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Abstract

The ever-changing demands from consumers for more fuel efficient vehicles necessitates
automotive manufacturers developing ever more radical proposals for engine design.
The latest trend from manufacturers is engine “downsizing”; where a smaller, more ef-
ticient, engine is pressure-charged to recoup the lost full-load performance. An effect of
downsizing is that engines now run at significant intake pressures. Additionally, imple-
mentation of simulation techniques as an integral part of the research and design process
is becoming commonplace in the automotive industry. Whether or not current models
can be considered reliable for combustion prediction at significantly elevated pressures,
such as those experienced by downsized engines, is a main focus of the current work,
predominantly assessed through how the crank-resolved in-cylinder pressure traces from
prediction, compare to experiment. Experimental data was provided by four different en-
gines: two Jaguar Land Rover multi-cylinder engines, one naturally aspirated, the other
heavily downsized, and two University of Leeds bespoke research engines operating un-

der naturally aspirated, or high pressure conditions representative of downsized engines.

It was seen that the combustion models were not able to accurately predict com-
bustion at different pressures without adjustment of the turbulence quantities, namely
the length scale used to define the “after-burning” process. Additionally, it is known that
variability of combustion limits the performance of engines significantly; a better under-
standing of variability which may lead to mitigation methods would result in significant
efficiency gains. The magnitude of variability in the four different engines is investigated
in this work as well as the current capability in predicting the variability. Once a mean cy-
cle was successfully matched, the variability of the engine cycles is accurately predicted
for all engines and conditions by a random-number model, invoking variability on two
parameters, v’ and ¢, with Gaussian distribution. Moreover a novel method for assessing
variability is proposed and is employed in a study to assess the influence of combustion
variability at different stages of combustion. The variability of the combustion event was

seen to be a strong function of the very early stages of combustion.

The propensity for autoignition is also known to increase with operating pressure
and temperature. The predictive capability, of two autoignition models, was assessed
against experimental data. It was observed that a chemical kinetic based autoignition
model was more able to predict autoignition over all engines, vis-4-vis an empirically
based model. In addition, it was also seen that a variability of autoignition within the
engine existed, which was independent of burning rate. Finally, “knocking” cycles were
identified within the heavily supercharged, multi-cylinder research engine which defined
the calibration limit of the engine. It was seen, however, that the frequency of pressure

oscillations was beyond that traditionally seen for knock cycles.
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