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Abstract

Invariant coordinate selection (ICS) is a method for finding structures in mul-

tivariate data using the eigenvalue-eigenvector decomposition of two different

scatter matrices. The performance of the ICS depends on the structure of the

data and the choice of the scatter matrices.

The main goal of this thesis is to understand how ICS works in some situa-

tions, and does not in other. In particular, we look at ICS under three different

structures: two-group mixtures, long-tailed distributions, and parallel line struc-

ture.

Under two-group mixtures, we explore ICS based on the fourth-order moment

matrix, K̂, and the covariance matrix S. We find the explicit form of K̂, and

the ICS criterion under this model. We also explore the projection pursuit (PP)

method, a variant of ICS, based on the univariate kurtosis. A comparison is

made between PP, based on kurtosis, and ICS, based on K̂ and S, through a

simulation study. The results show that PP is more accurate than ICS. The

asymptotic distributions of the ICS and PP estimates of the groups separation

direction are derived.

We explore ICS and PP based on two robust measures of spread, under two-

group mixtures. The use of common location measures, and pairwise differencing

of the data in robust ICS and PP are investigated using simulations. The sim-

ulation results suggest that using a common location measure can be sometimes

useful.

The second structure considered in this thesis, the long-tailed distribution, is

modelled by two dimensional errors-in-variables model, where the signal can have

a non-normal distribution. ICS based on K̂ and S is explored. We gain insight

into how ICS finds the signal direction in the errors in variables problem. We

also compare the accuracy of the ICS estimate of the signal direction and Geary’s

fourth-order cumulant-based estimates through simulations. The results suggest
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that some of the cumulant-based estimates are more accurate than ICS, but ICS

has the advantage of affine equivariance.

The third structure considered is the parallel lines structure. We explore ICS

based on the W-estimate based on the pairwise differencing of the data, V̂ , and

S. We give a detailed analysis of the effect of the separation between points,

overall and conditional on the horizontal separation, on the power of ICS based

on V̂ and S.
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Chapter 1

Introduction

The subject of this thesis is the invariant coordinate selection (ICS) method, de-

veloped to discover structures in multivariate data using the eigenvalue-eigenvector

decomposition of two different scatter matrices. The performance of the ICS

method depends on the structure of the data and the pair of scatter matrices

used.

The main goal of this thesis is to understand why ICS works in some situations,

and not others. Another goal is to compare ICS to the projection pursuit method

(PP).

The general tools used in this thesis are multivariate analysis and robust

statistics. We start by giving a brief introduction of these two topics.

1.1 Multivariate analysis

Multivariate analysis is concerned with the analysis of data of dimension p higher

than one. References in multivariate analysis include Mardia et al. (1980), and

Everitt (2005).

A p-dimensional dataset, with n observations can be represented by an n× p

data matrix, X, say. Each row is denoted by xTi , where i = 1, . . . , n. The data
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matrix X can be written in terms of its rows as

X =


xT1
...

xTn

 ,

where

xTi = (xi1, . . . , xip).

1.1.1 Transformations

As a preliminary step of the analysis, multivariate data can be transformed using

one of the following transformations:

(1) Non-singular transformation: for a non-singular p × p matrix, Q, say, and

a vector b ∈ Rp, suppose that X is transformed as follows

X → XQT + 1nb
T , (1.1)

where 1n is a vector of length n with all its components equal to one.

Standardization is an example of affine transformation. In standardization,

each row of X is shifted to have zero mean, and scaled to have unit variance,

X → (X − 1nx̄)S−1/2,

where x̄ is the mean vector, defined in (1.5), and S−1/2 is the inverse square

root of the sample covariance matrix S, defined in (1.8), and (1.6), respec-

tively. Standardization removes the correlation effect between variables,

and scale the variance of each variable to 1. In this case the covariance

matrix of the standardized data is equal to the identity matrix.

(2) Diagonal scaling: for a p × p diagonal matrix A =diag(a1, . . . , ap), where
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aj 6= 0, j = 1, . . . , p. Suppose that X is transformed as follows:

X → XA. (1.2)

For example, if the components of X are measured in different scales, we

can unify the measurement scales by choosing A as diag(1/sjj), where sjj

is the standard deviation of the jth component of X, j = 1, . . . , p.

(3) Orthogonal rotation: Let R be a p×p rotation matrix, such that RTR = Ip,

and |R| = 1. A rotation of X is defined as

X → XRT . (1.3)

The two dimensional rotation matrix is equal to

R =

cos(ω) − sin(ω)

sin(ω) cos(ω)

 . (1.4)

It is often important that multivariate techniques are affine equivariant. A mul-

tivariate technique is said to be affine equivariant if under any of transformations

(1), (2), and (3), the results of the analysis are not affected. As we have mentioned

earlier, if the scales of the measurements are unified, or the data is standardized, it

is desirable that the performance of method is not affected by the transformation.

Methods that are equivariant under non-singular transformations in (1) are

preferable. Most methods are equivariant under at least one of the transforma-

tions (1), (2) or (3).

For example, Mahalanobis distances, and linear discriminant analysis are

equivariant methods under non-singular transformations. Factor analysis is equiv-

ariant under scale change transformation in (2). PCA is equivariant under or-

thogonal transformations.
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1.1.2 Summary statistics

The sample mean vector is defined as

x̄ =
1

n
XT1n. (1.5)

The sample covariance matrix is defined as

S =
1

n
(X − 1nx̄

T )T (X − 1nx̄
T ). (1.6)

The spectral decomposition of S is given by

S = ULUT , (1.7)

where L=diag(l1, . . . , lp) is a diagonal matrix containing the ordered eigenvalues,

and U = (u1, . . . , up) is a p × p matrix whose its columns are the corresponding

eigenvectors.

The inverse square root of S can be defied as follows

S−1/2 = UL−1/2UT , (1.8)

where L−1/2 =diag(l
−1/2
1 , . . . , l

−1/2
p ).

The sample mean and the sample covariance matrix are affine equivariant

under linear transformations. Consider the non-singular transformation in (1.1).

The sample mean and covariance matrix are given by

x̄→ Qx̄+ b,

S → QSQT .
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1.1.3 Exploratory data analysis

Usually, the first step of the analysis is to explore the multivariate data. Ex-

ploratory analysis helps to

• choose appropriate models by detecting departure from normality, including

groups, and outliers;

• reduce the dimension of the data by assessing the linear relationships be-

tween variables.

In the following we define some of the classical methods that can be used to

explore multivariate data.

Principal component analysis

Principal component analysis finds the linear combination for which the data

have maximal variance. The aim is to reduce the dimension, and understand the

covariance structure of the data.

Consider the linear transformation Xa, where a ∈ Rp is a unit vector. The

mean of Xa is equal to aT x̄, and the variance is equal to aTSa.

PCA reduces the dimension by projecting the data onto the subspace spanned

by the k eigenvectors corresponding to the k < p largest eigenvalues,

Y = (X − 1nx̄
T )V,

where V is a p × k matrix, its columns are the k largest eigenvectors. The

dimension of the reduced dataset Y is n× k.

Factor analysis

In Factor analysis it is assumed that each measurement depends on unobservable

common factors. The goal is to find the linear relationship between the com-



Chapter 1. Introduction 6

mon factors and the measurements. This relationship can be used to reduce the

dimension of the data.

In a factor model, a p-variate random vector is written as the sum of a linear

combination of k < p dimension vector of common factors plus unique factors.

Let x be a p-variate random vector, the factor model is given by

x = Λf + u,

where Λ is a p × k (k < p), matrix of constants, f is a k × 1 vector of common

factors, and u is a p× 1 vector of unique factors.

The model assumptions are

E(x) = E(f) = 0, var(f) = Ik,

E(u) = 0, var(u) = Ψ = diag(ψ1, . . . , ψp), cov(f, u) = 0.

Thus, the covariance matrix can written as

Σ = ΛΛT + Ψ,

where

σii =
k∑
j=1

λ2ij + ψi. (1.9)

This means that the variance of each variable can be divided into two parts: the

communalities,

h2i =
k∑
j=1

λ2ij,

and the unique variance ψi.

Given multivariate data, there are two methods to estimate Λ and Ψ: the

first is the principal factor analysis and the second is the maximum likelihood

method, where the common factors and unique factors are assumed to be normally
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distributed. We explain briefly the first method in the following paragraph.

Since the factor model is equivariant under the change of scale, as in (1.2),

the variables can be scaled to have unit variances. Hence, the covariance matrix

of the scaled data is equal to the correlation matrix R̂.

The method is based on finding the reduced correlation matrix as follows

R̂− Ψ̂ = Λ̂Λ̂T .

We need first to estimate the cummunalites h2i , which can be estimated iteratively

using the previous equation and the following equation, from (1.9),

ψ̂i = 1− h2i .

The spectral decomposition of R̂− Ψ̂ is given by

R̂− Ψ̂ =

p∑
i=1

aiγiγ
T
i ,

where a1 ≥ . . . ≥ ap are the eigenvalues of R̂ − ψ̂, and γ̂1, . . . , γ̂p are the corre-

sponding eigenvectors.

The k eigenvectors corresponding to the largest k eigenvalues can be used as

an estimate of Λ.

1.2 Location vectors and Scatter matrices

A vector-valued function T (X) ∈ Rp is a location vector if it is equivariant under

affine transformations, which is defined in (1.1), as follows

T (X)→ QT (X) + b.
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A matrix-valued function S(X) is a scatter matrix if it is positive definite p× p

symmetric matrix, and affine equivariant

S(X)→ QS(X)QT .

1.3 Robust statistics

Many statistical methods rely on the normality assumption of the data. In prac-

tice, however, the normality assumption holds at best approximately. This means

that the model describes the majority of the data, but a small proportion of the

data do not fit into this model. This kind of atypical data are called outliers.

Outliers are not always bad data, but may contain significant information.

Using classical statistical methods in the presence of outliers would give un-

reliable results. Many robust statistical methods have been developed to tackle

this problem. Maronna et al. (2006) and Jureckova and Picek (2005) are general

references in robust statistics.

Maronna et al. (2006), page xvi, gives the following definition of robust meth-

ods:

The robust approach to statistical modeling and data analysis aims

at deriving methods that produce reliable parameter estimates and

associated tests and confidence intervals, not only when the data fol-

low a given distribution exactly, but also when this happens approxi-

mately. . . .

1.3.1 Measuring robustness

Let x1, . . . , xn be an independent identically distributed replicate of a univariate

random variable x. Let F (x;ϕ) be the distribution function of x, where ϕ = T (x)
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is an unknown parameter. The parameter ϕ can be written as a functional

ϕ = T (F ).

An estimator of ϕ̂n = T (x1, . . . , xn), can be written as

ϕ̂n = T (Fn),

where Fn is the empirical distribution function defined as follows

Fn(t) =
1

n

n∑
i=1

I(xi ≤ t),

where I(A) is the indicator random variable which equals 1 when A holds.

The ε-contamination distribution is defined as follows,

Fε = (1− ε)F + εδx◦ , (1.10)

where 0 ≤ ε ≤ 1, δx◦ is the point mass distribution where Pr(x = x◦) = 1.

Sensitivity curve

The effect of on the estimator ϕ̂n = T (x1, . . . , xn) adding a new observation x◦

can be measured by the difference

SC(x◦;T, Fn) = T (x1, . . . , xn, x◦)− T (x1, . . . , xn)

= T (Fn+1)− T (Fn).

The empirical distribution function of the contaminated sample Fn+1 is given by

Fn+1(t) =
1

n+ 1
(
n∑
i=1

I(xi ≤ t) + I(x◦ ≤ t)) =
n

n+ 1
Fn +

1

n+ 1
δx◦ .
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Hence the sensitivity curve is defined by

SC(x◦;T, Fn) = T [
n

n+ 1
Fn +

1

n+ 1
δx◦ ]− T (Fn). (1.11)

For example, the sample mean ϕ̂n = T (Fn) is defined as

ϕ̂n = T (Fn) =

∫
xdFn =

∑n
i=1 xi
n

= x̄.

Define ϕ̂n+1 = T (Fn+1) as follows

ϕ̂n+1 = T (Fn+1) =
n

n+ 1
x̄+

1

n+ 1
x◦.

The sensitivity curve is given by

SC(x◦;T, Fn) =
{

(
n

n+ 1
)x̄+ (

1

n+ 1
)x◦ − x̄

}
=

1

n+ 1
(x◦ − x̄).

From the sensitivity curve of x̄, as the value of the outlier x◦ increases, the

sensitivity curve becomes unbounded.

Influence function

The influence function for an estimator ϕ̂n = T (Fn) is the population version of

its sensitivity curve. To derive the influence function, consider the contaminated

distribution in (1.10). The influence function is defined as

IF(x0;T, F ) = lim
ε→0

T ((1− ε)F + εδx0)− T (F )

ε
=

∂

∂ε
T ((1− ε)F + εδx0) |ε=0 .

(1.12)

For example, the expected value as the parameter of interest: ϕ = T (F ) =
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E(X). Then,

T (Fε) = T ((1− ε)F + εδx0) = (1− ε)T (F ) + ε T (δx0)

= (1− ε)E(X) + ε x0.

The influence function of the expected value is

IF(x0;T, F ) = lim
ε→0

(1− ε)E(X) + ε x0 − E(X)

ε

= x0 − E(X).

Breakdown point

The breakdown point of an estimator ϕ̂ = T (x1, . . . , xn) is the largest possible

fraction of contamination such that the estimator remains bounded.

An estimator with a high breakdown point means it is a robust estimator. For

example the breakdown point of the mean is 0, since changing a single observation

may increase the mean without bound, while the for the median is equal to 1/2.

1.3.2 Robust location and scale estimates

If the data are normally distributed, then the sample mean and the sample vari-

ance are the optimal location and scale estimates. Since we only know F approx-

imately, we want the estimates of location and scale to be reliable in the presence

of outliers.

In the following we discuss briefly some of robust location and scale estimates.

We consider first univariate estimates. After that, we discuss the multivariate

analogues of some of the univariate estimates discussed in this section.

Univariate estimates

The simplest alternative to the sample mean is the median (Med); alternatives

to the sample variance include the interquartile range (IQR) and mean absolute
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deviation (MAD).

In the following, we define the univariate robust estimates that are used in

this thesis.

• M-estimate: Suppose that ϕ = (µ, σ2). The M-estimates of location and

scale are the solutions of the following estimation equations

µ̂ =

∑n
i=1w1(ri)xi∑n
i=1w1(ri)

, σ̂2 =

∑n
i=1w2(ri)

n
, (1.13)

where w1 and w2 are non-negative weight functions, and

ri =
xi − µ̂
σ̂

.

For example, the maximum likelihood estimate of tν-distribution have the

following weight functions

w1(ri) = w2(r1) = (ν + 1)/(ν + r2).

Equations (1.13) are solved iteratively, i.e we start by assigning initial values

to µ̂ and σ̂2 to compute the weights. Then we can solve equations (1.13)

iteratively, update the weights in each iteration, until convergence.

• The lshorth: The lshorth is defined as the length of the shortest interval

that contains half of observations. Its associated location measure is the

midpoint of the shortest interval (shorth).

The shorth was first introduced by Andrews et al. (1972) as the mean of

data points in the shortest interval which contains half of observations. An-

drews et al. (1972) showed that the mean of the shorth has bad asymptotic

performance, its limiting distribution is not normal, and its rate of conver-

gence is of order n−3. Grubel (1988) suggested the use of the shorth as a
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scale measure, lshorth. The lshorth is defined as follows

ln(x1, . . . , xn) = min{x(i+j) − x(i) : 1 ≤ i ≤ i+ j ≤ n, (i+ j)/n ≥ 1/2}.

(1.14)

Multivariate estimates

• M-estimate: The multivariate M -estimate of location and scale are the

solution of the following two equations:

µ̂ =

∑n
i=1w1(ri)xi∑n
i=1w1(ri)

,

Σ̂ =

∑n
i=1w2(ri)(xi − µ̂)(xi − µ̂)T

n
, (1.15)

where

ri = (xi − µ̂)T Σ̂(xi − µ̂).

• The minimum volume ellipsoid (MVE): The minimum volume ellipsoid,

Van Aelst and Rousseeuw (2009), is defined as the smallest ellipsoid con-

taining at least half of observations. The MVE is the multivariate version

of the lshorth. Like the lshorth, MVE has a high breakdown point, but bad

asymptotic behavior with n−1/3 rate of convergence. In practice, MVE is

computationally expensive.

1.4 Thesis outline

When investigating ICS and PP, we need to specify:

• pair of spread measures;

• structure of the data;

• The computation of the measures of spread: based on the associated lo-

cation measures, based on a common location measure, or based on the
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pairwise differencing of the data to force the symmetry of the data around

the origin.

In Chapter 2, we explore the rationale of the ICS method. We also link PP

to ICS.

In Chapter 3, we explore the ICS criterion based on the fourth-order moment

matrix and the covariance matrix and the PP based on kurtosis, under two-group

mixtures of bivariate normal distributions. We also compare the accuracy of the

two methods through a simulation study.

Under equal mixtures of two bivariate normal distributions, we derive the

asymptotic distributions of the ICS and PP estimates of the group separation

direction in Chapter 4.

ICS and PP kurtosis criteria are not robust, in the sense that they are highly

affected by outliers. Both ICS and PP criteria can be defined based on two

robust measures of scale. In Chapter 5, we investigate the feasibility of using

robust measures of spread in ICS and PP. We also explore the effect of using a

common location measure in the measures of spread used in ICS and PP criteria,

and the role of pairwise differencing of data.

The errors in variables model, EIV, is a regression model with both mea-

surements are subject to errors. In Chapter 6 we explore using ICS based on

the fourth-order moment matrix and the variance in fitting EIV line. We also

compare the ICS method to Geary’s fourth-order cumulant-based estimators.

The performance of ICS depends on the choice of the pair of scatter matrices,

and the structure of the data at hand. For example, ICS based on the fourth-

order moment matrix is not able to find the structure direction in the RANDU

data set. The points in the RANDU data set are arranged on 15 parallel planes,

lying in three dimensional space. The structure direction in the RANDU data set

is the direction that views the parallel line structure. In Chapter 7, we explore

the choice of the two scatter matrices in ICS that can find such the parallel line

structure in such data. Namely, the W-estimate and the covariance matrix. We
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also explore the effect of using the pairwise differencing of the data in W-estimate.

Two potential applications of ICS are discussed in Chapter 8. We discuss the

role ICS can play in finding principal curves and in the analysis of fingerprint

images.



Chapter 2

Invariant coordinate selection

and related methods

2.1 Introduction

Suppose we have a multivariate data set that has a lower dimensional struc-

ture. One way to detect structure is by projecting the data onto a line for

which the data is maximally non-normal. Hence, methods that are sensitive to

non-normality can be used to detect structure. Two such methods from the lit-

erature: invariant coordinate selection (ICS), introduced by Tyler et al. (2009),

and projection pursuit(PP), introduced by Friedman and Tukey (1974).

ICS and PP find structure direction by optimizing criteria sensitive to non-

normality. Any summary statistic that is sensitive to non-normality can be used

as a criterion. For example, the univariate kurtosis is zero when a random variable

has normal distribution. For non-normal distributions the kurtosis is mostly non-

zero, positive or negative.

Motivated by kurtosis, the ICS and PP optimality criteria can be defined as

ratios of any two measures of spread.

The structure of this chapter is as follows. In Section 2.2, we explore the

rationale of the ICS method. After that we link the ideas of ICS to PP in Section
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2.3. In Section 2.4, the use of kurtosis as a criterion to identify non-normal

directions of the data is reviewed. In Section 2.5, the idea of using a common

location measure in the calculations of the pair of spread measures in ICS and PP

is introduced. In Section 2.6, the role of differencing on ICS and PP is discussed.

In Section 2.7, we go through non-normal structures, considered in this thesis,

and their corresponding models. In Section 2.8, we discuss how to choose the

pair of spread measures for ICS and PP. Notations are introduced in Section 2.9.

2.2 Rationale of the invariant coordinate selec-

tion method

Let X be an n×p data matrix, where its rows are xTi = (xi1, . . . , xip), i = 1, . . . , n.

ICS finds a direction a ∈ Rp for which Xa is maximally non-normal, using the

relative eigenvalue-eigenvector decomposition of two affine equivariant scatter

matrices with different level of robustness.

Let S1 = S1(X) and S2 = S2(X), be two affine equivariant scatter matrices.

Each scatter matrix is associated with a location measure, µ̂1 = µ̂1(X) and

µ̂2 = µ̂2(X), say.

The ICS criterion, based on S1 and S2, is to find a direction a that mini-

mizes/maximizes the following criteria

κ̂ICS(a) =
aTS1a

aTS2a
. (2.1)

The minimum/maximum value of (2.1) is the smallest/largest eigenvalue of S−12 S1,

obtained when a is the corresponding eigenvector.

An eigenvalue λ and eigenvector a of S−12 S1 are the solution of the following

equation

S−12 S1a = λa, (2.2)
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Suppose that X is transformed by the affine transformation in (1.1). Denote

the transformed data matrix by X∗. Then, the scatter matrices S∗1 = S1(X
∗),

and S∗2 = S2(X
∗) become

S∗1 = QS1Q
T

S∗2 = QS2Q
T ,

since S1(·) and S2(·) are affine equivariant.

Let

b = Q−Ta. (2.3)

The eigenvalues and eigenvectors of S∗
−1

2 S∗1 are the solution of the following equa-

tion

S∗
−1

2 S∗1b = Q−TS−12 Q−1QS1Q
TQ−Ta

= Q−TS−12 S1a.

From (2.2),

S∗
−1

2 S∗1b = Q−Tλa

= λb. (2.4)

From (2.2) and (2.4), the eigenvalues of S∗
−1

2 S∗1 and S−12 S1 are the same, whereas

the eigenvectors of S∗
−1

2 S∗1 are the eigenvectors of S−12 S1 scaled by Q−T .

The PCA can be related to (2.2), with S2 taken as the identity matrix. Since

ICS is affine equivariant, as we have shown earlier in (2.2) to (2.4), we may

standardize X with respect to Q = S
−1/2
2 , such that S∗2 = Ip. In this case, ICS

can be seen as applying the PCA of the standardized data X∗ with respect to S∗1 .
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2.3 Projection pursuit as a variant of invariant

coordinate selections

As ICS, PP finds a direction a, such that the projection Xa is maximally non-

normal. The PP criterion can be defined as a ratio of two univariate affine

equivariant measures of scale, s1 and s2, say:

κPP(a) =
s1(Xa)

s2(Xa)
. (2.5)

In contrast to ICS, minimizing/maximizing (2.5) is computationally expensive

because it is carried out numerically. PP method searches in all projection direc-

tions to find the direction that minimizing/maximizing (2.5).

Suppose that X is standardized as in (1.1). Criterion (2.5) based on the

standardized data X∗ becomes

κPP(b) =
s1(X

∗b)

s2(X∗b)
. (2.6)

Where b is as in (2.3), and can be noted by comparing the following two linear

transformations,

Xa ∝ X∗b

= XQTQ−Ta. (2.7)

We explore the effect of standardization on PP in Section 3.6.

2.4 Univariate kurtosis

The kurtosis of a univariate random variable u, say, is defined as follows.

kurt(u) =
E{(u− µu)4}

[E{(u− µu)2}]2
− 3. (2.8)
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where µu, is the mean value of u.

The kurtosis takes the following possible values:

(1) kurt(u) = 0: satisfied under normality.

(2) kurt(u) < 0: this case is called sub-Gaussian.

(3) kurt(u) > 0: this case is called super-Gaussian.

The Sub-Gaussian case appears in distributions flatter than the normal and

have thinner tails; examples include the uniform distribution. On the other hand,

the super-Gaussian case appears in distributions that are more peaked than the

normal distribution and have longer tails; examples include t, and Laplace distri-

butions.

The extreme case of sub-Gaussianity occurs for two-point distribution. That

is, let s be a random variable that has a two-point distribution, defined as follows.

s =

 1 with probability q

−1 with probability (1− q)
. (2.9)

The kurtosis of s is equal to

kurt(s) =
−3[4q(1− q)]2 + 16q(1− q)

(4q(1− q))2
− 3

=
1

q(1− q)
− 6. (2.10)

The minimum value of kurt(s) is −2, attained when q = 1/2. The value of kurt(s)

increases as q increases away from 1/2, as shown in the following lemma.

Lemma 2.4.1. The kurtosis of any random variable takes the values between −2

and ∞.

Proof. This lemma can be proved using the Cauchy-Schwarz inequality. The

Cauchy-Schwarz inequality for a random variable u, where E(u) = 0, is given as
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follows

(E{u2})2 ≤ E{u4}.

Dividing both sides by (E{u2})2 and subtracting 3

E{u4}
(E{u2})2

− 3 ≥ 1− 3

kurt(u) ≥ −2.

The kurtosis has been used as a criterion for identifying non-normal projec-

tions of multivariate data in PP and independent component analysis (ICA); see

for example, Huber (1985), Jones and Sibson (1987), Peña and Prieto (2001), and

Bugrien and Kent (2005).

Peña and Prieto (2001) suggested that minimizing kurtosis is appropriate if

the purpose is identifying clusters, whereas maximizing kurtosis can be used to

detect outliers. In particular, if q is near half, minimizing kurtosis is more useful

than maximizing it; if q is far from half maximizing kurtosis is more useful than

minimizing it. Peña and Prieto (2001) also gave a threshold of q that distinguishes

q from being far from half or near half. The threshold can be noted from (2.9).

Namely, if q(1− q) = 1/6 the kurtosis equals to zero, otherwise the kurtosis will

be negative or positive.

To illustrate the idea of minimizing and maximizing kurtosis, consider n bi-

variate data points generated by adding a bivariate isotropic noise to points gen-

erated from s in (2.9). That is, the data points xi are generated from the following

model

xi = si

α
0

+ εi, (2.11)

where i = 1, . . . , n, α > 0 is a separation parameter between groups, and εi is
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a bivariate normal isotropic noise. The structure direction in this model is the

direction that best separate the two groups, at the horizontal direction, and the

noise direction is in the direction the data are normally distributed, the vertical

direction, as shown in Figures 2.1(a) and (b), with q = 1/2 and 1/7, and α = 3.
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(a) q = 1/2
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(b) q = 1/7

Figure 2.1: Bivariate data points generated from (2.11) with, q = 1/2, q = 1/7,
n = 200, α = 3, and a = (1, 0)T .

In (a), the value of the sample kurtosis in the horizontal direction is −1.7,

while in the vertical is 0.2. In (b), the sample kurtosis in the horizontal direction

is 1.3, while in the vertical direction is −0.8.

The structure direction is in the direction that minimizes or maximizes the

kurtosis relative to the kurtosis of the data in the noise direction.

2.5 Common location measure

The computation of each measure of spread in criterion (2.1) and (2.6) is based

on an associated location measure. Sometimes different location measures are

used in the denominator and numerator, which makes the methods unreliable.

One possible way to solve this problem is by using a common location measure

in the denominator and numerator. Another way is by computing the scale

measures based on pairwise differencing of the data to force the symmetry of the

data around the origin. The pairwise differencing of the data is defined in the

following section. This problem is explored in Chapter 5.
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2.6 Role of differencing

Let X be an n × p data matrix, with its rows xTi = (xi1, . . . , xip), i = 1, . . . , n.

The pairwise differencing of X, denoted by Xd, is defined as follows,

xdk = xi − xj, i 6= j = 1, . . . , n, (2.12)

where k = 1, . . . , n(n− 1).

As we noted earlier in Section 2.5, pairwise differencing can be used to force

the symmetry of the data around the origin.

Another problem that involves differencing of the data is when the structure

is similar to the RANDU example from Tyler et al. (2009). The data points in

RANDU data set, explained in Section 7.2, are arranged in 15 parallel planes,

evenly spaced. The structure direction in this data set is the direction that views

the parallel lines structure.

The pairwise differences of RANDU-like data produce inliers. Inlers are points

with small lengths, arise as a result of the difference of two points with small

distance.

A sensible choice of the pair of scatter matrices for such data should accen-

tuates inliers to emphasize the parallel line structures. Chapter 7 discusses the

choice of the pair of scatter matrices in this kind of structure.

2.7 Types of non-normal structures

Examples of departure from non-normality include skewed, long-tailed, and mix-

ture distributions. The focus in this thesis will be on the following non-normal

structures:

(I) Two-group mixtures: this structure is defined in Section 3.2. Figure 2.2 (a)

shows plot the two-group structure.
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(II) Long-tailed: this structure can be defined by the errors-in-variables model

in Section 6.2, when the signal has non-normal distribution. The long-tailed

structure is shown in Figure 2.2 (b).

(III) Parallel lines structure: this structure is defined in the RANDU-type model

defined in Section 7.3. The parallel line structure is shown in Figure 2.2

(c).

2.8 How to choose the pair of scatter matrices

In this Section, we largely follow the classification of scatter matrices from Tyler

et al. (2009), who divided the scatter matrices into three classes. We have added

a new class, Class I. The classes of scatter matrices are given as follows:

• Class I is the class of highly non-robust scatter matrices, with zero break-

down point and unbounded influence function. The scatter matrices in-

cluded in this class are highly affected by inliers or outliers. Examples

include weighted scatter matrices that up-weight outliers, or inliers, such

as the fourth-order scatter matrix K̂, defined in (3.23), and the one-step

W-estimate V̂ , defined in (7.1).

• Class II is the class of non-robust scatter matrices with zero breakdown

points and unbounded influence function. Examples include the covariance

matrix.

• Class III is the class of scatter matrices that are locally robust, in the sense

that they have bounded influence function and positive breakdown points

not greater than 1
p+1

. An example from this class is the class of multivariate

M-estimators, e.g M-estimate for t-distribution, Arslan et al. (1995).

• Class IV is the class of scatter matrices with high breakdown points such

as the Stahel-Donoho estimate, the minimum volume ellipsoid, Van Aelst
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Figure 2.2: Illustration of the three non-normal structures considered in the the-
sis.
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and Rousseeuw (2009) and the constrained M-estimates, Kent and Tyler

(1996).

Motivated by the univariate kurtosis, the ICS pair of scatter matrices can be

chosen from different classes. By convention, the scatter matrix in the denomi-

nator is more robust that the one in the numerator.

In the following, we list the scatter matrices that are used in ICS:

1. The fourth-order moment matrix, defined in (3.23).

2. The covariance matrix, defined in (1.6).

3. The M-estimator for t2 distribution, defined in Section 1.3.2.

4. The minimum volume ellipsoid, defined in Section 1.3.2.

5. The one-step wighted scatter matrix , defined in (7.1), usually computed

based on pairwise differencing.

Similarly, in PP the univariate analogues of some of the scatter matrices, listed

above, are used,

1. The univariate kurtosis, defined in (2.8).

2. The variance.

3. The univariate M-estimate for t2 distribution, defined in (1.13).

4. The lshorth, defined in (1.14).

2.9 Notation

Throughout the thesis the following notation will be used:

• Univariate random variables and multivariate random vectors, and their

realizations, are denoted by small letters, x, say.
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• Data matrices will be denoted by capital letters, X, say.

• The notations of ICS and PP methods are as follows:

– ICS and PP, based on two different measures of scales, computed with

respect to the associated location measures, are denoted by

ICS : Spread 1 : Spread 2,

PP : Spread 1 : Spread 2.

For example, ICS and PP based on kurtosis and variance are denoted

by

ICS : kurtosis : variance,

PP : kurtosis : variance.

– ICS and PP with respect to a common location measure will be de-

noted by

ICS(Location) : Spread 1 : Spread 2,

PP(Location) : Spread 1 : Spread 2.

– ICS and PP with respect to differenced data are given the superscript

d, i.e

ICSd : Spread 1 : Spread 2,

PPd : Spread 1 : Spread 2.

• The ICS criterion based on any pair of scatter matrices will be denoted by:

in p-dimension κICS(a), as function of the unit vector a ∈ Rp; two-dimension

κICS(θ), as a function of the group separation direction θ ∈ [−π/2, π/2).
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• Similarly, PP criterion is denoted by κPP(a) in p-dimension, and κPP(θ) in

two-dimension.



Chapter 3

Using ICS and PP based on

fourth-order moments in

two-group mixtures

3.1 Introduction

In this chapter we explore the theory and practice of ICS:kurtosis:variance and

PP:kurtosis:variance, under mixtures of two bivariate normal distributions. The

ICS and PP methods are defined in Sections 2.2 and 2.3. The main goal is to

compare the accuracy of ICS and PP in identifying the group separation direction.

The structure of this chapter is given as follows. In section 3.2, we define the

model, mixtures of two bivariate normal distributions. In Section 3.3 we discuss

the theory of ICS:kurtosis:variance. In Section 3.4, the relationship between

Mardia’s multivariate measure of kurtosis and ICS:kurtosis:variance. In Section

3.5, the theory of PP:kurtosis:variance under the mixture model is discussed. In

Section 3.6, we define ICS:kurtosis:variance, and PP:kurtosis:variance criteria in

population and sample cases. We define a measure of spread between axes in

Section 3.7, that is used to compare the accuracy of the two methods. In Section

3.8, a simulation study is conducted to compare ICS and PP.
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3.2 The model: Mixtures of two bivariate nor-

mal distributions

3.2.1 The model assumptions

Let z = (z1, z2)
T be a bivariate random vector, with mean µ and covariance

matrix Σz, distributed as a mixture of two bivariate normal distributions, with

mixing proportion q.

Assume for simplicity that the two groups have equal within-group covariance

matrices, Wz. The density function of z is given by

f(z) = qg(z;µ1,Wz) + (1− q)g(z, µ2,Wz). (3.1)

where µ1 and µ2 are the group mean vectors, and g is the marginal normal

distribution given by

g(z;µi,Wz) = |2πWz|−1/2exp{−1

2
(z − µi)TW−1

z (z − µi)}.

where |Wz| > 0.

Since ICS and PP are equivariant methods, under translation, rotation, and

affine transformations, we may, without loss of generality, assume the following

(1) The random vector z is translated and rotated such that the group means

lie on the horizontal direction, and become symmetric around the origin,

z
′
= Rz,

where R is a rotation matrix defined in (1.4). The within-group covariance
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matrix and the total covariance matrix of z
′

are

Wz′ = RWzR
T ,

Σz′ = RΣzR
T .

(2) The random vector z
′

is standardized in either of two ways: with respect to

Wz′ ; or with respect to Σz′ . Each standardization method gives a different

coordinate system, as shown in the following.

(i) Suppose that z
′

is standardized with respect to Wz′ , as follows:

x = W
−1/2
z′

z
′
. (3.2)

The group means are given by

µ1 = (α, 0)T , µ2 = (−α, 0)T , (3.3)

where the parameter α ≥ 0 is used here as a separation parameter

between the group means. If α = 0, the distribution of x will be

normal, and as α increases the groups become more separated.

The total mean vector is given by

µx = qµ1 + (1− q)µ2 = ((2q − 1)α, 0)T . (3.4)

The total covariance matrix is given by

Σx = I2 +Bx, (3.5)
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where Bx is the between-group scatter matrix,

Bx = q(µ1 − µx)(µ1 − µx)T + (1− q)(µ2 − µx)(µ2 − µx)T

=

4q(1− q)α2 0

0 0

 . (3.6)

Substituting (3.6) in (3.5) gives

Σx =

1 + 4q(1− q)α2 0

0 1

 . (3.7)

The standardized random vector x = (x1, x2)
T can be written as fol-

lows x1
x2

 = s

α
0

+

ε1
ε2

 . (3.8)

where ε = (ε1, ε2)
T is a normally distributed random vector, with zero

mean vector and covariance matrix Wx = I2, and the random variable

s has a two-point distribution, defined in (2.9).

(ii) Suppose that z
′

is standardized with respect to Σz′ , as follows:

y = Σ
−1/2
z′

z
′
. (3.9)

The group means are given by

µ1 = (δ, 0)T , µ2 = (−δ, 0)T ,

where 0 ≤ δ ≤ 1. The total mean vector is given by

µy = qµ1 + (1− q)µ2 = ((2q − 1)δ, 0)T . (3.10)
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The between-group variance is given by

By =

4q(1− q)δ2 0

0 0

 . (3.11)

The within-group variance Wy is equal to

Wy = I2 −By

=

1− 4q(1− q)δ2 0

0 1

 . (3.12)

The standardized random vector y = (y1, y2)
T can be written as

y1
y2

 = s

δ
0

+

ε∗1
ε∗2

 . (3.13)

where ε∗ = (ε∗1, ε
∗
2)
T is a normally distributed random vector, with zero

mean vector and covariance matrix Wy, and the random variable s has

a two-point distribution, defined in (2.9).

3.2.2 Univariate moments

In this section, we derive the univariate moments of the components of x, x1, x2,

and the components of y, y1, y2, up to fourth order, to use them in the derivation

of ICS:kurtosis:variance and PP:kurtosis:variance criteria in Sections 3.3 and 3.4.

Let the rth-order non-central moment of a univariate random variable u, say,

be denoted by µ
′
u(r), and the rth order central moment be denoted by µu(r),

defined as follows, respectively

µ
′

u(r) = E{ur},

µu(r) = E{(u− µ′u(1))r}. (3.14)
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Let the (h+ j)-order non-central cross moment of a bivariate random variable

u = (u1, u2)
T , say, be denoted by µ

′
u1u2

(h, j), and the (h + j) central order cross

moment about the mean vector be denoted by µu1u2(h, j), defined as follows,

respectively,

µu1u2(h, j) = E{uh1u
j
2},

µu1u2(h, j) = E{(u1 − µ
′

u1
(1))h(u2 − µ

′

u2
(1))j}. (3.15)

If u1 and u2 are independent, µu1u2(h, j) = µu1(h)µu2(j).

From (3.8), the components of x are independent; the first component is

distributed as a mixture of two normal distributions,

x1 ∼ qN(α, 1) + (1− q)N(−α, 1),

and the second component is distributed as N(0, 1). Similarly, from (3.13), the

first component of y is distributed as

y1 ∼ qN(δ, 1− 4q(1− q)δ2) + (1− q)N(−δ, 1− 4q(1− q)δ2),

and the second component of y is distributed as N(0, 1). We begin by finding the

moments of s.

Moments of s

• The mean of s is equal to

µ
′

s(1) = 2q − 1.

• All odd non-central moments are equal to µ
′
s(1).

• All even non-central moments are equal to 1.
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• The central moments are given by

µs(2) = 4q(1− q),

µs(3) = −8q(1− q)(2q − 1),

µs(4) = −48q2(1− q)2 + 16q(1− q). (3.16)

• The kurtosis of s is defined in (2.10).

Moments of x1 and x2

Since ε = (ε1, ε2)
T is normally distributed with mean zero, and covariance matrix

Wx = Ip,

• all odd moments of ε1 and ε2 are equal to zero,

• the fourth-order moments are µε1(4) = µε2 = 3.

• Since x2 = ε2, the moments of x2 are equal to the moments of ε2.

• The kurtosis of x2 is equal to zero.

From (3.8), since the variable x1 can be written as

x1 = αs+ ε1,

the moments of x1 can be computed with the help of the moments of s and ε1 as

follows.

• The non-central moments of x1 are given by

µ
′

x1
(1) = E{αs+ ε1} = α(2q − 1),

µ
′

x1
(2) = E{αs+ ε1}2 = 1 + α2,

µ
′

x1
(3) = E{(αs+ ε1)

3} = (2q − 1)(3α + α3),

µ
′

x1
(4) = E{(αs+ ε1)

4} = 3 + 6α2 + α4. (3.17)
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• Using (3.17), the central moments of x1, up to fourth order are given by:

µx1(2) = E{(x1 − µ
′

x1
(1))2} = 1 + 4α2q(1− q),

µx1(4) = E{(x1 − µ
′

x1
(1))4} = 3 + 24α2q(1− q) + α4[−48q2(1− q)2 + 16q(1− q)].

(3.18)

• The kurtosis of x1 is

kurt(x1) =
16q(1− q)α4{1− 6q(1− q)}

{1 + 4α2q(1− q)}2
. (3.19)

Moments of y1 and y2

From (3.13), the variable y1 can be written as

y1 = δs+ ε∗1,

the moments of y1 can be computed using the moments of s and ε∗1.

• The non-central moments of y1 are given by

µ
′

y1
(1) = E{δs+ ε∗1} = δ(2q − 1),

µ
′

y1
(2) = E{(δs+ ε∗1)

2} = 1 + δ2{1− 4q(1− q)},

µ
′

y1
(3) = E{(δs+ ε∗1)

3} = (2q − 1){3δ + δ3(1− 12q(1− q))},

µ
′

y1
(4) = E{(δs+ ε∗1)

4} = δ4 + 6δ2{1− 4q(1− q)δ2}+ 3{1− 4q(1− q)δ2}2.

(3.20)

• The central moments of y1, up to fourth order, using (3.20), are given by:

µy1(2) = E{(y1 − µ
′

y1
(1))2} = 1,

µy1(4) = E{(y1 − µ
′

y1
(1))4} = 3 + 16δ4q − 112δ4q2 + 192δ4q3 − 96δ4q4.

(3.21)



Chapter 3. Using ICS and PP based on fourth-order moments in
two-group mixtures 38

• The kurtosis of y1 is

kurt(y1) = 16δ4q(1− q){1− 6q(1− q)}. (3.22)

3.3 Invariant coordinate selection based on fourth-

order moments matrix in population

Let x = (x1, x2)
T be a bivariate random vector distributed as model (3.1). With-

out loss of generality, assume that x is standardized beforehand with respect to

the within-group scatter matrix, as in (3.2). Th total mean vector µx and the

total covariance matrix Σx are given in (3.4) and (3.7), respectively.

The fourth-order moment matrix, denoted by Kx = K(x), Tyler et al. (2009),

is defined as follows

Kx = K(X) = E{(x− µx)TΣ−1x (x− µx)(x− µx)(x− µx)T}. (3.23)

The ICS:kurtosis:variance optimality criterion is to minimize/maximize the

following criterion

κICS(θ) =
aTKxa

aTΣxa
, (3.24)

where a, a unit vector, can be written as

a = (cos(θ), sin(θ))T . (3.25)

The minimum/maximum value of (3.24) is the smallest/largest eigenvalue of

Σ−1x Kx, obtained when a is the corresponding eigenvector.

To gain an insight into criterion (3.24), we find its explicit formula under the

mixture model (3.1). To proceed, we first find the form of Kx, as follows.
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The first factor in Kx, from (3.23) is given by

(x− µx)TΣ−1x (x− µx) =
(x1 − α(2q − 1))2

1 + 4q(1− q)α2
+ x22. (3.26)

The second factor in Kx is given by

(x− µ)(x− µ)T =

 {x1 − α(2q − 1)}2 {x1 − α(2q − 1)}x2

{x1 − α(2q − 1)}x2 x22

 . (3.27)

Multiplying (3.26) and (3.27), and taking the expectation, gives

Kx = E

 (x1−α(2q−1))4
1+4q(1−q)α2 + (x1 − α(2q − 1))2x22

(x1−α(2q−1))3(x2)
1+4q(1−q)α2 + (x1 − α(2q − 1))x32

(x1−α(2q−1))3x2
1+4q(1−q)α2 + (x1 − α(2q − 1))x32

(x1−α(2q−1))2(x22)
1+4q(1−q)α2 + x42

 .

The matrix Kx can be expressed in terms of moments, as follows

Kx =

 µx1 (4)

1+4q(1−q)α2 + µx1(2)µx2(2) 0

0
µx1 (2)µx2 (2)

1+4q(1−q)α2 + µx2(4)

 . (3.28)

Substituting by the moments of x1 and x2, from Section 3.2, in (3.28) gives

Kx =

3+24q(1−q)α2+[−48q2(1−q)2+16q(1−q)]α4

1+4q(1−q)α2 + (1 + 4q(1− q)α2) 0

0 (1+4α2q(1−q))
1+4α2q(1−q) + 3

 .

=

3+24q(1−q)α2+[−48q2(1−q)2+16q(1−q)]α4

1+4q(1−q)α2 + 1 + 4q(1− q)α2 0

0 4

 . (3.29)

Substituting (3.7) and (3.29) in (3.24) gives an explicit form of κICS(θ), as follows

κICS(θ) = 4 +
16q(1− q)(1− 6q(1− q))α4 cos2(θ)

{1 + 4q(1− q)α2}{1 + 4q(1− q)α2 cos2(θ)}
. (3.30)

Minimizing or maximizing κICS(θ) in (3.30) depends on q, as discussed in Section

2.4. Namely, if q is near half, θ is in the direction that minimizes κICS(θ). If q is



Chapter 3. Using ICS and PP based on fourth-order moments in
two-group mixtures 40

far from half, θ is in the direction that maximizes κICS(θ).

The form of Σ−1K is given as follows

Σ−1K =

3+24q(1−q)α2+[−48q2(1−q)2+16q(1−q)]α4

(1+4q(1−q)α2)2
+ 1 0

0 4


=

4 + 16q(1−q)α4(1−6q(1−q))
[1+4α2q(1−q)]2 0

0 4

 . (3.31)

Note that (3.31) can be written as follows

Σ−1K =

4 + kurt(x1) 0

0 4

 . (3.32)

The eigenvalues and eigenvectors of Σ−1K are

λ1 = 4 + kurt(x1), λ2 = 4,

γ1 = (1, 0)T , γ2 = (0, 1)T . (3.33)

From (3.32) and (3.33), the group separation direction θ is in the direction of

the eigenvector, γ1, corresponding to the eigenvalue 4 + kurt(x1). The value of

kurt(x1) depends on the group separation parameter α, and the mixing proportion

q. If α = 0, kurt(x1) = 0. And as α → ∞, kurt(x1) reduces to kurt(s), defined

in (2.10), which in turn depends on q as explained earlier.

Now, we follow similar calculations to derive Ky, where y = (y1, y2) is stan-

dardized with respect to Σ−1/2 as in (3.9), such that Σy = I2.

The definition of the fourth-order moment matrix in (3.23), Ky = K(y),reduces

to

Ky = K(y) = E{yyTyTy}. (3.34)
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By following similar calculations to (3.26)-(3.29), Ky takes the following form

Ky =

4 + 16δ4q(1− q){1− 6q(1− q)} 0

0 4

 .

From (3.22), Ky can be written as

Ky =

4 + kurt(y1) 0

0 4

 . (3.35)

The ICS:kurtosis:variance criterion (3.24) reduces to

κICS(φ) = bTKyb

= 4 + 16δ4q(1− q){1− 6q(1− q)} cos2(φ)

= 4 + kurt(y1) cos2(φ). (3.36)

where

b = (cos(φ) sin(φ))T . (3.37)

The minimum/maximum value of (3.36) is the smallest/largest eigenvalue of Ky

when φ is in the direction of the corresponding eigenvector.

The eigenvalues and eigenvectors of Ky are

λ1 = 4 + kurt(y1), λ2 = 4

γ1 = (1, 0)T , γ2 = (0, 1)T . (3.38)

As we have shown in Section 2.2, the eigenvalues of Σ−1x Kx and Ky are the

same. In our model, the eigenvectors of Σ−1x Kx and Ky are also the same, since

Σx and Kx are diagonal. The effect of standardization is explored in Section 3.6.
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3.4 Relationship between ICS:kurtosis:variance

and Mardia’s multivariate kurtosis measure

ICS:kurtosis:variance can be related to Mardia’s measure of kurtosis, Mardia

et al. (1980). Consider the bivariate random vector y, defined in (3.13), Mardia’s

kurtosis is defined as follows

β2,2 = E{(y − µy)T (y − µy)}2. (3.39)

Then β2,2 can be expressed in terms of moments as follows

β2,2 = µy1(4) + µy2(4) + 2µy1y2(2, 2)

= µy1(4) + 5 = kurt(y1) + 8. (3.40)

From (3.40) and (3.35), and as Peña et al. (2010) pointed out,

β2,2 = trace(Ky). (3.41)

This means that β2,2 cannot be used as a criterion to identify the groups separa-

tion direction, since it gives the aggregate fourth-order moments and cross mo-

ments of the random vector components. On the other hand, ICS:kurtosis:variance

partitions those moments into combination of fourth-order moments that form

the eigenvalue corresponding to the eigenvector which is in the direction of the

groups separation, and another combination of fourth-order moments that form

the eigenvalue corresponding to the eigenvector which is in the direction of the

normal noise.
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3.5 Projection pursuit based on kurtosis in pop-

ulation

Let x = (x1, x2)
T be a bivariate random vector, standardized with respect to

within-group covariance matrix as in (3.2), such that Wx = I2. Consider the

following linear transformation, where the unit vector a ∈ R2 is defined as in

(3.25),

aTx = x1 cos(θ) + x2 sin(θ). (3.42)

Substituting for x1, as defined in (3.8), aTx becomes

aTx = αs cos(θ) + ε1 cos(θ) + x2 sin(θ)

= ν + βs, (3.43)

where ν = ε1 cos(θ) + x2 sin(θ) ∼ N(0, 1), and β = α cos(θ).

The PP:kurtosis:variance criterion is given as follows

κPP(θ) = kurt(θ) =
E{ν + βs− E(βs)}4

[E{ν + βs− E(βs)}2]2
− 3. (3.44)

The numerator can be computed with the help of the central moments of s from

(3.16) and the moments of the normally distributed variable ν, as follows

E{(ν + βs− E(βs))4} = E{
(
ν + β(s− µ′s(1))

)4
}

= E{ν4}+ 6E{ν2}β2E{(s− µ′s(1))2}+ β4E{(s− µ′s(1))4}

= 3 + 24β2q(1− q) + β4(−48q2(1− q)2 + 16q(1− q)).

Substituting by β = α cos(θ) in the previous equation, gives

E{(ν + βs− E(βs))4} = 3 + 24q(1− q)α2 cos2(θ) + (16q(1− q)− 48q2(1− q)2)α4 cos4(θ).

(3.45)
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The denominator is given by

[E{(ν + β(s− E(s)))2}]2 = [E{ν2}+ β2E{
(
s− µ′s(1)

)2
}]2

= [1 + 4q(1− q)β2]2 = [1 + 4q(1− q)α2 cos2(θ)]2.

(3.46)

Substituting (3.46) and (3.45) in (3.44) gives a formula for the criterion PP:kurtosis:variance,

as follows.

kurt(θ) =
{16q(1− q)[1− 6q(1− q)]}α4 cos4 θ

{1 + 4q(1− q)α2 cos2 θ}2
. (3.47)

Minimizing or maximizing (3.47) over θ depends on a number of parameters, the

mixing proportion q, the group separation parameter α. As α → ∞, kurt(θ)

reduces to kurt(s), defined (2.10).

Let y be a random variable, standardized beforehand with respect to the

total covariance, as in (3.9), such that Σy = I2. Consider the following linear

transformation

bTy = y1 cos(φ) + y2 sin(φ)

= δs cos(φ) + ε∗1 cos(φ) + y2 sin(φ)

= β∗s+ ν∗,

where ν∗ = ε∗1 cos(φ)+y2 sin(φ) ∼ N(0, 1−4δ2q(1−q) cos2(φ)), and β∗ = δ cos(φ),

0 ≤ δ ≤ 1 is a separation parameter.

The PP:variance:kurtosis criterion is given by

κPP(φ) = kurt(φ) = E{ν∗ + β∗s− E(β∗s)}4 − 3. (3.48)

First, we calculate the fourth-order moment in (3.48) as follows

E{ν∗ + β∗s− E(β∗s)}4 = 3 + 16q(1− q){1− 6q(1− q)}δ4 cos4(φ). (3.49)
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Substituting (3.49) in (3.48) gives

κPP(φ) = 16q(1− q){1− 6q(1− q)}δ4 cos4(φ). (3.50)

Like (3.47), optimizing (3.50) requires numerical optimization. The effect of

standardization is explored in Section 3.6.

3.6 A comparison between ICS and PP

3.6.1 In population

Optimization

In this Section we compare κICS(θ) and κPP(θ), from (3.30) and (3.47). We con-

sider the case of equal groups, i.e q = 1/2. In this case, the ICS:kurtosis:variance

criterion from (3.30) becomes

κICS(θ) = 4− 2α4 cos2(θ)

{1 + α2}{1 + α2 cos2(θ)}
, (3.51)

and the PP:kurtosis:variance criterion from (3.47) becomes

κPP(θ) = − 2α4 cos4(θ)

{1 + α2 cos2(θ)}2
. (3.52)

To compare ICS:kurtosis:variance and PP:kurtosis:variance criteria, we plot (3.51)

and superimpose it onto the plot of (3.52).

From Figure 3.1, the plot of κPP(θ) have a similar behavior to the plot of

κICS(θ), minimized at the group separation direction θ = 0◦. Also, as α increases,

the ratio of the maximum to the minimum values of κICS(θ) and κPP(θ) increases.

And as α→∞, κICS(θ) = 2, and κPP(θ) = −2, for θ 6= π/2.
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Figure 3.1: Plot of the population criteria κICS(θ) (red dotted line), and κPP(θ)
(solid black line) versus θ, for q = 1/2, α = 1, and 3.

The effect of standardization

To illustrate the effect of standardization on the ICS:kurtosis:variance and PP:kurtosis:variance,

we plot κICS(φ) and κPP(φ) from (3.36) and (3.50), respectively, for q = 1/2.

For q = 1/2,

κICS(φ) = 4− 2δ4 cos2(φ),

κPP(φ) = −2δ4 cos4(φ). (3.53)

Figure 3.2 shows plots of (3.53). From Figures (3.1) and (3.2), standardization

does not change the minimum and maximum values of κICS and κPP. The differ-

ence is only in the scale of the angles θ and φ. In particular, φ is a scaled version

of θ.
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Figure 3.2: Plot of the population criteria κICS(φ) (red dotted line), and κPP(φ)
(solid black line) versus φ, for q = 1/2, δ = 0.7, and 0.95.

3.6.2 In sample

Optimization

Let X be an n × 2 data matrix, its rows are given by xTi = (xi1, xi2), for i =

1, . . . , n. Suppose that X is shifted such that it has a zero mean vector.

The sample ICS:kurtosis:variance and PP:kurtosis:variance criteria are defined

as follows

κ̂ICS(θ) =
aT K̂xa

aTSxa
,

κ̂PP(θ) = kurt(Xa), (3.54)

where a is defined in (3.25), K̂x is the sample version of Kx, defined in (3.23),

K̂x =
1

n

n∑
i=1

xix
T
i (xTi S

−1
x xi), (3.55)

and the kurtosis is defined in (3.10).

The ICS and PP estimates of the groups separation direction, denoted by θ̂ICS

and θ̂PP, are the directions that minimizes/maximizes κ̂ICS(θ) and κ̂PP(θ).

Minimizing/maximizing κ̂ICS(θ) is computationally simple and carried out an-
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alytically. The estimate θ̂ICS(θ) is in the direction of the smallest/largest eigen-

vector of S−1x K̂x. On the other hand, minimizing/maximizing κ̂PP(θ) is compu-

tationally expensive, and requires numerical optimization.

Before discussing the numerical optimization procedure used for κ̂PP, we must

first plot the sample criteria κ̂PP(θ) and κ̂ICS(θ), as a function of θ. The population

plots are perfectly symmetric around zero, while the sample plots are not due to

sampling noise. Figure 3.3 shows plots of κ̂ICS(θ) and κ̂PP(θ).
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Figure 3.3: Plot of κ̂ICS(θ) (red dotted line), and κ̂PP(θ) (solid black line) versus
θ, for q = 1/2, α = 1, and 3.

The plots of Figure 3.3 are based on two samples of size 200, generated from

(3.8), with q = 1/2, and α = 1 and 3, to investigate the behaviour of κ̂PP in the

case of slightly separated groups and well separated groups. Figure 3.3 shows

that the curve of κ̂PP(θ) is smooth as a function of θ. More importantly, it has

a similar behavior to the curve κ̂ICS(θ). Thus, we can use a local search method

with θ̂ICS being used as a starting point.

Another optimization approach of κ̂PP(θ) is to find the global minimum of

κ̂PP. This can be done by partitioning the domain −π/2 < θ ≤ π/2 into N , say,

equal points, then evaluate κ̂PP(θ) at each point. The value of θ which has the

minimum kurtosis will be taken as the estimate θ̂PP.

This approach is feasible in p = 2, i.e one-dimension optimization over θ. But
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as the dimension p increases, the complexity of the search will increase.

The effect of standardization

Without loss of generality, assume that X is standardized with respect to S
−1/2
x

as follows

Y = XS−1/2,

such that Sy = I2.

Consider the linear transformation Y b, where b = (cos(φ), sin(φ))T . The

sample criterion are

κ̂ICS(φ) = bT K̂yb = bTS−1/2x K̂xS
−1/2
x b,

κ̂PP(φ) = kurt(Y b) =
n∑
i=1

{[bTyi]4} − 3,

From (2.4),

b ∝ S1/2
x a. (3.56)

We have shown in Section 2.2 that S−1x K̂x and K̂y have the same eigenvalues, but

the eigenvectors of K̂y are the eigenvectors of S−1x K̂x scaled by S1/2.

For PP, we can find a mapping between θ̂PP and φ̂PP to explore the effect of

standardization on PP:kurtosis:variance. Let S
1/2
x be given by

S1/2
x =

 c1 c12

c12 c2

 .
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From (3.56),

cos(φ)

sin(φ)

 ∝
 c1 c12

c12 c2


cos(θ)

sin(θ)


=

c1 cos(θ) + c12 sin(θ)

c12 cos(θ) + c2 sin(θ)


=

R1 cos(θ + β1)

R2 sin(θ + β2)

 , (3.57)

where

R1 =
√
c21 + c212, β1 = atan(c12/c1),

R2 =
√
c22 + c212, β2 = atan(c12/c2). (3.58)

For example if S
−1/2
x is diagonal, i.e c12 = 0, (3.57) reduces to

cos(φ)

sin(φ)

 =

c1 cos(θ)

c2 sin(θ)

 .

This means that standardization maps θ from evenly spaced points in the unit

circle to unevenly spaced points in an ellipse with points become dense at the

corner of the ellipse and sparse elsewhere, as shown in the Figure 3.4. The

optimum value φ might be missed if it is not located at the corner of the ellipse,

and the ratio c1/c2 is large.
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Figure 3.4: Plots of θ and φ, when c1 = 3, c2 = 1.

3.7 Axis measure of dispersion

There are two ways to define an axis in two dimensional space. One way is by an

angle ψ, noting that a direction and the opposite direction are equivalent, i.e

ψ ≡ ψ + π.

Another way to define an axis is by doubling the angle ψ, noting that each

direction 2ψ and 2ψ + 2π refer to the same angle.

Let ψ and ω be two angles defining two different axes. To measure the distance

between the axis defined by ψ and the one defined by ω we can use the following

distance measure, Mardia and Jupp (2009),

d2(ψ, ω) =
1

2
(1− cos 2(ψ − ω))

= sin2 (ψ − ω). (3.59)
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The squared distance measure d2(ψ, ω) takes the following possible values

d2(ψ, ω) =


0 if ψ = ω

1 if ψ = ω + π/2 or ψ = ω + 3π/2

(0, 1) if 0 < |ψ − ω| < π/2.

(3.60)

In the following lemma, we show that the distance measure d satisfies the triangle

inequality.

Lemma 3.7.1. For any three angles, ω1, ω2, and ω3, defining axes, d satisfies

the triangle inequality as follows,

d(ω1, ω2) + d(ω2, ω3) ≥ d(ω1, ω3).

Proof. We first relate d2, defined in (3.59), to the Euclidean squared distance

between the points cos(2ω1)

sin(2ω1)

 and

cos(2ω2)

sin(2ω2)

 . (3.61)

First we compute the Euclidean distances, d2E between the points (cos(2ω1), sin(2ω1)),

and (cos(2ω2), sin(2ω2)),

d2E(ω1, ω2) = (cos(2ω1)− cos(2ω2))
2 + (sin(2ω1)− sin(2ω2))

2

= (cos2(2ω1) + sin2(2ω1)) + (cos2(2ω2) + sin2(2ω2))

− 2(cos(2ω1) cos(2ω2) + sin(2ω1) sin(2ω2))

= 2− 2 cos 2(ω1 − ω2). (3.62)

From (3.59), (3.62) can be written as

d2E(ω1, ω2) = 4d2(ω1, ω2)

dE(ω1, ω2) = 2d(ω1, ω2). (3.63)
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Equations (3.63) means that the Euclidean distance between the two points de-

fined in (3.61) is proportional to the axis distance in (3.59). Therefore, d satisfies

the triangle inequality.

Let ψ be a random angle defining an axis. A measure of spread of ψ around

an axis ω can be defined as follows

v(ψ) = E(sin2(ψ − ω)). (3.64)

If the distribution of ψ is concentrated around ω + π/2 or ω + 3π/2, v(ψ) = 1.

If the distribution of ψ is concentrated around ω, v(ψ) = 0. If ψ is uniformly

distributed, v(ψ) = 1/2.

Let θ̂ = (θ̂1, . . . , θ̂m) be estimates of the group separation direction θ estimated

by ICS and PP, let θ0 be the true group separation direction. From (3.64), the

sample axes measure of spread of θ̂ about the true value θ0 is

v̂(θ̂) =
1

m

m∑
j=1

sin2(θ̂j − θ0). (3.65)

From (3.65), if θ̂ is highly concentrated around θ0, v(θ̂) will be approximately

equal to zero. If θ̂ is concentrated around θ0 + π/2 or θ0 + 3π/2, v(θ̂) will be

approximately equal to 1. If θ̂ is uniformly distributed around the circle, v(θ̂)

will be approximately equal to 1/2.

3.8 Simulation study

The data sets used in this simulation study are generated from the mixture model

(3.1), with means µ1 = (α, 0)T and µ2 = (−α, 0)T , for α > 0, and W = I2. The

true separation direction is θ = 0◦.

We vary a number of parameters that have an effect on the performance of

ICS:kurtosis:variance and PP:kurtosis:variance. These parameters are given as
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follows:

• The mixing proportion q: We consider first the case of equal groups with

q = 1/2, then we consider the case of unequal groups with q = 1/4, not far

from half.

• The separation parameter α: α = 1 gives two slightly separated groups,

and α = 3, gives two well separated groups.

• The sample size: The sample sizes used in this study are n = 20, 50, 200, 500.

For each choice of the parameters, we simulate m = 1000 samples. Applying

ICS:kurtosis:variance and PP:kurtosis:variance give two sets of estimates: θ̂
(j)
ICS

and θ̂
(j)
PP , j = 1, . . . , 1000.

From (3.65), the measure of spread of θ̂ICS and θ̂PP are

v̂(θ̂ICS) =
1

m

m∑
j=1

sin2(θ̂
(j)
ICS)

v̂(θ̂PP) =
1

m

m∑
j=1

sin2(θ̂
(j)
PP).

Figure 3.3 shows plots of v̂(θ̂ICS), the red dashed line, and v̂(θ̂PP), the solid black

line, for different values of parameters.

The plots in Figure 3.5 show the following

• PP:kurtosis:variance is more accurate than ICS:kurtosis:variance when q =

1/2, and q = 1/4.

• The accuracy of PP:kurtosis:variance is not affected by changing q from

1/2 to 1/4, whereas ICS:kurtosis:variance seems to be highly affected by

changing q.

• PP:kurtosis:variance is more accurate than ICS:kurtosis:variance for small

n. This result agrees with Peña et al. (2010) who pointed out that if the

ratio n/p is small, PP:kurtosis:variance is more accurate.
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Figure 3.5: For α = 1, 3 and q = 1/2, 1/4, the plots of v̂(θ̂PP) (black solid curves)
and v̂(θ̂ICS) (red dashed curves).
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3.9 Discussion

We have studied ICS:kurtosis:variance and PP:kurtosis:variance criteria under

mixtures of two bivariate normal distributions. We also compared the accuracy

of the two methods through a simulation study. The simulation results show that

PP:kurtosis:variance is more accurate than ICS:kurtosis:variance.

In the following, we discuss extending the dimension p, and the number of

groups k.

Most of the work done can be extended to higher dimensions. Suppose that

the model in Section 3.2 extended to dimension p > 2. Let x = (x1, . . . , xp)

be a p-variate random vector distributed a s a mixture of two p-variate normal

distributions. The random vector x can be written as,



x1

x2
...

xp


= s



α

0

...

0


+



ε1

ε2
...

εp


, (3.66)

where s is defined as in (2.11), ε = (ε1, . . . , εp)
T ∼ N(0, Ip). Hence, the following

concepts can be extended as follows.

ICS criterion

The ICS:kurtosis:variance criterion is,

κICS(a) =
aTKxa

aTΣxa
, (3.67)

where a = (a1, . . . , ap) is a unit vector. The minimum value of κICS(a) is obtained
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when a is the smallest/largest eigenvector of Σ−1x Kx

Σ−1x Kx =



p+ 2 + kurt(x1) 0 . . . 0

0 p+ 2 . . . 0

...
...

. . .
...

0 0 . . . p+ 2


.

Criterion (3.67), takes the following form,

κICS(a) = (p+ 2) +
16q(1− q)(1− 6q(1− q))α4a21

{1 + 4q(1− q)α2}{1 + 4q(1− q)α2a21}
.

PP criterion

Consider the following linear transformation,

aTx = a1x1 + . . .+ apxp

= a1αs+ a1ε1 + a2x2 + . . .+ apxp

= βs+ ν,

where β = a1α1, ν ∼ N(0, 1). Thus, the PP:kurtosis:variance criterion, defined

in (3.43), takes a similar form of (3.47), as follows

κPP(a) =
{16q(1− q)[1− 6q(1− q)]}α4a41

{1 + 4q(1− q)α2a21}2
. (3.68)

Optimization

As in the two-dimensional case, optimizing (3.67) is carried out analytically,

whereas (3.68) requires numerical optimization. In Section 3.6, we have men-

tioned that we can use a local or global search methods with κPP. Local search,

using the ICS estimate as a starting point, becomes less accurate as p increase.

The axis measure of spread

Let ν, h ∈ Rp be two unit vectors defining axes, i.e ν ≡ −ν, h ≡ −h. A useful
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distance measure between ν and h is

d2(ν, h) = 1− (νTh)2

= tr((ννT − hhT )2). (3.69)

If ν = (1, 0, . . . , 0)T , (3.69) reduces to (3.59).

Suppose now that ν is a random axis and h is the mean axis, the axial variance

is defined as

V = 1− E{(νTh)2}.

Number of groups

A second issue is extending the number of groups in model (3.1) to k > 2. The

performance of the methods depend on the arrangement of the groups in the

p-dimensional space.

For example, suppose we have three groups on the three dimensional space.

If the groups are arranged in one line, the optimization used will be the same

as discussed in the previous sections. If the groups are arranged on a triangle

vertices, we will need to find a two-dimensional subspace that view the three

groups.

The two directions can be found by sequentially optimizing (3.67) and (3.68).

As Tyler et al. (2009) pointed out, the sequential optimization of (3.67) is straight-

forward, pick the two eigenvectors corresponding to the two eigenvalues that have

extreme values.

On the other hand, the sequential optimization of (3.68) is more complicated.

An additional constraint must be added, the two directions must be orthogonal,

aT1 a2 = 0, say. Sequential optimization of PP criteria is discussed in Croux et al.

(2007).



Chapter 4

An analytical comparison

between ICS and PP

4.1 Introduction

In Chapter 3, we have compared the accuracy of ICS:kurtosis:variance and PP:kurtosis:variance,

under two-group mixtures of bivariate normal distribution. The results show that

PP:kurtosis:variance is more accurate than ICS:kurtosis:variance.

In this chapter, we find the asymptotic behaviour of ICS:kurtosis:variance and

PP:kurtosis:variance estimates of the group separation direction.

The chapter is organized as follows. The model is defined in Section 4.2.

The model used in this chapter is a special case of the mixture model explained

in Section 3.2. We review the asymptotic theory of sample moments Section

4.3. The asymptotic behaviour of the estimates of group separation parameter

of ICS:kurtosis:variance and PP:kurtosis:variance are discussed in Sections 4.4

and 4.5. In Section 4.6, we compare the asymptotic variances and the sample

variances of ICS:kurtosis:variance and PP:kurtosis:variance.
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4.2 The model

4.2.1 Assumptions

Let yT = (y1, y2) be a bivariate random vector distributed as an equal mixture of

two normal distributions, as in (3.1), with q = 1/2.

Without loss of generality, assume that y is standardized with respect to the

total covariance matrix as in (3.9), such that Σy = I2.

There is only one parameter that describes this model, which is 0 ≤ δ ≤ 1.

The case of δ = 0 produces one group distributed as a bivariate standard normal

distribution. The case of δ = 1 produces two widely separated parallel lines.

The total mean vector is (0, 0)T . The between-group scatter matrix By is

given by

By =
1

2
µ1µ

T
1 +

1

2
µ2µ

T
2

=

δ2 0

0 0

 .

The within-group scatter matrix

Wy = I2 −By

=

1− δ2 0

0 1

 .

The random vector y can be written as in (3.14).

4.2.2 Moments

We derive the univariate and cross moments of the components of y, y1 and y2,

up to eighth order, to use them in Sections 4.4 and 4.5.

Since the mean vector of y equals to (0, 0)T , the the central and non-central
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moments and cross moments are equivalent. The univariate moments and cross

moments are defined in (3.15) and (3.16), respectively.

Also since, y1 and y2 are independent,

µy1y2(h, j) = µy1(h)µy2(j).

In the following, a list of all moments of y1 and y2, up to eighth order, is given.

• All odd moments y1 and y2 are equal to zero.

• The even univariate moments of y1 are

µy1(2) = 1, µy1(4) = E{(sδ + ε∗1)
4} = 3− 2δ4,

µy1(6) = E{(sδ + ε∗1)
6}

= 15− 30δ4 + 16δ6,

µy1(8) = E{(sδ + ε∗1)
8}

= 105− 420δ4 + 448δ6 − 132δ8. (4.1)

• The even univariate moments of y2 are

µy2(2) = 1, µy2(4) = 3,

µy2(6) = 15, µy2(8) = 105. (4.2)

• The even cross moments of y1 and y2 are

µy1y2(2, 4) = µy2(4), µy1y2(4, 2) = µy1(4),

µy1y2(2, 6) = µy2(6), µy1y2(6, 2) = µy1(6)

µy1y2(4, 4) = µy1(4)µy2(4) = 9− 6δ4. (4.3)
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4.3 The asymptotic theory of sample moments

For a bivariate n × 2 data matrix U , where its rows can be written as uTi =

(ui1, ui2), i = 1, . . . , n. To simplify the algebra, assume that the population mean

vector is (0, 0)T , thus the (h + j)-order sample moment m(h, j) = mu1u2(h, j) is

defined as follows

m(h, j) =
1

n

n∑
i=1

uhi1u
j
i2. (4.4)

By the central limit theorem,
√
n(m(h, j)−µ(h, j)) is asymptotically normal with

mean 0, variance and covariance given as follows, (Kendall and Stuart (1977),

page 244)

var{m(h, j)} = {µ(2h, 2j)− µ2(h, j)}, (4.5)

cov{m(h, j),m(u, v)} = {µ(h+ u, j + v)− µ(h, j)µ(u, v)}. (4.6)

In general, a vector of l sample moments is distributed asymptotically as an

l-variate normal distribution with mean vector and covariance matrix given in

the following theorem ( which follows Serfling (1980), Theorem B, page 72, and

(4.5) and (4.6)).

Theorem 4.3.1. Let m = (m(h1, j1),m(h2, j2), . . . ,m(hl, jl)) be a vector of sam-

ple moments, such that m(2hk, 2jk) < ∞. The vector
√
n(m − µ), where µ =

(µ(h1, j1), µ(h2, j2), . . . , µ(hl, jl)), converges in distribution to an l-variate nor-

mal distribution with mean vector 0 , and l × l covariance matrix Σ, given by

Σ = (σki), (4.7)

where σki = {µ(hk + hi, jk + ji)− µ(hk, jk)µ(hi, ji)}, k = i = 1 . . . , l.

Suppose now that we have a vector-valued function g of m. The asymptotic

distribution of g is shown in the following theorem by Serfling (1980),
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Theorem 4.3.2. Let m = (m(h1, j1),m(h2, j2), . . . ,m(hl, jl)) be a vector of sam-

ple moments, where
√
n(m−µ) distributed asymptotically as N(0,Σ), where Σ is

shown in (4.7). Let g(m) = (g1(m), . . . , gr(m)) be a vector-valued function with

each gk is a real-valued function and has non-zero differential at m = µ i.e

dki =
∂gk
∂mi

∣∣∣
m=µ
6= 0, (4.8)

The distribution of
√
n{g(m)− g(µ)} is asymptotically N(0, DΣDT ), where D =

(dki), k = 1, . . . , r, i = 1, . . . , l.

The following corollary is a special case of Theorem 4.3.2 when r = 1, i.e g is

a real-valued function.

Corollary 4.3.1. Let m = (m(h1, j1),m(h2, j2), . . . ,m(hl, jl)) be a vector of sam-

ple moments, where
√
n(m−µ) is distributed asymptotically as N(0,Σ), where Σ

is shown in (4.7). Let g(m) be a real-valued function that has non-zero differential

at m = µ. Then,
√
n{g(m)− g(µ)} is asymptotically N(0, dTΣd) where

di =
∂g

∂mi

∣∣∣
m=µ
6= 0.

4.4 The asymptotic distribution of the ICS es-

timates

Let y be an n×2 data matrix, with rows yTi = (yi1, yi2), i = 1, . . . , n Consider the

ICS:kurtosis:variance criterion in (3.24). The sample covariance matrix is given

by

Sy =

m(2, 0) m(1, 1)

m(1, 1) m(0, 2)

 . (4.9)
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The sample fourth-order moment matrix K̂y is defined as

K̂y =
1

n

n∑
i=1

yiy
T
i (yTi S

−1
y yi), (4.10)

where

S−1y =
1

m(2, 0)m(0, 2)−m2(1, 1)

 m(0, 2) −m(1, 1)

−m(1, 1) m(2, 0)

 . (4.11)

The components of K̂y can be written in terms of the sample moments as follows

K̂y =
1

w

k11 k12

k12 k22

 , (4.12)

where

w = (m(2, 0)m(0, 2)−m2(1, 1)),

k11 = m(4, 0)m(0, 2) +m(2, 2)m(2, 0)− 2m(1, 1)m(3, 1),

k12 = m(0, 2)m(3, 1) +m(2, 0)m(1, 3)− 2m(1, 1)m(2, 2),

k22 = m(0, 4)m(2, 0) +m(2, 2)m(0, 2)− 2m(1, 1)m(1, 3). (4.13)

The populationKy is given by substituting the sample moments by the population

moments from (4.1), (4.2) and (4.3), as follows

Ky =

µ(4, 0)µ(0, 2) + µ(2, 2)µ(2, 0) 0

0 µ(0, 4)µ(2, 0) + µ(2, 2)µ(0, 2)


=

4− 2δ4 0

0 4

 . (4.14)

The population covariance matrix is the identity matrix, Σ = I2.

In our model, the true group separation direction is at 0◦. Therefore, we are
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only interested in φ near zero, i.e b = (cos(φ), sin(φ)), can be written as, to second

order

b =

(
1− φ2/2, φ

)T
. (4.15)

Substituting (4.11), (4.12) and (4.15) in (3.24) gives the ICS:kurtosis:variance

criterion as follows

κ̂ICS(φ) =
1

w(m(2, 0) + 2φm(1, 1) + φ2(m(0, 2)−m(2, 0)))
{k11+2φk12+φ

2(k22−k11)},

(4.16)

where w, k11, k12, and k22 are in (4.13).

The criterion κICS(φ) and its sample version κ̂ICS(φ) can be written as quadratic

functions in φ as follows

κICS(φ) = A1 +B1φ+ C1φ
2/2 +O(φ3),

κ̂ICS(φ) = Â1 + B̂1φ+ Ĉ1φ
2/2 +O(φ3). (4.17)

Let φ◦ be the value of φ that minimizes κICS(φ), and φ̂ICS be the value of φ that

minimizes κ̂ICS(φ).

We know from our model that φ◦ = 0◦, whereas φ̂ICS is given by

φ̂ICS =
∂κ̂ICS(φ)

∂φ
= 0

= −B̂1

Ĉ1

. (4.18)

The quantities B̂1, and Ĉ1 are given by:

B̂1 = ∂κ̂ICS(φ)
∂φ

∣∣∣
φ=0

=
2(b11 + b12 − 6b13 − 2b14 + 4b15)

m2(0, 2)w
, (4.19)



Chapter 4. An analytical comparison between ICS and PP 66

where w is given in (4.13), and

b11 = m(2, 0)m(0, 2)m(3, 1), b12 = m2(2, 0)m(1, 3),

b13 = m(2, 0)m(1, 1)m(2, 2), b14 = m(1, 1)m(0, 2)m(4, 0),

b15 = m2(1, 1)m(2, 0).

Ĉ1 =
∂2κ̂ICS(φ)

2∂φ2

∣∣∣
φ=0

=
2(c11 + 6c12 + 2c13 − 12c14 − 4c15 + 8c16 + c17)

m3(0, 2)w
, (4.20)

where w is given in (4.13), and

c11 = m3(2, 0)m(0, 4), c12 = m2(2, 0)m(1, 1)m(1, 3),

c13 = m(1, 1)m(2, 0)m(0, 2)m(3, 1), c14 = m2(1, 1)m(2, 0)m(2, 2),

c15 = m2(1, 1)m(0, 2)m(4, 0), c16 = m3(1, 1)m(3, 1),

c17 = m(2, 0)m2(0, 2)m(4, 0).

The population values of B̂1 and Ĉ1 are given by

B1 = 0,

C1 = 4δ4. (4.21)

The following Lemma gives an approximation of φ̂ICS, in (4.18).

Lemma 4.4.1. If |B̂1 −B1| = Op(1/
√
n) and |Ĉ1 − C| = Op(1/

√
n), then

φ̂ICS = −B̂1

Ĉ1

≈ −B̂1

C1

,
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Proof. We first find the Taylor expansion of φ̂ICS,

φ̂ICS = φ◦ + (B̂1 −B1)
∂φ̂ICS

∂B̂1

∣∣∣
B̂1=B1,Ĉ1=C1

+ (Ĉ1 − C1)
∂φ̂ICS

∂Ĉ1

∣∣∣
B̂1=B1,Ĉ1=C1

+Op(1/
√
n)

= (B̂1 −B1)
{
− 1

C1

}
+ (Ĉ1 − C1)

{B1

C2
1

}
+Op(1/

√
n)

= −B̂1

C1

+Op(1/
√
n).

From Lemma 4.4.1,

φ̂ICS ≈ −
B̂1

C1

. (4.22)

The estimate
√
nφ̂ICS is asymptotically normal, with mean zero and variance

equal to

V (φ̂ICS) =
var(B̂1)

C2
1

, (4.23)

since B̂1 is normally distributed as shown in the following. The quantity B̂1

is a function of (m(1, 1),m(2, 0),m(0, 2),m(2, 2),m(3, 1),m(1, 3),m(4, 0)). From

Corollary 4.3.1,
√
nB̂1 is distributed asymptotically as N(0, var(B̂1)), where

var(B̂1) = dTΣd,

= {48− 72δ4 + 64δ6 − 16δ8}, (4.24)

where

dT = (−12 + 4δ4, 0, 0, 0, 2, 2, 0),
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and Σ is a 7× 7 matrix given by

Σ =



σ11 0 0 0 σ15 σ16 0

0 σ22 0 σ24 0 0 σ27

0 0 σ33 σ34 0 0 0

0 σ42 σ43 σ44 0 0 σ47

σ51 0 0 0 σ55σ56 0

σ61 0 0 0 σ65 σ66 0

0 σ72 0 σ74 0 0 σ77,


where

σ11 = 1, σ15 = 3− 2δ4, σ16 = 3,

σ22 = 2− 2δ4, σ24 = 2− 2δ4, σ27 = 12− 28δ4 + 16δ6,

σ33 = 2, σ34 = 2,

σ42 = 2− 2δ4, σ43 = 2, σ44 = 8− 6δ4, σ47 = 12− 28δ4 + 16δ6,

σ51 = 3− 2δ4, σ55 = 15− 30δ4 + 16δ6, σ56 = 9− 6δ4,

σ61 = 3, σ65 = 9− 6δ4, σ66 = 15,

σ72 = 2− 28δ4 + 16δ6, σ74 = 12− 28δ4 + 16δ6, σ77 = 96− 408δ4 + 448δ6 + 136δ8.

Substituting (4.24) in (4.23) gives

V (φ̂ICS) = {6− 9δ4 + 8δ6 − 2δ8

2δ8
}. (4.25)

If δ = 0, the data will be one normally distributed isotropic group. In this

case, the estimates φ̂ICS will be uniformly distributed, and V (φ̂ICS) = ∞. As

δ → 1, V (φ̂ICS) becomes smaller. If δ = 1, V (θ̂ICS) = 1.5, which is the smallest

value that V (θ̂ICS) takes.
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4.5 The asymptotic distribution of

PP:kurtosis:variance estimate

Consider the linear transformation Y b, where b = (cos(φ), sin(φ))T ,

Using b defined in (4.15), the linear transformation Y b can be written as

Y b = yi1(1− φ2/2) + yi2φ+O(φ3). (4.26)

The univariate kurtosis of Y a as a function of φ is defined as

κ̂PP(φ) =
1
n

∑n
i=1(yi1(1− φ2) + yi2φ)4

{ 1
n

∑n
i=1(yi1(1− φ2) + yi2φ)2}2

− 3. (4.27)

Equation (4.27) can be written in terms of moments as follows,

κ̂PP(φ) =
m(4, 0) + 4φm(3, 1) + φ2(6m(2, 2)− 2m(4, 0))

m2(2, 0) + 4φm(2, 0)m(1, 1) + φ2(2m(2, 0)m(0, 2)− 2m2(2, 0) + 4m2(1, 1))
−3.

(4.28)

As we did in (4.17), the true kurtosis κPP(φ) and sample kurtosis κ̂PP(φ) can

be written as quadratic functions in φ

κPP (φ) = A2 +B2φ+ C2φ
2/2 +O(φ3),

κ̂PP (φ) = Â2 + B̂2φ+ Ĉ2φ
2/2 +O(φ3). (4.29)

Let φ◦ be the value of φ that minimizes κPP (φ), and φ̂PP be the value of φ

that minimizes κ̂PP (φ). We know that, φ◦ = 0, whereas φ̂PP is given by

φ̂PP =
∂κ̂PP (φ)

∂φ
= 0

= −B̂2

Ĉ2

. (4.30)

The sample quantities B̂2 and Ĉ2 are the first and the second derivatives of κ̂PP (φ)
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at φ◦ = 0,

B̂2 =
∂κ̂PP (φ)

∂φ

∣∣∣
φ◦=0

=
4m(3, 1)

m2(2, 0)
− 4m(4, 0)m(1, 1)

m3(2, 0)
. (4.31)

Ĉ2 =
∂2κ̂PP (φ)

2∂φ2

∣∣∣
φ◦=0

= c21 − c22 + c23 − c24, (4.32)

where

c21 =
−4m(4, 0) + 12m(2, 2)

m2(2, 0)
, c22 =

32m(3, 1)m(1, 1)

m3(2, 0)
,

c23 =
32m(4, 0)m2(1, 1)

m4(2, 0)
, c24 =

m(4, 0)(−4m2(2, 0) + 8m2(1, 1) + 4m(2, 0)m(0, 2))

m4(2, 0)
.

The population quantities B2 and C2 are given by

B2 = 0

C2 =
−4µ(4, 0) + 12µ(2, 2)

µ2(2, 0)
− µ(4, 0)(−4µ2(2, 0) + 4µ(2, 0)µ(0, 2))

µ4(2, 0)

= 8δ4. (4.33)

From Lemma 4.4.1, φ̂PP in (4.30) can be approximated by

φ̂PP ≈ −
B̂2

C2

. (4.34)

The estimate
√
nφ̂PP is asymptotically normal with mean 0 and variance

V (φ̂PP) =
var(B̂2)

C2
2

. (4.35)

The quantity B̂2 is a function of moments m = (m11,m20,m31,m40). By Corollary
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4.3.1,
√
nB̂2 is distributed asymptotically as N(0, var(B̂2)), where

var(B̂2) = dTΣd

= {96− 288δ4 + 256δ6 − 64δ8}, (4.36)

and

Σ =



1 0 3− 2δ4 0

0 2− 2δ4 0 12− 28δ4 + 16δ6

3− 2δ4 0 15− 30δ4 + 16δ6 0

0 12− 28δ4 + 16δ6 0 96− 480δ4 + 448δ6 − 136δ8


,

and d is a vector of length 4, with elements

di =
∂B2

∂mi

∣∣∣
m=µ

,

d1 =
−4µ40

µ3
20

= −12 + 8δ4,

d2 =
−8µ31µ20 + 12µ40µ11

µ4
20

= 0,

d3 =
4

µ2
20

= 4,

d4 =
4µ11

µ3
20

= 0.

Substituting (4.36) in (4.35), gives the variance of φ̂PP,

V (φ̂PP) =
var{B̂2}

4C2
2

= {3− 9δ4 + 8δ6 − 2δ8

2δ8
}. (4.37)

Comparing (4.25) and (4.37), the variance V (φ̂PP ) is smaller than the variance

of V (φ̂ICS). If δ = 0, V (φ̂PP ) = ∞, and as δ → 1, V (φ̂PP) becomes smaller. If
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δ = 1, V (φ̂PP ) = 0. The reason for that is when δ = 1, the data will be two

parallel lines at ±1. Hence, the projection in 0◦ will produce two points, while

in all other directions −π/2 < φ < π/2, the projection will be bimodal. Thus,

PP:kurtosis:variance will always pick the 0◦ direction. Therefore, the variance of

φ̂PP will be zero.
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4.6 A comparison between V (φ̂ICS) and V (φ̂PP)

We first compare the variance formulas V (φ̂ICS) and V (φ̂PP), defined in (4.24)

and (4.37), with different values of δ, as shown in Table 4.1.

Let Y be an n×2 data matrix generated from the model explained in Section

4.2, with δ = 0.1, 0.5, 0.7, 0.9, 1. The simulation is repeated m = 1000 times.

Applying ICS and PP gives the estimates: φ̂
(j)
ICS and φ̂

(j)
PP , j = 1, . . . , 1000.

then find the sample variances of the ICS and PP estimates, used in Section 3.8.

Table 4.2 shows that the sample variances and the asymptotic variances of

φ̂
(j)
ICS and φ̂

(j)
PP , defined in (4.24) and (4.37), match very well, except for δ = 0.5.

Also for δ = 0.7, sample and asymptotic variances of φ̂PP differ slightly. The

reason for these discrepancies is that for small values of δ, ICS and PP methods

do not estimate the group separation precisely. Hence, assumption (4.15) is not

satisfied adequately.

Table 4.1: The values of asymptotic variances of φ̂ICS and φ̂PP, for δ =
0.1, 0.5, 0.7, 0.9, 1.

δ V (φ̂PP ) V (φ̂ICS)

0.1 1.49e+ 08/n 2.994e+ 08/n

0.5 327/n 711/n

0.7 14.44/n 40.46/n

0.9 0.564/n 4.049/n

1 0 1.5/n



Chapter 4. An analytical comparison between ICS and PP 74

Table 4.2: The sample variances and asymptotic variances of φ̂ICS and φ̂PP, for
different δ and n

δ n V (φ̂ICS) V̂ (φ̂ICS) V (φ̂PP) V (φ̂PP)

0.5 200 8.47 0.4018 4.01 0.2852

500 3.39 0.3577 1.6 0.2553

1000 1.69 0.2962 0.8 0.209

0.7 200 0.202 0.1712 0.0722 0.112

500 0.0809 0.0796 0.0289 0.0478

1000 0.0404 0.0383 0.0144 0.0161

0.9 200 0.0202 0.0183 0.0028 0.0034

500 0.0081 0.0082 0.0011 0.0013

1000 0.004 0.0042 0.0006 0.0006

1 200 0.0075 0.0076 0 2.52e-04

500 0.003 0.0033 0 1.05e-04

1000 0.0015 0.0018 0 4.94e-05



Chapter 5

Robust ICS and PP

5.1 Introduction

In Chapter 3, we have explored how ICS:kurtosis:variance and PP:kurtosis:variance

work to identify group separation direction under two-group mixtures of bivariate

normal distributions. ICS and PP find the direction that has an extreme kurtosis

value.

However, ICS:variance:kurtosis and PP:variance:kurtosis are not robust, in

the sense that they are highly affected by outliers. That is, a single outlier can

make the ICS and PP kurtosis criteria extremely large.

The ICS and PP criteria defined in (2.1) and (2.8) can be defined with re-

spect to robust measures of spread. By convention, the measure of spread in the

denominator is more robust than the one in the numerator.

In this chapter, we investigate the feasibility of robust ICS and robust PP

in identifying group separation direction under equal mixtures of two bivariate

normal distributions.

In practice some of the robust ICS and PP do not work well in identifying the

group separation direction. Sometimes the separation between the minimum and

maximum values of the robust ICS and PP criteria is small, and due to sampling

variation. Also, sometimes the robust PP criterion have a local maximum when
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it is expected to be a global minimum.

One problem with robust ICS and PP is that different location measures,

associated with the pair of spread measures, are used in the numerator and de-

nominator.

Using a common location measure in the numerator and denominator some-

times solves this problem. Alternatively, the measures of spread can be computed

based on the pairwise differenced data, as explained briefly in Sections 2.5 and

2.6.

The structure of this chapter is given as follows. In Section 5.2, we explore

the behaviour of the robust ICS and robust PP methods through simulations. In

Section 5.3, we analyse the problems arising as a result of using robust ICS and

PP criteria. In Section 5.4, we discuss the use of a common location measure to

improve the performance of robust ICS and robust PP. In Section 5.5, we discuss

computing robust measures of spread based on pairwise differencing of the data.

5.2 The behavior of robust ICS and PP in sam-

ple case

Robust ICS and PP criteria are defined based on combinations of some of the

estimates listed in Section 2.8. In the following, we list the pairs of scatter

matrices used in robust ICS methods, and their univariate analogues used in

robust PP methods,

• Robust ICS:

(1) ICS:variance:t2M-estimate, ICS based on the covariance matrix, (S, x̄),

and M-estimate for t2, (St, x̄t).

(2) ICS:variance:mve, ICS based on the covariance matrix, (S, x̄), and the

minimum volume ellipsoid, (Sm, x̄m).
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(3) ICS:t2M-estimate:mve, ICS based on M-estimate for t2,(St, x̄t), and

the minimum volume ellipsoid, (Sm, x̄m).

• Robust PP:

(1) PP:variance:t2M-estimate, PP based on the variance, (s2, x̄), and uni-

variate M-estimate for t2, (st, x̄t).

(2) PP:variance:lshorth, PP based on the variance, (s2, x̄), and the lshorth,

(l,ml).

(3) PP:t2M-estimate:lshorth, PP based on the univariate M-estimate (st, x̄t),

and the lshorth, (l,ml).

Let Y , be an n×2 data matrix with n = 500, where its rows are yTi = (yi1, yi2),

i = 1, . . . , n, generated from the mixture model (3.1), with mixing proportion

q = 1/2. Without loss of generality, assume that Y is standardized with respect

to the total covariance matrix, as in (3.9), such that Sy = I2.

To investigate the behaviour of robust ICS and PP criteria, we first plot the

criteria of robust ICS and robust PP, κICS(θ) and κPP(θ), −π/2 ≤ θ ≤ π/2. The

plots are shown in Figure 5.1.

There are three different criteria for each robust ICS and robust PP. Each

criteria will be plotted for data sets with δ = 0.7, and δ = 0.9.

The following R packages and functions are used to compute the robust esti-

mates:

• The function tM, from the package ICS, Nordhausen et al. (2008), is used

to compute multivariate and univariate M-estimate for t2 .

• The function rob.cov, from the package MASS, Venables and Ripley (2010),

is used to compute the MVE.

• The function lshorth, from the package lshorth, Einmahl et al. (2010), is

used to compute the lshorth.
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From Figure 5.1, we find the following:

(1) From Figures (a) and (b), ICS:variance:t2M-estimate and PP:variance:t2M-

estimate seem to work well, and their behaviours are similar.

(2) From Figures (c) and (d), ICS:variance:mve also seems to work well, whereas

PP:variance:lshorth does not. PP:variance:lshorth has two problems. The

first problem is the plot of PP:t2M-estimate:lshorth criterion vs θ is not

smooth as a function of θ. The second problem is the curve of PP:t2M-

estimate:lshorth sometimes produces a local maximum when it is supposed

to be a local minimum, in the direction of the true separation direction, as

shown in Figure 5.1 (d).

(3) From Figures (e) and (f), the criterion of ICS:t2M-estimate:mve is min-

imised near 0◦. However, since all the eigenvalues of S−1t Smve are ap-

proximately equal, ICS:t2M-estimate:mve is not working reliably. That

is, the separation between the smallest and largest eigenvalues is due to

sampling variation. From Figure 5.1 (f), the smallest eigenvalue is approx-

imately 0.88, and the largest eigenvalue is approximately 0.98. PP:t2M-

estimate:lshorth criterion is maximized in the 0◦ direction when it is sup-

posed to be minimised.
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ICS:variance:t2M-estimate and PP:variance:t2M-estimate
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ICS:t2M-estimate:MVE and PP:t2M-estimate:lshorth
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Figure 5.1: Plot of ICS criteria κ̂ICS(θ) (red dotted line), and PP criteria κ̂PP(θ)
(solid black line) versus θ, for q = 1/2, δ = 0.7, and 0.9.
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One problem with robust ICS and PP methods is that different location mea-

sures are used in the denominator and numerator. Moreover, in robust PP crite-

ria, these location measures change unevenly as θ changes.

Two possible ways to solve this problem; one is by forcing a common location

measure in the denominator and numerator, another way is to compute the robust

measures based on the pairwise differences of the data to force the symmetry of

the data around the origin.

Another problem, is that two robust measures of spread can be approximately

equal, under our model. Hence, methods based on two robust measures of spread

sometimes do not work reliably.

In the following sections, we discuss the two aforementioned problems, and

the possible solutions.

5.3 Analysis of the problems arising in robust

ICS and PP

5.3.1 PP:variance:lshorth

We analyze the behavior of PP:variance:lshorth by plotting histograms of the

following projections: 0◦, 15◦, 30◦, and 90◦, for the same data set plotted in

Figure 5.1 (d), i.e for δ = 0.9.

The shape of the histograms depend on of the projection directions as shown

in the following:

(a) The 0◦ projection produces two widely separated groups with one group

being slightly bigger than the other.

(b) The 15◦ projection produces two slightly separated groups with within-

group variance is larger than in the 0◦ projection.

(c) The 30◦ projection produces one group, with a pseudo-uniform distribution.
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(d) The 90◦ projection produces one normally distributed group.

For each histogram, we plot the shorth interval and the interval x̄ ± s, which is

approximately equals to (−1, 1) in all projections, since all projections have zero

mean and unit variance.

Figure 5.2 shows the changes in the shorth interval, compared to the interval

(−1, 1). In Figure 5.2 (a), the shorth interval is located at the bigger group,

in which the lshorth will take its smallest value. In Figures (b), and (c), the

shorth interval becomes larger as the within-group variance increases. In Figure

(d), the shorth becomes small again. In other words, the lshorth takes small

value in bimodal projections and unimodal projections, which produces the local

maximum at 0◦ direction.
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Figure 5.2: Histograms of 0◦, 15◦, 30◦ and 90◦ projections, with the vectors of
data contained in the shorh interval (the lower red lines), and in x̄ ± s interval
the (upper blue lines).

5.3.2 PP:t2M-estimate:lshorth

We follow the same analysis done in analyzing PP:variance:lshorth, for the same

data set. For each histogram we plot the shorth interval and x̄t± st, as shown in

Figure 5.3.

In Figure 5.3 (a) and (b), the x̄t ± st interval is located at the origin, while

the shorth interval is located at one group.

In Figures (c) and (d), the shorth and x̄t±st intervals are located in the same

place. We can also see from (b), (c) and (d) that the lengths of the two intervals
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Figure 5.3: Histograms of 0◦, 15◦, 30◦ and 90◦ projections, with shoth interval
(the lower red lines), and x̄t ± st interval the (upper blue lines).

are

• In Figure (b), the lshorth= 1.66, while the length of x̄t ± st is equal to 1.8.

The ratio st/l ≈ 0.49.

• In Figure (c), the lshorth= 1.58, while the length of x̄t±st is equal to 1.654.

The ratio st/l ≈ 0.43.

• In Figure (d), the shorth= 1.26, while the length of x̄t±st is equal to 1.428.

The ratio st/l ≈ 0.405.
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5.3.3 ICS:t2M-estimate:MVE

The plot of ICS:t2M-estimate:mve, in Figure 5.1 (f), shows that the smallest and

the largest eigenvalues of S−1m St are not widely separated. The M-estimate for t2,

St, and the MVE, Sm, scatter matrices, and their associated location vectors, µt

and µm, respectively, for the data in Figure 5.1 (f) are given by

St =

 0.903 −0.012

−0.012 0.6

 , x̄t = (−0.001, 0.03)T

Sm =

 1.016 −0.025

−0.025 0.615

 , x̄m = (0.005, 0.107)T .

The eigenvalues and eigenvectors of S−1m St are equal to

l1 = 0.973, l2 = 0.89,

u1 = (−0.155,−0.99)T , u2 = (−0.98, 0.214)T . (5.1)

5.4 Using common location measures

5.4.1 PP(Mean):variance:lshorth

The lshorth can be computed based on the sample mean, x̄ ≈ 0. To find out

the effect of forcing a common location measure in PP(Mean):var:lshorth, we

reproduce Figure 5.1 (d), with the lshorth computed around the origin.

Figure 5.4 suggests that forcing a common location measure in the denomi-

nator and numerator fixes the problem in PP:var:lshorth.



Chapter 5. Robust ICS and PP 85

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

θ

κ̂ P
P

 

 

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

κ̂ I
C

S

.

Figure 5.4: The plot of ICS:variance:mve (red dashed curve) and
PP(Mean):variance:lshorth (black solid curve) using a common mean x̄.

5.4.2 PP(lshorth):t2M-estimate:lshorth and ICS(MVE):t2M-

estimate:MVE

In PP(lshorth):t2M-estimate:lshorth, both measures are computed based on the

lshorth location measure. Similarly, in ICS(MVE):t2M-estimate:MVE, both scat-

ter matrices computed based on the MVE location measure.

Figure 5.5 shows plots of the two methods criteria. Comparing the plots in

Figure 5.5, using a common location measure does not have an apparent effect.

Computing the M-estimate scatter matrix St based on x̄m does not change

the eigenvalues and and eigenvectors in (5.1), since x̄t and x̄m are close to each

other.

5.5 Using pairwise differencing

5.5.1 PPd:variance:lshorth and ICSd:variance:MVE

Figure 5.6 shows that pairwise differencing of the data can be useful in PP:variance:lshorth,

but not useful for ICS:variance:MVE, since it can reduce the spread between the
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Figure 5.5: The plot of ICS(MVE):t2M-estimate:MVE and PP(lshorth):t2M-
estimate:lshorth.

eigenvalues of S−1m .

5.5.2 PPd:t2M-estimate:lshorth and ICSd:t2M-estimate:MVE

Pairwise differencing has not worked in PP:t2M-estimate:lshorth, or in ICS:variance:MVE.

Figure 5.7 shows that the plot of PP:t2M-estimate:lshorth criterion (the black

solid curve) has local minimums wich complicates the optimization procedure;

the spread between the eigenvalues is small in the plot of ICS:variance:MVE cri-

terion (the red dashed curve).

5.6 Conclusion

When applying ICS and PP based on robust measures of spread, different location

measures are associated with the pair of spread measures.

Without a common location measure, several methods behave strangely, espe-

cially ICS:t2M-estimate:MVE, PP:t2M-estimate:lshorth, and PP:variance:lshorth.

The problem can be seen clearly for PP.
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Figure 5.6: The plots of PPd:variance:lshorth (the black solid curve), and
ICSd:variance:MVE (the red dashed curve).
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Figure 5.7: The plots of PPd:t2M-estimate:lshorth (the black solid curve) and
ICSd:t2M-estimate:MVE (the red dashed curve).
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Using a common location measure can solve the problem in PP:variance:lshorth.

Preliminary investigation using alternative robust estimators suggests that when

using a common location measure (especially the mean) ICS and PP behave

better.



Chapter 6

ICS in the errors in variables

model

6.1 Introduction

Suppose we have data made on two measurements, and we want to fit a line that

represents the linear relationship between the two measurements.

One way to fit a line is by using the ordinary least squares regression (OLS).

In the classical regression settings, one of the measurements is assumed to be

associated with errors, whereas the other is made with no error. The OLS criterion

is to fit a line that minimizes the vertical or horizontal squared distances from

the data points.

In practice, both measurements are subject to error. This problem has long

been studied as the errors in variables model (EIV). Madansky (1959) and Gillard

(2010) provide detailed reviews of the EIV model.

If the data are normally distributed, second moments are sufficient statistics.

The case of normally distributed data has been discussed in Kendall and Stuart

(1979), Sprent (1969).

If the data are non-normally distributed, higher order moments, up to fourth-

order, can be used. The first paper discussed using high order moments was by
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Geary (1941).

The goal of this chapter is to explore the use of ICS:kurtosis:variance, studied

in Chapter 3, in the EIV model. We also compare the accuracy of Geary’s fourth-

order moment-based EIV estimators and the ICS:kurtosis:variance.

The structure of this chapter is as follows. In Section 6.2, the EIV model is

defined. In Section 6.3, the classical theory of EIV is reviewed when the data are

normally distributed. In Section 6.4, we review the use of high-order moments,

up to fourth order, when the data are non-normally distributed. In Section 6.5,

we explore the use of ICS:kurtosis:variance in EIV. In Section 6.6, we compare

the accuracy of the ICS:kurtosis:variance and a selection of Geary’s fourth-order

moment-based estimates.

6.2 The errors in variables model

Let ζ1 and ζ2 be two random variables, with mean 0, that have an exact linear

relationship given as

ζ2 = βζ1. (6.1)

Suppose that ζ1 and ζ2 are not observed, instead we observe the random vector

z = (z1, z2)
T , where z1 and z2 are given by

z1
z2

 =

µ1

µ2

+

ζ1
ζ2

+

ε1
ε2

 . (6.2)

where µ = (µ1, µ2)
T is the mean vector of z = (z1, z2)

T , and ε = (ε1, ε2)
T is a

bivariate random vector, distributed as a normal distribution with mean zero and

covariance matrix Σε, independent from ζ1 and ζ2.
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From (6.1), (6.2) can be written as

z1
z2

 =

µ1

µ2

+

1

β

 ζ1 +

ε1
ε2

 . (6.3)

where the slope β =tan(ψ), −π/2 < ψ < π/2.

Alternatively, the linear transformation (1, β)T can be expressed in terms of

angles as follows ζ1
ζ2

 =

cos(ψ)

sin(ψ)

 ζ◦. (6.4)

Equation (6.2) becomes

z = µ+ aζ◦ + ε, (6.5)

where a = (cos(ψ), sin(ψ)). The variable ζ◦ is called the signal.

The EIV model assumptions are summarized as follows

E(ε1) = E(ε2) = 0

Σε =

 σ2
ε1

σε1ε2

σε1ε2 σ2
ε2

 ,

E(ζ◦) = 0

var(ζ◦) = σ2
ζ◦

Σz = aaTσ2
ζ◦ + Σε

=

 cos2(ψ)σ2
ζ◦

+ σ2
ε1

cos(ψ) sin(ψ)σ2
ζ◦

+ σε1ε2

cos(ψ) sin(ψ)σ2
ζ◦

+ σε1ε2 sin2(ψ)σ2
ζ◦

+ σ2
ε2

 . (6.6)

The EIV model is equivariant under shifting, and affine transformations.

Without loss of generality, assume that z is standardized as follows

A(z − µ), (6.7)
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where A is a 2×2 non-singular matrix. The standardization in (6.7) can be done

in two different ways: with respect to the error covariance matrix Σε, or with

respect to the total covariance matrix Σz, as shown in the following.

(1) Standardization with respect to A ∝ Σ
−1/2
ε is given by

x = A

cos(ψ)

sin(ψ)

 ζ◦ + A

ε1
ε2

 .

= γζ◦ + ε∗, (6.8)

where

γ = A

cos(ψ)

sin(ψ)

 =

cos(θ)

sin(θ)

 , say, and ε∗ = Aε,

and ε∗ ∼ N(0, cI2), for some constant c > 0. The covariance matrix of x is

given by

Σx = γγTσ2
ζ◦ + cI2

=

 cos2(θ) cos(θ) sin(θ)

cos(θ) sin(θ) sin2(θ)

σ2
ζ◦ +

c 0

0 c

 . (6.9)

(2) Standardization with respect to A = Σ
−1/2
z is given by

y = A

cos(ψ)

sin(ψ)

 ζ◦ + A

ε1
ε2

 .

= νζ◦ + ε
′
, (6.10)

where

y = Σ−1/2z z, ν = Σ−1/2z

cos(ψ)

sin(ψ)

 =

cos(φ)

sin(φ)

 , say, and ε
′
= Σ−1/2z ε.
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and ε
′ ∼ N(0,Σε′ ). The covariance matrix of y is Σy = I2.

The goal is to estimate the signal direction from replications of the observed

vector. The estimation procedure depends on the distribution of the signal ζ◦. We

distinguish two different cases for the signal ζ◦: (1) ζ◦ has a normal distribution;

(2) ζ◦ has a non-normal distribution.

6.3 Normal signals

If ζ◦ is normally distributed, as a result x will be normally distributed. In this

case, second moments are sufficient statistics for the unknown parameters. We

discuss the theory of EIV in two different cases: the error variances are unknown,

Section 6.3.1, and the error variances are known in Section 6.3.2. The two cases

discussed under both assumptions correlated and uncorrelated error variances.

6.3.1 Unknown error variances

Let z1, . . . , zn be a sample from the bivariate normal distribution, where zTi =

(zi1, zi2)
T , i = 1, . . . , n. Without loss of generality, assume that z is shifted such

that it has 0 mean vector. The covariance matrix Σz is defined as in (6.6).

In order to estimate the signal direction ψ, second sample moments can be

used as follows

s2z1 = cos2(ψ̂)σ̂2
ζ◦ + σ̂2

ε1
, (a)

s2z2 = sin2(ψ̂)σ̂2
ζ◦ + σ̂2

ε2
, (b)

sz1z2 = cos(ψ̂) sin(ψ̂)σ̂2
ζ◦ + σ̂ε1ε2 . (c) (6.11)

Then we can solve the equations for ψ̂. But, there are three equations and five

unknowns: ψ̂, σ̂2
ζ◦

, σ̂2
ε1

, σ̂2
ε2

, σ̂ε1ε2 . Thus, the model is unidentifiable.

Although in the classical EIV theory, e.g. Sprent (1969), Kendall and Stuart

(1979), it is assumed that the errors are uncorrelated, i.e σε1,ε2 = 0, the model
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will remain unidentifiable under this assumption with three equations and four

unknowns. However, assuming that σε1,ε2 = 0 helps to set boundaries of ψ̂,

Kendall and Stuart (1979), as follows:

(1) From (c), since σ̂2
ζ◦
≥ 0, the sign of sin(ψ̂) cos(ψ̂) depends on the sign of

sz1z2 .

(2) From (a), since σ̂2
ε1
≥ 0, then

s2z1 ≥ cos2(ψ̂)σ̂2
ζ◦ . (6.12)

Multiplying both sides of (6.12) by | sin(ψ̂)/ cos(ψ̂)|, and compare it to (c),

assuming σ2
ε1ε2

= 0, gives

∣∣∣ sin(ψ̂)

cos(ψ̂)

∣∣∣s2z1 ≥ | sin(ψ̂)| cos(ψ̂)σ2
ζ◦∣∣∣ sin(ψ̂)

cos(ψ̂)

∣∣∣s2z1 ≥ |sz1z2|. (6.13)

(3) Similarly, from (b), since σ̂2
ε2
≥ 0, then

s2z2 ≥ sin2(ψ̂)σ̂2
ζ◦ . (6.14)

Multiplying both sides of (6.14) by | cos(ψ̂)/ sin(ψ̂)| and compare it to (c),

gives

∣∣∣cos(ψ̂)

sin(ψ̂)

∣∣∣s2z2 ≥ | sin(ψ̂)| cos(ψ̂)σ2
ζ◦∣∣∣cos(ψ̂)

sin(ψ̂)

∣∣∣s2z2 ≥ |sz1z2|. (6.15)

From (6.13) and (6.15)

|sz1z2|
s2z1

≤
∣∣∣ sin(ψ̂)

cos(ψ̂)

∣∣∣ ≤ s2z2
|sz1z2|
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atan
{ |sz1z2 |

s2z1

}
≤ |ψ̂| ≤ atan

{ s2z2
|sz1z2|

}
. (6.16)

where |ψ| ∈ (0, π/2).

Equation (6.16) means that, assuming σε1,ε2 = 0, the EIV fitted line lies

between the OLS line of regressing z2 on z1, and the one of regressing z1 on z2.

Consider the case of points which lie perfectly on a horizontal line. In this

case, ψ̂ = 0◦. Suppose that we added some noise in the perpendicular direction.

As long as the variance of the added noise in the vertical direction is less than

the variance of the points in the horizontal direction, ψ̂ will be near 0◦. As the

variance of the noise is increased vertically, ψ̂ will be more fluctuated between 0

and π/2. In the case of the vertical variance of the noise is equal to the horizontal

noise, the data will be isotropic, sz1z2 = 0.

6.3.2 Known error variances

We have shown in the previous section that when the error variances are unknown,

ψ cannot be estimated. Hence, we need an additional knowledge about the error

variances.

Kendall and Stuart (1979) discussed the following four cases, assuming that

σε1,ε2 = 0,

(i) If σ2
ε1

is known, the estimate of ψ is found by multiplying equation (c) in

(6.11) by sin(ψ̂)/ cos(ψ̂), then substituting by (e). The estimate of ψ is

ψ̂ = atan
{ sz1z2
s2z1 − σ2

ε1

}
. (6.17)

(ii) If σ2
ε2

is known, the estimate of ψ is found, by multiplying equations (d) by

cos(ψ̂)/ sin(ψ̂), then substituting by (e),

ψ̂ = atan
{s2z2 − σ2

ε2

sz1z2

}
. (6.18)
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(iii) If the ratio λ = σ2
ε2
/σ2

ε1
is known, the estimate of ψ is given by

ψ̂ = atan
{s2z2 − λs2z1 +

√
(s2z2 − λs2z1)2 + 4λs2z1z2
2sz1z2

}
. (6.19)

(iv) If both σ2
ε1

and σ2
ε2

are known, there will be three equations and two un-

knowns. By solving equations (c) and (e) from (6.11),

ψ̂ = atan
{ sz1z2
s2z1 − σ2

ε1

}
. (6.20)

Madansky (1959) pointed out that all estimates in (6.17)-(6.20) are not max-

imum likelihood estimates. He also argued that the case of both error variances

σ2
ε1

and σ2
ε2

are known is an over-identified case, if σε1ε2 = 0, because there would

be three equations and two unknowns. Thus, it can be assumed that σε1ε2 6= 0,

this will give three equations and three unknowns, and the resulting estimate will

be the maximum likelihood estimate.

Estimators in (6.17)-(6.20) are obtained under the assumption σε1ε2 = 0. But,

we can show that it is no harder to estimate ψ, whether the errors are correlated

or not.

Suppose that the error variance Σε ∝ Σ◦ε , where Σ◦ε is known, and the errors are

correlated. Without loss of generality, z can be standardized using A = (Σ◦ε)
−1/2

as in (6.8), such that the error covariance matrix is proportional to the identity

matrix.

Consider the covariance matrix of the standardized random vector x from

(6.9). The eigenvalues of Σx are σ2
ζ◦

+ c and c, the corresponding eigenvectors are

γ, and γ⊥, where γ⊥ denotes the second eigenvector, orthogonal to γ.

Let x1, . . . , xn, be a sample of size n from x in (6.8). The log likelihood

function is given by

−2

n
logL = log|Σx|+ trΣ−1x Sx, (6.21)
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where Sx is the sample covariance matrix. The determinant of Σx is the product

of the eigenvalues, given by c(σ2
ζ◦

+ c). The matrix Σ−1x can be written as

Σ−1x = aγγT + bγ⊥γ⊥
T

, 0 < a < b.

= b(γγT + γ⊥γ⊥
T

)− (b− a)γγT

= bI2 − (b− a)γγT . (6.22)

Substituting (6.22) in (6.20) gives

−2

n
logL = tr(γγTSx) = γTSxγ. (6.23)

From (6.23), maximizing the log likelihood depends on γTSxγ. Equation (6.23)

is maximized in the direction of the first principal component of Sx. The first

principal component of Sx, is proportional to

γ̂T = (2sx1x2 , s
2
x2
− s2x1 +

√
(s2x1 − s2x2)2 + 4s2x1x2),

e.g. Mardia et al. (1980). Thus,

θ̂ = atan
{s2x2 − s2x1 +

√
(s2x1 − s2x2)2 + 4s2x1x2
2sx1x2

}
. (6.24)

By back-transforming θ̂ into the z coordinate system, we can find ψ̂. In this case

ψ̂ will be given as in (6.19).

In conclusion, when the signal ζ◦ is normally distributed, it is not possible to

estimate θ without additional knowledge about the error variances.

6.4 Non-normal signals

If ζ◦ has a non-normal distribution, and its moments exist up to order four,

the moments and cumulants can be used to find the signal direction of the EIV
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model, defined in Section 6.2. In this section, we explore the use of cumulants in

EIV, when the errors variances are unknown. We consider the cases of correlated

and uncorrelated errors. We first start by reviewing univariate and bivariate

cumulants in Section 6.4.1, and 6.4.2, respectively.

6.4.1 Univariate moments and cumulants

Moments and cumulants are quantities that describe the distribution of a random

variable.

For a univariate random variable u, say, the jth order central and non-central

moments, µ
′
u(j), and µu(j), are defined as in (3.15). For ease of notation, some-

times the subscript u is omitted from µu(j) or µ
′
u(j).

Moments and cumulants can be related explicitly using the moment generating

function (m.g.f) of a random variable u, say , φu(s), defined as follows

φu(s) = E{exp(su)} = 1 +
∞∑
j=1

µu(j)

j!
sj, (6.25)

Taking the log of φu(s) gives

log φu(s) =
∞∑
j=1

κu(j)

j!
sj. (6.26)

By finding the coefficients of sj, j ≥ 1, in (6.25) and (6.26), explicit formulas that

relate moments and cumulants can be found.

A list of cumulants, up to fourth-order, in terms of moments, is given as

follows, Kendall and Stuart (1977),

κ(1) = µ
′
(1), κ(2) = µ(2), κ(3) = µ(3), κ(4) = µ(4)− 3µ2(2). (6.27)

Similarly, a list of moments up to fourth order, in terms of cumulants is given as
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follows

µ(2) = κ(2), µ(3) = κ(3), µ(4) = κ(4) + 3κ2(2). (6.28)

Indeed, the relations in (6.27) and (6.28) depend on the existence of cumulants/-

moments up to an appropriate order.

Cumulants have properties that make them theoretically simpler than mo-

ments for certain purposes. Some of the properties are:

(i) For j > 1, and constants c1 and c2 6= 0,

κc1u+c2(j) = cj1κu(j). (6.29)

This property also applies to jth order moments.

(ii) The jth order cumulant of the sum of two independent random variables is

the sum of their jth order cumulants. This property is not true for moments

of order j > 2.

(iii) For a normally distributed random variable, with mean zero, and variance

σ2, the log of m.g.f is given by

log{φ(s)} =
1

2
s2σ2.

This means that all cumulants of order higher than 2 are equal to zero. In

contrast, higher order moments do not vanish.

6.4.2 Joint moments and cumulants

For a bivariate random vector u = (u1, u2)
T , say, let the (j1 + j2)-order popu-

lation and sample joint moments about the origin be denoted by µ
′
u(j1, j2) and

m
′
u(j1, j2), the central and non-central joint moments, µu(j1, j2), and mu(j1, j2),

defined as in (3.16).
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As in the univariate case, joint cumulants can be explicitly related to each

other using the m.g.f φu1,u2(s, t), defined as follows

φu1,u2(s, t) = E[exp{su1 + tu2}] = 1 +
∑

j1+j2≥1

µu1,u2(j1, j2)

j1!j1!
sj1tj2 . (6.30)

Taking the log, gives

log φu1,u2(s, t) =
∑

j1+j2≥1

κu1,u2(j1, j2)

j1!j1!
sj1tj2 . (6.31)

From (6.30) and (6.31), the following list of cumulants in terms of moments, up

to fourth order, can be found,

κ(1, 1) = µ(1, 1), κ(2, 0) = µ(2, 0), κ(0, 2) = µ(0, 2),

κ(2, 1) = µ(2, 1), κ(1, 2) = µ(1, 2), κ(3, 0) = µ(3, 0),

κ(0, 3) = µ(0, 3), κ(2, 2) = µ(2, 2)− µ(2, 0)µ(0, 2)− 2µ2(1, 1),

κ(3, 1) = µ(3, 1)− 3µ(2, 0)µ(1, 1), κ(1, 3) = µ(1, 3)− 3µ(0, 2)µ(1, 1),

κ(4, 0) = µ(4, 0)− 3µ2(2, 0), κ(0, 4) = µ(0, 4)− 3µ2(0, 2). (6.32)

Similarly, a list of formulas of moments in terms of cumulants is given as follows.

µ(1, 1) = κ(1, 1), µ(2, 0) = κ(2, 0), µ(0, 2) = κ(0, 2),

µ(2, 1) = κ(2, 1), µ(1, 2) = κ(1, 2), µ(3, 0) = κ(3, 0),

µ(0, 3) = κ(0, 3), µ(3, 1) = κ(3, 1) + 3κ(2, 0)κ(1, 1),

µ(1, 3) = κ(1, 3) + 3κ(0, 2)κ(1, 1), µ(2, 2) = κ(2, 2) + κ(2, 0)κ(0, 2) + 2κ2(1, 1),

µ(4, 0) = κ(4, 0) + 3κ(2, 0)2, µ(0, 4) = κ(0, 4) + 3κ(0, 2)2. (6.33)

The properties of univariate cumulants can be generalized to the bivariate

case. Some of the properties of joint cumulants are given by

(i) The (j1 + j2)-order cumulant κu1,u2(j1, j2) is equivariant under diagonal
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scaling, i.e for any constants a1, and a2 6= 0,

κa1z1,a2z2(j1, j2) = aj11 a
j2
2 κz1,z2(j1, j2). (6.34)

Note that, cumulants are not equivariant under affine transformations, or

orthogonal rotations.

(ii) The (j1 + j2)-order cumulant of the sum of two independent bivariate ran-

dom vectors is the sum of their (j1 + j2)-order cumulants.

(iii) For normally distributed random vector, with covariance matrix

 σ2
u1

σu1u2

σu1u2 σ2
u2

 ,

its m.g.f is given by

φu1,u2(s, t) = exp[
1

2
(s2σ2

u1
+ t2σ2

u2
+ stσu1u2)].

This means that cumulants of order higher than two are equal to zero.

6.4.3 Cumulants in EIV

There is an extensive literature that has discussed the use of moments and cu-

mulants in EIV, including Geary (1941), Pal (1980), Cragg (1997) and Gillard

(2010).

Since the signal ζ◦ is non-normal, second moments are not sufficient statistics.

In this case high order moments/cumulants can provide more information about

the signal direction.

Geary (1941) was the first to use the joint cumulants to estimate ψ. Consider

the random vector z in (6.5). Suppose that z is shifted in advance to have zero
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mean vector. Geary (1941) noted the following formula for ψ

atan
[{κ(j, l + k)

κ(j + k, l)

}1/k]
, (6.35)

for j+k+ l > 2. Formula (6.35) is well defined if κ(j+k, l) 6= 0. Geary’s formula

follows from the properties of joint cumulants, as shown from (6.40) to (6.43).

Since ζ◦ and ε are independent,

κz1,z2(j, l + k) = cosj(ψ) sin(l+k)(ψ)κζ◦(j + l + k) + κε1ε2(j1, j2). (6.36)

For j + k + l > 2, (6.36) reduces to the following identity,

κz1,z2(j, l + k) = cosj(ψ) sin(l+k)(ψ)κζ◦(j + l + k). (6.37)

Using (6.37), we can evaluate κζ◦(4) as follows,

κζ◦(4) = κ(4, 0) + κ(0, 4) + 2κ(2, 2). (6.38)

The following cumulant-based equations are deduced from (6.36), for j + l+ k =
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3, 4, subject to κζ◦(3) and κ(4)ζ◦ 6= 0, as follows.

κ(2, 1) = cos2(ψ) sin(ψ)κζ◦(3),

κ(1, 2) = cos(ψ) sin2(ψ)κζ◦(3),

κ(3, 0) = cos3(ψ)κζ◦(3),

κ(0, 3) = sin3(ψ)κζ◦(3),

κ(2, 2) = sin2(ψ) cos2(ψ)κζ◦(4),

κ(3, 1) = cos3(ψ) sin(ψ)κζ◦(4),

κ(1, 3) = cos(ψ) sin3(ψ)κζ◦(4),

κ(4, 0) = cos4(ψ)κζ◦(4),

κ(0, 4) = sin4(ψ)κζ◦(4). (6.39)

By dividing any pair of cumulants, of the same order, we can find an infinite

number of formulas of ψ. There are three basic third-order, and four basic fourth-

order cumulant-based formulas of ψ, and all others are functions of these formulas,

given as follows.

(i) Third-order cumulant based formulas,

• The three third-order basic formulas are:

atan
[κ(1, 2)

κ(2, 1)

]
, atan

[κ(0, 3)

κ(1, 2)

]
, atan

[κ(2, 1)

κ(3, 0)

]
. (6.40)

• Some of other third-order formulas are given by:

atan
[
± {κ(1, 2)

κ(3, 0)
}1/2

]
, atan

[
± {κ(0, 3)

κ(2, 1)
}1/2

]
atan

[
{κ(0, 3)

κ(3, 0)
}1/3

]
. (6.41)

(ii) Fourth-order cumulant based formulas,
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• The four fourth-order basic formulas are:

atan
[κ(3, 1)

κ(4, 0)

]
, atan

[κ(0, 4)

κ(1, 3)

]
, atan

[κ(2, 2)

κ(3, 1)

]
, atan

[κ(1, 3)

κ(2, 2)

]
. (6.42)

• Some of other fourth-order formulas are given by:

atan
[
±{κ(1, 3)

κ(3, 1)
}1/2

]
, atan

[
±{κ(0, 4)

κ(4, 0)
}1/4

]
, atan

[
±{κ(2, 2)

κ(4, 0)
}1/2

]
.

(6.43)

Geary’s formula in (6.35) is implied by (6.40)-(6.43). For k = 1, and j + l = 2,

Geary’s formula, in (6.35), gives the three basic third-order formulas in (6.40).

Similarly, for k = 1, and j + l = 3, Geary’s formula gives the four fourth-order

formulas in (6.42).

The sign of ψ is not determined in any of the formulas in (6.41), or (6.43),

hence it must be determined separately, e.g by sign(k(1, 1)).

Let z1, . . . , zn be a random sample from (6.5), where zTi = (zi1, zi2)
T , i =

1, . . . , n. The sample version of Geary’s formula in (6.35) is

ψ̂ = atan
[{ κ̂(j, l + k)

κ̂(j + k, l)

}1/k]
, (6.44)

for j + k + l > 2. When the power k is positive, ψ̂ will be not defined if the

ratio of the sample cumulants is negative. There are two possible solutions to

this problem: (1) both denominator and numerator can be given the same sign.

(2) ψ̂ can be given a zero value.

6.4.4 The effect of rotation on cumulant based formulas

We know from joint cumulants properties, explained in Section 6.4.2, that cu-

mulants are not equivariant under orthogonal rotations. But we can show that

under 90◦ and 45◦ rotation, the four basic fourth-order estimates, in (6.42), can

be related to each other.
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Recall the four estimates from (6.42),

ψ1 = atan
[κ(3, 1)

κ(4, 0)

]
,

ψ2 = atan
[κ(0, 4)

κ(1, 3)

]
,

ψ3 = atan
[κ(2, 2)

κ(3, 1)

]
,

ψ4 = atan
[κ(1, 3)

κ(2, 2)

]
.

Note that when ψ = 0◦, ψ2 will be inefficient, and when ψ = 90, ψ1 will be

inefficient.

To proceed suppose that z is rotated by an angle ω, using the rotation matrix

in (1.4). The rotated random vector z
′

is given by

z′1
z
′
2

 =

cos(ψ + ω)

sin(ψ + ω)

 ζ◦ +

ε′1
ε
′
1

 .

where

Rz =

z′1
z
′
2

 =

z1 cos(ω)− z2 sin(ω)

z1 sinω) + z2 cos(ω)

 , R

cos(ψ)

sin(ψ)

 =

cos(ψ + ω)

sin(ψ + ω)

 ,

ε
′
= Rε. (6.45)

The m.g.f of z
′

is given by

φz′1,z
′
2
(s, t) = E{exp(z

′

1s+ z
′

2t)}

= E{exp[(z1 cos(ω)− z2 sin(ω))s+ (z1 sin(ω) + z2 cos(ω))t]}

= E{exp[z1(s cos(ω) + t sin(ω)) + z2(−s sin(ω) + t cos(ω))]}

= φz1,z2{(s cos(ω) + t sin(ω)), (−s sin(ω) + t cos(ω))}.



Chapter 6. ICS in the errors in variables model 106

Thus,

∑
j1+j2≥1

κz′1,z
′
2
(j1, j2)

sj1tj2

j1!j2!
=

=
∑

j1+j2≥1

κz1,z2(j1, j2)
(s cos(ω) + t sin(ω))j1

j1!

(−s sin(ω) + t cos(ω))j2

j2!
. (6.46)

Using (6.46), we can find the forms of the fourth-order cumulants, under ω = 90◦,

and ω = 45◦, as follows.

• Under ω = 90◦ rotation:

κz′1z
′
2
(4, 0) = κz1z2(0, 4),

κz′1z
′
2
(0, 4) = κz1z2(4, 0),

κz′1z
′
2
(2, 2) = κz1z2(2, 2),

κz′1z
′
2
(3, 1) = −κz1z2(1, 3),

κz′1z
′
2
(1, 3) = −κz1z2(3, 1). (6.47)

From (6.47),

ψ̂
′

1 = atan
[κz′1z′2(3, 1)

κz′1z
′
2
(4, 0)

]
= atan

[
− κz1z2(1, 3)

κz1z2(0, 4)

]
= − 1

ψ̂2

,

ψ̂
′

2 = atan
[κz′1z′2(0, 4)

κz′1z
′
2
(1, 3)

]
= atan

[
− κz1z2(4, 0)

κz1z2(3, 1)

]
= − 1

ψ̂1

,

ψ̂
′

3 = atan
[κz′1z′2(2, 2)

κz′1z
′
2
(3, 1)

]
= atan

[
− κz1z2(2, 2)

κz1z2(1, 3)

]
= − 1

ψ̂4

,

ψ̂
′

4 = atan
[κz′1z′2(1, 3)

κz′1z
′
2
(2, 2)

]
= atan

[
− κz1z2(3, 1)

κz1z2(2, 2)

]
= − 1

ψ̂3

. (6.48)
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• Under ω = 45◦ rotation:

κz′1z
′
2
(4, 0) = 0.25{κz1z2(4, 0) + κz1z2(0, 4) + 6κz1z2(2, 2)− 4κz1z2(3, 1)− 4κz1z2(1, 3)},

κz′1z
′
2
(0, 4) = 0.25{κz1z2(4, 0) + κz1z2(0, 4) + 6κz1z2(2, 2) + 4κz1z2(3, 1) + 4κz1z2(1, 3)},

κz′1z
′
2
(2, 2) = 0.25{κz1z2(4, 0) + κz1z2(0, 4)− 2κz1z2(2, 2)},

κz′1z
′
2
(3, 1) = 0.25{κz1z2(4, 0)− κz1z2(0, 4)− 2κz1z2(3, 1) + 2κz1z2(1, 3)},

κz′1z
′
2
(1, 3) = 0.25{κz1z2(4, 0)− κz1z2(0, 4) + 2κz1z2(3, 1)− 2κz1z2(1, 3)}.

(6.49)

ψ̂
′

1 = ψ̂
′

2,

ψ̂
′

3 = ψ̂
′

4. (6.50)

6.5 ICS:kurtosis:variance in EIV

In Chapter 3, we have explored the use of ICS:kurtosis:variance, in finding groups

separation direction. In this section, we explore using ICS:kurtosis:variance in

estimating the signal direction.

Consider the random vector z defined in (6.5). Without loss of generality,

assume that z is standardized with respect to Σ
−1/2
z , as in (6.10), such that

Σy = I2.

Recall that the ICS:kurtosis:variance criterion, from (3.36), is to maximize/min-

imize

κICS(b) = bTΣ−1/2z KzΣ
−1/2
z b

= bTKyb, (6.51)

where b is in the direction of the smallest/largest eigenvector,Kz is the fourth-

order moment matrix, defined in (3.23), and Ky = Σ
−1/2
z KzΣ

−1/2
z .
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The component of the matrix Ky can be written in terms of moments as

follows

Ky =

µy(4, 0) + µy(2, 2) µy(3, 1) + µy(1, 3)

µy(3, 1) + µy(1, 3) µy(2, 2) + µy(0, 4)

 .

The matrix Ky can also be expressed in terms of cumulants,

Ky =

κy(4, 0) + κy(2, 2) + 4 κy(3, 1) + κy(1, 3)

κy(3, 1) + κy(1, 3) κy(2, 2) + κy(0, 4) + 4

 . (6.52)

Substituting by the cumulant equations from (6.39), Ky can be written as

Ky = ννTκζ◦(4) + 4I2. (6.53)

The signal direction ζ◦ will be in the direction that maximizes or minimizes bTKyb.

From (6.53), one of the eigenvalues of Ky will be in the signal direction, and

the other will be in the noise direction, as follows

λsig = κζ◦(4) + 4,

λnoise = 4, (6.54)

with the corresponding eigenvectors ν and ν⊥, respectively.

Choosing whether to maximize or minimize depends on the sign of κζ◦(4),

which can be evaluated using (6.38).

If κζ◦(4) is negative, ν will be the smallest eigenvector. If κζ◦(4) is positive, ν

will be in the largest eigenvector.

The case of negative κζ◦(4) is satisfied when ζ◦ has a bimodal distribution,

and the case of positive κζ◦(4) is satisfied when ζ◦ has a long-tailed distribution.

The eigenvalues and eigenvectors of Ky, defined in (6.54), are given as follows,
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in terms of cumulants

λ1 =
1

2
(κy(4, 0) + κy(0, 4)) + κy(2, 2) + 4 +

1

2
∆,

λ2 =
1

2
(κy(4, 0) + κy(0, 4)) + κy(2, 2) + 4− 1

2
∆. (6.55)

where

∆ =
√

(κy(4, 0)− κy(0, 4))2 + 4(κy(3, 1) + κy(1, 3))2.

The largest eigenvalue is λ1, and the smallest is λ2. Their corresponding eigen-

vectors are

ν1 = ((κy(4, 0)− κy(0, 4) + ∆), 2(κy(3, 1) + κy(1, 3)))T ,

ν2 = ((κy(4, 0)− κy(0, 4)−∆), 2(κy(3, 1) + κy(1, 3))T , (6.56)

Therefore, from ν1 in (6.56), φ takes the following form

φ = atan
[ 2(κy(3, 1) + κy(1, 3))

(κy(4, 0)− κy(0, 4) + ∆)

]
, (6.57)

Substituting by the formulas in (6.39), which gives

atan
[ κζ◦(4) cos(φ) sin(φ)

κζ◦(4)(cos(φ)2 − sin(φ)2) + 1

]
= atan

[ sin(2φ)

cos(2φ) + 1

]
= atan

[
tan(φ)

]
= φ.

6.6 Simulation study

In this simulation study, we compare the accuracy of Geary’s four basic fourth-

order cumulant-based estimators from (6.42), and examine the effect of rotating

the data by 45◦, and 90◦. We also compare the accuracy of these cumulant-based

estimators with the ICS:kurtosis:variance.

The eigenvalue of ICS is chosen by evaluating κζ◦(4), defined in (6.38). If
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κζ◦(4) > 0, the largest eigenvector is chosen. If κζ◦(4) < 0, the smallest eigenvec-

tor is chosen. The percentage of picking the right eigenvector will be examined

in Table 6.4.

Let X,be an n×2 data matrix, its rows are given by xTi = (xi1,xi2), i = 1, . . . , n,

n = 50, 100, 200, 500. The data matrix X is generated from x in (6.5), where the

signal ζ◦ is distributed as a t2 distribution, and the noise ε is normally distributed,

with covariance matrix equals to σ2I2, with σ2 = 0.4. Without loss of generality

assume that the signal is standardized to have zero mean and unit variance. For

n, the simulation is repeated 1000 times.

From (6.42), the fourth-order cumulant-based estimators considered here are:

θ̂1 = atan
[ κ̂(3, 1)

κ̂(4, 0)

]
,

θ̂2 = atan
[ κ̂(0, 4)

κ̂(1, 3)

]
,

θ̂3 = atan
[ κ̂(2, 2)

κ̂(3, 1)

]
,

θ̂4 = atan
[ κ̂(1, 3)

κ̂(2, 2)

]
.

The ICS:kurtosis:variance estimator will be denoted by: θ̂ICS. The accuracy will

be measured using (3.65).

The results are shown in Tables 6.1, 6.2, and 6.3.
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Table 6.1: Variances of different estimates of θ, where the true signal direction is
θ = 0◦.

n var(θ̂1) var(θ̂2) var(θ̂3) var(θ̂4) var(θ̂ICS)

50 0.074 0.548 0.223 0.277 0.225

100 0.021 0.538 0.162 0.222 0.1

200 0.006 0.534 0.123 0.207 0.042

500 0.002 0.541 0.085 0.169 0.017

Table 6.2: Variances of different estimates of θ, where the true signal direction is
θ = 45◦.

n var(θ̂1) var(θ̂2) var(θ̂3) var(θ̂4) var(θ̂ICS)

50 0.132 0.133 0.081 0.093 0.224

100 0.048 0.048 0.024 0.027 0.103

200 0.013 0.011 0.007 0.007 0.042

500 0.002 0.002 0.002 0.002 0.017

Table 6.3: Variances of different estimates of θ, where the true signal direction is
θ = 90◦.

n var(θ̂1) var(θ̂2) var(θ̂3) var(θ̂4) var(θ̂ICS)

50 0.543 0.078 0.256 0.222 0.214

100 0.532 0.02 0.231 0.169 0.098

200 0.546 0.006 0.204 0.135 0.043

500 0.547 0.002 0.162 0.093 0.016

Table 6.4: Percentage of picking the right eigenvector.

n percentage

50 0.927

100 0.993

200 1

500 1
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• From Table 6.1, for θ = 0◦, θ̂1 is most accurate among all other estimates,

then θ̂ICS is the second most accurate. The remaining estimates do not work

well.

• From Table 6.2, for θ = 45◦, the the accuracy of the estimates θ̂1 and θ̂2

are similar. Also, θ̂3 and θ̂4 have similar accuracy. Moreover, θ̂1, θ̂2,θ̂3 and

θ̂4 outperform θ̂ICS.

• From Table 6.3, θ̂2 is the most accurate. Note that θ̂2 when θ = 90◦ is equal

to θ̂1 when θ = 0◦.

• Note that θ̂ICS has the advantage of being affine equivariant.

6.7 Conclusion

we have discussed the theory of the EIV model when the signal has normal and

non-normal distribution.

When the signal is normally distributed, additional knowledge is required to

estimate the signal direction. We have shown that when the errors variances

are known, whether the errors are correlated or not, it is possible to find the

maximum likelihood estimator of the signal direction.

When the signal has a non-normal distribution, ICS:kurtosis:variance can be

used to estimate the signal direction. We also compared the efficiencies of ICS

estimators with Geary’s fourth-order cumulant-based estimators. The results

show that some of the cumulant-based estimators are more efficient than the ICS

estimator, but ICS method has the advantage of being affine equivaraint.



Chapter 7

ICS for RANDU data set

7.1 Introduction

The RANDU data set contains points arranged on 15 parallel planes, lying in

the dimensional space. Any pairwise scatter plot of the RANDU data does not

reveal the parallel plane structure.

Tyler et al. (2009) applied ICSd:W-estimate:variance to the RANDU data

set to reveal the parallel plane structure. The W-estimate, based on pairwise

differencing of the data, accentuates inliers. Inliers appear more often for points

on the same line than on different lines.

The main goal of this chapter is to understand how ICSd:W-estimate:variance

works to discover the structure in the RANDU data set.

This chapter is organized as follows. In Section 7.2, we show the RANDU

example from Tyler et al. (2009). In Section 7.3, we explain a RANDU type

model. In Section 7.4, we study the behavior of the W-estimate based on pairwise

differencing of the data, under the model explained in Section 7.3. A detailed

analysis of the behavior of the W-estimate in two-dimension is given in Section

7.5. In Section 7.6, we explain a noisy version of the RAND-type model by

allowing small variation in each plane. We also explore the behaviour of ICSd:W-

estimate:variance under the noisy RANDU-type model.
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7.2 ICS for RANDU data set

7.2.1 RAND data set

The RANDU data set contains 400 three dimensional data points arranged in

15 equally spaced parallel planes, generated by the 1960s linear congruential

generator RANDU.

Any linear congruential generator (LCG) takes the following form, starting

from seed x0 (see for example ?),

xi = (axi−1 + b) modM,

where a, b and M are constants. The sequence of generated numbers are periodic,

with period length equals to M − 1.

For the RANDU data set, the choices of the constants were not good (see for

example ?):

a = 655539, b = 0, and M = 231.

The RANDU generator is given by

xi = 65539xi−1 mod 231

= (216 + 3)xi−1 mod 231

= (216 + 3)2xi−2 mod 231

= 6xi − 9xi−1 mod 231.

Hence, any three successive points have the following linear relationship

xi − 6xi + 9xi−1 = c231.

Every three successive numbers lie on 15 parallel planes, since 0 ≤ xi ≤ 231. The

structure direction in the RANDU data set is the direction normal to the planes,
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whereas the noise directions are the directions parallel to the planes.

The parallel plane structure is not revealed in the pairwise scatter plots of the

RANDU data set, shown in Figure 7.1 (a).

7.2.2 RANDU example

Let the RANDU data set be denoted by X = (xi), where i = 1, . . . , 400, xi ∈ R3.

The W-estimate, V̂ , Tyler et al. (2009) is defined as follows

V̂ =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(xi − xj)(xi − xj)T

{(xi − xj)TS−1(xi − xj)}2
. (7.1)

The matrix V̂ is a weighted scatter matrix computed with respect to the pairwise

differences of the rows of RANDU, with weight function

1

{(xi − xj)TS−1(xi − xj)}2
. (7.2)

The weight (7.2) is large if the difference ‖xi− xj‖ is small, and small otherwise.

The covariance matrix S is equal to

S =


0.081 −0.004 0.005

−0.004 0.086 −0.005

0.005 −0.005 0.078

 ,

and V̂ matrix is equal to

V̂ =


0.135 0.138 0.028

0.138 0.264 0.041

0.028 0.041 0.075

 .
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The eigenvalues and eigenvectors of S−1V̂ are

l1 = 2.247, l2 = 0.429, l3 = 0.269,

uT1 = (−0.555,−0.806,−0.205),

uT2 = (−0.231,−0.061, 0.971),

uT3 = (−0.829, 0.553,−0.086).

The pairwise scatter plot of XU , where U = (u1, u2, u3) is shown in Figure 7.1

(b).

The plot shows that the parallel line structure direction is in the direction of

the smallest eigenvector, and the remaining eigenvectors are in the noise direction.

Since the structure direction and the noise directions in the RANDU data set

are uniformly distributed, applying ICS:kurtosis:variance, explored in Chapter

3, will fail to detect the parallel line structure. The eigenvalues of S−1K are

approximately equal to each other.
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Figure 7.1: The scatter plot of RANDU data set (a) and the transformed data
set (b).

Since the covariance matrix is approximately proportional to the identity, we

explore the eigenvalues and eigenvectors of V̂ in more detail.
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To gain more insight into V̂ , we look at the RANDU data set in a simpler

setting. We use two-dimensional subset from the projected RANDU data set,

which is shown in Figure 7.1 (b); the second and the third component. The

reduced RANDU data set is denoted by Xs, where its rows are given by xsi
T =

(xsi1, x
s
i2), i = 1, . . . , 400.

Figure 7.2 shows plots of Xs. The structure direction in Xs is the direction

orthogonal to the lines, and the noise direction is the direction parallel to the

lines.

Consider two points from Xs, xsi and xsj , say. There are two possibilities:

(i) xsi and xsj are from the same group, or

(ii) xsi and xsj are from different groups.

Under (i), the difference |xsi − xsj| can range from small to large, whereas under

(ii) the length of xsi − xsj is at least 1/15.
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Figure 7.2: The scatter plot of a subset of RANDU data set.

The weights in (7.2) take larger values as |xsi −xsj| have smaller values. Differ-
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ences that have small lengths are called inliers. As we mentioned earlier, inliers

appear only when xsi and xsj are in the same group. Hence, the scatter matrix V̂

accentuates inliers by giving them large weights. Therefore, the dominant eigen-

vectors of V̂ will be in the noise directions, while the smallest eigenvector will be

in the structure direction.

The direction of the dominant eigenvector of V̂ depends on the angles between

xsi and xsj . The difference xsi − xsj can be expressed by polar coordinate (rij, θij)

as follows

r2ij = (xsi − xsj)T (xsi − xsj), i 6= j = 1, . . . , n,

θij = atan2(xsi2 − xsj2, xsi1 − xsj1),

where atan2 is defined as follows

atan2(v2, v1) =



atan(v2/v1) if v1 > 0

π/2 if v1 = 0, v2 > 0

−π/2 if v1 = 0, v2 < 0

π + atan(v2/v1) if v1 < 0.

.

Each angle θij, describes the direction of the line from xsi to xsj . The histogram

of θij under (i) and (ii) are

• Under (i), θij will always be in the direction ±90◦, because their horizontal

components xsi1 and xsj1 are equal, hence, xsi1 − xsj1 = 0.

• Under (ii), θij will be scattered within the range from −180◦ to 180◦, but

they will never take the values ±90◦.

Figure 7.3 shows the histogram of θij.

The analysis, in the previous paragraph, shows how V̂ depends on the angles

between points. A further investigation on the effect of the angles between points

conditional on the separation between two lines will be carried out in Section 7.5,
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Figure 7.3: The histograms of θij.

for p = 2.

7.3 Randu-type model

The parallel plane structure in the RANDU data set can be modeled by mixtures

of singular p-variate normal distributions.

Let z ∈ Rp be a p-variate random vector, with mean µz and covariance matrix

Σz, distributed as a mixture of k singular p-variate normal distributions.

For simplicity, assume that the mixture components have equal mixing pro-

portions, 1/k, and equal within-group covariance matrices, Wz, where Wz is of

rank p− 1.

The density function of z is given by

f(z) =
1

k

k∑
j=1

g(z;µj,Wz), (7.3)
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where µj, j = 1, . . . , k, are the component mean vectors, Wz, the within-group

scatter matrix, of rank p− 1, and g is given by

g(z, µj,Wz) =
(2π)−(p−1)/2

(λ1, . . . , λ(p−1))1/2
exp{−1

2
(z − µj)TW−

z (z − µj)},

where W−
z is the Moore-Penrose generalized inverse, and λ1, . . . , λp−1 are the

nonzero eigenvalues of Wz.

The group mean vectors µj are assumed to be collinear and equally spaced,

µj = jαν, j = 1, . . . , k. (7.4)

where, α > 0, ν 6∈ span(W ).

The random vector z can be written as follows

z = ε+ αrν,

where ε ∼ Np(0,Wz), r is a random variable distributed as a discrete uniform

distribution, takes the values 1, . . . , k, and ν ∈ Rp is a unit vector.

The total mean vectors is given by

µ =
k∑
j=1

µj =
1

2
(k + 1)αν.

The space of z constitutes of k parallel and equally spaced hyperplanes. This

model provides a good model for the RANDU data set, and will be called a

RANDU-type model.

The total covariance matrix Σz is equal to the sum of Wz and the between-

group scatter matrix Bz, given as

Bz =
(k + 1)(k − 1)

12
α2ννT .
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Since ICS method is an affine invariant transformation, we may, without loss of

generality, make the following assumptions:

1. The random vector is rotated, such that

νT = eT1 = (1, 0, . . . , 0).

2. The random vector is standardized with respect to the total covariance

matrix Σz.

The standardized random vector, denoted by y, can be written as

y = Σ−1/2z ε+ Σ−1/2z αre1,

= u+ te1. (7.5)

where

Wy = Σ−1/2z W 1/2Σ−1/2 = diag(0, 1, . . . , 1), (7.6)

and t = r/
√
ck,

ck =
(k + 1)(k − 1)

12
. (7.7)

Since, y is rotated, such that ν = e1, and standardized, y can be written as follows



y1

y2
...

yp


=



t

u2
...

up


, (7.8)

where (u2, . . . , up) ∼ Np−1(0, I(p−1)).
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7.4 The behaviour of V in p dimensions

Let y1 and y2 be two random p-variate random vectors, distributed as the mixture

model (7.3). Without loss of generality, assume that y1 and y2 are rotated, such

that the line structure direction in the direction of e1, and standardized as in

(7.5).

Consider the difference between y1 and y2, y = y1 − y2. The differenced

random vector y has the following density function

fd(y) =
k∑

i,j=1

k − |i− j|
k2

g(y;µi − µj, 2Wy), (7.9)

where Wy =diag(0, 1, . . . , 1).

The random vector y can be written as in (7.8).

The W-estimate scatter matrix, V , is a weighted covariance matrix, defined

as follows

V = E
yyT

{yTy}2
. (7.10)

Substituting (7.8) in (7.10) gives

V = E
1

(t2 + u22 . . .+ u2p)
2



t2 tu2 . . . tup

tu2 u22 . . . u2p
...

...
...

...

tup upu2 . . . u2p


. (7.11)

In order to check the finiteness of the elements of V , i.e to check whether V is

well defined or not, we find the trace of V . The trace of V is

tr(V ) = E(wyTy), (7.12)

where w = w(y) = 1/{yTy}2. If V is well defined, then the trace of V will be

finite. We show in the following that the converse is true using the Cauchy-
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Schwartz inequality; if the trace of V is finite, then the elements of V are finite.

For a ∈ Rp, if tr(V ) <∞, then

E{waTyyTa} ≤ aTaE{wyTy} <∞,

then E{wyyT} has finite elements.

The trace of V is

tr{V } = E
[ 1

yTy

]
= E

[ 1

y21 + . . .+ y2p

]
. (7.13)

We show in the following that the expected value of (7.13) depends on p; infinite

if p = 2, finite if p > 2, as shown on the following paragraph.

Let

r2 = yTy = y21 + y22 + . . .+ y2p.

The expected value of 1/r2 is given by

E
1

r2
=

∫
1

r2
h(r)d(r).

We proceed by transforming y = (y1, . . . , yp) to the hyper-spherical coordi-

nates as follows. Let y = rω, where ω = y/|y|. The Jacobian J is equal to

rp−1q(ω). Hence,

g(r) =

∫
Jh(rω)q(ω)dω.

= rp−1h(r).
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If h(r) ≥ c, for 0 < r < ε, for c > 0, and ε > 0,

E
1

r2
≥ c

∫ ε

0

1

r2
rp−1dr

= c

∫ ε

0

rp−3dr

=∞ for p = 1, 2

<∞ for p > 3. (7.14)

So far, we have shown that V is well defined when the dimension p > 3. Now,

we derive the components of V . From (7.11), the diagonal elements of V are:

v11 = E
[ t2

(t2 + u22 + . . .+ u2p)
2

]
= E

∑
i∈t6=0

k − |i|
k2

[ i2

(i2 + u22 + . . .+ u2p)
2

]
<
k − |i|
k

[ 1

i2

]
<∞,

For l = 2, . . . , p,

vll =
1

k
E{ ul

2

(u22 + . . .+ up)2
}+

k − 1

k
E{ ul

2

(t2/ck + u22 + . . .+ up2)2
}

>
1

k
E{ ul

2

(u22 + . . .+ up)2
}

=∞ if p ≤ 2, (7.15)

The off-diagonal elements are, for l = 2, . . . , p

v1l = vl1 =
k − 1

k
E{ ult

(t2 + u22 + . . .+ up2)2
}.
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For l 6= m = 2, . . . , p

vlm =
1

k
E{ ulum

(u22 + . . .+ u2p)
2
}+

k − 1

k
E{ ulum

(t2 + u22 + . . .+ up2)2
}.

When p = 2, the eigenvalue associated with the eigenvector in the noise direction

has an infinite value. In practice, this can help to distinguish between the noise

and the parallel line structure vividly. Thus, V is most powerful when p = 2.

Simulation study

In order to compare the effect of the dimension p on the power of V , we con-

ducted a simulation study. The data sets generated from (7.5), with k = 10, in

dimensions p = 2, 3, 4, 6, and sample sizes n = 40p, 160p, 400p.

For each choice of n and p the simulation is repeated m = 1000 times. The

accuracy is measured by the mean of axis squared distance, defined in (3.68),

v(γ̂p) =
1

m

m∑
i=1

{1− (γ̂Tp a)2},

where γ̂p is the smallest eigenvector of V̂ , and aT = (1, 0, . . . , 0) ∈ Rp is a unit

vector defining the true line structure direction. We also record the averages of

the ratios between the largest to smallest eigenvalues.

The results of the simulations are shown in Table 7.1. From Table 7.1, ICSd:W-

estimate:variance is more accurate when p = 2 and p = 3. For p = 4 and 6, the

method does not work.

7.5 A detailed analysis of V in two dimensions

In Section 7.2, we have shown how the dominant eigenvector of V̂ of a two di-

mensional subset from the RANDU data set depends on the distribution of the

angles between point. In this section, we will investigate how the angles between

points conditional on the horizontal separation affect V , under model (7.3), when

p = 2. In particular, we want to study the modes of the angular distributions
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Table 7.1: The means of axis squared distance of the smallest eigenvector of
V̂ for simulated bivariate data consists k = 10 parallel lines, with dimensions
p = 2, 3, 4, 6, and sample sizes 40p, 160p, 400p.

p n λp/λ1 v(γ̂p)

2
80 5.11e+03 0.0013

320 6.07e+07 0.0003

800 2.46e+09 0.0001

3
120 2.304 0.556

480 4.136 0.004

1200 3.51 0.001

4
160 1.419 0.85

640 1.0982 0.789

1600 1.166 0.571

6
240 1.4538 0.915

960 1.177 0.956

2400 1.118 0.975

conditional on the horizontal separations. The angular distribution for model

(7.3) is the projected normal distribution.

To gain insight, we use the wrapped Cauchy distribution to model the angles

between points conditional on the horizontal separation. The wrapped Cauchy

model is an artificial model, but used as a substitute to the projected normal

because of its analytical tractability.

7.5.1 Projected normal model analysis

Let z1 = (j1, u1)
T and z2 = (j2, u2)

T , for some j1, j2 ∈ R+, u1 and u2 are two

independent random variables distributed as normal distribution, N(0, 1).

The difference z = z1−z2 can be written as z = (j, u)T where j = (j1−j2) ∈ R,

u = (u1 − u2) is distributed as N(0, 2).

To find the distribution of the angle between z1 and z2, let

θ = 2 tan−1(u/|j|). (7.16)
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If j is small, the density of θ will be bimodal at ±180◦. If j is large, the density

of θ will be unimodal at 0◦.

The density function of θ (for j 6 0) is given by

gj(θ) =
|j|

2
√
π)(1 + cos(θ))

exp{−j
2

4

1− cos(θ)

1 + cos(θ)
}. (7.17)

Proof. Using the change of variable formula, from (7.16),

u = |j| tan(θ/2).

Differentiating u with respect to θ gives

∂u

∂θ
=
|j|
2

sec2(θ/2). (7.18)

The density function of θ is given by

gj(θ) =
∂u

∂θ
f(|j| tan

θ

2
), (7.19)

where f is the normal density function with mean 0 and variance 2. Substituting

by f , and (4.18) in (4.19) gives

gj(θ) =
|j|
2

sec2(θ/2)
1

2
√
π

exp{−j
2

4
tan2(θ/2)}

=
|j|

2
√
π(1 + cos θ)

exp{−j
2

4

1− cos θ

1 + cos θ
}.

The density plots are shown in Figure 7.4, j = 0.1, 0.5, 1, 3.

Let Z be an n× p, n = 200, be a data matrix. Each row of Z can be written

as zi = (ri, ui), where ri is an integer that takes two possible values j1 and j2

with equal probabilities, and the difference (j1 − j2) = j, and ui ∼ N(0, 1).

We computed the pairwise differencing of the data points between lines, zi −
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Figure 7.4: The density plots of the projected normal density function gj(θ), for
|j| = 0.1, 0.5, 1, 3.

zk = (±j, ui − uk). We compute θik, as defined in (7.16),

θik = 2atan{(ui − uk)/j}.

The histograms of θik are shown in Figure 7.5 for |j| = 0.1, 0.5, 1, and 3.

The plots show that when the lines are close to each other, as in Figure 7.5 (a),

the distribution of the angles will have two modes at ±180. We have discussed

earlier in Section 7.2 that the the overall angles between points will have bimodal

distribution at ±180◦ (if we double the angle). This means that if we have only

two lines close to each other the differencing within each line and between lines
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will be indistinguishable. As the separation between lines increases, the histogram

tends to a normal distribution.
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Figure 7.5: Histograms of θ of data points simulated from N(0, 1) lying on two
parallel lines separated by j = 0.1, 0.5, 1, 3.

7.5.2 Cauchy model

To gain more insight into the change of mode of the distribution of θ, conditionally

to the spacing between lines, we use an artificial Cauchy model.

It is hard to study the relation between the line spacing and the modal axis

in the normal model analytically. So, we model the points along the lines using

a Cauchy distribution and the angles between points using a wrapped Cauchy.
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Although second moments do not exist for the Cauchy distribution, the Cauchy

distribution is used because the wrapped Cauchy has an explicit form.

Cauchy and wrapped Cauchy

Let s be a random variable distributed as a Cauchy distribution, C(µ, c), with

density function

f(s) =
1

π

c

c2 + (s− µ)2
. (7.20)

It can be shown that the wrapped Cauchy distribution can be obtained using

a one-to-one transformation as follows, Mardia and Jupp (2009),

θ = 2 tan−1(s− µ), θ ∈ (−π, π). (7.21)

The wrapped Cauchy distribution with parameters µc = 0, and −1 < ρc < 1, is

given by

h(θ) =

√
1− ρ2c

2π(1− ρc cos(θ))
, 0 ≤ θ < 2π. (7.22)

where

ρc =
1− c2

1 + c2
. (7.23)

There are three different cases:

• If c = 1, ρc = 0, and h(θ) will be the uniform distribution.

• If c < 1, ρc > 0, θ will be distributed as C(0, ρc).

• If c > 1, ρc < 0, θ will be distributed as C(π, |ρc|).

As ρc → 0, h(θ) tends to the uniform distribution, as |ρc| → 1, h(θ) becomes

concentrated at 0 or π.

Proof. Using the change of variable technique to find the density function of θ,

from (7.21)

(s− µ) = tan(θ/2). (7.24)
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Differentiating with respect to θ

∂s

∂θ
=

1

2
sec2

θ

2

=
1

2 cos2 θ
2

=
1

(1 + cos θ)
. (7.25)

The density function of θ is given by,

h(θ) =
∂s

∂θ
f(tan

θ

2
)

=
c

π(1 + cos θ){c2 + tan2(θ/2)}

=
2c

2π(1 + cos θ){c2 + 1−cos θ
1+cos θ

}

=
2c

2π{c2(1 + cos θ) + (1− cos θ)}

=
2c

2π{(c2 + 1) + (c2 − 1) cos θ}

=
2c
c2+1

2π{1 + (c2−1)
(c2+1)

cos θ}

=
2c

1+c2

2π{1− (1−c2)
(1+c2)

cos θ}
. (7.26)

Let ρ takes the form

ρc =
1− c2

1 + c2
. (7.27)

Substituting by ρc in (7.26) gives the density of the wrapped Cauchy in (7.22).

Cauchy analysis of RANDU

Let z1 = (j1, u1)
T and z2 = (j2, u2)

T , for some j1, j2 ∈ {1, . . . , k}, u1 and u2 are

two independent random variables distributed as Cauchy distribution, C(µ, c),

with density function (7.20).

Consider the difference z = z1 − z2, where z can be written as z = (j, u)T

where j = (j1 − j2) ∈ {0,±1, . . . ,±(k − 1)}, u = (u1 − u2) is distributed as
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C(0, 2c).

As in (7.23), wrapping z is obtained using the following transformation

θ = 2 tan−1
u

j
. (7.28)

The density function of θ is given by

hj(θ) =

√
1− ρ2jc

2π(1− ρjc cos(θ))
, (7.29)

where ρj is given by

ρjc =
j2 − 4c2

j2 + 4c2
. (7.30)

As shown in (7.23), −1 ≤ ρjc < 1. The density hj(θ) depends on j, as follows:

(1) If j = 0, then ρjc = −1 and hj(θ) will be concentrated at π.

(2) If j > 2c, ρjc > 0, and hj(θ)

hj(θ) ∝
1

1− ρjc cos(θ + π)

= WC(0, ρjc).

(3) If j < 2c, ρjc < 0, and the density of θ

hj(θ) ∝
1

1− |ρjc| cos(θ)

= WC(π, |ρjc|).

(4) At j = 2c, ρjc = 0, then θ will be uniformly distributed.

Let Z,be an 200 × 2 data matrix. Each row of Z is zTi = (ri, yi), where ri

takes two values j1 and j2 with equal probabilities, such that

j1 − j2 = j,
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Figure 7.6: Histograms of θ of data points simulated from C(0, 1) lying on two
parallel lines separated by j = 0.5, 2, 4.

and yi is generated from C(0, 1).

We computed the pairwise differencing of the data points between lines, zi −

zk = (±j, yi − yk). We compute θik, as defined in (7.28).

The histograms of θik are shown in Figure 7.6 for j = 0.5, 2, and 4. Figure 7.6

shows that when the line separation equal to a threshold j = 2c, then the points

will be uniformly distributed.
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7.6 The behaviour of V under mixtures of nor-

mal distributions

Suppose that the random vector y, defined in (7.8), has some noise added in the

horizontal direction with variance w. In this case y can be written as



y1

y2
...

yp


=



δr + w1/2u1

u2
...

up


, (7.31)

where r = 1, . . . , k with equal probabilities, uT = (u1, u2, . . . , up) ∼ N(0, Ip),

0 ≤ δ ≤ 1 is a separation parameter between groups and its value depends on k,

and w = 1− δ2. The total covariance matrix is the identity matrix Σy = Ip.

For k = 2, the model will be the two-group mixture model explained in Section

3.2.

Let y1 and y2 be two random variables defined as in (7.31). Consider the

difference y = y1 − y2. The W -estimate is defined as in (7.10).

Following the same calculations of Section 7.4. The elements of V are given

as follows

• The diagonal elements:

v11 =
1

k
E{ wu1

2

(wu21 + u22 + . . .+ up)2
}+

k − 1

k
E{ (

√
wu1 + δr)2

((
√
wul + δr)2 + u22 + . . .+ up2)2

}.

For l = 2, . . . , p,

vll =
1

k
E{ ul

2

(wu21 + u22 + . . .+ up)2
}+

k − 1

k
E{ ul

2

((
√
wul + δr)2 + u22 + . . .+ up2)2

}.
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• The off diagonal elements: for l = 2, . . . , p

v1l = vl1 =
1

k
E

√
wu1ul

(wu21 + u22 + . . .+ u2p)
2
+

k − 1

k
E{ ul(

√
wu1 + δr)2

((
√
wul + δr)2 + u22 + . . .+ up2)2

}.

For 2 ≤ l 6 m ≤ 2

vlm =
1

k
E{ ulum

(wu21 + u22 + . . .+ u2p)
2
}+

k − 1

k
E{ ulum

((
√
wul + δr)2 + u22 + . . .+ up2)2

}.

The value of v11 will be the smallest value, but it will become closer to the values

of other elements as w takes values far from zero.

The case of δ = 0 is the case of one isotropic group. In this case, w = 1. In

this case V will be proportional to the identity. As δ goes near zero the separation

between v11 and vll increases.

Simulation study

Consider data sets distributed as mixtures of two equal bivariate normal dis-

tributions, generated from (7.31), with r = ±1, and δ = 1, 0.99, 0.9, 0.7, with

ω = 0, 0.0199, 0.19, 0.51, respectively. For each value of ω, the simulation is

repeated 2000 times with sample sizes n = 20, 50, 200, 500. We use (3.65) to

measure the accuracy.

The simulation results, Table 7.2, shows that V̂ breaks down even for small

w.
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Table 7.2: The accuracy of the estimate of ICSd:W-estimate:variance, for two-
group data, for δ = 1, 0.99, 0.9, 0.7, (ω = 0, 0.0199, 0.19, 0.51).

δ n v(θ̂)

1

20 2.83e-06

50 2.33e-08

200 2.25e-11

500 1.59e-13

0.99

20 0.385

50 0.365

200 0.372

500 0.341

0.9

20 0.495

50 0.489

200 0.464

500 0.467

0.7

20 0.497

50 0.507

200 0.489

500 0.507



Chapter 8

Conclusions, and potential

applications

In this chapter, we discuss the thesis results, and suggest some potential applica-

tions.

8.1 Conclusions

The goal of this thesis was mainly to understand why ICS works in some situations

and does not in others. Our main results are summarized as follows:

8.1.1 ICS vs. PP

We have compared ICS and PP under two-group mixtures of normal distributions

with equal covariance matrices.

First, we considered ICS based on the fourth-order moments matrix, K̂, and

the covariance matrix, S, and PP based on the univariate kurtosis. Under two-

group mixtures, we found explicit formulas for ICS based on K̂ and S, and PP

based on based on kurtosis. We also derived the asymptotic distributions of the

ICS and PP estimates of the group separation direction.

The simulation results show that PP based on kurtosis is more accurate than
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ICS based on K̂ and S. The asymptotic results largely agree with the simulations.

We have compared three different ICS and PP criteria based on robust mea-

sures of spread. The results show that robust ICS seems to be more feasible.

8.1.2 Common location measures

When applying ICS and PP based on robust measures of spread, two problems

arise. These two problems have a substantial effect the performances of robust

ICS and PP. The first problem is the criteria has a local maximum when it

supposed to be a local minimum, because the pairs of spread measures were

computed based on two different location measures. The second problem is the

separation between the smallest and largest value of the criteria is small, and due

to sampling variation.

We have explored two possible solutions to improve the performances of ICS

and PP: computing the pair of spread measures based on a common location

measure, the second is by computing the pair of spread measures based on the

pairwise differencing of the data to force the symmetry of the data around the

origin. Our simulation results suggest that using a common location measure and

pairwise differencing of the data are not always useful.

8.1.3 The role of differencing

Another situation where we looked at the use of pairwise differencing of the data

is when the underlying structure has a parallel line structure.

In this case, ICS based on K̂ and S fails to find the structure direction,

whether the fourth order moment matrix were computed based on the original

data or the pairwise differencing of the data.

Applying ICS based on the W-estimate, V̂ , and S, computed with the pairwise

differencing of the data works well. However, if some noise is added to the lines

horizontally, ICS based on V̂ and S with the pairwise differencing of the data
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breaks down.

8.1.4 A new insight into the parallel line structure

We have gained an insight into the effect of the separation between points, overall

and conditional on the horizontal separation, on the power of the ICS based V̂

and S.

We explored the distribution of the angles between points. We have shown

that, when S ∝ I, the dominant eigenvector of V̂ is in the direction of the mode

of the distribution of the angles.

We also have found a threshold for the separation between two lines in which

the distribution of the angles between points, conditional on the horizontal sep-

aration, will be uniform.

8.1.5 A new insight into the errors in variables

We have explored the use of ICS, based on K̂ and S, in the errors-in-variables

model, when the signal has a non-normal distribution. We found the form of the

signal eigenvalue and its corresponding eigenvector, which can give an insight of

the way ICS finds the signal direction.

We have also compared the accuracy of the ICS estimates and Geary’s fourth-

order cumulant-based estimates. Although some of fourth Ceary’s estimate are

more accurate than ICS estimates, they are lacking the affine equivariance prop-

erty.

8.2 Applications of ICS

In this section, we give two tentative new applications of ICS. ICS can be used

in the construction of principal curves, and the analysis of fingerprint images.
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8.2.1 Principal curves

The majority of algorithms used to construct principal curves, introduced by

Hastie and Stuetzle (1989), work by applying principal component analysis it-

eratively. At each iteration, only points that are close to a current point are

considered. The radius of the circle, h, say, that covers the points around the

current point needs to be specified in advance. The choice of the tuning parameter

h has a substantial effect on the performance of principal curve algorithms.

If h is chosen small enough such that the local covariance matrix is propor-

tional to the identity matrix, the algorithm will not work well. In this case ICS

can play a role if applied locally.

In this section we consider a recent principal curve algorithm by Einbeck et al.

(2005). The algorithm can be explained as follows. Given bivariate data, choose

a random starting point, and draw a circle around this point with radius h. After

that compute the local mean, and update it in the direction of the local first

principal component.

Let X be an n × 2 data matrix, where each row can be written as xTi =

(xi1, xi2), i = 1, . . . , n. Let Kh(·) be the flat kernel function defined as follows

Kh(xi − x) =

 1 if ‖ xi − x ‖< h

0 otherwise,

Define wxi = Kh(xi − x)/
∑n

i=1Kh(xi − x). Einbeck et al. (2005) algorithm is

given by

(1) Choose a point x◦ as a starting point. Set x = x◦

(2) Calculate the local center of mass

µx =
n∑
i=1

wxi xi (8.1)

at x.
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(3) Estimate the local covariance matrix Sx = (sjk), where

sjk =
n∑
i=1

wxi (xij − µxj )(xik − µxk).

(4) Find the first principal component of Sx, denoted by γx.

(5) Update x by x = µx + lγx, where l is the step length.

(6) Repeat steps (2)-(5) until the sequence of µx remains constant. Set x = x◦,

γx = −γx and continue.

For example, let x1, . . . , x100 be bivariate points generated using the following

model x1
x2

 =

cos(θ)

sin(θ)

+

ε1
ε2

 , (8.2)

where 0 < θ < π/2, εT = (ε1, ε2) ∼ N(0, σ2I2), with σ2 = 0.06. Figure 8.1 (a)

shows an illustration of Einbeck’s algorithm algorithm for this example, (b) shows

the final principal curve.
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Figure 8.1: (a) Illustration of the algorithm with h = 0.2 and l = 0.2, and (b)
the local means that form the principal curve.

Now we give an example that illustrates when ICS can help to construct the

principal curve. For example, consider the data shown in Figure 8.2. The data
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consist of two parallel and closely spaced lines, each line generated from (8.2),

with separation equal to 0.07, and σ2 = 0.01.

At a selected iteration, shown in Figure 8.2 (a), the eigenvalues and eigenvec-

tors of the local covariance matrix are approximately equal to,

l1 = 0.0027, l2 = 0.0024,

γT1 = (−0.99, 0.07), γT2 = (−0.07,−0.99).

The eigenvalues l1 and l2 are close to each other. This means that applying local

PCA is meaningless at this iteration.

Let Sx
−1

and Kx be the local covariance and fourth-order moment matrix,

respectively, where the fourth-order moment matrix is defined in (3.23). The

eigenvalues and eigenvectors of Sx
−1
Kx are given by,

a1 = 0.689, a2 = 0.494,

uT1 = (0.774,−0.632), uT2 = (0.664, 0.748).

As we have shown in Chapter 3 that if we have two equal groups, the smallest

eigenvector u2 is in the group separation direction, whereas the largest eigenvector

is in the direction of the normal noise. Figure 8.2 (b) shows u2.

8.2.2 Fingerprint images

Fingerprint identification is based on information extracted from fingerprint im-

ages. The most significant extracted information is the ridge type.

For example, consider the fingerprint image shown in Figure 8.3, which is

taken from Dario et al. (2002) database. From Figure 8.3, when the ridges are

parallel, the structure resembles the parallel line structure in the RANDU data

set, defined in Chapter 7. A subset from Figure 8.3 that shows the parallel ridges

as in Figure 8.4.
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(b) ICS

Figure 8.2: Illustration of the solutions of the local PCA and ICS at a selected
iteration, for two parallel curves with step length l = 0.1, and radius h = 0.1.

Applying ICSd:W-estimate:variance can find the direction of the line structure,

as shown in Figure 8.5. The eigenvectors and eigenvalues of S−1V̂ are given as

follows

l1 = 3.513, l2 = 2.222,

uT1 = c(−0.653,−0.757), uT2 = (−0.689, 0.724).
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Figure 8.3: A full fingerprint image of dimension 379× 388.

Figure 8.4: A subset, of dimension 40 × 40, from the full fingerprint image that
shows the parallel ridges.
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Figure 8.5: The direction of the smallest eigenvector of S−1V̂ , for the parallel line
structure.
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