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Abstract

The number of people affected by natural disasters and the financial costs of recovery
are increasing. To improve the survival rate, reduce the financial costs and reduce the
risks posed to rescue workers, several authors have proposed using robotic modules to
aid in the search and rescue and cleanup operations that follow natural disasters. Due
to the potentially high-levels of adaptivity that they may provide, there is one class of
system in particular which is often highlighted: self-reconfigurable modular robots.

Self-reconfigurable modular robots are robotic modules which can physically connect
with one another and dynamically alter their structural configuration through a process
known as morphogenesis. For self-reconfigurable modular robotic systems to be effective
in tasks like search and rescue they will need to be capable of surviving autonomously for
long periods of time, whilst demonstrating high levels of reliability and fault tolerance.

In this thesis, a novel approach is used to study the reliability of an existing mor-
phogenesis algorithm, using techniques from the field of reliability engineering. The
techniques are found to be effective in identifying problems with the algorithm and
the findings are used to help develop new strategies for detecting faults and recovering
from failures. Results from simulated and real robot experiments show that systems
employing these strategies are able to recover significantly quicker and survive longer
than systems which do not. The design of a new platform extension and algorithms
for controlling the collective locomotion of robots equipped with the extension are also
presented. Through the novel use of ‘virtual sensors’, the same locomotion strategy is
used to demonstrate implicit forms of self-assembly and self-reconfiguration.

It is concluded that the long-term autonomy of self-reconfigurable modular robotic
systems can be improved through the study and development of new and existing
approaches to fault tolerant morphogenesis.
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Chapter 1

Introduction

On 11 March 2011, at 14:46 (JST), an earthquake of magnitude 9.0 MW occurred 70 km
off the coast of Japan. The resulting tsunami struck the Fukushima Daiichi Nuclear
Power Facility and led to the largest nuclear accident since the Chernobyl disaster
in 1986. Prior to impact, three of the plant’s six reactors were out of service and
three were in a cooling phase, having been automatically shut down after the initial
earthquake. When the tsunami hit, the plant’s main power supply was cut and the
back-up generators were damaged, disrupting the cooling process. Overheating, and the
build up of hydrogen gas, led to explosions which damaged the reactors and surrounding
buildings, resulting in the release of radioactive material [35]. In the subsequent efforts
to contain the situation, members of the response team underwent significant personal
risk, exposing themselves to high levels of heat and radiation [188].

The Fukushima disaster is just one of several large-scale natural disasters that have
occurred within the last century. According to statistics from [102], the number of
people affected by natural disasters, and the financial cost of recovery, is increasing. In
2010-12, there were 700 natural disasters recorded worldwide, affecting more than 450
million people. In the 1990s, the estimated cost of damages from natural disasters was
$20 billion per year, in the period between 2000-10 this rose to around $100 billion.

To improve the survival rate and reduce the financial costs of natural disasters,
several authors have proposed using self-reconfigurable modular robotic systems [207]
as part of the search and rescue (SAR) and clean-up operations. Self-reconfigurable
modular robotic systems are autonomous kinematic machines, composed of several
relatively simple connected modules. By altering the connections between neighbouring
modules, such systems may dynamically reconfigure in order to meet the demands of
their current task or environment. Following a natural disaster, it is envisaged that
the deployment of a self-reconfigurable modular robotic system could help to improve
the chances of survival for those directly affected, whilst at the same time reducing the
risks posed to rescue workers.

In the aftermath of the Fukushima disaster, emergency response workers were re-
quired to work long hours, in highly stressful circumstances. To minimise exposure to
radiation, they wore double-layer protective overalls, but with ambient temperatures in
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excess of 28◦C, this further increased the physical strain on the workers, particularly
during heavy labour tasks such as removing rubble [188]. Whilst robots were utilised at
Fukushima [84, 138], these were large teleoperated machines, well equipped to operate
in urban terrain, but less able to autonomously adapt to dynamic environments.

Although there are currently no field deployable self-reconfigurable robotic systems
in existence, it is possible to imagine how, in the future, such systems may be used to
aid in the search and rescue (SAR) or clean-up operations that follow natural disasters.
For example, after deployment, modules could first form several small, highly agile
robot-structures. The mobility and small size of such structures would allow them to
easily navigate between gaps in the rubble of a collapsed building and autonomously
search for survivors or monitor environmental conditions. Upon locating a survivor, or
some other area of interest, the robots could then notify rescue workers or recruit other
modules and adapt their configuration to form a structure that is more suitable for
the new scenario. For example, the robots may form a larger structure that is capable
of protecting survivors by stabilising the surrounding area, or a stronger configuration
which is able to aid the rescue workers by excavating rubble.

For self-reconfigurable modular robotic systems to be successful in tasks such as SAR
or autonomous clean-up, they will need to be capable of operating for long periods of
time, without any form of human interaction. In doing so, they will need to demonstrate
both high degrees of adaptivity to changes in their environment, and high levels of
reliability with regards to the presence of failures and faulty individuals. It is the study
and development of such behaviours that form the main focus of this thesis.

To help motivate research into the problem of long-term autonomy, and as a step
towards the development of field deployable self-reconfigurable modular robotic sys-
tems, members of the SYMBRION (Symbiotic Evolutionary Robot Organisms) [176]
and REPLICATOR (Robotic Evolutionary Self-Programming and Self-Assembling Or-
ganisms) [151] projects have proposed the ‘100 Robots 100 Days’ grand challenge [88].
The challenge, which is introduced in greater detail in section 3.1.3, involves placing a
large group of robots in an enclosed arena for an extended period of time, and moni-
toring whether or not they are able to survive without any form of human interaction.
To make the challenge more difficult, the location and availability of energy resources
within the environment should change dynamically. To survive, the robots must adapt
their behaviour accordingly.

Over the last five years, the SYMBRION and REPLICATOR projects have developed
three new forms of self-reconfigurable modular robot (introduced in detail in section
3.1.1). The 100 Robots 100 Days challenge will serve as a test-bed for the robots.
The success of the challenge will rely on the development of control strategies that
allow the robots to harvest, share and store energy, in a manner that most benefits
the collective. Such strategies will themselves rely, fundamentally, on the ability of
the robots to dynamically alter their structural configuration. For example, in order
to reach an energy source which is located beyond a large obstacle, the robots may
be required to reconfigure themselves into a structural arrangement that allows them
to climb over the obstacle. The process through which modular robots perform such
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reconfiguration is often referred to as morphogenesis [88, 108, 136], a term borrowed
from developmental biology in which it is used to describe how shape and structure
emerge in biological organisms.

Over long periods of operation, within a large group of robots, it is inevitable that
some modules will suffer failures. For the collective as a whole to survive, it must be
possible for the system to continue operating even if one or more modules is faulty.
That is to say, the system must exhibit fault tolerance. The ability to self-reconfigure
provides one method of ensuring fault tolerance, allowing failed modules to be removed
from a robotic structure and replaced by functional ones. However, for the approach
to be successful, the process of morphogenesis itself must also be capable of tolerating
the presence of faults.

This thesis is focused on improving the long-term survival of self-reconfigurable
modular robotic systems through the study and development of distributed approaches
to fault tolerant morphogenesis. Its main contributions include the presentation of an
analytical study on the reliability of an existing morphogenesis controller, the continued
development and optimisation of an existing algorithm for detecting faults in robotic
modules, and the development of new strategies for sharing energy and efficiently re-
pairing and reconfiguring robotic structures.

This research is supported by the SYMBRION project, consequently, the majority of
the algorithms and strategies discussed in this thesis were originally developed for the
SYMBRION robots. The SYMBRION robots are highly complex machines, and are not
currently available outside of the SYMBRION and REPLICATOR projects. This follows
a general trend in the field of self-reconfigurable modular robotics, in which very few
modular robots are available commercially, or have their designs released publicly (two
exceptions being [159] and [165], which are both available to buy online). In contrast,
within the closely related field of swarm robotics [160], several robotic platforms are
available to buy, or have been released as open hardware projects [44, 49, 81, 85, 122,
146, 155]. To address this issue, the final contribution of this thesis is to introduce a
low-cost open source extension which transforms what is traditionally a swarm robotic
platform into a self-reconfigurable modular robotic system. The platform is used to
demonstrate simple forms of collective locomotion and morphogenesis, behaviours which
are critical to the long-term survival of a self-reconfigurable modular robotic system.

This chapter continues in sections 1.1 and 1.2 by introducing the field of autonomous
robotics and the concept of fault tolerance, serving to position these two topics within
the context of this thesis and to clarify the various terminology that is used throughout
the remaining chapters. In section 1.3, a brief overview of the SYMBRION project
is then provided. The chapter concludes in section 1.4 by presenting an outline and
general hypothesis for the remainder of the thesis and expanding upon the contributions
described above.
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1.1 Autonomous Robotics

Whilst the research within this thesis belongs primarily to the field of self-reconfigurable
modular robotics, there are aspects of other systems from the more general field of
autonomous robotics, that still have relevance within this context. This section is
used to briefly introduce each of the different types of ‘autonomous robotic system’
encountered within this thesis, however, before doing so, it is important to clarify what
is meant by this term.

In this thesis, an autonomous robotic system is defined as a collection of one or
more robotic modules, that are designed to operate within a dynamic environment.
Under this definition, the robots must be capable of sensing their surroundings and
reacting autonomously, with little or no human interaction. The necessity for a dynamic
environment included within this definition rules out systems such as assembly-line
industrial robots, which although capable of operating without human interaction, do
so within a relatively static and well defined environment. It is further imposed that
the system should be capable of some form of locomotion, but noted that the individual
modules themselves need not be independently mobile. For example, the robots may be
moved by some external force, or through the coordination of multiple connected units,
as is the case for many of the self-reconfigurable modular robotic systems reviewed in
chapter 3. The following four categories of autonomous robotic system are identified
(ordered in terms of increasing quantity of robots and decreasing complexity):

Individual Robotic System A robotic system containing only a single robot. Indi-
vidual robots are typically much more complex than those found in other systems
and research involving them tends to focus on navigation or sensing tasks.

Multi-robot Team A robotic system containing several, possibly heterogeneous, phys-
ically independent modules. The individual units are typically smaller and less
complex than those found in individual robotic systems. Different individuals
may take on very different roles within the same team and may be controlled in
a distributed or centralised manner.

Self-reconfigurable Modular Robotic System A highly adaptable robotic system,
made up of several, relatively simple, physically connected modules, which are
capable of dynamically altering their morphology in order to suit their task or
environment [207]. The individual units may be homogeneous or heterogeneous,
and can be controlled in a distributed or centralised fashion.

Swarm Robotic System A robotic system composed of several, relatively simple,
physically independent modules, in which global behaviour emerges solely from
the interactions of the individuals and their environment. The robots are normally
much simpler than those used in the other types of robotic system but are also
deployed in much larger groups. The individuals are typically homogeneous and
are usually controlled in a distributed and self-organising manner, reliant entirely
upon local sensing and communication [160].
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The fields of swarm and self-reconfigurable modular robotics both concern the prob-
lem of coordinating the behaviour of a group of relatively simple embodied agents. The
link between the two fields is exemplified by platforms such as the s-bot [121] and foot-
bot [40], which are frequently described as belonging to both. The self-reconfigurable
modular robotic platform developed in chapter 7, is itself based upon a swarm robotic
system, further highlighting the close connection between the two fields.

Although modular robotic systems have less in common with multi-robot teams and
individual robots than they do with swarm robotic systems, the fields are still relevant
to one another. For example, research into providing fault tolerance to individual robots
may, in some cases, be equally applicable to the individual units of a self-reconfigurable
modular robotic system. Likewise, at a slightly higher level, the coordination of a small
group of robots that is necessary in multi-robot teams, may be viewed as a sub-task of
the type of coordination required by self-reconfigurable modular robotic systems.

In chapter 2, when reviewing alternative approaches to robotic fault tolerance, sev-
eral of the most pertinent pieces of work come not from the field of self-reconfigurable
modular robotics itself, but from the related areas described above.

1.2 Fault Tolerance

Fault tolerance is defined as the ability of a system to continue operating, despite the
presence of one or more faulty components. Another property that is closely related to
fault tolerance is ‘graceful degradation’. A system is said to exhibit graceful degradation
when, following the introduction of a fault, it continues to operate at a reduced level of
performance. Graceful degradation is clearly preferred to a complete system breakdown,
and as such is a common component of many fault tolerant systems.

Fault tolerant systems may be loosely classified as either implicit or explicit [27].
With implicit fault tolerance, the control of the system is not altered when a fault occurs.
Either through redundancy or as an emergent property of the system’s controller, the
failure of one component does not prevent the remainder of the system from operating.
For example, in a system of four independent robots, each executing the same task in
parallel, the failure of one robot will not prevent the remaining three from completing
the task. In this case, redundancy alone is sufficient to ensure the continued operation
of the system. However, as highlighted by [194], if a system contains many interacting
elements, and the failure of one component can have an effect on the others, then
redundancy alone may not suffice, and alternative approaches to fault tolerance may
be required.

The explicit approach to fault tolerance can be thought of as a two step process,
first involving the detection and diagnosis of a fault, and subsequently followed by an
appropriate response that serves to remove, isolate or mitigate the effects of the fault.
For example, in a mobile robot, if a fault causes one wheel to turn at a lower rate
than the others, resulting in the robot moving in a circle, an explicit fault tolerance
mechanism may detect this fault and respond by reducing the speed of the robot’s other
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motors, allowing the robot to move in a straight line again.
Whilst the definition of ‘fault tolerance’ given above is widely accepted in literature

[27, 29, 83, 193] there is sometimes confusion in the definition of the terms: fault, failure,
error and anomaly. In this thesis, a classification based upon that of Laprie [103] and
Carlson and Murphy [19] is used. In this classification, a fault is the cause, an error (or
anomaly) is the state and a failure is the event. Consider a small mobile robot with an
array of infrared (IR) range sensors, performing simple obstacle avoidance. If a fault
occurs in one of the IR range sensors, it may cause that sensor to return a value which
is biased by a constant amount away from its true value, this is an error. If the control
system then reads the value of the faulty sensor it will no longer be able to effectively
perform obstacle avoidance, and hence, the fault has manifested itself as a failure in
the control system.

Whilst these terms appear tightly linked, it is important to note that, although by
definition, a fault will always lead to an error, an error will only result in a failure if
it becomes ‘activated’. If for example, the control system of the imagined robot never
reads the value of the faulty sensor, the failure will not occur. Using the terminology
of [103] an error that is not yet activated is referred to as a latent error.

It is hard to remove a fault without replacing the faulty component, and an error
will persist as long as the fault is present, however, if the fault can be isolated or the
value of the error can be corrected, then it is entirely possible to reduce or completely
remove a failure. In this thesis, both implicit and explicit methods of removing failures
are presented. In chapter 5, an explicit method of detecting anomalies in infrared
sensor data is described and in chapter 6, a compatible strategy for removing failures
by isolating the faulty modules is presented. Meanwhile, in chapter 7, an implicit
mechanism for repairing multi-robot structures is reported.

1.3 Symbiotic Evolutionary Robot Organisms

The aim of the SYMBRION and REPLICATOR projects is to investigate novel ap-
proaches to the design and control of self-reconfigurable modular robotic systems. There
is a significant amount of crossover between the two projects, with core tasks such as
self-assembly [36, 89, 108, 148, 196] and collective locomotion [68, 69, 87, 115] targeted
by members of both. There are, however, certain topics which help to distinguish the
two projects. Within SYMBRION there is greater emphasis placed upon so-called ‘bio-
inspired’ approaches, with methods from the field of evolutionary robotics in particular
forming a major part of the project [6, 13, 67, 70, 123, 190]. Elsewhere, investigations
into the provision of fault tolerance, inspired by the function of the vertebrate immune
system [11, 119, 120, 178], further highlight this bio-inspired theme. REPLICATOR, on
the other hand, though not devoid of biological influence, may be thought of as pur-
suing a more ‘traditional’ approach to robotics. Focal topics include world modelling
and sensor fusion [147, 184], along with various approaches to vision based navigation
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(a) (b) (c)

Figure 1.1: An example scenario for the Symbricator robots

[2, 3, 94, 95]. A more exhaustive shared list of publications can be found online1 and
an extensive overview of both projects, published in 2010, is provided by [105].

Though divergent in terms of their scientific focus, the two projects shared in the de-
sign of a common hardware platform, referred to hereafter as Symbricator (SYMBRIon
and repliCATOR). An example of how the completed system may be expected to operate
is provided in figure 1.1. A multi-robot structure is shown climbing over a ditch (a), a
task which an individual robot, or an structure arranged in a different morphology, may
find impossible. The structure is then shown to disassemble into its constituent parts
(b), allowing the individual modules to travel through a small gap (c), another task
that would be difficult in any other configuration. The central challenge of the SYM-

BRION and REPLICATOR projects is how to design controllers that are able to exploit
the capabilities of this highly flexible platform and demonstrate the kind of adaptabil-
ity depicted in figure 1.1, whilst at the same time demonstrating extreme tolerance to
environmental changes, both external (lighting conditions, resource availability) and
internal (energy level, component failures).

To assess the performance of this platform, the SYMBRION and REPLICATOR

projects have proposed the ‘100 Robots 100 Days’ grand challenge (introduced in sec-
tion 3.1.3). Towards the end of the projects, using the various approaches developed
throughout, this grand challenge will be used to demonstrate adaptation and evolution
within robotic structures. Through their situation in a dynamic environment, it is envis-
aged that, to survive, individual robots and larger robotic structures will need to exhibit
the properties of self-organisation, self-reconfiguration and self-repair; co-evolving and
cooperating with each other to ensure the continued survival of the collective.

1.4 Thesis Outline

This thesis is focused on improving the long-term autonomy of self-reconfigurable mod-
ular robotic systems through the study and development of distributed approaches
to fault tolerant morphogenesis. The thesis may be split into two main parts. The

1http://www.symbrion.eu/publications



8 1.4. Thesis Outline

first part involves analysing an existing approach to morphogenesis and adapting it to
provide fault tolerance. This problem is tackled in three stages:

1. Reliability Analysis - In the first stage, the reliability of an existing approach to
morphogenesis is analysed. Some of the ways in which the system is likely to fail
are identified and areas in which improvements need to be made are highlighted.

2. Anomaly Detection - Based upon the outcome of the reliability analysis, in the
second stage, an existing anomaly detection algorithm is extended and optimised,
before being applied to the task of detecting errors in infrared (IR) sensor data.

3. Failure Recovery - In the final stage, a recovery strategy is developed for effi-
ciently reconfiguring robotic structures in which individual modules have failed.

The second part of this thesis involves the design of a platform extension which
transforms an existing type of swarm robotic system into a self-reconfigurable modular
robotic platform. New algorithms are developed for the platform which demonstrate, in
a simplified setting, the types of self-assembling and self-reconfiguring properties that
are necessary to ensure the long-term survival of a collective robotic system.

The following general hypothesis is used to guide this thesis. In later sections, more
concrete hypotheses are presented to analyses specific parts of the problem.

Hypothesis: The long-term autonomy of self-reconfigurable modular robotic
systems can be improved through the study and development of distributed
approaches to fault tolerant morphogenesis. This may be achieved through
the design of new robotic platforms, through the study of existing systems,
through the development of algorithms for detecting faults in robotic mod-
ules, and through the development of strategies for recovering from failures.

The remaining chapters of this thesis are summarised below:

Chapter 2 - Fault Tolerant Autonomous Robotics This chapter reviews exist-
ing work into fault tolerant autonomous robotics. It begins by looking at some
of the different methods that have been used to analyse the reliability of robotic
systems, motivated by the desire to understand when and where faults are likely
to occur, and what effects they may have on a system. The chapter then moves on
to review some of the existing approaches that have been developed for detecting
faults in robotic systems. Finally, the chapter concludes by examining some of
the different strategies that have been developed for recovering a robotic system
from a failed state.

Chapter 3 - Self-reconfigurable Modular Robotics This chapter introduces the
robots and simulators used throughout the remainder of this thesis and provides
an extensive review of the general field of self-reconfigurable modular robotics.
Based upon the taxonomy of [207], the review is split into four sections, each
covering one of the four main classes of self-reconfigurable modular robotic system.
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Chapter 4 - Reliability Analysis and Morphogenesis This chapter begins by in-
troducing a morphogenesis controller previously developed for the SYMBRION

robots. The controller is then analysed using two different techniques from the
field of reliability engineering. The techniques, Failure Mode and Effect Analy-
sis (FMEA) and Fault Tree Analysis (FTA), are used to compare two different
variants of the morphogenesis controller. The reliability of the controller is then
discussed and areas where improvements could be made are identified. The chap-
ter concludes by discussing the suitability of techniques such as FMEA and FTA
within the fields of swarm and self-reconfigurable modular robotics.

Chapter 5 - Energy Foraging and Anomaly Detection This chapter presents an
adapted version of an immune-inspired anomaly detection algorithm for detecting
errors in infrared sensor data. An energy foraging controller is also introduced
that allows robots to dock with and share energy with one another. The anomaly
detection algorithm is optimised using multi-objective optimisation and its perfor-
mance is compared with a state-of-the-art Support Vector Machine (SVM) based
approach. In a simplified version of the 100 Robots 100 Days grand challenge, it
is demonstrated how, with the integration of a basic fault recovery mechanism,
the anomaly detection algorithm and energy foraging behaviours can benefit the
long-term survival of a self-reconfigurable modular robotic system.

Chapter 6 - Self-repairing Robotic Structures This chapter presents an exten-
sion to the morphogenesis controller introduced in chapter 4 which allows the
system to ‘self-repair’ if a fault is introduced into one of the modules. After de-
scribing the self-repair strategy, results are presented from both simulated and
real robot experiments and the strategy is shown to be effective at ensuring that
the system successfully recovers from failures. Some of the interesting properties
of the strategy are analysed in detail and its limitations are discussed.

Chapter 7 - Self-assembling and Self-reconfiguring Robotic Structures This
chapter presents the design of a new, low-cost, structural extension for the e-puck
robot [122]. An algorithm for controlling the collective locomotion of a group of
robots equipped with the extension is introduced and the implicit self-assembling
and self-reconfiguring properties of the system are analysed. Finally, by examining
a form of environment driven self-reconfiguration, the behaviour of the system is
observed in a more complex environment.

Chapter 8 - Conclusions This chapter summarises the main findings and conclu-
sions from chapters 2-7, before revisiting the general hypothesis introduced at the
start of this section and highlighting some potential areas of future work.
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1.4.1 Contribution

The primary contributions of this thesis are outlined below:

Chapter 4 presents an analytical study of the reliability of a previously developed
morphogenesis controller. The study makes novel use of two techniques which are
traditionally utilised within the manufacturing industry. This is the first known
application of these techniques to the field of self-reconfigurable modular robotics.

Chapter 5 introduces several improvements to an existing anomaly detection algo-
rithm and its supporting framework. The classification accuracy of the adapted
algorithm is shown to be significantly better than the original. The chapter also
details the development of a new energy foraging and energy sharing strategy.
The strategy allows multiple robots to simultaneously recharge themselves at
power sockets or provide energy for other modules. During long-term survival
experiments, systems which include the anomaly detection and energy sharing
behaviours are shown to significantly improve the robots chances of survival.
Performance is shown to be comparable to a state-of-the-art alternative and sig-
nificantly better than systems with no anomaly detection and no energy sharing.

Chapter 6 presents a new self-repair strategy for providing fault tolerant morphogen-
esis to self-reconfigurable modular robotic systems. The strategy relies on the
robots isolating, removing and replacing failed modules with functional spares.
In contrast to other similar approaches, the strategy is designed to allow the sys-
tem to recover from the failure of individual modules, rather than large structural
disturbances. A new metric is introduced for classifying robotic structures and is
shown to be a good predictor of how well the self-repair strategy will perform on a
given structure. An implementation of the strategy for the Symbricator platform
and demonstrations of its effectiveness in simulation and using physical robots
are also presented.

Chapter 7 introduces a new low-cost platform extension for investigating the inter-
esting properties of self-reconfigurable modular robotic systems. The platform is
both cheaper and more accessible than the current alternatives. All of the designs
for the extension are freely available online. A novel approach to collective locomo-
tion is presented which relies on inferring the orientation of neighbouring robots
based upon the strength of the infrared signal received when exchanging mes-
sages. A similar strategy is used to demonstrate a new ‘seedless’ approach to self-
assembly, in which robots initially form pairs or triples, before combining to create
larger structures. New strategies for self-disassembly and self-reconfiguration are
also presented.



Chapter 2

Fault Tolerant Autonomous
Robotics

In order to detect faults in autonomous robots, or to design strategies for mitigating
the effects of failures, it is important to understand when and how faults and failures
may occur. This chapter begins by reviewing previous work into analysing the failure
modes and reliability of mobile robots. In chapter 4, based upon some of the techniques
described here, the reliability of a group of Symbricator robots is analysed. The cur-
rent chapter then reviews some of the existing approaches to detecting robot failures.
In chapter 5, this is followed up by examining the performance of an anomaly detec-
tion algorithm during an energy foraging task. Finally, some of the existing strategies
developed for recovering a mobile robotic system from a failed state are discussed, in-
cluding some methods of self-repair and self-assembly that are similar in concept to the
strategies introduced by this thesis in chapters 6 and 7.

2.1 Reliability Analysis

To help determine the type and frequency of failures that can be expected within mobile
robots, Carlson et al. analysed the usage logs of robots at the University of South
Florida’s Center for Robot-Assisted Search and Rescue (CRASAR) [18, 20]. A total of
three years worth of data was collected from 13 robots, gathered under both ‘laboratory’
and ‘field’ conditions, in which the robots carried out a mixture of ‘urban search and
rescue’ and ‘military operations in urban terrain’ style tasks. The measures of Mean
Time Between Failure (MTBF) and Availability (the probability that a system will be
error free at some given point in time [20]) were used to assess the robot’s reliability.

In Carlson et al.’s studies, failures were classified according to the taxonomy shown
in figure 2.1. Since the focus of this thesis is on autonomous robotic systems, only the
five types of physical failure in figure 2.1 are relevant, that is: effector, power, control
system, sensor and communication failures. Repairability, which in Carlson et al.’s
taxonomy refers to repairs carried out by a human operator, is also not relevant here.
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The analysis of [18] and [20] showed the MTBF to lie somewhere between 8 and
24 hours, and availability to be around 54%. For both measures, robots were seen to
be much less reliable under field conditions. In terms of the types of failures observed,
the authors of [18] found failures of effector functions to be the most common, with
examples including tracks slipping and wheels warping due to heat. In [20] however,
which extended the previous study with an extra year’s worth of data, failures of the
control system were found to be the most common.

In a meta-study of ten different surveys into the reliability of field operating Un-
manned Ground Vehicles (UGV) (including data from the original CRASAR studies)
Carlson and Murphy once again found effector and control system components to be
the least reliable [19]. In the same survey, it was also observed that tracked robots
failed more often than wheeled robots. The least likely components to fail were found
to be sensors and power systems. Carlson and Murphy suggest that these findings may
be due to the fact that control systems and effectors, such as tracks and wheels, are
complex and highly specific to their associated platforms, whereas power systems and
sensors are relatively simple, technologically well established, and mass produced.

The analysis of the original CRASAR studies [18, 20] and the meta-study of [19]
considered only individual robots, operating alone or semi-autonomously with human
interaction. Of greater relevance to this thesis is the reliability of collective autonomous
robotic systems. Since early advocates such as [14], it has long been claimed that
the inherent redundancy of multi-robot systems can lead to greater reliability, but as
highlighted by [174], there is little quantitative evidence to support this argument.
To help provide some evidence for this claim, Stancliff and Dolan modelled failures
in multi-robot teams, carrying out a planetary exploration mission, and assessed the
trade-off between: the length of operation, the reliability of components and the cost
of the system [174]. All of the experiments run using Stancliff and Dolan’s models
supported the claim that, at an equal or reduced cost, larger multi-robot teams of
unreliable individuals may be more efficient and more reliable than smaller robot teams
with more reliable individuals. Winfield et al. modelled the behaviour of a robotic
swarm at a much more detailed level [195] and whilst their main intention was not to
investigate fault tolerance, such a model could also have applications in this area.

It should be noted, that Stancliff and Dolan’s models do not take into account what
would happen if a failure occurred mid-task, and furthermore, failures are modelled as
all-or-nothing, if a single subsystem fails, the whole robot fails. These simplifications
are not realistic and do not allow the model to take into account the effect that a partial
failure or a partially completed task may have on the other robots within the system.

Using a very different approach to Stancliff and Dolan, Winfield and Nembrini [193]
take into account the effects of partial failures. Building upon their notion of a ‘depend-
able swarm’ [194] and utilising the Failure Mode Effect Analysis (FMEA) methodology,
Winfield and Nembrini analysed the effects that various failures have on the behaviour
of a robotic swarm whilst the robots carried out a simple containment task. Six types of
failure were considered: motor, communications, avoidance sensor, beacon sensor, con-
trol system and complete system failures. Following analysis, Winfield and Nembrini
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concluded that robotic swarms exhibit the property of robustness, allowing them to
be thought of as reliable systems, however, whilst they are very tolerant to complete
failures, they are far less tolerant to partial failures. A motor failure in the containment
task, for example, may lead to an anchoring of the swarm, caused by the fact that the
failed robot will still be able to communicate with its neighbours, and therefore affect
their behaviour, but will not be able to move with them [193].

In other theoretical work, Bererton and Khosla modelled the reliability of multi-
robot teams in which the robots are capable of repairing one another [10]. Using
the ‘Aggregate’ Mean Time To Failure (AMTTF) as a metric, Bererton and Khosla
compared repairable and non-repairable teams and showed the AMTTF to be greater
with the repairable model. Kannan and Parker further discussed the need for metrics
that measure the fault tolerance of robot teams, suggesting that system performance
should be evaluated based based upon ‘efficiency’, ‘robustness’ and ‘learning’ [83].

Although multi-robot systems may have the potential to be more reliable than
single-robot alternatives, it is important to realise that, in designing a collective robotic
system, it cannot simply be a case of adding more robots with the hope of increasing
reliability. The effects that potential failures—and in particular partial failures—may
have on a system must be taken into account. To help determine these effects, several
authors advocate the use of modelling and analysis [10, 83, 174, 193] but this only tells
the designer what might go wrong, to ensure that it does not, behaviours must also be
incorporated to detect and then recover from failures.

2.2 Fault Detection

In the development of fault-tolerant control systems, such as those used in aviation and
other safety critical systems, detection and diagnosis are often referred to as part of
the same Fault Detection and Diagnosis (FDD) process [213]. There are a number of
different approaches to fault detection and diagnosis. In [213], Zhang and Jiang provide
a classification that categorises methods as either model-based or data-based. The term
model-free is also sometimes used to refer to non model-based approaches [75].

Model-based approaches require the construction of a model that describes the nor-
mal behaviour of the system. At run-time, the difference between the actual system
output and that of the model can then be used to detect the presence of faults. In
contrast, with data-based approaches, a training period is typically required, in which
the output of the system (data) is used to define what normal behaviour is. As with
the model-based approach, anomaly detection is performed by comparing the actual
system output with the expected normal behaviour.

As highlighted by Zhang and Jiang, in the field of fault tolerant safety-critical control
systems, the majority of approaches to FDD are model-based. Of greater relevance here,
however, are the methods applied to mobile and collective robotic systems. In [214],
Zhuo-hua et al. surveyed various methods of fault detection and diagnosis in wheeled
robots and found that model-based approaches were once again well represented.
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Various authors have utilised neural networks and supervised learning techniques to
perform fault detection and diagnosis. In the novel exogenous fault detection approach
of Christensen et al., a ‘leader’ robot was able to detect faults in a ‘follower’ using a
time-delay artificial neural network [27]. The reverse, however, was not investigated
and it was not determined whether, using the same strategy, the follower would be able
to detect faults within the leader. In [28], the same approach was applied to two further
tasks: docking with another robot and following a perimeter. A similar neural network
based approach is described by Wang et al., in which a recurrent neural network is
trained to model the sensors of an underwater robot, and detection is performed at
run-time by comparing the output of the network with the sensor outputs [189].

Hashimoto et al. describe an approach to fault detection based upon voting between
redundant sensors [73]. Specifically, three laser range sensors and one dead reckoning
module are used to estimate the current velocity of a robot and vote accordingly. Any
sensor that is not in agreement with the others is considered to be faulty. Hashimoto
et al.’s approach has also been extended to a multi-robot system [74], in which both the
velocity and position of robots within the group are estimated. A potential drawback
of this approach is the extra cost associated with fact that the robots must possess
multiple sensors capable of measuring the same information.

In [29], Christensen et al. describe a fault detection algorithm inspired by the syn-
chronous flashing behaviour of fireflies. Christensen et al.’s approach is based upon the
assumption that a failed robot will not be able (or will choose not) to flash its LEDs.
Any robot that does not flash in synchrony with its neighbours is considered faulty.
The approach was shown to be successful at detecting faults but is limited slightly by
the requirement that robots should constantly flash their LEDs, preventing them from
being used for other purposes.

In other ‘bio-inspired’ work, several authors have proposed using Artificial Immune
Systems (AIS) [38] for detecting and diagnosing faults in mobile robots. Inspired by
the immune theory of self/nonself discrimination, Canham et al. describe an algorithm
that learns ‘normal’ behaviour during a fault free training period and detects abnormal
behaviour as any deviation thereof [17]. One disadvantage of this approach is that it
requires that what is considered ‘normal’ remains the same over the entire operating
period of the system. Addressing this issue, Owens et al. present an immune-inspired
algorithm that is able to adapt over time to gradual changes [142]. Using the algorithm
from [142], Lau et al. developed a ‘collective self-detection’ scheme [104] in which robots
exchange information with their neighbours in order to detect faults. Meanwhile, in
[120], Mokhtar et al. describe an algorithm for detecting anomalies in sensor data which
is loosely-inspired by the way in which the cells of the innate immune system detect
pathogenic activity. One limitation of this approach is its use of artificial sensor data.
To address this and other issues, an adaptation of the algorithm from [120] is presented
in chapter 5 of this thesis.

Another disadvantage of many of the approaches described above is that they require
a-priori knowledge of normal behaviour. To address this issue, [177] presents an immune
inspired model for detecting abnormal behaviour in multi-agent systems, based upon the
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assumption that behaviours which are ‘persistent and abundant’ should be tolerated
and those which are ‘rare’ should be identified as abnormal. The approach showed
promise in its ability to detect abnormal behaviour, however, it was only demonstrated
within an abstract agent-based simulation which included assumptions such as global
communication. It remains to be seen whether the technique would perform as well
within a more realistic robotic simulator, or using physical robotic hardware.

2.3 Failure Recovery

In a fully autonomous system, it is often impossible to repair or replace low-level compo-
nents such as sensors or actuators without some form of human intervention. However,
if enough information is known about the fault, it may be possible to reduce the effects
of a failure by correcting for, or minimising the error. If for example, a faulty sensor
exhibits an anomaly that causes it to return a value that is a (known) constant amount
away from what it should be, the error can be corrected simply by removing the bias.

Alternatively, at a higher level, in systems composed of many redundant compo-
nents, the simplest form of recovery may be to isolate or remove the failed component.
Such a strategy is particularly well suited to collective robotic systems in which, as a
group, the robots possess multiple copies of the same components and, for many sce-
narios, individual robots may be considered expendable. The majority of the strategies
discussed in this section fall into this category.

With the aim of resolving failures at a sub-system level, the authors of [8] and
[1] present two different robot designs that allow sub-systems which contain faulty
components to be removed and replaced autonomously by other robots.

In [8], Bererton and Khosla describe a ‘repairable’ robot in which the processing,
communications and power components are grouped into replaceable sub-systems. Each
robot has a forklift mechanism and each sub-system has a forklift reciprocal that allows
other robots to dock with them. In [8], the authors demonstrate the robot’s ability to
remove and replace faulty sub-systems by remote control, whilst in [9] they extend this
work with the development of an autonomous, vision-based docking approach.

In [1], Ackerman and Chirikjian describe a hexagonal-shaped robot named Hex-
DMR (Hexagonal Distributed Modular Robot). The robot consists of a star-shaped
chassis and six replaceable sub-systems which fit between the arms of the structure.
The replaceable parts include the power management system (and battery); the control
and communications elements; and three drive units, each containing a single omnidi-
rectional wheel. A further ‘manipulator’ sub-system, to which an optional end-effector
may be added (akin to the forklift from [8]), is used to remove and replace the sub-
systems of other robots. Ackerman and Chirikjian tested the repairing capabilities of
their robot both in simulation and with remote controlled physical hardware.

The necessity for a modular design in which sub-systems can easily and quickly
be exchanged, and the requirement for a manipulator that can reliably swap devices,
means that the development of repairable robots such as [8] and [1] can become very
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complicated. Especially as the number and complexity of the individual robots is in-
creased. Although, as suggested by [8], not every robot in a system may necessarily need
dedicated repair capabilities, and a system could survive with only a sub-population
equipped to repair the remainder, a far simpler approach is to treat failures at the robot
level and discard any module which contains a faulty sub-system. As discussed below,
this approach has been successfully employed by several previous authors.

In one of the earliest examples of such a system, Tomita et al. describe a distributed
self-repair process [179] for the self-reconfigurable modular robotic platform, Fracta
[124]. Fracta robots are able to physically connect with one another using a combination
of permanent and electro-magnets. In [179], the authors describe an algorithm for
assembling structures of a particular shape and an extension that allows structures to
be repaired if they are damaged. If part of a structure is removed, the robots are able
to self-repair by degenerating to an earlier state of assembly and rebuilding the original
structure with redundant modules.

Using a different type of modular robot, Christensen describes a fault tolerant
self-reconfiguration strategy that uses simulated attraction points to stimulate growth
within 3D structures [30]. Christensen evolves artificial neural networks for the ATRON
robots [80] to control the assembly of different types of structure. The structures are
used to bridge gaps between two planes and support platforms. When attraction points
are embedded within a structure itself, and the structure is damaged by removing mod-
ules, the robots demonstrate robustness in their ability to reform a shape resembling
the original structure [30]. In later work, Christensen also demonstrates the ability of
the system to tolerate the failure of robots that remain within the structure [31]. One
potential limitation of the approaches of Tomita et al. [179] and Christensen [30] is that
the robotic structures must carry redundant modules with them at all times.

In a swarm robotic setting, Cheng et al. describe an implicit approach to self-repair
for a ‘formation control’ task [24]. In simulation, robot agents are supplied with the
coordinates of a shape and the task of the robots is to occupy the space within the
shape’s boundary. The majority of agents are not told their position within the world
and must determine it through the use of proximity sensors and local communication.
Agents behave differently depending upon whether they believe they are located within
or outside of the shape. Robots within the shape act like gas particles in a closed
container, whilst those outside simply wander randomly. Any disruptions created by
failed robots or environmental changes are automatically repaired as the agents spread
out to fill the gaps.

In a similar approach to that of Cheng et al., Rubenstein and Shen describe a
fault-tolerant assembly strategy in which, rather than act like gas particles, the robots
follow gradient fields which define target shapes within a shared coordinate system
[153, 156]. Unlike [24], in Rubenstein and Shen’s approach, during repair, structures
are automatically scaled according to the number of available agents.

One disadvantage of the approaches mentioned so far is that there is no discrimina-
tion between partially and fully failed robots. Removing a robot that only has a small
failure may be seen as a rather drastic approach. If a partially failed robot is able to
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complete tasks or fulfil roles for which its faulty components are not required, then it
may still be useful to the collective.

To address this problem, the ALLIANCE framework of Parker provides a fault tol-
erant distributed mechanism of action selection, in which the behaviour of an individual
robot is influenced by the current requirements of its task, the behaviour of its neigh-
bours, the state of the environment, and the state of the robot itself [145]. If a fault
prevents a robot from completing its current task, the framework ensures that it will
automatically switch to another task and be replaced by a more capable robot.

The majority of the approaches discussed above have only been demonstrated in
simulation. Two notable counter examples are the real robot experiments performed
by O’Grady et al. and Yim et al., using s-bots [137] and CKBots [208] respectively.

If a robot has failed in such a way that it cannot move by itself, it may cause
problems by interfering with or acting as an obstacle to other robots. To address this
problem, O’Grady et al. describe a distributed algorithm for transporting failed modules
to a specialised ‘repair’ zone [137]. Using the s-bot platform of [121] O’Grady et al.’s
approach involves dedicated repair robots docking with and attempting to pull failed
robots to the repair zone. If the failed robot is part of a larger connected group, then a
single robot will not be able to rescue it, in this scenario the rescue robot recruits others
by presenting itself as a failed robot. Using real s-bots, O’Grady et al. demonstrated
scenarios in which two broken robots were rescued in parallel, a pair of connected robots
were retrieved by two rescue robots, and deadlock was resolved when the rescue robots
were spread too thinly to effectively recover the failed robots [137].

The recovery mechanisms discussed thus far have all been triggered by relatively
benign failures which affect only a few robots within the local vicinity. In order to
handle a more drastic disruption to a robotic system, Yim et al. present a strategy
for re-assembling a robotic structure that has been broken into several pieces by an
‘explosive’ event [208]. Using the CKBot modular robot, Yim et al. describe a weakly
bound structure composed of three strongly bound sub-structures, each containing five
CKBot modules. The explosive event—in this case, someone kicking the structure—
causes the weak bonds to break and results in the creation of three separate structures
of five modules each. The sub-structures then use cameras and LEDs to locate one
another and, after moving closer, are able to dock and re-form the original structure.

2.4 Summary

To help increase the understanding of when and how robotic systems may fail, Carlson
et al. analysed the usage logs of several different types of mobile robot, in a variety
of different scenarios [18, 19, 20]. Carlson et al. found the MTBF to lie somewhere
between 8 and 24 hours and that effector and control system components were the
most likely to fail. Using different techniques, Bererton and Khosla [10], Stancliff and
Dolan [174], and Winfield and Nembrini [193] all considered the effects of failures in
collective robotic systems. All three groups concluded that redundancy could provide
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benefits with regards to fault tolerance, but Winfield and Nembrini also warned of the
dangers that partial failures could have in swarm robotic systems.

Approaches to fault detection and diagnosis can generally be classified as either
model-based or data-based. In fault-tolerant safety-critical control systems, the major-
ity of approaches to FDD are model-based. In the mobile robotics field, approaches
based upon artificial neural networks [27, 28, 189], voting [73], synchronised communi-
cation [29] and artificial immune systems [17, 104, 120, 142, 177] have all been proposed.

In collective robotics systems, approaches to failure recovery have included the de-
sign of robots that can physically exchange faulty components [1, 8] and control strate-
gies that allow robots to change roles when failures dictate that they can no longer
execute their current task [145]. Using real robotic hardware, [208] demonstrated the
ability of a robotic structure to recover from an explosive event and [137] showed how
rescue robots could be used to drag failed modules to a repair zone. However, the most
popular recovery strategy used by collective robotic systems is simply to rely on the
redundancy of the system and replace the failed robots with spares [24, 30, 153, 179].



Chapter 3

Self-reconfigurable Modular
Robotics

Self-reconfigurable modular robotic systems, are highly adaptable kinematic machines,
composed of several, relatively simple, physically connected modules. The main feature
of such systems is their ability to dynamically alter their morphology in order to suit
their task or environment [207]. In this chapter, several of the most relevant platforms,
from what is a very expansive field, are reviewed. Focus is placed primarily on the
robotic hardware, rather than the algorithms that have been developed for controlling
them. The purpose of this review is to help position the research from this thesis within
the wider field of self-reconfigurable modular robotics, and to lay the foundations for
the design of the new platform extension introduced in chapter 7.

In 2007, Yim et al. produced a comprehensive review of the field of self-reconfigurable
modular robotics [207]. The review included a ‘taxonomy of architectures’ which clas-
sified platforms as either: chain, lattice, hybrid or mobile, according to the manner in
which they reconfigure themselves. In chain-based architectures modules are connected
to one another in series but may branch to form tree like structures or fold and recon-
nect to form loops within continuous three-dimensional (3D) space. Contrastingly, with
lattice architectures, modules occupy discrete positions within a conceptual grid. Re-
configuration in lattice-based systems typically only involves the movement of modules
between neighbouring grid positions. Architectures that combine elements from both
chain and lattice based systems are described as hybrids, and architectures in which the
modules reconfigure themselves by moving through their environment as individuals,
are described as mobile.

When assembled, robots from a mobile architecture may be viewed as conforming
to a chain or lattice type structure. However, it should be noted that, according to the
taxonomy of Yim et al., it is primarily the method of reconfiguration, rather than the
eventual arrangement, which determines the classification of a system. In this context,
the property of mobility supersedes that of the modules geometric arrangement.

Platforms may further be classified according to the number of degrees of freedom
that the individual units possess, the number of dimensions in which structures can
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be formed, the type of docking mechanism utilised, and whether reconfiguration is
performed in a deterministic or stochastic manner.

This chapter reviews several different types of self-reconfigurable modular robots.
The review is divided into four separate sub-sections, each accounting for one of the four
different types of architecture from the taxonomy of Yim et al. [207]: chain, lattice,
hybrid and mobile. Photographs of the most relevant and influential systems from
each class are included in each section. The main properties of all of the reviewed
platforms are summarised in tables 3.2-3.5. The tables include details of the connection
method used by the platform, the principal author, the year of the first publication
referenced in this review and the number of controllable degrees of freedom (DOF) that
the individual units possess. When considering mobile platforms, the DOF responsible
for individual module locomotion are omitted, furthermore, in the case of heterogeneous
systems, where different module types may have different DOF, the largest number of
DOF present on a single type of unit is referenced. The tables were generated from
a combination of the information gathered whilst researching this survey, and from
similar tables found in [140, 207, 209].

Within the wider field of modular robotics, there exist several platforms that are
not capable of self -reconfiguration. In such systems, robots must be connected by hand
and research is focused on the control of fixed structures, rather than reconfiguration.
Examples include the Tetrobot [71, 72] of Hamlin and Sanderson; the YaMoR platform
[117, 118] of Moeckel et al. and the Y1 [58] and GZ-I [211] family of robots from
González-Gómez et al.. As the focus of this thesis is on self-repair and fault tolerance
through self-reconfiguration, systems in which modules do not possess the functionality
necessary to autonomously reconfigure their structure are omitted from the review.

The review itself begins in section 3.2, before which, a detailed overview of the Sym-
bricator platform, which is used extensively in chapters 4-6 of this thesis, is presented.

3.1 Symbricator

The Symbricator platform was developed as part of the SYMBRION and REPLICA-

TOR projects. In this section, the three different types of Symbricator robot, the two
simulators, and the ‘100 Robots 100 Days’ grand challenge are all introduced in detail.

3.1.1 Platform

The Symbricator robots are pictured in figure 3.1. The robots are named according to
their primary purpose, in figures 3.1a-c a single ‘Scout’, ‘Active Wheel’ and ‘Backbone’
robot are shown. In figure 3.1d an example of a ‘passive module’ is also pictured. To
remain compatible with each another, and to aid in the development and manufacturing
processes, the robots and the passive module share several common elements [90]. In
this section, after introducing the common elements, the basic functionalities of all four
modules are briefly described. For a more detailed overview of the platform see [88].
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(a) (b)

(c) (d)

Figure 3.1: Images of a Scout module (a), an Active Wheel (b), a Backbone robot (c)
and a passive module (d)
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(a) (b)

Figure 3.2: An active docking element (a) and a passive rotating docking element (b)
on the sides of a Scout robot. In (a) the positioning of the infrared LEDs, sensors and
receivers are marked in magenta, cyan and yellow respectively

Common Elements The set of elements shared by the Symbricator modules include
communication systems such as the infrared (IR) sensors [107] and the Ethernet bus;
the docking interface and docking elements [106]; the power management system [77];
and the electronics architecture and software framework [112]. Of particular relevance
to this work, and the main focus of this section, are the docking interfaces and the set
of IR components which surround them.

The purpose of the docking interface is twofold. Firstly, it allows modules to connect
with one another to form larger structures, and secondly, once connected, it allows them
to symbiotically share energy and computational resources. The docking element itself,
which is responsible for securing the connection between two modules, is known as
the Cone Bolt Locking Device (CoBoLD) [106] and was designed specifically for the
Symbricator robots. As shown in figure 3.2, each element consists of four cone-shaped
bolts and four complementary holes. There are two versions of the device, an ‘active’
version (a) in which the bolts of one device can be secured in place by the ‘locking wheel’
(not visible in figure 3.2) of another, and a ‘passive’ version (b) in which the locking
wheel and the motor which drives it are not present. To guarantee that a connection
between two modules is strong enough to facilitate 3D actuation, and reliable enough
for a data or energy bus connection to be established, at least one of the modules must
possess an active docking element. For added flexibility, the passive version of the
device may be mounted on a rotating disk, therefore allowing modules with different
orientations to dock with each other.

There are three main infrared components: IR LEDs which are capable of emitting
IR signals, an IR sensor package which consists of an emitter and a receiver, and a
dedicated remote receiver package. Two different types of receiver are required in order
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Functions
Sensor IR LED Remote

emitter receiver (emitter) receiver
Proximity X X
Docking X X
Communications X X

Table 3.1: The various infrared components on-board the Symbricator robots, along
with their primary functions. Reproduced from [107]

to detect different frequencies of IR signal. Figure 3.2a shows the placement of infrared
components around the active docking element of a Scout robot. Although the number
and positioning of the IR components varies slightly between the different types of
robot, their purpose remains the same. Together, the various components provide:
short range proximity detection, mid-range beacon detection and longer range data
communication. Figure 3.2a shows three IR LEDs (magenta), which allow the robot
to act as a beacon or broadcast messages to its neighbours; two IR sensors (cyan),
for obstacle and robot proximity detection; and two IR remote receivers (yellow), for
detecting messages sent by other robots. The various IR components, and the functions
they provide, are summarised in table 3.1.

Backbone The Backbone robot (shown in figure 3.1c) is a cubic module, with edges of
length 12 cm. Its name derives from the fact that—more so than its counterparts—the
Backbone is specialised to operate as a core element within a multi-robot structure.

The robot’s body consists of two main sections, joined at the centre by a hinge that
provides the robot with a single rotational degree of freedom (DOF). On each of its four
vertical faces the robot possesses a docking interface with an active docking element.
To further suit its function, the Backbone robot has a very strong and stable structure,
with actuators that are powerful enough to lift several other docked units. Given these
properties, it is easy to imagine how a Backbone robot may operate in the spine of
snake-like configuration, or in the joint of a larger multi-legged structure.

As an individual, the Backbone robot has a novel form of locomotion. As can be
seen in figure 3.1c, the robot possesses two ‘screw drives’ on its underside, which allow
the robot to move omnidirectionaly, depending upon the direction and rotational speed
applied to each screw. The choice of screw drives as a method of planar locomotion
was also guided by the Backbone’s main function. In allowing the robot to move
omnidirectionaly, the task of aligning and docking with other modules, on any of the
robot’s four docking sides, is theoretically made much easier.

Scout The Scout robot (shown in figure 3.1a) specialises in fast 2D locomotion and
high-fidelity sensing. As its name suggests, the robot was designed specifically with
scouting and surveillance tasks in mind.

Though similar in size and shape to the Backbone robot, the Scout is both lighter
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and more agile. Two caterpillar tracks, controlled by a differential drive system, allow
the individual robots to operate well on a variety of different types of terrain. Although
less versatile than the Backbone as a member of a multi-robot structure, due to the
Scout’s superior sensing and locomotive abilities, it may still be used as a specialised
‘head’ or ‘foot’ module in larger robotic collectives.

Like the Backbone, the Scout robot has four docking interfaces, each containing a
single docking element. The two elements on the front and back of the robot are active,
whilst the two side elements are passive. The Scout cannot rotate its entire body like
the Backbone, but it does possess a moving arm. Although much weaker than the
hinge mechanism of the Backbone, the Scout’s arm is still capable of supporting the
weight of a single module. The ability of the Scout to lift or pull another robot means
that, further to its role as a scouting module, it may also be used to help transport the
lesser-mobile Backbone robots.

Active Wheel The Active Wheel (shown in figure 3.1b) is an example of what is
referred to as a ‘tool’ module [88]. A tool module is a robot designed primarily to
carry out a specific task, in this case, that task (from which the name ‘Active Wheel’
originates) is the transportation of other modules. A combination of a high ground
clearance, powerful actuators and omnidirectional locomotion, enable a pair of Active
Wheels, docked either side of a Backbone or Scout robot, to lift and transport the
module over large distances. This allows the transported modules to travel further,
and across rougher terrain than they otherwise would be able to, whilst at the same
time expending less energy.

The Active Wheel can also support the Backbone and Scout modules in other ways.
For example, due to its larger size, the Active Wheel can hold more energy, and therefore
may serve as a store at which the other modules can recharge. Furthermore, due to its
strong actuators and rotating docking elements, the Active Wheel may assist modules
that have fallen into a position from which they cannot right themselves, or transport
them to areas in the arena which as an individual they would not be able to reach.

The structure of the Active Wheel is very different to that of the Scout and Backbone
robots. In figure 3.1b, an early prototype with a symmetrical ‘S’ shaped design is
shown. The prototype consists of two identical segments, each equipped with two
omnidirectional wheels that are positioned perpendicular to one another. The segments
are joined at the centre by a hinge which is flanked by two passive rotating docking
elements. In figure 3.3, a more recent ‘T’ shaped version is shown. The design was
updated in order to improve traction and sensor coverage, the main alteration being
the removal of one wheel, and the repositioning of the remaining three at 45◦ offsets.

Passive Module The purpose of passive modules is to help fulfil roles that are not
covered by the other modules. For example, a passive module may carry a sensor
that the other modules do not possess, or dedicated hardware that can be used for
computationally intensive processing. Though they share a similar function to tool
modules such as the Active Wheel, passive modules are not independently mobile and
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Figure 3.3: The newer ‘T’ shaped Active Wheel module, docked with a Scout robot

do not operate autonomously, they simply respond to the instructions of other modules.
Passive modules can take on a number of different forms. To remain compatible with

the other Symbricator robots, their only requirement is that they possess a mechanism
through which the other modules can communicate or interact with them. Figure 3.1d
shows the frame and basic electronics of a passive module. The module approximates
the dimensions of two Backbone robots, but since it contains none of the Backbone’s
actuators, it is both lighter and has more internal space. Assuming that the module
is also equipped with the necessary energy sharing and communication systems, by
placing this module within a larger robotic structure and utilising its internal space to
store more battery packs, such a module could be used to greatly increase the operating
period of a collective structure.

3.1.2 Simulators

In this section, the two Symbricator simulators used throughout the remainder of this
thesis are introduced. The first is the ‘Robot3D’ simulator [197], designed as part
of the SYMBRION and REPLICATOR projects, this simulator provides accurate 3D
models of all three Symbricator robots. The second is a modified version of the popular
‘Stage’ simulator [186], adapted to more closely emulate the docking and energy sharing
capabilities of the Symbricator platform.

Robot3D Simulator The Robot3D simulator [197] includes 3D models of all three
of the Symbricator robots. Several of the robots’ sensors and actuators are simulated,
including actuators for 2D and 3D locomotion, docking elements and infrared (IR)
sensors; as well as radio, IR and Ethernet communication. As shown in figure 3.4,
Robot3D is able to simulate the behaviour of robots as individuals (a) and as part of
collective robotic structures (b).

Robot3D uses the Open Dynamics Engine (ODE) to provide rigid body dynamics
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(a) (b)

Figure 3.4: Screenshots from the Robot3D simulator, showing the behaviour of both
individual modules (a) and a multi-robot structure (b)

simulation and collision detection. Simulation of visual sensors is implemented using
Open Scene Graph (OSG). The mass and friction of the robot bodies are accurately
simulated and simplified geometric models are used for collision detection. Various
different actuators are implemented, including: a hinge joint, an omni-directional wheel
and a screw drive. Two different methods of simulating the connection between docked
robots are provided. The first uses an ODE fixed joint and allows the forces and torques
that one robot applies to another to be calculated, however, under certain conditions
this method can can make the simulator unstable. The second solution merges the
bodies of two connected robots, leading to a less accurate but more stable simulation.
In all of the experiments reported in this thesis the second method is used.

The simulator serves two main purposes within the SYMBRION and REPLICATOR

projects: firstly, it is used to aid in the design of robot controllers before their deploy-
ment on the real Symbricator hardware, and secondly it is used for research into the
evolution of robot controllers and morphologies, which is naturally better suited to sim-
ulation. Originally known under the title ‘Symbricator3D’ [198] over recent years the
simulator has undergone significant revisions. For use outside of the SYMBRION and
REPLICATOR projects, Robot3D has now been released as an open source project1.

Stage Simulator The Stage simulator [186] is a 2D robotics simulator, commonly
used in conjunction with the Player plugin2. Noted for its speed, scalability and easy of
use, Stage supports the simulation of large numbers of independent robots, with basic
sensors and actuators.

Stage simulates the environment as an array of cells (the size of which is configurable)
and provides only first-order motion simulation (ignoring dynamics). Collision detection

1https://launchpad.net/robot3d
2http://playerstage.sourceforge.net
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(a) (b)

Figure 3.5: Screenshots from the Stage simulator, showing the original Symbricator
model from [108] (a) and the updated models used within this thesis (b)

and range sensor data is computed using ray tracing with the granularity determined
by the size of the underlying cells. The default cell size is 0.02 m, however, in the
experiments described in this thesis, a resolution of 0.001 m was used.

The simulator was extended for use in the SYMBRION project with the addition of a
model that more closely resembles the shape, size and functionality of the Symbricator
robots [108]. The model includes accurate representations of the robot’s IR sensors,
LEDs and remote receivers, based upon data gathered from real components [108].
To allow robots to dock with one another on a 2D plane, the model also includes
a simplified representation of the robot’s docking elements. A screenshot from the
adapted simulator is shown in figure 3.5a.

The simulator was further extended for this thesis with the addition of models for
representing power sockets and passive modules, further details of which are provided in
chapter 5. The original Symbricator model was also updated to allow robots to donate
energy to each other, or to recharge themselves when connected to power sockets or
passive modules. Figure 3.5b shows all three models in the updated simulator.

3.1.3 100 Robots 100 Days

First proposed by [88], the 100 Robots 100 Days grand challenge was designed to assess
the ability of a group of robots to survive (remain functional) autonomously for long
periods of time, without any human interaction. This property of long-term autonomy
is believed to be essential if robotic systems are ever to fulfil their potential in tasks
such as autonomous space exploration, environmental monitoring or search and rescue.

A sketch of the challenge from [88], is shown in figure 3.6. The essence of the
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Figure 3.6: A graphical representation of the 100 Robots 100 Days challenge [88]

challenge is as follows. A large group of robots, assumed to be of the order of 100, are
placed in a complex but structured environment, that is slowly changing over time. In
the beginning, the environment is rich in energy with multiple power sources available.
Some sources, in the form of power sockets, will be positioned in areas that are easy to
reach for individual robots. Whereas others will be placed in more challenging regions,
for example, several centimetres above the surface of the arena, or beyond obstacles.
Over time, power sockets may turn on and off, altering their availability. To survive,
the robots must monitor the availability and distribution of energy and adapt their
behaviour to meet their demands. As time progresses further, stronger environmental
pressure will force further adaptation. Those power sockets in easy to reach places will
become fewer. To survive, the robots must cooperate and adapt to form larger robotic
structures that can scale obstacles and utilise the sockets in the harder to reach regions.
The challenge will end after a set period of time, in the order of 100 days.

During a period as long as 100 days, it is inevitable that some robots will run
out of energy, whilst others will suffer electrical or mechanical failures. Throughout
the challenge, there will be minimal human interaction, this means that the robots
themselves will have to detect when a module has failed. Furthermore, when failures are
detected, the robots should react appropriately, for example, by removing or replacing
the failed individuals. At the end of the challenge, metrics such as the proportion of
robots still functioning (and to what extent) as well as the amount of human interaction
that was required, may be used to assess the performance of the system.

3.2 Chain

The main properties of the systems reviewed in this section are summarised in table
3.2. Images of the most influential of these platforms are shown in figure 3.7.
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System DOF Connection Mechanism Author Year

Polypod 2 3D Pin/Hole, SMA Yim 1993
PolyBot 1 3D Pin/Hole, SMA Yim et al. 1998
CONRO 2 3D Pin/Hole, SMA Will and Shen 1998
CKBot 1 3D Magnets Yim et al. 2007
ModRED 4 3D Pin/Hole, Solenoid Dasgupta et al. 2010

Table 3.2: The main properties of each of the ‘chain’ platforms reviewed in this chapter

(a) (b) (c)

Figure 3.7: Three examples of chain-based self-reconfigurable modular robotic systems.
From left to right, (a) shows eight PolyBot robots arranged in a snake configuration
[203], (b) shows a group of four CKBots with a camera module attached [208] and (c)
shows a quadruped structure assembled from CONRO robots [23]
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One of the earliest examples of a chain-based modular robot was the Polypod system
of Yim [199, 201]. The platform consists of two different types of module, a flexible
segment that provides actuation, and a static node that supplies power and serves as a
branching point within structures. Segments have two degrees of freedom and two con-
nection plates for physically and electrically connecting separate modules. Nodes have
no degrees of freedom but possess six separate connection plates. With this platform,
Yim demonstrated several different forms of ‘statically stable’ locomotion [200]. Whilst
apparently possessing the necessary sensors and actuators, it is not clear from the lit-
erature whether Yim was also able to successfully demonstrate autonomous docking
with the Polypod platform. Therefore, it is not clear whether the platform can truly
be described as self-reconfigurable, however, as a forerunner of the highly-influential
PolyBot robot [41, 202], its importance should not be understated.

The PolyBot system also consists of two types of module, again referred to as nodes
and segments. Multiple versions of the PolyBot robots have been developed, each one
an incremental refinement of the last [204, 206]. The basic shape and functionality of the
robots, however, has remained the same. Each segment possesses two connection plates
which can be rotated using a single DOF between −90◦ and 90◦. Upon each plate, the
robots have both mechanical and electrical connectors. In later versions of the hardware,
infrared transmitters and receivers allow the modules to autonomously dock with one
another [205]. The robots have been used to demonstrate several different types of
gait, including snake, caterpillar, spider, lizard and rolling loop motion [203, 212]. The
platform is notable for being the first to demonstrate the automatic transition between
two different modes of locomotion (rolling and snake-like motion) and for its repeated
deployment within unstructured environments [41, 203, 206].

With colleagues from the GRASP Laboratory at the University of Pennsylvania,
Yim et al. later developed another type of chain-based modular robot, known as the
CKBot (Connector Kinetic roBot) [208]. The CKBot platform also consists of two
different types of module, but unlike the Polypod and PolyBot platforms, both types
of module possess a single DOF. The modules share similar electrical and mechani-
cal components but have subtly different kinematic structures which allow them to be
assembled into a greater number of arrangements than would be possible with only a
single module type. Modules can be connected by hand using screws or autonomously
connect with one another using magnetic interfaces [208]. When connected, the mod-
ules may share power and communicate using a CAN (Controller Area Network) bus.
Each robot is also equipped with infrared receivers and transmitters that can be used for
proximity detection and communication. In [144] the authors used these infrared sen-
sors to provide communication fault tolerance during a distributed control task. Over
recent years, the CKBot platform has been augmented with numerous extensions, in-
cluding passive wheels [4], compliant legs [163], camera modules [208] and even a ‘foam
generation device’ [152]. Using the foam generation device Revzen et al. demonstrated
that a group of CKBots were able to modify their environment and form new robotic
structures by creating links between existing CKBot groups ‘on-the-fly’. The platform
is also well known for its demonstrations of ‘dynamic rolling’, which tested the ability
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of loops containing between 8 and 12 modules to move both up-hill and down-hill at
various speeds [164]. Of particular relevance to this thesis is the demonstration by Yim
et al. of a group of 15 modules that is able to autonomously self-assemble after an
‘explosive’ event which breaks the system into three sub-structures [208].

At around the same time that Yim et al. were developing PolyBot, Will and Shen
created the CONRO robot [22, 23]. CONRO modules are composed of three linearly
connected segments. The central segment houses the core electronics, whilst the two
outer segments contain docking connectors and infrared sensors for both intra-structure
and inter-structure communication. The two outer segments are joined to the central
unit by independent joints, which are perpendicularly offset to provide the module
with both pitch and yaw DOF. One of the outer segments contains a single passive
‘male’ docking connector with protruding pins, and the other contains three active
‘female’ connectors which incorporate a latch for securing the connection between two
modules. Docking has been successfully demonstrated between two modules within the
same structure [166] as well as two modules within separate structures [154]. Methods
for determining the configuration of a structure [21] and distributed hormone-inspired
approaches for controlling assembled structures [161, 167] have also been proposed.

More recently, in 2010, Nelson et al. introducedModRED (Modular Self-reconfigura-
ble Robot for Exploration and Discovery) [32, 132]. The individual ModRED robots are
composed of four linearly connected segments, the two outer segments contain docking
brackets, whilst the two central segments contain actuators and drive-train components.
Two rotational degrees of freedom join the docking brackets to the central segments,
whilst a single translational degree of freedom—allowing for expanding and contracting
motion—and a further rotational degree of freedom, separate the two central segments.
Despite possessing more DOF than most other chain-based modular robots, the fact
that the modules have only two docking connectors severely limits the type of structure
that modules may form. Most early work with the ModRED system has been conducted
in simulation. Although the problem of determining when and how robotic structures
should be reconfigured has formed a large part of this early work [43, 149], the authors
have yet to demonstrate autonomous docking with real robotic hardware.

3.3 Lattice

The main properties of the systems reviewed in this section are summarised in table
3.3. Images of the most influential of these platforms are shown in figure 3.8.

Over the last 25 years, a large number of lattice platforms have been developed. A
variety of different module designs have been proposed, ranging from the very small to
the reasonably large. A number of different connection mechanisms have been developed
for physically joining modules and a variety of different actuation methods have been
proposed for controlling and reconfiguring systems.

Examples from the smaller end of the scale include theMiche [53, 54] and Smart Peb-
ble systems [51, 55] developed at the MIT Computer Science and Artificial Intelligence
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System DOF Connection Mechanism Author Year

Fracta 3 2D Magnets and Electromagnets Murata et al. 1994
Metamorphic 6 2D Mechanical Clamp Chirikjian et al. 1996
Molecule 4 3D Electromagnets Kotay and Rus 1998
3D Fracta 6 3D Mechanical Clamp & Cuff Murata et al. 1998

I-Cube 3 3D Mechanical Lock and Key Ünsal and Khosla 2000
Crystalline 1 2D Mechanical Lock and Key Rus and Vona 2000
Telecube 6 3D Magnets Suh et al. 2002
ATRON 1 3D Mechanical Hooks Stoy et al. 2004
Prog. Parts 0 2D Magnets Klavins 2005
Catom 0 2D Electromagnets Goldstein et al. 2005
Miche 0 3D Magnets Gilpin and Rus 2007
Smart Pebble 0 3D Electromagnets Gilpin and Rus 2010
Fluidic Assembly 0 3D Fields metal Neubert et al. 2010

Table 3.3: The main properties of each of the ‘lattice’ platforms reviewed in this chapter

(a) (b) (c)

(d) (e) (f)

Figure 3.8: Six examples of self-reconfigurable lattice platforms. In the top row, (a)
shows a 15 module ‘dog’ assembled from 27 Miche robots [53], (b) shows three Catom
robots [91] and (c) shows three Fracta modules transforming from a linear shape into
a more densely packed arrangement [126]. In the bottom row, (d) shows three Pro-
grammable Parts performing self-assembly [12], (e) shows three different structures
assembled from ATRON modules [140] and (f) shows a single Crystalline robot [158]
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Laboratory. Envisaged as a test bed for future systems of programmable matter, using
magnetic connectors these small, immobile, cube shaped modules may self-assemble
with the help of an external stochastic force, for example, a vibrating table. Once as-
sembled, a distributed strategy of self-disassembly is used to ‘sculpt’ the desired object
from the densely packed robotic substrate [50, 52, 56].

Other examples from the field of programmable matter include Goldstein et al.’s
Catom [57] and Neubert et al.’s fluidic assembly modules [133]. Designed as part of the
Claytronics project3 the Catom is a small cylindrical module which relies on an array
of electromagnets to connect modules on a two-dimensional plane. By coordinating
which magnets are on and which are off, modules can reconfigure by revolving around
one another. A novel design developed for a more recent prototype allows the same
magnetic interfaces to be used for power transfer and communication [91].

Neubert et al.’s fluidic assembly modules employ a very different approach to self-
reconfiguration. Modules are suspended in a fluid filled chamber with a single seed
attached to an external power source. Guided by the turbulent flow of liquid within
the chamber, new modules are attracted to the seed and connect to it using a novel
mechanism which effectively solders the robots together. Connected modules share
power with one another and are able to channel the flow of liquid through their bodies
by adjusting a set of values. The flow of liquid through a structure alters the turbulence
in the chamber and therefore allows the modules to direct the assembly process.

Most early work into lattice-based modular robotics focused on 2D systems. The
Fracta modules of [124] and the Metamorphic robots described by [143] are two good
examples. Fracta modules have a six-lobed structure that approximates a hexagon.
To reconfigure they employ a combination of permanent magnets and electromagnets,
allowing modules to move around one another in a manner not dissimilar to that of
Goldstein et al.’s Catoms [57]. Tomita et al. describe a self-assembly algorithm that
allows a group of Fracta to autonomously reconfigure into a predefined shape [179].
Extending the self-assembly method Tomita et al. also demonstrate how the system
may self-repair in three steps by (1) removing failed modules, (2) degrading to an
earlier state of assembly and (3) re-initiating the assembly process.

Pamecha et al. describe two different types of Metamorphic robot [143]. The first
of which consists of six articulated links, arranged in a hexagon shape. The robots are
able to dock with one another using a clamping mechanism and locomotion is achieved
by deformation of the hexagon shape, allowing the modules to effectively ‘roll’ around
one another. The second type of robot is square and uses a shuttle and jaw connecting
mechanism, allowing the robots move like pieces in a sliding block puzzle.

Another, more recent, example of a 2D-lattice system are Bishop et al.’s Pro-
grammable Parts [12]. Bishop et al.’s ‘parts’ are triangular and rely on magnets to
connect with one another. Self-assembly is performed in a stochastic manner by ran-
domly ‘mixing’ the modules on an air table. Modules join with one another following
chance collisions, but decide whether to remain connected using a set of predefined

3http://www.cs.cmu.edu/~claytronics/
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graph grammar rules.
Following on from their 2D work with Fracta, Murata et al. created one of the earliest

examples of a 3D modular lattice platform. The modules in Murata et al.’s 3D Fracta
[125] system are roughly cubic in shape, with a single rotatable arm protruding from
each face. Mechanical grippers at the end of each arm allow the modules to connect,
communicate, and share power with one another. Expanding upon their earlier work
in two dimensions, Murata et al. also present a 3D self-assembly algorithm.

The ATRON platform from [80, 140] represents another good example of a 3D
system. Each ATRON module consists of two rotating hemispheres and connects with
other modules using a mechanical hook mechanism. The robots have been used to
demonstrate behaviours including collective locomotion [139], self-reconfiguration and
self-repair [30].

In contrast to the systems introduced thus far, the Molecule [93] and I-Cube [182]
platforms may be described as ‘bi-partite’ in structure. Both systems are made up of
a collection of cubic modules that are joined to each other by a set of bonds, or ‘links’.
In the case of the Molecule system, these bonds are rigid and are always permanently
attached to two modules. Each module, referred to as an ‘Atom’, has five electromag-
netic connectors, one of which possesses a single rotational degree of freedom, and four
of which are static. To further aid reconfiguration, the Atom’s have a second rotational
degree of freedom about the point at which they are connected to the bond. In [92]
Kotay and Rus present a language for describing the motion of Molecule robots, and
using it, present a series of algorithms for performing various primitive behaviours.

In contrast to the Molecule platform, in the I-Cube system, the modules and links
are physically independent. Despite their autonomy, the two parts are mutually reliant
upon one another in order to perform reconfiguration. Links are joined to modules,
referred to as ‘cubes’, using a lock-and-key style mechanism. To enable reconfiguration,
links are articulated at the centre and have one rotational degree of freedom at either
end. Links provide actuation whilst cubes provide power, computation, and sensing.
Ünsal et al. describe experiments with prototype hardware that demonstrates the move-
ment of a link from one face of a cube to another, the passing of a link between two
cubes, and the passing of a cube between two links [183].

Inspired by the expanding and contracting behaviour of muscles and amoebas, the
creators of the Molecule robot later produced the Crystalline system [157, 158]. Crys-
talline modules are square in shape with each side connected to a common actuator that
allows them to expand and contract across a 2D plane. Docking is performed using a
lock-and-key mechanism, with each module possessing two active ‘key’ connectors and
two passive ‘lock’ connectors. In [158] Rus and Vona describe how structures may move
using an inchworm like motion and how reconfiguration may be performed by trans-
porting individual modules from one area of the lattice to another. In contrast to most
other lattice systems, in which the modules reconfigure themselves by moving over or
around the lattice, in the Crystalline system, the modules use an expansion/contraction
behaviour that repeatedly shifts modules by one place in the grid, effectively allowing
modules to move ‘through’ the lattice.
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System DOF Connection Author Year

M-TRAN I 2 3D Magnets/SMA Coil Murata et al. 2002
M-TRAN II 2 3D Magnets/SMA Coil Murata et al. 2003
Molecubes 1 3D Magnets/Pin and Socket Zykov et al. 2005
M-TRAN III 2 3D Mechanical Hooks Kurokawa et al. 2006
SuperBot 3 3D Mechanical Clamp Shen et al. 2006
Roombots 3 3D Mechanical Latch Sproewitz et al. 2008

Table 3.4: The main properties of each of the ‘hybrid’ platforms reviewed in this chapter

(a) (b) (c)

Figure 3.9: Three examples of self-reconfigurable hybrid platforms. From left to right,
(a) shows the three different versions of the M-TRAN robot [99], (b) shows multiple
SuperBot modules arranged in various different configurations [26] and (c) shows eight
Molecube robots performing self-replication [217].

Using their Telecube robot [175], Suh et al. later realised the expandable module
concept in three dimensions. In the Telecube system, the expansion of each side of a
module is controlled by an independent piston. Each face plate contains two permanent
switching magnets for connecting with other modules; an infrared transmitter and
receiver for inter-robot communication; and electrical contacts for power transfer. In
[185] the authors describe a reconfiguration algorithm in which control is abstracted to
the level of ‘meta-modules’, each of which is composed of eight Telecubes.

3.4 Hybrid

The main properties of the systems reviewed in this section are summarised in table
3.4. Images of the most influential of these platforms are shown in figure 3.9.

The earliest example of a modular robotic system that combined aspects from both
lattice and chain architectures was the Modular TRANsformer (M-TRAN) platform
of Murata et al. [127]. Through its innovative design, the M-TRAN system combines
the ease with which lattice type systems may be reconfigured, with the flexibility of
locomotion found in chain type systems [127]. Since 1999, three different versions of the
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M-TRAN system have been developed. The modules of the first version (M-TRAN I )
are formed of two cubic segments. The segments are separated by a single link with one
controllable DOF at either end. One segment is referred to as the ‘active box’ and the
other as the ‘passive box’. Both segments contain three (permanent) magnetic docking
interfaces, but the active box also contains a spring-loaded detachment mechanism,
controlled by a shape memory alloy (SMA) coil. The two hardware revisions that
followed M-TRAN I maintained the same two-segment structure as the original but
improved upon both the sensing and actuation capabilities of the robots.

In the second version of the M-TRAN system, M-TRAN II [97], the overall size of
the modules was reduced and the individual robot’s computational power was increased,
as was both the effectiveness and efficiency of their (un-)docking mechanism. With
these modules, Kurokawa et al. successfully demonstrated the transformation between
quadruped and caterpillar structures [97], as well as the (remotely operated) assembly of
a single structure from two smaller ones [98]. Meanwhile, in [210] and [82] the authors
presented methods for coordinating the motion of such structures, using controllers
evolved and optimised with genetic algorithms (GA).

In the third and most recent version of the M-TRAN hardware [100] the magnetic
docking connectors were replaced with motor driven hooks to provide a faster, stronger
and more reliable connection between modules. Despite being slightly larger and heavier
than the previous version, the M-TRAN III robots consume less power. The modules
also posses infrared sensors, although these were present on some versions of the M-
TRAN II hardware [82], they were not widely utilised. With the M-TRAN III robots,
the infrared sensors were used to provide a simple form of local communication [99].
With the addition of a specialised camera module, the transmitters of the IR sensors
were used as markers for a vision based docking approach [128].

Inspired by a combination of Murata et al.’s M-TRAN modules [97, 100, 127], and
their own previously developed CONRO robots [22], in 2006, Shen et al. introduced
the SuperBot platform [162, 168]. Like the M-TRAN robots, the SuperBot modules are
composed of two cubic segments, each of which possesses a single DOF. However, unlike
M-TRAN, the link that joins the two segments of a SuperBot can rotate, providing
the robots with a degree of freedom in each of the three principal axes of rotation:
yaw, roll and pitch. The other main difference between the SuperBot and M-TRAN
systems is found in the robots docking mechanisms. Whereas the M-TRAN modules
possess both ‘male’ (active) and ‘female’ (passive) connectors, the connectors used
by the SuperBot robots are described as ‘genderless’ [169], meaning that every side
of every module is identical, and resulting in a greater number of possible structural
configurations. Furthermore, the unique design of the SuperBot connector means that
one robot may undock from another without that module’s cooperation. This one-
sided disengagement is useful to prevent failed modules from adversely affecting the
remainder of a robotic structure from which they cannot be removed. A large amount
of work with the SuperBot robots has been focused on the task of locomotion, and
in particular on that of controlling the motion of a group of robots arrange within a
loop structure. In such a configuration, the SuperBot robots have demonstrated the
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System DOF Connection Author Year

CEBOT 1 2D Mechanical Hooks Fukuda et al. 1988
Swarm-bot 3 2D Mechanical Gripper Mondada et al. 2004
Symbrictor 3 3D Mechanical Latch Kernbach et al. 2010
Sambot 1 3D Mechanical Hooks Wei et al. 2010
X-Cell 1 2D Electromagnets Hong et al. 2011
Swarmanoid 3 2D Mechanical Gripper Dorigo et al. 2013
SMORES 4 3D Magnets Davey et al. 2012

Table 3.5: The main properties of each of the ‘mobile’ platforms reviewed in this chapter

ability to roll continuously for 54 minutes, covering a distance in excess of 1 km [26],
as well as robustness in their ability to ‘self-recover’ if the loop falls onto its side [25].
Like the PolyBot robots, the SuperBot platform is notable for having demonstrated its
capabilities within challenging real-world environments, including climbing sand dunes
[26] and both vertical and horizontal ropes [150].

Two final hybrid systems, which both employ a similar design, are Zykov et al.’s
Molecubes platform [215] and Sproewitz et al.’s Roombots system [170, 172]. Both
systems contain units that are roughly spherical in shape and like the modules of the
ATRON platform, each unit is composed of two rotating hemispheres. In the Roombots
system, each module is made up of two of these primitive units, permanently joined on
one face by a single rotating joint, therefore providing each complete module (two units)
with a total of three DOF. Each Molecubes module, on the other hand, contains only
a single unit, and therefore possesses only a single DOF. The platforms also differ in
terms of their connection method. Roombots utilise a mechanical latch [171], whereas
Molecubes favour a pin and socket style connector. Early Molecube prototypes were
shown to be capable of a basic form of self-reproduction [216, 217], whilst Roombots
are envisaged as a future platform for self-reconfigurable furniture [173].

3.5 Mobile

The main properties of the systems reviewed in this section are summarised in table
3.5. Images of the most influential of these platforms are shown in figure 3.10.

One of the earliest forms of mobile self-reconfigurable robot, and one of the earliest
forms of modular robot in general, was the CEBOT (cellular structured robot) platform
of Fukuda et al. [47, 48]. The platform may be described as heterogeneous, consisting
as it does of multiple different types of module. In [47] the authors describe three
different types of robot ‘cell’, one capable of bending, one capable of rotation and one
that is independently mobile. Each cell type contains compatible docking interfaces,
based upon a bolt and hole mechanism, and locked by an SMA spring. In [48] an
improved docking mechanism is described that uses a cone shaped docking connector
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(a) (b) (c)

Figure 3.10: Three examples of self-reconfigurable mobile platforms. From left to right,
(a) shows two CEBOT modules (image from [60]), (b) shows a group of four ‘foot-bots’
from the Swarmanoid project [40] and (c) shows a single SMORES module with each
of its four independent DOF marked [37].

with hooks either side to hold the connection in place. Improved sensing capabilities are
also introduced, including infrared and ultrasonic sensors. In [46], the authors describe
their vision of the CEBOT platform as an intelligent universal manipulator and describe
some of the methods that are required to achieve this function.

Despite Fukuda’s pioneering work, in early modular robotics research, the concept of
a mobile self-reconfigurable platform was largely ignored, with most researchers tending
to focus on chain and lattice based systems. In recent years, however, a number of
different mobile platforms have emerged. This resurgence was led by the s-bot platform
[121] from the Swarm-bot project4, and the foot-, hand- and eye- bots [40] of the
succeeding Swarmanoid project5. Each s-bot possesses a combined track and wheel
(‘treel’) differential drive system, an array of sensors, an omnidirectional camera and
grippers for physically connecting with neighbouring modules. As an evolution of the
s-bot, the foot-bot possesses a similar set of sensors and actuators, but housed in a
more robust and slightly larger platform. The hand- and eye-bots are designed to
supplement the foot-bot with additional sensors and actuators, resulting in a highly
flexible heterogeneous swarm. Although unable to create arrangements as complex as
those produced by other modular robotic systems, the hand- and foot-bots may still
physically connect to form simple 2D structures. The Swarm-bot and Swarmanoid
platforms have been used to developed several distributed methods of self-assembly
[62], self-reconfiguration [135] and collective recovery [137].

The Symbricator platform [88] from the SYMBRION and REPLICATOR projects,
introduced in section 1.3, represents another good example of a heterogeneous self-
reconfigurable modular robotic system. Like the modules from the Swarm-bot and
Swarmanoid projects, the individual robots are independently mobile. However, unlike
the s-bot and its derivatives, the modules are also designed to be capable of form-
ing complex 3D structures. The platform consists of three unique, yet complimentary,

4http://www.swarm-bots.org/
5http://www.swarmanoid.org/
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modular forms, each possessing its own set of functionalities, and accordingly, its own
set of sensors and actuators. Although structurally, mechanically and electronically
distinct, all three types of module share a common mechanical docking interface. As
summarised in section 1.3, research within the two projects has included the develop-
ment of evolvable distributed controllers for collective locomotion tasks [68, 70], strate-
gies for self-assembling robotic structures [89, 108] and immune-inspired algorithms for
fault detection [120] and diagnosis [11].

The Distributed Flight Array (DFA) of [141] represents a very different type of
mobile self-reconfigurable system. The DFA modules are hexagonal and measure ap-
proximately 25 cm in length. At the centre of each module is a single 3-blade propeller
and surrounding it are three omnidirectional wheels. The modules may move along the
floor as individuals, but when connected, form a multi-rotor vehicle that is capable of
autonomous flight. Protruding features of the robots chassis allow for passive alignment
and docking, and magnets ensure that docked modules remain connected. The strength
of the magnets was chosen to allow modules to break apart only if sufficient force is
applied, for example when a flying structure falls to the floor. Early experiments by
[141] verify the ability of the modules to dock and fly in a connected group.

Two other examples of mobile systems are Wei et al.’s Sambot [191] and Hong
et al.’s X-Cell [76]. Both systems approximate cubes with 8 cm sides, and both are
made mobile by a two wheeled differential drive system. The X-Cell modules consist of
two parts, a main unit which houses the core electronics and battery, and a square faced
shell upon which sensors and docking connectors are mounted. A servo motor allows the
shell to rotate independently of the base, in the range of 0−180◦. The Sambot modules
possess four passive docking sides and one active side, mounted on a rotating arm. In
contrast to X-Cell, which may only form structures within a 2D grid, the rotating arm of
the Sambots allows them to form 3D chain-like structures. Using the Sambot platform,
Wei et al. have demonstrated basic alignment and docking, quadruped assembly and
caterpillar motion [192]. Like Wei et al., using the X-Cell platform, Hong et al. have
also demonstrated basic infrared-based alignment and docking [76].

One final, more recent, mobile system is the SMORES (Self-assembling MOdular
Robot for Extreme Shape-shifting) platform of Davey et al. [37]. The SMORES system
promises the ability to perform reconfiguration using lattice, chain and mobile strate-
gies. Each module is articulated at the centre and has four docking connectors, one of
which is passive and three of which can actively rotate. The active docking connectors
also serve as wheels for individual module locomotion. Robots are connected using per-
manent magnets and disconnect by rotating their docking elements until the magnets
repel one another. At present, the robots are not equipped with any sensors, but have
successfully demonstrated the ability to assembly and reconfigure under remote control.
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3.6 Summary

Over the past five years, the SYMBRION and REPLICATOR projects have overseen the
development of three new robotic platforms and two new simulators. The hardware
platforms, collectively referred to under the title ‘Symbricator’, and known individually
as the Backbone, Scout and Active Wheel, each have their own set of specialist func-
tionalities. The Backbone was designed to serve as the core component of multi-robot
structures, the Scout was designed to perform surveillance and sensing tasks, and the
Active Wheel was designed to provide support for the others. The Robot3D simula-
tor, which contains 3D models of the Symbricator robots, was developed specifically
for SYMBRION and REPLICATOR projects. Meanwhile, in order to provide a fast 2D
simulation environment, the Stage simulator was adapted for use within the projects.

Members of the SYMBRION and REPLICATOR projects have proposed the 100
Robots 100 Days grand challenge, which will be used to assess the ability of self-
reconfigurable modular robotic systems to survive autonomously, for long periods of
time, without any form of human interaction. Over such a long period of time, it is
anticipated that some robots will suffer failures, and therefore, to survive, the system
must be capable of handling faulty robots. That is to say, the robots must be capable
of demonstrating fault tolerance. To do so will require techniques for detecting faults in
individual robots and strategies for recovering a system that contains failed individuals.

According to the taxonomy of Yim et al. [207], there are four main types of self-
reconfigurable modular robotic system: chain, lattice, hybrid and mobile. These differ-
ent types of platform are distinguished according to the manner in which they reconfig-
ure themselves, and may be further be classified according to the number of degrees of
freedom that the individual modules possess, the type of docking mechanism they utilise
and whether reconfiguration is performed in a deterministic or stochastic manner.

Chain-based systems include the Polypod [199, 201] and succeeding PolyBot [204,
206] platforms of Yim et al.. The latter of which is notable for being the first platform to
demonstrate the transformation between two separate modes of locomotion, and for its
repeated deployment in real-world unstructured environments. Of particular relevance
to this thesis, is the CKBot platform [208], which has been used to demonstrate the
ability to self-repair, following an event which breaks the system into several parts.

The majority of self-reconfigurable modular robotic systems belong to the lattice
category. Relevant systems include the Fracta [124] and ATRON [80, 140] platforms,
which have both been used to demonstrated different forms of self-repair. Other inter-
esting examples include the Programmable Parts [12] and Catom robots [57], which,
despite the individual modules not possessing any independent degrees of freedom—
and in the case of Catom, no moving parts—are still capable of demonstrating complex
self-reconfiguration on a 2D plane.

Hybrid platforms are those which combine elements of chain and lattice based sys-
tems. One of the earliest such systems was the M-TRAN series [97, 100, 127] of Murata
et al. Said to combine the ease with which lattice systems can be reconfigured, with
the flexibility of locomotion that chain type systems provide, the M-TRAN robots
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have been used to demonstrate several forms of locomotion, self-assembly and self-
reconfiguration. The equally influential SuperBot [162, 168] platform of Shen et al.,
is memorable for its ‘genderless’ docking connector, long-distance rolling experiments
(including self-recovery) and its placement within challenging real-world environments.

The Symbricator robots, used in chapters 4-6 of this thesis, and the new platform ex-
tension introduced in chapter 7, both fall into the category of mobile self-reconfigurable
modular robotic systems. Other members of this category include the robots from the
Swarm-bot and Swarmanoid projects [40, 121], which have both been used to demon-
strate highly relevant behaviours such as fault detection, self-assembly and collective
self-recovery. Meanwhile, the mobile DFA [141] and X-Cell [76] platforms, although
bearing less relevance to the Symbricator robots, share several commonalities with the
new platform described in chapter 7.

This chapter showcased the wide range of self-reconfigurable modular robotic sys-
tems that have been developed, but also highlighted the high complexity and cost of
many of these systems. Due to their cost and complexity, modular robots are typically
very limited in their accessibility. Very few platforms are available to buy or have been
released as open hardware projects. This is in direct contrast with the field of swarm
robotics in which several low-cost, low-complexity platforms have been developed and
are available either commercially, or as open source projects. The cost and limited
availability of modular robotic systems was one of the main motivations for the devel-
opment of the platform introduced in chapter 7. As an extension to an existing swarm
robot, the platform combines benefits from both swarm and self-reconfigurable mod-
ular robotic systems in order to provide a simple, low-cost system, that may be used
to investigate the interesting properties of self-reconfigurable modular robotics from a
simplified level.



Chapter 4

Reliability Analysis and
Morphogenesis

In this chapter, the reliability of a morphogenesis controller—originally developed by
Liu and Winfield [108] as part of the SYMBRION project—is analysed using two differ-
ent techniques from the field of reliability engineering. The techniques, Failure Mode
and Effect Analysis (FMEA) and Fault Tree Analysis (FTA), are used to analyse and
compare two variants of the controller. Following analysis, the reliability of the system
is discussed and areas where improvements could be made are suggested. The tech-
niques of FMEA and FTA are also compared with one another and their usefulness as
aids to the design of fault tolerant robotic systems is considered.

The reliability study described in this chapter was performed using the Symbricator
platform, and specifically the Backbone robots. These robots were chosen due to their
availability within the SYMBRION project and their use in the original work by Liu
and Winfield. It is highlighted, however, that the analysis techniques described here
are sufficiently general that they could be applied to other types of self-reconfigurable
modular robotic system, and to different forms of controller.

This chapter continues in section 4.1 by describing the morphogenesis controller in
detail. In sections 4.2 and 4.3, the FMEA and FTA techniques are introduced and then
used to analyse a system of Symbricator robots running the morphogenesis controller.
In section 4.4, the outcomes of the analysis are discussed and the FMEA and FTA
procedures themselves are compared. Finally, in section 4.5, a summary is presented
and some potential avenues of future work are suggested.

4.1 Morphogenesis Controller

The morphogenesis controller of Liu and Winfield [108] was designed to allow a group of
Symbricator robots to self-assemble into a robotic structure of predetermined size and
shape. Once assembled, the structure may either completely disassemble, or partially
disassemble, allowing for the efficient transformation into a different configuration.
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Figure 4.1: A top-down view of a multi-robot structure (a), alongside its corresponding
graph representation (b). The structure in (a) is composed of 6 Backbone modules
(shown in white), two Scout robots (light grey) and one Active Wheel (dark grey).
The small arrows in (a) signifiy the robots’ headings. The symbols on the edges of the
graph in (b) describe the manner in which the two modules associated with the edge
are connected to one another

In this chapter, it is assumed that the target system is composed entirely of Back-
bone robots, however, in chapter 6, structures containing Backbone, Scout and Active
Wheel modules are investigated. It is recalled from section 3.1.1 that each Backbone
robot possesses four active docking elements and that for a reliable connection to be
established between two robots, at least one of the pair must have their docking ele-
ment locked. The robots also possess a range of infrared (IR) devices which are used
for both navigation and communication (full details of which are provided in section
3.1.1). Specifically, the morphogenesis controller introduced in this section makes use
of the IR sensors, for obstacle and robot proximity detection; the IR LEDs, to allow
robots to act as beacons or broadcast messages to their neighbours; and the IR remote
receivers, for detecting the messages sent by others.

The morphogenesis process is initiated and coordinated by a single ‘seed’ module
which possesses a plan for the structure that the robots are required to assemble.
However, before introducing the controller itself, it is important to first describe the
way in which robotic structures are internally represented by the individual modules.

4.1.1 Structural Representation

The method that the robots use to encode structural configurations has undergone
several revisions since it was first published in [108]. The most up to date method
represents structures as directed acyclic graphs (DAGs) and is visualised in figure 4.1.

Figure 4.1a shows a top-down view of a potential arrangement of 9 Symbricator
robots, whilst figure 4.1b shows the same structure represented as a graph. Each vertex
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Robot types Docking sides

K Backbone F Front
A Active Wheel R Right
S Scout B Back

L Left

Table 4.1: Symbols used to represent different types of robot and different docking sides

in the graphical representation corresponds to a robot, and each edge to a connection
between two robots. The direction of an edge represents which of the two modules
is responsible for recruiting the other. For example, in figure 4.1b, as shown by the
direction of the edges which connect their vertices, module 6 is responsible for recruiting
modules 7 and 8. In every graph, there will be a single node with an indegree of zero, the
corresponding module (for which no other robot is responsible for recruiting) represents
the seed robot. The seed of the structure shown in figure 4.1, therefore, is module 0.

Every edge of a structure’s graph contains a string of four characters which repre-
sents the type and connected sides of the two corresponding modules. For example, in
figure 4.1, the edge joining vertices 0 and 5 is labelled ‘ABKF’. The first two symbols
in this string represent the type and recruiting side of module 0, whilst the second two
represent the type and docking side of module 5. The symbols ‘A’ and ‘K’ represent
Active Wheel and Backbone modules respectively, whilst the symbols ‘B’ and ‘F’ are
used to represent the back and front sides of modules. Therefore, the string ‘ABKF’
represents the fact that an Active Wheel (A) is required to recruit, on its rear side (B),
a Backbone module (K), docked using its front side (F). The symbols used to encode
the other sides and module types are summarised in table 4.1.

Internally, the robots represent graphs using a string of symbols. The string which
corresponds to a particular graph can be constructed by performing a depth first traver-
sal of the graph (starting with the seed). For every edge that is explored, the corre-
sponding symbols are copied to the string, and for every backtracking step that is
performed, four NULL symbols are added. The result, as shown in figure 4.2, is the
construction of a string in which every set of four characters has a matching set of NULL
symbols, and everything between the two represents one branch of the structure.

4.1.2 Controller

Every robot in the system runs the same behavioural controller. A finite state machine
(FSM) for the controller is shown in figure 4.3. The behaviours above the dashed line
are executed by modules that are currently part of the structure being assembled, and
the behaviours below the line are executed by physically independent robots.

Whilst figure 4.3 shows the behaviours of the individual robots, it is also possible to
identify ‘system level’ behaviours which arise from the interactions of robots executing
the individual behaviours. At least three such system level behaviours may be iden-
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Figure 4.2: The partial construction of a string-based representation of the structure
from figure 4.1a. Arrows show the order in which vertices are encountered during
a depth first traversal of the graph (top). Black arrows represent exploratory steps,
whilst grey arrows show backtracking steps. The order in which nodes are traversed
corresponds directly to the order in which symbols are added to the string (bottom)
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Figure 4.3: A finite state machine for the morphogenesis controller of [108]. Each
state corresponds to a single behaviour. The behavioural states positioned above the
dashed line are executed by modules which belong to a larger robotic structure. The
behaviours positioned below the dashed line are performed by independent unconnected
robots, which are not considered to be part of a robotic structure
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tified: Exploration, Self-assembly and Self-disassembly. Exploration simply describes
the ability of robots to explore their environment whilst avoiding obstacles and other
robots. Exploration is essential to ensure that robots are able to locate the site of the
forming structure. Self-assembly is the main behaviour observable in the system and
incorporates all of the mechanisms through which individual robots combine to form
a new structure. Finally, Self-disassembly, involves all of the methods through which
robots coordinate their behaviour in order to disassemble a robotic structure. These
three behaviours together allow the system to exhibit the property of autonomous mor-
phogenesis. Each of the three system level behaviours is now introduced in turn, with
reference to the individual behaviours that are combined to give rise to them.

Exploration

Exploration is provided by the interactions of robots in the Wandering state. In this
behaviour, robots simply move forward and, if an obstacle is encountered, they change
direction to avoid it. This strategy is sufficient to ensure good coverage in an enclosed
arena with no internal obstacles. It is acknowledged, however, that for more complex en-
vironments, a different strategy may be required. As suggested in [108], this behaviour
can be replaced by other swarm behaviours (such as ‘foraging’) without affecting the
system’s ability to perform morphogenesis.

Self-assembly

Self-assembly arises from the interactions of robots in almost all of the individual be-
havioural states. After deciding to form a new structure, the seed robot immediately
enters the Recruitment state and begins to broadcast both long range ‘recruitment’
messages and short range beacon signals on the docking sides at which it is required
to recruit other modules. The detection of ‘recruitment’ messages causes robots in the
Wandering state to transition into the LocateBeacon state (figure 4.3, transition 1)
and subsequently, if the beacon signal is detected, into the Alignment state (figure 4.3,
transition 2).

If the LocateBeacon or Alignment states are unsuccessful, robots will transition
back to the Wandering state (figure 4.3, transitions 3-4). If both are successful, the
robots will transition to Docking (figure 4.3, transition 5) and in order to establish a
reliable connection, will execute a simple docking protocol. At the same time as it
locks its own docking element, the docking robot instructs the recruiting module to do
the same by sending a ‘docking-ready’ message using its IR LEDs and transitioning to
the Locking state (figure 4.3, transition 6). After a short delay (in the order of a few
seconds) allowing time for the connection to be established, the docking robot transmits
a ‘docking-complete’ message through the wired channel. Finally, the recruiting module
responds by transferring information regarding the shape of the current structure.

The controller also incorporates two precautions against the interference that may
occur as multiple robots attempt to align with the same recruiting robot. As soon
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as a robot enters the Alignment state it broadcasts an ‘in-range’ message to notify
the recruiting robot that it is within range of the beacon signal. When a recruiting
robot receives an ‘in-range’ message from an aligning robot, it stops broadcasting its
availability, therefore helping to prevent other robots from entering the LocateBeacon
state. Furthermore, whilst aligning, robots broadcast ‘expelling’ messages to notify
other nearby robots of their presence. When an aligning robot receives an ‘expelling’
message from another module, it switches back to the Wandering state, helping to
prevent two robots from aligning with the same recruiting module. Both of these
actions reduce the chances of multiple robots interfering with the docking process.

When a new robot joins a structure it enters the InStructure state (figure 4.3,
transition 7). When a module is require to recruit, it transitions to Recruitment (figure
4.3, transition 8), and when finished transitions back to the InStructure state (figure
4.3, transition 9). The decision as to which robots enter the Recruitment state at which
point in time, and upon which sides they signal for other robots to join, is determined
by a ‘recruitment strategy’. Two different recruitment strategies have been developed.
The first of which is described in [108] and referred to as ‘single entry recruitment’. In
this strategy, only one robot may occupy the Recruitment state at any moment in time,
and may only recruit upon one docking side. The second strategy [110], is referred to as
‘multiple entries recruitment’. This strategy removes the restrictions upon the number
of robots that may recruit simultaneously, and the number of sides at which they may
do so. Both strategies are described in more detail below.

Single Entry Recruitment In the single entry recruitment strategy all robots hold
the same library of structural shapes. When a new robot joins a structure it is told
which shape is being constructed and the current number of robots in the structure.
Messages are then propagated throughout the structure to allow every robot to update
its own internal counter of the number of robots present. For every shape, there is a
predetermined order in which the modules must be added. Since every module in the
structure knows when it joined and how many robots are currently in the structure,
individuals may work out when it is their turn to recruit simply by referencing these
values with their knowledge of the shape being constructed.

Multiple Entries Recruitment With the multiple entries recruitment strategy,
robots are not required to store a record of all of the possible structural configurations.
Instead, the seed robot holds the entire shape (encoded using the method described
in section 4.1.1) and the relevant sub-branches are passed on to new modules as and
when they join the structure. When a new robot joins, depending upon which side it
docks, it is passed the corresponding sub-branch. If the joining robot is not required
to recruit any further modules, it is simply passed an empty string. Any robot that
receives a non-empty string immediately enters the Recruitment state. By examining
the string they receive, robots in the Recruitment state can determine which docking
sides they are required to recruit at. The process continues until every module has
finished recruiting, at which point, all robots will occupy the InStructure state. Note
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that with the multiple entries strategy, since the order in which robots may be added is
less restricted, modules do not need to know the current size of the structure in order
to determine whether or not they should enter the Recruitment state. Any robot that
is required to recruit new modules will attempt to do so immediately.

Self-disassembly

Regardless of the recruitment strategy that is employed, the Self-disassembly behaviour
remains the same. Self-disassembly can be initiated by any module. When and why
a robot would choose to initiate the disassembly process is considered to be beyond
the scope of this work, but examples may include the robots encountering a gap or
crevasse that is too small or narrow for a larger structure to navigate through. Self-
disassembly begins with a single module sending disassembly messages to all of its
neighbours. As soon as an individual decides, or is notified, that it is time to disassemble
it moves into the Disassembly state (figure 4.3, transition 10) and unlocks its docking
element. Robots that are only connected to one other module then remove themselves
from the structure by reversing away and re-entering the Wandering state (figure 4.3,
transition 11). Robots that are connected to more than one other module, propagate
the disassembly message and wait until all but one of their neighbours has disconnected
itself. This process repeats until all of the robots have left the structure. It is assumed
that disassembly begins only once the 3D structure has reconfigured itself into a 2D
planar structure, but how the structure arrives in this arrangement is considered to be
outside of the scope of this work.

4.2 Failure Mode and Effect Analysis

Failure Mode and Effect Analysis (FMEA) is a well established procedure for analysing
the safety and reliability of a product or process [114]. The technique is widely used
within the manufacturing industry, but in a departure from its normal usage, was also
utilised by Winfield and Nembrini to analyse the reliability of a robotic swarm [193].

To perform FMEA, the analyst first derives a list of specific ‘failure modes’—the
things that can go wrong—for every component in the system under study. They then
attempt to identify all of the effects that these failures may have on the system, in
the process building up a general overview of the system’s reliability. Because of this
progression from specific failures to general effects, FMEA may be described as an
inductive approach to system analysis. Further details of the procedure can be found
in [34] and [114].

In order to perform FMEA on the morphogenesis controller introduced in section 4.1,
a similar approach to that of Winfield and Nembrini [193] is followed. The individual
components of the system are considered to be the system level behaviours introduced
in section 4.1. The failure modes, meanwhile, correspond to the complete or partial
failure of an individual robot.



50 4.2. Failure Mode and Effect Analysis

Hazard Description
H1 Motor failure
H2 Communications failure
H3 Avoidance sensor(s) failure
H4 Beacon sensor failure
H5 Control systems failure
H6 Total systems failure

(a)

Hazard Description
HM Motor failure
HR IR remote receiver failure
HS IR sensor failure
HL IR LED failure
HT Total systems failure
HD Docking element failure
HW Wired communication failure

(b)

Table 4.2: Hazards investigated by [193] (a) and those analysed in this study (b)

4.2.1 Failure Modes

Failure modes or ‘hazards’, as they are otherwise referred to, may be classed as either
internal or external (environmental). Internal hazards are those which originate from a
single robot. The failure of an individual component or subsystem, for example, would
be considered an internal hazard. External hazards originate from the interactions of
multiple robots and their environment, sensor interference is a good example of such
a hazard. In this study, like that of Winfield and Nembrini, only internal hazards are
considered. The six hazards identified by Winfield and Nembrini (reproduced in table
4.2a) form the basis of this work.

The majority of the hazards considered in Winfield and Nembrini’s study corre-
spond to the failure of an independent subsystem. Although the Symbricator mod-
ules share some of the same functionalities as the robots in [193], subsystems that
are considered independent in Winfield and Nembrini’s study, may not necessarily be
considered independent here. For example, as highlighted in section 3.1.1, the avoid-
ance sensing subsystem of the Symbricator robots shares components with the beacon
sensing subsystem, a fault within an infrared sensor—a component which both subsys-
tems share—could result in the failure of both obstacle avoidance and beacon sensing.
Specifically, in this study, the subsystems responsible for communications, avoidance
sensing and beacon sensing are all inter-linked. As shown in table 4.2b, because of this
interdependence, hazards corresponding to the low level components that make up each
subsystem, rather than the subsystems themselves, are studied. As in [193], motor and
total systems failures are also considered. Additionally, in this study, two new hazards
are examined which relate to the ability of the robots to dock with one another and
communicate through a wired connection.

4.2.2 Effects

In section 4.1, three system level behaviours were identified: Exploration, Self-assembly
and Self-disassembly. When an individual robot suffers a failure, the effect that it has
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on the system may differ depending upon which of the system level behaviours the
robot was contributing to when the failure occurred. During self-assembly, the choice
of recruitment strategy may also influence the effects of any failures. In order to com-
pare the two recruitment strategies, during analysis, the recruitment strategy decision
processes are extracted from the Self-assembly behaviour and considered as separate
system level behaviours. The methods through which recruiting robots attract new
modules to a structure and the interactions between the robots within and outside of
the structure are still considered part of the Self-assembly behaviour. The difference is
that the mechanisms through which robots decide whether or not to enter the Recruit-
ment state, and upon which docking sides to recruit, are now considered separately
under the headings of the two recruitment strategies.

Whilst performing FMEA, four different effects were identified, two of which are
described as serious and two of which are described as non-serious. All four are listed
below, with uppercase lettering used to denote the serious effects:

e1 - reduction in the number of capable robots

e2 - delay in the formation of a structure

E1 - stall in the formation of a structure

E2 - stall in the disassembly of a structure

This section now considers each of the hazards introduced in section 4.2.1 in turn and
outlines how they may affect the system, depending upon the system level behaviour
which the afflicted robot is contributing to. Failures are assumed to be permanent and
to occur in only a single robot at any one moment in time.

HM - Motor

In this chapter, a motor failure is defined as any failure of the motor subsystem which
causes the affected robot to remain stainory. This definition does not cover partial
failures in which a robot can move, but does so in an uncoordinated fashion. Whilst a
robot that has suffered a motor failure will remain stationary, it will not be prevented
from communicating with other modules.

The effect that a motor failure has on the system depends largely upon where
the robot was located when the failure occurred. The failure of a robot that is located
outside of communication range of the structure, thus contributing only to Exploration,
will have very little effect on the system. Since there is no explicit communication
between robots during Exploration, a failed robot will not interfere significantly with
others. The only effect will be a reduction in the number of capable robots, e1. Provided
that the number of active robots is still greater than the number of robots required to
create the desired shape, the task of forming a structure may still be completed.

Robots which are contributing to the Self-assembly behaviour, but are not yet part
of the structure, will be located closer to the site of assembly. The effect of a motor
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failure in this instance will be far more severe. A robot that stops moving whilst in
the Alignment state, for example, will not only fail to join the structure itself, but
by transmitting ‘expelling’ messages and physically blocking the path of others, may
actively prevent further robots from doing so. If robots are prevented from joining
the structure at one or more recruitment sites, the formation of the structure will be
permanently stalled, effect E1.

Analogously, during Self-disassembly, a robot that has suffered a motor failure may
act as a physical obstacle, preventing itself and others from leaving the structure and
resulting in a stall in disassembly, or effect E2.

HR - IR Remote Receiver

An IR remote receiver failure is defined as a failure of the communications subsystem
which prevents a robot from receiving wirelessly transmitted messages through one or
more of its IR remote receivers. This definition does not account for failures in which
a device may still receive partial messages or corrupt information.

IR receivers are not used by either of the recruitment strategies, nor are they used
during Self-disassembly. However, the failure of this device may affect the system if it
occurs in a robot that is contributing to Exploration or Self-assembly.

During Exploration, the failure of one or more of a robot’s remote receivers will
reduce the chances of the robot detecting any messages broadcast by recruiting modules.
Without being able to detect ‘recruiting’ messages, a robot will be unable to transition
to the Alignment state, and therefore will not be able to join a structure. Although
the affected individual will be unable to help form a structure itself, it will not prevent
other robots from doing so. It will simply remain in the Wandering state. The only
effect will be e1, a reduction in the number of active robots.

During Self-assembly, IR receivers are used by aligning robots to detect ‘expelling’
messages and by recruiting robots to detect both ‘in-range’ and ‘docking-ready’ mes-
sages. The inability of a robot to detect these messages is unlikely to prevent the
formation of a structure, since they are not required for a robot to successfully dock,
but it may slow the assembly process. Whilst aligning, robots which are less likely to
detect ‘expelling’ messages are more likely to cause interference near the recruitment
site. Meanwhile, a recruiting robot that cannot detect ‘in-range’ messages will con-
tinue to attract robots to the recruitment site, regardless of whether there are already
other robots within range of its beacon. An increase in the number of robots near the
recruitment site, will naturally lead to an increase in interference. The effect, in both
scenarios, is a delay in the formation of the structure, e2. A recruiting robot that does
not receive a ‘docking-ready’ message will not be able to respond by locking its docking
element, however, provided the docking robot is able to lock its own element, this alone
is not sufficient to prevent the completion of the docking process. The inability of a
recruiting robot to receive a ‘docking-ready’ message will therefore have no effect on
the system.
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HS - IR Sensor

IR sensors can fail in a variety of ways. In this study, no single type of failure is con-
sidered, but rather the focus is on the general effects of a breakdown in the correlation
between true and sensed values. IR sensors are used for both proximity detection and
beacon detection. The failure of one or more IR sensors will reduce the robots’ ability
to perform both of these functions. Since the recruitment strategies do not require
these functions, they will not be affected, the other behaviours, however, will be.

Without the ability to effectively perform proximity detection, a robot is likely to
collide with obstacles or its neighbours. This is not a problem if the robot is contributing
only to Exploration, in which case the effect will simply be a reduction in the number of
capable robots, effect e1. If a robot is contributing to Self-assembly or Self-disassembly,
however, the inability to perform proximity detection may lead to the robot colliding
with the structure. By physically blocking the path of other robots, in the worst case,
an IR sensor failure may cause both the assembly and disassembly processes to stall,
effects E1 and E2.

Without the ability to perform beacon detection, robots will be unable to align with
the recruiting module, this may simply lead to the robot returning to the Wandering
state, but in the worst case, it may instead lead to the robot colliding with the structure,
again resulting in effect E1.

HL - IR LED

An IR LED failure is defined as the failure of one or more infrared LEDs, that will result
in the affected LEDs remaining permanently off. This definition does not account for
failures in which an LED remains permanently on, or flashes uncontrollably. An IR
LED failure will limit the ability of a robot to broadcast messages or transmit beacon
signals. IR LEDs are not used by either of the recruitment strategies, nor are they used
during Self-disassembly or Exploration. The Self-assembly behaviour, on the other
hand, relies heavily on modules with functioning LEDs to provide communication.

As part of self-assembly, recruiting modules use their LEDs to send both long range
recruitment messages and short range beacon signals. Without this ability it will be
impossible for robots to locate and align with recruiting modules. Leading to a stall
in the formation of the structure, or effect E1. LEDs are also used by aligning robots
to transmit ‘expelling’ messages and by docking robots to transmit ‘docking-ready’
messages. The effect of a robot that is unable to transmit ‘expelling’ messages will be
an increase in interference and a delay in the formation of the structure, e2. However,
the severity of this effect is far outweighed by the inability of a recruiting module to
attract new robots. The effect of a robot that is unable to transmit ‘docking-ready’
messages is not significant, since this alone is not sufficient to prevent the completion
of the docking process.



54 4.2. Failure Mode and Effect Analysis

HT - Total System

A total systems failure—which may be considered equivalent to a robot running out of
energy—will result in the shutdown of all of a robot’s subsystems. A robot that suffers
a total systems failure will be completely immobilised and be unable to communicate
with other modules.

During Exploration, the effects of a total systems failure are negligible. Any robot
contributing to Exploration that suffers a total systems failure will simply act as a
static obstacle to other members of the group. The only effect will be a reduction
in the number of active robots, e1. Whilst participating in the recruitment strategy
decision process, or contributing to the Self-assembly or Self-disassembly behaviours,
the consequences of a total system failure will be more severe.

For similar reasons to when a motor failure occurs, a robot that suffers a total
systems failure whilst blocking the path to or from a structure, may cause both the
assembly and disassembly of the structure to stall, effects E1 and E2. Note, however,
that unlike the effects of HM , there will be no interference due to the robot send-
ing ‘expelling’ messages. A total systems failure will also prevent recruiting modules
from attracting new robots and disassembling modules from unlocking their docking
mechanisms, further precursors of effects E1 and E2.

Robots which fail whilst executing either recruitment strategy will be unable to
transition from the InStructure state to the Recruitment state when required. Fur-
thermore, in the case of single entry recruitment, modules will be unable to propagate
messages when a new robot joins the structure. Again leading to effect E1.

HD - Docking

A docking element failure will force the affected mechanism to remain in the state that
it currently occupies. An unlocked element will be unable to lock itself and a locked
element will be unable to unlock. This definition does not cover failures that occur
whilst an element is transitioning between the locked and unlocked states.

Docking elements do not change state during Exploration, or during the execution of
either recruitment strategy, a failure in these behaviours, therefore, will have no effect.

Assuming that all robots start with their docking elements unlocked and remem-
bering that the docking protocol introduced in section 4.1 ensures that only one locked
docking element is required for a reliable connection to be established, if a single element
fails in the unlocked state, Self-assembly will not be affected.

If the docking element of an existing member of the structure fails-locked, however,
it will prevent the affected robot (and any connected neighbours) from un-docking.
Therefore leading to effect E2, a stall in the disassembly of the structure.

HW - Wired Communication

The failure of wired communications will prevent the affected robot from sending or
receiving any information through the wired channel. This definition does not account
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Behaviour HM HR HS HL HT HD HW

Exploration e1 e1 e1 - e1 - -
Self-assembly E1 e2 E1 E1 E1 - E1

Self-disassembly E2 - E2 - E2 E2 E2

Recruitment strategy
Single entry - - - - E1 - E1

Multiple entries - - - - E1 - -

Table 4.3: A summary of the FMEA study. Each row corresponds to one of the three
system level behaviours and two recruitment strategies. Each column corresponds to
one of the failure modes introduced in section 4.2.1. Each cell shows the effect that a
particular failure mode may have when in occurs during the execution of a particular
behaviour or recruitment strategy

for failures in which a robot may receive partial messages or corrupt information.
An affected robot will be unable to send or receive messages using wired communi-

cations and will be unable to act as a node in a wired network. Not only will the failure
have a local effect on the failed robot, but any two robots in the structure whose sole
path of communication passes through the failed module will also be prevented from
exchanging messages.

Wired communications are not utilised during Exploration, nor are they used during
the decision process of the multiple entries strategy, in these scenarios, such a failure
will have no effect.

During Self-assembly, the failure of wired communications in either a recruiting
robot or a newly docked robot, will prevent the new module from receiving information
about the shape of the structure being constructed. Therefore, the assembly of the
structure will stall with effect E1.

During Self-disassembly, if a module is unable to propagate messages when it is time
to disassemble, sections of the structure may be unaware that it is time to do so. This
will result in a stall in the disassembly of the structure, or effect E2.

Similarly, in order to determine when a robot should enter the Recruitment state,
the single entry recruitment strategy requires that messages are propagated throughout
the structure when a new module joins. If this is not possible then the formation of the
structure will stall with effect E1.

4.2.3 Analysis

The effects that all seven of the hazards may have on the performance of the system are
summarised in table 4.3. The three system level behaviours and the two recruitment
strategies are considered separately.

As shown in table 4.3, of the 21 possible combinations of hazard and behaviour
(ignoring for now the recruitment strategies), all but 6 will have some effect on the
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system. Of the 15 which have an effect, 10 of the effects are described as serious.
The most detrimental of the seven hazards is a total systems failure, which has a
negative effect on the system in every behaviour, as well as during the execution of
both recruitment strategies. The failure of an infrared remote receiver is the least
harmful, in no scenario will this hazard have a serious effect on the system. LED
failures and docking element failures are the next least critical, each only leading to a
single serious effect, in a single behaviour.

In comparing the two recruitment strategies, the only difference that arises is the
effect of a wired communications failure. Systems employing both strategies are reliant
upon wired communications to ensure that newly docked robots receive information
about the shape of the structure being constructed. After a robot has joined the struc-
ture, however, only the single entry strategy uses wired communications for determining
which robots should enter the Recruitment state. With the single entry strategy, the
failure any robot that prevents messages being propagated to the required modules
will cause the formation of the structure to stall. Meanwhile, with the multiple entries
strategy, only a failure during the initial exchange of information will stall assembly.

4.3 Fault Tree Analysis

In the previous section, the effect that a particular failure may have on a system were
inferred using the inductive Failure Mode and Effect Analysis (FMEA) technique. In
contrast to FMEA, Fault Tree Analysis (FTA) [187] is described as a deductive approach
to system analysis. Beginning with a general system failure, the analyst attempts to
identify all of the potential causes of the failure event and the logical sequence of
secondary events leading up to it, these together make up the fault tree.

The tree for a particular system failure is constructed by repeatedly breaking the
event down into more specific intermediate events. The relationships between events
at different levels in the tree are specified using Boolean logic, where the outputs of
functions at lower levels serve as the inputs to those at higher levels.

Following the construction of a fault tree, and relying on the fact that the underlying
structure of the tree may be described in terms of Boolean algebra, the analyst may
perform both qualitative and quantitative analysis (again differentiating FTA from
FMEA, in which only qualitative analysis is possible). Qualitatively, the analyst is able
to identify the various combinations of component failures which may cause a system
failure, as well as their relative importance. Quantitatively, if the failure rates of the
components are known, it is possible to calculate the probability of a system failure.

In the remainder of this section, a fault tree is constructed for the morphogenesis
controller introduced in section 4.1. The tree is then used to analyse some of the
potential causes of a stall in the formation of a multi-robot structure. Fault trees are
represented graphically using an extension of standard logic gate notation. In this work,
only a subset of the available notation is used, with symbols introduced as and when
they are required, for a full list the reader should consult [187]. Following construction,
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the fault tree is analysed qualitatively. The combinations of component failures which
may lead to a stall in the assembly process are identified and their relative importance is
discussed. Comments are made upon the levels of fault tolerance in the current system
and areas in which improvements could be made are identified.

4.3.1 Construction

Before beginning construction it must be stated more precisely what is meant by a ‘stall
in the formation of a structure’. A stall in the formation of a structure can be said to
have occurred if at least one robot has been unable to recruit the modules that it was
required to (within some acceptable time limit). This means that one or more robots
have either become stuck in, or failed to transfer to, the Recruitment state. When
investigating the multiple entries recruitment strategy, only the scenario in which a
robot becomes stuck in the Recruitment state needs to be considered, since the time
spent in the InStructure state (before a robot has completed its recruiting duties) is
negligible. With the single entry strategy, both cases must be considered. Here, only
the first scenario is examined, that a robot has become stuck in the Recruitment state.

The only condition that will cause a robot to leave the Recruitment state is the
receipt of confirmation (through wired communications) that another robot has docked
with it. As shown in figure 4.4, where R1 is the robot that is awaiting confirmation,
this statement constitutes the topmost event of the fault tree. In fault tree notation,
events are represented using rectangular boxes.

The reasons why R1 has not received confirmation are now considered. There are
two options, either no robot has docked with R1, or a robot (R2) has docked with
R1 but for some other reason R1 has not received confirmation. These options are
separated using an OR gate, representing the fact that the output of this gate will occur
if at least one of the inputs occurs. In this context, two robots are considered to have
‘docked’ once they have aligned and moved into the docking position, communication
between the pair and the engagement of either docking mechanism are not considered
necessary for docking to be said to have taken place. The scenario in which no robot has
docked with R1 is not pursued further, but may immediately be recognised to contain
situations such as other robots blocking the path to R1, or R1 suffering an LED or
total systems failure which prevents it from attracting other robots. Using fault tree
notation, this ‘undeveloped event’ is presented in a diamond shaped box. As discussed
further in section 4.4, this event highlights a potential weakness with the FTA approach,
specifically, the difficulty in has in modelling complex, stochastic processes.

Focusing on the case in which another robot has docked with R1. In this scenario,
there are two reasons why R1 would not receive confirmation of docking from R2. The
first is that R2 has not sent confirmation, the second is that R2 has sent confirmation
but R1 has not received it. Considering the first leads to the first basic cause of a stall in
the assembly of a structure, that R2 has suffered a wired communications failure. Such
‘basic fault events’ are represented by circles in fault tree notation. The second case,
that R2 has sent confirmation but R1 has not received it, requires further development.



58 4.3. Fault Tree Analysis

∗

R1 has not received
confirmation that
another robot has
docked with it

A robot (R2) has
docked with R1 but
R1 has not received

confirmation

No robot
has docked

w/R1

R2 has sent
confirmation but

R1 has not
received it

R2 has not
sent

confirmation

The connection is
reliable, but R1 has

not received
confirmation

The data
connection between
R1 and R2 is not

reliable

A wired c.
failure
(R1)

wired c.
failure
(R2)

Figure 4.4: A fault tree examining the causes of a stall in the formation of a robotic
structure. The rectangular boxes represent developed events, the diamond shaped box
represents an undeveloped event, the logic gates describe the relationships between
events, the circles represent basic fault events and the triangle signifies the transition
to a different fault tree diagram
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Figure 4.5: A continuation of the fault tree from figure 4.4. The rectangular boxes
represent events, the logic gates describe the relationships between events, the circles
represent basic fault events and the triangle signifies the transition from a different fault
tree diagram
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There are two possibilities why, although R2 has sent confirmation, R1 has not
received it. The first is that the data connection between the two robots is unreliable.
The second is that although the data connection is reliable, R1 has still not received
confirmation. In this second scenario, given that confirmation was successfully sent
by R2, the problem must lie with the wired communications of robot R1. The case
of an unreliable data connection is developed further in figure 4.5, triangular ‘transfer
symbols’ are used to connect the two diagrams.

Using an AND gate, the output of which will occur only if both inputs do, the first
part of figure 4.5 shows that for an unreliable connection to be formed between R1 and
R2, the docking elements of both robots must be unlocked. Remembering the docking
protocol introduced in section 4.1. Since R2 is not reliant on any communication with
R1 in order to lock its docking element, the only reason that it would remain unlocked
is a failure of the device itself. R1 on the other hand will only lock its element once
it receives instruction from R2 through an IR receiver, or when a wired connection
is already established. Since it is assumed that a reliable wired connection has not
been established, there are two reasons why R1’s docking element remains unlocked,
either R1 has not received instruction to lock it, or it has received instruction, but in
attempting to lock it has been prevented by the presence of a docking element failure.

The scenario in which R1 has not received instruction to close its docking element
leads to the final two basic causes of a stall in assembly, and to the end of the fault
tree’s construction. For R2 to instruct R1 to close its docking element both the LED
of R2 used to send the message and the IR receiver of R1 used to receive it must be
functioning. If either of these components have failed R1 will not receive the instruction
to close its docking element. This is shown by the final level of the fault tree in figure
4.5. The construction of the fault tree is complete and the focus now turns to analysis.

4.3.2 Analysis

The first step of analysing a fault tree involves representing it in terms of Boolean equa-
tions. Ignoring the undeveloped event, figures 4.4 and 4.5 can be minimally represented
as figure 4.6. The basic fault events WX, DX, LX and RX correspond respectively to
wired communications, docking element, LED, and receiver failures of robot ‘X’. The
equivalent Boolean equations of the tree are shown alongside it in figure 4.6.

With the tree converted into Boolean equations, the next task is to obtain the
‘minimal cut sets’. In fault tree analysis, a cut set is any combination of basic events
which, if they all occur, will cause the top event to occur. A cut set is described as
minimal if removing any of the elements from the set produces a collection which is
no longer a cut set. The minimal cut sets can be obtained simply by reducing the
equations of the fault tree until only basic fault events are left. By applying the laws
of Boolean algebra, the equations in figure 4.6 are easily converted into the form shown
in equation 4.1.

T = (D1 •D2) + (D2 • L2) + (D2 •R1) +W1 +W2 (4.1)
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T

E1W2

W1E2

D2E3

D1E4

L2 R1

T = W2 + E1

E1 = E2 +W1

E2 = E3 •D2

E3 = E4 +D1

E4 = L2 +R1

Figure 4.6: A minimal version of figures 4.4 and 4.5, with equivalent Boolean equations.
The rectangular box labelled T represents the top event, the rectangular boxes labelled
E1-E4 correspond to intermediate events, and the circles correspond to basic fault
events. For simplicity, the events which are not separated by a logic gate in figures 4.4
and 4.5 are combined

The minimal cut sets then, are simply: {D1, D2}, {D2, L2}, {D2, R1}, {W1} and
{W2}. Where, for example, {D1, D2} represents the scenario in which a recruiting
module and a newly docked robot both suffer docking element failures.

For this example, deriving the minimal cut sets was trivial. However, it should be
remembered that this is only a subsection of a much larger fault tree. To determine
the minimal cut sets of more complex fault trees requires greater effort. Fortunately,
software exists to aid the analyst during both the construction and analysis of fault
trees. One example of FTA software which was used to help develop the fault trees in
this work is OpenFTA [5].

Even though only a subsection of the overall tree has been considered, it is still
possible to make some interesting qualitative observations. From the point of view
of reliability, single component minimal cut sets are undesirable, simply because they
imply the failure of a single component may cause the entire system to fail. Even
without reducing figure 4.6 to the minimal cut sets of its Boolean equations, it is clear
from the lack of AND gates that the system will contain single component cut sets. In
this case, those cut sets are {W1} and {W2}, corresponding to the scenarios in which
either a recruiting robot or a newly docked robot has suffered a wired communications
failure. Figure 4.6 does contain one AND gate, and its presence gives rise to the three
remaining two-component cut sets, all of which, it may be noted, contain D2—the
failure of a newly docked robot’s docking element. The design of the hardware and the
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simple docking protocol, in this situation, ensure that the single failure of one of the
involved components does not lead to a stall in the assembly process.

As a general rule, it is desirable to have AND gates positioned as high up the fault
tree as possible. With this in mind it is possible to suggest some improvements to
the system. A weak point in the fault tree of figure 4.4 may be identified at the ‘∗’.
Although recruiting modules are provided with information about the presence of newly
docked robots in the form of both wired and wirelessly transmitted messages, as well as
the values returned by their IR proximity sensors, they are critically dependent upon
the wired channel to determine their behaviour. Recall that the only time at which a
robot will leave the Recruitment state is when it receives confirmation, through wired
communications, that another robot has docked with it. It is suggested, therefore,
that rather than relying solely on wired communications to dictate their behaviour,
recruiting modules should make better use of the data from their IR receivers and
sensors. If robots react appropriately to the information (or lack thereof) that all three
channels provide, the chances of a robot becoming stuck in the Recruitment state,
following the docking of another robot, may be reduced. Detecting the presence of
another robot without receiving confirmation through wired communications may signal
to the recruiting robot that there is something wrong. Therefore providing the robot
with another way out of the Recruiting state by, for example, initiating the processes
of repairing or replacing either itself or the docking robot. The fault tree of a controller
adapted in this manner, no longer being singularly reliant on wired communications,
would be expected to contain more AND gates, located further up the tree. The system,
therefore, would exhibit greater tolerance to the failure of individual components.

4.4 Discussion

This section begins by discussing the suitability of FMEA and FTA to the analysis
of self-reconfigurable modular robotic systems. The relative merits and weaknesses
of the two approaches are outlined and the usefulness of their application during the
design of fault tolerant robotic systems is considered. The main findings of the analysis
performed in sections 4.2 and 4.3 are then discussed. Finally, the fault tolerance of the
morphogenesis controller introduced in section 4.1 is examined and the areas in which
improvements could be made are identified.

Whilst FMEA is an inductive approach to failure analysis, FTA is deductive. When
performing FMEA, the analyst begins with a list of specific hazards and attempts to
identify what effect they may have on the system. Conversely, with FTA, the analyst
begins with a general effect and gradually traces it back to its root causes, the hazards.
In practical terms, this means that by employing FTA, the analyst is forced to focus
on identifying increasingly specific causes. Resulting in a very complete understanding
of the chain of events that lead from a component failure to a system failure.

One advantage of the precise knowledge that the FTA procedure provides, is that it
may help the analyst to identify specific weak points in the system. This was shown in
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section 4.3 where the over reliance of recruiting robots on wired communications was
identified as a weakness. What FMEA lacks in terms of its depth of detail, it makes
up for with the breadth of information that it provides. In section 4.2, the FMEA
procedure covered four different effects of seven different single component failures. In
a similar amount of space, with significantly greater effort, the FTA procedure covered
only a subsection of a single effect, and revealed only one single component cause.

What the FTA procedure does reveal with ease, which may be less obvious when
performing FMEA, are the different combinations of component failures which may
lead to a system failure. Furthermore, although in general, FMEA is better suited
to the task of exhaustively listing possible hazards, the two approaches both have the
potential to identify hazards overlooked by the other.

Another potential advantage of FTA, which was not exploited in this work, is the
ability to perform quantitative analysis. One of the reasons why quantitative analy-
sis was not carried out is because it is reliant upon failure rate data, which was not
available. In this instance, another more pressing reason, however, indicative of a much
larger problem with the application of FTA to self-reconfigurable modular robotic sys-
tems, is that the systems themselves may be too complex to model in sufficient detail.
When constructing the fault tree in section 4.3, assumptions were made about the state
of the system, in particular with regard to the interactions between robots and their en-
vironment. The tree presented in section 4.3 examined the system in a relatively static
state, considering the interactions between only two robots. The scenario in which the
formation of a structure had stalled because no robot was able to dock with the recruit-
ing module was ignored as an ‘undeveloped event’. There a numerous reasons why a
robot may be unable to dock with a structure, but due to the dynamic nature of these
systems as well as the large numbers of agents and the locational dependency of their
interactions, the FTA approach is far less well suited to describing them. Examining
these more dynamic components would require increasingly limiting assumptions to be
placed on the system. Allowing for a more complete understanding, but at the ex-
pense of detail in the model. Without modelling the interactions between robots more
accurately, it is not possible to produce accurate quantitative results.

The desire to model the reliability of complex fault tolerant systems is widespread.
The difficulties that arise in accounting for the high levels of redundancy, fault re-
covery mechanisms and sequentially dependent failures that such systems possess are
not unique to robotic systems. Efforts to help solve these problems have led to the
development of Dynamic Fault Trees (DFT) [42]. In constructing DFTs, additional
‘dynamic’ gates are used to account for the extra complexity. Analysing DFTs then
essentially involves combining the standard fault tree approach with Markov Chain
models. Thus, the simplicity of the standard approach is augmented by the flexibility
of Markov models [42].

The analysis carried out in section 4.2 revealed that 15 of the 21 possible combi-
nations of hazard and behaviour will have some effect on the system, 10 of which will
be serious. This is in contrast to the results of the study by Winfield and Nembrini
[193], in which there were observed to be only 6 serious effects out of a possible 30.
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While performing FMEA, a pessimistic view was taken in assuming that all compo-
nents of a single subsystem will fail simultaneously. Whilst in some cases, the effect
of a failure will depend upon how many and which components of a subsystem fail, in
others, the failure of a single component may be equally as detrimental as the failure of
multiple components. An obstacle avoidance controller, for example, that aggregates
the values from several IR sensors in order to determine the speed of two motors, may
be severely hampered even if only a single sensor fails. The poor outlook, therefore,
cannot be attributed solely to pessimism. Neither is this evidence sufficient to reject
the long held belief that swarm robotic systems inherently provide fault tolerance. It
is reminded that the Symbricator platform is not a pure swarm robotic system, but
rather a self-reconfigurable modular robotic system. The modular aspect brings with it
far greater dependence between robots. If the system is examined closer, it is observed
that it is during the interactions with modules already in the structure where the effects
of a failure are most severe. Note that in table 4.3 there are no serious effects when
a failure occurs during Exploration, the only behaviour that involves robots operating
exclusively as individuals.

To endow a modular robotic system with levels of fault tolerance similar to those
found in swarm robotic systems, greater plasticity in the conformation of the system is
required. Whereas in swarm robotic systems, faulty robots may simply be ‘left behind’,
in modular robotic systems, more explicit methods of replacing or repairing modules
are required. The Symbricator platform was designed with this in mind, supporting the
ability of robots to recharge or directly power their connected neighbours. As a result,
in the pursuit to design fault tolerant modular robotic systems, it is encouraging that
the fact that what appears to be the most detrimental hazard, a total systems failure,
is also the easiest to repair (if assumed to be caused by a robot running out of energy).

In this analysis, the effects of transient and external hazards were not considered.
If transient hazards were considered, or if it were possible to repair or replace failed
modules, the multiple entries strategy could be identified as possessing a significant
advantage. With the multiple entries strategy, even though the assembly of a structure
may stall at one point, it may continue at others. A system utilising the multiple
entries strategy is therefore able to recruit and repair simultaneously. In considering
external hazards, such as the interference observed near recruitment sites, the single
entries recruitment strategy possesses the advantage. However, with the multiple entries
strategy, the increased level of interference is offset by the fact that multiple robots may
recruit simultaneously. The time saved by the multiple entry strategy directly translates
to a saving in energy, which may be critical to the long-term survival of the system.

4.5 Summary and Future Work

In this chapter, the FMEA and FTA procedures were applied to a morphogenesis con-
troller designed for the Symbricator robots. The analysis revealed several scenarios in
which even a single failure may have serious consequences, the worst case being the
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occurrence of a total systems failure. FMEA and FTA were each identified to have
their own advantages. Whereas FMEA provides a good general overview of the system
under analysis, FTA reveals specific details about the chain of events that may lead to
a system failure. A combined approach, as demonstrated here, is advocated during the
design of fault tolerant autonomous robotic systems. In future work, further analysis of
the both the current controller and any improved systems may be performed. For which
purpose, DFTs and Markov chain models have been identified as promising techniques.



Chapter 5

Energy Foraging and Anomaly
Detection

In chapter 4, a total system failure—which may be considered equivalent to a robot
running out of energy—was identified as the hazard that would be most detrimental to
a group of robots performing autonomous morphogenesis. The failure of infrared (IR)
sensors, resulting in an increase in the number of collisions between robots, was also
identified as a hazard. In this chapter, an energy foraging and energy sharing strategy
is presented which aims to reduce some of the negative effects that may appear as a
result of robots running out of energy. Furthermore, an anomaly detection algorithm
is presented which targets the failure of IR sensors and aims to support the energy
foraging strategy by reducing the chances of robots colliding with one another.

The anomaly detection algorithm, known as the ‘modified’ Dendritic Cell Algorithm
(mDCA), was originally developed by Mokhtar et al. [120], as an adaptation to the Den-
dritic Cell Algorithm (DCA) of Greensmith et al. [59]. In this chapter, improvements
are made to the mDCA and its parameters are optimised using multi-objective optimi-
sation. The performance of the system is compared to a state of the art Support Vector
Machine (SVM) based approach and the relative merits of each system are discussed.

The mDCA and SVM based approaches are then combined with the energy foraging
strategy. The ability of these systems to survive for long periods of time, despite the
presence of faulty individuals, is investigated within a simulated setting. The systems
are shown to perform significantly better than a system which is not capable of detecting
anomalies, and on a comparable level to a system which utilises ideal anomaly detection.

This chapter continues in section 5.1 by introducing the original mDCA approach
and describing the improvements that were made in this thesis. In section 5.2, the
energy foraging and energy sharing strategy is described and comparisons are made
with similar existing systems. In section 5.3, the parameters of the mDCA and SVM
based approaches are optimised and the two systems are compared. In section 5.4, the
long term survival of robotic collectives which utilise the combined energy foraging and
anomaly detection systems are investigated. Finally, in section 5.5, the main findings
of this chapter are summarised and some potential areas of future work are suggested.
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5.1 The ‘modified’ Dendritic Cell Algorithm

The DCA [59] and mDCA [120] are inspired by the function of the vertebrate immune
system. Specifically, they take inspiration from a novel immunological theory known
as the danger model [113]. The danger model proposes that the ability of the immune
system to detect and mount a response against invading pathogens may be related
to the presence of special ‘danger’ signals that are released when cells are damaged.
This contrasts with the previously dominant self-non-self model in which the physical
matching between immune cell receptors and antigens was considered to be the primary
initiator of an immune response.

In the new model, ‘danger’ signals, and other molecular patterns indicative of the
state of the environment, are detected and processed by dendritic cells. How dendritic
cells respond to the signals that they receive determines whether or not a threat is
perceived and whether the rest of the immune system takes action. It is this decision
process of the dendritic cells that the DCA and mDCA aim to replicate. Whether or
not anomalous behaviour is flagged by the DCA or mDCA is somewhat equivalent to
whether or not dendritic cells initiate an immune response against an invading pathogen.

The mDCA was first introduced by Mokhtar et al. [120], who applied it to the
task of detecting faults in the IR sensors of simulated e-puck [122] robots. In unpub-
lished work, the approach was subsequently used to monitor the actuation and power
subsystems of simulated Symbricator modules. Later, as a step towards creating a ‘self-
sufficient’ modular robotic system, the task of monitoring robots’ power subsystems was
investigated by Humza et al. [78].

In this chapter, improvements are made to both the mDCA itself and the supporting
experimental framework. Whereas early investigations used simple robot models, in
this chapter, more realistic models from the adapted version of the Stage simulator
(introduced in section 3.1.2) are used. The updated simulator includes more realistic
models of the robots, as well as more authentic sensor data—derived from measurements
of real IR components—and more realistic failure data.

5.1.1 Overview

The mDCA is an anomaly detection algorithm for detecting errors within timeseries
data. When applied to the task of detecting anomalies in the infrared sensors of Sym-
bricator robots, the algorithm is run separately on each of the robots’ eight sensors.
For each sensor, the output is a value between 0 and 1, which indicates the likelihood
that the corresponding sensor is faulty. A value of 1 signifying that the data received
from the sensor is anomalous and a value of 0 signifying normality.

For each sensor that is being monitored (i), the mDCA first calculates the output of
the weighted sum shown in equation 5.1. The terms Ai(t), Bi(t) and Ci(t) are abstract
analogies of the signals which are detected by dendritic cells. In the danger model, a
variety of signals are said to provide dendritic cells with information about the current
state of their environment, and may be representative of both normal and abnormal
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states. The dendritic cells aggregate this information and then decide whether or not
to contribute to an immune response. In the mDCA, Ai(t), Bi(t) and Ci(t) are features
that have been extracted from a sliding window of recent sensor data and provide
information about the current state of sensor i. In analogy to the behaviour of the
dendritic cells, the features are aggregated using equation 5.1 and the output used to
help determine whether or not data is flagged as anomalous or normal.

σi(t) =
waAi(t) + wbBi(t) + wcCi(t)

wa + wb + wc

(5.1)

As an example, the feature Ai(t) may represent the difference between sensor i and
sensor i− 1 at time t. Because neighbouring sensors can be expected to return similar
values, a large value of Ai(t) may be considered anomalous in this case.

It is noted that equation 5.1 could easily be extended to include more than three
features. Increasing the number of features would potentially increase the classification
accuracy. However, it would also increase the computational complexity and the size
of the parameter search space, which in turn would increase the time taken to optimise
the system. For this reason, it was decided that only three features would be used.

Each of the three features has an associated weight: wa, wb and wc, the values of
which determine how much influence each feature has over the output of equation 5.1.
At each timestep, the output of the weighted sum from equation 5.1 is passed though
the thresholding function shown in equation 5.2.

φi(t) =

{
0 σi(t) < τ

1 σi(t) ≥ τ
(5.2)

Equations 5.1 and 5.2 together define a linear classifier in 3-dimensional space.
These two equations alone could be used to classify incoming data as anomalous or
normal, however, to add some level of confidence to the classification, the value of φi(t)
is averaged over ω previous timesteps using equation 5.3.

ci(t) =
1

ω

t∑
k=t−ω

φi(k) (5.3)

The final output of the algorithm for sensor i at time t is then: 0 ≤ ci(t) ≤ 1. A
value of 1 indicates that it is likely that the corresponding sensor is faulty and a value
of 0 indicates that it is unlikely. From this brief description of the mDCA it can be
seen that there are five main parameters which define the behaviour of the system,
and therefore determine the classification accuracy. These five parameters are shown
in table 5.1 and correspond to: the weights of the three features (wa, wb and wc), the
threshold value (τ) and the window over which to average the classification output (ω).
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wa wb wc τ ω

Table 5.1: The five main parameters of the original mDCA

5.1.2 Improvements

This section describes the improvements that were made to the mDCA. The improve-
ments that were made to the sensor data and supporting experimental framework are
described separately in section 5.2.

In previous work, the following three features, or variants thereof, were extracted
from the sensor data to represent the terms Ai(t), Bi(t) and Ci(t) in equation 5.1:

1. The difference between the value of the sensor being monitored and the value of
its nearest neighbour, at time t

2. The difference between the value of the sensor being monitored at time t and the
average of the values returned by that sensor over a short recent period

3. The result of applying a binary threshold to the output of feature 2, returning ‘1’
for values greater than the threshold and ‘0’ otherwise

There are some issues with the above features which limit the capabilities of the
mDCA, particularly when more realistic sensor data is used. Feature 1 was chosen to
represent abnormal behaviour, based upon the assumption that neighbouring sensors
should return similar value. This assumption is generally true, however, the calculation
can not identify whether the difference between the value of one sensor and its neighbour
is the result of a failure within the sensor itself or in its neighbour. In the original
algorithm, this led to a large number of false positives, with sensors believing themselves
to be faulty when there was actually a fault present in a neighbouring sensor.

Another issue with the previous feature extraction process is highlighted by feature
3. This feature only ever returns 0 or 1, effectively turning what would be a 3D classifier
into a pair of 2D classifiers that are switched between depending upon the value of this
feature. It is suggested that a better classifier may be constructed if three real-valued
features are used, creating a true linear classifier in 3D space.

A more general issue with all three of the above features is their complexity, or lack
thereof. All of the features use very simple arithmetic operations and are calculated over
short periods of time. The obvious advantage of their simplicity is that they guarantee
that the algorithm will be able to run on a resource limited system, as the Symbricator
robots are considered to be. However, if the features are too simple, they may not
provide enough information to accurately classify the status of the sensors.

In this chapter, some of the restrictions of the previous feature extraction process are
removed and improvements are made. To address the lack of complexity in the existing
features, a number of new features have been designed. The complete set of features
used in this chapter is displayed in table 5.2. Attention is drawn to the feature named
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distN , which is similar to feature 1 from above, but takes the difference between the
target sensor and the average of both of its neighbours, one of which will be positioned
on the same side of the robot (the immediate neighbour) and one of which will be
positioned on an adjacent side. The design of the distN feature was motivated by the
fact that, comparing the target sensor’s value with both of its neighbours (rather than
just one), should help to differentiate between the scenario in which the sensor itself is
faulty and the scenario in which one of its neighbours is faulty.

It is important to highlight that, at any one moment in time, the mDCA may only
use three of the features from table 5.2, retaining the classifiers restriction to three-
dimensional space. Which features the algorithm uses is determined by three new
parameters: fa, fb and fc, each of which corresponds to one of the ten features listed
in table 5.2. To allow the algorithm to be tuned further, the size of the sliding window
over which the features are calculated is also made adjustable. The size of the window
corresponding to each of the three features fa, fb and fc is specified by the value of three
new parameters: ta, tb and tc. The complete set of parameters used by the new version
of the mDCA is displayed in table 5.3. In section 5.3, multi-objective optimisation is
used to find the optimal values of these parameters and in section 5.4, the long-term
survival of the optimised system is analysed.

5.2 Energy Foraging Controller

The energy foraging controller described in this section was designed to reduce the
chances of an individual robot experiencing a total systems failure. The controller en-
sures that total systems failures are avoided by allowing modules to recharge themselves
at power sockets and share energy with other modules. The controller is based upon
the morphogenesis algorithm introduced in section 4.1, but rather than a single module
initiating the construction of a predetermined shape, robots form structures only as
and when then need to. Robots may dock with power sockets in order to recharge
themselves, or form ad-hoc structures with other modules in order to donate or harvest
energy. To further improve the reliability of the system, the controller also incorporates
a recovery mechanism which alters the behaviour of the robots if a failure is detected
in one of their infrared sensors.

5.2.1 Robots

The controller was developed for the adapted version of the Stage simulator introduced
in section 3.1.2. The simulated robots are functionally similar to the Symbricator Back-
bone modules. Each robot possesses eight infrared sensors, four two-way communica-
tion devices, four LEDs, eight light detectors and four active docking elements. The IR
sensors are used for detecting the presence of obstacles; the IR communication devices
are used for both long and short range (line-of-sight) communication; the LEDs and
light detectors are used to accurately identify the position of objects; and the docking
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Name Description Formula

stdDev (σ) The standard deviation of recent data σ =
√

1
(N−1)

∑
(xi − x̄)2

distAve The difference between the current sen-
sor value and the average of recent data

distAve = |x− µ|

bDistAve The difference between the current sen-
sor value and the average value of re-
cent data, with a binary threshold (τ)
applied. In all of the experiments re-
ported here τ took the value 0.

bDistAve =

{
0 distAve ≤ τ

1 distAve > τ

distN The average difference between the cur-
rent sensor and its two neighbours

distN = |µa − (µb + µc)/2|

distNN The average difference between the cur-
rent sensor and its nearest neighbour

distNN = |µa − µb|

skew The ‘skewness’ of recent sensor data skew = 1
N

∑
((xi − µ)/σ)3

mean (µ) The mean value of recent sensor data µ = 1
N

∑
xi

distStdDev The difference between the standard
deviation of the sensor being monitored
and that of its nearest neighbour

distStdDev = σa − σb

range The range of the recent sensor data range = max(X)−min(X)

pairDist The cumulative difference between con-
secutive pairs of recent data

pairDist = 1
N

∑
|xi+1 − xi|

Table 5.2: The names, descriptions and formulae of the ten features that may be used
by the mDCA. The formula column uses the following terminology: subscript letters a,
b and c indicate an association with one of three neighbouring sensors; N is the number
of data points in the window across which the feature is extracted; X is the set of all
data points in the current window; x are individual data points; σ is shorthand for the
stdDev feature; and µ is shorthand for the mean feature
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fa fb fc ta tb tc wa wb wc τ ω

Table 5.3: The 11 parameters of the new version of the mDCA

(a) (b) (c)

Figure 5.1: Screenshots of the new models within the Stage simulator

elements are used to secure the connection between two docked robots.
As shown in figure 5.1, in this thesis, the Stage models were extended to allow

modules to share energy with one another and to recharge themselves at power sockets.
Figure 5.1a shows the newly created model of a power socket with one module recharging
itself. Figure 5.1b shows three modules docked and sharing energy whilst a fourth
robot approaches. Figure 5.1c shows extra functionality which demonstrates how, when
docked to a power socket, robots may recruit other modules and form chains that allow
multiple robots to be recharged simultaneously.

5.2.2 Sensor Data

A direct benefit of using the adapted version of the Stage simulator are the improve-
ments that are made to the realism of the sensor data. In previous work [120], sensor
values were returned as a distance in millimetres from the robot to any obstacle in the
way of that sensor. In reality, the proximity sensors do not return a measure of distance,
but a raw value which scales non-linearly with the actual distance between the robot
and an obstacle. By using the Stage simulator, not only is it possible to access these
raw values but, based upon data collected by [108], it is also possible to add realistic
noise to the sensors and create more realistic fault models for injecting anomalies.

There are numerous possible sources of anomaly in the data stream of an infrared
proximity sensor. Examples include: interference from other robots or docking stations,
the varying reflective properties of different materials, or a fault within a sensor itself. In
all of these situations, anomalies may manifest themselves transiently or permanently.
In this work, only transient anomalies are considered. The proposed source of these
anomalies are faults within the sensors, however, the fault model employed is sufficiently
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Fault Description

Stuck-at-value the value returned is always the same
Sensor noise the value returned is a random amount away from the ideal
Sensor bias the value returned is a fixed amount away from the ideal

Table 5.4: The three different types of fault simulated in this chapter

general that the resulting anomalies may share characteristics with other situations. For
this reason, the mDCA may be thought of as a general anomaly detection algorithm,
and is not just limited to the detection of faults. The fault model used in this chapter
defines three different types of fault. These faults are listed in table 5.4.

In past applications of the mDCA, only two of these three faults were investigated,
those being: stuck-at-value and sensor noise. The model of sensor noise used in previous
experiments simply returned a random value, irrespective of the actual value of the
sensor. In this work, a different model is used in which values are returned from a
normal distribution, centred around the ideal value. It is important to note that sensor
noise is present in most real world systems and is often not considered a fault. However,
when the noise exceeds that of a device’s normal operating characteristics, the device
may be declared faulty. Most systems are able to tolerate a small amount of noise, but
performance may degrade when the level of noise is increased.

In the past, the mDCA was shown to work well in the extreme case (equivalent to
using a normal distribution with a large standard deviation), however, as the standard
deviation is reduced and the level of noise in the system decreases, the task of detecting
anomalies becomes harder. Eventually there will come a point at which the amount
of noise is so low that, from the perspective of the mDCA, normal and abnormal data
is indistinguishable. Whether or not this location is acceptable is determined by how
tolerant the behavioural controller is to the amount of noise present. If the robots are
able to continue operating without deviating significantly from their normal behaviour,
then it does not matter if abnormal sensor data is incorrectly labelled as normal. In
fact, if there is a cost associated with responding to the detection of an anomaly, then
it may be beneficial for the system to ignore anomalies which do not significantly affect
behaviour. The question of whether the cost of ignoring a fault out-weights the cost of
recovery is returned to section 5.4.

5.2.3 Controller

A finite state machine for the energy foraging and energy sharing controller is shown
in figure 5.2. The LocateBeacon, Align, Dock and Lock states (and their associated
transitions) are similar to their namesakes from figure 4.3. However, whereas the states
in figure 4.3 allow modules to align and dock with other robots, in figure 5.2, these states
also allow robots to dock with power sockets. The controller described in this section
further differs from that introduced in section 4.1 with regards to the circumstances
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LocateBeacon

Wander Recharge
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UnDock
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Figure 5.2: A finite state machine for the energy foraging controller

Symbol Value Name

τw 0.20 Wait threshold
τa 0.25 Avoid power socket threshold
τp 0.40 Approach power socket threshold
τr 0.50 Approach distressed robot threshold

Table 5.5: The four different thresholds of the energy sharing strategy

which cause robots to initiate the alignment and docking processes, and the behaviour
of modules that have successfully done so.

The default behaviour of the robots is wandering. In the Wander state, robots
simply move around the environment, avoiding obstacles and other robots. Which
states the robots subsequently transition into is determined by their current energy
level and whether or not any of their infrared sensors are considered to be faulty. The
robots’ ‘energy sharing’ and ‘recovery’ strategies determine which transitions are made.

Energy Sharing Strategy

In the experiments reported in section 5.4, robots have a limited supply of energy, and
so to survive, must be able to recharge themselves. Recharging may occur either at
power sockets, such as the one shown in figure 5.1a, or through docking with other
modules, as shown by figure 5.1b. A simplified energy model is used in which energy
is transferred between docked robots at a constant rate and is consumed by individual
robots at a rate which is linearly proportional to the speed at which the robots are
travelling. For the collective as a whole to survive, robots must decide when to be
altruistic and when to be selfish, that is, when to recharge themselves and when to
provide energy for others. The energy sharing strategy described in this section utilises
a threshold-based approach. The four threshold values used here are listed in table 5.5
(as a proportion of the robots’ maximum energy capacity).
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In normal operation, robots perform random wandering with obstacle avoidance. If
a robot has sufficient energy (e > τr, where e is the robot’s current energy level) and it
detects the presence of another module that requires energy, the robot will transition
through the aligning and docking stages (figure 5.2, transitions 1, 2, 5 and 6) and into
the Provide state (figure 5.2, transition 7). Whilst in the Provide state, robots will
transfer up to 50% of their available energy to the module that they are docked with.

If a robot with a moderate need for energy (e < τp) detects a power socket, it will
approach, align and dock with the socket before entering the Recharge state (figure 5.2,
transition 8). Robots remain in this state until their energy level reaches 100%.

During testing, it was observed that, with a large number of robots and a compar-
atively small number of docking stations, congestion around power sockets often led to
robots crashing and blocking the socket from future use. To help reduce this problem,
as shown in figure 5.1c, functionality was added to allow multiple robots to recharge
at the same power socket. After a robot has entered the Recharge state, it begins to
signal on its rear side as if it were a power socket, attracting more modules to the socket
which may then dock with the signalling module and simultaneously recharge. To fur-
ther reduce the congestion problem, robots which have insufficient energy to reach a
socket (e < τa), or have no need to recharge (e > τp), will actively avoid sockets.

When a robot in the Provide state has donated more than 50% of its available energy
to the module that it is docked with, or it is no longer required to supply energy, it will
transition to the UnDock state (figure 5.2, transition 9). Likewise, when a robot is fully
recharged, or its power source is no longer able to provide for it, it will also transition
to the UnDock state (figure 5.2, transition 10). Any robot in the UnDock state which
is only docked with one other module (or socket) will then return to the Wander state
(figure 5.2, transition 11).

If a wandering robot is desperately in need of energy (e < τw), it will stop moving and
conserve what energy it has by transitioning to the Wait state (figure 5.2, transition 12).
Whilst in the Wait state, modules signal to nearby robots that assistance is required.
Up to four robots (one on each side) may simultaneously dock with a waiting robot and
provide energy for it. Once the robot is recharged, it notifies any providing modules,
stops signalling and transitions back to the Wander state (figure 5.2, transition 13).

Recovery Strategy

When an anomaly is detected in a sensor, regardless of whether it is the result of a fault
in that sensor, interference from other robots, or some other unknown factor, a response
is required that will prevent the anomaly from adversely affecting the behaviour of the
robot. An anomaly which causes the value of a sensor to remain fixed at a low value, for
example, may prevent the robot from detecting an obstacle and lead to a collision which,
as highlighted in chapter 4, could have wide reaching consequences for the system.

It is important to realise that, without prior knowledge of the system and without
placing assumptions on the expected output, it is difficult to design a recovery strategy
that can retrieve all of the information that is lost due to an anomaly. Recovery
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strategies may be envisaged that are able to bring back some of the lost information,
for example, by removing noise or offsetting bias in the data, but for the most part, the
best that a recovery strategy can achieve is to minimise the effects of the failure.

In this work, when an anomaly is detected in a sensor, the behavioural controller
responds by assuming that the anomalous sensor is returning the same value as its
immediate neighbour, based upon the assumption that these values should be similar.
When a robot is only performing obstacle avoidance or wandering, this strategy is
generally sufficient. However, during more precise tasks such as aligning and docking,
more accurate sensor values are required. Furthermore, since these tasks take place in
critical areas of the arena, as suggested in section 4.2, the system as a whole may be
far less tolerant to robots crashing or failing when executing these behaviours.

To address this issue, robots which have detected an anomaly in the data stream
of one of their front two sensors—those which are most influential over the robots’
behaviour—are prevented from entering the LocateBeacon state. Furthermore, if a
robot is already in the LocateBeacon or Align state when it detects the presence of a
failure, it will immediately transition back to the Wander state (figure 5.2, transitions
3 and 4) and remain in this state for as long as the failure is present.

There is one special case that must also be considered, that being, what happens
when both a sensor and its neighbour are thought to be returning anomalous data.
In this situation, the strategy utilised here is to assign both sensors the same small
value. This strategy is based upon the assumption that a small value will not be able
to drastically affect the behaviour of the robot, but will be enough to prevent the robot
from colliding with obstacles on the side at which the failed sensors are located.

A couple of deficiencies can be identified in this recovery strategy which it is impor-
tant to highlight. Firstly, the assumption that the values of neighbouring sensors are
similar will not always hold, and when it doesn’t, the consequences can be as bad, or
even worse, than if no response was attempted at all. Secondly, because the recovery
strategy prevents robots from recharging both themselves and other modules whilst an
anomaly is present, the entire system, and not just the erroneous individual, is more
vulnerable.

5.2.4 Comparisons

In chapter 2, several different types of fault detection system were reviewed. Those most
relevant to this chapter are the other approaches which were inspired by the function of
the vertebrate immune system. For example, both [11] and [120] (from which this work
follows) were inspired by the danger model theory introduced in section 5.1. Meanwhile,
[17] takes inspiration from the more traditional self-non-self model. Whilst in [142], the
authors describe an anomaly detection system inspired by the interactions between
immune cell receptors and the molecules with which they bind. The approach of [142]
was also later used by [104] as part of a collective self-detection scheme. Finally, in
[177], the authors describe an approach to fault detection which does not require a-
priori knowledge of what should be considered ‘normal’ or ‘abnormal’ behaviour.
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The task of ‘swarm foraging’ is well studied within the field of swarm robotics.
Inspired by the collective behaviour of social insects such as ants and bees, the task of
swarm foraging involves a group of agents searching for an object or resource within
their environment. Once located, the resource is often transferred to some central
location, or ‘nest’. The controller described in this chapter was designed to perform
the related sub-task of ‘energy foraging’. In this task, the resource being collected is
energy, and to succeed, agents must balance the energetic cost of foraging with the
reward received for successfully retrieving objects, that is to say, they must maximise
the net energy income [111].

Many authors have described approaches to swarm foraging in which energy ef-
ficiency is of central importance [15, 86, 101, 111]. In [101], Labella et al. describe a
foraging controller in which the global division of labour is automatically adjusted based
upon whether individual robots are successful or unsuccessful at locating and retrieving
‘prey’ from their environment. In Labella et al.’s strategy, every individual has a certain
probability of switching between resting and searching behaviours, in robots which are
successful at foraging, this probability is increased, whilst in unsuccessful robots, this
value is decreased. The result is a system in which the number of foragers and resters
automatically adapts according to the availability of prey. In similar work, Campo and
Dorigo describe a decision algorithm in which robots alter their behaviour according
to the amount of energy that they estimate is obtainable by the group as a whole [15].
Meanwhile, in [111], Liu et al. describe a system in which the number of foraging and
resting robots is balanced based on internal cues (whether or not the individual is suc-
cessful), environmental cues (how many other robots are currently foraging) and social
cues (whether or not other individuals are successful).

The three systems mentioned above all utilise an abstract definition of ‘energy’
which does not fully appreciate the real world consequences of an individual robot
running out of power. In this chapter, a more literal interpretation of ‘energy foraging’
is followed in which the resource being collected directly influences the amount of energy
stored within the individual. Furthermore, whereas in the systems described above, the
resource is retrieved from the environment and returned to a nest, in this work, there
is no central store and energy is always fully distributed about the system. In this
respect, the approach is similar to that of Kernbach and Kernbach, in which a large-
scale robot swarm demonstrates the ability to survive over long periods by allowing the
individual robots to recharge themselves at docking stations [86]. In a similar manner
to the strategy described in section 5.2, each robot monitors its own energy level and
decides when, and for how long, it should recharge itself. However, unlike the strategy
described in this chapter, as well as monitoring their own energy levels, the robots
estimate the collective energy of the swarm. Using this information, the robots can
infer when the swarm is highly active and avoid bottlenecks at the docking stations by
reducing the amount of time they spend recharging. Conversely, if the swarm is not
active, robots may recharge for longer without the risk of causing interference.

The biggest difference between the controller described in section 5.2 and the ap-
proaches reviewed above is the fact that, in the system introduced in this chapter,
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robots are able to transfer energy between one another. Whilst a lot of previous re-
search has focused on the task of energy foraging, far fewer approaches have focused on
energy sharing. In [134], Ngo and Schioler describe the design of a new mobile robotic
platform in which modules can carry multiple batteries and may exchange them with
other robots depending up their energetic needs. This method of physically transferring
batteries differs from the energy sharing strategy described in section 5.2—and other
similar energy sharing systems [79, 96, 116]—in which each robot has a single battery,
but is able to donate or receive energy from other modules through recharging. In
[96] and [116], Kubo and Melhuish discuss the idea of ‘robot tropholaxis’ and describe
a simple threshold based strategy through which robots may request energy from, or
donate energy to, other modules. Meanwhile, in [79], Ismail and Timmis describe an al-
gorithm inspired by the immunological process of granuloma formation, in which robots
surround, isolate and recharge other modules which are in need of energy.

Whilst similarities are observed between the controller introduced in this chapter
and all of the above systems, what distinguishes this work is the manner in which it
combines fault detection, energy foraging and energy sharing into a single system.

5.3 Multi-objective Optimisation

Systems with multiple objectives are inherently more difficult to optimise than those
with only one, especially if some of the objectives are conflicting. The canonical example
of a multi-objective optimisation problem is that faced by the automotive industry.
Car manufacturers must (amongst other things) maximise performance and strength
(safety), whilst minimising fuel consumption and weight. Clearly a trade-off is required.
Rather than produce a single optimal solution, multi-objective optimisation allows the
designer to produce a set of Pareto optimal solutions, from which they may select the
solution which best fits their current requirements. With regards to the problem of
anomaly detection, there are several objectives that the designer may wish to optimise.
For example, maximising the true positive rate, minimising the false positive rate,
maximising the speed of detection and, of particular importance to resource limited
systems such as autonomous robots, minimising the computational cost.

In this section, the parameters of the mDCA are optimised in order to find the
best individual with which to investigate the task of long-term survival. An alternative
approach to classification which utilises Support Vector Machines (SVMs) is also intro-
duced and optimised. After optimising the parameters of the two types of system, the
approaches are compared and analysed in terms of their classification accuracy.

5.3.1 Support Vector Machines

Support Vector Machines are a form of supervised learning model, which are commonly
used in classification tasks. SVM models are built during a training phase in which,
given a set of labelled data, a training algorithm constructs a hyperplane that maximises
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the distance between itself and the training data of two different classes. After training,
the SVM model may be used to classify new data points according to which side of the
plane they fall on. As well as performing linear classification, by first transforming the
feature space, SVMs may also be used to classify data that is not linearly separable.

More formally, given a set of n labelled points (xi, yi), where xi is a real vector and
yi is a class label of 1 or −1. The aim is to find a hyperplane which separates the set of
points for which yi = 1 and the set of points for which yi = −1. This hyperplane can
be written as the set of points x which satisfies:

w · x− b = 0 (5.4)

If the two classes are linearly separable, several such hyperplanes may exist. The
objective then is to find the optimal hyperplane. That is, the hyperplane for which the
margin between itself and the closest data points of the two classes is maximised. This
margin may be defined by two further hyperplanes:

w · x− b = 1 (5.5)

w · x− b = −1 (5.6)

The set of points which lie on these planes are know as the support vectors. Finding
the optimal hyperplane is an optimisation problem which involves finding the set of
support vectors and the hyperplanes for which the separating margin is maximised.

In this chapter, following a feature extraction process similar to that used by the
mDCA, SVMs are used to classify IR sensor data as anomalous or normal.

5.3.2 Experimental Setup

A common experimental setup was used during all of the optimisation experiments. In
the following sub-sections, the parameters that were optimised, the objective functions
that were evaluated and the simulation environment in which the experiments were
conducted are all introduced in turn.

The parameters were optimised using the state-of-the-art evolutionary multi-objective
optimisation algorithm, NSGA-II (Non-dominated Sorting Genetic Algorithm II) [39].
The implementation of NSGA-II from the Kanpur Genetic Algorithms Laboratory1 was
used throughout all of the experiments. Beyond the description of the genome (pro-
vided in the following sub-section) the Kanpur implementation of NSGA-II requires at
least six other parameters to be specified. In the experiments conducted in this chapter,
these parameters were selected based upon informal testing and were not themselves
optimised. The parameters required, and the values they took in all of the optimisation
experiments, are displayed in table 5.6.

1http://www.iitk.ac.in/kangal/codes.shtml
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Parameter Value

Population size 48
Number of generations size 100
Crossover probability 0.6
Mutation probability 0.3
Crossover distribution index 20
Mutation distribution index 20

Table 5.6: The NSGA-II parameters used during the optimisation experiments

mDCA-I
mDCA-II

SVM
fa fb fc ta tb tc wa wb wc τ ω

Table 5.7: The parameters optimised in the mDCA-I, mDCA-II and SVM experiments

Parameters

Two different approaches to optimising the mDCA parameters were investigated, each
focusing on the optimisation of two different sets of parameters. In the first approach,
referred to as mDCA-I, only a subset of the 11 mDCA parameters from table 5.3 were
optimised. Specifically, in resemblance to the original mDCA experiments performed
in [120], the parameters representing the three features (fa, fb and fc) were fixed to:
distNN , bDistAve and distAve. Furthermore, the window over which distNN was
calculated (ta) was restricted to a single timestep. The windows over which the other
two features were calculated (tb and tc), as well as the weights of the three features (wa,
wb and wc), the threshold value (τ) and the averaging window (ω) were all optimised.
In the second approach, referred to as mDCA-II, all 11 of the parameters from table
5.3 were optimised. The full set of parameters optimised in the mDCA-I and mDCA-II
experiments are shown by top two rows of table 5.7.

The mDCA is a linear classifier. The algorithm defines a flat plane in three-
dimensional space which attempts to separate two, potentially overlapping, classes as
best as possible. In the mDCA-I experiments, the parameters which define the feature
space are partially evolved, alongside the parameters which define the separating plane.
With the mDCA-II, both the feature space and the separating plane are fully evolved.

SVMs may similarly be used as three-dimensional classifiers, however, as well as
being able to separate classes linearly, SVMs may also classify data that is not linearly
separable. In this chapter, an SVM-based approach is used to classify IR sensor data
as normal or abnormal. The method through which features are extracted from the
data is analogous to the process employed by the mDCA, but how these features are
classified differs. The third row of table 5.7 shows the parameters of the SVM feature
extraction process which are optimised in this section. All of the SVM experiments
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Parameter fa fb fc ta tb tc wa wb wc τ ω
Range (0, 9) (1, 500) (-100, 100) (−100, 100) (1, 500)

Table 5.8: The ranges over which the evolvable parameters are restricted

reported in this chapter use the LIBSVM library2.
The same set of features from table 5.2 were used in all of the mDCA and SVM

experiments. The parameters optimised in each of the three experiments are shown in
table 5.7 and the ranges over which they were restricted to are shown in table 5.8.

Objective Functions

NSGA-II may be used to optimise any number of objectives. For classification tasks,
there are several potential objectives that may be used to assess performance. Examples
include maximising the true positive rate (TPR) and classification accuracy (ACC), or
minimising the false positive rate (FPR) and speed of classification. Table 5.9 shows
how these, and other, statistical measures of performance may be calculated. In the
experiments described in this chapter, two objectives were chosen, one of which relates
to the TPR and one of which relates to the FPR. As shown in table 5.9, in order to
calculate the TPR and FPR, the number of true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN) must be known.

The output of the mDCA is a real value between zero and one, to provide a classifi-
cation, this value must be thresholded—as is necessary when implementing the recovery
strategy described in section 5.2. Whilst it would be possible to calculate the TPR and
FPR from the mDCA by first thresholding the output, in order to make use of the
extra information that the mDCA provides, a slightly different approach is employed.
Rather than measure the TPR and FPR directly, in this set of experiments, objectives
were chosen which calculate the real-valued difference between what would be the ideal
output and the actual output of the algorithm, first for when anomalous data is being
read (obj1) and second for when normal data is being read (obj2). The assumption
here being that solutions in which these distances are small will be more robust, and
hence better classifiers, when thresholding is later applied.

Since the output of the SVM-based approach is binary, in optimising the SVM
parameters, objectives obj1 and obj2 took their values from the TPR and FPR directly.
It should be noted that the NSGA-II implementation utilised here only supports the
minimisation of objective functions and so in reality obj1 was calculated as 1-TPR.

Simulation Environment

All of the experiments were conducted using the Stage simulator. For every generation,
each individual defined the parameters of the anomaly detection system on-board a
single robot. In this set of experiments, the robots did not consume energy. At the

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Name Description Formula

True Positive Rate (TPR) Also known as the sensitiv-
ity, the TPR measures the
percentage of anomalies that
are correctly identified

TP
(TP+FN)

True Negative Rate (TNR) Also known as the specificity,
the TNR measures the per-
centage of normal instances
that are correctly identified

TN
(TN+FP )

False Positive Rate (FPR) One minus the TNR 1− TNR

Positive Predictive Value (PPV) Otherwise known as the pre-
cision, the PPN measures
the percentage of instances
labelled as anomalous which
truly are

TP
(TP+FP )

Negative Predictive Value (NPV) The percentage of instances
labelled as normal which
truly are

TN
(TN+FN)

Accuracy (ACC) The proportion of all in-
stances that were correctly
classified, either positively or
negatively

TP+TN
(TP+FP+TN+FN)

Table 5.9: Statistical measures for assessing the performance of the mDCA and SVM
based anomaly detection systems. TP refers to the number of true positives, that is:
anomalies which are correctly identified as such; TN refers to true negatives: normal
data that is correctly identified as such; FP refers to false positives: normal data that
is incorrectly identified as anomalous; and FN refers to false negatives: anomalous data
that is incorrectly identified as normal
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start of each run, the robots were randomly positioned within a large obstacle filled
arena and left to perform random wandering with obstacle avoidance for one simulated
hour. Three of each of the different types of anomaly described in section 5.2.2 (nine
in total) were injected into each robot over the course of each run. To avoid bias
in the evaluation, the total time in which a robot experienced each particular type
of anomaly was balanced, however, the length of the individual anomalies themselves
were not necessarily the same. At the end of each run obj1 and obj2 were calculated as
previously described.

Because SVMs require training before they may be used as classifiers, in the SVM
experiment, an extra step was needed before evaluating the individuals within the
simulator. Prior to the optimisation experiment itself, raw sensor data was generated
from 50 runs involving 50 robots operating for one hour, in which time nine anomalies
were injected into each robot. During optimisation, for each generation, the data from
a different one of the 50 runs was used to train the SVM classifiers. For each individual,
training data was generated by sampling the raw sensor data of every robot in the run
using a sliding window. The size of the window was equal to the size of the individual’s
largest feature window and the step size was set to half of this value. Samples in which
the final two thirds of the data was not either exclusively anomalous or exclusively
normal were discarded. Using the parameters of the individual, for each sample, three
feature values were calculated and labelled accordingly. After the data was collected and
the feature values were calculated, the set of points labelled as normal was reduced to
the size of the set of points labelled as anomalous and combined to produce the training
set. The training data was then used to train the SVM model before evaluation.

5.3.3 Results

This section presents the results from the mDCA and SVM optimisation experiments.
For each experiment, the evolutionary progress is discussed and the classification perfor-
mance of the evolved system is analysed in terms of the true positive and false positive
rates. In the case of the mDCA-II and SVM experiments, the frequency with which each
of the individual features was selected by the optimisation process is also presented.

mDCA with Fixed Features (mDCA-I)

The mDCA-I experiment was designed to emulate the original mDCA system intro-
duced by [120]. The parameters that determine which features are used were fixed
to values that replicate the features of the original experiments, whilst the remaining
parameters were optimised freely.

Figure 5.3a shows the evolutionary progress of the experiment over time. For every
individual member of each generation, the value of obj1 is plotted against the value
of obj2. Members of the initial population are shown in light grey whilst members of
the final population are shown in black. Members of the intermediate populations are
shown in varying shades between light grey and black.
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Figure 5.3: Plots showing the evolutionary progress of the mDCA-I experiment (a) and
the trade-off between the TPR and FPR of an evolved system (b)

In figure 5.3a, it can be observed that the members of the final population lie closer to
y-axis than they do to the x-axis. The positioning of the members of the final population
demonstrate that it was easier to minimise obj1 than it was to minimise obj2, implying
that the system may be skewed towards producing solutions which favour maximising
the TPR rather than minimising the FPR.

To analyse the performance of the optimised system further, fifty of the best indi-
viduals from the optimisation process were identified and subjected to further tests. In
a multi-objective task, what constitutes the ‘best’ individual may be difficult to define.
One method of defining the best individuals is consider the set of Pareto optimal solu-
tions. A Pareto optimal solution is a solution for which no objective can be improved
without decreasing the value of another objective, because of this property, Pareto opti-
mal solutions are also known as ‘non-dominated’ solutions. Together, the set of Pareto
optimal (or non-dominated) solutions define the ‘Pareto front’. In theory, all members
of the Pareto front may be considered equal. However, when optimising solutions to a
classification task, where it is desirable to maximise the TPR but minimise the FPR,
the Pareto front may include solutions in which the TPR and FPR are both either
maximised or minimised, neither of which is desirable.

For this experiment, the fifty ‘best’ individuals were selected by calculating which
solutions laid closest to the origin in figure 5.3a. Selecting solutions in this manner
confers an equal importance to the TPR and FPR. In comparing different systems,
this approach provides a convenient common starting point. However, as highlighted
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stdDev distAve bDistAve distNN distN skew mean distStdDev range pairDist

Count 5 0 31 17 3 1 18 0 26 43
# Ind. 5 0 30 17 3 1 18 0 19 38

Table 5.10: A summary of features used during the final generation of the mDCA-II
optimisation experiment. The second row of the table shows the number of times each
feature appeared within the final population, whilst the third row shows the number of
individual within the final population that contained each feature

in section 5.5, there are scenarios in which it would be beneficial if the TPR and FPR
were not equally weighted. It is in these scenarios that determining the Pareto optimal
set would be beneficial and the advantages of the NSGA-II approach are observed.

Through repeated re-evaluation, the selected individuals were compared with one
another. Each individual was re-evaluated 50 times and the average of the two objec-
tives was calculated. From these results, a single best individual was selected and its
classification performance was evaluated. To perform classification with the mDCA,
the output of the algorithm must be thresholded. If the output of the mDCA is greater
than the chosen threshold, the algorithm signals that the input belongs to one class,
and if the output is less than or equal to the threshold, it signals a different class.

To evaluate the algorithm’s performance, the threshold value was varied between
0 and 1 in increments of 0.02. For each threshold value, a single experimental run,
containing 50 identical individuals, was performed. As with the previous optimisation
experiments, each run lasted for one simulated hour, during which time nine faults were
injected into each robot.

Figure 5.3b plots the average TPR and FPR for each threshold value, producing
what is often referred to as a receiver operating characteristic (ROC) curve. A common
metric used to compare the performance of binary classifiers is the area under a ROC
curve (AUC). A perfect classifier would have an AUC of 1, whilst a random classifier
would have an AUC of 0.5. The AUC of the curve in figure 5.3b is 0.877.

mDCA with Evolved Features (mDCA-II)

In the mDCA-II experiment, all of the mDCA parameters were allowed to evolve freely,
including the features and the time windows over which the feature values were calcu-
lated. Figure 5.4a shows the evolutionary progress of the experiment over time. Figure
5.4b shows a ROC curve created by varying the threshold value of a single individual,
selected in the same manner as was done with the mDCA-I experiment. The AUC
of the curve in figure 5.4b is 0.894. A video of one of the best individuals from the
mDCA-II experiment is provided in the accompanying material (video 5.1).

Figure 5.5 shows how many times each feature was present in each generation, and
how the features evolved over time. Table 5.10 summarises the number of times each
feature was present in the final generation and the number of individuals within the
final generation which contained each feature.
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Figure 5.4: Plots showing the evolutionary progress of the mDCA-II experiment (a)
and the trade-off between the TPR and FPR of an evolved system (b)
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stdDev distAve bDistAve distNN distN skew mean distStdDev range pairDist

Count 23 13 1 3 5 14 42 4 8 31
# Ind. 22 13 1 3 5 12 35 4 7 27

Table 5.11: A summary of features used during the final generation of the SVM op-
timisation experiment. The second row of the table shows the number of times each
feature appeared within the final population, whilst the third row shows the number of
individuals within the final population that contained each feature

As shown by figure 5.5 and table 5.10, the most selected feature was pairDist, which
appeared 43 times in the final generation and was used by 38 of the 48 individuals. The
next most popular was bDistAve, followed by range.

It is interesting to note that the distN feature, which was introduced in order to
combat the perceived deficiencies of the original distNN feature, was found only 3
times in the final generation. In comparison, the distNN feature was present 17 times.
Whilst distNN was only the fourth most selected feature, it was present in what was
by far the most popular combination of features. Along with bDistAve and pairDist,
distNN appeared in 17 of the individuals from the final generation. The next most
popular combination of features was the mean, range and pairDist, which appeared
together in nine individuals.

Of the original features used by the mDCA, bDistAve was the most popular, ap-
pearing 31 times in 30 individuals. Meanwhile, distAve was the least popular of the
original features and along with distStdDev was the least popular of all the available
features, both of which were not found in any member of the final population.

SVM with Evolved Features

In the SVM experiment, only the features and the ranges over which their values were
calculated were evolved. Figure 5.6a shows the evolutionary progress of the experiment
over time. Both objectives are observed to converge very quickly to optimal values. The
fast convergence may, at least partially, be attributed to the fact that each individual
SVM classifier was trained prior to evaluation. In this experiment, evolution was not
used to define the entire classifier, but merely the features upon which it performs
classification. Figure 5.6b shows a ROC curve created in a similar manner to figures
5.3b and 5.4b by first selecting the best individual and then varying its discrimination
threshold. The AUC of the curve in figure 5.6b is 0.983.

Figure 5.7 shows how many times each feature was present in each generation of the
SVM optimisation experiment and table 5.11 summarises how many times each feature
was present in the final population.

The frequency with which each feature appears is very different to the outcome of
the mDCA-II experiment. As can be seen in table 5.11, the most popular feature was
the mean which which appeared 42 times in the final generation and was used by 35
of the 48 individuals. The next most popular were pairDist, appearing 31 times in 27
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Figure 5.6: Plots showing the evolutionary progress of the SVM experiment (a) and
the trade-off between the TPR and FPR of an evolved system (b)
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SVM optimisation experiment
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individuals and stdDev appearing 22 times in 13 individuals.
None of the features used by the original mDCA were utilised very often and, in a

reversal of the findings from the mDCA-II experiment, the distNN feature was found
to be more popular than distN . Unlike the mDCA-II results, no particular combination
of features stood out amongst the others. The most frequent combination contained
the three most popular features: mean, pairDist and stdDev, but appeared only seven
times in the final population.

5.3.4 Analysis

In this section, the results of the optimisation experiments are analysed and compar-
isons are made between the mDCA-I, mDCA-II and SVM systems. Specifically, the
evolutionary progress, classification accuracy and speed of the systems is analysed.

Evolutionary progress

Figure 5.8a compares the objective values of members of the final population, during
the mDCA-I (grey) and mDCA-II (black) experiments. Both objectives were minimised
further in the mDCA-II experiment than they were in the mDCA-I experiment. This
result demonstrates that the newly introduced features, and the loosening of the re-
strictions upon the older features, brought an evolutionary advantage to the mDCA-II
experiment, in spite of the increase in the size of the search space.

In analysing the features selected during the mDCA-II experiment, it can be ob-
served that only one of the original three features, bDistAve, was still widely utilised
in the final generation. Meanwhile, the distN feature, which was introduced to target
a perceived deficiency in the distNN feature appeared to bring no evolutionary advan-
tage and was present fewer times in the final generation of the mDCA-II experiment
than the original distNN feature was. The distN feature relies on comparing the val-
ues of three neighbouring sensors, two of which are positioned on the same side of a
robot, and one of which is positioned on an adjacent side. The feature was chosen based
upon the assumption that neighbouring sensors will return similar values (regardless of
which side they are positioned on). The fact that the distN feature was selected fewer
times than the distNN feature—which only compares sensor values from one side of a
robot—may indicate that this initial assumption was incorrect.

Because of the subtly different objective functions that they utilise, it is not possi-
ble to fairly compare the evolutionary progress of the mDCA and SVM experiments.
However, it is possible to compare the features that were selected.

Figure 5.9 compares the number of times that each feature was present in the final
generation of the mDCA-II and SVM experiments. As shown in figure 5.9, the features
which worked well for the SVM-based system are very different to those which worked
well for the mDCA. The bDistAve, distNN and range features, whilst well represented
in the mDCA-II experiment, were far less commonly found in the final generation of
the SVM experiment. Meanwhile, the stdDev, distAve and skew features, whilst not
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Figure 5.8: Graphs comparing the objective function scores of the mDCA-I (grey) and
mDCA-II (black) systems (a) and the TPR and FPR of the mDCA-I (dark grey circles),
mDCA-II (light grey squares) and SVM (black triangles) systems (b)

Exp. mDCA-I mDCA-II SVM

AUC 0.876539 0.894397 0.983085

Table 5.12: A comparison of AUC values from the mDCA-I, mDCA-II and SVM systems

uncommon in the SVM experiment, were rarely found in the mDCA-II experiment.
One exception to this pattern is the pairDist feature, which was well represented in
the final generation of both experiments.

Classification accuracy

Figure 5.8b compares the ROC curves from the mDCA-I, mDCA-II and SVM experi-
ments, whilst table 5.12 compares the AUC values of the three systems. Out of the three
systems, the SVM-based apporach is observed to be the best classifier, as demonstrated
by the fact that it has the largest AUC value, and its curve lies closest to the point
(0,1). The mDCA-II based system narrowly outperforms that of the mDCA-I, with the
two systems obtaining AUC scores of 0.8944 and 0.8765 respectively. In comparison to
the mDCA-I system, the curve of the mDCA-II system is skewed towards the left-hand
side of the graph, indicating that at low false positive rates, the mDCA-II approach
will have a higher true positive rate.
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Figure 5.9: A histogram comparing the number of times each feature was present in
the final generation of the mDCA-II and SVM optimisation experiments

Exp. mDCA SVM

Time (s) 947.44 [6.675] 1423.92 [16.116]

Table 5.13: The mean run-time (and std dev.) of the mDCA and SVM experiments

Speed

As an informal measure of the complexity of the mDCA and SVM based systems,
empirical data was gathered regarding the run-time speed of the two approaches. For
each approach, 25 runs were executed, each containing 50 robots and lasting for one
simulated hour, during which time nine anomalies were injected into each robot. The
simulator was configured to execute the simulation as fast as possible and the real time
taken was measured using the Linux/UNIX date command. The experiments were
carried out on a desktop computer. In order to ensure that each run was performed
under similar conditions and obtained a similar proportion of CPU time, networking
was turned off and all other applications were closed.

The results of these experiments are presented in table 5.13. The table compares
the mean time taken to complete a single run. From this table it can be seen that the
mDCA system significantly outperforms the SVM-based approach in terms of speed.
On average, the mDCA runs were just under eight minutes shorter, or 1.5 times quicker.

5.4 Long-term Survival

In all of the experiments described so far, the robots were provided with an unlimited
supply of energy, and were not required to perform any of the recharging or energy
sharing behaviours introduced in section 5.2.3. Here, this simplification is removed and
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the full controller, along with its associated recovery strategy, is utilised.
In chapter 1, it was suggested that for self-reconfigurable modular robotic systems

to be useful in tasks such as autonomous search and rescue, they would need to demon-
strate the ability to survive for long periods of time, without any form of human inter-
action. It was further stated that, to survive autonomously for long periods of time,
the robots would need to demonstrate high levels of fault tolerance. In the same chap-
ter, the 100 Robots 100 Days grand challenge was presented as a test-bed for assessing
whether a system possessed the necessary characteristics for long-term survival.

Using a simplified version of the 100 Robots 100 Days challenge, this section investi-
gates the extent to which anomalous sensor data may affect the long term survival of a
collective robotic system. Furthermore, this section considers whether the introduction
of an anomaly detection system and recovery strategy can reduce or remove any of the
adverse effects that result from the presence of anomalous sensor data.

After describing the experimental setup, results are presented which document the
long-term survival of three different types of system. Survival is measured both by
the number of robots that remain active at the end of a run and the total amount of
energy stored throughout. Results from a control experiment in which no anomalies
were introduced and two baseline experiments in which no anomaly detection and no
energy sharing took place, are also presented.

5.4.1 Experimental Setup

Two different sets of experiments were designed in order to investigate the long-term
survival of a collective robotic system in the presence of anomalous sensor data. The
first set of experiments focused on comparing the long term survival of various different
types of system, some of which were capable of anomaly detection and others of which
were not. The second set of experiments considered how varying the FPR of systems
which are capable of anomaly detection affects their performance.

In the first set of experiments, the performance of six different systems was com-
pared. The first experiment in this set was a control. In the control experiment, the
robots used the behavioural controller described in section 5.2.3 but no anomalies were
injected into their sensor data. The second and third experiments were used to de-
termine a baseline level of performance. Both involved introducing anomalies into the
proximity sensors of robots which possessed no method for detecting or responding to
them, however, in the third experiment, the robots’ energy sharing capabilities were
also removed. The fourth and fifth experiments were used to determine whether the
pairing of an anomaly detection system and appropriate recovery strategies could im-
prove the performance of a system containing anomalous sensor data. Specifically, the
two anomaly detection systems were defined by the parameter sets of the best indi-
viduals from the mDCA-II and SVM optimisation experiments. The sixth and final
experiment involved the use of an ‘ideal’ anomaly detection system, which was able to
respond immediately to every anomaly.

For each experiment, ten individual runs were carried out. In each run, 50 robots
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Figure 5.10: The environment used during the long-term survival experiments. The 50
small blue squares are robots and the eight, slightly larger, orange objects are power
sockets. The range and area over which the power sockets may communicate with the
robots is shown by the semi-circles. The black striped areas are obstacles

were simulated and 12 anomalies were injected into their sensor data over a period of ten
simulated hours. At the start of each run, the robots were positioned at random within
a large obstacle filled arena and assigned a random energy level between 30% and 100%
of their maximum. The arena used is pictured in figure 5.10. At each timestep, the
total energy stored in every robot and the total number of surviving robots (robots with
an energy level greater than zero) was recorded. Robots which ran out of energy were
removed from the environment immediately. Table 5.14 presents 10 null hypotheses
which are used in section 5.4.3 to compare the performance of the different systems.

In the mDCA and SVM experiments discrimination thresholds were set to values
that would ensure a low false positive rate of around 0.01. In the second set of exper-
iments, to investigate the effects of altering the FPR of these approaches, four further
experiments were performed. For both of the approaches, new discrimination thresh-
olds were chosen that would ensure false positive rates close to 0.1 and 0.2. As with
the experiments in which the FPR was set to 0.01, ten individual runs were completed,
each lasting for ten simulated hours and involving the injection of 12 anomalies.



94 5.4. Long-term Survival

H5.10 There is no difference in the amount of stored energy present at the
end of an experiment using the ideal anomaly detection system and
an experiment using the SVM-based approach

H5.20 There is no difference in the number of surviving robots present at
the end of an experiment using the ideal anomaly detection system
and an experiment using the SVM-based approach

H5.30 There is no difference in the amount of stored energy present at the
end of an experiment using the ideal anomaly detection system and
an experiment using the mDCA-based approach

H5.40 There is no difference in the number of surviving robots present at
the end of an experiment using the ideal anomaly detection system
and an experiment using the mDCA-based approach

H5.50 There is no difference in the amount of stored energy present at the
end of an experiment using the mDCA anomaly detection system
and an experiment using the SVM-based approach

H5.60 There is no difference in the number of surviving robots present
at the end of an experiment using the mDCA anomaly detection
system and an experiment using the SVM-based approach

H5.70 There is no difference in the amount of stored energy present at the
end of an experiment using no form of anomaly detection system
and an experiment using the SVM-based approach

H5.80 There is no difference in the number of surviving robots present
at the end of an experiment using no form of anomaly detection
system and an experiment using the SVM-based approach

H5.90 There is no difference in the amount of stored energy present at the
end of an experiment using no form of anomaly detection system
and an experiment using the mDCA-based approach

H5.100 There is no difference in the number of surviving robots present
at the end of an experiment using no form of anomaly detection
system and an experiment using the mDCA-based approach

Table 5.14: Hypotheses used to compare the long-term survival of different systems
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Figure 5.11: The total stored energy of 50 robots operating over a ten hour period.
Each line represents the mean outcome of ten independent runs

5.4.2 Results

Figure 5.11 shows how the total energy stored by all of the robots in the system changes
over the time. Each line corresponds to a single experiment and shows the mean value
from ten runs. A video showing a short segment of one of the runs is provided in the ac-
companying material (video 5.2). In the experiment in which no anomalies were present
(light blue line), the total stored energy remains relatively constant. Contrastingly, in
the experiment in which anomalies were present but there was no anomaly detection
(orange line), the total energy stored steadily decreases over time. Meanwhile, in the
experiment in which no sharing took place (teal line), the total stored energy drops
quickly at first, before levelling out as the amount approaches zero. The three experi-
ments in which anomaly detection, energy sharing and recovery did take place all follow
a similar trend. Initially, the perfect detection, SVM and mDCA based approaches all
follow the same linear decrease as the experiment with no detection. However, after
about one hour, the energy levels of the systems with anomaly detection begin to level
out and although they continue to decrease for the remainder of the simulation, they
do so at a lower rate than the experiment with no detection, one potential explanation
for this behaviour is provided in section 5.4.3.

Figure 5.12 shows the mean amount of energy stored at the end of each of the
experiments, represented using boxplots3. Results from the experiment in which no

3All of the boxplots presented in this thesis use the following drawing conventions: the horizontal
line represents the median; the bottom and top of the boxes represent the first and third quartiles; and
the upper and lower whiskers represent the highest and lowest data points that are found no further
than 1.5 times the inter quartile range from the edges of the boxes.
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Figure 5.12: The amount of energy present at the end of each experiment

B C D E
A 0.000157 0.000157 0.000157 0.000157
B - 0.650147 0.069642 0.000381
C - - 0.058781 0.000157
D - - - 0.000507

Table 5.15: The p-values obtained when comparing the amount of stored energy present
at the end of experiments involving systems A-E, using a Wilcoxon rank-sum test with
a significance level of 0.05. The values in grey highlight where there is a significant
difference between two systems, after a Bonferroni correction factor is applied

energy sharing took place are omitted from this figure since, in all but three of the
runs, every robot had ran out of energy by the end of the run. The remaining stored
energy was greatest at the end of the experiment in which no anomalies were present
and lowest in the experiment in which no anomaly detection took place. In comparing
the three systems in which anomaly detection was present, it can be observed that the
system with ideal anomaly detection outperformed the SVM-based system, which in
turn outperformed the mDCA-based system. It should be remembered, however, that
it was only possible to conduct ten repeated runs. As shown by the p-values in table
5.15, using a Wilcoxon rank-sum test with a significance level of 0.05 and applying a
Bonferroni correction factor to account for multiple comparisons, the difference between
the final stored energy of all three of the systems with anomaly detection cannot be
said to be statistically significant. However, all of the other systems can be said to
significantly outperform the system in which no detection took place.

Figure 5.13 shows how the total number of active robots changed over time. Due to
the strong relationship between the amount of energy in the system and the number of
surviving robots, the lines in figure 5.13 follow a similar trend to those in figure 5.11.

Figure 5.14 shows the mean number of active robots present at the end of each
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Figure 5.13: The total number of operational robots over a ten hour period. Each line
represents the mean outcome of ten independent runs

B C D E
A 0.000157 0.000157 0.000157 0.000108
B - 0.185877 0.012611 0.000108
C - - 0.037635 0.000108
D - - - 0.000287

Table 5.16: The p-values obtained when comparing the number of surviving robots
present at the end of experiments involving systems A-E, using a Wilcoxon rank-sum
test with a significance level of 0.05. The values in dark grey highlight where there
is a significant difference between two systems before a Bonferroni correction factor is
applied and the values in light grey highlight where there is still a significant difference
after applying a Bonferroni correction factor
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Figure 5.14: The number of robots present at the end of each experiment

of the five experiments which involved energy sharing. The results once again reflect
those which recorded the amount of stored energy. The number of surviving robots
was found to be greatest in the experiment in which no anomalies were introduced and
lowest in the experiment with no detection. The ideal system still outperformed the
SVM-based approach, which in turn outperformed the mDCA-based system. Using a
Wilcoxon rank-sum test with a significance level of 0.05, it can be stated that there is
no significant difference in the number of surviving robots in the ideal and SVM-based
systems. As shown in table 5.16, before the Bonferroni correction is applied, there
is a significant difference between the mDCA system (D) and both the ideal (B) and
SVM (C) systems, however after applying the Bonferroni correction, the difference can
no longer be said to be statistically significant. As was the case when comparing the
amount of stored energy, all of the other systems can be said to significantly outperform
the system in which no detection took place.

Figures 5.15 and 5.16 show how altering the false positive rate of the mDCA and
SVM anomaly detection systems affected the amount of stored energy and number of
remaining robots in the long-term survival experiments. As reported above, with a FPR
of 0.01, the SVM-based approach significantly outperforms the mDCA-based approach
in terms of the number of surviving robots. Whilst the amount of stored energy is also
greater with the SVM-based approach, the difference is not statistically significant.

Interestingly, in the experiments in which the FPR was set to 0.1 and 0.2, the
findings are reversed. Despite the SVM-based approach consistently having a greater
TPR, it is outperformed by the mDCA-based approach both in terms of the amount of
energy stored and the number of surviving robots. It should be highlighted, however,
that although the median value from the mDCA experiments is greater than the median
from the SVM experiments, the difference is not statistically significant.
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Figure 5.15: Boxplots showing the effect of varying the false positive rate (FPR) on the
amount of energy present at the end of each experiment
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5.4.3 Analysis

In this section, the results of the long-term survival experiments are analysed and each
of the ten hypotheses from the table 5.14 is examined. It is important to highlight that,
given the low number of repeated runs, these results must be interpreted with caution.

During the course of the long-term survival experiments, the system in which no
anomalies were injected performed consistently better than the others. The performance
of the three systems which utilised anomaly detection was similar. However, during the
second half of the experiments in particular, the system which employed ideal anomaly
detection consistently outperformed the SVM-based system, which in turn outperform
the mDCA-based approach. All of the other systems outperformed the two which
did not utilise any form of anomaly detection. From the two systems which did not
perform anomaly detection, the system in which robots were able to share energy with
one another performed consistently better than the the system in which no sharing took
place, highlighting the benefit of the energy sharing behaviours.

Intuitively, one might expect the performance of the ideal detector to match that
of the experiment in which there were no anomalies. The reason that this is not so is
because the recovery strategy is not perfect. It was only the anomaly detection in this
experiment that was ideal. The basic response to the detection of an anomaly in a sensor
is to assume that the sensor is returning the same value as its neighbour, unfortunately,
this assumption is not always valid and in situations where two neighbouring sensors
differ by a large amount, the true value may in fact be closer to the anomalous value
than that of the neighbour. Furthermore, if an anomaly is detected in one of a robot’s
front two sensors, that robot is prevented from recharging both itself and its fellow
robots, it becomes a burden upon the group, able to take from other robots but not
able to give back. This is why the ideal system does not perform as well as the case in
which there were no anomalies.

In comparing the ideal system and the SVM-based approach, it can be said that
there is no significant difference in the amount of stored energy present at the end of
each experiment and no significant difference in the number of surviving robots. Based
upon this evidence it is not possible to reject H5.10 or H5.20 and it is accepted that
there is no difference in the performance of a system using ideal anomaly detection and
a system using the SVM-based approach.

In comparing the ideal system and the mDCA-based approach, it can be said that
there is no significant difference in the amount of stored energy present at the end
of each experiment and, after applying the Bonferroni correction factor, no significant
difference in the number of surviving robots. On this evidence, it is not possible to
reject either H5.30 or H5.40.

In comparing the mDCA and SVM-based systems, it can be said that there is no
significant difference in either of the performance measures. It is not possible to reject
either H5.50 or H5.60 and it is accepted that there is no difference in the performance of
a system that uses the SVM-based system and a system that uses the mDCA approach.

In comparing the SVM-based approach with the system in which no detection took
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place, it is observed that there is a significant difference in both the amount of stored
energy and the number of surviving robots present at the end of each experiment. It is
therefore possible to reject both H5.70 and H5.80 and state that the SVM-based system
performs significantly better than a system in which no anomaly detection takes place.

Finally, in comparing the mDCA-based approach with the system in which no de-
tection took place, it can again be stated that there is a significant difference in both
the amount of stored energy and the number of surviving robots present at the end
of each experiment. Based upon this evidence it is possible to reject both H5.90 and
H5.100 and accept that the mDCA-based system performs significantly better than a
system in which no anomaly detection takes place.

In the latter part of section 5.4.2, results were presented in which the FPR of the
SVM and mDCA-based system were varied in order to study what effect this had on the
long-term survival of the systems. It was observed that with a low FPR of 0.01 the SVM
based approach outperformed the mDCA both in terms of the amount of stored energy
and the number of surviving robots (although only the difference between the number
of surviving robots was significant). With an FPR of 0.01 the SVM-based approach
has a TPR of around 0.85, whilst the mDCA has a TPR of 0.681. It is suggested
that the SVM-based approach is able to perform better because its higher TPR allows
it to detect more anomalies and prevent adverse effects such as robots colliding with
power sockets or other modules. However, when the FPR is increased to 0.1 and the
true positives rates of the mDCA and SVM-based approach increase to 0.79 and 0.95
respectively, the performance of the SVM-based approach is worse than that of the
mDCA (albeit not significantly so). When the FPR is increased to 0.2, the same is true
again and despite having a larger TPR, the SVM-based approach performs worse than
the mDCA-based system.

The reason for this surprising result could be related to the same deficiencies in
the recovery strategy which meant that the ideal system did not perform as well as
the system in which no anomalies were present. To clarify this point, consider the
case where a sensor-noise anomaly increases the amount of noise in one of the front
two sensors of a robot by 1%. Since 1% is only a small increase, it is likely that the
anomaly would be missed by a system with a low TPR, but detected by a system with
a larger TPR. Consider now the behaviour of two such systems immediately after the
anomaly has been introduced. The system which detected the anomaly would take the
value of a neighbouring sensor, whilst the system which did not would continue to read
the anomalous value. Because the size of the anomaly is so small, it is possible that
the anomalous value is actually closer to the true value than that of the neighbouring
sensor. Furthermore, robots utilising the system with the larger TPR, which did detect
the small anomaly, would be prevented from recharging or sharing energy. Robots
utilising the approach with the lower TPR, meanwhile, would continue to recharge
and share energy and given the small size of the anomaly would be unlikely to be
adversely effected. This, it is suggested, may be the reason why the SVM based system
is outperformed by the mDCA approach when the FPR is increased. By ignoring
anomalies which do not adversely affect the behaviour of the robot, less modules are
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taken out of the pool of ‘active’ robots—those which may recharge either themselves
or others—and so the system as a whole is better equipped to survive.

The same behaviour may also explain why, in the experiments which included
anomaly detection, the total stored energy initially follows the same trend as the ex-
periment with no anomaly detection (figure 5.11), in spite of the fact that, as shown
in figure 5.13, the number of operational robots decreases at a much lower rate. The
suggested reason for this is that, if the robots are able to detect anomalies, then there
are guaranteed to be less active robots in the system at any one moment in time. With
fewer robots able to recharge or share energy, it is expected that the average proportion
of energy stored by each robot will decrease. Once this new average value is approached,
however, there is a switch in the dynamics of the system and the total stored energy
then decreases in line with the numbers of operational robots.

5.5 Summary and Future Work

In this chapter, an energy foraging and energy sharing strategy was presented which
aimed to reduce some of the negative effects that were identified by the reliability
study documented in chapter 4. The strategy took inspiration from the morphogenesis
controller introduced in chapter 4 and allows robots to dock with power sockets and
form ad-hoc multi-robot structures within which modules can harvest or share energy.

An anomaly detection algorithm, inspired by the function of the vertebrate immune
system, was also introduced. The algorithm, known as the ‘modified Dentritic Cell
Algorithm’ (mDCA), uses sliding windows to extract features from time-series data and
classifies the data as anomalous or normal using a linear weighted sum. Weaknesses
in the original mDCA implementation were highlighted and suggested improvements
were made to both the algorithm itself and the supporting experimental framework. The
parameters of two different version of the mDCA were optimised using the evolutionary
multi-objective optimisation strategy, NSGA-II. In the first version, which was designed
to emulate the original mDCA approach, the features that were extracted from the
data were fixed. In the second version, a wider set of possible features were provided
and the ones used by the algorithm were selected by evolution. The two versions of
the mDCA were compared in terms of their evolutionary progress and classification
accuracy. In both cases, the new version of the mDCA was shown to outperform the
original. Comparisons were also made with a system that utilised Support Vector
Machines (SVM) to perform classification. The feature extraction process of the SVM-
based system was optimised using the same multi-objective approach that was used
to select the mDCA parameters. The SVM approach was shown to outperform both
versions of the mDCA in terms of classification accuracy, but was slower than the
mDCA in terms of run-time speed.

The anomaly detection algorithms were then combined with the energy foraging
controller and used to investigate the task of long-term survival. The performance of
the combined systems were measured in terms of the number of surviving robots and
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the amount of stored energy present at the end of a ten hour simulation. The mDCA
and SVM based approaches were shown to perform significantly better than systems in
which no detection took place and on a comparable level to a system which utilised an
idealised form of anomaly detection. The SVM-based system outperformed the mDCA
in terms of the number of the surviving robots and the amount of stored energy, but not
significantly so. The benefit of the energy sharing strategy was demonstrated by the fact
that all of the systems in which energy sharing took place consistently outperformed
the system in which it did not.

In order to investigate what effect increasing the false positive rate would have on
the performance of the system, the discrimination thresholds of the SVM and mDCA
based approaches were then varied. Intuitively, one might expect that the system with
the lowest FPR and greatest TPR would perform best, however, the results revealed
that with equal FPRs, the SVM-based approach did not benefit from having a larger
TPR, and in fact performed slightly worse than the mDCA. It was suggested that the
reason for this behaviour is related to the fact that when a small anomaly is present,
the cost of recovery may be greater than the cost of ignoring the anomaly. A system
with a lower TPR, which ignores small anomalies, may have an advantage in these
scenarios. However, more experimental results would be required in order to confirm
this hypothesis.

These observations help to highlight one of the main benefits of a multi-objective
approach to optimisation. In the scenario described above, there is an uneven weighting
between the desire for a high TPR and a low FPR. Where the desired relative weight-
ings of the objectives are unknown, a multi-objective approach to optimisation can be
beneficial in discovering a variety of solutions in which different weightings are applied.

In this chapter, only two objectives were optimised, in future work, a greater num-
ber may be investigated, including, for example, the run-time speed or memory require-
ments of an approach. To investigate scenarios in which the relative weightings of the
objectives may change over time, the optimisation of the anomaly detection systems
may also be performed in an online manner. In order to further investigate what effect
varying the true positive and false positive rates has on the performance of the system,
more long-term survival experiments may be performed. Furthermore, in order to help
reduce the costs of recovery, new recovery strategies may be developed.

The work in this chapter was focussed on the detection of and recovery from failures
which occur whilst robots are operating as individuals. This work highlighted the
importance of designing effective and efficient recovery strategies. In the following
chapter, the task of recovering from a failure that occurs whilst a robot is part of a
larger robotic structure is investigated and a new form of recovery strategy is introduced.



Chapter 6

Self-repairing Robotic Structures

In this chapter, a new self-repair strategy is presented which aims to improve the fault
tolerance of the morphogenesis controller introduced in chapter 4. Following the failure
of an individual module within a robotic structure, the strategy ensures that the faulty
module is isolated and removed, and that the structure is rebuilt in an efficient manner.

The strategy focuses on failures that occur within robots which are already part
of a robotic structure. With relation to the reliability analysis study performed in
chapter 4, the strategy aims to tackle the serious effect E1: a stall in the formation of
a structure. However, as well as targeting partially assembled structures, the strategy
may be used to repair structures in which modules fail after the assembly process has
completed. Assuming the presence of a fault detection system, such as that introduced
in chapter 5, a system which uses this strategy is capable of recovering from all seven
of the hazards introduced in chapter 4. Learning from the FTA analysis performed in
chapter 4, in which the wired communications channel was identified as a single point
of failure, the reliability of the system is further improved by introducing an extra level
of redundancy to inter-module communication.

The generality of the approach is highlighted in its implementation on all three of the
Symbricator platforms. The performance of the strategy is analysed using two different
simulators, as well as physical robotic hardware. In simulation, the performance of the
system is compared with a naive strategy that responds to the detection of a failure
by disassembling and restarting the entire assembly process from scratch, and with a
perfect system in which no failures occur. The new self-repair strategy is shown to
outperform the naive approach in the majority of cases and performs particularly well
on configurations that contain many repeated segments. Using real robots, as a proof
of principle, the behaviour of the system is analysed in four typical scenarios.

In section 6.1, the self-repair strategy itself is introduced, the main assumptions
made during its design are presented, and comparisons are made to other similar tech-
niques. In section 6.2, the specific implementation of the strategy on-board the Sym-
bricator robots is described and its limitations are discussed. In sections 6.3-6.5 results
from both simulated and physical robot experiments are provided. Finally, in section
6.6, a summary is provided and potential areas of future work are discussed.
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(a) (b) (c) (d)

Figure 6.1: The four stages of the self-repair strategy. The failed module is shown as
a dark grey square, the support modules are represented by the light grey squares and
the repair modules are represented by the remaining white squares

6.1 Strategy

The strategy described in this chapter can be used to repair an assembled or partially
assembled robotic structure which contains a single failed module. The strategy works
in the same way, regardless of the state of assembly. The strategy begins by isolating
the failed individual and dividing the structure into separate sub-structures. Once the
structure has been divided, the failed robot can be removed, either by itself, or if the
robot is immobile or unaware that it has failed, by neighbouring support modules. Each
of the individual sub-structures then assigns itself a score, based upon knowledge of its
own morphology and that of the desired target shape. By broadcasting and listening
for messages, the separate structures then negotiate with one another which is in the
best position to rebuild the target structure. Following negotiation, the ‘winning’ sub-
structure restarts the assembly process, whilst the other sub-structures disassemble.

During the self-repair process, every module may be considered to take on one of
three roles: failed module, support module or repair module. The failed module is that
which is responsible for initiating the self-repair strategy. The support modules are
those which neighbour the failed module and are responsible for removing it from the
structure. The remaining robots are repair modules, whose job it is to determine how to
re-build the structure in the most efficient manner. Note that, provided the failed robot
is capable of undocking and removing itself from the structure, and that it is capable of
communicating its intentions to the remainder of the structure, support modules may
not always be required. If support modules are not required, the neighbours of a failed
module would also belong to the group of repair modules.

As visualised in figure 6.1, the strategy can be split into four stages. In the first stage,
shown in figure 6.1a, a failure is detected by either the failed module or its neighbouring
support modules. Messages are then propagated to the remaining modules so that the
entire structure is aware that the recovery process has been initiated.

As shown by figure 6.1b, in the second stage, the structure is split into several
sub-structures, allowing the support modules to move the failed module away from the
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group. For each sub-structure, this retreating phase is led by the repair modules which
neighbour with support modules, assuming the structure does not contain any loops,
there will be one such module in every sub-structure.

In stage three, using local message passing, the repair modules establish the shape
of the sub-structure that they belong to. This shape is compared to a known target
and used to calculate the ‘score’ of each sub-structure. The details of how this score is
calculated are implementation dependent but must, in some way, represent how similar
the sub-structure is to the desired target shape.

As shown in figure 6.1c, every module in each sub-structure then broadcasts its
score and a unique ID, whilst listening for messages from the other sub-structures. If a
sub-structure detects a score higher than its own, it notifies its neighbours and begins
to broadcast the higher score instead. To resolve conflicts, if a sub-structure detects a
score that is the same as its own, it broadcasts the score with the lower associated ID.
Eventually, a consensus will be reached and all sub-structures will be broadcasting and
receiving the same messages.

In the final stage, as shown in 6.1d, the sub-structure which did not detect any scores
higher than its own assumes itself to be in the best position to continue assembly, and
declares itself as the winner. The other sub-structures are simply disassembled. After
removing modules which do not belong to the target shape, the winning sub-structure
may continue to assemble the target. Note from figure 6.1d, that a modules role within
the new structure need not be the same as its role in the original structure.

6.1.1 Assumptions

This section summarises the main assumptions made during the development of the
self-repair strategy. Where appropriate, the assumptions are justified and details of the
consequences of removing them are outlined.

Structures will contain at most one failed module At any single moment in ti-
me, a structure will not contain more than one failed module. This is the most
severe limitation of the self-repair strategy and is especially problematic when
considering systems which contain a very large number of individual modules.
In large systems, there is more chance that multiple robots will fail at the same
time, reducing the validity of this assumption. However, in small to medium sized
systems, where there is less chance of multiple faults occurring simultaneously,
the assumption more reasonable. In many cases, even if multiple failures did
manifest themselves within the same structure, the strategy would still be able
to cope. The strategy would respond to multiple failures by first initiating self-
repair to resolve the first failure, and upon completion, re-initiating the process
to resolve the second failure. For the approach to be successful, the second failed
module must possess sufficient capabilities to allow the first repair process to be
completed successfully, otherwise the approach will fail. It is also important to
highlight that the system as a whole may still recover from the occurrence of
parallel failures, but only if they occur within separate structures.
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Robots will not suffer control system failures The system is only designed to re-
cover from (detectable) hardware failures. The failure of a robot’s controller may
result in undesired behaviour from which the system cannot recover. For example,
a robot which incorrectly transitions from the Disassembling state to the Support-
ing state could severely disrupt the disassembly process and place the system in
a state from which it cannot repair itself.

Modules are capable of omnidirectional locomotion All robots are capable of
some form of omnidirectional locomotion. Assuming that every robot can move
in every direction simplifies the description of the self-repair strategy. Given that
two of the three Symbricator robots are capable of omnidirectional locomotion,
this is not an unreasonable assumption. However, in order to demonstrate the
generality of the approach, in section 6.2, an implementation of the strategy is
presented in which this assumption is removed.

All robots have some knowledge of a target shape Every robot has some knowl-
edge of a target shape. This knowledge need not be 100% accurate and different
robots may, in fact, have vastly different target shapes. It is only necessary that
each module has some way of comparing the shape of the sub-structure to which
it belongs, with some target, and in doing so is able to assign itself a score which
will accurately rank the potential of the sub-structure to which it belongs, rel-
ative to the other sub-structures. How these scores are calculated is considered
to be implementation dependent, in section 6.2, one possible mechanism used in
experiments involving the Symbricator robots is presented.

All robots are capable of detecting failures Every robot possesses some mecha-
nism for detecting failures within itself, or within neighbouring robots. This
assumption is justified by the existence of the fault detection methods reviewed
in chapter 2 and the anomaly detection algorithm presented in chapter 5. The
self-repair strategy is only triggered after the discovery of a failure. Therefore,
without a fault detection system, the strategy would be ineffective.

There is a sufficient number of spare robots Following the removable of a failed
module, there are enough spare robots present within the vicinity of the structure
in order to rebuild the target shape. The nature of self-reconfigurable modular
robotic systems and the fact that they are designed to contain many redundant
modules, justifies this assumption. This is also an assumption of the original
morphogenesis controller, if there is not a sufficient number of spare robots, in its
current form, the assembly process will stall. In future work, a minor alteration
could resolve this issue by causing the assembly process to timeout if no new
robots had joined after a certain period.

There is a mechanism for transforming a 3D structure to 2D The system po-
ssesses a mechanism for transforming a 3D structure into a planar 2D structure,
from which the self-repair process can be initiated. Without first transitioning
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into a 2D configuration, the self-repair strategy would not work, but precisely
how this transformation is achieved is considered to be beyond the scope of this
work. This assumption highlights a potential limitation of the approach in that,
if a module fails whilst forming part of an assembled 3D structure, and cannot
revert to its 2D state, the self-repair strategy would be unlikely succeed.

Robots can only dock as individuals Multi-robot structures are not capable of au-
tonomous docking, only individual modules can dock. Allowing multi-robot struc-
tures to dock with one another could greatly improve the speed and efficiency of
self-repair. However, from experience with the Symbricator robots, even single
module docking was found to be a very difficult task. The perceived difficulty of
implementing multi-robot docking justifies this assumption.

Structures cannot contain loops There is only one unique path between every pair
of modules, which is to say, structures can not contain loops. This assumption
is imposed by the original morphogenesis controller which represents configura-
tions as DAGs, and therefore cannot contain cycles. It is further imposed by the
Symbricator hardware which, due to the networking design, does not currently
support loops. Removing this assumption would require changes to be made to
both the original morphogenesis controller and the self-repair strategy.

6.1.2 Controller

This section details how the self-repair strategy is integrated with the morphogenesis
controller from chapter 4. Figure 6.2 shows an updated version of the finite state
machine from figure 4.3. The original states and transitions from figure 4.3 are shown
in grey, whilst the new ones are displayed in black. For clarity, the state occupied by
failed modules is omitted from this diagram.

The controller requires that robots have at least two channels of communication.
One that provides direct communication between members of the same structure, and
one that provides wireless communication between members of separate structures. The
various different types of message that modules send during self-repair, and the data
that they carry, are summarised in table 6.1.

In the remainder of this section, each of the new states and transitions in figure 6.2,
as well as the ‘Failed’ state, are described in detail. Throughout this section, a running
example is used to demonstrate the process of self-repair. Figure 6.3 shows the example
structure that is used, alongside its corresponding graph and string representations.

Failed

A module enters the Failed state either when it detects a failure within itself, or when
a neighbour detects a failure within it. If a failure is detected by a neighbouring robot,
it informs the failed module by sending an MKILL message. However, if because of the
failure, it is not possible for the robots to communicate this information to the failed
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Figure 6.2: A finite state machine for the morphogenesis controller from chapter 4,
extended to include the self-repair strategy described in this chapter

Message Description

MFAILED Sent by modules in the Failed or Supporting states to indicated
the presence of a failure and notify whether the sending module
requires assistance in removing itself from the structure

MKILL Sent by a module which detects a failure within its neighbour to
inform the neighbour that it has failed

MSHAPE Sent by modules in the Repairing state to determine the shape of a
sub-structure. Every message sent includes a (possibly incomplete)
string-based representation of a structural configuration

MSCORE Sent by modules in the Repairing state to discover the highest scor-
ing sub-structure. Every message sent includes a score and an ID

MRETREAT Sent by the lead repair module to inform others to start retreating
MSTOP Sent by the lead repair module to inform others to stop retreating
MRESHAPE Sent by the lead repair module to inform others to enter Reshaping
MDISASSEM Sent by Reshaping modules to inform others to enter Disassembling
MBRANCH Sent by modules in the Reshaping state to provide information

about the new structure. Every message sent includes a string-
based representation of one segment of the new structure

Table 6.1: The different types of message sent between robots during self-repair
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Figure 6.3: An example structural configuration alongside its graph representation, with
the corresponding string representation shown below. The seed module is coloured grey

module, the module will not enter the Failed state and instead will remain ignorant of
the failure. A module that is not aware that it has failed can still be safely removed from
a structure by support modules, however, these modules must then sacrifice themselves
in order to prevent the failed module from interfering at a later stage.

In theory, a module may enter the Failed state from any of the other states in
figure 6.2. However, based upon the assumption from section 6.1.1 that a structure will
contain no more than one failed module, the transitions from each of the three new
self-repair states, in figure 6.2, can be ignored.

If a module detects a failure within itself whilst it is not part of a robotic structure,
that is, whilst it is occupying any state below the dashed line in figure 6.2, it responds
by transitioning immediately to the Failed state. Once in the Failed state, the module
may either immobilise itself, or move to a specialised repair zone.

If a module detects a failure within itself, or is notified that it has failed, whilst it
is part of a larger robotic structure, it responds by sending an MFAILED message to
each of its neighbours and entering the Failed state. The MFAILED message includes
details of whether the module needs assistance in removing itself from the structure. If
it is able to remove itself from the structure, it unlocks any docking elements and waits
until there is room for it to leave the area. Otherwise, it simply waits to be removed
by support modules.

Supporting

A module will enter the Supporting state in two scenarios. Firstly, if it receives an
MFAILED message in which it is specified that help is required, and secondly, if it
detects a failure within a neighbouring module and, after notifying the module, no
MFAILED response is received (figure 6.2, transition 1). Immediately after entering the
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Figure 6.4: An example of modules entering the Supporting state. The shade of each
module represents the state that it is currently occupying. The white arrows within
black boxes represent the passing of MFAILED messages between neighbouring modules

Supporting state, modules send an MFAILED message to every other neighbour (apart
from the failed one). To ensure that their neighbours do not also become support
modules, in this new MFAILED message, they specify that no assistance is required.

For example, as shown in figure 6.4, if module 0 was to fail, and required help in
removing itself from the structure, it would send an MFAILED message to modules 1, 8
and 10, requesting their assistance (a). Modules 1, 8 and 10, which previously occupied
the InStructure state, would then enter the Supporting state (b) and send another
MFAILED message to modules 2, 9 and 11 (c), this time not requesting help.

Support modules are responsible for removing the failed module from a structure.
To do so, they first wait until the structure has been split into sub-structures. They
then transport the module to a safe region and either disassemble (figure 6.2, transition
5), if it is possible and safe to do so, or remain connected to the failed module in order
to neutralise any further problems that the module may cause.

The most difficult part of this behaviour is coordinating the motion of the support
modules. Precisely how this is done is implementation dependent, and relies upon the
type of sensors, actuators and communication channels available on the platform. If
the failed module is capable of communicating with the support modules, the task is
equivalent to the 2D collective locomotion problem, which has been solved by many self-
reconfigurable modular robotic systems [7, 130, 181]. If the failed module is not able
to communicate, the task is equivalent to the related problem of collective transport,
which again has been solved on numerous occasions [16, 45, 63].
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Figure 6.5: A finite state machine for the Repairing behaviour. Modules enter the
Repairing state from either the InStructure or the Recruitment state and, after transi-
tioning through the four sub-states, exit by switching to the Reshaping behaviour

Repairing

The majority of the self-repair process is performed by modules in the Repairing state.
Every member of a sub-structure enters the Repairing state at some point in time.
The first module of a sub-structure to enter the state is assigned as the ‘lead’ of that
structure and is responsible for coordinating the behaviour of the other modules. Each
sub-structure may only contain a single lead module. Modules will enter the state either
when they receive an MFAILED message or an MSHAPE message (figure 6.2, transition
2). If a module receives an MFAILED message, which does not specify that the sender
requires help removing itself from the structure, the receiver enters the Repairing state
and assigns itself as the lead of a new sub-structure. If a module receives an MSHAPE

message, and is not already in the Repairing state, it enters the Repairing state, but
does not assign itself as the lead module.

As shown in figure 6.5, it is convenient to consider the Repairing state as a smaller,
four step, finite state machine. The first state (DetermineShape) is used by the modules
to discover the configuration of the sub-structure to which they belong. In the second
state (MoveAway), the modules coordinate their motion in order to move their sub-
structure away from the failed module. In the third state (CalculateScore), the modules
determine the score of their sub-structure. Finally, in the fourth state (BroadcastScore),
the modules determine whether or not they belong to the winning sub-structure.

In the remainder of this section, algorithms 1-3 are used to describe the Determi-
neShape, MoveAway and BroadcastScore states. Each algorithm contains three proce-
dures, one that is executed immediately before a module enters the state, one that is
executed once for every timestep that a module remains in the state, and one that is
executed after a module leaves the state. An overview of the CalculateScore state is
also provided, but since this behaviour will differ depending upon how the sub-structure
scores are calculated, full details are omitted from this section. In section 6.2, a poten-
tial implementation of the CalculateScore state is described.

DetermineShape This state serves as the entry point for the Repairing behaviour
and is used by modules to determine the shape of the sub-structure to which they
belong. The behaviour of robots in this state is outlined by algorithm 1.

Starting with the lead module, the robots effectively perform a distributed depth-
first traversal of their sub-structure, in the process constructing a string representation
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of the sub-structure’s graph. MSHAPE messages are used to pass a Shape string between
neighbouring modules. Every time a message is sent, one or both of the sending and
receiving modules will add relevant symbols to the sequence. Which symbols are added
depends upon the type of the modules involved, and the sides at which the messages
are sent or received.

Returning to the example from figure 6.4, when modules 2, 9 and 11 receive the
MFAILED messages sent by modules 1, 8 and 10, they enter the Repairing state and
assign themselves as lead modules. There are now three sub-structure, one led by each
of modules 2, 9 and 11. Considering the sub-structure led by module 2, figures 6.6 and
6.7, along with algorithm 1, help to show how the shape of this structure is determined.

As shown in algorithm 1, on lines 2-3, upon entering the Repairing state, modules
initialise a reference to the robot which caused them to enter the state (their Parent)
and populate a queue containing references to all of their other neighbours (DockedQ).
The lead module then creates an empty Shape string (line 5) which will subsequently
be passed between every module in the sub-structure and updated accordingly until
the shape of the structure has been determined.

From the example in figure 6.6, robot 2 will populate a queue containing its only
other neighbour, module 3. After initialising the Shape variable, robot 2 will append
the symbol representing its type ‘K’ and the symbol representing the side at which its
first neighbour (module 3) is docked ‘F’ (algorithm 1, line 11). As shown in figure 6.6a,
the Shape string is then sent to module 3 within an MSHAPE message (algorithm 1,
line 12). Upon receipt of this message, module 3 will enter the Repairing state and
append its own type ‘K’ and the side at which the message was received ‘B’ to the
Shape string (algorithm 1, line 8). As shown on the first line in the left of figure
6.7, after the first message has been sent, the Shape string will contain the symbols:
‘KFKB’. Module 3 will then populate its queue with references to its two neighbours,
modules 4 and 6, before sending an MSHAPE message containing the symbols ‘KL’ to
its first neighbour, module 4 (figure 6.6b). At this point, modules 2 and 3 have entered
the main DetermineShape procedure of algorithm 1 (line 15), and will continue to
executed this procedure as long as their queue of neighbours is not empty.

The passing of the Shape string continues and as more modules enter the Repairing
state (figure 6.6), more symbols are added to the Shape string (figure 6.7). As shown
in figure 6.6c, eventually the Shape string reaches module 5, but since this module
has no neighbours other than its Parent, its queue will be empty and it will transition
immediately to the next sub-state of the Repairing behaviour, MoveAway (algorithm 1,
lines 16 and 27). However, on exiting, module 5 will first append four NULL symbols to
the Shape string (algorithm 1, line 32) and send a message back to its Parent, module 4
(figure 6.6d). Upon receiving this message (algorithm 1, line 17), module 4 will remove
module 5 from the front of its queue, update the Shape string and append the relevant
symbols (algorithm 1, line 18-20). Since the queue of module 4 is now empty, it will
also transition to the MoveAway state and send the Shape string back to module 3
(figure 6.6e). Module 3 will process the message in the same way, but since, even after
removing module 4, its queue will not be empty (algorithm 1, line 21), module 3 will
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Algorithm 1 Procedure for determining the shape of a sub-structure

1: procedure OnEntry
2: Parent← the module which caused this robot to enter the Repairing state
3: DockedQ← all of the robots docked with this module (excluding Parent)
4: if this is the lead module then
5: Shape← empty string
6: else
7: Shape← Shape received from Parent
8: Shape.append(own ‘type’ + ‘side’ at which Parent docked)
9: end if
10: if not DockedQ.empty then
11: Shape.append(own ‘type’ + ‘side’ at which DockedQ.front docked)
12: send MSHAPE message containing Shape to DockedQ.front
13: end if
14: end procedure

15: procedure DetermineShape
16: if not DockedQ.empty then
17: if MSHAPE message received from DockedQ.front then
18: DockedQ.deque
19: Shape← Shape received in MSHAPE message
20: Shape.append(own ‘type’ + ‘side’ at which MSHAPE message received)
21: if not DockedQ.empty then
22: Shape.append(own ‘type’ + ‘side’ at whichDockedQ.front docked)
23: send MSHAPE message containing Shape to DockedQ.front
24: end if
25: end if
26: else
27: transition to MoveAway
28: end if
29: end procedure

30: procedure OnExit
31: if not the lead module then
32: Shape.append(‘0000’)
33: send MSHAPE message containing Shape to Parent
34: end if
35: end procedure
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Figure 6.6: The sequence of messages sent between modules in the DetermineShape
state. The shade of each module represents the states that it is currently occupying. The
white arrows within black boxes represent messages being sent between neighbouring
modules. The four symbol sequence above each figure represents the part of the sub-
structure string that is created when the corresponding message is passed
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01: KFKB

02: KFKB KLKF

03: KFKB KLKF KBKF

04: KFKB KLKF KBKF 0000

05: KFKB KLKF KBKF 0000 0000

06: KFKB KLKF KBKF 0000 0000 KRKF

07: KFKB KLKF KBKF 0000 0000 KRKF KBKF

08: KFKB KLKF KBKF 0000 0000 KRKF KBKF 0000

09: KFKB KLKF KBKF 0000 0000 KRKF KBKF 0000 0000

10: KFKB KLKF KBKF 0000 0000 KRKF KBKF 0000 0000 0000
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Figure 6.7: The construction of the sub-structure string (left) with the order in which
messages are sent superimposed upon the sub-structure graph (right). The messages
which trigger a new module to enter the Repairing state and contain module information
are shown in black, whilst the messages that contain NULL symbols are shown in grey
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send the Shape string to the new module at the front of its queue, module 6 (algorithm
1, line 23). This process will continue (figure 6.6f-j) until only module 2 remains in the
DetermineShape state, at which point, the Shape string will be complete (figure 6.7,
line 10) and module 2 will enter the MoveAway state.

MoveAway This state is used to move sub-structures away from failed modules. The
behaviour of robots in this state is outlined by algorithm 2. In this description, the
modules simply head in the opposite direction to the failed module for a pre-set period
of time. In certain scenarios, more complex controllers may be required in order to
ensure that sub-structures do not collide with one another, or with other obstacles.

Algorithm 2 Procedure for moving a sub-structure away from a failed module

1: procedure OnEntry
2: Heading ← the direction this module should move
3: if this is the lead module then
4: send MRETREAT message to all other robots in sub-structure
5: end if
6: end procedure

7: procedure MoveAway
8: if timeout or MSTOP message received then
9: stop moving
10: transition to CalculateScore
11: else if this is the lead module or MRETREAT message received then
12: move towards Heading
13: end if
14: end procedure

15: procedure OnExit
16: if this is the lead module then
17: send MSTOP message to all other robots in the sub-structure
18: end if
19: end procedure

Before moving, each module must be aware of the direction in which it should
head. Although globally, members of the same sub-structure must head in the same
direction, relative to their own orientation, it is likely that different modules will need
to move in different directions. The desired (local) heading of each individual is stored
in a Heading variable. Upon entering the Repairing state, the lead module sets its
Heading to be the opposite of the side at which its Parent is docked. Since the lead
module is aware of its own Heading, and of the orientation of its neighbours, as shown
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Figure 6.8: Given the Heading of robot A (headA = 3) and the sides at which robots
A and B are docked with one another (sideA = 2 and sideB = 3), this figure shows
how, using equation 6.1, robot A may calculate the Heading of robot B (headB = 2)

in figure 6.8, it is able to calculate its neighbours’ headings using equation 6.1. As soon
as the other robots have been informed of their own Heading, they too can calculate
their neighbours’ headings. Although omitted for clarity from algorithm 1, the most
convenient time for robots to transmit Heading values to their neighbours is when they
first send an MSHAPE message to them.

Once modules are aware of the direction in which they are required to move, the
MoveAway procedure is simple. Upon entering the MoveAway state, the lead module
sends an MRETREAT message to all other robots in the sub-structure (algorithm 2, line
4). When this message is received, every other module in the MoveAway state starts to
move towards their Heading (algorithm 2, line 12). After a pre-set period of time, the
lead module stops moving and exits the MoveAway state, at the same time it sends an
MSTOP message to the other robots (algorithm 2 line 17). Upon receipt of this message,
the other robots also stop moving and leave the state (algorithm 2, lines 8-10).

CalculateScore This state is used to calculate the score of each sub-structure. The
calculation can be performed in a number of different ways but there are two require-
ments that must be met. Firstly, each individual module must calculate a personal
score which rates how well this module believes it would serve as the seed of a new
structure. Secondly, the lead of each sub-structure must be aware of the highest score
calculated by any of the other members of the sub-structure. In section 6.2, one poten-
tial implementation of this state is provided for use with the Symbricator robots.

BroadcastScore This state is used to determine which sub-structure contains the
module that is in the best position to restart the assembly process. The behaviour of
robots in this state is outlined by algorithm 3. Upon entering this state, each individual
module initialises the two Boolean variables BestModule and BestStructure to false
(algorithm 3, lines 2-3). The BestModule variable signifies whether or not this module
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Figure 6.9: How the StructureID may be determined in two different scenarios, one
that does not involve support modules (a) and one which does (b). Failed modules
are labelled F and support modules are labelled Sn. The grey boxes show potential
locations at which the lead module of a sub-structure may be docked and the values
within these boxes show the StructureID for that location

is in the best position to continue assembly, whilst the BestStructure variable signifies
whether or not this module is part of the sub-structure which contains the BestModule.
The StructureID variable is then initialised to the unique ID of the structure to which
this module belongs, and the ModuleScore variable is initialised to the score calculated
during the CalculateScore state (algorithm 3, lines 4-5).

The ID of a sub-structure can be calculated in a number of ways. If every module
in the system has a unique ID, the StructureID may simply take the ID of the lead
module. However, if unique IDs cannot be guaranteed, then IDs can be generated
according to the sides at which modules in the Repairing and Supporting states are
docked with the failed module. As shown in figure 6.9a, if there are no supporting
modules, there will be a maximum of four sub-structures (one docked on each side of
the failed module) and IDs can be generated based upon the side at which each lead
module is docked with the failed module. If supporting modules are present, as shown
in 6.9b, there are 16 positions in which sub-structures may form (one docked on each
of the three available sides of the four supporting modules). The scores for the sub-
structure positions in figure 6.9b may be generated by multiplying the side at which
the failed module is docked to the supporting module by four, and adding the side at
which the lead module is docked with the supporting module. For example, at position
A in figure 6.9b, if there is a lead module docked with side 2 of the support module S3,
which in turn is docked with side 3 of the failed module F , the StructureID would be
calculated as 3 × 4 + 2 = 14. As with the Heading variable used in algorithm 2, the
most convenient time for the StructureID value to be transmitted is when a module
first enters the Repairing state.
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Algorithm 3 Procedure for broadcasting and listening for sub-structure scores

1: procedure OnEntry
2: BestModule← false
3: BestStructure← false
4: StructureID ← the ID of this sub-structure
5: ModuleScore← the score of this module
6: if this is the lead module then
7: BestID ← StructureID
8: BestScore← the best score of any module in the sub-structure
9: send BestScore and BestID to all other robots in the sub-structure
10: end if
11: end procedure

12: procedure BroadcastScore
13: broadcast BestID and BestScore in MSCORE message
14: if new score and id received in MSCORE message then
15: if score > BestScore or (score == BestScore and id < BestID) then
16: BestID ← id
17: BestScore← score
18: end if
19: if message was received from another sub-structure then
20: send score and id to all other robots in this sub-structure
21: end if
22: end if
23: if timeout or MRESHAPE message received then
24: transition to Reshaping
25: end if
26: end procedure

27: procedure OnExit
28: if BestID == StructureID then
29: BestStructure← true
30: if BestScore == ModuleScore then
31: BestModule← true
32: end if
33: end if
34: if this is the lead module then
35: send MRESHAPE message to all other robots in the sub-structure
36: end if
37: end procedure
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Figure 6.10: How a consensus is reached between three separate sub-structures. The
numbers in brackets (x,y) show the BestID (x) and BestScore (y) values of each sub-
structure and the black arrows represent the broadcasting of these values. In the first
step each sub-structure has different values (a), but as more messages are broadcast (b)
a consensus is eventually reached (c)

In the running example from figure 6.3, it was said that after the failure of module 0,
the structure would be split into three sub-structures, led by modules 2, 9 and 11. Let it
be assumed that the best score within the sub-structure led by module 2 is ‘6’, and that
the best score within the sub-structures led by modules 9 and 11 is ‘1’. Furthermore, as
shown in figure 6.10, let the StructureID of each of these sub-structures correspond to
the IDs of their lead modules: ‘2’, ‘9’ and ‘11’. Upon entering the BroadcastScore state,
the lead modules initialise a BestID variable to the value of their StructureID, and
a BestScore variable to the value of the best score of any module in the sub-structure
(algorithm 3, lines 7-8). To ensure that all robots have the same information, these
values are then sent to every other module in the sub-structure (algorithm 3, line 9).

For as long as modules remain in the BroadcastScore state, they will broadcast their
BestID and BestScore values (algorithm 3, line 13) and listen for the values from other
modules (algorithm 3, line 14). If a module receives a new score that is greater than the
module’s own BestScore, or the scores are equal but the new id is less than the current
best, the BestID and BestScore variables are updated (algorithm 3, lines 14-17). For
example, as shown in figure 6.10a, if module 11 detects a message broadcast by module
9, since the scores of both modules are equal, but module 9 has a lower ID, module 11
will update its BestID and BestScore variables and start to broadcast the same values
as module 9. At some time later, if modules 9 and 11 detect the messages broadcast
by the sub-structure led by module 2 (figure 6.10b), since the BestScore of modules 9
and 11 is lower, they will update their BestID and BestScore variables. Eventually,
a consensus will be reached and every module will be broadcasting and receiving the
same score and id values (figure 6.10c). Depending upon the method of communication
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used, it is possible that some broadcast messages will not be received by every module.
To ensure that all modules have the most up-to-date information, every time new score
and id values are received from a robot within a different sub-structure, they may be
forwarded to the other members of the structure (algorithm 3, lines 19-20).

Modules continue to broadcast and receive MSCORE messages for a pre-set period of
time. The duration of this period must be chosen carefully to ensure that a consensus
has been reached before moving on to the next state. In section 6.2, one potential
method of determining the broadcasting period is described. After the broadcast period
has passed, the lead module will transition to the Reshaping state (algorithm 3, lines
23-24) and send an MRESHAPE message to the other members of the sub-structure
(algorithm 3, line 35), causing the other modules to leave the state. Upon exiting the
state, each module compares its BestID and StructureID values to determine whether
it belongs to the winning sub-structure (algorithm 3, lines 28-29), and if so, compares
its BestScore and ModuleScore values to determine whether or not it is the module
that is best positioned to restart the assembly process (algorithm 3, lines 30-31).

Reshaping

The Reshaping behaviour is generic and is not intrinsically tied to the self-repair strat-
egy. Given an existing structure, containing a single Seed, the purpose of the Reshaping
behaviour is to initialise the transformation of the structure into a new Target shape.
The process begins with the Seed module checking each of its neighbours and instruct-
ing them either to enter the Disassembling state (figure 6.2, transition 4) if they do
not form part of the Target structure, or the InStructure state if they do (figure 6.2,
transition 5). Every module that does not enter the Disassembling state then performs
the same action on each of its own neighbours, until the assembly process is restarted.

When used during self-repair, modules enter the Reshaping state after the broadcast-
ing period of the BroadcastScore state has ended, or after having received anMRESHAPE

message from the lead of their sub-structure (figure 6.2, transition 3). As shown in lines
29 and 31 of algorithm 3, before modules leave the Repairing state, they first set their
BestStructure and BestModule flags to signify respectively whether they are part of
the winning sub-structure and whether they are in the best position to restart the
assembly process. These flags are used in algorithm 4 to determine the behaviour of
robots in the Reshaping state.

In the first part of the Reshaping behaviour, the BestModule is assigned as the
Seed of the new structure (algorithm 4, line 2). The Seed then splits its Target shape
into separate branches, one for each of the outgoing edges of its corresponding graph
(algorithm 4, line 4). For each side of the module, the Seed then checks whether there
is a neighbour currently docked, and if there is, whether it is of the correct type and
orientation (algorithm 4, line 6-7). If there is a neighbour docked, but there shouldn’t
be, or if the neighbour is of the wrong type or orientation, an MDISASSEM message
is sent on the corresponding side (algorithm 4, lines 10 and 13). If a module in the
Reshaping state receives an MDISASSEM message it will propagate the message to all of
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Algorithm 4 The Reshaping behaviour

1: procedure Reshaping
2: Seed← BestModule
3: if Seed or MBRANCH message received then
4: split Target or MBRANCH message contents into separate branches
5: for each side of the robot do
6: if there is a neighbour docked and there should be then
7: if the neighbour is of the correct type and orientation then
8: send MBRANCH message to side
9: else
10: send MDISASSEM message to side
11: end if
12: else if there is a neighbour docked but there shouldn’t be then
13: send MDISASSEM message to side
14: end if
15: transition to InStructure
16: end for
17: end if
18: if not BestStructure or MDISASSEM message received then
19: propagate MDISASSEM message to all other neighbours
20: transition to Disassembling
21: end if
22: end procedure
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Figure 6.11: An example of modules executing the Reshaping behaviour. The shade of
each module represents the state that it is currently occupying. The white arrows within
black boxes represent the passing of MBRANCH and MDISASSEM messages between
neighbouring modules. The black arrow signifies movement and the dashed grey boxes
highlight the positions in which modules will eventually be recruited

its other neighbours and transition to the Disassembling state (algorithm 4, lines 19-20).
Meanwhile, if there is a neighbour which is of the correct type and orientation, then
an MBRANCH message will be sent on that side, containing the relevant information for
that branch of the graph. Any module that receives an MBRANCH message (algorithm
4, line 3) will repeat the above process for each of its neighbours, using the branch
information that it received.

Considering the running example from this section, in figure 6.10, it was shown that
at the end of the BroadcastScore state, every module should be aware that sub-structure
led by module 2 is the winning structure. Therefore, because the BestStructure flags
of modules 9 and 11 will be set to false, after entering the Reshaping state, they will
transition immediately to the Disassembling state (algorithm 3 lines 18-20). Assuming
that within the remaining sub-structure, module 3 is the BestModule and has a Target
shape equivalent to that of the original structure from figure 6.3, the remainder of the
Reshaping behaviour will proceed as shown in figure 6.11.

Because modules 4 and 6 fit within the Target shape, module 3 will send them
each an MBRANCH message containing the relevant branch information (figure 6.11a).
As shown in figure 6.3, there should be no module docked on the rear of the Seed
module. Module 2, therefore, does not fit within the Target shape of module 3, and
consequently is sent an MDISASSEM message. After receiving the MBRANCH messages,
modules 4 and 6 will in turn send MBRANCH messages to modules 5 and 7, meanwhile,
when module 2 receives the MDISASSEM message, it will enter the Disassembling state
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(figure 6.11b). Finally, as shown in figure 6.11c, whilst module 2 disassembles, modules
3-7 will enter the InStructure state and continue to assemble the new structure.

6.1.3 Comparisons

In chapter 2, several different forms of fault tolerant robotic system were reviewed. In
this section, some of these earlier systems are compared with the self-repair strategy
introduced in this chapter.

In contrast to the likes of Ackerman and Chirikjian [1] and Bererton and Khosla
[8], which aim to repair the sub-systems of an individual robot by physically replacing
failed components, the approach described in this chapter aims to repair a multi-robot
structure by physically replacing failed robots. Unlike the framework of Parker [145],
in its current form, the strategy described here also does not consider whether a failed
module would be able to take on a different role within the system. Irrespective of the
type of fault, failed modules are simply removed and replaced with functioning ones.

The reliance on the availability of redundant modules unites this approach with
those of Christensen [30], Cheng et al. [24] and Rubenstein and Shen [153]. However,
several differences between these systems and the self-repair strategy described in this
chapter can also be identified. Firstly, in the experiments reported in this chapter, it
can be observed that far fewer robotic modules are utilised. Secondly, in the strategy
described in this chapter, the structural configuration of a group of robots is precisely
defined by the interconnections of the individual units. Contrastingly, in the alternative
systems, configurations are defined from a high level description of the general pattern
that the group of modules form. Finally, whereas in the systems of [30], [24] and [153],
failures are catastrophic events which involve removing or displacing several individual
units, in this work, the events that the system is designed to recover from are far less
drastic, involving only the failure of an individual module.

The approach described in this chapter most closely resembles that of Tomita et al.
[179]. Following the introduction of a failure, both systems rely on reverting to an earlier
state of assembly, before rebuilding the new structure. However, despite their superficial
similarities, the manner in which the systems are reverted differ greatly. In the case of
this work, the earlier state of assembly is reached by splitting the current structure into
sub-structures, about the point at which the failure occurred. Contrastingly, in [179],
the system is gradually degraded by removing individual units, until the point at which
the failed modules were first added to the structure. The systems also differ in terms
of where the replacement modules are recruited from. In the strategy described in this
chapter, free individuals are recruited from the surrounding environment. Whereas, in
[179], spare modules are recruited from other parts of the original structure.

The similarities between modules in the Supporting state and modules undertaking
collective locomotion [7, 130, 181] or collective transport tasks [16, 45, 63] have already
been highlighted. More specifically, parallels may be drawn between this behaviour
and the approach described by O’Grady et al. [137] for transporting failed modules to a
specialised ‘repair’ zone. Other similarities can be seen in the work of Yim et al. [208],
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in which, after an ‘explosive event’ a group of modules is split into several separate sub-
structures. Like the modules executing the MoveAway behaviour, these sub-structures
are capable of independent locomotion, however, whereas in the work of [208], sub-
structures are able to dock with one another in order to reform the original structure,
in this work, it is assumed that modules can only dock as individuals.

6.2 Symbricator Implementation

This section describes a platform specific implementation of the self-repair strategy,
designed for use with the Symbricator robots. Four important changes are made to
the general controller from section 6.1.2. Firstly, in order to allow the strategy to
work with Scout robots, an adaptation is made to the DetermineShape state which
removes the assumption from section 6.1.1 that modules must possess omnidirectional
locomotion. Secondly, an implementation of the CalculateScore state is provided which
complements the original morphogenesis controller described in chapter 4. Thirdly,
a method for calculating the duration of the broadcasting period of modules in the
BroadcastScore state is presented. Finally, the reliability of the system is improved by
introducing redundancy to communications. In the remainder of this section, each one
of these four alterations is described in detail. The section concludes with a discussion
on some of the limitations of this implementation.

6.2.1 DetermineShape Adaptation

In section 6.1.2, when considering the example structure from figure 6.3, it was said that
the failure of module 0 would result in the formation of three separate sub-structures,
one led by each of modules 2, 9 and 11. As shown in figure 6.12a, during the MoveAway
sub-state of the Repairing behaviour, a sub-structure led by module 2 would be required
to move towards the right. However, if any of modules 4-7 were Scout robots, movement
in this direction, perpendicular to the headings of these robots, would not be possible.

To resolve this issue, the DetermineShape state is extended so that, before a module
is instructed to enter the Repairing state, its neighbour first checks whether it will be
able to move in the required direction. If it will not be able to move in the same
direction as the other members of the sub-structure, the robot is instructed to form a
new sub-structure, which will move perpendicular to that of the original. This behaviour
is realised by replacing the sending of MSHAPE messages on lines 11-12 and 22-23 of
algorithm 1, with the new procedure from algorithm 5.

Using equation 6.1, the procedure first determines the Heading that the module at
the front of the robot’s DockedQ will need to travel in (algorithm 5, line 2). If the
module is capable of moving in this direction, there is no change in behaviour and, as
before, the module is sent an MSHAPE message containing the Shape string (algorithm
5, lines 3-5). However, if the module is not capable of moving in this direction, it must
be pruned and a new sub-structure formed. A new sub-structure is created by sending
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Figure 6.12: The behaviour of modules in the original and adapted DetermineShape
states. Figure (a) shows that, in this scenario, the original DetermineShape imple-
mentation would produce three sub-structures. Figures (b-c) show that, if modules
4 and 6 were Scout robots, the adapted implementation would produce two further
sub-structures. The shade of each module represents the state that it is currently occu-
pying. The white arrows within a black boxes represent messages being sent between
two neighbouring modules
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Algorithm 5 Procedure to check whether a robot can move in the required direction

1: procedure CheckBeforeSend
2: NeighbourHeading ← direction that DockedQ.front should move
3: if DockedQ.front can move in direction of NeighbourHeading then
4: Shape.append(own ‘type’ + ‘side’ at which DockedQ.front docked)
5: send MSHAPE message containing Shape to DockedQ.front
6: else
7: send MFAILED message to DockedQ.front, not requesting help
8: DockedQ.deque
9: end if
10: end procedure

the module an MFAILED message, in which help is not requested (algorithm 5, line 7).
When this message is received, it will cause the receiving module to enter the Repairing
state as the lead module of a new sub-structure. Since the lead of the new sub-structure
is not considered part of the original sub-structure, to prevent the pruning robot from
waiting for a response from this module, it is removed from the front of the robot’s
DockedQ (algorithm 5, line 8). The Repairing behaviour then continues as normal in
both the original and the new sub-structures.

In the example from figure 6.12, if modules 4-7 are assumed to be Scout robots,
when module 3 enters the DetermineShape state, rather than send MSHAPE messages
to these robots, it will send MFAILED messages (figure 6.12b). Robots 4 and 6 will then
lead two new sub-structures, which will move perpendicularly to the structure led by
module 2. Resulting in the formation of five separate structures, all of which are able
to move away from the failed module, without hindering one another (figure 6.12c).

There is one special case in which this solution will not work. If a module cannot
move in the necessary direction, but pruning it would still require the module to move
in this direction, it will not be possible to form a new sub-structure. For example,
in the example structure from figure 6.3, assuming that module 7 was to fail and a
sub-structure containing the remaining modules, led by module 6, was created. The
desired Heading of this structure would be directly up, away from module 7, but if
module 3 was a Scout robot, this movement would not be possible. Neither, would it
be possible to prune module 3, because to do so would still require module 3 to move
sideways. Fortunately, based upon the assumption from section 6.1.1 that robots can
only dock as individuals, and therefore that Scout modules can only dock using their
front or rear sides, this scenario can only ever arise in one part of a structure at a
time. The only time in which this scenario could occur twice within the same structure
would be if there existed a chain of modules connecting the left or right sides of two
Scout modules, and one of the modules within this chain failed. However, as shown by
the proof of theorem 1, such a configuration is not possible within a valid structure.
Therefore, to resolve this issue, it is sufficient to allow the sub-structure which contains
the immobilised Scout robot to remain stationary.
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Theorem 1. There cannot exist a chain of modules in which both the first and last
modules within the chain are connected to the left or right sides of a Scout robot.

Proof by contradiction. Assume that there exists a chain of modules, at either end of
which two Scout robots, SA and SB, are docked using their left or right sides. Since
Scout robots can only dock themselves using their front or rear sides, any module which
is docked on the side of a Scout robot, must have joined the structure later than the
Scout. That is to say, every member of the chain that starts on the side of SA, up to
and including SB, must have joined the structure after SA. Likewise, every member of
the chain that starts on the side of SB, up to and including SA, must have joined the
structure after SB. Implying both that robot SB joined the structure after robot SA

and that robot SA joined the structure after robot SB, a contradiction.

6.2.2 CalculateScore Implementation

There are many different ways of implementing the CalculateScore state. In this sec-
tion, one particular implementation is described that was designed specifically with the
Symbricator platform and the original morphogenesis controller in mind.

In this implementation, it is assumed that the Target of every module is identical to
the original structure. The implementation involves each module within a sub-structure
considering itself as the Seed of a new structure and calculating the size of the largest
common subgraph that it shares with the Target shape. The score of a sub-structure
is the size of the largest subgraph that any of the modules within the sub-structure
share with their Target. Because the sub-structure with the highest score will later
go on to re-construct the remainder of the Target, and to do so will use the original
morphogenesis controller, this subgraph must contain the Seed of the Target. Figure
6.13, shows a Target shape (a) and three potential sub-structures with their scores
assigned (b-d). Note that, although the structure in figure 6.13c contains more modules
than that of figure 6.13d, its score is lower because not all of its modules belong to the
largest subgraph which contains the Seed. This limitation is discussed in section 6.2.5.

The behaviour of robots in the CalculateScore state is outlined by algorithm 6.
In a similar manner to that of the procedure from algorithm 1, the robots collectively
perform a distributed depth first traversal of their sub-structure. At each stage, modules
compare the size of the largest common subgraph that they and their Target share,
with that of the largest found so far by any other module. The greater of these two
values is passed on to the next module. At the end of the traversal, the lead module
will know the size of the largest subgraph found by any individual, and this value is
subsequently assigned as the BestScore of the sub-structure.

The Shape string constructed by a group of modules in the DetermineShape state,
describes the configuration of the sub-structure to which the modules belong, from
the perspective of the lead module. The string constructed in figure 6.7, for example,
describes a structure from the perspective of module 2, that is, with module 2 in the
position of the Seed. Before a module can compare its sub-structure with its Target,
it must first transform the sub-structure graph to its own perspective. As shown in
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Algorithm 6 Procedure for calculating the Score of a sub-structure

1: procedure OnEntry
2: Parent← the module which caused this robot to enter the Repairing state
3: DockedQ← all of the robots docked with this module (excluding Parent)
4: if not the lead module then
5: wait for MSHAPE message from Parent
6: Shape← a transformed version of the Shape received from Parent
7: end if
8: ModuleScore← size of the largest common subgraph of Shape and Target
9: BestScore←ModuleScore
10: if not the lead module and score received from Parent > ModuleScore then
11: BestScore← score
12: ModuleScore← 0
13: end if
14: if not DockedQ.empty then
15: send MSHAPE containing Shape and BestScore to DockedQ.front
16: end if
17: end procedure

18: procedure CalculateScore
19: if not DockedQ.empty then
20: if MSHAPE message received from DockedQ.front then
21: DockedQ.deque
22: if score received in MSHAPE message > BestScore then
23: BestScore← score
24: ModuleScore← 0
25: end if
26: Shape← a transformed version of the Shape received from Parent
27: if not DockedQ.empty then
28: send MSHAPE containing Shape and BestScore to DockedQ.front
29: end if
30: end if
31: else
32: transition to BroadcastScore
33: end if
34: end procedure

35: procedure OnExit
36: if not the lead module then
37: send MSHAPE message containing Shape and BestScore to Parent
38: end if
39: end procedure
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(a) Target (b) Score: 4 (c) Score: 5 (d) Score: 6

Figure 6.13: A target shape (a) and examples of the scores assigned to three potential
sub-structures (b-d). In each figure, the Seed is shown in grey. In figures b-d, the
footprint of the target is included to highlight the area of the largest common subgraph

figure 6.14, to transform a graph from the perspective of one module to that of its
neighbour, all that is required is for the direction of the edge that joins the two modules
to be reversed, and for the first pair of symbols in the edge label to be swapped with
the second. In terms of string manipulation, as shown in figure 6.15, this equates to
swapping the first two pairs of symbols, moving them to the position of their matching
four NULL symbols, and moving the NULL characters to the end of the string.

Upon entering the CalculateScore state, the lead module in each sub-structure cal-
culates its ModuleScore as the size of the largest common subgraph shared by its
Shape and Target (algorithm 6, line 8). This value is assigned as the BestScore found
so far (algorithm 6, line 9), and along with the Shape string, is sent within an MSHAPE

message to the module’s first neighbour (algorithm 6, line 15). Every other module
that enters the CalculateScore state first waits until it receives the Shape string and
BestScore values sent by its Parent, and then, using the method demonstrated in
figure 6.15, transforms the Shape string to its own perspective (algorithm 6, lines 5-6).
After calculating its own ModuleScore, each robot then compares its score with the
value received from its Parent (algorithm 6, line 10). If the score received from a mod-
ule’s Parent is greater than its own, the BestScore variable takes this value and the
ModuleScore variable takes the value 0 (algorithm 6, lines 11-12). The Shape string
and BestScore are then propagated to the next module in the sub-structure and the
process repeats. Every time a new message is received, the score and BestScore values
are compared (algorithm 6, line 22), the Shape string is transformed (algorithm 6, line
26) and a message is sent to either a new neighbour (algorithm 6, line 28), or if non
remain, back to the module’s Parent (algorithm 6, line 37).

By comparing the graphs in figure 6.14 with that in figure 6.3, and observing the
amount of overlap, it is possible to determine the ModuleScore values of robots 2, 3
and 4. For example, the subgraph in figure 6.14a which contains modules 2 and 3, is
identical to the subgraph in figure 6.3 involving modules 0 and 1, therefore resulting
in a score of ‘2’ for module 2. Meanwhile, the subgraph in figure 6.14b containing
modules 3-7 is identical to the subgraph in figure 6.3 involving modules 0, 8, 9, 10
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Figure 6.14: A demonstration of how the graph representation of a structure can be
manipulated to transform the Seed from one module, to its neighbour. The Seed is
represented by the dark grey square and the label of the edge which is manipulated
during each transformation is highlighted in bold

KFKB KLKF KBKF 0000 0000 KRKF KBKF 0000 0000 0000

KLKF KBKF 0000 0000 KRKF KBKF 0000 0000 KBKF 0000

KBKF 0000 KFKL KRKF KBKF 0000 0000 KBKF 0000 0000

Figure 6.15: A demonstration of how the string representation of a structure can be
manipulated to transform the Seed from one module, to its neighbour. The dashed
grey lines show the different branches of the structure. The highlighted symbols and
the solid black lines show the parts of the string which are manipulated during each
transformation
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and 11, resulting in a score of ‘5’ for module 3. Since there are no common subgraphs
containing more than one module (and including the Seed) in figures 6.14c and 6.3, the
score for module 4 is simply ‘1’. The score obtained by module 3 (5) is the largest of
any module within the sub-structure and so, after a full traversal of the sub-structure,
the BestScore variable of the lead module would hold this value. After transitioning
to the BroadcastScore state, this BestScore value would be the initial value that all of
the modules within the sub-structure would broadcast.

6.2.3 Broadcasting Period

The length of time for which sub-structures broadcast and listen for each others scores
must be chosen carefully. The longer the broadcasting period, the longer the self-repair
process will take, therefore, to maximise efficiency, the duration should be as short
as possible. However, if the duration is too short, the modules of one sub-structure
may have left the BroadcastScore state before the modules of another have entered,
preventing the robots from reaching a common consensus.

Modules will only enter the BroadcastScore state after having first determined the
shape and score of the sub-structure to which they belong. Since both of these pro-
cedures rely on performing a depth first traversal of the sub-structure, the time taken
for modules to enter the BroadcastScore state differs depending upon the size of the
structure to which they belong. Meaning that, modules within smaller sub-structures
will enter the BroadcastScore state quicker than those within larger sub-structures.

In this implementation, since it is assumed that all modules have the same Target,
every robot knows how many modules the Target contains. Using this common ref-
erence, sub-structures may dynamically set the duration of their broadcasting period
in order to minimise the chances that one sub-structure will stop broadcasting before
the others start. Specifically, each sub-structure may choose its broadcasting period
by calculating the difference between the number of modules in the Target and the
number of modules in its sub-structure. Therefore, sub-structures with fewer modules
will broadcast for longer, whereas sub-structures with more modules will broadcast
for less time. The result is that, although the modules from different sub-structures
will enter the BroadcastScore state at different moments in time, they will all leave at
approximately the same time.

6.2.4 Communication Redundancy

In chapter 4, the over reliance on a single channel of communication by the original
morphogenesis controller was identified as a potential weakness. Furthermore, from
experience working with the Symbricator robots, it was found that the Ethernet com-
munication channel was sometimes unreliable. Occasionally and temporarily, a loose
Ethernet connection would result in messages being lost. To address this issue, and
further improve the reliability of the morphogenesis controller, in the experiments de-
scribed in section 6.5, redundancy is introduced to the robots’ communications.
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Rather than relying solely on wired communications to pass information between
connected modules, the infrared (IR) components of the robots are also used to send
and receive messages. In the adapted controller, every time a message is sent to a
neighbouring robot, two copies are created, one that is sent using IR and one that is
sent using wired communications. Furthermore, every time a robot receives a message,
it is abstracted so that the robot will respond in the same way regardless of which
channel it arrives on. To prevent robots reacting to the same message twice, as soon as
one message has been received, all subsequent copies of the same message are ignored.

The wired communications channel can transmit messages at a much higher rate
than those sent using infrared, therefore, in the majority of cases, robot will respond
only to messages sent using wired communications. However, in early experiments
with the real robotic hardware, it was found that, due to loose connections, the wired
communications channel was not always reliable. The use of infrared, therefore, may
serve as a back-up, in cases where a message sent using the wired channel does not
arrive. Whilst it is possible that a messages sent on either of the channels will be lost,
it is unlikely that both channels will fail simultaneously. By introducing this level of
redundancy to the communications systems, the reliability of the system can be greatly
improved, without requiring any alterations to the underlying strategy itself.

6.2.5 Limitations

This section is used to highlight some of the limitations of the implementation of the
self-repair strategy developed for the Symbricator platform.

Every member of a losing sub-structure must be removed Following the iden-
tification of winning and losing sub-structures, the fact that every losing sub-
structure must be completely disassembled, may be highlighted as inefficient. A
better solution would be to allow the winning sub-structure to first recruit replace-
ments for the failed and supporting modules, and then for each of the remaining
sub-structures to rejoin in its original location. However, as highlighted in sec-
tion 6.1.1, accurately controlling the movement of a group of connected modules
during alignment and docking is a difficult task. Therefore, it is assumed that
modules can only dock as individuals, and consequently, that before rejoining a
structure every robot must first return to the Wandering state.

The structure must be rebuilt using the original plan In calculating the score
of a sub-structure, when comparing the graph of a sub-structure with its Target,
the condition that the largest common subgraph must include the Seed module
imposes a further limitation. If any module within the winning sub-structure does
not belong to the largest common (Seed containing) subgraph that the structure
and its Target share, then it must be pruned from the new structure. For example,
in the scenario from figure 6.11c, it was said to be necessary to remove module 2
before restarting the assembly process.
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This limitation is present because, when assembling a new structure, modules
are required to follow the Target specification exactly. Every description of a
structural configuration partially defines the order in which modules must be
added to the structure. There will exist different structural configurations, with
the Seed module placed in different locations, which result in the construction
of the same morphological structure, but impose different orderings over module
recruitment. If it were possible to define a new Target shape that was structurally
equivalent to the original, but positioned the Seed module at a different location,
then a new Target could be defined for each sub-structure, in which every member
of the sub-structure also belonged to the Target. That is to say, a Target could be
created which contains a subgraph that is identical to the entire sub-structure. In
such a scenario, it would never be necessary to remove modules from the winning
sub-structure, and the score of each sub-structure could be calculated simply by
counting the number of modules that it contains.

Such a strategy would not be difficult to implement and could, for example, use the
same technique shown in figures 6.14 and 6.15 for transforming the perspective
of a structure from that of one module to that of its neighbour. The reason
why it is not implemented is because it is anticipated that the ordering in which
modules are recruited may carry some importance, and changing this ordering
by transforming the Target, could cause problems. For example, in a structure
which contains Scout modules, since these robots cannot move sideways, any
robot which is docked to the side of a Scout, must join the structure later than
it. Similarly, a particular ordering may have been chosen to minimise interference
during docking. Furthermore, the order in which modules are added to a structure
may have already been designed with efficiency in mind and altering this order
could result in a less efficient assembly time. Sticking with the original plan,
therefore, is considered to be the safest course of action.

The shape of each sub-structure must be discovered The time taken for mod-
ules to determine the shape of the sub-structure to which they belong scales
linearly with the sub-structure size. In this implementation, the Target of each
module is set to be the same as the original structure, therefore, it may be queried
why the discovery phase is needed at all, and whether the shape of a sub-structure
can be determined in constant time. The reason why the shape cannot be deter-
mined in constant time, is because although every module is aware of the Target,
it is not necessarily aware of its position within the Target. When a new module
joins a structure it is only provided with information about the branches of the
structure for which it is the root. Therefore, it is only aware of its position rel-
ative to the modules which it is responsible, directly or indirectly, for recruiting.
Furthermore, it is reminded, that in other implementations it may not always be
guaranteed that the Target of each module is the same as the original structure.

In every sub-structure, the module which joined the original structure earliest will
have been responsible (directly or indirectly) for recruiting all of the others. It may
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be asked why the information held by this module cannot be used to determine
the sub-structure shape quicker than the depth first traversal approach currently
used. The reason is that, although the oldest member of the sub-structure is
aware of every module that it is required to recruit, it is not necessarily aware how
many of these modules have been successfully recruited, and whether those which
have been recruited are part of the same sub-structure. The current approach
was chosen in order to ensure that the self-repair process would work even if a
structure has not been fully assembled.

It would be possible to implement a version of the original morphogenesis con-
troller in which, during recruitment, modules are provided with more information
about the shape of the structure they are joining, and their position within it.
However, in this work, such an approach was avoided because of the desire to
extend the original approach, rather than redesign it.

6.3 Stage Experiments

This section presents the results from a set of preliminary experiments, conducted
using the Stage simulator. In these experiments, simulated Backbone robots were used
to assemble two different types of robotic structure. During assembly, artificial faults
were injected into the robots and the self-repair strategy introduced in section 6.2 was
used to isolate, remove and replace the failed modules. In this section, the performance
of the self-repair strategy is compared with that of a fault free system and a system in
which a naive recovery strategy is employed. Whilst this set of experiments is limited to
the investigation of two structural configurations, in section 6.4, this work is expanded
to examine 47 different types of robotic structure.

6.3.1 Experimental Setup

The experiments described in this section use the same robot models as those in chapter
5. The simulated modules are functionally similar to the Symbricator Backbone robots.
Like the Backbone robots, the modules are cubic in shape and possess one docking con-
nector on each side. They also possess a range of simulated IR components which are
used for communication and proximity detection. However, unlike the physical Back-
bone robots, the simulated modules cannot easily move omnidirectionaly. Because of
this limitation, target structural shapes were purposefully chosen in which the modules
were only required to dock using their front sides.

Figure 6.16 shows screenshots of the two different structural configurations investi-
gated in this section. The first configuration, presented in figure 6.16a, is a small, simple
structure, referred to here as structure A. The structure is made up of 17 individual
modules and contains two branch points. The second configuration, shown in figure
6.16b, is a larger, more complex structure, referred to as structure B. This structure is
made up of 35 modules and contains three branch points.



6.3. Stage Experiments 137

(a) (b)

Figure 6.16: Two partially assembled structures within the Stage simulator

Each experimental run involved 49 individual modules. The robots were evenly
distributed about an empty arena, with a single seed robot placed directly in the centre.
During each run, after a random number of robots had joined the forming structure,
a single fault was introduced into a single member of the structure. It is assumed
that the modules possess an anomaly detection system which, after a short delay, is
able to detect the presence of a fault with 100% accuracy. The type of fault which
is injected is not specified but it is assumed that the failed robot will always require
assistance from support modules in order to remove itself from the structure. Due to the
limitations of the simulator, it is not possible to easily coordinate the collective motion
of a group of connected modules, therefore, the presence of a navigation controller that
allows the support modules to transport the failed robot away from the vicinity of the
structure is also assumed. In the experiments described in this section, once a structure
has been split into sub-structures, the failed robot and connected support modules are
immediately removed from the arena.

In each run, the total time taken to complete the assembly of the structure was
recorded. The performance of a system employing the self-repair strategy described
in this chapter (SR) is compared with two other systems. The first is a naive recov-
ery strategy (NR) in which, following the introduction of a failure, the structure is
completely disassembled and the morphogenesis process is restarted from scratch. The
second is a baseline system (BL), in which no robots fail and no form of recovery is
performed, this serves as a benchmark for the other two strategies. For each of the two
different structural configurations, 30 independent runs were performed. To assess the
performance of the systems, the following two null hypotheses are presented:

H6.10 : In a system containing a single failed module, there is no difference
in the time taken to assemble structure A by a system employing the self-
repair strategy (SR) and a system employing the naive strategy (NR).
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H6.20 : In a system containing a single failed module, there is no difference
in the time taken to assemble structure B by a system employing the self-
repair strategy (SR) and a system employing the naive strategy (NR).

6.3.2 Results

The robots were able to successfully complete the assembly process in all 90 of the
experimental runs. In the 60 runs in which faults were injected, both recovery strategies
were consistently successful in isolating and removing the failed module. Videos are
provided in the accompanying material showing the successful repair of structure A
when a fault is injected during (video 6.1) and following (video 6.2) assembly. Figure
6.17 shows the behaviour of the self-repair strategy, during the assembly of structure B.
In figure 6.17a a failure is introduced into the red robot, which is subsequently detected
by the neighbouring yellow support modules. In figure 6.17b, the structure is split into
two sub-structures and the failed module is removed from the arena. As shown in figure
6.17c, after negotiation, it is clear that the larger sub-structure is in the best position to
continue assembly. Figure 6.17d shows the continuation of the assembly process after
most of the extraneous modules have been pruned. Note that, due to the fact that
certain structural motifs are repeated throughout the configuration, the members of
the winning sub-structure are able to take on different roles in the new structure.

In figure 6.18, the performance of the self-repair strategy introduced in this chapter
(SR) is compared with a baseline system (BL) and the naive recovery strategy (NR).
The graphs show the time taken to assemble structure A (6.18a) and structure B
(6.18b). Each boxplot contains the data from 30 individual runs. The ‘∗’ symbol is
used to represent where there is a significant difference between the distributions of two
experiments, according to a Wilcoxon rank-sum test with a significance level of 0.05.

For structure A (figure 6.18a), it is observed that both recovery strategies take
significantly longer to complete the assembly process than the fault free system. It
is also observed that the naive recovery strategy is quicker, on-average, than the self-
repair strategy (albeit not significantly so). On this evidence, it is not possible to reject
hypothesis H6.10.

The reason why the naive approach performs slightly better than the self-repair
strategy may be attributed to the fact that, in certain scenarios, it is quicker to disas-
semble and start again, rather than deliberate about which sub-structure is in the best
position to initiate re-assembly. Specifically, if the time that the naive strategy takes to
disassemble and re-form to the size of the best placed sub-structure is shorter than the
time taken by the self-repair strategy to determine which sub-structure is best placed,
then the naive strategy will perform at least as well as the self-repair strategy.

Taking this into consideration, it may be anticipated that the self-repair strategy
will perform better than the naive strategy on larger structures, in which the cost
of disassembly is larger, but the cost of negotiation remains the same. The results
from the experimental runs involving the larger, more complex, structure B, help to
strengthen this argument. For structure B (figure 6.18b), it is observed that although
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(a) (b)

(c) (d)

Figure 6.17: An example of the self-repair process during the assembly of structure B.
The white modules represent robots in the InStructure state; the blue modules represent
robots in the Recruiting state; the red modules represent robots in the failed state; the
yellow robots represent modules in the Supporting state; the pink and purple modules
represent robots in the Repairing state; and the green and grey modules represent
robots in the Wandering, LocateBeacon and Alignment states
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Figure 6.18: Boxplots showing the time taken to complete the assembly of structures
A (a) and B (b), for each of the three different systems

the self-repair strategy is still slower than the fault free system, the difference is no
longer statistically significant. Furthermore, the self-repair strategy shows a significant
improvement in performance over the naive strategy. Based upon this evidence it is
possible to reject H6.20 and state that there is a difference in the time taken to assemble
structure B by a system employing the self-repair strategy and a system employing the
naive recovery strategy.

6.3.3 Analysis

In this section, the time taken to assemble two different types of robotic structure was
investigated using three different systems, with and without the introduction of artifi-
cial faults. For a small, simple structure, a system employing the self-repair strategy
was shown to perform significantly worse than a fault free system and worse (but not
significantly so) than a system employing a naive recovery strategy. For a larger, more
complex structure, the difference in performance between the self-repair strategy and
the fault free system was no longer significant and, in a reversal of the findings from
the smaller structure, the self-repair strategy performed significantly better than the
naive strategy.

It is suggested that the reason for these different outcomes may be related to the
shape and size of the structures involved. Both the self-repair strategy and the naive
recovery strategy carry an associated cost. With the self-repair strategy, this cost is
the time taken by the system to split into sub-structures and to determine which sub-
structure is in the best position to continue assembly. With the naive strategy, the cost
is the time taken to disassemble and re-assemble to the point at which the recovery
process was started. Based upon the preliminary experiments described in this section,
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for the smaller structure, the cost of disassembling appears, on average, to be less than
the cost of negotiation. For the larger structure, meanwhile, the reverse is true.

Another factor which may also play a part in determining which strategy performs
best, is the amount of repetition found within the target structure. With the self-repair
strategy, the winning sub-structure is that which is found to share the largest common,
seed-containing, sub-graph with the target shape. In structures with little repetition,
modules will be less likely to share large sub-graphs with one another. Therefore, the
size of the largest common sub-graph shared by the winning sub-structure and the
target is likely to be smaller on average. This means the point that the system must
revert back to before re-starting assembly will be earlier, and therefore that the time
taken to complete assembly will be greater.

6.4 Robot3D Experiments

In order to analyse the behaviour of the self-repair strategy in greater detail, in this
section, results are presented from experiments using a variety of different structural
configurations. Seven new hand-designed structures are introduced, as well as 40 ran-
domly generated configurations. To avoid some of the previously discussed limitations
of the Stage simulator, in this section, the more realistic ‘Robot3D’ simulator is used.
To aid analysis, a metric is introduced to classify different types of structure, and the
relationship between this value and the speed of the self-repair strategy is discussed.

6.4.1 Experimental Setup

The experiments described in this section use simulated Backbone modules from the
Robot3D simulator (introduced in section 3.1.2). The modules are based upon realistic
3D models of the physical Symbricator robots and, unlike the robots from the Stage
simulator, are capable of full omnidirectional locomotion. Figure 6.19a shows a close
up of two of the Backbone modules from the Robot3D simulator and figure 6.19b shows
a topdown view of the arena in which the experiments took place.

The performance of the self-repair strategy is compared with a system utilising a
naive recovery strategy and a baseline system in which no faults were injected. In each
experiment, the mean time taken to assemble the target structure was recorded. Each
experimental run lasted for one simulated hour and involved 21 individual modules.
At the start of each run, the robots were evenly distributed throughout the arena at
random orientations. In each run involving the self-repair and naive recovery strategies,
a single fault was injected into a single robot. The faults were injected at a random
point in time between when the second module joined the structure and the average time
taken to assemble the structure in the baseline experiment. The Robot3D simulator
uses a more realistic physics model than the Stage simulator and is therefore slower.
Consequently, fewer robots were used than in the Stage experiments. Due to the limited
number of robots, it was assumed that the faulty robots would not require assistance
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(a) (b)

Figure 6.19: A close up view of the Backbone modules in the Robot3D simulator (a)
and a top down view of the arena used for the experiments reported in this section (b)

in removing themselves from the structure and that shortly after removing themselves,
would become fully functional again.

Data was collected from experiments involving 47 different structural configurations.
For each configuration, and each of the three systems, 100 independent runs were per-
formed. Each of the 47 structures contained between 6 and 12 modules. Seven of the
structures were designed by hand. These structures, shown in figure 6.20, were chosen
based upon what were perceived to be desirable characteristics of a multi-robot struc-
ture: stability, symmetry and repetition. The remaining 40 structures were generated
at random. Four sets of ten structures, each containing 6, 8, 10 and 12 modules were
generated. Each structure was screened to ensure that it did not include any loops or
other motifs which would make it physically impossible to assemble. Some examples of
the randomly generated structures are shown in figure 6.21.

To help classify different structural configurations a new metric, referred to as the
‘repair potential’, is introduced. As shown in algorithm 7, the repair potential of a con-
figuration is determined by iterating through the sub-graphs produced when each edge
of the structure’s graph is removed. For each sub-graph, the size of the largest common
(seed containing) sub-graph shared with the original graph is calculated. This value
relates directly to the sub-structure score calculation introduced in section 6.2.2. The
sum of these values is then divided by the product of the number of edges (connections)
and the number of vertices (robots) in the graph to produce the repair potential score.

The maximum repair potential of a configuration is 1. A score of 1 is obtained when
cutting the graph of a structure at any edge results in the creation of two sub-structures
which both have scores equal to the number of modules they contain. Configurations
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Figure 6.20: The seven hand-designed structures used in this section

Algorithm 7 Procedure for calculating repairPotential of a structure

1: procedure RepairPotential(structure)
2: G = (V,E)← the graph of the structure
3: potential← 0
4: for each edge e ∈ E do
5: A,B ← the two connected graphs created by removing e from G
6: potential← potential+Score(A,G)+Score(B,G)
7: end for
8: return potential ÷ (|E| × |V |)
9: end procedure

10: procedure Score(A, B)
11: return the size of the largest common (seed containing) sub-graph of A and B
12: end procedure
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Figure 6.21: Some of the randomly generated structures used in this section
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9A and 10A are examples of such structures. An important property of structures with
a repair potential of 1 is that, during self-repair, regardless of which module fails and
which sub-structure is selected to continue assembly, no pruning of unused modules is
required. Interestingly, although structure 10B is topologically identical to 10A, it does
not have the same repair potential. This can be confirmed by considering the case in
which the connection between the seed module and its right neighbour is cut. This will
produce two sub-structures, one containing two modules which obtains a score of two
and one containing eight modules but which only receives a score of six.

The minimum repair potential of a structure is 0.5. A score of 0.5 would, for example,
be the score of a two module structure which contained one Backbone and one Scout
robot. Regardless of which of the two modules was designated as the seed, cutting the
connection between them will always result in the formation of one structure that has
a score of 1 (the seed) and one structure that has a score of 0.

To further aid analysis, the time that the system spent recovering was also measured.
When a fault is introduced into the system, the number of robots in a structure is
guaranteed to decrease by at least one. The recovery time was calculated as the period
between when a fault is introduced and the point at which the number of modules in
the structure returns to the amount it was at before the fault was introduced. Note
that the configuration of the structure immediately before and after the recovery period
need not be identical, it is sufficient that the structure contains the same number of
modules. Along with the overall assembly time, using the following two null hypothesis,
the recovery time is used to compare the performance of the self-repair strategy with
the naive recovery approach:

H6.30 : There is no difference in the assembly time of the self-repair strategy
(SR) and the assembly time of the naive recovery strategy (NR).

H6.40 : There is no difference in the recovery time of the self-repair strategy
(SR) and the recovery time of the naive recovery strategy (NR).

In section 6.3.3, it was suggested that the self-repair strategy would perform better
on larger structures, whilst the naive recovery strategy would perform better on smaller
structures. To test this theory, the following two null hypothesis are presented:

H6.50 : There is no correlation between the recovery time of the self-repair
strategy (SR) and the size of the structure under study

H6.60 : There is no correlation between the recovery time of the naive
recovery strategy (NR) and the size of the structure under study

It was also noted that different characteristics of the structures, such as the amount
of repeated patterns, may also affect performance. To test this theory, the ‘repair
potential’ is used and the following null hypothesis is presented:

H6.70 : There is no correlation between the recovery time of the self-repair
strategy (SR) and the repair potential of the structure under study
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Assembly (s) Recovery (s) Success
BL SR NR SR NR SR NR

7A 234.07 336.16 361.82 107.93 130.50 1.000 1.000
7B 221.73 316.89 371.80 82.805 126.69 1.000 1.000
9A 191.44 266.46 312.28 72.921 114.93 1.000 1.000
10A 257.24 349.17 395.90 86.478 137.74 1.000 1.000
10B 364.35 464.27 589.06 111.81 210.24 1.000 1.000
11A 287.60 391.97 468.84 89.400 169.99 1.000 1.000
12A 480.57 607.45 754.72 135.80 277.25 1.000 1.000

6R 293.22 457.27 469.29 137.23 171.61 0.998 1.000
8R 350.17 494.80 558.07 130.43 201.30 1.000 1.000
10R 460.90 641.51 734.03 161.94 258.82 0.988 0.997
12R 549.12 744.00 861.41 169.16 304.02 0.983 0.983

Table 6.2: A summary of the results from the Robot3D experiments. From left to right
the columns show the target structure; the mean assembly time during the baseline
(BL), self-repair (SR) and naive recovery (NR) experiments; the mean recovery time
during the self-repair (SR) and naive recovery (NR) experiments; and the success rate of
the self-repair (SR) and naive recovery (NR) strategies. The bottom four rows display
the combined results from all randomly generated structures of the same size

6.4.2 Results

Table 6.2 summarises the results of the experiments reported in this section. The first
seven rows of table 6.2 show the results from the experiments involving the hand de-
signed structures, each row summarises the results from 100 independent runs. The
final four rows show the results from the experiments involving randomly generated
structures and are grouped according to the size of the structures involved. In the final
four rows, each group represents the outcome from 1000 independent runs. For every
structure, the mean assembly time was found to be shortest during the baseline experi-
ments, followed by the self-repair experiments and finally the naive recovery approach.
The mean recovery time of the self-repair strategy was always found to be less than
that of the naive approach.

In the experiments involving hand designed structures, the robots were always able
to successfully recover from the introduction of a fault and complete the assembly of the
structure. In the accompanying material, video 6.3 shows robots utilising the self-repair
strategy to successfully recover from a failure which occurs following the assembly of
structure 12A. In the experiments involving randomly generated structures, whilst the
robots were successful in the vast majority of cases, they were occasionally prevented
from completing assembly. All of the unsuccessful runs resulted from scenarios in which,
following the introduction of a fault, and the subsequent partial re-assembly, the new
positioning of the target structure meant that it was difficult or impossible for one or
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(a) (b)

Figure 6.22: A complete 12 module structure (a) and an incomplete version (b) in which
assembly was halted by the close proximity of the structure to the arena boundary
(which, in this figure, corresponds to edge of the image)

more robots to find or dock with the structure. This scenario is demonstrated in figure
6.22. Figure 6.22a shows the shape and positioning of one of the randomly generated
12-robot structures, following a successful recovery attempt. Figure 6.22b shows an
unsuccessful recovery attempt on the same structure in which one module is missing
from the target. The red box in figure 6.22b shows where the final module should
be docked. Due to the close proximity of the structure to the arena wall, no module
was able to successfully navigate to this location within the 1 hour time limit. Whilst
the seed of a structure will always start in the centre of the arena, after a fault has
been introduced, any module within the structure may become the new seed and may
consequently move the location of the structure. As reflected by the results in table
6.2, this problem is more likely to affect larger, elongated structures, the extremities of
which are more likely to reach the arena edges during a recovery attempt.

To avoid bias, runs in which repair was not successful are omitted from the recovery
time statistics used in this section. As are the results from runs in which a fault was
introduced into a 2-module structure. The reason being that, when a fault is introduced
into a structure containing 2 modules, the two recovery strategies are indistinguishable
and both respond simply by removing the failed module and restarting assembly.

Figure 6.23 shows the number of independent structures present during typical runs
of experiments involving configurations 7A (a), 10A (b) and 12A (c). Each figure
shows the outcome from a single run involving the self-repair strategy and a single run
involving the naive recovery strategy. In order to compare the two approaches, in each
figure, runs were selected in which the fault was introduced at a similar point in time,
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when the structure had reached a similar stage of assembly. In all three cases, after
the introduction of a fault, the number of structures from the run involving the naive
approach is observed to increase to a maximum as the structure is disassembled and then
gradually decrease to a minimum as the structure is rebuilt. In the runs involving the
self-repair strategy, the number of structures still increases as the structure is partially
disassembled. However, since the self-repair strategy does not need to revert as far as
the naive approach, it is able to restart assembly from a more advanced position and
consequently is able to complete assembly faster.

In figure 6.24, the assembly time of the self-repair strategy is compared with that
of the baseline and naive recovery experiments. Each boxplot shows the results from
100 independent runs. For each of the seven hand designed structures, the same trend
is observed. The baseline experiment is always the fastest, followed by the self-repair
strategy and finally the naive recovery approach. For each of the seven structures, using
a Wilcoxon rank-sum test with a significance level of 0.05, it can be stated that there
is a significant difference between the assembly time of all three systems.

In figure 6.25, the recovery time of the self-repair strategy is compared with that of
the naive recovery approach. Runs in which a fault was introduced into a two module
structure are omitted and from the remaining runs a random sample of size 70 was
selected. The same trend is observed for each of the seven structures. The recovery
time of the self-repair strategy is always observed to be lower than that of the naive
approach. Furthermore, the difference between the two approaches appears to increase
as the size of the target structure increases. For structure 7A, using a Wilcoxon rank-
sum test with a significance level of 0.05, it can be stated that there is no significant
difference between the recovery time of the self-repair and naive approaches. However,
for the remaining six structures, using a Wilcoxon rank-sum test with a significance
level of 0.05, the difference in performance can be said to be significant.

It was noted that, in figure 6.25, as the size of the hand designed structures was in-
creased, the difference between the recovery time of the naive and self-repair approaches
also increases. In figure 6.26, data from the experiments involving randomly generated
structures is added and the median recovery time is plotted against the size of the
target structure involved in each experiment. The graph shows that, with a Pearson
correlation coefficient value of 0.75, there is a strong positive correlation between the
structure size and the recovery time of the naive strategy. Meanwhile, in the self-repair
experiment, which obtains a Pearson’s r value of 0.24, there is a weak positive correla-
tion. These results indicate that, as the number of modules in a structure is increased,
the recovery time of the naive strategy increases at a much greater rate than that of
the self-repair strategy.

In section 6.3.3 it was suggested that the self-repair strategy may perform better on
structures which contain repeating patterns. In section 6.4.1, a metric referred to as
the ‘repair potential’ was introduced for categorising structures based upon their shape
of their underlying graph representation. Figure 6.27 plots the repair potential of the
47 different structures investigated in this section against the median recovery time
of the self-repair strategy. The hand designed structures are shown as black points,
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Figure 6.23: A comparison between the number of separate structures present during
the assembly of shapes 7A (a), 10A (b) and 12A (c). Each line represents a single run
of the naive recovery approach (dashed line) or the self-repair strategy (solid line)
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Figure 6.24: The assembly time during the baseline (BL), self-repair (SR) and naive
recovery (NR) experiments
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(NR) experiments
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Figure 6.26: The recovery time during the naive (black) and self-repair (grey) experi-
ments plotted against the number of robots in the target structure

whilst the randomly generated structures are shown in grey. It can be observed that, in
general, the hand designed structures have a greater repair potential score and a lower
recovery time than the randomly generated structures. When considering both types
of structure together, it can be stated that, with a Pearson’s r value of -0.75, there is
a strong negative correlation between the repair potential and the recovery time of the
structures. Which is to say, when utilising the self-repair strategy, structures which
have a high repair potential tend to have a low recovery time.

6.4.3 Analysis

In this section, the results from the Robot3D experiments are analysed and each of the
five hypotheses introduced in section 6.4.1 is examined.

The results strengthen the conclusions from section 6.3 and show that the self-
repair strategy is capable of outperforming a naive recovery approach both in terms of
the overall time taken to assemble the target structure and the time spent recovering.
Furthermore, whilst the recovery time of both approaches is shown to increase as the
size of the structures involved increases, the recovery time of the self-repair approach
does so at a much lower rate. It was also demonstrated that other structural properties
may also affect performance and a strong correlation was found between the ‘repair
potential’ of a structure and the time spent in recovery.

Whilst presenting the results, a deficiency of both the self-repair and naive recovery
strategies was highlighted. Following the introduction of a failure and during the re-
assembly of a robotic structure, if the structure is located too close to an obstacle, it
was observed the assembly process can stall. Akin to effect E1, from section 4.2.2. To
resolve this problem, in the future, it will be necessary for the recovery strategy to
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Figure 6.27: The recovery time during the self-repair experiment plotted against the
repair potential of the target structure. Results are included for both hand designed
(black) and randomly generated (grey) structures

incorporate better awareness of the surrounding environment.
Returning to the hypotheses introduced in section 6.4.1. In comparing the assembly

time of a system which utilises the self-repair strategy and one which uses the naive
recovery approach. It can be stated that there is a significant difference between the two
systems, and therefore that it is possible to reject H6.30 and accept that the self-repair
strategy outperforms the naive recovery approach in terms of assembly time.

In comparing the time spent recovering, it can be observed that, with the exception
of structure 7A, there is a significant difference between the performance of a system
utilising the self-repair strategy and one utilising the naive recovery approach. There-
fore, excluding structure 7A, it is possible to reject H6.40 and state that the self-repair
strategy outperforms the naive recovery approach in terms of recovery time.

As the number of robots within a structure is increased, the recovery times of both
the self-repair and the naive recovery approaches are also observed to increase. The rate
of increase, however, is much greater with the naive recovery strategy. When evaluated
using the Pearson correlation coefficient, only in the naive approach can there be said to
be a strong correlation between the size of the structures and the time spent recovering.
Therefore, whilst it is possible to reject H6.60 and state that there is a correlation
between the recovery time of the naive strategy and the size of the structures involved,
it is not possible to reject H6.50. Until more data is available it must be accepted that
there is no correlation between the recovery time of the self-repair strategy and the size
of the structures involved.

Finally, when considering the repair potential of the 47 structures introduced in
section 6.4.1, it can be observed that the potential of the hand designed structures
is consistently greater than that of the randomly generated structures. Furthermore,
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the recovery time of the hand designed structures tends to be lower. By plotting the
repair potential against the recovery time and evaluating the results using the Pearson
correlation coefficient, it is possible to state that there is a strong negative correlation
between the two values. Based upon this evidence it is possible to reject H6.70 and
state that there is a correlation between the recovery time of the self-repair strategy
and the repair potential of the structures under study.

6.5 Real Robot Experiments

This section presents results from experiments conducted using the real Symbricator
hardware. Due to limitations in the availability and capabilities of the hardware, it
was not possible to fully replicate the broad range of experiments that were carried out
in simulation. Instead, as a proof of principle, four specific scenarios were designed to
showcase the main features of the self-repair strategy.

In the remainder of this section, the general experimental setup used throughout all
of the experiments is introduced, along with specific details of the four chosen scenarios.
Following which, the results from the experiments are presented and analysed.

6.5.1 Experimental Setup

All of the experiments reported in this section use at most one Active Wheel, and either
two or three Scout modules. In every scenario, the robots begin in a disconnected
state, before assembling into a single structure. Following assembly, an artificial fault
is injected into one member of the structure. It is assumed that the faulty robot is able
to immediately detect the fault, and that it does not require assistance in removing
itself from the structure. After the faulty robot notifies its neighbours, the self-repair
strategy is executed.

Due to the limited number of robots, as soon as the faulty module has removed itself
from a structure it is no longer considered to be faulty, and if required, may form part
of the new structure. Batteries were not available and therefore all of the experiments
were conducted whilst the robots were tethered to a power supply. The necessity to
tether the robots restricted their movements and therefore, to prevent the robots wires
from becoming tangled, every scenario was set up so that robots were positioned within
communication range of the module that they were required to dock with. The robots
were forced to remain stationary whilst in the Wander state and only started to move
upon entering the LocateBeacon state. This restriction greatly simplifies the aligning
and docking procedures, but has little bearing upon what is the main focus of this
chapter, the self-repair strategy itself.

For each scenario, ten independent runs were conducted in an arena measuring
approximately 165× 120 cm. An overhead camera, mounted directly above the arena,
was used to record the experiments and track the positions of the robots over time.
Each one of the four scenarios is now described.



154 6.5. Real Robot Experiments

S

(a)

S

(b)

S

(c)

S

(d)

Figure 6.28: A diagram outlining scenario A. The Seed robot is marked with an ‘S’
and the failed robot is marked with a cross. Solid arrows are used to represent the
movement of modules
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Figure 6.29: A diagram outlining scenario B. The Seed robot is marked with an ‘S’
and the failed robot is marked with a cross. Solid arrows are used to represent the
movement of modules and dashed arrows are used to represent communication
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Scenario A The first scenario is visualised in figure 6.28. This scenario demonstrates
the coordinated movement of a 2-robot sub-structure and the removal and replacement
of a failed module. The scenario involves two Scouts and one Active Wheel. As shown
in figure 6.28a, the Active Wheel serves as the seed and begins by recruiting one Scout
module on each side. One of the Scout robots then fails (figure 6.28b) and removes
itself from the structure, whilst the remaining two-module sub-structure retreats (figure
6.28c). By default, the sole sub-structure obtains the highest score and then restarts
the assembly process by recruiting the previously failed module (figure 6.28d). To
demonstrate robustness, in each experimental run this procedure is repeated four times.

Scenario B Scenario B is shown in figure 6.29. This scenario was primarily designed
to demonstrate the adaptation described in section 6.2.1 which accounts for the fact
that Scout modules cannot move sideways. However, it is also used to demonstrate
the negotiation between two separate sub-structures. As shown in figure 6.29a, the
scenario involves three Scout robots and begins with the formation of an ‘L’ shape.
One of the modules then fails and removes itself from the structure. Due to their
relative orientations, the remaining two modules are forced to form two separate sub-
structures (figure 6.29b). The repair process continues with two the sub-structures
broadcasting their own score and ID (figure 6.29c). Since both structures contain only
a single module, the individual with the lowest ID is declared the winner and takes
responsibility for restarting the assembly process (figure 6.29d).

Scenario C An outline of scenario C is shown in figure 6.30. This scenario is used
to demonstrate the fact that, following self-repair, robots may take on different roles
within the new structure. Furthermore, the fact that it is sometimes necessary to
prune modules which do not belong to the new structure is also demonstrated. Like
scenario A, a three module structure containing two Scout robots and one Active Wheel
is formed. However, as shown in figure 6.30a, in this case, the seed is a Scout robot.
After forming a structure, the seed module fails, causing the structure split and the
seed to be removed (figure 6.30b). By default, the remaining Scout becomes the new
seed, however, since according to the original plan, the Active Wheel is docked using
the wrong side, this module is instructed to remove itself (figure 6.30c) before assembly
can continue (figure 6.30d).

Scenario D Scenario D is visualised in figure 6.31. This scenario involves four robots
and demonstrates collective sub-structure locomotion and inter sub-structure negoti-
ation. As shown in figure 6.31a, a structure containing three Scouts and one Active
Wheel is assembled. The Active Wheel then fails, leading to the formation of two
sub-structures (figure 6.31b). After negotiation (figure 6.31c), the larger of the two
sub-structures is declared the winner and begins to reassemble the original structure
(figure 6.31d).
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Figure 6.30: A diagram outlining scenario C. The Seed robot is marked with an ‘S’
and the failed robot is marked with a cross. Solid arrows are used to represent the
movement of modules
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Figure 6.31: A diagram outlining scenario D. The Seed robot is marked with an ‘S’
and the failed robot is marked with a cross. Solid arrows are used to represent the
movement of modules and dashed arrows are used to represent communication
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Figure 6.32: The average distance separating three robots during scenario A

6.5.2 Results

The results from the experiments performed using each of the four scenarios introduced
above are now presented. Videos of all of the experiments described in this section are
provided in the accompanying material (videos 6.4-6.7).

Scenario A In seven of the ten runs that were performed using scenario A, the
robots were able to successfully assemble into a single structure and repeatedly self-
repair following the introduction of four consecutive failures. In the remaining three
runs, a problem with the logic of the recruiting behaviour prevented the seed robot
from recognising that another robot had docked with it, leading to a stall in assembly.

To provide an example of the typical behaviour of the robots, figure 6.32 shows the
average distance separating the three modules over time, during one of the successful
runs. At the beginning of the run, when all three robots are disconnected, the distance
is at its largest. At point (a) in figure 6.32, all three robots have assembled into
a single structure and the distance between them is at its minimum. At point (b)
a fault is introduced into one of the robots, causing the structure to split and the
average separating distance to increase. At point (c) the structure is repaired and the
distance once again is minimal. This process repeats two more times until point (d)
is reached. At point (d), the docking approach is initially unsuccessful and requires
several attempts, as shown by the rapid fluctuations in distance. Eventually, after a
brief pause at point (e) whilst waiting for the recruiting robot, the structure is repaired
for the final time.

Scenario B In all ten of the runs that were performed using scenario B, the robots
were able to self-assemble into a single structure. Following the introduction of a failure,
in nine of the ten runs, the robots successfully identified the fact that one of the Scout
modules would not be able to move in the required direction and therefore should be
pruned. After splitting into two separate sub-structures and negotiating which sub-
structure was best placed to continue assembly the robots were able to successful repair
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the original structure. The one case in which self-repair was not successful resulted
from one of the robots pushing and displacing the seed as it attempted to dock with
it, thereby preventing the other module from locating it. Pushing was also observed
in three of the successful runs but, in these cases, was not sufficient to disrupt the
self-repair process.

Figure 6.33 shows four composite images taken from a video of a single experimental
run. The modules are arbitrarily labelled with a number by the tracking software and
green links signify when two modules have docked. Note that the robot’s labels do not
necessarily correspond to their IDs. In figure 6.33a, the final module is shown docking
with the other two in order to complete the assembly of the original structure. In figure
6.33b, module 2 has failed, this event is detected by module 1 which subsequently
retreats. Since module 0 is oriented perpendicular to module 1, it is instructed to
form a separate sub-structure and also retreats. In figure 6.33c, modules 0 and 1 are
broadcasting and listening for each others scores. Both modules have the same score,
but in this case module 1 has a lower ID and therefore, as shown in figure 6.33d, takes
responsibility for rebuilding the structure.

Scenario C In all ten of the runs that were performed using scenario C, the robots
were able to self-assemble into a single structure. After a failure was introduced into
the original seed, in nine of the ten runs, the robots successfully selected a new seed
and identified the fact that the Active Wheel was docked using the wrong side. In the
one case which failed at this point, an undiagnosed problem with the Active Wheel pre-
vented it from removing itself when instructed. Out of the nine runs which reached this
stage, eight went on to successfully complete the self-repair process. In the remaining
run, assembly stalled when one of the modules was unable to align itself properly and,
whilst attempting to retry, subsequently moved outside of communication range of the
recruiting module.

Figure 6.34 shows the removal and re-docking of the Active Wheel during one of
the successful runs. In figure 6.34a, the Seed robot (bottom) is shown instructing the
Active Wheel (middle) to remove itself from the structure whilst the failed module (top)
waits. In figure 6.34b, the Seed robot is shown sending recruiting messages on the side
at which the Active Wheel was previously docked. Upon receipt of these messages, in
order to orientate itself correctly, the Active Wheel is shown to begin turning. In figure
6.34c, the Active Wheel is show aligning with the Seed and finally, in figure 6.34d, the
previously failed Scout module is shown to approach the new structure.

Scenario D In eight out of the ten runs that were performed using scenario D, the
robots were able to successfully assemble into a single structure. In all eight cases,
following the introduction of a failure, the robots were then able to split into two
separate sub-structures, negotiate which was best placed to restart the assembly process
and finally, repair the original structure. In the final two runs, a real hardware fault in
the IR remote receiver prevented the runs from being completed.

Figure 6.35 shows still images from a video of one of the successful runs. In figure
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Figure 6.33: Composite images from a video of scenario B with information from the
tracking software overlayed

(a) (b) (c) (d)

Figure 6.34: Still images from a video of scenario C. Solid black arrows are used to
visualise the movement of the individual modules
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Figure 6.35: Still images from a video of scenario D. Solid black arrows are used to visu-
alise the movement of the individual modules and dashed arrows are used to represent
communication

6.35a, a fault is introduced into the Active Wheel and the structure is shown to split
into two sub-structures. In figure 6.35b, the two sub-structures are shown negotiating.
The larger of the two sub-structures is declared the winner and in figure 6.35c is shown
to restart the assembly process whilst the losing sub-structure is ‘disassembled’. In
figure 6.35d, the final module is recruited and the structure is completed.

6.5.3 Analysis

The main purpose of the experiments described in this section was to demonstrate the
implementation of the self-repair strategy on-board real robotic hardware. Scenarios
were chosen to reflect some of the main components of the self-repair strategy. Specif-
ically, scenario A was used to demonstrate the coordinated movement of multi-robot
sub-structures; scenario B was used to show how sub-structures containing modules that
cannot move omnidirectionaly are pruned and how negotiation takes place between two
separate sub-structures; scenario C was used to demonstrate the fact that, following
self-repair, modules may take on different roles within the new structure and that it is
sometimes necessary to remove modules which do not belong to the structure; finally,
scenario D was used to further showcase the collective locomotion of sub-structures and
inter sub-structure negotiation.

Ten repeated runs were performed with each scenario. As summarised in table 6.3, in
32 out of the 40 runs the robots were able to successfully complete the self-repair process.
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Success Recruitment Alignment Hardware Unknown

A 7 3 - - -
B 9 - 1 - -
C 8 - 1 - 1
D 8 - - 2 -

Table 6.3: The number of successful runs and the reasons for failure during unsuccessful
runs, for each of the four scenarios

Table 6.3 also summarises the reasons for why self-repair was not successful in the
eight remaining runs. Three of the runs failed due to a problem with the Recruitment
state from the original morphogenesis controller, two failed due to problems with the
Alignment behaviour, two could not be completed due to hardware failures and one run
failed due to an undiagnosed problem.

It is important to highlight that none of the eight incomplete runs resulted from
problems with the self-repair strategy itself (with the possible exception of the un-
diagnosed failure). Furthermore, if the system had possessed a method for detecting
hardware failures, and their were a sufficient number of spare robots, the two runs which
were halted by hardware problems may also have been completed. The fact that hard-
ware failures occurred in two of the runs highlights the need for a self-repair strategy,
but the fact that the runs could not be completed, emphasises the fact that without an
effective fault detection system any form of explicit recovery strategy is useless.

Even with a fault detection system, the five runs which could not be completed due
to problems with the Recruitment and Alignment behaviours would still have stalled.
This highlights the importance of designing reliable and functionally correct controllers
but also serves as a reminder that control system failures may be equally as detrimental
as hardware failures. In the reliability analysis performed in chapter 4 only hardware re-
lated hazards were considered. Furthermore, the anomaly detection system introduced
in chapter 5 was designed only to detect hardware failures. To further improve the
reliability of self-reconfigurable modular robotic systems, the effects of control system
failures, and methods for detecting their presence, should also be studied.

6.6 Summary and Future Work

In this chapter, a new self-repair strategy was presented which aims to improve the
fault tolerance of the morphogenesis controller introduced in chapter 4. The strategy
may be used to repair assembled or partially assembled robotic structures containing
a single failed module. The strategy works by isolating the failed module, removing it
from the structure and re-assembling the structure in the most efficient manner. Local
communication is used by the modules to determine the shape of the structure that they
belong to and to coordinate which modules should take part in the recovery process.
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To address one of the issues highlighted in chapter 4, inter-module communication
is performed using two separate channels, increasing the reliability of the approach
and removing a potential single point of failure. The generality of the approach was
demonstrated in its deployment on all three of the Symbricator platforms, both in
simulation and using real robotic hardware.

The first set of experiments were performed with the Stage simulator, using simu-
lated Backbone modules. The performance of the self-repair approach was compared
with a baseline system in which no faults were injected and a naive recovery strategy in
which, following the introduction of a fault, the structure is completely disassembled.
In this set of experiments, two different structural configurations were investigated. In
every case, the robots were able to complete the assembly process and were consis-
tently successful in isolating, removing and replacing the failed module. The self-repair
strategy was shown to outperform the naive approach in the experiment involving the
larger of the two structures but, with the smaller structure, no significant difference in
performance was observed.

In analysing the results from the Stage experiments, the shape and size of the
structures involved was highlighted as an important factor in how well the self-repair
strategy would perform. To investigate the properties of the self-repair strategy further,
several more experiments were performed using the more realistic Robot3D simulator.
Once again, Backbone modules were simulated, however, in this set of experiments,
a wider range of structural configurations were investigated. Specifically, seven hand
designed structures and 40 randomly generated structures were used. To aid analysis, a
metric referred to as the ‘repair potential’ was introduced. The metric was calculated by
iteratively comparing the graph representation of a structure with each of its sub-graphs
and accumulating a score based upon their similarity.

The self-repair strategy was shown to significantly outperform the naive recovery
approach in terms of both the overall assembly time and the time spent recovering.
In the majority of cases, both strategies were able to successfully recover from the
introduction of a failure, but were occasionally prevented from doing so if the target
structure was assembled too close to the arena wall.

For each of the 47 different structural configurations, 100 independent runs were
performed. In analysing the results from these runs, there was observed to be a strong
positive correlation between the recovery time of the naive approach and the number
of robots in the target structure. That is to say, as the number of robots was increased,
the recovery time of the naive strategy also tended to increase. Whilst the recovery
time of the self-repair strategy also increased in line with structure size, it did so at
a much lower rate than the naive approach. In analysing the repair potential of the
different configurations, it was observed that the hand designed shapes tended to have
both a higher repair potential and a lower recovery time. Generally, a strong negative
correlation was found between the repair potential and recovery time. As the repair
potential increased, the recovery time tended to decrease.

In the final set of experiments, the self-repair strategy was deployed on the physical
Symbricator hardware. Experiments were performed using both the Active Wheel and



6.6. Summary and Future Work 163

Scout modules. Four typical scenarios were designed to showcase some of the main
components of the strategy. Ten repeated runs were performed with each scenario
and in the majority of cases the robots were able to successfully complete the repair
process. On two of the occasions in which repair was unsuccessful, hardware failures
were to blame. These failures highlighted the importance of the self-repair strategy
itself but also emphasises the need for effective fault detection systems such as that
introduced in chapter 5. In five of the unsuccessful runs, repair was unsuccessful due
to problems with the behavioural controller and the nature of the physical hardware.
Problems such as this, which were overlooked in the reliability analysis study performed
in chapter 4, highlight the importance of verifying algorithms on real robotic hardware
and designing reliable and functionally correct controllers.

In future work, further experiments may be performed with both the physical Sym-
bricator hardware and within the the Robot3D simulator. With the physical hardware,
similar experiments to those conducted in simulation may be performed, whilst in sim-
ulation, further analysis of the structural properties favoured by the self-repair strategy
may be conducted. To gain further insight, mathematical analysis of the system dy-
namics may also be performed. To address some of the limitations discussed in this
chapter, improvements may be made to the strategy itself. For example, the potential
for having multiple robots dock as a combined unit could be investigated. To improve
the efficiency of the approach and prevent unnecessary pruning, alternative methods of
calculating the sub-structure score could also be developed. Furthermore, to prevent
the scenario in which assembly is stalled when a structure is positioned too close to an
arena wall, the robots could utilise information about the state of the environment when
determining which module should restart the assembly process. Investigations into the
suitability of the current strategy for handling multiple failures, and the development
of any necessary extensions to handle such scenarios would also be interesting.

In the following chapter, a new form of morphogenesis is introduced and several
more experiments are conducted. A different physical platform is utilised and the focus
shifts from explicit self-repair to implicit forms of self-assembly and self-reconfiguration.



Chapter 7

Self-assembling and
Self-reconfiguring Robotic
Structures

In chapter 4 it was suggested that, by following the example of swarm robotics, the fault
tolerance of self-reconfigurable modular robotic systems could be improved if greater
plasticity was afforded to the conformation of systems. To provide such plasticity,
in chapter 6, a self-repair strategy was presented which allows faulty modules to be
removed from a robotic structure and replaced by functional ones. The strategy was
successful in improving the fault tolerance of the system, but scenarios in which the
dependence between connected modules could still cause problems were also identified.
For example, if a module failed whilst locked to another functional robot, and it was
not possible to remove the failed module, then it would be necessary to also sacrifice
the functional robot in order to repair the system.

In chapter 1, the disparity between the availability of swarm and self-reconfigurable
modular robotic platforms was also highlighted. This disparity may, at least partially,
be attributed to the differing complexity of the required hardware. Swarm robots are
purposefully simple units, whereas modular robots, although simple in comparison to
the structures that they may form, require complex electrical and mechanical hardware
to facilitate the processes of docking, reconfiguration and inter-robot communication.

To address these issues, in this chapter, the design of a new structural extension
is presented for the e-puck robot [122]. The e-puck is a small mobile robot, equipped
with basic sensors and actuators, including a colour camera, a ring of LEDs and an
array of infrared sensors. The extension described in this chapter, hereafter referred
to as the modular e-puck extension, consists of a plastic frame and four passive mag-
netic docking interfaces. The extension allows a group of e-pucks to physically join
with one another, transforming what is traditionally a swarm robotics platform into
a 2D self-reconfigurable modular robotic system. By combining benefits from swarm
and self-reconfigurable modular robotic systems, the modular e-puck extension pro-
vides a simple, low-cost platform, with a high-degree of plasticity, that may be used to
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investigate the interesting properties of self-assembling and self-reconfiguring systems.
Later in this chapter, an algorithm for controlling the collective locomotion of a

group of robots equipped with the modular e-puck extension is also introduced. As well
as demonstrating collective locomotion, without alteration to the underlying algorithm,
robots are shown to be capable of demonstrating a novel form of implicit self-assembly
which allows a group of robots to reform when broken apart. After investigating how
the performance of the collective locomotion behaviour is affected when using structures
of different shapes and sizes, the properties of the system which lead to the exhibition of
self-assembly are analysed in detail. Finally, by combining self-assembly and collective
locomotion with a new form of self-disassembly, the task of self-reconfiguration under
changing environmental conditions is also investigated.

The remainder of this chapter is structured as follows. In section 7.1, comparisons
are made with existing platforms and related control strategies. In section 7.2, the
modular e-puck extension itself is introduced. In section 7.3, the collective locomotion
algorithm is described. In section 7.4, the common setup used during all of the experi-
ments is detailed. In section 7.5, the results from collective locomotion experiments are
presented. In section 7.6, the self-assembling properties of the system are analysed. In
section 7.7, a form of environment driven self-reconfiguration is investigated. Finally,
in section 7.8, a summary is provided and potential areas of future work are discussed.

7.1 Comparisons

The modular e-puck extension may be used to transform the e-puck robot into a mobile-
lattice self-reconfigurable modular robotic system. Each module is independently mo-
bile but may connect with up to four other neighbours within a two-dimensional grid.
A large number of lattice and mobile self-reconfigurable robots have been developed,
several of which were reviewed in chapter 3. In this section, some of the similarities
and differences between the modular e-puck extension and related platforms are high-
lighted. Following this, some of the previous approaches to controlling the locomotion,
assembly, and reconfiguration of such systems are reviewed.

7.1.1 Platforms

One of the most important factors in the design of a self-reconfigurable modular robotic
system, is the method by which the individual robots connect with one another. Several
different methods have been proposed for connecting mobile and lattice modular robots.
Platforms such as Symbricator [88], the Swarm-bot and Swarmanoid robots [40, 121],
Metamorphic [143], ATRON [80] and Sambot [191], rely on purely mechanical connec-
tion mechanisms. Many other systems favour a magnetic approach, for example, the
Programmable Parts [12], DFA [141], Miche [53, 54] and Telecube [175] systems all use
permanent magnets. The X-Cell [76], Catom [57] and Smart Pebble systems [51, 55],
on the other hand, all favour electromagnets, whilst the Fracta [124] system utilises a
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combination of permanent magnets and electromagnets. The modular e-puck exten-
sion uses only permanent magnets. Mirroring the approach of the DFA platform, the
strength and positioning of the magnets on the modular e-puck extension were chosen
such that the connection between two modules is stable when it needs to be, but not
so strong that the modules are prevented from disconnecting when it is desired.

In terms of their structure, robots equipped with the modular e-puck extension
closely resemble the X-Cell modules reviewed in chapter 3. Both systems possess a
separate square frame that rests on top of their main body, allowing them to form stable
structures within a 2D lattice, and both systems utilise a two-wheeled differential drive
system. However, two important differences between the X-Cell modules and robots
equipped with the modular e-puck extension can be identified. Firstly, the positioning
of the electromagnets on the X-Cell shell and the provision that no two electromagnets
may connect with one another, limits the number of possible configurations that the
robots may form. With the modular e-puck extension, there are no limitations upon the
number of configurations that the robots can be arranged in—other than those imposed
by the lattice grid. Secondly, the rotation of the X-Cell shell is controlled by a servo
motor and may only move in the range of 0− 180◦. The frame of the modular e-puck
extension, on the other hand, is completely independent of the e-puck robot, allowing
for free rotation about the robot’s body. This leads to a far more flexible system, albeit
at the expense of controllability.

7.1.2 Control Strategies

When coordinating the motion of a collective robotic system, it is important that the
individual robots reach a consensus regarding the goal of the collective. This may be
achieved in a centralised fashion, whereby a designated leader propagates commands to
the other modules, or in a decentralised manner, in which no single robot is responsible.
Owing to the perceived lack of a ‘single point of failure’, decentralised methods of control
are often favoured.

In [65], Gutiérrez et al. describe a decentralised method for synchronising the head-
ings of a group of stationary e-pucks, which relies on exchanging relative bearings using
infrared (IR) communication. In related work, Trianni et al. incorporate information
from ground sensors and demonstrate coordinated motion with hole avoidance [181].
Using a similar approach, Baldassarre et al. evolve controllers for the s-bot platform
which use information from the robots’ traction sensors to synchronise the headings
of a group of robots [7]. Baldassarre et al.’s controllers were verified on real robots,
under various conditions, and although it was not their main focus, the authors also
demonstrate the robot’s ability to complete the related task of collective transport.

In an another example that uses the s-bot’s traction sensor, Groß et al. describe a
solution to the collective transport task that allows a collective to efficiently transport an
object to a goal location, even if one or more of the robots cannot perceive the goal [63].
In [61], Groß and Dorigo evolve controllers for a similar task but start with the robots
in a disconnected state, requiring that the robots first self-assemble before performing
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collective transport. Campo et al. and Ferrante et al. describe two hand-coded solutions
to the collective transport task, both of which include explicit negotiation between
robots [16, 45]. Ferrante et al.’s approach relies on infrared communication, whilst
Campo et al. utilise the robots’ LEDs and vision systems.

The approach to collective locomotion described in this chapter builds upon that of
[65]. Like [65], IR communication is used, and like both [16] and [45], explicit negotiation
takes place between modules. Unlike [63], [181] and [7], in the absence of a traction
sensor, the robots must determine their heading based solely on their perception of the
environment and communication with their neighbours.

In [60], Groß and Dorigo review several different types of self-assembling system
and classify them as either self-propelled or externally-propelled, depending upon the
manner in which the individual modules move. Due to the independent mobility of the
e-puck, in Groß and Dorigo’s taxonomy, the modular e-puck extension may be viewed
as a self-propelled system.

Many of the systems reviewed in chapter 3 are capable of self-propelled assembly.
The CEBOT [48], X-Cell [76], Sambot [191] and Symbricator robots [108], have all
demonstrated alignment and docking approaches based upon the use of infrared sensors.
The s-bot platform, on the other hand, has been used to develop several distributed
methods of self-assembly [62, 136] and self-reconfiguration [135] which make use of the
robots’ LEDs and vision systems. In [136], for example, O’Grady et al. describe a
distributed approach to self-assembly in which structures are grown by recruiting new
modules to specific locations, based upon local interaction rules. A common property
of these approaches is that they rely on the presence of a seed module to initiate
self-assembly, and in most cases ([136] excepted), require a target shape to guide the
assembly process. In contrast, the approach used by the DFA system in [141] requires
neither a seed nor a target. The DFA modules simply move around the arena until they
collide with other robots, at which point permanent magnets and protruding features
of the robot’s chassis cause them to join together. Since it negates the need for complex
alignment procedures, this form of random passive docking—which is more commonly
found in externally-propelled forms of self-assembly—can be beneficial.

The approach to self-assembly described in this chapter resembles that of the DFA
platform. Self-assembly is not directed and does not require a seed, however, unlike
the DFA approach, communication between nearby robots does produce a tendency for
modules to move towards one another.

In other related work, Groß et al. describe a system of heterogeneous modules, that
are capable of responding to changes in environmental conditions, whilst demonstrat-
ing self-replication and externally-propelled self-assembly [64]. Two similar tasks are
described by [180] and [190], in which controllers are evolved to perform self-assembly
in response to environmental triggers. Inspired by this work, in section 7.7, a similar
task is used to investigate self-reconfiguration with the modular e-puck extension.
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7.1.3 Summary

According to the classification of Yim et al. [207], the modular e-puck extension may
be described as a mobile-lattice modular robotic system. Although, structurally, robots
equipped with the extension resemble the X-Cell modules from [76], they are far more
flexible in terms of the different configurations they may form. Like the Programmable
Parts, DFA, Miche and Telecube systems, the extension uses a connection mechanism
based upon permanent magnets, and like the DFA system, the strength of the magnets
was carefully chosen to allow for both self-assembly and self-reconfiguration.

The approach to collective locomotion described here builds upon that of [65], and
uses explicit negotiation in a manner similar to that of [16] and [45]. The approach to
self-assembly places the system within the ‘self-propelled’ category of Groß and Dorigo’s
taxonomy [60], but unlike many other such systems, the behaviour is not directed, and
does not require a seed module. Neither, on the other hand, is it fully stochastic like
the approach employed by the DFA platform.

7.2 Modular e-puck Extension

As an open hardware project, the e-puck robot is very well suited to modification. Over
recent years, a number of extensions have been developed, including an omnidirectional
vision turret [122], a range-bearing board [65], colour LEDs, a ZigBee radio module
[33], and even an embedded Linux implementation [109].

In this section, an extension is described that may be used to transform the existing
e-puck platform into what can be described as a mobile-lattice modular robotic system.
Robots equipped with the extension remain independently mobile, but through passive
magnetic docking interfaces may physically connect with other modules within a 2D
grid. Whilst not possessing the same functionality as some of the more sophisticated
modular robotic systems, the platform may serve as an entry point, or stepping stone, to
more advanced work. Providing a low-cost alternative for investigating the interesting
properties of self-reconfigurable modular robotic systems, at an abstract level.

As shown in figure 7.1a, the extension consists of three parts: a circular base plate
which sits directly on top of the e-puck, a central frame which rests on top of the base
plate, and a second circular cover which sits on top of the frame to help secure the
extension together.

The base plate is positioned on top of the default extension board using three 15 mm
hexagonal spacers. To remain compatible with other extension boards, larger spacers
may be used. A small overhang on the base plate allows the inner ring of the central
frame to rest on the base plate, without being permanently attached. This lip allows the
frame to rotate unhindered around the central axis of the e-puck. To enable separate
modules to connect with one another, two magnets are fitted on each internal edge of
the central frame, with opposing poles facing outwards. The strength and positioning

1http://www.elec.york.ac.uk/research/projects/Modular_e_puck_Extension.html
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Figure 7.1: A schematic of the main structural components of the modular e-puck
extension (a) and photographs of unassembled and assembled prototypes (b-c). The
designs for the structural components are made freely available online1
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Part Label Description Quantity Cost (e )

e-puck 1 The e-puck mobile robot 1 -
Structure 2,3,7 3D-printed ABS plastic, ∼ 25 g 1 0.90
Spacers 4 Brass/nickel stand-off pillars, M2 3 0.50
Screws 5 Nylon set screw, slotted, M2, 12 mm 3 0.20
Magnets 6 Neodymium N38 disc magnets, 6× 2 mm 8 4.00
Card 8 Coloured card for tracking (optional) 1 -

Total 5.60

Table 7.1: The list of parts required to construct a single e-puck extension. The Labels
in the second column reference the parts shown in figure 7.1b

of the magnets were chosen such that, if connected modules coordinate their motion,
they will remain attached, but if they do not, they will break apart. This approach
ensures that the extension provides a suitable platform for investigating both collective
behaviour and self-reconfiguration. Screws which pass through the two circular plates
secure the extension to the e-puck and an arrow shaped window in the top cover allows
the current heading of the robot to be easily recognised. To aid computer tracking, a
piece of coloured card may be positioned between the base plate and the top cover.

The parts required to construct a single extension are listed in table 7.1, and labelled
in figure 7.1b. Figure 7.1c shows a potential arrangement of four e-pucks equipped with
the fully assembled extension. The three main structural parts were fabricated using
a MakerBot thing-o-matic 3D printer2. The total cost is estimated to be around e 5
per unit, of which the magnets take up the majority. With the exception of the e-puck
itself, together, all of the parts in table 7.1 weigh less than 50 g.

7.3 Algorithm Description

In this section, an algorithm for controlling the collective locomotion of a group of e-
pucks equipped with the modular e-puck extension is described. Through a behaviour-
based approach, every robot in the group is motivated to move forward, to align with its
neighbours and to avoid obstacles. The summation of these three objectives determines
the speed of the robot’s motors. Regardless of their position within the larger structure,
each robot runs the same controller and uses only local communication.

Figure 7.2 shows a high level overview of the controller. The parts of the controller
corresponding to the alignment, obstacle avoidance and forward motion of the robots are
labelled. The inputs h0, h1, ..., hN represent the relative headings of a robot’s neighbours
and the positions of nearby obstacles. The outputs ML and MR correspond to the speed
of the robot’s left and right motors. The boxes labelled (7.1), (7.2) and (7.3) represent
equations of the same name which are introduced in the forthcoming sections.

2http://www.makerbot.com/support/thingomatic/
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Figure 7.2: A high-level overview of the collective locomotion controller. For clar-
ity, details of the inter-robot communication components are omitted. The alignment
behaviour is introduced in sections 7.3.1-7.3.2, the obstacle avoidance behaviour is in-
troduced in 7.3.3 and the forward behaviour is introduced in 7.3.4
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Figure 7.3: The positioning of the infrared sensors on board an e-puck robot (a) and
the mechanism for exchanging relative bearings between two modules (b)

As a collective, the robots are able to exhibit continuous coordinated motion within
an enclosed arena, whilst at the same time demonstrating robustness to perturbations
in their overall structure. Following the removal of one or more modules, whether
deliberate or accidental, the system is able to reconfigure and re-form either the original
structure, or an entirely new one. This process of self-assembly is not pre-programmed
but emerges due to a combination of factors including: the design of the structural
extension, the design of the controller, and the nature of the robots’ environment.

The controller makes extensive use of the e-puck’s IR sensors. The arrangement of
the eight sensors on a single e-puck is shown in figure 7.3a, the points marked ‘i’, ‘j’ and
‘k’ correspond to blind spots at which no sensors are present. The obstacle avoidance
behaviour uses the IR sensors for proximity detection whilst, with the help of the Li-
bIrcom library [66], the alignment behaviour uses them for short-range communication.
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The alignment behaviour is based upon the same principle of exchanging relative
bearings as both the LibIrcom library’s ‘synchronize’ example, and the alignment tech-
nique described by [65]. This method of alignment, which was originally designed to
synchronise the headings of stationary robots, is described shortly and hereafter re-
ferred to as static synchronisation. When considering non-stationary alignment, some
problems with the static synchronisation approach are identified and whilst introducing
a new alignment behaviour, some solutions are proposed. Following which, the obstacle
avoidance and forward bias behaviours are described and how the three parts of the
system are combined to produce the desired overall locomotion is detailed.

7.3.1 Static synchronisation

By exchanging relative bearings with one another, the static synchronisation approach
allows a group of stationary robots to converge to and maintain a common heading.
The approach relies on every robot broadcasting a unique ID and listening for the IDs
of others. Based upon the sensor at which a message is received, robots are able to
estimate the position of their neighbours as an angle relative to their own heading.
For every ID that a robot receives, a message is sent to the corresponding neighbour,
notifying it of the angle at which it was detected. As shown in figure 7.3b, using the
angle at which robot 2 was detected ‘a’, and the angle at which robot 2 detected robot
1 ‘b’, robot 1 may calculate the relative heading of robot 2 as h = a+π−b. The relative
heading of each of a robot’s neighbours is used to incrementally update the robot’s own
desired heading, which consequently determines whether a robot should turn left, turn
right, or remain stationary at each control cycle.

The approach is effective at synchronising the alignment of stationary modules, but
in preliminary experiments with mobile robots, it was observed that if the robots were
not able to converge to the same heading quickly enough, they had a tendency to break
apart. Two potential causes of this problem were identified, both of which relate to the
positioning of the sensors on the e-puck.

Firstly, because the angle between neighbouring sensors ranges from around 30◦ to
60◦, unless two sensors are perfectly aligned, the estimate of angles a and b is often
inaccurate. Although the static synchronisation approach incorporates mechanisms for
reducing this uncertainty, it is still present.

The second problem arises due to the large gaps between sensors 2, 3, 4 and 5.
When two robots are connected, the close proximity of the modules and the large gaps
between the sensors can create blind spots in some orientations (marked i, j and k in
figure 7.3a). As a result of these blind spots, in certain configurations, the time taken
to converge to a common heading is increased.

These two problems are further highlighted in figure 7.4. When sending messages via
infrared, it is possible to estimate the distance between the sending and receiving sensors
by measuring the intensity of the light received. Figure 7.4a maps the intensity of the IR
signal for messages sent between two robots, arranged at various orientations. The setup
used to gather this data is shown in figure 7.4b, where robot 1 is the receiving module
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Figure 7.4: An intensity heatmap of messages sent between two modules at various
orientations (a) and a diagram of the setup used to gather the data (b)

and robot 2 is the sender. The intensity of the signal associated with five received
messages was recorded at 10◦ intervals for every 1296 (36× 36) possible configurations
of the two robots. Where no message was received within a certain time limit, an
intensity of 0 was assigned. The mean value of the five measurements is plotted.

It can be noted from figure 7.4a that, due to the distribution of the sensors, when
the two robots are facing each other (bottom right) the intensity of the received signals
is high, but when two robots are facing away from each other (top left) the intensity is
often low. A high intensity value indicates that the sending and receiving sensors are
closely aligned, so when two robots are facing each other the measurement of angles a
and b is likely to be more accurate than when they are facing away.

7.3.2 Sensor-aware alignment

The new approach to alignment aims to tackle the problems identified in the previous
section, through greater awareness of the positioning and behaviour of the e-puck’s
sensors. Like the static synchronisation approach, robots still communicate with and
track the relative orientation of their neighbours. However, as well as making use of the
content and direction of the messages they receive, the signal intensity also influences
their behaviour.

In figure 7.4a, the lines at x = i, x = j and x = k correspond respectively to the
configurations at which the blind spots i, j and k of robot 2 are directly aligned with
robot 1. As shown in figure 7.4a, the intensity values of the messages received along and
adjacent to the lines i, j and k are low. It is possible to make use of this fact to infer
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Figure 7.5: Diagrams showing the strategy for correcting the misalignment of two
connected robots using both ‘virtual’ sensors (a) and paired sensors (b)

when the blind spot of a robot is aligned with its neighbour, and hence to determine
the position of the neighbour more accurately. Specifically, as shown in figure 7.5a,
when the message m received at sensor 2 reports a low intensity, it can be inferred that
blind spot k of robot 1 is facing robot 2. Whilst it is true that sensor 2 will also report
low intensity values when the point between sensors 1 and 2 is aligned with robot 2,
because this gap is smaller, these values will never drop as far they do in blind spot k.

A similar inference can be applied to blind spot i and its relation to sensor 5.
Notionally, it is possible to define two virtual sensors ‘2.5’ and ‘4.5’ which lie between
sensors 2-3 and 4-5 respectively. As shown in figure 7.5a, if a message is detected at
sensor 2.5, rather than be assumed to have originated from a point at an angle a, it
can more accurately be assumed to have originated from an angle a′, halfway between
sensors 2 and 3. Note that it is not possible to define a virtual sensor ‘3.5’ which lies
between sensors 3 and 4, because from the perspective of these sensors, the blind spots
i, j and k are indistinguishable. In figure 7.3a, the virtual sensors are represented by
the white circles at points i and k.

It should be noted that, using intensity values alone, it is difficult for a robot to
differentiate between scenarios in which its own blind spot is facing its neighbour, its
neighbour’s blind spot is facing it, or both blind spots are facing each other. This is not
a major concern, however, since in either scenario the reaction is the same, the robots
will turn towards each other. Furthermore, it may be noted that messages received from
neighbours that are not directly connected, i.e. neighbours positioned at a diagonal, will
always have lower intensity values. Since the LibIrcom library preferentially processes
high intensity messages, the proportion of messages received from indirect neighbours,
and thus the influence they exert, will be lower than that of direct neighbours. In the
worst case scenario, robots will over eagerly turn towards each other, but as is suggested
in section 7.6, this is not always detrimental.

To further improve the time taken for the robots to converge upon a common head-
ing, a new method for translating the relative headings of neighbours into motor com-
mands is also implemented. The method begins by calculating the average heading of
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all of the robot’s most recently detected neighbours. This value (η) is calculated using
equation 7.1, where (hi, hi+1, .., hn) are the relative headings of the robot’s neighbours,
k = n is the number of neighbours and γi is a weight, which in this case is set to 1.

η = arctan 2

(
i=k∑
i=0

sin(hi) · γi,
i=k∑
i=0

cos(hi) · γi

)
(7.1)

The average heading η, which will always be in the range −π < η ≤ π, is used to
determine the angular speed of the robot’s motors. As shown in figure 7.2, before being
applied to the motors, η is multiplied by a synchronisation parameter α, the larger this
value, the more aggressively the robots will attempt to turn. For the motor on the right
(MR), the α parameter is inverted, this means that for values of η < 0 the robot will
turn left and for values of η > 0 will turn right. For values of η = 0 and for control
cycles in which no messages are received, the turning speed of the robot’s motors is set
to zero.

In communicating the relative angle at which a neighbour was detected, robots
transmit the number of the sensor, rather than the angle itself. Furthermore, if |η| > π

2
,

to pre-empt the fact that the robot is about to make a fast turn, the sensor number
that is transmitted is incremented or decremented by one—depending upon whether
the robot is turning left or right.

In a further adaptation, based upon the knowledge that a high intensity signal is
indicative of a close alignment between two sensors, sensor pairings are defined which,
when the intensity of the signal is high, should not influence the movement of the
robots. For example, in figure 7.5b, if robot 1 receives a high intensity message on
sensor 3, that was sent from sensor 7 of robot 2, the relative heading of robot 2 will be
set to 0. Note that although the alignment between robots 1 and 2 in this scenario is
not perfect, it is considered ‘good enough’ for the task at hand, and preferential to the
robots continuously changing direction.

7.3.3 Obstacle Avoidance

Every sensor that has not received a message within the last few seconds, and is not
positioned next to a sensor that has received a message, contributes to obstacle avoid-
ance. Each contributing sensor which detects an obstacle closer than the avoidance
threshold τ creates a new desired heading in the opposing direction to the obstacle.
The distance to the detected object is used to assign a weight wi in the range (0, 1) to
each of these new headings. The closer the obstacle is, the larger the weight. These
headings are added to the relative headings of the robot’s neighbours using equation
7.1 with γi set to wi and k set to N , where N is the total number of headings from
both the obstacle avoidance and alignment behaviours. As described in section 7.3.2,
the average heading η is used to determine the speed of the robot’s motors.

This approach is equivalent to assuming that there is a neighbouring robot facing
every sensor that has detected an obstacle. The robots attempt to align with these
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imaginary neighbours in the same way that they align with real robots. For example,
if an obstacle was detected on the left hand side of a robot, the robot would react as
if there was another module directly facing this side, it would attempt to align with it,
and in doing so would turn right, therefore avoiding the obstacle. The only difference
between the robots reaction to obstacles and neighbouring robots, is that headings
derived from the presence of obstacles are weighted according to how far away they are,
with closer obstacles exerting a greater influence over alignment.

7.3.4 Forward Bias

In preliminary experiments, to ensure that the robots always moved forward, a small
positive bias was added to the speed of the robots motors. For structures containing only
a few robots, this bias, combined with the obstacle avoidance behaviour described above,
was sufficient to ensure that the robots remained synchronised whilst still obtaining
good coverage of the arena. However, when the number of robots was increased, a
more adaptive approach was required.

When the number of modules was first increased, it was observed that the forward
motion of the robots could have a negative effect on the robot’s alignment. In an
unsynchronised structure, it is not desirable for all of the individual robots to attempt
to move forwards. The forward motion of the robots reduces their turning rates, which
results in an increase in synchronisation time. Furthermore, in a structure containing
many modules with different headings, the forward motion of the individuals increases
the risk of the group breaking apart.

To handle this problem, the algorithm was modified so that the robot’s forward bias
is scaled in proportion to how well they believe themselves to be aligned—based upon
the known relative headings of their neighbours. Using equation 7.2, a synchronisation
score s is calculated by taking the average magnitude of theN headings (hi, hi+1, ..., hN)
provided by the obstacle avoidance and alignment behaviours, this value will be low for
well aligned robots and high otherwise. The score is then scaled using function B(s)
(7.3) and multiplied by the forward speed parameter β to determine how much bias to
add to the speed of the robot’s motors.

s =
1

N

i=N∑
i=0

|hi| (7.2)

B(s) =

{
0 : s ≥ π
π−s
π

: s < π
(7.3)

Robots with a low score, that is those which are well aligned, are consequently
assigned a larger forward bias than those with a high score. In a poorly synchronised
structure the scores will be high, meaning the forward motion will be less disruptive
and the robot’s rotary motion will dominate. Leading to faster alignment and reducing
the chances of the structure breaking apart.
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(a) (b)

Figure 7.6: Top down views of the arena used for the experiments, both with (a) and
without (b) information from the computer tracking software superimposed

7.4 Experimental Setup

The experiments detailed in the following sections were all conducted using the same
setup. Every experiment was performed within a small table-top arena, measuring
approximately 86 cm × 56 cm. The arena, shown in figure 7.6a, is surrounded by a
ring of white LEDs, however, in this work, the LEDs were only used during the final
experiment of section 7.7. The base of the arena is wooden, which provides good traction
for the e-puck’s rubber coated wheels, but is not so resistive that it will completely
prevent robots from ‘skidding’ if lateral forces are applied. An overhead camera was
used to record the experiments and tracking software was used to extract positional and
connectivity information from the scene. Some of the output from the tracking software
is shown in figure 7.6a, the blue circles highlight the robots currently being tracked
and the green links signify which robots are connected. The number of independent
structures detected is shown in the top left corner of the view.

The experiments reported here may be split into two classes, those in which the
robots start in a fully connected state and those in which they start disconnected. Sec-
tion 7.5, and the first part of section 7.7, cover those of the former class, whilst section
7.6, and the remainder of section 7.7, handle the latter. The 15 starting configurations
that were used for the first class of experiments are pictured and labelled in figure
7.7. In the experiments where the robots began disconnected, the modules were evenly
distributed within the arena and their headings were randomised at the start of each
run. In the experiments where the robots began connected, the structure was always
placed in the centre of the arena at the same orientation, but the underlying robots
were aligned and rotated at 10 different starting angles, each offset by 36◦. In total,
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Figure 7.7: The various different configurations used in the experiments

Parameter Description Value
A B

α Synchronisation weight 100 125
β Forward speed weight 20 50
τ Avoidance threshold 30 30

Table 7.2: The two parameter sets used in the experiments

280 independent runs were performed and ∼45 hours worth of data was collected.
The parameters used in the experiments are displayed in table 7.2. Parameter set

‘A’ was used only for the stationary alignment experiments reported in section 7.5.1 and
the preliminary collective locomotion experiments described at the start of section 7.6.
Following these experiments, the parameters were tweaked to produce set ‘B’, which
was then used for the remainder of the experiments. The values were chosen by trial
and error. Once satisfactory behaviour was observed, no further attempt was made to
optimise the parameters.

7.5 Collective Locomotion

In this section, the task of collective locomotion is investigated. In order to assess
the effectiveness of the alignment behaviour introduced in section 7.3.2, this section
begins by examining the sub-task of stationary alignment. The section then moves on
to investigate the full collective locomotion task.
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7.5.1 Stationary Alignment Results

In this set of experiments, the modified alignment behaviour introduced in section 7.3.2
is compared with that of the original static synchronisation strategy from the LibIrcom
library. Experiments were conducted using groups of two, three and four stationary
robots, arranged as shown in figure 7.8a.

For each controller and each arrangement, 20 individual runs were conducted. The
orientation of the robots was randomised at the start of each run and the absolute
heading of each robot was recorded at one second intervals over a period of 100 seconds.

To assess the robots’ ability to converge towards a common heading, the polarisation
metric from [65] is used. As shown by equation 7.4, the polarisation P of a group of
robots G is defined as the sum of the distance between the heading of every robot and
its angular nearest neighbour θann.

P (G) =
∑
i∈G

θann(i). (7.4)

Figures 7.8b-d plot the mean polarisation of the two approaches, for each of the
three module configurations. As is evident by the eventual low polarisation values in
all of the figures, in every experimental run, the modules were observed to converge to
and maintain a common heading. In comparing the two approaches, using the Wilcoxon
rank-sum test with a significance level of 0.05, it can be said that there is no significant
difference in polarisation over the final 20 seconds of each experiment. However, in
every configuration, it can be observed that convergence is faster for the experiments
utilising the new approach to alignment. Furthermore, during the convergence phase,
the variance in the polarisation of the static synchronisation approach is greater. In the
accompanying material, video 7.1 provides a comparison of the two different approaches
to stationary alignment.

7.5.2 Collective Locomotion Results

After integrating the obstacle avoidance and forward bias behaviours, the task of con-
trolling the collective locomotion of a group of mobile robots is now considered. For
each of the 15 starting configurations shown in figure 7.7, 10 independent runs were
performed, each lasting 10 minutes. If one or more modules became disconnected from
a structure, the run was terminated. As reported in the following section, 29 out of 150
runs ended in this manner. In every run, the positions of the individual modules, the
number of structures, and the number of modules in each structure was recorded. This
information was used to calculate the success rate, coverage, cohesion and speed for
each of the different configurations. The results of these experiments are summarised
in table 7.3, and analysed in more detail in the remainder of this section. Following on
from these experiments, the scalability of the approach is examined by considering linear
structures containing between one and six modules. Video 7.2 from the accompanying
material shows a variety of different structures performing collective locomotion.
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Figure 7.8: Graphs (b-d) plot the mean polarisation ± one standard deviation, for each
of the three configurations in (a). The static synchronisation approach is represented
by the dashed line and the lighter grey region, and the new approach is represented by
the solid line and the darker region
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Shape Moore von Neumann Speed (cm/s) Coverage Cohesion Runs

1A 0.00 0.00 0.57 [3.0e-5] 0.56 1.00 10/10
2A 1.00 1.00 0.47 [4.9e-4] 0.60 1.00 10/10
3A 2.00 1.33 0.39 [1.1e-4] 0.64 0.91 7/10
3B 1.33 1.33 0.35 [2.9e-4] 0.63 1.00 10/10
4A 3.00 2.00 0.34 [1.4e-4] 0.67 1.00 10/10
4B 2.50 1.50 0.33 [3.2e-4] 0.68 1.00 10/10
5A 2.80 1.60 0.26 [3.1e-3] 0.62 0.51 1/10
5B 3.20 1.60 0.25 [3.5e-4] 0.59 0.66 5/10
6A 3.67 2.33 0.23 [3.5e-4] 0.65 1.00 10/10
6B 3.33 2.00 0.23 [7.2e-4] 0.64 0.62 2/10
7A 4.00 2.29 0.20 [1.2e-4] 0.70 1.00 10/10
7B 2.86 1.71 0.22 [7.3e-4] 0.69 0.85 6/10
8A 4.00 2.50 0.20 [3.0e-4] 0.68 1.00 10/10
8B 3.00 2.00 0.19 [2.3e-4] 0.67 1.00 10/10
9A 4.44 2.67 0.16 [4.3e-4] 0.70 1.00 10/10

Total 121/150

Table 7.3: A summary of the results from the collective locomotion experiments. From
left to right, the columns display the name of shape; the average number of Moore
and von Neuman neighbours; the speed, coverage and cohesion scores (described in the
text); and the total number of runs successfully completed
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Figure 7.9: Plots tracing the centre of mass of each structure in the collective locomotion
experiments. Each plot combines data from 10 runs

Success rate

In this section, ‘success’ is defined as the ability of a structure to navigate the arena
for the full 10 minute duration of a run, whilst all of the modules remain connected
to one another in the same configuration in which they started. To account for any
inaccuracies in the tracking software, and to allow for minor breaks that are quickly
repaired, a break in the link between two modules is only acknowledged if it exists for
greater than one second. The results show that the approach is successful in the vast
majority of scenarios, even with structures containing up to nine modules. Out of 150
runs, across all 15 configurations, it was found that the robots were successful on 121
occasions and that 10 of the 15 configurations were successful 100% of the time.

Coverage

Figure 7.9 shows the area covered by the centre of mass of each structure across all 10
runs. It is observed that, in the single module configuration (1A), the robot is able to
obtain an even coverage of the entire arena3. As the number of robots is increased, it
naturally becomes harder for the centre of mass of the structures to reach the edges of
the arena. Despite not being able to reach the arena perimeter, and although coverage
is increasingly sparse, a relatively even coverage is still observed with configurations of
up to nine modules.

3For 1A, there is a bias towards the left-hand side of the arena. This is due to the fact that, in this
experiment, the heading of the robot was kept the same across all runs.
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To allow coverage to be analysed more quantitatively, the arena is split into 672
equal squares, each measuring approximately 7.18 cm2. The coverage value in table 7.3
is calculated as the percentage of these squares that the centre of mass of any module
in the structure has passed through4. It was expected that coverage would increase
inline with an increase in the number of modules, by virtue of the increase in surface
area. However, whilst there is a general trend of increasing coverage between 1A and
9A, it is not as striking as one might expect. This is highlighted by the fact that the
two 4 module structures obtain the same coverage score as the two 8 module structures,
despite having half as many modules. In the following sub-section, it is suggested that
the reason coverage does not scale directly with size, is related to the speed at which
structures of various sizes travel.

Speed

Speed is calculated by measuring the average distance travelled by each module in 0.5
seconds, summed over the course of a run and divided by the duration of the run. The
value in table 7.3 is averaged over all runs and the variance is shown alongside. In
general, it is observed that as the number of modules in a structure is increased, the
average speed at which the structure travels decreases. This may help explain why the
coverage of larger structures is lower than expected.

Figure 7.10a plots the mean average speed for structures of different sizes. The
results from configurations which contain the same number of modules are combined
into the same sample. Whiskers are used to show the extent of the mean values plus or
minus one standard deviation. Using the Wilcoxon rank-sum test with a significance
level of 0.05, it can be said that there is a statistically significant difference between all
pairs of samples in figure 7.10a.

It is suggested that the reason why larger structures travel slower than smaller ones
is because, in a larger structure, it takes the robots longer to synchronise their headings.
The problem is compounded by the fact that a larger structure will need to turn to avoid
obstacles more often than a smaller one, increasing the time in which the robots will
be out of synchronisation with one another. Furthermore, because the robots can only
ever determine the approximate heading of their neighbours, there will always be noise
in their measurements. Since the approach relies heavily on infrared communication, it
is also highly susceptible to errors caused by reflections or interference. With a greater
number of robots, the probability of such errors occurring will be larger, increasing
the level of noise and reducing the accuracy in the estimation of a neighbours heading.
With less accurate measurements, the time taken to reach a consensus can be expected
to increase further.

4It would be easy to achieve ‘better’ coverage by using fewer squares, however, the purpose of
this experiment was to compare the coverage of different configurations, not to measure the overall
performance. Therefore a value was deliberately chosen that was large enough to ensure that no
configuration was able to achieve a score of 1.0.
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Figure 7.10: Graphs showing the mean average speed (± one standard deviation) for
structures of different sizes (a) and the average number of von Neumann (dark grey
box) and Moore neighbours (dark grey box plus hatched box) in pairs of structures
containing 3, 5, 6 and 7 robots (b)

Cohesion

In order to analyse the ability of robots to remain connected with one another in more
detail, a ‘cohesion’ value is defined. The cohesion value is calculated by dividing the
total time in which the modules remain connected by the maximum available time.

Out of the 15 different structures, 10 were able to remain connected for the full
duration of every run, and are therefore assigned a cohesion value of 1.0. From the
remaining configurations, structures 5A and 6B were observed to be the least stable,
obtaining cohesion scores of 0.51 and 0.62 whilst remaining connected for the full du-
ration in only 1 and 2 of the 10 runs respectively. Structures 5B and 7B were the next
least stable, with scores of 0.66 and 0.85. Of all the structures with a success rate of less
than 100%, structure 3A was the most stable, remaining connected 91% of the time.

Structural similarities can be observed between all five configurations with a cohe-
sion score of less than 1.0. Note that the 3A pattern is repeated in all of these shapes.
However, the 3A pattern is also present in structures 4B, 7A and 8B, which each ob-
tained cohesion scores of 1.0. This implies that the 3A pattern alone does not represent
a universal motif of instability, and other factors such as the density and symmetry of
a shape may also have a role.

It was not possible to find a single metric which accurately predicts the stability
of a configuration purely from its geometric shape. Having attempted to use measures
including: the length of the perimeter, the number of loosely connected modules (those
with only one neighbour) and the elongation of the shape, it was eventually found
that, in comparing two structures of the same size, the average number of neighbours
provided the best estimate of stability.

In figure 7.10b, the average number of neighbours in a von Neumann neighbourhood
(dark grey box) and the average number in a Moore neighbourhood (dark grey box plus
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Figure 7.11: Graph (a) shows the relationship between the average speed and coverage
scores for linear chains of between one and six robots, whilst (b) shows the mean average
speed (± one standard deviation)

hatched box) is plotted for every configuration containing 3, 5, 6 or 7 modules. Within
each box the cohesion score for the corresponding shape is printed. In comparing
structures of the same size, it was found that in every case, the structure with the
larger cohesion value has at least as many von Neumann neighbours as the structure
with the lower cohesion value. When considering a Moore neighbourhood, it was found
that in every case, apart from structures containing 3 modules, the configuration with
the largest average number of neighbours has the largest cohesion score.

7.5.3 Scalability

To examine the scalability of the approach, three further experiments were performed
involving linear chains of four, five and six modules. By combining these results with
those of structures 1A, 2A and 3B, it is possible to observe how the system scales for
linear configurations of between one and six modules.

As shown in table 7.3, for chains containing one, two and three modules, the robots
remained connected for the full duration of every run. This was also true in the four
module case. For the five and six module cases, in one and two runs respectively, the
structures were not able to remain connected, resulting in cohesion scores of 0.95 and
0.92. It is observed that, as the number of modules is increased, the chances of them
remaining connected decreases.

Figure 7.11a plots the average speed against the coverage scores of each of the linear
structures. The graph shows that as the number of modules is increased, whilst the
average speed decreases, the coverage continues to increase.

Figure 7.11b plots the average speed of linear chains containing up to six modules.
As the number of modules is increased from one to three, a sharp drop in speed is
observed, however, in chains containing between four and six modules, the decrease in
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Figure 7.12: The pairwise distance between three robots recorded over a 10 minute
period (a) and still images corresponding to the points in time i and j (b)

speed begins to level off. Based upon a Wilcoxon rank-sum test with a significance level
of 0.05, it may be stated that the drop in performance between the four and six module
chains is not statistically significant. That is to say, the performance of the system is
not significantly affected by the addition of extra modules, indicating that the system
scales well with respect to speed. It is noted, however, that due to the small size of the
arena, whilst avoiding obstacles, larger structures spend a lot of their time stationary.
Different insights into the scalability of the system may be gained by experimenting
within a larger arena, where less time is spent avoiding obstacles.

7.6 Self-assembly

In preliminary collective locomotion experiments, using an earlier version of the algo-
rithm introduced in section 7.3, an interesting self-assembling behaviour was observed
which allowed a group of modules to reform if broken apart. In the earlier version of
the algorithm, the link between boxes (7.2) and (7.3) in figure 7.2 was not present and
the forward bias always took the same value as the forward speed parameter, equivalent
to assigning the robots a synchronisation score of 0. To examine this self-assembling
property further, three robots, each running the early version of the collective locomo-
tion algorithm with parameter set ‘A’, were placed in different corners of a small arena
and left to operate for 10 minutes.

In figure 7.12a, the average pairwise distance between each of the robots is plotted
over a 10 minute period. As can be seen in figure 7.12a, the robots start far away from
one another and gradually converge to a close proximity at around the 5 minute mark.
For the remainder of the experiment they remain within close proximity of each other.
As shown in figure 7.12b, at point i, two of the modules physically join together to form
a two module structure. Shortly after, at point j, the third module joins to complete
the 3A configuration from figure 7.7. The robots then remained in this configuration
until the end of the run.
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This self-assembling behaviour was not pre-programmed, it emerged purely due to
the interaction of the robots and their environment. Specifically, it is proposed that
it results from a combination of four factors. Firstly, the enclosed arena ensures that
robots never stray too far away from one another. Secondly, the alignment behaviour
ensures that the robots all head in a similar direction. Thirdly, the design of the e-
puck extension ensures that if two robots come into close proximity, their magnetic
docking interfaces will cause them to ‘snap’ together. Finally, although there is no
explicit cohesion behaviour, the implementation of virtual sensors described in section
7.3.2 may cause robots to move towards one another when they mistakenly believe
themselves to be aligned with the blind spot of another robot.

When robots are near to one another, it is stated that the virtual sensors have
the effect of producing a more accurate and stable form of alignment, but that when
the robots are far apart, the virtual sensors cause them to turn towards one another,
resulting in a cohesive behaviour. In this section, a new experiment is described in
order to test whether virtual sensors really do benefit self-assembly.

7.6.1 Experimental Setup

Beginning with a group of separate individuals, the time taken for the robots to assemble
into a single structure is measured. The performance of three different systems is tested,
one in which virtual sensors are used (A), one in which virtual sensors are not used but
the rest of the alignment behaviour is present (B), and a control experiment in which
no form of alignment is implemented and the robots simply perform wandering (C).

For each system, 20 experimental runs were performed, half of which involved five
robots, and half of which involved ten. Data was recorded for ten minutes of every run,
regardless of whether the robots successfully assembled into a single structure. The
number of times in which the system was able to successfully assemble, and the time
taken to do so was recorded. Unsuccessful runs were assigned the maximum completion
time of 600 s. To test whether there is a significant difference between the time taken to
self-assemble in systems which use the virtual sensor approach (A) and systems which
do not (B and C), the following four null hypotheses are presented:

H7.10 : There is no difference in the time taken by five robots using system
A and five robots using B to self-assemble into a single structure

H7.20 : There is no difference in the time taken by five robots using system
A and five robots using C to self-assemble into a single structure

H7.30 : There is no difference in the time taken by ten robots using system
A and ten robots using B to self-assemble into a single structure

H7.40 : There is no difference in the time taken by ten robots using system
A and ten robots using C to self-assemble into a single structure
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# System Time (s) # Structures (final 300 s) Runs
mean median std. mean median std.

5 A 245.40 255.00 64.93 1.01 1.00 0.03 10/10
5 B 398.60 399.00 133.30 1.44 1.33 0.42 8/10
5 C 573.15 600.00 84.91 2.13 2.03 0.47 1/10
10 A 381.15 397.00 178.47 1.50 1.37 0.42 7/10
10 B 411.30 544.00 225.49 2.19 2.05 0.54 5/10
10 C 600.00 600.00 0.00 3.57 3.68 0.58 0/10

Table 7.4: A summary of results from the self-assembly experiments. From left to right
the columns show the number of robots, the system used, the average assembly time,
the average number of structures assembled during the final 300 s of each run, and the
number of runs in which assembly was successful

7.6.2 Analysis

The number of times in which the assembly process was successfully, and the average
time taken to do so, is reported in table 7.4. It is observed that, with both five and ten
robots, the system in which virtual sensors are used always outperforms the other two,
both in terms of the mean assembly time and the number of successful runs. In the five
robot scenario, system A was able to assemble into a single structure during every run
and did so on average 2.5 minutes quicker than system B. System B was successful in
completing assembly on seven occasions, whilst system C, purely by chance, was able
to fully assemble on one occasion. In the accompanying material, video 7.3 shows a
group of five robots using system A to perform self-assembly. With ten robots, system
A was able to assemble into a single structure on seven occasions, and did so on average
30 seconds quicker than system B, which completed assembly on five occasions. In the
ten robot case, system C was never able to successfully complete assembly.

Figure 7.13 plots the assembly time for systems A andB (top), and the mean number
of structures over time for all three systems, both for the five robot (a) and ten robot
(b) scenarios. In general, it is observed that the mean number of structures present
during the experiments of system A is lower than for systems B and C, however, the
difference is much less in the ten robot setting than in the five robot setting, specifically
during the first 200 seconds.

Behaviourally, systems A and B are first observed to form small structures. These
structures combine with other robots to form larger groups, eventually resulting in the
formation of a single coherent structure. With system C, chance collisions are observed
that lead to the formation of static structures. Without an alignment behaviour the
robots are not able to perform collective locomotion, but do not move with sufficient
force to break apart. Therefore, after forming structures, the robots in system C simply
remain stationary for the remainder of the run.

For the five robot scenario, using the Wilcoxon rank-sum test with a significance
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Figure 7.13: Boxplots showing the assembly time for systems A and B (top), and
graphs showing the mean number of structures over time (bottom), both for experiments
containing five (a) and 10 robots (b). In the lower charts, the grey line corresponds to
system A, the dotted line to B and the black line to C
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level of 0.05 it is possible to reject both H7.10 and H7.20, and accept the alternatives.
That is to say, with five robots, there is a significant difference between the time taken
by system A and systems B and C to self-assemble.

For the ten robot scenario, in comparing systems A and B, it is clear from the
large overlapping of the boxplots in figure 7.13b that it is not possible to reject H7.30.
This is confirmed using the Wilcoxon rank-sum test with a significance level of 0.05.
Although the average (both mean and median) assembly time of system A is shown to
be less than that of system B in table 7.4, the difference between the medians is not
statistically significant. It is possible, however, to reject H7.40, and state that there is
a significant difference in the time taken by systems A and C to self-assemble into a
single structure.

In comparing systems A and B, it is suggested that the reason why a significant
improvement in performance is only observed in the five robot scenario, may be due to
the population density of robots within the arena. In the case of ten robots, with the
modules packed twice as densely, the probability of two robots colliding purely by chance
is greatly increased, potentially masking any advantage that the virtual sensors provide.
This is supported by the graph in figure 7.13b in which, over the first 50 seconds, the
mean number of structures follows the same trend for all three experiments. As the
robots begin to cluster, however, the probability of chance collisions is reduced and as
observed during the period from 300 seconds onwards, system A begins to outperform
system B, which in turn out performs system C.

Another reason that a significant difference between the assembly time of systems A
and B is not observed when using ten robots, may be due to the fact that uncompleted
runs are assigned a completion time of 600 s. Assigning a value of 600 is a very
conservative estimate. Allowing the runs to continue for longer would reveal a more
accurate representation of the average time taken to assemble a structure. Based upon
the fact that after 600 s, system A was successful on more occasions than B, and that
the mean number of structures in figure 7.13b is consistently lower for A, if all runs
were allowed to continue until completion A would be expected to perform significantly
better than B.

To avoid the problems discussed above, a new metric is devised to analyse the
performance of groups of ten robots. Firstly, to prevent the problem that a high density
of robots may simplify the task to the point of masking the benefits of the virtual
sensors, the system is analysed only during the final 300 s of each run. Secondly,
to allow the performance of uncompleted runs to be assessed more fairly, instead of
measuring the time taken until completion, the average number of structures assembled
at any point during the final 300 s of a run is measured. For this new metric, a fifth
hypothesis is proposed:

H7.50 : There is no difference in the mean number of structures assembled
by ten robots during the final 300 s of runs involving systems A and B

As shown in table 7.4, in comparing groups of ten robots using systems A and B, it
is observed that the groups using system A have both lower mean and median values
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for the number of structures assembled during the final 300 s of each run. Using the
Wilcoxon rank-sum test with a significance level of 0.05 it is possible to reject H7.50
and confirm that there is a significant difference in the average number of structures
assembled by groups of robots that use virtual sensors (A) and groups that do not (B).

7.7 Self-reconfiguration

In order to test the behaviour of the robots in a more complex setting, a dynamic com-
ponent is introduced into the environment. As shown in figure 7.6a, this is realised as
a ring of LEDs surrounding the arena. The LEDs may be viewed as a proxy for more
complex real-world perturbations, such as changes in terrain or weather conditions. In
order to cope with such changes, robots must be able to adapt their behaviour. In
this simplified setting, the switch between self-assembling and self-disassembling be-
haviours is examined in response to a change in the state of the surrounding LEDs.
This section begins by describing a self-disassembly behaviour, before going on to de-
scribe experiments, inspired by the work of [190], which combine self-disassembly with
the previously introduced self-assembly behaviour, to produce a simple form of envi-
ronment driven self-reconfiguration.

7.7.1 Self-disassembly

As with the self-assembly behaviour, in the self-disassembly strategy, the robots contin-
uously broadcast their IDs and listen for the IDs of their neighbours. Robots can detect
whether they are connected to another module based upon the intensity of the messages
that they receive. If a robot determines that it is connected to at least one other mod-
ule, it will, with equal probabilities, either set both motors to the maximum forward
value, both to the maximum reverse value, or both to alternate maximum values. The
resulting ‘shaking’ motion is normally sufficient to break the connection between two
modules. If a robot determines that it is not connected to any other modules, it will
simply wander in the arena, avoiding obstacles and other robots.

To test this behaviour a series of experiments were conducted, using a variety of
different structures. Specifically, all of the configurations from figure 7.7 that contain
either four, five or six modules were investigated. In each experiment, the number of
structures, the average number of robots in each structure and the time taken by the
robots to completely disassemble was measured.

Figure 7.14 plots the mean number of structures and the mean size of each structure
over the first 150 seconds of each five minute run. In every case, the number of structures
is observed to increase from one to N , where N is the number of robots in the initial
structure. Naturally, as the number of structures increases, the average size of the
structures can be observed to decrease.

As expected, with more robots, the time taken to fully disassemble is observed to be
greater. This is because more connections must be broken between neighbouring robots
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Figure 7.14: The average number of structures (solid line) and the average structure
size (dashed line) over time. Results are presented for six different structures, two of
each containing four, five and six robots. In each plot, the dark lines correspond to the
‘A’ shapes in figure 7.7, whilst the lighter lines correspond to ‘B’ shapes
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and because, in a more densely packed environment, there is more chance of robots
accidentally rejoining with other modules. In comparing structures of the same size, it
is also observed that the structure with the greater number of von Neumann neighbours
(corresponding to the number of physical connections) takes longer to disassemble. This
is most evident in the case of structures 4A and 4B (figure 7.14 top).

Unfortunately, due to fabrication defects which led to variations in the positioning
of the magnets, certain sides of certain robots appear to be more ‘sticky’ than others.
On two occasions, in the experiments involving six robots, this led to runs in which the
robots were not able to completely disassemble, as one pair of robots could not be sep-
arated. This introduced large outliers into the data. These outliers, many times larger
than the mean, make statistical analysis difficult with such small samples, however it
can still be observed from figure 7.14 that the general desired behaviour is present.

7.7.2 Self-reconfiguration

To investigate environment driven self-reconfiguration, 10 independent runs were per-
formed, each lasting for 11 minutes and involving six modules. At the start of each
run, the robots were spread evenly throughout the arena and began by executing the
self-disassembly behaviour. After 50 seconds, the robots were triggered to switch from
disassembly to assembly and remained in this state for a further five minutes. They
then switched back to disassembly until the end of the run. The number of structures
present was recorded over the duration of each run, the mean values are plotted in
figure 7.15 ± one standard deviation. For simplicity, repeatability, and to allow the
experiments to be fully automated, the robots’ internal clocks were used to trigger the
switch between assembling and disassembling. However, as shown in figure 7.16, this
behaviour has also been demonstrated using the LED ring as a trigger.

The light grey area in figure 7.15 marks the five minute period during which the self-
assembly behaviour was active. During this period, the average number of structures
steadily decreases, flattening out at just below two. In 7 out of 10 runs, this five
minute period was sufficient for all of the robots to assemble into a single structure,
in the other three cases, the robots assembled into two separate structures. After the
robots switched back to the disassembly state, in all but one of the runs, they were
able to completely disassemble into six independent structures. After disassembling,
the robots did not always remain disassociated until the end of the run, with chance
collisions occasionally and temporarily bringing modules back together. This explains
the variation in the mean number of structures over the last 200 s.

In contrast to the results presented in figure 7.15, where an internal timer was
used to switch between assembling and disassembling behaviours, figure 7.16 provides
screenshots from a video of an experiment in which the arena’s LED ring was used to
trigger reconfiguration. The robots sense the LED ring by tracking changes in ambient
lighting conditions using their IR sensors. Shortly after startup, a threshold value is
established for each sensor by monitoring ambient light with the LED ring turned off.
At each timestep, by comparing the ambient light with their threshold value, each
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Figure 7.16: Still images from a video of environment driven self-reconfiguration
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sensor provides one vote to determine whether or not the robot should switch between
assembling and disassembling. The majority vote determines the robot’s behaviour.

As shown in figure 7.16, the robots begin in a disconnected state, executing the
self-assembly behaviour (a). At first they form two independent structures (b) which
later collide to form a single structure (c). At which point the LED ring is turned
on (d) triggering the switch from assembly to disassembly and causing the robots to
split apart (e). Eventually, the robots reach a completely disassembled state (f), at
which point the whole process may be restarted by turning off the LEDs. The video
from figure 7.16 is available in the accompanying material (video 7.4) and can also be
viewed, along with others, on the project website5.

7.8 Summary and Future Work

In this chapter, an extension was presented for the e-puck robot that transforms what is
traditionally a swarm robotic platform into a mobile self-reconfigurable modular robotic
system. An algorithm for controlling the collective locomotion of a group of robots
equipped with the modular e-puck extension was also presented. As a consequence of
the novel use of ‘virtual sensors’, without alteration, the same collective locomotion
strategy was used to demonstrate self-assembling and self-reconfiguring behaviours.

In section 7.5, the collective locomotion performance of robots arranged in 15 differ-
ent structural configurations was examined. In order to fully analyse the behaviour of
the alignment strategy, a broad survey covering a variety of different types of structure
was conducted. To minimise the risk of structures breaking apart, the speed of the in-
dividual robots was restricted, as a result, the speed at which the collective structures
travel is relatively slow in comparison to the maximum speed of the e-puck. Despite
their low speed, it was found that in the majority of cases, even with structures con-
taining up to nine modules, the robots were able to successfully explore an enclosed
arena whilst avoiding obstacles. Certain configurations were observed to be more stable
than others and it was found that a good (though not universal) relative measure for
the stability of similar-sized structures, is the average number of neighbours that the
individual modules possess. The system showed promise with regards to its scalability,
but it is acknowledged that further insight may be gained by conducting experiments
within a larger arena, and using a greater number of modules.

In section 7.6, the robot’s ability to perform self-assembly was analysed, focusing on
how this behaviour relates to the implementation of ‘virtual sensors’. Virtual sensors are
imaginary sensors that are notionally located in the blind spots between real sensors and
allow the position of neighbouring robots to be inferred more accurately by analysing
the intensity of the messages received by the real sensors. In a sparse environment with
five modules, robots utilising the virtual sensor approach were found to self-assemble
into a single structure significantly quicker than robots that did not utilise virtual
sensors. In a denser environment with ten robots, the advantage of virtual sensors was

5http://www.elec.york.ac.uk/research/projects/Modular_e_puck_Extension.html



196 7.8. Summary and Future Work

less obvious, however, in analysing the number of structures formed during the final
300 s of each run, it was found that the robots were able to assemble into significantly
fewer groups when using the virtual sensor approach. Whilst it is accepted that a
more directed form of self-assembly could outperform the strategy from this chapter
in terms of speed, this would likely be at the expense of simplicity. Investigating the
possibility of more directed forms of self-assembly using the modular e-puck extension
would represent an interesting area of future work.

Finally, in section 7.7, a self-disassembling behaviour was described. By combining
this behaviour with self-assembly, the more complex task of self-reconfiguration within
a changing environment was investigated. Using a ring of LEDs as an environmental
trigger, it was demonstrated that the robots were able to successfully switch between
self-assembling and self-disassembling behaviours when changes in the ambient lighting
conditions were detected.

In comparison to similar platforms, such as the X-Cell [76], DFA [141], s-bot [121]
and foot-bot [40] robots, the modular e-puck extension is one of the cheapest and
simplest available. Furthermore, it is one of few modular robotic systems for which the
designs have been made freely available online.

The simplistic design of the extension means that, like the DFA system, the platform
is well suited to the type of passive self-assembly that is more commonly utilised by
externally-propelled systems. An interesting consequence of which is that the robots
do not require a seed module in order to self-assemble. Assembly is performed in a
bottom-up fashion, in which the robots first form pairs or small groups, and only later
combine to form single structures.

Simplicity, however, comes at a cost, and the reduced sensing and actuating capa-
bilities of the platform present certain limitations. For example, although the freedom
of the rotating frame is beneficial in terms of increasing the flexibility of the system,
the lack of control and the absence of the ability to sense its current orientation make
the formation of specific configurations difficult. In contrast to the modular e-puck
extension, the X-Cell, s-bot and foot-bot platforms, which also possess rotating turrets,
allow for fine-grained control and sensing of the orientation of their elements.

Another limitation of the platform is that, at present, the only method that has been
developed to allow the robots to disassemble, is the random shaking approach described
in section 7.7.1. Whilst this works well when it is desirable for an entire structure to
be separated, it is harder to utilise this behaviour in order to remove only one or two
modules, for example, during partial self-reconfiguration. The same problem is suffered
by the DFA platform, but is circumvented by the X-Cell, s-bot, and foot-bot platforms,
in which it is possible to actively control the connection between two modules without
disrupting the connections of neighbouring robots. A related problem, as shown in
section 7.5, is that it is not always possible to guarantee that the robots will remain
connected, especially as the number of modules is increased. This problem is also solved
by the X-Cell, s-bot and foot-bot modules through the use of active docking elements.

As highlighted in chapter 1, the design of the modular e-puck extension was partially
motivated by the perceived lack of easily accessible platforms within the field of self-
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reconfigurable modular robotics. In chapter 1, the importance of fault tolerance to the
long-term survival of self-reconfigurable modular robotic systems was also highlighted.
In chapter 4, it was suggested that for a system to demonstrate high levels of fault
tolerance, greater plasticity in the conformation of the system is required. Through its
use of passive docking, the modular e-puck extension is able to provide such plasticity.

In chapter 5, an energy foraging strategy was introduced in which robots were able
to share energy by forming small ad-hoc structures. However, this work was conducted
entirely within simulation. In the future, it would be desirable to test such behaviours
on a physical robotic system. Given the simplicity and ease with which robots equipped
with the modular e-puck extension may form ad-hoc structures, this platform represents
a viable low-cost system for investigating such behaviours.

In chapter 6, a self-repair strategy was introduced that was designed to work with
the Symbricator platform. Implementing a self-repair strategy for the modular e-puck
extension would represent another interesting avenue of future work. However, for
robots equipped with the modular e-puck extension to perform self-repair, they would
first need to be able to demonstrate a more directed form of self-assembly and be
capable of forming pre-determined configurations. This may be achieved in an implicit
manner by using local alignment rules that have a natural tendency to produce one
type of structure over another, or in an explicit manner in which the modules possess
a detailed representation of their own structure and use signalling methods to recruit
robots at the required locations. Depending upon the method employed, hardware
extensions may be necessary. For example, a rotational sensor would make it easier
for the robots to determine the relative heading of their neighbours. Furthermore, an
actuator for controlling the rotation of the frame, and devices for signalling on specific
sides of a module, would aid in directed self-assembly.

In summary, the modular e-puck extension was designed to transform the e-puck
robot into a self-reconfigurable modular robotics system. A novel control strategy
was developed for the platform which exploits the physical positioning of the sensors
on board the e-puck robot. The extension has been used to demonstrate collective
locomotion, self-assembly, self-disassembly and self-reconfiguration, both within static
and dynamic environments. It has been shown that the platform is capable of providing
meaningful experimental results to non-trivial problems and that the simple control
strategies developed scale to structures containing up to ten modules. It is concluded
that the modular e-puck extension represents a viable, low-cost, platform for research
into self-reconfigurable modular robotics.



Chapter 8

Conclusions

In this chapter, the main findings and contributions of this thesis are summarised
and its primary conclusions are presented. Specifically, in section 8.1, an individual
summary of each of the proceeding chapters is provided and the main contributions
of each chapter are highlighted. In section 8.2, the general hypothesis introduced in
chapter 1 is revisited and how the initial aims of this thesis were met is discussed.
Finally, in section 8.3, some potential areas of future work are suggested.

8.1 Summary and Contribution

This thesis may be divided into three parts. Chapters 2-3 introduced the necessary back-
ground information and reviewed the topics of fault tolerance and self-reconfigurable
modular robotic systems. Chapter 4 studied the reliability of an existing morphogene-
sis controller and laid the foundations for chapters 5 and 6, in which algorithms were
developed for detecting faults and recovering from failures that may occur during mor-
phogenesis. Finally, chapter 7 presented the design of a new self-reconfigurable modular
robotic system which addressed some of the issues identified in chapters 4-6 and pro-
vided a new platform for investigating self-assembling and self-reconfiguring behaviours.
Below, each of the proceeding chapters (excluding the introduction) is summarised in
detail and the main contributions of this thesis are identified:

Chapter 2 - Fault Tolerant Autonomous Robotics This chapter reviewed previ-
ous work into analysing the reliability of robotic systems, detecting faults within
autonomous robots and recovering from failures within collective robotic systems.
Of particular relevance to this thesis was the reliability study of [193], the anomaly
detection algorithm of [120] and the self-repair strategies of [24, 179] and [153].

Contribution A review of fault tolerance in autonomous robotic systems. The
review highlighted the previous approaches to fault detection, failure recovery and
reliability analysis which inspired the approaches developed in chapters 5-7.
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Chapter 3 - Self-reconfigurable Modular Robotics This chapter provided an ex-
tensive review of the field of self-reconfigurable modular robotics, focusing in par-
ticular on the robotic hardware. The review was split in to four sections, each
covering one of the four types of system identified in the taxonomy of [207]: chain,
lattice, hybrid and mobile. The Symbricator platform and the modular e-puck ex-
tension were both identified as mobile forms of self-reconfigurable modular robotic
system. In this thesis, the work conducted using the Symbricator platform was
said to bear greatest relevance to the Fracta [124] and CKBot [208] systems. The
Catom [57], X-Cell [76] and DFA [141] robots, meanwhile, were identified as most
pertinent to the modular e-puck extension.

Contribution A review of the field of self-reconfigurable modular robotics. The
review identified the various different types of locomotion, communication and
docking employed by existing self-reconfigurable modular robots, many of which
influenced the design of the new platform introduced in chapter 7.

Chapter 4 - Reliability Analysis and Morphogenesis This chapter introduced a
previously developed morphogenesis controller, designed to allow a group of Sym-
bricator robots to autonomously assemble into a robotic structure of predeter-
mined size and shape [108]. The reliability of the controller was analysed using
two techniques from the field of reliability engineering: Failure Mode and Effect
Analysis (FMEA) and Fault Tree Analysis (FTA). Both techniques were shown
to be effective at highlighting when and how the system may fail and were each
identified to have their own advantages and disadvantages. FMEA was said to be
capable of providing a good overview of a system’s reliability but did not easily
reveal which combinations of component failures could lead to a system failure.
FTA was observed to be capable of revealing the specific details of system failures
but the complexity of self-reconfigurable modular robotic systems limited its ap-
plicability. In the controller under study, a total systems failure was identified to
be the most detrimental hazard. Weaknesses were also identified in the system’s
over reliance on wired communications. More generally, the lack of plasticity in
self-reconfigurable modular robotic systems was highlighted as a vulnerability.

Contribution A reliability study of the morphogenesis controller from [108],
including the first known application of Failure Mode and Effect Analysis (FMEA)
and Fault Tree Analysis (FTA) to a self-reconfigurable modular robotic system.
A discussion on the suitability of applying such techniques in this context.

Chapter 5 - Energy Foraging and Anomaly Detection This chapter introduced
a new energy foraging strategy which allows a group of robots to share energy
with one another by forming ad-hoc multi-robot structures. An adapted version
of the modified Dendritic Cell Algorithm (mDCA) from [120] was also presented.
Improvements were made to the mDCA and its supporting framework and its pa-
rameters were optimised using multi-objective optimisation. The adapted mDCA
was compared with a version designed to emulate the original algorithm and was
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shown to significantly outperform the original both in terms of classification ac-
curacy and evolutionary progress. The two systems were also compared with a
state of the art Support Vector Machine (SVM) based approach. The SVM based
approach performed better than both versions of the mDCA in terms of classifica-
tion accuracy but was significantly slower than the mDCA in terms of its run-time
speed. The energy foraging strategy and anomaly detection systems were then
combined and the task of long-term survival was investigated using a simplified
version of the 100 Robots 100 Days grand challenge. The mDCA and SVM based
systems were shown to perform significantly better than systems with no anomaly
detection and no energy sharing, and on a comparable level to a system with an
idealised form of anomaly detection. An interesting result was observed when the
FPR of the anomaly detection systems were varied. As the FPR was increased,
despite the SVM based approach having a larger TPR, its performance started
to drop below that of the mDCA. The reason for this, it was suggested, was due
to the cost of recovery outweighing the cost of tolerating anomalies.

Contribution Improvements to the modified Dendritic Cell Algorithm (mDCA)
and its supporting framework; increasing the number of features that that algo-
rithm may use to classify data and improving the realism of the robot’s sensors
and fault models. Optimisation of the mDCA parameters using NSGA-II and
a comparison of its classification performance with a Support Vector Machine
(SVM) based approach. The development of an energy foraging and energy shar-
ing strategy that allows multiple robots to simultaneously recharge themselves
at power sockets or provide energy for other modules. The integration of en-
ergy foraging, anomaly detection and fault recovery into a single system and a
demonstration that, during extended periods of operation, these behaviours can
significantly improve the robots’ chances of survival.

Chapter 6 - Self-repairing Robotic Structures This chapter introduced a recov-
ery strategy to augment the morphogenesis controller studied in chapter 4. The
strategy was designed to allow a self-reconfigurable modular robotic system to
continue operating, despite the presence of failed individuals. Following the in-
troduction of a failure, the strategy works by isolating and removing the failed
module, before rebuilding the remainder of the structure in the most efficient
manner. A Symbricator-specific implementation of the strategy was described
and results from both simulated and real robot experiments were reported. In
simulation, the strategy was shown to perform significantly better than a naive
recovery approach in which the structures were completely disassembled before
being rebuilt from scratch. The self-repair strategy was shown to be particularly
advantageous when assembling larger structures. A metric was introduced for
classifying structural configurations and the relationship between this value and
the speed of self-repair was discussed. As a proof of concept, several of the key
properties of the strategy were demonstrated using the Symbricator robots.
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Contribution The development of a new self-repair strategy for providing fault
tolerant morphogenesis to self-reconfigurable modular robotic systems. The strat-
egy relies on the robots isolating, removing and replacing failed modules with
functional spares, without having to completely disassemble the structure and
without requiring the failed module to be aware that a failure has occurred. In
contrast to other similar approaches the strategy produces an exact copy of the
original structure, rather than just an approximation. The introduction of a new
metric for classifying robotic structures which is shown to be a good predictor
of how well the self-repair strategy will perform on a given structure. An im-
plementation of the strategy for the Symbricator platform. A demonstration of
the strategy using real physical robots. The development of a generic reshaping
behaviour for transforming between any two structural configurations.

Chapter 7 - Self-assembling and Self-reconfiguring Robotic Structures This
chapter described the design and development of a new extension for the e-puck
robot. The extension transforms what is traditionally a swarm robotic platform
into a self-reconfigurable modular robotic system. The extension consists of a
square frame and four magnetic docking interfaces, which sits on top of an e-puck
and is able to rotate freely around the central axis of the robot. An algorithm was
developed for controlling the collective locomotion of a group of e-pucks equipped
with the extension. The algorithm relied on the novel use of ‘virtual sensors’
which allowed to robots to infer the headings of the neighbours more accurately
by measuring the intensity of the infrared signals that they received. The success
rate, coverage, cohesion, speed and scalability of the approach was investigated in
detail, using a wide range of different structural configurations. With no alteration
to the underlying algorithm, the system was used to demonstrate self-assembly.
With the addition of a self-disassembling behaviour, a form of environment driven
self-reconfiguration was demonstrated. It was concluded that extension represents
a viable, low-cost platform for investigating the interesting properties of self-
reconfigurable modular robotic systems, at an abstract level.

Contribution The design of the modular e-puck extension, a new low-cost self-
reconfigurable modular robotic system which extends the existing e-puck plat-
form. The platform is cheaper and more accessible than any of the current alter-
natives and all of the designs are made freely available online. The development
of a new collective locomotion behaviour which makes novel use the e-puck’s in-
frared sensors to infer the headings of other robots. The development of a new
distributed self-assembly algorithm which does not require a seed module. In
contrast to many other mobile self-reconfigurable systems, in order to assemble
the robots first form pairs or triples and only later combine to generate larger
structures. The development of a new self-disassembly behaviour which, when
combined with the self-assembly algorithm, is used to demonstrate a new form of
environment driven self-reconfiguration.
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8.2 Concluding Remarks

At the beginning of this thesis, the task of autonomous search and rescue (SAR) was
highlighted as a potential scenario which could, in the future, benefit from the use of
self-reconfigurable modular robotic systems. Specifically, it was stated that, following a
natural disaster, deploying a modular robotic system to search for survivors or monitor
environmental conditions, could help to improve the survival rate whilst, at the same
time, reducing the risks posed to rescue workers and reducing the financial costs.

One of the most commonly cited advantages of self-reconfigurable modular robotic
systems is their high levels of adaptivity. In chapter 1, it was said that the ability to
adapt would allow such systems to operate well in dynamic unstructured environments.
However, it was also highlighted that if self-reconfigurable modular robotic systems are
to be deployed in the real world, they will need to demonstrate the ability to survive
autonomously for extended periods of time. To do so, will require the robots to exhibit
high degrees of adaptivity to changes in their environment, and high levels of reliability
with regards to the presence of failures and faulty individuals. Such adaptivity, it was
stated, may be obtained through the development of fault tolerant approaches to self-
reconfiguration and morphogenesis. The main aim of this thesis, captured within the
following hypothesis, was to study and develop such behaviours.

Hypothesis: The long-term autonomy of self-reconfigurable modular robotic
systems can be improved through the study and development of distributed
approaches to fault tolerant morphogenesis. This may be achieved through
the design of new robotic platforms, through the study of existing systems,
through the development of algorithms for detecting faults in robotic mod-
ules, and through the development of strategies for recovering from failures.

In chapter 4, the reliability of an existing approach to morphogenesis was studied in
order to highlight areas where its fault tolerance could be improved. In chapter 5, it was
shown that the number of surviving robots and the amount of stored energy was con-
sistently greater in systems equipped with methods for sharing energy, detecting faults
and recovering from failures. In chapters 6 and 7, new approaches to collective locomo-
tion, self-repair, self-assembly, self-disassembly and self-reconfiguration were developed
and a new platform extension for investigating such behaviours was introduced.

Based upon these contributions, it is believed that all of the aims of this thesis have
been met and it has been demonstrated that the long-term survival of self-reconfigurable
modular robotic systems can be improved through the study and development of dis-
tributed approaches to fault tolerant morphogenesis.

8.3 Future Work

Throughout this thesis, several interesting areas of future work have been highlighted.
These area can be categorised into three groups: experimental, theoretical and incre-
mental. The experimental category concerns areas of future work that can be conducted
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by performing further experiments with the existing algorithms and techniques. The
theoretical group focuses on the insights that may be gained by studying the existing ap-
proaches from a theoretical standpoint. Finally, the incremental category concerns the
suggested improvements that could be made to the existing algorithms and approaches.
Some areas of future work from each one of these three categories are summarised below:

Experimental In chapter 5, it was suggested that further insight could be gained into
the performance of the mDCA by optimising its parameters using a greater number of
objectives. For example, different measures of classification accuracy could be used or
the run-time speed and memory requirements of the approach could be considered.

It was also suggested that the analysis of the energy foraging and energy sharing
strategy would benefit from further repeated runs of the long-term survival experiments.
Due to the fact that the work in chapter 5 was conducted entirely within simulation,
in chapter 7, it was later proposed that the modular e-puck extension could be used
to test the energy sharing approach within a real-world environment. Parallels were
drawn between the ability of robots equipped with the extension to form small ad-hoc
structures and the groups formed by robots when sharing energy.

Similarly, in chapter 6, it was suggested that the self-repair strategy could be sub-
jected to further experimental tests using the real Symbricator robots. Specifically,
with the aim of replicating the Robot3D experiments using real hardware.

Finally, in chapter 7, it was proposed that the scalability of the collective locomotion
controller could be analysed better if further experiments were conducted within a
larger arena. Therefore preventing the time that the robots spend avoiding obstacles
from dominating the results.

Theoretical In chapter 4, it was stated that the complexity of the morphogenesis con-
troller made it difficult to study in detail using Fault Tree Analysis (FTA). To address
this issue, it was suggested that Dynamic Fault Trees (DFTs), or other mathematical
modelling techniques, could be used to help provided further insight. However, in or-
der to perform such analysis, further information about the probability of particular
failures occurring would need to be collected.

In chapter 6, mathematical modelling was also proposed as a method for better
understanding the dynamics of the self-repair strategy, and in particular, how the shape
of a particular structure affects its recovery. Creating a simple stochastic model of the
strategy would allow the performance of the system to be tested using many more
structural configurations, over a much shorter period of time.

Incremental In chapter 6, several incremental adaptations were suggested for im-
proving the self-repair strategy. One major improvement would be to allow multiple
robots to dock as a connected group. To achieve this would require the challenges of
precisely coordinating the movement of a structure on a 2D-plane to be overcome.

Another area that would benefit from further investigation is the problem of what
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happens if multiple robots fail simultaneously. It is anticipated that this would require
changes to be made to the strategy to allow robots to detect failures during self-repair.

The development of an alternative method for calculating the sub-structure score
was also proposed. It was suggested that greater efficiency could be achieved if the
restriction that the seed robot remained within the same location when forming a new
structure was lifted. Methods that allow environmental information to have a greater
influence over the repair process were also discussed. For example, to prevent assembly
from stalling when there is insufficient space within the arena, the robots could avoid
assembling in certain locations or could sense their environment and ‘time-out’ when it
becomes difficult or impossible for more robots to dock.

In chapter 7, the task of self-repair was highlighted as an interesting avenue of future
work. However, as a precursor to self-repair, it was suggested that a more directed form
of self-assembly would need to be developed and additional sensors or actuators may
need to be integrated into the modular e-puck extension. These additions may include
a sensor for detecting the current orientation of the turret, or actuators for controlling
the turret’s rotation or the state of the docking interfaces.

Tasks such as search and rescue and the cleanup of hazardous waste are dangerous
and financially expensive activities. In the future, to reduce the financial costs and
reduce the risks posed to human workers, several authors have proposed using self-
reconfigurable modular robotic systems to perform such tasks. To excel in these areas,
systems must be capable of adapting to new circumstances, tolerating the presence of
faults and surviving for long periods of time without any form of human interaction.

In this thesis, it has been demonstrated that, in an abstract setting, the long-term
survival of self-reconfigurable modular robotic systems can be improved through the
study and development of new and existing approaches to fault tolerant morphogene-
sis. Through further development of such strategies, future self-reconfigurable modular
robotic systems may be developed which are deployable in real world scenarios such as
search and rescue. Following natural disasters, it is envisaged that such systems will be
capable of improving survival rates, reducing financial costs, improving the well-being
and reducing the risks posed to future generations.
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