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Abstract 
 The thesis explores the use of multi-touch gestures in the use of interactive 
music apps run on mobile devices. With the growing popularity of mobile, multi-touch 
devices such as the iPad, more and more people have the chance to interact with music 
in a creative setting. However, many of these apps are based on traditional analogue 
music equipment, employing metaphors to physical interaction elements such as rotary 
knobs and faders. 

 User preference for musical interaction is researched. Three apps were 
developed for this investigation: two apps employ skeuomorphic UI elements (rotary 
knobs and faders), and the third employs multi-touch gestures. All three apps allow the 
user to interact with a granular synthesizer. User tests show that if users want an app that 
will allow them to explore music in a manner they would describe as “intuitive, 
interactive, creative, and playful”, then a multi-touch gestural app is the preferred 
option. However, if users want to be able to intricately modify and edit music, then an 
app implementing a skeuomorphic design paradigm is the preferred option.  
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Chapter 1 
Introduction  

 

 This chapter describes the motivation behind the research, as well as the 

preliminary hypothesis. Subsequent chapters are also described in Section 1.2. 

1.1 Thesis Overview 

 In spite of the advances that have occurred in music interaction research, the 

majority of music-centric computer programs and mobile apps implement user 

interaction based around mouse and keyboard input (in the case of desktop computer 

programs), or around skeuomorphic user interface elements (in the case of mobile apps). 

These skeuomorphs include virtual sliders, rotary knobs, and even piano keyboards that 

the user “plays” with a single finger. This approach is persistent in music-centric mobile 

apps, despite the fact that the multi-touch platforms they run on are capable of intricate 

and often intuitive multi-touch gestures for interaction.  

 The hypothesis of this project is that users prefer using multi-touch gestures to 

interact with music as opposed to traditional skeuomorphs. If this is indeed the case, it 

will most likely be because users find multi-touch gestures more intuitive for controlling 

musical parameters than traditional user interface skeuomorphs. This hypothesis will be 

tested through user tests conducted with three separate iPad apps, developed specifically 

for this purpose, and described in Chapter 5. The technology used in the creation of 

these apps is discussed in Chapter 4. 
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 The research took several changes in direction, scope and outcome goals 

throughout the project period. Originally, the goal was to develop an app that would 

assist individuals with disabilities in composing original music. Upon further 

consideration, this was deemed impractical due to the wide range of disability types; it is 

impossible to develop a single system that would meet the needs of such a diverse set of 

users.  

 The goal then became to develop an interactive composition system that would 

be useful to those with no musical background or training. Instead of focusing on 

making the app helpful to one specific segment of the population, the goal was to make 

the app as accessible to as many people as possible. 

 As the research developed the aforementioned hypothesis emerged to investigate 

users’ preferences when using multi-touch devices for musical purposes. The 

hypothesis’ evolution is discussed in detail in Chapter 5. 

1.2 Thesis Structure 

 Chapter 2 provides an overview of the literature relevant to this thesis, 

specifically the role of technology in music therapy, interactive composition, Human-

Computer Interaction, Music Interaction, the iPad and mobile music, and it concludes 

with an overview of existing music-centric iOS apps. Chapter 3 is an overview of the 

preliminary study on gestural intuitiveness, which investigates how users relate multi-

touch gestures to various musical parameters. Chapter 4 provides a technical overview 

of the hardware and programming technologies used in the creation of the apps built for 

the testing of the hypothesis, as well as specific design details of each test app. Chapter 
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5 details the user tests carried out to test the hypothesis, as well as presenting a modified 

version of the hypothesis. Finally, Chapter 6 concludes the thesis with a discussion of 

the relationship between Music Interaction and Human-Computer Interaction research, 

and how Music Interaction can benefit the HCI discipline as a whole.  
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Chapter 2 
Literature Review  

 
A literature review was undertaken to investigate the theoretical principles that 

inform the goals of the research, including the role of technology in music therapy, 

Human-Computer Interaction, Music Interaction/Interactive Composition, the iPad and 

mobile music. It concludes with a review of currently available iOS interactive music 

applications.  

At the start of the project, the goal was to design an app that would help music 

therapy clients with the act of music composition. Though that goal evolved, the 

research conducted on the role of technology in music therapy and community music is 

included here for completeness and to provide an appropriate context to the goals of the 

project. 

2.1 Music Therapy 

The British Association for Music Therapy defines music therapy as “…a 

psychological therapy which uses the unique qualities of music as a means of 

interaction between therapist and client” (BAMTa, 2012, online). Ability and musical 

performance are not necessarily the outcome goals of music therapy, but rather the focus 

is on helping people communicate in their own musical language. Clients of music 

therapy include children and young people, individuals with learning disabilities or 

autistic spectrum conditions, individuals in need of mental health care, the elderly, and 

those with neuro-disabilities (BAMTb, 2012, online).  
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2.2 Community Music  

Olseng (1990) states (as cited in McKay and Higham, 2003, p.5), community 

music is “…characterized by the following principles: decentralisation, accessibility, 

equal opportunity, and active participation in music making”. Distinct from music 

therapy, or even community music therapy, community music signals an effort to 

“…move outside a clinical or restricted practice to a wider, more socially engaged one” 

(McKay and Higham, 2003, p.7). Essentially, community music is not clinically 

oriented, but rather focused on helping a wide variety of individuals to express 

themselves musically, who may or may not have a prior musical background or training.  

2.3 The Role of Technology in Music Therapy and Community Music 

Music technology has a vital role to play in music therapy. Music therapists have 

traditionally used a variety of acoustic instruments in their practice, such as guitar, 

piano, drum-sets, percussion, etc. (Cole, 1996). However, according to Magee and 

Burland, “…music therapists turn to technology to enable a client to participate actively 

or to widen the client’s musical expression. Technology offers improved access for 

people with complex physical needs to engagement in active methods of music therapy” 

(Magee and Burland, 2008, p.3). Magee and Burland also state that electronic music 

technology may be specifically helpful for people with limited movement, as well as for 

children and adolescents suffering from emotional disorders; a group that has been 

traditionally difficult to engage in music therapy (Magee and Burland, 2008).  

 Though immensely expressive, acoustic instruments may not be able to be used 

by those with certain physical and/or mental disabilities. Often, the therapist will assist 

the individual with physically manipulating the instrument. This can be a problem, as 
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the patient will not feel that they are in complete control of the musical situation, leading 

to feelings of frustration and/or dependence. In a 2012 paper, Burland and Magee state 

that an electronic music technology system can help disabled users to “…explore sound 

and offers a way to communicate with others” (Burland and Magee, 2012, p.7), thus 

providing clients with more control over the music creation process. 

A variety of music technology systems utilized in music therapy have been 

developed at the University of York. One of these is the MidiGrid system, developed by 

Andy Hunt and Ross Kirk. The program allows the user to perform chord sequences, 

arpeggios, and scales in a variety of timbres by moving a mouse over specific grids of 

musical material (see Figure 2.1). In addition to the mouse control, it is also possible for 

users to connect external MIDI devices that allow gestural actions to control pitch-

bending, pan positions, and volume modulation (Hunt and Kirk, 2003). According to the 

authors, MidiGrid has been utilized in music therapy to allow the user to improvise on a 

wide palette of timbres. Such timbres may not have been accessible to the users without 

the use of music technology.  
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University of York student Phil Bates designed a system known as MIDIcreator, 

which can be used as an external controller to MidiGrid. MIDIcreator converts voltages 

from a variety of electronic sensors and converts them into MIDI messages, which 

control a variety of parameters on electronic musical instruments. The MIDIcreator  is 

shown below in Figure 2.2. 

 

Fig.	  2.1	  
MidiGrid	  

(Hunt	  and	  Kirk,	  2003,	  p.136)	  
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One of the sensors that was specifically developed for use with the MIDIcreator 

is the MIDIgesture, a small portable sensor capable of detecting objects from one to 

three meters away (Cole, 1996). This allows individuals to interact with programs such 

as MidiGrid through the use of free-form gestures, rather than with a mouse. Other 

sensors developed for the MIDIcreator include a squeezable cushion, piano keyboard, 

light, and air pressure sensors (MIDIcreator User Manual). The MIDIgesture is shown 

below in Figure 2.3. 

 

Fig.	  2.2	  
The	  MIDIcreator	  	  

(MIDIcreator	  User	  Manual)	  
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More information regarding the types of sensing technologies that are able to be 

used in musical applications, as well as specific examples each sensing technology, is 

available on the SensorWiki website (Wanderely, 2004).  

University of York researchers also explored the concept of using tactile 

physical gestures to modify sound. A “shell instrument”, shown in Figure 2.4, consists 

of a “…fibreglass mould set in transparent resin, in which piezoelectric sensors are 

embedded” (Hunt, Kirk, and Neighbour, 2004, p.52). The sensors respond to the user’s 

touch, which is then mapped to control and synthesis parameters on an external sound 

generator. 

Fig.	  2.3	  
MidiGesture	  sensor	  

(MIDIcreator-Resources)	  
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Similarly, Weinberg explored the concept of squeezing or sculpting sound in his 

Squeezable Cluster while at MIT (Weinberg, 1998). The Squeezable Cluster is a 

controller that allows for musical exploration and is designed for use by children. 

The user squeezes foam balls embedded with sensors mapped to synthesis 

parameters. Though not explicitly designed for use in music therapy or community 

music, the mode of interaction used by the Squeezable Cluster, shown in Figure 2.5, 

potentially lends the device to use in such a context. 

Although the test apps documented in this thesis (discussed in more detail in 

later chapters) utilize a touch-screen for interaction rather than tactile, physical objects, 

the concept of sound sculpting plays a significant role in the design of the interface and 

synthesis mapping to gestures. 

 

Fig	  2.4	  
The	  “Shell	  Instrument”	  
(Hunt	  2004,	  p.52)	  
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According to Nagler, hand-held devices (e.g., mobile phones) are of use in music 

therapy due to the fact that there are “…fewer physical limitations, abundantly rich 

sonic possibilities and robust algorithms that negate the need for prerequisite music 

making skills or task readiness” (Nagler, 2011, p.198). Nagler presents these 

characteristics as advantages that mobile devices have over traditional acoustic 

instruments. Many music therapy patients may have difficulty in interacting with 

acoustic instruments due to possible physical limitations. As a result of this, mobile 

technology offers greater potential for clients with physical handicaps to interact with 

music creation in a music therapy context. The fact that mobile devices also offer the 

Fig	  2.5	  
The	  Squeezable	  Cluster	  
(Weinberg,	  1998,	  p.43)	  
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potential for the creation of new sonic possibilities due to the digital signal processing 

(DSP) algorithms they are able to run further enhances the possibility of use in a music 

therapy context. Since clients are able to create sounds that have never been heard 

before, they are able to freely explore and create; making music that is truly unique to 

their identity. 

Additionally, users are able to share their musical creations with others through 

email or uploading to social media sites. This will help the user feel a sense of 

accomplishment and self-actualization. Through the incorporation of Application 

Programming Interfaces (APIs) provided by websites such as SoundCloud, Twitter, and 

Facebook, users of a mobile music app will be able to share their creations with their 

friends and loved ones. 

In addition to the interfaces discussed so far, a variety of other computer 

programs, applications, and interfaces have been developed specifically for use in a 

music therapy/community music context (Challis and Smith, 2012; Gorman et al., 2007; 

Corrêa et al., 2009; Hözl et al., 2009;  Boulanger, 2004).	   

2.4 Problems and Solutions 

 Despite technological advances, music therapists are often reluctant to 

incorporate electronic music technologies in their practice. Magee and Burland state that 

one of the reasons for this is that many therapists do not have a technological 

background, and thus do not feel confident in the use of modern musical technology 

(Magee and Burland, 2008). An application that does not require any technical training 

would be helpful in solving this problem. 
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Additionally, as many music therapists are employed part-time across multiple 

locations or perform various outreach workshops, any technology needs to be as 

portable and mobile as possible. The fact that many music technology systems require 

time for setting up, means that they may be inappropriate for many music therapists’ 

needs (Magee, 2006). This problem can be eliminated by the creation of interactive 

musical applications that do not require any additional setup by the user. One of the 

justifications for using the iPad as the platform for the original application goal of this 

project was the factor of portability and ease of setup by users. More discussion on the 

iPad follows in Chapter 4.  

Due to their multisensory characteristics, acoustic instruments are often 

perceived as more aesthetically appealing than electronic instruments (Magee and 

Burland, 2008). With the advances in Digital Signal Processing (DSP) technology and 

synthesis algorithms in the past decades, this is becoming less and less of a problem. 

These technologies are now available on mobile devices via Core Audio, Pure Data, and 

Csound, etc; as will be shown in Section 4.2. The problem of the lack of visual appeal in 

electronic systems is also solved with visually captivating interface design on devices 

such as the iPad. 

2.5 Accessibility   

During the course of the research period, it was determined that the task of 

developing an iOS application for the field of music therapy and/or community music 

was too specific a task for the scope of this project. Instead, the research focus shifted to 

the investigation of how to provide an intuitive, interactive compositional environment 
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on a multi-touch device, aimed at individuals either without prior knowledge or access 

to traditional musical instruments.  

Castro, writing for The Information Technology and Innovation Foundation, 

defines accessible technology as “…technology that has many broad applications but 

helps remove barriers and make the world more accessible for people with disabilities, 

giving them more access to information, communication, and independence” (Castro, 

2008, p.52). Such technology may not be designed specifically for users with 

disabilities, but such users are better able to engage with the technology. Similarly 

Bergman and Johnson state that providing users with accessibility in a computer system 

means “…removing barriers that prevent people with disabilities from participating in 

substantial life activities, including the use of services, products, and information” 

(Bergman and Johnson, 1997, p.2).  

The notion of designing computer systems specifically for users with and without 

disabilities is challenged by the claim that all potential users of a computer system have 

a wide and diverse skill set depending on the user’s life stage, task and environment 

(Beaudouin-Lafon, 2004). The notion of categorizing users into those with or without 

disabilities is summarily invalid.  

Bergman and Johnson also argue that not only does awareness of accessibility 

benefit users who may have physical disabilities; it also provides a higher quality of user 

experience for those who do not have a disability, stating that usability testing with 

disabled users “…can uncover usability defects that are important in the larger 

population” (Bergman and Johnson, 1997, p.9). Such usability defects can include font 



 

	   	   	   	   	   	   15	  

and colour conflicts, problems with layout and context, poor interface flow, tab order 

and tasks that require an excessive number of steps or a wide range of movement 

(Bergman and Johnson, 1997).  

Instead of categorizing users into disabled and non-disabled, designers and 

programmers should focus instead on creating interactive computer systems that address 

a more expansive range of interaction modes and experiences, therefore broadening the 

base of potential users.  

Designers and programmers must also focus on the interactions that the user will 

be performing with the system. The capabilities of the computer system, for example 

processing power or memory size, are meaningless unless the user is able to interact 

with the system in an intuitive and meaningful way. Beaudouin-Lafon explores this 

problem by stating “…our goal is to control the quality of the interaction between user 

and computer: user interfaces are the means, not the end” (Beaudouin-Lafon, 2004, 

p.16). Prior to finalizing the interface design for an interactive music system, a decision 

must be reached regarding the way in which the user will interact with an audio 

synthesis engine for the purpose of composing music.  

2.6 Human-Computer Interaction  

By the very nature of their design goals, interactive computer music systems are 

based around a human user interacting with a computing platform; in the case of this 

project, a mobile computing platform, specifically the iPad. As such, an overview of 

Human-Computer Interaction follows.  



 

	   	   	   	   	   	   16	  

Human-Computer Interaction is defined by the ACM Special Interest Group for 

Computer-Human Interaction as “…a discipline concerned with the design, evaluation 

and implementation of interactive computing systems for human use and with the study 

of major phenomena surrounding them” (Hewett et al., 1992). An inherently broad field 

of research, HCI incorporates the diverse disciplines (Rogers, Sharp, and  Preece, 2011, 

p.10) of: 

• Computer Science 
• Artificial Intelligence 
• Linguistics 
• Philosophy 
• Sociology 
• Anthropology 
• Design 
• Engineering 
• Ergonomics and human factors 
• Social and organisational psychology 
• Cognitive psychology 

 

 Figure 2.6 below illustrates the general process of human-computer interaction. 



 

	   	   	   	   	   	   17	  

	  

 

 

When a user interacts with a computer, they approach the system with their 

memory and cognition, the sum total of all their life experiences and knowledge. They 

interact with the computer system through Effectors. In the case of a multi-touch system, 

effectors are hands and fingers. The computer system receives this information via 

various Sensors, and processes it through its own memory and cognition (programmed 

Algorithms), and outputs data through Actuators, such as a visual screen or a speaker. 

The user then perceives this data through their visual, auditory, or tactile senses. They 

process this information, and keep interacting with the computer in a continuous 

control-feedback loop (Bongers, 2000).  

Fig.	  2.6	  
Illustration	  of	  HCI	  

(Bongers,	  2000,	  p.44)	  
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When the user of a software system is able to subconsciously apply their prior 

knowledge and experiences to interacting with it, the system is considered to be 

intuitive, or intuitively usable. The system approaches intuitiveness the more that prior 

knowledge can be classified as “…innate, sensory-motor, embodied, cultural, or expert” 

(Wilkie et al., 2010, p.37). Users of such systems can be described as experiencing 

Csikszentmihalyi’s concept of “flow”, which Leman describes as “an experience in 

which the subject’s skills are fully preoccupied with a task” (Leman, 2010, p.139). 

Users experiencing flow are fully involved in accomplishing their intended task with the 

tool they are using, not with consciously thinking how they can use the tool to 

accomplish their tasks. In order for users of computer music software to enter a state of 

creative flow, the interfaces of such programs must… “be built around tacit knowledge, 

and also afford the opportunity for users to discover and form their own perspectives” 

(Nash, 2011, p.58).  

In order to help developers create intuitive iOS apps, Apple provides a list of 

guidelines for the design for User Interfaces in its guide on iOS Human Interface 

Principles : 

Aesthetic Integrity – How well the appearance of the app integrates with its 
function. 

Consistency – The ability of users to transfer their knowledge and skills 
from one app to another. 

Direct Manipulation – Using gestures gives people a greater affinity for, 
and sense of control over, the objects they see onscreen, because they're 
able to touch them without using an intermediary, such as a mouse.	  
 
Feedback – Apps should acknowledge user actions and reassure them that 
processing is occurring. 
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Metaphors – Virtual objects and actions in the app are metaphors for 
objects and actions in the real world; users quickly grasp how to use the 
app.	  

User Control – People, not apps, should initiate and control actions. 

(Apple 2012e) 

 

Prior to a discussion of specific HCI topics (mapping, gestures, and multi-touch) 

in the context of an interactive music composition system, the notion of what interactive 

composition is, and its history in relation to computing technology will be discussed.  

2.7 Interactive Composition 

The Harvard Dictionary of Music defines composition as “The activity of 

creating a musical work […]” (Harvard Dictionary of Music, 4th ed., 2003, p.194). While 

an overview of the theory of musical composition is beyond the scope of this work, a 

brief discussion of the intersection between composition and technology follows to 

provide a background on the motivation of the second goal of the thesis: that of making 

composition more accessible to users. 

Composers have long made use of technology in general, and computers in 

particular, as a way to compose music that would be impossible to compose and perform 

with traditional acoustic instruments (Holmes, 2008; Brunner, 2009). In 1957, Max 

Mathews became the first person to program a computer to synthesize music. Using a 

program he created, MUSIC I, Mathews composed a short (seventeen second) 

monophonic tune (Holmes, 2008). MUSIC I was later developed into a variety of music 

synthesis languages, including the synthesis environment that this project uses, Csound. 

Csound will be discussed in more detail in Chapter 4. 
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At first, the performance power of computers limited their use in a musical 

context, both compositional and performance-based. Composers, initially, were 

restricted to composing on punched cards, or using a pseudo-random number generator 

to determine performance rules for a composition with acoustic instruments (Holmes, 

2008). 

The development of microprocessors led to the creation of simultaneously 

smaller and more powerful computers, and musicians started to leverage the available 

computing power to compose and perform more musically intricate pieces. A variety of 

music-focused software environments began to develop: software synthesizers, virtual 

analogue instruments, audio development environments, software samplers, percussion 

synthesizers, and digital audio workstations (Holmes, 2008). 

In addition to being able to compose and perform in real-time, musicians began 

to use the malleability and flexibility of the computer to explore a new domain of 

musical activity: interactive composition. 

In a Computer Music Journal article published in 1984, Joel Chadabe describes 

the use of an interactive composition system as being a two-stage process: 

1. Creating an interactive composing system. 
2. Simultaneously composing and performing by interacting with that 

system as it functions. 
(Chadabe, 1984) 

 

A composer engages in a high-level musical dialouge with an interactive system 

after it has been created. An interactive composition system can be created with a 

variety of hardware and/or software components.  
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While the system is creating music based on the rules of its algorithms set by the 

composer, the composer is reacting to this music in real-time via some kind of external 

interface that is capable of adding to the musical output of the system. Interaction 

between the composer and the system means that “…the computer’s internal state 

depends on the performer’s action, and that the latter may itself be influenced by the 

computer output” (Di Scipio, 2003, p.270). 

The composer of such a system is doing more than creating a particular musical 

structure; they are composing “…a mode of functioning for computer system and 

performer that, in operation, generates a new particular structure in every 

performance” (Chadabe, 1984, p.26).  The composer is not necessarily performing 

music in response to the system; often they are performing control information that 

alters the performance output of the system (Chadabe, 1977). Essentially, the composer 

determines the overall high-level structure of the composition while the computer 

performs signal processing to produce the sonic output desired by the composer.  

Figure 2.7 depicts the interaction of a musician and a computer music system. 

Here, “performer” is taken to mean any human user, and “instrument” is taken to mean 

any tool for the facilitation of interactive electronic composition.  
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A user approaches the compositional system with the desire to create a new 

piece of music. They engage with the system by using their hands and fingers in contact 

with some kind of gestural interface. These gestures are mapped to the synthesis 

algorithms used by the system, which generates audible output. When the user hears the 

output, they determine how they wish the music to evolve, and continue interacting with 

the system accordingly.  

A number of interactive compositional systems have been developed with the 

goal of making composition more accessible and easier to engage with, including 

QSketcher (Abrams et al., 2001), Smart Harmony (Abrams et al., 1999), DSP (Rudi, 

2007), and Hyperscore (Farbood, 1997). However, these systems are restricted to use on 

desktop computing platforms that require the use of a mouse and keyboard.  

Fig.	  2.7	  	   	  
An	  Interactive	  Composition	  System	  
(Lee	  and	  Wessel,	  1992,	  p.278)	  
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In creating an engaging and intuitive interactive composition system, the 

designer has to consider the underlying synthesis methods and algorithms in order to 

form the desired aesthetic characteristics of the system.  

2.7.1 Sound Composition  

One consideration of designers of interactive music systems is whether they wish 

to compose music ‘of sounds’ (often referred to as sound, or timbre composition), or if 

they wish to compose music ‘of notes’ (“traditional” composition). Sound composition 

was not widespread until the advent of powerful computers, and is an example of what 

Treadaway describes as digital technology’s ability to “…support the artist’s creative 

practice by providing access to tools and processes that enable work to be generated 

that could be made no other way” (Treadaway, 2009, p.185).  

Many computer-based composition systems adopt metaphors that are based on 

music theory concepts (Wright et al., 1997). As such, only those individuals with a 

previous background of music theory concepts are able to approach such a system and 

interact with it in a creative manner. Viewed from an accessibility-design point of view, 

such a system inherently limits the number of users who are able to interact with the 

system to only those who have music theory knowledge, as opposed to those who may 

not have such knowledge but are gifted with an inherent sense of musicality. 

The second design goal of this thesis was to make music composition more 

accessible to a wider variety of users. A system that requires users to have previous 

knowledge of music theory and standard notation for interaction is therefore 

unsatisfactory to the design goals of this thesis. One way to make composition 

moreaccessible to a wider variety of users is through the aforementioned use of sound 
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composition, rather than note-based composition. Before the advent of computers, such 

musical works were realised through the use of analogue processing equipment, mixing 

consoles, and tape recorders. 

According to Challis and Smith, composition can include “…the selection of 

sounds to form a palette of sounds which can be shaped, manipulated, varied, and 

combined to create a piece or musical performance” (Challis and Smith, 2012, p.65). In 

such a system, the user will still be able to explore the use of sound and timbre 

modification without worrying about whether or not the compositional sequence is 

correct within the framework of traditional harmony, as they would in a note-based 

environment.  

The idea of composing with sounds is not something that evolved along with the 

digital age. Pierre Schaeffer, a radio engineer, and Pierre Henry, a composer, pioneered 

the idea of musique concrète in France in the late 1940s. Musique concrète is defined as 

“…the construction of music using sound recording tools, natural sounds, electronic 

signals, and instrumental sounds” (Holmes, 2008, p.49).   

One synthesis method that allows for composing with sounds is granular 

synthesis. Granular synthesis allows for sampled sounds (either stored files or live audio 

input) to be manipulated in real time, creating a composition of sound rather than of 

musical notes.  

2.7.2 Granular Synthesis and Sound Composition  

Curtis Roads describes granular synthesis as “…generating thousands of very 

short sonic grains to form larger acoustic events” (Roads, 1988, p.11). Grains can then 
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be organized into higher-level compositional events. Roads describes an event as 

consisting of the following parameters:  

• Beginning time 
• Duration 
• Initial waveform 
• Waveform slope (the transition rate from a sine to a band limited pulse wave) 
• Initial centre frequency 
• Frequency slope 
• Bandwidth 
• Bandwidth slope  
• Initial grain density 
• Grain density slope 
• Initial amplitude 
• Amplitude Slope 

       (Roads, 1988, p.12)   

 

Due to the high number of grains that can be organised at once, the result is 

perceived by the listener to be a fused sonic texture (Bencina, 2006). Once the grains, 

(which can number in the thousands) are organized into events, the user can alter the 

above parameters in real time. The user can use these grain events to create sound 

clouds of evolving spectra (Roads, 1988), enabling the user to compose directly with 

sounds without the intermediate interface of musical notation.  

It was decided that an interactive system utilizing granular synthesis would be 

the best means of achieving the second project goal of developing an accessible 

interactive composition system. This is due to the fact that this approach allows for 

exploration of sound, not exploration of notes. As such, granular synthesis meets the 

original project goal of creating an interactive composition system that users with varied 

musical backgrounds would be able to use. It was decided to use granular synthesis in 

the Test Apps described in Chapter 4 for both consistency of development, as well as 
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allowing the user to interact with a complex synthesis system while testing their 

preferences for interaction paradigms on a mobile device, in order to test the main 

hypothesis.   

2.8 Designing an Instrument 

Computers have played a large part in the history of the development of new 

forms of music. Though primitive and cumbersome at first, computing technology has 

accelerated so that the average person has access to powerful mobile computing 

platforms, with a rich variety of sensing capabilities, in the palm of their hands.  

In a paper presented at the 2008 Mobile Music Workshop, Essl, Wang, and Rohs 

presented on the on-going effort to turn mobile devices into generic devices for musical 

expression. The authors define generic as “…a platform that is not designed with a 

specific performance in mind […] alternately, a design that is open to flexible, varied 

use without trying to prefigure artistic intent” (Essl et al., 2008, p.1). The authors 

describe the actions one needs to take in designing a mobile instrument: 

• Decide what input modalities to use 
• Manipulate them for synthesis control 
• Choose appropriate synthesis algorithms 

 

The answers to these questions will dictate the interaction paradigm, sound 

output, and overall style character of a mobile, interactive sound app.  

2.8.1 Control Surfaces 

In 1977, Pierre Schaeffer stated that “Musical ideas are prisoners, more than 

one might believe, of musical devices” (as cited in Roads 2001, p.44). An instrument’s 
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physics of sound generation, as well as of interfacing with the methods of sound 

generation, determine the ways in which a musician will think about performing and 

composing music.  

The use of keyboard-based controllers in computer music systems is quite 

common due to persistent industry preference (Wessel and Wright, 2002). This is 

primarily due to the fact that the MIDI 1.0 specification was designed around the 

paradigm of keyboard performance (Roads, 1996).   

However, a keyboard is not always appropriate for control of an electronic music 

system, particularly those that utilize multi-touch screens. There are two reasons for this. 

The first is that a mechanical keyboard is sensitive to the velocity, after-touch, pressure, 

and action of a user (Roads, 1996). These physical parameters are then translated into 

auditory feedback to the user in terms of musical nuance. However, they are not easily 

replicated on a multi-touch system.  

Secondly, multi-touch based platforms, such as the iPad, have the capability of 

recognizing a variety of user gestures. These gestures can be mapped to whatever the 

designer of the application desires. As such, synthesis parameters can be controlled by 

other methods than just keyboard interfaces. If developers of mobile-based music apps 

want to set new ground and fully utilize the capabilities of multi-touch devices such as 

the iPad, they will need to develop other ways of interacting with musical structure 

besides keyboard interfaces. 

 

 



 

	   	   	   	   	   	   28	  

2.8.2 Mapping 

The method of connecting the control device to the parameters of sound 

generation is known as mapping (Hunt and Wanderley, 2002). When a user is 

performing with an acoustic instrument, the player is directly manipulating a physical 

object. As the interface and the method of sound generation are intrinsically connected, 

the mappings between interface and sound source are “…complex, subtle, and 

determined by physical laws” (Hunt, Wanderley, and Paradis, 2002, p.1). Jordà 

describes the intrinsic mapping between input and output in acoustic instruments by 

stating “acoustic instruments impose their own playability rules, which allow listeners 

to infer the type and form of the gesture from the sound being generated” (Jordà, 2005, 

p.6). Merrill and Raffle further describe the differences between acoustic and electronic 

instruments by stating that “electronic instruments lack the subtle affordances and 

potential for acoustic spontaneity featured by acoustic instruments” (Merrill and Raffle, 

2013, p.213).  

Unlike acoustic instruments, the method of control and the parameters that are 

controlled in a computer music system are separate, as there is no implicit mapping of 

one to the other (Winkler, 1995). As such, it can be difficult to simulate basic interaction 

characteristics that are an inherent part of acoustic instruments, such as tactile and/or 

force feedback (Wanderley and Depalle, 2004; Giordano and Wanderley, 2013). It is up 

to the composer/programmer to determine what performance actions are mapped to 

various synthesis parameters. The result of these interactions is the output sound. Figure 

2.8, taken from Fels, Gadd, and Mulder (2002) below depicts the mapping process. 
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Mapping determines the nature of how users will interact with a computer music 

system and, as such, is an extremely important consideration in the design phase of 

project development. Wessel et al. emphasise this point by noting that “The success or 

failure of a live computer music instrument is determined by the way it maps 

performers’ control gestures to sound” (Wessel et al., 2002, p.2). In comparison with 

music written for acoustic instruments, computer-based music has a shorter historical 

context from which to draw upon and, as such, can often be more difficult to program 

and compose. Consequently, the creation of meaningful mappings for computer-based 

music systems may be problematic for programmers and/or composers. While 

potentially challenging to design, the quality of the input-to-sound mappings help to 

determine the success or failure of the interactive music system, as “Mapping is at least 

as important to musicians as the physical interface, and even more so over the long 

term” (Casciato and Wanderley, 2007, p.4). 

Fig.	  2.8	  
Input	  to	  Output	  Mapping	  
(Fels	  et	  al.,	  2002,	  p.6)	  



 

	   	   	   	   	   	   30	  

While the timbral possibilities of computer music systems are endless, unless the 

mappings are created to be intuitive, meaningful, and to allow the performer to advance 

in skill; the instrument will likely be used very rarely. In fact, many computer music 

systems do not have a shelf life longer than the single performance of a composition - a 

sharp contrast to a masterfully designed and crafted acoustic instrument such as a 

Stradivarius violin.  

In order for a music-centric multi-touch app to be capable of eliciting intuitive 

interaction between the interface and the user, the mapping between the multi-touch 

gestures and the parameters of the synthesis engine must be semantically meaningful 

and easy for beginners to perceive. The goal for an interactive music system is “…the 

emancipation of expressivity in computer music through the incorporation of multiple 

levels of human inflection” (Overholt, 2009, p.219).  

When designing the mappings for such a system, the designer should keep in 

mind that it is not necessary (or desirable) for the user to have control access to every 

parameter of the synthesis engine. In many analogue and software-based synthesizers, 

the user does indeed have manual access to every possible synthesis parameter, but this 

does not always equate with clarity or intuition. In such situations, “…the number of 

elements assigned to different variables makes it difficult to understand how a sound is 

programmed with a glance at the control surface” (Gómez et al., 2007, p.327). 

In a study conducted at the University of York in 2000, Hunt and Kirk showed 

that multi-parametric musical user interfaces are more engaging for users than one to 

one mappings. They allowed the users to “…think gesturally, or to mentally rehearse 
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sounds as shapes” (p.255) when using multi-parametric interfaces. Figure 2.9 below 

depicts an illustration of multi-parametric mapping.

 

 

 

 

Hunt and Kirk term this interaction ‘Performance Mode’; an explorative 

operation where the user “…discovers how to control a device by exploring different 

input control positions and combinations” (Hunt and Kirk, 2000, p.233), by which the 

user gains immediate feedback response from the system. 

They list the characteristics of Performance Mode as: 

• Continuous control of many parameters in real time, 
• More than one conscious body control (or limb) is used, 
• Parameters are coupled together, 
• User’s energy is required as a system input. 

 

Fig.	  2.9	   	  
Multi-Parametric	  Mapping	  

	  (Hunt,	  Wanderley,	  Kirk	  2002,	  p.1)	  
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 During performance mode, the user discovers hidden relationships in the system 

that are not perceivable without repeated interaction. In such a system, a performer is 

able to emotionally express themselves “…by making the most of the available 

sensitivity and dynamic range of a given physical interface, and using different gestural 

interactions in each performance” (Overholt, 2009, p.219). Instead of gestures being 

mapped to individual synthesis parameters, a more appropriate solution would be to 

have a conceptual mapping layer that lets users control higher-level parameters such as 

brightness, sharpness, or other evocative timbral descriptors (Hunt et al., 2002). 

As the sound production of acoustic instruments is determined by their 

mechanical/physical nature, a musician’s performance with them involves a close 

connection to the musician’s body (Magnusson and Mendieta, 2007). A computer 

interface, however, does not necessarily depend on the physical characteristics of the 

underlying synthesis algorithms that are utilised. Rather, the interface design is 

completely up to the programmer. 

In a multi-touch environment, the process of mapping is influenced by the 

available gestures that are possible on the specific multi-touch platform. A general 

overview of the concept of gestures follows in the next section, including a description 

of available gestures for use on the iPad.   

2.8.3 Gestures 

There are many definitions of the word ‘gesture’ in both HCI and music related 

literature. From the HCI perspective comes the definition of a gesture as “a set of 

measured points P in space and a corresponding set of time intervals T between 

measurements” (Cleveringa et al., 2009, p.2). A less mathematical but equally valid 
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definition given by Leman and Godøy is that a gesture is “a movement of part of the 

body, for example a hand or the head, to express an idea or meaning” (Leman and 

Godøy, 2010, p.5). From the point of view of music (specifically performance), Miranda 

and Wanderley broadly describe musical gestures as “…any human action used to 

generate sounds” (Miranda and Wanderley, 2006, p.5). 

All three definitions must be kept in mind during the design and implementation 

of a mobile music-based app. The gestures that are used must be capable of effectively 

expressing musical ideas, while at the same time being intuitive in their execution by the 

user.  

The challenge for designing an interactive music technology system is that there 

is no standardized set of gestures for the performance of computer music. As such, users 

of a system may have different ideas than the designer of the meaning of gestures in that 

system. This is in contrast to acoustic instruments, whose physical characteristics lead to 

the use of gestures by musicians that are constrained to the design of the instrument.  

Another design challenge is that there is a lack of gesture standardization across 

the possible hardware platforms available for development. Yet a further challenge is 

that each individual user, compared to other users, has differing finger and hand sizes 

with which to perform the gesture (Bachl et al., 2010). This makes it possible for users 

to experience different outcomes when using the same gestures.  

The use of a single hardware device such as Apple’s iPad partially solves the 

problem of gesture standardization. Apple provides a standardized set of gestures for the 

iOS operating system that all developers are able to implement for various mobile apps. 
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According to the Apple Human Interface Guidelines, the use of gestures in the iOS 

environment gives users “…a greater affinity for, and sense of control over, the objects 

they see onscreen, because they’re able to touch them without using an intermediary, 

such as a mouse” (Apple, 2012e). However, just because an app may use multi-touch 

gestures does not inherently make it intuitive. If the user interaction design is unfamiliar 

to a user based on their primary experiences, they will find the gestures unintuitive. 

Additionally, as users generally prefer simple gestures, if the user is required to use 

excessive physical effort to complete a gesture, then the interaction experience will be 

considered less meaningful and rewarding (Ingram et al., 2012).  

The use of standard Apple gestures is helpful for mobile applications. Atkins-

Wakefield (2012) showed that Apple gestures are in fact inherently intuitive, and 

therefore applications developed on Apple’s iOS platform, which uses these gestures, 

have a high likelihood of being operated intuitively by a user. An overview of available 

Apple gestures is given in Section 4.1.2. For a thorough discussion on the use of 

gestures in interactive music, the reader is encouraged to read “Gesture-Music” (Cadoz 

and Wanderley, 2000).  

2.8.4 Multi-touch Interaction 

Treadaway states that “The hands are our primary interface with the world, and 

provide the brain with rich sensory information which is instrumental in building 

imagination and novel ideas” (Treadaway, 2009, p.185). As such, multi-touch user 

interaction is one possible method for an interactive music compositional system, and 

offers a possibility for novel musical interactions apart from traditional Windows Icons 

Menu Pointer interfaces operated by mouse and keyboard control. Multi-touch 
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interaction is capable of allowing the user to utilize natural, intuitive gestures to control 

a variety of possible musical parameters (Wöldecke et al., 2012). Jordà describes the 

limitations of WIMP interfaces by stating “…there are limits to what can be efficiently 

achieved in real-time by means of a mouse and a computer keyboard” (Jordà 2003, p.4). 

Alternatively, multi-touch devices allow more intimate control over complex structures 

that can exist in  music by virtue of employing the use of hand gestures for control 

information input (Brunner, 2009). As many musicians tend to instinctively use gestures 

when either recalling or producing sounds (Haueisen and Knösche, 2001), multi-touch 

gestural input seems a natural choice for the control of musical parameters.  

Many mobile devices, including Apple’s series of iPads, have multi-touch 

capability. Given these devices’ ubiquity, portability, and computing power; they are 

well suited for music software development. 

The iPad is also a widely available computing device. As of October 23, 2013, 

Apple has sold 170 Million iPads (Hughes, 2013). Additionally, Apple states that there 

have been over 50 billion downloads from the Apple App Store as of May 16th, 2013 

(Apple 2013a). Part of the popularity of Apple’s mobile computing platforms is that the 

devices utilize simple multi-touch gestures that represent physical metaphors (Selker, 

2008). 

2.8.5 The iPad and Mobile Music 

In addition to providing multi-touch capabilities, the iPad has a variety of other 

of sensors, data input, and interaction methods (Apple, 2013c), including: 
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• Three-axis gyroscope 
• Accelerometer 
• Ambient light sensor 
• Wi-Fi 
• Digital Compass 
• GPS (on cellular model) 
• Photo/video recording 
• Lightning Connector 
• 3.5mm headphone mini-jack 
• Built-in speaker 
• Microphone  

 

As such, the iPad offers numerous possible input modalities, potentially 

providing a rich set of mapping possibilities for controlling musical parameters.  

According to Xambó, et al., many multi-touch music apps, some of which are 

surveyed at the end of this chapter, exist for a variety of reasons (Xambó et al., 2011): 

• Popularity and ubiquity of personal and shared multi-touch devices 
• Ease of development for the available devices 
• Consumer interest in the creative products. 

 

Geiger (2006) describes the requirements that a mobile interactive music app 

should have: 

1. It should remain as one piece (the mobile device); not a collection of controllers 
and synthesis engines 

2. It should stay a portable instrument 
3. It should have an interface that maximizes control and gives immediate feedback 
4. It should be a “…learn-able and master-able instrument”   

        (Geiger, 2006).  

  

For widespread use amongst people who may or may not have a technical 

background or similar skills, the app must be ready to use as soon as the user launches 

it. It should not require any external hardware or outside software. As the iPad is a 
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single hardware device that does not rely on any external peripherals and is 

exceptionally portable, points 1 and 2 are immediately satisfied.  

According to Geiger, one characteristic of standard multi-touch screens is that 

they do not provide kinaesthetic feedback, unlike traditional acoustic instruments. Since 

feedback is an important part of an interactive system, not only should the user have 

auditory feedback, but visual feedback through the use of computer graphics as well, 

substituting for the lack of kinaesthetic feedback.  

In the following section, a variety of interactive music applications for the iOS 

platform are reviewed. In addition, the reader is encouraged to read “A Quantitative 

Review of Mappings in Musical iOS Applications” (Kell and Wanderley, 2013), in 

which the authors examined the mappings and metaphors of 337 music creation apps.  

2.9 iOS App Examples 

When designing an interactive computer music-system, it is important that the 

system effectively makes use of the specific hardware and software capabilities that the 

computer offers (Magnusson and Medieta, 2007). In the case of mobile touch-screen 

devices such as the iPad, it is important that an interactive-music app takes advantage of 

the large amount of multi-touch screen real-estate. Carlson and Wang further comment 

on the ubiquity of traditional musical interfaces in software synthesis applications: 

“…there are few that enable interactions that go beyond the standard set of knobs, 

sliders, XY control surfaces, and single waveform displays” (Carlson and Wang, 2011, 

p.2). Such interfaces originated in the analogue realm of music technology, and were 
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further used in desktop and laptop computers utilizing WIMP interfaces. This is an 

example of skeuomorphism (Gross, 2012), and is discussed further in Section 2.9.10.  

With the emergence of multi-touch gestural devices, it is now more feasible to 

develop and design new paradigms for musical interaction. Oh et al. (2009) state that the 

ubiquity, mobility, and accessibility of mobile phone devices have begun to break down 

the barriers of traditional musical experiences. The authors note that there is a 

“…blurring of once distinctive roles of a composer, performer, and audience, as one 

can now more easily partake in the integrated music making experience” (p.86). In 

some instances, users may be performing and composing at the same time, or 

sequencing and playing a game, etc… 

Given this, many of the apps reviewed below do not necessarily fall into a 

clearly defined category. In fact, it has been a considerable challenge to categorize them. 

While a complete review of all available music-related iOS apps and the unique 

interaction paradigms they embody is beyond the scope of this thesis, the following 

approximate categories have been defined: 

• Synthesizers 
• Generative/Immersive 
• Production 
• Sequencers 
• Effects 

 

As will be seen, many of the reviewed apps fall into several of the above 

categories, further evidence that computers, and mobile platforms in particular, are 

drastically changing the way that music is composed, performed, and accessed. (Note: 

all images are screenshots captured from an iOS device unless otherwise stated). 
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2.9.1 iMaschine 

• Production  
• Sequencer 

According to its page on the App Store, iMaschine is an “intuitive beat 

sketchpad perfect for developing song ideas, anytime, anywhere” (Apple, 2012g, 

online).  

The app has two interaction modes: a drum-pad view (Figure 2.10), and two 

separated keyboard views (Figure 2.11). The app is also able to record; letting the user 

record and edit their own samples to use, in addition to the samples included with the 

app. Screenshots of the various modes are shown below.  

  

 
Fig.	  2.10	  

iMaschine	  Drum	  Pad	  View	  
Fig.	  2.11	  

iMaschine	  Keyboard	  View	  



 

	   	   	   	   	   	   40	  

In addition to the multiple modes for interaction, the app has an onboard mixer, 

with the ability to send audio to two different effects processors. Although the user  

interface does not allow for intricate compositional development, it is possible to create 

a musical sketch for song material that can be further developed later. 

2.9.2 Figure 

• Production 
• Sequencer/Tracker 

 

According to the developers’ (Reason) description on the App Store  Figure is 

the “…fun music-making app for instant inspiration” (Apple, 2012b, online). The 

description goes on to say that “Figure will have you making music within seconds yet is 

deep enough for endless play on a transatlantic flight”. From these descriptions, it is 

clear that the app is also more of a musical sketchpad, similar to iMaschine, as opposed 

to a complete composition environment. Both applications allow the user to develop 

harmonic and rhythmic ideas, but do not provide a mechanism for meaningful control of 

timbre characteristics or DSP processes. The interface to Figure is shown below in 

Figure 2.12. 
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2.9.3 The Akai SynthStation 

• Synthesizer 
• Production 
• Sequencer/Tracker 

 

According to its page on the App Store, the Akai SynthStation “...transforms 

your iPhone, iPod Touch, or iPad into a mobile music production studio for mobile 

music creation” (Apple, 2012k, online). Akai proudly claims that the SynthStation is 

loaded with features. While true, the menu layout format does not lend itself well to 

composing on a structural level. It appears to be more suited to jotting down quick 

musical ideas that can be recreated in a more complete composing environment later. 

Fig.	  2.12	  
Reason	  Figure	  
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Similar to the Figure app, the Akai SynthStation does not take full advantage of the iOS 

multi-touch capabilities. 

The app does give control over multiple synthesis parameters, but again; this is 

based on a menu system, as well as sliders and knobs. As such, users are not able to 

truly take advantage of iOS’s multi-touch architecture. The three views of the 

application are shown in Figures 2.13-2.15. 

    

 

 

 

 

Fig.	  2.13	  
Akai	  SynthStation	  Performance	  View	  
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Fig.	  2.14	  	  	  
Akai	  SynthStation	  Sequence	  Editing	  View	  

Fig.	  2.15	  	  
Akai	  SynthStation	  Drum	  Kit	  View	  
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2.9.4 iKassoliator 

• Synthesizer 

A highly commercially successful iOS app is the iKaossilator, whose design is 

based on a hardware device of the same name. According to its App Store Page (Apple, 

2012d), it was at one time the internationally number one selling music app on the App 

Store. The app reached a number 1 sales mark in 8 countries (Korg, 2013). 

iKaossilator allows the user to use multi-touch gestures to play a wide palette of 

instruments either independently, or along with a variety of included loops. The user is 

then able to record their actions, and to continue to record loops on top of each other. In 

addition to controlling instrument timbres, the user is also able to change the scale, 

tempo, and note length they are performing. 

According to Korg’s description, the app is capable of being used by both 

musicians and non-musicians. The question is whether the app is for composing or 

performing? According to Korg’s website, the “…loop sequencer and Mix Play 

capability give you total freedom for creating tracks and performing live” (Korg, 2013). 

Note the allusion to both a compositional and performance paradigm. However, even if 

the user is able to compose a sequence using the app, they will most likely export the 

file to a conventional computer-based Digital Audio Workstation (DAW), such as 

Ableton Live or Pro Tools for further editing, sequencing, and production. The app 

could best be described as both an instrument for live performance and a simple loop 

generator/sequencer, but is in itself not a compositional app. The interface for the 

iKaossilator is shown below in Figure 2.16. 
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2.9.5 The Animoog 

• Synthesizer 

The Animoog was the first music app to hit the number one selling spot in the 

App Store on the day of its release. It was also named by Apple as one of the best apps 

of 2012 on the App Store page (Apple, 2012a). 

While difficult to use on the limited screen-space of an iPhone, the Animoog for 

iPad app is much more user-friendly in terms of user control of the various synthesis 

parameters. It would seem that the iPad would be a more appropriate platform for this 

application (the app is available on both the iPhone and the iPad). The interface for 

Animoog is shown below in Figures 2.17 and 2.18. 

Fig.	  2.16	  
iKaossilator	  
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Fig.	  2.18	  
Animoog	  iPad	  App	  	  

(Apple	  2012a,	  online)	  

Fig.	  2.17	  
Animoog	  iPhone	  App	  
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2.9.6 The Filtatron 

• Synthesizer 

The Moog Filtatron is described on its App Store page (Apple, 2011b, online) as 

a “…real-time audio effects suite and powerful studio tool for your iPhone or iPod 

Touch”. The user is able to alter, in real time, sounds from the iDevice’s 

line/microphone input, the app’s sampler, or the app’s built-in oscillator. Though the 

user is able to alter the sound in real time via the multi-touch interface of the iDevice, 

the application is not intended as a live performance tool; it is intended as an 

augmentation to the user’s studio/audio-production workflow. While such an app may 

assist in the making of a composition (the app includes a generous selection of quality 

presets), it is not an app in which the sole focus of the user is the construction of a 

composition. The three main views of Filtatron are shown below in Figures 2.19-2.21. 

   

Fig.	  2.19	  
	  Filtatron	  Main	  View	  
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2.9.7 GrainProc 

• Synthesizer 
• Generative/Immersive 

GrainProc is described on its App Store page (Apple, 2012c, online) as 

“…providing an expressive control surface of granular manipulation of real-time audio 

input, well suited for sonic sculpting and self-accompaniment”. The app is designed for 

quick and intuitive control by a user’s fingers. The user is able to control four granular 

Fig.	  2.20	  
Filtatron	  Sample	  	  
Editor	  View	  

	  
	  

Fig.	  2.21	  
Filtatron	  Pad	  View	  
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synthesis parameters via level controls that resemble faders, but stripped of their 

skeumoprhic design elements. A waveform view is shown in the bottom left of the 

screen, as well as a “Freeze” button that stops audio. 

The waveforms display provides visual feedback to the user as they are altering 

these parameters (see screenshot below). In a video on the developers’ website, control 

with toes is also shown to be possible. This is an especially interesting capability of the 

app, as those without hand movement are still able to access the capabilities of the 

touch-screen interface. The app is available both in iPad and iPhone/iPod Touch 

versions, and is shown below in Figure 2.22. 

 

  

 

 

 

 

Fig	  2.22	  
GrainProc	  
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2.9.8 Reactable Mobile 

• Generative/Immersive 
• Production 
• Sequencer 

The Reactable Mobile is based on the hardware version of Reactable, a round 

table-based Tangible User Interface that lets multiple users share control of the music by 

“…caressing, rotating, and moving physical artefacts” (Jordà et al., 2007 p.142). The 

Reactable is shown below in Figure 2.23. 

The Reactable Mobile’s App Store Page says that the user is able to “Create and 

improvise music in an intuitive and visual way” (Apple, 2012j). The app is rated an 

average of four stars, based on input from 205 users.  

The Reactable Mobile app lets users control both high-level interactions between 

various musical objects (such as sequencers, loops, synthesizers, and filters) and the 

low-level parameters of each component object. In both aspects, the application makes 

effective use of the iPad’s multi-touch capabilities. The Reactable Mobile App is shown  

in Figure 2.24. 
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Fig.	  2.23	  
The	  Reactable	  

(Music	  Technology	  Group,	  online)	  
	  

Fig.	  2.24	  
Reactable	  Mobile	  App	  
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2.9.9 NodeBeat 

• Synthesizer 
• Generative/Immersive 
• Production 
• Sequencer 

NodeBeat is advertised as an “…intuitive and fun visual music app for all ages” 

(Apple, 2012i, online). It is also available on the BlackBerry, Amazon and Android 

platforms and as a desktop version. The user is able to generate their own original 

music, or listen to generative music scenes included in the app.  

A screenshot of the app is shown below in Figure 2.25. It makes use of the iOS 

multi-touch architecture effectively, resulting in a highly intuitive application interface. 

The user controls the output of the app with a variety of coloured and connected nodes. 

These nodes are Generators and Notes. The developers state that “Generators pulse and 

play notes within proximity. A Note is played in sequence, based on the distance it is 

from its connected Generator. Pause Notes to create your own beats or let them roam 

free to have them generate their own” (AffinityBlue, 2013, online). Additionally, users 

are able to modify audio parameters such as echo, attack, decay, and release. Panning 

and tempo may also be adujusted. (AffinityBlue, 2013). 
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2.9.10 csGrain 

• Synthesizer 

csGrain is the first iOS app that makes use of the Csound for iOS SDK 

(discussed further in Chapter 4), and its maker, Boulanger Labs, hopes to release more 

in the near future. A granular synthesis based app, it uses a variety of Csound opcodes to 

granularize loaded audio files, as well as live input from the iPad microphone. The app 

also includes effects such as a pitch-shifter, ring modulator, chorus, flanger, tap delay, 

reverse, high-pass filter, low-pass filter, stereo waveguide reverb, and output 

mix/submix (Boulanger Labs, 2012). A screenshot of the primary app view is shown 

below in Figure 2.26. 

Fig.	  2.25	  
NodeBeat	  
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 While versatile in terms of the synthesis performance, the app does not make 

full use of the iPad’s multi-touch capabilities which is discussed further below. 

   

 

 

As can be seen, the synthesis parameters are controlled via touch-screen 

representations of On/Off switches and rotary knobs. Thus the app uses skeuomorphs, 

“…holdovers from previous material construction requirements of an artifact” (Gross, 

2012, p.1). In analogue synthesizers, parameter changes necessitated the use of rotary 

knobs, switches, and faders for manual control. The knobs, switches, and faders, being 

physical objects, were intrinsically mapped to the parameters they controlled via 

electrical circuitry. Thus, the user had access to every possible synthesis parameter via a 

physical control.  

Fig.	  2.26	  
csGrain	  
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Given that multi-touch based computer systems allow for new metaphors for 

user interaction, the use of rotary knobs or faders for synthesis control is no longer 

needed, as they are not a necessary component for parameter control. Additionally, 

touch-screen based pictorial representations of these physical control elements do not 

provide the user with the tactile feedback that they would on an analogue system. When 

a user twists a knob, changes a switch, or moves a fader in a certain direction, the 

parameter being controlled responds accordingly due to the physical correlation between 

the knob or slider and the controlled parameter. As such, knobs and faders provide the 

user with affordances, fundamental properties that determine how an object should be 

used (Norman, 2001). A knob affords the action of turning; a fader affords the action of 

a sliding motion.  

In a multi-touch computer system, this is not the case: as parameter mappings are 

completely up to the designer of the interactive system, he or she is able to create 

mappings and metaphors for user interaction of parameters that are based on the 

computing device on which the interactive system runs. Therefore it is unlikely that the 

best representation would use methods of interaction based on systems that work on 

analogue electro-mechanical principles.  

Due to the small size of the On/Off switches and rotary knobs compared to the 

rest of the app, they are difficult for the user to manipulate quickly, thus inhibiting the 

ease with which the user may interact with the app.  While the app does give the user 

explicit control over all possible synthesis parameters, it does so in a way that is 

ineffective for multi-touch user interaction, as the UI is using design metaphors that are 
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inherited from analogue synthesis systems; rather than utilizing the rich multi-touch 

gestures afforded by the iPad’s touch-screen. 

2.9.11 Portable Dandy  

• Sequencer 

Another app that makes use of the Mobile Sound API is Portable Dandy. 

Portable Dandy is a simple sequencing app that was inspired by Dandy Desmond’s 

1939 composition “Magnetic Loops for 15 Tape Decks” (barefoot-coders, 2012). Users 

click on buttons that signify audio loops. These audio loops can be modified by filters, a 

ring-modulator, and a pitch-jog wheel, which are controlled via faders. Users are able to 

use the pre-loaded samples, or add their own samples using iTunes. The interface for 

Portable Dandy is shown in Figure 2.27.  

While the app does allow users to interactively sequence sound files and modify 

them in real-time, it does not allow for the composition of music, as there is no record 

and playback functionality.  
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2.9.11 iPulsaret 

• Synthesizer 

iPulsaret is another app that uses the Mobile Csound API. The user is able to 

modify a variety of granular synthesis parameters in real time: 

• Grain Amplitude 
• Grain Density 
• Grain Length 
• Grain Amplitude Masking 
• Grain Frequency Modulation 
• Stereo Width 
• Random Density 
• Random Length 
• Random Frequency (Semitones) 
• Grain Index Frequency Modulation  

Figure	  2.27	  
Dandy	  
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Like many apps, however, these parameters are controlled via virtual sliders, soft 

buttons, and knobs. Additionally, the app sticks to a traditional method of performance 

interaction via a virtual keyboard. Kell and Wanderley speculate that the reason many 

iOS music creation apps make use of keyboards is that the keyboard is such a well-

known metaphor for musical interaction (Kell and Wanderley, 2013). Although the app 

makes use of a powerful audio engine capable of producing many interesting sounds, the 

choice of interaction methods means that users are confined to traditional ways of 

interacting with musical material.  

While iPulsaret contains a powerful audio engine, the app does not take full 

advantage of the available multi-touch screen real-estate that the iPad offers. The 

interface for iPulsaret is shown in Figure 2.28. 

  

 

 

2.28	  
iPulsaret	  
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2.9.12 Grain Science 

• Synthesizer 

Grain Science is a granular synthesizer for both the iPhone and the iPad. The 

developers describe it as being able to create “…everything from crunchy basslines to 

spooky soundscapes” (Woojijuice, 2012, online). The user is able modify an FX chain 

for sound modification, generate arpeggios, and create custom loop patterns using a 32-

step sequencer. Of most interest is that the app allows for arbitrary parameter mapping 

between the synthesis parameters and XY pads, pitch/mod wheels, or an external MIDI 

controller.  

The only obvious limiting factor of the app is the keyboard layout at the bottom 

half of the screen. By including a traditional music interface (the piano keyboard), the 

app is not taking full advantage of the available touch screen capabilities when 

interacting with the harmonic and rhythmic structure of a musical piece. The interface 

for Grain Science is shown in Figure 2.29. 
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2.9.13 MegaCurtis (Lite) 

• Synthesizer 

MegaCurtis (Lite) is described by its developers on its App Store page as being 

able to “Turn any recording into a unique synthesizer!” (Apple, 2012h, online). The app 

uses a combination of granular and wavetable synthesis to alter either a live microphone 

input or recorded samples. The sample view is shown in Figure 2.30 below. The user is 

also able to alter the amplitude, oscillator, envelope, and key of the sampled material, 

shown in Figure 2.31 below. 

While the app is capable of generating rather interesting sounds, it also relies on 

a keyboard interface. The user is once again restricted to the use of a traditional acoustic 

instrument paradigm for interacting with synthesis algorithms that are capable of 

Fig.	  2.29	  
Grain	  Science	  
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generating new and unexpected sounds, but are limited by the fact that the user is forced 

to approach them with the interaction mind-set of a pianist.  

  

 

 

 

 

 

 

 

Fig.	  2.31	  
MegaCurtisLite	  	  
Editing	  View	  

Fig.	  2.30	  
MegaCurtisLite	  

Performance	  View	  
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2.9.14 CP1919 

• Synthesizer 

CP1919 is an app created by The Strange Agency, and is described on its App 

Store page as a physics-based fluid simulation that “…drives an additive synthesizer 

[…]. The multi-touch interface lets you control the fluid with your fingers, exciting the 

oscillators like strings on a liquid harp” (Apple, 2011a, online). 

The app seems to succeed in finding a balance between traditional modes of 

musical performance (keyboard at bottom of screen) and parameter control (virtual 

sliders at top of the screen), and the use of multi-touch gestures. Additionally, there are 

two track-pad controls in the bottom left of the screen for controlling LFO parameters. 

The most interesting interface aspect, however, is the fluid mesh for interacting with the 

additive synthesizer bank. This appears to be a refreshing metaphor of interaction using 

a combination of multi-touch gestures and synthesis parameters. The interface is shown 

in Figure 2.32 below. 

The app is capable of recording, but the user would need to import the material 

into a DAW for further editing in order to create a finished composition. Therefore, it is 

not suitable for use as a standalone composition app. 
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2.9.15 TC-11 

•  Synthesizer 
•  Sequencer 

TC-11 is an iPad app crated by Kevin Schlei that is “…built around the idea that 

any synthesis parameter should be controllable by any multi-point controller” (Schlei, 

2012, p.1).  

The app comes with several pre-programmed synthesis templates, consisting of a 

variety of DSP modules such as envelope generators, step sequencers, and low- 

frequency oscillators. The user is able to modify the routing of these modules in each 

Fig.	  2.32	  
CP1919	  
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template, and is allowed to save them as a new custom patch for later use. The Pure 

Data for the iOS library, libpd, is used as the synthesis engine. The patching view is 

shown below in Figure 2.33. 

  

 

 

The synthesizer is controlled via multi-point controllers that analyse the raw 

multi-touch information generated by the user via the iPad touch-screen. There are two 

types of these controllers: single and group touch; based on the number of touches 

detected by the iPad’s screen. As users move their hands across the iPad’s screen, they 

“…see graphic representations of the multi-point controllers in use, such as connecting 

lines, circles, and angle vertices” (Schlei, 2012, p.3). Additionally, the app makes use of 

the iPad's accelerometer, gyroscope, and compass as controllers for the synthesis engine. 

Fig.	  2.33	  
TC-11	  Patching	  View	  
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Users are able to record music with the app’s on-board transport. The interaction view is 

shown in Figure 2.34 below.  

   

 

 

Given that TC-11 comes with a 68-page user manual, it is not well suited to the 

musically inexperienced user. Additionally, some knowledge of synthesis is necessary to 

make full use of the app. That being said, TC-11 is a powerful app that a dedicated user 

will be able to make interesting compositions with, thanks to its well-implemented use 

of the available screen-space and multi-touch gestures of the iPad.  

Fig.	  2.34	  
TC-11	  Interaction	  View	  
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2.9.16 Borderlands 

• Synthesizer 

Borderlands is an iPad app created by CCRMA student Chris Carlson in 

(Carlson and Wang, 2011). The app has a single window that displays the waveforms of 

audio samples, both included audio files and user-supplied files. The user is able to use 

multi-touch gestures to zoom in and out of desired audio files. When the user double 

taps on an audio waveform, a circle enclosing an animated waveform and red and white 

dots appears. This object granulates whatever part of the audio file it is on top of. When 

the user double-taps on the object, a series of circles appear that allow the user to 

modify the volume, LFO frequency, pitch, grain overlap, duration in milliseconds of the 

grain, and the number of voices of the grain. The user is also able to change the length 

and width of the screen that the grain object will sample from. The grain objects are 

shown in Figure 2.35 below. 
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Another event that occurs when the user double taps the grain object is the 

appearance of a small toolbar at the top of the screen that allows for control of meta-

parameters. This is shown in Figure 2.36 below.    

Fig.	  2.35	  
Borderlands,	  	  

showing	  audio	  grains	  
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As the app uses granular synthesis as a method of interacting and composing 

with sound, users are able to focus on creating large-scale sound compositions rather 

than note-level ones, providing a more accessible route to music composition.   

Due to the absence of traditional instrumental metaphors the Borderlands app 

appears makes the most effective use of the iPad’s multi-touch capabilities in the realm 

of musical synthesis control out of all the reviewed apps.  

 

Fig.	  2.36	  
Borderlands,	  	  

showing	  grain	  parameters	  and	  editing	  toolbar	  
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2.10 App Conclusions 

The majority of current music applications for iOS are not taking enough 

advantage of the platform, both in terms of utilizing multi-touch; and as a consequence, 

not doing enough to serve a compositional need. Most apps that are composition 

oriented do not allow for much more than the ability to sketch out simple rhythmic, 

harmonic, and melodic ideas that can be modified at a later time. The majority of apps 

do not allow for intricate and intimate control of timbral and DSP parameters. As such, 

they are not particularly well suited to perform as high-level, accessible compositional 

tools. 

2.11 Interactive Composition Systems or, now how do we Make 
Music? 

As discussed in detail in Section 2.7, Composer Joel Chadabe defines interactive 

composition as a “method for using performable, real-time computer music systems in 

composing and performing music” (Chadabe, 1984, p.22). The definition itself gives 

some idea as to the difficulty in defining what interactive composition is. In the 

conventional tradition of Western music composition, a composer uses notation to 

individually write out each part of a composition. The composer may go through many 

revisions until settling on the final musical work. The composer may then rehearse the 

piece with a group of musicians, who later perform the work for a live audience. In other 

genres, such as rock, compositions may be written by a member of the band and then 

rehearsed with the rest of the group, or the entire group will write the composition in a 

group setting. Regardless of genre, the same principle applies: composers write the 

music, a group of musicians play it, and an audience will listen.  
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A new dynamic was afforded with the advent of computers. New methods of 

interaction meant that the lines between the definition of composer, performer, and 

audience member were increasingly being blurred. In an overview on the topic, Paul 

Lansky states that computers have created an additional two spheres in the realm of 

musical interaction: those of the sound-giver and the instrument-builder (Lansky, 1990).  

Lansky states that a sound giver can be on a spectrum consisting of wanting to 

share musical experiences that one appreciates at one end, and sharing one’s newest 

composition at the other. Mobile apps, such as the ones described in Section 2.9, often 

accomplish these goals. Some apps allow users to document sound and music from their 

everyday experiences and share them with friends via social media networks, such as 

Facebook and Twitter. Many music-centric apps also allow users to upload their 

creations to these social networks. 

An instrument builder is an individual or group of individuals who designs and 

builds sound generating hardware and software. Composers can use these tools in the 

writing and performing of their musical works. A digital instrument, in some cases, such 

as one containing pre-sequenced material, may be considered in itself to be a 

composition or part of a composition. This occurs most often if the hardware and/or 

software created by the instrument builder are to be used for a single performance of a 

composition. Lansky describes this by saying “Playing someone else’s instruments 

becomes a form of playing someone else’s composition” (Lansky, 1990, p.4). When 

describing their own approach to electronic composition, Settel and Lippe state that “the 

instrument is present in the composition process at its very inception” (Settel and Lippe, 

2003, p.4). 
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However, an instrument builder may also create hardware and/or software that 

can be used by a multitude of other composers that would let them write additional 

works. If this is the case, the composers’ music is under the influence of what the 

instrument designer determines to be important musical considerations, which influence 

the design and construction of the instrument.  

This can be seen throughout history. For example, the piano was invented out of 

a desire to improve the harpsichord by introducing note-independent dynamic range to 

keyboard playing. The music of composers such as Chopin or Debussy was dependent 

on and influenced by this development. Additionally, the music of Charlie Parker or 

Jimmy Hendrix was inspired by and made possible through the respective inventions of 

the saxophone and electric guitar (Settel and Lippe, 2003).  

2.12 Problems with Digital Musical Instruments 

As has been shown throughout this chapter, technology has had a profound 

impact on the way in which music is composed, performed, and accessed. With today’s 

computer technology, it is possible for a composer to write a symphony from their 

bedroom while immediately hearing what it will sound like, for an artist to perform new 

genres of electronic music live, and for fans to listen to any style of music they choose at 

any time through their mobile devices.  

Cook offers some suggestions as to what influences the design and construction 

of digital music interfaces (Cook, 2011): 
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• Music the designer likes 
• Music the designer wants to make 
• Instruments the designer already knows how to play  
• The artists the designer wants to work with 
• Available technologies 

 
 

Digital musical interfaces are designed and created based on the preferences and 

needs of the designer. A wide variety of outcomes can be achieved due to the flexibility 

of modern computing technology. This is in contrast to “traditional” musical instruments 

that have evolved over millennia based on the physical, acoustic properties of materials 

found in nature.  

As flexible as they can be, digital instruments are not without their problems. 

One issue is reproducibility. Given the fast paced evolution of computer hardware and 

software, an instrument that is created with today’s technology may not be able to be 

recreated in a decade’s time, as the technology used to create the instrument may 

become outdated and obsolete. In fact, if someone other than the original designer 

wanted to create a specific digital musical instrument, they may find it difficult, as they 

may not have access to the schematics, hardware, algorithms, or source code used to 

create the original digital instrument. Tod Machover describes this by saying “While we 

have been successful in designing controllers and interactions capable of virtuosity and 

subtlety, the best of these […] have been customized for particular compositions, 

performances, or performers, and have not been standardized in a way that I associate 

with ‘instrumentality’” (Machover, 2002, p.1). In other words, these digital musical 

interfaces do not have the same level of longevity as traditional instruments.  



 

	   	   	   	   	   	   73	  

As discussed in Section 2.8.3, a solution to the second problem is through the 

use of a standard hardware platform that a digital musical instrument can run on. 

Consumer devices such as the iPad allow users to download multiple instances of a 

digital instrument across devices, thus encouraging longevity.  

2.13 What can Music Technology teach HCI?  

The field of Music Technology, in particular areas concerning music interaction 

design, has many opportunities to benefit the field of Human-Computer Interaction as a 

whole. Holland et al. (2013, p.2) illustrates this by saying “As music is an evolutionary, 

deep-rooted, complex social activity, Music Interaction makes unusual demands beyond 

everyday verbal and mathematical matters, which can lead to inspirational or novel 

solutions of wider relevance to mainstream HCI”. Additionally, Khooshabeh et al. state 

that musical interaction deals with research areas such as “multi-modal input, analysis, 

and mapping of a complex array of human communication signals”, all of which have 

applications in the larger field of HCI (Khoosabeh et al., 2005, p.2).  

When someone is using computer technology to interact with music, they are 

interacting with a highly complex system. Users bring to the interaction all past 

experiences, emotions, tastes, and preferences in an attempt to create an artistic product. 

They want the experience to be intuitive and straightforward, without having to spend 

time learning every aspect of an interface.  

According to Hurtienne and Blessing (2007, p.2), “a technical system is 

intuitively usable if the users’ subconscious application of prior knowledge leads to 
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effective interaction”. The study of music interaction has much to offer the wider field 

of Human-Computer Interaction in terms of creating more intuitive interactions.  

In many commercial computer applications, such as word processing and email, 

users are not pushing computers to the limits of their memory capacity or processing 

ability/speed. Musicians do, however, “… push machines to their limits when it comes 

to expression and performance” (Kirn, 2013, online). This is particularly true for touch-

screen computers. Kirn further states that musicians are the “… greatest test of every 

nuance of a touch display, every millisecond of latency, because they don’t just use them 

as an interface: they use them as an instrument” (Kirn, 2013, online). Roberts, Forbes, 

and Höllerer (2013, p.3) support this by stating “…musical applications require the 

ability to control large parameter spaces concurrently and expressively.”  

In short, musicians are looking to use their computers as instruments, not as 

tools. According to Tanaka, “The term tool implies that an apparatus takes on a specific 

task, utilitarian in nature, carried out in an efficient manner” (Tanaka, 2000, p.389). 

Tools should be easy to use and accessible to anyone. A musical instrument, on the 

other hand, is not meant for use on a single task as a tool is. Rather, it “… often changes 

context, withstanding changes of musical style played on it while maintaining its 

identity” (Tanaka, 2000, p.390). Additionally, Bertelsen, Berinbjerg, and Pold state that 

“Musical instruments are not just functionalistic means to well defined ends; exploring 

the instrument is an integral part of the creative process” (Bertelsen, Berinbjerg, and 

Pold, 2007, p.234). Musical instruments are not supposed to be perfectly efficient tools 

to accomplish formulaic tasks. Rather, they are intended to allow composers and 

performers the ability to explore their capabilities for the sake of their artistic output.   
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Computing devices are becoming more intimately intertwined into the lives of 

billions of people. These users not only want their devices to be intuitive and easy to 

use, but require intimate control over a variety of processes and applications. The 

research conducted as part of this thesis will provide some insight into the ways in 

which people use computers to interact with music, as well as for the broader field of 

HCI research. 
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Chapter 3 
Preliminary Study on Gestural Intuitiveness  

 
“Unlike traditional notation, which requires serious study for a long period 
of time, a child can learn the relationship between drawn gestures and 
sound in minutes” – Curtis Roads, 2001, p.163 

 

In a 2006 study, Godøy et al. investigated listeners’ associations of gestures with 

musical sounds. The researchers studied test subjects’ “sound-tracing” gestures, i.e., 

“…gestures that listeners make with a pen on a digital tablet in response to various 

sound fragments” (Godøy, Haga, and Jensenius, 2006, p.1). The goal of the 2006 study 

was similar to that of the study described in this chapter, and both ask test subjects to 

make gestures they believed “…corresponded well with the sounds they heard” (Godøy 

et al, 2006, p.3). Unlike the 2006 study, in which subjects used a pen on a digital tablet, 

subjects instead used the surface of an iPad to enact what they felt was an appropriate 

gestural response to the test sound.  

 

3.1 Purpose  

The purpose of this study was to determine what gestures users create in 

response to audio. Subjects enacted gestural shapes in response to listening to parameter 

changes of a granular synthesizer. Their interactions were video recorded, and used to 

determine how closely the gestures that users draw match the sounds they are listening 

to.  
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3.2 Test Overview 

Test subjects sat at a desk with a powered-off iPad in front of them. 

Additionally, there was a computer and headphones for the playback of the audio 

samples. Subjects wore a pair of headphones to hear the samples. Before taking the test, 

they were given a hand-out stating the purpose of the test, instructions for taking the 

test, and a short questionnaire to fill out (see Appendices E and F). 

The tester asked each subject if they had any questions as to the purpose of the 

test or regarding a specific instruction. The instructions given to each subject are listed 

below:  

• You will hear several audio clips played in succession. Each clip will be played 
three times. 

  
• When you hear the clip for the third time, please pretend that You are the one 

generating the sound clip by making a gesture on the provided iPad. You are 
allowed to make any kind of multi-touch gesture, using both hands to generate 
the gesture if you wish.   

 

3.3 Test Subjects 

Subjects were recruited from students and staff members of the University of 

York Audio Lab, as well as students from other academic departments on campus. The 

majority of student subjects (fourteen) were from the Department of Electronics; the 

remaining student subjects were from other departments (Linguistics, Literature, 

Environment, Education, and the Centre for Women’s Studies). Four subjects were staff 

members of the Department of Electronics, and one subject was neither a student nor a 

staff member. Further details of the subject demographics are shown below:  
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• Average age: 28.2 
• Age range: 21-47 
• Percentage female: 60% 
• Percentage male: 40% 

 

Fifteen out of the twenty surveyed subjects owned an iOS device, and eighteen 

subjects had used an iOS device prior to the test. One subject described their experience 

with iOS devices as trivial, while only one person had never used an iOS device at all.   

Fifteen subjects had some kind of kind of audio or music background. These 

subjects’ backgrounds ranged from primary-grade level instrument instruction to 

university-level music studies. The remaining five subjects had no audio or music 

background. Subjects’ specific responses are shown below in Table 3.1. 

 

Subject Response 

1 Music Technology researcher, violin 

2 "I play and write music on several instruments. Additionally I did an audio 
based undergraduate degree, and am currently undertaking an audio-based 
postgraduate degree." 

3 "Been a professional musician, also an audio professional." 

4 Music studies for BA, MSc, and PhD 

5 Piano-Grade8, Clarinet-Grade8, Audio Programming for work as researcher, 
computer music production as a hobby 

6 Performance: Guitar-Grade8, Violin-Grade7; Thoery-Grade5; 5/6 Years 
Orchestral Experience (amateur), 8 years playing in a band; 2 degrees in 
Music Tech. 

7 Piano-Grade7; Violin-Grade8; Music A-Level 
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8 MusTech Lectures, PhD Audio Interfaces, Piano, violin, bass, guitar (piano = 
good standard), Composition for Music & Media 

9 Violin, viola, piano, singing, sound design for theatre 

10 Played flute for 16 years, bass guitar for 7, other instruments too. Music A-
Level, music tech degree 

11 No experience 

12 Musician (Professional singer BA, MA, PhD in Music Technology 

13 "I am a Sonification researcher working on giving real-time feedback to user 
while making motions. I play guitar and compose ambient/electronic music 
myself." 

14 Vocal student (classical), piano, guitar, flute (choirs, bands, for fun) 

15 Violin, piano, recorder, sing in choirs, choral conductor, work in audio and 
music technology 

16 No experience 

17 No experience 

18 No experience 

19 No experience 

20 "I have been in an amateur choir. Have a bit of experience watching 
conductors. Played the violin many years ago." 

 

 

To ensure subject confidentiality, all questionnaires have been kept anonymous. 

Additionally, the subjects’ face and voice is not seen or heard in the final edits of the 

captured video.  

 

Table	  3.1	   Subjects’	  Musical	  Backgrounds	  
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3.4 Test Procedure 

After giving the test subject the aforementioned hand-out, the tester waited for 

the subject to signal that they were ready to begin the test. When the subject was ready 

to begin, the tester began video recording. Once the subject put on the provided 

headphones, each sample was played back three times by the tester. For the first two 

playbacks, the subject listened to the sample. On the third playback, the subject enacted 

a gesture on the provided iPad’s screen, which was simultaneously being video recorded 

by the tester.  

After the conclusion of the listening test, video clips were transferred to a 

computer for editing and analysis. Each test lasted approximately five minutes.  

3.5 Technical Details 

All of the samples used in the listening test were synthetically generated using 

Csound’s partikkel opcode. This was done so that subjects would focus on their gestural 

response, rather than being potentially distracted through the use of familiar organic 

sounds.  

The four sound files that the subjects heard were generated via a Csound project 

(.csd file) created by Oeyvind Brandstegg, partikkel_softsync.csd, which was included in 

The Csound Book DVD (Ed. Boulanger, 2000). The score of the project was modified to 

generate audio clips lasting for six seconds each. Each clip was created to highlight a 

certain parameter of the partikkel opcode. These parameters are listed below: 

• igrainrate – grain rate 
• igrainsize – grain size 
• igrainFreq – fundamental frequency of the grain  
• iosc2Dev – second partikkel instance grain rate deviation factor 
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The .csd file (partikkel_softsync.csd) used for the audio generation can be found 

in Appendix H. The audio clips (GrFund.wav, GrRate.wav, GrSize.wav, and 

Osc2Dev.wav, can also be found in Appendix H. 

A copy of the VLC audio/video player was used for sample playback, and was 

run on a PC running Windows 7. An MOTU UltraLiteMK3 audio interface and a pair of 

Beyerdynamic DT990 Pro headphones were used for audio monitoring by the test 

subjects. A Zoom 3HD video recorder was used to capture the gestural responses of the 

test subjects for later analysis. These video clips were later edited using a copy of 

Apple’s iMovie software on a 2012 MacBook Pro.  

3.6 Analysis 

 The tester organized the gathered data into two spreadsheets, both of which can 

be found in Appendix G. The first spreadsheet (“Test Subjects”) organizes the 

demographic data of the test subjects, and the second spreadsheet (“Clip Analysis”) 

organizes the information gathered from analyzing the video clips of the test subjects.  

The instructions for the test subjects were purposefully vague, so as to see what 

gestures they would spontaneously enact in response to hearing the sound examples. 

This included the option to use one or both hands. As is shown in Table 3.2 below, the 

majority of subjects used two hands when gesturing. The author speculates (and 

discusses later in this section), that this is so subjects could feel that they are not only 

generating the sound, but also modifying it. 
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Clip 1 Hand 2 Hands No response 

GrFund 55% 55% N/A 

GrRate 25% 70% 5% 

GrSize 25% 75% N/A 

Osc2Dev 25% 75% N/A 

 

 

 

Additionally, participants were not told in which orientation the iPad should be 

positioned. Again, this was to encourage the test subjects to exercise full control as to 

how they would gesturally respond after hearing the provided sound clips. The majority 

of subjects kept the iPad in the vertical orientation (the default position of the iPad that 

was in front of them when they took the test). This is shown below in Table 3.3. 

However, there were four subjects that asked the tester questions such as “Can I flip the 

iPad on the side?” to which the tester responded, “You can make the gesture in 

whatever way you want”. Those subjects then turned the iPad to the horizontal position. 

(Note: One of the subjects failed to give a response during the playing of the 

“GrRate” clip. This is reflected in any subsequent tables). 

 

 

 

Table	  3.2	   Number	  of	  Hands	  Used	  
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Clip Vertical Horizontal No response 

GrFund 80% 20% N/A 

GrRate 75% 20% 5% 

GrSize 80% 20% N/A 

Osc2Dev 85% 15% N/A 

 

 

As can be seen in Table 3.4 below, the gestures that subjects made stayed within 

the iPad’s multi-touch sensitive area. 

  

 Figure 3.1 illustrates the area of the iPad’s screen that is sensitive to multi-touch 

gestures (signified by the area enclosed by the red lines).  

Clip Went past MT 
sensitive area 

Stayed in MT 
sensitive area No response 

GrFund 25% 75% N/A 

GrRate 0% 95% 5% 

GrSize 5% 95% N/A 

Osc2Dev 5% 95% N/A 

Table	  3.3	   Orientation	  Positions	  
	  

Table	  3.4	   Did	  gestures	  stay	  in	  multi-touch	  area?	  
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However, in some cases, subjects enacted gestures that went beyond the multi-

touch sensitive area. This is presumed to be because the users may have felt that the 

iPad’s screen was not large enough to accommodate their desired gesture, or, 

alternatively that they were not aware of the iPad’s touch-sensitive boundaries. 

Examples of this can be seen in the following clips: 	  

	  

	  

Fig.	  3.1	  	  
iPad’s	  multi-touch	  sensitivity	  area	  
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• Subject4 GrFund 
• Subject9 GrFund 
• Subject11 GrFund 
• Subject12 GrFund 
• Subject13 GrFund 
• Subject15 GrFund 
• Subject4 GrSize 

 

3.6.1 Sound Generation and Modification 

In many of the subjects’ responses, two gestural components were observed: one 

in which the subject appeared to be simulating the generation of the sound, and one in 

which they seemed to be modifying the sound. According to Hunt and Kirk (2000), a 

human operator has to inject energy into an acoustic musical instrument in order for it to 

operate, and must then continue supplying a certain amount of energy in order to modify 

the system so that it produces the desired output.  

In the case of a violin, the musician injects energy into the system by use of the 

bow, which generates sound. This energy is modified by “steering” the sound with 

fingers placed on the neck of the violin. This is shown below in Figure 3.2, sourced 

from Hunt and Kirk (2000).  
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Table 3.5 on the following page illustrates which subjects’ gestural responses 

seemed to indicate an intention of sound generation and/or modification.  

 

 

 

 

 

 

Figure	  3.2	  
Human	  Energy	  Input	  and	  Control	  
(Hunt	  and	  Kirk,	  2000,	  p.235)	  
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Clip Generation Modification No response 

GrFund 100% 80% N/A 

GrRate 90% 55% 5% 

GrSize 100% 80% N/A 

Osc2Dev 100% 95% N/A 

 

 

 

Excluding one subject, who did not give a response to the “GrRate” clip, all 

subjects responded to the sounds with gestures that seemed to contain an intention of 

generation, characterized by impulsive, percussive motions. The majority of subjects’ 

gestures also seemed to contain an intention of sound modification. Smoother, gliding 

motions across the surface of the iPad’s multi-touch screen generally characterized these 

interactions. Particularly interesting examples of this can be found in the clips listed 

below: 

• Subject1 GrSize	   	    
• Subject4 Osc2Dev 
• Subject5 GrRate 
• Subject8 GrRate 
• Subject12 Osc2Dev 
• Subject15 GrFund 
• Subject20 GrSize	  

3.7 Conclusions 

 All subjects gesturally responded to sound samples in a manner indicative of 

sound generation and modification. As such, it is possible that humans, having 

Table	  3.5	   	  
Generation	  and	  Modification	  Events	  
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developed an innate knowledge of how objects in the world operate on a physical level, 

are aware that enacting a motion that injects energy into an object will generate a sonic 

output. Additionally, we seem to be aware that physically adjusting a sounding object 

will modify the sound it produces.  

The tests show that subjects are able to put this knowledge to use on a multi-

touch device, such as the Apple iPad. This suggests that a music-based iOS app that 

makes use of natural mappings between users’ inherent knowledge of physical 

properties and synthesis parameters would be an intuitive tool, making full use of the 

iPad’s multi-touch capabilities.  
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Chapter 4 
Technical Details of User Tests  

This chapter gives an overview of the technologies that are part of designing and 

building the iOS applications used for research into the hypothesis, as well as an 

overview of the test apps used. It includes descriptions of the technologies involved, and 

the reasoning behind the choice of certain platforms, programming languages, and 

synthesis methods. Additionally, specific design and implementation details of the apps 

are included. 

4.1 iOS   

iOS was chosen as the development platform because it allowed for the 

production of apps	  running	  on	  multi-‐touch	  capable	  hardware, specifically the iPad. 

The Department of Electronics provided access to an iPad, allowing the apps to be 

extensively tested. Although it is possible to develop on the Android platform, this was 

deemed impractical due both to the lack of access to hardware for testing, as well the 

fragmentation of the operating system due to the number of phones on which the 

platform is available (Velcazo, 2012). Whereas, iOS runs on comparatively few 

dedicated hardware devices: the iPod Touch, iPhone, iPad, and the iPad Mini (Apple, 

2012f). 

4.1.1 Multi-touch on iOS 

Wessel et al. (2002) list the following features as being essential for a gesture-

based musical interface:  
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• Ability to detect subtle as well as large gestures 
• Continuous as well as event-based control 
• Low-latency and high bandwidth 
• Reliability and portability  

   

A variety of sound processors and instruments have been developed for the iOS 

platform, some of which have been discussed in Section 2.9. However, only a few of 

them meet Wessel et al.’s criteria for a gesture-based musical interface, primarily 

because they rely on skeuomorphic interface elements rather than gestural control.  

According to Saffer, there are three stages for an interactive gesture:  

• Initiation: how an action begins 
• Activation: what happens while an action is occurring 
• Updates: what happens when the user has completed an action. 

 
 

For the user, this is seen as a continuous process. However, the multi-touch 

system processes each step in turn. This is accomplished through a combination of the 

multi-touch hardware and the operating system. All multi-touch systems consist of three 

general components: a sensor, a comparator, and an actuator (Saffer, 2009, p.12). These 

components are defined below:  

Sensor – An electrical or electronic component whose job is to detect changes in the 
environment. 

Comparator – Compares the current state to the previous state or the goal of the system 
and then makes a judgment. These decisions are then passed to an actuator. 

Actuator – Determines the outcome of the comparator’s judgments. 
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In the iOS operating system, the multi-touch screen is the sensor. The screen, 

which has a resolution of 1024 x 768 pixels (Mark  et al., 2011) or a resolution of 2048 

x 1536 at 264 pixels per inch if the screen is a Retina display (Apple, 2013c) detects 

touch events generated by the user, and sends this information to the operating system 

(the comparator). The operating system then compares the new touch information to 

previous information, and passes this information to the app the user is interacting with; 

or the actuator. The app then executes the appropriate actions based on the received 

touch information.  

Figure 4.1 below, sourced from Wilson et al. 2007, illustrates how touch-sensing 

works on the iPhone/iPad. Once the screen detects a user’s touch, the iOS operating 

system processes this information to determine the coordinates on the screen that the 

touch was registered. 
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Once the touch screen detects a gesture, it needs to be translated to code so that the 

desired actions of the user can be completed. Saffer (2009, p.133) describes a generic 

gesture-to-code conversion process as follows: 

• Variables to measure: Height, width, depth, speed, duration, and so forth 
• Data input: The raw numbers coming in from the sensor readings that populate the 

variables 
• Computation: To figure out the difference between data points 
• Patterns: To determine what the sums of the computation mean 
• Action: The system action to execute upon finding a pattern. 
 
 

Fig.	  4.1	   	  
iPhone	  Touch	  Detection	  

(Wilson	  et	  al.,	  2007,	  online)	  
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The gesture recognizers (part of the UIKit Framework) determine the size, shape, 

and location of areas affected on the screen by the user’s touch. This determines what 

gesture the user performed. Once the gesture type is determined, the corresponding 

action that the user intended is performed by the app (Wilson et al., 2007). This is done 

by what Apple refers to as “Gesture Recognizers”.  

4.1.2 Gesture Recognizers   

In its developer documentation, Apple says that gesture recognizers “…convert 

low-level event handling code into higher-level actions” (Apple, 2013b, online). Apple 

provides several gesture recognizer classes in the UIKit framework. Additionally, it is 

possible for a developer to create their own gesture recognizer designed to accommodate 

gestures that are not part of Apple’s framework of standard gestures.  

A gesture is passed through the gesture recognizers inside a series of events 

(Mark et al., 2011). Each event is triggered when the user makes contact with the multi-

touch screen. The operating system detects if a touch has occurred by sensing if a finger 

has been placed on, dragged across, or lifted from the screen. A tap is recognized if the 

user touches the screen and then immediately removes their finger from contact with the 

screen, without moving their finger from the point of initial contact (Mark et al., 2011). 

There are two overall types of gestures: discrete and continuous. A discrete 

gesture occurs once, consisting of one touch event. If a discrete gesture is used, the 

gesture recognizer will send a single action message to its target (i.e. the code that 

performs the desired user action). A continuous gesture, however, can consist of 

multiple touch events that take place over time. If a continuous gesture is used, the 
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gesture recognizer will send action messages to the target until the multi-touch sequence 

ends. This process is shown in Figure 4.2 below.  

 

 

 

 

4.1.3 Types of Gestures in iOS 

iOS supports a variety of multi-touch gestures, which are listed in Table 4.1 

(sourced from Neate, 2012, pp.27-28). The Description column lists how the user’s 

hands perform each gesture, and the Applications column describes how each gesture is 

traditionally used in a mobile app. 

 

 

Fig.	  4.2	   	  
Discrete	  and	  Continuous	  Gestures	  

(Apple,	  2013b,	  online)	  
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Gesture	   Description	   Applications	  

Tap	  
	  

	  

A	  simple	  short	  tap	  on	  the	  
screen.	  	  A	  program	  can	  be	  
implemented	  to	  act	  
differently	  to	  multiple	  taps	  
with	  multiple	  fingers.	  

Generally	  used	  in	  the	  same	  
way	  a	  mouse	  is	  used,	  for	  
selecting	  things,	  or	  opening	  
them.	  

Pinch	  
	  

	  

Either	  pinching	  so	  that	  the	  
fingers	  go	  together	  or	  
spread.	  
	  

Generally	  used	  for	  zooming	  
in	  and	  out.	  

Rotation	  
	  

	  

The	  movement	  of	  the	  
points	  the	  fingers	  are	  in	  
contact	  with	  in	  a	  cyclical	  
fashion.	  
	  

Generally	  used	  for	  rotating	  
elements	  on	  the	  screen,	  
photos,	  knobs,	  etc.	  

Pan	  
	  

	  

The	  movement	  of	  2	  or	  
more	  contact	  points	  where	  
they	  remain	  approximately	  
the	  same	  distance	  apart.	  
	  

Normally	  used	  for	  dragging	  
about	  objects	  on	  the	  screen.	  

Long	  Press	  
	  

	  

Pressing	  the	  screen	  for	  
longer	  than	  a	  simple	  tap	  
with	  one	  or	  more	  fingers.	  

Generally	  used	  to	  select	  
something	  on	  the	  screen	  to	  
evaluate	  its	  properties,	  or	  
for	  deletion.	  

 

 

 

Developers are able to use standard gesture recognizer templates in Interface 

Builder and/or Storyboard files. Additionally, developers may implement gesture 

recognition programmatically. For more information on iOS gesture recognition, the 

Table	  4.1	  
Apple	  iOS	  Gestures	  
(Neate,	  2012)	  
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reader is encouraged to review Apple’s document “Event Handling Guide for iOS” in 

the Apple Developer Library (Apple, 2013b). While gesture recognizers are not 

implemented in this project’s test apps, they are mentioned here to give the reader a 

broad scope of what is possible in terms of gestural development on iOS devices.  

4.1.4 iOS Development in Xcode 

As has been established, the main apps for carrying out user tests were 

developed on Apple’s iOS platform. Xcode is Apple’s Integrated Development 

Environment (IDE) for developing applications for the OSX and iOS platforms (Apple, 

2013d). Xcode allows the developer to have seamless integration of code editing, UI 

design, and testing/debugging inside one window. Xcode’s integrated Interface Builder 

allows the developer to implement user interfaces that utilize Apple’s built-in interface 

objects, such as sliders, buttons, and switches. Developers may also implement other 

open-source or custom user interface objects.   

Xcode also allows for easy inclusion of external libraries for implementing extra 

functionality. One such external library (which the project test apps utilize) is the 

Mobile Csound Platform, which is discussed in Section 4.2.4. 

Simulators for the iPhone and the iPad are included in Xcode, allowing 

developers the ability to test applications in real-time before deployment onto an actual 

device. Xcode 4.6.1 was used for project development. A screenshot of the Xcode IDE 

is shown below in Figure 4.3. 
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4.2 Audio Programming for iOS 

 There are a variety of ways in which developers can implement audio on mobile 

platforms including iOS. An overview of the available options follows.  

4.2.1 Core Audio 

Core Audio is a low-level API provided by Apple for implementing digital audio 

on both the OSX and iOS operating systems (Adamson and Avila, 2012). Given the 

option of audio development in higher-level synthesis languages (discussed below), it 

was felt that development in these languages would be better suited for meeting one of 

the original thesis goals of providing users with the ability to compose high-level 

musical compositions, and learning these would be a better use of time and resources 

Figure	  4.3	  
Screenshot	  of	  Xcode	  IDE	  
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than learning Core Audio. This justification carried over to the development of the test 

apps used for the investigation of the hypothesis.   

4.2.2 libpd 

Pure Data was also considered for implementing audio synthesis of the app. 

libpd is an API that makes it possible to embed Pure Data into a variety of host 

platforms, including iOS, Android, and HTML5 (Kirn, 2010). As a result, if a Pure Data 

patch is created for one device, it can be ported on a host of other devices as well. libpd 

has been used in a variety of commercially successful apps (Kirn, 2013).  

4.2.2.1 Pure Data  

Pure Data is an open source “...real time graphical programming environment 

for audio processing” (Kriedler, 2009, online). Instead of performing synthesis by 

writing code in a text-based environment, users connect together visual objects via 

virtual patch cords. Each object represents a synthesis action or performance, such as an 

audio input or a simple oscillator. A system of connected objects is known as a patch. A 

screenshot of an example oscillator patch created by the author is shown in Figure 4.4. 
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4.2.3 The Amazing Audio Engine 

The Amazing Audio Engine was released in 2013 by developer Michael Tyson 

(Synthopia.com, 2013). It is built on Core Audio’s Remote IO system, and is designed 

to allow developers to spend more time on specific application development, rather than 

writing low-level audio code that duplicates previous work.  

While it is an attractive option for developing audio on the iOS platform, the 

Amazing Audio Engine was released too late into project development to spend enough 

time learning the API. Additionally, the author had already begun research into utilizing 

the Mobile Csound Platform, which is described in the following section. 

4.2.4 Mobile Csound Platform 

In 2012, Victor Lazzarini, Steven Yi, and Joseph Timoney announced the Mobile 

Csound Platform (MCP) at the 15th Intl. Conference on Digital Audio Effects (Lazzarini 

Fig.	  4.4	  
A	  Pure	  Data	  Patch	  
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et al., 2012a). The MCP allows the developer to develop audio engines in Csound, 

which can then be deployed on both iOS and Android devices. It is implemented in both 

Objective-C and Java.  

The developers created a new API using Objective-C named “CsoundObj”. The 

CsoundObj “…controls Csound performance and provides the audio input and output 

functionality…” (Lazzarini et al., 2012b, p.164). iOS device sensor data is also available 

to be accessed by Csound using the CsoundObj. In order for iOS to communicate 

control data and audio signals between Csound, CsoundValueCacheables are added to 

the CsoundObj. These allow values to be read and written to during each performance 

cycle. Figure 4.5, taken from The Mobile Csound Platform (Lazzarini et al., 2012b, 

p.164), illustrates this process:  

    

 

 

Fig	  4.5	  
Csound	  for	  iOS	  API	  Relationships	  	  
(Lazzarini	  et	  al.,	  2012b,	  p.164)	  
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More detail on the Mobile Csound Platform can be found in “Csound for iOS 

API-A Beginner’s Guide” (Appendix B), a tutorial on using the API written by the 

author along with Timothy Neate and Abigail Richardson, fellow colleagues in the 

University of York Audio Lab. The tutorial was written both for better understanding of 

the Mobile Csound Platform by the authors, as well as to encourage other students and 

developers in developing iOS applications using Csound as the audio engine.  

4.2.4.1 Csound 

Csound is a “...programming language designed and optimized for sound 

rendering and signal processing” (Csounds.com, 2012, online). Similar to Pure Data, 

Csound is freely downloadable software. Composers use Csound to create a wide range 

of music, including classical, pop, techno, ambient, and experimental music 

(Csounds.com, 2012).  

Csound operates by translating a set of text-based instruments (see Figure 4.6), 

found in an orchestra file, into a computer data-structure that is machine resident. It then 

performs these user-defined instruments by interpreting a list of note events and 

parameter data (known as a score) that the program reads from. The performance can 

either be played back in real time or written to a disk file (Boulanger, 2000). As Csound 

has over 1200 different operational codes used for instrument creation, also known as 

opcodes, (Csounds.com, 2012), Csound has the ability to create a wide variety of unique 

timbres.  
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The author was eager to work with Csound in a way that has not been 

extensively explored before, as the Csound SDK was released in April 2012 (Kirn, 

2012). The Csound for iOS SDK was chosen over libpd for this reason. The tutorial in 

Appendix B is a result of the effort to implement the Csound for iOS SDK.  

4.3 History and Overview of Granular Synthesis  

One of the ways in which musicians and composers are able to compose with 

sounds directly, as opposed to notes in traditional notation, is granular synthesis. Instead 

Figure.	  4.6	  
Screenshot	  of	  a	  block	  of	  Csound	  Code	  
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of exploration of musical structures centred on traditional harmonic and rhythmic 

theory, timbre is explored instead.  

Granular synthesis originated with two publications by Dennis Gabor, “Theory 

of Communication” and “Acoustic Quanta and the Theory of Hearing” (Gabor, 1944 & 

1947). In these papers, Gabor proposes that any sound can be described by a granular, or 

quantum, representation. Therefore, it would be possible to synthesize both sampled 

sounds and digital waveforms in terms of granular properties. Each sample is divided up 

into small ‘grains of sound’ that can be manipulated in real-time. As the threshold of 

human pitch and amplitude recognition has been estimated to be roughly 50 

milliseconds, grain durations are generally between 10-60 milliseconds (Lee, 2000). A 

pictorial representation of a grain of sound is shown in Figure 4.7. 

 

 

 

 

 

 

 

  

 

Figure	  4.7	  	  
	  View	  of	  a	  grain	  in	  the	  time	  domain	  

(Roads,	  2001,	  pg	  87)	  
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Amplitude envelopes help form the shape of the grains. Figure 4.8 shows the 

following commonly used amplitude windowing envelopes, sourced from Roads (2001).  

a) Gaussian 
b) Quasi-Gaussian 
c) Three-stage line segment 
d) Triangular 
e) Sinc function 
f) Expodec 
g) Rexpodec 

   

 Figure	  4.8	  
Grain	  Amplitude	  Envelopes	  	  

(Roads,	  2001,	  p.89)	  
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Composer Curtis Roads was the first person to implement granular synthesis in 

the digital domain. Due to the high number of parameters, Roads “…created an 

interface that only required the composer to define a beginning set of parameters, after 

which the program would systematically generate the traits for each individual grain” 

(Holmes, 2008, p.309). In such a system, the composer determines higher-level 

compositional characteristics, while the computer system generates sounds according to 

those defined characteristics.  

Roads describes other compositional systems that implement various forms of 

granular synthesis (Roads, 2001). Additionally, various iOS apps have implemented 

variations of granular synthesis (see sections 2.9.6, 2.9.9, 2.9.11, 2.9.12, 2.9.13, and 

2.9.16). 

In “The Computer Music Tutorial”, Roads describes several types of granular 

synthesis techniques, which are listed below (Roads, 1996).  

• Fourier/Wavelet Grids: time domain signal is read in, and frequency versus time 
content is mapped to a grid. Each grid point is associated with a grain.  

• Pitch Synchronous: generation of tones with multiple formant regions in their 
spectra.  

• Quasi-synchronous: multiple streams of grains with a variable delay period 
between them.  

• Asynchronous: grains scattered in regions, called clouds, over a specified 
duration.  

• Time Granulation: envelopes applied to small region of sampled sounds. 

 
Asynchronous granular synthesis was implemented in the test apps using 

Csound’s grain opcode, which is described further in Section 4.4.1. 
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4.4 Granular Synthesis in Csound 

Csound has several granular synthesis opcodes, including grain, granule, 

syncgrain, syncloop, diskgrain, fog, fof, partikkel, and partikkelsync. (Vercoe et al., 

n.d.). The grain opcode was chosen for use in the test apps due the simplicity of its 

implementation, while still providing a unique output of granular-based timbres. 

4.4.1    The grain Opcode 

The grain opcode randomly reads a portion of the source sound material, which 

in this case is a square wave. The opcode then outputs a mono audio signal (a1). The 

parameters of grain are listed in tables 4.2 and 4.3 below, which are modified from an 

entry in the Canonical Csound Reference Manual, Version 5.13 (Vercoe et al., n.d., 

p.908). 

Igfn 
 

The ftable (a floating point array) number of the grain 
waveform. This can be just a sine wave or a sampled 
sound. 

iwfn iwfn -  ftable number of the amplitude envelope used for 
the grains 

imgdur Maximum grain duration in seconds.  

igrnd Optional parameter, not used in the project .csd file  

 

 

 

 

 

 

Table	  4.2	  
grain	  Initialisation	  Parameters	  
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xamp Amplitude of each grain. 

xpitch Grain pitch. 

xdens Density of grains measured in grains per second. As 
xdens is controlled through user interface elements and 
not set to a single value, the synthesizer is 
asynchronous. 

kampoff Maximum amplitude deviation from xamp. This means 
that the maximum amplitude a grain can have is xamp + 
kampoff and the minimum is xamp. If kampoff is set to 
zero then there is no random amplitude for each grain. 

kpitchoff Maximum pitch deviation from xpitch in Hz. Similar to 
kampoff. 

kgdur Grain duration in seconds. 

 

 

 

The Csound .csd file that was used in the test apps for this project was modified 

from an example project that is included in Chapter 13 of The Csound Book (Lee, 

2000). The initialization parameters, as well as control parameters xamp and kampoff, 

are coded as constants in the .csd file. The user is able to interact with the remaining 

control parameters (xpitch, xdens, kpitchoff, and kgdur) via rotary knobs, sliders, and 

multi-touch gestures for each respective test app. These control mechanisms will be 

discussed further in the Section 4.5.   

Two ftables are used to generate and window the square-wave that is the audio 

source for the grain opcode. ftables are arrays of floating point values that are stored in 

Table	  4.3	  
grain	  Performance	  Parameters	  
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RAM and are used when Csound is generating sound. They are calculated by Csound 

GEN routines, a series of ftable generator subroutines (Nelson, 2000). The first ftable 

uses the GEN10 subroutine, which generates a table with the size of 16,384 values with 

one cycle of a square wave. The square wave is comprised of a fundamental and eight 

harmonics of varying degrees of strength. The second ftable uses the GEN20 subroutine, 

which applies a Hanning window with a peak-window value of one in a table with a size 

of 1,025 values. An illustration of a Hanning window is shown in Figure 4.9 below, 

which is taken from the Canonical Csound Reference Manual, Version 5.13 (Vercoe et 

al., n.d.). 

 

 

  

Figure	  4.9	  
A	  Hanning	  Window	  	  

(Vercoe	  et	  al.,	  n.d,	  p.2617.)	  
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The Csound code for generating the ftables is shown in Figure 4.10 below. 

 

 

 

 

Figure 4.11 below is a block diagram of the grain opcode as implemented in the 

three test apps. The diagram is adapted from a similar diagram found on page 281 of 

The Csound Book (Lee, 2000).  Variables listed as starting with “x” above are able to be 

implemented as either audio or control rate variables, and are signified accordingly. Any 

variables set to default values in the .csd file appear with their initialized values.  

Figure	  4.10	  
Code	  for	  generating	  a	  square	  wave	  
and	  applying	  Hanning	  window	  
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In order to make the output of the grain synthesizer sound more aesthetically 

pleasing, an instance of Csound’s reverb opcode is added. The opcode is simple, 

requiring input and output audio channels, and the reverb time in seconds (Vercoe et al., 

n.d.). The reverb time for all test apps is set to 1.5 seconds. An optional parameter, iskip, 

is not implemented in the test examples.  

In the .csd files used for the test apps, a global variable, ga1, is initialized to a 

value of zero at the start of the file. This is done so that even if the granular synthesizer 

is not running at the start of the rendering performance, the variable will still exist and 

have a temporary value until audio is being written to it. At the end of the code for the 

Figure	  4.11	  
Block	  Diagram	  of	  grain	  opcode	  
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reverberation instrument (instr 1307), global variable ga1 is reset by assigning it to a 

value of zero. This is done to prevent the variable from accumulating values from the 

grain synthesizer.  

The output of the grain synthesizer is fed into the global audio variable ga1, 

which is then set to the input of the reverb opcode. The audio signal is then applied with 

reverb, the time of which is set to one and a half seconds. The output is then fed to the 

iPad speaker. A flowchart of this process is show in Figure 4.12 below. 

 

 

 

Figure	  4.12	  
.csd	  Instrument	  Flowchart	  
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The implementation of this set-up was done with reference to the Csound 

FLOSS manual chapter on Reverberation (McCurdy, 2010). The following sections 

detail the test apps that implement user control of the grain-based granular synthesizer 

in three different control settings: rotary knobs, sliders, and multi-touch gestures. The 

method of sound generation for the Csound synthesizer is exactly the same in all three 

apps. As such, only the methods of controlling the synthesizer through the application 

code will be discussed further. Application code for the test projects can be found in 

Appendix O, and the .csd file used in the projects can be found in Appendix P. 

4.5 Design of Test Apps 

Three apps were developed to test the hypothesis. Each of the apps allowed users 

to control the same four parameters described in the previous section: grain pitch, grain 

density, grain pitch offset, and grain duration. Additionally, the first two apps were 

configured with an On/Off switch to start and stop the rendering of the embedded .csd 

file. This was to allow test subjects to feel more in control of the app’s actions. Without 

the addition of an On/Off switch, the apps would begin to generate audio output before a 

subject would have the chance to interact with the user interface elements. This code is 

shown below in Figure 4.13.  
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//Start rendering if Switch turned on 
-(IBAction)toggleOnOff:(UISwitch *)sender 
{    
    if (sender.on){ 
    //Locate .csd and assign create a string with its file path 
    NSString *tempFile = [[NSBundle mainBundle]  
 pathForResource:@"1306-KNOBS" ofType:@"csd"]; 
 

 

 

 

4.5.1 Rotary Knob Test App  

The first app that test subjects interact with is based on parameter control via 

rotary knobs. Each parameter is assigned to a single knob. The knobs are implemented 

using tutorial code from developer Tim Bolstad (Bolstad, 2009), as Apple does not 

provide a default knob class as part of the UIKit. A screenshot of the app is shown 

below in Figure 4.14. 

Figure	  4.13	  
Code	  for	  rendering	  control	  
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The starting value and ranges for each rotary knob are set when it is created. 

Code for setting the values of Knob 1 as an example is shown in Figure 4.15 below:  

 

 

     
 
 

Figure	  4.14	  
Rotary	  Knob	  Test	  App	  
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    //Set values of knob1 
    [knob1 setMinimumValue:100.0]; 
    [knob1 setMaximumValue:1000.0]; 
    [knob1 setValue:550.0 animated:NO] 
    [knob1 setPrecision:25.0]; 
	  

	  

	  

When the user rotates the knob, the value of the knob is sent to variables that 

Csound will access. The code for this is shown below in Figure 4.16. 

//Send values of knobs to respective Csound variables 
- (void)knobTwist:(TABKnob*)sender 
{ 
    if (sender == knob1) 
        grainPitchValue = sender.value; 
    else if (sender == knob2) 
        pitchOffsetValue = sender.value; 
    else if (sender == knob3) 
        grainDensityValue = sender.value; 
    else if (sender == knob4) 
        grainDurationValue = sender.value; 
} 

	   	  

	   	  

Csound accesses these variables through strings that are initialized in the 

application. The strings refer to variables in the application code with value information 

to control parameters of the Csound audio engine. The code for initializing the strings 

and connecting them to the necessary variables is shown below in Figure 4.17.  

Figure	  4.	  15	  
Setting	  the	  value	  parameters	  of	  Knob1	  

Figure	  4.16	  
Sending	  knob	  values	  to	  Csound	  

variables	  
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4.5.2 Faders Test App  

The second app that test subjects interact with allows for parameter control via 

four sliders. Sliders are instances of Apple’s UISlider class, which allows for “drag and 

drop” placement. The code for sending slider values to Csound is similar to the code for 

sending rotary knob values in the previous example. The code for this is shown below in 

Figure 4.18. 

 

 

 

 

 

 

 

 

Figure	  4.17	  
Csound	  code	  for	  reading	  in	  
variable	  control	  information	  
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//make control variables value of faders 
- (IBAction)grainPitchSlider:(id)sender 
{ 
    UISlider *grainPitchSlider = (UISlider *)sender; 
    grainPitchValue = grainPitchSlider.value; 
} 
      
- (IBAction)pitchOffsetSlider:(id)sender 
{ 
    UISlider *pitchOffsetSlider = (UISlider *)sender; 
    pitchOffsetValue = pitchOffsetSlider.value; 
} 
 
- (IBAction)grainDensitySlider:(id)sender 
{ 
    UISlider *grainDensitySlider = (UISlider *)sender; 
    grainDensityValue = grainDensitySlider.value;  
} 
 
- (IBAction)grainDurationSlider:(id)sender 
{ 
    UISlider *grainDurationSlider = (UISlider *)sender; 
    grainDurationValue = grainDurationSlider.value; 
}	  

	  

	  

	  

The default thumb image for the sliders was replaced by an image included in an 

example Xcode project from the appcellerator.com forums (Duggal, 2011) in order to 

make the sliders appear more like analogue faders as found in many pieces of audio 

equipment, and in computer music apps and applications. Each slider controls a single 

parameter of the grain-based synthesizer. A screenshot of the app is shown below in 

Figure 4.19.  

Figure	  4.18	  
Code	  for	  sending	  UISlider	  

values	  to	  Csound	  
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Code for sending control information from iOS to Csound, and the Csound code 

for retrieving that information, is essentially the same as the previously described Rotary 

Knob test app.  

4.5.3 Multi-Touch Test App 

The third and final app that test subjects interact with is based on multi-touch 

control of the four previously mentioned parameters of the grain-based synthesizer. 

Each synthesis parameter is mapped to a single-finger touch. When the app starts, the 

output of Csound is muted until the user touches the screen. The user is able to interact 

Figure	  4.19	  
Faders	  Test	  App	  
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with the app using two fingers. Each finger is able to control a separate mapping zone. 

These zones are shown below in Figure 4.20. 

 

 

 

As shown above, the red zone on the left allows for control of pitch and pitch-

offset. When the user moves a finger along the Y-axis, they are controlling pitch; and 

when their finger moves along the X-axis, pitch-offset is controlled. When the user adds 

a second finger in the green zone on the right, two additional variables can be 

controlled: grain density in the X-axis, and grain duration in the Y-axis. A screenshot of 

the finished app is shown below in Figure 4.21.  

	  

Figure	  4.20	  
Touch	  Control	  Zones	  
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The red and green frames shown in Figure 4.20 are created using Apple’s 

CGRect function in the ViewController.h file. Each area is assigned a separate touch ID: 

the red area is assigned to the first touch (UniqueID:1), and the green area is assigned to 

the second touch (UniqueID:2). The code for this is shown in Figure 4.22 below.  

 

 

 

Figure	  4.21	  
Screen	  shot	  of	  Touches	  App	  
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//Set size and location of touch areas on screen 
CGRect frame1=CGRectMake(0,   0, 512, 768); 
CGRect frame2=CGRectMake(512, 0, 512, 768);         
         
//Assign seperate touches to respective screen areas 
_firstTouch=[[OneTouch alloc] initWithFrame:frame1 
                                 withColor:[UIColor redColor] 
                                 delegate:self 
                                 uniqueID:1]; 
         
_secondTouch=[[OneTouch alloc] initWithFrame:frame2 
                                  withColor:[UIColor greenColor] 
                                  delegate:self 
                                  uniqueID:2]; 

	  

	  

The details of the detection and tracking of users’ fingers, as well as their 

mapping to the synthesis parameters are discussed in the next section.  

4.5.3.1	  Multi-Touch	  Implementation	  Details	  

A class, OneTouch, was implemented to track the location of separate touch 

events and send their coordinate information to the ViewController. The ViewController 

then scales the values to appropriate parameter ranges before sending them to Csound 

for control of each respective synthesis parameter.  

The OneTouch class makes use of two Apple methods for implementing multi-

touch control in iOS, (void)touchesBegan and (void)touchesMoved. In the touchesBegan 

method, the initial location of each touch is determined. This method is shown below in 

Figure 4.23. 

 

Figure	  4.22	  
Creating	  Two	  Touch	  Areas	  
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-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event 
{ 
    if([touches count]==1) 
    { 
        //Tracks initial location of touches  
        UITouch *touch=[touches anyObject]; 
        _initialPoint=[touch locationInView:self]; 
    } 

}	  

	  

	  

The touchesMoved method detects when each touch is moved on the screen, and 

sends that information to the ViewController. Two parameters, valueX and valueY, are 

defined as floats. This is shown in Figure 4.24 below.  

-(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event 
{ 
    Float32 valueY; 
    Float32 valueX; 

	  

	  

 

For each touch that is moved on the screen, the X and Y coordinate points are 

updated. These points are then scaled to a value between 0 and 1. The code for this 

process is shown below in Figure 4.25. 

 

 

Figure	  4.23	  
touchesBegan	  method	  

Figure	  4.24	  
Parameter	  declaration	  in	  

touchesMoved	  
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// For each touch, track point location in the view 
UITouch *touch=[touches anyObject]; 
CGPoint currentPoint=[touch locationInView:self]; 
         
// Y value range (scale points to be between 0 and 1) 
valueY = 1 - currentPoint.y / _scalingRangeY; 
valueY = 1 - abs(currentPoint.y -1)/_scalingRangeY; 
 
// X value range (scale points to be between 0 and 1) 
valueX = 1 - currentPoint.x / _scalingRangeX; 
valueX = 1 - abs(currentPoint.x -1)/_scalingRangeX;	  

	  

	  

 

For each detected touch (object: _uniqueID), a delegate outputs the 

corresponding X and Y location value that will later be read by the ViewController.  The 

delegates are sendValueYFromOneTouch and sendValueXFromOneTouch. The delegate 

code is shown in Figure 4.26 below.  

//Send X and Y values of each TouchID to ViewController 
[_delegate sendValueYFromOneTouch:valueY object:_uniqueID]; 
[_delegate sendValueXFromOneTouch:valueX object:_uniqueID]; 

	  

	  

	   	  

	   In the ViewController.h file, the delegate methods of OneTouch, 

sendValueYFromOneTouch and sendValueXFromOneTouch are called via the code 

Figure	  4.25	  
X/Y	  position	  tracking	  

Figure	  4.26	  
Delegate	  Code	  for	  Sending	  X/Y	  Values	  
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shown below in Figure 4.27. The View Controller looks for the values sent by the 

delegates, which is then appropriately modified and sent to Csound in the .m file.  

//Call TouchOne class delegates 
-(void)sendValueYFromOneTouch:(Float32)valueY 
                       object:(UInt16)objectID; 
-(void)sendValueXFromOneTouch:(Float32)valueX 
      object:(UInt16)objectID; 

	  

	  

	  

The code for setting up and communicating with Csound is exactly the same as 

the previous two test apps; with the exception that Csound is muted when the app first 

starts. This is done using the Csound for iOS API method “muteCsound”, as shown in 

Figure 4.28 below. 

//Mute Csound when app first loads 
[self.csound muteCsound]; 
 
 

	  

	  

 

The delegate methods for OneTouch are then called. When the first touch 

(ObjectID==1) is detected, Csound is unmated using the unmuteCsound method.  For 

the first touch detected, the sendValueYFromOneTouch method sends the value of the Y 

coordinate to the parameter pitchValue. This parameter is scaled to be in a range 

Figure	  4.27	  
Calling	  TouchOne	  Delegates	  

Figure	  4.28	  
muteCsound	  method	  
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between 100 and 1,000 Hz. When the second touch is detected, the value of the Y 

coordinate for the touch is sent to densityValue, which is scaled to be a value between 1 

and 100.  

Similarly, the delegate method sendValueXFromOneTouch sends the X 

coordinate value of touch 1 to the parameter offsetValue, which is scaled to be a value 

between 0 and 1,000. The X coordinate value of touch 2 is sent to the parameter 

durationValue, which is scaled to be a value between 0.05 and 0.95.  

The code for the two delegate methods is shown in Figure 4.29 below. 
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//Csound varaibles assigned depending on touch location 
-(void)sendValueYFromOneTouch:(Float32)valueY 
object:(UInt16)objectID 
{ 
    if (objectID == 1) 
    { 
        //Unmute Csound when user first touches app 
        [self.csound unmuteCsound]; 
	  
        pitchValue = 100 + valueY * 900; 
        //printf("pitchValue is %f", pitchValue); 
    } 
    else if (objectID == 2) 
    { 
        densityValue = 1 + valueY * 100; 
        //printf("densityValue is %f", densityValue); 
    } 
} 
 
 
 
-(void)sendValueXFromOneTouch:(Float32)valueX 
object:(UInt16)objectID 
{ 
    if (objectID == 1) 
    { 
        offsetValue = valueX * 1000; 
        //printf("offsetValue is %f", offsetValue); 
    } 
    else if (objectID == 2) 
    { 
        durationValue = 0.05 + valueX * 0.95; 
        //printf("durationValue is %f", durationValue); 
    } 

}	  

	  

 

	  

	  

	  

Figure	  4.29	  
Delegate	  Method	  Implementation	  
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Chapter 5 
App User Tests 
 

This chapter describes the purpose, design, and implementation of the user tests 

intended to test the hypothesis. The validity of the hypothesis is explored, as well as 

subsequent modifications.  

5.1 Test Purpose 

The apps described in the previous chapter were used in a subject test to help 

determine the validity of the hypothesis that users prefer using multi-touch gestures to 

interact with music as opposed to traditional skeuomorphs. The three apps allow test 

subjects to interact with a granular synthesizer implemented in Csound in three different 

control paradigms: 1) rotary knobs, 2) faders, and 3) multi-touch. The rotary knobs and 

faders are examples of traditional skeuomorphs commonly employed in many mobile 

music apps, such as some of those described in Section 2.9. Screenshots of the three test 

apps are shown Sections 4.5.1-4.5.3.  

 The prediction is that test subjects will initially prefer to interact with the 

granular synthesizer via faders instead of rotary knobs and multi-touch interaction, 

however, after repeated interaction with the apps, will grow to prefer the multi-touch 

option to the faders app. The prediction is also that users will consistently dislike 

interacting with the rotary knob-based interface. This is due to its inherent physical 

properties, which are similar to traditional analogue systems. 



 

	   	   	   	   	   	   128	  

The first test gathered an overview of how a group of twenty subjects interacted 

with the test apps, and what their perceptions and opinions of them were. A subset of 

these subjects (ten of them) later interacted with the same test apps to determine whether 

their opinions of the apps changed with repeating the test. 

5.2 Test Subjects 

The user tests were conducted in the University of York, Department of 

Electronics Audio Lab. Twenty subjects were presented with an iPad, and interacted 

with the three apps in turn.  

Test subjects were recruited from staff and students of the University of York, 

Department of Electronics’ Audio Lab. Additionally, some people from other academic 

departments on campus were recruited for the test. Eleven of the subjects were from the 

Department of Electronics; the remaining subjects were from other academic 

departments at the University of York, including English/Related Literature, Linguistics, 

Mathematics, Centre for Women’s Studies, Computer Science, and Centre for Medieval 

Studies. Three of the subjects were members of academic staff. 

• Average Age: 25.45 
• Age Range: 19-41 
• Percentage Female: 45% 
• Percentage Male: 55% 

 

Thirteen out of the twenty subjects owned an iOS device, and eighteen out of the 

twenty subjects had used an iOS device prior to the test. Only four subjects had 

previously used an iOS app to make music. These apps included various synthesizer 

apps: GarageBand, Propellerhead’s Figure App, and MagicPiano. In total, 75% of the 
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test subjects had some kind of prior musical background. Table 5.1 below shows 

subjects’ responses when asked if they have any sort of prior music or audio 

background:  

Subject Response  

1 MSc/BEng in Music Technology, Previous Performance Experience 
(Guitar-Grade 8, Violin-Grade 7 (ABRSM)) 

2 Musicologist, pianist, music teacher, MSc/PhD Music Technology 

3 10 years voice, 13 years piano, 1 year guitar, 14 years flute, 1 year 
University level music study 

4 Singer, BA/MA/PhD in Music and Music Technology 

5 MusicTech Student, self-taught guitarist 

6 No 

7 No 

8 Piano/clarinet lessons to Grade 8, music technology studies, PhD in 
Acoustics 

9 Played cello in high school 

10 Sang in a choir 

11 "Have played guitar and used various music generating computer 
programs." 

12 Singing in musicals, Grade 4 piano, Grade 1 trombone 

13 No 

14 Play guitar/compose electronic music. Used various music 
production software/hardware. Played with some music apps on 
iPod. 

15 No 

16 Professional in both 
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17 Guitarist and music producer (hobbyist) 

18 No 

19 Music A-Level, Violin/Piano-Grade 8 

20 Musical training in classical/choral singing. Work in audio & music 
technology. 

 

  

 

Users turned on the sound for each app when they were ready, and were able to 

interact with the apps for as long as they wished. Before their first test, subjects read a 

provided hand-out and signed a consent form (see Appendix J). Attached to the consent 

forms were questionnaires, which can be found in Appendix K. Subjects’ hands were 

video recorded during their interactions with the test apps for potential later use in 

determining any possible interaction commonalities. All subjects’ comments for each 

app were audio recorded for use in analysing their opinions and perceptions of the test 

apps. These recordings can be found in Appendix N. 

5.3 Test Procedure 

 Subjects were asked to interact with each of the test apps in turn by adjusting the 

available audio parameters. Subjects were allowed to interact with each of the test apps 

for as long as they wished; the longest amount of a time a subject interacted with an app 

was for approximately 4 minutes and 6 seconds. 

Table	  5.1	  
Subjects’	  Music/Audio	  Backgrounds	  
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 Subjects were given no specific instructions on how to interact with the apps, 

such as what type of sound they should make, or if they should try to reproduce any 

specific sounds.  

The tester was present while the subjects read the provided hand-out. The tester 

remained present for the duration of the tests, and assisted the subjects in answering any 

questions they had before, during, and after the tests. Additionally, the tester helped start 

each app before the users began the test.  

At the conclusion of each test, the tester collected the questionnaires for analysis. 

Additionally, the tester stored all video and audio files from the tests for later analysis.  

5.4 Technical Set-Up 

The apps used for the subject tests were run on an iPad 2 supplied by the 

Department of Electronics. Subjects’ comments were recorded using an audio recording 

app on the Tester’s iPhone 5. Subjects’ interactions with the test apps during both Test 1 

and Test 2 were video recorded using a Canon EO5-700D camera. Video footage was 

then edited using iMovie.  

5.5 Test 1 Results 

 Table 5.2 below shows Test One Subjects’ answers when asked which app they 

prefer, and which app they like the least. 
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Subject Most Preferred App Least Preferred App 

1 Touches Knobs 

2 Touches Faders 

3 Faders Touches 

4 Faders/Touches Knobs 

5 Touches Knobs 

6 Faders/Touches Knobs 

7 Faders/Touches Knobs 

8 Touches Faders 

9 Faders Touches 

10 Touches Knobs 

11 Faders Knobs 

12 Faders Knobs 

13 Faders Touches 

14 Touches Knobs 

15 Faders Touches 

16 Touches Knobs 

17 Faders Touches 

18 Faders Touches 

19 Knobs Touches 

20 Touches Knobs 

 

 

 

 

Table	  5.2	  
Test1	  -	  Subjects’	  Most	  and	  Least	  Preferred	  Apps	  
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5.6 Test 2 Results 

 Ten of the subjects who participated in Test 1 were asked to repeat the test to see 

if their opinions of the test app would change upon repeated usage. Participants were 

selected by availability to conduct a repeat test. Subjects were again allowed to play 

with each app for as long as they wished. Their preferences after completing this repeat 

test are shown below in Table 5.3. 

Subject Most Preferred 
App after Test1 

Least Preferred 
App after Test2 

Opinion Change 
Since Test1? 

1 Touches Knobs No 

2 Touches Sliders No 

3 Knobs Touches Yes 

6 Sliders Knobs No 

7 Touches Knobs No 

8 Touches Knobs No 

10 Sliders/Touches Knobs Yes 

13 Sliders Knobs Yes 

14 Touches Knobs No 

15 Sliders Knobs Yes 

 

 

 

Table	  5.3	  
Test2-	  Subjects’	  Most	  and	  Least	  Preferred	  Apps	  
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 Four of the subjects in Test 2 did express a change in app preference from one 

test to the other. These changes are shown in Table 5.4 below.  

 

Subject 
Most 

Preferred-
Test 1 

Least 
Preferred-

Test 1 

Most 
Preferred-Test 

2 

Least 
Preferred-

Test 2 

3 Faders Touches Knobs Touches 

10 Touches Knobs Faders/Touches Knobs 

13 Faders Touches Faders Knobs 

15 Faders Touches Faders Knobs 

 

 

 

5.7 User Comments 

 After completing the first test, subjects were asked to state any impressions, 

thoughts and opinions regarding the test apps. Videos of subjects interacting with the 

apps can be found on the additional YouTube channel at this link.  

 The Faders app was widely preferred over the Knobs app. This was because 

users found the Faders app to be much more intuitive and easy to use. Users expected 

the Knobs app to behave in the exact same manner as a physical rotary-potentiometer 

knob, i.e., rotating the knob in a circular motion. While such an action could have been 

implemented in the app, it was decided not to do so for one reason: many music-based 

apps that do implement rotary knobs do not behave in such an analogous (rotary) 

manner. Instead, users are expected to slide their finger up and down in order to move 

Table	  5.4	  
User	  Change	  in	  Preference	  
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the knob left and right. In their review of iOS music creation apps, Kell and Wanderley 

classify knobs that behave in this manner as actually being faders (Kell and Wanderley, 

2013). It is unclear why many developers implement rotary knobs in such a 

counterintuitive manner, apart from it being slightly easier to code. An example of a 

user struggling with this configuration can be found here.  

Faders were deemed to be easier and more intuitive to use because they provided 

a sense of linear visual feedback, were easy to interact with, and seemed to be conducive 

to producing a desired sound. Users seemed to appreciate that when they moved a faders 

up and down, the corresponding parameter was either increased or decreased (for 

example increasing or decreasing the pitch of the grains). Users described the Faders 

app as being easy to control with their fingers, and not as cumbersome as the Knobs app.  

Although the granular synthesis engine implemented in the apps was generally 

described as being difficult to control, users generally felt that the Faders	  app allowed 

for the best implementation if they wanted to reproduce a sound that they had heard 

earlier while interacting with the app. As subjects were not given instructions to try to 

reproduce sounds during the tests, it is possible that they were doing so in order to better 

understand what effects their interactions with the user interface had on the musical 

output. 

Such reproducibility would be necessary if the user wanted to have fine-grained 

control over the music creation process. Subjects also described the faders as being more 

responsive to their touches and easier to control than the rotary knobs. This may be 

related to the fact that the knobs and faders provide the user with what Norman refers to 
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as affordances, fundamental properties that determine how an object should be used 

(Norman, 2001). In other words, a knob affords the action of turning; a fader affords the 

action of a sliding motion.  

Subjects who preferred the Touches app stated that the reasons for their choice 

were that the app felt “intuitive, interactive, creative, and playful”. One subject even 

stated that the app “encouraged creativity”, and that it “Makes for a more user-friendly 

and interesting performance experience”. Another subject stated that they preferred the 

Touches app because it felt more tactile. 

 While interacting with the app, some subjects seemed to be exploring the timbre 

space available via the granular synthesizer. While subjects could achieve some sonic 

reproducibility via repeated movements over appropriate areas of the X/Y axis, those 

who expressed a preference for the app seemed content to explore the timbral 

possibilities of the app via moving their finger across the screen, alternatively in fast, 

quick swirling and tapping gestures, and more slow and nuanced gestures.  

5.8 Hypothesis Discussion 

The original hypothesis is that users prefer multi-touch gestures for interacting 

with music as opposed to traditional skeuomorphs. In this hypothesis framework, users 

would consistently prefer to interact with music using multi-touch gestures, regardless 

of the paradigm of the application or the user’s intent and purpose for interaction.  

Based on the results of the tests, users do not show a preference for interacting 

with music with only multi-touch gestures to validate the initial hypothesis. As such, the 

hypothesis has been modified.  
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The modified hypothesis is that if users want an app that will allow them to 

explore music in a manner they would describe as “intuitive, interactive, creative, and 

playful”, then a multi-touch gestural app is the preferred option. These users desire real-

time interaction with music: they want to have an immersive, “flow-like” creative 

experience when interacting with the app. Such an experience would be similar to 

Csikszentmihalyi’s concept of “flow”, as discussed in Section 2.6 (Leman, 2010).  

However, if users want to be able to intricately modify and edit music or audio, 

then an app implementing a skeuomorphic design paradigm is the preferred option. Such 

users want to understand what the individual parameters are and adjust them to reach a 

certain goal. If the app does use skeuomorphs, then it needs to be intuitive, easy to use, 

and provide appropriate visual feedback.  

The modified hypothesis is therefore: users who want an intutive and exploratory 

experience with music prefer an app with multi-touch gestures, but those who want to be 

able to modify and edit music prefer apps with skeuomorphic UI elements.  

The user tests conducted as described in this chapter provide initial evidence for 

this modified hypothesis. The tests were intended to explore a principle rather than to 

provide statistical validity. 

Given that some users prefer the complex multi-touch interface and some prefer 

the simpler skeuomorphic interfaces, these preliminary results may help support Hunt 

and Wanderley’s findings (2002) that users prefer complex interfaces for complex, real-

time tasks, and simple interfaces for simple, non-real-time tasks. Simpler interfaces and 

mappings may be more suited for non-real-time/goal-focused applications. 
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Additionally, it is observed that multi-touch gestural control is not initially well 

received by goal-focused users. Given the inherent multi-parametric complexity of 

multi-touch interfaces, many users may be initially intimidated by a rich multi-touch 

gestural app, and will avoid its use, even if it meets the needs of their tasks. However, 

given a long enough period of testing, subjects will begin to prefer the more complex 

multi-touch gestural app.  

 The author suspects that if each subject had more opportunities to interact with 

the apps over a longer time span (i.e., more then the longest time a user spent on a test, 

which was approximately 4 minutes), those who did not initially enjoy interacting with 

the Touches app would eventually come to at least appreciate what it is capable of, even 

if they did not completely prefer or enjoy it.  

5.9 Potential Test Improvements 

After the tests, five users stated that all three test apps would have been much 

more enjoyable to use if the synthesized sound output was different. Of the twenty 

subjects who participated in the tests, only five had any comment on the sound 

generated by the app, four of these subjects giving a negative opinion of the sound. 

These subjects stated that the sound was too chaotic, glitchy, and hard to control. One 

subject stated that due to the nature of the sound, it was hard to tell exactly what they 

were trying to control. Only one subject (Subject 8) out of the twenty specifically stated 

that they enjoyed the sound; a video of them interacting with the Touches app during the 

first test can be found here.  
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It is possible that if the sound had a more pleasing aesthetic quality, the results of 

the test would be different. Users who expressed frustration at using the Touches app 

might have been willing to spend a longer time interacting with it had the sound 

generated by the apps been more pleasing to their musical tastes, and in doing so may 

have come to prefer the Touches app over the Knobs and Faders apps.  

Additionally, some users stated that they would have enjoyed using the touches 

app if it implemented visual feedback. As users are able to see the skeuomorphic 

interface elements (knobs and faders in the app examples) change their positions when 

they interact with them, users expected the same sort of visual feedback to occur when 

interacting with the Touches app. The study of visual feedback in multi-touch gestural 

music apps is a potential further area of research. Interestingly, one user did say that the 

lack of visual feedback made the Touches app “more fun somehow” (Subject 8).  

This is consistent with Hunt’s notion of an “explorative operation” (Hunt, 

2000). Hunt defines an “explorative operation” mode of interaction as when “…the 

user discovers how to control a device by exploring different input control positions and 

combinations, thus gaining an immediate response from the system” (Hunt, 2000, 

p.102). The user who stated that they preferred a lack of visual feedback on the Touches 

app may have done so because they were able to enter into an explorative mode of 

operational interaction. They may have been content to truly explore the musical 

possibilities of the app, as opposed to relying on visual feedback to reproduce certain 

specific sounds while in an analytical mode of operation. This analytical mode would be 

characterized by viewing each individual musical parameters as separate, rather than 

listening to the combined overall musical result of the individual parameters.  
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If any future versions of the test described in this chapter are to be carried out, 

the addition of visual feedback by generating animation or other visual content with 

each touch movement should be considered.  
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Chapter 6 
Conclusions and Further Work 

 This chapter states the conclusions drawn to support the modified hypothesis, 

stated in Section 5.8. Possible future work in the area is also proposed. The chapter 

concludes with a statement on the significance of the conducted research.  

6.1 Conclusions 

 Before implementing an interactive music app, designers need to make sure that 

the purpose of the app is clearly defined: for example, is the app supposed to allow for 

intricate audio editing, or will it allow for interactive, real-time composing and/or 

performing? Obviously there are many different types of music apps (some of which 

have been described in Section 2.9); the ‘audio editing’ and ‘performing’ are mentioned 

merely as differing examples. If the user requires fine-grained, intricate control of 

individual parameters, then an app implemented with traditional skeuomorphs is more 

appropriate. However, if the user wishes to explore a wide musical design space, then 

multi-touch gestures are much more appropriate for encouraging the user to intimately 

explore and play with the potential musical material.  

6.2	  Further	  Work	  

	   In	   addition	   to	   the	   inclusion	  of	   visual	   feedback	   as	  discussed	   in	   Section	  5.8,	  

the	   author	   proposes	   the	   following	   projects	   as	   potential	   continuations	   of	   the	  

research	  conducted	  as	  part	  of	  this	  thesis.	  	  
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Haptic	  Feedback	  in	  Multi-touch	  Interactions	  

	   Apple	   has	   recently	   applied	   for	   a	   patent	   for	   a	   “Method	   and	   apparatus	   for	  

localization	   of	   haptic	   feedback”	   (Campbell,	   2013).	   Depending	   on	  whether	   this	   is	  

implemented	  on	  iOS	  devices,	  and	  if	  developers	  are	  given	  sufficient	  ability	  to	  write	  

code	   for	   this	   feature,	   another	   project	   could	   be	   to	   determine	   whether	   haptic	  

feedback	   aids	   multi-‐touch	   based	   musical	   interaction.	   Such	   a	   system	   could	   have	  

particular	  benefits	  for	  visually-‐impaired	  individuals.	  Additionally,	  a	  combination	  of	  

haptic	  and	  visual	  feedback	  in	  aiding	  multi-‐touch	  interactions	  could	  be	  investigated.	  	  

Investigation	  of	  Custom	  Gestures	  for	  Musical	  Interaction	  

	   As	   discussed	   in	   Section	   4.1.3,	   Apple	   allows	   developers	   to	   create	   custom	  

gestural	  interactions.	  To	  the	  best	  of	  the	  author’s	  knowledge,	  there	  are	  currently	  no	  

iOS	  apps	   that	  allow	  users	   to	  determine	  which	  gesture	   they	  wish	   to	  use	   to	  control	  

specific	   musical	   parameters.	   A	   potential	   app	   for	   investigating	   user	   gestural	  

preferences	  would	  allow	  the	  users	  to	  themselves	  set	  up	  mappings	  between	  specific	  

musical	  parameters	  and	  specific	  multi-‐touch	  gestures.	  

6.3	   Significance	  of	  Research	  

	   Music	   interaction	   and	   digital	  musical	   instrument	   research	   bears	   a	   certain	  

resemblance	   to	   “mainstream”	   Human-‐Computer	   Interaction	   research.	   Both	   are	  

tasked	  with	  similar	  aims:	  helping	  users	  accomplish	  certain	  goals	  that	  are	  assisted	  

through	   the	   aid	   of	   computer	   technology.	   Wanderley	   and	   Depalle	   (2004,	   p.632)	  

describe	   this	   by	   stating	   that	   the	   study	   of	   gestural	   interaction	   with	   musical	  

parameters	  “…can	  be	  seen	  as	  a	  highly	  specialized	  branch	  of	  HCI”.	  Additionally,	  music	  
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interaction	   has	   offered	   several	   contributions	   to	  HCI	   research,	   some	   of	  which	   are	  

listed	  in	  Holland	  et	  al.,	  2013.	  Wanderely	  and	  Orio	  (2002,	  p.	  74)	  further	  support	  this	  

by	  stating	  that	  “…a	  bidirectional	  flow	  of	  knowledge	  between	  classical	  HCI	  research	  on	  

input	   devices	   […]	   and	   the	   design	   of	   new	   digital	   musical	   instruments	   can	   lead	   to	  

substantial	  improvement	  in	  both	  fields”.	  	  

	   However,	  music	  interaction	  research	  is	  a	  narrower	  field	  where	  the	  goal	  is	  to	  

develop	   methods	   and	   implementations	   that	   allow	   the	   end	   user,	   in	   this	   case	  

someone	   interested	   in	  engaging	  with	  a	  musical	   system,	   to	  have	   the	  best	  possible	  

experience	   of	   interacting	   with	   that	   system.	   Holland	   et	   al.	   (2013,	   p.3)	   state	   that	  

“Music	  Interaction	  borrows	  countless	  elements	  from	  HCI,	  and	  in	  general	  is	  held	  to	  the	  

same	   standard	   as	   HCI	   research.	   But	   at	   the	   same	   time,	   the	   practice	   of	   Music	  

Interaction	  is	  bound	  up	  with	  the	  practices	  of	  the	  music	  community”.	   In	  mainstream	  

HCI	  research,	  the	  scope	  is	  much	  broader;	  typically	  the	  research	  goal	  is	  to	  develop	  

ways	  of	  easily	  manipulating	  data/accomplishing	  some	  sort	  of	  end	  goal	  as	  quickly	  

and	  efficiently	  as	  possible.	  	  

	   In	   such	   scenarios,	   interface	   designs	   consisting	   of	   WIMP	   (Windows	   Icons,	  

Menus,	   Pointers),	   and	   skeuomorphic	   elements	   such	   as	   knobs	   and	   sliders	   are	  

appropriate,	  as	  they	  allow	  users	  to	  quickly	  and	  efficiently	  accomplish	  a	  task.	  This	  is	  

in	  a	  contrast	  to	  designing	  interfaces	  for	  musical	  interaction,	  in	  which	  “…the	  design	  

of	   a	   new	   input	   device	   for	   musical	   performance	   is	   generally	   directed	   toward	   the	  

fulfilment	   of	   specific	   and	   sometimes	   idiosyncratic	   musical	   goals”	   (Wanderley	   and	  

Depalle,	   2004,	   p.637).	   Complex	   systems,	   such	   as	   music,	   often	   demand	   complex	  
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interfaces.	  Such	  interfaces	  are	  often	  not	  learnt	  quickly,	  and	  many	  times	  users	  will	  

grow	   frustrated	   with	   them	   before	   achieving	   any	   satisfactory	   results.	   Complex	  

interfaces	  may	  at	  times	  be	  appropriate	  for	  helping	  users	  meaningfully	  engage	  with	  

musical	  material,	  as	  shown	  in	  Hunt	  (2000),	  and	  McDermott	  et	  al.	  (2013).	  	  

	   Professional	   musicians	   spend	   a	   lifetime	   practicing	   their	   craft.	   As	   long	   as	  

they	  have	  a	  musical	  goal	  to	  reach,	  they	  will	  keep	  doing	  so.	  Musicians	  always	  find	  a	  

way	   to	   keep	   advancing	   in	   their	   instrumental	   and	   performance	   skills,	   or	  ways	   to	  

keep	  growing	  as	  a	  composer.	   In	  both	  cases,	   they	  are	   interacting	  with	  a	  system	  (a	  

physical	  instrument	  to	  produce	  musical	  output,	  or	  creating	  musical	  structures	  in	  a	  

novel	  and	  creative	  manner).	  In	  both	  cases,	  the	  system	  they	  are	  interacting	  with	  is	  a	  

complex	  one.	  

	   The	   area	   in	  which	   the	   field	  of	  Music	   Interaction	   research	   can	  help	  benefit	  

mainstream	   HCI	   research	   is	   in	   the	   interaction	   of	   users	   with	   complex	   systems.	  

Mainstream	  HCI	  research,	  with	  its	  focus	  on	  speed	  and	  efficiency,	  may	  at	  times	  not	  

present	   appropriate	   solutions	   for	   the	   target	   areas	   it	   hopes	   to	   solve.	   Music	  

interaction,	  with	  its	  specific	  focus	  of	  helping	  people	  interact	  with	  complex	  systems	  

in	   novel	   ways,	   is	   in	   a	   position	   to	   help	   mainstream	   HCI	   researchers	   in	   creating	  

immersive,	  flow-‐like	  interactions	  for	  users	  engaging	  in	  high-‐dimensional	  systems.	  

	   This	   research	   has	   shown	   that	  when	   users	  wish	   to	   creatively	   engage	  with	  

music	  on	  a	  particular	  device,	  they	  prefer	  to	  do	  so	  with	  multi-‐touch	  gestures	  where	  

possible.	   If	   they	  wish	   to	   have	   intricate	   control	   over	   specific	  musical	   parameters,	  

however,	   then	   skeuomorphic	   user	   interface	   elements	   are	   preferred,	   even	  where	  
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multi-‐touch	  gestures	  are	  available.	  Designers	  of	  music-‐centric	  apps,	  or	  of	  any	  app	  

that	   involves	  a	  system	  as	  complex	  as	  music,	  should	  consider	  implementing	  multi-‐

touch	  gestures,	  as	  	  -‐	  if	  wisely	  implemented	  -‐	  they	  allow	  the	  user	  to	  achieve	  a	  state	  

of	  flow	  and	  creative	  exploration.	  	  
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Appendix A - Composition App UI Sketches 

	  

	   Appendix	  A	  consists	  of	  sketches	  created	  to	  design	  the	  interface	  and	  
interaction	  methods	  of	  an	  interactive-‐composition	  iPad	  app,	  and	  drawn	  at	  the	  time	  
when	  this	  was	  the	  inteded	  development	  goal	  as	  part	  of	  the	  MSc.	  

	  

Sketch	  1.A	  

	   As	  the	  user	  vocalizes	  into	  the	  microphone,	  the	  process	  of	  granularization	  is	  
illustrated	  through	  the	  use	  of	  a	  waveform	  display	  /	  graphics	  to	  show	  the	  
granularization	  occurring.	  	  

	  

Sketch1.B	  

	   As	  further	  voclaizations	  are	  added,	  they	  are	  continually	  displayed	  along	  
with	  those	  that	  occurred	  previously.	  The	  waveforms	  may	  be	  pushed/pulled	  to	  
control	  the	  parameters	  of	  the	  granular	  synthesizer.	  	  

	  

Sketch	  1.C	  

	   A	  cellular	  automata	  algorithm	  that	  affects	  the	  granularized	  visualizations	  
would	  direct	  “Ball	  objects”	  shown	  in	  the	  sketch.	  It	  was	  not	  decided	  what	  
parameters	  they	  would	  be	  mapped	  to.	  

	  

Multi-‐Touch	  Mapping	  Sketch1	  

	   This	  details	  an	  original	  mapping	  sketch	  for	  the	  multi-‐touch	  test	  app.	  
Synthesis	  parameters	  are	  controlled	  by	  a	  variety	  of	  taping,	  pinching,	  and	  swiping	  
gestures.	  	  

	  

Multi-‐Touch	  Mapping	  Sketch2	  

	   This	  sketch	  was	  a	  second	  idea	  for	  the	  mapping	  of	  the	  multi-‐touch	  test	  app.	  
Synthesis	  parameters	  are	  controlled	  by	  pinching	  and	  swiping	  gestures.	  Grain	  pitch	  
is	  an	  X/Y	  control	  space	  in	  the	  left	  corner,	  and	  pitch	  offset	  is	  and	  X/Y	  control	  space	  
in	  the	  right	  corner.	  
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Sketch 1.A 
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Sketch 1.B 
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Sketch 1.C 
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Multi-Touch	  Mapping	  Sketch1	  
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Multi-Touch	  Mapping	  Sketch2	  
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Appendix B - Csound for iOS Tutorial   
	  

	   In an effort to better understand the Csound for iOS API, the author, along with 
fellow colleagues Timothy Neate and Abigail Richardson, wrote a tutorial for the API. 
The tutorial is aimed at those who have some iOS development experience, and are 
wanting to quickly develop audio for use in their apps.  
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Abstract  
This tutorial aims to help iOS developers with the implementation of the Mobile Csound 
Platform for iOS. Developers who are looking to incorporate audio into their apps, but 
do not want to deal with the complexities of Core Audio, will find this particularly 
useful.  

 

It provides some background information on the API and outlines how to integrate 
Csound and iOS, and allow them to communicate. The provided example project is then 
described - outlining the key features of the API. Some common problems that users are 
likely to encounter are then discussed to troubleshoot potential issues 
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1. Introduction  
The traditional way of working with audio on both Apple computers and mobile devices 
is through the use of Core Audio. Core Audio is a low-level API which Apple provides 
to developers for writing applications utilizing digital audio. The downside of Core 
Audio being low-level is that it is often considered to be rather cryptic and difficult to 
implement, making audio one of the more difficult aspects of writing an iOS app.  
 
In an apparent response to the difficulties of implementing Core Audio, there have been 
a number of tools released to make audio development on the iOS platform easier to 
work with. One of these is libpd, an open-source library released in 2010. libpd allows 
developers to run Pure Data on both iOS and Android mobile devices. Pure Data is a 
visual programming language whose primary application is sound processing. 
 
The recent release of the Mobile Csound Platform provides an alternative to the use of 
PD for mobile audio applications. Csound is a synthesis program which utilizes a toolkit 
of over 1200 signal processing modules, called opcodes. The release of the Mobile 
Csound Platform now allows Csound to run on mobile devices, providing new 
opportunities in audio programming for developers. Developers unfamiliar with Pure 
Data’s visual language paradigm may be more comfortable with Csound’s ‘C’-
programming based environment.  
 
For those who are unfamiliar with Csound, or want to learn more, the FLOSS manuals 
are an excellent resource, and can be found here:  
 

http://flossmanuals.net/csound/ 
 
For more advanced topics in Csound programming, the Csound Book (Boulanger ed., 
2000) will provide an in-depth coverage. 
 
In order to make use of the material in this tutorial, the reader is assumed to have basic 
knowledge of Objective-C and iOS development. Apple’s Xcode 4.6.1 IDE (integrated 
development environment) will be used for the provided example project. 
 
Although the Mobile Csound API is provided with an excellent example project, it was 
felt that this tutorial will be a helpful supplement in setting up a basic Csound for iOS 
project for the first time, by including screenshots from the project set-up, and a section 
on common errors the user may encounter when working with the API.  
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The example project provided by the authors of the API includes a number of files 
illustrating various aspects of the API, including audio input/output, recording, 
interaction with GUI widgets, and multi-touch. More information on the example 
project can be found in the API manual, which is included in the example projects 
folder.  

1.1. The Csound for iOS API 
 
The Mobile Csound Platform allows programmers to embed the Csound audio engine 
inside of their iOS project. The API provides methods for sending static program 
information from iOS to the instance of Csound, as well as sending dynamic value 
changes based on user interaction with standard UI interface elements, including multi-
touch interaction.  

1.2. Document Structure 
This document begins, in Section 2, by describing the example provided by the authors. 
Section 2 is divided into two further sections: Section 2.1 which describes the 
functionality of the example application and Section 2.2 which details line by line 
through the example code how this application works.  Section 3 provides a step by step 
guide to setting up an Xcode project for use with the Mobile Csound API.  This section 
describes how to download the API and include it into the project (Section 3.1) as well 
as the necessary components of the view controller (Section 3.2) and Csound file 
(Section 3.3).  Section 4 outlines some common problems, which have been found 
through the creation of this tutorial, and their solutions.  Section 5 is a reference of the 
methods which are available for use in the Mobile Csound API.  This section briefly 
details the functionality of these methods and their method calls. Section 6 provides the 
authors’ conclusions about this tutorial. 
NOTE: This tutorial uses Csound 5, and has not been tested with Csound6.  

2 Example Walkthrough 

This section discusses why the example was made, and what can be learned from it; 
giving an overview of its functionality, then going into a more detailed description of its 
code. A copy of the example project can be found at the following link.  

https://sourceforge.net/projects/csoundiosguide/	  

2.1 Running the Example Project 
Run the provided Xcode project, CsoundTutorial.xcodeproj, and the example app should 
launch (either on a simulator or a hardware device).  A screenshot of the app is shown in 
Figure 2.1 below. The app consists of two sliders, each controlling a parameter of a 
Csound oscillator. The top slider controls the amplitude, and the bottom slider controls 
the frequency. 
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Figure 2.1-App running on iPad simulator 

	  

2.2 Oscillator Example Walkthrough 
This example outlines how to use the methods in the Csound-iOS API to send values 
from iOS into Csound. This example was made purposefully simple, with the intent of 
making its functionality as obvious as possible to the reader. This section begins by 
giving an overview of both the iOS and Csound implementation, and then describes how 
this achieved by breaking down the example code. The code to create this oscillator 
example was done in the ViewController.h and the ViewController.m files, which are 
discussed below in sections 2.2.3.1 and 2.2.3.2. The project is split into Objective-C 
code, Storyboards for the user interface elements, and a Csound file for the audio 
engine.  

2.2.1 iOS Example Outline 
 In the Xcode project user interface sliders are used to allow a user to control the Csound 
audio engine through iOS.  Communication begins with iOS requesting some memory 
within Csound; setting a pointer to this location. It updates this pointer with values from 
the user interface sliders. Csound references the same memory location by naming it 
with a string, this named communication link is called a channel. When sending this 
information, iOS uses methods within the iOS-Csound API to setup this channel name, 
and update it dependant on the control rate. 
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2.2.2.  Csound Example Outline 
In this example, Csound is not aware of iOS. All it knows is that there is a piece of 
memory assigned for it, and it must retrieve information from here dependent on its 
control rate. Csound uses the chnget opcode to do this. chnget searches for some channel 
with a specific name and retrieves values from it. 

2.2.3.  The iOS  File 
This example is implemented across two main files: 
 
The .h file is used to include all the necessary classes, declare properties, and allow for 
user interaction by connecting the interface to the implementation. 
 
The .m file is used to implement communication between the interface methods 
declared in the .h file, and the Csound file.  These will now be discussed in more depth, 
with code examples. 
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2.2.3.1.  The .h File 

The imports (discussed in detail in section 3.2.1) are declared: 
 

 
 
Apart from the standard UIKit.h (which gives access to iOS interface widgets) these 
ensure that the code written can access the information in the other files in the Csound 
API.   
Next comes the class definition: 
 

 
 
Every iOS class definition begins with the @interface keyword, followed by the name 
of the class. So our class is called ViewController, and the colon indicates that our class 
inherits all the functionality of the UIViewController.  
 
Following this are two Protocol definitions, which are listed between the triangular 
brackets <   >. In Objective-C a Protocol is a list of required functionality (i.e., 
methods) that a class needs to implement. In this case there are two Protocols that are 
defined by the Csound API, that we want our class to conform to: 
CsoundObjCompletionListener and CsoundValueCacheable. This will allow us to send 
data between iOS and Csound, and so is essential for what we are about to do. The 
required functions that we have to implement are described in the section following this 
one (2.2.3.2). 
 
The Csound object needs to be declared as a property in the .h file, which is what this 
next line of code does:  
 

 
 
The next section of code allows for the interface objects (sliders) to communicate with 
the .m file: 
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Just to the left of each of these IBAction methods, you should see a little circle. If the 
storyboard is open (MainStoryboard.storyboard) you will see the appropriate slider 
being highlighted if you hover over one of the little circles. 

2.2.3.2.  The .m File	  
The .m file imports the .h file so that it can access the information within it, and the 
information that it accesses.  
 
At the beginning of the implementation of the ViewController, the csound variable 
which was declared in the .h file is instantiated with @synthesize thus: 
 

 
 

Note that the Csound object must be released later in the dealloc method as shown 
below: 

 
 

For each parameter you have in iOS that you wish to send to Csound, you need to do the 
things outlined in this tutorial. In our simple example we have an iOS slider for 
Frequency, and one for Amplitude, both of which are values we want to send to Csound. 
 
Some global variables are then declared, as shown in Table 2.1, a holder for each iOS 
parameter’s current value, and a pointer for each which is going to point to a memory 
location within Csound.  
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Variable Description 
float myFrequency; 

This value comes from the frequency slider in 
the interface.  It is a float, as the value to send 
from iOS to Csound needs to be a floating 
point number. Its range is 0 – 500. 

float myAmplitude; 

  

This value comes from the amplitude slider in 
the interface. Its range is 0 – 1 because of the 
way the gain is controlled in the .csd file. 

float* freqChannelPtr; 

  

float* ampChannelPtr; 

  

These variables are used in conjunction with 
the method getInputChannelPtr (described 
towards the end of this section) to send 
frequency and amplitude values to Csound.  

Table 2.1-Variables for the .m File 

 
The next significant part of the .m file is the viewDidAppear method. When the view 
loads, and appears in iOS, this iOS SDK method is called. In the example, the following 
code is used to locate the Csound file: 
 
 

 
 
This code searches the main bundle for a file called aSimpleOscillator of the type csd 
(which you will be able to see in Xcode’s left-hand File List, under the folder 
Supporting Files). It then assigns it to an NSString named tempFile. The name of the 
string tempFile is then printed out to confirm which file is running. 
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The methods shown in Table 2.2 are then called:  
 

Method Call Description 
self.csound =  
[[CsoundObj alloc] init]; 

This instantiates the csound object, which will 
be our main contact between iOS and Csound. 
It allocates and initialises some memory to 
make an instance of the CsoundObj class. 

[self.csound 
addCompletionListener:self]; Sets our code (self – i.e. ViewController) to 

be a listener for the Csound object. 
[self.csound 
addValueCacheable:self]; Sets our code (self) to be able to send real-

time values to the Csound object. 
[self.csound 
startCsound:tempFile]; The Csound object uses the method 

startCsound to run the file at the string 
tempFile. Remember how tempFile was set 
up to point to the Csound csd file (in our case 
aSimpleOscillator.csd). So, in other words, 
this line launches Csound with the csd file 
you have provided. 

Table 2.2-Csound API Methods 

 
The methods that allow the value of the slider to be assigned to a variable are then 
implemented. This is done with both frequency, and amplitude. As shown below for the 
amplitude slider: 
 
 

 
 

 
This method is called by iOS every time the slider is moved (because it is denoted as an 
IBAction, i.e. an Interface Builder Action call). The code shows that the ampSlider 
variable is of type UISlider, and because of that the current (new) value of the slider is 
held in ampSlider.value. This is allocated to the variable myAmplitude.  Similar code 
exists for the frequency slider. 
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The protocol methods are then implemented. The previous section showed how we set 
up our class (ViewController) to conform to two Protocols that the Csound API 
provides: CsoundObjCompletionListener and CsoundValueCacheable. 
 
Take a look at the place where these Protocols are defined, because a Protocol definition 
lists clearly what methods are required to be implemented to use their functionality. 
 
For CsoundValueCacheable you need to look in the file CsoundValueCacheable.h (in 
the folder valueCacheable). In that file it’s possible to see the protocol definition, as 
shown below, and its four required methods. 
 

 
 
 

Every method needs at least an empty function shell. Some methods, such as 
updateValuesFromCsound are left empty, because – for the tutorial example – there is 
no need to get values from Csound. Other protocol methods have functionality added. 
These are discussed below. 
	   
The setup method is used to prepare the updateValuesToCsound method for 
communication with Csound: 
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The first line of the method body creates a string; freqString, to name the 
communication channel that Csound will be sending values to. The next line uses the 
getInputChannelPtr method to create the channel pointer for Csound to transfer 
information to.  Effectively, iOS has sent a message to Csound, asking it to open a 
communication channel with the name “freqVal”. The Csound object allocates memory 
that iOS can write to, and returns a pointer to that memory address. From this point 
onwards iOS could send data values to this address, and Csound can retrieve that data by 
quoting the channel name “freqVal”. This is described in more detail in the next section 
(2.2.4). 
 
The next two lines of the code do the same thing, for amplitude parameter. This process 
creates two named channels for Csound to communicate through. 
 
The protocol method updateValuesToCsound uses variables in the .m file and assigns 
them to the newly allocated memory address used for communication. This ensures that 
when Csound looks at this specific memory location, it will find the most up to date 
value of the variable. This is shown below: 

 
 
The first line assigns the variable myFrequency (the value coming from the iOS slider 
for Frequency) to the channel freqChannelPtr which, as discussed earlier, is of type 
float*. The second line does a similar thing, but for amplitude. 
 
 
For the other Protocol CsoundObjCompletionListener it is possible to look for the file 
CsoundObj.h (which is found in Xcode’s left-hand file list, in the folder called classes). 
In there is definition of the protocol. 
 

 
 

In this example there is nothing special that needs to be done when Csound starts 
running, or when it completes, so the two methods (csoundObjDidStart: and 
csoundObjComplete:) are left as empty function shells. In the example, the protocol is 
left included, along with the empty methods, in case you wish to use them in your App. 
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2.2.4  The Csound File 

This Csound file contains all the code to allow iOS to control its values and output a 
sinusoid at some frequency and amplitude taken from the on-screen sliders.  There are 
three main sections: The Options, the Instruments, and the Score. These are all discussed 
in more detail in section 4. Each of these constituent parts of the .csd file will now be 
broken down to determine how iOS and Csound work together. 

2.2.4.1  The Options	  
There’s only one feature in the options section of the .csd that needs to be considered 
here; the flags. Each flag and its properties are summarised in Table 2.3. 
 

Flag Description 

-o dac Enables audio output to default device 

-+rtmidi=null 

  

Disables real-time MIDI Control 

-d Suppress all displays 
 

Table 2.3-Csound Flags 

 

2.2.4.2 The Instrument 

The first lines of code in the instrument set up some important values for the .csd to use 
when processing audio. These are described in Table 2.4, and are discussed in more 
detail in the Reference section of the Csound Manual. 
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Line Description 

sr = 44100 

  
This sets the sample rate of Csound to 44100 Hz. It is imperative that the 
sample rate of the Csound file corresponds with the sample rate of the 
sound card the code is running on. 

ksmps = 64  This defines the control rate. In the example this will determine the speed 
that the variables in Csound are read. ksmps is actually the number of 
audio samples that are processed before another control update occurs. 
The actual control rate equates to sample rate / ksmps (i.e. 44100 / 64 = 
689.0625 Hz). 

nchnls = 2 This is the number of audio channels. 2 = standard stereo. 

0dbfs = 1 

  

This is used to ensure that audio samples are within the apropriate range, 
between zero and one. Anything greater than one will induce clipping to 
the waveform. 

 
Table 2.4-Csound .csd Options 

 

The instrument then takes values from Csound using the chnget  opcode: 
 
 

	  
	   
 
Here, the chnget command uses the “freqVal” and “ampVal” channels previously 
created in iOS to assign a new control variable. The variables kfreq and kamp are 
control-rate variables because they begin with the letter ‘k’. They will be updated 
689.0625 times per second. This may be faster or slower than iOS updates the agreed 
memory addresses, but it doesn’t matter. Csound will just take the value that is there 
when it accesses the address via the named channel. 
These control-rate variables are used to control the amplitude and frequency fields of the 
opcode oscil; the Csound opcode for generating sinusoidal waves. This is then output in 
stereo using the next line. 
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The third parameter of the oscil opcode in this case is 1. This means ‘use f-table 1’. 
Section 3.3 explains f-tables in more depth. 

2.2.4.3 The Score 

The score is used to store the f-tables the instrument is using to generate sounds, and it 
allows for the playing of an instrument. This instrument is then played, as shown below: 

 

This line plays instrument 1 from 0 seconds, to 10000 seconds. This means that the 
instrument continues to play until it is stopped, or a great amount of time passes.  

It is possible to send score events from iOS using the method sendScore. This is 
discussed in more depth in section 6.1. 
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3 Using the Mobile Csound API in an Xcode Project  

Section 3 provides an overview of how to set up your Xcode project to utilize the 
Mobile Csound API, as well as how to download the API and include it into your 
project.  

3.1 Setting up an Xcode Project with the Mobile Csound API  
This section describes the steps required to set up an Xcode project for use with the 
Mobile Csound API.  Explanations include where to find the Mobile Csound API, how 
to include it into an Xcode project and what settings are needed. 

3.1.2 Creating an Xcode Project 
This section briefly describes the settings which are needed to set up an Xcode project 
for use with the Mobile Csound API.  Choose the appropriate template to suit the needs 
of the project being created.  When choosing the options for the project, it is important 
that Use Automatic Reference Counting is not checked (Figure. 3.1).  It is also 
unnecessary to include unit tests. 
 
 
 

 
 

Figure 3.1-Project Set Up 

 
Note: When including this API into a pre-existing project, it is possible to turn off ARC 
on specific files by entering the  compiler sources, and changing the compiler flag 
to: ‘-fno-objc-arc’ 
 

3.1.3 Adding the Mobile Csound API to an Xcode Project 
Once an Xcode project has been created, the API needs to be added to the Xcode 
project.  To add the Mobile Csound API to the project, right click on the Xcode project 
and select Add files to <myProject>.  This will bring up a navigation window to search 
for the files to be added to the project.  Navigate to the Csound-iOS folder, which is 
located as shown in Figure 3.2 below. 
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Figure 3.2-Navigating to the API Folder 

	  
Select the whole folder as shown and click add.  Once this has been done, Xcode will 
provide an options box as shown in Figure 3.3. Check Copy items into destination 
group’s folder (if needed). 
 

 

Figure 3.3-Adding the API Folder 

 
 
The options in Figure 3.3 are selected so that the files which are necessary to run the 
project are copied into the project folder. This is done to make sure that there are no 
problems when the project folder is moved to another location - ensuring all the file-
paths for the project files remain the same. 
 
Once this addition from this section has been made, the project structure displayed in 
Xcode should look similar to that in Figure 3.4. 
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Figure 3.4 - The Main Bundle for the Project 

3.1.4 Compiling Sources 
A list of compile sources is found by clicking on the blue project file in Xcode, 
navigating to the Build Phases tab and opening Compile Sources.  Check that the 
required sources for the project are present in the Compile Sources in Xcode.  All the 
files displayed in Figure 3.5 should be present, but not necessarily in the same order as 
shown. 
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Figure 3.5-View of ‘Compile Sources’ Window 

3.1.5 Including the Necessary Frameworks 
There are some additional frameworks which are required to allow the project to run.  
These frameworks are: 
 

! AudioToolbox.framework 
! CoreGraphics.framework 
! CoreMotion.framework 
! CoreMIDI.framework 

 
To add these frameworks to the project, navigate to the ‘Link Binary With Libraries’ 
section of Xcode.  This is found by clicking on the blue project folder and navigating to 
the ‘Build Phases’ tab, followed by opening ‘Link Binary With Libraries’.  To add a 
framework, click on the plus sign and search for the framework required.  Once all the 
necessary frameworks are added, the ‘Link Binary With Libraries’ should look similar 
to Figure 3.6 below. 
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Figure 3.6-Adding Necessary Frameworks 

 

3.1.6 The .csd File 
The project is now set up for use with the Mobile Csound API.  The final file which will 
be required by the project is a .csd file which will describe the Csound instruments to be 
used by the application.  A description of what the .csd file is and how to include one 
into the project is found in Section 3.3.  This file will additionally need to be referenced 
appropriately in the Xcode project.  A description of where and how this reference is 
made is available in Section 2.2.3.2. 
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3.2 Setting up the View Controller 
This section describes how the ViewController.h and the ViewController.m should be 
set up to ensure that they are able to use the API. It will discuss what imports are 
needed; conforming to the protocols defined by the API; giving a brief overview. This 
section can be viewed in conjunction with the example project provided. 

3.2.1 Importing 
So that the code is able to access other code in the API, it is important to include the 
following imports, along with imports for any additional files required. The three 
imports shown in Table 3.1 are used in the header file of the view controller to access 
the necessary files to get Csound-iOS working: 
	  	  
 
 

Import Description 
#import “CsoundObj.h”   This is used so that the code is able to access all 

the key methods of the API. 
#import 
“CsoundValueCacheable.h” This must be used to access the methods 

‘updateValuesFromCsound’ and 
‘updateValuesToCsound’. These methods are used 
to communicate between Csound and iOS. 

	   

Table 3.1-Header File Imports 

In our example you can see these at the top of ViewController.h 
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3.2.2 Conforming to Protocols 
It is imperative that the view controller conforms to the protocols outlined the 
CsoundObj.h file; the file in the API that allows for communication between iOS and 
Csound.  This must then be declared in the ViewController.h file: 
 

 
 
 
 
The API authors chose to use protocols so that there is a defined set of methods that 
must be used in the code. This ensures that a consistent design is adhered to. They are 
defined in the CsoundValueCacheable.h file thus: 
 
 

 
 

 
Each of these must then be implemented in the ViewController.m file. If it is 
unnecessary to implement one of these methods, it still must appear but the method body 
can be left blank, thus: 
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3.2.3 Overview of Protocols 
When writing the code which allows us to send values from iOS to Csound, it is 
important that the code conforms to the following protocol methods (Table 3.2): 
 

Protocol methods Action 
-(void)setup:(CsoundObj*)CsoundObj Set up the necessary channels and 

pointers to communicate with 
Csound. 

-(void)updateValuesToCsound Update the values being sent from 
iOS to Csound. 

-(void)updateValuesFromCsound Collect any values from Csound. 
-(void)cleanup Reset any values used in 

communication and de-allocate any 
memory used. 

-(void)csoundObjDidStart:(CsoundObj*)csoundObj This method is called when a Csound 
object is created. This allows 
developers to notify the user that 
Csound is running on iOS.  

-(void)csoundObjComplete:( CsoundObj*)csoundObj Much like the way the 
‘csoundObjDidStart’method works, 
this allows developers to notify the 
user that Csound has stopped running 
in iOS. 

Table 3.2-Protocol methods which must be implemented in your ViewController.
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3.3 Looking at the Csound ‘.csd’ File  
The following section provides an overview of the Csound editing environment, the 
structure of the .csd file, and how to include the .csd file into your Xcode project.   

3.3.1  Downloading Csound  

A Csound front-end editor, CsoundQt, can be used for editing the .csd file in the 
provided example project. It is advised to use CsoundQt with iOS because it is an ideal 
environment for developing and testing the Csound audio engine – error reports for 
debugging, the ability to run the Csound audio code on its own, and listen to its results. 
However, using CsoundQt is not essential to use Csound as an audio engine as Csound 
is a standalone language. CsoundQt is included in the Csound package download.  

In order to use Csound in iOS, the latest version of Csound (Version 5.19) will need to 
be installed. 

Csound 5.19 can be downloaded from the following link:  
 

http://sourceforge.net/projects/Csound/files/Csound5/Csound5.19/	  
 
 
In order for Xcode to see the .csd file, it must be imported it into the Xcode project. This 
is done by right-clicking on the ‘Supporting Files’ folder in the project, and clicking on 
‘Add files to (project name)’ (Figure 3.7).  
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Figure 3.7-Adding the .csd to iOS Project 

 
It is possible to edit the .csd file while also working in Xcode. This is done by right-
clicking on the .csd file in Xcode, and clicking on ‘Open With External Editor’ (Figure 
3.8).	  	  
 
 
 

 

Figure 3.8-Opening the .csd file with an external editor 

 
However, it is important to remember to save any changes to the .csd file before the 
Xcode project is recompiled. 
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3.3.2 The .csd File 

When setting up a Csound project, it is important that various audio and performance 
settings configured correctly in the header section of the .csd file. These settings are 
described in Table 3.3, and are discussed in more detail in the Csound Manual.  
 
 

Setting Description 
sr Sample rate 
kr Control rate 

ksmps Number of samples in control period 
(sr/kr) 

nchnls Number of channels of audio output 
0dbfs Sets value of 0 decibels using full scale 

amplitude 

Table 3.3-Csound .csd Settings 

 
It is important that the sample rate for the Csound project be set to the same sample rate 
as the hardware it will be run on. For this project, make sure the sample rate set to 
44100, as depicted in Figure 3.9. This is done by opening the Audio MIDI Setup, which 
is easily found on all Mac computers by searching in Spotlight. 
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Figure 3.9-Configuring Audio Hardware Settings 

	  

3.3.3 Instruments 

As mentioned previously, Csound instruments are defined in the orchestra section of the 
.csd file. The example project provided by the authors uses a simple oscillator that has 
two parameters: amplitude and frequency, both of which are controlled by UI sliders. 

Figure 3.10 on the following page shows a block diagram of the synthesizer we are 
using in the example project.  

 



 

	   	   	   	   	   	   180	  

3.3.4  Score 

The score is the section of the .csd file which provides instruments with control 
instruction, for example pitch, volume, and duration. However, as the goal here is for 
users to be able to interact with the Csound audio engine in real-time, developers will 
most likely opt instead to send score information to Csound that is generated by UI 
elements in the Xcode project. Details of the instrument and score can be found in the 
comments of the aSimpleOscillator.csd file 
 
Csound uses GEN (f-table generator) routines for a variety of functions. This project 
uses GEN10, which create composite waveforms by adding partials.  At the start of the 
score section, a GEN routine is specified by function statements (also known as f-
statements). The parameters are shown below in Table 3.4: 
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Parameter Description 
f1 Unique f-table identification number 
0 f-statement initialization time expressed in 

score beats 
16384 f-table size 
10 GEN routine called to create the f-table 
1 strength of ascending partials 

Table 3.4-Csound .csd F-Table Parameters 

 

In a Csound score, the first three parameter fields (also known as p-fields) are reserved 
for the instrument number, the start time, and duration amount. P-fields 4 and 5 are 
conventionally reserved for amplitude and frequency, however, P-fields beyond 3 can be 
programmed as desired.  

The p-fields used in the example project are shown in Table 3.5. 

 

p-field 1 2 3 4 5 

Parameter Instrument Number Start Duration Amplitude Frequency 

Table 3.5-Csound .csd P-field Parameters 

 
In this project, the first three p-fields are used: the instrument number (i1), the start time 
(time = 0 seconds), and the duration (time = 1000 seconds). Amplitude and frequency 
are controlled by UI sliders in iOS.  
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4  Common Problems 

This section is designed to document some common problems faced during the creation 
of this tutorial. It is hoped that by outlining these common errors, readers can debug 
some common errors they are likely to come across when creating applications using 
this API.  It discusses each error, describes the cause and outlines a possible solution. 

4.1  UIKnob.h is Not Found 
This is a problem related to the API. The older versions of the API import a file in the 
examples that sketches a UIKnob in Core Graphics. This is not a part of the API, and 
should not be included in the project. 
  
The file in question is a part of the examples library provided with the SDK. It is used in 
the file ‘AudioIn test’ and is used to sketch a radial knob on the screen. It gives a good 
insight into how the user can generate an interface to interact with the API. 
  
Solution: Comment the line out, or download the latest version of the API. 

4.2  Feedback from Microphone 
This is generally caused by the sample rate of a .csd file being wrong.  
  
Solution: Ensure that the system’s sample rate is the same as in the .csd file. Going to 
the audio and MIDI set-up and checking the current output can find the computer’s 
sample rate. See section 3.3.2 for more information. 

4.3  Crackling Audio 
There are numerous possible issues here, but the main cause of this happening is a CPU 
overload. 
  
Solution: The best way to debug this problem is to look through the code and ensure 
that there are no memory intensive processes, especially in code that is getting used a 
lot. Problem areas include fast iterations (loops), and code where Csound is calling a 
variable. Functions such as updateValuesToCsound and updateValuesFromCsound are 
examples of frequently called functions. 
  
An example: an NSLog in the updateValuesToCsound method can cause a problem. 
Say, the ksmps in the .csd is set to 64. This means that the Csound is calling for iOS to 
run the method updateValuesToCsound every 64 samples. Assuming the sample rate is 
44.1k this means that this CPU intensive NSLog is being called ~689 times a second; 
very computationally expensive.  
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4.4 Crackling from amplitude slider	  
When manipulating the amplitude slider in iOS, a small amount of clicking is 
noticeable. This is due to the fact that there is no envelope-smoothing function applied 
to the amplitude changes. While this would be an improvement on the current 
implementation, however; it was felt that the current implementation would be more 
conducive to learning for the novice Csound user. This would be implemented by using 
a port opcode.  
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5 Csound Library Methods  
This section will present and briefly describe the methods which are available in the 
Manual. 
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5.1	   Basic	  API	  Methods	  
	  

Name Method Call Description 

-(void) 

startCsound: 

(NSString*)csdFilePath; 

Provides the location of the 
.csd file which is to be used 
with the Csound object. 

startCsound -(void)startCsound: 

(NSString *)csdFilePath 
recordToURL:(NSURL 
*)outputURL; 

Provides the location of the 
.csd file which is to be used 
with the Csound object and 
specifies a URL to which it 
will record. 

startCsoundToDisk -
(void)startCsoundToDisk: 

(NSString*)csdFilePath 
outputFile: 

(NSString*)outputFile; 

Provides the location of the 
.csd file which is to be used 
with the Csound object and 
specifies a file to which it will 
record. This does not occur in 
realtime, but as fast as 
possible to the disk. This 
method is useful for batch 
rendering.  

stopCsound -(void)stopCsound; This uses the Csound object’s 
method ‘stopCsound’ to stop 
the instance of CsoundObj 
that it is called on.  

muteCsound -(void)muteCsound; Mutes all instances of Csound 

unmuteCsound -(void)unmuteCsound; Unmutes all instances of 
Csound 

recordToURL -(void)recordToURL: 

(NSURL *)outputURL; 

Begins recording to a 
specified URL. This can be 
defined at a later point in the 
code, even after Csound has 
been started. 

stopRecording -(void)stopRecording; Stops recording to URL 
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5.2	   UI	  and	  Hardware	  Methods	  
	  

Name Method Call Description 

addSwitch (id<CsoundValueCacheable>) 
addSwitch: 
(UISwitch*)uiSwitch 
forChannelName: 
(NSString*)channelName; 

Adds a switch to the 
Csound object.  The 
method requires a 
switch which already 
exists as part of the user 
interface and a name for 
the channel which will 
provide information 
about this switch to the 
.csd file. For more 
information about 
channels of information 
between Xcode and 
Csound see section 5. 

addSlider (id<CsoundValueCacheable>) 
addSlider: 
(UISlider*)uiSlider 
forChannelName:(NSString*) 
channelName; 

Adds a slider to the 
Csound Object.  The 
method requires a slider 
and a channel name.   

addButton (id<CsoundValueCacheable>) 
addButton: 
(UIButton*)uiButton 
forChannelName:(NSString*) 
channelName; 

Adds a button to the 
Csound Object.  The 
method requires a button 
and a channel name. 

enableAccelerometer (id<CsoundValueCacheable>) 
enableAccelerometer; 

Enables the 
accelerometer for use 
with the Csound object. 

enableGyroscope (id<CsoundValueCacheable>) 
enableGyroscope; 

Enables the gyroscope 
for use with the Csound 
object. 

enableAttitude (id<CsoundValueCacheable>) 
enableAttitude; 

Enables attitude to allow 
device motion to be 
usable with the Csound 
object. 
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5.3	   Communicating	  between	  Xcode	  and	  Csound	  

	  

	  	  
	  
	  
 

Name Method Call Description 

addValueCacheable -(void)addValueCacheable: 

(id<CsoundValueCacheable>) 

valueCacheable; 

Adds to a list of 
watched objects so 
that they can 
update every cycle 
of ksmps.   

removeValueCacheable -(void)removeValueCaheable: 

(id<CsoundValueCacheable>) 

valueCacheable; 

Removes a 
cacheable value 
from the Csound 
Object. 

sendScore -(void)sendScore:(NSString*) 
score; 
 
Eg:  
[self.csound sendScore: 
[NSString stringWithFormat: 
@"i1  0 10 0.5 %d", myPitch,]]; 
 
(sends a score to instrument 1 that begins at 0 
seconds, stops at 10 seconds, with amplitude 0.5 
and a pitch of the objective-C variable 
‘myPitch’).  

Sends a score as a 
string to the .csd 
file. See section 4 
for formatting a 
Csound score line. 

addCompletionListener -(void)addCompletionListener: 

(id<CsoundObjCompletionListener>) 

listener; 

Adds a listener for 
the Csound Object 
which waits for an 
action to be 
performed that the 
Csound object 
needs to react to. 
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5.4	   Retrieve	  Csound-‐iOS	  Information 
 

Name Method Call Description 

getCsound -(CSOUND*)getCsound; Returns the C structure 
that that the 
CsoundObj uses. This 
allows developers to 
use the Csound C API 
in conjunction with the 
Objective-C 
CsoundObj API. 

getInputChannelPtr (float*)getInputChannelPtr: 

(NSString*)channelName; 

Returns the float of an 
input channel pointer. 

getOutputChannelPtr (float*)getOutputChannelPtr: 

(NSString*)channelName; 

Returns the float of an 
output channel pointer. 

getOutSamples -(NSData*)getOutSamples; Gets audio samples 
from Csound. 

getNumChannels -(int)getNumChannels; Returns the number of 
channels in operation. 

getKsmps -(int)getKsmps; Returns ksmps as 
defined in the .csd file. 

setMessageCallback -(void)setMessageCallback: 

(SEL)method 
withListener:(id)listener; 

Sets up a method to be 
the callback method 
and a listener id. 

performMessageCallback (void) 
performMessageCallback: 

(NSValue *)infoObj; 

Performs the message 
callback. 
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6 Conclusions 

This tutorial provided an overview of the Csound-iOS API, outlining its benefits, and 
describing its functionality by means of an example project. It provided the basic tools 
for using the API, equipping iOS developers to explore the potential of this API in their 
own time. 
 
APIs such as this one, as well as others including libpd and The Amazing Audio Engine 
provide developers with the ability to integrate interactive audio into their apps, without 
having to deal with the low-level complexities of Core Audio. 

6.1 Additional Resources 
Upon completion of this tutorial, the authors suggest that the reader look at the original 
Csound for iOS example project, written by Steven Yi and Victor Lazzarini.  
This is available for download from:  

http://sourceforge.net/projects/csound/files/csound5/iOS/ 

 

 

About the Authors 

The authors are Masters students at the University of York Audio Lab. Each one is 
working on a separate interactive audio app for the iPad, and has each been 
incorporating the Mobile Csound API for that purpose. They came together to write this 
tutorial to make other developers aware of the Mobile Csound API, and how to utilize it.  
 
The motivation behind this tutorial was to create a step by step guide to using the 
Mobile Csound API. When the authors originally started to develop with the API, they 
found it difficult to emulate the results of the examples that were provided with the API 
download. As a result, the authors created a simple example using the API, and wanted 
others to learn from our methods and mistakes. The authors hope that this tutorial 
provides clarity in the use of the Mobile Csound API.  
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Appendix C - Csound for iOS Tutorial Code 
 The Xcode project described in the Csound for iOS tutorial is included on the 
additional DVD. Additionally, the project can be downloaded from the following 
SourceForge link:  

https://sourceforge.net/projects/csoundiosguide/	  
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Appendix D - Publication and Recognition of 
Csound for iOS Tutorial Guide 
	  

	   The	  following	  is	  a	  link	  to	  a	  blog	  entry	  regarding	  the	  Csound	  for	  iOS	  Tutorial	  
Guide:	  CreateDigitalMusic	  

	   The	  tutorial	  is	  also	  referenced	  on	  the	  Csound	  for	  iOS	  SourceForge	  WIKI,	  
which	  can	  be	  found	  here:	  Csound	  for	  iOS	  SourceForge	  WIKI	  

	   Additionally,	  the	  author	  was	  asked	  to	  submit	  the	  contents	  of	  the	  tutorial	  to	  
the	  open-‐source	  FLOSS	  manual	  section	  on	  Csound.	  The	  chapter	  can	  be	  found	  at	  the	  
following	  link:	  Csound	  for	  iOS	  Chapter	  in	  the	  FLOSS	  Manual	  

	   The	  following	  page	  is	  an	  email	  that	  was	  sent	  by	  Dr.Richard	  Boulanger,	  editor	  
of	  the	  The	  Csound	  Book	  and	  developer	  of	  apps	  utilizing	  the	  Csound	  for	  iOS	  API,	  to	  
the	  Csound	  users	  mailing	  list	  regarding	  the	  Csound	  for	  iOS	  Tutorial.	  	  	  
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Appendix E - Gestural Intuitiveness Study 
Participant Handout 
 
 Appendix E consists of the participant handout given to subjects partaking the 
Preliminary Study on Gestural Intuitiveness, discussed in Chapter 3. 
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Appendix F - Gestural Intuitiveness Study 
Participant Questionnaires 

 
 Appendix F consists of the participant questionnaires that subjects filled out after 
completing the study on gestural intuitiveness. PDF copies of the completed 
questionnaires can be found on the additional DVD.
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Appendix G - Gestural Intuitiveness Study 
Spreadsheets 
 

 Excel spreadsheets used for data analysis in Chapter 3 of this thesis, Preliminary 
Study on Gestural Intuitiveness, are included on the additional DVD. 
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Appendix H - Csound Code/audio files for 
Gestural Intuitiveness Test 
 

 The Csound .csd file and the audio clips generated from it that were used in the 
Preliminary Study on Gestural Intuitiveness are included in the additional DVD.  
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Appendix I - Video Clips from Gesture 
Intuitiveness Test 
 

 Video clips taken during the Preliminary Study for Gesture Intuitiveness are 
included on a YouTube channel that can be found at the links below: 

 
Gesture Test Videos
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Appendix J - App User Test Participant Handout 
 Appendix J consists of the participant handouts given to subjects partaking in 
both the initial and subsequent App User Tests, described in Chapter 5. The first two 
pages of the handouts for both tests are identical in content. The third page of each test 
handout (for users who took the repeat test) is signified accordingly.  
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Appendix K - App User Test Questionnaires 
 Appendix K consists of subjects’ responses after the completed the App User 
Test(s). Completed questionnaires from both sets of tests are included. PDF copies of 
the completed questionnaires can be found on the additional DVD.  
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Appendix L - App User Test Spreadsheets 
 

 Excel spreadsheets used for data analysis in the App User Tests, discussed in 
Chapter 5, are included on the additional DVD.  
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Appendix M - Video Clips from App User Tests 
 

 Video clips taken during the App User Tests can be found on a YouTube 
channel, located at the following link:  

Test1	  
	  
Test2	  
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Appendix N - Subject Audio Clips 
 

 Audio recordings of subjects’ responses after taking the App User Tests are 
included on the additional DVD.  
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Appendix O - App User Test Xcode Projects 
 

 The Xcode projects used to create the three apps used in the App User Tests are 
included on the additional DVD. The following screen-captures are of the .h and .m files 
of the respective Test Projects. 

 Pages 260-264 contains the .h and .m files for the Rotary Knobs Test App. 

 Pages 265-269 contains the .h and .m files for the Faders Test App. 

 Pages 270-274 contains the .h and .m files for the Touches Test App.  
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Appendix P – App User Test .csd File 
 

 The .csd file used in all three of the test apps created for this thesis is included on 
the additional DVD. Although the label for the .csd says “1306-KNOBS.csd”, the .csd is 
exactly the same as the ones used in all three test apps.  
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Appendix Q - Literature Repository  
 

 All available electronic literature that is cited in this thesis is included on the 
additional DVD. Literature that was read by the author during the research process, but 
not used in the thesis, is included as well.  
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Appendix R - Fraunhofer MSc Presentation 
 
 Appendix R on the DVD includes a PowerPoint presentation given by the author 
regarding the work done as part of this MSc thesis while on an internship at Fraunhofer 
IIS in Erlangen, Germany.  
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