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Summary

The penalty method is a versatile and widely used technique for imposing constraints

in finite element analysis. Traditionally, it is implemented by adding artificial stiff-

ness to the system equations. However, this leads to large eigenfrequencies being

introduced, which, when used in explicit dynamics, can significantly decrease the

critical time step of an analysis. This in turn vastly increases computational expense,

increases the chances of instability, and generally leads to a less robust formulation.

The mass penalty method, a less widely used penalty technique that operates on the

mass matrix of a dynamic system, does not introduce large eigenfrequencies, but is

less accurate and less versatile than the traditional stiffness penalty method.

In this thesis, the two methods are combined to form the bipenalty method. A

general formulation is provided that can be used to describe any number of arbitrary

multipoint constraints. Mathematical proofs are developed that show that the bipen-

alty method, like the stiffness penalty method, introduces extra eigenfrequencies into

the system, but that they can be carefully controlled by manipulation of the stiffness

and mass penalty parameters. It is shown that it is a simple matter to select these

parameters such that the critical time step is unaffected by the constraints.

The constraint imposition accuracy of the method is analysed, and found to be

comparable to that of the traditional stiffness penalty method. An algorithm that

describes how to select the penalty parameters for maximum accuracy is provided.

Low errors are attainable due to the fact that very large penalty parameters can be

used without causing instability.

The method is then applied for the first time to two problem types commonly

solved using penalty methods: crack propagation (modelled using cohesive surfaces),

and contact-impact. A series of examples are presented that demonstrate the stability

and accuracy of the method.
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“Picking the correct penalty parameter is a challenge.”
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Chapter 1

Introduction

In order to model a physical phenomenon numerically, a certain amount of inform-

ation is required about the problem under consideration. This information may be

split into categories based on its nature. Firstly, we must know the geometry of the

problem: the size, shape and extent of the physical bodies we wish to simulate. Then,

we require a reasonable model of how those materials behave under the conditions

that we would like to investigate. Finally, we must consider the boundary conditions

of the problem. Boundary conditions are a set of constraints which provide informa-

tion about what is happening along the boundaries of well-understood regions. For

example, in the field of solid mechanics problems are often posed in the form of

a boundary value problem: a differential equation together with a set of boundary

conditions. The differential equation (e.g., the wave equation) describes displace-

ments within regions of material, while the boundary conditions are used to model

supports, external forces and any other additional constraints that must be applied

to the model.

The application of boundary conditions, therefore, is relevant to almost every

problem within the field of engineering. Indeed, many currently ongoing research

topics are heavily concerned with the proper application and implementation of suit-

able boundary conditions, from the modelling of structural supports and periodic

structures to the simulation of crack propagation and contact-impact. In all of these

cases a suitable technique must be selected based on the computational reliability,

stability and expense of the various methods, the ease with which they can be imple-

mented, and how accurately the constraints are enforced.

1



2 CHAPTER 1. INTRODUCTION

This thesis sets out to investigate the bipenalty method, a new technique that can

be used to impose constraints in dynamic finite element analysis. The main focus

is the time domain analysis of elastic materials. The remainder of this chapter will

introduce some preliminary concepts so that the specific aims and objectives of the

work may be clearly stated.

1.1 Constraints in finite element analysis

The finite element (FE) method is a numerical technique used to obtain approxim-

ate solutions to partial differential equations. In the present work we consider a

displacement-based finite element discretisation of the equations of elastodynamics,

a full derivation for which is given by, for example, Bathe [9]. In matrix form, the

semi-discretised dynamic equations of motion may be written as

Mü+Ku = f (1.1)

where M and K are the mass and stiffness matrices, respectively; u is the displacement

vector, f the vector of external forces, and dot notation is used to indicate derivatives

with respect to time. If structural damping is also taken into account, the system is

written

Mü+ Cu̇+ Ku = f (1.2)

where C is the structural damping matrix. The choice of whether to include structural

damping in a formulation depends entirely on the type of problem under consider-

ation. In the following technical discussion the damping matrix is often omitted for

the sake of clarity, although in these cases the general theories also apply to damped

systems.

This system of equations (1.1) represents the assembly of all the finite elements

required to describe the continuum we are considering. The vector u is of length n,

where n is the number of degrees of freedom (DOF) possessed by the system. In order

to enforce additional constraints we also consider a set of nc equality constraints,

written as

h = Gu− q (1.3)

where G is the constraint matrix of size nc × n, which describes the relationships
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between DOF for each constraint, q is a vector of prescribed displacements, and

h = 0 implies exact satisfaction of all constraints. The constraints given in (1.3) are

linear if G is constant in u, and non-linear if they depend on the displacements. The

remainder of this section will briefly describe the most commonly used methods for

enforcing these constraints.

1.1.1 Direct imposition

One method of enforcing (1.3) is to transform the system of equations given by (1.1)

so that the constraints are exactly satisfied. This modification of the system results

in a system of size n− nc; that is, an equation is removed for each constraint added,

with the number of DOF decreasing for an increasingly constrained system [22].

For example, imposing the constraint ui = 0 (and, by implication üi = 0) can be

achieved by simply removing the ith equation from the system of equations (1.1),

i.e.,
∑

j

�

Mi jü j + Ki ju j

�

= fi (1.4)

along with the corresponding columns in K and M, obtaining a so-called reduced sys-

tem. This reduced system is then solved for the remaining unknown displacements.

The reaction force fi can be obtained if required via (1.4) once the unknown dis-

placements (and accelerations) have been computed.

For such simple constraints this method is simple and effective, and it has the ad-

ditional advantage that the system size is reduced, but for constraints involving more

than one DOF the necessary transformations involve complicated matrix manipula-

tion (see Reference [22] for details). If the constraints change over time this can

be especially problematic. However, transformation does provide a robust method

for computing exact solutions when simple constraints are used, and will be used

in the present work (where possible) for the purposes of comparison, verification,

validation and error evaluation.

1.1.2 Lagrange multipliers

The Lagrange multiplier method (LMM) is another exact method of constraint en-

forcement, but with a higher level of versatility. It is executed by solving the system

equations (1.1) and the additional constraint equations (1.3) simultaneously. Thus,
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the size of the system increases from n to n+ nc.

The introduction of Lagrange multipliers into the equations of motion gives

Mü+ Ku+GTλ= f (1.5)

Gu= q (1.6)

where the vector λ contains the Lagrange multipliers, which must be determined

along with the unknown displacements. The multipliers generally have a physical

interpretation as constraint forces (e.g. reaction forces, contact forces).

The use of Lagrange multipliers creates a mixed method, where force-type DOF

are introduced alongside the spatial DOF as unknowns in the problem. For prob-

lems with a large number of constrained nodes this results in a large increase in the

size of the system and consequently the computational expense. Use of Lagrange

multipliers also results in a loss of positive definiteness which may cause numerical

difficulties, depending on the solution method employed. Despite these issues, the

LMM is popular for a wide range of problem types due to its accuracy and its high

adaptability, for instance the ease with which geometrically nonlinear constraints can

be handled [35].

Other techniques based on the LMM included the augmented Lagrangian [70]

and the perturbed Lagrangian [72].

1.1.3 Penalty methods

The traditional penalty method has long been used in a wide range of fields. Its dis-

covery is sometimes attributed to a 1943 paper by Courant [23], although elsewhere

it has been suggested that the concept is “so basic that it would be facetious to at-

tribute its initial use to any single person” [62]. The method takes a minimisation

problem (in the case of structural analysis, the minimisation of potential energy) and

adds a set of penalty functions, one for each constraint. These functions multiply the

constraint violation by a large coefficient, called the penalty parameter. As this pen-

alty parameter is increased, the violation is penalised more and more severely, forcing

the solution closer and closer to the solution of the constrained problem. However,

the constraints are only satisfied exactly in the limit of the penalty parameter tending

to infinity. In practise infinite parameters cannot be used and hence the constraints



1.1. CONSTRAINTS IN FINITE ELEMENT ANALYSIS 5

are only approximately imposed.

The penalty method introduces no new solution variables, and so the size of the

system is unaffected by their introduction. When applied, the full system of equations

becomes

Mü+
�

K+GT PG
�

u = f+GT Pq (1.7)

where P is a diagonal matrix containing the penalty parameters, one for each con-

straint equation. If these parameters are large, a violation of the constraints res-

ults in a large correcting force GT PGu; however, large parameters also lead to ill-

conditioning of the penalised stiffness matrix, effectively setting an upper limit on

the magnitude of the entries in P. This leads to some (hopefully small) finite error

in the enforcement of the constraint (i.e., in Equation (1.3), h 6= 0).

The method described above is by far the most common form of the penalty

method, but for dynamic systems there is an alternative form of the penalty method

which operates on the mass matrix of the system instead of the stiffness matrix. The

mass penalty equivalent of (1.7) is

�

M+GT PG
�

ü+ Ku = f+GT Pq̈ (1.8)

where, as before, P is a matrix of penalty parameters. Stiffness penalty methods

are in general more accurate than mass penalty methods since they are activated by

constraint violations in the displacement vector, rather than the acceleration vector.

In addition, mass penalties for constraints concerning multiple DOF introduce non-

diagonal terms into the mass matrix, which can be problematic. However, compared

to stiffness penalties they have a very different effect on the eigenvalues of the system,

which can be very useful for certain problem types (for example, calculating natural

frequencies using the Rayleigh-Ritz method) [39,47].

Compared with the LMM, penalty methods have the advantage that no extra solu-

tion variables are required. However, non-physical displacements will in general oc-

cur due to the approximate nature of the technique. Penalty parameters must be

selected so that they are large enough to ensure errors are within acceptable bounds,

but not so large that they cause ill-conditioning. The ad hoc nature of this choice

gives rise to uncertainty and is often considered the main drawback of the method.

In addition, when traditional penalty methods are used in an explicit dynamics set-
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ting they often have an adverse effect on the critical time step, as we shall see in the

following chapters.

1.2 Time integration

So far we have considered only the semi-discretised equations of motion, meaning

that the problem has been discretised in space (via the finite element method) but

not in time. In order to achieve full discretisation, a time integration scheme must

be employed.

In the present work we set out to solve the equations of motion (1.1) for u = u(t)

at discrete intervals over a time period t ∈ [0, T] using a direct time integration

scheme. Direct time integration is a method by which the equations of motion are

integrated using a numerical step-by-step procedure without any prior transforma-

tion of the equations. Practically, this means finding an equilibrium solution for (1.1)

at time t = 0 using the known initial conditions of the problem, and then using this

solution to seek a solution for the next time step, t =∆t , and so on. This is achieved

by making certain assumptions about how displacements, velocities and accelera-

tions vary over the course of a time step, with different assumptions giving rise to

different time integration schemes.

1.2.1 Implicit and explicit methods

The majority of time integration procedures fall into one of two main categories:

implicit or explicit. Explicit methods are defined by the ability to calculate displace-

ments at time t +∆t in terms of accelerations and displacements at time t only. If a

diagonal mass matrix is used, and damping is neglected, no simultaneous equations

need to be solved. Conversely, for implicit methods the displacement calculation at

time t +∆t also involves accelerations at time t +∆t , which leads to a set of sim-

ultaneous equations that must be solved at each step [57]. For this reason, explicit

methods tend to be much more efficient per time step.

However, another important characteristic of explicit methods is that they are con-

ditionally stable. This means that the stability of the procedure is dependent on the

time step size; more precisely, there exists a critical time step above which solutions

will display instability. Many implicit methods are formulated so that they are uncon-
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ditionally stable, meaning that much larger time steps can be used to obtain a stable

results. In some cases, this saving makes up for the relatively expensive displacement

computation. On the other hand, larger time steps lead to lower resolution in the

time domain and the loss of high frequency wave information. Implicit schemes are

therefore most useful when only the overall low mode structural response is required

(for example in the fields of vibration and earthquake engineering) since in this case

large time steps can safely be used [42]. When a detailed picture of stress wave

propagation is required (e.g. damage mechanics, blast and impact engineering) time

steps must be kept relatively small, making explicit methods much more practical.

Examples of both implicit and explicit direct integration methods can be derived

from the Newmark family, which provide key assumptions for the calculation of dis-

placement and velocity, expressed as

dt+∆t = dt +∆tvt +
∆t2

2
[(1− 2β)at + 2βat+∆t] (1.9)

vt+∆t = vt +∆t[(1− γ)at + γat+∆t] (1.10)

where dt , vt and at are the time-discretised approximations of the displacement,

velocity and acceleration at time t , and∆t is the time step. The Newmark parameters

β and γ dictate properties of the scheme, such as stability, accuracy and efficiency.

Combined with the fully discretised governing equations

Mat+∆t + Cvt+∆t +Kdt+∆t = ft+∆t (1.11)

(with damping now included for increased generality) and initial conditions,

d0 = u(0) (1.12)

v0 = u̇(0) (1.13)

we have all the relations required to calculate displacements, velocities and accel-

erations at discrete intervals t = 0,∆t , 2∆t , . . . , T −∆t , T . Some commonly used

integration schemes emerge by using certain values for β and γ, such as the linear

acceleration method (β = 1/6, γ = 1/2) and the Fox-Goodwin method (β = 1/12,

γ= 1/2).

As an example, consider the constant average acceleration method, which emerges
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when taking Newmark parameters β = 1/4 and γ = 1/2. By manipulating (1.9) and

(1.10) we may obtain expressions for at+∆t and vt+∆t in terms of dt+∆t . Substituting

these relations into (1.11) gives

�

4

∆t2
M+

2

∆t
C+K

�

dt+∆t = ft+∆t +M

�

4

∆t2
dt +

4

∆t
vt + at

�

+C

�

2

∆t
dt + vt

�

(1.14)

which may then be solved for the unknown displacements dt+∆t . Clearly, this re-

quires the solution of a set of simultaneous equations due to the presence of the

non-diagonal stiffness matrix K on the left hand side of the equation. However, as an

unconditionally stable method, stability is ensured for any choice of time step ∆t .

The central difference method (CDM) is perhaps the most commonly used explicit

solution algorithm for time domain FE analysis, providing the basis for commercial

solvers such as LS-DYNA [36]. It can be derived from the Newmark family by setting

β = 0 and γ= 1/2 [43], or from the standard difference expressions for acceleration

and velocity,

at =
1

∆t2
(dt−∆t − 2dt + dt+∆t) (1.15)

vt =
1

2∆t
(−dt−∆t + dt+∆t) (1.16)

Substituting these expressions into the damped system at time t ,

Mat +Cvt +Kdt = ft (1.17)

we obtain

�

1

∆t2
M+

1

2∆t
C

�

dt+∆t = ft −
�

K−
2

∆t2
M

�

dt −
�

1

∆t2
M−

1

2∆t
C

�

dt−∆t (1.18)

which can then be solved for dt+∆t . Note that the stiffness matrix is present on the

right-hand side only. If it is appropriate to neglect structural damping (for short,

highly dynamic wave propagation problems it usually is) then the equations simplify

to give

dt+∆t =∆t2M−1(ft − Kdt) + 2dt − dt−∆t (1.19)

Furthermore, if the mass matrix is diagonal (e.g, when using a lumped mass matrix)
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then the matrix inversion is trivial and the computation is simplified even further;

there is no need to solve a linear system of equations (see Bathe [9, §9.2.1] for more

details).

1.2.2 Prescribed displacements

Explicit time integration routines give another option for the enforcement of simple

constraints, beyond those discussed in Section 1.1. If displacements and/or velocities

are provided as prescribed functions of time, these can be imposed by simply setting

the necessary values at each time step (if prescribed displacements are known, velo-

cities must be obtained through numerical differentiation). However, when boundary

conditions are given as linear or nonlinear algebaric equations relating two or more

DOF the implementation is complicated considerably. The most common alternative

methods in this case are penalty methods or the LMM [12].

1.2.3 The critical time step

The main advantage of the CDM is its low computational cost. However, the apparent

computational efficiency of the method is offset by the fact that it is conditionally

stable. That is, if the time step ∆t is set larger than some critical value ∆tcrit the

solution will exhibit instability, rendering the results meaningless. For the CDM this

critical time step is given by [43]

∆tcrit =
2

ωmax

(1.20)

where ωmax is the maximum eigenfrequency of the system. The eigenfrequencies of

a system are determined by solution of the generalised eigenvalue problem

�

K−ω2
i M
�

ui = 0 (1.21)

where the eigenvectors ui and corresponding eigenfrequencies ωi form the n ei-

gensolutions (ui,ωi). These eigensolutions are assumed to be ordered such that

ω1 ≤ ω2 ≤ . . . ≤ ωn, so that ωmax ≡ ωn. The eigenvalues of the system λi are

related to the eigenfrequencies by λi =ω
2
i .

For a solid mechanics FE problem the maximum eigenfrequency is dependent on
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the material properties and the FE mesh. For example, for a single two-noded linear

finite element, ωmax = 2ce/h, where ce =
p

E/ρ is the elastic wave speed in the bar

and h is the element length. In other words, a stiffer material or a more highly re-

fined mesh leads to an increase in the maximum eigenfrequency, while a more dense

material leads to a decrease. This holds true as a general principle for all element

types, although the eigenfrequencies of more complex 2D and 3D elements also in-

volve other parameters (e.g., Poisson’s ratio, element shape measures) and closed

form expressions are often unobtainable. An attempt to find analytic expressions for

the maximum eigenfrequencies of some common finite element types can be found

in Askes et al. [5], while Lin gives a theory for computing upper bounds for various

element types [53]. Investigations of this type show that for distorted 2D elements,

3D elements and higher order elements, analytical solutions are usually impossible

to retrieve.

In practice, the maximum eigenfrequency of an assembled FE system can only

be obtained numerically for all but the simplest of cases. Although this can be

achieved relatively efficiently using direct iteration (which allows the maximum ei-

genfrequency may be found without solving the full eigenvalue problem), this ap-

proach may still prove prohibitively expensive for large systems. A common solution

is to use the element eigenfrequency inequality, which can provide an upper bound

on the maximum eigenfrequency of the system [14]. This theorem states that

ωmax ≤ωe
max (1.22)

where ωe
max is the maximum eigenfrequency of all finite elements. Thus, a conser-

vative estimate for ωmax may be found by finding the maximum eigenfrequency of

all the individual elements in a mesh.

The time step limit (1.20) is often referred to as the Courant-Friedrichs-Lewy

(CFL) condition after the authors of the paper in which it was first reported [24,25].

The phenomenon is also explored in Reference [57], which gives an enlightening

and intuitive explanation of time step stability in implicit and explicit schemes. It is

suggested that the CFL stability limit can be thought of as “a requirement that the

physical information flow rate (wave speed) not exceed the computational informa-

tion flow rate” through the system [57]. Diagrams of information flow are provided
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Figure 1.1: Visualisation of information flow for a typical implicit (left) and explicit (right) time
integration procedure for a one-dimensional example. Adapted from Reference [57].

F

1 2 3 4 5

Figure 1.2: A one-dimensional bar with one fixed end and constant force F = 1 N

in Figure 1.1 for an implicit, unconditionally stable scheme and the explicit CDM, in

the context of a one-dimensional mesh. The right-hand diagram shows that the solu-

tion at any point is dependent on values from the previous time step only, and that

information is passed from node to node at a rate of ∆x/∆t . If physical informa-

tion (e.g., a displacement wave) is passed faster than computational information, the

scheme breaks down. Hence, both the wave speed and the mesh size directly affect

the critical time step. Information flow in the implicit constant average acceleration

method (shown on the left-hand side of the plot) does not pass exclusively from one

time step to the next, but also directly from node to node at each time step. This

means that (in a computational sense) information is transferred instantaneously,

resulting in an infinite information flow rate. Hence, time step size has no effect on

the stability of the scheme in this case.

To demonstrate the effects of time step instability, we now consider elastic wave

propagation in a one-dimensional bar modelled with four two-noded linear finite

elements, as shown in Figure 1.2. The bar has Young’s modulus E = 100 Pa, mass

density ρ = 1 kg/m3, and cross-sectional area A= 1 m2. Each element has a length of

h= 1 m, giving a critical time step of∆tcrit = 0.1 s. Figure 1.3 shows the tip displace-
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Figure 1.3: Tip displacement of bar for a range of sub- and super-critical time steps

ment over time. For super-critical time step values the solution displays instability,

manifesting here as a spurious oscillation of large amplitude. Time step instability

is characterised by unbounded exponential growth in displacements. Consequently,

it is usually obvious when time step instability occurs, but if the critical time step

condition (1.20) is violated by a small amount, and/or for a short period of time, it

may be more difficult to detect.

Penalty methods can have a drastic effect on the critical time step. Traditional

penalty methods add artificial stiffness to the system, as described by Equation (1.7).

This can introduce eigenvalues that are orders of magnitude larger than those as-

sociated with the unpenalised system [46]. This in turn decreases the critical time

step, ∆tcrit. If this is not accounted for the solution may become unstable; if it is

accounted for (by decreasing ∆t) the total computational cost of the analysis may

be significantly increased. In addition, the increase in cost is greater for larger pen-

alty parameters, creating a trade-off between the accuracy of constraint imposition

and computational expense. The mass penalty method, on the other hand, does not

increase the maximum eigenfrequency associated with the system [39, 47]. Its use

therefore does not decrease the critical time step.
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1.3 The bipenalty method

The bipenalty method is a formulation for constraint enforcement that sets out to

combine the stiffness and mass penalty methods. Stiffness penalties provide good

constraint enforcement, but tend to lower the critical time step of the analysis. On

the other hand, mass penalties are relatively inaccurate, and unsuitable for certain

problem types, but they do not have an adverse effect on ∆tcrit. Through the sim-

ultaneous use of stiffness- and inertia-type penalties it is possible to ensure that the

critical time step of an analysis is unaffected (or at least, not decreased) by the con-

straints imposed upon it, while providing performance that is comparable to the tra-

ditional stiffness penalty method [5,40,41,49].

Use of the bipenalty method results in penalty parameters being added to both

the stiffness and mass matrices of an FE system. Returning to the notation of Section

1.1, we have

�

M+GT PmG
�

ü+
�

K+GT PsG
�

u = f+GT Pmq̈+GT Psq (1.23)

where Pm and Ps now contain two different sets of penalty parameters: the mass pen-

alty parameters (αm)i and the stiffness penalty parameters (αs)i (where i = 1 . . . nc).

The so-called penalty ratio for each constraint is then defined as

Ri =
(αs)i

(αm)i
(i = 1 . . . nc) (1.24)

In the common case that penalty parameters are the same for all constraints, αs

and αm are used to refer to the stiffness and mass parameters values, respectively.

Likewise, when the penalty ratio is equal for all constraints it is referred to simply as

R. A full derivation of the bipenalty method is presented in Chapter 2.

1.3.1 Literature review

The present investigation builds upon earlier work that developed a bipenalty for-

mulation for imposing single absolute constraints [5]. This study showed that the

critical time step of an analysis can be preserved so long as the penalty ratio is kept

below a certain value. This value is known as the critical penalty ratio (CPR), de-

noted by Rcrit. However, the methodology for determining this value was dependent
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on the finite element shape functions used and necessitated the analytical solution of

eigenvalue problems, which becomes impossible for complex element types. In addi-

tion, the method of CPR determination was apparently only valid for single absolute

constraints, and as such could only be applied to a small range of problems.

An alternative treatment of the bipenalty method, derived from a variational FE

formulation, can be found in Reference [61]. In this work, a constraint on the time

derivative of a prescribed displacement constraint is added to the weak form of the

governing equations. The bipenalty method is therefore described as a “variationally

consistent” form of standard penalty methods, because constraints on both displace-

ment and its time derivative (i.e., velocity) are included in the variational formulation.

It is even stated that for time domain dynamics, both the pure stiffness and the pure

mass penalty methods “are not, in general, theoretically sound” due to the fact that

strictly speaking both constraints should be included in order to guarantee conver-

gence. It is also shown that the so-called “stiffness” of the system (in this context,

the ratio of largest to smallest eigenvalue, S =ωmax/ωmin) can be guaranteed to be

kept within the same order of magnitude only when the bipenalty method is used,

which is desirable for ensuring accuracy and stability.

More recent work by Ilanko and Monterrubio [48, 49] highlights some of the

advantages that the bipenalty method possesses for frequency domain analysis, es-

pecially for computing the eigenvalues of constrained systems. Guidance is provided

as to how to tune the penalty ratio R for optimum convergence of the eigenvalue

solution (as opposed to any time step stability concerns).

For contact-impact problems, the bipenalty method has been utilised even for im-

plicit, unconditionally stable time integration schemes. The use of penalty methods

that enforce displacement constraints only are known to lead to oscillations in the

contact forces [45], the origins of which can be “traced in part to the lack of satisfac-

tion of the constraint in the velocities” [1, p. 283]. The bipenalty method has been

used in two specific contact-impact formulations [1, 4] in an attempt to combat this

phenomenon.

Although using the bipenalty method for manipulation of the critical time step

has apparently not yet been fully explored, various other methods exist for artificially

reducing the maximum eigenfrequency of a system in order to increase tcrit. Probably

the most popular is mass scaling, which adds extra mass to a system in order to affect
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the higher modes and eigenfrequencies [54, 59]. In practise though, this technique

can only reliably be used when only the lower modes need to be determined with

accuracy (i.e., when global structural behaviour, not the propagation of waves, is of

interest).

1.4 Aims and objectives

The bipenalty method has the potential to provide a simple and accurate technique

for imposing all kinds of constraints in explicit dynamics without any need to adjust

the time step of the analysis. The method is variationally consistent [61] and may

provide more accurate constraint imposition when compared to standard penalty

methods (as has been shown for contact-impact problems [1]). The main objectives

of this thesis are as follows:

Fundamentals

• Develop a bipenalty formulation for an arbitrary set of constraint equations that

can be easily applied to a wide variety of problem types.

• Ensure that the maximum ratio of stiffness and mass penalty parameters that

can be used without instability can be easily calculated for all finite element

types and all constraint formulations.

• Investigate how the use of the bipenalty method affects accuracy, and determine

the optimum penalty ratio, if one exists.

• Investigate potential performance increases gained by introducing damping

penalties to the bipenalty formulation, as well as its effect on stability.

Applications

• Through medium-scale numerical analyses, test the performance of the bipen-

alty method when used as a basis for a new cohesive surface formulation for

dynamic crack propagation.

• Determine the nature and extent of any possible performance advantages that

the bipenalty method may possess when used as a basis for one- and two-

dimensional contact-impact formulations.
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1.5 Outline

The next chapter provides a full derivation of the bipenalty method for a set of arbit-

rary constraints, providing discussion on both the stiffness and mass penalty methods

in turn before combining the two techniques. An extension to the bipenalty method

that includes penalties in the structural damping matrix is then introduced, along

with a useful technique for efficiently solving a system with non-diagonal mass and

damping matrices using the central difference method.

In Chapter 3 attention is turned to time step stability, and especially how to tune

the bipenalty method in order to obtain a stable solution. Mathematical proofs are

presented that show the effect of the bipenalty method on the eigensolutions of an

FE system in order to determine how best to avoid stability issues.

The focus of Chapter 4 is the accuracy of the bipenalty method: especially how

it compares to using stiffness- or inertia-type penalty functions in isolation and the

effect the penalty ratio has on the accuracy of constraint imposition. The chapter

also includes guidelines on how to select penalty parameters for a bipenalty analysis,

taking into account both stability and accuracy of the solution.

At this point the theoretical analysis of the bipenalty method has concluded, and

we move on to practical applications. Chapter 5 examines interface elements, with a

focus on their use in dynamic crack propagation. The two main examples presented

are the single-edge-notched beam and the cracking of a PMMA plate under fast load-

ing. Comparisons are made between the bipenalty method and existing techniques.

Chapter 6 moves on to test out the bipenalty method for use in contact-impact prob-

lems, focussing on stability and the presence of spurious, non-physical oscillations in

the contact force.

Finally, a summary of the key findings of the work and suggestions for further

study are given in Chapter 7.



Chapter 2

Formulation of the

bipenalty method

The traditional penalty method for structural problems, as described in Section 1.1.3,

relies on a modification of the system stiffness matrix. It is a technique with a high

degree of adoption within the numerical analysis community. In the field of dynamic

analysis a less well-known but closely related technique has been developed which

modifies the mass matrix of a system instead of its stiffness matrix. Here, we refer

to this method as the mass penalty method, while the more traditional technique

is called the stiffness penalty method. This chapter sets out to give formulations of

both methods, before describing the bipenalty method: the simultaneous use of both

techniques.

2.1 The stiffness penalty method

The traditional stiffness penalty method can be derived in a number of ways. In

structural analysis the most common method is to consider the total potential energy

of the system [9,22,84],

U =
1

2
uT Ku− uT f (2.1)

The total potential energy U consists of the internal strain energy and the work

done by external forces. By minimisation of this energy expression the finite element

method describes the quasi-static structural response.

The penalty method proceeds by adding a so-called penalty function to the ex-

17
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pression for potential energy, so that

U P =
1

2
uT Ku− uT f+

1

2
hT Psh (2.2)

where h is a vector describing the violation of the constraint equations as described

in Equation (1.3) and Ps is a diagonal matrix containing the stiffness penalty para-

meters. As these parameters tend to infinity, the minimisation ofU P means that the

h→ 0 and the constraints are, in theory, exactly enforced. The penalty parameters

have units of stiffness (N/m), the same as the entries in K, to which they will ulti-

mately be added. Minimisation of the penalised total potential energy expression1

results in
dU P

duT
= (K+KP)u= f+ fP

s (2.3)

where KP = GT PsG and fP
s = GT Psq. For dynamic analyses, kinetic energy, given by

T =
1

2
u̇T Mu̇ (2.4)

must also be taken into account. In this case, minimisation of the total energy leads

to the full dynamic equations of equilibrium,

d

d t

∂ T
∂ u̇T

+
∂U P

∂ uT
=Mü+ (K+KP)u = f+ fP

s (2.5)

Therefore, application of the penalty method consists of adding extra terms to the

stiffness matrix K. The position of those terms with respect to the global stiffness mat-

rix is decided by the constraint equations, and their magnitude is largely controlled

by the magnitude of the penalty parameters in Ps. If q is non-zero, extra terms must

also be added to the external force vector, f.

By considering the Rayleigh quotient of this system, we may gain some insight

into the effect that the penalty matrix KP has on the system’s associated eigenvalues.

The Rayleigh quotient for a dynamic system is given by

R(ψ) =
ψT Kψ

ψT Mψ
ψ ∈ Rn,ψ 6= 0 (2.6)

1Minimisation of U P is expressed by taking the derivative with respect to u and setting it equal to

zero. The notational convention adopted for the derivative of a scalar x with respect to a vector y is
d x

dy
if the result is expressed as a row vector and

d x

d yT
if the result is a column vector.
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If an eigenvector of the system is substituted for the arbitrary vector ψ the Rayleigh

quotient is equal to the associated eigenvalue. In addition, the maximum value of

R(ψ) is equal to the maximum eigenvalue of the whole system, i.e., [43]

λmax =max[R(ψ)] (2.7)

where the eigenvalues of the system are given by λ1,λ2, ...λN when sorted into as-

cending order and λmax ≡ λN . For our stiffness penalised (SP) system, we have

RSP(ψ) =
ψT (K+ KP)ψ

ψT Mψ
(2.8)

A detailed analysis of the eigenvalue problem for SP systems is given by Ilanko [46],

who builds on the classical theories developed by Rayleigh [65] for vibrating systems.

For now it is sufficient to note that the addition of positive stiffness values in the mat-

rix KP cannot decrease the Rayleigh quotient given in (2.8). Thus, stiffness penalties

tend to increase the maximum eigenvalue λmax = ω
2
max of the system. We might

indeed expect this result, considering that the natural frequency of an undamped

single degree of freedom mass-spring system is given by ω=
p

k/m, where k and m

and the stiffness and mass, respectively (meaning that an increase in stiffness leads

to an increase in the natural frequency).

For a more intuitive grasp of the stiffness penalty method, we now turn to a com-

monly cited physical interpretation. It turns out that it is often possible to compute

the stiffness penalty matrix KP using the stiffness matrix for a 1D spring of stiffness

αs,

Kspring = αs





1 −1

−1 1



 (2.9)

Presently we consider as an example a three-element FE model of a bar, fixed at

one end, as shown in Figure 2.1(a). For simplicity we use two-noded linear finite

elements [84, §1.2] (referred to here as ‘bar elements’) with Young’s modulus E,

cross-sectional area A and length h. The full, unconstrained global stiffness matrix is
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(a)

(b)

(c)

K + KP =





2k −k 0
−k 2k + αs −k
0 −k k





K + KP =





2k + αs −k −αs

−k 2k −k
−αs −k k + αs





K =





2k −k 0
−k 2k −k
0 −k k





u1 u2 u3 u4

u5

Figure 2.1: Left: physical representation of a 1D bar subject to various constraints, modelled
using 2D finite elements and the stiffness penalty method. Right: the relevant reduced global
stiffness matrices.

then

Kfull
(a) =















k −k 0 0

−k 2k −k 0

0 −k 2k −k

0 0 −k k















(2.10)

where k = EA/h. We can enforce the support at the left-hand end of the bar (i.e., set

u1 = 0) by removing the rows and columns corresponding to the first DOF to obtain

the so-called reduced stiffness matrix. The reduced matrix for the unpenalised system

is shown in Figure 2.1(a).

In Figure 2.1(b) node 3 has been fixed using the penalty method, which is equi-

valent to connecting node 3 to a fixed support using a spring element of stiffness

αs. There is only one occurrence of the penalty parameter αs despite the addition

of the 2 by 2 matrix given in (2.9) because the additional fixed support has been

removed to form the reduced stiffness matrix. The full stiffness matrix, disregarding

fixed supports is

Kfull
(b) =





















k −k 0 0 0

−k 2k −k 0 0

0 −k 2k+αs −k −αs

0 0 −k k 0

0 0 −αs 0 αs





















(2.11)
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In this case the first and last rows and columns are deleted, resulting in the 3 by 3

reduced matrix given in 2.1(b).

The system shown in Figure 2.1(c), in which nodes 2 and 4 are connecting by

a spring element, is equivalent to using the stiffness penalty method to impose the

constraint u2 − u4 = 0.

The two constrained scenarios shown above demonstrate two important kinds of

constraint. The first, in Fig. 2.1(b), is an absolute or single-point constraint, because

there is only one DOF featured in the governing constraint equation (u3 = 0). If more

than one DOF is involved, as in Fig. 2.1(c), the constraint is known as a relative or

multipoint constraint. Single-point constraints lead to a penalty matrix with diagonal

terms only, while multipoint constraints lead to (usually negative) off-diagonal terms.

2.2 The mass penalty method

In comparison with the stiffness penalty method, the mass penalty method is rel-

atively unknown. The most detailed analysis from a frequency domain perspective

can be found in a contribution by Ilanko [47], which shows that mass penalisation

results in convergence towards the fully constrained system for increasing penalty

parameter magnitude for both positive and negative penalties. As for stiffness pen-

alties (which in fact may also be either positive or negative [46]) the exact solution

is shown to be bounded by the results obtained with positive and negative penalties,

allowing for a much greater degree of accuracy than could ordinarily be achieved. A

similar study, focusing on time domain analysis, provides proofs of convergence and

of boundedness for explicit and implicit time integration schemes [39].

A related and more commonly used technique is that of mass scaling. Essentially,

this involves adding artificial or ‘virtual’ off-diagonal entries to the mass matrix of a

system in order to decrease the eigenvalues of a system and therefore increase the

critical time step. Macek and Aubert [54] and Olovsson et al. [59], each propose

using so-called ‘selective mass scaling’, which attempts to target the higher eigenfre-

quencies so that they are reduced to a greater extent than the lower modes. This

method is generally seen as purely heuristic, with little physical basis, although in a

recent paper Askes et al. argue that mass penalties for multipoint constraints, mass

scaling and the concept of micro-inertia are in fact equivalent for 1D linear finite
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elements [6].

The mass penalty method presented here proceeds in a similar way to the stiff-

ness penalty method, but instead of penalising the potential energy of the system we

penalise the kinetic energy expression given in (2.4). In order to do this we must dif-

ferentiate the displacement constraint equations (1.3) with respect to time in order

to obtain the corresponding velocity constraints, so that

ḣ= Su̇− q̇ (2.12)

We then modify the expression for kinetic energy (2.4) accordingly, giving

T P =
1

2
u̇T Mu̇+

1

2
ḣT Pmḣ (2.13)

Once again minimising total energy, with kinetic energy penalised and potential en-

ergy unaltered, we obtain

d

d t

∂ T P

∂ u̇T
+
∂U
∂ uT

= (M+MP)ü+Ku = f+ fP
m (2.14)

where MP = GT PmG and fP
m = GT Pmq̈. Therefore, the mass penalties in MP are only

activated if the computed acceleration vector violates the given constraints. Note that

the term fP
m is rarely required, since the prescribed displacement vector q is generally

constant in time and hence q̇ = q̈= 0.

The physical interpretation of mass penalties is a little more esoteric than that

of the stiffness penalty method. While for simple absolute constraints it is tempting

to think of simply attaching large masses to the structure, this analogy breaks down

when considering relative constraints. What is needed is a mechanical analogy to the

spring: a device which applies a force to its two terminals when a relative acceleration

is applied. In fact, it seems that such a device was not identified until recently, when

the concept of the mechanical inerter was first introduced in 2002 [73]. The inerter

does for acceleration what springs and dampers do for displacement and velocity,

respectively, without needing large mass or a connection to ground. The symbol for

the mechanical inerter is shown in Figure 2.2 and a possible physical implementation

is shown in Figure 2.3. In any case, we can think of the mass penalty method as

adding non-physical mass (or, more precisely, inertia) at certain points in order to
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F F

v2 v1

F F

v2 v1
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v2 v1

d F

d t
= k(v2 − v1)

F = c(v2 − v1)

F = b
d(v2 − v1)

d t

Figure 2.2: Mechanical symbols and governing equations for a spring, damper and inerter
[73]

rack
gear

flywheel

Figure 2.3: Schematic of a simple realisation of the mechanical inerter [73]

restrain movement.

Returning to the simple example of a constrained 1D bar, we see that absolute

constraints may be interpreted either as a large mass (Fig. 2.4(b)), or as a direct ana-

logy to the stiffness penalty method with an inerter in place of the spring (Fig. 2.4(c)).

Figure 2.4(d) shows a relative constraint between nodes 2 and 4. Note that this again

leads to off-diagonal terms in the mass matrix. This would not usually be considered

a problem when used in conjunction with a consistent mass matrix. However, when

using lumped mass (as we are here) it is possible to make the assumption that the

mass matrix is diagonal, which is sometimes useful when selecting a solver. The fact

that the mass matrix has off-diagonal terms must therefore be taken into account

when imposing relative constraints with the mass penalty method.

Although mass penalties can be used to obtain constraint imposition accuracy

equal to that of the stiffness penalty method in some cases, a much larger penalty

parameter is generally required, which can lead to ill-conditioning of the mass matrix.

According to Paraskevopoulos et al. [61], there is also a “common consensus” that

mass penalty methods are “not derived from a rigorous mathematical formulation”,

although they argue that the mass penalty method is just as valid as the traditional
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stiffness penalty method. Of course, the method cannot be used in statics, which

also limits its widespread adoption. However, since adding mass penalties cannot

increase the Rayleigh quotient (2.6) of a problem, there is no increase in maximum

eigenfrequency [39,47], which in turn is a great advantage when using explicit time

integration.

(b)

(c)

(d)

M+MP =





2m 0 0
0 2m+αm 0
0 0 m





M+MP =





2m+αm 0 −αm

0 2m 0
−αm 0 m+ αm





(a) M=





2m 0 0
0 2m 0
0 0 m





u1 u2 u3 u4

Figure 2.4: Left: physical representation of a 1D bar subject to various constraints, modelled
using 2D finite elements and the mass penalty method. Right: the relevant reduced global
mass matrices.

2.3 The bipenalty method

After introducing these two methods, it is a simple matter to combine them for sim-

ultaneous use as the bipenalty method. In this case, penalty functions are applied

to both the potential and kinetic energy expressions given in Equations (2.1) and

(2.12), giving

U P =
1

2
uT Ku− uT f+

1

2
hT Psh (2.15)

T P =
1

2
u̇T Mu̇+

1

2
ḣT Pmḣ (2.16)
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Minimisation of total energy now yields

d

d t

∂T P

∂ u̇T
+
∂U P

∂ uT
= (M+MP)ü+ (K+KP)u= f+ fP (2.17)

where KP = ST PsS (2.18)

MP = ST PmS (2.19)

fP = ST Psq+ ST Pmq̈ (2.20)

Note that both the stiffness penalty matrix KP and mass penalty matrix MP have the

same form, the only difference being the penalty parameters contained in Ps and

Pm. If we assume that the penalty parameters have the same ratio for all constraint

equations, so that

R=
αs,i

αm,i

i ∈ [1, nc] (2.21)

then the two penalty matrices are in fact proportional to each other, and the stiffness

penalty matrix can be written as

KP = RMP (2.22)

This will be a common assumption in later chapters since it simplifies the analysis of

problems without being too restrictive; while it may be useful to use different para-

meter magnitudes for different types of constraint there is normally no motivation to

vary the ratios.

As stated earlier, stiffness penalties increase the maximum eigenfrequency of a

system while mass penalties do not. By using both together the effects of one are

countered by the effects of the other. In other words, we can tune the penalties used

in a bipenalty formulation in order to control the spurious eigenfrequencies that are

introduced by the stiffness penalty method without resorting to using the less accur-

ate mass penalty method. This idea has been explored for single absolute constraints

on certain finite elements [5] and as a method of controlling the ratio of maximum

to minimum eigenfrequency (S = ωmax/ωmin ) [61]. In the frequency domain it

has recently been used to improve the convergence properties of a penalised con-

straint [49]. In Chapter 3 we further explore the effect of the bipenalty method on

the eigenfrequencies of a system in a general way, so that clear guidance can be given

on the best choice of penalty ratio.
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2.4 The bipenalty method with damping

So far we have not considered structural damping in our formulation. In an FE ana-

lysis this is accounted for using a matrix of damping coefficients, C, so that the dy-

namic equations of motion become

Mü+ Cu̇+ Ku = f (2.23)

Thus, a velocity-dependent damping force is introduced. The intention is to approx-

imate the overall energy dissipation during the structural response. Although the

damping matrix is easily derived by including velocity dependent damping forces in

the strong form equation, the elemental damping matrices involve damping paramet-

ers that are frequency dependent, which in practice makes the standard FE assembly

procedure impossible [9, §4.2.1]. Hence, the damping matrix is often formed from

a linear combination of the stiffness and mass matrices; that is,

C= aM+ bK (2.24)

with the constant damping coefficients a and b determined by comparison with ex-

perimental results. This strategy of using a damping matrix with both a stiffness- and

mass-proportional term is known as Rayleigh damping.

Here we propose a penalty formulation with damping penalties alongside the

stiffness and mass penalties of the bipenalty method, so that the damped structural

equations (2.23) become

(M+MP)ü+ (C+ CP)u̇+ (K+ KP)u= f+ fP (2.25)

In order to derive the damping penalty matrix CP we utilise Rayleigh damping, but

use the stiffness and mass penalty matrices as a basis, instead of the full system equa-

tions. Since the stiffness penalty matrix KP is a scalar multiple of MP we neglect

the damping coefficient a in Equation (2.24) and define the damping penalty matrix

simply as

CP = DKP (2.26)

where D is the damping factor, representing the magnitude of the damping penalty



2.5. MATRIX PARTITIONING FOR THE CDM 27

relative to the stiffness penalty.

It is perhaps technically incorrect to refer to this technique as a penalty method,

since it cannot be derived by penalisation of an energy expression. It is included here

as an obvious and intuitive extension of the stiffness and mass penalty methods we

have previously introduced; if the stiffness penalty method is physically analogous to

adding springs to the system (and the mass penalty method corresponds to adding

inerters), then damping penalties can be interpreted as the addition of dashpots.

A possible theoretical framework for the formulation presented here is provided

by Asano [2–4], who has developed a virtual work principle utilising penalty func-

tions that act on displacements, velocities and accelerations in the context of a contact-

impact algorithm. However, more work is required to turn this theory into a generally

applicable penalty formulation.

The inclusion of penalty damping has no effect on time step stability, as will be

discussed in Section 3.2, but does have the potential to increase accuracy of constraint

imposition by placing additional restraint on nodal velocity. Some examples of this

in relation to contact-impact problems will be given in Chapter 6.

2.5 Matrix partitioning for the central difference method

We wish to utilise the bipenalty method with the CDM time integration scheme in

order to maximise the critical time step. However, a major advantage of the CDM is

that, when lumped mass is used and the mass matrix is diagonal, no simultaneous

equations need to be solved, making it very efficient. As we have seen, the bipenalty

method generates off-diagonal terms in the mass matrix when multi-point constraints

are introduced, which leads to a linear system of simultaneous equations that must

be solved at each time step.

Fortunately, as long as lumped mass is used for the continuum elements in the

model, the majority of the mass matrix will remain diagonal as long as the number of

constrained DOF is small compared to the total number of DOF associated with the

system. In this case, we may use matrix partitioning to reduce the size of the system

that must be handled with a linear solver, leaving the majority of the displacements

to be calculated in the normal way.
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First, assume that the displacement solution variables are ordered so that

u =





uf

uc



 (2.27)

where uf and uc are the displacements for free (unconstrained) DOF and constrained

DOF, respectively. Constrained in this case means that the DOF has a non-zero entry in

the corresponding column of the constraint matrix G. The stiffness and mass matrices

are then arranged in a similar manner so that

K=





Kff Kfc

Kcf Kcc



 KP =





0 0

0 Kcc P



 (2.28)

and

M =





Mff 0

0 Mcc



 MP =





0 0

0 Mcc P



 (2.29)

The equations that govern the CDM solution are written in matrix form as

1

∆t2

�

M+MP
�

dt+∆t = rt (2.30)

where rt is a residual force vector, which, when damping is neglected, is given by

rt =





rf t

rc
t



 = ft −
�

�

K+ KP
�

−
2

∆t2

�

M+MP
�

�

dt −
1

∆t2

�

M+MP
�

dt−∆t (2.31)

(see Section 1.2.1 or Bathe [9, §9.2.1]). Due to the structure of the mass matrix, the

free and constrained systems are uncoupled, and can be written separately as

�

1

∆t2
Mff

�

df t+∆t = rf t (2.32)

1

∆t2

�

Mcc + Mcc P
�

dc
t+∆t = rc

t (2.33)

Since Mff is diagonal, (2.32) is trivial to solve. On the other hand, Mcc P has off-

diagonal terms, and hence (2.33) requires a linear solver. The size of the system that

must be solved is dependent on the number of DOF that are constrained using the

bipenalty method.
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Although structural damping is rarely used with the CDM, we do need to consider

the damping penalty matrix suggested in Section 2.4. Therefore, we have

C= 0 CP =





0 0

0 Ccc P



 (2.34)

In this case, the CDM equations are decoupled in much the same way, with the free

and constrained displacements determined using

�

1

∆t2
Mff

�

df t+∆t = r̂f t (2.35)

�

1

∆t2

�

Mcc + Mcc P
�

+
1

2∆t
Ccc P

�

dc
t+∆t = r̂c

t (2.36)

where the residual is now given by

r̂t =





r̂f t

r̂c
t



= ft −
�

�

K+KP
�

−
2

∆t2

�

M+MP
�

�

dt

−
�

1

∆t2

�

M+MP
�

−
1

2∆t
CP

�

dt−∆t (2.37)

Clearly, if a bipenalty formulation is being used, then the addition of damping penal-

ties does not affect the size of the system that must be solved, and hence penalising

the damping matrix has a relatively small computational overhead in this case.





Chapter 3

Time step stability

The conditional stability of explicit time integration schemes was first reported by

Courant, Friedrichs and Lewy [24]. Since then, the theories have been more gener-

ally applied (for a summary in the context of FE analysis, see Hughes [43]) and in

its most general form the Courant-Friedrichs-Lewy (CFL) condition is given by

∆tcrit =
Ωcrit

ωmax

(3.1)

as previously discussed in Section 1.2.3. Here we have also introduced the so-called

critical sampling frequency Ωcrit, which allows us to account for various time integ-

ration schemes, as shown in Table 9.1.1 of Reference [43]. For the CDM, on which

we will be focussing, Ωcrit = 2 and we will assume this value for the remainder of

this chapter.

The effect of the traditional penalty method on this critical time step has also

been the subject of attention in the literature. Of course, this is really a study of

the effect on the maximum eigenfrequency of the system, ωmax, and therefore the

underlying eigenvalue problem (as briefly discussed in Section 1.2.3). For a dynamic

system with n DOF, the eigenvalue problem is given by

�

K−λiM
�

ui = 0 i = 1 . . . n (3.2)

where λi are the n eigenvalues, sorted into ascending order so that λn ≡ λmax, and

ui are the corresponding eigenvectors (also referred to as eigenmodes). The eigen-

frequencies are simply the positive roots of the eigenvalues, ωi =
p

λi. Analytical

31
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solutions for λi can be obtained for some single undistorted finite elements with

n ≤ 8 [5], but for large systems this approach becomes impossible. In general, nu-

merical procedures or approximate estimates must be used to determine system ei-

genvalues (see Section 3.3.2).

The stiffness penalty method has the effect of increasing the maximum eigen-

value (and therefore eigenfrequency) of the system. For example, Belytschko and

Neal show that for a single element, “the introduction of the [stiffness] penalty al-

ways decreases the stable time step” [14], while a paper by Hetherington and Askes

reaches the same conclusion, and points out that mass penalties, conversely, can

never decrease the critical time step [39]. Ilanko’s frequency domain studies of arti-

ficial restraints show that this effect is independent of the sign of the penalty for both

stiffness and mass penalty methods [46,47].

The effect of the bipenalty method, however, is not as well understood, although

in recent years there have been two studies which investigate the effect on the ei-

genvalue problem. Firstly, Paraskevopoulos et al. presented their “consistent pen-

alty formulation”, which derives both the stiffness and mass penalty methods via a

variational formulation. In terms of eigenvalue analysis, this work concentrates on

preserving the so-called “stiffness” (defined in this context as the ratio of the largest

eigenfrequency to the lowest, S = ωmax/ωmin) of the system equations due to its

importance with regards to accuracy and stability. They provide a ratio of stiffness

and mass penalties which “does not alter the order of the system stiffness, nor the

order of maximum and minimum eigenfrequency”.

The second such analysis of the bipenalty method is provided by Ilanko and

Monterrubio [49]. Here the main focus is on finding the penalty ratio that gives the

highest convergence rate for the Rayleigh-Ritz method. They explore the use of vary-

ing penalty ratios in order to obtain bounded results on the exact (fully constrained)

solution.

This chapter begins with an study of the precise effect that bipenalisation has on

both the eigenvalues and eigenmodes of a FE system by analysis of the underlying

generalised (dynamic) eigenvalue problem. Much of this analysis has been recently

published by the author and colleagues [40, 41]. We then discuss practical eigen-

frequency/time step estimation and how the results can be used in order to select

penalty parameters with optimal characteristics with respect to time step stability.
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3.1 The bipenalised eigenproblem

The eigenvalue problem for a bipenalised system of size n is

��

K+KP
�

− λ̃i

�

M+MP
��

ũi = 0 i = 1 . . . n (3.3)

where KP and MP are the stiffness and mass penalty matrices as described in Section

2.3 and λ̃i and ũi are the n eigenvalues and corresponding eigenvectors for the bipen-

alised problem (BP). The penalty matrices are formulated such that they impose the

nc constraints given by

h= Gu− q (3.4)

as described in Section 1.1. We assume that there are no repeated constraint equa-

tions and therefore that the rows of G are linearly independent.

Imposing these constraints via transformation of the system equations (i.e., by

direct imposition) results in a system of size n−nc; one DOF must be removed for each

additional constraint [22]. The fully constrained eigenvalues are bounded by those

of the unconstrained system, according to Rayleigh’s theorem of separation [14].

This means that

ω1 ≤ ω̄k ≤ωn ∀k = 1 . . . n− nc (3.5)

where ω̄k are the n − nc eigenvalues of the system subject to nc exactly enforced

constraints. On the other hand, the penalised system does not decrease in size and

therefore has n eigensolutions independent of the number of applied constraints. In

addition, these eigenvalues are clearly not bounded by those of the unconstrained

system. Our goal is to investigate these ‘extra’ eigensolutions and to find a way of

predicting what the associated eigenvalues will be.

3.1.1 Mathematical proofs on eigenvalues and the penalty ratio

Theorem 1. When applying nc constraint equations to a system of size n using the

bipenalty method, exactly n − nc of the eigenmodes associated with the system satisfy

those constraints, while exactly nc of the eigenmodes associated with the system do not,

for large αm.

Proof. First we note that the eigenvectors ũi of a finite element system may be scaled
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such that they are orthonormal with respect to the mass matrix of the system, giving

ũT
i (M+Mp)ũ j = δi j (3.6)

where δi j is the Kronecker delta. Considering the case where i 6= j we have

ũT
i Mũ j + (Gũi)

T Pm(Gũ j) = 0 i 6= j (3.7)

We now rewrite the matrix of penalty parameters so that Pm = αmDm where Dm is

a dimensionless diagonal matrix of size nc. Furthermore, we assume that all non-

zero entries in Dm have the same sign; i.e., all entries are positive, or all entries are

negative1. Then,

ũT
i Mũ j + αm(Gũi)

T Dm(Gũ j) = 0 (3.8)

from which,

lim
αm→∞

�

(Gũi)
T Dm(Gũ j)
�

= 0 (3.9)

The assumption that all entries in Dm have the same sign means that there cannot

be compensation during the above matrix multiplication, and hence we are left with

two possibilities for the vector Gũi, assuming large αm:

1. Gũi = 0. This is possible for at most n − nc of the n eigenmodes. This can

be shown by considering the rank-nullity theorem, which states that rank(A)+

nullity(A) = n for any m × n matrix A [55]. Since the rows of G are linearly

independent, we know that rank(G) = nc and therefore nullity(G) = n− nc.

2. Gũi and Gũ j are non-zero and orthogonal. This is possible for at most nc of the

n modes, since the vector Gũi is of dimension nc.

Following directly from the above, we can therefore say that

1. Gũi = 0 for exactly n− nc of the n eigenvectors,

2. Gũi 6= 0 for exactly nc of the n eigenvectors.

1This assumption does not constitute a significant loss in generality, since negative penalties and

positive penalties are not usually used in the same analysis; when employed, negative penalties are

commonly used for all constraints, usually to complement a separate positive-penalty analysis [39,46,

47].
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Figure 3.1: Mode shapes for an unconstrained four-noded square finite element.

The constrained modes tend to those of the fully constrained system for large

penalty parameters, and therefore, from Rayleigh’s theorem of separation, the ei-

genvalues are bounded by those of the unconstrained system. Hence it is the spuri-

ous modes—those which do not satisfy the constraints—that introduce problematic

eigenvalues. The second theorem addresses exactly what happens to those eigenval-

ues.

Theorem 2. For any system subject to nc bipenalty constraints with large αm, nc of the

associated eigenvalues tend to the penalty ratio, R.

Proof. Consider the Rayleigh quotient of the BP with the arbitrary vectors v replaced

by the n eigenvectors of the BP,

RBP(ũi) =
ũT

i
Kũi + ũT

i
Kpũi

ũT
i
Mũi + ũT

i
Mpũi

=
ũT

i
Kũi + R · ũT

i
Mpũi

ũT
i
Mũi + ũT

i
Mpũi

(3.10)

For eigenmodes with ũT
i Mpũi 6= 0 the penalty terms dominate, so that in the limit

lim
αm→∞

RBP(ũi) =
R · ũT

i Mpũi

ũT
i
Mpũi

= R (3.11)

That is, the eigenvalue corresponding to any eigenvector that gives a non-zero ũT
i
Mpũi

tends to R, the penalty ratio, for large αm. From Theorem 1, exactly nc eigenmodes

have ũT
i Mpũi 6= 0. Therefore, the nc eigenvalues associated with these modes tend

to R for large αm.

3.1.2 Illustration: eigensolutions of a four-noded quadrilateral

In order to demonstrate these findings we now consider a four-noded (square) linear

finite element. The eight unconstrained mode shapes for the element are shown in

Figure 3.1. This set is considered to be comprised of (from left to right) three ri-

gid body modes (two translation and one rotation), two hourglass modes, one shear

mode and two volumetric modes. Predicting which mode shape has the highest ei-
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0 0.706 1.153 2.582 2.714 4.579 10.000 10.000

0.351 1.899 2.226 3.346 10.000 10.000 10.000 10.000

1.289 2.622 10.000 10.000 10.000 10.000 10.000 10.000

Figure 3.2: Mode shapes and corresponding eigenvalues for a square element: (from top to
bottom) one node fixed, two nodes fixed, three nodes fixed. The bipenalty method is used
with R= 10.

genfrequency is difficult, since it depends on many factors such as material properties

(e.g., Poisson’s ratio), 2D assumption (e.g., plane stress/plane strain) and element

distortion. However, it is a simple matter to calculate a solution to the eigenproblem

numerically. Figure 3.2 shows the mode shapes for three constrained problems. The

top row shows the mode shapes for an element whose bottom left node has been

fixed using the bipenalty method. The first six modes appear to comply with the

constraint; that is, the displacement of the bottom left node is zero in both the x and

y directions. Among these, there exists one rigid body mode that conforms with this

constraint, which can be identified by its zero eigenvalue. The remaining two modes

do not conform to the fixed constraints, and have eigenvalues equal to the penalty

ratio, R= 10.

Of course, we obtain a similar result when using a stiffness or mass penalty

method, except for the magnitudes of the spurious eigenvalues. Table 3.1 shows the

numerically computed eigenvalues for the stiffness, mass and bipenalty methods. As

can be seen, the stiffness penalty method results in two large eigenvalues (approx-

imately proportional to the penalty parameter being used), while for the bipenalty

method these eigenvalues tend to R = 10 for large parameters. For the pure mass

penalty approach, the ‘extra’ eigenvalues tend to zero.

Finally, in order to demonstrate how the eigenfrequencies of the element change

as bipenalty constraints are introduced, the eigenfrequencies for an increasing num-
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Stiffness penalty Mass penalty Bipenalty (R= 10)

αs = 103 αs = 106 αm = 103 αm = 106 αs = 103 αs = 106

0.000 0.000

0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000

0.705 0.706 0.835 0.706 0.705 0.706

1.153 1.153 1.222 1.153 1.153 1.153

2.582 2.582 2.602 2.582 2.582 2.582

2.713 2.714 2.730 2.714 2.713 2.714

4.578 4.579 4.603 4.579 4.578 4.579

4001.289 4000001.289 9.979 10.000

4002.623 4000002.622 9.983 10.000

Table 3.1: Numerically computed eigenvalues of a square element with one fixed node

ber of constrained DOF are shown in Figure 3.3. To produce this plot, absolute con-

straints are imposed on an increasing number of DOF until all DOF are constrained.

At each stage, the eigenfrequencies of the element are calculated numerically for

increasing values of αm with a constant penalty ratio, R = 16. The material proper-

ties are Young’s modulus E = 1 Pa, mass density ρ = 1 kg/m3, element side length

h= 1 m, Poisson’s ratio ν = 0.3, and plane stress is assumed.

The bottom figure shows the eigenfrequencies of the unconstrained, unpenalised

problem (UP). There are n = 8 eigensolutions in all; in this case there are some re-

peated eigenfrequencies (ω1 =ω2 =ω3,ω4 =ω5 andω6 =ω7). As constraints are

added, the eigenfrequencies of each constrained problem (indicated by the straight,

vertical lines) are clearly bounded by the eigenfrequencies of the less constrained

problem below it, as dictated by the eigenvalue separation property. As the pen-

alty parameters are increased, n− nc of the BP eigenfrequencies tend to those of the

exactly constrained problem; the other k eigenfrequencies tend to
p

R= 4.

3.2 Effect of damping penalties

The time step stability condition for the Newmark family of time integration schemes

is stated in Equation (3.1) in terms of the maximum eigenvalueωmax and the critical

sampling frequency Ωcrit. In general, the critical sampling frequency is given by [43]

Ωcrit =
ξ
�

γ− 1

2

�

+

È

1

2
γ− β + ξ2
�

γ− 1

2

�2

1

2
γ− β

(3.12)
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Figure 3.3: The numerically determined eigenfrequencies of a 4-noded quadrilateral ele-
ment for increasing αm and a varying number of constrained DOF. Each plot shows the
n bipenalised eigenfrequencies (—•—) and the n − nc fully constrained eigenfrequencies
(——). The penalty ratio is R = 16.
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where ξ is the damping ratio and γ and β are the Newmark parameters. For the

central difference method γ= 1/2, the critical sampling frequency simplifies to

Ωcrit =
1
Ç

1

4
− β

for γ=
1

2
(3.13)

and therefore damping has no effect on the critical sampling frequency. For Newmark

schemes with γ > 1/2, the undamped critical sampling frequency (with ξ = 0) is a

conservative estimate for the true value. The natural frequencies (eigenfrequencies)

ωi of the system are also unaffected by damping. Therefore, in the vast majority of

cases, and certainly when the CDM is being employed for time integration, damping

matrices of any form can be used without adversely affecting the critical time step

[43, §9.1.2].

3.3 Selection of stable penalty ratio

The information presented in this chapter gives a picture of how bipenalty constraints

affect the eigenvalues of a dynamic finite element system. Importantly, this allows

us to develop guidelines on how to choose penalty parameters such that time step

stability of the system is ensured. Since the eigenvalues depend on the penalty ratio

R, we will focus on this quantity. The selection of appropriate penalty magnitudes

(i.e., the specific values of αs and αm) is more dependent on the accuracy that is

required, and hence will be dealt with in Chapter 4.

3.3.1 The critical penalty ratio

The simplest method of ensuring that penalty constraints do not lead to time step

instability is to choose a ratio equal to, or less than, the maximum eigenvalue of

the unconstrained system. A ratio above this value will lead to an increase in the

maximum eigenfrequency, assuming that large parameters are used. The ratio at

which this occurs is known as the critical penalty ratio, defined as

Rcrit = λ
UP
max (3.14)
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As shown in Section 3.1.1, taking R = Rcrit means that the extra eigenvalues intro-

duced by the use of penalty functions will tend to Rcrit for large αm, and therefore

λBP
max ≤ λUP

max. Hence, if the time step used for the analysis is suitable for the unpen-

alised system, it will also be suitable for the bipenalised system.

While theoretically sound, this strategy requires that the maximum eigenvalue

of the unpenalised system is known. In practice, the maximum eigenvalue must be

computed numerically, which can be expensive. To find a more practical solution,

it is useful to examine how the critical time step is estimated when the maximum

eigenfrequency of a system is unknown.

3.3.2 Calculating a penalty ratio from a stable time step

Selection of a suitable time step is critical for conditionally stable explicit analysis

types. An overestimation leads to spurious solutions by introducing instability, while

an underestimation may result in an analysis which is needlessly expensive in terms

of computer time. For some nonlinear analyses the critical time step may change

during the course of the analysis and so must be checked at each time step. This

means that an efficient way to find a suitable time step is of great importance.

Generally, the only way to calculate ∆tcrit exactly is to compute the maximum

eigenfrequency of the whole system. This may be achieved without finding the com-

plete eigensolution by forward iteration [9] (also known as the power method [76]).

Forward iteration is a simple algorithm that requires only matrix multiplications (i.e.,

no matrix decomposition) to find the largest eigenvalue λmax ≡ λn. However, con-

vergence is dependent on the ratio of the two largest eigenvalues λn−1/λn; if this

ratio is close to 1 then convergence is slow [76].

The element eigenvalue inequality [14] provides an easy method of finding a

conservative estimate for ωmax. The theorem states that

ωe
max ≥ωmax (3.15)

where ωmax is the maximum system eigenfrequency and ωe
max is the maximum ei-

genfrequency of all individual elements. This means that by calculating only the

maximum eigenfrequencies of the individual elements in the mesh we can obtain a

value that is not less than the maximum eigenfrequency of the whole system, which
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can then be used to calculate a conservative estimate of the critical time step via

∆te
crit =

2

ωe
max

≤∆tcrit =
2

ωmax

(3.16)

As an example, consider the time step control employed by the explicit FE code LS-

DYNA [36]. Here, time step estimations are conducted on the element level, with the

smallest elemental time step size used for the next integration step. To further speed

up the process, elemental time steps are calculated directly from the properties of the

element (e.g., volume, characteristic length, density etc.) rather than by calculating

ωmax.

No matter how the elemental time step is calculated, however, there is always the

danger of disregarding additional penalty constraints when the time step is computed

in an element-wise fashion. For example, the penalty stiffness for the same software’s

contact-impact algorithm is multiplied by special scale factor, since the addition of

the penalty “may cause instabilities unless the time step size is scaled back in the

time step calculation” [36, 37]. Likewise, Belytschko and Neal show that for their

contact-impact formulation “the introduction of the penalty always decreases the

stable time step” [14]. The goal for our bipenalty formulation is to ensure that no

penalty constraint can cause a decrease in the critical time step of the analysis.

By rearranging the CFL condition (3.1) we can look at the problem from another

angle. If a time step has been chosen for a specific analysis, then we have

ωmax ≤
2

∆t
(3.17)

That is, the maximum eigenfrequency must be kept below a value set by chosen time

step ∆t . If this value has been safely selected according to element-wise calculation

described above, then it is the spurious frequencies introduced by the additional

constraints which lead to the ωmax exceeding the limit.

Fortunately, using the bipenalty method we are able to control the magnitude of

these spurious eigenfrequencies. In order to keep them from interfering with the

time step ∆t , we simply ensure that our penalty ratio complies with

R≤
4

∆t2
(3.18)
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3.3.3 Example: time step instability due to a single penalty constraint

To complete this chapter, we briefly demonstrate the effect of using a super-critical

penalty ratio in the case of wave propagation through a one-dimensional bar. The bar

in question has a length of 1 m and is discretised in space by 1000 2-noded linear bar

elements. The material properties are Young’s modulus E = 0.01 Pa, mass density

ρ = 20000 kg/m3 and cross-sectional area A = 0.1 m2. This leads to a maximum

unpenalised eigenvalue of λUP
max = Rcrit = 2 s−1. The time step used is the critical time

step so that ∆t = ∆tcrit =
p

2 s. A fixed constraint is applied at node 1 (at x = 0)

and a force of F = 0.001 N is applied at the opposite end of the bar in the negative

x-direction for the first two time steps only. The loading results in a displacement

wave that propagates towards the fixed end of the bar, before being reflected back.

The full analysis has a duration of T = 5657 s.

Figure 3.4 shows two different analyses at two points in time. Specifically, Figure

3.4(a) shows the results when a sub-critical penalty ratio of R = 0.999Rcrit is used

for the penalty constraint. At time t = 1766 s the displacement wave been reflected

at the fixed end and is travelling back towards the free end of the bar. No instability

is present at any point in the analysis.

The analysis in Figure 3.4(b) uses a ratio of R = 1.001Rcrit. Instability in the

displacement solution is apparent shortly after the displacement wave reaches the

constrained node. At time t = 5303 s, near the end of the analysis, the instability

completely dominates the solution.

In order to check that damping penalties have no effect on this well-defined

bound, the same analysis is conducted with a damping penalty ratio D = 0.01. The

results are shown in Figure 3.5, and show the same pattern as in the undamped case.

Although the damping penalties do slightly reduce the amplitude of the oscillations

at the onset of instability, they do not effect the stability of the analysis.

These results indicate that there is a sharp bound on the penalty ratio that can be

safety used, as predicted by the proofs presented earlier in this chapter. In Chapters

5 and 6 we will apply these theories to larger-scale two-dimensional problems.
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Figure 3.4: Stability testing for the bipenalty method with αs = 106
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Figure 3.5: Stability testing for the bipenalty method with damping (stiffness penalty para-
meter αs = 106 and damping ratio D = 0.01)





Chapter 4

Accuracy

The finite element method provides an approximate solution to a governing differ-

ential equation, and as such errors are always present in the solution. Anticipating

and quantifying the extent of these errors (i.e., the accuracy of the solution) is ob-

viously vital if we wish to obtain useful solutions. Penalty methods in general intro-

duce additional errors because constraints are not enforced exactly. Depending on

the problem type, these errors can manifest in various ways, for example spurious,

non-physical displacements at fixed or constrained degrees of freedom; for contact

problems, non-physical penetration between nodes and/or surfaces; for cohesive sur-

faces, unrealistic strain introduced at the interfaces between elements.

This chapter is not concerned with the accuracy of the finite element method

itself, but only with the accuracy of the penalty methods used for constraint imposi-

tion. Some of the main points of investigation in this chapter are: determining which

penalty method leads to the smallest errors, how the bipenalty method affects the ac-

curacy of constraint imposition compared to the stiffness and mass penalty methods,

and the possible existence of an optimal penalty ratio which minimises errors for all

problems. Simple dynamic FE problems will be used to demonstrate the results so

that some general conclusions can be drawn, before larger scale practical problems

are investigated in Chapters 5 and 6.

We begin by defining exactly what is meant by the term ‘error’. Instead of com-

paring the obtained FE solution with an exact analytical solution, we will instead

be considering two separate FE solutions: one in which the constraints are enforced

using a penalty method, and one in which the constraints have been enforced exactly

45
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(e.g., by using direct imposition or the Lagrange multiplier method). Thus, we have

e= u− uFC (4.1)

where u is the displacement solution obtained using a penalty method, uFC is the

solution of the fully constrained problem and e is the resulting error vector. Often

it will be more convenient to represent the error using an integral scalar quantity,

which gives an indication of the overall error of the solution. A common measure is

the L2 norm, which for nodal quantities is calculated by

||e||=
q

e2
1 + e2

2 + · · ·+ e2
n (4.2)

The root mean square of a time series variable may be used to give a measure of error

over time in an ‘average’ sense. For a time series of N steps of a variable x , the root

mean square is given by

xrms =

√

√ 1

N
(x2

1 + x2
2 + · · ·+ x2

N) (4.3)

There are three main ways in which penalty functions may introduce error into an

analysis. First and foremost, there is the displacement error which is inherent to the

method due to the use of finite penalty parameters. This leads to (hopefully) small

non-physical displacements at constrained DOF, and in this chapter will be referred

to as constraint imposition error. This kind of error will always be present to some

extent when penalty functions are used to impose constraints. Secondly, as described

in the previous chapter, there may be additional errors introduced by instability of

the time integration routine due to the use of large penalty parameters combined

with large time steps. Except in the unusual case of short temporary violations, these

kinds of errors will rapidly dominate the solution due to the exponential growth

that is characteristic of computational instability. Thirdly, there are computational

errors caused by the use of finite-precision arithmetic, which may be amplified by ill-

conditioning of the system matrices. These errors are always assumed to be present

when solving linear systems of equations, but are in danger of becoming significant

when penalty methods are employed because large penalty parameters can result in

poor scaling of the system matrices.



47

The situation is complicated by the fact that any number of these sources may

combine to give the final error total; in real-world problems it is not a trivial task

to correctly identify the source of error, and there may be multiple sources at once.

In this chapter we will take a methodical look at each in turn so as to gain insight

into the causes, effects and methods of mitigation for each. Normally, the goal of the

analyst is not to eliminate errors entirely, but to keep the total error within acceptable

bounds.

When comparing the performance of different penalty methods it is often more

instructive to use a dimensionless measure of the penalty magnitude which has a

similar definition and meaning for all penalty types. Since it is the magnitude of

the parameters relative to existing entries that dictates their performance, it is some-

what meaningless to merely compare the magnitudes of stiffness and mass penalty

parameters, which in any case possess different units. We therefore introduce the di-

mensionless penalty factors ps and pm, which represent the magnitude of a stiffness

or mass penalty parameter respectively, according to

ps =
αs

Kii

(4.4)

pm =
αm

Mii

(4.5)

where αs and αm are the penalty parameters (with units of N/m and kg respectively),

K and M are the unpenalised stiffness and mass matrices introduced in Equation (1.1),

and i is the number of the constrained DOF.

When a single constraint involves multiple DOF (i.e., for multipoint constraints),

the definition becomes somewhat more complicated. In this case, the penalty para-

meter associated with a constraint is added to more than one matrix entry. For ex-

ample, if a constraint links DOF i and j, adjustments must be made to entries Kii ,

Ki j , K ji and K j j (for a stiffness-type penalty). In this case, we use

ps =
αs

max
i∈P
(Kii)

(4.6)

pm =
αm

max
i∈P
(Mii)

(4.7)

where P is the set of all DOF numbers associated with the constraint. This is a conser-
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F

1 2 3 4 5

Figure 4.1: System A. A one-dimensional bar consisting of five two-noded linear finite ele-
ments, fixed at one end.

vative definition in that it ensures that performance is as expected, or greater than

expected, at all DOF. Large variations between the stiffness or mass matrix entries

associated with a single constraint only occur if the constrained elements have very

different material properties, or there is a large variation in element size.

The dimensionless penalty ratio is defined as

r =
ps

pm

(4.8)

which gives r = R(Mii/Kii) for a single-point constraint at DOF i. Accordingly, the

ratio rcrit is the dimensionless ratio corresponding to the dimensioned ratio Rcrit for

a given constraint.

4.1 Constraint imposition error

The use of finite penalty parameters in the formulation of displacement constraints

leads to finite errors in the resulting displacement field. That is, for penalty meth-

ods in general, the vector h in Equation (1.3) will be non-zero. To investigate this

error source, we will initially look at the FE system shown in Figure 4.1, the material

properties for which can be found in Table 4.1. A dynamic analysis is undertaken by

setting u1 = 0 by some method in order to fix the structure at node 1, applying a con-

stant force F at node 5, and then solving for displacements over time using the cent-

ral difference method. Constraint imposition error in this case is the displacement at

node 1, since it should ideally be zero at every time step. For an early investigation

into this kind of error with regards to static analysis, see Felippa [29,30].

4.1.1 Comparison of penalty methods

Figure 4.2 shows the displacement error norm for a five element 1D bar under a con-

stant load, fixed at one end using a penalty method. Results from the stiffness penalty
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Property Value

Young’s modulus, E 100 Pa

Density, ρ 1 kg/m3

Cross-sectional area, A 1 m2

Element length, h 1 m

Force, F 1 N

Critical time step, ∆tcrit 0.1 s

Table 4.1: Material properties and other data for System A
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Figure 4.2: Error norm for a simple 1D bar under constant load

method (ps = 1000, pm = 0), mass penalty method (ps = 0, pm = 1000) and bipen-

alty method (ps = 1000, pm = 1000/rcrit) are shown. In order to avoid possible time

step instabilities when using stiffness penalties only, a time step of ∆t = 0.01∆tcrit

is used. The use of the mass penalty method in isolation leads to errors approxim-

ately two orders of magnitude larger than the stiffness and bipenalty methods for the

majority of the analysis.

Figure 4.3 shows the error only at the constrained node (where displacement

should ideally be zero for the duration of the analysis). While the error norm ‖e‖
gives a useful account of how that constraint violation error impacts the predicted

behaviour across the whole structure, this plot provides greater insight into exactly

how the artificial stiffness and inertia interact at the constraint. In this case there are

some oscillations in the error at the constrained node when the bipenalty method is
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Figure 4.3: Absolute error of the constrained node only for a simple 1D bar under constant
load.

used, although Figure 4.2 suggests that this does not have a significant effect on the

behaviour of the structure as a whole.

Figure 4.4 shows time series plots of displacement and acceleration at the con-

strained node for the three methods. Note that for an exactly enforced constraint,

both displacement and acceleration are zero throughout the analysis. Stiffness pen-

alties act to correct non-zero displacements, which in turn result in low acceleration

at the constrained node. For a pure mass penalty approach, acceleration of the con-

strained node over time is very similar to the displacement profile of the stiffness pen-

alty method, which leads then to enforcement of the displacement constraint (though

it is clearly nowhere near as effective at equal penalty factors). For the bipenalty

method, both mechanisms are acting together, with the stiffness penalty functions

enforcing zero displacement and mass penalties acting on non-zero accelerations.

Unfortunately, these two processes do not always work in harmony to reduce the

overall constraint enforcement error, as can be seen in Figure 4.4(c). Typically, the

bipenalty method leads to displacement constraint enforcement errors somewhere

between the two ‘extremes’ of the stiffness and mass penalty methods. Within these

bounds, the error is determined largely by R: the ratio between stiffness and mass

penalty parameters.
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for the stiffness, mass and bipenalty methods.
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Figure 4.5: RMS of displacement error over time (t = 0 . . . 1 s) at the constrained node for
various penalty ratios and constant pT = ps + pm = 106.

4.1.2 Effect of penalty ratio

In Chapter 3 we saw how the penalty ratio can affect the eigenfrequencies (and there-

fore the time step stability) of an FE system. Figure 4.5 shows how the accuracy of

constraint enforcement changes for various penalty ratios, while the total penalty

factor pT = ps+ pm is kept constant. For low ratios, the solution tends to a pure mass

penalty approach (ps = 0, pm = 106), while for high ratios the solution displays the

higher accuracy of the stiffness penalty method (ps = 106, pm = 0); a simple mono-

tonic function connects the two regions. For best accuracy, it is apparently advisable

to use the highest penalty ratio that ensures time step stability of the analysis (that
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Figure 4.6: Constrained node error as mass penalties are introduced, with constant stiffness
penalty ps = 103. The dotted line indicates the error obtained with constant stiffness penalty
only.
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Figure 4.7: Reducing error as stiffness penalties are introduced, with constant mass penalty
pm = 103. The dotted line indicates the error obtained with constant mass penalty only.

is, a ratio close to or equal to the critical penalty ratio Rcrit, whose value is also shown

in Figure 4.5). However, this analysis assumes that there is a limit on the total pen-

alty ratio pT that can be used, which is not necessarily the case (as we will examine

further in Section 4.2).

Figure 4.6 shows another error analysis with the stiffness penalty factor kept con-

stant at ps = 103. For low mass penalty values (therefore large penalty ratios) the

stiffness penalty dominates and the bipenalty analysis produces errors comparable

with a pure stiffness approach (indicated by the dotted line). The addition of mass

penalties leads to an increase in accuracy once pm is greater than approximately 104,

despite the low penalty ratios in this region. In Figure 4.7, the mass penalty factor

is kept constant while the stiffness penalty factor is increased. A similar trend is

observed, whereby errors introduced by the bipenalty method closely follow those

produced by the dominant stiffness- or inertia-type penalty method.

These figures show that for the bipenalty method (as with traditional penalty
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methods) increasing the magnitude of the parameters will always tend to reduce

constraint imposition errors as long as an analysis remains stable; to obtain the most

accurate solutions, we must make the penalty parameters as large as possible. How-

ever, it is stiffness penalties which tend to have the biggest impact on accuracy. Where

a choice is available, increasing the stiffness penalty parameters will generally have

a larger effect on the constraint imposition accuracy of the solution.

4.2 Matrix ill-conditioning

Round-off error is the difference between a mathematically correct value and its ap-

proximation, as stored in the computer. Computers store values accurately enough

that these errors are usually not significant when dealing with FE systems unless a

system is especially sensitive to these kinds of errors. Then, the system is said to be

ill-conditioned.

Consider the matrix equation Ax = b. If the right-hand side is changed to b+∆b

(e.g., by round-off error) then the solution becomes x+∆x. If a small ∆b leads to

a large ∆x then the matrix A is ill-conditioned. The extent of this ill-conditioning is

measured by the condition number, given by [76]

c = ‖A‖‖A−1‖ (4.9)

where the matrix norm is defined as

‖A‖=max
x6=0

‖Ax‖
‖x‖ (4.10)

This condition number puts a bound on the solution error that is introduced by a

problem error in b, expressed as

‖∆x‖
‖x‖ ≤ c

‖∆b‖
‖b‖ (4.11)

or due to a problem error in A by

‖∆x‖
‖x+∆x‖ ≤ c

‖∆A‖
‖A‖ (4.12)

Analysts should be careful to keep the condition number of system matrices within
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Figure 4.8: Condition number of the stiffness and mass matrices for increasing penalty.

acceptable limits, otherwise round-off errors may lead to unacceptably large errors

in the solution vector.

Matrices which are close to singular have large condition numbers. This can be

caused by having very large and very small numbers present in a matrix simultan-

eously, and as such penalty methods tend to worsen the conditioning of the FE system

matrices. However, there are no obvious bounds for how large penalty parameters

can be, or how high a matrix condition number must get before results can no longer

be trusted. A commonly used rule of thumb is that an analyst can expect to lose

log c decimal places to round-off errors, although the extent to which these errors

manifest is dependent on many factors, including the direction of the right-hand side

vector and the details of the solution algorithm.

Figure 4.8 shows how stiffness and mass penalties affect the conditioning of their

respective system matrices. The system shown in Figure 4.1 is again used as an

example. Since the stiffness matrix is singular when unconstrained, the condition

number is large for small penalties. On the other hand, both the lumped and consist-

ent mass matrices are positive-definite and therefore have a finite condition number

when unpenalised. As larger penalties are introduced the condition number tends to

increase proportionally to the penalty factor being added, for both the stiffness and

mass matrices.

Nour-Omid and Wriggers [58] have provided an equation that can be used to

estimate a suitable parameter for static contact problems that takes into account the
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Figure 4.9: System B: 1D bar with zero-length bipenalty tying between nodes 3 and 4.

possibility of matrix ill-conditioning. The estimate for the stiffness penalty is given

by

αs =
k
p

nε
(4.13)

where k is the smallest stiffness of the affected elements, n is the total number of DOF

and ε represents the machine precision (the smallest number that satisfies 1+ ε > 1

in a computation). As with the use of dimensionless penalty factors, this value takes

into account the stiffness of the structure, as well as the overall size of the system

matrix, which also has an effect on condition number.

Felippa [29] has also provided recommendations for selecting penalty paramet-

ers, stating that for single-point constraints the magnitude of the penalty parameter

has “no appreciable effect on the computational error due to roundoff”, no mat-

ter how large. However, it is also stressed that this theory does not apply for con-

straint equations concerning multiple DOF. Figure 4.9 shows a system that utilises

such a constraint and Figure 4.10 shows an error analysis for a series of time domain

numerical experiments with the system. The material properties from Table 4.1

are again used, with a time step of ∆t = 0.001 s and a total analysis duration of

T = 5 s. The plot shows that the constraint imposition error (i.e., the displacement

gap between nodes 3 and 4) is approximately inversely proportional to the mass pen-

alty factor for the analysis until factors of around 1012 are reached, at which point

the ill-conditioning of the mass matrix reaches a point where computational errors

become extremely pronounced. Since these errors may be introduced repeatedly at

each time step, they accumulate as an analysis is extended, and are therefore signi-

ficantly higher than they would be for a simple static analysis.

By adapting Equation 4.13 we can generate an estimate for a suitable mass pen-

alty factor for this analysis. Recalling (4.7) and noting that n = 6 and ε≈ 2.22×10−16
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Figure 4.10: Constraint imposition error at a node-to-node tying for increasing mass penalty
and a range of penalty ratios.

(for the computer running the analysis), we have

pm =
1
p

nε
≈ 2.74× 107 (4.14)

which is well within the region unaffected by serious computational errors.

Note that Figure 4.10 shows four different plots with a variety of penalty ratios.

When also incorporating large stiffness penalties into the analysis (e.g., for r = 103)

the overall errors are somewhat lower, as we might expect; however, the accumu-

lated computational errors do not show any signs of increasing, or of manifesting at

lower penalty magnitudes; in other words, the stiffness penalty parameters appear

to have no effect on computational error. In fact, the nature of the central differ-

ence method means that mass penalties are the governing factor in the introduction

of conditioning-related errors, since the stiffness matrix does not feature in the lin-

ear system that must be solved; since no stiffness matrix inversion is required, its

conditioning has little effect on the results.

4.3 Selection of penalty parameters

As is often cited as a major disadvantage of the penalty method, “the selection of

penalty parameters is, in some sense, arbitrary” [7, p. 221]. Ordinarily, there is no

mathematically optimal choice for a penalty parameter, and no clear bounds on the
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Algorithm 1 Automatic calculation of penalty parameters (maximising pT, taking

into account conditioning of stiffness matrix).

1: Determine safe sub-critical time step, ∆t <∆tcrit

2: Compute safe penalty ratio, R= FR

4

∆t2

3: Estimate suitable mass penalty factor, pm =
1
p

nε
4: for j = 1 . . . nc do

5: Calculate mass penalty parameter (αm) j using Equation (4.5) or (4.7).

6: Calculate stiffness penalty parameter, (αs) j = R(αm) j

largest or smallest values that can be used. However, we have now outlined the

most important considerations for penalty methods in explicit dynamics, and are in a

position to give some useful guidance on penalty parameter selection. As pointed out

by Hallquist in relation to contact-impact problems, “pre-empting user control over

[the penalty] parameter greatly increases the success of the method” [36, p. 26.2].

Understandably, users do not like to make choices about arbitrary parameters and

therefore it is best to make the selection process automatic wherever possible. For

explicit dynamic analyses we have established three important considerations that

inform the selection process:

1. time step instability caused by the addition of penalties must be avoided,

2. any decrease in critical time step should be avoided or minimised, and

3. computational and constraint imposition errors should be within acceptable

bounds.

Broadly, these three points fall under the categories of stability, computational ex-

pense, and accuracy, respectively. Algorithm 1 outlines a process by which we may

arrive at suitable stiffness and mass penalty parameters for a general bipenalised

problem. These steps take into account each of the three considerations outlined

above.

Firstly, a time step for the problem is chosen. Crucially, this choice is not affected

by the penalty constraints; traditional methods of time step estimation (as described

in Section 3.3.2) may be used to arrive at a safe sub-critical time step ∆t . If higher

time resolution is required for analysis, a smaller timestep may be used without issue.



58 CHAPTER 4. ACCURACY

In step 2, a penalty ratio is calculated from the chosen time step (see Section

3.3.2). Recall that using a penalty ratio of R will introduce an eigenvalue with value

R into the system for large penalties. If this eigenvalue is equal to the maximum

allowed by the chosen time step, round-off errors may lead to instability. For this

reason, a safety factor FR is included in the calculation. Any value FR < 1 will ensure

stability in all cases. Although using FR ≥ 1 will not necessarily lead to instability

(since the maximum eigenvalue actually tends to R from below as αm tends to infinity,

as shown in Figure 3.3), values greater than 1 are not safe with respect to stability.

Constraint imposition accuracy will be reduced as FR is reduced, since this will result

in a smaller penalty ratio R. A safety factor of FR = 0.99 is recommended, since it

ensures stability in all cases, while having a negligible effect on the accuracy of the

solution.

Since we are using the bipenalty method with a carefully chosen penalty ratio we

can be sure that time step stability will be unaffected. We therefore wish to choose

our penalty parameters as high as possible without causing computational errors

due to ill-conditioning. However, if the central difference method is employed as a

solution scheme no stiffness matrix inversion is required and we therefore assume

that the conditioning of the stiffness matrix is not an issue. We therefore calculate

the mass penalty parameter according to Equation (4.13), first calculating a suitable

factor and then converting pm to αm according to the existing mass matrix entries.

Finally, the stiffness penalty parameter is computed from the previously calculated

ratio.

The above method maximises the penalty ratio under the assumption that a cer-

tain level of stiffness matrix ill-conditioning is acceptable. However, if stiffness matrix

conditioning is important to the analyst (for example, if the assembled stiffness mat-

rix is also to be used for a static analysis), it may be desirable to maximise accuracy

while ensuring good conditioning of both stiffness and mass matrices. In this case,

we are less concerned with maximising the penalty ratio, and more concerned with

maximising the total penalty factor pT = ps+ pm. Algorithm 2 describes a process by

which to achieve this goal.

Since we wish to use the same penalty ratio for all constraints (as this was as-

sumed in Chapter 3), a ratio must be chosen by first considering all constraints in

turn, and finding the ‘ideal’ ratio for that constraint. If those ratios are all greater
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Algorithm 2 Automatic calculation of penalty parameters (maximising pT, taking

into account conditioning of stiffness matrix).

1: Choose sub-critical ∆t <∆tcrit

2: Calculate R∆t =
4

∆t2

3: Determine ideal ratios, Rideal
j =max

i∈Pj

(Kii)/max
i∈Pj

(Mii)

4: Find optimal stable ratio, R=min [FRR∆t , max (Rideal
j
)]

5: for j = 1 . . . nc do

6: if Rideal
j
≥ R∆t then

7: (αm) j =max
i∈Pj

(Mii)/
p

nε

8: (αs) j = R(αm) j

9: else

10: (αs) j =max
i∈Pj

(Kii)/
p

nε

11: (αm) j = (αs) j/R

that the ratio required for stability, FRR∆t , then the stable ratio is chosen. If not,

the ratio is chosen based on best performance. The parameters are then chosen by

maximising either αs or αm, depending on the ratio that was chosen.

4.4 Summary

The small-scale tests presented in this chapter conclude the more theoretical portion

of the thesis. Together with Chapter 3, they provide a basis from which we can

make informed decisions about how to implement the bipenalty method for practical

applications and large-scale analyses in the coming chapters. Specifically, there are

a few rules of thumb which we can make use of when accuracy is a primary concern.

1. For equivalent penalty factors, a pure stiffness penalty approach leads to smal-

ler errors than a pure mass approach.

2. Following from the above, for a given total penalty factor pT = ps+pm, a larger

penalty ratio r = ps/pm leads to smaller errors.

3. Adding mass penalties to a constant stiffness penalty, or visa versa, tends to

increase the constraint imposition accuracy of the analysis.
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Figure 4.11: Approximate representation of stability (left) and accuracy (right) for a range of
stiffness and mass penalties used to apply a single-point displacement constraint.

Taking this into account, along with time step stability considerations, the poten-

tial advantages of the bipenalty method can be clearly stated. Figure 4.11 shows in

general terms how stiffness and mass penalty parameters can be expected to affect

both the stability and accuracy of a typical analysis. The primary goal of the bipenalty

method is to ensure time step stability. Examining only the x-axis of Figure 4.11(a)

shows that this is difficult using pure stiffness penalties, since there is a (somewhat

poorly defined) point beyond which the critical time step of the analysis is increased

beyond the time step that would ideally be used. Furthermore, this point is gen-

erally in a region of relatively low accuracy, since the stiffness penalty in question

may be quite small. The addition of mass penalties allows us to ensure stability, but

also greatly increase the magnitude of the stiffness penalty parameter that can be safely

used. In this way, the bipenalty method may be used to greatly increase accuracy

without decreasing the time step of the analysis.



Chapter 5

Bipenalty interface elements based

on the theory of cohesive surfaces

In solid mechanics, crack propagation problems are of significant importance to en-

gineers in a wide range of fields, including fracture and damage mechanics, blast and

impact engineering, design of mechanical processes, structural stability and others.

As a result, a great deal of research effort has been concentrated on the numerical

analysis of such problems, and many different modelling strategies have been util-

ised in order to tackle them. Among the more novel techniques are meshless meth-

ods [11, 13] and the boundary element method [16, 20, 64]. Both of these methods

are advantageous in that they do not restrict the crack path to follow inter-element

boundaries, as is the case with common finite element techniques, meaning that ad-

aptive remeshing is generally not required. However, the finite element (FE) method

is well-established and extremely versatile, and remains the mostly widely used. On-

going research efforts continue to increase the computational efficiency and robust-

ness of FE methods for the treatment of fracture.

In FE analysis the three most common techniques for the modelling of fracture

and crack propagation in a dynamic setting are the element deletion method, the ex-

tended finite element method (XFEM), and inter-element crack methods [74]. Each

of these methods build upon standard FE formulations to include the effects of dam-

age and crack propagation in some way. Element deletion is the simplest of the

methods and the most widely used in commercial codes (e.g., ANSYS [50] and LS-

DYNA [36]). It requires only an alteration of the constitutive relation of a failing ele-

61
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ment so that the stress in the element is reduced to zero for large strain, effectively

removing certain elements during an analysis. The method can also be modified to

allow elements to carry compressive but not tensile stresses. It is probably due to the

theoretical and computational simplicity that the method has achieved widespread

adoption, since its reliability with regards to the prediction of crack paths has been

called into question [74]. As with many FE-based approaches, crack paths and the

details of crack growth are often highly mesh-dependent [38].

XFEM was first introduced by Belytschko and co-workers in 1999 to tackle crack

propagation problems in elastostatics [10, 56]. It uses shape function enrichment

in order to introduce discontinuities within finite elements, which overcomes the

high mesh dependence of previously existing techniques. This makes it an attractive

option for accurately and efficiently predicting crack paths which are not known a

priori [21], but has yet to achieve widespread adoption in commercial software.

Inter-element crack methods are a well-established group of techniques which

explicitly model cracks on the boundaries of individual finite elements. This can be

achieved either by adaptive remeshing or by the addition of interface elements at ele-

ment boundaries possessing a specially designed traction-displacement relationship,

an approach also referred to as the cohesive zone model.

The theory of cohesive zones was first introduced in the 1960s [8, 26] but was

not applied to dynamic crack propagation until the 1990s, with publications from Xu

and Needleman [80], Camacho and Ortiz [18] and Repetto et al. [66] forming the

basis for the formulation described in this chapter. Each of these formulations intro-

duces interface elements, also known as cohesive surfaces, into the FE continuum. A

non-linear traction-displacement relationship is then chosen that approximately rep-

resents the fracture characteristics of the material. Cracks are thus free to coalesce

and propagate as a natural outcome of the simulation.

While this work caused somewhat of a resurgence in the investigation of cohes-

ive zone modelling, the fact that the cohesive surfaces often rely on large stiffness

penalties being placed throughout the FE continuum causes some challenges. The

elements must initially have very high stiffness in order to avoid artificial compliance

(which leads to unrealistic deformations and a retardation of wave speed). With ex-

plicit solvers this leads to a reduction of the critical time step, which can be problem-

atic. Camacho and Ortiz [18] avoid the problem by introducing cohesive surfaces
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only at the onset of damage, but this requires alterations to the FE discretisation,

and thus to the computer memory requirements, as cracks propagate. Ortiz and Pan-

dolfi [60] also select a cohesive law without an initial elastic region based on the fact

that this would place “stringent restrictions” on the stable time step. Espinosa and

Zavattieri [28] use a large initial stiffness, but urge caution in the selection of the pen-

alty parameter, noting that as the parameter grows “the wave speed in the material

asymptotically approaches the speed of the material without interfaces” and hence

should be “large enough to be effective but not so large as to provoke numerical in-

stabilities”. It is also acknowledged by the same authors that the penalty will be large

enough to have an impact on the critical time step, and as a result, the time step calcu-

lation includes an additional limitation in that it must taken into account the cohesive

surfaces as well as continuum elements. Because of this, the interface elements may

cause sudden changes in time step, which may constitute another source of instabil-

ity unless contact conditions are computed using a different ∆t , leading to the use

of an awkward subcycling time integration routine. These additional complications

are tolerated, though, since the initial model developed by Xu and Needleman [80]

(upon which it was largely based), “induces artificial compliance due to the elasticity

of the intrinsic cohesive law”, according to Song et al. [75].

In this chapter we use interface elements formulated using the bipenalty method

to investigate crack propagation by the theory of cohesive zones, with the goal of

reducing compliance (through the use of high initial stiffness in the cohesive law)

whilst also ensuring time step stability. Introducing mass penalties into the formu-

lation means that the interface elements have no effect on the critical time step,

and thus eliminates such considerations with regards to the selection of a suitable

traction-displacement relationship.

5.1 Element formulation

The interface element formulation for this new penalty-type formulation is based on

the work of Schellekens [67,68]. In this work, a 4-noded interface element is derived

which has an initial volume of zero. The stiffness of the element is controlled by

user-defined parameters that describe the constitutive behaviour of the element. For

simplicity, we will be working in 2D and using the “linear line interface”—an element
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Figure 5.1: Line interface element in an initial (left) and deformed (right) configuration

which is described by normal and tangential tractions and with linear shape functions

(see Figure 5.1).

5.1.1 Elastic stiffness matrix

We now consider this 4-noded line interface. Each node has two displacement DOF,

giving an element nodal displacement vector

d= [d1
n , d2

n , d3
n , d4

n , d1
t , d2

t , d3
t , d4

t ]
T (5.1)

where n and t denote the directions normal and tangential to the interface, respect-

ively, and superscripts indicate the node numbers as shown in Figure 5.1. The con-

tinuous displacement field is then

u = [uu
n, ul

n, uu
t , ul

t]
T (5.2)

where u and l denote the upper and lower sides of the interface, respectively. The

relationship between nodal and continous displacement vectors is given by

u = Hd (5.3)

where H is an 4×8 matrix containing the interpolation polynomials n= [N1, N2] and

is of the form

H=















n 0 0 0

0 n 0 0

0 0 n 0

0 0 0 n















(5.4)
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where 0= [0, 0]. We can find the relative displacements δ = [δn,δt]
T from

δ = Lu (5.5)

where the operator matrix L is defined through

L=





−1 1 0 0

0 0 −1 1



 (5.6)

The relationship between nodal displacements and relative displacements can then

be derived from Equations (5.3) and (5.5) as

δ = LHd (5.7)

at which point it is useful to define a matrix B which directly relates relative displace-

ments to nodal displacements

B := LH =





−n n 0 0

0 0 −n n



 (5.8)

For arbitrarily orientated elements, the matrix B should be transformed to the local

tangential co-ordinate system of the node set.

We now introduce a matrix D describing the constitutive traction-displacement

relation, so that

t = Dsδ (5.9)

where t = [tn, tt]
T is the traction vector for the element (units N/m2) and Ds is a

constitutive matrix of the form

Ds =





dn 0

0 dt



 (5.10)

The values dn and dt (units N/m3) represent the ‘stiffness’ of the interface in the

normal and tangential directions, although since the term ‘stiffness’ usually refers to a

relationship between force and displacement a more accurate description is stiffness

per unit area. It is these values that function as the stiffness penalty parameters
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for the interface, with dn = dt = 0 corresponding to an unenforced constraint, and

larger values leading to more accurate constraint imposition (i.e., smaller relative

displacements). In the present work we assume that both parameters are equal so

that dn = dt = αs and Ds = αsI. We postpone until the next section a discussion of

how these constitutive relations may change over time (due to damage).

The stiffness matrix K can now be obtained by minimisation of the total potential

energy. The internal work done in the element is

U =
1

2

∫

S

δT t dS (5.11)

where the integration is performed over the surface of the element, S. This can be

rewritten using Equations (5.7)–(5.9) as

U =
1

2
dT

∫

S

BT DsB dS d (5.12)

while the external work W is given by

W = −dT f (5.13)

After setting the variation of the total potential energy (U +W ) to zero we find

Kd= f (5.14)

where the stiffness matrix is given by

K=

∫

S

BT DsB dS (5.15)

Considering the numerical integration of such elements, we note that the linear shape

functions can be written in one isoparametric co-ordinate ξ as

N1 =
1

2
(1− ξ) (5.16)

N2 =
1

2
(1+ ξ) (5.17)

which means that we need integrate over only one co-ordinate. The stiffness matrix



5.1. ELEMENT FORMULATION 67

can therefore be computed (using 2-point Gaussian integration) via

K= b

∫ 1

−1

BT DsB

√

√

√

�

∂ x

∂ ξ

�2

+

�

∂ y

∂ ξ

�2

dξ (5.18)

where b is the width of the interface in the out-of-plane direction.

5.1.2 Constitutive relations and damage law

The constitutive law for the cohesive surfaces relates traction in the interface to the

displacement jump across the surface. As summarised by Xu and Needleman, “the

behaviour that needs to be captured is that, as the cohesive surface separates, the

magnitude of the traction at first increases, reaches a maximum and then approaches

zero with increasing seperation” [80, p. 1400]. However, this kind of cohesive law

is problematic when used in explicit dynamics, since “the initial elastic slope ... may

place stringent restrictions on the stable time step for explicit integration” [60]. In

other words, the initial penalty stiffness in the interface causes a significant decrease

in the critical time step of the analysis. This effect may be mitigated by decreasing the

initial stiffness of the interfaces, but this leads to an increase in artificial compliance

(a general decrease in the stiffness of the continuum that leads to unrealistic elastic

deformation), especially when cohesive surfaces are embedded throughout the finite

element mesh [75,78]. In order to introduce a suitable initial elastic stiffness without

affecting the critical time step, our approach is to introduce mass penalties to com-

plement the standard stiffness penalties and control the eigenfrequencies introduced

by the interface elements. Mass penalties in cohesive surfaces will be discussed in

the next section; first we will develop the framework for stiffness degradation.

We begin by describing the traction-displacement relationship to be employed,

first by rewriting the constitutive matrix for the cohesive surface stiffness matrix as

Ds = γsI (5.19)

where γs acts as the penalty parameter, but is now dependent on a set of damage

parameters. It is initially set to γs = αs, but may decrease over time as damage

occurs and the interface cohesion begins to lessen.

The value of γs is determined by two scalar quantities, namely the effective open-
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Figure 5.2: Cohesive law for tensile tractions, showing the loading path and a potential
unloading path

ing displacement δ and the effective traction t . Inspired by the fracture criteria given

by Camacho and Ortiz [18], we have for the effective opening displacement

δ =









Æ

δ2
n + β

2δ2
t if δn ≥ 0

δn if δn < 0

(5.20)

This value gives a measure of displacement across the interface. The parameter β

dictates to what degree tangential displacements are taken into account when assess-

ing damage in the interface. Since no damage is assumed to occur in compression,

tangential displacements are not considered when assessing relative displacement

for δn < 0.

The effective traction depends on the current state of the interface and where it

lies with regards to the cohesive law shown in Figure 5.2. For undamaged interfaces,

the traction-displacement relation is linear-elastic. By defining the history parameter

δmax as the maximum effective opening displacement reached during an analysis,

we can say that the interface is undamaged if δmax ≤ δ0, where δ0 is the effective

displacement value corresponding to the onset of damage. Therefore, during this

initial phase,

t = αsδ if δmax ≤ δ0 (5.21)

where αs is the initial elastic stiffness of the interface. If the effective traction should

exceed the maximum value of tc the interface enters a damaged state and the con-
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stitutive relation changes to reflect linear softening in the material, so that

t = tc

�

1−
δ−δ0

δc −δ0

�

if δ > δ0,δ = δmax (5.22)

If the effective displacement reaches the critical value δc during loading then the

interface is broken irreversibly, creating a free surface, and

t = 0 if δmax > δc (5.23)

If the effective opening rate becomes negative (δ̇ < 0) at any time after damage

has occured then the interface is said to be unloading. In this state the constitutive

behaviour is once again linear-elastic, but with a reduced stiffness. Then,

t =
tmax

δmax

δ if δ < δmax (5.24)

where tmax is the effective traction corresponding to the effective displacement δmax.

Together, these relations describe all four of the possible states for an interface:

undamaged (linear-elastic), loading (softening), unloading (linear-elastic, reduced

stiffness) and broken (zero traction/free surface).

The effective penalty parameter γs of (5.19) is given by

γs =









αs if δmax ≤ δ0

tmax/δmax if δmax > δ0

(5.25)

We assume that the gap across the interface does not close again after breaking.

To model such problems, the definition could be extended so that the interface has

stiffness in compression (δ < 0) even after the maximum displacement has been

reached (δmax ≥ δc).

At each time step, the effective relative displacement δ is computed for each in-

terface so that any changes in the state of the interface may be detected. For affected

elements the damage model is implemented by computing the associated effective

tractions and then updating the constitutive matrix for those elements via Equation

(5.19).

Finally, we introduce the cohesive fracture energy Gc, a fundamental parameter
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of the cohesive zone model regarded as a material constant, which represents the

work of separation per unit area of cohesive surface. It is given by the area under

the traction-displacement curve, which, for the formulation described above, gives

Gc =

∫ δc

0

t dδ =
tcδc

2
(5.26)

This relationship allows the traction-displacement curve to be fully described by tc

(representing the yield strength of the material), and the fracture energy Gc, both of

which can be obtained by experimental testing of a specimen.

5.1.3 Mass matrix

Thus far, we have formulated a stiffness matrix for the interface, based on the min-

imisation of total potential energy, as well as a constitutive framework to capture

stiffness degradation. In order to obtain a full bipenalty formulation, and thus ob-

tain a suitable mass matrix, we must also consider the kinetic energy of the interface,

which is related to velocity. Thus, analogous to the corresponding displacement terms

from Section 5.1.1 we have

u̇ =Hḋ (5.27)

δ̇ = Lu̇ (5.28)

δ̇ = Bḋ (5.29)

Introducing a momentum vector p = [pn, pt]
T we can then write a momentum-

velocity relation,

p= Dmδ̇ (5.30)

where p represents momentum (per unit area) in the normal and tangential dir-

ections, and the matrix Dm contains mass penalties in the normal and tangential

directions (with units kg/m2). It is assumed that this matrix is a scalar multiple of

the constitutive matrix (5.19), so that Ds = RDm, since this will simplify the imple-

mentation (and in any case, there is no apparent reason for the two penalty types to

possess different normal/tangential contributions). The kinetic energy of the inter-
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face is then given by

T =
1

2

∫

S

δ̇
T
p dS (5.31)

which, after invoking (5.29) and (5.30), becomes

T =
1

2
ḋT

∫

S

BT DmB dS ḋ (5.32)

The equations of motion then follow from the minimisation of energy

Md̈+Kd= f (5.33)

where the mass matrix is given by

M=

∫

S

BT DmB dS =
1

R
K (5.34)

Since the mass matrix is therefore a scalar multiple of the stiffness matrix, the sta-

bility analysis contained in Chapter 3 also applies here, with the assembled interface

matrices acting as the penalty matrices KP and MP. In addition, for a bipenalty for-

mulation the integral in (5.34) need not be computed numerically, but instead can

be calculated directly from the computed stiffness matrix (or visa versa).

Note that since the entries of the mass matrix sum to zero, no physical mass is

added to the system. Just as the mechanical inerter is considered to be massless, so

the bipenalty interface element has no mass; rather, it has a mass matrix that applies

inertia forces when relative acceleration across the interface is non-zero.

With the inclusion of a damage law, we must also consider how the constitutive

matrix Dm may change as damage occurs; i.e., identify the damage parameters which

determine γm in the non-linear constitutive matrix

Dm = γmI (5.35)

One option is to form a new damage law specifically for the mass matrix of the ele-

ment as opposed to the traditional traction-displacement used to govern the stiffness

of the interface. However, this would effectively constitute a new set of velocity con-

straints, whereas our goal is to enforce the non-linear displacement constraints (in

the form of cohesive surfaces) which have already been derived. Consequently, we
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Figure 5.3: Diagram of rectangular elastic region showing fixed supports (indicated by
hashed edges) and interface elements (dotted lines), for an element size of h = 0.1 m.

adopt the same cohesive law for both mass and stiffness matrices, which, with the

reintroduction of the penalty ratio R = αs/αm, gives γm = γs/R. Once again, the

penalty ratio R may be used to control the relative influence of the stiffness and mass

penalty matrices. Note by adopting this method, the assumption that Ds = RDm (and

therefore K= RM) is valid throughout the analysis.

5.2 Elastic wave propagation through 2D bipenalty inter-

face elements

In order to test the interface element formulation, we consider a rectangular region

of elastic material modelled using the finite element method. A regular grid of square

elements is used to mesh the domain. Two-dimensional interface elements are then

inserted between half of the FE continuum elements to observe what effect this has

on wave propagation through the medium, as shown in Figure 5.3. At this point, the

interfaces are non-breaking and do not suffer damage, and the interface constitutive

matrices are given simply by Ds = αsI and Dm = αmI regardless of interface tractions.

(This corresponds to a cohesive surface formulation where the maximum traction tc

is never exceeded.)

In the code, interfaces are added by first specifying the geometrical bounds of a

‘process window’ inside which damage may occur. The elements inside this window

are then separated from those that surround them. Nodes belonging to the elements

within the process window must be repeated in order to achieve this, which increases
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the number of DOF that must be considered (and therefore the size of the system).

The significance of this increase depends on the proportion of total elements included

in the process window. Once the elements are separated, the global interface matrices

are assembled from the individual interface elements needed to connect them. The

interfaces have length but no width (initially) and therefore the initial geometry of

the problem is not changed. For a bipenalty matrix, the elements each possess a mass

matrix, but since the sum of all matrix entries is zero no additional mass is introduced

to the system.

Stress wave propagation through the rectangular system is shown qualitatively

in Figure 5.4, for a stiffness penalised system. The material has arbitrary properties

Young’s modulus E = 1 Pa, mass density ρ = 1 kg/m3, Poisson’s ratio ν = 0, and

plane stress is assumed. The point load F = 10−3 N is applied from the beginning

of the analysis until time t = 0.1 s. The element side length is h = 0.02 m for all

elements (giving a total of 5000 elements). The fixed-edge boundary conditions are

enforced using direct imposition.

In order to quantify errors, a reference solution (shown in Figure 5.4(a)) is first

produced by omitting interface elements entirely. By introducing interface elements

with low stiffness penalty parameters, as in Figure 5.4(b), we can easily observe the

effects of the added interfaces. Note that the analysis concludes before any wave

reflections occur at the boundaries of the region, and hence wave propagation on

the left-hand side of the material appears quite unaffected by the interfaces. In the

interface process window, however, stress wave propagation is slowed considerably

by the additional elastic strain manifesting between the continuum elements, a phe-

nomenon known as artificial compliance. This is clearly evident in the stress error

field, shown in Figure 5.4(c).

Figure 5.4 demonstrates the need for well-enforced interface constraints. If no

damage has occurred, a continuum that includes cohesive surfaces and the interface-

free continuum should ideally behave identically, with zero displacement across an

interface. Using penalty methods, this is only possible in the limit as penalty paramet-

ers tend to infinity, but cohesive surfaces can be practically transparent if the initial

penalty is large enough. Of course, with stiffness-type penalties this introduces the

standard concerns with regards to time step stability.

Figure 5.5 gives some idea of the effects of two kinds of catastrophic error (i.e.,
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Figure 5.4: Von Mises stress profiles at time t = 0.8 s, including error field (units: Pa).
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Figure 5.5: Von Mises stress profiles at time t = 0.8 s for two examples of catastrophic error
(units: Pa).
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Figure 5.6: Stress error norm at time t = 0.8 s for the stiffness, mass and bipenalty methods.

those which render the results of an analysis so meaningless as to be of no use to an

analyst). Figure 5.5(a) shows the manifestation of computational error due to the

use of very large mass penalty parameters. Here, round-off errors are exaggerated

due to the ill-conditioning of the global mass matrix (the solution of a linear system

is required due to the interface elements resulting in a non-diagonal mass penalty

matrix). Figure 5.5(b) shows unstable behaviour caused by the use of stiffness-type

penalties artificially increasing the maximum eigenvalue of the system.

Before moving on to more complex examples it is worthwhile to compare the

performance of the stiffness, mass and bipenalty methods, as well as the influence of

penalty parameter magnitude, in the context of this simple 2D problem. Figure 5.6

shows the L2 norm of the error in stress profile, ‖eσ‖, between two analyses with

and without penalty-based interface elements, for a range of penalty factors. Note

that the quantity represented by the x-axis (penalty factor, p) represents the penalty

factor that has been used as input in each case. For the stiffness penalty analyses

this is the stiffness penalty factor ps, and for the mass and bipenalty analysis it is the

mass penalty factor pm, since for the bipenalty method, the stiffness parameters are

calculated based on a suitable penalty ratio R (as described by Algorithm 1 of Section

4.3).

Figure 5.7 shows the timesteps used for the analysis on a logarithmic scale. For

mass and bipenalty methods, suitable time steps are estimated using the maximum
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Figure 5.7: Time step used in each analysis (approximately 0.9∆tcrit).

eigenvalue of all individual elements, whereas for the stiffness penalty method the

maximum eigenvalue of the full constrained system must be used. This data shows

that achieving high accuracy using stiffness-type penalties quickly becomes very ex-

pensive as penalty parameters are increased; indeed, for stiffness penalty factors

ps > 108 the tests became prohibitively expensive.

The final two plots, shown in Figure 5.8 show the condition number κ for the

reduced1 global stiffness and mass matrices, as estimated numerically using MAT-

LAB. For the mass penalty analysis the stiffness matrix is singular, since many of the

continuum elements positioned in the left-hand side of the model are free and uncon-

strained, but this is perfectly acceptable when using the central difference method as

a time integrator. Once again, the condition numbers in both cases are approximately

equal to the penalty factors being used.

5.3 Crack propagation in a single-edge-notched beam

In this section we introduce breaking interfaces and the cohesive damage model de-

scribed in Section 5.1.2 in order to investigate dynamic crack propagation. The ex-

perimental test under consideration is a fairly well-known problem referred to as

1The term ‘reduced’ here refers to the fact that fixed-support boundary conditions are taken into

account using direct imposition; the condition numbers are calculated from the reduced matrices after

this process, but with penalty methods enforcing the interfacial constraints.
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Figure 5.8: Condition numbers of stiffness (left) and mass (right) matrices, estimated using
the MATLAB function condest().
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Figure 5.9: The single-edge-notched (SEN) beam experimental setup, showing process
window (grey area below notch tip). All dimensions are in mm.

the single-edge-notched (SEN) beam, for which quasi-static experimental results are

available in the literature [69]. The geometry and boundary conditions of the prob-

lem are shown in Figure 5.9. The beam is assumed to have the following material

properties: Young’s modulus E = 35 GPa, mass density ρ = 1000 kg/m3, Poisson’s

ratio ν = 0.2, and plane stress is assumed. For the damage model, the critical ef-

fective traction is taken as tc = 3 KPa, and the maximum effective displacement is

δc = 10−6 m.

Crack paths recorded from experimental tests of the SEN beam have been re-

produced in Figure 5.10. In order to reproduce these tests numerically, several FE

meshes are created (with the open source meshing software Gmsh [31]) using 3-
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Figure 5.10: Experimental results showing crack path for the SEN beam under quasi-static
loading (from Schlangen [69]).

No. of elements No. of interfaces Time step, ∆t [µs] Total CPU time [min]

1617 739 3.608 15.7

3333 1467 3.127 46.3

6428 3045 1.837 177.8

9716 4681 1.367 393.1

Table 5.1: Approximate CPU time spent during the solution phase for each of the analyses
shown in Figure 5.11 (AMD Athlon 3.2 GHz CPU).

noded linear triangular elements. Bipenalty interface elements are then introduced

between the continuum elements in the central process window, and dynamic tests

are carried out using the central difference time integration scheme. Penalty para-

meters are determined using Algorithm 1 of Section 4.3. The total load P is set to

increase linearly from zero to 30 KPa over a analysis duration of 0.2 s and the ana-

lysis is terminated when the crack tip ordinate is less than 10 mm from the bottom

edge of the beam. The final crack paths for four different meshes are shown in Fig-

ure 5.11. Some details about the computations, including the calculated time step

and the total time spent computing the solutions, is shown in Table 5.1.

It should be noted that a true quasi-static analysis is not possible in this case as it

would be too computationally expensive to apply the loading at a rate slow enough

that inertia effects could reasonably be neglected. Therefore, there are presumably

some inertia effects present in the analyses which would not have manifested in the

quasi-static experimental tests. Despite this fact, the final crack paths show reason-

able agreement with those obtained experimentally.
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(a) 1617 elements, t = 0.097 s (b) 3333 elements, t = 0.102 s

(c) 6428 elements, t = 0.094 s (d) 9716 elements, t = 0.094 s

Figure 5.11: Crack paths for increasingly refined mesh.

Mesh dependence is often cited as a major drawback of cohesive zone models,

where cracks can only form along element boundaries; undoubtedly, this is a major

advantage of meshless methods and also explains why adaptive remeshing is often

utilised in these problems. In this case, however, even the coarsest mesh gives a

reasonable final crack path, and there is no large variation in the time taken for the

crack to extend to the specified end point.

The time step used for these analyses is calculated using the maximum elemental

eigenvalue as an estimate for the maximum eigenvalue of the system2, with a safety

2In fact, in an analysis where cracks are free to form throughout the continuum (leading to a less

constrained system) and elements can potentially separate completely, the maximum eigenvalue of the
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stress (von Mises)
18.99.460.004190.00419 9.46 18.9

stress (von Mises)

(a) Stiffness penalty analysis (ps = 0.7) at time

t = 0.080 s

stress (von Mises)
15.17.570.002370.00237 7.57 15.1

stress (von Mises)

(b) Bipenalty method at time t = 0.094

Figure 5.12: Von Mises stress profiles for the SEN beam using stiffness and bipenalty meth-
ods (units: Pa).

factor of 0.9, giving ∆t ≈ 1.3 µs. Figure 5.12(a) shows a stiffness penalty analysis

using the highest stiffness penalty allowed with this time step. Here, the bounds

of the process window are clearly visible in the stress profile, due to the artificial

compliance that is introduced in that area. In addition, the crack propagation speed

is higher than any of the bipenalty analyses. For comparison, the stress profile and

crack path of a bipenalty analysis are shown in Figure 5.12(b). The differences are

notable.

5.4 Dynamic analysis of PMMA plate with pre-existing crack

For validation of the formulation in a dynamic setting we turn our attention to an ex-

periment carried out by Grégoire et al. [34] (and further investigated by Combescure

et al. [21]), which investigates crack propagation through a polymethyl methacrylate

(PMMA) plate under impact loading. The experiment uses a Hopkinson bar to ap-

system may increase during an analysis. It is therefore dangerous to assume that at the end of the

analysis the maximum eigenvalue ωmax will be larger than the maximum element eigenvalue ωe
max

,

which in this case gives a reliable upper bound.
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Figure 5.13: Geometry of the PMMA specimen (dimensions in mm).

ply load to the left-hand side of the PMMA specimen shown in Figure 5.13, which

features a pre-existing crack emanating from a central hole. The specimen suffers

fracture damage during the first 500 µs after impact, and the crack tip position is

measured during this time to obtain a detailed crack propagation history.

In this section we simulate the experiment numerically using bipenalty cohesive

surfaces. Only the PMMA plate is considered, since the initial contact with the Hop-

kinson bar on the left-hand side of the specimen can be modelled with prescribed

velocities, while contact at the other end is handled with adsorbing boundary condi-

tions. Given material properties for the plate include Young’s modulus E = 4.25 GPa,

mass density ρ = 1180 km/m3, Poisson’s ratio ν = 0.42 and fracture toughness

KIC = 1.47 MPa
p

m.

For the cohesive bipenalty formulation we require the damage parameters tc and

GC (from which we can calculate δc). The cohesive fracture energy can be calculated

from the fracture toughness via GC = K2
IC/E. The yield stress tc is not given, and so

initially a range of values are tested, from 10–100 KPa.

The final crack paths are shown in Figure 5.14 for a range of possible tc values.

Although the total length of the path is not captured by the simulations, the initial

portion of the crack is reproduced very well for tc = 15–21 KPa. Note that since the

crack is required to move along element boundaries it cannot generally move in a

perfectly straight line, which adds extra length to the crack path. This in turn adds

to the amount of energy required to open the crack, which may help to explain why
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the numerical paths are shorter than those obtained experimentally.

The growth of the crack over time is compared to experimental observations in

Figure 5.15. The experimental results show the crack beginning to form at around

200 µs, stopping briefly when it reaches x ≈ 90 mm, before continuing to its end

point. While in the numerical tests crack initiation is about 25 µs early, and crack

speed propagation is generally higher than in experiments, the stop-start behaviour

of the crack propagation is captured to some extent for tc = 12–18 KPa. For compar-

ison purposes, the results from Reference [21], which uses XFEM instead of cohesive

surfaces, is shown in Figure 5.16.

The mostly likely reason for disparities in the numerical tests is the accuracy of

the bilinear cohesive law. Be refining the traction-displacement relationship it may

be possible to obtain more accurate results, although this would likely require access

to further experimental test data for the material in question. An alternative cohesive

model designed for the modelling of PMMA is given by Elices et al. [27].

However, in general the bipenalty cohesive surfaces are well-suited to this prob-

lem type, where high loading rates mean that the the explicit central difference

method is an obvious choice for the solution scheme. Since stiffness-only elements

lead to artificial compliance, an artificially lowered time step, or else unexpected time

step instabilities, their use is problematic. On the other hand, the bipenalty method

allows for time steps close to the critical time step of the unconstrained problem,

while allowing for a very high initial stiffness.
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Figure 5.14: Final crack paths. From top to bottom, tc = 12, 15, 18, 21 KPa
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Figure 5.15: Position of crack tip (x-dir) over time: tc = 12 KPa (top left), tc = 15 KPa (top
right), tc = 18 KPa (bottom left), tc = 21 KPa (bottom right).
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Figure 5.16: Position of crack tip over time (from Combescure et al. [21]).





Chapter 6

Modelling of contact-impact using

the bipenalty method

The modelling of contact is necessary in a large variety of physical simulations, in-

cluding impact testing, the analysis of structural elements, and the simulation of

mechanical processes, and as such has become a standard feature in commercial fi-

nite element (FE) software packages. Especially relevant to the current project is the

field of blast and impact, where explicit dynamic FE packages are especially popular,

due to their suitability for modelling short, highly dynamic problems.

Contact problems can be roughly defined as any problem for which it is neces-

sary to stipulate that two or more bodies (or, for some large deformation problems,

two parts of the same body) cannot occupy the same space at the same time. The

term ‘contact-impact’ is often used to describe the subset of these problems for which

dynamic effects are taken into account. Compared to the problems considered in

previous chapters, contact problems are more difficult to model due to the nature of

the constraints and the difficulty in properly detecting and characterising contact as it

occurs. Since the present work is concerned with the former of these two areas—the

imposition of constraints—the problems in this chapter are selected so as to avoid the

necessity for complex search and detection algorithms. Similarly, we assume linear-

elastic material behaviour and employ small strain theory in the continuum, so that

the contact constraints are the only source of non-linearity in the formulation.

87
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6.1 Literature review

Contact and contact-impact are topics that have been covered extensively in the lit-

erature, and many different approaches have been developed. For constraint impos-

ition, researchers have called upon many techniques, with the Lagrange multiplier

method [19,44,77] and penalty methods [1,3,15,33,37,71] remaining the most pop-

ular. A range of implicit [1,44,77] and explicit [14,18,19] time integration schemes

have also been employed. In the present study, we focus on explicit dynamics (es-

pecially the central difference method) combined with penalty-based formulations.

Full overviews (including static contact, implicit methods and alternative methods of

constraint enforcement) are available in standard texts [12,79,81] while reviews of

the relevant literature can be found in References [17,32,82,83].

The first widely available explicit code that featured the ability to handle contact-

impact problems was DYNA, initially developed by John Hallquist and released in

1976 [12]. Early publications by Hallquist and co-workers indicate that penalty

methods were favoured due to a lack of mesh hourglassing and the fact that con-

servation of momentum is achieved without any special impact and release condi-

tions [15, 33, 37]. LS-DYNA, a popular commercial solver that evolved from these

early codes still uses penalty methods as the basis for its contact algorithms [36].

Explicit solvers are well-suited to solving contact-impact problems. Aside from

their efficiency, they provide a straightforward treatment of non-linear contact con-

straints since they “permit the new displacement configuration at each time step to

be computed in terms of strictly historical information” [63]. Camacho and Ortiz also

choose an explicit scheme based partly on the fact that “explicit contact algorithms

are more robust and straightforward than their implicit counterparts” [18]. In fact, a

combination of penalty functions (for the constraints) and an explicit solver is prob-

ably the simplest method of handling contact-impact in terms of implementation.

Of course, there are disadvantages to this approach. The main downside of us-

ing explicit time integrators is the need to consider the critical time step, and when

dealing with contact-impact (as with other applications) the use of stiffness pen-

alty parameters complicates the situation. Goudreau and Hallquist in fact noted this

problem early on when confronted with unacceptable errors in constraint imposition,

stating that
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if interface pressures become large, unacceptable penetration may occur.

By scaling up the stiffness and scaling down the time step size, we may

still solve such problems using the penalty approach. Since a large in-

crease in cost may arise due to more time steps, a sliding only option

has been implemented in DYNA3D for treating explosive-structure inter-

action problems and thereby avoid use of the penalty approach. [33, p.

741]

The estimation of safe critical time steps for contact-impact problems has therefore

been the subject of some study [14, 51, 63], with Plesha clearly stating the essence

of the problem: “the extreme frequency of the global finite element discretization

cannot be bound by the maxima of unconstrained element frequencies, as is con-

ventional practice, since the interface elements have zero mass and hence, infinite

frequencies” [63]. The bipenalty method aims to solve this problem by adding a mass

matrix and thus setting the eigenfrequencies of the contact elements to known finite

values (the elements are given a distribution of mass; total mass remains zero).

Beyond time step control, contact-impact algorithms can often be sensitive to

penalty parameter values in other ways. Hunĕk shows in his study on the effect of

penalty parameter magnitude that even modest penalty parameter values can lead

to considerable (spurious) oscillations in the solution, with the amplitude of the os-

cillation becoming larger as the penalty parameter is increased [45]. Two possible

sources for these undesirable oscillations can be identified in the literature.

The first concerns regularisation of the contact constraints. At the time of impact

between two bodies, the velocities on the contact interface are discontinuous in time.

For methods which exactly enforce the contact constraint, such as the Lagrange mul-

tiplier method, this discontinuity may propagate after contact has occurred, causing

noise in the solution. Penalty parameters (which are proportional to the magnitude

of constraint violation) smooth out these discontinuities, resulting in smoother solu-

tions. In this way, the penalty approach may be thought of as a regularisation pro-

cedure [12, §10.5.9]. Lowering the penalty parameter leads to a greater degree of

regularisation, with the sacrifice being that non-physical penetration between con-

tacting bodies increases. Conversely, increasing the parameter in order to decrease

constraint imposition errors may result in a noisier solution.

If it is true that using large penalties will always result in noisy solutions due

to insufficient regularisation, then this aspect must be taken into account too when

using the bipenalty method. However, a second source has also been suggested.
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Armero and Petocz state that

In situations where an extended time of contact appears, penalty schemes

imposing only the gap constraint are known to lead in general to oscil-

lations of the contact forces. These oscillations are also present in tra-

ditional schemes, and their origin can be traced in part to the lack of

satisfaction of the constraint in the velocities. [1, p. 283]

This sentiment is also expressed by Lee, who uses an iterative scheme to improve

the satisfaction of velocity and acceleration continuity on contact surfaces [52]. This

implies that by penalising only a violation of the displacement constraint (as tradi-

tional stiffness penalties do) we neglect to constrain the velocities (and accelerations)

properly at the contact interface. It is therefore feasible that the proposed bipenalty

formulation, through the use of mass penalty constraints, can improve performance

by reducing spurious oscillations. This theory is supported somewhat by the work of

Asano [2–4], who introduces separate penalty parameters for displacement, velocity

and acceleration constraints on the contact surface to derive an FE formulation for

contact-impact.

The contact-impact formulation used in this chapter is based largely on the work

of Belytschko and co-workers [12,14], as well as the node-to-node formulation provided

by Hunĕk [45]. With this work as a basis, we apply the bipenalty method to impose

the contact constraints.

6.2 Problem statement

Figure 6.1 shows two smooth, continuous bodies, ΩA andΩB, in contact. The surfaces

of the two bodies are denoted by Γ A and Γ B and the contact surface by Γ C = Γ A∩Γ B,

while the outward unit normals are nA and nB.

We wish to derive boundary conditions on the contact surface Γ C that enforce the

impenetrability condition

Ω
A∩ΩB = ∅ (6.1)

which simply states that two bodies cannot occupy the same space. However, trans-

lating (6.1) into a useful set of constraint equations for use in an FE implementation

is not a trivial task, and many approaches have been suggested.

A common method proceeds by defining a displacement gap function (as shown
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Figure 6.1: Two bodies in contact.
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Figure 6.2: The gap function between point P (on ΓB) and body A.

in Figure 6.2), given by

gn = (x
A − xP) · nP (6.2)

where xP and xA are the spatial co-ordinates of points P and A, and nP is the out-

wards unit normal at point P. The gap function represents the shortest distance from

P to surface Γ A; that is, the orthogonal projection of P onto Γ A. When bodies are

overlapping, point P is considered to be penetrating body ΩA, and the gap function

becomes negative. We choose point P to be the point on Γ B which minimises g. The

impenetrability condition (6.1) can then be expressed as

gn ≥ 0 on Γ C (6.3)

Following the work of Belytschko and co-workers [12, 14], we place a further
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constraint on the interpenetration rate, expressed as

γn ≥ 0 on Γ C (6.4)

which stipulates that the relative normal velocity (or ‘velocity gap’) on the contact

surface cannot be negative. The rate constaint (6.4) is sometimes introduced in order

to reduce spurious oscillations in the contact force [1]. In the proceeding bipenalty

formulation it will be used to derive a suitable mass penalty matrix for the contact

constraints.

The normal tractions on Γ C are given by

tA
n = tA · nA (6.5)

tB
n = tB · nB (6.6)

For simplicity, we consider only frictionless contact so that the tangential tractions

are zero and tA
t = tB

t = 0. From conservation of momentum, the tractions on the

contact surface must vanish, and so

tA
n − tB

n = 0 (6.7)

By defining the interface normal traction as tn := tA
n = tB

n , we can write the so-called

unitary contact condition

tn gn = 0 (6.8)

which implies that contact tractions can only be non-zero when bodies are in contact

(gn = 0).

6.3 Contact-impact in one dimension

Implementing robust contact detection and contact constraint enforcement in a multi-

dimensional FE model can be problematic. The task is simplified significantly by

considering only one spatial dimension. In this setting there is no ambiguity about

which nodes are in contact, or about which nodes may come into contact during

an analysis, and contact is always node-to-node. Hence, we begin by presenting a

one-dimensional (1D) formulation in order to focus on the details of the bipenalty
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Figure 6.3: Contact between two one-dimensional bodies: initial configuration (top) and
during contact (bottom).

method for constraint enforcement. In the next section, we extend these ideas into

a two-dimensional (2D) setting.

6.3.1 Finite element implementation

In a 1D analysis each node has a single displacement DOF, and the nodal displace-

ments and velocities are scalar values measured in the x-direction only. Contact

surfaces consist of one node (at the end of a body), and the outward unit normals

to contact surfaces take a value of ±1. A discretised representation of a typical 1D

contact problem is shown in Figure 6.3.

In a 1D FE discretisation, the previously discussed equations governing contact

are considered only at nodes. The contact boundary conditions for a contact surface

on which node P is penetrating surface A are

gn = (x
A − xP)nP = (uA − uP)nP + G ≥ 0 (6.9)

γn = (v
A − vP)nP ≥ 0 on Γ C (6.10)

where x , u and v represent the nodal positions, displacements and velocities, respect-

ively, and G is the initial gap (at time t = 0) between nodes A and P. From these
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inequalities we can define the contact constraint equations

(uA − uP)nP = −G if gn < 0 (6.11)

(vA − vP)nP = 0 if gn < 0 (6.12)

Note that Equation (6.11), derived from the gap constraint, contains information

about initial configuration of the bodies at the beginning of the analysis, as well as

the nodal displacements. The velocity gap constraint (6.12), on the other hand, can

be written only in terms of nodal velocities. These constraint equations have the

same form used in Section 2.3 to formulate the bipenalty matrices KP and MP and

penalty force vector fP and thus can be written in matrix form as

h = Su− q (6.13)

ḣ = Su̇− q̇ (6.14)

where S= nP(eA− eP)T (6.15)

q = −G (6.16)

where eA is the standard basis vector ei with i the node number of node A in the

global system. Note that the initial gap G is constant in time and hence q̇= q̈= 0.

The constraint equations are only applied when a constraint is active. Further-

more, for a system with more than two bodies there may be multiple active contact

constraints and hence multiple rows in the constraint matrix S and prescribed dis-

placement vector q. In order to determine which contact constraints are active a

contact detection algorithm is required. For a 1D analysis this process is straight-

forward. Nodes that may come into contact are identified at the beginning of the

analysis. At each time step, and for each contact node pair, the gap function gn is

calculated via Equation (6.2). If gn < 0 then penetration is occurring, leading to

activation of the contact constraints for that node pair. The penalty matrices and

penalty force vector are calculated directly from Equations (2.18)–(2.20).

For a given constraint configuration, the nodal forces can be computed from

fC = fMP + fSP

=MPü+KPu+ fP
s

(6.17)
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where fC is the vector of nodal forces due to contact constraints, to which fSP =

KPu+ fP
s is the stiffness penalty contribution, and fMP =MPü the contribution of the

mass penalties (since q̈ and therefore fP
m are zero).

Equation (6.17) highlights a potential disadvantage of the bipenalty method when

used for contact constraints. As discussed, contact problems are by nature discontinu-

ous, and this discontinuity can cause numerical difficulties. The traditional penalty

method helps to mitigate this problem through regularisation; since the contact force

is proportional to the displacement gap, the force is applied gradually as penetration

increases, until an equilibrium is reached. However, the mass penalty contribution

to contact force fMP is not proportional to the displacement gap, but instead depend-

ent on accelerations. The regularisation of fC could therefore be compromised if the

acceleration gap (and therefore mass penalty force fMP) is significant at the time of

contact. The penalty ratio R can be used to control, to some extent, the contribution

of fMP and therefore this effect on the regularisation.

In order to examine this effect, and to address the usual concerns with regards to

constraint imposition accuracy and time step stability, some numerical examples of

1D contact-impact problems will now be presented.

6.3.2 Numerical example: Hunĕk bar impact

In a study focussing mainly on the effect of penalty parameter magnitude, Hunĕk uses

a penalty formulation very similar to that described above, except that it uses only the

traditional stiffness penalty method in order to enforce the contact constraints. To

begin our investigation of the bipenalty method for 1D contact-impact, we reproduce

a two body impact problem from that study [45].

The problem consists of two bars, one at rest and one with an initial velocity of v0

in the positive x-direction, as shown in Figure 6.4. Both bars have Young’s modulus

E = 100 N/m2, mass density ρ = 0.01 kg/m3 and cross-sectional area A = 1 m2.

The length of bar 1 is L = 10 m, while bar 2 has length 2L = 20 m, and the bars

are discretised using linear 2-noded bar elements of length h = 0.2 m. The initial

velocity given to bar 1 is v0 = 0.1 m/s and the initial gap is G = 0.

For the given geometry, nodes A and P come into contact twice before separating.

The analytical solution gives a contact force of 0.05 N for time 0 < t ≤ 0.2 and

0.4 < t ≤ 0.6, and zero otherwise. For 0.2 < t ≤ 0.4 both nodes are at rest while
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Figure 6.4: Bar impact problem
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Figure 6.5: Stiffness penalty method: contact force, and displacement of contacting nodes
for increasing stiffness penalty parameter. The analytical solution is indicated by dotted line.

the elastic strain wave is reflected back along the length of the second bar. Hunĕk

provides time series plots of the computed contact force for three stiffness penalty

parameters αs = 62.5, 125 and 500 and numerical results are acceptable in this

range, although at αs = 62.5 the contact forces are somewhat slow to reach the

proper value, and with αs = 500 large oscillations appear in the contact force. This

suggests a high sensitivity to penalty parameter magnitude, since there is a relatively

small window of penalty parameters (around one order of magnitude) where the

general behaviour of the contact forces are comparable to the analytical solution.

Compared to the penalty magnitudes used in other methods they are relatively small,

with αs = 500 corresponding to a penalty factor of ps = 1.

Presently, we extend this study by further increasing the stiffness penalty para-
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meter. Figure 6.5 shows the computed contact force and displacement at nodes A

and P for three stiffness penalty analyses with a constant timestep ∆t = 0.0004 s.

The critical time step associated with the system (neglecting the effect of penalty

constraints) is ∆tcrit = 0.002.

Figure 6.5(a) shows the oscillations that are present in the contact force for αs =

500, although this does not seem to cause any serious problems with regards to

nodal displacements. Figure 6.5(c) shows the manifestation of time step instability.

Note that the displacements are not subject to unbounded exponential growth in this

case, as is characteristic of time step instability, since the contact constraints are only

applied for very short periods (separation occurs after one or two time steps).

The stability of the middle analysis, with αs = 5000, is not so easy to comment on.

The numerically computed maximum eigenvalue during contact is λC
max ≈ 1.05×107,

giving a critical time step of around∆tC
crit
= 0.0006, suggesting that∆t is marginally

sub-critical. However, examination of the total energy of the system reveals a slight

increase over the course of the analysis, which is characteristic of instability.

Figure 6.6 shows contact force and displacements for the bipenalty formulation.

The penalty ratio is chosen as R= 106, which is equal to the largest eigenvalue of the

unpenalised system. There is no evidence of time step instability in the results, and

nodal displacements on the contact surface are reasonable, although large amplitude

oscillations persist in the contact forces for high values of αs. Interestingly, Figure

6.6(a) suggests that with relatively low penalty parameters, the additional constraint

offered by the mass penalties can significantly reduce contact force oscillations. For

larger values of αs, however, the noise is still present.

In order to investigate further, the same problem is repeated with a range of

penalty parameter magnitudes, and with several different penalty ratios. A time step

of ∆t = 20 µs = 0.01∆tcrit is used for all analyses. The gap function gn should

ideally be zero until separation at t = 0.6 s, and hence the root-mean-squared of the

gap function between 0–0.6 s gives a measure of the error in constraint imposition.

These values are plotted in Figure 6.7. For a pure stiffness penalty approach, time

step instability manifests at the larger penalty factors. All bipenalty analyses converge

to a constant value as the stiffness penalty is increased.

It should be noted that a problem of this type cannot be modelled with mass pen-

alties alone. Contact-impact problems rely on a displacement constraint in order to
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Figure 6.6: Bipenalty method: contact force, and displacement of contacting nodes for in-
creasing stiffness penalty and mass penalty αm = αs/Rcrit. The analytical solution is indic-
ated by dotted line.
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enforce the kinematic constraints properly. In a bipenalty formulation, contact forces

include contributions by both stiffness and mass penalties, as shown by Equation

(6.17). Stiffness penalties are activated by displacements that violate the constraint

equations, while mass penalties are activated by violations in the nodal accelerations.

For the bar problem considered here both bars are travelling with constant velocity at

the beginning of the analysis, and since there are no applied forces the acceleration at

all nodes is zero. Hence, fMP =MPü = 0 and therefore fC = 0 for the duration of the

analysis (unless stiffness penalties are also included). This explains why, for the tests

shown in Figure 6.7, the smallest errors are found with penalty ratios in the range of

1–100, with smaller ratios leading to much larger errors. Some relative acceleration

is initially required on the contact surface as contact occurs; in theory, the velocities

of the contacting nodes are altered instantaneously, after which the acceleration gap

(as well as the displacement and velocity gap) is zero until release. For small ratios,

the mass penalty force resists this sudden change in relative velocity by overpower-

ing the stiffness penalty force. It is therefore recommended that a reasonably large

penalty ratio be used for contact-impact problems of this type. Typically, we will be

using the largest ratio that ensures stability for the time step being employed.

Although the bipenalty method is effective in safeguarding the stability of the

analysis, the oscillations in the contact force are still present. Since this has been

attributed to the absence of a velocity gap constraint [1], we will finally look at the

effect of damping penalties on the results. These are activated by a velocity gap across

the contact surface, and as such may help to damp out the noise. Figure 6.8 shows

total contact force, displacement at contacting nodes, and the normal gap function

for four different values of ‘damping factor’ D, where

CP = DKP (6.18)

Both stiffness and mass penalties are also used with a relatively large stiffness penalty

factor of ps = 105 and penalty ratio R= 106 s−2, which is equal to the maximum ei-

genvalue of the unconstrained system. Damping penalties help to enforce continuity

of velocities across the contact interface, and because of this they are very effective

at reducing noise in the contact forces. However, it is difficult to determine what the

ideal damping factor is for a given analysis; small differences in D can often lead to
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Figure 6.9: Error in the gap function gn for a range of damping factors.

significant changes in the results. For example, in Figures 6.8(a)–(c) the two bod-

ies separate at around t = 0.2, leading to a zero contact force and a small positive

displacement gap. Figure 6.8(d) reveals that that for D = 0.01 a very small negat-

ive displacement gap is preserved throughout, with contact forces oscillating around

zero. It is debatable which analysis captures the behaviour more accurately.

Figure 6.9 examines the effect of the damping ratio in a manner similar to the

investigation of penalty ratio shown in Figure 6.7. Once again, results converge to

a constant value for large stiffness penalty factors, although with damping penalties

included the RMS of the error is generally a lot smaller due to the reduction in noise.

The value of the damping penalty D, however, remains very arbitrary. Since there

is no obvious physical basis upon which to base an estimate, and because increasing

the value of D does not cause convergence towards the exact solution, damping pen-

alties should be used with care. After developing guidelines to simplify the choice of

penalty parameters αs and αm, adding another arbitrary factor that must be chosen

using trial and error would appear to be something of a step backwards. On the other

hand, the results shown above do display promising characteristics, and the use of
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Figure 6.10: Contact between 2D discretised bodies.

damping penalties may be useful in situations where the trial and error approach

is viable. For general adoption, however, clear and generally applicable guidelines

should be investigated that might aid in the choice of D.

6.4 Contact-impact in two dimensions

In 2D, contact problems become more complicated. The node-to-node formulation

can only be extended to 2D if the surface mesh of the bodies is identical and no

sliding occurs on the contact surface. A more general solution is the node-to-surface

formulation, which will be developed in this section.

6.4.1 Finite element implementation

Figure 6.10 shows a 2D FE discretisation in which two bodies are overlapping. Node

P is the penetrating node, while nodes A and B are the nodes that define the element

edge which has been penetrated. The ‘contact point’, denoted by C, is the nearest

point on the penetrated surface, with position

xC = xA + ξ(xB − xA) (6.19)

where x denotes a position vector in the x-y co-ordinate system and ξ is the norm-

alised distance from node A to the contact point, that is,

ξ =
|xC − xA|
|xB − xA| (6.20)

This value can be calculated from the positions of nodes A, B and P via

ξ =
(xP − xA) · (xB − xA)

|xB − xA|2 (6.21)
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The gap function gn is given by

gn = −(xC − xP) · n

= −[(1− ξ)xA + ξxB − xP] · n

= −[(1− ξ)uA + ξuB − uP] · n−G · n

(6.22)

where G is the initial gap between node P and the contact point C. This expression

is derived from Equation (6.2), with the additional assumption that nP = −nA (since

the outward unit normal at nodal points is in general discontinuous for discretisations

of curved surfaces). Note that since the contact point depends on displacements, the

initial gap is no longer constant in time. The velocity gap is given by

γn = −[(1− ξ)vA + ξvB − vP] · n (6.23)

The two-dimensional constraint equations can therefore be written

[(1− ξ)uA + ξuB − uP] · n= −G · n for gn < 0 (6.24)

[(1− ξ)vA + ξvB − vP] · n= 0 for gn < 0 (6.25)

However, in two dimensions it is not possible to write these equations directly

in the form h = Su − q, as was possible for the simple 1D constraints in Section

6.3.1. Instead, we will derive stiffness and mass penalty matrices from the weak

form of the contact constraint equations. The process is similar in many ways to the

interface element formulation described in Section 5.1. First, we choose the normal

vector n as the basis for a local co-ordinate system. The displacements of the contact

nodes in the direction of the contact surface outward normal are denoted by

d= [dA
n , dB

n , dP
n]

T (6.26)

and the gap function is given by

gn = Bd+ Gn (6.27)

where B = [ξ − 1,−ξ, 1] and Gn is the initial gap between node P and the contact

point in the local co-ordinate system.
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We then define a relationship between contact force and displacement gap func-

tion,

fn = αsgn if gn < 0 (6.28)

Similar to the traction–relative displacement relationship used for interface elements,

this equation adds a corrective force proportional to the magnitude of constraint

violation. However, since contact is assumed to act at a single point, a force (units:

N) is generated instead of traction (N/m2). The work done by the contact connection

is given by U = fn gn/2, which becomes, after substitution of Equations (6.28) and

(6.27),

U =
αs

2
(Bd+ Gn)

2 (6.29)

Minimisation of potential energy then leads to

Kd = q (6.30)

where the stiffness matrix is given by

K= αsB
T B= αs









(ξ− 1)2 ξ(1− ξ) ξ− 1

ξ(1− ξ) ξ2 −ξ
ξ− 1 −ξ 1








(6.31)

and the initial gap vector given by q= αsGnBT .

In the local co-ordinate system of the contact surface the velocity gap is given by

γn = Bv (6.32)

where v= [vA
n , vB

n , vP
n]

T and the work done due to the mass penalties is given by

T =
αm

2
(Bv)2 (6.33)

Minimisation of total energy (U +T ) then leads to

Kd+Mv̇= q (6.34)



6.4. CONTACT-IMPACT IN TWO DIMENSIONS 105

where the mass penalty matrix is

M = αmBT B=
1

R
K (6.35)

The 2D bipenalty contact formulation therefore consists of computing K, M and

q for each penetrating node. These are then rotated into the global x-y co-ordinate

system and assembled to form the penalty matrices KP, MP and penalty force vector

fP.

6.4.2 Contact detection

The actual process of detecting contact is largely irrelevant to the method of con-

straint imposition described above, but a brief overview of the methods used in the

developed code will be given.

At the beginning of an analysis, possible contact surfaces are identified. Contact

detection at each time step is then a two stage process. Firstly, elements which are

potential candidates for contact are identified. Then, individual nodes are checked,

and, if found to be penetrating a contact surface, projected back onto a suitable point

on that surface. To complete the first stage, every element on a contact surface is

given a bounding circle, which contains the element for the duration of the analysis.

If any of these bounding circles are overlapping at a given time step then the element

pair is considered to be a candidate for penetration. In the second stage, each pair

of potentially contacting elements is considered in turn. If a node from the first lies

inside the bounds of the second, a contact connection is created. The process is then

reversed so that nodes from both elements are checked.

When a node is found to be penetrating an element/surface, the choice of contact

point (point C in Figure 6.10) is not always obvious, and therefore must be handled

with some care. Figure 6.11 shows three nodes (P, Q and R) penetrating a surface. In

the case of node P there is only one possible contact point, which is easily identified.

Node Q can be projected at right angled to two different points on the surface. In

this case, the contact point closest to the penetrating node is chosen. Finally, node

R cannot be projected onto any point on the surface. In this case, a node-to-node

connection is established with the closest surface node. This ensures that even if

there are multiple possible projections, or no projections at all, a sensible contact
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P Q

R

Figure 6.11: Nodes P, Q and R penetrating discretised 2D surfaces.

Figure 6.12: Complete 2D mesh for the bar impact problem (top) and detail of mesh around
contact surface (bottom)

point is always selected. When non-physical penetrations are small, the first case is

by far the most common occurrence.

6.4.3 Numerical example: Hunĕk bar in 2D

For verification of the given formulation, the 1D Hunĕk bar impact test is repeated in

2D. While the analytical solutions assume a 1D theory of wave propagation, approx-

imate contact forces, displacements and duration of contact should be approximately

the same when the bars are modelled with 2D finite elements. The material prop-

erties are the same as were used in Section 6.3.2, with a Poisson’s ratio ν = 0. The

mesh is shown in Figure 6.12, and the bar is assumed to have a 1×1 m square cross-

section. The stable time step is estimated using the maximum element eigenvalue

with a safety factor of 0.5 (that is, ∆t = 1/maxe(ω
e
max)≈ 2.43× 10−4 s).

Time histories of total contact force on the impacted surface, and the mean dis-

placement on both contact surfaces, are shown in Figure 6.13 for three different

penalty formulations, each with ps = 1. Penalty magnitudes therefore roughly cor-

respond to αs = 500 for the 1D analysis. Mass penalty parameters are calculated by

taking R equal to the maximum eigenvalue of the unpenalised system. The main fea-

tures of the collision are correct, with the contact force in all cases oscillating around

0.05 N. As with 1D contact, the damping penalties are effective in damping out high

frequency noise in the solution, although low frequency oscillations are present in all
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(a) Stiffness penalty method.
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(b) Bipenalty method

(R = 1.01 × 107).
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(c) Bipenalty method with

damping (D = 0.001)

Figure 6.13: Total horizontal contact force and mean horizontal displacement on contact
surfaces for the bar impact problem modelled in 2D.

cases. This is partly due to lateral wave propagation which is not taken into account

in 1D theory. The displacements on the contact surface show good agreement with

the predicted solution.

6.4.4 Numerical example: Collision between dissimilar cylinders

Another contact-impact problem is shown in Figure 6.14. One cylindrical body is at

rest, while another impacts its bottom face with a velocity of 2 m/s in the diagonally

upwards-right direction. Both bodies have mass density ρ = 0.1 kg/m3 and Poisson’s

ratio ν = 0.2 and plane strain is assumed, but body 1 has a Young’s modulus of

E1 = 1000 N/m2 while body 2 is considerably less stiff, with Young’s modulus E2 =

100 N/m2. The diameter of both cylinders is 2 m, and there are no fixed supports

and no external forces applied to either of the bodies.

The deformation of the contact surface during the collision is depicted in Fig-

ure 6.15. The bipenalty method is used with a stiffness penalty factor of ps = 1. The

time step ∆t ≈ 9.46× 10−5 is calculated from the maximum elemental eigenvalue,
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v2 = 2 m/s

v1 = 02 m

2 m

Figure 6.14: Colliding cylinder problem, including FE mesh.

with a safety factor of 0.5, and the penalty ratio R≈ 4.02×108 is calculated directly

from the time step ∆t (with a safety factor of 0.9). Due to the horizontal movement

of the bottom cylinder, and the fact that friction forces are neglected, there is con-

siderable sliding along the contact surface. Larger deformations occur in the bottom

cylinder due to its lower elastic modulus.

The same analysis was performed with the stiffness and bipenalty methods for

a range of penalty parameters, with and without damping penalties included. Fig-

ure 6.16 gives an indication of how each of the different methods performed, by

showing the maximum penetration of any node during the analysis. Results are not

included if the displacement of any node exceeds 1 m at any point; since displace-

ments should not approach such values in the first 0.18 s, numerical problems are

assumed to have occurred in these cases. For small parameters there is not much dif-

ference between the methods. For higher values of ps, both the stiffness and bipenalty

methods fail to supply reasonable results.

The failure of the pure stiffness penalty approach can be explained by time step

instability occurring due to the penalty contact elements, but poor regularisation of

the contact constraints is also an important factor. The bipenalty formulations that

include damping show that although penetration does not tend to zero for large

parameters, there is no catastrophic failure due to time step instability, even for large

penalty factors. Since damping penalties do not effect time step stability, this implies
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Figure 6.15: Collision of dissimilar cylinders.
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Figure 6.16: Maximum penetration of a penetrating node for increasing penalty magnitude.

that the bipenalty formulation fails due to a lack of regularisation, creating noise in

the solution. When damping penalties are included this noise is reduced (damped

out) to varying degrees.

Sensitivity to penalty parameter is therefore high for all formulations; very large

parameters lead to large, suddenly applied forces, which lead to spurious oscillations

in the solution. Penalty factors in the region of 1–10 appear to be optimal in terms of

minimising penetration. Crucially, this is also the region where stiffness penalty for-

mulations begin to fail due to time step instability. The bipenalty method eliminates

this possibility, but parameters must still be chosen carefully for best performance.

Damping penalties lead to a slight increases in performance, and extend the range of

acceptable parameter magnitudes to some degree, but still do not constitute a gen-

eral fix; they damp spurious oscillations to some degree, but do not solve the problem

of poor constraint regularisation.

Hallquist et al. [37] give an equation that can be used to calculate an appropriate

penalty stiffness that depends on the bulk modulus, volume and area of an element,

as well as a ‘scale factor’ to protect against time step instability. The bipenalty method

would eliminate the need for the scale factor, but for good performance it is still

necessary to use a reasonable penalty stiffness (one which takes into account the
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properties of the contacting bodies) for explicit contact-impact problems.

Figure 6.17 shows that total contact force during the initial period of contact

between the two cylinders. At ps = 0.01 for all analyses the contact force is un-

derestimated, leading to large penetration (as seen in Figure 6.16). As the penalty

factor is increased, the contact force converges to a solution, but oscillations around

that solution also increase. The oscillations are most pronounced for the stiffness

penalty method, with the bipenalty method showing slightly reduced noise. With

damping penalties included, oscillations are much reduced at ps = 10, although the

problem inevitably manifests for larger penalty magnitudes, even with the inclusion

of damping penalties.
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(b) Bipenalty method
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(c) Bipenalty method with damping (D = 0.0001)

Figure 6.17: Total vertical contact force per metre length for the initial 0.1 s of the analysis.



Chapter 7

Conclusions and future research

Penalty methods provide a simple and versatile framework for the imposition of con-

straints in a wide range of common problem types. They are valued for their concep-

tual simplicity and the ease with which they can be robustly implemented in finite

element codes. They are often favoured in explicit dynamic codes for their compu-

tation efficiency. However, there is a certain amount of uncertainty involved with

regards to the selection of suitable penalty parameters, since no well-defined op-

timum values can be identified. In static analysis, one may select parameters that

are too low (leading to poor enforcement) or too high (leading to ill-conditioning),

but in explicit dynamics a third complication is introduced: the effect on the critical

time step. Traditional stiffness penalty parameters tend to decrease the critical time

step, although it is hard to predict the extent of this effect; safety factors, whose

values are generally determined through trial and error, are common.

The bipenalty method removes uncertainty from the process of applying penalty

constraints in explicit dynamics. Beginning with a general bipenalty formulation

that allows for any number of arbitrary constraints, this thesis provides mathemat-

ical proof of the precise effects that the constraints have on the eigenvalues (and

therefore associated critical time step) of a finite element system, and shows that

they can be carefully controlled through manipulation of the penalty ratio. This is a

very desirable feature of the bipenalty method from the point of view of an analyst. It

allows the use of the largest possible critical time step, based on the standard criteria;

namely, element size and material properties (as dictated by the CFL condition). It

means that an arbitrary parameter used in a contact algorithm or the constitutive

113
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model of a cohesive surface does not have any effect on the critical time step. The

bipenalty method certainly helps prevent time step instability, but also has the po-

tential to prevent analysts from being overly cautious when selecting a time step due

to uncertainty about the effects that the traditional penalty method might have.

In terms of the accuracy of constraint imposition, the traditional stiffness pen-

alty method is usually superior when compared to the bipenalty method with pen-

alty parameters of similar magnitude. However, in explicit dynamics this comparison

does not tell the whole story. Traditional penalty methods have a restrictive upper

bound on the values that can be used due to their effect on stability, whereas the

bipenalty method does not. This means that ill-conditioning once again provides

the upper bound for parameter magnitude, as it does in static analysis. In a co-

hesive surface formulation this is especially important, since it allows for a more

realistic constitutive behaviour during the initial elastic region of deformation, be-

fore damage has occurred. Previously, analysts would have to use small stiffness

penalties (which may introduce a significant amount of artificial compliance in the

continuum), introduce the cohesive surfaces only after the onset of damage (which

greatly increases the complexity and cost of the analysis, due to constantly changing

system size and memory requirements) or decrease the time step of the analysis. The

bipenalty method provides a way of using large parameters while keeping the num-

ber of DOF constant throughout the analysis; the critical time step of the analysis is

not affected.

The bipenalty method possesses some significant disadvantages, however. Poten-

tially the most problematic is that the method results in a non-diagonal mass matrix

for the types of constraints most commonly tackled with penalty methods (i.e., con-

straints that involve multiple DOF). Whether or not this computational overhead is

prohibitively large depends entirely on the problem being addressed. For example,

if contact occurs only at specific points on the boundary of a large structure, the

bipenalty method is certainly a worthy candidate. On the other hand, thin structures

modelled with shell elements may have a very large proportion of DOF on a contact

surface, and in such extreme cases the potential increase in time step is very likely be

offset by the more costly solution procedure. Similar considerations should be made

for crack propagation problems using cohesive surfaces; if interface elements must

be placed throughout an entire structure then the computational cost of the solution
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scheme will rise dramatically.

In the field of contact-impact, the fact that the bipenalty method allows for very

large penalty parameters is less useful. Here, very large penalty parameters lead

to poor regularisation of the discontinuous contact constraints; large parameters do

not necessarily lead to high performance. Of course, the inclusion of mass penalties

does guard against time step instability, which is often difficult to detect in contact-

impact problems. Furthermore, the inclusion of damping penalties does appear to

help damp out the spurious contact force oscillations that are characteristic of dy-

namic contact problems. There is no significant computation overhead to including

damping penalties if mass penalties are already being employed.

7.1 Future research

In the field of interface elements and crack propagation this thesis has utilised only a

very simple bilinear constitutive model. In order to properly assess the performance

of the bipenalty method in this area, research could be undertaken to develop a

more sophisticated bipenalty formulation. For contact-impact problems, the use of

damping penalties appears to yield promising results in terms of performance. In the

trade-off between excessive penetration and poor regularisation, there is currently

a fairly small window when penalty parameters are most effective; a window the

bipenalty method with damping may enlarge. However, it is not yet clear how to

reliably select damping penalty parameters for best performance. Possible areas for

research include a method for choosing a damping penalty factor based on material

properties, or directly from the stiffness and mass penalty parameter being used for

a given constraint.

The work presented in this thesis considers only linear elastic material behaviour;

although nonlinear constraints are explored, the material models are quite simplistic,

and large deformations are not considered. For the bipenalty method to be widely

accepted both stability and accuracy would need to be further investigated in the

context of practical nonlinear analysis. This would likely require the implementation

of bipenalty techniques into existing codes. Although every attempt has been made

to ensure that the bipenalty method as derived in this work is as generally applicable

as possible, the performance of the method in highly nonlinear, dynamic analyses is
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yet to be fully analysed.

Perhaps the most useful research that could be undertaken at this point is related

to the computational efficiency of a bipenalty constrained system with non-diagonal

mass matrix terms. Even within the framework of the central difference method,

there are many algorithms that can be employed to compute a solution, and the

overall efficiency is very much dependent on which algorithm is used, and how the

nodal displacements at the free and penalty-constrained DOF are calculated. Further

insight in this area would allow guidance to be given regarding how many DOF can be

constrained (relative to the size of the complete system) before the bipenalty method

is no longer a computationally efficient option. This would require a comprehensive

assessment of available algorithms, and possibly the development of new schemes

that are designed around the bipenalty formulation.

Even if the computational efficiency of the bipenalty method is too poor for gen-

eral adoption, some of the work presented here may perhaps inform the analysis of

penalty methods in general. The selection of penalty parameters is often challen-

ging, not just because of stability but also because of how difficult it is to predict the

resulting error ahead of time. Further research that builds on the ideas presented

in this work could lead to clear and robust algorithms for penalty parameter selec-

tion, whether the penalties are applied to the stiffness, mass or damping matrix of a

system.
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