditory (temporal 

resolution) skills of school aged children (aged 8-9) at the pre-intervention stage.  

 

There is a significant correlation between advancements in reading (phonemic decoding) and 

auditory skills (temporal resolution) following auditory intervention. 

 

3.3  Null Hypotheses 

 

Typically developing children (aged 8-9 years old) that have undertaken music based auditory 

stimulation training (The Listening Programme®) will not show significant advancements in 

auditory skills compared to children who listen to unmodified classical music, including 

improvement in auditory temporal resolution (Backward Masking) and speech discrimination in 

noise (Scan C Auditory figure-ground subtest) 
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Typically developing children (aged 8-9 years old) that have undertaken music based auditory 

stimulation training (The Listening Programme®) will not show significant advancements in 

reading (sight word reading and phonemic decoding) skills compared to children who listen to 

unmodified classical music. 

 

There is not a significant correlation between reading (phonemic decoding) and auditory 

(temporal resolution) skills of school aged children (aged 8-9) at the pre-intervention stage.  

 

There is not a significant correlation between advancements in reading (phonemic decoding) and 

auditory skills (temporal resolution) following auditory intervention. 

 

 

 

3.4  Study-design and Sample Size Analysis 

 

A school-based randomised partially blinded control trial was chosen to allow for comparison 

between intervention groups using pre and post intervention measure comparisons. Partial 

randomisation allowed for the reduction of group bias as both the participants and investigator 

were blinded to the assignment of the music-based intervention, with the music based 

interventions were labelled as “A” or “B” throughout the intervention stage. However, the study 

was not fully blinded as the investigator and participants were aware of the allocation of the non-

music control group (Audiobook). The use pseudo-double blinding of the intervention groups 

allowed for removal of researcher bias regarding the music-based interventions. A school based 

design allowed for greater control of the administration of the interventions compared to a 

home-based design as all participants would be provided with the same intervention period. 
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The sample size calculation was based on an 80% power and statistical significance of 0.05. There 

are currently no studies investigating the impact of TLP® with sufficient data published in order to 

calculate effect size. Therefore the effect size estimate (d=0.47) was based on a Meta-analysis 

investigating the impact of listening to classical music on spatial temporal tasks (Hetland, 2000). 

 

22 participants would be required for each group; therefore a total of 66 participants would be 

required. A dropout rate of 25% was presumed. Therefore a total of 28 participants in each group 

would be required.  

 

Ethical approval was granted by the University of Sheffield University Department for Human 

Communication Sciences Research Ethics Review Panel (Apendix 1). 

  

 

 

3.5  School Recruitment 

 

Head teachers of local primary schools within the Sheffield region -were contacted via email by 

the primary investigator. The introductory email included attached electronic copies of the School 

Recruitment Pack which included a School Information Letter, and Recruitment form (Appendices 

2 and 3 respectively). 

 

Head teachers were advised to respond via email to the lead investigator to declare their interest 

with a potential time available for a telephone discussion regarding the study. Following receipt of 

an electronic declaration of interest by the schools interested in participation, a telephone 

discussion - with the primary investigator was arranged to answer - any questions concerning the 

study. Two schools declared interest in the study, with one school wishing to participate following 

telephone discussion.  
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The final stage of school recruitment involved a meeting with the Head teacher of the school 

wishing to participate. A printed copy of the School Recruitment Pack was given, and the school 

recruitment form was signed by both Head teacher and primary investigator. A copy of the signed 

recruitment form was given to the school for their records.  

 

3.6  Participant Recruitment 

 

Following recruitment of a suitable primary school, 88 (number of children in the year group) 

Participant Information Packs were given to school for distribution to the families of potential 

participants. The Participant Information Pack contained a Parent/Carer Information Sheet, 

Participant (Child-friendly) Information Sheet and Consent forms (Appendices 4, 5, 6 respectively). 

 

These packs were distributed by school within the Home-school book of potential participants. A 

return deadline was set a week prior to the start of pre-intervention testing. Parents/Carers who 

were willing for their child to participate were asked to sign the consent forms and return them to 

school (who collected all forms). Signed consent forms were collected by the primary investigator 

following the deadline, prior to the start date of the pre-intervention testing period.  

 

Potential participants for whom written parental consent was given were then allocated an 

appointment time to undergo the pre-intervention test battery within the school environment.  

 

3.7  Participant Selection 

 

27 potential participants (m=16, f=11) undertook the pre-intervention test battery. Informed 

parental consent was given for each child prior to testing. Each participant was issued an 
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individual participant number used for anonymity and randomisation. The inclusion and exclusion 

criteria are shown below: 

 

Table 3.1: Inclusion and Exclusion Criteria 

Inclusion  

 

 

Participant aged - 8 to 9 years old throughout the duration of active  

involvement in the study. 

Peripheral hearing acuity found to be equal to or less than 30dbHL at 

500Hz and 25 dBHL at 1000-8000Hz on Pure Tone Audiometry. 

Exclusion Failure on the study’s screen for hearing acuity. 

Participant inability to complete practice items of experimental measures. 

Involvement in other specifically designed auditory training programs  

administered by other professionals (assessed through consent form). 

Participants have a diagnosis of APD, Dyslexia, or Specific Language  

Impairment (assessed through consent form). 

 

2 potential participants did not meet the inclusion criterion. 2 participants (m=1, f=1) did not pass 

Pure Tone Audiometric screen, and were referred to Sheffield Children’s Hospital for further 

diagnostic audiological testing. 1 participant (m=1) did not complete the practice items of TOWRE 

and school were informed of this in order to give additional help to the child’s reading. 

 

24 participants were enrolled on to the study (m=14, f=10). Descriptive data regarding the three 

interventions groups is reported in table 3.2. 

 

Each participant was randomly assigned to one of 3 intervention categorises; A, B or C.  An online 

statistical randomisation package was used to assign study numbers to the intervention group.  

Category A and B were music interventions which were blinded to both subject and investigator. 

Category C was the non-music audio-book control. 8 Participants enrolled onto each intervention. 
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There were 3 participants who did not complete the study. 2 participants were unavailable to 

complete post-intervention testing, 1 participant was available and completed the intervention 

stage but was unable to complete auditory processing tasks due to development of a perforated 

Tympanic Membrane and ear infection between completion of intervention and post-intervention 

test period. Therefore, a total of 21 participants were able to fully complete the study.  

 

Table 3.2 Descriptive data of the three experimental groups 

 

 

3.8   Experimental measures 

 

A number of auditory based measurements and reading measurement was included in the test 

battery. All auditory and reading tasks were performed in a quiet room. School staff had access to 

the room at all times. The Non-verbal IQ task performed was performed in two group settings in 

order to minimise effect of investigator explanation and reduce participant time away from 

curricular activities (the maximum time requested = 30 minutes).   

 

In order to minimise the participants’ time away from usual curricular activities a 3 stage pre-

intervention test protocol was followed (Table 3.3): 

 

Table 3.3 Pre-intervention test protocol 
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Stage 1 (singular test environment) Pure Tone Audiometric Screen 

TOWRE (Wagner, Torgesen and  

Rashotte, 1999) 

Stage 2 (group test environment) Draw a Person (Non Verbal IQ) Test  

(Naglieri, 1988) 

Stage 3 (singular test environment) Backward Masking (IHR IMAP study) 

(Barry et al, 2010) 

Auditory Attention (IHR IMAP study)  

(Barry et al, 2010) 

Scan C Auditory Figureground (+8dB) 

       (Keith, 2000) 

The post-intervention test protocol was used consisting of all of the stage 3 pre-intervention test 

materials and the TOWRE reading test from the stage 1 pre-intervention test battery. 

 

The following subsections describe the efficacy of use for each test used in the protocol and their 

methods of delivery. 

 

3.8.1 Institute of Hearing Research (IHR) System for Testing Auditory Responses (STAR) Backward 

Masking Subtest (Barry et al, 2010) 

 

Despite current controversy regarding rapid temporal auditory discrimination and reading ability 

(Rosen, 2003; Ramus, 2003), rapid temporal auditory discrimination elicited using Backward 

Masking paradigms has been reported to be the underlying deficit in phonological and reading 

deficits (Wright et al, 1997). In addition, Backward Masking paradigms are one of the more 
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common clinical assessment tools of auditory temporal discrimination (Emanuel, 2002). 

Furthermore, most tests of auditory temporal discrimination associated with reading deficits are 

experimental measures lacking in standardisation, normative data and are unavailable clinically 

(e.g. Auditory Repetition Task (Tallal, 1980). 

 

The rationale regarding the use of the IHR STAR Backward Masking paradigm is to investigate 

rapid temporal auditory discrimination (with deficits reported, albeit controversially, to be the 

underlying cause of phonological deficits linked to poor reading) using a tool that is available 

clinically and has appropriate standardised normative values for age. The alternative option of 

using Random Gap (despite being commercially available as part of the SCAN 3C test battery 

(Keith, 2000)) was rejected due to the lack of evidence regarding its link with reading deficits. 

 

The procedure required use of a suitable laptop (a minimum of a 2 gigabyte processor, 1 gigabyte 

RAM, and Windows XP operating system), with the IHR STAR presentation platform software 

available. In addition, an USB IHR audio-device attached to Sennheiser HD25-1 headphones was 

required. 

 

The target stimulus used was a 1000Hz tone of 20m/s duration (with 10 m/s cosine onset ramp), 

with a 90dB SPL initial presentation level. The masker was a narrow-band-noise (centred at 

1000Hz with an 800Hz width), with 30dB/Hz level and 300m/s duration.   

 

The threshold estimation procedure involved a 3 alternate-interval forced choice oddball 

response paradigm, consisting of 3 tracking rule procedure (Barry et al, 2010): 

1) 15dB, 1 down, 1 up 

2) 10dB 1 down, 1 up 

3) 5dB 3 down, 1 up 
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Thresholds were recorded as the mean of level of the last 3 trials in a 20 trial run. There were 2 

runs of 20 trials, with overall Threshold calculated as the mean of each trial threshold, and was 

calculated within the IHR STAR platform. 

 

Participants were sat in front of a laptop computer screen (in a quiet room) with a three button 

control in front of them. Sennheiser HD25-1 headphones connected (via USB IHR audio-device) to 

the laptop (contained the STAR Backward Masking subtest) were placed over the participants ears 

and the stimuli were presented diotically. Prior to undertaking the testing paradigm, up to 6 

practice items (3x automated trial abandon of 2 trials designed to prevent trials being 

contaminated by lack of attention/ comprehension in early stages) were ran. Participants were 

instructed to respond to the odd-one-out by pressing the appropriate corresponding button on 

the control panel using the hand they write with.  

 

3.8.2 Institute of Hearing Research (IHR) System for Testing Auditory Responses (STAR) Auditory 

Attention Subtest (Barry et al, 2010) 

 

Deficits on pyscho-acoustic auditory processing tasks have been shown to be correlated with 

performance on tasks of higher cognition (BSA, 2011). Moore and Ferguson (2010) showed that 

performance of auditory processing abilities in a large scale study (n=1469) of children aged 6-11 

years old was significantly related to poor cognitive, communication and speech in noise 

performance. Multivariate regression analysis indicated that poor performance in tasks of 

auditory processing skill was mainly attributable to poor cognition, specifically attention. The 

rationale of the use of this task was to act as a vigilance task investigating the participants’ 

sustained attention throughout the test batteries, in order to investigate the impact of poor 

sustained attention of the test battery, and therefore accounting for a potential confounding 

variable related to auditory processing task. 

 

Equipment set up was identical to that used with the Backward Masking task.  
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Participants were placed in front of a laptop computer screen with a 3 button control panel in 

front of them. Headphones connected to the laptop were placed over the participants ears and 

stimuli were presented diotically. The laptop contained the STAR (System for Testing Auditory 

Responses) auditory processing test package containing the Auditory Attention subtest. 

 

The task involved the use of a 1000Hz target tone (fixed duration of 200m/s, presented at 80 dB 

SPL) and modulated cue tone (fixed duration of 125m/s, presented at 75 dB SPL). Reaction time 

measurements (m/s) for both cued and non-cued target tones were recorded for participant 

responses (pressing the middle response button of the 3 button control panel when target tone 

was presented). The hypothesis reported suggests that a participant’s reaction times should be 

slower for non-cued trials compared to cued, with inattentive children not demonstrating benefit 

from the cue (Moore and Ferguson, 2010). 

The testing paradigm consisted of 7 practice trials which gave feedback to the subject during 

practice by showing an error message “oops” if the participant did not respond at all or did not 

respond to the appropriate target signal. Following completion of the practice items, a block of 36 

trials were performed. These trials consisted of 20 cued and 16 non-cued random interval 

presentations. Participants were instructed to place their fingers of their writing hand over the 

middle button of the control panel and to press the button as soon as the target tone was heard.  

 

The analysis of reaction time differences between cued and non-cued responses were calculated 

within the IHR STAR programme (non-cued reaction time – cued reaction time), with smaller 

reaction time differences suggesting poorer attention (participant did not make use of the cue). 

 

3.8.3 Test of Word Reading Efficiency (TOWRE) (Wagner & Torgesen, 1999) 
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The TOWRE is a standardised measure of fluency and accuracy of a participant’s print based 

reading, consisting of two subtests; Sight Word Efficiency (SWE) and Phonemic Decoding 

Efficiency (PDE).  The SWE consists of a list of real words increasing in phonemic difficulty as the 

participant reads down the list. The PDE consists of a list of pronounceable non-words that 

increase in phonemic difficulty as the participant reads down the list. These are used as important 

indicators for reading problems (Torgesen et al, 1999). The test is rapidly administered and offers 

appropriate normative data allowing for further analysis in relation to chronological age. 

 

The TOWRE was chosen for its rapid administration (given the limited access to the participants 

during school), and available normative data. Both subtests (SWE and PDE) were used in order to 

give an overall view of reading ability; Total Word Reading Efficiency. TLP® has been claimed to 

improve reading ability, however, a sufficient underlying theoretical basis of how this intervention 

improves reading is lacking. It would be implied that improvements in reading ability may be 

secondary to improved auditory processing skills (particularly improved temporal processing 

skills). The links between auditory processing and reading are controversial (See section 2.7.6 for 

an overview), however they are purported to be linked to an underlying phonological deficit, and 

the use of the TOWRE PDE subtest is further supported. 

 

Each subtest contains two forms, labelled A and B, each with practice items and test items. In 

order to assess a participants reading accuracy and underlying phonemic decoding ability, both of 

the subtests (using Form A) were used. 

 

Participants were asked to read aloud practice items from SWE Form B. Following successful 

completion of practice items, the test side of the SWE form B was demonstrated. Participants 

were then asked to read the practice items from SWE form A. Following successful completion of 

these items, the participant then undertook the task of reading aloud from the test side of SWE 

Form A. This paradigm was reproduced for the PDE task.  
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Participants were instructed that this was “reading race” and that they should read aloud down 

the lists of words quickly but clearly, and that if they could not “do” an item they were to skip to 

the next item.  

 

If the participant hesitated for 3 seconds or more, the tester prompted the participant to move to 

the next word. The participant was instructed to continue down the lists until told to stop or 

when the participant was unable to pronounce anymore items. The participant was allowed to 

keep track of which item they were on by using a finger, and this was always shown to the 

participant at the practice item stage.  

 

The testing period for each section was 45 seconds and was measured by the tester using a 

stopwatch. Form A was placed in front of the participant with practice items showing, the tester 

enquired whether the participant was ready and when the participant indicated so, the tester 

commenced the task by saying “go”. The task was completed at the end of 45 seconds by the 

tester saying “stop”. This paradigm was completed for both SWE and PDE subtests. 

 

Scoring was provided by the tester, who deemed whether the word was pronounced correctly (in 

accordance with the pronunciation on the TOWRE recorded sheet.  

 

3.8.4 SCAN C Auditory Figure-ground (AFG) Subtest (+8dB) (Keith, 2000) 

 

Difficulties of speech discrimination in noise are reported to be one of the primary functional 

difficulties of children with deficits in auditory processing (Dawes and Bishop, 2010). SCAN C 

(Keith, 2000) AFG (+8dB) is a US produced, commercially available, standardised test of speech in 

background noise used for auditory processing testing. It includes age-related normative data. 

SCAN C is noted to be the most commonly used test for diagnosing APD (Hind, 2006; Emanuel, 

2002). Dawes and Bishop (2007) showed a significant impact of accent on scores of UK children on 
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SCAN C AFG due to the use of an American accent, and offered age-related conversion scores in 

order to compensate for accent effects in UK children. In view of the prolific reports of poor 

speech in background noise in children with deficits in auditory processing, popularity of SCAN C 

in APD testing, and conversion factors for US-UK normative data; SCAN C AFG was used to 

investigate the functional deficit in auditory processing ability. 

 

Sennheiser HD25-1 headphones connected to a Sony D-EJ021 CD player (containing the test CD) 

via a Belkin Y-lead adapter were used in this test procedure. The volume was set to a comfortable 

level (volume 4 on the digital volume control of the CD player) as deemed by the investigator 

prior to instruction. The headphones were placed over the participants’ ears and participants 

were instructed to repeat back to the investigator the word they heard through the headphones. 

They were advised by the examiner which ear would be tested prior to commencement of testing. 

The investigator also had a headphone (AKG K99) situated over their right ear (connected to the 

CD player via the other lead of the Y-adapter) in order to monitor the progress of the participants. 

All other instructions were incorporated from the SCAN C Test, with scores recorded based on the 

investigators judgement of correct word reported back from the participant. 

 

3.8.5  Audiometric Screening (pre-intervention test battery) 

 

APD is generally characterised as difficulties in listening in the presence of normal peripheral 

hearing (BSA, 2011, ASHA, 2004). In view of this description and the effect of potential hearing 

loss on tests using auditory stimuli, a pure tone audiometric evaluation was completed to rule out 

any potential hearing loss. 

 

A modified screening paradigm was used based on the school hearing screening protocol 

currently employed by Sheffield Children’s Hospital. Audiometric evaluation was performed using 

a Kamplex KD29 portable Audiometer with TDH 39 Headphones, calibrated to BS EN 60645-1 (IEC 

60645-1) and the relevant BS EN ISO 389 (ISO 389) series standards. 
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Headphones were positioned over the participant’s ears, and a push response button was given 

to the participant. The participant was instructed to “press the button as fast as they could” when 

a sound was heard.  

 

Two practice presentations at 50dBHL at 1 kHz (pure tone) were given to the left ear, for which 

the participant responded. Following successful completion of the practice trials, intensity of the 

stimuli was dropped to 25dBHL at 1 kHz and two presentations were presented with varied 

intervals, in accordance with BSA recommended procedure for Pure Tone Audiometry (BSA, 

2011). If successful responses were obtained then this procedure was repeated for the following 

frequencies, 2, 4, 8 kHz. 

 

If successful responses were obtained at each of these test frequencies, two presentations of 

30dBHL at 0.5 kHz were performed. Successful completion of all frequencies performed allowed 

for further testing paradigm to proceed. Failure to complete the screening procedure resulted in 

the participant being referred to Sheffield Children’s Hospital’s Audiology service for further 

assessment.  

 

The presentation intensities of 25dBHL and 30dbHL were used in order to factor in a potential 

masking effect by background noise in the test environment (due to the lack of soundproofing). 

These intensities were based upon the hearing screening protocol for Sheffield School Nursing 

Screening. 

 

3.8.6 Draw a Person Test (Naglieri, 1988) 

 

The Draw a Person (DAP: Naglieri, 1988) is a non-threatening assessment of non-verbal IQ with 

age appropriate standardised scores. This test was performed at pre-intervention stage in order 
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to investigate the possible confounding variable of IQ on psycho-physical performance of the 

auditory processing and reading tasks.  

 

Potential study participants undertook this test in two group sessions. Group administration of 

the DAP test was performed to reduce time participant time away from usual curricular activities. 

In addition, group administration allowed for the reduction of potential administration effects 

caused by possible slight differences in instruction. In both sessions, instruction were read from 

the DAP manual to avoid instruction effects.  

 

Potential study participants were instructed to draw three pictures; man, woman and themselves 

on blank pieces of paper. Each drawing was instructed to be labelled with the child’s name. The 

session was described as a “quiet drawing test” so that there was no conference between 

participants. Participants were instructed to use a single drawing implement of their choice.  

 

The testing period lasted approximately 15 minutes in duration, with participants turning over 

their drawing and returning to their class when they felt they had drawn the best three pictures 

they could produce.  

 

3.9 Interventions 

 

The school was provided with intervention session registers to track the participants’ use of the 

intervention. The School was instructed to provide 2 daily intervention sessions during quiet 

working times, and were to be a minimum of 30 minutes apart in accordance with TLP® protocol 

issued by Advanced Brain Technologies. 

 

3.9.1 The Listening Programme (TLP®) 
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The TLP® programme was provided by Advanced Brain Technologies on loan for this study. The 

programme was provided on 5 iPod Nano’s, with TLP® intervention described as an experimental 

TLP® intervention designed specifically for a 10 week programme used for school use, compared 

to the “classic” 20 week programme. The programme used in this study was reported to involve 

the same 4 stage filtered classical music as described in the 20 week TLP® programme, involving; 

Full Spectrum, Green (sensory), Orange (cognitive/communication) and Red (creative) zones (as 

described in section 2.11). Further information regarding the specific design of the TLP® 

intervention programme used in this study was deemed commercially sensitive by Advanced 

Brain Technologies, and was unavailable to the investigator. 

 

Participants listened to the intervention using AKG K99 headphones using a shared single iPod 

with a connection to the headphones being provided simultaneously via a Belkin Y lead adapter. 

One iPod was kept in school as a reserve.  

 

3.9.2 Music control programme 

 

The music control programme was provided by Advanced Brain Technologies on loan to this 

study. The programme was provided on 5 iPod Nano’s. Participants listened to the intervention 

using AKG K99 headphones. The music was classical music that was not spectrally filtered. Two 

participants shared a single iPod with a connection to headphones being provided simultaneously 

via Y lead adapter. One iPod was kept in school as a reserve.  

 

The comparison between spectrally filtered music and non-filtered music allowed for the 

investigation into the impact of spectral filtering of music on auditory processing and reading 

abilities. 

 

3.9.3 Protocol for music interventions 
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The music intervention protocol was identical for both music programmes. A detailed programme 

list was given to school staff in order to ensure that participants were listening to the allocated 

track at the correct point (Appendix 7). 

 

3.9.4 Non-music Control (Audio-book) 

 

The non-music/audio-book control group was designed to investigate the impact of a music 

intervention on auditory processing and reading skills by comparison against a non-music 

intervention. 4 children’s’ audio-books were downloaded from www.booksshouldbefree.com 

designed for public use. The 4 books chosen are shown in Table 3.4.  

 

Table 3.4 Author and Title of Audiobooks used for the non-music control intervention 

Author Title 

Mark Twain The Adventures of Tom Sawyer 

Kenneth Graham Wind in the Willows 

Jules Verne Around the World in 80 Days 

Rudyard Kipling The Jungle Book 

 

The audio-books were burnt onto writeable CDs, with each track representing one chapter. 

Several CDs were required for each book, and were labelled according to book, and intervention 

tracks. All CDs were placed into a CD container and labelled 1-4 (corresponding to the 

appropriately labelled CD players).  

 

http://www.booksshouldbefree.com/
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Four Sony DEJ011S CD players were used to administer the CD based intervention. The CD players 

had a digital volume controlled which was set to volume 4 by the investigator prior to the 

intervention period. In addition, the CD players possessed a digital memory allowing the CD player 

to start a track exactly where it had been stopped, including mid-way through a track. 

Opening/changing the CD wiped this memory. Participants were advised not to open/change the 

track except when instructed to do so by the teacher. 

 

The audio-book control group followed the same intervention regime as the music programmes, 

with 2 intervention session, daily during quiet working time. A detailed protocol was given to 

school staff to instruct the participants to finish the designated tracks at the appropriate time 

(Appendix 8). Each intervention session lasted approximately 15 minutes and stopping points mid-

track were allocated in some instances by the primary investigator as it was deemed an 

appropriate point in the chapter to stop the story.  

 

3.10 Statistical Analysis 

 

Analysis of data was performed using SPSS 19 statistical analysis package. Descriptive statistics 

were calculated for pre intervention measures. A one ANOVA was calculated between groups to 

investigate for potential differences between groups at the pre-intervention stage for Age and 

Non-verbal IQ.  

 

In order to investigate the first and second research hypotheses, a repeated measures ANOVA 

was performed with group and time as factors to calculate differences between groups (between 

subjects) for pre and post intervention differences (within subjects). The interactions between 

time x test were also investigated in order to ascertain the interaction between the test measures 

over time (if group x time interaction was insignificant). Post hoc comparisons were performed for 

significant interactions. 
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To investigate hypotheses 3 and 4, Pearson’s correlation coefficients were calculated for 

individual pre-intervention data of auditory and reading analysis (hypothesis 3) and for (pre-post 

intervention) improvements in auditory processing and reading (hypothesis 4). Fisher’s Z tests 

were performed to assess if any correlation was significant.  

 

 

 

CHAPTER 4 

EXPERIMENTAL RESULTS 
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4.1 Effects of Auditory Interventions on auditory processing and reading abilities 

 

“Typically developing children (aged 8-9 years old) that have undertaken music based auditory 

stimulation training (The Listening Programme®) will show significant advancements in auditory 

skills compared to children who listen to unmodified classical music, including improvement in 

auditory temporal resolution (Backward Masking) and speech discrimination in noise (Scan C 

Auditory figure-ground subtest).” 

 

“Typically developing children (aged 8-9 years old) that have undertaken music based auditory 

stimulation training (The Listening Programme®) will show significant advancements in reading 

(sight word reading and phonemic decoding) skills compared to children who listen to unmodified 

classical music.” 

 

Prior to further analysis, a single one-way ANOVA was performed in order to investigate any 

differences between experimental groups for the reported confounding variables of age and non-

verbal IQ. There were no significant group differences for age [F (2, 19) = .554, p = .584] or non-

verbal IQ [F (2, 19) = .144, p = .867].  
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Table 4.1 illustrates the pre and post intervention scores (and standard deviations) separately for 

the 3 intervention groups. A repeated measures ANOVA was used to determine whether the 

intervention groups differed across the 4 main outcome measures (Total Word Reading Efficiency, 

Auditory Figure-Ground, Backward Masking and Auditory Attention). The effect of time x study 

group was not significant, [F (10, 90) = 0.338, p = 0.968]. This suggests that there were no 

significant differences between groups for each outcome measures as a result of the 

interventions. 

 

The interaction between test and time was also investigated to determine whether there were 

statistically significant differences between outcome measures and time. The test x time 

interaction was significant [F (5, 90) = 12.542, p <0.001]. Post hoc analysis was performed, 

significant interactions between test x time were found for Auditory Attention [F (1, 18) = 13.795, 

p <0.005] and Backward Masking [F (1, 18) = 45.553, p < 0.001]. No other outcome measures 

showed significant test x time interaction. These results suggest that both the Auditory Attention 

and Backward Masking auditory processing tasks showed a significant change over time.  
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4.2 Correlations between reading and auditory processing skill  

 

“There is a significant correlation between reading (phonemic decoding) and auditory (temporal 

resolution) skills of school aged children (aged 8-9) at the pre-intervention stage.”  

 

“There is a significant correlation between advancements in reading (phonemic decoding) and 

auditory skills (temporal resolution) following auditory intervention.” 
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There were no significant differences between groups for auditory processing and reading 

measures. Data was therefore collected was pooled together to create a single sample for 

correlational analysis. Using a Pearson’s correlation coefficient, correlations between auditory 

processing and reading skills were examined at the pre-intervention stage. The significance of 

correlations were calculated using a Fischer’s Z test and tabulated. Significant correlations for 

auditory processing and reading tasks at the pre-intervention stage and pre-post intervention 

differences between auditory processing and reading tasks are shown in Tables 4.2 and 4.3 

respectively. 

 

Very strong significant positive correlations were found between Total Word Reading Efficiency and 

Sight Word Efficiency [r= .899, n=21, p <0.001] and Phonemic Decoding Efficiency [r= .856, n=21, p < 

0.001] at the Pre-intervention stage. In addition, Sight Word Efficiency and Phonemic Decoding 

Efficiency were also shown to have a very strong significant positive correlation with each other [r= 

.731, n =21, p <0.000]. These correlations suggest that individuals who scored higher on Total Word 

Reading Efficiency also scored higher on Sight Word Efficiency and Phonemic Decoding Efficiency. 

 

A strong significant positive correlation was also shown between Auditory Attention and Backward 

Masking [r= .509, n=21, p <0.05]. This suggests that those who scored lower scores on Auditory 

Attention also scored lower on Backward Masking. In the Backward Masking and Auditory Attention 

tasks, the lower the score/threshold the better the participant’s ability to perform the task. 

Auditory Attention also showed a strong negative correlation with Sight Word Efficiency [r = -.442, n 

= 21, p <0.05]. This correlation shows that individuals with lower Auditory Attention Scores (better 

performers) scored higher on Sight Word Efficiency tasks.  

 

Auditory Figure-ground was not significantly correlated with any other measure of auditory 

processing or reading. Backward Masking was not significantly correlated with any reading 

measure. 
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Additionally, correlations between Age, Non-verbal IQ and auditory reading measures were 

examined for the pre-intervention scores. There were no significant differences between Age and 

Non-verbal IQ with any measure of auditory processing or reading ability. However, correlation 

between Age and Non-verbal IQ showed a strong, significant positive correlation [r= .490, n = 21, p 

< .05]. 

 

 

Table 4.3 shows significant correlations for pre-post differences between auditory processing and 

reading tasks. Improvements in Total Word Reading Efficiency showed strong significant positive 

correlations with Sight Word Efficiency [r = .598, n=21, p < 0.05], thus showing that participants 

who showed greater improvements in Total Word Reading Efficiency also showed greater 

improvements in Sight Word Efficiency and Phonemic Decoding Efficiency. Correlation between 

improvements in Sight Word Efficiency and Phonemic Decoding Efficiency were not significant. 
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Phonemic Decoding Efficiency also showed a strong significant positive relationship with Auditory 

Attention [r= .533, n=21, p, 0.05], and a strong significant negative relationship with Auditory 

Figure-ground [r= -.563, n=21, p < 0.05]. Improvements in Phonemic Decoding Efficiency did not 

show a significant correlation with improvements in Backward Masking.  
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CHAPTER 5 

DISCUSSION 
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5.1 Summary of data analysis 

 

The results of the study show that the use of TLP® did not result in a significant advance in auditory 

processing and reading abilities of the participants compared to the use of an unmodified music 

programme or a non-music programme. There was no consistent correlation between participants’ 

auditory temporal processing and reading abilities at the pre-intervention stage, or in 

improvements in auditory temporal processing and reading.  

 

5.2 Effect of Intervention on auditory processing and reading abilities 

 

The results of this study suggest that there were no significant group differences between groups 

on any auditory processing or reading measure employed in this study [F (10, 90) = 0.338, p = 

0.968], and therefore further interpretation of these results was not possible.  

 

5.3 Effect of time of auditory processing and reading abilities 

 

Despite the results of this study suggesting that there were no significant differences between 

intervention groups for pre and post intervention scores, the effect of time was significant [F (5,90) 

= 12.542, p <0.01). This suggests that while the results lacked in differences between groups on 
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auditory processing and reading measures, differences in results between pre and post intervention 

test periods was significant. Further post-hoc analysis revealed significant differences between pre 

and post intervention stages for the Auditory Attention [F (1, 18) = 13.795, p < 0.05] and Backward 

Masking tasks [F (1, 18) = 45.553, p < 0.01}. There were no further significant pre-post differences 

for any other auditory processing or reading measure. 

 

It has previously been suggested that improvements in Auditory Attention and Backward Masking 

can occur as a function of age. Hartley and Moore (2000) revealed improvements in Backward 

Masking suggesting a possible maturational effect due to improved neural synchrony. Moore et al 

(2010) also showed improvements in Backward Masking and Auditory Attention as a function of 

age, thus raising the possibility of improved performance on Backward Masking task being 

secondary to improved performance of Auditory Attention. Thus improvements seen on Backward 

Masking and Auditory Attention measures could be as a result of a maturational effect. However, in 

both Hartley and Moore (2000) and Moore et al (2010), such effects were over a timescale of years; 

however the improvements in this study occur over a period of 12 weeks, thus this time period 

appears too short to be explained by a maturational effect. An alternative explanation could be 

provided by a test-retest effect, with improvements in both Auditory Attention and Backward 

Masking task being due to the participants’ familiarity with the tests. 

 

5.4 Effect of Accent on SCAN C Auditory Figure-ground task 

 

The results of the participants in this study for the SCAN C Auditory Figure-ground task were poorer 

than expected for the age when calculated against the normative data produced for the test (Keith, 

1999). Dawes et al (2007) previously documented an accent effect for British participants on the 

SCAN C tasks (including Auditory Figure-ground) when compared to normative data produced for 

the SCAN C (based on data from American participants). When a correction factor was introduced 

(provided by Dawes et al, 2007), the participants performed similarly to what was expected from 

the normative data provided by SCAN C. This suggests that most participants enrolled on this study, 

had age-appropriate Auditory Figure-ground scores and would support the findings of Dawes et al 
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(2007) that British subjects suffered from an accent effect that resulted in initial poorer than 

expected compared to the normative data provided by the SCAN C test. 

 

 

 

5.5 Effect of Age and Non-verbal IQ  

 

The effect of participant intelligence and age have both been previously cited as potential 

confounding variables in research examining psycho-acoustic performance during tests designed to 

examine auditory processing abilities (Moore et al, 2010; Banai and Ahissar, 2006; Hartley and 

Moore, 2000). It has been suggested that this is due to maturational effect (age) and suggested 

increased attentional capacity with increased intelligence (Moore et al 2010). To examine the 

potential confounding effects within this study, statistical analysis was performed to search for 

significant difference between the groups on these potential confounding variables. There were no 

significant differences between groups for Age [F (2, 19) = .554, p = .584] or Non-verbal IQ [F (2, 19) 

= .144, p = .867].  

 

There were no significant group differences for non-verbal IQ and age for pre-intervention data 

between groups. Therefore non-verbal IQ and age cannot be accredited as potential confounding 

variables in this investigation.  

 

5.6 Correlation analysis 

 

There were no significant group differences between groups for auditory processing and reading 

tasks, therefore, data from all three experimental groups were combined for correlation analysis. 

The relationship between auditory processing (specifically backward masking) and reading skill 
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(phonemic decoding) advancements showed no significant correlation, thus refuting the causal link 

between rapid temporal resolution and reading ability (Table 4.3) as noted by Wright et al (1997). 

The following subsections discuss the significant correlations found. 

 

 

 

5.6.1 Correlations between reading and auditory processing skills  

 

Total Word Reading Efficiency was not significantly correlated with any auditory processing task, 

but there was a strong significant positive correlation with the performance of its two subtests 

(SWE and PDE) for both the pre intervention stage and pre-post intervention differences. A strong 

significant correlation was also seen between the SWE and PDE at both data collection periods 

supporting the accepted claim of improved reading ability in subjects with higher performance on 

phonological awareness tasks (Goswami and Bryant, 1990; Snowling et al, 2002;, Ramus, 2003; 

Rosen, 2003).  

 

Rapid temporal resolution has previously been reported to be the causal factor underlying 

phonological awareness ability (Tallal et al, 1973, 1974, 1980., Wright et al, 1997). This predictive 

ability has been shown using several tasks of temporal auditory processing including Backward 

Masking (Wright et al, 1997). In this study, reading ability was not significantly correlated to 

Backward Masking task for either Total Word Reading Efficiency or Phonemic Decoding Efficiency at 

either pre intervention data collection stage or for pre-post intervention differences. The findings 

from this study suggest that there is no relationship between Backward Masking and Reading 

(including phonological awareness). These findings are consistent with those of Bishop (1999) who 

investigated the role of Backward Masking in reading ability, and support growing evidence that 

rapid temporal resolution is not a predictor of reading ability.  
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A further demonstration of the lack of causal evidence between temporal discrimination and 

reading ability can be seen from intervention studies investigating the role of specific language 

programmes (FastForWord by Tallal et al) designed to artificially elongate formant transitions in 

order to improve auditory discrimination and therefore phonological and reading abilities. Although 

investigation by its creators has shown that FastForWord does elicit improvement in language 

abilities (Tallal and Merzenciah, 1996), however these findings have contradicted the results of 

several independent studies (see section 2.7.6.1).  

Total Auditory Figure-ground was not significantly correlated to any auditory processing or reading 

measure performed at the pre-intervention stage, but did show a strong, significant negative 

correlation with Phonemic Decoding Efficiency for pre-post intervention differences. This strong, 

significant relationship was unexpected given that speech perception in noise and reading abilities 

have been previously shown to be positively correlated (Ziegler et al, 2009; Brady et al, 1983). In 

addition, poor reading performance in children has been persistently linked to background noise in 

a child’s educational setting (Shield and Dockrell, 2003; Bradley, 2003; Pickard and Bradley, 2001). 

The finding of a negative correlation between improvements in speech discrimination in noise and 

poorer phonemic decoding skills (important for reading ability) appear counter-intuitive. A possible 

explanation was found through further examination the data involved whereby it appeared that 

this correlation was driven by poorer performance on the Phonemic Decoding Efficiency task for 

several participants at the post-intervention stage compared to pre-intervention stage. It would be 

unusual for a child to truly regress with regards to phonological skills, more likely would be to 

hypothesise a third confounding variable which impacts on behavioural experimental measures; 

motivation/ attention of the participant while performing the task.  

 

There was also a significant positive relationship for Auditory Attention and Phonemic Decoding 

Efficiency differences showing that poorer performance on Phonemic Decoding Efficiency between 

pre-post intervention stages was related to poorer performance on the Auditory Attention task. 

This offers support to the previously mentioned hypothesis related to poor post-intervention scores 

on Phonemic Decoding Skill in comparison of pre-intervention scores.  
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Auditory Attention was also showed a strong significant negative correlation with Sight Word 

Efficiency at the pre-intervention stage (higher performance on Sight Word Efficiency correlated 

with better Auditory Attention scores). Given that the Sight Word Efficiency task involves the 

repetition of real words in a set time period (45s) with word difficulty increasing throughout the 

task (increased length of word), it could be assumed that smaller, more common words would be 

easily recognisable through grapheme to grapheme correspondence in the orthographic lexicon. 

However, as the participant progresses through the task, words become larger multisyllabic items 

that place greater pressure on the orthographic lexicon, and become less familiar to the participant 

then it could be assumed that the participant resorts back to their phonemic decoding ability which 

requires active attention and memory (Ehni, 1984; 1987). The lack of interaction between Sight 

Word Efficiency differences and Auditory Attention differences between pre and post-test could be 

explained through the participants’ ability to have stored the words into their orthographic lexicon 

following the task and due to potentially increased vocabulary during the pre-post intervention 

stage. This results in subjects not requiring to place such strain an attention-based tasks.  

  

5.6.2 Correlations between Auditory processing skills 

 

The Auditory Figure-ground task was not significantly correlated with any other auditory processing 

measure at either the pre-intervention stage or between pre and post intervention differences. This 

is unsurprising given that Backward Masking is suggested to be predicted by Auditory Attention 

(Moore et al, 2010), the Auditory Figure-ground task has been shown to be predicted by working 

memory (Lum et al 2010).  

 

The Backward Masking and Auditory Attention tasks showed a strong, positive, significant 

correlation at the pre intervention stage (better performance on Auditory Attention was related to 

better performance on Backward Masking). This finding is consistent with Moore et al (2010), 

whose findings also showed a significant correlation between these 2 measures. Moore et al (2010) 

suggested that performance on Backward masking task was pre-dominantly due to higher order 

attentional capacity rather than a lower level bottom-up auditory processing capacity. Further 
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evidence for this attentional impact has also been suggested by other studies investigating the use 

of Backward Masking, with high intra-subject variability in Backward Masking threshold being linked 

to poor attentional performance (Buss et al, 1999; Cohen-Munram, 2006) In addition, Edwards and 

Hogben (2004) suggested that a child who obtains a high threshold of auditory perceptual tasks is a 

result of poor sustained attention on a boring task rather than auditory perception. 

 

If there was a causal link between Auditory Attention and Backward Masking threshold one would 

expect pre-post intervention differences to show a significant correlation between the two 

variables, however, in this was not the case (pre-post intervention differences between the 2 

variables was not significant). This was surprising given that both measures were shown to improve 

significantly between the two intervention stages, however this lack of correlation in improvements 

would suggest the impact of a third unaccounted variable. 

 

5.6.3 Correlation between potential confounding variables (age and non-verbal IQ) and measures of 

auditory processing and reading skill 

 

The age of participants and non-verbal IQ scores showed a strong, significant positive correlation at 

the pre-intervention stage. This was expected and agrees with previous test data (Nagerli, 1989) 

that improvements on the Draw-a-Person test were correlated with increased age. There were no 

further significant correlations between non-verbal IQ or age with any measure of auditory 

processing or reading skill, despite previous links with age and Backward Masking (Hartley and 

Moore, 2000; Buss et al, 1999). This lack of correlation could be explained by the strict age-criteria 

employed by the study, suggesting that for age to become a significant factor, a participant sample 

must involve considerable age differences. 

 

5.7 Limitations of Current Study 
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A priori sample size analysis revealed the need for a minimum of 28 participants per intervention 

group; however the sample obtained is smaller (The achieved power of this study was 32% to 

detect a medium size effect). This has a significant impact on the study’s ability to draw concrete 

conclusions regarding the effectiveness of the interventions. This is due to effects being harder to 

detect in the sample, especially given the high-variability in the measures used, and thus leading to 

high probability of type 2 error (Button et al, 2013).  

The lack of sufficient sample size was due to the limited number of returned consent forms from 

parents (23.9% of total potential participants completed the study). The possibility of another 

cohort from a performance-matched primary school would have potentially increased numbers, 

however this was not feasible due to time and equipment demands. Additionally, the lack of 

participant consent forms returned had a further impact resulting the inability to have a forth non-

intervention group (inclusion of a fourth non-intervention group would have further reduced the 

statistical power of the study required for statistical analysis). 

 

The wide variety of performance on each test also exacerbated the effect of a small sample on the 

means and standard deviations of group measures. The use of the measures chosen in this study 

was partially due to their commercial availability, common use and recorded test-retest reliability. 

However, variations would be expected between participants (especially in view of the skills 

investigated not yet reaching maturation). A larger sample size would have not only added 

sufficient statistical power to the study, but additionally also improved the effect of wide variability 

on group means (Button et al, 2013). An additional modification would be to use 

electrophysiological measurements to investigate auditory processing skills, in order to attempt to 

remove confounding variable of sustained attention and motivation effect on behavioural 

measurement outcomes. However, currently there are no suitable electrophysiological systems 

commercially available to provide this. 

 

All children within the appropriate school year group were offered the possibility to participate in 

the study, however only a small sample was recruited. These children were reported by the school 

to generally be the high achievers in the year and thus potentially placed a sample bias for the 
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whole group compared to the actuality of the average pupils’ performance in the year group. 

Findings from this study show that almost all the participants had a reading age higher than the 

chronological age, and no participant enrolled had reading age below that of their chronological 

age. 

 

There were several known limitations in the school-based administration of the intervention 

strategies. Firstly, due to the small number of participants enrolled on the study, this resulted in a 

small sample population spread across a number of separate classes within the designated year 

group. This created difficulty for the teachers who were asked to administer the intervention 

programmes to a minority of individuals in class whilst trying to supervise the majority of the class 

who were not involved in the study.  

 

This administration issue created major implications for the study; as the teachers were often 

involved in the supervision of the class as a whole, they did not record participants’ progress on the 

intervention (this was done without the investigator’s knowledge). This resulted in the study being 

unable to document the progress of the participants throughout the intervention programme, and 

therefore to comment on the participants’ adherence to the intervention programmes. 

 

In addition, Teachers delegated the administration of the intervention to the participants 

themselves, which created difficulties in the daily administration of the intervention due to the lack 

of direct supervision for the participants, resulting in difficulties following the intervention protocol 

(all intervention programmes were designed to be administered by a supervising adult). As a result, 

it was noted that several participants reported that they sometimes forgot the session or on one 

occasion allowed a  participant who did not wish to continue on the study to undermine the study 

by not performing the intervention and convincing another participant (who shared the equipment) 

not to continue rather than indicate this to a teacher. As the intervention groups were spread 

throughout several classes, all intervention groups were affected.  
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While, the lack of supervision in administering the interventions was a major issue, the degree this 

occurred varied across the participants; unfortunately, due to the lack of recorded use this could 

not be calculated as a confounding variable.  

 

There were also reports of several equipment difficulties; particularly the drain of power from the 

CD players used for the non-music control group. This created difficulties as on several occasions 

because the participants were unable to use the intervention due to a lack of batteries. This 

difficulty was potentially due to the inappropriate use of the equipment by the participants (not 

switching the CD players off, but only placing the CD players on pause), however as this was not 

directly supervised this cannot be confirmed. These difficulties were not passed on to the Head 

Teacher (due to the lack of direct teacher supervision) with whom the primary investigator had 

weekly contact throughout the Intervention Stage and only became apparent at the end of the 

post-intervention stage. 

 

Previous studies investigating the use of TLP® have reported the need for direct supervision during 

administration (Jeyes, 2010), although these studies have often involved small class sizes where 

direct supervision of a larger proportion of the class was more plausible. 

 

An alternative option would have been to introduce the interventions into the school year group 

curriculum, whereby all children would listen to the intervention and only those with parental 

consent would be tested, or alternatively the school would consent that all children would could 

also be tested. This would result in the administration of the interventions being Teacher-led, and 

for a far higher sample size (thus improving the statistical power of the study, and reducing the 

implication of sample size bias). Unfortunately, this alternative also poses several limitations, 

namely the difficulties of introducing this into the curriculum, which in this case would have been 

further exacerbated by the government inspection of the school which took place during the 

Intervention Stage. As this would be a singular school deviation from the national curriculum, it 

would require the consent of all parents of the children involved (or from the parent-teacher 
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association at the very least). Ultimately, even if this alternative strategy was implemented, it would 

have been impossible to complete due to the lack of equipment available. 

 

The original TLP® intervention programme stipulates a 20 week intervention period composed of 

repeated 10 week cycles. The intervention programme used a single 10 week cycle. While it could 

be argued that the lack of a 20 week programme is a limitation of the study, the single 10 week 

cycle was used as a school-based programme designed by Advanced Brain Technologies. In 

addition, several non-published studies (obtained through the Advanced Brain Technologies 

website also have used a 10 week school-based programme and shown significant improvements in 

auditory processing and/or reading skill.  

 

The auditory processing and reading tasks used were chosen due to the frequency of use in 

conventional auditory processing and reading assessments performed currently by professionals 

(Emanuel, 2002), and with high quality normative data with which to compare the study’s results. 

The current study highlights the potential confounding variables of high order cognition (attention) 

on psycho-acoustic measures of auditory processing skill. However, as analysis in this study is 

correlational, this study cannot claim that high order cognitive abilities provide a causal role for 

participant’s performance on behavioural tasks. 

 

The role of attentional capacity has previously been noted by Moore et al (2010) on a larger scale 

prospective study of auditory processing disorder (using the Auditory Attention task involved in this 

study). Inattention is also a common behavioural characteristic of those with suspected APD (Richo, 

1994), and thus the use of a single auditory attention paradigm only gives a snapshot of sustained 

attentional capacity at that point, therefore the attentional task employed does not provide an 

overall insight into a participant’s attention but provides evidence of their sustained attention 

throughout the test periods. The use of a teacher or parental questionnaire may prove a useful 

addition for investigating a participant’s potential improvements in attention; however there are 

limitations in the form of currently available questionnaires when related to auditory attention (see 

section 2.7.5) 
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The use of Backward Masking as the temporal resolution task involved in this study may also be 

questioned, especially in light of later evidence refuting the role of rapid auditory processing in 

reading development (Mody et al, 1997; Rosen, 2003; Ramus, 2003). The use of amplitude 

modulation (Goswami et al, 2011) may prove an alternative temporal resolution task; however its 

use is currently experimental and is not routinely used clinically. The amplitude modulation deficit 

suggested by Goswami et al (2012) has also received criticism (Ramus, 2012) and hence there is 

currently no consensus in the role of temporal auditory processing in reading ability. Furthermore, 

there are no amplitude modulations tasks developed that currently offer normative data. The use of 

a temporal discrimination task that is more commonly performed in clinical setting was judged to 

be more appropriate.  

 

5.8 Future Work 

 

Despite methodological limitations regarding group size and difficulties in intervention 

administration, this study has provided the first attempt at scientific investigation of the role of 

TLP® and offers a starting block for further investigation. While findings of this study do not support 

the use of TLP® in typically developing children (aged 8-9 years) with average or above average 

reading and average auditory processing ability, these findings cannot be used to conclude that 

TLP® does not impact auditory processing and reading abilities in this participant group due to the 

low statistical power of the study.  

 

Additionally, this study cannot report on the use of TLP® with participants with APD or significant 

reading deficit. Further investigation involving comparisons with control interventions would be 

required on a larger scale (either with typically or non-typically developing populations). 

Furthermore, care would be required in accounting for confounding cognitive variables (such as 

attention and memory).  
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The need for larger sample is paramount for further analysis of the impact of TLP®. Despite the lack 

of statistical power, the results of the statistical analysis performed suggest the effect size of TLP® 

would be small and therefore the sample size would be need to be considerably larger than that 

reported to be needed for this study.  

 

The use of TLP® on a larger scale in school would require alteration to the administration of the 

procedure (due to small groups within the setting requiring specific administration by a Teacher/ 

Teaching Assistant “on board” with the intervention). Alternatively use of larger group sessions in 

school requires a high volume of equipment, therefore development of an alternative presentation 

method (I.e. through sound-field system) may be prudent.   

 

The use of TLP® was not shown to significantly benefit participants two weeks post intervention, 

however short benefit maybe seen through increased mood and arousal (Schellenberg, 2007). 

Finally investigation of the short term benefit (i.e. within 15-30 minutes of intervention) should also 

be investigated in order to establish whether TLP® affects an improvement in skills over that of 

unmodified music during this time period.  

 

5.9 Conclusion 

 

This study offers the first scientific attempt at investigating the impact of TLP® on auditory 

processing and reading skills in typically developing children (aged 8-9 years), for which TLP® is also 

marketed (as well as being marketed for those with difficulties in auditory processing and reading 

ability). The findings of this study suggest that there were no significant differences between the 

experimental groups for any of the auditory processing or reading tasks used. However, concrete 

conclusions cannot be drawn from this study due to its lack of statistical power. Instead this study 

acts as a pilot study for a larger investigation of TLP®. Additional modifications to study design 

(based on difficulties in the current study) are suggested. 
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The correlations between measures of auditory processing and reading were not consistently 

significant for pre-intervention scores and pre-post intervention differences. There were no 

significant correlations with overall measures, however some significant correlations were present 

between sub-tests, but these correlations could be explained by alternative factors such as higher 

order cognitive influence rather than a direct causal link between auditory processing and reading 

ability. In particular there was a complete lack of correlation between phonological awareness and 

Backward Masking supporting recent evidence (Rosen, 2003; Ramus, 2003, Ramus, 2012) refuting 

the theory that rapid temporal discrimination ability has a causal effect on reading ability. In 

addition, Backward Masking and Auditory Attention were strongly linked supporting the conclusion 

of Moore et al (2010) suggesting that auditory processing difficulties could be predominately due to 

inattention.  

 

Significant correlations between auditory processing and reading improvements were also shown. 

However these correlations were unexpected as increased PDE was shown to be significantly 

negatively correlated with multiple auditory processing tasks. The correlation between reading 

ability and temporal resolution was not significant, refuting previous claims in the literature (Tallal 

et al, 1973, 1974, 1975, 1980., Wright, 1997). 

 

Therefore, this study does lack sufficient statistical power to categorically conclude that TLP® does 

not improve auditory processing and reading ability in typically developing children (aged 8-9 

years). However, no evidence was found to support the conclusion that TLP® would lead to an 

improvement in these abilities for the population tested. There were no significant correlations 

between rapid temporal resolution and phonemic decoding efficiency in this study, as suggested by 

supporters of the Rapid Temporal Auditory Processing theory linked with deficits in phonological 

skills. Auditory processing abilities were shown to be highly variable and consistent with the 

limitations of using psycho-acoustic measurements in assessing auditory processing ability 

previously stated in studies investigating the use of psycho-acoustic methods of measuring auditory 

processing abilities. This study shows the need for further development of electro-physiological 

measurements for clinical use in the analysis of auditory processing skills, in order to attempt to 
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reduce the impact of higher order cognitive abilities and the effect of participant motivation in the 

assessment of auditory processing skills. 

 

 

 

 

 

 

REFERENCES 

 

 

 

 

 

 

 

 

 

 

 



 

 127 

 

 

 

 

Ahissar, M., Protopapas, A., Reid, A., Merzenich, M.M. (2000). Auditory processing parallels 

reading abilities in adults. Proceedings of the National Academy of Sciences of the United 

States of America, 97 (12), 6832–6837.  

 

American Speech-Language-Hearing Association. (2005). Technical Report: Central Auditory 

Processing Disorders. www.asha.org accessed on 8/4/2012 

 

American Speech-Language-Hearing Association. (1996). Central auditory processing: 

Current status of research and implications for clinical practice. American Journal of 

Audiology, 5, 41–54. 

 

Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, 

phonological processing, and early reading ability in preschool children. Journal of 

experimental child psychology, 83 (2), 111-130. 

 

Arimitsu, T., Uchida-Ota, M., Yagihashi, T., Kojima, S., Watanabe, S., Hokuto, I. & Minagawa-

Kawai, Y. (2011). Functional hemispheric specialization in processing phonemic and prosodic 

auditory changes in neonates. Frontiers in psychology, 2, 1-10 

 

Armitage, S. E., Baldwin, B. A., & Vince, M. A. (1980). The fetal sound environment of sheep. 

Science, 208 (4448), 1173-1174. 

 

http://www.asha.org/


 

 128 

Bamiou, D.-E., Campbell, N. & Sirimanna, T. (2006). Management of auditory processing 

disorders, Audiological Medicine, 4 (1), 46–56. 

 

Banai, K., Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Reading and 

subcortical auditory function, Cerebral Cortex, 19 (11), 2699-2707 

Banai, K., & Ahissar, M. (2006). Auditory processing deficits in dyslexia: task or stimulus 

Related?, Cerebral Cortex, 16 (12), pp. 1718-1728 

 

Banai, K., Nicol, T., Zecker, S. G., & Kraus, N. (2005). Brainstem timing: implications for 

cortical processing and literacy. The Journal of Neuroscience, 25(43), 9850-9857. 

 

Barry, J.G., Ferguson, M.A., Moore, D.R. (2010). Making Sense of Listening: The IMAP Test 

Battery. Journal of Visualized Experiments, (44), e2139, doi:10.3791/2139 

 

Bellis, T. J. (2003). Assessment & management of central auditory processing disorders in the 

educational setting: From science to practice. Cengage Learning. 

 

Bellis, T.J. (1996). Assessment and management of Central Auditory Processing Disorders in 

the Educational setting, from science to practice. Singular Publishing. 

 

Bellis, T. J. & Ferre, J. M. (1999). Multidimensional approach to the differential diagnosis of 

central auditory processing disorders in children. Journal of the American Academy of 

Audiology, 10(6), 319-328 

 



 

 129 

Belin, P., Zilbovicius, M., Crozier, S., Thivard, L., Fontaine, A. A., Masure, M. C., & Samson, Y. 

(1998). Lateralization of speech and auditory temporal processing. Journal of Cognitive 

Neuroscience, 10 (4), 536-540. 

 

Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive 

piano practicing has regionally specific effects on white matter development. Nature 

Neuroscience, 8 (9), 1148-1150 

 

Besson, M., Chobert, J. & Marie, C. (2011). Transfer of training between music and speech: 

common processing, attention, and memory. Frontiers in Psychology, 2, pp.1-12 

 

Billiet, C. R., & Bellis, T. J. (2011). The relationship between brainstem temporal processing 

and performance on tests of central auditory function in children with reading disorders. 

Journal of Speech, Language and Hearing Research, 54 (1), 228-242 

 

Bishop, D.V.M.( 2007). Using mismatch negativity to study central auditory processing in 

developmental language and literacy impairments: where are we, and where should we be 

going? Psychological bulletin, 133(4), 651–672. 

 

Bishop, D. V., & Leonard, L. B. (Eds.). (2000). Speech and language impairments in children: 

Causes, characteristics, intervention and outcome. Psychology Press. 

 

Bishop, D. V. M., Carlyon, R. P., Deeks, J. M., & Bishop, S. J. (1999). Auditory temporal 

processing impairment: Neither necessary nor sufficient for causing language impairment in 

children. Journal of Speech, Language and Hearing Research, 42(6), 1295-1310 

 



 

 130 

Bishop, D. V., Bishop, S. J., Bright, P., James, C., Delaney, T., & Tallal, P. (1999). Different 

origin of auditory and phonological processing problems in children with language 

impairment: Evidence from a twin study. Journal of Speech, Language and Hearing Research, 

42(1), 155-168 

 

Bishop, D. V. M. (1997). Uncommon understanding: Development and disorders of language 

comprehension in children. Psychology Press. 

 

Bocca, E., Calearo, C., Cassinari, V., & Migliavacca, F. (1955). Testing “cortical” hearing in 

temporal lobe tumours. Acta Oto-Laryngologica, 45(4), 289-304. 

 

Bocca, E., Calearo, C., & Cassinari, V. (1954). A new method for testing hearing in temporal 

lobe tumours: preliminary report. Acta Oto-Laryngologica, 44(3), 219-221. 

 

Bogen, J. E., & Bogen, G. M. (1976). WERNICKE'S REGION–WHERE IS IT?. Annals of the New 

York Academy of Sciences, 280 (1), 834-843. 

 

Boothroyd, A. (2004). Room acoustics and speech perception. Seminars in Hearing,. 25, 155-

166.  

 

Boothroyd, A., & Nittrouer, S. (1988). Mathematical treatment of context effects in 

phoneme and word recognition. The Journal of the Acoustical Society of America, 84, 101. 

 

Borg, E. R. I. K., Counter, S. A., & Rosler, G. (1984). Theories of middle-ear muscle function. 

The acoustic reflex: Basic principles and clinical applications, 63-99. 

 



 

 131 

Bradley, J. S., Reich, R. D., & Norcross, S. G. (1999). On the combined effects of signal-to-

noise ratio and room acoustics on speech intelligibility. The Journal of the Acoustical Society 

of America, 106, 1820.  

 

Bradley, J. S., Sato, H., & Picard, M. (2003). On the importance of early reflections for speech 

in rooms. Journal of the Acoustical Society of America, 113 (6), p.3233-3244. 

 

British Society of Audiology (2011). Practice Guidance: An overview of management of 

Auditory Processing Disorder (APD). 

 

Bronzaft, A. L. & McCarthy, D. P. (1975). The effect of elevated train noise on reading ability. 

Environment and Behaviour, 7, 517-528 

 

Brown, G. J. (2010). Physiological models of auditory scene analysis. In Computational 

Models of the Auditory System (pp. 203-236). Springer US. 

 

Butler, T. Clarke, A. (2003). A pilot study to investigate the efficacy of implementing The 

Listening Program in a school with children with learning and information processing deficits. 

Accessed from www.advancedbrain.com on 27/3/2013. 

 

Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. 

R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. 

Nature Reviews Neuroscience, 14, 365-376 

 

http://www.advancedbrain.com/


 

 132 

Buss, E., Hall III, J. W., Grose, J. H., & Dev, M. B. (1999). Development of adult-like 

performance in backward, simultaneous, and forward masking. Journal of Speech, Language 

and Hearing Research, 42(4), 844-849. 

 

Bryant, P. E., Bradley, L., Maclean, M., & Crossland, J. (1989). Nursery rhymes, phonological 

skills and reading. Journal of Child Language, 16 (2), 407-428. 

Cacace, A. T., & McFarland, D. J. (2005). The importance of modality specificity in diagnosing 

central auditory processing disorder. American Journal of Audiology, 14 (2), 112-123 

 

Cacace, A. T., & McFarland, D. J. (2002). Factor Analysis in CAPD and the" Unimodal" Test 

Battery: Do We Have a Model that Will Satisfy?. American Journal of Audiology, 11 (1), 7-9. 

 

Cawley, G. C. (1996). The application of neural networks to phonetic modelling (Doctoral 

dissertation, Ph. D.], University of Essex). 

Chabris, C. F. (1999). Prelude or requiem for the ‘Mozart effect’?. Nature, 400 (6747), 826-

827 

 

Chermak, G. D., Tucker, E., & Seikel, J. A. (2002). Behavioral characteristics of auditory 

processing disorder and attention-deficit hyperactivity disorder: predominantly inattentive 

type. Journal of the American Academy of Audiology, 13(6), 332-338. 

 

Chermak, G. D. (2001). Auditory processing disorder: An overview for the clinician. The 

Hearing Journal, 54 (7), 10-25. 

 



 

 133 

Chermak, G. D., Hall 3rd, J. W., & Musiek, F. E. (1999). Differential diagnosis and 

management of central auditory processing disorder and attention deficit hyperactivity 

disorder. Journal of the American Academy of Audiology, 10(6), 289. 

 

Chermak, G.D., Musiek, F.E. (1997). Central Auditory Processing Disorders, New 

Perspectives. Singular Publishing. 

 

Chermak, G. D., & Musiek, F. E. (1992). Managing central auditory processing disorders in 

children and youth. American Journal of Audiology, 1(3), 61-65. 

 

Cohen-mimran, R. & Sapir, S. (2007). Auditory Temporal Processing Deficits in Children with 

Reading Disabilities. Dyslexia, 192, 175–192. 

 

Cohen, W., Hodson, A., O'Hare, A., Boyle, J., Durrani, T., McCartney, E. & Watson, J. (2005). 

Effects of Computer-Based Intervention Through Acoustically Modified Speech (Fast 

ForWord) in Severe Mixed Receptive--Expressive Language Impairment: Outcomes From a 

Randomized Controlled Trial. Journal of Speech, Language and Hearing Research, 48 (3), 

715-729 

 

Cooper, N. R., Croft, R. J., Dominey, S. J., Burgess, A. P., & Gruzelier, J. H. (2003). Paradox 

lost? Exploring the role of alpha oscillations during externally vs. internally directed attention 

and the implications for idling and inhibition hypotheses. International Journal of 

Psychophysiology, 47 (1), 65-74 

 

Corina, D. P., Richards, T. L., Serafini, S., Richards, A. L., Steury, K., Abbott, R. D., ... & 

Berninger, V. W. (2001). fMRI auditory language differences between dyslexic and able 

reading children. Neuroreport, 12(6), 1195-1201. 



 

 134 

 

Curtin, S., Campbell, J. & Hufnagle, D. (2012). Mapping novel labels to actions: How the 

rhythm of words guides infants’ learning. Journal of experimental child psychology. 112 (2), 

127-140 

 

Curtin, S. (2010). Young infants encode lexical stress in newly encountered words. Journal of 

Experimental Child Psychology, 105 (4), 376-385. 

Cutler, A. (1994). The perception of rhythm in language. Cognition, 50 (1), 79-81. 

 

Davis, D. and Davis, C. (1997). Sound system engineering (second edition). Newton, MA:  

 

Dawes, P., & Bishop, D. V. (2010). Psychometric profile of children with auditory processing 

disorder and children with dyslexia. Archives of disease in childhood, 95(6), 432-436. 

Dawes, P., & Bishop, D. (2009). Auditory processing disorder in relation to developmental 

disorders of language, communication and attention: a review and critique. International 

Journal of Language & Communication Disorders, 44(4), 440-465. 

 

Dawes, P., Bishop, D. V., Sirimanna, T., & Bamiou, D. E. (2008). Profile and aetiology of 

children diagnosed with auditory processing disorder (APD). International journal of 

pediatric otorhinolaryngology, 72(4), 483-489. 

 

Dawes, P. & Bishop, D.V.M. (2007). The SCAN-C in testing for auditory processing disorder in 

a sample of British children. International Journal of Audiology, 46 (12), 780–786.  

 



 

 135 

DeCasper, A. J., Lecanuet, J. P., Busnel, M. C., Granier-Deferre, C., & Maugeais, R. (1994). 

Fetal reactions to recurrent maternal speech. Infant Behavior and Development, 17 (2), 159-

164 

 

Degé, F. & Schwarzer, G., 2011. The effect of a music program on phonological awareness in 

preschoolers. Frontiers in Psychology, 2, 124.  

 

Demanez, J. P., & Demanez, L. (2003). Anatomophysiology of the central auditory nervous 

system: basic concepts. Acta oto-rhino-laryngologica Belgica, 57 (4), 227-236. 

Denenberg, V. H. (1999). A Critique of Mody, Studdert-Kennedy, and Brady's" Speech 

Perception Deficits in Poor Readers Auditory Processing or Phonological Coding?". Journal of 

Learning Disabilities, 32 (5), pp.379-383. 

 

Diehl, R.L., Lotto, A.J. & Holt, L.L. (2004). Speech perception. Annual review of psychology, 

55, 149–179.  

 

Drullman, R., Festen, J.M. & Plomp, R. (1994a). Effect of reducing slow temporal modulations 

on speech reception. The Journal of the Acoustical Society of America, 95 (5), 2670–2680.  

 

Drullman, R., Festen, J.M. & Plomp, R. (1994b). Effect of temporal envelope smearing on 

speech reception. The Journal of the Acoustical Society of America, 95(2), 1053–1064. 

 

Dunn, J., & Kendrick, C. (1982). The speech of two- and three-year-olds to infant siblings: 

‘‘Baby talk’’ and the context of communication. Journal of Child Language, 9, 579-595. 

 



 

 136 

Edwards, J., Beckman, M. E., & Munson, B. (2004). The interaction between vocabulary size 

and phonotactic probability effects on children's production accuracy and fluency in 

nonword repetition. Journal of Speech, Language and Hearing Research, 47 (2), 421-436 

 

Edwards, V. T., & Hogben, J. H. (2004). The tale is in the tail: An alternative hypothesis for 

psychophysical performance variability in dyslexia. Perception, 33 (7), 817-830 

 

Efron, R. (1963). Temporal perception, aphasia and déjà vu. Brain, 86 (3), 403-424. 

 

Eimas, P. D., Siqueland, E. R., Jusczyk, P., & Vigorito, J. (1971). Speech perception in infants. 

Science, 171 (3968), 303-306. 

 

Elliott, L. L., Hammer, M. A., Scholl, M. E., & Wasowicz, J. M. (1989). Age differences in 

discrimination of simulated single-formant frequency transitions. Perception & 

Psychophysics, 46 (2), 181-186. 

 

Elliott, L. L., Busse, L. A., Partridge, R., Rupert, J., & DeGraaff, R. (1986). Adult and child 

discrimination of CV syllables differing in voicing onset time. Child development, 57, 628-635 

 

Elliott LL (1979). Performance of children aged 9 to 17 years on a test of speech intelligibility 

in noise using sentence material with controlled word predictability. Journal of the 

Acoustical Society of America, 66, 651-653. 

 

Emanuel, D. C. (2002). The auditory processing battery: survey of common practices. Journal 

of the American Academy of Audiology, 13 (2), 93-117. 



 

 137 

 

Fallon M, Trehub SE, Schneider BA (2000). Children’s perception of speech in multitalker 

babble. Journal of the Acoustical Society of America, 108, 3023-3029. 

 

Fant, G. (2004). Speech acoustics and phonetics: Selected writings (Vol. 24). Springer. 

 

Fernald, A. (1991). Prosody in speech to children: Prelinguistic and linguistic functions. 

Annals of Child Development, 8, 43–80. 

 

the melody the message? Child Development, 60, 1497–1510. 

 

Field, A. (2009). Discovering statistics using SPSS. Sage Publications Limited 

 

Finitzo-Hieber, T., & Tillman, T. W. (1978). Room acoustics effects on monosyllabic word 

discrimination ability for normal and hearing-impaired children. Journal of Speech, Language 

and Hearing Research, 21(3), 440. 

 

Forgeard, M., Winner, E., Norton, A., & Schlaug, G. (2008). Practicing a Musical Instrument in 

Childhood is Associated with Enhanced Verbal Ability and Nonverbal Reasoning. PLoS One, 3 

(10), 1–8. 

 

Foxe, J.J. & Snyder, A.C. (2011). The Role of Alpha-Band Brain Oscillations as a Sensory 

Suppression Mechanism during Selective Attention. Frontiers in psychology, 2, 154.  



 

 138 

 

Fox, R. A. (1983). Perceptual structure of monophthongs and diphthongs in English. 

Language and Speech, 26 (1), 21-60. 

 

Fox, R. A. (1984). Effect of lexical status on phonetic categorization. Journal of Experimental 

Psychology: Human perception and performance, 10 (4), 526-540. 

 

Francis, H (undated): Examining the effects of “The Listening Programme” on girls with Rett 

Syndrome. Accessed from www.advancebrain.com on 27/03/13. 

 

Fridriksson, J., Moss, J., Davis, B., Baylis, G. C., Bonilha, L., & Rorden, C. (2008). Motor speech 

perception modulates the cortical language areas. Neuroimage, 41 (2), 605-613 

 

Gabrielsson, A., & Lindstro¨m, E. (2001). The influence of musical structure on emotional 

expression. In P. N. Juslin & J. A. Sloboda (Eds.), Music and emotion: Theory and research 

(pp. 223–248). Oxford: Oxford University Press 

 

Gathercole, S. E., Lamont, E. M. I. L. Y., & Alloway, T. P. (2006). Working memory in the 

classroom. Working memory and education, 219-240. 

 

Gaser, C., & Schlaug, G (2003). Gray matter differences between musicians and 

nonmusicians. Annals of the New York Academy of Sciences, 999 (1), 514-517 

 

Gerken, L., & Aslin, R. N. (2005). Thirty years of research on infant speech perception: The 

legacy of Peter W. Jusczyk. Language Learning and Development, 1(1), 5-21. 

http://www.advancebrain.com/


 

 139 

 

Geschwind, N. (1974). Human brain: left-right asymmetries in temporal speech region. In 

Selected Papers on Language and the Brain (pp. 364-369). Springer Netherlands. 

 

Ghitza, O., 2011. Linking speech perception and neurophysiology: speech decoding guided 

by cascaded oscillators locked to the input rhythm. Frontiers in psychology, 2, 130.  

 

Ghitza, O. & Greenberg, S. (2009). On the possible role of brain rhythms in speech 

perception: intelligibility of time-compressed speech with periodic and aperiodic insertions 

of silence. Phonetica, 66 (1), 113-126. 

 

Gick, B., Wilson, I., & Derrick, D. (2012). Articulatory Phonetics. John Wiley & Sons. 

 

Gillam, R. B., Loeb, D. F., & Friel-Patti, S. (2001). Looking back: A summary of five exploratory 

studies of Fast ForWord. American Journal of Speech-Language Pathology, 10(3), 269-274. 

 

 

Given, B.K. et al., 2009. A randomized, controlled study of computer-based intervention in 

middle school struggling readers. Brain and Language, 109 (1). pp.49 

 

Goswami, U. (2011). A temporal sampling framework for developmental dyslexia. Trends in 

Cognitive Sciences, 15 (1), 3-10. 

 



 

 140 

Goswami, U., Gerson, D., & Astruc, L. (2010). Amplitude envelope perception, phonology and 

prosodic sensitivity in children with developmental dyslexia. Reading and  Writing, 23 (8), 

995-1019. 

 

Goswami, U., 2006. The foundations of psychological understanding. Developmental Science, 

9 (6), pp.545-550. 

 

Goswami, U., Thomson, J., Richardson, U., Stainthorp, R., Hughes, D., Rosen, S., & Scott, S. K. 

(2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. 

Proceedings of the National Academy of Sciences, 99 (16), 10911-10916. 

 

Goswami, U. (2000). Phonological representations, reading development and dyslexia: 

Towards a cross-linguistic theoretical framework. Dyslexia, 6(2), 133-151. 

 

Goswami, U., & Bryant, P. (1990). Phonological skills and learning to read . London: Lawrence 

Erlbaum. 

Gotts, S. J., Chow, C. C., & Martin, A. (2012). Repetition priming and repetition suppression: 

A case for enhanced efficiency through neural synchronization. Cognitive Neuroscience, 3 (3), 

227-237 

 

Graven, S. N. & Browne, J. V. (2008). Auditory development in the fetus and infant. Newborn 

and Infant Nursing Reviews, 8(4), 187-193. 

 

Griffiths, T. D., Johnsrude, I., Dean, J. L. & Green, G. G. (1999). A common neural substrate 

for the analysis of pitch and duration pattern in segmented sound?. Neuroreport, 10 (18), 

3825-3830. 

 



 

 141 

Griffith, P. L. (1991). Phonemic awareness helps first graders invent spellings and third 

graders remember correct spellings. Journal of Literacy Research, 23(2), 215-233. 

 

Greenberg, S. (1999). Speaking in shorthand–A syllable-centric perspective for 

understanding pronunciation variation. Speech Communication, 29 (2), 159-176 

 

Hall III, J. W., Grose, J. H., Buss, E., & Dev, M. B. (2002). Spondee recognition in a two-talker 

masker and a speech-shaped noise masker in adults and children. Ear and hearing, 23(2), 

159-165. 

 

Hall 3rd, J. W. (2000). Development of the ear and hearing. Journal of perinatology, 20(8), 

S12. 

 

Hannon, E. E., & Trehub, S. E. (2005a). Tuning in to musical rhythms: Infants learn more 

readily than adults. Proceedings of the National Academy of Sciences of the United States of 

America, 102 (35), 12639-12643 

 

Hannon, E. E., & Trehub, S. E. (2005b). Metrical categories in infancy and adulthood. 

Psychological Science, 16 (1), 48-55. 

 

Harrison, J. M., & Howe, M. E. (1974). Anatomy of the afferent auditory nervous system of 

mammals. In Auditory System. Springer Berlin Heidelberg. 

 

Hartley, D. E., Wright, B. A., Hogan, S. C., & Moore, D. R. (2000). Age-related improvements 

in auditory backward and simultaneous masking in 6-to 10-year-old children. Journal of 

Speech, Language and Hearing Research, 43(6), 1402-1415. 



 

 142 

 

Hay, B. (1995). A pilot study of classroom noise levels and teachers’ reactions. Voice, 4, 127-

134. 

 

Heath, A. (2008). The Listening Programme, Authorised Provider Training Course. 

Nottingham. 

 

Hinchcliffe R (1992). King–Kopetzky syndrome: an auditory stress disorder? Audiological 

Medicine, 1, 89–98. 

 

Hind, S. (2006). Survey of care pathway for auditory processing disorder. Audiological 

Medicine, 4 (1), 12-24. 

 

Hugdahl, K., Brønnick, K., Kyllingsbrk, S., Law, I., Gade, A., & Paulson, O. B. (1999). Brain 

activation during dichotic presentations of consonant-vowel and musical instrument stimuli:  

O-PET study. Neuropsychologia, 37 (4), 431-440. 

Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and 

mode on arousal, mood, and spatial abilities. Music Perception, 20 (2), 151-171. 

 

Jackendoff, R. (2009). Parallels and nonparallels between language and music. Music 

perception, 26 (3), 195-204. 

 

Jackendoff, R. (2007). Language, consciousness, culture: Essays on mental structure. The MIT 

Press. 

 



 

 143 

Jamison, H. L., Watkins, K. E., Bishop, D. V., & Matthews, P. M. (2006). Hemispheric 

specialization for processing auditory nonspeech stimuli. Cerebral cortex, 16 (9), 1266-1275. 

 

Jamieson, D. G., Kranjc, G., Yu, K., & Hodgetts, W. E. (2004). Speech intelligibility of young 

school-aged children in the presence of real-life classroom noise. Journal of the American 

Academy of Audiology, 15 (7), 508-517. 

 

Jentschke, S., Koelsch, S., & Friederici, A. D. (2005). Investigating the relationship of music 

and language in children. Annals of the New York Academy of Sciences, 1060(1), 231-242. 

 

Jerger, J. & Musiek, F. (2000). Report of the Consensus Conference on the Diagnosis of 

Auditory Processing Disorders in School-Aged Children. Journal of the American Academy of 

Audiology, 11(9), 467–474.  

 

Jerger, J., & Martin, J. (2006). Dichotic listening tests in the assessment of auditory 

processing disorders. Audiological Medicine, 4(1), 25-34. 

 

Jerger, S., & Jerger, J. (1982). Pediatric speech intelligibility test: performance-intensity 

characteristics. Ear and Hearing, 3(6), 325-334. 

 

Jeyes, G., & Newton, C. (2010). Evaluation of the Listening Program in assessing auditory 

processing and speech skills in children with Down syndrome. Music and Medicine, 2(4), 208-

213. 

 

Jeyes, G., & Newton, C. (2009).  Study to evaluate the efficacy of the The Listening 

Programme® for improvement of auditory skills and speech for children with Down 

Syndrome. Accessed from www.advancedbrain.com on 27/3/2013.  

http://www.advancedbrain.com/


 

 144 

 

Jeyes, G., (2002). A study to establish whether The Listening Programme® is effective in 

Improving auditory skills for children with Autism. Accessed from www.advancedbrain.com 

on 27/3/2013. 

 

Nelson, P. B., & Jin, S. H. (2004). Factors affecting speech understanding in gated 

interference: Cochlear implant users and normal-hearing listeners. The Journal of the 

Acoustical Society of America, 115, 2286. 

 

Johnson, E. P., Pennington, B. F., Lee, N. R., & Boada, R. (2009). Directional effects between 

rapid auditory processing and phonological awareness in children. Journal of Child 

Psychology and Psychiatry, 50 (8), 902-910. 

 

Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. (2000). Functional specificity in the right 

human auditory cortex for perceiving pitch direction. Brain, 123(1), 155-163. 

 

Jones, M. R., Drake, C., & Baruch, C. (2000). The development of rhythmic attending in 

auditory sequences: attunement, referent period, focal attending. Cognition, 77 (3), 251-288 

 

Jutras, M. J., & Buffalo, E. A. (2010). Synchronous neural activity and memory formation. 

Current opinion in neurobiology, 20(2), 150-155. 

 

Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall 

 

Katz, J., & Tillery, K. L. (2005). Can central auditory processing tests resist supramodal 

influences. American Journal of Audiology, 14 (2), pp. 124. 

http://www.advancedbrain.com/


 

 145 

 

Katz, J., Johnson, C. D., Tillery, K. L., Bradham, T., Brandner, S., Delagrange, T. N., & Stecker, 

N. A. (2002). Clinical and research concerns regarding Jerger and Musiek (2000) APD 

recommendations. Audiology Today, 14 (2), 14-17. 

 

Keith R. (1977). Central Auditory Dysfunction. New York. Grune & Stratton. 

 

Keith, R.W. (2000) Scan C Test for Auditory Processing Disorders in Children - Revised The 

Psychological Corporation, USA 

 

Kershner, J. R. (1986). Evaluation of the Tomatis Listening Training Program with Learning 

Disabled Children. Canadian Journal of Special Education, 2(1), 1-32. 

 

 Kerlin, J. R., Shahin, A. J., & Miller, L. M. (2010). Attentional gain control of ongoing cortical 

speech representations in a “cocktail party”. The Journal of Neuroscience, 30 (2), 620-628. 

 

Kewley‐Port, D. (1982). Measurement of formant transitions in naturally produced stop 

consonant–vowel syllables. The Journal of the Acoustical Society of America, 72, 379. 

Kisilevsky, B. S., & Davies, G. A. (2007). Auditory processing deficits in growth restricted 

fetuses affect later language development. Medical hypotheses, 68(3), 620-628. 

 

Kim, J., Wigram, T., & Gold, C. (2008). The effects of improvisational music therapy on joint 

attention behaviors in autistic children: a randomized controlled study. Journal of autism 

and developmental disorders, 38 (9), 1758-1766. 

 



 

 146 

Kim, D. O. (1986). Active and nonlinear cochlear biomechanics and the role of outer-hair-cell 

subsystem in the mammalian auditory system. Hearing Research, 22 (1), 105-114. 

 

Kimura, D. (1961). Cerebral dominance and the perception of verbal stimuli. Canadian 

Journal of Psycholog, 15 (3), 166. 

 

Kitzen, K. R. (2001). Prosodic sensitivity, morphological ability, and reading ability in young 

adults with and without childhood histories of reading difficulty (Doctoral dissertation, 

ProQuest Information & Learning). 

 

Klatte, M., Lachmann, T., & Meis, M. (2010). Effects of noise and reverberation on speech 

perception and listening comprehension of children and adults in a classroom-like setting. 

Noise and Health, 12 (49), pp.270. 

 

Koelsch, S. (2009). A neuroscientific perspective on music therapy. Annals of the New York 

Academy of Sciences, 1169 (1), 374-384. 

 

Koelsch, S. (2005). Neural substrates of processing syntax and semantics in music. Current 

Opinion in Neurobiology, 15(2), 207–212.  

Koelsch, S. (2011). Toward a neural basis of music perception - a review and updated model. 

Frontiers in psychology, 2, 110.  

 

Koelsch, S. et al. (2006). Investigating Emotion With Music : An fMRI Study. Human Brain 

Mapping, 27, pp.239 –250. 

 



 

 147 

Koelsch, S., Jentschke, S., Sammler, D., & Mietchen, D. (2007). Untangling syntactic and 

sensory processing: An ERP study of music perception. Psychophysiology, 44 (3), 476-490. 

 

Koelsch, S. & Sammler, D. (2008). Cognitive components of regularity processing in the 

auditory domain. PloS one, 3(7), p.e2650.  

 

Kraus, N., (2012). Biological impact of music and software-based auditory training. Journal of 

Communication Disorders, 45 (6), 403–410 

 

Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. 

Nature Reviews Neuroscience, 11(8), 599-605. 

 

Kraus, N. & Banai, K. (2007). Auditory-Processing Malleability: Focus on Language and Music. 

Current Directions in Psychological Science, 16 (2), 105–110.  

 

Krishna, B. S., & Semple, M. N. (2000). Auditory temporal processing: responses to 

sinusoidally amplitude-modulated tones in the inferior colliculus. Journal of 

Neurophysiology, 84 (1), 255-273. 

 

Kronbichler, M., Hutzler, F. & Wimmer, H. (2002). Dyslexia: verbal impairments in the 

absence of magnocellular impairments. Neuroreport, 13(5), 617–620.  

 

Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. 

Canadian Journal of Experimental Psychology, 51 (4), 336-353. 

 



 

 148 

Kuhl, P. K. (1993). Early linguistic experience and phonetic perception: Implications for 

theories of developmental speech perception. Journal of Phonetics, 21, 125-139 

 

Lagacé, J., Jutras, B., & Gagné, J. P. (2010). Auditory processing disorder and speech 

perception problems in noise: Finding the underlying origin. American journal of audiology, 

19 (1), 17. 

 

Lakatos, P. et al. (2013). The spectrotemporal filter mechanism of auditory selective 

attention. Neuron, 77 (4), 750–61.  

 

Lakatos, P., O'Connell, M. N., Barczak, A., Mills, A., Javitt, D. C., & Schroeder, C. E. (2009). The 

leading sense: supramodal control of neurophysiological context by attention. Neuron, 64 

(3), 419-430. 

 

Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of 

neuronal oscillations as a mechanism of attentional selection. Science, 320 (5872), 110-113. 

Lane, H. B., Pullen, P. C., Eisele, M. R., & Jordan, L. (2002). Preventing reading failure: 

Phonological awareness assessment and instruction. Preventing School Failure: Alternative 

Education for Children and Youth, 46(3), 101-110. 

 

Lasky, R. E., Syrdal-Lasky, A., & Klein, R. E. (1975). VOT discrimination by four to six and a half 

month old infants from Spanish environments. Journal of Experimental Child Psychology, 20 

(2), 215-225. 

 

Liegeois-Chauvel, C., Giraud, K., BADIER, J. M., Marquis, P., & Chauvel, P. (2001). 

Intracerebral evoked potentials in pitch perception reveal a functional asymmetry of the 

human auditory cortex. Annals of the New York Academy of Sciences, 930 (1), 117-132. 



 

 149 

 

Liégeois-Chauvel, C., de Graaf, J. B., Laguitton, V., & Chauvel, P. (1999). Specialization of left 

auditory cortex for speech perception in man depends on temporal coding. Cerebral Cortex, 

9 (5), 484-496. 

 

Litovsky, R. Y., Fligor, B. J., & Tramo, M. J. (2002). Functional role of the human inferior 

colliculus in binaural hearing. Hearing Research, 165 (1), 177-188. 

 

www.listenandlearn.com.au (accessed 7/3/13) 

 

Locke, J.L. (1998). Early developmental delay: Problems for the theorist. In von Euler, C., 

Lundberg, I.L, Llinás, R. (Eds.), Basic mechanisms in cognition and language with special 

reference to phonological problems in dyslexia, Elsevier, Oxford.  

 

Luce, R. D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization 

(Vol. 8). Oxford University Press. 

 

Lum, J. a G. & Zarafa, M. (2010). Relationship between verbal working memory and the 

SCAN-C in children with specific language impairment. Language, Speech, and Hearing 

Services in Schools, 41 (4), 521–530. 

 

Luo, H., Boemio, A., Gordon, M., & Poeppel, D. (2007). The perception of FM sweeps by 

Chinese and English listeners. Hearing Research, 224 (1), 75-83. 

 

http://www.listenandlearn.com.au/


 

 150 

Lundquist, P., Holmberg, K., & Landstrom, U. (2000). Annoyance and effects on work from 

environmental noise at school. Noise and Health, 2 (8), 39-46. 

 

Madell, J. R., & Flexer, C. A. (Eds.). (2008). Pediatric Audiology: Diagnosis, Technology, and 

Management. Thieme. 

 

Mayo, C., & Turk, A. (2005). The influence of spectral distinctiveness on acoustic cue 

weighting in children’s and adults’ speech perception. The Journal of the Acoustical Society 

of America, 118, 1730. 

 

Macdonald, J.S.P., Mathan, S. & Yeung, N. (2011). Trial-by-Trial Variations in Subjective 

Attentional State are Reflected in Ongoing Prestimulus EEG Alpha Oscillations. Frontiers in 

Psychology, 2, p.82.  

 

Marshall, C. M., Snowling, M. J., & Bailey, P. J. (2001). Rapid auditory processing and 

phonological ability in normal readers and readers with dyslexia. Journal of Speech, 

Language and Hearing Research, 44(4), 925-940. 

 

Masterton, R. B. (1992). Role of the central auditory system in hearing: the new direction. 

Trends in Neurosciences, 15 (8), 280-285. 

 

May, L., Byers-Heinlein, K., Gervain, J., & Werker, J. F. (2011). Language and the newborn 

brain: does prenatal language experience shape the neonate neural response to speech?. 

Frontiers in psychology, 2. 

 

Mcanally, K. I., & Stein, J. F. (1996). Auditory temporal coding in dyslexia. Proceedings of the 

Royal Society of London. Series B: Biological Sciences, 263(1373), 961-965. 



 

 151 

 

McArthur, G. M., Ellis, D., Atkinson, C. M., & Coltheart, M. (2008). Auditory processing 

deficits in children with reading and language impairments: Can they (and should they) be 

treated?. Cognition, 107(3), 946-977. 

 

McArthur, G.M. & Bishop, D.V.M. (2004). Frequency discrimination deficits in people with 

specific language impairment: reliability, validity, and linguistic correlates. Journal of Speech, 

Language, and Hearing Research, 47 (3), 527–541.  

 

McArthur, G. M., & Bishop, D. V. M. (2001). Auditory perceptual processing in people with 

reading and oral language impairments: Current issues and recommendations. Dyslexia, 7(3), 

150-170. 

 

McCormack, T., Brown, G. D., Vousden, J. I., & Henson, R. N. (2000). Children's serial recall 

errors: Implications for theories of short-term memory development. Journal of 

Experimental Child Psychology, 76 (3), 222-252. 

 

Mcfarland, D. J., & Cacace, A. T. (2003). Potential problems in the differential diagnosis of 

(central) auditory processing disorder (CAPD or APD) and attention-deficit hyperactivity 

disorder (ADHD). Journal of the American Academy of Audiology, 14 (5), 278. 

 

Merzenich, M. M., & Reid, M. D. (1974). Representation of the cochlea within the inferior 

colliculus of the cat. Brain research, 77(3), 397-415. 

 



 

 152 

Mitterschiffthaler, M. T., Fu, C. H., Dalton, J. A., Andrew, C. M., & Williams, S. C. (2007). A 

functional MRI study of happy and sad affective states induced by classical music. Human 

brain mapping, 28(11), 1150-1162. 

 

Mody, M. (2003). Rapid auditory processing deficits in dyslexia: A commentary on two 

differing views. Journal of Phonetics, 31(3), 529-539. 

 

Mody, M., Studdert-Kennedy, M., & Brady, S. (1997). Speech perception deficits in poor 

readers: auditory processing or phonological coding?, Journal of Experimental Child 

Psychology, 64 (2), 199-231. 

 

Montgomery, C. R., Morris, R. D., Sevcik, R. A., & Clarkson, M. G. (2005). Auditory backward 

masking deficits in children with reading disabilities. Brain and Language, 95 (3), 450-456 

 

Moodley, A. (1989). Acoustic conditions in mainstream classrooms. Journal of British 

Association of Teachers of the Deaf, 13 (2), 48-54. 

 

Moore, D. R., Ferguson, M. A., Edmondson-Jones, A. M., Ratib, S., & Riley, A. (2010). Nature 

of auditory processing disorder in children. Pediatrics, 126(2), 382-390. 

Moore, D. R., Ferguson, M. A., Halliday, L. F., & Riley, A. (2008). Frequency discrimination in 

children: Perception, learning and attention. Hearing Research, 238 (1), 147-154. 

 

Moore, D.R. (2007). Auditory processing disorders: acquisition and treatment. Journal of 

Communication Disorders, 40 (4), 295–304.  

 

Moore, J. K., & Linthicum Jr, F. H. (2007). The human auditory system: a timeline of 

development. International Journal of Audiology, 46 (9), 460-478. 



 

 153 

 

Moore, D.R. (2006). Auditory processing disorder (APD): Definition, diagnosis, neural basis, 

and intervention. Audiological Medicine, 4 (1),4–11.  

 

Moore, D.R., Rosenberg, J.F. & Coleman, J.S. (2005). Discrimination training of phonemic 

contrasts enhances phonological processing in mainstream school children. Brain and 

Language, 94, 72–85. 

 

Moore, B. C. (2003). Temporal integration and context effects in hearing. Journal of 

Phonetics, 31(3), 563-574. 

 

Moore, D.R., Amitay, S. & Hawkey, D.J.C. (2003). Auditory Perceptual Learning. PLoS One, 3 

(10),1–8. 

 

Moore, D. R. (1994). Auditory brainstem of the ferret: long survival following cochlear 

removal progressively changes projections from the cochlear nucleus to the inferior 

colliculus. Journal of Comparative Neurology, 339 (2), 301-310. 

Morrison, D., Schindler, R. A., & Wersäll, J. (1975). A quantitative analysis of the afferent 

innervation of the organ of Corti in guinea pig. Acta oto-laryngologica, 79 (1), pp.11-23. 

 

Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual 

functioning in autism: An update, and eight principles of autistic perception. Journal of 

Autism and Developmental Disorders, 36 (1), 27-43. 

 

Moreno, S., Marques, C. & Santos, A. (2009). Musical Training Influences Linguistic Abilities 

in 8-Year-Old Children : More Evidence for Brain Plasticity. Cerebral Cortex, 19 (3), 712–723. 



 

 154 

 

Mudford, O. C. and Cullen, C. (2005).  Auditory Integration Training:  A Critical Review In 

J.W.Jacobson, J.A.Mulick, and R.M. Foxx, (Eds.) Controversial Therapies for Developmental 

Disabilities: Fad, Fashion, and Science in Professional Practice.   Publisher: Lawrence Erlbaum 

Associates, 423-432 

 

Muter, V., Hulme, C., Snowling, M., & Taylor, S. (1998). Segmentation, not rhyming, predicts 

early progress in learning to read. Journal of Experimental Child Psychology, 71(1), 3-27. 

 

Musiek, F.E., Bellis, T.J. & Chermak, G.D., (2005). Nonmodularity of the central auditory 

nervous system: implications for (central) auditory processing disorder. American Journal of 

Audiology, 14 (2), 128–38. 

 

Musiek, F. E., & Reeves, A. G. (1990). Asymmetries of the auditory areas of the cerebrum. 

Journal of the American Academy of Audiology, 1(4), 240-245. 

 

Musiek, F. E., Geurkink, N. A., & Kietel, S. A. (1982). Test battery assessment of auditory 

perceptual dysfunction in children. The Laryngoscope, 92(3), pp.251-257 

 

Nabelek, A. K., & Mason, D. (1981). Effect of noise and reverberation on binaural and 

monaural word identification by subjects with various audiograms. Journal of Speech, 

Language and Hearing Research, 24(3), 375. 

 

Nantais, K. M., & Schellenberg, E. G. (1999). The Mozart effect: An artifact of preference. 

Psychological Science, 10 (4), 370-373. 

 



 

 155 

Näätänen, R., & Alho, K. (1995). Mismatch negativity-a unique measure of sensory 

processing in audition. International Journal of Neuroscience, 80(1-4), 317-337. 

 

Neuman, A. C., & Hochberg, I. (1983). Children’s perception of speech in reverberation. The 

Journal of the Acoustical Society of America, 73, 2145. 

 

Nittrouer, S., & Studdert-Kennedy, M. (1987). The role of coarticulatory effects in the 

perception of fricatives by children and adults. Journal of Speech, Language and Hearing 

Research, 30(3), 319. 

 

Nwora, A. J., & Gee, B. M. (2009). A case study of a five‐year‐old child with pervasive 

developmental disorder‐not otherwise specified using sound‐based interventions. 

Occupational therapy international, 16(1), 25-43. 

 

Ohnishi, T. et al., (2001). Functional Anatomy of Musical Perception in Musicians. Cerebral 

Cortex, 11 (8), 754–760. 

 

Parbery-clark, A., Skoe, E. & Kraus, N., (2009). Musical Experience Limits the Degradative 

Effects of Background Noise on the Neural Processing of Sound. Auditory Neuroscience, 29 

(45), 14100 –14107. 

 

Patel, A. D. (2003). Language, music, syntax and the brain. Nature neuroscience, 6 (7), 674-

681. 

 

Perani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R.. & Koelsch, S. 

(2010). Functional specializations for music processing in the human newborn brain. 

Proceedings of the National Academy of Sciences, 107 (10), 4758-4763. 



 

 156 

 

Peelle, J. E., Gross, J., & Davis, M. H. (2013). Phase-locked responses to speech in human 

auditory cortex are enhanced during comprehension. Cerebral Cortex, 23(6), 1378-1387. 

 

Peretz, I., Gosselin, N., Belin, P., Zatorre, R. J., Plailly, J., & Tillmann, B. (2009). Music Lexical 

Networks. Annals of the New York Academy of Sciences, 1169(1), 256-265. 

 

Peretz, I., (2001). Listen to the brain: the biological perspective on musical emotions. In: 

Juslin, P., Sloboda, J. (Eds.), Music and Emotion: Theory and Research. University Press, 

Oxford, pp. 105–134 

 

Petrova, A., Gaskell, M.G. & Ferrand, L., (2011). Orthographic Consistency and Word-

Frequency Effects in Auditory Word Recognition: New Evidence from Lexical Decision and 

Rime Detection. Frontiers in Psychology, 2, 1–11.  

 

Picard, M., & Bradley, J. S. (2001). Revisiting Speech Interference in Classrooms: 

International Journal of Audiology, 40 (5), 221-244. 

Pietschnig, J., Voracek, M., & Formann, A. K. (2010). Mozart effect–Shmozart effect: A meta-

analysis. Intelligence, 38 (3), 314-323 

 

Pisoni, D., & Remez, R. (Eds.). (2008). The handbook of speech perception. Wiley-Blackwell. 

 

Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2008). Speech perception at the interface 

of neurobiology and linguistics. Philosophical Transactions of the Royal Society B: Biological 

Sciences, 363 (1493), 1071-1086 

 



 

 157 

Price, C., Thierry, G. & Griffiths, T., (2005). Speech-specific auditory processing: where is it? 

Trends in cognitive sciences, 9 (6), 271–276.  

 

Przybylski, L. et al., (2013). Rhythmic auditory stimulation influences syntactic processing in 

children with developmental language disorders. Neuropsychology, 27 (1), 121–131.  

 

Purves, D., Augustine, GJ, Fitzpatrick, D., Hall, WC, LaMantia, A., McNamara, JO, White, LE 

Neuroscience. Fourth edition. (2008). Sinauer Associates, Sunderland. 

 

Ramus, F., & Ahissar, M. (2012). Developmental dyslexia: The difficulties of interpreting poor 

performance, and the importance of normal performance. Cognitive Neuropsychology, 29 

(1), 104-122 

Ramus, F., (2004). Neurobiology of dyslexia : a reinterpretation of the data. Trends in 

Neuroscience, 27 (12). 720-726 

 

Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castellote, J. M., White, S., & Frith, U. (2003). 

Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. 

Brain, 126 (4), 841-865. 

 

Ramus, F.,( 2003). Developmental dyslexia : specific phonological deficit or general 

sensorimotor dysfunction ? Current Opinions in Neurobiology, 13 (2), 212–218. 

 

Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task performance. Nature, 

365 (6447), 611. 

 



 

 158 

Riccio, C. A., Cohen, M. J., Garrison, T., & Smith, B. (2005). Auditory processing measures: 

Correlation with neuropsychological measures of attention, memory, and behavior. Child 

Neuropsychology, 11(4), pp.363-372. 

 

Riccio, C. A., Hynd, G. W., Cohen, M. J., Hall, J., & Molt, L. (1994). Comorbidity of central 

auditory processing disorder and attention-deficit hyperactivity disorder. Journal of the 

American Academy of Child & Adolescent Psychiatry, 33 (6), 849-857. 

 

Rosen, S., Cohen, M. & Vanniasegaram, I., (2010). Auditory and cognitive abilities of children 

suspected of auditory processing disorder (APD). International Journal of Pediatric 

Otorhinolaryngology, 74 (6), 594–600.  

 

Rosen, S., Adlard, A., & van der Lely, H. K. (2009). Backward and simultaneous masking in 

children with grammatical specific language impairment: no simple link between auditory 

and language abilities. Journal of Speech, Language and Hearing Research, 52(2), 396-412. 

 

Rosen, S. (2005). " A riddle wrapped in a mystery inside an enigma": defining central 

auditory processing disorder. American Journal of Audiology, 14(2), 139143. 

 

Rosen, S. (2003). Auditory processing in dyslexia and specific language impairment: Is there a 

deficit? What is its nature? Does it explain anything?. Journal of Phonetics, 31(3), 509-527. 

 

Rosen, S., (2001). Speech and Nonspeech Auditory Processing in Children With Dyslexia ? 

Journal of Speech, Language and Hearing Research, 44, pp.720–736. 

 



 

 159 

Rosen, S., & Manganari, E. (2001). Is there a relationship between speech and nonspeech 

auditory processing in children with dyslexia?. Journal of Speech, Language and Hearing 

Research, 44(4), 720. 

 

Sacarin, L. (2009). Personal Correspondence cited in Gerritsen, J. (2010). The Effect of 

Tomatis Therapy on Children with Autism: Eleven Case Studies. The International Journal of 

Listening, 24 (1), 50-68 

 

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone 

sequences by human infants and adults. Cognition, 70 (1), 27-52. 

 

Samuel, A. G. (2011). Speech perception. Annual Review of Psychology, 62, pp.49-72. 

 

Schellenberg, E. G., Nakata, T., Hunter, P. G., & Tamoto, S. (2007). Exposure to music and 

cognitive performance: Tests of children and adults. Psychology of Music, 35 (1), 5-19 

 

Schellenberg, E. G., & Hallam, S. (2005). Music Listening and Cognitive Abilities in 10‐and 

11‐Year‐Olds: The Blur Effect. Annals of the New York Academy of Sciences, 1060(1), 202-

209. 

 

Schlaug, G., Forgeard, M., Zhu, L., Norton, A., Norton, A., & Winner, E. (2009). 

Training‐induced Neuroplasticity in Young Children. Annals of the New York Academy of 

Sciences, 1169 (1), 205-208. 

 

Schlaug, G. (2001). The brain of musicians. Annals of the New York Academy of Sciences, 

930(1), 281-299. 

 



 

 160 

Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F., & Steinmetz, H. (1995). Increased corpus 

callosum size in musicians. Neuropsychologia, 33 (8), 1047-1055. 

 

Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity (EEG) distinguishes 

valence and intensity of musical emotions. Cognition & Emotion, 15 (4), 487-500. 

 

Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). 

Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of 

musicians. Nature neuroscience, 5 (7), 688-694. 

 

Schulte-Körne, G., & Bruder, J. (2010). Clinical neurophysiology of visual and auditory 

processing in dyslexia: A review. Clinical neurophysiology, 121 (11), 1794-1809. 

 

Shahin, A. J., Trainor, L. J., Roberts, L. E., Backer, K. C., & Miller, L. M. (2010). Development of 

auditory phase-locked activity for music sounds. Journal of neurophysiology, 103 (1), 218-

229. 

 

Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition 

with primarily temporal cues. Science, 270 (5234), 303-304. 

 

Share, D. L. (1995). Phonological recoding and self-teaching:< i> sine qua non</i> of reading 

acquisition. Cognition, 55(2), 151-218. 

 

Sharma, M. et al., (2006). Electrophysiological and behavioral evidence of auditory 

processing deficits in children with reading disorder. Clinical neurophysiology, 117 (5), 1130–

1144.  



 

 161 

 

Shield, B. M., & Dockrell, J. E. (2003). The effects of noise on children at school: a review. 

Building Acoustics, 10 (2), 97-116. 

 

Shield, B., Dockrell, J., Asker, R., & Tachmatzidis, I. (2002). The effects of noise on the 

attainments and cognitive development of primary school children. Final report for 

Department of Health and DETR. 

 

Skottun, B. C., Shackleton, T. M., Arnott, R. H., & Palmer, A. R. (2001). The ability of inferior 

colliculus neurons to signal differences in interaural delay. Proceedings of the National 

Academy of Sciences, 98 (24), 14050-14054. 

 

Bailey, P. J., & Snowling, M. J. (2002). Auditory processing and the development of language 

and literacy. British Medical Bulletin, 63 (1), 135-146. 

 

Snowling, M. J. (2001). From language to reading and dyslexia. Dyslexia, 7 (1), pp.37-46 

 

Stelmachowicz, P. G., & Kortekaas, R. W., (2000). Bandwidth effects on children's perception 

of the inflectional morpheme/s: Acoustical measurements, auditory detection, and clarity 

rating. Journal of Speech, Language and Hearing Research, 43 (3), 645-660 

 

Studdert-Kennedy, M. (2002). Deficits in phoneme awareness do not arise from failures in 

rapid auditory processing. Reading and Writing, 15(1-2), 5-14. 

 



 

 162 

 Studdert-Kennedy, M., & Mody, M. (1995). Auditory temporal perception deficits in the 

reading-impaired: A critical review of the evidence. Psychonomic Bulletin & Review, 2 (4), 

508-514. 

 

Storkel, H. L., Armbruster, J., & Hogan, T. P. (2006). Differentiating phonotactic probability 

and neighborhood density in adult word learning. Journal of Speech, Language and Hearing 

Research, 49(6), 1175-1192 

 

Surprenant, A. M. (2007). Effects of noise on identification and serial recall of nonsense 

syllables in older and younger adults. Aging, Neuropsychology, and Cognition, 14 (2), 126-

143. 

 

Sussman, J. E. (2001). Vowel perception by adults and children with normal language and 

specific language impairment: Based on steady states or transitions. The Journal of the 

Acoustical Society of America, 109, pp.1173 

 

Sussman, J. E. (1993). Auditory processing in children's speech perception: Results of 

selective adaptation and discrimination tasks. Journal of Speech, Language and Hearing 

Research, 36(2), pp.380-395 

Tallal, P., Merzenich, M. M., Miller, S., & Jenkins, W. (1998). Language learning impairments: 

integrating basic science, technology, and remediation. Experimental Brain Research, 123 (1-

2), 210-219. 

 

Tallal, P., Miller, S., & Fitch, R. H. (1993). Neurobiological basis of speech: a case for the 

preeminence of temporal processing. Annals of the New York Academy of Sciences, 682 (1), 

27-47 



 

 163 

 

Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. 

Brain and language, 9 (2), 182-198 

 

Tallal, P., & Piercy, M. (1975). Developmental aphasia: The perception of brief vowels and 

extended stop consonants. Neuropsychologia, 13 (1), 69-74. 

 

Tallal, P. and  Piercy, M. (1973) Defects of non-verbal auditory perception in children with 

developmental aphasia.  Nature, 241 (5390). pp 468-469. 

  

Tallal, P., & Piercy, M. (1973). Developmental aphasia: Impaired rate of non-verbal 

processing as a function of sensory modality. Neuropsychologia, 11 (4), 389-398. 

  

Tallal, P., & Piercy, M. (1974). Developmental aphasia: Rate of auditory processing and 

selective impairment of consonant perception. Neuropsychologia, 12(1), 83-93. 

  

Tallal, P. (1974) Developmental dysphasia: A defect of perception, not language? Journal of 

the Acoustical Society of America, 55:S11. 

 

Telkemeyer, S., Rossi, S., Nierhaus, T., Steinbrink, J., Obrig, H., & Wartenburger, I. (2011). 

Acoustic processing of temporally modulated sounds in infants: evidence from a combined 

near-infrared spectroscopy and EEG study. Frontiers in psychology, 2. 

 

Tervaniemi, M. et al., (2009). Top-down modulation of auditory processing: effects of sound 

context, musical expertise and attentional focus. The European Journal of Neuroscience, 30 

(8), 1636–1642.  



 

 164 

 

Thomson, J.M. & Goswami, U. (2008). Rhythmic processing in children with developmental 

dyslexia: auditory and motor rhythms link to reading and spelling. Journal of Physiology, 102 

(1), pp.120–129.  

 

Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, mood, and the Mozart 

effect. Psychological Science, 12 (3), 248-251 

 

Tort, A. B., Komorowski, R. W., Manns, J. R., Kopell, N. J., & Eichenbaum, H. (2009). Theta–

gamma coupling increases during the learning of item–context associations. Proceedings of 

the National Academy of Sciences, 106 (49), 20942-20947. 

 

von Kriegstein, K., Patterson, R. D., & Griffiths, T. D. (2008). Task-dependent modulation of 

medial geniculate body is behaviorally relevant for speech recognition. Current Biology, 18 

(23), 1855-1859. 

 

Treharne, D. (2003) A pilot study to investigate the efficacy of The Listening Program in the 

management of auditory and verbal processing disorders. Accessed from 

www.advancedbrain.com on 27/03/2013 

 

Wagner, R. K., Torgesen, J. K., Rashotte, C. A. (1999). Test of Word Reading Efficiency. Pro-ed 

Publishing 

 

Wagner, R. K., Torgesen, J. K., Laughon, P., Simmons, K., & Rashotte, C. A. (1993). 

Development of young readers' phonological processing abilities. Journal of Educational 

Psychology, 85(1), 83. 

http://www.advancedbrain.com/


 

 165 

 

Wagner, R.K. & Torgesen, J.K., (1987). The nature of phonological processing and its causal 

role in the acquisition of reading skills. Psychological Bulletin, 101 (2), 192–212.  

 

Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in 

Cognitive Sciences, 7 (12), 553-559. 

 

Wang, X., & Humes, L. E. (2010). Factors influencing recognition of interrupted speech. The 

Journal of the Acoustical Society of America, 128, pp.2100. 

 

Wang, W., Staffaroni, L., Reid Jr, E., Steinschneider, M., & Sussman, E. (2009). Effects of 

musical training on sound pattern processing in high-school students. International journal 

of pediatric otorhinolaryngology, 73 (5), 751-755. 

 

Wilkins, A. J. (1995). Visual stress (pp. 35-52). Oxford: Oxford University Press. 

 

Witton, C. (2010). Childhood auditory processing disorder as a developmental disorder: the 

case for a multi-professional approach to diagnosis and management. International journal 

of audiology, 49 (2), 83-87. 

 

Witton, C., Stein, J. F., Stoodley, C. J., Rosner, B. S., & Talcott, J. B. (2002). Separate 

influences of acoustic AM and FM sensitivity on the phonological decoding skills of impaired 

and normal readers. Journal of Cognitive Neuroscience, 14 (6), 866-874. 

 

Witton, C., Talcott, J. B., Hansen, P. C., Richardson, A. J., Griffiths, T. D., Rees, A., & Green, G. 

G. R. (1998). Sensitivity to dynamic auditory and visual stimuli predicts nonword reading 

ability in both dyslexic and normal readers. Current biology, 8 (14), 791-797. 



 

 166 

 

Wong, P.C.M., Uppunda, A.K., Parrish, T.B., & Dhar, S. (2008). Cortical Mechanisms of Speech 

Perception in Noise. Journal of Speech, Language, and Hearing Research, 51(4) , 1026-1041 

 

Wong, P. C., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B., & Zatorre, R. 

J. (2008). Volume of left Heschl's gyrus and linguistic pitch learning. Cerebral Cortex, 18(4), 

828-836. 

  

Wright, B. A., Lombardino, L. J., King, W. M., Puranik, C. S., Leonard, C. M., & Merzenich, M. 

M. (1997). Deficits in auditory temporal and spectral resolution in language-impaired 

children. Nature, 387 (6629), 176-178. 

Zatorre, R. J., Bouffard, M., Ahad, P., & Belin, P. (2002). Where is' where'in the human 

auditory cortex?. Nature neuroscience, 5 (9), 905-909. 

 

Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: 

music and speech. Trends in cognitive sciences, 6(1), 37-46. 

 

Zatorre, R. J., & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. 

Cerebral Cortex, 11 (10), 946-953. 

 

Zeng, F. G., Nie, K., Stickney, G. S., Kong, Y. Y., Vongphoe, M., Bhargave, A., ... & Cao, K. 

(2005). Speech recognition with amplitude and frequency modulations. Proceedings of the 

National Academy of Sciences of the United States of America, 102 (7), 2293-2298. 

 

Zeng, F. G., & Galvin III, J. J. (1999). Amplitude mapping and phoneme recognition in cochlear 

implant listeners. Ear and hearing, 20 (1), 60-74. 

 



 

 167 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 



 

 168 

 

 

 

 

 

 

 

 

 

Appendix 1 Research Ethics Application Approval 



 

 169 

 

 

 

Appendix 2 School Information 



 

 170 

SCHOOL INFORMATION 

RESEARCH STUDY: THE IMPACT OF AUDITORY TRAINING ON THE AUDITORY 

AND SCHOLASTIC SKILLS OF MAINSTREAM SCHOOL CHILDREN  

RESEARCHERS: KEVIN HOLE, DILYS TREHARNE, MICHELLE FOSTER, STUART CUNNINGHAM 

Dear Head Teacher, 

We would like to invite your school to take part in a unique research study, only a few 

schools have been approached. The aim of this letter is to give you a background to the need 

for this study and to inform you of the commitments required if you decide for your school 

to take part. 

Children can have problems with hearing, they are often reported to struggle in difficult 

listening situations (such as in background noise), requiring instruction to be repeated and 

appear to have difficulties in differentiating pitch of sounds. In some cases, such difficulties 

are caused by a deficiency of the ear to detect the required sounds (i.e. a hearing loss). In 

other cases, these children are repeatedly found to have normal peripheral hearing, yet still 

have difficulties listening. This can impact academic performance, especially regarding the 

acquisition of written language and reading.  

Numerous studies have shown auditory training and different musical listening programmes 

improve auditory processing and reading ability, although results from these studies are 

somewhat variable.  

There are currently several different auditory training programmes available commercially. 

One such programme is “The Listening Programme ®”, which requires listening to specifically 

filtered classical music. This has been reported to improve auditory processing and also 

reading ability.  

The aim of this study is to investigate whether school aged children (aged 8-9 with normal 

hearing) would show improved auditory processing and reading ability using  

 

The Listening Programme ® compared to listening to normal classical music or listening to a 

story.  

The study requires children to listen to one of three listening programme at school for 15 

minutes; twice a day, 5 days a week for a period of 10 weeks. The differing listening 

programmes would be provided by the investigators on the appropriate equipment 

required. A designated member(s) of staff would be responsible for the daily administration 

of the programmes. 
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Prior to the start of the programmes, the children will be assessed for inclusion onto the 

study by the lead investigator (at school) by undertaking a variety of listening and reading 

tests. These tests are to last approximately 30 minutes per child and would be repeated at 

the end of the 10 week period. Informed parental consent would be obtained by the lead 

investigator prior to a child being enrolled on the study. 

 

The potential benefits for you as a school would be: 

 

If you would like more information, please feel free to me on the number provided at the 

top of this letter. 

 

 

 

Yours sincerely 

 

 
 
Kevin Hole 

Principal Investigator 
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RESEARCH STUDY: THE IMPACT OF AUDITORY TRAINING ON THE AUDITORY 

AND SCHOLASTIC SKILLS OF MAINSTREAM SCHOOL CHILDREN  

RESEARCHERS: KEVIN HOLE, DR DILYS TREHARNE, DR MICHELLE FOSTER, DR STUART 

CUNNINGHAM 

Your name:    _________________________     Date:     

Position in School:       

Name of School: _________________________  

Contact Number:        

School Address:  _____________________________________________ 

    _____________________________________________ 

Please initial box 

1. I confirm that I have read and understood the information sheet provided 

for the above study and have had the opportunity to ask questions and  

discuss the study with my colleagues  

2. I understand that my schools participation is voluntary and that I and my pupils are  

free to withdraw at any time without having to give a reason 

3. I give permission for my school to take part in the above study. 

 

Name of Head teacher   Signature    Date 

              

Name of researcher   Signature    Date 

             

 

 

Appendix 4 Participant Information Sheet 
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THE IMPACT OF AN AUDITORY TRAINING PROGRAM (THE 

LISTENING PROGRAMME®) ON THE AUDITORY AND SCHOLASTIC 

SKILLS OF MAINSTREAM SCHOOL CHILDREN 

CHILDREN INFORMATION LEAFLET 

        

What is a Research Study? 

A research study is an experiment to find an answer to a question.  

 

Why have I been chosen? 

 

Your class has been asked to take part in the study,  

the other children in your class have been asked to take part as well. 

 

Why is the study being done? 

 

We want to know if listening to different sounds like music or stories helps the 

way children listen and read. 

 

Do I have to take part? 

 

No, it’s up to you and your family. 

If you want to stop taking part in the study at any point, and you do not have to 

tell us why.  

You will not be treated differently by the teachers/ people involved in the study 

if you decide you do not want to take part. 
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Who is taking part? 

 

We are asking a lot of children to take part, including other children in your class. 

 

What will happen to me if I take part? 

 

We will come to school and ask you to take part doing some listening and 

reading games. This takes about half an hour.  

After this, you will take part in some listening activities during school-time for a 

term. These activities involve you to listening to music or stories through 

headphones and will happen every day in class for half an hour.  

When you have completed your listening activities, you will take part in some 

more listening and reading games. 

 

Will joining in the games help me? 

 

We cannot promise that joining in will help you, but it will help us to work out 

whether listening to different types of sounds helps the way children listen. This 

could also help children who do have listening and reading problems. 

 

Who is running the study? 

 

The study is being run by people who work at the University of Sheffield 

 

Who will know if I am taking part in the study? 

 

Although we may use the information you give us to help, we will not tell 

anything about you to anyone else.  
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Your parents/guardians will know you are taking part. Your teacher and other 

children in the class will also know you are taking part.  

 

Has the study been checked? 

 

This research study has been checked University of Sheffield Ethics Panel. The 

job of the Ethics Panel is to make sure that the research is safe to take part in. 

The Ethics Panel is happy for the study to take place. 

 

Who do I ask if I have any questions? 

 

You can ask your parents/guardians or teacher. If they don’t know the answer 

they can ask the person who runs the study.  

You can also ask the person who comes in to play the listening and reading 

games. 

 

 

Thank you very much for reading this information sheet – we hope 

you enjoy taking part. 
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Appendix 5 Parent Information Sheet 

PARENT INFORMATION 

RESEARCH STUDY: THE IMPACT OF AUDITORY TRAINING ON THE AUDITORY 

AND SCHOLASTIC SKILLS OF MAINSTREAM SCHOOL CHILDREN  

Dear Parent/ Guardian 

We would like to invite your child to take part in this research study. Before you decide 

whether or not you wish your child to take part, it is important that you understand why this 

research is taking place and what is involved. Please take time to read this information 

carefully. Please discuss the study with your child, family and friends. If you have any further 

questions, please contact the lead researcher (contact details are available at the top of this 

page). 

What is the Purpose of this study? 

This study aims to investigate the effect listening to specially modified music on a child’s 

ability to perform different tasks. Several studies have suggested that listening to different 

sounds improve the ability of a person to perform different types of listening tasks. Further 

to this, improvements have also been seen with performance in school. The duration of your 

child’s involvement (should they wish to take part) is approximately 12 weeks. 

Why has my child been chosen to participate? 

Your child has been chosen to participate because they attend a school that is participating 

in this study, and are within the age range required (8 to 9 years old) so that they can 

complete the listening tasks required This study requires to participants to meet the 

following criteria: 

 Participants are aged 8 to 9 years old throughout the duration of 

involvement of the study 

 Pass the study’s hearing screen 

 Have Informed Parental Consent to participate 

 Participants are able to complete the tasks required in the study 

 Participants are not involved in other specifically designed auditory training 

programs administered by other professionals. 

 Participants do not have a diagnosis of APD, Dyslexia, or Specific Language 

Impairment. 

 Participants first language is English. 
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.  

Does my child have to take part? 

No, the decision to take part is the choice of your child and yourself. If you decide to take 

part, please fill in the enclosed Consent forms and return them to your school, who will 

forward them to the lead researcher. If your child does take part in this study, they are free 

to withdraw from the study at any point without giving a reason, and would not be 

pressured to continue. If your child does withdraw from the study, their education will not 

be effected.  

 

What happens to my child if they decide to take part? 

If your child decides to take part then they will first of all have their hearing checked by the 

lead researcher in school. If any hearing problems are detected, the lead researcher will then 

refer your child to Sheffield Children’s Hospital for a hearing assessment. If your child passes 

the hearing test, then they will then play a number of computer based listening games, and 

take part in a quick reading test. The session is expected to last approximately 30 minutes. 

Following this, your child will then be placed into one of the three groups listening to 

different types of intervention, whereby your child will listen through headphones to 

different sounds such as music or stories. This will take place in school, lasting fifteen 

minutes, twice a day for around one term. Your child will not be expected to do anything 

extra at home. 

Once your child has completed the listening stage of the study, your child will then be asked 

to play the computer based listening games they played at the beginning, as well as taking 

part in another quick reading test. 

As some of the listening games involve spoken English, the study will only invite children for 

whom English is their first language. We would like as many children to take part in the study 

as possible, if you decide for your child to take part please fill in the consent forms enclosed 

and return to the lead researcher. 

What are the potential benefits for my child? 

Previous research has shown that listening to modified music may improve a child’s ability to 

listen. Other studies have claimed these benefit may also include improvements in reading 

ability. However these studies were small, and such benefits may not occur in this present 

study. Our findings will hopefully help to decide whether listening to different types of 

sounds (whether music or stories) offer some benefit to all children with normal hearing.  

What are the potential disadvantages for my child? 
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There are no known potential disadvantages for your child to take part in the study.  

I do not want my child to take part in the study, what will they do instead? 

If your child does not take part in the study, they may still be able to take part in the class 

activities associated with the study (i.e. drawing a picture of a man, and listening to music or 

stories). However your child would not take part in any of the reading/listening tasks 

required, and no information would be collected regarding your child. 

Will my child’s involvement remain confidential? 

Your child will be involved in listening to different types of sounds in groups, and therefore 

other children in that group will be aware of your child’s involvement. Further to this, your 

child’s school teacher will also be aware of your child’s involvement. However all of your 

child’s results will remain confidential and only available to the lead researcher and research 

team. 

Your child’s details will be kept in a secure location at the workplace of the lead researcher 

(Children’s Hearing Services, Sheffield Children’s Hospital), and your child will not be 

identified in any publications made regarding this study. 

Who is funding this study? 

This study is funded by the Learning Beyond Registration of the Strategic Health Authority in 

South Yorkshire, and will form the basis of the lead researcher’s post graduate study. 

Who is supplying the equipment? 

The equipment involved in the study is been provided by the University of Sheffield, with the 

I Pods (music programmes) being donated by Advanced Brain Technologies (supplier of the 

specially modified music)  

Has this study been checked and is it in agreement with ethics regulations? 

This study has been approved by the University of Sheffield Department of Human 

Communication Sciences Ethics Review Panel.  

 

 

What happens if I wish to complain?  

If you wish to complain about this project, in the first instance please contact the lead 

researcher. If you feel that that your complaint has not been dealt with in an appropriate 

manner, please contact the University of Sheffield Registrar and Secretary on the details 

provided below: 
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Office of the Registrar and Secretary 

Firth Court 

Western Bank 

Sheffield 

S10 2TN 

Telephone: 0114 222 1100 

 

 

 

 email : registrar@sheffield.ac.uk 

 

How do I get more information about the study? 

If you need any more information regarding the study, please contact the lead researcher 

(Kevin Hole) using the contact details provided below: 

Email: Kevin.Hole@Shef.ac.uk    Telephone: 0114 271 7454 

 

 

Yours Sincerely 

 

 

 

Kevin Hole: Lead Investigator/ Postgraduate Researcher 

 

 

 

 

 

 

mailto:registrar@sheffield.ac.uk
mailto:Kevin.Hole@Shef.ac.uk
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Appendix 6 Participant Consent Form 

RESEARCH STUDY: The impact of an auditory training program (The Listening 

Programme®) on the auditory and scholastic skills of mainstream school 

children  

Your name:    _________________________     Date:    

Your child’s name: _________________________     Contact Number:  ________ 

Your relationship to child:     ____________________     

Address:   _____________________________________________ 

    _____________________________________________ 

Your child’s school   _______________________      Please initial box 

1.   I confirm that I have read and understood the information sheet provided 

 for the above study and have had the opportunity to ask questions and  

 discuss the study with my child.   

2.   I understand that my child’s participation is voluntary and that I and my child are  

 free to withdraw at any time without my child’s education, medical care, or legal 

 rights being affected 

3.   I confirm that my child has not been diagnosed with Auditory Processing 

      Disorder, Specific Language Impairment, Dyslexia or a known hearing loss.                 

4.   I give permission for my child to take part in the above study. 

5.   I give permission for my child’s details to be forwarded to the local Audiology  

 department in the event that a hearing loss is identified.  

6. I understand that information gained in the study regarding my child will be strictly  

      Confidential 

7. I understand that my child will be allocated to only 1 of the 3 intervention groups 

Name of parent / guardian   Signature   Date 

              

Name of researcher    Signature   Date 

             



 

 181 

Appendix 7 Music Programme Intervention Protocol 

 

Below is the track lists to be performed. Two tracks (each approximately 15 minutes) should 

be performed a day. This track list is the same regardless of whether the child is on 

Programme A or B. 
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Appendix 8 Audiobook Intervention Protocol 

 

 

 

 

 

 

 

 

 

 

Tom Sawyer Schedule 

Week 1 

Day1- CD1 Track 1 complete and Start   track 2 

Day 2- CD1 Track 2 Complete and CHANGE CD- CD 2 

Day 3- CD2 Track 1 complete 

Day 4- CD2 Track 2 Complete and Start Track 3 

Day 5- CD2 Complete Track 

CHANGE CD- CD3- Complete Track 1 

Week 2 

Day 1- CD 3- Track 2- 30 minutes listening 

Day 2- CD 3 Track 2 Complete, Track 3 Complete 

CHANGE CD- CD4 

Day 3- CD4- Track 1 Complete 

Day 4- CD4 Track 2 Complete 

Day 5- CD 4 Track 3 Complete 

Schedule For Programme C (Audiobooks) 

There are 4 Audiobooks on CDs for the comparable volume of time to the iPod Programmes. 

The books used are: 

Around the World in 80 Days   Tom Sawyer 

Wind in the Willows    Jungle book 

Below is the schedule list for the CD Audiobooks. The CD players have a memory, when they 

are switched on, the CD will resume at the point where the CD player was switched off. 

Please keep check on time and play CD for the period stated below (if the 15 minute session 

is completed midway through a track, switch the CD player off and continue. On occasions 

where noted the listening session allocated for that day maybe slightly shorter or longer than 

15 minutes.  

 Please change batteries ONLY at the end of listening to a track/ CD. All CD’s should be set to the 

volume level 4. 
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CHANGE CD- CD 5 and complete Track 1 

 

Week 3 

Day 1- CD 5- Track 2 & 3 Complete 

Day 2- CD5- Track 4 complete 

CHANGE CD- CD6- Track 1 15 minutes 

Day 3- CD6 – Complete CD 6 

NOTE THIS IS 40 MINUTES (please split into two 20 minute listening sessions) 

END OF TOM SAWYER AUDIOBOOK 

 

Wind in the Willows 

 

Week 3 

Day4- CD 1 Track 1 Complete  

Day 5- CD 1 Track 2 Complete 

CHANGE CD- CD2 

Week 4 

Day 1- CD2 Track 1 Complete 

Day 2- CD2 Track 2 Complete (35 minutes) 

CHANGE CD- CD3 

Day 3- CD3 Tack 1 Complete (2x18 minutes) 

Day 4- CD3 Track 2 Complete 

CHANGE CD- CD4 

Day 5- CD4 Track 1 complete 

Week 5 

Day 1- CD4 Track 2 Complete 
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CHANGE CD- CD5 

Day 2- CD5- Track 1 (2x10 minute session) 

Day 3- CD5- Track 1 Complete (2x10minute sessions) 

CHANGE CD- CD6 

Day 4- Track 1 (2x10minute sessions) 

Day5- Track 1 Complete 

CHANGE CD- CD7 

Week 6  

Day 1- Track 1 Complete (2x20 minute sessions) 

Day 2- Track 2 Complete 

END OF WIND IN THE WILLOWS AUDIOBOOK 

 

Around the World in 80 Days 

 

Week 6  

Day 3- CD 1 Track 1&2 (in one sitting) &   Track 3 

Day 4- CD1 Track 4&5 (one sitting) & Track6-7 

Day5- CD1 Track 8 Complete 

CHANGE CD- CD2 

CD2 Track 1&2 Complete 

Week 7 

Day1- CD2- Track 3-4 Complete 

Day 2- CD2- Track 5 Complete  

CHANGE CD- CD3 

CD3- Track 1 Complete 

Day 3- CD3- Track 2+3 Complete 
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Day4- CD3-T rack 4+5 Complete 

Day5- CD3- Track 6 Complete 

CHANGE CD- CD4 

CD4- Track 1 Complete 

Week 8 

Day 1- CD4- Track 2&3 Complete 

Day 2- CD4- Track 4-5 Complete 

CHANGE CD-CD5 

Day 3- CD5- Track 1+2 Complete 

Day4-CD5- Track 3+4 Complete 

Day 5- CD5- Track 5 Complete 

CHANGE CD- CD6 

CD6-Track 2&3 Complete- Start Track 4(until subjects have been listening for 15 minutes) 

Week 9 

Day1- CD6-Track 4, 5, 6 Complete 

CHANGE CD- CD7 

Day 2- CD7- Track 1+2 Complete (reduced listening time) 

END OF AROUND THE WORLD IN 80 DAYS 

 

The Jungle Book 

 

Week 9 

Day3- CD1- Track 1 complete, Track 2 pause after subject has been listening for 15 minutes) 

Day 4-CD1- Track 2 Complete, Track 3 15 minutes 

Day 5-CD1- Track 3 Complete 

CHANGE CD-CD2 
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CD2-Track 1-pause after 15 minutes) 

Week 10 

Day1-CD2-Track 1+2 Complete (2x17minute sessions) 

Day 2-CD2-Track3 Complete (2x10minute sessions) 

CHANGE CD-CD3 

Day 3-CD3- Track1 Complete 

Day 4-CD3- Track 2 Complete 

Day 5-CD3- Track 3 Complete 

 

END OF LISTENING PROGRAMME.  

STUDENTS MAY CONTINUE TO LISTEN TO JUNGLE IF WISH FOLLOWING POST 

INTERVENTION TESTING IN SUMMER TERM 

 

 

 

 

 


