
	

Investigation of the use of Multi-
Touch Gestures in Music Interaction

Nicholas Arner

MSc (by research)

University of York

Department of Electronics

November, 2013

	

	 	 	 	 	 	 i	

Abstract
 The thesis explores the use of multi-touch gestures in the use of interactive
music apps run on mobile devices. With the growing popularity of mobile, multi-touch
devices such as the iPad, more and more people have the chance to interact with music
in a creative setting. However, many of these apps are based on traditional analogue
music equipment, employing metaphors to physical interaction elements such as rotary
knobs and faders.

 User preference for musical interaction is researched. Three apps were
developed for this investigation: two apps employ skeuomorphic UI elements (rotary
knobs and faders), and the third employs multi-touch gestures. All three apps allow the
user to interact with a granular synthesizer. User tests show that if users want an app that
will allow them to explore music in a manner they would describe as “intuitive,
interactive, creative, and playful”, then a multi-touch gestural app is the preferred
option. However, if users want to be able to intricately modify and edit music, then an
app implementing a skeuomorphic design paradigm is the preferred option.

	 	 	 	 	 	 ii	

	 	 	 	 	 	 iii	

Table of Contents
Abstract ……………………………………..…………………………..i

List of Figures ……………………………………..………………….viii

List of Tables ……………………………………..……………….……xi

List of Accompanying Material ……………………………………....xii

Acknowledgments …………………………………..………………...xiii

Declaration …………………………………………………………….xiv

1. Introduction and Hypothesis …………………………………...1

1.1 Thesis Overview………….. …………………………………………………1

1.2 Thesis Structure…………………..………………………...………………...2

2. Literature Review ……………………………………………....4

2.1 Music Therapy …………………………………………………………........4

2.2 Community Music ………………………………...……………………......5

2.3 The Role of Technology in Music Therapy and Community Music ………..5

2.4 Problems and Solutions ………………………………………..…………....12

2.5 Accessibility ………………………………………………………..……....13

2.6 Human-Computer Interaction …………………………………………...….15

2.7 Interactive Composition …………………………………….………………19

 2.7.1 Sound Composition …………………………………………………….……………...23

 2.7.2 Granular Synthesis and Sound Composition ………………………………………….24

2.8 Designing an Instrument ……………...…………………………………….26

 2.8.1 Control Surfaces ……….……………………………………………………………...26

 2.8.2 Mapping …………………….…………………………………………………...........28

 2.8.3 Gestures ………………………….……………………………………………………32

 2.8.4 Multi-touch Interaction ……………….………………………………………………34

 2.8.5 The iPad and Mobile Music ……………….………………………………………….35

2.9 iOS App Examples …..…….…………….…………….…………….…………37

	 	 	 	 	 	 iv	

 2.9.1 iMaschine …………………………………………………………………………39

 2.9.2 Figure ……………………………………………………………………………...40

 2.9.3 The Akai SynthStation …………………………………………………………….41

 2.9.4 iKassoliator …………….………………………………………………………….44

 2.9.5 The Animoog ……………….……………………………………………………..45

 2.9.6 The Filtatron …………………….………………………………………………...47

 2.9.7 GrainProc …………………………….……………………………………………48

 2.9.8 Reactable Mobile ………………………….………………………………………50

 2.9.9 NodeBeat ……………………………………….…………………………………52

 2.9.10 csGrain …………………………………………….……………………………...53

 2.9.11 Portable Dandy …………………………………………..………………………...56

 2.9.11 iPulsaret ………………………………………………….….……………………..57

 2.9.12 Grain Science …………………………………………………..………………….59

 2.9.13 MegaCurtis (Lite) …………………………………………………..……………...60

 2.9.14 CP1919 …………………………………………………………………..………...62

 2.9.15 TC-11 ………………………………………………………………………...…….63

 2.9.16 Borderlands ……………………………………………………………………...…66

2.10 App Conclusions …………………………………………………………….69

2.11 Interactive Composition Systems or, How Do We Make Music Now? …….69

2.12 Problems with Digital Musical Instruments ………………………………....71

2.13 What can Music Technology teach HCI? …………………………………....73

3. Preliminary Study on Gestural Intuitiveness ………………....76

3.1 Purpose …………………………………………………………………………...76

3.2 Test Overview..…………………………………………………………………...77

3.3 Test Subjects ……….…………………………………………………………….77

3.4 Test Procedure………………….………………………………………………...80

3.5 Technical Details ………………………………………………………………...80

3.6 Analysis ………………………………………………………………………….81

	 	 	 	 	 	 v	

 3.6.1 Sound Generation and Modification ………………………………………………...85

3.7 Conclusions ……………………………………………………………………....87

4. Technical Details of User Tests ………………………...............89

4.1 iOS …………………………………………………………………………....89

 4.1.1 Multi-touch on iOS ………………………………………………………………….89

 4.1.2 Gesture Recognizers ………………………………………………………………...93

 4.1.3 Types of Gestures in iOS ……………………………………………………………94

 4.1.4 iOS Development in Xcode …………………………………………………………96

4.2 Audio Programming for iOS ………………………………………………....97

 4.2.1 Core Audio ……………………………………………………………………...…..97

 4.2.2 libpd …………………………………………………………………………………98

 3.2.2.1 Pure Data ……………………………………………………………………………98

 4.2.3 The Amazing Audio Engine ………………………………………………………...99

 4.2.4 Mobile Csound Platform …………………………………………………………….99

 4.2.4.1 Csound………………………………………………………………………101

4.3 History and Overview of Granular Synthesis ………………………………..102

4.4 Granular Synthesis in Csound …………………………………………….....106

 4.4.1 The grain Opcode ……………………………………………………..……………….106

4.5 Design of Test Apps ………………………….……………………………..112

 4.5.1 Rotary Knob Test App ……………………………………………………………….....113

 4.5.2 Faders Test App …………………………………………………………………...…....116

 4.5.3 Multi-Touch Test App ………………………………………………………………….118

 4.5.3.1 Multi-Touch Implementation Details ………………………………………………...121

5. App User Tests Design ………………………………...………..127

5.1 Test Purpose ………………………………………………………………….127

5.2 Test Subjects …………………………………………………………………128

5.3 Test Procedure ……………………………………………………………….130

5.4 Technical Setup ……………………………………………………...………131

	 	 	 	 	 	 vi	

5.5 Test 1 Results…………………………………………………………….…131

5.6 Test 2 Results …..…………………………………………………………..133

5.7 User Comments……………………………………………………………..134

5.8 Hypothesis Discussion ……………………………………………………..136

5.9 Potential Test Improvements ………………………………………………138

6. Conclusions and Future Work …………………………..…...141

6.1 Conclusions……………………………………………………………...…141

6.2 Further Work…………………………………………………………….…141

6.3 Significance of Research………………………………...…………………142

Appendix A - Interactive Composition App Sketches …………………………….146

Appendix B -Tutorial ……………………………………………………………...157

Appendix C - Csound for iOS Tutorial Code………………………………………190

Appendix D - CDM blog post, emails from developers/Boulanger ………………191

Appendix E - Gesture Intuitiveness Study Participant Handout ………………….193

Appendix F- Gesture Intuitiveness Study Questionnaires ………………………..196

Appendix G - Gesture Intuitiveness Study Spreadsheets ……..………………….217

Appendix H - Csound Code/audio files for Gesture Intuitiveness Test …………..218

Appendix I - Video Clips from Gesture Intuitiveness Test ………………………219

Appendix J - App User Test Participant Handout ………………………………...220

Appendix K - App User Test Questionnaires ……………………………………..225

Appendix L - App User Test Spreadsheets ………………………………..……...256

Appendix M – Video Clips from App User Tests…………………………………257

Appendix N – Subject Audio Clips…………….………………………………….258

Appendix O -App User Test Xcode Projects ……………………………………...259

Appendix P – App User Test .CSD File ...………………………………………...275
Appendix Q - Literature Repository ……………………………………………....276

	 	 	 	 	 	 vii	

Appendix R - Fraunhofer MSc Presentation …………………………………….277

References ………………………………………………………………………..278

	 	 	 	 	 	 viii	

List of Figures

Figure	 2.1	 	 MidiGrid	 	 ………………………………………………………...7	

Figure	 2.2	 	 The	 MIDICreator	 ………………………………………………..8	

Figure	 2.3	 	 MidiGesture	 Sensor	 …………………………………………….9	

Figure	 2.4	 	 The	 “Shell	 Instrument”	 …..……………………………………10	

Figure	 2.5	 	 The	 	 Squeezable	 Cluster	 ……..………………………………..11	

Figure	 2.6	 	 Illustration	 of	 HCI	 ……………………………………………..17	

Figure	 2.7	 	 An	 Interactive	 Composition	 System	 ………………………….22	

Figure	 2.8	 	 Input	 to	 Output	 Mapping	 ……………………………………..29	

Figure	 2.9	 	 Multi-‐Parametric	 Mapping	 ……………………………………31	

Figure	 2.10	 	 iMaschine	 Drum	 Pad	 View	 ……………………………………39	

Figure	 2.11	 	 iMaschine	 Keyboard	 view	 …………………………………….39	

Figure	 2.12	 	 Reason	 Figure	 …………………………………………………41	

Figure	 2.13	 	 Akai	 SynthStation	 Performance	 View	 ………………………..42	

Figure	 2.14	 	 Akai	 SynthStation	 Sequence	 Editing	 View	 …………………...43	

Figure	 2.15	 	 Akai	 SynthStation	 Drum	 Kit	 View	 ……………………………43	

Figure	 2.16	 	 iKaossilator	 ……………………………………………………45	

Figure	 2.17	 	 Animoog	 iPhone	 App	 ………………………………………….46

Figure	 	 2.18	 Animoog iPad App ……………………………………………..46	

Figure	 2.19	 	 Filtatron	 Main	 View	 …………………………………………...47	

Figure	 2.20	 	 Filtatron	 Sample	 Editor	 View	 ………………………………...48	

Figure	 2.21	 	 Filtatron	 Pad	 View	 …………………………………………….48	

Figure	 2.22	 	 GrainProc	 ………………………………………………………49	

Figure	 2.23	 	 The	 Reactable	 ………………………………………………….51	

Figure	 2.24	 	 Reactable	 Mobile	 App	 …………………………………………51	

Figure	 2.25	 	 NodeBeat	 ………………………………………………………53	

	 	 	 	 	 	 ix	

Figure	 2.26	 	 csGrain	 …………………………………………………………54	

Figure	 2.27	 	 Dandy	 …………………………………………………………..57	

Figure	 2.28	 	 iPulsaret	 ………………………………………………………..58	

Figure	 2.29	 	 Grain	 Science	 …………………………………………………..60	

Figure	 2.30	 	 MegaCurtisLite	 Performance	 View	 …………………………..61	

Figure	 2.31	 	 MegaCurtisLite	 Editing	 View	 …………………………………61	

Figure	 2.32	 	 CP1919	 ………………………………………………………...63	

Figure	 2.33	 	 TC-‐11	 Patching	 View	 ………………………………………….64	

Figure	 2.34	 	 TC-‐11	 Interaction	 View	 ……………………………………….65	

Figure	 2.35	 	 Borderlands,	 showing	 audio	 grains	 ………………………….67	

Figure	 2.36	 	 Borderlands,	 showing	 grain	 parameters/editing	 toolbar	 …..68	

Figure	 3.1	 	 iPad’s	 multi-‐touch	 sensitivity	 area	 …………………………...84	

Figure	 3.2	 	 Human	 Energy	 Input	 and	 Control	 ……………………………86	

Figure	 4.1	 	 iPhone	 Touch	 Detection	 ………………………………………92	

Figure	 4.2	 	 	 Discrete	 and	 Continuous	 Gestures	 …………………………...94	

Figure	 4.3	 	 Screenshot	 of	 Screenshot	 of	 Xcode	 IDE	 ……………………..97	

Figure	 4.4	 	 A	 Pure	 Data	 Patch	 …………………………………………….99	

Figure	 4.5	 	 	 Csound	 for	 iOS	 API	 Relationships	 …………………………...100	

Figure	 4.6	 	 Screenshot	 of	 a	 Block	 of	 Csound	 Code	 ……………………..102	

Figure	 4.7	 	 View	 of	 a	 Grain	 in	 the	 Time	 Domain………...………………103	

Figure	 4.8	 	 Grain	 Amplitude	 Envelopes	 …………………………….…...104	

Figure	 4.9	 	 A	 Hanning	 Window	 …………………………………….……108	

Figure	 4.10	 	 Code	 for	 generating	 a	 square	 wave	 and	 applying	 a	 Hanning	
	 	 	 	 Window……………………………………………………………...109	

Figure	 4.11	 	 Block	 Diagram	 of	 grain	 opcode	 …………………………….110

Figure 4.12 .CSD Instrument Flowchart ………………………………….111	

Figure	 4.13	 	 Code	 for	 rendering	 control	 ………………………………....113	

	 	 	 	 	 	 x	

Figure	 4.14	 	 Rotary	 Knob	 Test	 App	 …………………………………….....114	

Figure	 4.15	 	 Setting	 the	 value	 parameters	 of	 Knob1	 ……………...……..115	

Figure	 4.16	 	 Sending	 knob	 values	 to	 Csound	 variables	 ………………….115	

Figure	 4.17	 	 Csound	 code	 for	 reading	 in	 variable	 control	 information	 ...116	

Figure	 4.18	 	 Code	 for	 sending	 UISlider	 values	 to	 Csound……………………..117	

Figure	 4.19	 	 Faders	 Test	 App……………………………………………………………...118	

Figure	 4.20	 	 Screenshot	 of	 Touch	 Control	 Zones…………………………………119	

Figure	 4.21	 	 Touches	 App…………………………………………………………………..120	

Figure	 4.22	 	 Creating	 Two	 Touch	 Areas…………………………………………..….121	

Figure	 4.23	 	 touchesBegan	 Method…………………………………………………….122	

Figure	 4.24	 	 Parameter	 declaration	 in	 touchesMoved……………………….....122	

Figure	 4.25	 	 X/Y	 position	 tracking……………………………………………………..123	

Figure	 4.26	 	 Delegate	 Code	 for	 sending	 X/Y	 Values	 ….………………………..123	

Figure	 4.27	 	 Calling	 OneTouch	 Delegates	 ….……………………………………….124	

Figure	 4.28	 	 muteCsound	 Method	 ………………………………………………….….124	

Figure	 4.29	 	 Delegate	 Method	 Implementation	 ……………………………..…..126	

	 	 	 	 	 	 xi	

List of Tables
Table	 3.1	 	 Subjects’	 Musical	 Backgrounds	 ……………………….……79	

Table	 3.2	 	 Number	 of	 Hands	 Used	 ……………………………….……….82	

Table	 3.3	 	 Orientation	 Positions	 ……………………………….……....83	

Table	 3.4	 	 Did	 Gestures	 Stay	 in	 multi-‐touch	 Area?	 …………………...83	

Table	 3.5	 	 Generation	 and	 Modification	 Events	 ………………………87	

Table	 4.1	 	 Apple	 iOS	 Gestures	 ………………………………………….95	

Table	 4.2	 	 grain	 Initialisation	 Parameters	 ……………………………106	

Table	 4.3	 	 grain	 Performance	 Parameters	 ………………………………107	

Table	 5.1	 	 Subjects’	 Music/Audio	 Background	 …..………………………….129	

Table	 5.2	 	 Test1-‐	 Subjects’	 Most	 and	 Least	 Preferred	 Apps	 ……………132	

Table	 5.3	 	 Test2-‐	 Subjects’	 Most	 and	 Least	 Preferred	 Apps	 ……………133	

Table	 5.4	 	 	 User	 Change	 in	 Preference	 …………………………………………...134

	 	 	 	 	 	 xii	

List of Accompanying Material

 The accompanying DVD contains a PDF file of this document, as well as the
supporting materials for various appendices. These are listed below:

Appendix C – Csound Tutorial Xcode project

Appendix F – Gesture Test Questionnaires

Appendix H – Gesture Test .csd file and audio clips

Appendix K – App user test questionnaires

Appendix L – App user test Excel spreadsheets

Appendix N – App user test audio commentary

Appendix O – App user test Xcode projects

Appendix P – App user test .csd files

Appendix Q – Literature Repository

Appendix R – Fraunhofer IIS MSc Research Presentation

	 	 	 	 	 	 xiii	

Acknowledgments

To my parents and brothers, thank you all for your love and support.

Papaw, thanks for teaching me to take things apart and figure out how they
work.

Grandpa, thanks for giving me the travel bug. I wish I could show you
where I’ve gone.

Andy, I owe you tremendous thanks for all your help and guidance during
the past year. I couldn’t have done this without you.

Helena and Jude, thank you both for your advice during the past year;
especially your grammar lessons. I probably wouldn’t have survived my
year in the UK without them.

Thanks to Mark “Doc” Lochstampfor for having faith in me. I would not
have gotten this far were it not for you pushing me to succeed.

To Steve, Andrew, and Sarah, thanks for the good friendship, and for the
many curry nights at the Deramore this past year. And to Andrew…that
was the best brownie I’ve ever had. Ever.

Thanks to Jelle and Dimitri for helping me become a better programmer.

Danielle and Jarrod, thank you for your witty banter and conversation, as
well as for being good listeners and good friends.

To my dear friend Sarah; thank you for your conversation and
encouragement over the past year.
To my best friend Jeremiah, thank you a friendship that has remained
constant throughout our life despite the many miles between us.

	 	 	 	 	 	 xiv	

Declaration
The work presented in this thesis is entirely my own. None of the content as
part of this thesis has been previously published by the author in any form.

	 	 	 	 	 	 1	

Chapter 1
Introduction

 This chapter describes the motivation behind the research, as well as the

preliminary hypothesis. Subsequent chapters are also described in Section 1.2.

1.1 Thesis Overview

 In spite of the advances that have occurred in music interaction research, the

majority of music-centric computer programs and mobile apps implement user

interaction based around mouse and keyboard input (in the case of desktop computer

programs), or around skeuomorphic user interface elements (in the case of mobile apps).

These skeuomorphs include virtual sliders, rotary knobs, and even piano keyboards that

the user “plays” with a single finger. This approach is persistent in music-centric mobile

apps, despite the fact that the multi-touch platforms they run on are capable of intricate

and often intuitive multi-touch gestures for interaction.

 The hypothesis of this project is that users prefer using multi-touch gestures to

interact with music as opposed to traditional skeuomorphs. If this is indeed the case, it

will most likely be because users find multi-touch gestures more intuitive for controlling

musical parameters than traditional user interface skeuomorphs. This hypothesis will be

tested through user tests conducted with three separate iPad apps, developed specifically

for this purpose, and described in Chapter 5. The technology used in the creation of

these apps is discussed in Chapter 4.

	 	 	 	 	 	 2	

 The research took several changes in direction, scope and outcome goals

throughout the project period. Originally, the goal was to develop an app that would

assist individuals with disabilities in composing original music. Upon further

consideration, this was deemed impractical due to the wide range of disability types; it is

impossible to develop a single system that would meet the needs of such a diverse set of

users.

 The goal then became to develop an interactive composition system that would

be useful to those with no musical background or training. Instead of focusing on

making the app helpful to one specific segment of the population, the goal was to make

the app as accessible to as many people as possible.

 As the research developed the aforementioned hypothesis emerged to investigate

users’ preferences when using multi-touch devices for musical purposes. The

hypothesis’ evolution is discussed in detail in Chapter 5.

1.2 Thesis Structure

 Chapter 2 provides an overview of the literature relevant to this thesis,

specifically the role of technology in music therapy, interactive composition, Human-

Computer Interaction, Music Interaction, the iPad and mobile music, and it concludes

with an overview of existing music-centric iOS apps. Chapter 3 is an overview of the

preliminary study on gestural intuitiveness, which investigates how users relate multi-

touch gestures to various musical parameters. Chapter 4 provides a technical overview

of the hardware and programming technologies used in the creation of the apps built for

the testing of the hypothesis, as well as specific design details of each test app. Chapter

	 	 	 	 	 	 3	

5 details the user tests carried out to test the hypothesis, as well as presenting a modified

version of the hypothesis. Finally, Chapter 6 concludes the thesis with a discussion of

the relationship between Music Interaction and Human-Computer Interaction research,

and how Music Interaction can benefit the HCI discipline as a whole.

	 	 	 	 	 	 4	

Chapter 2
Literature Review

A literature review was undertaken to investigate the theoretical principles that

inform the goals of the research, including the role of technology in music therapy,

Human-Computer Interaction, Music Interaction/Interactive Composition, the iPad and

mobile music. It concludes with a review of currently available iOS interactive music

applications.

At the start of the project, the goal was to design an app that would help music

therapy clients with the act of music composition. Though that goal evolved, the

research conducted on the role of technology in music therapy and community music is

included here for completeness and to provide an appropriate context to the goals of the

project.

2.1 Music Therapy

The British Association for Music Therapy defines music therapy as “…a

psychological therapy which uses the unique qualities of music as a means of

interaction between therapist and client” (BAMTa, 2012, online). Ability and musical

performance are not necessarily the outcome goals of music therapy, but rather the focus

is on helping people communicate in their own musical language. Clients of music

therapy include children and young people, individuals with learning disabilities or

autistic spectrum conditions, individuals in need of mental health care, the elderly, and

those with neuro-disabilities (BAMTb, 2012, online).

	 	 	 	 	 	 5	

2.2 Community Music

Olseng (1990) states (as cited in McKay and Higham, 2003, p.5), community

music is “…characterized by the following principles: decentralisation, accessibility,

equal opportunity, and active participation in music making”. Distinct from music

therapy, or even community music therapy, community music signals an effort to

“…move outside a clinical or restricted practice to a wider, more socially engaged one”

(McKay and Higham, 2003, p.7). Essentially, community music is not clinically

oriented, but rather focused on helping a wide variety of individuals to express

themselves musically, who may or may not have a prior musical background or training.

2.3 The Role of Technology in Music Therapy and Community Music

Music technology has a vital role to play in music therapy. Music therapists have

traditionally used a variety of acoustic instruments in their practice, such as guitar,

piano, drum-sets, percussion, etc. (Cole, 1996). However, according to Magee and

Burland, “…music therapists turn to technology to enable a client to participate actively

or to widen the client’s musical expression. Technology offers improved access for

people with complex physical needs to engagement in active methods of music therapy”

(Magee and Burland, 2008, p.3). Magee and Burland also state that electronic music

technology may be specifically helpful for people with limited movement, as well as for

children and adolescents suffering from emotional disorders; a group that has been

traditionally difficult to engage in music therapy (Magee and Burland, 2008).

 Though immensely expressive, acoustic instruments may not be able to be used

by those with certain physical and/or mental disabilities. Often, the therapist will assist

the individual with physically manipulating the instrument. This can be a problem, as

	 	 	 	 	 	 6	

the patient will not feel that they are in complete control of the musical situation, leading

to feelings of frustration and/or dependence. In a 2012 paper, Burland and Magee state

that an electronic music technology system can help disabled users to “…explore sound

and offers a way to communicate with others” (Burland and Magee, 2012, p.7), thus

providing clients with more control over the music creation process.

A variety of music technology systems utilized in music therapy have been

developed at the University of York. One of these is the MidiGrid system, developed by

Andy Hunt and Ross Kirk. The program allows the user to perform chord sequences,

arpeggios, and scales in a variety of timbres by moving a mouse over specific grids of

musical material (see Figure 2.1). In addition to the mouse control, it is also possible for

users to connect external MIDI devices that allow gestural actions to control pitch-

bending, pan positions, and volume modulation (Hunt and Kirk, 2003). According to the

authors, MidiGrid has been utilized in music therapy to allow the user to improvise on a

wide palette of timbres. Such timbres may not have been accessible to the users without

the use of music technology.

	 	 	 	 	 	 7	

University of York student Phil Bates designed a system known as MIDIcreator,

which can be used as an external controller to MidiGrid. MIDIcreator converts voltages

from a variety of electronic sensors and converts them into MIDI messages, which

control a variety of parameters on electronic musical instruments. The MIDIcreator is

shown below in Figure 2.2.

Fig.	 2.1	
MidiGrid	

(Hunt	 and	 Kirk,	 2003,	 p.136)	
	

	 	 	 	 	 	 8	

One of the sensors that was specifically developed for use with the MIDIcreator

is the MIDIgesture, a small portable sensor capable of detecting objects from one to

three meters away (Cole, 1996). This allows individuals to interact with programs such

as MidiGrid through the use of free-form gestures, rather than with a mouse. Other

sensors developed for the MIDIcreator include a squeezable cushion, piano keyboard,

light, and air pressure sensors (MIDIcreator User Manual). The MIDIgesture is shown

below in Figure 2.3.

Fig.	 2.2	
The	 MIDIcreator	 	

(MIDIcreator	 User	 Manual)	

	 	 	 	 	 	 9	

More information regarding the types of sensing technologies that are able to be

used in musical applications, as well as specific examples each sensing technology, is

available on the SensorWiki website (Wanderely, 2004).

University of York researchers also explored the concept of using tactile

physical gestures to modify sound. A “shell instrument”, shown in Figure 2.4, consists

of a “…fibreglass mould set in transparent resin, in which piezoelectric sensors are

embedded” (Hunt, Kirk, and Neighbour, 2004, p.52). The sensors respond to the user’s

touch, which is then mapped to control and synthesis parameters on an external sound

generator.

Fig.	 2.3	
MidiGesture	 sensor	

(MIDIcreator-Resources)	

	 	 	 	 	 	 10	

Similarly, Weinberg explored the concept of squeezing or sculpting sound in his

Squeezable Cluster while at MIT (Weinberg, 1998). The Squeezable Cluster is a

controller that allows for musical exploration and is designed for use by children.

The user squeezes foam balls embedded with sensors mapped to synthesis

parameters. Though not explicitly designed for use in music therapy or community

music, the mode of interaction used by the Squeezable Cluster, shown in Figure 2.5,

potentially lends the device to use in such a context.

Although the test apps documented in this thesis (discussed in more detail in

later chapters) utilize a touch-screen for interaction rather than tactile, physical objects,

the concept of sound sculpting plays a significant role in the design of the interface and

synthesis mapping to gestures.

Fig	 2.4	
The	 “Shell	 Instrument”	
(Hunt	 2004,	 p.52)	

	

	 	 	 	 	 	 11	

According to Nagler, hand-held devices (e.g., mobile phones) are of use in music

therapy due to the fact that there are “…fewer physical limitations, abundantly rich

sonic possibilities and robust algorithms that negate the need for prerequisite music

making skills or task readiness” (Nagler, 2011, p.198). Nagler presents these

characteristics as advantages that mobile devices have over traditional acoustic

instruments. Many music therapy patients may have difficulty in interacting with

acoustic instruments due to possible physical limitations. As a result of this, mobile

technology offers greater potential for clients with physical handicaps to interact with

music creation in a music therapy context. The fact that mobile devices also offer the

Fig	 2.5	
The	 Squeezable	 Cluster	
(Weinberg,	 1998,	 p.43)	

	

	 	 	 	 	 	 12	

potential for the creation of new sonic possibilities due to the digital signal processing

(DSP) algorithms they are able to run further enhances the possibility of use in a music

therapy context. Since clients are able to create sounds that have never been heard

before, they are able to freely explore and create; making music that is truly unique to

their identity.

Additionally, users are able to share their musical creations with others through

email or uploading to social media sites. This will help the user feel a sense of

accomplishment and self-actualization. Through the incorporation of Application

Programming Interfaces (APIs) provided by websites such as SoundCloud, Twitter, and

Facebook, users of a mobile music app will be able to share their creations with their

friends and loved ones.

In addition to the interfaces discussed so far, a variety of other computer

programs, applications, and interfaces have been developed specifically for use in a

music therapy/community music context (Challis and Smith, 2012; Gorman et al., 2007;

Corrêa et al., 2009; Hözl et al., 2009; Boulanger, 2004).	

2.4 Problems and Solutions

 Despite technological advances, music therapists are often reluctant to

incorporate electronic music technologies in their practice. Magee and Burland state that

one of the reasons for this is that many therapists do not have a technological

background, and thus do not feel confident in the use of modern musical technology

(Magee and Burland, 2008). An application that does not require any technical training

would be helpful in solving this problem.

	 	 	 	 	 	 13	

Additionally, as many music therapists are employed part-time across multiple

locations or perform various outreach workshops, any technology needs to be as

portable and mobile as possible. The fact that many music technology systems require

time for setting up, means that they may be inappropriate for many music therapists’

needs (Magee, 2006). This problem can be eliminated by the creation of interactive

musical applications that do not require any additional setup by the user. One of the

justifications for using the iPad as the platform for the original application goal of this

project was the factor of portability and ease of setup by users. More discussion on the

iPad follows in Chapter 4.

Due to their multisensory characteristics, acoustic instruments are often

perceived as more aesthetically appealing than electronic instruments (Magee and

Burland, 2008). With the advances in Digital Signal Processing (DSP) technology and

synthesis algorithms in the past decades, this is becoming less and less of a problem.

These technologies are now available on mobile devices via Core Audio, Pure Data, and

Csound, etc; as will be shown in Section 4.2. The problem of the lack of visual appeal in

electronic systems is also solved with visually captivating interface design on devices

such as the iPad.

2.5 Accessibility

During the course of the research period, it was determined that the task of

developing an iOS application for the field of music therapy and/or community music

was too specific a task for the scope of this project. Instead, the research focus shifted to

the investigation of how to provide an intuitive, interactive compositional environment

	 	 	 	 	 	 14	

on a multi-touch device, aimed at individuals either without prior knowledge or access

to traditional musical instruments.

Castro, writing for The Information Technology and Innovation Foundation,

defines accessible technology as “…technology that has many broad applications but

helps remove barriers and make the world more accessible for people with disabilities,

giving them more access to information, communication, and independence” (Castro,

2008, p.52). Such technology may not be designed specifically for users with

disabilities, but such users are better able to engage with the technology. Similarly

Bergman and Johnson state that providing users with accessibility in a computer system

means “…removing barriers that prevent people with disabilities from participating in

substantial life activities, including the use of services, products, and information”

(Bergman and Johnson, 1997, p.2).

The notion of designing computer systems specifically for users with and without

disabilities is challenged by the claim that all potential users of a computer system have

a wide and diverse skill set depending on the user’s life stage, task and environment

(Beaudouin-Lafon, 2004). The notion of categorizing users into those with or without

disabilities is summarily invalid.

Bergman and Johnson also argue that not only does awareness of accessibility

benefit users who may have physical disabilities; it also provides a higher quality of user

experience for those who do not have a disability, stating that usability testing with

disabled users “…can uncover usability defects that are important in the larger

population” (Bergman and Johnson, 1997, p.9). Such usability defects can include font

	 	 	 	 	 	 15	

and colour conflicts, problems with layout and context, poor interface flow, tab order

and tasks that require an excessive number of steps or a wide range of movement

(Bergman and Johnson, 1997).

Instead of categorizing users into disabled and non-disabled, designers and

programmers should focus instead on creating interactive computer systems that address

a more expansive range of interaction modes and experiences, therefore broadening the

base of potential users.

Designers and programmers must also focus on the interactions that the user will

be performing with the system. The capabilities of the computer system, for example

processing power or memory size, are meaningless unless the user is able to interact

with the system in an intuitive and meaningful way. Beaudouin-Lafon explores this

problem by stating “…our goal is to control the quality of the interaction between user

and computer: user interfaces are the means, not the end” (Beaudouin-Lafon, 2004,

p.16). Prior to finalizing the interface design for an interactive music system, a decision

must be reached regarding the way in which the user will interact with an audio

synthesis engine for the purpose of composing music.

2.6 Human-Computer Interaction

By the very nature of their design goals, interactive computer music systems are

based around a human user interacting with a computing platform; in the case of this

project, a mobile computing platform, specifically the iPad. As such, an overview of

Human-Computer Interaction follows.

	 	 	 	 	 	 16	

Human-Computer Interaction is defined by the ACM Special Interest Group for

Computer-Human Interaction as “…a discipline concerned with the design, evaluation

and implementation of interactive computing systems for human use and with the study

of major phenomena surrounding them” (Hewett et al., 1992). An inherently broad field

of research, HCI incorporates the diverse disciplines (Rogers, Sharp, and Preece, 2011,

p.10) of:

• Computer Science
• Artificial Intelligence
• Linguistics
• Philosophy
• Sociology
• Anthropology
• Design
• Engineering
• Ergonomics and human factors
• Social and organisational psychology
• Cognitive psychology

 Figure 2.6 below illustrates the general process of human-computer interaction.

	 	 	 	 	 	 17	

	

When a user interacts with a computer, they approach the system with their

memory and cognition, the sum total of all their life experiences and knowledge. They

interact with the computer system through Effectors. In the case of a multi-touch system,

effectors are hands and fingers. The computer system receives this information via

various Sensors, and processes it through its own memory and cognition (programmed

Algorithms), and outputs data through Actuators, such as a visual screen or a speaker.

The user then perceives this data through their visual, auditory, or tactile senses. They

process this information, and keep interacting with the computer in a continuous

control-feedback loop (Bongers, 2000).

Fig.	 2.6	
Illustration	 of	 HCI	

(Bongers,	 2000,	 p.44)	
	

	 	 	 	 	 	 18	

When the user of a software system is able to subconsciously apply their prior

knowledge and experiences to interacting with it, the system is considered to be

intuitive, or intuitively usable. The system approaches intuitiveness the more that prior

knowledge can be classified as “…innate, sensory-motor, embodied, cultural, or expert”

(Wilkie et al., 2010, p.37). Users of such systems can be described as experiencing

Csikszentmihalyi’s concept of “flow”, which Leman describes as “an experience in

which the subject’s skills are fully preoccupied with a task” (Leman, 2010, p.139).

Users experiencing flow are fully involved in accomplishing their intended task with the

tool they are using, not with consciously thinking how they can use the tool to

accomplish their tasks. In order for users of computer music software to enter a state of

creative flow, the interfaces of such programs must… “be built around tacit knowledge,

and also afford the opportunity for users to discover and form their own perspectives”

(Nash, 2011, p.58).

In order to help developers create intuitive iOS apps, Apple provides a list of

guidelines for the design for User Interfaces in its guide on iOS Human Interface

Principles :

Aesthetic Integrity – How well the appearance of the app integrates with its
function.

Consistency – The ability of users to transfer their knowledge and skills
from one app to another.

Direct Manipulation – Using gestures gives people a greater affinity for,
and sense of control over, the objects they see onscreen, because they're
able to touch them without using an intermediary, such as a mouse.	

Feedback – Apps should acknowledge user actions and reassure them that
processing is occurring.

	 	 	 	 	 	 19	

Metaphors – Virtual objects and actions in the app are metaphors for
objects and actions in the real world; users quickly grasp how to use the
app.	

User Control – People, not apps, should initiate and control actions.

(Apple 2012e)

Prior to a discussion of specific HCI topics (mapping, gestures, and multi-touch)

in the context of an interactive music composition system, the notion of what interactive

composition is, and its history in relation to computing technology will be discussed.

2.7 Interactive Composition

The Harvard Dictionary of Music defines composition as “The activity of

creating a musical work […]” (Harvard Dictionary of Music, 4th ed., 2003, p.194). While

an overview of the theory of musical composition is beyond the scope of this work, a

brief discussion of the intersection between composition and technology follows to

provide a background on the motivation of the second goal of the thesis: that of making

composition more accessible to users.

Composers have long made use of technology in general, and computers in

particular, as a way to compose music that would be impossible to compose and perform

with traditional acoustic instruments (Holmes, 2008; Brunner, 2009). In 1957, Max

Mathews became the first person to program a computer to synthesize music. Using a

program he created, MUSIC I, Mathews composed a short (seventeen second)

monophonic tune (Holmes, 2008). MUSIC I was later developed into a variety of music

synthesis languages, including the synthesis environment that this project uses, Csound.

Csound will be discussed in more detail in Chapter 4.

	 	 	 	 	 	 20	

At first, the performance power of computers limited their use in a musical

context, both compositional and performance-based. Composers, initially, were

restricted to composing on punched cards, or using a pseudo-random number generator

to determine performance rules for a composition with acoustic instruments (Holmes,

2008).

The development of microprocessors led to the creation of simultaneously

smaller and more powerful computers, and musicians started to leverage the available

computing power to compose and perform more musically intricate pieces. A variety of

music-focused software environments began to develop: software synthesizers, virtual

analogue instruments, audio development environments, software samplers, percussion

synthesizers, and digital audio workstations (Holmes, 2008).

In addition to being able to compose and perform in real-time, musicians began

to use the malleability and flexibility of the computer to explore a new domain of

musical activity: interactive composition.

In a Computer Music Journal article published in 1984, Joel Chadabe describes

the use of an interactive composition system as being a two-stage process:

1. Creating an interactive composing system.
2. Simultaneously composing and performing by interacting with that

system as it functions.
(Chadabe, 1984)

A composer engages in a high-level musical dialouge with an interactive system

after it has been created. An interactive composition system can be created with a

variety of hardware and/or software components.

	 	 	 	 	 	 21	

While the system is creating music based on the rules of its algorithms set by the

composer, the composer is reacting to this music in real-time via some kind of external

interface that is capable of adding to the musical output of the system. Interaction

between the composer and the system means that “…the computer’s internal state

depends on the performer’s action, and that the latter may itself be influenced by the

computer output” (Di Scipio, 2003, p.270).

The composer of such a system is doing more than creating a particular musical

structure; they are composing “…a mode of functioning for computer system and

performer that, in operation, generates a new particular structure in every

performance” (Chadabe, 1984, p.26). The composer is not necessarily performing

music in response to the system; often they are performing control information that

alters the performance output of the system (Chadabe, 1977). Essentially, the composer

determines the overall high-level structure of the composition while the computer

performs signal processing to produce the sonic output desired by the composer.

Figure 2.7 depicts the interaction of a musician and a computer music system.

Here, “performer” is taken to mean any human user, and “instrument” is taken to mean

any tool for the facilitation of interactive electronic composition.

	 	 	 	 	 	 22	

A user approaches the compositional system with the desire to create a new

piece of music. They engage with the system by using their hands and fingers in contact

with some kind of gestural interface. These gestures are mapped to the synthesis

algorithms used by the system, which generates audible output. When the user hears the

output, they determine how they wish the music to evolve, and continue interacting with

the system accordingly.

A number of interactive compositional systems have been developed with the

goal of making composition more accessible and easier to engage with, including

QSketcher (Abrams et al., 2001), Smart Harmony (Abrams et al., 1999), DSP (Rudi,

2007), and Hyperscore (Farbood, 1997). However, these systems are restricted to use on

desktop computing platforms that require the use of a mouse and keyboard.

Fig.	 2.7	 	 	
An	 Interactive	 Composition	 System	
(Lee	 and	 Wessel,	 1992,	 p.278)	

	 	 	 	 	 	 23	

In creating an engaging and intuitive interactive composition system, the

designer has to consider the underlying synthesis methods and algorithms in order to

form the desired aesthetic characteristics of the system.

2.7.1 Sound Composition

One consideration of designers of interactive music systems is whether they wish

to compose music ‘of sounds’ (often referred to as sound, or timbre composition), or if

they wish to compose music ‘of notes’ (“traditional” composition). Sound composition

was not widespread until the advent of powerful computers, and is an example of what

Treadaway describes as digital technology’s ability to “…support the artist’s creative

practice by providing access to tools and processes that enable work to be generated

that could be made no other way” (Treadaway, 2009, p.185).

Many computer-based composition systems adopt metaphors that are based on

music theory concepts (Wright et al., 1997). As such, only those individuals with a

previous background of music theory concepts are able to approach such a system and

interact with it in a creative manner. Viewed from an accessibility-design point of view,

such a system inherently limits the number of users who are able to interact with the

system to only those who have music theory knowledge, as opposed to those who may

not have such knowledge but are gifted with an inherent sense of musicality.

The second design goal of this thesis was to make music composition more

accessible to a wider variety of users. A system that requires users to have previous

knowledge of music theory and standard notation for interaction is therefore

unsatisfactory to the design goals of this thesis. One way to make composition

moreaccessible to a wider variety of users is through the aforementioned use of sound

	 	 	 	 	 	 24	

composition, rather than note-based composition. Before the advent of computers, such

musical works were realised through the use of analogue processing equipment, mixing

consoles, and tape recorders.

According to Challis and Smith, composition can include “…the selection of

sounds to form a palette of sounds which can be shaped, manipulated, varied, and

combined to create a piece or musical performance” (Challis and Smith, 2012, p.65). In

such a system, the user will still be able to explore the use of sound and timbre

modification without worrying about whether or not the compositional sequence is

correct within the framework of traditional harmony, as they would in a note-based

environment.

The idea of composing with sounds is not something that evolved along with the

digital age. Pierre Schaeffer, a radio engineer, and Pierre Henry, a composer, pioneered

the idea of musique concrète in France in the late 1940s. Musique concrète is defined as

“…the construction of music using sound recording tools, natural sounds, electronic

signals, and instrumental sounds” (Holmes, 2008, p.49).

One synthesis method that allows for composing with sounds is granular

synthesis. Granular synthesis allows for sampled sounds (either stored files or live audio

input) to be manipulated in real time, creating a composition of sound rather than of

musical notes.

2.7.2 Granular Synthesis and Sound Composition

Curtis Roads describes granular synthesis as “…generating thousands of very

short sonic grains to form larger acoustic events” (Roads, 1988, p.11). Grains can then

	 	 	 	 	 	 25	

be organized into higher-level compositional events. Roads describes an event as

consisting of the following parameters:

• Beginning time
• Duration
• Initial waveform
• Waveform slope (the transition rate from a sine to a band limited pulse wave)
• Initial centre frequency
• Frequency slope
• Bandwidth
• Bandwidth slope
• Initial grain density
• Grain density slope
• Initial amplitude
• Amplitude Slope

 (Roads, 1988, p.12)

Due to the high number of grains that can be organised at once, the result is

perceived by the listener to be a fused sonic texture (Bencina, 2006). Once the grains,

(which can number in the thousands) are organized into events, the user can alter the

above parameters in real time. The user can use these grain events to create sound

clouds of evolving spectra (Roads, 1988), enabling the user to compose directly with

sounds without the intermediate interface of musical notation.

It was decided that an interactive system utilizing granular synthesis would be

the best means of achieving the second project goal of developing an accessible

interactive composition system. This is due to the fact that this approach allows for

exploration of sound, not exploration of notes. As such, granular synthesis meets the

original project goal of creating an interactive composition system that users with varied

musical backgrounds would be able to use. It was decided to use granular synthesis in

the Test Apps described in Chapter 4 for both consistency of development, as well as

	 	 	 	 	 	 26	

allowing the user to interact with a complex synthesis system while testing their

preferences for interaction paradigms on a mobile device, in order to test the main

hypothesis.

2.8 Designing an Instrument

Computers have played a large part in the history of the development of new

forms of music. Though primitive and cumbersome at first, computing technology has

accelerated so that the average person has access to powerful mobile computing

platforms, with a rich variety of sensing capabilities, in the palm of their hands.

In a paper presented at the 2008 Mobile Music Workshop, Essl, Wang, and Rohs

presented on the on-going effort to turn mobile devices into generic devices for musical

expression. The authors define generic as “…a platform that is not designed with a

specific performance in mind […] alternately, a design that is open to flexible, varied

use without trying to prefigure artistic intent” (Essl et al., 2008, p.1). The authors

describe the actions one needs to take in designing a mobile instrument:

• Decide what input modalities to use
• Manipulate them for synthesis control
• Choose appropriate synthesis algorithms

The answers to these questions will dictate the interaction paradigm, sound

output, and overall style character of a mobile, interactive sound app.

2.8.1 Control Surfaces

In 1977, Pierre Schaeffer stated that “Musical ideas are prisoners, more than

one might believe, of musical devices” (as cited in Roads 2001, p.44). An instrument’s

	 	 	 	 	 	 27	

physics of sound generation, as well as of interfacing with the methods of sound

generation, determine the ways in which a musician will think about performing and

composing music.

The use of keyboard-based controllers in computer music systems is quite

common due to persistent industry preference (Wessel and Wright, 2002). This is

primarily due to the fact that the MIDI 1.0 specification was designed around the

paradigm of keyboard performance (Roads, 1996).

However, a keyboard is not always appropriate for control of an electronic music

system, particularly those that utilize multi-touch screens. There are two reasons for this.

The first is that a mechanical keyboard is sensitive to the velocity, after-touch, pressure,

and action of a user (Roads, 1996). These physical parameters are then translated into

auditory feedback to the user in terms of musical nuance. However, they are not easily

replicated on a multi-touch system.

Secondly, multi-touch based platforms, such as the iPad, have the capability of

recognizing a variety of user gestures. These gestures can be mapped to whatever the

designer of the application desires. As such, synthesis parameters can be controlled by

other methods than just keyboard interfaces. If developers of mobile-based music apps

want to set new ground and fully utilize the capabilities of multi-touch devices such as

the iPad, they will need to develop other ways of interacting with musical structure

besides keyboard interfaces.

	 	 	 	 	 	 28	

2.8.2 Mapping

The method of connecting the control device to the parameters of sound

generation is known as mapping (Hunt and Wanderley, 2002). When a user is

performing with an acoustic instrument, the player is directly manipulating a physical

object. As the interface and the method of sound generation are intrinsically connected,

the mappings between interface and sound source are “…complex, subtle, and

determined by physical laws” (Hunt, Wanderley, and Paradis, 2002, p.1). Jordà

describes the intrinsic mapping between input and output in acoustic instruments by

stating “acoustic instruments impose their own playability rules, which allow listeners

to infer the type and form of the gesture from the sound being generated” (Jordà, 2005,

p.6). Merrill and Raffle further describe the differences between acoustic and electronic

instruments by stating that “electronic instruments lack the subtle affordances and

potential for acoustic spontaneity featured by acoustic instruments” (Merrill and Raffle,

2013, p.213).

Unlike acoustic instruments, the method of control and the parameters that are

controlled in a computer music system are separate, as there is no implicit mapping of

one to the other (Winkler, 1995). As such, it can be difficult to simulate basic interaction

characteristics that are an inherent part of acoustic instruments, such as tactile and/or

force feedback (Wanderley and Depalle, 2004; Giordano and Wanderley, 2013). It is up

to the composer/programmer to determine what performance actions are mapped to

various synthesis parameters. The result of these interactions is the output sound. Figure

2.8, taken from Fels, Gadd, and Mulder (2002) below depicts the mapping process.

	 	 	 	 	 	 29	

Mapping determines the nature of how users will interact with a computer music

system and, as such, is an extremely important consideration in the design phase of

project development. Wessel et al. emphasise this point by noting that “The success or

failure of a live computer music instrument is determined by the way it maps

performers’ control gestures to sound” (Wessel et al., 2002, p.2). In comparison with

music written for acoustic instruments, computer-based music has a shorter historical

context from which to draw upon and, as such, can often be more difficult to program

and compose. Consequently, the creation of meaningful mappings for computer-based

music systems may be problematic for programmers and/or composers. While

potentially challenging to design, the quality of the input-to-sound mappings help to

determine the success or failure of the interactive music system, as “Mapping is at least

as important to musicians as the physical interface, and even more so over the long

term” (Casciato and Wanderley, 2007, p.4).

Fig.	 2.8	
Input	 to	 Output	 Mapping	
(Fels	 et	 al.,	 2002,	 p.6)	

	 	 	 	 	 	 30	

While the timbral possibilities of computer music systems are endless, unless the

mappings are created to be intuitive, meaningful, and to allow the performer to advance

in skill; the instrument will likely be used very rarely. In fact, many computer music

systems do not have a shelf life longer than the single performance of a composition - a

sharp contrast to a masterfully designed and crafted acoustic instrument such as a

Stradivarius violin.

In order for a music-centric multi-touch app to be capable of eliciting intuitive

interaction between the interface and the user, the mapping between the multi-touch

gestures and the parameters of the synthesis engine must be semantically meaningful

and easy for beginners to perceive. The goal for an interactive music system is “…the

emancipation of expressivity in computer music through the incorporation of multiple

levels of human inflection” (Overholt, 2009, p.219).

When designing the mappings for such a system, the designer should keep in

mind that it is not necessary (or desirable) for the user to have control access to every

parameter of the synthesis engine. In many analogue and software-based synthesizers,

the user does indeed have manual access to every possible synthesis parameter, but this

does not always equate with clarity or intuition. In such situations, “…the number of

elements assigned to different variables makes it difficult to understand how a sound is

programmed with a glance at the control surface” (Gómez et al., 2007, p.327).

In a study conducted at the University of York in 2000, Hunt and Kirk showed

that multi-parametric musical user interfaces are more engaging for users than one to

one mappings. They allowed the users to “…think gesturally, or to mentally rehearse

	 	 	 	 	 	 31	

sounds as shapes” (p.255) when using multi-parametric interfaces. Figure 2.9 below

depicts an illustration of multi-parametric mapping.

Hunt and Kirk term this interaction ‘Performance Mode’; an explorative

operation where the user “…discovers how to control a device by exploring different

input control positions and combinations” (Hunt and Kirk, 2000, p.233), by which the

user gains immediate feedback response from the system.

They list the characteristics of Performance Mode as:

• Continuous control of many parameters in real time,
• More than one conscious body control (or limb) is used,
• Parameters are coupled together,
• User’s energy is required as a system input.

Fig.	 2.9	 	
Multi-Parametric	 Mapping	

	 (Hunt,	 Wanderley,	 Kirk	 2002,	 p.1)	

	 	 	 	 	 	 32	

 During performance mode, the user discovers hidden relationships in the system

that are not perceivable without repeated interaction. In such a system, a performer is

able to emotionally express themselves “…by making the most of the available

sensitivity and dynamic range of a given physical interface, and using different gestural

interactions in each performance” (Overholt, 2009, p.219). Instead of gestures being

mapped to individual synthesis parameters, a more appropriate solution would be to

have a conceptual mapping layer that lets users control higher-level parameters such as

brightness, sharpness, or other evocative timbral descriptors (Hunt et al., 2002).

As the sound production of acoustic instruments is determined by their

mechanical/physical nature, a musician’s performance with them involves a close

connection to the musician’s body (Magnusson and Mendieta, 2007). A computer

interface, however, does not necessarily depend on the physical characteristics of the

underlying synthesis algorithms that are utilised. Rather, the interface design is

completely up to the programmer.

In a multi-touch environment, the process of mapping is influenced by the

available gestures that are possible on the specific multi-touch platform. A general

overview of the concept of gestures follows in the next section, including a description

of available gestures for use on the iPad.

2.8.3 Gestures

There are many definitions of the word ‘gesture’ in both HCI and music related

literature. From the HCI perspective comes the definition of a gesture as “a set of

measured points P in space and a corresponding set of time intervals T between

measurements” (Cleveringa et al., 2009, p.2). A less mathematical but equally valid

	 	 	 	 	 	 33	

definition given by Leman and Godøy is that a gesture is “a movement of part of the

body, for example a hand or the head, to express an idea or meaning” (Leman and

Godøy, 2010, p.5). From the point of view of music (specifically performance), Miranda

and Wanderley broadly describe musical gestures as “…any human action used to

generate sounds” (Miranda and Wanderley, 2006, p.5).

All three definitions must be kept in mind during the design and implementation

of a mobile music-based app. The gestures that are used must be capable of effectively

expressing musical ideas, while at the same time being intuitive in their execution by the

user.

The challenge for designing an interactive music technology system is that there

is no standardized set of gestures for the performance of computer music. As such, users

of a system may have different ideas than the designer of the meaning of gestures in that

system. This is in contrast to acoustic instruments, whose physical characteristics lead to

the use of gestures by musicians that are constrained to the design of the instrument.

Another design challenge is that there is a lack of gesture standardization across

the possible hardware platforms available for development. Yet a further challenge is

that each individual user, compared to other users, has differing finger and hand sizes

with which to perform the gesture (Bachl et al., 2010). This makes it possible for users

to experience different outcomes when using the same gestures.

The use of a single hardware device such as Apple’s iPad partially solves the

problem of gesture standardization. Apple provides a standardized set of gestures for the

iOS operating system that all developers are able to implement for various mobile apps.

	 	 	 	 	 	 34	

According to the Apple Human Interface Guidelines, the use of gestures in the iOS

environment gives users “…a greater affinity for, and sense of control over, the objects

they see onscreen, because they’re able to touch them without using an intermediary,

such as a mouse” (Apple, 2012e). However, just because an app may use multi-touch

gestures does not inherently make it intuitive. If the user interaction design is unfamiliar

to a user based on their primary experiences, they will find the gestures unintuitive.

Additionally, as users generally prefer simple gestures, if the user is required to use

excessive physical effort to complete a gesture, then the interaction experience will be

considered less meaningful and rewarding (Ingram et al., 2012).

The use of standard Apple gestures is helpful for mobile applications. Atkins-

Wakefield (2012) showed that Apple gestures are in fact inherently intuitive, and

therefore applications developed on Apple’s iOS platform, which uses these gestures,

have a high likelihood of being operated intuitively by a user. An overview of available

Apple gestures is given in Section 4.1.2. For a thorough discussion on the use of

gestures in interactive music, the reader is encouraged to read “Gesture-Music” (Cadoz

and Wanderley, 2000).

2.8.4 Multi-touch Interaction

Treadaway states that “The hands are our primary interface with the world, and

provide the brain with rich sensory information which is instrumental in building

imagination and novel ideas” (Treadaway, 2009, p.185). As such, multi-touch user

interaction is one possible method for an interactive music compositional system, and

offers a possibility for novel musical interactions apart from traditional Windows Icons

Menu Pointer interfaces operated by mouse and keyboard control. Multi-touch

	 	 	 	 	 	 35	

interaction is capable of allowing the user to utilize natural, intuitive gestures to control

a variety of possible musical parameters (Wöldecke et al., 2012). Jordà describes the

limitations of WIMP interfaces by stating “…there are limits to what can be efficiently

achieved in real-time by means of a mouse and a computer keyboard” (Jordà 2003, p.4).

Alternatively, multi-touch devices allow more intimate control over complex structures

that can exist in music by virtue of employing the use of hand gestures for control

information input (Brunner, 2009). As many musicians tend to instinctively use gestures

when either recalling or producing sounds (Haueisen and Knösche, 2001), multi-touch

gestural input seems a natural choice for the control of musical parameters.

Many mobile devices, including Apple’s series of iPads, have multi-touch

capability. Given these devices’ ubiquity, portability, and computing power; they are

well suited for music software development.

The iPad is also a widely available computing device. As of October 23, 2013,

Apple has sold 170 Million iPads (Hughes, 2013). Additionally, Apple states that there

have been over 50 billion downloads from the Apple App Store as of May 16th, 2013

(Apple 2013a). Part of the popularity of Apple’s mobile computing platforms is that the

devices utilize simple multi-touch gestures that represent physical metaphors (Selker,

2008).

2.8.5 The iPad and Mobile Music

In addition to providing multi-touch capabilities, the iPad has a variety of other

of sensors, data input, and interaction methods (Apple, 2013c), including:

	 	 	 	 	 	 36	

• Three-axis gyroscope
• Accelerometer
• Ambient light sensor
• Wi-Fi
• Digital Compass
• GPS (on cellular model)
• Photo/video recording
• Lightning Connector
• 3.5mm headphone mini-jack
• Built-in speaker
• Microphone

As such, the iPad offers numerous possible input modalities, potentially

providing a rich set of mapping possibilities for controlling musical parameters.

According to Xambó, et al., many multi-touch music apps, some of which are

surveyed at the end of this chapter, exist for a variety of reasons (Xambó et al., 2011):

• Popularity and ubiquity of personal and shared multi-touch devices
• Ease of development for the available devices
• Consumer interest in the creative products.

Geiger (2006) describes the requirements that a mobile interactive music app

should have:

1. It should remain as one piece (the mobile device); not a collection of controllers
and synthesis engines

2. It should stay a portable instrument
3. It should have an interface that maximizes control and gives immediate feedback
4. It should be a “…learn-able and master-able instrument”

 (Geiger, 2006).

For widespread use amongst people who may or may not have a technical

background or similar skills, the app must be ready to use as soon as the user launches

it. It should not require any external hardware or outside software. As the iPad is a

	 	 	 	 	 	 37	

single hardware device that does not rely on any external peripherals and is

exceptionally portable, points 1 and 2 are immediately satisfied.

According to Geiger, one characteristic of standard multi-touch screens is that

they do not provide kinaesthetic feedback, unlike traditional acoustic instruments. Since

feedback is an important part of an interactive system, not only should the user have

auditory feedback, but visual feedback through the use of computer graphics as well,

substituting for the lack of kinaesthetic feedback.

In the following section, a variety of interactive music applications for the iOS

platform are reviewed. In addition, the reader is encouraged to read “A Quantitative

Review of Mappings in Musical iOS Applications” (Kell and Wanderley, 2013), in

which the authors examined the mappings and metaphors of 337 music creation apps.

2.9 iOS App Examples

When designing an interactive computer music-system, it is important that the

system effectively makes use of the specific hardware and software capabilities that the

computer offers (Magnusson and Medieta, 2007). In the case of mobile touch-screen

devices such as the iPad, it is important that an interactive-music app takes advantage of

the large amount of multi-touch screen real-estate. Carlson and Wang further comment

on the ubiquity of traditional musical interfaces in software synthesis applications:

“…there are few that enable interactions that go beyond the standard set of knobs,

sliders, XY control surfaces, and single waveform displays” (Carlson and Wang, 2011,

p.2). Such interfaces originated in the analogue realm of music technology, and were

	 	 	 	 	 	 38	

further used in desktop and laptop computers utilizing WIMP interfaces. This is an

example of skeuomorphism (Gross, 2012), and is discussed further in Section 2.9.10.

With the emergence of multi-touch gestural devices, it is now more feasible to

develop and design new paradigms for musical interaction. Oh et al. (2009) state that the

ubiquity, mobility, and accessibility of mobile phone devices have begun to break down

the barriers of traditional musical experiences. The authors note that there is a

“…blurring of once distinctive roles of a composer, performer, and audience, as one

can now more easily partake in the integrated music making experience” (p.86). In

some instances, users may be performing and composing at the same time, or

sequencing and playing a game, etc…

Given this, many of the apps reviewed below do not necessarily fall into a

clearly defined category. In fact, it has been a considerable challenge to categorize them.

While a complete review of all available music-related iOS apps and the unique

interaction paradigms they embody is beyond the scope of this thesis, the following

approximate categories have been defined:

• Synthesizers
• Generative/Immersive
• Production
• Sequencers
• Effects

As will be seen, many of the reviewed apps fall into several of the above

categories, further evidence that computers, and mobile platforms in particular, are

drastically changing the way that music is composed, performed, and accessed. (Note:

all images are screenshots captured from an iOS device unless otherwise stated).

	 	 	 	 	 	 39	

2.9.1 iMaschine

• Production
• Sequencer

According to its page on the App Store, iMaschine is an “intuitive beat

sketchpad perfect for developing song ideas, anytime, anywhere” (Apple, 2012g,

online).

The app has two interaction modes: a drum-pad view (Figure 2.10), and two

separated keyboard views (Figure 2.11). The app is also able to record; letting the user

record and edit their own samples to use, in addition to the samples included with the

app. Screenshots of the various modes are shown below.

Fig.	 2.10	

iMaschine	 Drum	 Pad	 View	
Fig.	 2.11	

iMaschine	 Keyboard	 View	

	 	 	 	 	 	 40	

In addition to the multiple modes for interaction, the app has an onboard mixer,

with the ability to send audio to two different effects processors. Although the user

interface does not allow for intricate compositional development, it is possible to create

a musical sketch for song material that can be further developed later.

2.9.2 Figure

• Production
• Sequencer/Tracker

According to the developers’ (Reason) description on the App Store Figure is

the “…fun music-making app for instant inspiration” (Apple, 2012b, online). The

description goes on to say that “Figure will have you making music within seconds yet is

deep enough for endless play on a transatlantic flight”. From these descriptions, it is

clear that the app is also more of a musical sketchpad, similar to iMaschine, as opposed

to a complete composition environment. Both applications allow the user to develop

harmonic and rhythmic ideas, but do not provide a mechanism for meaningful control of

timbre characteristics or DSP processes. The interface to Figure is shown below in

Figure 2.12.

	 	 	 	 	 	 41	

2.9.3 The Akai SynthStation

• Synthesizer
• Production
• Sequencer/Tracker

According to its page on the App Store, the Akai SynthStation “...transforms

your iPhone, iPod Touch, or iPad into a mobile music production studio for mobile

music creation” (Apple, 2012k, online). Akai proudly claims that the SynthStation is

loaded with features. While true, the menu layout format does not lend itself well to

composing on a structural level. It appears to be more suited to jotting down quick

musical ideas that can be recreated in a more complete composing environment later.

Fig.	 2.12	
Reason	 Figure	

	

	 	 	 	 	 	 42	

Similar to the Figure app, the Akai SynthStation does not take full advantage of the iOS

multi-touch capabilities.

The app does give control over multiple synthesis parameters, but again; this is

based on a menu system, as well as sliders and knobs. As such, users are not able to

truly take advantage of iOS’s multi-touch architecture. The three views of the

application are shown in Figures 2.13-2.15.

Fig.	 2.13	
Akai	 SynthStation	 Performance	 View	

	 	 	 	 	 	 43	

Fig.	 2.14	 	 	
Akai	 SynthStation	 Sequence	 Editing	 View	

Fig.	 2.15	 	
Akai	 SynthStation	 Drum	 Kit	 View	

	 	 	 	 	 	 44	

2.9.4 iKassoliator

• Synthesizer

A highly commercially successful iOS app is the iKaossilator, whose design is

based on a hardware device of the same name. According to its App Store Page (Apple,

2012d), it was at one time the internationally number one selling music app on the App

Store. The app reached a number 1 sales mark in 8 countries (Korg, 2013).

iKaossilator allows the user to use multi-touch gestures to play a wide palette of

instruments either independently, or along with a variety of included loops. The user is

then able to record their actions, and to continue to record loops on top of each other. In

addition to controlling instrument timbres, the user is also able to change the scale,

tempo, and note length they are performing.

According to Korg’s description, the app is capable of being used by both

musicians and non-musicians. The question is whether the app is for composing or

performing? According to Korg’s website, the “…loop sequencer and Mix Play

capability give you total freedom for creating tracks and performing live” (Korg, 2013).

Note the allusion to both a compositional and performance paradigm. However, even if

the user is able to compose a sequence using the app, they will most likely export the

file to a conventional computer-based Digital Audio Workstation (DAW), such as

Ableton Live or Pro Tools for further editing, sequencing, and production. The app

could best be described as both an instrument for live performance and a simple loop

generator/sequencer, but is in itself not a compositional app. The interface for the

iKaossilator is shown below in Figure 2.16.

	 	 	 	 	 	 45	

2.9.5 The Animoog

• Synthesizer

The Animoog was the first music app to hit the number one selling spot in the

App Store on the day of its release. It was also named by Apple as one of the best apps

of 2012 on the App Store page (Apple, 2012a).

While difficult to use on the limited screen-space of an iPhone, the Animoog for

iPad app is much more user-friendly in terms of user control of the various synthesis

parameters. It would seem that the iPad would be a more appropriate platform for this

application (the app is available on both the iPhone and the iPad). The interface for

Animoog is shown below in Figures 2.17 and 2.18.

Fig.	 2.16	
iKaossilator	

	

	 	 	 	 	 	 46	

Fig.	 2.18	
Animoog	 iPad	 App	 	

(Apple	 2012a,	 online)	

Fig.	 2.17	
Animoog	 iPhone	 App	

	 	 	 	 	 	 47	

2.9.6 The Filtatron

• Synthesizer

The Moog Filtatron is described on its App Store page (Apple, 2011b, online) as

a “…real-time audio effects suite and powerful studio tool for your iPhone or iPod

Touch”. The user is able to alter, in real time, sounds from the iDevice’s

line/microphone input, the app’s sampler, or the app’s built-in oscillator. Though the

user is able to alter the sound in real time via the multi-touch interface of the iDevice,

the application is not intended as a live performance tool; it is intended as an

augmentation to the user’s studio/audio-production workflow. While such an app may

assist in the making of a composition (the app includes a generous selection of quality

presets), it is not an app in which the sole focus of the user is the construction of a

composition. The three main views of Filtatron are shown below in Figures 2.19-2.21.

Fig.	 2.19	
	 Filtatron	 Main	 View	

	

	 	 	 	 	 	 48	

2.9.7 GrainProc

• Synthesizer
• Generative/Immersive

GrainProc is described on its App Store page (Apple, 2012c, online) as

“…providing an expressive control surface of granular manipulation of real-time audio

input, well suited for sonic sculpting and self-accompaniment”. The app is designed for

quick and intuitive control by a user’s fingers. The user is able to control four granular

Fig.	 2.20	
Filtatron	 Sample	 	
Editor	 View	

	
	

Fig.	 2.21	
Filtatron	 Pad	 View	

	
	

	 	 	 	 	 	 49	

synthesis parameters via level controls that resemble faders, but stripped of their

skeumoprhic design elements. A waveform view is shown in the bottom left of the

screen, as well as a “Freeze” button that stops audio.

The waveforms display provides visual feedback to the user as they are altering

these parameters (see screenshot below). In a video on the developers’ website, control

with toes is also shown to be possible. This is an especially interesting capability of the

app, as those without hand movement are still able to access the capabilities of the

touch-screen interface. The app is available both in iPad and iPhone/iPod Touch

versions, and is shown below in Figure 2.22.

Fig	 2.22	
GrainProc	

	 	 	 	 	 	 50	

2.9.8 Reactable Mobile

• Generative/Immersive
• Production
• Sequencer

The Reactable Mobile is based on the hardware version of Reactable, a round

table-based Tangible User Interface that lets multiple users share control of the music by

“…caressing, rotating, and moving physical artefacts” (Jordà et al., 2007 p.142). The

Reactable is shown below in Figure 2.23.

The Reactable Mobile’s App Store Page says that the user is able to “Create and

improvise music in an intuitive and visual way” (Apple, 2012j). The app is rated an

average of four stars, based on input from 205 users.

The Reactable Mobile app lets users control both high-level interactions between

various musical objects (such as sequencers, loops, synthesizers, and filters) and the

low-level parameters of each component object. In both aspects, the application makes

effective use of the iPad’s multi-touch capabilities. The Reactable Mobile App is shown

in Figure 2.24.

	 	 	 	 	 	 51	

Fig.	 2.23	
The	 Reactable	

(Music	 Technology	 Group,	 online)	
	

Fig.	 2.24	
Reactable	 Mobile	 App	
	

	 	 	 	 	 	 52	

2.9.9 NodeBeat

• Synthesizer
• Generative/Immersive
• Production
• Sequencer

NodeBeat is advertised as an “…intuitive and fun visual music app for all ages”

(Apple, 2012i, online). It is also available on the BlackBerry, Amazon and Android

platforms and as a desktop version. The user is able to generate their own original

music, or listen to generative music scenes included in the app.

A screenshot of the app is shown below in Figure 2.25. It makes use of the iOS

multi-touch architecture effectively, resulting in a highly intuitive application interface.

The user controls the output of the app with a variety of coloured and connected nodes.

These nodes are Generators and Notes. The developers state that “Generators pulse and

play notes within proximity. A Note is played in sequence, based on the distance it is

from its connected Generator. Pause Notes to create your own beats or let them roam

free to have them generate their own” (AffinityBlue, 2013, online). Additionally, users

are able to modify audio parameters such as echo, attack, decay, and release. Panning

and tempo may also be adujusted. (AffinityBlue, 2013).

	 	 	 	 	 	 53	

2.9.10 csGrain

• Synthesizer

csGrain is the first iOS app that makes use of the Csound for iOS SDK

(discussed further in Chapter 4), and its maker, Boulanger Labs, hopes to release more

in the near future. A granular synthesis based app, it uses a variety of Csound opcodes to

granularize loaded audio files, as well as live input from the iPad microphone. The app

also includes effects such as a pitch-shifter, ring modulator, chorus, flanger, tap delay,

reverse, high-pass filter, low-pass filter, stereo waveguide reverb, and output

mix/submix (Boulanger Labs, 2012). A screenshot of the primary app view is shown

below in Figure 2.26.

Fig.	 2.25	
NodeBeat	

	 	 	 	 	 	 54	

 While versatile in terms of the synthesis performance, the app does not make

full use of the iPad’s multi-touch capabilities which is discussed further below.

As can be seen, the synthesis parameters are controlled via touch-screen

representations of On/Off switches and rotary knobs. Thus the app uses skeuomorphs,

“…holdovers from previous material construction requirements of an artifact” (Gross,

2012, p.1). In analogue synthesizers, parameter changes necessitated the use of rotary

knobs, switches, and faders for manual control. The knobs, switches, and faders, being

physical objects, were intrinsically mapped to the parameters they controlled via

electrical circuitry. Thus, the user had access to every possible synthesis parameter via a

physical control.

Fig.	 2.26	
csGrain	

	 	 	 	 	 	 55	

Given that multi-touch based computer systems allow for new metaphors for

user interaction, the use of rotary knobs or faders for synthesis control is no longer

needed, as they are not a necessary component for parameter control. Additionally,

touch-screen based pictorial representations of these physical control elements do not

provide the user with the tactile feedback that they would on an analogue system. When

a user twists a knob, changes a switch, or moves a fader in a certain direction, the

parameter being controlled responds accordingly due to the physical correlation between

the knob or slider and the controlled parameter. As such, knobs and faders provide the

user with affordances, fundamental properties that determine how an object should be

used (Norman, 2001). A knob affords the action of turning; a fader affords the action of

a sliding motion.

In a multi-touch computer system, this is not the case: as parameter mappings are

completely up to the designer of the interactive system, he or she is able to create

mappings and metaphors for user interaction of parameters that are based on the

computing device on which the interactive system runs. Therefore it is unlikely that the

best representation would use methods of interaction based on systems that work on

analogue electro-mechanical principles.

Due to the small size of the On/Off switches and rotary knobs compared to the

rest of the app, they are difficult for the user to manipulate quickly, thus inhibiting the

ease with which the user may interact with the app. While the app does give the user

explicit control over all possible synthesis parameters, it does so in a way that is

ineffective for multi-touch user interaction, as the UI is using design metaphors that are

	 	 	 	 	 	 56	

inherited from analogue synthesis systems; rather than utilizing the rich multi-touch

gestures afforded by the iPad’s touch-screen.

2.9.11 Portable Dandy

• Sequencer

Another app that makes use of the Mobile Sound API is Portable Dandy.

Portable Dandy is a simple sequencing app that was inspired by Dandy Desmond’s

1939 composition “Magnetic Loops for 15 Tape Decks” (barefoot-coders, 2012). Users

click on buttons that signify audio loops. These audio loops can be modified by filters, a

ring-modulator, and a pitch-jog wheel, which are controlled via faders. Users are able to

use the pre-loaded samples, or add their own samples using iTunes. The interface for

Portable Dandy is shown in Figure 2.27.

While the app does allow users to interactively sequence sound files and modify

them in real-time, it does not allow for the composition of music, as there is no record

and playback functionality.

	 	 	 	 	 	 57	

2.9.11 iPulsaret

• Synthesizer

iPulsaret is another app that uses the Mobile Csound API. The user is able to

modify a variety of granular synthesis parameters in real time:

• Grain Amplitude
• Grain Density
• Grain Length
• Grain Amplitude Masking
• Grain Frequency Modulation
• Stereo Width
• Random Density
• Random Length
• Random Frequency (Semitones)
• Grain Index Frequency Modulation

Figure	 2.27	
Dandy	

	 	 	 	 	 	 58	

Like many apps, however, these parameters are controlled via virtual sliders, soft

buttons, and knobs. Additionally, the app sticks to a traditional method of performance

interaction via a virtual keyboard. Kell and Wanderley speculate that the reason many

iOS music creation apps make use of keyboards is that the keyboard is such a well-

known metaphor for musical interaction (Kell and Wanderley, 2013). Although the app

makes use of a powerful audio engine capable of producing many interesting sounds, the

choice of interaction methods means that users are confined to traditional ways of

interacting with musical material.

While iPulsaret contains a powerful audio engine, the app does not take full

advantage of the available multi-touch screen real-estate that the iPad offers. The

interface for iPulsaret is shown in Figure 2.28.

2.28	
iPulsaret	

	 	 	 	 	 	 59	

2.9.12 Grain Science

• Synthesizer

Grain Science is a granular synthesizer for both the iPhone and the iPad. The

developers describe it as being able to create “…everything from crunchy basslines to

spooky soundscapes” (Woojijuice, 2012, online). The user is able modify an FX chain

for sound modification, generate arpeggios, and create custom loop patterns using a 32-

step sequencer. Of most interest is that the app allows for arbitrary parameter mapping

between the synthesis parameters and XY pads, pitch/mod wheels, or an external MIDI

controller.

The only obvious limiting factor of the app is the keyboard layout at the bottom

half of the screen. By including a traditional music interface (the piano keyboard), the

app is not taking full advantage of the available touch screen capabilities when

interacting with the harmonic and rhythmic structure of a musical piece. The interface

for Grain Science is shown in Figure 2.29.

	 	 	 	 	 	 60	

2.9.13 MegaCurtis (Lite)

• Synthesizer

MegaCurtis (Lite) is described by its developers on its App Store page as being

able to “Turn any recording into a unique synthesizer!” (Apple, 2012h, online). The app

uses a combination of granular and wavetable synthesis to alter either a live microphone

input or recorded samples. The sample view is shown in Figure 2.30 below. The user is

also able to alter the amplitude, oscillator, envelope, and key of the sampled material,

shown in Figure 2.31 below.

While the app is capable of generating rather interesting sounds, it also relies on

a keyboard interface. The user is once again restricted to the use of a traditional acoustic

instrument paradigm for interacting with synthesis algorithms that are capable of

Fig.	 2.29	
Grain	 Science	

	 	 	 	 	 	 61	

generating new and unexpected sounds, but are limited by the fact that the user is forced

to approach them with the interaction mind-set of a pianist.

Fig.	 2.31	
MegaCurtisLite	 	
Editing	 View	

Fig.	 2.30	
MegaCurtisLite	

Performance	 View	

	 	 	 	 	 	 62	

2.9.14 CP1919

• Synthesizer

CP1919 is an app created by The Strange Agency, and is described on its App

Store page as a physics-based fluid simulation that “…drives an additive synthesizer

[…]. The multi-touch interface lets you control the fluid with your fingers, exciting the

oscillators like strings on a liquid harp” (Apple, 2011a, online).

The app seems to succeed in finding a balance between traditional modes of

musical performance (keyboard at bottom of screen) and parameter control (virtual

sliders at top of the screen), and the use of multi-touch gestures. Additionally, there are

two track-pad controls in the bottom left of the screen for controlling LFO parameters.

The most interesting interface aspect, however, is the fluid mesh for interacting with the

additive synthesizer bank. This appears to be a refreshing metaphor of interaction using

a combination of multi-touch gestures and synthesis parameters. The interface is shown

in Figure 2.32 below.

The app is capable of recording, but the user would need to import the material

into a DAW for further editing in order to create a finished composition. Therefore, it is

not suitable for use as a standalone composition app.

	 	 	 	 	 	 63	

2.9.15 TC-11

• Synthesizer
• Sequencer

TC-11 is an iPad app crated by Kevin Schlei that is “…built around the idea that

any synthesis parameter should be controllable by any multi-point controller” (Schlei,

2012, p.1).

The app comes with several pre-programmed synthesis templates, consisting of a

variety of DSP modules such as envelope generators, step sequencers, and low-

frequency oscillators. The user is able to modify the routing of these modules in each

Fig.	 2.32	
CP1919	

	 	 	 	 	 	 64	

template, and is allowed to save them as a new custom patch for later use. The Pure

Data for the iOS library, libpd, is used as the synthesis engine. The patching view is

shown below in Figure 2.33.

The synthesizer is controlled via multi-point controllers that analyse the raw

multi-touch information generated by the user via the iPad touch-screen. There are two

types of these controllers: single and group touch; based on the number of touches

detected by the iPad’s screen. As users move their hands across the iPad’s screen, they

“…see graphic representations of the multi-point controllers in use, such as connecting

lines, circles, and angle vertices” (Schlei, 2012, p.3). Additionally, the app makes use of

the iPad's accelerometer, gyroscope, and compass as controllers for the synthesis engine.

Fig.	 2.33	
TC-11	 Patching	 View	

	

	 	 	 	 	 	 65	

Users are able to record music with the app’s on-board transport. The interaction view is

shown in Figure 2.34 below.

Given that TC-11 comes with a 68-page user manual, it is not well suited to the

musically inexperienced user. Additionally, some knowledge of synthesis is necessary to

make full use of the app. That being said, TC-11 is a powerful app that a dedicated user

will be able to make interesting compositions with, thanks to its well-implemented use

of the available screen-space and multi-touch gestures of the iPad.

Fig.	 2.34	
TC-11	 Interaction	 View	

	 	 	 	 	 	 66	

2.9.16 Borderlands

• Synthesizer

Borderlands is an iPad app created by CCRMA student Chris Carlson in

(Carlson and Wang, 2011). The app has a single window that displays the waveforms of

audio samples, both included audio files and user-supplied files. The user is able to use

multi-touch gestures to zoom in and out of desired audio files. When the user double

taps on an audio waveform, a circle enclosing an animated waveform and red and white

dots appears. This object granulates whatever part of the audio file it is on top of. When

the user double-taps on the object, a series of circles appear that allow the user to

modify the volume, LFO frequency, pitch, grain overlap, duration in milliseconds of the

grain, and the number of voices of the grain. The user is also able to change the length

and width of the screen that the grain object will sample from. The grain objects are

shown in Figure 2.35 below.

	 	 	 	 	 	 67	

Another event that occurs when the user double taps the grain object is the

appearance of a small toolbar at the top of the screen that allows for control of meta-

parameters. This is shown in Figure 2.36 below.

Fig.	 2.35	
Borderlands,	 	

showing	 audio	 grains	

	 	 	 	 	 	 68	

As the app uses granular synthesis as a method of interacting and composing

with sound, users are able to focus on creating large-scale sound compositions rather

than note-level ones, providing a more accessible route to music composition.

Due to the absence of traditional instrumental metaphors the Borderlands app

appears makes the most effective use of the iPad’s multi-touch capabilities in the realm

of musical synthesis control out of all the reviewed apps.

Fig.	 2.36	
Borderlands,	 	

showing	 grain	 parameters	 and	 editing	 toolbar	
	

	 	 	 	 	 	 69	

2.10 App Conclusions

The majority of current music applications for iOS are not taking enough

advantage of the platform, both in terms of utilizing multi-touch; and as a consequence,

not doing enough to serve a compositional need. Most apps that are composition

oriented do not allow for much more than the ability to sketch out simple rhythmic,

harmonic, and melodic ideas that can be modified at a later time. The majority of apps

do not allow for intricate and intimate control of timbral and DSP parameters. As such,

they are not particularly well suited to perform as high-level, accessible compositional

tools.

2.11 Interactive Composition Systems or, now how do we Make
Music?

As discussed in detail in Section 2.7, Composer Joel Chadabe defines interactive

composition as a “method for using performable, real-time computer music systems in

composing and performing music” (Chadabe, 1984, p.22). The definition itself gives

some idea as to the difficulty in defining what interactive composition is. In the

conventional tradition of Western music composition, a composer uses notation to

individually write out each part of a composition. The composer may go through many

revisions until settling on the final musical work. The composer may then rehearse the

piece with a group of musicians, who later perform the work for a live audience. In other

genres, such as rock, compositions may be written by a member of the band and then

rehearsed with the rest of the group, or the entire group will write the composition in a

group setting. Regardless of genre, the same principle applies: composers write the

music, a group of musicians play it, and an audience will listen.

	 	 	 	 	 	 70	

A new dynamic was afforded with the advent of computers. New methods of

interaction meant that the lines between the definition of composer, performer, and

audience member were increasingly being blurred. In an overview on the topic, Paul

Lansky states that computers have created an additional two spheres in the realm of

musical interaction: those of the sound-giver and the instrument-builder (Lansky, 1990).

Lansky states that a sound giver can be on a spectrum consisting of wanting to

share musical experiences that one appreciates at one end, and sharing one’s newest

composition at the other. Mobile apps, such as the ones described in Section 2.9, often

accomplish these goals. Some apps allow users to document sound and music from their

everyday experiences and share them with friends via social media networks, such as

Facebook and Twitter. Many music-centric apps also allow users to upload their

creations to these social networks.

An instrument builder is an individual or group of individuals who designs and

builds sound generating hardware and software. Composers can use these tools in the

writing and performing of their musical works. A digital instrument, in some cases, such

as one containing pre-sequenced material, may be considered in itself to be a

composition or part of a composition. This occurs most often if the hardware and/or

software created by the instrument builder are to be used for a single performance of a

composition. Lansky describes this by saying “Playing someone else’s instruments

becomes a form of playing someone else’s composition” (Lansky, 1990, p.4). When

describing their own approach to electronic composition, Settel and Lippe state that “the

instrument is present in the composition process at its very inception” (Settel and Lippe,

2003, p.4).

	 	 	 	 	 	 71	

However, an instrument builder may also create hardware and/or software that

can be used by a multitude of other composers that would let them write additional

works. If this is the case, the composers’ music is under the influence of what the

instrument designer determines to be important musical considerations, which influence

the design and construction of the instrument.

This can be seen throughout history. For example, the piano was invented out of

a desire to improve the harpsichord by introducing note-independent dynamic range to

keyboard playing. The music of composers such as Chopin or Debussy was dependent

on and influenced by this development. Additionally, the music of Charlie Parker or

Jimmy Hendrix was inspired by and made possible through the respective inventions of

the saxophone and electric guitar (Settel and Lippe, 2003).

2.12 Problems with Digital Musical Instruments

As has been shown throughout this chapter, technology has had a profound

impact on the way in which music is composed, performed, and accessed. With today’s

computer technology, it is possible for a composer to write a symphony from their

bedroom while immediately hearing what it will sound like, for an artist to perform new

genres of electronic music live, and for fans to listen to any style of music they choose at

any time through their mobile devices.

Cook offers some suggestions as to what influences the design and construction

of digital music interfaces (Cook, 2011):

	 	 	 	 	 	 72	

• Music the designer likes
• Music the designer wants to make
• Instruments the designer already knows how to play
• The artists the designer wants to work with
• Available technologies

Digital musical interfaces are designed and created based on the preferences and

needs of the designer. A wide variety of outcomes can be achieved due to the flexibility

of modern computing technology. This is in contrast to “traditional” musical instruments

that have evolved over millennia based on the physical, acoustic properties of materials

found in nature.

As flexible as they can be, digital instruments are not without their problems.

One issue is reproducibility. Given the fast paced evolution of computer hardware and

software, an instrument that is created with today’s technology may not be able to be

recreated in a decade’s time, as the technology used to create the instrument may

become outdated and obsolete. In fact, if someone other than the original designer

wanted to create a specific digital musical instrument, they may find it difficult, as they

may not have access to the schematics, hardware, algorithms, or source code used to

create the original digital instrument. Tod Machover describes this by saying “While we

have been successful in designing controllers and interactions capable of virtuosity and

subtlety, the best of these […] have been customized for particular compositions,

performances, or performers, and have not been standardized in a way that I associate

with ‘instrumentality’” (Machover, 2002, p.1). In other words, these digital musical

interfaces do not have the same level of longevity as traditional instruments.

	 	 	 	 	 	 73	

As discussed in Section 2.8.3, a solution to the second problem is through the

use of a standard hardware platform that a digital musical instrument can run on.

Consumer devices such as the iPad allow users to download multiple instances of a

digital instrument across devices, thus encouraging longevity.

2.13 What can Music Technology teach HCI?

The field of Music Technology, in particular areas concerning music interaction

design, has many opportunities to benefit the field of Human-Computer Interaction as a

whole. Holland et al. (2013, p.2) illustrates this by saying “As music is an evolutionary,

deep-rooted, complex social activity, Music Interaction makes unusual demands beyond

everyday verbal and mathematical matters, which can lead to inspirational or novel

solutions of wider relevance to mainstream HCI”. Additionally, Khooshabeh et al. state

that musical interaction deals with research areas such as “multi-modal input, analysis,

and mapping of a complex array of human communication signals”, all of which have

applications in the larger field of HCI (Khoosabeh et al., 2005, p.2).

When someone is using computer technology to interact with music, they are

interacting with a highly complex system. Users bring to the interaction all past

experiences, emotions, tastes, and preferences in an attempt to create an artistic product.

They want the experience to be intuitive and straightforward, without having to spend

time learning every aspect of an interface.

According to Hurtienne and Blessing (2007, p.2), “a technical system is

intuitively usable if the users’ subconscious application of prior knowledge leads to

	 	 	 	 	 	 74	

effective interaction”. The study of music interaction has much to offer the wider field

of Human-Computer Interaction in terms of creating more intuitive interactions.

In many commercial computer applications, such as word processing and email,

users are not pushing computers to the limits of their memory capacity or processing

ability/speed. Musicians do, however, “… push machines to their limits when it comes

to expression and performance” (Kirn, 2013, online). This is particularly true for touch-

screen computers. Kirn further states that musicians are the “… greatest test of every

nuance of a touch display, every millisecond of latency, because they don’t just use them

as an interface: they use them as an instrument” (Kirn, 2013, online). Roberts, Forbes,

and Höllerer (2013, p.3) support this by stating “…musical applications require the

ability to control large parameter spaces concurrently and expressively.”

In short, musicians are looking to use their computers as instruments, not as

tools. According to Tanaka, “The term tool implies that an apparatus takes on a specific

task, utilitarian in nature, carried out in an efficient manner” (Tanaka, 2000, p.389).

Tools should be easy to use and accessible to anyone. A musical instrument, on the

other hand, is not meant for use on a single task as a tool is. Rather, it “… often changes

context, withstanding changes of musical style played on it while maintaining its

identity” (Tanaka, 2000, p.390). Additionally, Bertelsen, Berinbjerg, and Pold state that

“Musical instruments are not just functionalistic means to well defined ends; exploring

the instrument is an integral part of the creative process” (Bertelsen, Berinbjerg, and

Pold, 2007, p.234). Musical instruments are not supposed to be perfectly efficient tools

to accomplish formulaic tasks. Rather, they are intended to allow composers and

performers the ability to explore their capabilities for the sake of their artistic output.

	 	 	 	 	 	 75	

Computing devices are becoming more intimately intertwined into the lives of

billions of people. These users not only want their devices to be intuitive and easy to

use, but require intimate control over a variety of processes and applications. The

research conducted as part of this thesis will provide some insight into the ways in

which people use computers to interact with music, as well as for the broader field of

HCI research.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	 	 	 	 76	

Chapter 3
Preliminary Study on Gestural Intuitiveness

“Unlike traditional notation, which requires serious study for a long period
of time, a child can learn the relationship between drawn gestures and
sound in minutes” – Curtis Roads, 2001, p.163

In a 2006 study, Godøy et al. investigated listeners’ associations of gestures with

musical sounds. The researchers studied test subjects’ “sound-tracing” gestures, i.e.,

“…gestures that listeners make with a pen on a digital tablet in response to various

sound fragments” (Godøy, Haga, and Jensenius, 2006, p.1). The goal of the 2006 study

was similar to that of the study described in this chapter, and both ask test subjects to

make gestures they believed “…corresponded well with the sounds they heard” (Godøy

et al, 2006, p.3). Unlike the 2006 study, in which subjects used a pen on a digital tablet,

subjects instead used the surface of an iPad to enact what they felt was an appropriate

gestural response to the test sound.

3.1 Purpose

The purpose of this study was to determine what gestures users create in

response to audio. Subjects enacted gestural shapes in response to listening to parameter

changes of a granular synthesizer. Their interactions were video recorded, and used to

determine how closely the gestures that users draw match the sounds they are listening

to.

	 	 	 	 	 	 77	

3.2 Test Overview

Test subjects sat at a desk with a powered-off iPad in front of them.

Additionally, there was a computer and headphones for the playback of the audio

samples. Subjects wore a pair of headphones to hear the samples. Before taking the test,

they were given a hand-out stating the purpose of the test, instructions for taking the

test, and a short questionnaire to fill out (see Appendices E and F).

The tester asked each subject if they had any questions as to the purpose of the

test or regarding a specific instruction. The instructions given to each subject are listed

below:

• You will hear several audio clips played in succession. Each clip will be played
three times.

• When you hear the clip for the third time, please pretend that You are the one

generating the sound clip by making a gesture on the provided iPad. You are
allowed to make any kind of multi-touch gesture, using both hands to generate
the gesture if you wish.

3.3 Test Subjects

Subjects were recruited from students and staff members of the University of

York Audio Lab, as well as students from other academic departments on campus. The

majority of student subjects (fourteen) were from the Department of Electronics; the

remaining student subjects were from other departments (Linguistics, Literature,

Environment, Education, and the Centre for Women’s Studies). Four subjects were staff

members of the Department of Electronics, and one subject was neither a student nor a

staff member. Further details of the subject demographics are shown below:

	 	 	 	 	 	 78	

• Average age: 28.2
• Age range: 21-47
• Percentage female: 60%
• Percentage male: 40%

Fifteen out of the twenty surveyed subjects owned an iOS device, and eighteen

subjects had used an iOS device prior to the test. One subject described their experience

with iOS devices as trivial, while only one person had never used an iOS device at all.

Fifteen subjects had some kind of kind of audio or music background. These

subjects’ backgrounds ranged from primary-grade level instrument instruction to

university-level music studies. The remaining five subjects had no audio or music

background. Subjects’ specific responses are shown below in Table 3.1.

Subject Response

1 Music Technology researcher, violin

2 "I play and write music on several instruments. Additionally I did an audio
based undergraduate degree, and am currently undertaking an audio-based
postgraduate degree."

3 "Been a professional musician, also an audio professional."

4 Music studies for BA, MSc, and PhD

5 Piano-Grade8, Clarinet-Grade8, Audio Programming for work as researcher,
computer music production as a hobby

6 Performance: Guitar-Grade8, Violin-Grade7; Thoery-Grade5; 5/6 Years
Orchestral Experience (amateur), 8 years playing in a band; 2 degrees in
Music Tech.

7 Piano-Grade7; Violin-Grade8; Music A-Level

	 	 	 	 	 	 79	

8 MusTech Lectures, PhD Audio Interfaces, Piano, violin, bass, guitar (piano =
good standard), Composition for Music & Media

9 Violin, viola, piano, singing, sound design for theatre

10 Played flute for 16 years, bass guitar for 7, other instruments too. Music A-
Level, music tech degree

11 No experience

12 Musician (Professional singer BA, MA, PhD in Music Technology

13 "I am a Sonification researcher working on giving real-time feedback to user
while making motions. I play guitar and compose ambient/electronic music
myself."

14 Vocal student (classical), piano, guitar, flute (choirs, bands, for fun)

15 Violin, piano, recorder, sing in choirs, choral conductor, work in audio and
music technology

16 No experience

17 No experience

18 No experience

19 No experience

20 "I have been in an amateur choir. Have a bit of experience watching
conductors. Played the violin many years ago."

To ensure subject confidentiality, all questionnaires have been kept anonymous.

Additionally, the subjects’ face and voice is not seen or heard in the final edits of the

captured video.

Table	 3.1	 Subjects’	 Musical	 Backgrounds	
	

	 	 	 	 	 	 80	

3.4 Test Procedure

After giving the test subject the aforementioned hand-out, the tester waited for

the subject to signal that they were ready to begin the test. When the subject was ready

to begin, the tester began video recording. Once the subject put on the provided

headphones, each sample was played back three times by the tester. For the first two

playbacks, the subject listened to the sample. On the third playback, the subject enacted

a gesture on the provided iPad’s screen, which was simultaneously being video recorded

by the tester.

After the conclusion of the listening test, video clips were transferred to a

computer for editing and analysis. Each test lasted approximately five minutes.

3.5 Technical Details

All of the samples used in the listening test were synthetically generated using

Csound’s partikkel opcode. This was done so that subjects would focus on their gestural

response, rather than being potentially distracted through the use of familiar organic

sounds.

The four sound files that the subjects heard were generated via a Csound project

(.csd file) created by Oeyvind Brandstegg, partikkel_softsync.csd, which was included in

The Csound Book DVD (Ed. Boulanger, 2000). The score of the project was modified to

generate audio clips lasting for six seconds each. Each clip was created to highlight a

certain parameter of the partikkel opcode. These parameters are listed below:

• igrainrate – grain rate
• igrainsize – grain size
• igrainFreq – fundamental frequency of the grain
• iosc2Dev – second partikkel instance grain rate deviation factor

	 	 	 	 	 	 81	

The .csd file (partikkel_softsync.csd) used for the audio generation can be found

in Appendix H. The audio clips (GrFund.wav, GrRate.wav, GrSize.wav, and

Osc2Dev.wav, can also be found in Appendix H.

A copy of the VLC audio/video player was used for sample playback, and was

run on a PC running Windows 7. An MOTU UltraLiteMK3 audio interface and a pair of

Beyerdynamic DT990 Pro headphones were used for audio monitoring by the test

subjects. A Zoom 3HD video recorder was used to capture the gestural responses of the

test subjects for later analysis. These video clips were later edited using a copy of

Apple’s iMovie software on a 2012 MacBook Pro.

3.6 Analysis

 The tester organized the gathered data into two spreadsheets, both of which can

be found in Appendix G. The first spreadsheet (“Test Subjects”) organizes the

demographic data of the test subjects, and the second spreadsheet (“Clip Analysis”)

organizes the information gathered from analyzing the video clips of the test subjects.

The instructions for the test subjects were purposefully vague, so as to see what

gestures they would spontaneously enact in response to hearing the sound examples.

This included the option to use one or both hands. As is shown in Table 3.2 below, the

majority of subjects used two hands when gesturing. The author speculates (and

discusses later in this section), that this is so subjects could feel that they are not only

generating the sound, but also modifying it.

	 	 	 	 	 	 82	

Clip 1 Hand 2 Hands No response

GrFund 55% 55% N/A

GrRate 25% 70% 5%

GrSize 25% 75% N/A

Osc2Dev 25% 75% N/A

Additionally, participants were not told in which orientation the iPad should be

positioned. Again, this was to encourage the test subjects to exercise full control as to

how they would gesturally respond after hearing the provided sound clips. The majority

of subjects kept the iPad in the vertical orientation (the default position of the iPad that

was in front of them when they took the test). This is shown below in Table 3.3.

However, there were four subjects that asked the tester questions such as “Can I flip the

iPad on the side?” to which the tester responded, “You can make the gesture in

whatever way you want”. Those subjects then turned the iPad to the horizontal position.

(Note: One of the subjects failed to give a response during the playing of the

“GrRate” clip. This is reflected in any subsequent tables).

Table	 3.2	 Number	 of	 Hands	 Used	
	

	 	 	 	 	 	 83	

Clip Vertical Horizontal No response

GrFund 80% 20% N/A

GrRate 75% 20% 5%

GrSize 80% 20% N/A

Osc2Dev 85% 15% N/A

As can be seen in Table 3.4 below, the gestures that subjects made stayed within

the iPad’s multi-touch sensitive area.

 Figure 3.1 illustrates the area of the iPad’s screen that is sensitive to multi-touch

gestures (signified by the area enclosed by the red lines).

Clip Went past MT
sensitive area

Stayed in MT
sensitive area No response

GrFund 25% 75% N/A

GrRate 0% 95% 5%

GrSize 5% 95% N/A

Osc2Dev 5% 95% N/A

Table	 3.3	 Orientation	 Positions	
	

Table	 3.4	 Did	 gestures	 stay	 in	 multi-touch	 area?	
	

	 	 	 	 	 	 84	

However, in some cases, subjects enacted gestures that went beyond the multi-

touch sensitive area. This is presumed to be because the users may have felt that the

iPad’s screen was not large enough to accommodate their desired gesture, or,

alternatively that they were not aware of the iPad’s touch-sensitive boundaries.

Examples of this can be seen in the following clips: 	

	

	

Fig.	 3.1	 	
iPad’s	 multi-touch	 sensitivity	 area	

	 	 	 	 	 	 85	

• Subject4 GrFund
• Subject9 GrFund
• Subject11 GrFund
• Subject12 GrFund
• Subject13 GrFund
• Subject15 GrFund
• Subject4 GrSize

3.6.1 Sound Generation and Modification

In many of the subjects’ responses, two gestural components were observed: one

in which the subject appeared to be simulating the generation of the sound, and one in

which they seemed to be modifying the sound. According to Hunt and Kirk (2000), a

human operator has to inject energy into an acoustic musical instrument in order for it to

operate, and must then continue supplying a certain amount of energy in order to modify

the system so that it produces the desired output.

In the case of a violin, the musician injects energy into the system by use of the

bow, which generates sound. This energy is modified by “steering” the sound with

fingers placed on the neck of the violin. This is shown below in Figure 3.2, sourced

from Hunt and Kirk (2000).

	 	 	 	 	 	 86	

Table 3.5 on the following page illustrates which subjects’ gestural responses

seemed to indicate an intention of sound generation and/or modification.

Figure	 3.2	
Human	 Energy	 Input	 and	 Control	
(Hunt	 and	 Kirk,	 2000,	 p.235)	

	 	 	 	 	 	 87	

Clip Generation Modification No response

GrFund 100% 80% N/A

GrRate 90% 55% 5%

GrSize 100% 80% N/A

Osc2Dev 100% 95% N/A

Excluding one subject, who did not give a response to the “GrRate” clip, all

subjects responded to the sounds with gestures that seemed to contain an intention of

generation, characterized by impulsive, percussive motions. The majority of subjects’

gestures also seemed to contain an intention of sound modification. Smoother, gliding

motions across the surface of the iPad’s multi-touch screen generally characterized these

interactions. Particularly interesting examples of this can be found in the clips listed

below:

• Subject1 GrSize	 	
• Subject4 Osc2Dev
• Subject5 GrRate
• Subject8 GrRate
• Subject12 Osc2Dev
• Subject15 GrFund
• Subject20 GrSize	

3.7 Conclusions

 All subjects gesturally responded to sound samples in a manner indicative of

sound generation and modification. As such, it is possible that humans, having

Table	 3.5	 	
Generation	 and	 Modification	 Events	

	

	 	 	 	 	 	 88	

developed an innate knowledge of how objects in the world operate on a physical level,

are aware that enacting a motion that injects energy into an object will generate a sonic

output. Additionally, we seem to be aware that physically adjusting a sounding object

will modify the sound it produces.

The tests show that subjects are able to put this knowledge to use on a multi-

touch device, such as the Apple iPad. This suggests that a music-based iOS app that

makes use of natural mappings between users’ inherent knowledge of physical

properties and synthesis parameters would be an intuitive tool, making full use of the

iPad’s multi-touch capabilities.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	 	 	 	 89	

Chapter 4
Technical Details of User Tests

This chapter gives an overview of the technologies that are part of designing and

building the iOS applications used for research into the hypothesis, as well as an

overview of the test apps used. It includes descriptions of the technologies involved, and

the reasoning behind the choice of certain platforms, programming languages, and

synthesis methods. Additionally, specific design and implementation details of the apps

are included.

4.1 iOS

iOS was chosen as the development platform because it allowed for the

production of apps	 running	 on	 multi-‐touch	 capable	 hardware, specifically the iPad.

The Department of Electronics provided access to an iPad, allowing the apps to be

extensively tested. Although it is possible to develop on the Android platform, this was

deemed impractical due both to the lack of access to hardware for testing, as well the

fragmentation of the operating system due to the number of phones on which the

platform is available (Velcazo, 2012). Whereas, iOS runs on comparatively few

dedicated hardware devices: the iPod Touch, iPhone, iPad, and the iPad Mini (Apple,

2012f).

4.1.1 Multi-touch on iOS

Wessel et al. (2002) list the following features as being essential for a gesture-

based musical interface:

	 	 	 	 	 	 90	

• Ability to detect subtle as well as large gestures
• Continuous as well as event-based control
• Low-latency and high bandwidth
• Reliability and portability

A variety of sound processors and instruments have been developed for the iOS

platform, some of which have been discussed in Section 2.9. However, only a few of

them meet Wessel et al.’s criteria for a gesture-based musical interface, primarily

because they rely on skeuomorphic interface elements rather than gestural control.

According to Saffer, there are three stages for an interactive gesture:

• Initiation: how an action begins
• Activation: what happens while an action is occurring
• Updates: what happens when the user has completed an action.

For the user, this is seen as a continuous process. However, the multi-touch

system processes each step in turn. This is accomplished through a combination of the

multi-touch hardware and the operating system. All multi-touch systems consist of three

general components: a sensor, a comparator, and an actuator (Saffer, 2009, p.12). These

components are defined below:

Sensor – An electrical or electronic component whose job is to detect changes in the
environment.

Comparator – Compares the current state to the previous state or the goal of the system
and then makes a judgment. These decisions are then passed to an actuator.

Actuator – Determines the outcome of the comparator’s judgments.

	 	 	 	 	 	 91	

In the iOS operating system, the multi-touch screen is the sensor. The screen,

which has a resolution of 1024 x 768 pixels (Mark et al., 2011) or a resolution of 2048

x 1536 at 264 pixels per inch if the screen is a Retina display (Apple, 2013c) detects

touch events generated by the user, and sends this information to the operating system

(the comparator). The operating system then compares the new touch information to

previous information, and passes this information to the app the user is interacting with;

or the actuator. The app then executes the appropriate actions based on the received

touch information.

Figure 4.1 below, sourced from Wilson et al. 2007, illustrates how touch-sensing

works on the iPhone/iPad. Once the screen detects a user’s touch, the iOS operating

system processes this information to determine the coordinates on the screen that the

touch was registered.

	 	 	 	 	 	 92	

Once the touch screen detects a gesture, it needs to be translated to code so that the

desired actions of the user can be completed. Saffer (2009, p.133) describes a generic

gesture-to-code conversion process as follows:

• Variables to measure: Height, width, depth, speed, duration, and so forth
• Data input: The raw numbers coming in from the sensor readings that populate the

variables
• Computation: To figure out the difference between data points
• Patterns: To determine what the sums of the computation mean
• Action: The system action to execute upon finding a pattern.

Fig.	 4.1	 	
iPhone	 Touch	 Detection	

(Wilson	 et	 al.,	 2007,	 online)	
	

	 	 	 	 	 	 93	

The gesture recognizers (part of the UIKit Framework) determine the size, shape,

and location of areas affected on the screen by the user’s touch. This determines what

gesture the user performed. Once the gesture type is determined, the corresponding

action that the user intended is performed by the app (Wilson et al., 2007). This is done

by what Apple refers to as “Gesture Recognizers”.

4.1.2 Gesture Recognizers

In its developer documentation, Apple says that gesture recognizers “…convert

low-level event handling code into higher-level actions” (Apple, 2013b, online). Apple

provides several gesture recognizer classes in the UIKit framework. Additionally, it is

possible for a developer to create their own gesture recognizer designed to accommodate

gestures that are not part of Apple’s framework of standard gestures.

A gesture is passed through the gesture recognizers inside a series of events

(Mark et al., 2011). Each event is triggered when the user makes contact with the multi-

touch screen. The operating system detects if a touch has occurred by sensing if a finger

has been placed on, dragged across, or lifted from the screen. A tap is recognized if the

user touches the screen and then immediately removes their finger from contact with the

screen, without moving their finger from the point of initial contact (Mark et al., 2011).

There are two overall types of gestures: discrete and continuous. A discrete

gesture occurs once, consisting of one touch event. If a discrete gesture is used, the

gesture recognizer will send a single action message to its target (i.e. the code that

performs the desired user action). A continuous gesture, however, can consist of

multiple touch events that take place over time. If a continuous gesture is used, the

	 	 	 	 	 	 94	

gesture recognizer will send action messages to the target until the multi-touch sequence

ends. This process is shown in Figure 4.2 below.

4.1.3 Types of Gestures in iOS

iOS supports a variety of multi-touch gestures, which are listed in Table 4.1

(sourced from Neate, 2012, pp.27-28). The Description column lists how the user’s

hands perform each gesture, and the Applications column describes how each gesture is

traditionally used in a mobile app.

Fig.	 4.2	 	
Discrete	 and	 Continuous	 Gestures	

(Apple,	 2013b,	 online)	

	 	 	 	 	 	 95	

Gesture	 Description	 Applications	

Tap	
	

	

A	 simple	 short	 tap	 on	 the	
screen.	 	 A	 program	 can	 be	
implemented	 to	 act	
differently	 to	 multiple	 taps	
with	 multiple	 fingers.	

Generally	 used	 in	 the	 same	
way	 a	 mouse	 is	 used,	 for	
selecting	 things,	 or	 opening	
them.	

Pinch	
	

	

Either	 pinching	 so	 that	 the	
fingers	 go	 together	 or	
spread.	
	

Generally	 used	 for	 zooming	
in	 and	 out.	

Rotation	
	

	

The	 movement	 of	 the	
points	 the	 fingers	 are	 in	
contact	 with	 in	 a	 cyclical	
fashion.	
	

Generally	 used	 for	 rotating	
elements	 on	 the	 screen,	
photos,	 knobs,	 etc.	

Pan	
	

	

The	 movement	 of	 2	 or	
more	 contact	 points	 where	
they	 remain	 approximately	
the	 same	 distance	 apart.	
	

Normally	 used	 for	 dragging	
about	 objects	 on	 the	 screen.	

Long	 Press	
	

	

Pressing	 the	 screen	 for	
longer	 than	 a	 simple	 tap	
with	 one	 or	 more	 fingers.	

Generally	 used	 to	 select	
something	 on	 the	 screen	 to	
evaluate	 its	 properties,	 or	
for	 deletion.	

Developers are able to use standard gesture recognizer templates in Interface

Builder and/or Storyboard files. Additionally, developers may implement gesture

recognition programmatically. For more information on iOS gesture recognition, the

Table	 4.1	
Apple	 iOS	 Gestures	
(Neate,	 2012)	

	
	

	 	 	 	 	 	 96	

reader is encouraged to review Apple’s document “Event Handling Guide for iOS” in

the Apple Developer Library (Apple, 2013b). While gesture recognizers are not

implemented in this project’s test apps, they are mentioned here to give the reader a

broad scope of what is possible in terms of gestural development on iOS devices.

4.1.4 iOS Development in Xcode

As has been established, the main apps for carrying out user tests were

developed on Apple’s iOS platform. Xcode is Apple’s Integrated Development

Environment (IDE) for developing applications for the OSX and iOS platforms (Apple,

2013d). Xcode allows the developer to have seamless integration of code editing, UI

design, and testing/debugging inside one window. Xcode’s integrated Interface Builder

allows the developer to implement user interfaces that utilize Apple’s built-in interface

objects, such as sliders, buttons, and switches. Developers may also implement other

open-source or custom user interface objects.

Xcode also allows for easy inclusion of external libraries for implementing extra

functionality. One such external library (which the project test apps utilize) is the

Mobile Csound Platform, which is discussed in Section 4.2.4.

Simulators for the iPhone and the iPad are included in Xcode, allowing

developers the ability to test applications in real-time before deployment onto an actual

device. Xcode 4.6.1 was used for project development. A screenshot of the Xcode IDE

is shown below in Figure 4.3.

	 	 	 	 	 	 97	

4.2 Audio Programming for iOS

 There are a variety of ways in which developers can implement audio on mobile

platforms including iOS. An overview of the available options follows.

4.2.1 Core Audio

Core Audio is a low-level API provided by Apple for implementing digital audio

on both the OSX and iOS operating systems (Adamson and Avila, 2012). Given the

option of audio development in higher-level synthesis languages (discussed below), it

was felt that development in these languages would be better suited for meeting one of

the original thesis goals of providing users with the ability to compose high-level

musical compositions, and learning these would be a better use of time and resources

Figure	 4.3	
Screenshot	 of	 Xcode	 IDE	

	

	 	 	 	 	 	 98	

than learning Core Audio. This justification carried over to the development of the test

apps used for the investigation of the hypothesis.

4.2.2 libpd

Pure Data was also considered for implementing audio synthesis of the app.

libpd is an API that makes it possible to embed Pure Data into a variety of host

platforms, including iOS, Android, and HTML5 (Kirn, 2010). As a result, if a Pure Data

patch is created for one device, it can be ported on a host of other devices as well. libpd

has been used in a variety of commercially successful apps (Kirn, 2013).

4.2.2.1 Pure Data

Pure Data is an open source “...real time graphical programming environment

for audio processing” (Kriedler, 2009, online). Instead of performing synthesis by

writing code in a text-based environment, users connect together visual objects via

virtual patch cords. Each object represents a synthesis action or performance, such as an

audio input or a simple oscillator. A system of connected objects is known as a patch. A

screenshot of an example oscillator patch created by the author is shown in Figure 4.4.

	 	 	 	 	 	 99	

4.2.3 The Amazing Audio Engine

The Amazing Audio Engine was released in 2013 by developer Michael Tyson

(Synthopia.com, 2013). It is built on Core Audio’s Remote IO system, and is designed

to allow developers to spend more time on specific application development, rather than

writing low-level audio code that duplicates previous work.

While it is an attractive option for developing audio on the iOS platform, the

Amazing Audio Engine was released too late into project development to spend enough

time learning the API. Additionally, the author had already begun research into utilizing

the Mobile Csound Platform, which is described in the following section.

4.2.4 Mobile Csound Platform

In 2012, Victor Lazzarini, Steven Yi, and Joseph Timoney announced the Mobile

Csound Platform (MCP) at the 15th Intl. Conference on Digital Audio Effects (Lazzarini

Fig.	 4.4	
A	 Pure	 Data	 Patch	

	
	

	 	 	 	 	 	 100	

et al., 2012a). The MCP allows the developer to develop audio engines in Csound,

which can then be deployed on both iOS and Android devices. It is implemented in both

Objective-C and Java.

The developers created a new API using Objective-C named “CsoundObj”. The

CsoundObj “…controls Csound performance and provides the audio input and output

functionality…” (Lazzarini et al., 2012b, p.164). iOS device sensor data is also available

to be accessed by Csound using the CsoundObj. In order for iOS to communicate

control data and audio signals between Csound, CsoundValueCacheables are added to

the CsoundObj. These allow values to be read and written to during each performance

cycle. Figure 4.5, taken from The Mobile Csound Platform (Lazzarini et al., 2012b,

p.164), illustrates this process:

Fig	 4.5	
Csound	 for	 iOS	 API	 Relationships	 	
(Lazzarini	 et	 al.,	 2012b,	 p.164)	

	

	 	 	 	 	 	 101	

More detail on the Mobile Csound Platform can be found in “Csound for iOS

API-A Beginner’s Guide” (Appendix B), a tutorial on using the API written by the

author along with Timothy Neate and Abigail Richardson, fellow colleagues in the

University of York Audio Lab. The tutorial was written both for better understanding of

the Mobile Csound Platform by the authors, as well as to encourage other students and

developers in developing iOS applications using Csound as the audio engine.

4.2.4.1 Csound

Csound is a “...programming language designed and optimized for sound

rendering and signal processing” (Csounds.com, 2012, online). Similar to Pure Data,

Csound is freely downloadable software. Composers use Csound to create a wide range

of music, including classical, pop, techno, ambient, and experimental music

(Csounds.com, 2012).

Csound operates by translating a set of text-based instruments (see Figure 4.6),

found in an orchestra file, into a computer data-structure that is machine resident. It then

performs these user-defined instruments by interpreting a list of note events and

parameter data (known as a score) that the program reads from. The performance can

either be played back in real time or written to a disk file (Boulanger, 2000). As Csound

has over 1200 different operational codes used for instrument creation, also known as

opcodes, (Csounds.com, 2012), Csound has the ability to create a wide variety of unique

timbres.

	 	 	 	 	 	 102	

The author was eager to work with Csound in a way that has not been

extensively explored before, as the Csound SDK was released in April 2012 (Kirn,

2012). The Csound for iOS SDK was chosen over libpd for this reason. The tutorial in

Appendix B is a result of the effort to implement the Csound for iOS SDK.

4.3 History and Overview of Granular Synthesis

One of the ways in which musicians and composers are able to compose with

sounds directly, as opposed to notes in traditional notation, is granular synthesis. Instead

Figure.	 4.6	
Screenshot	 of	 a	 block	 of	 Csound	 Code	

	

	 	 	 	 	 	 103	

of exploration of musical structures centred on traditional harmonic and rhythmic

theory, timbre is explored instead.

Granular synthesis originated with two publications by Dennis Gabor, “Theory

of Communication” and “Acoustic Quanta and the Theory of Hearing” (Gabor, 1944 &

1947). In these papers, Gabor proposes that any sound can be described by a granular, or

quantum, representation. Therefore, it would be possible to synthesize both sampled

sounds and digital waveforms in terms of granular properties. Each sample is divided up

into small ‘grains of sound’ that can be manipulated in real-time. As the threshold of

human pitch and amplitude recognition has been estimated to be roughly 50

milliseconds, grain durations are generally between 10-60 milliseconds (Lee, 2000). A

pictorial representation of a grain of sound is shown in Figure 4.7.

Figure	 4.7	 	
	 View	 of	 a	 grain	 in	 the	 time	 domain	

(Roads,	 2001,	 pg	 87)	

	 	 	 	 	 	 104	

Amplitude envelopes help form the shape of the grains. Figure 4.8 shows the

following commonly used amplitude windowing envelopes, sourced from Roads (2001).

a) Gaussian
b) Quasi-Gaussian
c) Three-stage line segment
d) Triangular
e) Sinc function
f) Expodec
g) Rexpodec

 Figure	 4.8	
Grain	 Amplitude	 Envelopes	 	

(Roads,	 2001,	 p.89)	
	
	
	

	 	 	 	 	 	 105	

Composer Curtis Roads was the first person to implement granular synthesis in

the digital domain. Due to the high number of parameters, Roads “…created an

interface that only required the composer to define a beginning set of parameters, after

which the program would systematically generate the traits for each individual grain”

(Holmes, 2008, p.309). In such a system, the composer determines higher-level

compositional characteristics, while the computer system generates sounds according to

those defined characteristics.

Roads describes other compositional systems that implement various forms of

granular synthesis (Roads, 2001). Additionally, various iOS apps have implemented

variations of granular synthesis (see sections 2.9.6, 2.9.9, 2.9.11, 2.9.12, 2.9.13, and

2.9.16).

In “The Computer Music Tutorial”, Roads describes several types of granular

synthesis techniques, which are listed below (Roads, 1996).

• Fourier/Wavelet Grids: time domain signal is read in, and frequency versus time
content is mapped to a grid. Each grid point is associated with a grain.

• Pitch Synchronous: generation of tones with multiple formant regions in their
spectra.

• Quasi-synchronous: multiple streams of grains with a variable delay period
between them.

• Asynchronous: grains scattered in regions, called clouds, over a specified
duration.

• Time Granulation: envelopes applied to small region of sampled sounds.

Asynchronous granular synthesis was implemented in the test apps using

Csound’s grain opcode, which is described further in Section 4.4.1.

	 	 	 	 	 	 106	

4.4 Granular Synthesis in Csound

Csound has several granular synthesis opcodes, including grain, granule,

syncgrain, syncloop, diskgrain, fog, fof, partikkel, and partikkelsync. (Vercoe et al.,

n.d.). The grain opcode was chosen for use in the test apps due the simplicity of its

implementation, while still providing a unique output of granular-based timbres.

4.4.1 The grain Opcode

The grain opcode randomly reads a portion of the source sound material, which

in this case is a square wave. The opcode then outputs a mono audio signal (a1). The

parameters of grain are listed in tables 4.2 and 4.3 below, which are modified from an

entry in the Canonical Csound Reference Manual, Version 5.13 (Vercoe et al., n.d.,

p.908).

Igfn

The ftable (a floating point array) number of the grain
waveform. This can be just a sine wave or a sampled
sound.

iwfn iwfn - ftable number of the amplitude envelope used for
the grains

imgdur Maximum grain duration in seconds.

igrnd Optional parameter, not used in the project .csd file

Table	 4.2	
grain	 Initialisation	 Parameters	

	 	 	 	 	 	 107	

xamp Amplitude of each grain.

xpitch Grain pitch.

xdens Density of grains measured in grains per second. As
xdens is controlled through user interface elements and
not set to a single value, the synthesizer is
asynchronous.

kampoff Maximum amplitude deviation from xamp. This means
that the maximum amplitude a grain can have is xamp +
kampoff and the minimum is xamp. If kampoff is set to
zero then there is no random amplitude for each grain.

kpitchoff Maximum pitch deviation from xpitch in Hz. Similar to
kampoff.

kgdur Grain duration in seconds.

The Csound .csd file that was used in the test apps for this project was modified

from an example project that is included in Chapter 13 of The Csound Book (Lee,

2000). The initialization parameters, as well as control parameters xamp and kampoff,

are coded as constants in the .csd file. The user is able to interact with the remaining

control parameters (xpitch, xdens, kpitchoff, and kgdur) via rotary knobs, sliders, and

multi-touch gestures for each respective test app. These control mechanisms will be

discussed further in the Section 4.5.

Two ftables are used to generate and window the square-wave that is the audio

source for the grain opcode. ftables are arrays of floating point values that are stored in

Table	 4.3	
grain	 Performance	 Parameters	

	 	 	 	 	 	 108	

RAM and are used when Csound is generating sound. They are calculated by Csound

GEN routines, a series of ftable generator subroutines (Nelson, 2000). The first ftable

uses the GEN10 subroutine, which generates a table with the size of 16,384 values with

one cycle of a square wave. The square wave is comprised of a fundamental and eight

harmonics of varying degrees of strength. The second ftable uses the GEN20 subroutine,

which applies a Hanning window with a peak-window value of one in a table with a size

of 1,025 values. An illustration of a Hanning window is shown in Figure 4.9 below,

which is taken from the Canonical Csound Reference Manual, Version 5.13 (Vercoe et

al., n.d.).

Figure	 4.9	
A	 Hanning	 Window	 	

(Vercoe	 et	 al.,	 n.d,	 p.2617.)	

	 	 	 	 	 	 109	

The Csound code for generating the ftables is shown in Figure 4.10 below.

Figure 4.11 below is a block diagram of the grain opcode as implemented in the

three test apps. The diagram is adapted from a similar diagram found on page 281 of

The Csound Book (Lee, 2000). Variables listed as starting with “x” above are able to be

implemented as either audio or control rate variables, and are signified accordingly. Any

variables set to default values in the .csd file appear with their initialized values.

Figure	 4.10	
Code	 for	 generating	 a	 square	 wave	
and	 applying	 Hanning	 window	

	 	 	 	 	 	 110	

In order to make the output of the grain synthesizer sound more aesthetically

pleasing, an instance of Csound’s reverb opcode is added. The opcode is simple,

requiring input and output audio channels, and the reverb time in seconds (Vercoe et al.,

n.d.). The reverb time for all test apps is set to 1.5 seconds. An optional parameter, iskip,

is not implemented in the test examples.

In the .csd files used for the test apps, a global variable, ga1, is initialized to a

value of zero at the start of the file. This is done so that even if the granular synthesizer

is not running at the start of the rendering performance, the variable will still exist and

have a temporary value until audio is being written to it. At the end of the code for the

Figure	 4.11	
Block	 Diagram	 of	 grain	 opcode	

	 	 	 	 	 	 111	

reverberation instrument (instr 1307), global variable ga1 is reset by assigning it to a

value of zero. This is done to prevent the variable from accumulating values from the

grain synthesizer.

The output of the grain synthesizer is fed into the global audio variable ga1,

which is then set to the input of the reverb opcode. The audio signal is then applied with

reverb, the time of which is set to one and a half seconds. The output is then fed to the

iPad speaker. A flowchart of this process is show in Figure 4.12 below.

Figure	 4.12	
.csd	 Instrument	 Flowchart	

	

	 	 	 	 	 	 112	

The implementation of this set-up was done with reference to the Csound

FLOSS manual chapter on Reverberation (McCurdy, 2010). The following sections

detail the test apps that implement user control of the grain-based granular synthesizer

in three different control settings: rotary knobs, sliders, and multi-touch gestures. The

method of sound generation for the Csound synthesizer is exactly the same in all three

apps. As such, only the methods of controlling the synthesizer through the application

code will be discussed further. Application code for the test projects can be found in

Appendix O, and the .csd file used in the projects can be found in Appendix P.

4.5 Design of Test Apps

Three apps were developed to test the hypothesis. Each of the apps allowed users

to control the same four parameters described in the previous section: grain pitch, grain

density, grain pitch offset, and grain duration. Additionally, the first two apps were

configured with an On/Off switch to start and stop the rendering of the embedded .csd

file. This was to allow test subjects to feel more in control of the app’s actions. Without

the addition of an On/Off switch, the apps would begin to generate audio output before a

subject would have the chance to interact with the user interface elements. This code is

shown below in Figure 4.13.

	 	 	 	 	 	 113	

//Start rendering if Switch turned on
-(IBAction)toggleOnOff:(UISwitch *)sender
{
 if (sender.on){
 //Locate .csd and assign create a string with its file path
 NSString *tempFile = [[NSBundle mainBundle]
 pathForResource:@"1306-KNOBS" ofType:@"csd"];

4.5.1 Rotary Knob Test App

The first app that test subjects interact with is based on parameter control via

rotary knobs. Each parameter is assigned to a single knob. The knobs are implemented

using tutorial code from developer Tim Bolstad (Bolstad, 2009), as Apple does not

provide a default knob class as part of the UIKit. A screenshot of the app is shown

below in Figure 4.14.

Figure	 4.13	
Code	 for	 rendering	 control	

	 	 	 	 	 	 114	

The starting value and ranges for each rotary knob are set when it is created.

Code for setting the values of Knob 1 as an example is shown in Figure 4.15 below:

Figure	 4.14	
Rotary	 Knob	 Test	 App	

	 	 	 	 	 	 115	

 //Set values of knob1
 [knob1 setMinimumValue:100.0];
 [knob1 setMaximumValue:1000.0];
 [knob1 setValue:550.0 animated:NO]
 [knob1 setPrecision:25.0];
	

	

	

When the user rotates the knob, the value of the knob is sent to variables that

Csound will access. The code for this is shown below in Figure 4.16.

//Send values of knobs to respective Csound variables
- (void)knobTwist:(TABKnob*)sender
{
 if (sender == knob1)
 grainPitchValue = sender.value;
 else if (sender == knob2)
 pitchOffsetValue = sender.value;
 else if (sender == knob3)
 grainDensityValue = sender.value;
 else if (sender == knob4)
 grainDurationValue = sender.value;
}

	 	

	 	

Csound accesses these variables through strings that are initialized in the

application. The strings refer to variables in the application code with value information

to control parameters of the Csound audio engine. The code for initializing the strings

and connecting them to the necessary variables is shown below in Figure 4.17.

Figure	 4.	 15	
Setting	 the	 value	 parameters	 of	 Knob1	

Figure	 4.16	
Sending	 knob	 values	 to	 Csound	

variables	

	 	 	 	 	 	 116	

	

	

	

4.5.2 Faders Test App

The second app that test subjects interact with allows for parameter control via

four sliders. Sliders are instances of Apple’s UISlider class, which allows for “drag and

drop” placement. The code for sending slider values to Csound is similar to the code for

sending rotary knob values in the previous example. The code for this is shown below in

Figure 4.18.

Figure	 4.17	
Csound	 code	 for	 reading	 in	
variable	 control	 information	

	 	 	 	 	 	 117	

//make control variables value of faders
- (IBAction)grainPitchSlider:(id)sender
{
 UISlider *grainPitchSlider = (UISlider *)sender;
 grainPitchValue = grainPitchSlider.value;
}

- (IBAction)pitchOffsetSlider:(id)sender
{
 UISlider *pitchOffsetSlider = (UISlider *)sender;
 pitchOffsetValue = pitchOffsetSlider.value;
}

- (IBAction)grainDensitySlider:(id)sender
{
 UISlider *grainDensitySlider = (UISlider *)sender;
 grainDensityValue = grainDensitySlider.value;
}

- (IBAction)grainDurationSlider:(id)sender
{
 UISlider *grainDurationSlider = (UISlider *)sender;
 grainDurationValue = grainDurationSlider.value;
}	

	

	

	

The default thumb image for the sliders was replaced by an image included in an

example Xcode project from the appcellerator.com forums (Duggal, 2011) in order to

make the sliders appear more like analogue faders as found in many pieces of audio

equipment, and in computer music apps and applications. Each slider controls a single

parameter of the grain-based synthesizer. A screenshot of the app is shown below in

Figure 4.19.

Figure	 4.18	
Code	 for	 sending	 UISlider	

values	 to	 Csound	

	 	 	 	 	 	 118	

	

	

	

Code for sending control information from iOS to Csound, and the Csound code

for retrieving that information, is essentially the same as the previously described Rotary

Knob test app.

4.5.3 Multi-Touch Test App

The third and final app that test subjects interact with is based on multi-touch

control of the four previously mentioned parameters of the grain-based synthesizer.

Each synthesis parameter is mapped to a single-finger touch. When the app starts, the

output of Csound is muted until the user touches the screen. The user is able to interact

Figure	 4.19	
Faders	 Test	 App	

	 	 	 	 	 	 119	

with the app using two fingers. Each finger is able to control a separate mapping zone.

These zones are shown below in Figure 4.20.

As shown above, the red zone on the left allows for control of pitch and pitch-

offset. When the user moves a finger along the Y-axis, they are controlling pitch; and

when their finger moves along the X-axis, pitch-offset is controlled. When the user adds

a second finger in the green zone on the right, two additional variables can be

controlled: grain density in the X-axis, and grain duration in the Y-axis. A screenshot of

the finished app is shown below in Figure 4.21.

	

Figure	 4.20	
Touch	 Control	 Zones	

	 	 	 	 	 	 120	

	

	

The red and green frames shown in Figure 4.20 are created using Apple’s

CGRect function in the ViewController.h file. Each area is assigned a separate touch ID:

the red area is assigned to the first touch (UniqueID:1), and the green area is assigned to

the second touch (UniqueID:2). The code for this is shown in Figure 4.22 below.

Figure	 4.21	
Screen	 shot	 of	 Touches	 App	

	 	 	 	 	 	 121	

//Set size and location of touch areas on screen
CGRect frame1=CGRectMake(0, 0, 512, 768);
CGRect frame2=CGRectMake(512, 0, 512, 768);

//Assign seperate touches to respective screen areas
_firstTouch=[[OneTouch alloc] initWithFrame:frame1
 withColor:[UIColor redColor]
 delegate:self
 uniqueID:1];

_secondTouch=[[OneTouch alloc] initWithFrame:frame2
 withColor:[UIColor greenColor]
 delegate:self
 uniqueID:2];

	

	

The details of the detection and tracking of users’ fingers, as well as their

mapping to the synthesis parameters are discussed in the next section.

4.5.3.1	 Multi-Touch	 Implementation	 Details	

A class, OneTouch, was implemented to track the location of separate touch

events and send their coordinate information to the ViewController. The ViewController

then scales the values to appropriate parameter ranges before sending them to Csound

for control of each respective synthesis parameter.

The OneTouch class makes use of two Apple methods for implementing multi-

touch control in iOS, (void)touchesBegan and (void)touchesMoved. In the touchesBegan

method, the initial location of each touch is determined. This method is shown below in

Figure 4.23.

Figure	 4.22	
Creating	 Two	 Touch	 Areas	

	 	 	 	 	 	 122	

-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 if([touches count]==1)
 {
 //Tracks initial location of touches
 UITouch *touch=[touches anyObject];
 _initialPoint=[touch locationInView:self];
 }

}	

	

	

The touchesMoved method detects when each touch is moved on the screen, and

sends that information to the ViewController. Two parameters, valueX and valueY, are

defined as floats. This is shown in Figure 4.24 below.

-(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 Float32 valueY;
 Float32 valueX;

	

	

For each touch that is moved on the screen, the X and Y coordinate points are

updated. These points are then scaled to a value between 0 and 1. The code for this

process is shown below in Figure 4.25.

Figure	 4.23	
touchesBegan	 method	

Figure	 4.24	
Parameter	 declaration	 in	

touchesMoved	

	 	 	 	 	 	 123	

// For each touch, track point location in the view
UITouch *touch=[touches anyObject];
CGPoint currentPoint=[touch locationInView:self];

// Y value range (scale points to be between 0 and 1)
valueY = 1 - currentPoint.y / _scalingRangeY;
valueY = 1 - abs(currentPoint.y -1)/_scalingRangeY;

// X value range (scale points to be between 0 and 1)
valueX = 1 - currentPoint.x / _scalingRangeX;
valueX = 1 - abs(currentPoint.x -1)/_scalingRangeX;	

	

	

For each detected touch (object: _uniqueID), a delegate outputs the

corresponding X and Y location value that will later be read by the ViewController. The

delegates are sendValueYFromOneTouch and sendValueXFromOneTouch. The delegate

code is shown in Figure 4.26 below.

//Send X and Y values of each TouchID to ViewController
[_delegate sendValueYFromOneTouch:valueY object:_uniqueID];
[_delegate sendValueXFromOneTouch:valueX object:_uniqueID];

	

	

	 	

	 In the ViewController.h file, the delegate methods of OneTouch,

sendValueYFromOneTouch and sendValueXFromOneTouch are called via the code

Figure	 4.25	
X/Y	 position	 tracking	

Figure	 4.26	
Delegate	 Code	 for	 Sending	 X/Y	 Values	

	 	 	 	 	 	 124	

shown below in Figure 4.27. The View Controller looks for the values sent by the

delegates, which is then appropriately modified and sent to Csound in the .m file.

//Call TouchOne class delegates
-(void)sendValueYFromOneTouch:(Float32)valueY
 object:(UInt16)objectID;
-(void)sendValueXFromOneTouch:(Float32)valueX
 object:(UInt16)objectID;

	

	

	

The code for setting up and communicating with Csound is exactly the same as

the previous two test apps; with the exception that Csound is muted when the app first

starts. This is done using the Csound for iOS API method “muteCsound”, as shown in

Figure 4.28 below.

//Mute Csound when app first loads
[self.csound muteCsound];

	

	

The delegate methods for OneTouch are then called. When the first touch

(ObjectID==1) is detected, Csound is unmated using the unmuteCsound method. For

the first touch detected, the sendValueYFromOneTouch method sends the value of the Y

coordinate to the parameter pitchValue. This parameter is scaled to be in a range

Figure	 4.27	
Calling	 TouchOne	 Delegates	

Figure	 4.28	
muteCsound	 method	

	 	 	 	 	 	 125	

between 100 and 1,000 Hz. When the second touch is detected, the value of the Y

coordinate for the touch is sent to densityValue, which is scaled to be a value between 1

and 100.

Similarly, the delegate method sendValueXFromOneTouch sends the X

coordinate value of touch 1 to the parameter offsetValue, which is scaled to be a value

between 0 and 1,000. The X coordinate value of touch 2 is sent to the parameter

durationValue, which is scaled to be a value between 0.05 and 0.95.

The code for the two delegate methods is shown in Figure 4.29 below.

	 	 	 	 	 	 126	

//Csound varaibles assigned depending on touch location
-(void)sendValueYFromOneTouch:(Float32)valueY
object:(UInt16)objectID
{
 if (objectID == 1)
 {
 //Unmute Csound when user first touches app
 [self.csound unmuteCsound];
	
 pitchValue = 100 + valueY * 900;
 //printf("pitchValue is %f", pitchValue);
 }
 else if (objectID == 2)
 {
 densityValue = 1 + valueY * 100;
 //printf("densityValue is %f", densityValue);
 }
}

-(void)sendValueXFromOneTouch:(Float32)valueX
object:(UInt16)objectID
{
 if (objectID == 1)
 {
 offsetValue = valueX * 1000;
 //printf("offsetValue is %f", offsetValue);
 }
 else if (objectID == 2)
 {
 durationValue = 0.05 + valueX * 0.95;
 //printf("durationValue is %f", durationValue);
 }

}	

	

	

	

	

Figure	 4.29	
Delegate	 Method	 Implementation	

	 	 	 	 	 	 127	

Chapter 5
App User Tests

This chapter describes the purpose, design, and implementation of the user tests

intended to test the hypothesis. The validity of the hypothesis is explored, as well as

subsequent modifications.

5.1 Test Purpose

The apps described in the previous chapter were used in a subject test to help

determine the validity of the hypothesis that users prefer using multi-touch gestures to

interact with music as opposed to traditional skeuomorphs. The three apps allow test

subjects to interact with a granular synthesizer implemented in Csound in three different

control paradigms: 1) rotary knobs, 2) faders, and 3) multi-touch. The rotary knobs and

faders are examples of traditional skeuomorphs commonly employed in many mobile

music apps, such as some of those described in Section 2.9. Screenshots of the three test

apps are shown Sections 4.5.1-4.5.3.

 The prediction is that test subjects will initially prefer to interact with the

granular synthesizer via faders instead of rotary knobs and multi-touch interaction,

however, after repeated interaction with the apps, will grow to prefer the multi-touch

option to the faders app. The prediction is also that users will consistently dislike

interacting with the rotary knob-based interface. This is due to its inherent physical

properties, which are similar to traditional analogue systems.

	 	 	 	 	 	 128	

The first test gathered an overview of how a group of twenty subjects interacted

with the test apps, and what their perceptions and opinions of them were. A subset of

these subjects (ten of them) later interacted with the same test apps to determine whether

their opinions of the apps changed with repeating the test.

5.2 Test Subjects

The user tests were conducted in the University of York, Department of

Electronics Audio Lab. Twenty subjects were presented with an iPad, and interacted

with the three apps in turn.

Test subjects were recruited from staff and students of the University of York,

Department of Electronics’ Audio Lab. Additionally, some people from other academic

departments on campus were recruited for the test. Eleven of the subjects were from the

Department of Electronics; the remaining subjects were from other academic

departments at the University of York, including English/Related Literature, Linguistics,

Mathematics, Centre for Women’s Studies, Computer Science, and Centre for Medieval

Studies. Three of the subjects were members of academic staff.

• Average Age: 25.45
• Age Range: 19-41
• Percentage Female: 45%
• Percentage Male: 55%

Thirteen out of the twenty subjects owned an iOS device, and eighteen out of the

twenty subjects had used an iOS device prior to the test. Only four subjects had

previously used an iOS app to make music. These apps included various synthesizer

apps: GarageBand, Propellerhead’s Figure App, and MagicPiano. In total, 75% of the

	 	 	 	 	 	 129	

test subjects had some kind of prior musical background. Table 5.1 below shows

subjects’ responses when asked if they have any sort of prior music or audio

background:

Subject Response

1 MSc/BEng in Music Technology, Previous Performance Experience
(Guitar-Grade 8, Violin-Grade 7 (ABRSM))

2 Musicologist, pianist, music teacher, MSc/PhD Music Technology

3 10 years voice, 13 years piano, 1 year guitar, 14 years flute, 1 year
University level music study

4 Singer, BA/MA/PhD in Music and Music Technology

5 MusicTech Student, self-taught guitarist

6 No

7 No

8 Piano/clarinet lessons to Grade 8, music technology studies, PhD in
Acoustics

9 Played cello in high school

10 Sang in a choir

11 "Have played guitar and used various music generating computer
programs."

12 Singing in musicals, Grade 4 piano, Grade 1 trombone

13 No

14 Play guitar/compose electronic music. Used various music
production software/hardware. Played with some music apps on
iPod.

15 No

16 Professional in both

	 	 	 	 	 	 130	

17 Guitarist and music producer (hobbyist)

18 No

19 Music A-Level, Violin/Piano-Grade 8

20 Musical training in classical/choral singing. Work in audio & music
technology.

Users turned on the sound for each app when they were ready, and were able to

interact with the apps for as long as they wished. Before their first test, subjects read a

provided hand-out and signed a consent form (see Appendix J). Attached to the consent

forms were questionnaires, which can be found in Appendix K. Subjects’ hands were

video recorded during their interactions with the test apps for potential later use in

determining any possible interaction commonalities. All subjects’ comments for each

app were audio recorded for use in analysing their opinions and perceptions of the test

apps. These recordings can be found in Appendix N.

5.3 Test Procedure

 Subjects were asked to interact with each of the test apps in turn by adjusting the

available audio parameters. Subjects were allowed to interact with each of the test apps

for as long as they wished; the longest amount of a time a subject interacted with an app

was for approximately 4 minutes and 6 seconds.

Table	 5.1	
Subjects’	 Music/Audio	 Backgrounds	

	 	 	 	 	 	 131	

 Subjects were given no specific instructions on how to interact with the apps,

such as what type of sound they should make, or if they should try to reproduce any

specific sounds.

The tester was present while the subjects read the provided hand-out. The tester

remained present for the duration of the tests, and assisted the subjects in answering any

questions they had before, during, and after the tests. Additionally, the tester helped start

each app before the users began the test.

At the conclusion of each test, the tester collected the questionnaires for analysis.

Additionally, the tester stored all video and audio files from the tests for later analysis.

5.4 Technical Set-Up

The apps used for the subject tests were run on an iPad 2 supplied by the

Department of Electronics. Subjects’ comments were recorded using an audio recording

app on the Tester’s iPhone 5. Subjects’ interactions with the test apps during both Test 1

and Test 2 were video recorded using a Canon EO5-700D camera. Video footage was

then edited using iMovie.

5.5 Test 1 Results

 Table 5.2 below shows Test One Subjects’ answers when asked which app they

prefer, and which app they like the least.

	 	 	 	 	 	 132	

Subject Most Preferred App Least Preferred App

1 Touches Knobs

2 Touches Faders

3 Faders Touches

4 Faders/Touches Knobs

5 Touches Knobs

6 Faders/Touches Knobs

7 Faders/Touches Knobs

8 Touches Faders

9 Faders Touches

10 Touches Knobs

11 Faders Knobs

12 Faders Knobs

13 Faders Touches

14 Touches Knobs

15 Faders Touches

16 Touches Knobs

17 Faders Touches

18 Faders Touches

19 Knobs Touches

20 Touches Knobs

Table	 5.2	
Test1	 -	 Subjects’	 Most	 and	 Least	 Preferred	 Apps	

	 	 	 	 	 	 133	

5.6 Test 2 Results

 Ten of the subjects who participated in Test 1 were asked to repeat the test to see

if their opinions of the test app would change upon repeated usage. Participants were

selected by availability to conduct a repeat test. Subjects were again allowed to play

with each app for as long as they wished. Their preferences after completing this repeat

test are shown below in Table 5.3.

Subject Most Preferred
App after Test1

Least Preferred
App after Test2

Opinion Change
Since Test1?

1 Touches Knobs No

2 Touches Sliders No

3 Knobs Touches Yes

6 Sliders Knobs No

7 Touches Knobs No

8 Touches Knobs No

10 Sliders/Touches Knobs Yes

13 Sliders Knobs Yes

14 Touches Knobs No

15 Sliders Knobs Yes

Table	 5.3	
Test2-	 Subjects’	 Most	 and	 Least	 Preferred	 Apps	

	

	 	 	 	 	 	 134	

 Four of the subjects in Test 2 did express a change in app preference from one

test to the other. These changes are shown in Table 5.4 below.

Subject
Most

Preferred-
Test 1

Least
Preferred-

Test 1

Most
Preferred-Test

2

Least
Preferred-

Test 2

3 Faders Touches Knobs Touches

10 Touches Knobs Faders/Touches Knobs

13 Faders Touches Faders Knobs

15 Faders Touches Faders Knobs

5.7 User Comments

 After completing the first test, subjects were asked to state any impressions,

thoughts and opinions regarding the test apps. Videos of subjects interacting with the

apps can be found on the additional YouTube channel at this link.

 The Faders app was widely preferred over the Knobs app. This was because

users found the Faders app to be much more intuitive and easy to use. Users expected

the Knobs app to behave in the exact same manner as a physical rotary-potentiometer

knob, i.e., rotating the knob in a circular motion. While such an action could have been

implemented in the app, it was decided not to do so for one reason: many music-based

apps that do implement rotary knobs do not behave in such an analogous (rotary)

manner. Instead, users are expected to slide their finger up and down in order to move

Table	 5.4	
User	 Change	 in	 Preference	

	 	 	 	 	 	 135	

the knob left and right. In their review of iOS music creation apps, Kell and Wanderley

classify knobs that behave in this manner as actually being faders (Kell and Wanderley,

2013). It is unclear why many developers implement rotary knobs in such a

counterintuitive manner, apart from it being slightly easier to code. An example of a

user struggling with this configuration can be found here.

Faders were deemed to be easier and more intuitive to use because they provided

a sense of linear visual feedback, were easy to interact with, and seemed to be conducive

to producing a desired sound. Users seemed to appreciate that when they moved a faders

up and down, the corresponding parameter was either increased or decreased (for

example increasing or decreasing the pitch of the grains). Users described the Faders

app as being easy to control with their fingers, and not as cumbersome as the Knobs app.

Although the granular synthesis engine implemented in the apps was generally

described as being difficult to control, users generally felt that the Faders	 app allowed

for the best implementation if they wanted to reproduce a sound that they had heard

earlier while interacting with the app. As subjects were not given instructions to try to

reproduce sounds during the tests, it is possible that they were doing so in order to better

understand what effects their interactions with the user interface had on the musical

output.

Such reproducibility would be necessary if the user wanted to have fine-grained

control over the music creation process. Subjects also described the faders as being more

responsive to their touches and easier to control than the rotary knobs. This may be

related to the fact that the knobs and faders provide the user with what Norman refers to

	 	 	 	 	 	 136	

as affordances, fundamental properties that determine how an object should be used

(Norman, 2001). In other words, a knob affords the action of turning; a fader affords the

action of a sliding motion.

Subjects who preferred the Touches app stated that the reasons for their choice

were that the app felt “intuitive, interactive, creative, and playful”. One subject even

stated that the app “encouraged creativity”, and that it “Makes for a more user-friendly

and interesting performance experience”. Another subject stated that they preferred the

Touches app because it felt more tactile.

 While interacting with the app, some subjects seemed to be exploring the timbre

space available via the granular synthesizer. While subjects could achieve some sonic

reproducibility via repeated movements over appropriate areas of the X/Y axis, those

who expressed a preference for the app seemed content to explore the timbral

possibilities of the app via moving their finger across the screen, alternatively in fast,

quick swirling and tapping gestures, and more slow and nuanced gestures.

5.8 Hypothesis Discussion

The original hypothesis is that users prefer multi-touch gestures for interacting

with music as opposed to traditional skeuomorphs. In this hypothesis framework, users

would consistently prefer to interact with music using multi-touch gestures, regardless

of the paradigm of the application or the user’s intent and purpose for interaction.

Based on the results of the tests, users do not show a preference for interacting

with music with only multi-touch gestures to validate the initial hypothesis. As such, the

hypothesis has been modified.

	 	 	 	 	 	 137	

The modified hypothesis is that if users want an app that will allow them to

explore music in a manner they would describe as “intuitive, interactive, creative, and

playful”, then a multi-touch gestural app is the preferred option. These users desire real-

time interaction with music: they want to have an immersive, “flow-like” creative

experience when interacting with the app. Such an experience would be similar to

Csikszentmihalyi’s concept of “flow”, as discussed in Section 2.6 (Leman, 2010).

However, if users want to be able to intricately modify and edit music or audio,

then an app implementing a skeuomorphic design paradigm is the preferred option. Such

users want to understand what the individual parameters are and adjust them to reach a

certain goal. If the app does use skeuomorphs, then it needs to be intuitive, easy to use,

and provide appropriate visual feedback.

The modified hypothesis is therefore: users who want an intutive and exploratory

experience with music prefer an app with multi-touch gestures, but those who want to be

able to modify and edit music prefer apps with skeuomorphic UI elements.

The user tests conducted as described in this chapter provide initial evidence for

this modified hypothesis. The tests were intended to explore a principle rather than to

provide statistical validity.

Given that some users prefer the complex multi-touch interface and some prefer

the simpler skeuomorphic interfaces, these preliminary results may help support Hunt

and Wanderley’s findings (2002) that users prefer complex interfaces for complex, real-

time tasks, and simple interfaces for simple, non-real-time tasks. Simpler interfaces and

mappings may be more suited for non-real-time/goal-focused applications.

	 	 	 	 	 	 138	

Additionally, it is observed that multi-touch gestural control is not initially well

received by goal-focused users. Given the inherent multi-parametric complexity of

multi-touch interfaces, many users may be initially intimidated by a rich multi-touch

gestural app, and will avoid its use, even if it meets the needs of their tasks. However,

given a long enough period of testing, subjects will begin to prefer the more complex

multi-touch gestural app.

 The author suspects that if each subject had more opportunities to interact with

the apps over a longer time span (i.e., more then the longest time a user spent on a test,

which was approximately 4 minutes), those who did not initially enjoy interacting with

the Touches app would eventually come to at least appreciate what it is capable of, even

if they did not completely prefer or enjoy it.

5.9 Potential Test Improvements

After the tests, five users stated that all three test apps would have been much

more enjoyable to use if the synthesized sound output was different. Of the twenty

subjects who participated in the tests, only five had any comment on the sound

generated by the app, four of these subjects giving a negative opinion of the sound.

These subjects stated that the sound was too chaotic, glitchy, and hard to control. One

subject stated that due to the nature of the sound, it was hard to tell exactly what they

were trying to control. Only one subject (Subject 8) out of the twenty specifically stated

that they enjoyed the sound; a video of them interacting with the Touches app during the

first test can be found here.

	 	 	 	 	 	 139	

It is possible that if the sound had a more pleasing aesthetic quality, the results of

the test would be different. Users who expressed frustration at using the Touches app

might have been willing to spend a longer time interacting with it had the sound

generated by the apps been more pleasing to their musical tastes, and in doing so may

have come to prefer the Touches app over the Knobs and Faders apps.

Additionally, some users stated that they would have enjoyed using the touches

app if it implemented visual feedback. As users are able to see the skeuomorphic

interface elements (knobs and faders in the app examples) change their positions when

they interact with them, users expected the same sort of visual feedback to occur when

interacting with the Touches app. The study of visual feedback in multi-touch gestural

music apps is a potential further area of research. Interestingly, one user did say that the

lack of visual feedback made the Touches app “more fun somehow” (Subject 8).

This is consistent with Hunt’s notion of an “explorative operation” (Hunt,

2000). Hunt defines an “explorative operation” mode of interaction as when “…the

user discovers how to control a device by exploring different input control positions and

combinations, thus gaining an immediate response from the system” (Hunt, 2000,

p.102). The user who stated that they preferred a lack of visual feedback on the Touches

app may have done so because they were able to enter into an explorative mode of

operational interaction. They may have been content to truly explore the musical

possibilities of the app, as opposed to relying on visual feedback to reproduce certain

specific sounds while in an analytical mode of operation. This analytical mode would be

characterized by viewing each individual musical parameters as separate, rather than

listening to the combined overall musical result of the individual parameters.

	 	 	 	 	 	 140	

If any future versions of the test described in this chapter are to be carried out,

the addition of visual feedback by generating animation or other visual content with

each touch movement should be considered.

	 	 	 	 	 	 141	

Chapter 6
Conclusions and Further Work

 This chapter states the conclusions drawn to support the modified hypothesis,

stated in Section 5.8. Possible future work in the area is also proposed. The chapter

concludes with a statement on the significance of the conducted research.

6.1 Conclusions

 Before implementing an interactive music app, designers need to make sure that

the purpose of the app is clearly defined: for example, is the app supposed to allow for

intricate audio editing, or will it allow for interactive, real-time composing and/or

performing? Obviously there are many different types of music apps (some of which

have been described in Section 2.9); the ‘audio editing’ and ‘performing’ are mentioned

merely as differing examples. If the user requires fine-grained, intricate control of

individual parameters, then an app implemented with traditional skeuomorphs is more

appropriate. However, if the user wishes to explore a wide musical design space, then

multi-touch gestures are much more appropriate for encouraging the user to intimately

explore and play with the potential musical material.

6.2	 Further	 Work	

	 In	 addition	 to	 the	 inclusion	 of	 visual	 feedback	 as	 discussed	 in	 Section	 5.8,	

the	 author	 proposes	 the	 following	 projects	 as	 potential	 continuations	 of	 the	

research	 conducted	 as	 part	 of	 this	 thesis.	 	

	

	 	 	 	 	 	 142	

Haptic	 Feedback	 in	 Multi-touch	 Interactions	

	 Apple	 has	 recently	 applied	 for	 a	 patent	 for	 a	 “Method	 and	 apparatus	 for	

localization	 of	 haptic	 feedback”	 (Campbell,	 2013).	 Depending	 on	 whether	 this	 is	

implemented	 on	 iOS	 devices,	 and	 if	 developers	 are	 given	 sufficient	 ability	 to	 write	

code	 for	 this	 feature,	 another	 project	 could	 be	 to	 determine	 whether	 haptic	

feedback	 aids	 multi-‐touch	 based	 musical	 interaction.	 Such	 a	 system	 could	 have	

particular	 benefits	 for	 visually-‐impaired	 individuals.	 Additionally,	 a	 combination	 of	

haptic	 and	 visual	 feedback	 in	 aiding	 multi-‐touch	 interactions	 could	 be	 investigated.	 	

Investigation	 of	 Custom	 Gestures	 for	 Musical	 Interaction	

	 As	 discussed	 in	 Section	 4.1.3,	 Apple	 allows	 developers	 to	 create	 custom	

gestural	 interactions.	 To	 the	 best	 of	 the	 author’s	 knowledge,	 there	 are	 currently	 no	

iOS	 apps	 that	 allow	 users	 to	 determine	 which	 gesture	 they	 wish	 to	 use	 to	 control	

specific	 musical	 parameters.	 A	 potential	 app	 for	 investigating	 user	 gestural	

preferences	 would	 allow	 the	 users	 to	 themselves	 set	 up	 mappings	 between	 specific	

musical	 parameters	 and	 specific	 multi-‐touch	 gestures.	

6.3	 Significance	 of	 Research	

	 Music	 interaction	 and	 digital	 musical	 instrument	 research	 bears	 a	 certain	

resemblance	 to	 “mainstream”	 Human-‐Computer	 Interaction	 research.	 Both	 are	

tasked	 with	 similar	 aims:	 helping	 users	 accomplish	 certain	 goals	 that	 are	 assisted	

through	 the	 aid	 of	 computer	 technology.	 Wanderley	 and	 Depalle	 (2004,	 p.632)	

describe	 this	 by	 stating	 that	 the	 study	 of	 gestural	 interaction	 with	 musical	

parameters	 “…can	 be	 seen	 as	 a	 highly	 specialized	 branch	 of	 HCI”.	 Additionally,	 music	

	 	 	 	 	 	 143	

interaction	 has	 offered	 several	 contributions	 to	 HCI	 research,	 some	 of	 which	 are	

listed	 in	 Holland	 et	 al.,	 2013.	 Wanderely	 and	 Orio	 (2002,	 p.	 74)	 further	 support	 this	

by	 stating	 that	 “…a	 bidirectional	 flow	 of	 knowledge	 between	 classical	 HCI	 research	 on	

input	 devices	 […]	 and	 the	 design	 of	 new	 digital	 musical	 instruments	 can	 lead	 to	

substantial	 improvement	 in	 both	 fields”.	 	

	 However,	 music	 interaction	 research	 is	 a	 narrower	 field	 where	 the	 goal	 is	 to	

develop	 methods	 and	 implementations	 that	 allow	 the	 end	 user,	 in	 this	 case	

someone	 interested	 in	 engaging	 with	 a	 musical	 system,	 to	 have	 the	 best	 possible	

experience	 of	 interacting	 with	 that	 system.	 Holland	 et	 al.	 (2013,	 p.3)	 state	 that	

“Music	 Interaction	 borrows	 countless	 elements	 from	 HCI,	 and	 in	 general	 is	 held	 to	 the	

same	 standard	 as	 HCI	 research.	 But	 at	 the	 same	 time,	 the	 practice	 of	 Music	

Interaction	 is	 bound	 up	 with	 the	 practices	 of	 the	 music	 community”.	 In	 mainstream	

HCI	 research,	 the	 scope	 is	 much	 broader;	 typically	 the	 research	 goal	 is	 to	 develop	

ways	 of	 easily	 manipulating	 data/accomplishing	 some	 sort	 of	 end	 goal	 as	 quickly	

and	 efficiently	 as	 possible.	 	

	 In	 such	 scenarios,	 interface	 designs	 consisting	 of	 WIMP	 (Windows	 Icons,	

Menus,	 Pointers),	 and	 skeuomorphic	 elements	 such	 as	 knobs	 and	 sliders	 are	

appropriate,	 as	 they	 allow	 users	 to	 quickly	 and	 efficiently	 accomplish	 a	 task.	 This	 is	

in	 a	 contrast	 to	 designing	 interfaces	 for	 musical	 interaction,	 in	 which	 “…the	 design	

of	 a	 new	 input	 device	 for	 musical	 performance	 is	 generally	 directed	 toward	 the	

fulfilment	 of	 specific	 and	 sometimes	 idiosyncratic	 musical	 goals”	 (Wanderley	 and	

Depalle,	 2004,	 p.637).	 Complex	 systems,	 such	 as	 music,	 often	 demand	 complex	

	 	 	 	 	 	 144	

interfaces.	 Such	 interfaces	 are	 often	 not	 learnt	 quickly,	 and	 many	 times	 users	 will	

grow	 frustrated	 with	 them	 before	 achieving	 any	 satisfactory	 results.	 Complex	

interfaces	 may	 at	 times	 be	 appropriate	 for	 helping	 users	 meaningfully	 engage	 with	

musical	 material,	 as	 shown	 in	 Hunt	 (2000),	 and	 McDermott	 et	 al.	 (2013).	 	

	 Professional	 musicians	 spend	 a	 lifetime	 practicing	 their	 craft.	 As	 long	 as	

they	 have	 a	 musical	 goal	 to	 reach,	 they	 will	 keep	 doing	 so.	 Musicians	 always	 find	 a	

way	 to	 keep	 advancing	 in	 their	 instrumental	 and	 performance	 skills,	 or	 ways	 to	

keep	 growing	 as	 a	 composer.	 In	 both	 cases,	 they	 are	 interacting	 with	 a	 system	 (a	

physical	 instrument	 to	 produce	 musical	 output,	 or	 creating	 musical	 structures	 in	 a	

novel	 and	 creative	 manner).	 In	 both	 cases,	 the	 system	 they	 are	 interacting	 with	 is	 a	

complex	 one.	

	 The	 area	 in	 which	 the	 field	 of	 Music	 Interaction	 research	 can	 help	 benefit	

mainstream	 HCI	 research	 is	 in	 the	 interaction	 of	 users	 with	 complex	 systems.	

Mainstream	 HCI	 research,	 with	 its	 focus	 on	 speed	 and	 efficiency,	 may	 at	 times	 not	

present	 appropriate	 solutions	 for	 the	 target	 areas	 it	 hopes	 to	 solve.	 Music	

interaction,	 with	 its	 specific	 focus	 of	 helping	 people	 interact	 with	 complex	 systems	

in	 novel	 ways,	 is	 in	 a	 position	 to	 help	 mainstream	 HCI	 researchers	 in	 creating	

immersive,	 flow-‐like	 interactions	 for	 users	 engaging	 in	 high-‐dimensional	 systems.	

	 This	 research	 has	 shown	 that	 when	 users	 wish	 to	 creatively	 engage	 with	

music	 on	 a	 particular	 device,	 they	 prefer	 to	 do	 so	 with	 multi-‐touch	 gestures	 where	

possible.	 If	 they	 wish	 to	 have	 intricate	 control	 over	 specific	 musical	 parameters,	

however,	 then	 skeuomorphic	 user	 interface	 elements	 are	 preferred,	 even	 where	

	 	 	 	 	 	 145	

multi-‐touch	 gestures	 are	 available.	 Designers	 of	 music-‐centric	 apps,	 or	 of	 any	 app	

that	 involves	 a	 system	 as	 complex	 as	 music,	 should	 consider	 implementing	 multi-‐

touch	 gestures,	 as	 	 -‐	 if	 wisely	 implemented	 -‐	 they	 allow	 the	 user	 to	 achieve	 a	 state	

of	 flow	 and	 creative	 exploration.	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	 	 	 	 	 146	

Appendix A - Composition App UI Sketches

	

	 Appendix	 A	 consists	 of	 sketches	 created	 to	 design	 the	 interface	 and	
interaction	 methods	 of	 an	 interactive-‐composition	 iPad	 app,	 and	 drawn	 at	 the	 time	
when	 this	 was	 the	 inteded	 development	 goal	 as	 part	 of	 the	 MSc.	

	

Sketch	 1.A	

	 As	 the	 user	 vocalizes	 into	 the	 microphone,	 the	 process	 of	 granularization	 is	
illustrated	 through	 the	 use	 of	 a	 waveform	 display	 /	 graphics	 to	 show	 the	
granularization	 occurring.	 	

	

Sketch1.B	

	 As	 further	 voclaizations	 are	 added,	 they	 are	 continually	 displayed	 along	
with	 those	 that	 occurred	 previously.	 The	 waveforms	 may	 be	 pushed/pulled	 to	
control	 the	 parameters	 of	 the	 granular	 synthesizer.	 	

	

Sketch	 1.C	

	 A	 cellular	 automata	 algorithm	 that	 affects	 the	 granularized	 visualizations	
would	 direct	 “Ball	 objects”	 shown	 in	 the	 sketch.	 It	 was	 not	 decided	 what	
parameters	 they	 would	 be	 mapped	 to.	

	

Multi-‐Touch	 Mapping	 Sketch1	

	 This	 details	 an	 original	 mapping	 sketch	 for	 the	 multi-‐touch	 test	 app.	
Synthesis	 parameters	 are	 controlled	 by	 a	 variety	 of	 taping,	 pinching,	 and	 swiping	
gestures.	 	

	

Multi-‐Touch	 Mapping	 Sketch2	

	 This	 sketch	 was	 a	 second	 idea	 for	 the	 mapping	 of	 the	 multi-‐touch	 test	 app.	
Synthesis	 parameters	 are	 controlled	 by	 pinching	 and	 swiping	 gestures.	 Grain	 pitch	
is	 an	 X/Y	 control	 space	 in	 the	 left	 corner,	 and	 pitch	 offset	 is	 and	 X/Y	 control	 space	
in	 the	 right	 corner.	

	 	 	 	 	 	 147	

Sketch 1.A

	 	 	 	 	 	 148	

Sketch 1.B

	 	 	 	 	 	 149	

Sketch 1.C

	 	 	 	 	 	 150	

Multi-Touch	 Mapping	 Sketch1	

	

	 	 	 	 	 	 151	

Multi-Touch	 Mapping	 Sketch2	

	

	 	 	 	 	 	 152	

Appendix B - Csound for iOS Tutorial
	

	 In an effort to better understand the Csound for iOS API, the author, along with
fellow colleagues Timothy Neate and Abigail Richardson, wrote a tutorial for the API.
The tutorial is aimed at those who have some iOS development experience, and are
wanting to quickly develop audio for use in their apps.

	

	 	 	 	 	 	 153	

	

Department	 of	 Electronics	

Audio	 Lab	
	

	

	

Csound	 for	 iOS	 API	
A	 Beginner’s	 Guide	 1.1	 	

17/2/2013	

	
Timothy	 Neate,	 Nicholas	 Arner	 &	 Abigail	

Richardson	

	 	 	 	 	 	 154	

Abstract
This tutorial aims to help iOS developers with the implementation of the Mobile Csound
Platform for iOS. Developers who are looking to incorporate audio into their apps, but
do not want to deal with the complexities of Core Audio, will find this particularly
useful.

It provides some background information on the API and outlines how to integrate
Csound and iOS, and allow them to communicate. The provided example project is then
described - outlining the key features of the API. Some common problems that users are
likely to encounter are then discussed to troubleshoot potential issues

Acknowledgements

We would like to thank our supervisor, Dr. Andy Hunt, for his support and guidance
while working through the Csound for iOS API, as well as working on this tutorial.
We would also like to thank Dr. Victor Lazzarini and Steven Yi, the authors of the
Csound for iOS API. We would especially like to thank Steven for his extremely helpful
responses to our questions regarding the API.

	 	 	 	 	 	 155	

1. Introduction
The traditional way of working with audio on both Apple computers and mobile devices
is through the use of Core Audio. Core Audio is a low-level API which Apple provides
to developers for writing applications utilizing digital audio. The downside of Core
Audio being low-level is that it is often considered to be rather cryptic and difficult to
implement, making audio one of the more difficult aspects of writing an iOS app.

In an apparent response to the difficulties of implementing Core Audio, there have been
a number of tools released to make audio development on the iOS platform easier to
work with. One of these is libpd, an open-source library released in 2010. libpd allows
developers to run Pure Data on both iOS and Android mobile devices. Pure Data is a
visual programming language whose primary application is sound processing.

The recent release of the Mobile Csound Platform provides an alternative to the use of
PD for mobile audio applications. Csound is a synthesis program which utilizes a toolkit
of over 1200 signal processing modules, called opcodes. The release of the Mobile
Csound Platform now allows Csound to run on mobile devices, providing new
opportunities in audio programming for developers. Developers unfamiliar with Pure
Data’s visual language paradigm may be more comfortable with Csound’s ‘C’-
programming based environment.

For those who are unfamiliar with Csound, or want to learn more, the FLOSS manuals
are an excellent resource, and can be found here:

http://flossmanuals.net/csound/

For more advanced topics in Csound programming, the Csound Book (Boulanger ed.,
2000) will provide an in-depth coverage.

In order to make use of the material in this tutorial, the reader is assumed to have basic
knowledge of Objective-C and iOS development. Apple’s Xcode 4.6.1 IDE (integrated
development environment) will be used for the provided example project.

Although the Mobile Csound API is provided with an excellent example project, it was
felt that this tutorial will be a helpful supplement in setting up a basic Csound for iOS
project for the first time, by including screenshots from the project set-up, and a section
on common errors the user may encounter when working with the API.

	 	 	 	 	 	 156	

The example project provided by the authors of the API includes a number of files
illustrating various aspects of the API, including audio input/output, recording,
interaction with GUI widgets, and multi-touch. More information on the example
project can be found in the API manual, which is included in the example projects
folder.

1.1. The Csound for iOS API

The Mobile Csound Platform allows programmers to embed the Csound audio engine
inside of their iOS project. The API provides methods for sending static program
information from iOS to the instance of Csound, as well as sending dynamic value
changes based on user interaction with standard UI interface elements, including multi-
touch interaction.

1.2. Document Structure
This document begins, in Section 2, by describing the example provided by the authors.
Section 2 is divided into two further sections: Section 2.1 which describes the
functionality of the example application and Section 2.2 which details line by line
through the example code how this application works. Section 3 provides a step by step
guide to setting up an Xcode project for use with the Mobile Csound API. This section
describes how to download the API and include it into the project (Section 3.1) as well
as the necessary components of the view controller (Section 3.2) and Csound file
(Section 3.3). Section 4 outlines some common problems, which have been found
through the creation of this tutorial, and their solutions. Section 5 is a reference of the
methods which are available for use in the Mobile Csound API. This section briefly
details the functionality of these methods and their method calls. Section 6 provides the
authors’ conclusions about this tutorial.
NOTE: This tutorial uses Csound 5, and has not been tested with Csound6.

2 Example Walkthrough

This section discusses why the example was made, and what can be learned from it;
giving an overview of its functionality, then going into a more detailed description of its
code. A copy of the example project can be found at the following link.

https://sourceforge.net/projects/csoundiosguide/	

2.1 Running the Example Project
Run the provided Xcode project, CsoundTutorial.xcodeproj, and the example app should
launch (either on a simulator or a hardware device). A screenshot of the app is shown in
Figure 2.1 below. The app consists of two sliders, each controlling a parameter of a
Csound oscillator. The top slider controls the amplitude, and the bottom slider controls
the frequency.

	 	 	 	 	 	 157	

Figure 2.1-App running on iPad simulator

	

2.2 Oscillator Example Walkthrough
This example outlines how to use the methods in the Csound-iOS API to send values
from iOS into Csound. This example was made purposefully simple, with the intent of
making its functionality as obvious as possible to the reader. This section begins by
giving an overview of both the iOS and Csound implementation, and then describes how
this achieved by breaking down the example code. The code to create this oscillator
example was done in the ViewController.h and the ViewController.m files, which are
discussed below in sections 2.2.3.1 and 2.2.3.2. The project is split into Objective-C
code, Storyboards for the user interface elements, and a Csound file for the audio
engine.

2.2.1 iOS Example Outline
 In the Xcode project user interface sliders are used to allow a user to control the Csound
audio engine through iOS. Communication begins with iOS requesting some memory
within Csound; setting a pointer to this location. It updates this pointer with values from
the user interface sliders. Csound references the same memory location by naming it
with a string, this named communication link is called a channel. When sending this
information, iOS uses methods within the iOS-Csound API to setup this channel name,
and update it dependant on the control rate.

	 	 	 	 	 	 158	

2.2.2. Csound Example Outline
In this example, Csound is not aware of iOS. All it knows is that there is a piece of
memory assigned for it, and it must retrieve information from here dependent on its
control rate. Csound uses the chnget opcode to do this. chnget searches for some channel
with a specific name and retrieves values from it.

2.2.3. The iOS File
This example is implemented across two main files:

The .h file is used to include all the necessary classes, declare properties, and allow for
user interaction by connecting the interface to the implementation.

The .m file is used to implement communication between the interface methods
declared in the .h file, and the Csound file. These will now be discussed in more depth,
with code examples.

	 	 	 	 	 	 159	

2.2.3.1. The .h File

The imports (discussed in detail in section 3.2.1) are declared:

Apart from the standard UIKit.h (which gives access to iOS interface widgets) these
ensure that the code written can access the information in the other files in the Csound
API.
Next comes the class definition:

Every iOS class definition begins with the @interface keyword, followed by the name
of the class. So our class is called ViewController, and the colon indicates that our class
inherits all the functionality of the UIViewController.

Following this are two Protocol definitions, which are listed between the triangular
brackets < >. In Objective-C a Protocol is a list of required functionality (i.e.,
methods) that a class needs to implement. In this case there are two Protocols that are
defined by the Csound API, that we want our class to conform to:
CsoundObjCompletionListener and CsoundValueCacheable. This will allow us to send
data between iOS and Csound, and so is essential for what we are about to do. The
required functions that we have to implement are described in the section following this
one (2.2.3.2).

The Csound object needs to be declared as a property in the .h file, which is what this
next line of code does:

The next section of code allows for the interface objects (sliders) to communicate with
the .m file:

	 	 	 	 	 	 160	

Just to the left of each of these IBAction methods, you should see a little circle. If the
storyboard is open (MainStoryboard.storyboard) you will see the appropriate slider
being highlighted if you hover over one of the little circles.

2.2.3.2. The .m File	
The .m file imports the .h file so that it can access the information within it, and the
information that it accesses.

At the beginning of the implementation of the ViewController, the csound variable
which was declared in the .h file is instantiated with @synthesize thus:

Note that the Csound object must be released later in the dealloc method as shown
below:

For each parameter you have in iOS that you wish to send to Csound, you need to do the
things outlined in this tutorial. In our simple example we have an iOS slider for
Frequency, and one for Amplitude, both of which are values we want to send to Csound.

Some global variables are then declared, as shown in Table 2.1, a holder for each iOS
parameter’s current value, and a pointer for each which is going to point to a memory
location within Csound.

	 	 	 	 	 	 161	

Variable Description
float myFrequency;

This value comes from the frequency slider in
the interface. It is a float, as the value to send
from iOS to Csound needs to be a floating
point number. Its range is 0 – 500.

float myAmplitude;

This value comes from the amplitude slider in
the interface. Its range is 0 – 1 because of the
way the gain is controlled in the .csd file.

float* freqChannelPtr;

float* ampChannelPtr;

These variables are used in conjunction with
the method getInputChannelPtr (described
towards the end of this section) to send
frequency and amplitude values to Csound.

Table 2.1-Variables for the .m File

The next significant part of the .m file is the viewDidAppear method. When the view
loads, and appears in iOS, this iOS SDK method is called. In the example, the following
code is used to locate the Csound file:

This code searches the main bundle for a file called aSimpleOscillator of the type csd
(which you will be able to see in Xcode’s left-hand File List, under the folder
Supporting Files). It then assigns it to an NSString named tempFile. The name of the
string tempFile is then printed out to confirm which file is running.
	 	

	 	 	 	 	 	 162	

The methods shown in Table 2.2 are then called:

Method Call Description
self.csound =
[[CsoundObj alloc] init];

This instantiates the csound object, which will
be our main contact between iOS and Csound.
It allocates and initialises some memory to
make an instance of the CsoundObj class.

[self.csound
addCompletionListener:self]; Sets our code (self – i.e. ViewController) to

be a listener for the Csound object.
[self.csound
addValueCacheable:self]; Sets our code (self) to be able to send real-

time values to the Csound object.
[self.csound
startCsound:tempFile]; The Csound object uses the method

startCsound to run the file at the string
tempFile. Remember how tempFile was set
up to point to the Csound csd file (in our case
aSimpleOscillator.csd). So, in other words,
this line launches Csound with the csd file
you have provided.

Table 2.2-Csound API Methods

The methods that allow the value of the slider to be assigned to a variable are then
implemented. This is done with both frequency, and amplitude. As shown below for the
amplitude slider:

This method is called by iOS every time the slider is moved (because it is denoted as an
IBAction, i.e. an Interface Builder Action call). The code shows that the ampSlider
variable is of type UISlider, and because of that the current (new) value of the slider is
held in ampSlider.value. This is allocated to the variable myAmplitude. Similar code
exists for the frequency slider.

	 	 	 	 	 	 163	

The protocol methods are then implemented. The previous section showed how we set
up our class (ViewController) to conform to two Protocols that the Csound API
provides: CsoundObjCompletionListener and CsoundValueCacheable.

Take a look at the place where these Protocols are defined, because a Protocol definition
lists clearly what methods are required to be implemented to use their functionality.

For CsoundValueCacheable you need to look in the file CsoundValueCacheable.h (in
the folder valueCacheable). In that file it’s possible to see the protocol definition, as
shown below, and its four required methods.

Every method needs at least an empty function shell. Some methods, such as
updateValuesFromCsound are left empty, because – for the tutorial example – there is
no need to get values from Csound. Other protocol methods have functionality added.
These are discussed below.
	
The setup method is used to prepare the updateValuesToCsound method for
communication with Csound:

	

	 	 	 	 	 	 164	

The first line of the method body creates a string; freqString, to name the
communication channel that Csound will be sending values to. The next line uses the
getInputChannelPtr method to create the channel pointer for Csound to transfer
information to. Effectively, iOS has sent a message to Csound, asking it to open a
communication channel with the name “freqVal”. The Csound object allocates memory
that iOS can write to, and returns a pointer to that memory address. From this point
onwards iOS could send data values to this address, and Csound can retrieve that data by
quoting the channel name “freqVal”. This is described in more detail in the next section
(2.2.4).

The next two lines of the code do the same thing, for amplitude parameter. This process
creates two named channels for Csound to communicate through.

The protocol method updateValuesToCsound uses variables in the .m file and assigns
them to the newly allocated memory address used for communication. This ensures that
when Csound looks at this specific memory location, it will find the most up to date
value of the variable. This is shown below:

The first line assigns the variable myFrequency (the value coming from the iOS slider
for Frequency) to the channel freqChannelPtr which, as discussed earlier, is of type
float*. The second line does a similar thing, but for amplitude.

For the other Protocol CsoundObjCompletionListener it is possible to look for the file
CsoundObj.h (which is found in Xcode’s left-hand file list, in the folder called classes).
In there is definition of the protocol.

In this example there is nothing special that needs to be done when Csound starts
running, or when it completes, so the two methods (csoundObjDidStart: and
csoundObjComplete:) are left as empty function shells. In the example, the protocol is
left included, along with the empty methods, in case you wish to use them in your App.

	 	 	 	 	 	 165	

2.2.4 The Csound File

This Csound file contains all the code to allow iOS to control its values and output a
sinusoid at some frequency and amplitude taken from the on-screen sliders. There are
three main sections: The Options, the Instruments, and the Score. These are all discussed
in more detail in section 4. Each of these constituent parts of the .csd file will now be
broken down to determine how iOS and Csound work together.

2.2.4.1 The Options	
There’s only one feature in the options section of the .csd that needs to be considered
here; the flags. Each flag and its properties are summarised in Table 2.3.

Flag Description

-o dac Enables audio output to default device

-+rtmidi=null

Disables real-time MIDI Control

-d Suppress all displays

Table 2.3-Csound Flags

2.2.4.2 The Instrument

The first lines of code in the instrument set up some important values for the .csd to use
when processing audio. These are described in Table 2.4, and are discussed in more
detail in the Reference section of the Csound Manual.

	 	 	 	 	 	 166	

Line Description

sr = 44100

This sets the sample rate of Csound to 44100 Hz. It is imperative that the
sample rate of the Csound file corresponds with the sample rate of the
sound card the code is running on.

ksmps = 64 This defines the control rate. In the example this will determine the speed
that the variables in Csound are read. ksmps is actually the number of
audio samples that are processed before another control update occurs.
The actual control rate equates to sample rate / ksmps (i.e. 44100 / 64 =
689.0625 Hz).

nchnls = 2 This is the number of audio channels. 2 = standard stereo.

0dbfs = 1

This is used to ensure that audio samples are within the apropriate range,
between zero and one. Anything greater than one will induce clipping to
the waveform.

Table 2.4-Csound .csd Options

The instrument then takes values from Csound using the chnget opcode:

	
	

Here, the chnget command uses the “freqVal” and “ampVal” channels previously
created in iOS to assign a new control variable. The variables kfreq and kamp are
control-rate variables because they begin with the letter ‘k’. They will be updated
689.0625 times per second. This may be faster or slower than iOS updates the agreed
memory addresses, but it doesn’t matter. Csound will just take the value that is there
when it accesses the address via the named channel.
These control-rate variables are used to control the amplitude and frequency fields of the
opcode oscil; the Csound opcode for generating sinusoidal waves. This is then output in
stereo using the next line.

	 	 	 	 	 	 167	

The third parameter of the oscil opcode in this case is 1. This means ‘use f-table 1’.
Section 3.3 explains f-tables in more depth.

2.2.4.3 The Score

The score is used to store the f-tables the instrument is using to generate sounds, and it
allows for the playing of an instrument. This instrument is then played, as shown below:

This line plays instrument 1 from 0 seconds, to 10000 seconds. This means that the
instrument continues to play until it is stopped, or a great amount of time passes.

It is possible to send score events from iOS using the method sendScore. This is
discussed in more depth in section 6.1.

	 	 	 	 	 	 168	

3 Using the Mobile Csound API in an Xcode Project

Section 3 provides an overview of how to set up your Xcode project to utilize the
Mobile Csound API, as well as how to download the API and include it into your
project.

3.1 Setting up an Xcode Project with the Mobile Csound API
This section describes the steps required to set up an Xcode project for use with the
Mobile Csound API. Explanations include where to find the Mobile Csound API, how
to include it into an Xcode project and what settings are needed.

3.1.2 Creating an Xcode Project
This section briefly describes the settings which are needed to set up an Xcode project
for use with the Mobile Csound API. Choose the appropriate template to suit the needs
of the project being created. When choosing the options for the project, it is important
that Use Automatic Reference Counting is not checked (Figure. 3.1). It is also
unnecessary to include unit tests.

Figure 3.1-Project Set Up

Note: When including this API into a pre-existing project, it is possible to turn off ARC
on specific files by entering the compiler sources, and changing the compiler flag
to: ‘-fno-objc-arc’

3.1.3 Adding the Mobile Csound API to an Xcode Project
Once an Xcode project has been created, the API needs to be added to the Xcode
project. To add the Mobile Csound API to the project, right click on the Xcode project
and select Add files to <myProject>. This will bring up a navigation window to search
for the files to be added to the project. Navigate to the Csound-iOS folder, which is
located as shown in Figure 3.2 below.

	 	 	 	 	 	 169	

Figure 3.2-Navigating to the API Folder

	
Select the whole folder as shown and click add. Once this has been done, Xcode will
provide an options box as shown in Figure 3.3. Check Copy items into destination
group’s folder (if needed).

Figure 3.3-Adding the API Folder

The options in Figure 3.3 are selected so that the files which are necessary to run the
project are copied into the project folder. This is done to make sure that there are no
problems when the project folder is moved to another location - ensuring all the file-
paths for the project files remain the same.

Once this addition from this section has been made, the project structure displayed in
Xcode should look similar to that in Figure 3.4.

	 	 	 	 	 	 170	

Figure 3.4 - The Main Bundle for the Project

3.1.4 Compiling Sources
A list of compile sources is found by clicking on the blue project file in Xcode,
navigating to the Build Phases tab and opening Compile Sources. Check that the
required sources for the project are present in the Compile Sources in Xcode. All the
files displayed in Figure 3.5 should be present, but not necessarily in the same order as
shown.

	 	 	 	 	 	 171	

Figure 3.5-View of ‘Compile Sources’ Window

3.1.5 Including the Necessary Frameworks
There are some additional frameworks which are required to allow the project to run.
These frameworks are:

! AudioToolbox.framework
! CoreGraphics.framework
! CoreMotion.framework
! CoreMIDI.framework

To add these frameworks to the project, navigate to the ‘Link Binary With Libraries’
section of Xcode. This is found by clicking on the blue project folder and navigating to
the ‘Build Phases’ tab, followed by opening ‘Link Binary With Libraries’. To add a
framework, click on the plus sign and search for the framework required. Once all the
necessary frameworks are added, the ‘Link Binary With Libraries’ should look similar
to Figure 3.6 below.

	 	 	 	 	 	 172	

Figure 3.6-Adding Necessary Frameworks

3.1.6 The .csd File
The project is now set up for use with the Mobile Csound API. The final file which will
be required by the project is a .csd file which will describe the Csound instruments to be
used by the application. A description of what the .csd file is and how to include one
into the project is found in Section 3.3. This file will additionally need to be referenced
appropriately in the Xcode project. A description of where and how this reference is
made is available in Section 2.2.3.2.

	 	 	 	 	 	 173	

3.2 Setting up the View Controller
This section describes how the ViewController.h and the ViewController.m should be
set up to ensure that they are able to use the API. It will discuss what imports are
needed; conforming to the protocols defined by the API; giving a brief overview. This
section can be viewed in conjunction with the example project provided.

3.2.1 Importing
So that the code is able to access other code in the API, it is important to include the
following imports, along with imports for any additional files required. The three
imports shown in Table 3.1 are used in the header file of the view controller to access
the necessary files to get Csound-iOS working:
	 	

Import Description
#import “CsoundObj.h” This is used so that the code is able to access all

the key methods of the API.
#import
“CsoundValueCacheable.h” This must be used to access the methods

‘updateValuesFromCsound’ and
‘updateValuesToCsound’. These methods are used
to communicate between Csound and iOS.

	

Table 3.1-Header File Imports

In our example you can see these at the top of ViewController.h

	 	 	 	 	 	 174	

	

3.2.2 Conforming to Protocols
It is imperative that the view controller conforms to the protocols outlined the
CsoundObj.h file; the file in the API that allows for communication between iOS and
Csound. This must then be declared in the ViewController.h file:

The API authors chose to use protocols so that there is a defined set of methods that
must be used in the code. This ensures that a consistent design is adhered to. They are
defined in the CsoundValueCacheable.h file thus:

Each of these must then be implemented in the ViewController.m file. If it is
unnecessary to implement one of these methods, it still must appear but the method body
can be left blank, thus:

	 	 	 	 	 	 175	

3.2.3 Overview of Protocols
When writing the code which allows us to send values from iOS to Csound, it is
important that the code conforms to the following protocol methods (Table 3.2):

Protocol methods Action
-(void)setup:(CsoundObj*)CsoundObj Set up the necessary channels and

pointers to communicate with
Csound.

-(void)updateValuesToCsound Update the values being sent from
iOS to Csound.

-(void)updateValuesFromCsound Collect any values from Csound.
-(void)cleanup Reset any values used in

communication and de-allocate any
memory used.

-(void)csoundObjDidStart:(CsoundObj*)csoundObj This method is called when a Csound
object is created. This allows
developers to notify the user that
Csound is running on iOS.

-(void)csoundObjComplete:(CsoundObj*)csoundObj Much like the way the
‘csoundObjDidStart’method works,
this allows developers to notify the
user that Csound has stopped running
in iOS.

Table 3.2-Protocol methods which must be implemented in your ViewController.

	 	 	 	 	 	 176	

3.3 Looking at the Csound ‘.csd’ File
The following section provides an overview of the Csound editing environment, the
structure of the .csd file, and how to include the .csd file into your Xcode project.

3.3.1 Downloading Csound

A Csound front-end editor, CsoundQt, can be used for editing the .csd file in the
provided example project. It is advised to use CsoundQt with iOS because it is an ideal
environment for developing and testing the Csound audio engine – error reports for
debugging, the ability to run the Csound audio code on its own, and listen to its results.
However, using CsoundQt is not essential to use Csound as an audio engine as Csound
is a standalone language. CsoundQt is included in the Csound package download.

In order to use Csound in iOS, the latest version of Csound (Version 5.19) will need to
be installed.

Csound 5.19 can be downloaded from the following link:

http://sourceforge.net/projects/Csound/files/Csound5/Csound5.19/	

In order for Xcode to see the .csd file, it must be imported it into the Xcode project. This
is done by right-clicking on the ‘Supporting Files’ folder in the project, and clicking on
‘Add files to (project name)’ (Figure 3.7).

	 	 	 	 	 	 177	

Figure 3.7-Adding the .csd to iOS Project

It is possible to edit the .csd file while also working in Xcode. This is done by right-
clicking on the .csd file in Xcode, and clicking on ‘Open With External Editor’ (Figure
3.8).	 	

Figure 3.8-Opening the .csd file with an external editor

However, it is important to remember to save any changes to the .csd file before the
Xcode project is recompiled.

	 	 	 	 	 	 178	

3.3.2 The .csd File

When setting up a Csound project, it is important that various audio and performance
settings configured correctly in the header section of the .csd file. These settings are
described in Table 3.3, and are discussed in more detail in the Csound Manual.

Setting Description
sr Sample rate
kr Control rate

ksmps Number of samples in control period
(sr/kr)

nchnls Number of channels of audio output
0dbfs Sets value of 0 decibels using full scale

amplitude

Table 3.3-Csound .csd Settings

It is important that the sample rate for the Csound project be set to the same sample rate
as the hardware it will be run on. For this project, make sure the sample rate set to
44100, as depicted in Figure 3.9. This is done by opening the Audio MIDI Setup, which
is easily found on all Mac computers by searching in Spotlight.

	 	 	 	 	 	 179	

Figure 3.9-Configuring Audio Hardware Settings

	

3.3.3 Instruments

As mentioned previously, Csound instruments are defined in the orchestra section of the
.csd file. The example project provided by the authors uses a simple oscillator that has
two parameters: amplitude and frequency, both of which are controlled by UI sliders.

Figure 3.10 on the following page shows a block diagram of the synthesizer we are
using in the example project.

	 	 	 	 	 	 180	

3.3.4 Score

The score is the section of the .csd file which provides instruments with control
instruction, for example pitch, volume, and duration. However, as the goal here is for
users to be able to interact with the Csound audio engine in real-time, developers will
most likely opt instead to send score information to Csound that is generated by UI
elements in the Xcode project. Details of the instrument and score can be found in the
comments of the aSimpleOscillator.csd file

Csound uses GEN (f-table generator) routines for a variety of functions. This project
uses GEN10, which create composite waveforms by adding partials. At the start of the
score section, a GEN routine is specified by function statements (also known as f-
statements). The parameters are shown below in Table 3.4:

	 	 	 	 	 	 181	

	

Parameter Description
f1 Unique f-table identification number
0 f-statement initialization time expressed in

score beats
16384 f-table size
10 GEN routine called to create the f-table
1 strength of ascending partials

Table 3.4-Csound .csd F-Table Parameters

In a Csound score, the first three parameter fields (also known as p-fields) are reserved
for the instrument number, the start time, and duration amount. P-fields 4 and 5 are
conventionally reserved for amplitude and frequency, however, P-fields beyond 3 can be
programmed as desired.

The p-fields used in the example project are shown in Table 3.5.

p-field 1 2 3 4 5

Parameter Instrument Number Start Duration Amplitude Frequency

Table 3.5-Csound .csd P-field Parameters

In this project, the first three p-fields are used: the instrument number (i1), the start time
(time = 0 seconds), and the duration (time = 1000 seconds). Amplitude and frequency
are controlled by UI sliders in iOS.

	 	 	 	 	 	 182	

4 Common Problems

This section is designed to document some common problems faced during the creation
of this tutorial. It is hoped that by outlining these common errors, readers can debug
some common errors they are likely to come across when creating applications using
this API. It discusses each error, describes the cause and outlines a possible solution.

4.1 UIKnob.h is Not Found
This is a problem related to the API. The older versions of the API import a file in the
examples that sketches a UIKnob in Core Graphics. This is not a part of the API, and
should not be included in the project.

The file in question is a part of the examples library provided with the SDK. It is used in
the file ‘AudioIn test’ and is used to sketch a radial knob on the screen. It gives a good
insight into how the user can generate an interface to interact with the API.

Solution: Comment the line out, or download the latest version of the API.

4.2 Feedback from Microphone
This is generally caused by the sample rate of a .csd file being wrong.

Solution: Ensure that the system’s sample rate is the same as in the .csd file. Going to
the audio and MIDI set-up and checking the current output can find the computer’s
sample rate. See section 3.3.2 for more information.

4.3 Crackling Audio
There are numerous possible issues here, but the main cause of this happening is a CPU
overload.

Solution: The best way to debug this problem is to look through the code and ensure
that there are no memory intensive processes, especially in code that is getting used a
lot. Problem areas include fast iterations (loops), and code where Csound is calling a
variable. Functions such as updateValuesToCsound and updateValuesFromCsound are
examples of frequently called functions.

An example: an NSLog in the updateValuesToCsound method can cause a problem.
Say, the ksmps in the .csd is set to 64. This means that the Csound is calling for iOS to
run the method updateValuesToCsound every 64 samples. Assuming the sample rate is
44.1k this means that this CPU intensive NSLog is being called ~689 times a second;
very computationally expensive.

	 	 	 	 	 	 183	

4.4 Crackling from amplitude slider	
When manipulating the amplitude slider in iOS, a small amount of clicking is
noticeable. This is due to the fact that there is no envelope-smoothing function applied
to the amplitude changes. While this would be an improvement on the current
implementation, however; it was felt that the current implementation would be more
conducive to learning for the novice Csound user. This would be implemented by using
a port opcode.

	
	

	 184	

5 Csound Library Methods
This section will present and briefly describe the methods which are available in the
Manual.

	
	

	 185	

5.1	 Basic	 API	 Methods	
	

Name Method Call Description

-(void)

startCsound:

(NSString*)csdFilePath;

Provides the location of the
.csd file which is to be used
with the Csound object.

startCsound -(void)startCsound:

(NSString *)csdFilePath
recordToURL:(NSURL
*)outputURL;

Provides the location of the
.csd file which is to be used
with the Csound object and
specifies a URL to which it
will record.

startCsoundToDisk -
(void)startCsoundToDisk:

(NSString*)csdFilePath
outputFile:

(NSString*)outputFile;

Provides the location of the
.csd file which is to be used
with the Csound object and
specifies a file to which it will
record. This does not occur in
realtime, but as fast as
possible to the disk. This
method is useful for batch
rendering.

stopCsound -(void)stopCsound; This uses the Csound object’s
method ‘stopCsound’ to stop
the instance of CsoundObj
that it is called on.

muteCsound -(void)muteCsound; Mutes all instances of Csound

unmuteCsound -(void)unmuteCsound; Unmutes all instances of
Csound

recordToURL -(void)recordToURL:

(NSURL *)outputURL;

Begins recording to a
specified URL. This can be
defined at a later point in the
code, even after Csound has
been started.

stopRecording -(void)stopRecording; Stops recording to URL

	
	

	

	
	

	 186	

5.2	 UI	 and	 Hardware	 Methods	
	

Name Method Call Description

addSwitch (id<CsoundValueCacheable>)
addSwitch:
(UISwitch*)uiSwitch
forChannelName:
(NSString*)channelName;

Adds a switch to the
Csound object. The
method requires a
switch which already
exists as part of the user
interface and a name for
the channel which will
provide information
about this switch to the
.csd file. For more
information about
channels of information
between Xcode and
Csound see section 5.

addSlider (id<CsoundValueCacheable>)
addSlider:
(UISlider*)uiSlider
forChannelName:(NSString*)
channelName;

Adds a slider to the
Csound Object. The
method requires a slider
and a channel name.

addButton (id<CsoundValueCacheable>)
addButton:
(UIButton*)uiButton
forChannelName:(NSString*)
channelName;

Adds a button to the
Csound Object. The
method requires a button
and a channel name.

enableAccelerometer (id<CsoundValueCacheable>)
enableAccelerometer;

Enables the
accelerometer for use
with the Csound object.

enableGyroscope (id<CsoundValueCacheable>)
enableGyroscope;

Enables the gyroscope
for use with the Csound
object.

enableAttitude (id<CsoundValueCacheable>)
enableAttitude;

Enables attitude to allow
device motion to be
usable with the Csound
object.

	
	

	 187	

5.3	 Communicating	 between	 Xcode	 and	 Csound	

	

	 	
	
	

Name Method Call Description

addValueCacheable -(void)addValueCacheable:

(id<CsoundValueCacheable>)

valueCacheable;

Adds to a list of
watched objects so
that they can
update every cycle
of ksmps.

removeValueCacheable -(void)removeValueCaheable:

(id<CsoundValueCacheable>)

valueCacheable;

Removes a
cacheable value
from the Csound
Object.

sendScore -(void)sendScore:(NSString*)
score;

Eg:
[self.csound sendScore:
[NSString stringWithFormat:
@"i1 0 10 0.5 %d", myPitch,]];

(sends a score to instrument 1 that begins at 0
seconds, stops at 10 seconds, with amplitude 0.5
and a pitch of the objective-C variable
‘myPitch’).

Sends a score as a
string to the .csd
file. See section 4
for formatting a
Csound score line.

addCompletionListener -(void)addCompletionListener:

(id<CsoundObjCompletionListener>)

listener;

Adds a listener for
the Csound Object
which waits for an
action to be
performed that the
Csound object
needs to react to.

	
	

	 188	

	

5.4	 Retrieve	 Csound-‐iOS	 Information

Name Method Call Description

getCsound -(CSOUND*)getCsound; Returns the C structure
that that the
CsoundObj uses. This
allows developers to
use the Csound C API
in conjunction with the
Objective-C
CsoundObj API.

getInputChannelPtr (float*)getInputChannelPtr:

(NSString*)channelName;

Returns the float of an
input channel pointer.

getOutputChannelPtr (float*)getOutputChannelPtr:

(NSString*)channelName;

Returns the float of an
output channel pointer.

getOutSamples -(NSData*)getOutSamples; Gets audio samples
from Csound.

getNumChannels -(int)getNumChannels; Returns the number of
channels in operation.

getKsmps -(int)getKsmps; Returns ksmps as
defined in the .csd file.

setMessageCallback -(void)setMessageCallback:

(SEL)method
withListener:(id)listener;

Sets up a method to be
the callback method
and a listener id.

performMessageCallback (void)
performMessageCallback:

(NSValue *)infoObj;

Performs the message
callback.

	

	
	

	 189	

6 Conclusions

This tutorial provided an overview of the Csound-iOS API, outlining its benefits, and
describing its functionality by means of an example project. It provided the basic tools
for using the API, equipping iOS developers to explore the potential of this API in their
own time.

APIs such as this one, as well as others including libpd and The Amazing Audio Engine
provide developers with the ability to integrate interactive audio into their apps, without
having to deal with the low-level complexities of Core Audio.

6.1 Additional Resources
Upon completion of this tutorial, the authors suggest that the reader look at the original
Csound for iOS example project, written by Steven Yi and Victor Lazzarini.
This is available for download from:

http://sourceforge.net/projects/csound/files/csound5/iOS/

About the Authors

The authors are Masters students at the University of York Audio Lab. Each one is
working on a separate interactive audio app for the iPad, and has each been
incorporating the Mobile Csound API for that purpose. They came together to write this
tutorial to make other developers aware of the Mobile Csound API, and how to utilize it.

The motivation behind this tutorial was to create a step by step guide to using the
Mobile Csound API. When the authors originally started to develop with the API, they
found it difficult to emulate the results of the examples that were provided with the API
download. As a result, the authors created a simple example using the API, and wanted
others to learn from our methods and mistakes. The authors hope that this tutorial
provides clarity in the use of the Mobile Csound API.
	

	
	

	 190	

Appendix C - Csound for iOS Tutorial Code
 The Xcode project described in the Csound for iOS tutorial is included on the
additional DVD. Additionally, the project can be downloaded from the following
SourceForge link:

https://sourceforge.net/projects/csoundiosguide/	

	
	

	 191	

Appendix D - Publication and Recognition of
Csound for iOS Tutorial Guide
	

	 The	 following	 is	 a	 link	 to	 a	 blog	 entry	 regarding	 the	 Csound	 for	 iOS	 Tutorial	
Guide:	 CreateDigitalMusic	

	 The	 tutorial	 is	 also	 referenced	 on	 the	 Csound	 for	 iOS	 SourceForge	 WIKI,	
which	 can	 be	 found	 here:	 Csound	 for	 iOS	 SourceForge	 WIKI	

	 Additionally,	 the	 author	 was	 asked	 to	 submit	 the	 contents	 of	 the	 tutorial	 to	
the	 open-‐source	 FLOSS	 manual	 section	 on	 Csound.	 The	 chapter	 can	 be	 found	 at	 the	
following	 link:	 Csound	 for	 iOS	 Chapter	 in	 the	 FLOSS	 Manual	

	 The	 following	 page	 is	 an	 email	 that	 was	 sent	 by	 Dr.Richard	 Boulanger,	 editor	
of	 the	 The	 Csound	 Book	 and	 developer	 of	 apps	 utilizing	 the	 Csound	 for	 iOS	 API,	 to	
the	 Csound	 users	 mailing	 list	 regarding	 the	 Csound	 for	 iOS	 Tutorial.	 	 	

	

	
	

	 192	

	

	
	

	 193	

Appendix E - Gestural Intuitiveness Study
Participant Handout

 Appendix E consists of the participant handout given to subjects partaking the
Preliminary Study on Gestural Intuitiveness, discussed in Chapter 3.

	
	

	 194	

	
	

	 195	

	
	

	 196	

Appendix F - Gestural Intuitiveness Study
Participant Questionnaires

 Appendix F consists of the participant questionnaires that subjects filled out after
completing the study on gestural intuitiveness. PDF copies of the completed
questionnaires can be found on the additional DVD.

	
	

	 197	

	
	

	 198	

	
	

	 199	

	
	

	 200	

	
	

	 201	

	
	

	 202	

	
	

	 203	

	
	

	 204	

	
	

	 205	

	
	

	 206	

	
	

	 207	

	
	

	 208	

	
	

	 209	

	

	
	

	 210	

	
	

	 211	

	
	

	 212	

	
	

	 213	

	
	

	 214	

	
	

	 215	

	
	

	 216	

	
	

	 217	

Appendix G - Gestural Intuitiveness Study
Spreadsheets

 Excel spreadsheets used for data analysis in Chapter 3 of this thesis, Preliminary
Study on Gestural Intuitiveness, are included on the additional DVD.

	
	

	 218	

Appendix H - Csound Code/audio files for
Gestural Intuitiveness Test

 The Csound .csd file and the audio clips generated from it that were used in the
Preliminary Study on Gestural Intuitiveness are included in the additional DVD.

	
	

	 219	

Appendix I - Video Clips from Gesture
Intuitiveness Test

 Video clips taken during the Preliminary Study for Gesture Intuitiveness are
included on a YouTube channel that can be found at the links below:

Gesture Test Videos

	
	

	 220	

Appendix J - App User Test Participant Handout
 Appendix J consists of the participant handouts given to subjects partaking in
both the initial and subsequent App User Tests, described in Chapter 5. The first two
pages of the handouts for both tests are identical in content. The third page of each test
handout (for users who took the repeat test) is signified accordingly.

	
	

	 221	

	
	

	 222	

	
	

	 223	

	
	

	 224	

	
	

	 225	

Appendix K - App User Test Questionnaires
 Appendix K consists of subjects’ responses after the completed the App User
Test(s). Completed questionnaires from both sets of tests are included. PDF copies of
the completed questionnaires can be found on the additional DVD.

	
	

	 226	

	
	

	 227	

	
	

	 228	

	
	

	 229	

	
	

	 230	

	
	

	 231	

	
	

	 232	

	
	

	 233	

	
	

	 234	

	
	

	 235	

	
	

	 236	

	
	

	 237	

	
	

	 238	

	
	

	 239	

	
	

	 240	

	
	

	 241	

	
	

	 242	

	
	

	 243	

	
	

	 244	

	
	

	 245	

	
	

	 246	

	
	

	 247	

	
	

	 248	

	
	

	 249	

	
	

	 250	

	
	

	 251	

	
	

	 252	

	
	

	 253	

	
	

	 254	

	
	

	 255	

	
	

	 256	

Appendix L - App User Test Spreadsheets

 Excel spreadsheets used for data analysis in the App User Tests, discussed in
Chapter 5, are included on the additional DVD.

	

	
	

	 257	

Appendix M - Video Clips from App User Tests

 Video clips taken during the App User Tests can be found on a YouTube
channel, located at the following link:

Test1	
	
Test2	

	
	

	 258	

Appendix N - Subject Audio Clips

 Audio recordings of subjects’ responses after taking the App User Tests are
included on the additional DVD.

	

	
	

	 259	

Appendix O - App User Test Xcode Projects

 The Xcode projects used to create the three apps used in the App User Tests are
included on the additional DVD. The following screen-captures are of the .h and .m files
of the respective Test Projects.

 Pages 260-264 contains the .h and .m files for the Rotary Knobs Test App.

 Pages 265-269 contains the .h and .m files for the Faders Test App.

 Pages 270-274 contains the .h and .m files for the Touches Test App.

	
	

	 260	

	
	

	 261	

	
	

	 262	

	
	

	 263	

	
	

	 264	

	
	

	 265	

	
	

	 266	

	
	

	 267	

	
	

	 268	

	
	

	 269	

	
	

	 270	

	
	

	 271	

	
	

	 272	

	
	

	 273	

	
	

	 274	

	
	

	 275	

Appendix P – App User Test .csd File

 The .csd file used in all three of the test apps created for this thesis is included on
the additional DVD. Although the label for the .csd says “1306-KNOBS.csd”, the .csd is
exactly the same as the ones used in all three test apps.

	
	

	 276	

Appendix Q - Literature Repository

 All available electronic literature that is cited in this thesis is included on the
additional DVD. Literature that was read by the author during the research process, but
not used in the thesis, is included as well.

	
	

	 277	

Appendix R - Fraunhofer MSc Presentation

 Appendix R on the DVD includes a PowerPoint presentation given by the author
regarding the work done as part of this MSc thesis while on an internship at Fraunhofer
IIS in Erlangen, Germany.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

	 278	

References

Abrams, S., et al. (1999). Higher-level Composition Control in Music Sketcher: Modifiers
and Smart Harmony. In: International Computer Music Conference 1999. Beijing. [Online].
Available at: http://openmuse.org/noncpl/Higher-
levelCompositionControlinMusicSketcher.pdf. [Accessed 29 January 2013].

Abrams, S., et al. (2001). Qsketcher: An Environment for Composing Music for Film. In:
International Computer Music Conference 2001. Havana. 29 January 2013.
Available at: http://openmuse.org/noncpl/QSketcherICMC2001Paper.pdf. [Accessed 29
January 2013].

Adamson, C. and Avila, K. (2012). Learning Core Audio. Upper Saddle River: Addison
Wesley.

AffinityBlue. (2013). NodeBeat. [Online]. Available at: http://nodebeat.com/. [Accessed 27
January 2014].

Apple (2011a). CP1919. [Online]. Available at: https://itunes.apple.com/us/app/cp-
1919/id422919711?mt=8. [Accessed 19 November 2012].

Apple (2011b). Filtatron. [Online]. Available at:
https://itunes.apple.com/en/app/filtatron/id396776418?mt=8 mt. [Accessed 19 November
2012].

Apple (2012a). Animoog. [Online]. Available at: https://itunes.apple.com/gb/app/animoog-
for-iphone/id490169960?mt>. [Accessed 19 November 2012].

Apple (2012b). Figure. [Online]. Available at:
https://itunes.apple.com/us/app/figure/id511269223?mt=8. [Accessed 19 November 2012].

Apple (2012c). GrainProc. [Online]. Available at:
https://itunes.apple.com/us/app/grainproc/id572380905?mt=8. [Accessed 19 November
2012].

Apple (2012d). iKaossilator. [Online]. Available at: https://itunes.apple.com/en/app/korg-
ikaossilator/id452559831?mt=8. [Accessed November 2012].

Apple (2012e). Human Interface Principles. [Online]. Available at:
http://developer.apple.com/library"/ios/#documentation/userexperience/conceptual/mobilehi
g/Principles/Principles.html. [Accessed 6 December 2012].

Apple (2012f). iOS. [Online]. Available at: http://www.apple.com/ios/what-is/. [Accessed
15 October 2012].

	
	

	 279	

Apple (2012g). iMaschine. [Online]. Available at:
https://itunes.ap"ple.com/gb/app/imaschine/id400432594?mt=8 [Accessed 19 November
2012].

Apple (2012h). MegaCurtisFREE. [Online]. Available at:
https://itunes.apple.com/us/app/megacurtis-free/id317498757?mt=8&ign-mpt=uo%3D4.
[Accessed 19 November 2012].

Apple (2012i). NodeBeat. [Online]. Available at:
https://itunes.apple.com/gb/app/nodebeat/id428440804?mt=8. [Accessed 19 November
2012].

Apple (2012j). Reactable Mobile. [Online]. Available at:
https://itunes.apple.com/en/app/reactable-mobile/id381127666?mt=8. [Accessed 19
November 2012.

Apple (2012k). SynthStation. [Online]. Available at:
https://itunes.apple.com/gb/app/synthstation/id373969724?mt=8 [Accessed 19 November
2012].

Apple (2013a). Apple Press Info: Apple’s App Store Marks Historic 50 Billionith
Download. [Online]. Available at: http://www.apple.com/pr/library/2013/05/16Apples-App-
Store-Marks-Historic-50-Billionth-Download.html. [Accessed 8 November 2013].

Apple (2013b). Event Handling Guide for iOS. [Online]. Available at:
http://developer.apple.com/library/ios/#documentation/EventHandling/Conceptual/EventHa
ndlingiPhoneOS/GestureRecognizer_basics/GestureRecognizer_basics.html#//apple_ref/doc
/uid/TP40009541-CH2-SW2. [Accessed 8 April 2013].

Apple (2013c). iPad. [Online]. Available at: http://www.apple.com/uk/ipad/specs/.
[Accessed 9 March 2013].

Apple (2013d). Xcode4 [Online]. Available at: https://developer.apple.com/xcode/.
[Accessed 6 April 2013].

Atkins-Wakefield, J. (2012). Research into Novel Interfaces for Sonification on the iPad.
MEng Thesis. University of York, 2012.

barefoot-coders.com (2012). Dandy. [Online]. Available at: http://www.barefoot-
coders.com/. [Accessed 9 November 2013].

Bachl, S., et al. (2010). Challenges for Designing the User Experience of Multi-touch
Interfaces. In: Proceedings of Workshop on Engineering Patterns for Multi-Touch
Interfaces. [Online]. Available at: http://deco.inso.tuwien.ac.at/wp-content/uploads/mt-
challenges.pdf. [Accessed 16 November 2012].

	
	

	 280	

Beaudouin-Lafon, M. (2004). Designing Interaction, not Interfaces. In Proceedings of the
working conference on Advanced visual interfaces (AVI '04). ACM, New York, NY, USA,
15-22. DOI=10.1145/989863.989865 [Online]. Available at:
http://doi.acm.org/10.1145/989863.989865. [Accessed 3 October, 2013].

Bencina, R. (2006). “Implementing Real-Time Granular Synthesis,” in Greenbaum &
Barzel (Eds.)., Audio Anecdotes. III A.K. Peters, Natick. Draft. [Online]. Available at:
http://www.rossbencina.com/static/code/granular-
synthesis/BencinaAudioAnecdotes310801.pdf. [Accessed 25 Feburary 2013].

Bergman, E., and Johnson, E. (1997). Towards Accessible Human-Computer Interaction. In
Nielson, J. (Ed.). Advances in Human-Computer Interaction, Vol.5. Ablex Publishing
Corporation, Norwood, New Jersey. Pp. 87-112.

Bertelsen, O., Breinbjerg, M., & Pold, S. (2007). Instrumentness for Creativity Mediation,
Materiality, and Metonymy. In: ACM SIGHCI Sixth Creativity and Cognition Conference.
[Online]. Available at: http://dl.acm.org/citation.cfm?id=1254992. [Accessed 8 July 2013].

Bolstad, T. (2009). iOS Rotary Slider Controls-AKA Knobs. [Online]. Available at:
http://timbolstad.com/2010/09/19/ios-rotary-slider-controls-aka-knobs/. [Accessed 8 June
2013].

Bongers, B. (2000). Physical Interfaces in the Electronic Arts: Interaction Theory and
Interfacing Techniques for Real-time Performance. In Wanderley, M. and Battier, M. (Eds.),
Trends in Gestural Control of Music. Paris: Ircam-Centre Pompidou. pp. 231-258. [Online].
Available at: http://hapticity.net/pdf/nime2005_192-works_cited/10.1.1.90.4997.pdf.
[Accessed 25 October 2013].

Boulanger, A. (2004). Autism, New Music Technologies, and Cognition”. M.S. Thesis.
Massachusetts Institute of Technology. [Online]. Available at:
http://dspace.mit.edu/handle/1721.1/37390. [Accessed 10 October 2012].

Boulanger Labs (2012). CsGrain. [Online]. Available at:
http://www.boulangerlabs.com/products/csgrain/. [Accessed 17 October 2012].

Boulanger, R. Introduction to Sound Design in Csound. In Boulanger, R. (Ed.). The Csound
Book. Cambridge, MIT Press. pp. 5-65.

British Association for Music Therapy (2012a). What is Music Therapy? [Online].
Available at: http://www.bamt.org/music-therapy.html [Accessed 8 December 2012].

British Association for Music Therapy (2012b). Who Can Benefit? [Online]. Available at:
http://www.bamt.org/music-therapy/who-can-benefit.html. [Accessed 9 December 2012].

Brunner, C. (2009). A Cultural Approach to the Notion of the Instrument. In: International
Computer Music Conference, Montreal, 2009. [Online]. Available at:
http://quod.lib.umich.edu/cgi/t/text/text-idx?c=icmc;view=toc;idno=bbp2372.2009.079.
[Accessed 2 July 2013].

	
	

	 281	

Burland, K. and Magee, W. (2012). Developing identities using music technology in
therapeutic settings. Psychology of Music. [Online]. Available at:
http://pom.sagepub.com/content/early/2012/11/15/0305735612463773.abstract. [Accessed 5
December 2013].

Cadoz, W. and Wanderley, M. (2000). Gesture – Music. In Wanderley, M and Battier, M.
(Eds.). Trends in Gestural Control of Music. Paris: Ircam-Centre Pompidou. pp. 71-94.
[Online]. Available at:
http://www.vigliensoni.com/McGill/CURSOS/2009_09/MUMT620/READINGS/2/2_Gestu
re-Music%20(Cadoz-Wanderley).pdf. [Accessed 25 October 2012].

Campbell, M. (2013). Apple awarded patent for more accurate haptic feedback system.
Apple Insider. Available at: http://appleinsider.com/articles/13/02/19/apple-awarded-patent-
for-more-accurate-haptic-feedback-system. [Accessed 3 October 2013].

Carlson, C. and Wang, G. Borderlands: An Audiovisual Interface for Granular Synthesis.
In: NIME 2011, Ann Arbor, 21-23 May. [Online]. Available at:
http://www.modulationindex.com/borderlands_paper.pdf. [Accessed 25 February 2013].

Casciato, C. and Wanderley, M. (2007). Lessons from Experienced Gestural Controller
Users. In: ENACTIVE/07, Paris, 19-22 November. [Online]. Available at:
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjA
A&url=http%3A%2F%2Fwww.idmil.org%2F_media%2Fwiki%2Fenactive07_casciatowan
derley.pdf%3Fid%3Dpublications%26cache%3Dcache&ei=Epd_Uu2XD6m84ATGyIGYD
A&usg=AFQjCNEAnRcUTCPO04NKzZFKJiKcqU7LyQ&sig2=oH1GecapktRYLW-
JGtH1Hw&bvm=bv.56146854,d.bGE&cad=rja. [Accessed 21 October 2013].

Castro, D. (2008). Digital Quality of Life: Accessibility for People with Disabilities.
[Online]. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1284647.
[Accessed 2 October 2008].

Chadabe, J. (1984). Interactive Composing: An Overview. Computer Music Journal. 8(1).,
pp. 22-27. [Online]. Available at: http://www.jstor.org/stable/3679894. [Accessed 3
November 2012].

Chadabe, J. (1977). Some Reflections on the Nature of the Landscape within which
Computer Music Systems are Designed. Computer Music Journal. 1(3). Pp. 5-11. [Online].
Available at: http://www.jstor.org/stable/3679605. [Accessed 3 November 2012].

Challis, B. and Smith, R. (2012). Assistive Technology and Performance Behaviours in
Music Improvisation. Lecture Notes for the Institute of Computer Sciences, Social
Informatics, and Telecommunications Engineering. pp 63-70., 101. [Online]. Available at:
http://link.springer.com/chapter/10.1007/978-3-642-33329-3_8?null#page-1. [Accessed 1
December 2012].

Cleveringa, W., et al. (2009). Assisting Gesture Interaction on Multi-Touch Screens.
[Online]. Available at: http://openexhibits.org/wp-
content/uploads/papers/Cleveringa_2009_AGI.pdf. [Accessed 6 March 2013].

	
	

	 282	

Cole, B. MIDI and Communality. Organised Sound. 1(1). pp 51-54. 1996.

Cook, P. (2001). Principles for Designing Computer Music Controllers. In: NIME 2001,
Seattle, 1-2 April. [Online]. Available at:
http://www.cs.princeton.edu/sound/publications/prc_chi2001.pdf. [6 July 2013].

“Composition”. Harvard Dictionary of Music. 4th ed. 2003.

Corêa, A., et al. (2009). Computer Assisted Music Therapy: a Case Study for an Augmented
Reality Musical System for Children with Cerebral Palsy Rehabilitation. In: Proceedings of
the Ninth IEEE International Conference on Advanced Learning Technologies. [Online].
Available at:
http://celstec.org.uk/system/files/file/conference_proceedings/icalt2009/data/3711a218.pdf.
[Accessed 21 November 2012].

Csounds.com. (2012). About Csound. [Online]. Available at: http://csounds.com/about.
[Accessed 11 May 2013].

Di Scipio, A. (2003). Sound is the interface: from interactive to ecosystemic signal
processing. Organised Sound. 8(3). Pp. 22-27. [Online]. Available at: http://www.ak.tu-
berlin.de/fileadmin/a0135/Unterrichtsmaterial/Di_Scipio/Sound_is_the_interface.PD.
[Accessed 16 November 2012].

Duggal, V. (2011). "Ti.UI.Slider.thumbImage." appcellerator network, Posting toTitanium
Mobile. [Online]. Available at: https://jira.appcelerator.org/browse/TIMOB-
6595?page=com.atlassian.jira.plugin.system.issuetabpanels:changehistory-tabpanel.
[Accessed 19 July 2013].

Essl, G., et al. (2008). Developments and Challenges turning Mobile Phones into Generic
Music Performance Platforms. In: Mobile Music Workshop 2008, Vienna, 13-15. [Online].
Available at: http://web.eecs.umich.edu/~gessl/georg_papers/os09-mobileinteractivity.pdf.
[Accessed 3 November 2012].

Farbood, M. (2001). Hyperscore: A New Approach to Interactive, Computer-Generated
Music. M.S. Thesis. Massachusetts Institute of Technology. [Online]. Available at:
http://opera.media.mit.edu/papers/Masters_Mary.pdf. [Accessed 6 November 2012].

Fels, S., Gadd, A., Mulder, A. (2002). Mapping Transparency Through Metaphor: Towards
More Expressive Musical Instruments. Organised Sound. 7(2). [Online]. Available at:
http://hct.ece.ubc.ca/research/metamuse/papers/FelsGaddMulder_os2002.pdf. [Accessed 26
March 2013].

Gabor, D. (1944). Theory of Communication. In: J.IEE, 93(26). Pp. 429-457. Available at:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05298517. [Accessed 28 June 2013].

Gabor, D. (1947). Acoustic Quanta and The Theory of Hearing”. Nature, 159(4044). Pp.
591-594. [Online]. Avaialble at:

	
	

	 283	

http://www.nature.com/nature/journal/v159/n4044/pdf/159591a0.pdf . [Accessed 28 June
2013].

Geiger, G. (2006). Using the Touch Screen as a Controller for Portable Computer Music
Instruments. In: NIME 2006, Paris, 4-8 June. [Online]. Available at:
http://www.nime.org/proceedings/2006/nime2006_061.pdf . [Accessed 16 November 2012].

Giordano, M. and Wanderley, M. (2013). Perceptual and Technological Issues in the Design
of Vibrotactile-Augmented Interfaces for Music Technology and Media. In: 2013 Haptics-
Audio Interaction Design Workshop. [Online]. Availablet at:
http://www.idmil.org/publications. [Accessed

Godøy, R., Haga, E., Jensenius, A. (2006). Exploring Music-Related Gestures by Sound-
Tracing: A Preliminary Study. [Online]. Available at:
https://www.duo.uio.no/bitstream/handle/10852/26899/Godxy_2006b.pdf?sequence=1.
[Accessed 5 June 2013].

Gómez, D., et al. (2007). A Look at the Design and Creation of a Graphically Controlled
Digital Musical Instrument. In: NIME 2007, New York, 6-10. [Online]. Avaialble at:
http://dl.acm.org/citation.cfm?id=1279740.1279811. [Accessed 8 March 2013].

Gorman, M., et al. (2007). A Camera-Based Music-Making Tool for Physical
Rehabilitation. Computer Music Journal, 32(2). pp39-53.

GRAINPROC (2012). Granular Synthesis for the iPad. [Online]. Available at:
http://grainproc.e7mac.com/. [Accessed 21 November 2012].

Gross, S. (2012). Material Skeuomorphism and the Relationship of Form to Function. In:
CHI’12, May 5-10, 2012, Austin. [Online]. Available at: http://www.shadgross.com/wp-
content/uploads/2012/08/Materiality.Gross_.pdf . [Accessed 28 March 2013].

Haueisen, J. and Knösche, T. (2001). Involuntary Motor Activity in Pianists Evoked by
Music Perception. Journal of Cognitive Neuroscience, 13(6). pp 786-792. [Online].
Available at:
http://www.brainmusic.org/EducationalActivitiesFolder/Haueisen_pianists2001.pdf.
[Accessed 14 July 2013].

Hewett, et al. (1992). ACM SIGCHI Curricula for Human Computer Interaction.
SIGCHI.org. [Online]. Available at: <http://old.sigchi.org/cdg/cdg2.html>. [Accessed 3
October 2013].

Holland, S., et al. (2013). Music Interaction: Understanding Music and Human-Computer
Interaction. In S. Holland, K. Wilkie, P. Mulholland, A. Seago, (Eds.). Music and Human-
Computer Interaction. London: Springer, 2013. pp.1-28. [Online]. Available at:
http://link.springer.com/book/10.1007/978-1-4471-2990-5/page/1. [Accessed 10 August
2013].

	
	

	 284	

Holmes, T. (2008). Electronic and Experimental Music. 3rd ed. New York: Routledge.

Hözl, M., et al., (2009). Constraint-Muse: A Soft-Constraint Based System for Music
Therapy. In Goos, Gerhard, et al. (Eds.). Lecture Notes in Computer Science, Volume 5728,
pp.423-432. Available at: http://link.springer.com/chapter/10.1007%2F978-3-642-03741-
2_29?LI=true#. [Accessed 21 November 2012].

Hughes, N. (2013). Apple has sold 170M iPads to date, implying sales near 15M in Sept.
quarter. [Online]. Available at: http://appleinsider.com/articles/13/10/23/apple-has-sold-
170m-ipads-to-date-implying-sales-near-15m-in-sept-quarter. [Accessed 8 November
2013].

Hunt, A. (2000). Radical user-interfaces for real-time musical control. PhD Thesis.
University of York. [Online]. Available at: http://www-
users.york.ac.uk/~adh2/Andy_Hunt_Thesis.html. [Accessed 14 November 2012].

Hunt, A., and Kirk, R. (2000). Mapping Strategies for Music Performance. In Wanderley, M
and Battier, M. (Eds.). Trends in Gestural Control of Music. Paris: Ircam-Centre Pompidou.
pp. 231-258. [Online]. Available at:
http://vigliensoni.com/BUP/Dropbox_10_11_15/proyectoMarco/Info/9_Mapping%20Strate
gies%20for%20Musical%20Performance_Hunt.pdf. [Accessed 25 October 2012].

Hunt, A. and Kirk, R. (2003). MidiGrid: Past, Present, Future. In: NIME, Montreal, 2003.
pp135-139.

Hunt, A., Kirk, R., and Neighbour, M. (2004). Multiple Media Interfaces for Music
Therapy. In: IEEE MultiMedia, 11(3). pp. 50-58. [Online]. Available at:
http://eprints.whiterose.ac.uk/654/1/hunta1.pdf. [Accessed 14 November 2012].

Hunt, A and Wanderley, M. (2002). Mapping performer parameters to synthesis engines.
Organised Sound, 7(2). pp.97-108. [Online]. Available at:
http://digitalmusicsstudio.wikispaces.asu.edu/file/view/Mapping+Performer+Parameters.pdf
. [Acccessed 14 November 2012].

Hunt, A., Wanderley, M., and Paradis, M. (2002). The Importance of Parameter Mapping in
Electronic Instrument Design. In: NIME 2002, Dublin, Ireland, May 24-26. [Online].
Available at: http://dl.acm.org/citation.cfm?id=1085171.1085207. [Accessed 25 October
2012].

Hunt, A., Wanderley, M., and Kirk, R. (2002). Towards a Model for Instrumental Mapping
in Expert Musical Interaction. In: International Computer Music Conference, Berlin, 2002.
[Online]. Available at: http://recherche.ircam.fr/equipes/analyse-
synthese/wanderle/Gestes/Externe/Hunt_Towards.pdf. [Accessed 25 October 2012].

Ingram, A., et al. Towards the Establishment of a Framework for Intuitive Multi-touch
Interaction Design. In: AVI ’12: Proceedings of the International Working Conference on
Advanced Visual Interfaces, Capri Island, 22-25 May 2012. [Online]. Available at:
http://coitweb.uncc.edu/~xwang25/pubs/Amy-AVI2012.pdf. [Accessed 25 March 2013].

	
	

	 285	

Jordà, S. (2003). Interactive Music Systems for Everyone: Exploring Visual Feedback as a
Way For Creating More Intuitive, Efficient and Learnable Instruments. In: Stockholm Music
Acoustics Conference, August 6-9, 2003. [Online]. Available at:
http://infodate.nctu.edu.tw/teaching/techart/assi/94/9342804%E9%9F%B3%E6%A8%82%
E6%96%87%E7%8D%BB(%E9%83%AD%E6%80%A1%E5%A9%B7)/Interactive%20M
usic%20Systems%20for%20%20Everyone.pdf. [Accessed 12 July 2013].

Jordà, S. (2005). Instruments and Players: Some thoughts on digital lutherie. Journal of New
Music Research. 33(3) pp.321-341.
Available at: http://www.tandfonline.com/doi/pdf/10.1080/0929821042000317886.
[Accessed 11 July 2013].

Jordà, S., et al. (2007). The reacTable: Exploring the Synergy between Live Music
Performance and Tabletop Tangible Interfaces. In: Conference on Tangible and Embedded
Interaction, Baton Rouge, February 15-17 2007. [Online]. Available at:
http://dl.acm.org/citation.cfm?id=1226998. [Accessed 19 November 2012].

Khooshabeh, P., et al. Gestural Musical Improvisation and Programming. In: 2005
Symposium on Visual Languages and Human-Centric Computing, Dallas, 20-24 September.
[Online]. Available at:
http://ieeexplore.ieee.org/xpl/tocresult.jsp?sortType%3Dasc_p_Sequence%26filter%3DAN
D(p_IS_Number%3A32326)%26rowsPerPage%3D50&pageNumber=2. [Accessed 30
October 2012].

Kell, T. and Wanderley, M. (2013). A Quantitative Review of Mappings in Musical iOS
Applictaions. In: Proceedings of the Sound and Music Computing Conference 2013. pp.
473-480. [Online]. Available at: http://smcnetwork.org/node/1749. [Accessed 3 February
2014].

Kirn, P. (2010). libpd: Put Pure Data in Your App, On an iPhone or Android, and
Everywhere, Free. Create Digital Music. [Online]. Available at:
http://createdigitalmusic.com/2010/10/libpd-put-pure-data-in-your-app-on-an-iphone-or-
android-and-everywhere-free/. [Accessed 15 October 2012].

Kirn, P. (2012). csGrain Gets Granular Goodness on iPad 2/3; Vanguard of Multi-Platform
Csound Renaissance. Create Digital Music. [Online]. Available at:
http://createdigitalmusic.com/2012/04/csgrain-gets-granular-goodness-on-ipad-23-
vanguard-of-multi-platform-csound-renaissance/. [Accessed 17 October 2012].

Kirn, P. (2013). As Touch and Laptops Converge, Finally Potential for Music Making?
Create Digital Music. [Online]. Available at: http://createdigitalmusic.com/2013/06/as-
touch-and-windows-converge-potential-for-performing-music-live-djing/. [Accessed 3 June
2013].

Korg (2013). iKaossilator. [Online]. Available at: http://www.korg.com/ikaossilator.
[Accessed 9 November 2013].

Kriedler, J. (2009). Programming Electronic Music in Pd. [Online]. Available at:
http://www.pd-tutorial.com/english/index.html. [Accessed 15 October 2012].

	
	

	 286	

Lazzarini, V., et al. (2012a). “Digital Audio Effects on Mobile Platforms” 15th International
Conference on Digital Audio Effects, DAF 2012. Ed. J.Wells, York Department of
Electronics Audio Lab, York UK, 2012. Pp. 287-293.

Lazzarini, V., et al. (2012b). The Mobile CSound Platform” International Computer Music
Conference: Non Cochlear Sound. Ljublana, 2012. [Online]. Available at:
http://quod.lib.umich.edu/cgi/p/pod/dod-idx/mobile-csound-
platform.pdf?c=icmc;idno=bbp2372.2012.031. [Accessed 28 November 2012].

Lee, A.S.C. (2000). Granular Synthesis in Csound. In Boulanger, R. (Ed.). The Csound
Book. Cambridge, MIT Press. pp. 281-292.

Leman, M. (2010). Music, Gesture, and the Formation of Embodied Meaning. In Godøy and
Leman, (Eds.). Musical Gestures: Sound, Movement, and Meaning”, Eds Godøy and
Leman. Routledge, New York. pp. 126-153.

Leman, M., and Godøy, R. (2010). Why Study Musical Gesture? In Godøy and Leman,
(Eds.). Musical Gestures: Sound, Movement, and Meaning”, Routledge, New York. pp.3-
11.

Lee, M. and Wessel, D. (1992). Connectionist Models for Real-Time Control of Synthesis
and Compositional Algorithms. In: International Computer Music Conference 1992, San
Jose. [Online]. Available at:
http://cnmat.berkeley.edu/system/files/attachments/Connectionist_Models.pdf. [Accessed
29 March 2013].

Machover, T. Instruments, Interactivity, and Inevitability. In: NIME 2002, Dublin, May 24-
26. [Online]. Available at: http://www.nime.org/proceedings/2002/nime2002_115.pdf.
[Accessed 11 July 2013].

Magee, W. (2006). Electronic technologies in clinical music therapy: A survey of practice
and attitudes. Technology and Disability, 18(3). pp.139-146.

Magee, W. and Burland, K. (2008).Using electronic music technologies in music therapy:
opportunities, limitations, and clinical indicators. British Journal of Music Therapy, 22(1)
pp. 3-15.

Magnusson, T. and Mendieta, E. The Acoustic, The Digital and The Body: A Survey of
Musical Instruments. In: NIME 2007, New York, June 6-10. [Online]. Available at:
http://dl.acm.org/citation.cfm?id=1279757. [Accessed 11 March 2013].

Mark, D. et al. (2011). Beginning iOS Development. Apress Media LLC, New York.

McDermott, James, et al. (2013). Should Music Interaction Be Easy? In S. Holland, K.
Wilkie, P. Mulholland, A. Seago, (Eds.). Music and Human-Computer Interaction.
London: Springer. pp29-48. [Online]. Available at:
http://link.springer.com/book/10.1007/978-1-4471-2990-5/page/1. [Accessed 10 August
2013].

	
	

	 287	

Miranda, E and Wanderley, M. (2006). New Digital Musical Instruments: Control and
Interaction Beyond the Keyboard. Middleton, WI: A-R Editions, Inc.

McKay, G and Higham, B. (2011). Community Music: History and Current Practice, its
Constructions of ‘Community’, Digital Turns and Future Soundings. [Online]. Available at:
http://www.academia.edu/1066617/Community_Music_History_and_Current_Practice_its_
Constructions_of_Community_Digital_Turns_and_Future_Soundings. [Accessed 8
December 2012].

McCurdy, I. (2010). REVERBERATION in “The Csound FLOSS Manual”. [Online].
Available at: http://en.flossmanuals.net/csound/ch035_e-reverberation/. [Accessed 17 June
2013].

Merril, D and Raffle, H. (2013). Semiacoustic Sound Exploration with the Sound of Touch.
In Franinović, K and Serafin, S. (Eds.). Sonic Interaction Design. Massachuesetts: The MIT
Press. pp 213-224.

MIDIcreator User Manual. MIDIcreator Resources. [Online]. Available at:
http://www.midicreator-resources.co.uk/midicreator/resources/Manuals/manual.pdf.
[Accessed 8 December 2012].

MIDIcreator Sensors. MIDIcreator Resources. [Online]. Available at:
http://www.midicreator-resources.co.uk/midicreator/resources/Manuals/manual.pdf.
[Accessed 8 December 2012].

Nagler, J. (2011). Music Therapy Methods with Hand-Held Music Devices in
Contemporary Clinical Practice: a commentary. Music and Medicine, 3(3). pp.196-199.
[Online]. Available at: http://mmd.sagepub.com/content/3/3/196.full.pdf+html. [Accessed 1
November 2012].

Nash, C. (2011). “Supporting Virtuosity and Flow in Computer Music. PhD Thesis”.
University of Cambridge. [Online]. Available at:
http://www.academia.edu/2470149/Supporting_virtuosity_and_flow_in_computer_music.
[Accessed 27 August 2013].

Neate, T. (2012). “The Interactive Sonification of Electromyography Data for iOS”. BSc
Project Report. University of York.

Nelson, J.C. (2000). Understanding and Using Csound’s GEN Routines. In Boulanger, R.
(Ed.). The Csound Book. Cambridge: Massachusetts Institute of Technology Press, pp. 65-
90.

Norman, Donald. (2001). The Design of Everyday Things. London: The MIT Press.

Oh, J., et al. (2010). Evolving The Mobile Phone Orchestra. In: NIME 2010, Sydney, 15-18
June. [Online]. Available at: https://ccrma.stanford.edu/~jorgeh/assets/publications/mopho-
nime2010.pdf. [Accessed 16 November 2012].

	
	

	 288	

Overholt, D. (2009). The Musical Interface Technology Design Space. Organised Sound
14(2). pp. 217-226. [Online]. Available at:
http://journals.cambridge.org/action/displayAbstract;jsessionid=F8388B8F794998202D0C3
CFB5078384C.journals?fromPage=&aid=5882432. [Accessed 16 November 2012].

Roads, C. (1988). Introduction to Granular Synthesis. Computer Music Journal, 12(2). Pp.
281-282. [Online]. Available at: http://www.jstor.org/stable/3679937. [Accessed 16
November 2012].

Roads, C. (1996). The Computer Music Tutorial. Cambridge: Massachusetts Institute of
Technology.

Roads, C. (2001). Microsound. Cambridge: Massachusetts Institute of Technology.

Roberts, C., Forbes, A., & Höllerer, T. (2013). Enabling Multimodal Mobile Interfaces for
Interactive Musical Performance. In: NIME’13, Daejeon, May 27-30, 2013. [Online].
Available at: http://www.mat.ucsb.edu/Publications/Enabling_MMI_for_IMP.pdf.
[Accessed 9 November 2013].

Rogers, Y., Sharp, H., and Preece, J. (2011). Interaction Design: Beyond Human –
Computer Interaction. Chichester. John Wiley & Sons Ltd.

Rudi, J. (1997). Computer Music Composition for Children. IEEE Signal Processing
Magazine, 143. pp. 140-143. [Online]. Available at:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04117938. [Accessed 30 October
2012].

Saffer, D. (2009). Designing Gestural Interfaces. Sebastapool: O’Reilly Media.

Schlei, K. (2012). TC-11: A Programmable Multi-Touch Synthesizer for the iPad. In: NIME
2012, Ann Arbor, June 15-18, 2012. [Online]. Available at:
http://www.eecs.umich.edu/nime2012/Proceedings/papers/230_Final_Manuscript.pdf.
[Accessed 2 April 2013].

Selker, T. (2008). Touching the Future Communications of the ACM, 51(2). pp.14-16.
[Online]. Available at:
http://u.cs.biu.ac.il/~ariel/download/mm664/resources/interfaces_technologies/touch/touchi
ng_the_future.pdf. [Accessed 12 February 2013].

Settel, Z., and Lippe, C. Convolution Brother’s Instrument Design. In: NIME 2003,
Montreal, May 22-14. [Online]. Available at: http://dl.acm.org/citation.cfm?id=1085761.
[Accessed 13 July 2013].

Synthtopia (2013). Amazing Audio Engine’ Streamlines iOS App Development. [Online].
Available at: http://www.synthtopia.com/content/2013/03/20/amazing-audio-engine-
streamlines-ios-music-app-development/. [Accessed 17 May 2013].

Tanaka, A. “Musical Performance Practice on Sensor-based Instruments”. In M. Wanderley
and M. Battier, (Eds.). Trends in Gestural Control of Music. Paris: Ircam-Centre Pompidou.

	
	

	 289	

pp. 389-406. [Online]. Available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.74.2844&rep=rep1&type=pdf.
[Accessed 8 July 2013].

“The Reactable”. Photo. Reactable. Music Technology Group.
[Online]. Available at: http://mtg.upf.edu/project/reactable. [Accessed 4 August 2013].

Treadaway, C. Hand E-craft: an Investigation into Hand Use in Digital Creative Practice. In:
Seventh ACM conference on Creativity and Cognition, New York, 2009. [Online]. Available
at:
http://dl.acm.org/citation.cfm?id=1640233&picked=prox&CFID=359827105&CFTOKEN=
95641065 [Accessed 10 March 2013].

Wanderely, M. and Orio, N. (2002). Evaluation of Input Devices for Musical Expression:
Borrowing Tools from HCI. Computer Music Journal, 26(3). pp. 62-76. [Online]. Available
at:
http://www.mitpressjournals.org/doi/abs/10.1162/014892602320582981?journalCode=comj
. [Accessed 24 March 2013].

Wanderley, M. (2004). SensorWiki. [Online]. Available at:
http://www.sensorwiki.org/doku.php/. [Accessed 25 November 2012].

Wanderley, M. and Depalle, P. (2004). Gestural Control of Sound Synthesis. J.IEE, 92(4).
pp. 632-644. [Online]. Available at:
http://kkothman.iweb.bsu.edu/oldTeaching/mumet440/papers/wanderly-gestcontrol.pdf.
[Accessed 21 October 2013].

Wessel, D. et al. Intimate Musical Control of Computers with a Variety of Controllers and
Gesture Mapping Metaphors. In: NIME 2002, Dublin May 24-26. [Online]. Available at:
http://www.nime.org/proceedings/2002/nime2002_192.pdf. [Accessed 8 March 2013].

Wessel, D. and Wright, M (2002). Problems and Prospects for Intimate Musical Control of
Computers. Computer Music Journal, 26(3). pp.11-12. [Online]. Available at:
http://dl.acm.org/citation.cfm?id=1245198. [Accessed 24 March 2013].

Weinberg, Gil. (1999). Expressive Digital Musical Instruments for Children. M.S. Thesis,
Massachusetts Institute of Technology. [Online]. Available at:
http://dspace.mit.edu/handle/1721.1/62942. [Accessed 10 October 2012].

Winkler, T. Making Motion Musical: Gesture Mapping Strategies for Interactive Computer
Music. In: International Computer Music Conference Proceedings 1995, Banff Centre for
the Arts. [Online]. Available at: http://www.cin.ufpe.br/~fcac/tg-
pesquisa280520100951/Making%20motion%20musical-
Gesture%20mapping%20strategies%20for%20interactive%20computer%20music.pdf.
[Accessed 5 March 2013].

Wilkie, K., et al. (2010). What Can the Language of Musicians Tell Us About Music
Interaction Design? Computer Music Journal, 34(4) pp. 34-39. [Online]. Available at:

	
	

	 290	

http://www.mitpressjournals.org/doi/abs/10.1162/COMJ_a_00024?journalCode=comj.
[Accessed 30 March 2013].

Wilson, T., et al. (2007). How the iPhone Works. HowStuffWorks.com
<http://electronics.howstuffworks.com/iphone2.htm>/ [Accessed 09 February 2014].

Wöldecke, B, et al. (2012). ANTracks 2.0 – Generative Music on Multiple Multitouch
Devices. In: NIME’12, Ann Arbor, June 15-18, 2012. [Online]. Available at:
http://www.nime.org/proceedings/2010/nime2010_348.pdf. [Accessed 23 March 2013].

Woojijuice (2012). Grain Science: Advanced granular synthesis for iOS. [Online].
Available at: http://www.wooji-juice.com/products/grain-science/. [Accessed 9 October
2013].

Wright, J., et al. CyberBand: A “Hands-On” Music Composition Program. In: International
Computer Music Conference 1997. Thessaloniki. [Online]. Available at:
http://openmuse.org/noncpl/ICMC1997_CB.PDF. [Accessed 29 Janurary 2013].

Velcazo, C. (2012). 3,997 Models: Android Fragmentation As Seen By The Developers of
OpenSignalMaps. TechCrunch. [Online]. Available at:
http://techcrunch.com/2012/05/15/3997-models-android-fragmentation-as-seen-by-the-
developers-of-opensignalmaps/. [Accessed 15 October 2012].

Vercoe, B. et al., n.d. The Canonical Csound Reference Manual, Version 5.13.

Xambnaó, A., et al. (2011). “Multi-touch interaction principles for collaborative real-time
music activities: towards a pattern language.” International Computer Music Conference
Proceedings, Huddersfield, 2012. Web. [Online]. Avaiable at: http://oro.open.ac.uk/28757/.
[Accessed 16 November 2012].

