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Abstract 

Introduction: Cardiovascular disease (CVD) is the main global cause of 

mortality with a death rate higher in females than males. Exercise training has 

the potential to reduce CVD risk but the optimal exercise type has not been 

determined. Therefore, the effects of two different types of exercise (interval 

and continuous) on markers related to CVD risk were assessed in women 

across the lifespan.  

Methods: The effect of exercise on vascular health was studied in three 

different populations of women; young premenopausal, middle-aged 

overweight/obese, and postmenopausal women. In chapters 4 and 6, 12 

healthy and 20 overweight/obese women, respectively, completed either an 

interval or continuous exercise training programme. In chapter 5, 15 

postmenopausal women performed a 30 min moderate-intensity continuous and 

interval exercise bout, with 9 participants completing a further interval exercise 

session at a heavy-intensity. Endothelial function, arterial stiffness, circulating 

angiogenic cell (CAC) number and function, and cardio-respiratory fitness were 

assessed in these chapters at pre and post-exercise.  

Results: Arterial stiffness was unaltered following exercise in all chapters. 

Cardio-respiratory fitness was increased following both interval and continuous 

exercise training. Brachial artery flow-mediated dilation (FMD) was increased 

following interval exercise training in young women, unaltered acutely in 

postmenopausal women, and decreased following interval exercise training in 

overweight/obese women. CAC number was increased following both types of 

exercise in young women, but in overweight/obese women, CAC number was 

only increased after interval exercise training, and was unaltered acutely in 
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postmenopausal women. Markers of CAC function were unaltered following 

exercise training in healthy young women, but CAC colony-forming units 

increased acutely following moderate and heavy-intensity interval exercise in 

postmenopausal women, and CAC adhesion increased following interval 

exercise training in overweight/obese women. However, continuous exercise 

(acutely and chronically) did not change endothelial function or CAC function in 

any study. 

Discussion: Interval exercise modified more markers of vascular health than 

continuous exercise. The mechanisms behind this discrepancy might be related 

to potential differences in the arterial shear stress profiles experienced during 

the exercise. Future studies are required to explore this theory. Exercise-

mediated changes in many variables depended on the baseline health of 

participants and therefore, highlights that exercise effects are heterogeneous. 
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Chapter 1 Introduction 

Cardiovascular disease (CVD) is the main cause of global mortality, and in 

Europe is responsible for 54% of female and 43% of male deaths (Allender et 

al., 2008b). Despite the great burden of CVD in both sexes, women are at a 

lower risk of developing CVD across the lifespan compared to men, due to the 

atheroprotective effects of oestrogen. The incidence rates for CVD in women 

are at a 10 year lag behind men until the menopausal transition, where the risk 

of CVD rises in females but attains a plateau in men [Figure 1.1; Lerner & 

Kannel (1986)].  

 

 
 
 
 
 

Figure 1.1. Incidence of cardiovascular disease (CVD) across the lifespan 
by gender: results of the Framingham study.  Males have higher rates of 
CVD than women until older age, where this discrepancy is narrowed due 
to the loss of oestrogen at the menopause in women. Around the 
menopausal transition the risk of CVD in women increases while at this 
age in men, the risk plateaus. (Lerner & Kannel, 1986). 

 

Although women have lower CVD morbidity rates, the CVD mortality rates per 

year are greater in women than men (Allender et al., 2008a; Vaccarino et al., 

2009; Roger et al., 2011). Moreover, the consequences are more severe, as 

43% of women will die within 5 years of experiencing a first myocardial 
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infarction (MI) compared to 33% of men (Lloyd-Jones et al., 2009). 

Furthermore, a greater percentage of women than men who die from a sudden 

cardiac death will not have previously been diagnosed with heart disease, or 

experienced symptoms (Lloyd-Jones et al., 2009; Bertoia et al., 2012). These 

high rates may be caused by a lack of awareness of CVD symptoms in women 

(Maas & Appelman, 2010), a difference in the presentation of CVD symptoms 

between gender (Anand et al., 2005; Vaccarino et al., 2009), and/or less 

aggressive treatment. Indeed, in 12,562 patients experiencing acute coronary 

syndrome, a higher percentage of men than women underwent coronary 

angiography, angioplasty, coronary artery bypass graft surgery and were given 

β-blockers, whilst a higher percentage of women were re-hospitalised with 

angina and had a greater number of diseased vessels (Anand et al., 2005). 

Furthermore, angina is the first main symptom of CVD in women compared to 

an MI in men, and women  re more likely to experience   ―silent‖ MI th n men 

(Lerner & Kannel, 1986). Despite the great burden of CVD and the difference in 

disease symptoms, treatment and awareness in women, fewer clinical trials and 

intervention studies have been conducted specifically in female populations 

(Wenger, 2012). Thus, this thesis will focus specifically on females across the 

lifespan, with and without CVD risk factors. 

The underlying pathophysiology of CVD begins with atherosclerosis, a condition 

relating to the inflammation of the blood vessels, which is initiated by endothelial 

dysfunction (Ross, 1999). This condition is characterised by an increase in 

vascular damage that outweighs vascular repair and protective mechanisms, 

thereby creating an imbalance in vascular homeostasis. Arterial stiffening and a 

reduction in circulating angiogenic cell (CAC) number and function augment this 

process (the mechanisms of which are reviewed in chapter 2). Thus, improving 
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vascular homeostasis by lessening endothelial dysfunction and improving 

arterial compliance and CAC number and function, should be the first target of 

therapeutic and lifestyle interventions. Exercise has been identified as a non-

pharmacological and cost-effective intervention for improving these factors 

(reviewed in chapter 2). Indeed, physical inactivity is the 4th main cause of 

global deaths caused by non-communicable diseases (World Health 

Organisation, 2009). Moreover, in women with CVD or presenting with CVD risk 

factors, regular exercise is one of the first recommendations for improving 

vascular health (Mosca et al., 2011). However, fewer women than men 

participate in exercise, with only 4% achieving the recommended government 

guidelines of 30 min of moderate intensity exercise on 5 days per week (British 

Heart Foundation, 2012). These guidelines are vague and not population or 

gender specific, despite differences in CVD presentation and mortality between 

males and females, as discussed. Furthermore, the type and intensity of 

exercise that will yield the greatest improvements to vascular health in different 

populations of women (i.e. premenopausal, obese, and postmenopausal) is 

unknown. Recent evidence suggests that interval exercise involving variable 

work-rates, might be more enjoyable and superior for increasing endothelial 

function and arterial stiffness, than the traditional recommended method of 

continuous type exercise (Wisloff et al., 2007; Rakobowchuk et al., 2008; 

Tjønna et al., 2008; Ciolac et al., 2010; Guimaraes et al., 2010). However, this 

comparison has not been studied specifically in different populations of women 

and moreover, the effects of interval and continuous exercise on CACs has not 

been investigated. Therefore, the main purpose of the thesis was to compare 

the effects of interval and continuous type exercise on markers of vascular 

health in different populations of women.  
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Chapter 2 Literature Review 

2.1 The endothelium in health and disease 

2.1.1 Overview 

The endothelium is a single monolayer of cells that line the inner blood vessel 

walls and has a critical role in maintaining vascular homeostasis due to its direct 

contact with circulating blood. Healthy endothelial cells respond to physical and 

chemical stimuli in the blood by secreting a variety of growth factors, 

coagulants, vasodilators and vasoconstrictors that regulate vasomotor tone and 

act in combination to prevent inflammation and subsequent atherosclerosis 

(Rubanyi, 1993; Griendling et al., 2000). Conversely, a dysfunctional endothelial 

cell switches to a pro-atherogenic phenotype through secretion of cytokines, 

inflammatory molecules and expression of adhesion molecules, which 

increases endothelial permeability, oxidative stress and leukocyte adhesion 

(Marti et al., 2012).  Thus, the measurement of endothelial function in vivo can 

be used as a prognostic indicator of CVD. Indeed, an impaired vasodilation in 

response to acetylcholine or shear stress in coronary and peripheral vessels 

can predict future cardiac events in CVD patients and indicate the severity of 

CVD (Neunteufl et al., 1997; Cai & Harrison, 2000; Neunteufl et al., 2000; 

Halcox et al., 2002; Landmesser et al., 2004; Green et al., 2011). One of the 

most influential atheroprotective molecules produced by the endothelium is 

nitric oxide (NO).   

2.1.2 The atheroprotective properties of nitric oxide 

NO was first identified as possessing anti-atherogenic properties following its 

discovery as a potent vasodilator. Furchgott and Zawadzki in 1980 found that 

the endothelium was responsible for vasodilation through the secretion of an 
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endothelial-derived relaxing factor (EDRF) after the observation that denuded 

rabbit aortas did not dilate in response to acetylcholine. This EDRF was later 

identified as NO (Palmer et al., 1987). Endothelial NO release also mediates 

other atheroprotective processes (Figure 2.1) including the inhibition of 

leukocyte adhesion and migration (Kubes et al., 1991), vascular smooth muscle 

cell proliferation [VSMC; Rudic et al., (1998)], and platelet aggregation 

(Radomski et al., 1990). Thus, the bioavailability of NO is key for maintaining 

vascular homeostasis. 

 

 

 

 

 

 

 

 

 

2.1.3 Activation of eNOS and nitric oxide synthesis 

The generation of NO in endothelial cells occurs through the conversion of L-

arginine to L-citrulline by the enzyme endothelial nitric oxide synthase [eNOS; 

Palmer & Moncada, (1989)]. Upon activation of eNOS, electrons are transferred 

from nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) to flavin 

adenine dinucleotide (FAD) and then flavin mononucleotide (FMN) in the 

reductase domain, and passed to tetrahydrobiopterin (BH4) and the haem iron 

Figure 2.1. The atheroprotective properties of nitric oxide (NO). NO is 
released from endothelial cells and is a potent vasodilator and inhibits 
endothelial leukocyte adhesion and migration, platelet adhesion and 
aggregation and vascular smooth muscle cell (VSMC) proliferation from the 
tunica media. Modified from Landemesser et al., (2004). 
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in the oxygenase domain, resulting in binding of oxygen and the oxidation of L-

arginine to NO and L-citrulline [Figure 2.2; Alderton et al., (2001)]. 

Phosphorylation of eNOS at its serine site Ser1177 is a main activation pathway, 

which is stimulated by various factors such as vascular endothelial growth factor 

[VEGF; Michell et al., (1999)], oestrogen (Haynes et al., 2000) and shear stress 

(Dimmeler et al., 1999). Depending on the type of stimuli, intracellular pathways 

initiating eNOS phosphorylation can be calcium (Ca2+)-dependent or Ca2+-

independent. AMP-activated protein kinase (AMPK) phosphorylates Ser1177 and 

activates eNOS only when Ca2+ and calmodulin are present (Chen et al., 1999). 

However, shear stress activates the phosphatidylinositol-3 Kinase (PI3K)/Akt 

pathway (Figure 2.2)  independently of Ca2+/calmodulin levels (Dimmeler et al., 

1999). Following eNOS activation, NO is synthesised and diffuses into the 

surrounding tissue where it exerts its atheroprotective effects.  
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Figure 2.2. Activation of eNOS via the PI3K/Akt pathway. Shear stress is 
detected by mechanotransducers on endothelial cells leading to the 
activation of PI3k which phosphorylates Akt. Akt phosphorylates eNOS at 
its serine 1177 site (Ser1177) allowing electron (e-) transfer from NADPH to 
FAD to FMN in the reductase domain, and through to tetrahydrobiopterin 
(BH4) and the haem iron in the oxygenase domain, resulting in the 
oxidation of L-arginine to L-citrulline and nitric oxide (NO). Adapted from 
Alderton et al., (2001).   
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2.1.4 Nitric oxide and vasodilation 

As a potent vasodilator, NO induces the relaxation of vascular smooth muscle 

cells in the tunica media (middle layer of an artery). Upon synthesis of NO from 

the endothelial cells, NO diffuses into the surrounding vascular smooth muscle 

cells and activates soluble guanylate cyclise (sGC), which catalyses the 

dephosphorylation of guanosine triphosphate (GTP) to cyclic guanosine 

monophosphate [cGMP; Waldman & Murad, (1988)]. Subsequently, cGMP 

reduces the intracellular concentrations of Ca2+ and activates cGMP kinase, 

which activates myosin light-chain phosphatase resulting in VSMC relaxation by 

dephosphorylating myosin light-chains (Waldman & Murad, 1988). NO mediated 

VSMC relaxation can also occur independently of cGMP through the activation 

of potassium (K+) channels (Bolotina et al., 1994) which causes cell 

hyperpolarisation, forcing Ca2+ out of the cell enabling relaxation (Tare et al., 

1990). The magnitude of vasodilation in response to acetylcholine (Halcox et 

al., 2002) or shear stress [flow-mediated dilation; FMD (Celermajer et al., 1992)] 

can be measured using ultrasound imaging and is therefore used as an indirect 

measure of NO bioavailability and endothelial function (refer to the general 

methods, chapter 3, section 3.5 for details on the FMD technique). A reduction 

in NO bioavailability is one of the main mechanisms of endothelial dysfunction 

in many disease states.  

2.1.5 Mechanisms of endothelial dysfunction  

Endothelial dysfunction can be defined as an activation of endothelial cells 

towards an atherogenic state, which is characterised by a secretary imbalance 

between one or all of the following factors: vasodilators and vasoconstrictors, 

anti and pro-coagulants, growth-promoting and growth inhibiting factors and anti 

and pro-inflammatory molecules (Rubanyi, 1993). Consequently, there is an 
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increase in the expression of endothelial cell leukocyte and platelet adhesion 

molecules, endothelial permeability (Ross, 1999), endothelial cell death and 

detachment (Woywodt et al., 2002) and reduction in repair (Vasa et al., 2001; 

Hill et al., 2003). This disruption in vascular homeostasis is the first process in 

atherosclerotic disease (Ross, 1999) with the severity of the disorder predictive 

of sustaining a future cardiac event (Halcox et al., 2002). The mechanisms of 

endothelial dysfunction are complex and summarised below (Figure 2.3). 

A reduction in NO bioavailability is the most prominent characteristic of 

endothelial dysfunction. Indeed, lower levels of eNOS expression and NO 

synthesis have been demonstrated in atherosclerotic lesions from human 

carotid arteries (Oemar et al., 1998). The loss of NO leaves the endothelium 

more vulnerable to the progression of atherosclerosis due to its atheroprotective 

properties (Figure 2.1). Evidence also suggests that an increase in reactive 

oxygen species (ROS) production is key in the pathophysiology of endothelial 

dysfunction. Greater concentrations of superoxide anions have been observed 

in areas of plaque in atherosclerotic coronary arteries (Sorescu et al., 2002) and 

administration of antioxidants such as vitamin C improve the vasodilatory 

response to acetylcholine in patients that exhibit endothelial dysfunction (Taddei 

et al., 1998). A main source of ROS is NADPH oxidase which is 

activated/upregulated in endothelial cells by oscillatory shear stress, 

angiotensin II (Ang II) and inflammatory cytokines such as tumour necrosis 

factor-alpha (TNF-α)  nd interleukins (Griendling et al., 2000). ROS reduces NO 

bioavailability by directly interacting with NO to form peroxynitrite (Beckman et 

al., 1990) and through oxidation of BH4 c using eNOS ―uncoupling‖, where 

electrons derived from NADPH are added to oxygen rather than L-arginine, 

resulting in superoxide production instead of NO (Landmesser et al., 2003). 
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This creates a vicious circle of greater generation of peroxynitrite. Peroxynitrite 

also causes eNOS uncoupling through oxidation of BH4 (Milstien & Katusic, 

1999) and can oxidise low-density lipoproteins (LDL) in the subendothelium 

(Darley-Usmar et al., 1992). Oxidised LDL can be ingested by macrophages to 

form foam cells thus contributing to plaque development (Ross, 1999) and are 

taken up by endothelial cells causing cell dysfunction (Li et al., 2000). An 

increase in circulating endothelial cells and microparticles have been observed 

in patients with atherosclerosis and endothelial dysfunction (Makin et al., 2004; 

Esposito et al., 2006) and are an indication of cell damage and senescence. 

ROS can cause endothelial cell senescence by damaging telomeres and 

impairing telomerase activity [reviewed by Erusalimsky, (2009)]. Finally, ROS 

increases the potent vasoconstrictor endothelin-1 (ET-1) and the expression of 

endothelial cell leukocyte and platelet adhesion molecules (Lund, 2010).  
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2.1.6 Endothelial dysfunction in women across the lifespan 

Ageing is a main risk factor for CVD, due in part to the dysfunction of the 

endothelium. From the age of 40 yrs, brachial artery FMD begins to decline in 

healthy individuals and at 65 yrs most individuals exhibit an impaired 

endothelial-dependent vasodilatory response without changes to endothelial-

independent dilation (Celermajer et al., 1994). Similarly, endothelial-dependent 

vasodilation in response to acetylcholine was seen to be significantly reduced 

with advancing age in both normotensive and hypertensive participants in the 
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Figure 2.3. The pathophysiology of endothelial dysfunction. An imbalance 
between reactive oxygen species (ROS) and nitric oxide (NO) is 
characteristic of endothelial dysfunction. See text for detail. Modified and 
extensively reviewed by (Cai & Harrison, 2000; Griendling et al., 2000; 
Landmesser et al., 2004; Lund, 2010). O2

- = superoxide anion, ET-1 = 

endothelin-1, BH4 = tetrahydrobiopterin, LDL = low-density lipoprotein.  
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forearm (Taddei et al., 1995) and in the coronary arteries (Egashira et al., 

1993). Collectively these findings suggest that ageing is a key mediator of 

endothelial dysfunction in central and peripheral vessels and can occur in 

he lthy or ― t risk‖ popul tions. The underlying mech nisms th t contribute to 

the ageing effect on the endothelium include a reduced NO bioavailability 

(Taddei et al., 2001), endothelial cell telomere length (Aviv et al., 2001), 

reparative ability of progenitor cells (Heiss et al., 2005) and an increase in 

vasoconstrictor tone through secretion of ET-1 (Donato et al., 2009), arterial 

stiffening (refer to section 2.2 for details), oxidative stress (Hamilton et al., 

2001), endothelial apoptosis and inflammation (Csiszar et al., 2004). 

Throughout the lifespan endothelial function is preserved for longer in females 

than men. Endothelial-dependent dilation begins to decline at ~41 yrs of age in 

men but in women this reduction does not occur until ~ 53 yrs. However, the 

rate of decline is greater in females (0.49 %/year) than men (0.21 %/year), so 

that the disparity between gender is eliminated by 65 yrs (Celermajer et al., 

1994). This pattern of endothelial dysfunction also occurs in response to 

acetylcholine with a steady decline in the maximal vasodilatory response in men 

with advancing age, whereas in women the decline accelerates after the 

menopausal transition [~46-49 yrs, Figure 2.4; Taddei et al., (1996)].  
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Figure 2.4. The decline in endothelial function with advancing age in 
healthy males and females. Forearm blood flow (FBF) in response to a 
maximal dose of intra-brachial acetylcholine infusion (15 µg/100ml 
forearm tissue/ min) declined with age at a steady rate in men (1.8 %/year). 
In premenopausal women this decline was less than men (0.5 %/year) but 
following the menopause at ~49 yrs this decline accelerated at a greater 
rate (2.2 %/year). Reproduced from Taddei et al., (1996). 
 

The menopause is characterised by a change in hormonal status driven by the 

loss of oestrogen. Deprivation of oestrogen in women following an ovariectomy 

significantly impaired endothelial-dependent vasodilation but returned to pre-

ovariectomy levels following 3 months of oestrogen replacement therapy (Virdis 

et al., 2000). Brachial artery FMD declines at each stage of the menopausal 

transition, with late perimenopausal and postmenopausal women exhibiting a 

significantly lower FMD than early perimenopausal and premenopausal women 

(Moreau et al., 2012). Oestrogen aids in maintaining a healthy endothelial 

function via several mechanisms. Oestrogen binds to oestrogen receptor α 

(ORα) on the surface of endothelial cells, stimulating binding of ORα with the 
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p85α subunit of PI3K (Simoncini et al., 2000). PI3K activation stimulates Akt 

phosphorylation and subsequently eNOS Ser1177 phosphorylation and NO 

production (Haynes et al., 2000). Thus, oestrogen increases NO bioavailability. 

Ang II increases NADPH oxidase activation and peroxynitrite formation through 

the Ang II type one receptor [AT1R; Gragasin et al., (2003)]. Peroxynitrite 

reduces NO bioavailability (section 2.1.5) and impairs endothelial cell 

telomerase activity, which enhances cell death (Imanishi et al., 2010). However, 

in Ang II stimulated endothelial cells, oestrogen treatment impairs NADPH 

oxidase activation, peroxynitrite formation, and enhances telomerase activity 

and vasodilation by inhibiting the expression of AT1R (Gragasin et al., 2003). 

Therefore, oestrogen attenuates NO degradation and enhances endothelial cell 

survival (Figure 2.5). 

 

Figure 2.5. The role of oestrogen in reducing endothelial cell senescence.  
Oestrogen impairs the expression of angiotensin II type one receptor on 
endothelial cells which in turn reduces the activity of NADPH oxidase and 
the subsequent formation of peroxynitrite. Therefore, telomerase 
inactivation is prevented and endothelial cell survival enhanced. Modified 
from Imanishi et al., (2010). 

Oestrogen 
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Finally, oestrogen treatment is associated with lower levels of cholesterol and a 

higher high-density lipoprotein: low-density lipoprotein (HDL/LDL) ratio due to a 

greater expression of hepatic LDL receptors which enhances LDL catabolism 

and reduces the risk of atherosclerosis development (Henriksson et al., 1989; 

Walsh et al., 1991). The atheroprotective effects of oestrogen and its sudden 

loss at the menopause may explain the higher vulnerability to fatal cardiac 

events when compared to men who do not have this protection or accelerated 

decline in endothelial dysfunction. Indeed a reported ~50% of women who 

suffered a sudden cardiac death had not previously been diagnosed with 

coronary heart disease (Bertoia et al., 2012). Furthermore, from ≥40 yrs of  ge 

a higher percentage of women than men will die within 1 and 5 years after their 

first MI or experience a further MI or CV event (Lloyd-Jones et al., 2009).   

In premenopausal women, although at a lower risk from CVD than age matched 

men, endothelial dysfunction is still prevalent due to higher levels of CVD risk 

factors such as obesity, central obesity and physical inactivity (British Heart 

Foundation, 2010). Indeed, in premenopausal women with type II diabetes, the 

protective effect from oestrogen is lost so that the magnitude of endothelial 

dysfunction is similar to that of age-matched men with the disorder (Steinberg et 

al., 2000). Obesity and overweight is the 5th cause of global deaths, affecting 

35% of women worldwide (World Health Organisation, 2011) and is strongly 

associated with endothelial dysfunction. An impaired endothelial-dependent 

vasodilation in women with greater body mass index (BMI) and central fat 

distribution has been reported (Perticone et al., 2001) but can be significantly 

increased following weight loss partly due to an increase in NO bioavailability 

(Pierce et al., 2008). The mechanisms contributing to endothelial dysfunction in 

obesity involve the secretion of inflammatory cytokines such as TNF-α  nd 
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interleukin-6 (IL-6) from adipose tissue, increased adhesion molecule 

expression on endothelial cells such as p-selectin, intercellular adhesion 

molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), oxidised 

LDL, oxidative stress and reduced NO bioavailability (Ziccardi et al., 2002; 

Avogaro & de Kreutzenberg, 2005; Pierce et al., 2008). However, many of these 

factors along with endothelial dysfunction can be improved or reversed with 

lifestyle interventions such as exercise. 

2.1.7 Exercise training and endothelial function 

The effects of exercise on endothelial function has been widely studied in many 

popul tions. A liter ture se rch on Pubmed with the terms ―exercise tr ining‖ 

 nd ―endotheli l function‖ produced 227 results. A summ ry of this search in 

populations with or at risk of CVD are displayed in Table 2.1. The majority of 

studies in these populations have shown improved endothelial function post-

training, either by increased FMD or blood flow response to intra-arterial 

infusion with acetylcholine. However, some studies have shown no 

improvements. Motohiro et al., (2005) and Kobayashi et al., (2003) observed an 

increase in lower limb endothelial function following exercise training but not in 

the arm, indicating the exercise had only a local effect on the working limb 

vasculature. Other studies have observed differences in the exercise effects 

upon endothelial function between different exercise modes [Table 2.1; 

McDermott et al., (2009)]. Moreover, contrasting results have been observed in 

healthy young sedentary populations. Moriguchi et al., (2005) observed an 

increased brachial artery FMD post-training in hypertensive adults but not 

normotensive. Similarly, popliteal artery FMD was improved post lower limb 

cycling training in young healthy adults (Rakobowchuk et al., 2008) but not 

brachial artery FMD (Rakobowchuk et al., 2012). Conversely, increases in 
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upper limb endothelial function in response to lower limb exercise training have 

been reported in healthy adults in other studies (Kingwell et al., 1997; DeSouza 

et al., 2000; Birk et al., 2012). These contrasting results might be explained by 

the differences in the type, volume and intensity of exercise adopted in the 

study (Goto et al., 2003), the definition of intensity used, or that initial functional 

improvements might be negated by arterial structural changes (Tinken et al., 

2008; Birk et al., 2012). Higher intensity exercise training programmes may 

negate improvements (Goto et al., 2003) or indeed impair endothelial function 

(Bergholm et al., 1999) due to greater production of ROS. However, the 

intensity of exercise (70-80% maximal oxygen uptake; V O2m x) adopted in these 

previous studies has been used in other studies which have reported 

improvements in endothelial function (Motohiro et al., 2005; De Filippis et al., 

2006; Tjønna et al., 2008).  
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Table 2.1. Effects of exercise training on endothelial function in 
populations with or at risk of cardiovascular disease. 
Author Participants Exercise training programme Results 
Edwards et al., 
(2004) 

CAD patients - treadmill and cycling 
- 12 weeks, 3/week 
-15-20 min     to 40-50 min 
-40-50% HRmax       to 70-85% HRmax 

     
    Brachial FMD 

Luk et al., 
(2012) 

CAD patients - 8 weeks, 3/week, 1 hr sessions 
- resistance and aerobic (treadmill, 
cycling, rowing, steps, arm ergometry) 

     
    Brachial FMD 

Walsh et al., 
(2003) 

CAD patients - 8 weeks, 2 supervised & 1 home/week 
- cycling and walking at 70-85% HRpeak 

for 45-60 min 

     
    Brachial FMD 

Motohiro et al., 
(2005) 

Post-MI 
patients 

- 3 weeks, 5/week, 1hr sessions 

- walking & cycling, HR at 70%  V O2m x 

    Calf          brachial 
reactive hyperaemia        

Katz et al., 
(1997) 

CHF patients - 8 weeks, 3/week, 30 min sessions  
- handgrip contractions at 70% WRmax 

    Peak forearm 
reactive hyperaemic 
response to Ach 

Kobayashi et 
al., (2003) 

CHF patients - 3 months, 2-3/week, two 15 min/day  
- cycling at HR at the lactate threshold 

    Posterior tibial 
artery FMD            
         Brachial FMD             

Maiorana et 
al., (2000) 

CHF patients - 8 weeks, 3/week, 1 hr sessions 
- resistance (55-65% WRmax) and aerobic 
(cycling and walking at 70-85% HRpeak) 

    Forearm reactive 
hyperaemic 
response to Ach 

McDermott et 
al., (2009) 

PAD patients - 24 weeks, 3/week, resistance or aerobic 
- treadmill exercise, 15 min     to 40 min 

    Brachial FMD in 
aerobic group only 

De Filippis et 
al., (2006) 

Overweight 
non-diabetic & 
type II diabetic 

- 8 weeks cycling + 30 handgrip 
contractions every 5 min 

- 60% V O2m x - 20 min, 3/week     to 

- 70% V O2m x - 45 min, 4/week     

    Forearm reactive 
hyperaemic 
response to Ach 

Fuchsjäger-
Mayrl et al., 
(2002) 

Type one 
diabetic 

- 4 months cycling for ~1 hr, 3/week 
- 40 min at 60-70% HRmax  
 

     
    Brachial FMD 

Silva et al., 
(2012) 

Metabolic 
syndrome & 
type II diabetic 

- 6 weeks for 50 min, 4/week 
- walk/run for 40 min at either 50-60% 
HRmax or 75-85% HRmax 
 

     
    Brachial FMD- 
greatest in higher 
intensity group 

Lavrenčič et 
al., (2000) 

Metabolic 
syndrome 

- 12 weeks, 3/ week cycling 
- 20 min warm-up & 30 min at 80% HRmax 

     
    Brachial FMD 

Stensvold et 
al., (2010) 

Metabolic 
syndrome 

- 12 weeks, 3/ week, 3 groups 
- Interval = 4x4 min at 90-95% HRmax 
separated by 3 min at 70% HRmax 

- Strength = 40-80% WRmax 

- Combined interval (2/week) & strength 
(1/week) 

     
    Brachial FMD in 
all groups 

Mestek et al., 
(2010) 

Overweight 
/obese adults 

- 3 months, 5-7/ week, 40-50 min/day, 60-
75% HRmax 

    Forearm reactive 
hyperaemic 
response to Ach 

Sprung et al., 
(2013) 

Obese women 
with PCOS 

- 16 weeks, 30 min at 30% HRR, 3/week   
   to 45 min at 60% HRR, 5/week              

     
    Brachial FMD 

Higashi et al., 
(1999) 

Hypertension - 12 weeks, 5-7/ week, 30 min brisk 
walking 

    Forearm reactive 
hyperaemic 
response to Ach 

Moriguchi et 
al., (2005) 

Hypertension - 12 weeks, 2/ week 

- cycling at 50% V O2m x for 60 min 

    Brachial FMD in 
hypertensive         in 
normotensive       

Akazawa et al., 
(2012) 

Sedentary 
postmenopaus
al women 

- 8 weeks, 3/ week, cycling & walking 
- 30 min at 60% HRmax      to 40-60 min at 
70-75% HRmax 

     
    Brachial FMD 

Swift et al., 
(2012) 

Hypertensive 
postmenopaus
al women 

- 6 months, 3-4/ week 

- cycling & walking at 50% V O2m x 
 

     
    Brachial FMD 

= increasing,       = no change post-training, CAD = coronary artery disease, MI = myocardial 
infarction, CHF = chronic heart failure, PAD = peripheral artery disease, PCOS = polycystic 

ovary syndrome, HRmax = max heart rate, V O2m x = maximal oxygen uptake, HRR = heart rate 
reserve, WRmax = work-rate at maximum contraction, Ach = acetylcholine. 
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In women, exercise has improved endothelial function in those with obesity 

(Sprung et al., 2013) and following the menopause (Akazawa et al., 2012; Swift 

et al., 2012). Although few studies specifically focus on female populations, 

these studies indicated that exercise, by improving endothelial function, may 

reduce the risk of CVD. However, more studies are required to identify the 

optimum exercise regime for enhanced endothelial function in women across 

the lifespan that present risk factors for CVD. Indeed, given the wealth of 

studies in the area of exercise and endothelial function, there is no consensus 

on which type and intensity of exercise is best to yield the greatest benefits, in 

different populations. The Government recommends that adults in the UK 

should participate in at least 30 min of moderate-intensity exercise on 5 

days/week. However, the type of exercise is not specified and many studies 

have shown improvements in endothelial function following exercise at a lower 

frequency per week (Table 2.1). Moreover, the number of adults achieving 

these guidelines is very low, especially in women with only 4% meeting the 

government targets (British Heart Foundation, 2012). Consequently, in an 

attempt to increase adherence, researchers have begun investigating how 

alternative methods of exercise such as interval exercise, affect vascular health. 

The advantages of interval exercise are that it is more enjoyable and motivating 

than continuous type exercise (Tjønna et al., 2008), and produces similar or 

greater improvements in endothelial function (Table 2.2). Furthermore, interval 

exercise can be less time-consuming, and given that the main barrier to 

exercise p rticip tion is ―  l ck of time‖ (British Heart Foundation, 2012), 

interval exercise might be a more favourable method of exercising. As shown in 

Table 2.2 interval exercise protocols are varied. The 4x4 method of interval 

exercise is perhaps the most widely studied and involves four periods of 4 min 

at ~90% HRmax, followed by active recovery periods of 3 min at 70% HRmax 
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(Wisloff et al., 2007; Schjerve et al., 2008; Tjønna et al., 2008). However, 

although positive results have been reported in these previous studies, this 4x4 

model of interval exercise could perhaps be viewed as 4 periods of short 

continuous exercise. Given that interval exercise is usually defined as short 

bursts of activity separated by recovery periods, alternative models of interval 

exercise have been investigated which might be more enjoyable due to the 

variable work-rates. Sprint interval training involving 30 s periods of maximal 

exertion followed by 4-5 min recovery periods, improved endothelial function in 

the lower exercising limb to a similar degree as longer duration continuous 

exercise training (Rakobowchuk et al., 2008). However, the effects on systemic 

endothelial function are unknown and the very high intensity nature of the 

exercise is likely not appropriate for individuals with or at risk of CVD. 

Alternative interval exercise programmes involving shorter periods at lower 

work-rates have improved endothelial function in CAD patients [Table 2.2; 

Currie et al., (2013)]. However, future studies are required to adapt this method 

of interval exercise training for other populations and investigate and compare 

the effects on endothelial function with different modes of exercise, in an 

attempt to identify the optimum exercise type. Additionally, the mechanisms by 

which interval exercise improves endothelial function needs to be identified as 

they may differ from that of continuous exercise, potentially due to the different 

haemodynamics involved during the exercise (i.e. oscillations in work-rate 

during interval exercise). 
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Table 2.2. Comparisons between interval and continuous exercise training 
on endothelial function. 
Author Participants Interval exercise 

group 
Continuous 
exercise group 

Results 

Wisloff et al., 
(2007) 

CHF patients -12 weeks, treadmill, 
2/week 
- 4x4 min at 90-95% 
HRmax separated by 3 
min at 50-70% HRmax 

-12 weeks, treadmill, 
2/week 
- 47 min at 70-75% 
HRmax 

     
    Brachial FMD in 
both groups but 
greater with 
interval 

Schjerve et 
al., (2008) 

Obese adults -12 weeks, treadmill, 
2/week 
- 4x4 min at 85-95% 
HRmax separated by 3 
min at 50-60% HRmax 

-12 weeks, treadmill, 
2/week 
- 47 min at 60-70% 
HRmax 

     
    Brachial FMD in 
both groups but 
greater with 
interval 

Tjonna et al., 
(2008) 

Metabolic 
syndrome 

-16 weeks, treadmill, 
3/week 
- 4x4 min at 90% HRmax 
separated by 3 min at 
70% HRmax 

-16 weeks, treadmill, 
3/week 
- 47 min at 70% 
HRmax 

     
    Brachial FMD in 
both groups but 
greater with 
interval 

Rakobowchuk 
et al., (2008) 

Healthy adults - 6 weeks, 3/ week 
cycling 
- 4-6 30s sprints 
followed by 4.5 min 
recovery periods 

- 6 weeks, 5/ week 
cycling 
- 40-60 min at 65% 

V O2m x 

     
    Popliteal FMD in 
both groups 
similarly 

Currie et al., 
(2013) 

CAD patients - 12 weeks, 2/ week 
cycling 
-10 x 60s at ~90% 
HRmax separated by 
60s recovery at 50w 
 

- 12 weeks, 2/ week 
cycling 
- 30-50 min at 51-
65% peak power 
output 

     
    Brachial FMD in 
both groups 
similarly 

= increase post-training, CHF = chronic heart failure, CAD = coronary artery disease, HRmax = 

max heart rate, V O2m x = maximal oxygen uptake. 

 

2.1.7.1 Mechanisms for exercise-mediated increases in endothelial 
function 

Endothelial function is largely regulated by the balance between pro-

atherogenic factors such as ROS and inflammation, and atheroprotective 

factors such as NO (refer to section 2.1.5). Exercise improves endothelial 

function by rectifying this imbalance, largely by increasing NO bioavailability. 

Sessa et al., (1994) were the first to observe an increase in NO and eNOS gene 

expression in the coronary arteries of dogs, following 10 consecutive days of 

exercise training. Likewise, in humans with CAD, 4 weeks of exercise training 

(10 min rowing and 10 min cycling performed daily) increased acetylcholine-

induced vasodilation in the left internal mammary artery (LIMA), concomitant 

with increased eNOS mRNA, eNOS protein, eNOS-Ser1177 phosphorylation and 

Akt phosphorylation (Hambrecht et al., 2003). Moreover, greater levels of 
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plasma nitrate/nitrite were noted following exercise training in postmenopausal 

women (Zaros et al., 2009) and CAD patients (Edwards et al., 2004). It is 

proposed that exercise augments eNOS/NO through increased shear stress, 

which is created by greater arterial blood flow during exercise (Taylor et al., 

2002).  

The importance of shear stress for increasing endothelial function was 

evidenced in studies which inflated a blood pressure cuff around one arm during 

exercise, to prevent increases in exercise-induced shear stress. Following 8 

weeks of bilateral handgrip exercise (Tinken et al., 2010) and lower limb cycling 

exercise training (Birk et al., 2012), brachial artery FMD was only increased in 

the uncuffed arm, whereas no changes were observed in the artery of the 

cuffed arm. Shear stress increases NO production by activating PI3K, which 

subsequently activates protein kinases such as protein kinase A (PKA; Boo et 

al., 2002), Akt (Dimmeler et al., 1999; Hambrecht et al., 2003) and AMPK 

(Zhang et al., 2006) that phosphorylate eNOS. Augmented eNOS activation via 

exercise training may also be aided by a reduction in asymmetric 

dimethylarginine (ADMA; Schlager et al., 2011), which blocks NO synthesis by 

competing with L-arginine for its binding site on eNOS (Vallance & Leiper, 

2004). 

Exercise training also improves endothelial function by upregulating anti-oxidant 

enzymes and reducing oxidative stress and inflammatory factors (Kojda & 

Hambrecht, 2005). In CAD patients following exercise training (see Table 2.1 for 

details) plasma levels of superoxide dismutase (SOD) and NO were increased 

along with reduced 8-isoprostane, a marker of oxidative stress (Edwards et al., 

2004). Likewise, increased SOD protein expression was enhanced in aortic 

endothelial cells in mice following 3 weeks of exercise training, which was not 
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observed in eNOS-/- (knockout) mice (Fukai et al., 2000). Thus, activation of 

eNOS appears important for upregulation of anti-oxidants. Reduced oxidative 

stress following exercise training is driven by a reduction in the activity of the 

superoxide generating enzyme NADPH oxidase, and a reduction in the 

expression of its sub-units (Adams et al., 2005). Furthermore, AT1R expression 

in the LIMA was reduced in CAD patients following exercise training which 

resulted in decreased Ang II- mediated vasoconstriction post-training (Adams et 

al., 2005). Thus, exercise training reduces ROS partly by downregulating AT1R 

expression on endothelial cells, resulting in reduced Ang II-mediated activation 

of NADPH oxidase and the subsequent generation of superoxide anions. 

Finally, exercise may improve endothelial cell survival and integrity. In mice 

following 3 weeks of voluntary running, telomerase activity in the endothelial 

cells in the wall of the aorta was increased (Werner et al., 2009). 

As previously discussed, interval type exercise appears superior for 

improvements in endothelial function. In comparison to continuous exercise 

training which had no effect, interval exercise training increased plasma 

nitrite/nitrate, total antioxidant status and reduced plasma oxidised LDL in 

patients with chronic heart failure (CHF; Wisloff et al., 2007) and the metabolic 

syndrome (Tjønna et al., 2008). Similar results were reported in rats with the 

metabolic syndrome (Haram et al., 2008). The mechanisms behind why interval 

exercise training improved NO bioavailability to a greater extent than continuous 

exercise training have not been investigated, although it is suggested that the 

higher intensity of interval exercise and/or the differences in blood flow and 

shear stress during the exercise, exerts different effects on the endothelium 

(Haram et al., 2008; Tjønna et al., 2008). To delineate between these two 

mechanisms, future studies should match interval and continuous exercise 
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sessions for intensity and subsequently compare their effects on endothelial 

function.  

2.2 Arterial stiffness in health and disease 

2.2.1 Implications of arterial stiffness  

Arterial stiffening can be defined as an increased resistance to deformation 

(Glasser et al., 1997) and is reflected by an increased pulse wave velocity 

(PWV), intima-media thickness (IMT), pulse pressure (PP) and reduced 

distensibility. It is a process concomitant with ageing which increases the risk of 

developing CVD. A faster brachial-ankle PWV which reflects central arterial 

stiffness is associated with an increased Framingham score, a score that 

predicts the likelihood of developing coronary artery disease in the next 10 

years (Yamashina et al., 2003). Moreover, carotid arterial IMT and distensibility 

is greater with increasing severity of CVD risk (Simons et al., 1999). This 

increased risk is driven by atherosclerotic development which is potentiated by 

arterial stiffness. In post-mortem analysis an increased severity of carotid 

 rteri l  therosclerotic pl que w s  ssoci ted with   gre ter c rotid  rtery β-

stiffness index (SI) in patients prior to death (Wada et al., 1994). Furthermore, 

aortic PWV was significantly increased with an increased presence of carotid 

and aortic plaques in over 3000 patients enrolled on the Rotterdam study (Van 

Popele et al., 2001). Atherosclerotic development is believed to be accelerated 

by arterial stiffening through an increase in pulsatile pressure on the arterial 

walls. In bovine aortic endothelial cells grown in silastic tubes exposed to steady 

shear, eNOS phosphorylation was increased in compliant tubes whereas the 

protein was undetectable in stiff tubes (Peng et al., 2003). Similarly, eNOS 

phosphorylation was reduced and NADPH oxidase expression increased in the 

segments of pig carotid arteries which had been cuffed for 24 hrs to reduce 
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arterial stretch, when compared to the uncuffed segments (Thacher et al., 

2010). Therefore, an increased arterial stiffness reduces NO synthesis and 

increases ROS generation which contributes to endothelial dysfunction and 

subsequent atherosclerosis as described in section 2.1. Indeed, this relationship 

was observed in ~300 healthy males (18-81 yrs), in which a strong negative 

correlation was observed between brachial artery FMD and aortic PWV (r = -

0.69) and augmentation index (r = -0.59; McEniery et al., 2006). 

Arterial stiffness also increases the risk of CVD mortality. Indeed, in end-stage 

renal disease patients carotid artery elasticity was a significant predictor of 

cardiovascular and all-cause mortality (Blacher et al., 1998), and in elderly 

individuals (70-100 yrs) an increased aortic PWV was an independent predictor 

of cardiovascular death (Meaume et al., 2001). Moreover, a greater arterial 

stiffness is associated with an increased likelihood to experience a 

cardiovascular event such as stroke or an MI. In the Rotterdam study which 

involved  n lysis from 1373  dults  ged ≥55 yrs, the risk of experiencing  n MI 

increased by 43% for every 1 SD increase in carotid artery IMT (Bots et al., 

1997). A main cause for this increased risk is a greater PP which reflects a 

greater systolic blood pressure (SBP) and lower diastolic blood pressure (DBP). 

Indeed, a higher PP in hypertensive elderly females was associated with a 

greater incidence of cardiovascular events in the 3 year follow-up period 

(Scuteri et al., 1995). The mechanism by which arterial stiffness increases PP 

and the subsequent risk of developing an MI is described in detail by Nichols 

and O’Rourke (2005). An incre se in  rteri l stiffness gener tes   gre ter 

magnitude and faster pulse pressure wave which returns to the aorta more 

quickly, increasing systolic blood pressure, which increases myocardial oxygen 

requirements. Simultaneously due to the early pulse pressure wave reflection, 
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diastolic blood pressure is reduced and therefore left ventricular coronary 

perfusion pressure is also reduced. Consequently, the heart is required to work 

harder to eject blood but with less coronary blood supply, predisposing the 

myocardial tissue to ischaemia and increasing the risk of a cardiac event 

(Nichols & O'Rourke, 2005).   

2.2.2 Pathophysiology of arterial stiffness 

Arterial stiffness can cause endothelial dysfunction and potentiate 

atherosclerosis, but it can also be initiated as a result of the onset of endothelial 

dysfunction and atherosclerosis. Atherosclerotic plaques and vascular damage 

occur before increases in arterial stiffness, as evidenced in monkeys that were 

fed a high fat diet for 18 months (Farrar et al., 1984). In the first 6-12 months of 

the diet, the amount of atherosclerotic legions in the aorta rapidly increased and 

subsequently plateaued, and aortic IMT gradually increased throughout the 18 

month period. However, aortic PWV only increased after 18 months even 

though atherosclerosis was already evident. The two main factors associated 

with endothelial dysfunction and atherosclerosis are reduced NO bioavailability 

and increased oxidative stress (section 2.1), which reduce the ability of the 

vessel to vasodilate, thus increasing vascular resistance. Indeed, infusion with 

the NO inhibitor L-NMMA increased aortic augmentation index in healthy males 

(Wilkinson et al., 2002)  nd incre sed  ortic PWV  nd c rotid β-SI in older 

adults (Sugawara et al., 2007). A lack of circulating angiogenic cells (CACs) 

might also contribute to arterial stiffness as observed by a linear positive 

relationship between the number of CACs and arterial elasticity index (Tao et 

al., 2006), and a negative correlation between CAC number and brachial to 

ankle PWV (Yang et al., 2013). However, the cause-effect of this relationship is 
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unknown. Other main causality factors associated with arterial stiffness are 

changes to the structural properties of the vessel wall. 

Collagen and elastin are the two main proteins which provide structural support 

and elasticity to the arterial wall. An altered ratio between the two proteins, 

driven by an increase in collagen molecules and/or reduction in elastin, reduce 

the elasticity of the vessel wall. An increase in advanced glycation endproducts 

(AGEs) is a main mechanisms by which the collagen content of the arterial wall 

increases. AGEs are produced as a result of cross-linking between sugars such 

as glucose and long-lived proteins such as collagen, which increases the 

stiffness of the walls (Singh et al., 2001). In hypertensive adults, plasma AGEs 

were significantly higher when compared to normotensive individuals, and were 

positively correlated with aortic PWV and PP (McNulty et al., 2007). Moreover, 

treatment with the drug ALT-711 which breaks down AGE cross-links, 

decre sed PP  nd  ortic PWV  nd incre sed  rteri l compli nce in  dults ≥50 

yrs with arterial stiffening (Kass et al., 2001). AGEs also contribute to arterial 

stiffening by augmenting endothelial dysfunction and atherosclerosis. The 

binding of AGEs to its receptors which are present on VSMCs, endothelial cells 

and macrophages, activates the transcription factor nuclear factor-kappa B (NF-

κB) resulting in increased expression of inflammatory cytokines (IL-6, TNF-α), 

tissue factor, vasoconstrictors (ET-1) and adhesion molecules such as VCAM-1 

(Singh et al., 2001). Similarly, in young and older adults, higher serum AGEs 

are associated with higher levels of oxidative stress which can reduce NO 

bioavailability and increase endothelial dysfunction (Uribarri et al., 2007). 

Another mechanism of arterial stiffening is linked to an increase in matrix 

metalloproteinases (MMPs). In young and older adults with and without 

hypertension, serum MMP-9 and MMP-2 levels were correlated with aortic and 
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brachial PWV (Yasmin et al., 2005). MMPs can degrade elastin fibres in the 

arterial wall, thus contributing to reduced arterial compliance (Jacob, 2003). 

2.2.3 Arterial stiffness in women across the lifespan 

The ageing process is the predominant mechanism for arterial stiffening in both 

genders. With increasing age, arterial compliance reduces and augmentation 

index (indicator of vascular resistance), blood pressure and PWV increase 

throughout the arterial tree (Kelly et al., 1989a; Benetos et al., 1993; London et 

al., 1995; McVeigh et al., 1999; Tao et al., 2004). Throughout each decade of 

life, central artery distensibility reduces which increases PWV [Figure 2.6 

(Benetos et al., 1993; van der Heijden-Spek et al., 2000)]. The implications of 

this decrease on cardiovascular disease and mortality are described in section 

2.2.1. Several structural and functional mechanisms as described in section 

2.2.2 are responsible for the increased arterial stiffness caused by ageing. An 

increase in enzymes which degrade elastin fibres such as MMPs and serum 

elastase have been reported with advancing age (Yasmin et al., 2005). 

Similarly, AGEs which strengthen collagen fibres and increase inflammation, 

oxidative stress and endothelial dysfunction have been seen to be higher in 

older adults (60-80 yrs) when compared to younger adults [18-45 yrs (Uribarri et 

al., 2007)]. Additionally, elastin fibres split and fray with age due to fatigue from 

cyclic stretch over the lifespan (O'Rourke, 1990). Endothelial function decreases 

with age (refer to section 2.1.6 for mechanisms) which reduces vasodilation, 

thus increasing vascular impedance. Indeed, in eNOS-/- mice where NO and 

endothelial function are reduced, PWV was greater than that of wildtype mice 

(Soucy et al., 2006).   
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In women, although aortic PWV increases across the lifespan to the same 

degree as males (van der Heijden-Spek et al., 2000; Smulyan et al., 2001) as 

shown in Figure 2.6b, carotid artery augmentation index has been reported to 

be higher in women than males (London et al., 1995; Hayward & Kelly, 1997). 

The less pronounced effect of oestrogen in the aorta compared to peripheral 

vessels is likely due to differences in smooth muscle tone and vessel wall 

structure (van der Heijden-Spek et al., 2000; Zieman et al., 2005). The aorta is 

less influenced by the vasodilatory effects of oestrogen due to the high elastin 

fibres and fewer VSMCs in the vessel wall, whereas the muscular peripheral 

vessels have greater numbers of VSMCs and lower elastin content (Nichols & 

O'Rourke, 2005). As shown in Figure 2.7a, the gender discrepancy in 

augmentation index is gre ter from ≥30 yrs upw rds. An incre sed 

augmentation index reflects a greater systolic blood pressure and vascular 

b 

Age Decade 

a 

Figure 2.6. The reduction in arterial stiffness across the lifespan. a) 
Carotid arterial distensibility showed a strong negative correlation with 
age (r = -0.70) across an age range of 23-73 yrs (Benetos et al., 1993). b) 
Aortic PWV increases gradually from the second decade of life similarly in 
men (n = 250) and women [n = 248; van der Heijden-Spek et al., (2000)].  
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impedance due to early wave reflection. Given that this has implications for 

coronary blood supply, it might explain why women have slightly higher 

prevalence rates for angina pectoris than men (Roger et al., 2011). The reason 

for a greater vascular resistance in women can be explained in part by body 

height. Augmentation index is inversely related to body height and given that 

women are generally shorter than men, an earlier pulse wave will be reflected 

with a greater magnitude due to a shorter distance to the site of reflection [i.e. 

arterial bifurcation (London et al., 1995; Hayward & Kelly, 1997)]. Furthermore, 

an increased arterial stiffness in older women is enhanced due to the loss of 

oestrogen at the menopausal transition, resulting in an increased PP which is 

higher than age-matched males (Figure 2.7b), thus augmenting left ventricular 

load (Smulyan et al., 2001).  
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The loss of oestrogen at the menopause increases endothelial dysfunction 

which increases CVD risk as explained in section 2.1. The reduction in 

endothelial function has implications for arterial stiffness (section 2.2.2) which 

potentiates CVD risk. In age-matched pre and postmenopausal women, carotid 

arterial distensibility was lower in postmenopausal women, with further 

reductions with a longer time spent in menopause (Westendorp et al., 1999). 

Additionally, treatment with hormone replacement therapy in postmenopausal 

women incre sed c rotid  rteri l compli nce  nd reduced β-SI (Moreau et al., 
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Figure 2.7. Vascular impedance across the lifespan. a) Carotid arterial 
augmentation index increases across the lifespan but is higher in females 
than males (Hayward & Kelly, 1997). b) Brachial artery pulse pressure (PP) 
is greater in men than premenopausal women (≤40 yrs). However, with 
increasing age, PP is higher in women than men due to a greater number 
of postmenopausal women within each age group. In the group ≥55 yrs 
100% were postmenopausal women (Smulyan et al., 2001).  
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2003). These changes in arterial stiffness are related to the physiological 

actions of oestrogen. Endogenous oestrogen directly affects vasodilation by 

increasing NO synthesis and enhancing endothelial cell survival due to its effect 

on telomeres and oxidative stress, through downregulation of AT1R (section 

2.1.6), thus, increasing arterial compliance and reducing vascular resistance. 

The hormone also has an influence on the structural properties of the arterial 

wall. Oestrogen receptors have found to be expressed on VSMCs in women 

(Losordo et al., 1994),  nd tre tment with 17β-estradiol in cultured aortic 

smooth muscle cells increased elastin and reduced collagen deposition (Natoli 

et al., 2005). Therefore, the reduction of oestrogen throughout the menopausal 

transition contributes to arterial stiffening by reducing vascular function and 

increasing arterial tensile strength.  

Factors other than the menopause and age can affect arterial stiffness across a 

wom n’s lifesp n. Diet  nd lifestyle beh viour c n strongly influence the 

distensibility of an artery. Obesity is highly prevalent in women and has a 

negative impact or arterial stiffness. In 660 women aged between 10-86 yrs, 

aortic PWV was faster with a greater BMI (Zebekakis et al., 2005). However, 

this relationship was only evident in middle-aged and older women. Similarly, 

BMI was an independent predictor of aortic PWV only in middle-aged and older 

women (Wildman et al., 2003). Moreover, obese adults exhibited greater carotid 

artery IMT and reduced distensibility compared to age-matched non-obese 

participants (Moore et al., 2013). Furthermore, weight reduction can rectify the 

increased arterial stiffening as evidenced by a reduction in SBP, DBP, PP, 

 ortic PWV, c rotid β-SI and ET-1 following 12 weeks of diet which reduced 

BMI in adults (Miyaki et al., 2009a). These factors can also be modified through 

exercise training interventions. The mechanisms by which obesity increases 
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arterial stiffness are mostly related to an increased endothelial dysfunction 

associated with obesity as described in section 2.1.6. Figure 2.8 summarises 

the contributing factors to increased arterial stiffness across the female lifespan.  

 

 

 

 

 

2.2.4 Exercise training and arterial stiffness 

Physical activity has favourable effects on arterial stiffness. Significant negative 

correlations have been observed between V O2m x  and markers of arterial 

stiffness such as carotid artery augmentation index and aortic PWV 

(Vaitkevicius et al., 1993). Moreover, an increased  carotid artery augmentation 

index and aortic PWV in postmenopausal women compared to premenopausal 

women was not observed between physically active pre and postmenopausal 

women (Tanaka et al., 1998). This indicates that exercising throughout the 

lifespan may negate the age-related decline in arterial stiffness. Many studies 
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Figure 2.8. Factors and mechanisms contributing to arterial stiffness in 
women across the lifespan. Age, obesity, oestrogen and height alter the 
functional and/or structural components affecting arterial stiffness. A 
change in the structural components can influence the functional 
component by accelerating endothelial function. A vicious circle is 
created between endothelial dysfunction and arterial stiffness as arterial 
stiffness is a cause and consequence of endothelial dysfunction. O2

- = 
superoxide anion, NO = nitric oxide, MMPs = matrix metalloproteinases, 
AGEs = advanced glycation endproducts. 
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have examined the effects of exercise training on arterial stiffness in central and 

peripheral arteries. A literature search on Pubmed with the terms ―exercise 

tr ining‖  nd ― rteri l stiffness‖ produced 67 results. Gener lly, exercise is 

associated with positive outcomes. Indeed, following continuous aerobic 

exercise training, carotid arterial compliance increased in postmenopausal 

women (Moreau et al., 2003) and obese men (Miyaki et al., 2009b); β-SI 

reduced in postmenopausal women (Moreau et al., 2003; Sugawara et al., 

2006) and sedentary adults (Cameron & Dart, 1994), and central PWV 

decreased in obese women (Yang et al., 2011) and older adults (Vogel et al., 

2013). However, other studies have reported no alterations in arterial stiffness. 

Following 3 months of continuous aerobic exercise training in postmenopausal 

women (Seals et al., 2001) and sedentary middle-aged and older adults 

(Tanaka et al., 2002), no changes in aortic or upper limb PWV and carotid 

artery IMT and augmentation index were evident. Likewise, 8 weeks of cycling 

exercise training in hypertensive adults had no effect on central or peripheral 

PWV (Ferrier et al., 2001). These inconsistencies might be related to the 

exercise type and intensity adopted or the pre-training health of participants, 

given that individuals with greater arterial stiffness at pre-training experience 

larger changes at post-training (Rakobowchuk et al., 2013). Additionally, 

variations in results might be due to a variety of methods that are used to 

measure arterial stiffness, such as ultrasound imaging and applanation 

tonometry. Furthermore, there is no consensus on the best type of exercise for 

improving arterial stiffness. Resistance and strength type exercise may not have 

as great effect as aerobic type exercise (Bertovic et al., 1999; Miyachi et al., 

2004; Rakobowchuk et al., 2005). Moreover, there is growing evidence that 

interval type exercise might have greater benefits to vascular health than 

continuous exercise training. As previously reviewed (section 2.1.7) interval 
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exercise training produced similar or superior effects on endothelial function and 

appears to be more enjoyable than continuous exercise training (Tjønna et al., 

2008). Only a few studies have compared the effects of interval and continuous 

exercise training on arterial stiffness (Table 2.3). Both sprint interval and 

continuous exercise training improved arterial distensibility in the lower limb but 

carotid arterial stiffness measures were unaltered suggesting only local 

adaptations occurred (Rakobowchuk et al., 2008). Additionally, in hypertensive 

patients (Guimaraes et al., 2010) and in young women with hypertensive 

parents (Ciolac et al., 2010), interval exercise training was superior for reducing 

central PWV. Given the link between greater arterial stiffness and 

cardiovascular disease (reviewed in previous sections), future studies are 

required to compare the effects of interval and continuous exercise training on 

all arterial stiffness markers, in different populations with or at risk of CVD.  

Table 2.3. Comparisons between interval and continuous exercise training 
on arterial stiffness. 
Author Participants Interval exercise 

group 
Continuous 
exercise group 

Results 

Rakobowchuk 
et al., (2008) 

Healthy adults - 6 weeks, 3/ week 
cycling 
- 4-6 30s sprints 
followed by 4.5 min 
recovery periods 

- 6 weeks, 5/ week 
cycling 
- 40-60 min at 65% 

V O2m x 

     
    Popliteal 
distensibility in 
both groups 
        Carotid 
distensibility or 
IMT in both groups 

Guimaraes et 
al., (2010) 

Hypertensive 
patients 

- 16 weeks, 3/ week 
treadmill 
- 1 min at 80% HRR 
and 2 min at 50% HRR 
for 40 min 

- 16 weeks, 3/ week 
treadmill 
- 40 min at 60% 
HRR 

     
    Carotid-femoral 
PWV in interval 
group only 
 

Ciolac et al., 
(2010) 

Young women 
with 
hypertensive 
parents 

- 16 weeks, 3/ week 
treadmill 
- 1 min at HR at 80-

90% V O2m x  and 2 min 

at HR at LT (50-60% 

V O2m x) for 40 min 

- 16 weeks, 3/ week 
treadmill 
- 40 min at HR at 60-

70% V O2m x 

     
    Carotid-femoral 
PWV in interval 
group. Reduced in 
continuous group 
but not 
significantly 
 

= increase post-training,      = no change post-training, HR = heart rate, HRR = heart rate 

reserve, V O2m x = maximal oxygen uptake, IMT = intima-media thickness and PWV = pulse 
wave velocity 
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2.2.4.1 Mechanisms for exercise-mediated reductions in arterial stiffness 

The mechanisms by which aerobic exercise training decreases arterial stiffness 

relate to both functional and structural changes in the arterial wall. Functional 

changes relate to increases in endothelial function mediated by augmented NO 

bioavailability (Joyner, 2000). Greater NO and other vasodilators enable the 

relaxation of VSMCs, thereby allowing a more distensible vessel. Exercise 

training increases NO bioavailability and endothelial-dependent dilation by 

increasing shear stress, which upregulates eNOS and downregulates ROS, as 

reviewed previously in section 2.1.7.1. Furthermore, NO inhibits VSMC 

proliferation (Rudic et al., 1998), thus, greater NO bioavailability post-training 

may reduce arterial stiffness by decreasing VSMC hypertrophy and migration 

into the sub-endothelium (Joyner, 2000). Increases in NO-mediated endothelial-

dependent vasodilation can occur as early as 2 weeks from the start of exercise 

training (Tinken et al., 2008; Birk et al., 2012). However, structural changes in 

the vessel wall take longer to occur. It is suggested that the increase in arterial 

pressure during exercise increases stretching of the vessel wall, which may 

degrade or reduce cross-linking of collagen and elastin fibres in the arterial wall 

that contribute to increased stiffness (Joyner, 2000). Indeed, AGEs which are 

related to protein cross-linking were reduced in plasma following exercise 

training in obese rats (Boor et al., 2009). Moreover, the content of fibrous 

proteins in the vessel wall can be altered through exercise training. Following 16 

weeks of either running or swimming exercise per day in rats, the elastin 

content was increased in the aortic vessel wall, along with a reduction in the 

calcium content in elastin fibres, which was associated with an increased aortic 

distensibility (Matsuda et al., 1993). The increase in blood flow and pressure 

experienced in the arterial walls during exercise is the proposed mechanism by 

which this occurs. Finally, transforming growth factor-β1 (TGF-β1) which 
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stimulates collagen synthesis is greater in older mice compared with younger 

mice, but can be reduced following exercise training (10-14 weeks) concomitant 

with reductions in carotid arterial collagen protein content (Fleenor et al., 2010). 

Oxidative stress is one regulator of TGF-β1 (Fleenor et al., 2010) thus, 

reductions in oxidative stress post-exercise training may contribute to greater 

arterial distensibility by reduced TGF-β1 upregul tion  nd subsequent 

decreased collagen content.  

As reviewed previously, interval exercise training may be superior for 

decreasing arterial stiffness compared to continuous exercise training (Ciolac et 

al., 2010; Guimaraes et al., 2010). However, the mechanisms contributing to 

this observation have not been determined. Ciolac et al., (2010) reported a 

reduction in PWV concomitant with an increase in plasma nitrite/nitrate and 

reduction in ET-1 in the interval training group only. Therefore, interval exercise 

training may alter vasomotor tone by tipping the balance between vasomotor 

factors towards an environment where vasodilators predominate. Potentially, a 

higher exercise intensity associated with interval exercise produced greater 

shear stress during exercise, thus, providing a greater stimuli for NO 

bioavailability (Ciolac et al., 2010; Guimaraes et al., 2010). An alternative 

hypothesis suggests that the fluctuations in blood flow accompanying interval 

exercise is a more potent stimuli for functional or structural adaptations, 

compared to continuous exercise of steady elevated blood flow (Tordi et al., 

2010). Thus, future studies are required to match interval and continuous 

exercise sessions for intensity, to determine whether the exercise intensity or 

the blood flow profile of the exercise is the most important determinant for 

arterial stiffness adaptations.   
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2.3 Circulating angiogenic cells in health and disease 

2.3.1 Evidence for the contribution of haematopoietic progenitor 
cells in vascular repair and angiogenesis 

The process of angiogenesis (growth of new blood vessels from existing ones) 

and the repair of the endothelium from damage/injury, was originally believed to 

be regulated by the migration and proliferation of existing adjacent endothelial 

cells in the vessel wall (Clopath et al., 1979). In 1997 this theory was 

questioned due to the discovery of circulating haematopoietic progenitor cells. 

Asahara et al., (1997) isolated CD34+ cells (a progenitor cell marker) from 

human peripheral blood and found that the cells produced NO in response to 

VEGF and expressed the endothelial cell markers VEGFR-2, CD45 (leukocyte 

marker) and eNOS. Moreover, these cells formed clusters and tubule structures 

under culture conditions in vitro, and were observed in the capillaries of the 

ischaemic hind limbs of both mice and rabbits following intravenous infusion. 

Thus, it was hypothesised that progenitor cells likely mobilised from the bone-

marrow, contributed to endothelial repair and angiogenesis. Indeed, subsequent 

studies identified that the CD34+ cells were of bone-marrow origin using bone-

marrow transplantation models. In dogs following bone marrow transplantation, 

only CD34+ cells with donor DNA had adhered to grafts implanted into the 

thoracic aorta (Shi et al., 1998). Similarly, in mice following bone-marrow 

transplant, bone-marrow derived donor cells were localised in the area of 

ischaemic tissue and formed blood vessels, but were not observed in the non-

ischaemic tissues (Tepper et al., 2005). Further evidence for the role of 

haematopoietic progenitor cells in vascular repair and angiogenesis was 

provided both in vitro and in vivo. Progenitor cells cultured from human umbilical 

cord blood for 7 days were fluorescently labelled and injected into rabbits with a 

carotid artery injury. After 2 and 4 weeks, fluorescent cells were found on the 
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neointima of the injured vessel, and the neointima/media was significantly lower 

than the control group, indicating enhanced endothelial repair by circulating 

progenitor cells (Hu et al., 2013). In humans, CD34+ cells isolated from umbilical 

cord blood migrated towards VEGF and stromal-derived factor-1 (SDF-1) and 

expressed endothelial specific markers E-selectin, VE-Cadherin and von 

willebrand factor (vWF) when cultured in vitro for 2 weeks, suggesting these 

cells could potentially differentiate into functional endothelial cells (Peichev et 

al., 2000). Hence, these cells were termed endothelial progenitor cells (EPCs) 

which sought to maintain vascular homeostasis by repairing endothelial 

damage.  

Since their discovery many studies have attempted unsuccessfully to identify a 

specific EPC maker. It is likely that these cells represent a heterogeneous 

population of cells which act collectively to repair vascular damage (Hirschi et 

al., 2008). Indeed, studies have highlighted the contribution of other types of 

cells in vascular repair. Mononuclear cells derived from mice spleens expressed 

CD34+ and VEGFR-2 antigens and formed tubule structures after 14 days of 

culture in vitro (Werner et al., 2003). Additionally, in patients who had suffered 

from an acute MI, bone-marrow derived mononuclear cells infused into the 

ischaemic cardiac tissue, increased stroke volume, myocardial perfusion and 

left ventricular end-systolic volume to a greater extent than untreated patients 

(Strauer et al., 2002). The original hypothesis that EPCs contribute to vascular 

repair by differentiating into mature endothelial cells and incorporating into the 

endothelial monolayer has been discredited by studies, which have used 

fluorescent labelling to show that bone-marrow derived cells home to areas of 

damage but do not integrate into the endothelium. In mice following bone-

marrow transplantation of cells expressing green fluorescent protein (GFP+), the 
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donor GFP+ cells accumulated around the ischaemic hind limb but were not 

incorporated into the vessel (Ziegelhoeffer et al., 2004). Furthermore, in a 

sophisticated experiment, a segment of carotid artery from wild type mice was 

denuded and transplanted into the carotid artery of GFP+ bone-marrow 

transplanted mice (Hagensen et al., 2012). After 4 weeks, the area was 

reendothelialised with GFP+ cells. However, when the injured segment was 

surrounded by uninjured segments from the wild type mice, the 

reendothelialised cells were positive for the wild type mice and not the recipient 

GFP+ cells. Thus, providing evidence that the endothelial cells adjacent to the 

injury were responsible for the endothelial recovery. Moreover, in vitro culture of 

mononuclear cells reveal different subpopulations. Mononuclear cells cultured 

for 4-7 days are commonly referred to as early EPCs but >90% of cells express 

specific monocyte/macrophage markers (CD144, CD11) and only ~5% express 

the progenitor cell antigen CD34 (Rehman et al., 2003). These cells secrete 

growth factors and cytokines and increase perfusion recovery from hind limb 

ischaemia, but cannot form tubules or incorporate into a HUVEC monolayer in 

vitro (Rehman et al., 2003; Hur et al., 2004). In contrast, late outgrowth EPCs 

which appear after ~7-21 days of culture display a cobblestone morphology 

similar to mature endothelial cells, increase perfusion recovery from hind limb 

ischaemia, and can form tubule structures in vitro but do not secrete growth 

factors or ingest bacteria (Hur et al., 2004). However, it is unknown whether 

these cells appear in vivo or only under specific conditions in vitro. 

Nevertheless, collectively these findings suggest that bone-marrow derived 

progenitor cells and mononuclear cells contribute to vascular repair and 

angiogenesis by homing to areas of damage or ischaemia, and act in a 

paracrine manner by secreting growth factors and cytokines that stimulate the 

proliferation and migration of residing endothelial cells. Potentially, a small 
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population of these cells may have the ability to differentiate into mature 

endothelial cells and become incorporated into the vessel walls. Thus, from 

herein the cells will be given the universal term of circulating angiogenic cells 

(CACs) as recommended (Rehman et al., 2003). 

2.3.2 Mobilisation, homing and adhesion of circulating angiogenic 
cells 

To enable the repair or growth of blood vessels by CACs, the cells must first be 

released from the bone marrow into the circulation. Although the mechanisms 

are not fully understood, it is known that factors such as ischaemia, exercise, 

oestrogen and cytokines such as VEGF, SDF-1, granulocyte- colony stimulating 

factor (G-CSF), granulocyte monocyte- colony stimulating factor (GM-CSF), and 

erythropoietin (EPO), stimulate the mobilisation of CACs into the circulation, 

where the cells migrate and adhere to sites of vascular injury or stress, and are 

either incorporated into the vessel wall or secrete growth factors that aid in the 

proliferation of existing mature endothelial cells [Figure 2.9, Urbich & Dimmeler, 

(2004)]. In quiescent conditions, the progenitor cells are attached to stromal 

cells resident in the bone marrow via adhesion molecules such as VCAM-1 

(Lapidot & Petit, 2002). The stromal cells influence the microenvironment by 

releasing SDF-1 so that bone marrow derived CACs reside in the bone marrow 

via interaction with the SDF-1 receptor CXCR4 which is expressed on CACs. 

(Lapidot & Petit, 2002). Upon activation by physiological stresses, proteinases 

such as elastase, cathepsin G and MMPs cleave the adhesive bonds between 

the stromal cells and CACs, thus releasing the CACs into a permissive niche 

(Aicher et al., 2005). One of the main pathways is via MMP-9. Through 

experiments involving MMP-9-/- mice and MMP-9 inhibition, it was revealed that 

activation of MMP-9 by cytokines cleaved membrane bound kit ligand (mKitL) 

on stromal cells, allowing release of soluble kit ligand (sKitL) which interacts 
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with CAC adhesion molecules, thus allowing the release of CACs from the bone 

marrow (Heissig et al., 2002). The enzyme eNOS also appears to play a pivotal 

role in CAC mobilisation. In eNOS-/- mice, MMP-9 activity and CAC mobilisation 

was reduced in response to VEGF, and recovery from hind limb ischaemia was 

impaired even when eNOS-/- mice underwent bone marrow transplantation 

using wild type mice cells (Aicher et al., 2003). The release of NO through 

activation of eNOS in stromal cells in the bone marrow activates MMP-9 and the 

release of sKitL, which degrades the interaction between SDF-1 and its receptor 

CXCR4 on CACs, creating a chemotactic gradient that forces CACs to diffuse 

from the bone marrow into the circulation (Lapidot & Petit, 2002; Aicher et al., 

2005). 
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Figure 2.9. The multi-step mechanisms by which circulating angiogenic 
cells (CAC) aid in vascular repair and angiogenesis. Cytokines and other 
factors mobilise CACs from the bone marrow niche into the circulation 
through a chemotactic gradient. The cells migrate and adhere to the 
activated vasculature where the CACs either differentiate into mature 
endothelial cells and become incorporated into the endothelium, or the 
cells secrete growth factors which aid in angiogenesis of vascular repair 
by the proliferation and migration of existing functional endothelial cells 
in the vessel wall. Adapted from Urbich & Dimmeler (2004). 
 

Following injury or physiological stress, the endothelium becomes activated  

causing aggregation of platelets which in combination with activated endothelial 

cells, secrete VEGF and SDF-1 (Zampetaki et al., 2008). CACs once released 

from the bone marrow migrate towards this stimulus due to the expression of 

the VEGF and SDF-1 receptors, VEGFR-2 and CXCR4, respectively. SDF-1 is 

a strong homing chemokine as evidenced by both in vivo and in vitro studies. 

An increase in plasma SDF-1 in mice augmented CAC mobilisation and 

migration from the bone marrow in a dose dependent manner (Hattori et al., 

2001). In healthy humans, cultured CACs migrated towards SDF-1α in    

boyden chamber assay in vitro in a dose dependent manner, which was 
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impaired following CXCR4 receptor inhibition (Zheng et al., 2007). The 

migration of CACs might act partly via a PI3k/Akt/eNOS pathway as inhibition of 

PI3K and eNOS activation by wortmannin and L-NAME, respectively, inhibited 

CAC migration towards SDF-1α in vitro (Zheng et al., 2007). SDF-1 can also 

bind to its receptor CXCR7 which is present on CACs and contributes to cell 

survival, endothelial adhesion and transendothelial migration (Dai et al., 2011). 

eNOS may also play a role in CACs functional ability to migrate and aid in 

angiogenesis in the vasculature, as the intravenous infusion of bone marrow 

derived cells from eNOS-/- mice into both eNOS-/- and wild type mice, impaired 

perfusion recovery from hind limb ischaemia (Aicher et al., 2003). Furthermore, 

monocyte chemoattractant protein-3 (MCP-3) which is secreted from 

macrophages at the sites of vascular damage contributes to CAC homing, as 

MCP-3 increased CAC migration in vitro and stimulated the development of 

microvessels in a matrigel plug implanted in mice in vivo (Bousquenaud et al., 

2012). MCPs can also stimulate the adhesion of CACs to the endothelium by 

 ctiv ting the β1-integrin expressed on CACs (Fujiyama et al., 2003). 

Adherence to the activated endothelium is a requirement for CACs to exert their 

angiogenic effects which involves the interaction between integrins on CACs 

and adhesion molecules on the vasculature (Urbich & Dimmeler, 2004). β2-

integrin is expressed on CACs (Chavakis et al., 2005) along with other integrins 

such  s α4β1, αvβ3,  nd αvβ5 (Urbich & Dimmeler, 2004). Integrins and ligands 

such as P-Selectin Glycoprotein Ligand-1 (PSGL-1) on CACs interact with 

adhesion molecules and ligands such as ICAM-1, E-selectin and P-selectin, 

which are upregulated on the activated endothelial cells (Zampetaki et al., 

2008). Enhanced adhesion of CACs is produced by stimulation of CACs by high 

mobility group box 1 (HMGB1) which is secreted from necrotic endothelial cells 

(Zampetaki et al., 2008). Figure 2.10 depicts the process of CAC to an injured 
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endothelium. Although CACs are mobilised in response to acute physiological 

stress such as following an MI (Shintani et al., 2001) or after an exercise 

session (Laufs et al., 2005), CAC mobilisation and function are impaired in 

individuals who are in a state of chronic stress or inflammation as reviewed in 

the next section. 

 

 

 

2.3.3  Circulating angiogenic cells and cardiovascular disease risk 

The number of CACs in peripheral blood can be quantified by flow cytometry 

using antibodies that detect specific markers on CACs, whilst CAC function is 

assessed using functional migration, adhesion and colony-forming assays in 

vitro (refer to the general methods, chapter 3, section 3.12 for details). The 

number and function of CACs are impaired in many disease states. In CAD 

patients, CD34+KDR+ CAC number and the number of  colony-forming units 

(CFUs) and migrated CACs to VEGF was significantly reduced when compared 

Figure 2.10. Circulating angiogenic cell (CAC) adhesion to an activated 
endothelium. Aggregated platelets and activated endothelial cells 
secrete VEGF and SDF-1 which stimulate the migration of CACs to the 
site of injury. Integrins and PSGL1 on CACs interact with adhesion 
molecules ICAM-1, E-selectin and P-selectin on the endothelium which is 
enhanced by release of HMGB1. Adapted from Zampetaki et al., (2008). 
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to age-matched healthy controls (Vasa et al., 2001; Werner et al., 2005). 

Diabetic patients exhibited reduced CAC tubule formation and adhesion to TNF-

α  ctiv ted HUVECs in vitro (Tepper et al., 2002). Additionally, 

CD34+CD133+KDR+ CAC number were 53% lower in diabetic patients when 

compared to control participants (Fadini et al., 2006c). Low CAC numbers and 

impaired function are also associated with the presence of CVD risk factors. 

Indeed, CAC number in peripheral blood and migration, adhesion, CFUs and 

tubule formation in vitro, have been reported to significantly correlate with one 

of more of the following CVD risk factors; smoking, advancing age, 

hypertension, family history of CAD, obesity, hyperlipidaemia, and higher values 

of LDL, plasma glucose, HbA1c, C-Reactive protein (CRP), SBP, triglycerides, 

carotid artery IMT, and waist circumference (Vasa et al., 2001; Tepper et al., 

2002; Hill et al., 2003; Schmidt-Lucke et al., 2005; Werner et al., 2005; Fadini et 

al., 2006a; Fadini et al., 2006b; Jialal et al., 2010a). Furthermore, CAC number 

and function are independent predictors of morbidity and mortality. In stable and 

unstable CAD patients, CAC number predicted the severity of atherosclerotic 

disease progression with patients with the lowest number of CACs more likely 

to suffer from a cardiovascular event (Schmidt-Lucke et al., 2005). Moreover, 

low CAC numbers were an independent predictor of death from cardiovascular 

related causes, and low CFUs increased the risk of experiencing a first major 

cardiovascular event in CAD patients (Werner et al., 2005).  

2.3.3.1 Mechanisms for CAC impairment in CVD 

The low numbers of CACs in CVD populations are believed to be due to 

defective mobilisation from the bone marrow and/or reduced cell survival in the 

circulation (Figure 2.11). An imbalance in mobilisation factors such as VEGF 

and G-CSF may contribute to reduced release of CACs from the bone marrow, 

by reducing the activation of proteinases which cleave the bonds between 
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CACs and stromal cells (Jialal et al., 2010b). This impairment in the bone 

marrow niche may be augmented by reduced eNOS activation, which is 

required for activation of MMP-9 (Aicher et al., 2003). Reduced eNOS 

expression and phosphorylation and increased uncoupled eNOS is 

characteristic of many CVD states (Förstermann & Münzel, 2006). Indeed, in 

cultured CACs from type 2 diabetic patients, ROS production was greater and 

CFUs and SDF-1α medi ted migr tion w s lower comp red to non-diabetics 

(Thum et al., 2007). However, this impairment was reversed with NOS 

inhibition. Moreover, in rat bone marrow CACs, NOS inhibition blocked 

superoxide anion production, providing further evidence that uncoupled eNOS 

and increased oxidative stress impairs CAC mobilisation (Thum et al., 2007). 

Attenuated CAC migration to SDF-1 observed in diabetic patients (Thum et al., 

2007) and CAD patients (Walter et al., 2005) suggests that the chemotactic 

gradient required for CAC mobilisation is impaired. Potentially, a reduced 

integrity of the CXCR4 receptor signalling pathway may mediate this 

observation. Indeed, CXCR4 inhibition blocks SDF-1α medi ted migr tion in 

vitro (Zheng et al., 2007). Furthermore, CXCR4 inhibition reduced Akt and 

eNOS phosphorylation in SDF-1α tre ted CACs, suggesting th t  n imp irment 

between SDF-1/CXCR4 and PI3K/Akt/eNOS pathway contributes to defective 

mobilisation (Zheng et al., 2007). Reduced expression of CXCR7, a SDF-1 

receptor, decreases cell survival, contributing to low CAC number observed in 

CVD populations (Dai et al., 2011). Indeed in CXCR7-/- mice, 70% died in the 

first week of birth and exhibited cardiovascular defects such as myocardial 

degeneration (Gerrits et al., 2008), suggesting that CXCR7 is critical in 

maintaining cardiovascular health. CAC survival might be influenced by the 

physiological redox state. Increased oxidative stress and reduced antioxidant 

activity, which is characteristic of CVD increases CAC senescence (Case et al., 
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2008). In CACs of hypertensive rats, an increase in ET-1 receptors augmented 

ET-1 mediated upregulation of NADPH oxidase, which increased oxidative 

stress (Chen et al., 2012). Similarly, Ang II which is a pro-atherogenic factor 

(Lusis, 2000), increases CAC senescence by increasing CAC ROS production 

and activating apoptosis signalling pathways, thereby reducing the capacity for 

endothelial repair (Imanishi et al., 2005a; Endtmann et al., 2011). Circulating 

inflammatory factors often exhibited in disease states such as C-reactive protein 

[CRP; Verma et al., (2004)] and TNF-α (Seeger et al., 2005) also induce CAC 

cell death. Many of these factors act by altering CAC telomere biology. Oxidised 

LDL (Imanishi et al., 2004b) and angiotensin II (Imanishi et al., 2005a) reduce 

telomerase activity in CACs, thereby contributing to diminished cell integrity and 

greater senescence. Moreover, telomerase activity was attenuated in CACs 

treated with inhibitors of CXCR4 and PI3K in the presence of SDF-1α, 

suggesting disruption of the SDF-1α medi ted PI3K/Akt p thw y reduces CAC 

survival (Zheng et al., 2010). Finally, it has been postulated that exhaustion of 

the pool of CACs in the bone marrow is partly responsible for low CAC number 

in CVD, due to the continuous requirement of CACs to repair vascular damage 

(Dimmeler & Zeiher, 2004). 

Reduced CAC function in the presence of CVD risk factors or in patients with 

CVD, are caused by many of the same mechanisms responsible for reduced 

CAC number, including increased oxidative stress, decreased receptor and 

intracellular pathway activity and attenuated telomerase activity (Figure 2.11). 

Reduced signalling through CXCR4 mediated pathways impaired CAC 

migration in vitro in CAD patients, and reduced the incorporation and recovery 

of blood flow in the ischaemic hind limb of mice (Walter et al., 2005). The 

authors observed that CXCR4 mediated Janus Kinase-2 (JAK-2) 
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phosphorylation in CACs was reduced in CAD patients, but not CXCR4 

expression, indicating that reduced CAC function is mediated by dysfunctional 

intracellular pathways (Walter et al., 2005). Greater levels of oxidised LDL 

contribute to atherosclerosis and CVD onset (Lusis, 2000) and influences CAC 

function. Incubation of oxidised LDL with CACs reduced in vitro tubule 

formation, and downregulated the expression of E-selectin  nd αvβ5-integrin (Di 

Santo et al., 2008). Moreover, reduced expression or integrity of β2-integrin 

reduces transendothelial migration and  recovery in mice ischaemic hind limbs 

(Chavakis et al., 2005). Thus, in chronic inflammation, CAC adhesion, migration 

and reparative ability might be impaired by circulating factors interacting with 

adhesion molecules. Finally, reduced telomerase activity not only increases 

CAC senescence but contributes to CAC dysfunction, evidenced by reduced 

tubule formation in vitro (Imanishi et al., 2004b). 

 

Figure 2.11. Mechanisms contributing to reduced CAC number and 
function. Increased oxidative stress, angiotensin II, reduced eNOS 
activity, increased eNOS coupling, decreased mobilisation of cytokines, 
increased inflammatory factors, reduced telomerase activity and 
dysfunctional receptor intracellular pathways reduce CAC mobilisation, 
survival and homing. Reproduced from Dimmeler & Zeiher (2004). 
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2.3.4 Circulating angiogenic cells in women across the lifespan 

Ageing is associated with reduced angiogenic ability as evidenced by 

attenuated hind limb blood flow perfusion and auto-amputation (i.e. detachment 

of the limb due to blood vessel damage) following ischaemia in old mice 

compared to young mice (Rivard et al., 1999). This process may be caused or 

augmented by the addition of reduced CAC number and function with 

advancing age. Age is an independent predictor of CD34+KDR+ cell number 

(Vasa et al., 2001) and negatively correlates with CAC number [Figure 2.12; 

Vasa et al., (2001), Schmidt-Lucke et al., (2005), Fadini et al., (2006b)]. In 

addition to impaired mobilisation, age also impairs CAC function, including 

reduced CFUs and in vitro VEGF-mediated migration [Figure 2.12; Vasa et al., 

(2001), Werner et al.,(2005)].  

 

 

 

Many of the mechanisms responsible for impaired CAC mobilisation, survival 

and function with advancing age are similar to those discussed in section 

2.3.3.1 (Figure 2.13) and include exhaustion of the pool of CACs within the 

bone marrow, increased Ang-II, TNF-α, oxid tive stress  nd reduced pro-

angiogenic factors, nitric oxide and eNOS (for review; Williamson et al., 2012). 

a b 

Figure 2.12. Circulating angiogenic cell (CAC) number and function with 
age. (a) CAC migration to VEGF in vitro (Vasa et al., 2001) and (b) the 
number of circulating CD34+ cells (Fadini et al., 2006b) reduce with 
advancing age. 
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Additionally, AGEs which accumulate with advancing age (Uribarri et al., 2007) 

have been shown to reduce in vitro CD34+-mediated endothelial sprouting and 

increase CD34+ cell apoptosis (Scheubel et al., 2006), thus, contributing to 

reduced CAC survival and function. The expression of Glutathione Peroxidase-

1 (GPX1), an anti-oxidant enzyme, in cultured CACs was significantly lower in 

older adults (65-83 yrs) when compared to younger adults (18-19 yrs), 

indicating that CACs lose their anti-oxidant defence with advancing age, 

contributing to greater cell death (He et al., 2009). Moreover, CXCR4 

expression on CACs reduce with age and the structure of heparin sulphate on 

the surface of CACs alters with age (Williamson et al., 2013). These changes 

correlated with the reduction in migration and homing observed in older adults. 

Finally, CACs from older adults exhibit reduced telomere length (Kushner et al., 

2009) and telomerase activity (Kushner et al., 2011). The abrogation of 

telomere length appeared from the age of 55 years onwards. These studies 

were conducted in adult males only, therefore, the time course of the effect of 

age on CAC telomere biology in women is unknown. However, it is known that 

oestrogen has an anti-apoptotic and pro-angiogenic effect on CACs, which is 

lost after the menopausal transition (Imanishi et al., 2010). Therefore, 

postmenopausal women may experience a loss in CAC number, survival and 

function that may augment CVD risk, by reducing the capacity for endothelial 

repair (Figure 2.13). Indeed, CD34+KDR+ and CD34+CD133+KDR+ CACs are 

higher in pre-menopausal women compared to postmenopausal women (Bulut 

et al., 2007), where CAC number is similar to that of age-matched older men 

(Fadini et al., 2008; Rousseau et al., 2010). Although CAC function has not 

been compared specifically between pre and postmenopausal women, many 

studies have examined the effects of oestrogen removal and treatment on CAC 

function in vitro. In pre-menopausal eumenorrheic women, the number of 
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colonies formed from late outgrowth CACs in culture and the number of 

adhered CACs to a monolayer of HUVECs, was greater compared to age-

matched men (Fadini et al., 2008). Moreover, when CACs were incubated with 

an oestrogen receptor inhibitor, the number of colonies and adherent CACs 

were significantly attenuated in women only, whereas incubation with oestrogen 

increased CAC function in men only. Similarly, in rats after ischaemia-

reperfusion injury, the percentage increase in capillary density and CACs 

incorporated or adhered to vessels was greater following infusion of female 

cultured CACs compared to male CACs (Fadini et al., 2008). Furthermore, in 

vitro CAC apoptosis induced by TNF-α w s reduced with simult neous 

incubation with oestrogen (Strehlow et al., 2003). The impact of reduced CAC 

number and function induced by oestrogen loss on vascular repair in vivo has 

been demonstrated in rodent models. In mice following ovariectomy, neointima 

area and media thickness was greater after carotid arterial injury compared to 

controls; an effect that was not observed in mice receiving oestrogen treatment 

(Strehlow et al., 2003). Moreover, following carotid arterial injury, mice which 

received oestradiol pellets showed larger and faster reendothelialisation than 

mice receiving placebo pellets (Iwakura et al., 2003).  

Oestrogen exerts its effects by activating eNOS predominantly through 

oestrogen receptor-α  nd less so through the β-receptor, which is evidenced by 

impaired CAC function and reendothelialisation in eNOS-/-, oestrogen receptor-

α-/- and oestrogen receptor-β-/- mice following oestrogen treatment (Iwakura et 

al., 2003; Hamada et al., 2006). Finally, CAC senescence is greater in 

postmenopausal women due to the effect of and the loss of oestrogen on 

telomere biology. Oestrogen increases telomerase activity by activating the 

PI3K/Akt pathway in CACs, triggering upregulation of telomerase reverse 
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transcriptase, a subunit of telomerase (Imanishi et al., 2005c). Additionally, 

oestrogen acts by impairing the atherogenic effects of Ang II by downregulating 

AT1R expression (Imanishi et al., 2005b) which has previously been described 

in endothelial cells (section 2.1.6, Figure 2.5). Thus, in postmenopausal women, 

without the protective effect of oestrogen, CAC number and function are 

impaired partly by reduced telomerase activity due to reduced PI3K/Akt 

signalling and increased expression of AT1R (Imanishi et al., 2010). 

 

Figure 2.13. Mechanisms contributing to reduced circulating angiogenic 
cell number and function in women across the lifespan.  Reproduced from 
Williamson et al., (2012). EPC = endothelial progenitor cell, NO = nitric 
oxide, HSPG = heparin sulphate proteoglycans, Ang II = angiotensin II and 
ox-LDL = oxidised low-density lipoprotein. 

 

As discussed in the previous sections (sections 2.1.6 and 2.2.3), young pre-

menopausal women can suffer from reduced vascular repair if other CVD risk 

factors are present such as obesity. With greater BMI and waist circumference, 

CD34+, CD34+KDR+ and CD34+CD133+ CACs are reduced (Muller-Ehmsen et 

al., 2008). Moreover, in comparison to age-matched non-obese adults, CD34+ 

and CD34+CD133+KDR+ CACs were significantly reduced in obese adults (>30 
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kg∙m-2) but not in overweight adults [25-30 kg∙m-2, MacEneaney et al., (2009)]. 

Similarly, CAC function and angiogenic ability are impaired in obesity. Cultured 

CACs from obese adults when compared to non-obese, exhibited impaired 

adhesion to fibronectin, migration, paracrine secretion of IL-8 and MCP-1 and 

reduced incorporation into tubule structures in vitro and into mice vasculature 

following hind limb ischaemia (Heida et al., 2010). These effects were all 

reversible following weight reduction (Muller-Ehmsen et al., 2008; Heida et al., 

2010). The mechanisms by which obesity reduces CAC number and function 

relate to a pro-atherogenic milieu created by increased levels of oxidative 

stress, inflammation (i.e. CRP, TNF-α), reduced  nti-oxidant enzyme activity, 

insulin resistance associated with increased adipose tissue and circulating 

lipoproteins and triglycerides (MacEneaney et al., 2010; Tobler et al., 2010; 

Miller-Kasprzak et al., 2011). In combination with reduced CAC number and 

function, obese women also exhibit greater vascular damage, evidenced by 

increased levels of circulating endothelial and platelet microparticles (Esposito 

et al., 2006). This disruption to vascular homeostasis augmented by reduced 

capacity for vascular repair, contributes to increased CVD risk in obese women. 

However, vascular homeostasis may be sustained or improved by exercise-

mediated increases in vascular repair. 

2.3.5 Exercise training and circulating angiogenic cells 

Higher levels of physical activity and fitness are associated with better 

cardiovascular health as discussed previously. A greater capacity to repair 

vascular damage may contribute to this outcome. Cross-sectional studies have 

revealed higher numbers of CACs and greater CAC function in physically active 

adults compared to sedentary controls (Bonsignore et al., 2002). A recent study 

observed increased CD34+KDR+ CACs in endurance trained older men (59-72 
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yrs) compared to age-matched sedentary men (Yang et al., 2013). However, in 

young men (21-33 yrs) CAC numbers were the same regardless of fitness level, 

suggesting that continued exercise throughout the lifespan is necessary to 

partly negate the age-related decline in CACs and potentially endothelial repair. 

Nevertheless, CAC migration to VEGF was higher in trained men compared to 

sedentary counterparts, regardless of age (Yang et al., 2013). Thus, exercise is 

a readily available method for improving cardiovascular health through 

increasing the ability for vascular repair. Further evidence is provided by 

exercise intervention studies which are summarised in Table 2.4. 
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Table 2.4. Effects of exercise training in humans on circulating angiogenic cell (CAC) number and function in healthy and in 
diseased populations. 
Author Participants Exercise training programme Results Summary 
Laufs et al., 
(2004) 

19 CAD patients  
(70 yrs) 

- 4 weeks 
- Muscle strength training 2-3 days/week 
- Cycling 3 days/week. 15-20 min at 60-80% 

V O2m x 

- CD34
+
KDR

+
 CACs increased 78 ± 148% 

- Cultured CAC apoptosis decreased  

41 ± 48% 

     
    CAC number and in vitro 

survival in CAD patients 

Sandri et al., 
(2005) 

9 ischaemic 
PAOD patients 
(57 ± 8 yrs) 

- 4 weeks  
- Treadmill 6 times daily on 5 days/week 
- Duration until pain was untolerable 

- CD34
+
 CACs increased 550% 

- CD34
+
KDR

+
 CACs increased 420% 

-In vitro integrative capacity increased 160% 

 
   CAC number and function in 
PAOD patients with ischaemia 

9 non-ischaemic 
PAOD patients 
(63 ± 7 yrs) 

As above 
-Duration = 75% of maximum walking distance 

- CD34
+
 and CD34

+
KDR

+
 CACs did not change 

- In vitro integrative capacity increased 205% 

        CAC number 
   
    CAC function in PAOD 
patients without ischaemia 

15 CAD patients  
(61 ± 8 yrs) 

- 4 weeks 
- Cycling 6 times daily on 5 days/week 

- 10 min at 70% HR at V O2m x 

- CD34
+
 and CD34

+
KDR

+
 CACs did not change 

- In vitro integrative capacity increased 219% 

         
         CAC number 
   
    CAC function in CAD patients  

Steiner et al., 
(2005) 

20 CAD patients 
(52 ± 10 yrs) 

- 12 weeks 
- Running on 3 days/week for 30-60 min 
- Plus 2 supervised endurance running 
sessions/week 
 

- CD34
+
CD133

+
KDR

+
 CACs increased 2.9 ± 1.8-fold 

- No change in CD34
+
 CACs  

    
     and           CAC number 
depending on definition in CAD 
patients 

Thijssen et al., 
(2006) 

8 older men (67 
± 76 yrs) 

- 8 weeks cycling on 3 days/week  
- 10 min at 65% HRR 
- 20 min at 65% HRR- increasing by 5% HRR 
throughout the programme 
 

- CD34
+
CD45

dim
KDR

+
 CACs reduced by 46% 

-No change in CD34
+
CD45

dim
  

    
   and           CAC number 
depending on definition in older 
men 

Hoetzer et al., 
(2007) 

10 middle-aged 
(36-55 yrs) and 
older  
(56-75 yrs) 
sedentary men 

- 3 months walking/jogging 
- 5-7 days/week for 40-50 min at 60-75% 
HRmax 
 

- VEGF mediated migration increased ~50% 

- CFUs increased ~120% 

 
    CAC function in sedentary 
males 

Sarto et al., 
(2007) 

22 CHF patients 
(61 ± 8 yrs) 

- 3 months walking/jogging 
- 5-7 days/week for 40-50 min at 60-75% 
HRmax 
 

- CD34
+
KDR

+
 CACs increased 151% 

- CFUs increased 165% 

 

 
    CAC number and function in 
CHF patients 
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 = increase following training,    =  decrease following training,        = no change post-training, CAD = coronary artery disease, PAOD = peripheral 

artery occlusive disease, CHF = chronic heart failure, CFUs= colony-forming units, HR = heart rate, V O2m x = maximal oxygen uptake, HRR = heart 
rate reserve, WR = work-rate, VEGF = vascular endothelial growth factor, SDF-1α = strom l-derived factor -1 alpha, HUVECs = human umbilical vein 
endothelial cells, TNF-α = tumour necrosis f ctor-alpha and JAK-2  = Janus Kinase-2. 

Erbs et al., 
(2010) 

17 CHF patients  
(61 ± 8 yrs) 

-12 weeks cycling 
- Weeks 1-3 = In hospital 3-6 times daily for 

5-20 min at 50% V O2m x 

- Weeks 4-12 = home based, 20-30 min at 

HR at 60% V O2m x, daily 
- Plus 1 60 min supervised group session  

- CD34
+
 CACs increased 33% 

- CD34
+
KDR

+
 CACs increased 83% 

- CAC SDF-1α medi ted migr tion incre sed 107% 

 

    CAC number and 
function in CHF patients 

Sonnenschein 
et al., (2011) 

12 metabolic 
syndrome 
patients  
(58 ± 10 yrs) 

- 8 weeks cycling 5 days/week for 30 min 

- Weeks 1-4 = HR at 50% V O2m x 

- Weeks 5-8 = HR at 70% V O2m x 

- Cultured CACs infused into mice after carotid artery injury 
increased reendothelialisation in exercise group vs. control 
- Exercise reduced CAC superoxide and increased nitric 
oxide production 

 
    CAC mediated repair in 
metabolic syndrome 
patients 

Cesari et al., 
(2012) 

47 obese adults 
(24-69 yrs) 

- 3 months walking/jogging 
- 3 days/week for 45 min at HR at estimated 
lactate threshold 
 

- CD34
+
 CACs increased 25% 

- CD34
+
KDR

+ 
CACs increased 50% 

- CD133
+
KDR

+ 
CACs increased 54% 

- CD34
+
CD133

+
KDR

+ 
CACs increased 56% 

-No change in CD133
+
 and CD34

+
CD133

+
 CACs  

   
    and          CAC number 
depending on definition in 
obese 

Rakobowchuk 
et al., (2012) 

20 healthy 
adults (24 ± 3 
yrs) 

- 6 weeks interval cycling training (30-40 
min) 
- Moderate intensity group = Repeated 10s 
at 120% WRpeak and 20s recovery 
- Heavy intensity group = Repeated 30s at 
120% WRpeak and 60s recovery 

- No change in CD34
+
, CD34

+
KDR

+
 and 

CD34
+
CD133

+
KDR

+
 CACs

 
  

         
         CAC number in 
healthy adults 

Nowak et al., 
(2012) 

12 intermittent 
claudication 
patients  
(65 ± 9 yrs) 

- 12 weeks walking 
- 3 days/week for 30 min, increasing by 5 
min every 2 weeks 

- No change in CD34
+
CD45

dim
CD133

+
KDR

+
, 

CD45
dim

CD31
+
CD133

+
 and CD34

+
CD45

dim
CD133

-
KDR

+
 

CACs
 
  

            
         CAC number in 
intermittent claudication 
patients 

Xia et al., 
(2012) 

25 elderly males  
(68 ± 3 yrs) 

- 12 weeks treadmill on  
- 3 days/week for 30 min 

- CD34
+
KDR

+
, CD133

+
KDR

+ 
CACs increased 

- CAC adhesion to TNF-α  ctiv ted HUVECs incre sed  
- Cultured CACs infused into mice after carotid artery injury 
increased reendothelialisation following exercise 
- Increased CXCR4 expression, phosphorylated JAK-2 
protein and  CAC SDF-1α migr tion 

 
     CAC number, function 
and CAC mediated repair 
in elderly men 

Gatta et al., 
(2012) 

14 CHF patients 
(72 ± 11 yrs) 

- 3 weeks. Calisthenics and 30 min cycling 
twice daily on 6 days/week at 75-85% HRmax  

-  CD34
+
KDR

+
 CACs increased 71% 

- CFUs increased 51% 
- Adhesion to TNF-α  ctiv ted HUVECs incre sed 50% 

     CAC number and 
function in CHF patients 
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Increases in CAC number and function have been reported in patients with CAD 

(Laufs et al., 2004; Sandri et al., 2005; Steiner et al., 2005), peripheral artery 

disease (Sandri et al., 2005), CHF (Sarto et al., 2007; Erbs et al., 2010; Gatta et 

al., 2012), metabolic syndrome (Sonnenschein et al., 2011) and in obese adults 

(Cesari et al., 2012) and sedentary middle-aged and older men (Hoetzer et al., 

2007; Xia et al., 2012). However, other studies have reported no changes in 

CAC number (Thijssen et al., 2006; Nowak et al., 2012; Rakobowchuk et al., 

2012), which could be due to a different cell type or that a healthy population 

was studied. Indeed, in healthy adults no changes in CAC number and function 

have been observed following exercise training (Thijssen et al., 2006; 

Rakobowchuk et al., 2012). Conversely, increases in CAC number and function 

in healthy individuals have been reported following acute exercise sessions 

(Rehman et al., 2004; Laufs et al., 2005; Van Craenenbroeck et al., 2008; 

Möbius-Winkler et al., 2009; Thorell et al., 2009; Cubbon et al., 2010). Thus, 

either a greater stimulus is required to evoke long-term changes or that the 

acute increases in cells are not sustained post-training due to recruitment of 

cells for endothelial repair, or the cells are degraded as they are not required 

due to healthy vasculature.  

Evidence of the impact of exercise-mediated increases in CAC number and 

function on endothelial repair and function is provided by studies which have 

infused human CACs cultured at pre and post-training, into mice following 

denudation of the carotid artery, and observed faster and greater carotid artery 

reendothelialisation with infusion of CACs following exercise training 

(Sonnenschein et al., 2011; Xia et al., 2012). Furthermore, improvements in 

brachial artery FMD following exercise training have correlated with the 

exercise-mediated increase in percentage reendothelialisation area in mice (r = 
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0.61, p < 0.05; Xia et al., 2012), and the increase in CD34+CD133+KDR+ CAC 

number (r = 0.83, p < 0.001; Steiner et al., 2005). This suggests greater CAC 

number and function contributes to improved endothelial function. Similar 

findings have been reported in rodents. Compared with sedentary mice, 

neointima formation was reduced and CAC number and blood vessel growth 

within a subcutaneously implanted artificial sponge, was greater in mice 

following 28 days of voluntary running (5100 ± 800 m/24 hrs; Laufs et al., 2004). 

Additionally, increases in CAC number and CFUs following 10 weeks of 

swimming (60 min on 5 days/week) in mice correlated with the increase in 

capillary-to-fibre ratio in the soleus muscle (Fernandes et al., 2012). 

2.3.5.1 Mechanisms for exercise-mediated increases in CAC number and 
function 

The mechanisms for exercise-mediated increases in CAC number and function 

are complex and have not been fully elucidated. eNOS appears important for 

CAC mobilisation and can be activated during exercise by shear stress and 

VEGF (Dimmeler et al., 1999; Hambrecht et al., 2003). In eNOS-/- mice and in 

mice treated with L-NAME, the increase in CACs following 28 days voluntary 

running exercise was attenuated (Laufs et al., 2004). Similarly, in humans 

following an acute bout of cycling exercise at 80% of the lactate threshold, the 

increase in CACs was abolished during infusion with L-NMMA (Cubbon et al., 

2010). Moreover, in CAD patients following 12 weeks of running exercise, the 

increase in CAC number significantly correlated with the increase in plasma 

nitrate/nitrite levels (Steiner et al., 2005). Activation of eNOS and synthesis of 

NO in the bone marrow vasculature may release CACs from the stromal cells 

through the action of MMPs [Figure 2.14; Gielen et al., (2010)]. Indeed, 

following 3 weeks cycling exercise in CHF patients, tissue inhibitor of 

metalloproteniases-1 (TIMP-1) was reduced and MMP-2/TIMP-1 and MMP-
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9/TIMP-1 ratios were increased (Gatta et al., 2012). Following release from the 

stromal cells, CACs must exit the bone marrow and home to areas of damage 

to exert their effects. The major mediator for this process (CXCR4/SDF-1α) is 

upregulated by exercise. CXCR4 receptor expression on cultured CACs has 

reportedly increased following treadmill exercise training in PAOD and CAD 

patients (Sandri et al., 2005) and in sedentary elderly men (Xia et al., 2012). 

Additionally, SDF-1 levels have also increased following exercise training in 

CHF patients (Sarto et al., 2007; Erbs et al., 2010). VEGF, which can mobilise 

CACs from the bone marrow (Asahara et al., 1999) and contribute to CAC 

homing and migration (Zampetaki et al., 2008) is increased following exercise 

training (Laufs et al., 2004; Sandri et al., 2005; Sarto et al., 2007; Erbs et al., 

2010; Fernandes et al., 2012). VEGF can be activated by hypoxia-inducible 

factor-1 (Forsythe et al., 1996), which is increased during exercise (Gustafsson 

et al., 1999). However, other studies have reported no changes in VEGF post-

training (Sandri et al., 2005; Steiner et al., 2005). Thus, although VEGF is 

important, other mediating factors might be required additionally to augment 

CAC mobilisation and homing. 



- 60 - 

 
Figure 2.14. Exercise-mediated mobilisation of circulating angiogenic 
cells. Exercise increases shear stress in the bone marrow vasculature 
activating matrix metalloproteinases (MMPs) through increased nitric 
oxide and VEGF. MMPs cleave circulating progenitor cells (CPCs) from 
the stromal cells through release of soluble kit ligand (sKitL). CPCs exit 
the bone marrow through a stromal derived factor-1 alpha gradient (SDF-
1α) via its receptor CXCR4. mKitL = membrane bound kit-ligand, VLA4 = 
very late antigen 4, VCAM-1 = vascular cell adhesion molecule-1. 
 
Greater exercise-induced CAC number and function may be mediated by 

enhanced survival. In humans and mice following exercise training, the rate of 

apoptosis in cultured CACs was significantly reduced (Laufs et al., 2004), which 

might be related to telomeres. In mice following 3 weeks of running, telomerase 

activity in bone marrow derived mononuclear cells was increased (Werner et al., 

2009). The authors also observed greater telomerase activity in the bone 

marrow mononuclear cells of professional runners compared to sedentary 

individuals. Moreover, enhanced telomerase activity in the endothelial cells of 

mice aortas post-training was abolished in eNOS-/- mice, suggesting greater NO 

mediates this effect. SDF-1α  ctiv tes the PI3K/Akt/eNOS p thw y through its 

receptor CXCR4 on CACs (Zheng et al., 2007) leading to increased telomerase 

(Zheng et al., 2010). Since, exercise has been shown to increase NO synthesis 

in CACs (Jenkins et al., 2011; Sonnenschein et al., 2011) and circulating SDF-1 
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levels (Sarto et al., 2007; Erbs et al., 2010), production of NO via SDF-1 

activation of PI3K, may increase CAC survival and function following exercise 

training. CAC function may also be augmented by reduced oxidative stress. 

Oxidative stress and inflammation which can impair CAC mobilisation (Thum et 

al., 2007), activate apoptotic pathways (Imanishi et al., 2005a; Endtmann et al., 

2011), inhibit telomerase (Imanishi et al., 2004b; Imanishi et al., 2005a) and 

interact with CAC integrins and adhesion molecules (Di Santo et al., 2008), is 

reduced following exercise training. Indeed, reductions in lipid peroxides, ROS 

production and TNF-α  ccomp nied the incre ses in CAC number  nd function 

following exercise training in CHF patients (Erbs et al., 2010; Gatta et al., 2012) 

and mice (Fernandes et al., 2012). Similarly, superoxide production from CACs 

was reduced with exercise training (Sonnenschein et al., 2011). 

Further studies are required to understand the molecular mechanisms 

underpinning the exercise-mediated changes in CAC number and function, 

which may be influenced by the type, intensity, frequency and duration of 

exercise. Additionally, these effects may differ according to the population 

studied. To date, no studies have examined the effects of exercise on CACs 

specifically in different populations of women (i.e. obese women, 

postmenopausal women). Moreover, different modalities of exercise such as 

interval and continuous have not been compared. Only one study has 

investigated interval exercise training on CAC number (Rakobowchuk et al., 

2012) which was in a healthy population and CAC function was not assessed. 

Furthermore, studies have adopted different methods for defining intensity such 

as a percentage of HRmax, HRR or  V O2m x (Table 2.4). Hence, it is difficult to 

determine the optimum exercise training programme for improvements in CAC 

number and function and related functional outcomes for different populations. 
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Thus, future studies are required to investigate the effects on CACs following 

specific exercise prescriptions in different populations. 

2.4 Summary and thesis aims 

In women throughout the lifespan, endothelial function and CAC number and 

function reduces and arterial stiffness increases due to advancing age, 

oestrogen loss at the menopause and lifestyle factors that can cause obesity. 

This imbalance between vascular damage and repair disrupts vascular 

homeostasis (Figure 2.15), and consequently increases the risk of CVD at older 

age and in obese women at any age, thereby contributing to the high rates of 

CVD mortality and morbidity in women.  

 

 

  

 

Exercise training interventions can ameliorate these risk factors and rectify the 

imbalance between vascular damage and repair by increasing eNOS 

phosphorylation and expression, NO bioavailability, anti-oxidant enzyme 

activity, telomerase activity, arterial wall elastin content, CAC mobilising factors 

and reducing AT1R, oxidative stress and cell senescence. However, no one 

Vascular 

homeostasis 

NADPH oxidase 
Peroxynitrite & ROS 
Cell Senescence 
AGEs 
ANG II & AT1R 
Inflammatory cytokines 
ET-1 

eNOS phosphorylation 
& expression 
Nitric oxide 
CAC number 
CAC function 
Oestrogen 

Figure 2.15. The disruption to vascular homeostasis in women across the 
lifespan. Advancing age, the menopause and obesity increase factors 
contributing to vascular damage and reduce repair mechanisms and 
athero-protective factors, collectively increasing the risk of developing 
CVD. ROS = reactive oxygen species, AGEs = advanced glycation end-
products, ANG II = angiotensin two, AT1R = angiotensin type one receptor, 
ET-1 = endothelin -1, eNOS = endothelial nitric oxide synthase, CAC = 

circulating angiogenic cell. 
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study has examined the combined effect of exercise training on endothelial 

function, arterial stiffness and CAC number and function. Additionally, the 

optimum exercise type for improving these factors has not yet been determined 

in women with risk factors for CVD such as observed in obese and 

postmenopausal women. Interval type exercise which may be more enjoyable 

and less time consuming, might produce similar or superior effects to 

continuous exercise in improving endothelial function and decreasing arterial 

stiffness. However, the effects of interval exercise on these factors has not been 

compared with continuous exercise in different populations of women. 

Moreover, this exercise comparison has not been made for CAC number and 

function per se. Furthermore, in studies in women, interval and continuous 

exercise sessions have not been matched for exercise intensity, thus, it has not 

been possible to determine whether the greater physiological stress induced by 

higher exercise intensity contributed to the beneficial outcomes following 

interval exercise. 

Therefore, the aims of this thesis are as follows: 

1. To investigate the effects of exercise on endothelial function, markers of 

arterial stiffness and CAC number and function collectively, in women 

across the lifespan (chapters 4, 5, 6);  

2. To match interval and continuous exercise for intensity (chapters 4, 5, 6) 

and work (chapters 4, 6) in order to isolate the work-rate profile during 

exercise; and 

3. To compare the effects of interval and continuous exercise on endothelial 

function, markers of arterial stiffness and CAC number and function in 

young, middle-aged obese and postmenopausal women (chapters 4, 5, 6). 
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Chapter 3 General Methods 

3.1 Participant recruitment and screening 

Participants were recruited via poster advertisements placed around the local 

vicinity and email advertisements unless otherwise stated in each chapter. 

Ethical approval was provided by the University of Leeds Faculty of Biological 

Sciences Ethics committee which conformed to the Declaration of Helsinki. 

Inclusion criteria were confirmed at initial contact verbally and/or by email. 

Exclusion criteria included men, smokers, individuals with known 

cardiovascular, pulmonary and metabolic disease, musculoskeletal 

impairments, cancer, contradictions to exercise and if participants had given 

blood in the previous 3 months or were taking medication. Specific criteria for 

each population are outlined in the individual chapters. Participants were given 

at least 24 hours to read through the information sheets and to ask any 

questions before providing written consent and completing a physical activity 

readiness questionnaire. This questionnaire was used to further identify any 

exclusion criteria. 

3.2 Experimental procedures 

The specific experimental procedures for each study are outlined in the 

individual chapters. All visits took place on a morning in the temperature 

controlled exercise physiology laboratories at the University of Leeds. For the 

vascular assessments and blood collection, participants were instructed not to 

exercise or consume alcohol in the previous 24 hours and to refrain from 

consuming food or caffeine in the previous 8 to 12 hours due to their impact on 

the vasculature (Harris et al., 2010). For the assessment of cardio-respiratory 



- 65 - 

fitness, participants were instructed to refrain from exercise participation and 

drinking alcohol and caffeine in the 12 hrs prior to the test. 

3.3 Assessment of cardio-respiratory fitness 

3.3.1 Ramp incremental step exercise test protocol 

Participants performed a seated ramp incremental (RI) and/or a step exercise 

(SE) test (Figure 3.1) for the assessment of maximal aerobic capacity (V O2m x) 

and the lactate threshold (LT). These measures enabled exercise-mediated 

changes in cardiopulmonary fitness to be examined after the exercise 

interventions and for work-rate during the exercise sessions to be determined. 

Additionally, the LT was used to delineate between the moderate and heavy-

intensity domains (Rossiter, 2011). Participants were seated on an 

electronically braked cycle ergometer (Excalibur Sport V2.0; Lode BV, 

Groningen, The Netherlands) and a mouthpiece and nose clip were fitted for 

breath by breath analyses of pulmonary gas exchange. Prior to commencement 

of the test, the flow and oxygen and carbon dioxide sensors were calibrated to 

ensure accurate recording of pulmonary gas exchange (Breeze Suite software 

V.5.0 and V.7.2, Medgraphics D-series; Medgraphics, Medical Graphics 

Corporation, St Paul, MN, USA). A rest period (2-4 min) was followed by a 

period of se ted cycling  t 20 W (≥ 2 min) before initi tion of the RI test, which 

commenced when gas exchange was at a steady state (i.e. RER = 0.75-0.9) 

and V O2 was stable. The RI rates are specified within each chapter. For the RI 

test, participants were instructed to maintain a cadence of above 60 rpm until 

volitional fatigue (determined when the participant could no longer maintain a 

cycling cadence of at least 50 rpm despite strong verbal encouragement). Heart 

r te, blood pressure  nd the Borg’s sc le of r te of perceived exertion (RPE) 

were measured every 2 min during the test using a 12-lead ECG, 
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sphygmomanometer and a visual scale of exertion (6-20) respectively. The 

work rate at the end of the RI test (WRpeak) was calculated as follows: 

                                       

Where    is the initial 20W of cycling prior to the onset of the ramp. 

In chapters 4 and 6, this protocol was modified to include a SE stage. As a 

plateau in V O2 is not usually reached at the end of the RI test, the SE test is 

used to confirm whether V O2m x has been achieved (Rossiter et al., 2006). The 

SE test involved a 5 min period of cycling at 20 W after cessation of the RI test, 

followed by cycling at 105% of WRpeak. During this stage, participants were 

again encouraged to maintain a high cadence (>80 rpm) until volitional fatigue, 

determined by a cadence below 50 rpm. This was followed by an active cool-

down period (~5 min) of cycling at 20W (Figure 3.1).  

 

 

 

Time 

W
o

rk
-r

a
te

 (
W

) 

105% 
WRpeak 

WRpeak 

20 

Rest 20 W RI stage 20 W 
SE  
stage 

20 W cool-
down 

Figure 3.1. Schematic to demonstrate the ramp incremental (RI) step 
exercise test to determine cardio-respiratory fitness. A rest period was 
followed by 5 min of cycling at 20 W before the RI stage. This was 
followed by a 5 min period of cycling at 20 W before the step exercise (SE) 
stage at 105% of work-rate peak (WRpeak). The test ended with a 5 min 

cool-down at 20 W. 
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3.3.2 Calculation of    2max  

Breath by breath data were exported and edited using OriginLab software 

(OriginPro 8, OriginLab, Northampton, MA, USA). Breaths were eliminated if 

V O2  values fell outside 4 standard deviations around the local mean. As 

previously described (Bowen et al., 2012) a 12-breath rolling average was 

calculated and the highest value from both the RI and SE stages of the test 

defined as the V O2pe k . For chapter 5 only, the V O2pe k  was reported as 

participants did not complete a SE stage. In chapters 4 and 6 a paired t-test 

determined that the V O2pe k values from the RI and SE stages of the test were 

not significantly different. Therefore, V O2m x was reported as the average of the 

RI and SE V O2pe k values at each time point (i.e. pre, mid and post-training). 

Relative V O2m x  (ml∙kg∙min-1) was calculated by dividing absolute V O2m x  by 

body mass (kg). 

3.3.3 Estimation of the lactate threshold (LT) 

The LT was determined non-invasively using the V-slope method which uses 

the inflection point of the V O2 against V CO2 curve as an estimation of the LT 

(Beaver et al., 1986). This point was further confirmed by a rise in end tidal O2 

and a plateau in end-tidal CO2 (Whipp et al., 1986). At least two researchers 

estimated the LT and the average was reported (Figure 3.2).  
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Figure 3.2. Determination of the lactate threshold (LT) using the V-slope 
method.  This point was confirmed by a rise in end-tidal O2 and a plateau 

in end-tidal CO2.    2  = oxygen uptake,   C 2  = rate of carbon dioxide 
elimination, FETO2 = fraction of oxygen in expired air, FETCO2 = fraction of 
carbon dioxide in expired air. 

 

3.4 Assessment of body composition 

3.4.1 Body mass index (BMI) 

Height was measured to the nearest 0.5 cm using a stadiometer and body mass 

to the nearest 0.1 kg using manual calibrated scales. BMI was then calculated 

using the following equation: 
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3.4.2 Waist-hip ratio 

Waist and hip circumference were measured to the nearest 0.5 cm using a 

standard tape measure. Participants were instructed to stand with feet together 

and arms by the sides of the body while measurements were taken. Waist 

circumference was measured as the narrowest part beneath the ribs and hip 

circumference was measured as the widest part of the hip region. Waist to hip 

ratio (WHR) was calculated using the following equation: 

      
                       

                     
 

3.5 Assessment of brachial-artery endothelial function 

3.5.1 Principles of flow-mediated dilation (FMD) 

An impaired vasodilation of the brachial artery in response to an increase in 

shear stress is indicative of endothelial dysfunction and can be measured non-

invasively by ultrasound (Celermajer et al., 1992). This technique involves 

inducing reactive hyperaemia by releasing a blood pressure cuff after a 5 min 

period of forearm occlusion, resulting in an increase in blood flow and shear 

stress (Corretti et al., 2002). Endothelial cells sense shear stress through 

various mechanotransducers that lead to eNOS phosphorylation and nitric oxide 

synthesis, resulting in vasodilation (refer to chapter 2, sections 2.1.3-2.1.4 for 

further detail). The resultant change in vessel diameter is measured using 

ultrasound imaging and is thought to be predominantly caused by endothelial 

cell release of nitric oxide (Doshi et al., 2001); hence brachial artery FMD is 

used as an indicator of NO bioavailability and indicates a healthier endothelial 

function. 
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3.5.2 Ultrasound imaging procedure for collection of brachial 
artery diameters and blood flow velocity 

Assessment of brachial artery endothelial function was assessed according to 

established guidelines (Corretti et al., 2002; Harris et al., 2010; Thijssen et al., 

2011a) after 20min of supine rest. Participants were fitted with an 

electrocardiograph (ECG) via a three-lead setup which was connected to a 

SphygmoCor pulse wave velocity (PWV) system (SCOR-Vx, AtCor Medical Pty 

Ltd, Sydney, Australia; refer to section 3.6 for PWV data acquisition). The ECG 

trace was outputted to a data acquisition system (Powerlab model ML; 

ADInstruments, Colorado Springs, Colorado, USA) and recorded using 

LabChart software (LabChart 7.0, ADInstruments; Figure 3.5). This enabled 

measurement of resting heart rate calculated as an average over 5 min and for 

brachial artery images to be recorded at end-diastole (explained below).  

The brachial artery of the right arm was imaged longitudinally using a 7 MHz 

linear array ultrasound probe (Aspen, Acuson; Siemens Medical, Camberley, 

UK) that was held securely by a clamp which allowed manual micro 

adjustments to be made. Once an optimal image had been obtained, 20 

consecutive images were recorded at end-diastole which was triggered from the 

peak of the R-wave on the ECG trace using vascular imaging software 

(Vascular Imager, Medical Imaging Applications, Coralville, Iowa, USA). A 5 min 

period of forearm ischaemia was created by cuff inflation (> 50 mmHg above 

systolic blood pressure; SBP) distal to the ultrasound probe at the forearm to 

occlude arterial flow, and 180 end-diastolic images were recorded consecutively 

from 30 s before cuff release onwards (~2 min). Placement of the probe from 

the medial epicondyle was measured using a tape measure to ensure the same 

portion of the artery was recorded after the intervention. For blood flow velocity 

and shear rates to be calculated the Doppler audio signals were continuously 
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recorded with the sample volume gate positioned to include the whole lumen as 

recommended (Harris et al., 2008). Refer to sections 3.5.4 and 3.5.5 for blood 

flow velocity and shear rates analysis and calculations. The insonation angle of 

the ultrasound beam was kept as close to 60° as possible to ensure capture of 

quality ultrasound images while optimising for Doppler recording. Figure 3.3 

displays the setup for this technique.  

 

Figure 3.3. Assessment of brachial artery flow-mediated dilation (FMD).  
Brachial artery images were captured using ultrasound before and after a 
5 min period of forearm ischaemia created by inflation of a blood pressure 
cuff. 

 

3.5.3 Analysis of brachial artery diameter  

Image analysis was conducted using edge-detection software (Brachial Tools 

v.5, Medical Imaging Applications, Coralville, Iowa, USA) to determine brachial 

artery diameter from far to near-wall tunica media (Figure 3.4). A region of 

interest was chosen on the part of the artery with the most defined media to 

media border. Images were manually edited if the diameter confidence interval 

was less than 70% and rejected if the tunica media wall was not visible.  
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Figure 3.4. Analysis of brachial artery diameter using semi-automated 
edge-detection software. A region of interest was placed around the part 
of the artery with the most defined tunica media border. The software 
measures the distance between the far and near-wall tunica media 
borders to determine brachial artery diameter. 

 

Resting diameter was calculated from the software as an average of the 20 

images recorded prior to cuff inflation. To calculate peak diameter the post cuff 

release diameters were transferred to Microsoft Excel (Microsoft Office Excel, 

Redmond, WA, USA) and the highest value from a 3 consecutive cardiac cycle 

rolling average defined as the peak diameter. Absolute and relative FMD  were 

calculated as follows: 

Absolute FMD (mm) = Peak diameter – Resting diameter   

 
Relative FMD (%) = Peak diameter – Resting diameter  x 100 

  Resting diameter 
 

The time from cuff release to peak diameter was calculated using the times 

recorded on the peak diameter and cuff release ultrasound image frames. 

3.5.4 Blood flow velocity analysis 

Post cuff deflation blood velocity and shear rates were determined using Fast-

Fourier transform to convert the continuous Doppler audio signals to blood 
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velocity as previously described (Herr et al., 2010). The ultrasound system 

(Aspen, Acuson; Siemens Medical, Camberley, UK) had two audio outputs with 

one that encoded blood velocity in the direction of the ultrasound probe and the 

other for blood velocity travelling away from the probe. These forward and 

reverse signals were sampled using a data acquisition system (Powerlab model 

ML; ADInstruments) and recorded on LabChart software (LabChart 7.0, 

ADInstruments) at a sampling rate of 20 MHz (Figure 3.5). 

 

Figure 3.5. LabChart software (LabChart 7.0, ADInstruments) for recording 
and analysing brachial artery FMD, blood flow velocity and resting heart 
rate.  Signals were recorded at a sampling rate of 20MHz. In order from the 
top of the screen to the bottom; a continuous ECG was recorded in 
channel one and backwards and forwards Doppler blood flow from the 
brachial artery was recorded in channels two and three respectively. The 
tonometer signals were recorded in channel four (refer to section 3.6) and 
in channel five heart rate derived from the ECG trace in channel one was 
determined. The vertical dashed line represents the point at which the 
blood pressure cuff was deflated during FMD. 
 

Spectral analysis was employed to determine the mean frequency and power 

(amplitude) of the forward and reverse Doppler signals across 0.1 s intervals 

from cuff deflation to 2 min post. This data was exported to an Excel 
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spreadsheet (Microsoft Excel 2007) and the intensity-weighted forward and 

reverse components of blood velocity were calculated using the Doppler shift 

equation as follows: 

                   

Where   = mean blood flow velocity,    = the Doppler shift frequency,   = 

average velocity of sound in a tissue (1540 m/s),    = transmitted frequency,   = 

insonation angle. The weighted mean velocity was subsequently calculated 

using the following equation: 

Mean velocity = ((mean forward velocity x forward signal power) - (mean 
reverse velocity x reverse signal power)) / total power 

  

3.5.5 Calculation of peak blood flow velocity and shear rates 

The area under the shear rate curve from cuff deflation to peak dilation 

(AUCpeak) and to 60 s post (AUC60) were calculated from (8 X VTI)/resting 

brachial artery diameter, where VTI is the velocity time integral for each period 

as previously described (Rakobowchuk et al., 2012). For chapters 5 and 6, the 

shear rate AUC and VTI for 90 s from cuff deflation was also calculated, as the 

time from cuff release to peak diameter increases with age and with the 

presence of CVD risk factors (Black et al., 2008; Padilla et al., 2009). This 

equation was used and is recommended as during data acquisition the Doppler 

sample volume gate width encompassed the whole of the lumen (Harris et al., 

2010). The VTI was estimated using the trapezium rule as follows: 

                                             
        

 
     

Where    and    are consecutive net velocities and   is the time difference 

between the velocities (0.1 s). Peak reactive hyperaemia (cm/s) was 

determined as the highest net velocity in the first 10 s post cuff release, and 



- 75 - 

peak shear rate (s-1) calculated as (8 X peak reactive hyperaemia)/resting 

brachial artery diameter (Rakobowchuk et al., 2012).  

3.5.6 Reliability and validity of the assessment of brachial artery 
endothelial function 

The use of semi-automated edge-detection software is a validated and 

recommended method for determining brachial artery diameter (Harris et al., 

2010). Brachial artery flow-mediated dilation (FMD) exhibits a strong correlation 

with coronary artery dilation (Takase et al., 1998) and is impaired in participants 

with risk factors for cardiovascular disease including low oestrogen levels 

(Lieberman et al., 1994), type 2 diabetes (Henry et al., 2004), smoking 

(Celermajer et al., 1993) and hypercholesterolaemia (Sorensen et al., 1994). 

Additionally, FMD has been shown to be predictive of CVD risk with a 13% 

reduction in the risk of a cardiovascular event occurring for every 1% increase 

in FMD (Green et al., 2011).  

The notion that FMD is largely nitric oxide mediated is evidenced by a study 

demonstrating attenuated FMD during intra-arterial infusion of the nitric oxide 

inhibitor NG-monomethyl-L-arginine (L-NMMA) when cuff placement was distal 

to the ultrasound probe (Doshi et al., 2001). However, when the cuff was placed 

on the upper arm proximal to the ultrasound probe, FMD was only partially 

reduced. The duration of forearm occlusion also impacts on the validity of nitric 

oxide mediated FMD. A 5 min period of occlusion with L-NMMA infusion 

abolished FMD where as a 15 min period of occlusion with L-NMMA had no 

effect on the FMD response, indicating that other factors besides nitric oxide 

mediated this effect (Mullen et al., 2001). Thus, brachial artery FMD is only 

indicative of endothelial function and can be used as a prognostic indictor of 

CVD risk when the cuff is inflated distal to the ultrasound probe for a 5 min 
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period (Green et al., 2011). These guidelines were adhered to in this thesis in 

order to maximise validity. The between-day reproducibility from 8 participants 

assessed on two separate days, four weeks apart (to control for menstrual cycle 

phase) had a coefficient of variation (standard deviation/average) of 12.4% and 

an absolute difference of 0.18% for relative FMD and a coefficient of variation of 

13.9% and an absolute difference of 0.001 mm for absolute FMD. 

Shear stress is a stimulus for endothelial-dependent dilation (section 2.1.3) but 

shear rate is used as the surrogate measure for the stimulus for brachial artery 

FMD to eliminate the measurement of blood viscosity (Pyke & Tschakovsky, 

2005). However, the portion of the shear rate stimulus post cuff release that 

mediates the resultant vasodilation is unclear. Shear rate AUC has been shown 

to have a greater influence on FMD than the peak shear rate (Pyke et al., 2004; 

Pyke & Tschakovsky, 2007) but the time frame with which shear rate AUC 

should be calculated remaines undefined. A subsequent study examined the 

relationship between FMD and the different methods used to quantify shear rate 

AUC (i.e. peak shear rate AUC, AUCpeak, AUC30, AUC60) and reported modest 

correlations between FMD and the four different shear rate AUC methods in a 

young healthy population (Thijssen et al., 2009b). However, in children and an 

older population these correlations did not occur. Therefore, it is recommended 

that different shear rates are reported but that FMD should only be normalised 

to shear if specific assumptions are met. These include a significant correlation 

between FMD and Shear and that the y-intercept of the regression slope 

between the two variables is zero. Since not all these assumptions were met in 

this thesis, FMD was not normalised to shear rate AUC. The between-day 

reproducibility from 5 participants assessed on two separate days, four weeks 

apart (to control for menstrual cycle phase) are reported in Table 3.1. 
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Table 3.1. Between-day reproducibility for the different shear rate 
calculation methods.  

 Absolute difference Coefficient of variation (%) 

Peak reactive 
hyperaemia  

3.3 cm/s 12.4 

Peak shear rate  29.5 s-1 12.2 

Shear rate AUCpeak 335 a.u. 18.3 

Shear rate AUC60 3203 a.u. 11.5 

Shear rate AUC90 2251 a.u. 10.8 

 

3.6 Assessment of pulse wave velocity (PWV) 

3.6.1 Recording of pulse pressure waveforms 

The velocity of the pulse along an artery is positively correlated with the 

stiffness of the vessel (Nichols & O'Rourke, 2005) with a faster pulse wave 

velocity (PWV) associated with greater CVD risk and mortality (Blacher et al., 

1999; Yamashina et al., 2003). PWV can be measured non-invasively between 

two sites in the arterial tree by applanation tonometry (Figure 3.6). This 

technique involves the flattening (applanation) of the vessel with a pressure 

sensor probe (tonometer) to eliminate the circumferential wall stresses to allow 

the intra arterial pressures to be detected (Kelly et al., 1989a; Nichols & 

O'Rourke, 2005).  
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Figure 3.6. Applanation tonometry involves flattening the artery with a 
pressure sensitive probe to enable intra-arterial pressure to be 
transmitted.  From (Kelly et al., 1989a). 

 

Recordings of arterial pulse pressure waveforms were always acquired after the 

measurement of FMD therefore, participants were in a relaxed state after at 

least a 30 min period of lying in a supine position. To determine the carotid to 

radial PWV (PWVcr) and brachial to foot (PWVbf) at least 30 pulse pressure 

waveforms were captured at different arterial sites (carotid, radial, brachial and 

dorsalis pedis arteries), by palpitation of the pulse and placement of the 

tonometer over the point which displayed the strongest pulse. The distance 

between the sternal notch to the different arterial sites was measured using a 

standard tape measure. The distance between the sternal notch and the 

brachial and radial arteries was measured with the left arm held at a 90° angle 

to the body. All measurements were acquired whilst the participants were in a 

supine position with simultaneous ECG recording (refer to section 3.5.2 for ECG 

setup). Arterial pulse pressure waveforms were recorded using a tonometer 

(model SPT-301, Millar Instruments Inc., Texas, USA) connected to a 

SphygmoCor PWV system (SCOR-Vx, AtCor Medical Pty Ltd) which enabled 

simultaneous ECG and pulse pressure waveform recordings. These signals 
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were outputted to a data acquisition system (Powerlab model ML, 

ADInstruments) and recorded using LabChart software (LabChart 7.0, 

ADInstruments; Figure 3.8).  

3.6.2 Analysis of pulse pressure waveforms and calculation of 
PWV 

To determine the most reliable method of calculating PWVcr and PWVbf, three 

different methods were compared. The first two methods involved the 

SphygmoCor PWV system and the other method involved analysing tonometer 

recordings on LabChart. Pulse pressure waveforms and arterial distances were 

recorded (as above) from 7 participants on two separate days, 4 weeks apart. 

PWV was calculated as follows: 

          
         

    
  

Where           is the difference in distance between the sternum and the two 

arterial sites and      is the difference in pulse transit time between the two 

arterial sites. The PTT at each arterial site was calculated as the difference in 

time between the peak of the R-wave on the ECG and the foot of the upstroke 

on the pulse pressure waveform. Using the SphygmoCor PWV system the PTT 

was calculated automatically using either the second derivative or the 

intersecting tangents method (Figure 3.7). For PWVcr, pulse pressure 

waveforms were recorded for 20 s at the carotid and then the radial artery. The 

distance between the sternum and these sites were inputted manually and 

either the second derivative or the intersecting tangent method chosen to 

calculate the average PTT and the subsequent PWV. This was repeated for 

PWVbf. 
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Figure 3.7. The different methods for determining the foot of the pulse 
pressure waveforms.  The maximum point of the second derivative of the 
pulse pressure waveform corresponds with the maximal gradient 
(acceleration) at the foot of the pulse pressure wave form (depicted by the 
red line). The intersecting tangents method determines the foot of the 
pulse pressure wave as the point where a line tangent to the upstroke of 
the pulse pressure waveform (the line starts from the point at which the 
first derivative is at maximal as shown by the blue line) intersects the 
horizontal line at the minimum of the waveform. Modified from (Chiu et al., 
1991). 

 

To determine PWV using LabChart, the tonometer signals were low-pass 

filtered at 50 Hz to eliminate noise and subsequently band-pass filtered 
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between 5-30 Hz to isolate the high frequency components of the pulse wave 

(i.e foot and notch of the wave) as previously described (Munakata et al., 2003). 

The foot point of the wave was determined from the minimum point of this 

filtered signal (Figure 3.8). 20 clear pulse pressure waveforms from each 

arterial site were chosen and the time at the peak of the R-wave on the ECG 

and the time at the minimum point of the filtered tonometer signal were exported 

to an Excel spreadsheet (Microsoft Excel 2007). At each arterial site the time 

difference between these points from the 20 pulse pressure waves were 

calculated and an average PTT determined. PWV was calculated using the 

equation previously mentioned.  

 

 
Figure 3.8. LabChart software (LabChart 7.0, ADInstruments) for recording 
and analysing pulse pressure waveforms for calculation of PWV.  The 
pulse pressure waveforms captured using a tonometer are recorded in 
channel four. These signals are low-pass filtered at 50 Hz to eliminate 
noise (channel five) and subsequently band-pass filtered (5-30 Hz) to 
delineate the foot of the pulse wave (channel six). The minimum point of 
this signal is the foot of the pulse pressure waveform (depicted by the 
arrow). 
 

Minimum point 
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The between-day coefficient of variation (standard deviation/average) and 

absolute difference for PWVcr and PWVbf using each of the methods was 

determined from 7 participants assessed on two separate days, four weeks 

apart (Table 3.2). The most reproducible method was the intersecting tangents 

method using the SphygmoCor PWV system as this gave the smallest between-

day coefficient of variation and absolute difference. Therefore, in this thesis 

PWV was calculated using the intersecting tangents method. 

Table 3.2. The between-day reproducibility for carotid to radial PWV 
(PWVcr) and brachial to foot PWV (PWVbf) using the intersecting tangents 
and second derivative method on the SphygmoCor PWV system and the 
LabChart analysis method. 

Method 

PWVcr PWVbf 

Coefficient 
of variation 
(%) 

Absolute 
difference 
(m/s) 

Coefficient 
of variation 
(%) 

Absolute 
difference 
(m/s) 

Intersecting 
tangents 

9.5 0.6 10.0 0.2 

Second 
derivative 

10.5 0.7 10.9 0.2 

LabChart 10.9 0.8 13.9 0.7 

 

3.6.3 Validity of applanation tonometry for PWV assessment 

Applanation tonometry by a pressure sensitive probe to non-invasively measure 

pulse pressure and pulse pressure waveforms is a validated and accurate 

measure of intra-arterial pressure (Kelly et al., 1989b; Chen et al., 1996). The 

intersecting tangents method is a reproducible method for calculating PWV 

when pulse pressure waveforms are determined invasively and non-invasively 

using a tonometer (Chiu et al., 1991). Additionally, the SphygmoCor system  

and tonometer for calculating aortic PWV and PWVcr, has good within and 

between-observer reproducibility (Wilkinson et al., 1998). A strong positive 

correlation (r = 0.87) exists between PWVbf and aortic PWV (Yamashina et al., 

2002). Additionally, PWVbf shows a strong association with CVD risk factors 
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(Munakata et al., 2003; Yamashina et al., 2003; Imanishi et al., 2004a). In 4112 

females (+30 yrs), the optimal cut-off value of PWVbf for detecting individuals 

with more than a moderate risk of developing CVD (based on the Framingham 

score) was 14 m/s, with a sensitivity and specificity of 73% and 70%, 

respectively (Yamashina et al., 2003). Therefore PWVbf is a valid measure of 

central arterial stiffness. Brachial artery stiffness is reflected by PWVcr as a 

measure of conduit artery stiffness (McEleavy et al., 2004; Mitchell et al., 2010). 

Thus, PWVcr is a valid measure of upper limb peripheral arterial stiffness. 

3.7 Blood pressure measurement 

Blood pressure was auscultated 3 times at the brachial artery using a manual or 

automated sphygmomanometer (outlined within each chapter). These 

measurements were separated by a 5 min period and the average systolic 

(SBP) and diastolic blood pressure (DBP) were recorded. Brachial artery mean 

arterial pressure (MAP) and pulse pressure (PP) were calculated using the 

following equations. 

          DBP +     SBP 

PP = SBP – DBP 

3.8 Carotid arterial stiffness assessment 

3.8.1 Ultrasound imaging and applanation tonometry procedure 
to measure carotid arterial diameters and SBP 

Carotid arterial distensibility, cross-sectional compliance and far wall intima-

media thickness (IMT) are variables that reflect the stiffness of the carotid artery 

and were measured using a combination of ultrasound imaging to determine 

vessel diameters, and applanation tonometery to estimate carotid artery SBP. 

The ultrasound probe was placed on the right common carotid artery, proximal 
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to the bifurcation until a clear image was obtained and the tunica media and 

tunica intima were visible. Two video clips were captured for duration of 20 s at 

a rate of 15 frames per second using vascular imaging software (Vascular 

Imager, Medical Imaging Applications). Immediately post recordings a 

tonometer (model SPT-301, Millar Instruments Inc.) was held against the left 

common carotid artery to capture at least 20 carotid artery pulse pressure 

waveforms (refer to section 3.6 for details on applanation tonometry). The 

tonometer signals were outputted from the SphygmoCor pulse wave velocity 

system (SCOR-Vx, AtCor Medical Pty Ltd) to PowerLab (Powerlab model ML, 

ADInstruments) and recorded on LabChart software (LabChart 7.0, 

ADInstruments) for analysis to determine carotid artery SBP (refer to section 

3.8.3). 

3.8.2 Carotid arterial diameters and end-diastole IMT analysis 

The video clips were analysed using semi-automated edge detection software 

(Carotid Tools Analysis; Medical Imaging Applications, Coralville, Iowa, USA) to 

determine carotid arterial diameters and far-wall IMT (Figure 3.9). A region of 

interest was drawn around the area of the vessel with the most defined intima-

media borders. Frames were manually edited if the incorrect border was 

detected. However, some frames were distorted and difficult to manually edit 

and were therefore rejected. The diameters and the corresponding far-wall IMTs 

were transferred to Microsoft Excel (Microsoft Excel 2007) where the maximum 

and minimum diameters from 10-20 cardiac cycles were determined. Since the 

point at which the carotid artery diameter is at a minimum reflects end-diastole, 

the corresponding IMT from the minimum diameters were determined and an 

average calculated across 10-20 cardiac cycles. Maximum and minimum 
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carotid artery cross-sectional area (CSA) was calculated as an average from 

the 10-20 maximum and minimum carotid artery diameters as follows: 

             
          

 
   

Where      and      are the maximum and minimum carotid arterial diameters 

respectively. 

 

Figure 3.9. Carotid Tools analysis software for determining Carotid artery 
diameters and IMT. 

 

3.8.3 Calculation of carotid arterial stiffness variables 

To calculate carotid arterial stiffness, carotid artery SBP is required and can be 

estimated non-invasively using linear extrapolation. It was assumed that 

brachial artery DBP and MAP (refer to section 3.7 for the blood pressure 

measurement procedure) were equivalent to that in the carotid artery as 

differences in conduit arteries are small when in a supine position (Nichols & 

O'Rourke, 2005). The minimum, mean and maximum voltage values from the 

20 carotid artery pulse pressure waveforms were extracted using LabChart 
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software (refer to section 3.8.1) and transferred to an Excel spreadsheet 

(Microsoft Excel 2007). Linear extrapolation involved equating the minimum and 

mean carotid waveform values to brachial artery DBP and MAP respectively, 

and used the maximum carotid waveform values as an extrapolation point to 

estimate carotid artery SBP, as previously described (Armentano et al., 1995). 

The average carotid artery SBP was then calculated from the 10-20 carotid 

artery pulse waveforms for the calculation of carotid artery pulse pressure (PP). 

Carotid artery PP, cross-sectional compliance (CSC), distensibility  nd β-

stiffness index (SI) were calculated from the following equations (O'Rourke et 

al., 2002) :  

                                    

                
    

  
 

                         
   

      
 

             
                 

                 
 

Where    = carotid artery pulse pressure,      = average change in carotid 

artery cross-sectional area,        = average carotid artery minimum cross-

sectional area and      and      are the maximum and minimum carotid 

arterial diameters respectively. 

3.8.4 Reliability and validity of the assessment of carotid arterial 
stiffness 

Carotid artery IMT and distensibility are significantly associated with CVD risk 

(Simons et al., 1999). The use of ultrasound in combination with edge-detection 

software is a reproducible method for analysis of carotid artery IMT and 

diameters (Selzer et al., 2001). Furthermore, ultrasonic measurement of carotid 
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IMT can be used to identify asymptomatic individuals that are at a greater risk of 

developing cardiovascular disease (Stein et al., 2008). Greater carotid arterial 

distensibility is associated with lower carotid IMT and greater aortic and carotid 

atherosclerotic plaques (Van Popele et al., 2001). Moreover, carotid  rtery β-SI 

is a measure of arterial elasticity independent of blood pressure, which 

increases with age (Kawasaki et al., 1987) and is associated with greater 

severity of carotid arterial atherosclerosis (Wada et al., 1994). The sensitivity 

and specificity for diagnosis of advanced atherosclerosis was 80% for both, 

when patients had a β-SI of >13 (Wada et al., 1994). Thus, these measures of 

arterial stiffness are valid indicators of CVD risk. Validation of measuring carotid 

artery SBP for calculation of arterial distensibility and compliance by ultrasound 

and applanation tonometry is evidenced from studies adopting this same 

method, which have demonstrated increased carotid arterial stiffness and SBP 

with ageing and improvements following exercise (Tanaka et al., 2000; Tanaka 

et al., 2002). The between-day reproducibility for carotid artery IMT, CSC, 

distensibility and SI measured in 7 participants on 2 separate days, 4 weeks 

apart are presented in Table 3.3.  

Table 3.3. The between-day reproducibility for carotid artery stiffness 
variables.  

 Coefficient of variation 
(%) 

Absolute difference 

IMT 3.7 0.007 mm 

CSC 17.4 0.01 mm2/mmHg 

Distensibility 14.8 0.0003 mm/mmHg 

SI 13.2 0.18 a.u. 
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3.9 Blood collection procedure 

A fasted venous blood sample was collected at the antecubital fossa using a 

syringe and a butterfly needle. Immediately after blood draw, blood was divided 

into EDTA vacutainers for the assessment of plasma inflammatory markers and 

cytokines and CAC number and function. In chapter 6, 9 ml of blood was 

transferred into a 10 ml tube containing 1 ml of sodium citrate for collection of 

platelet free plasma. 

3.10   Plasma inflammatory markers and cytokines 

Blood collected in EDTA vacutainers was centrifuged at 3000 g for 10 min to 

separate blood plasma. Blood collected in the sodium citrate tube was 

centrifuged at 4000 g for 10 min to separate blood plasma. The blood plasma 

supernatant was collected and centrifuged further at 11,000 g for 4 min to 

separate the platelet free plasma. The plasma supernatants were aliquoted into 

1 ml volumes and frozen at -80°C until analysis. Enzyme Linked Immunoassay 

(ELISA) kits were used to measure plasma concentrations of Tumour Necrosis 

Factor- alpha (TNF-α), Interleukin-6 (IL-6), vascular endothelial growth factor 

(VEGF), stromal cell-derived factor-1 alpha (SDF-1α), v scul r Cell Adhesion 

Molecule-1 (VCAM-1; R&D systems, Minneapolis, MN, USA) and high 

sensitivity C-Reactive Protein (hsCRP; BioVendor, Brno, Czech Republic) 

 ccording to the m nuf cturer’s instructions. For  n lysis of SDF-1α, pl telet 

free plasma was analysed as its receptor CXCR4 is present on platelets and 

would influence the results. Standards and participant plasma samples were 

performed in duplicate and a microplate reader (MRX-TC II microplate reader, 

Dynex Technologies, Inc, Chantilly, VA, USA) used to determine the colour 

absorbance of each well. Analysis software (Revelations V 4.21, Dynex 

Technologies) was used to plot the standard calibration curve and linear line of 
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best fit between the optical density and concentrations of the standards, for the 

purpose of determining the concentr tion within the p rticip nts’ pl sm  

sample.  

3.11   Measurement of circulating markers of endothelial 
damage and repair  

3.11.1 Principles of flow cytometry for cell enumeration   

A flow cytometer is a technology that delineates different cell populations based 

upon the size and granularity of the cell. In haematology the particles or types of 

cells within the blood (e.g. leukocytes) can be distinguished further by labelling 

cells with fluorochrome-conjugated antibodies that bind to specific antigens on 

the cell. Given that one antibody can be present on several cell types, several 

antibodies attached to different fluorochromes may need to be added to one 

sample, to distinguish between cell types (Brown & Wittwer, 2000). Cells within 

a sample are drawn into the flow cytometer in a single line to allow 

measurements to be made on an individual basis. As each cell passes through 

a laser light beam, light is scattered in all directions. Light that is scattered in the 

forward direction (forwards scatter; FSC) is detected by a sensor placed in the 

path of the laser beam and provides information on the size of the molecule, 

with a larger magnitude of scatter reflecting a larger cell. Light that is scattered 

from the cell at a 90° angle to the laser beam is detected by a side scatter 

detector (side scatter; SSC) with a greater side scatter associated with a greater 

granularity of the cell. When the laser beam hits a fluorochrome that is 

conjugated to an antibody attached to the cell, fluorescent light of a different 

wavelength to the excitation laser beam is emitted and detected by fluorescent 

sensors (Ormerod, 2000). This data is collected and analysed by computer 

software. 
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3.11.2 Enumeration of CACs 

3.11.2.1 Human CAC enrichment and enumeration kit 

A 21 ml blood sample was divided into two 10 ml (CAC sample and control 

sample CD309/VEGFR-2/KDR) and one 200 µl (control sample CD133) 

samples for analysis using a human CAC enumeration kit (EPC enrichment and 

enumeration kit, Miltenyi Biotec). Red blood cell lysis was added to all samples 

and gently rotated for 10 min. Following this, 20 µl of lysed blood was removed 

for total white blood cell enumeration by haemocytometry. All samples were 

centrifuged for 10 min at 300 g. The supernatants were removed and the pellets 

resuspended in fluorescence-activated cell-sorting buffer (FACS buffer; PBS 

with 0.5% bovine serum albumin and 2 mM EDTA). In the CAC and CD309 

samples, 100 µl of Fc-Receptor blocking reagent and EPC enrichment cocktail 

were added to block non-specific cell binding and to magnetically label CD34+ 

cells. Following a 30-min fridge incubation period, the CAC sample was labelled 

with fluorochrome-conjugated antibodies specific for CD34-FITC, CD133-PE, 

CD14-PerCP and CD309-APC and the CD309 sample labelled with CD34-

FITC, CD133-PE, CD14-PerCP and Mouse IgG1 (CD309 isotype control). The 

CD133 sample was incubated with 20 µl of FC-receptor blocking reagent and 

CD34-FITC, Mouse IgG2b (CD133 isotype control) and CD14-PerCP. 

Subsequently, all three samples were centrifuged at 300 g for 10 min, and the 

pellets resuspended in FACS buffer. For magnetic-activated cell-sorting of 

CD34+ cells, the CAC and CD309 samples were passed through a magnetic 

separation column (Miltenyi Biotec) and prepared for flow cytometry in FACS 

buffer. Finally, propidium iodide was applied to all samples to exclude dead 

cells before immediate transfer to a FACScalibur cytometer (Becton Dickinson) 

for analysis. Software (CellQuest; Becton Dickinson) and a gating strategy 
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recommended by the manufacturer (Miltenyi Biotec) was used for CAC 

enumeration. CACs were then calculated as the absolute number of 

CD34+CD309+CD133+ per 10 ml. The reported between-day reproducibility for 

this method was 17% coefficient of variation (Rakobowchuk et al., 2012).  

3.11.2.2 International Society for Haematotherapy and Graft Engineering 
(ISHAGE) protocol  

Due to the high cost, long protocol duration and a poor reported reproducibility 

of the above technique (Rakobowchuk et al., 2012) a modified ISHAGE protocol 

was chosen for CAC enumeration in subsequent studies (Schmidt-Lucke et al., 

2010). The protocol is an established method for CD34+ stem cell enumeration 

and identifies the CD34+CD45dim population which are believed to include the 

late outgrowth CACs that hold characteristics of mature endothelial cells (Hur et 

al., 2004; Timmermans et al., 2007). A 1 ml peripheral blood sample was mixed 

with 1 ml of PBS and incubated with 20 µl of Fc-Receptor blocker (Miltenyi 

Biotec) for 10 min, before a 10 min incubation period with 10 µl of fluorochrome-

conjugated antibodies, CD34-PE, CD45-FITC and CD309/VEGFR-2/KDR-APC 

(Miltenyi Biotec). The sample was lysed, centrifuged at 300 g for 10 min and the 

pellet resuspended in 1 ml of FACS buffer before final centrifugation at 300 g for 

10 min. The remaining pellet was resuspended in 500 µl of FACS buffer and 

immediately enumerated by flow cytometry (LSR-Fortessa, Becton Dickinson) 

and CellQuest software (Becton Dickinson). Samples were analysed within 2 

hrs of blood collection and at least 100,000 events recorded in gate R1 (Figure 

3.10). Cells were gated using analysis software (FlowJo7 6.4) and CD34+ cells 

defined as cells in gate R2 and CD34+/CD45dim as cells in gate R5 (Figure 

3.10). Cells were expressed as an absolute number per 100,000 leukocytes. 

Isotype controls were not used as they were not recommended. However, 

during analysis it became apparent that a CD309/VEGFR-2/KDR-APC isotype 
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control was required to enable the placement of the quadrant gate (Figure 

3.11f). Additionally, a defined cluster of CD34+ cells were not appearing in R2 

(Figure 3.10), therefore modifications were made to the protocol for chapter 6. 

 
Figure 3.10. ISHAGE gating strategy for CAC enumeration.  Cells positive 
for CD45 and therefore leukocytes were gated in R1. Cells in R1 that are 
positive for CD34 and have low side scatter characteristics were plotted in 
R2 and defined as CD34+ cells. Cells from R2 were gated on a further plot 
to determine the CD45dim population. Subsequently cells from R3 were 
back-gated from R4 and gated on a further plot (R5) to define 
CD34+CD45dim cells that are located within the lymphocyte population. 
     

3.11.2.3 Modified ISHAGE protocol for inclusion of CD309/VEGFR2 CACs 

A 10 ml blood sample was mixed with 40 ml of red blood cell lysis and gently 

rotated for a 10 min period. From the lysed blood, 20 µl was removed for a 

white blood cell count using a haemocytometer for calculation of the total 

number of white blood cells within the 50 ml lysed blood sample. 20 million cells 

were removed and centrifuged at 300 g for 10 min and the pellet resuspended 
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in 200 µl of FACS buffer. The sample was divided into two (CAC and isotype 

control) to give 10 million cells per sample. This was to ensure a large number 

of CD34+ cells would be present for a cluster to appear during analysis. 

According to the m nuf cturer’s guidelines (Miltenyi Biotec), e ch s mple w s 

incubated with 20 µl of Fc-Receptor blocker for 10 min before 10 µl of the 

appropriate antibodies were added for a 10 min incubation period in the fridge. 

In the CAC sample, cells were labelled with CD34-PE, CD45-FITC and 

CD309/VEGFR2/KDR-APC. In the isotype sample, cells were labelled with 

CD34-PE, CD45-FITC and IgG1-APC (isotype control). Unbound antibodies 

were washed with 1 ml of FACS buffer and centrifuged at 300 g for 10 min. The 

remaining pellets were resuspended in 500 µl of FACS buffer and taken to the 

flow cytometer (LSR-Fortessa, Becton Dickinson) for analysis. A sequential 

gating strategy was employed as previously described but with the addition of a 

CD309/VEGFR2/KDR-APC quadrant (Figure 3.11). The number of CD34+ 

(Figure 3.11b) and CD34+CD45dim (Figure 3.11e) cells were calculated as an 

average from the CAC and isotype samples. The number of 

CD34+CD45dimKDR+ CACs was determined from Q2 of the CAC sample (Figure 

3.11f). The between-day reproducibility for CAC number, measured in 3 

participants on 2 separate days, are presented in Table 3.4. 

Table 3.4. The between-day reproducibility for circulating angiogenic cell 
(CAC) number. 

CACs Coefficient of variation 
(%) 

Absolute difference 
(/105 leukocytes) 

CD34+ 9.7 4.6 

CD34+CD45dim 15.5 0.9 

CD34+CD45dimKDR+ 82.2 0.3 
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Figure 3.11. Sequential gating strategy for CD34+CD45dimKDR+ CAC 
enumeration.  Leukocytes (a) were sequentially gated to determine the 
presence of  CD34+ cells that have low side scatter characteristics (b). The 
population of CD45dim cells were delineated (c) and were gated further to 
include cells from the lymphocyte population only (d & e). Within this 
population the presence of CD309/VEGFR2/KDR was then determined 
from Q2 (f). The position of Q2 was set from the isotype sample by moving 
the quadrant until no cells were present in Q2. 
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3.12   In vitro assessment of CAC function 

3.12.1 Culture of CACs 

Peripheral blood mononuclear cells were separated from a 25-30 ml blood 

sample by Ficoll density-gradient centrifugation  ccording to the m nuf cturer’s 

instructions, (Ficoll Paque PLUS, GE Healthcare, Buckinghamshire, UK). The 

blood sample was mixed with PBS to a 50 ml volume and slowly layered on 

Ficoll before centrifugation at 300 g for 30 min which allowed separation of the 

erythrocytes, mononuclear cells and blood plasma. The middle layer containing 

the mononuclear cells were removed using a pipette and washed in PBS before 

being centrifuged at 300 g for 10 min to remove platelets, plasma and any Ficoll 

present in the solution. The remaining cells were suspended in endothelial 

growth medium (EGM; endothelial basal medium supplemented with 20% foetal 

calf serum, growth factors and antibiotics; EBM-2, Bullet kit; Lonza, Inc, Basel, 

Switzerland). Cells were plated on 6-well fibronectin coated plates (Millipore, 

Billerica, MA, USA) at a density of  5x106 per well and cultured for 7 days at 

37ºC in 5% CO2.  

To reduce costs, Millipore 6-well plates were replaced with uncoated 6-well 

plates (Becton Dickinson) in chapter 6. On the day prior to plating cells, 500 µl 

of fibronectin (20 µg/ml, Sigma-Aldrich Co Ltd, St. Louis, MO, USA) in medium 

199 (M199 culture medium, Sigma-Aldrich) solution was added to each well and 

left overnight in the incubator. Wells were washed with PBS before cells were 

added. Own-coated plates were compared with the original Millipore 6-well 

plates to confirm fibronectin coating was working correctly. Mononuclear cells 

from one pilot participant were cultured in a Millipore fibronectin coated plate 

and one own-coated fibronectin plate. On days 2, 5 and 7 of culture, 10 images 

were taken in one well of each plate at 200x magnification. The number of 
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adherent cells per high powered field were counted and an average calculated. 

As shown in Figure 3.12 the number of adherent cells per high powered field 

per well on days 2, 5 and 7 of culture was similar between the plates with a 

slightly greater adherence using own-coated plates. Thus, own-coated plates 

were deemed appropriate for culturing CACs.  

 

Figure 3.12. Comparison of Millipore and own-coated fibronectin plates for 
cell culture.  The number of adherent cells (±SD) per high powered field 
(200x magnification) were counted on days 2, 5 and 7 of culture from one 
participant. 
  
In chapter 5, wells were washed with PBS and fresh medium added daily to 

remove non-adherent cells. However, in subsequent studies this was modified 

due to the low cell numbers at harvest on day 7. In chapter 4, medium was 

changed on day 2, 4 and 6. In chapter 6, medium was changed on day 2 and 4 

and cell culture growth was characterised (Section 3.12.1.1). The cells cultured 

using this method for 7 days are a heterogeneous population that migrate and 

adhere to areas of damage/ischaemia (Walter et al., 2002) and aid in 

repair/angiogenesis by secreting angiogenic growth factors such as VEGF and 

SDF-1α (Rehman et al., 2003; Hur et al., 2004). 
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On day 7 the phenotype of the adherent CACs were measured by assessing 

their ability to up take acetylated DiI and lectin as previously described (Vasa et 

al., 2001). In one well, adherent cells were washed with PBS and incubated with 

DiI-AcLDL (10 μg/ml in supplemented EBM-2) for two hours. Subsequently, 

adherent cells were fixed with 4% paraformaldehyde for 10 min followed by 

staining with Ulex Europaeus lectin-FITC (10 μg/ml in PBS; Biomedical 

Technologies Inc, Stoughton, MA, USA) and incubated for one hour in the dark. 

Phase contrast and fluorescent images (DiI and FITC fluorescence) were 

collected using an Olympus CKX-41 fluorescence microscope, and images 

were overlaid for quantification of cells double stained with DiI-AcLDL and 

lectin. In chapter 6, this staining technique was not used as it reduced the 

number of cells that could be used in the functional assays.  

On day 7 adherent cells were detached using trypsin/EDTA solution (400 µl per 

well) incubated for ~90 s. Following vigorous agitation, 2 ml of EGM was added 

to each well to deactivate the trypsin. The cells were isolated by centrifugation 

at 300 g for 10 min and used in functional assessment assays (sections 3.12.3- 

3.12.5). To reduce intra-observer variability the same researcher conducted the 

functional assay analysis. 

3.12.1.1 Cell culture growth characterisation 

In chapter 6, cell culture growth was characterised. On day 2, 4 and 7 of culture, 

the non-adherent cells were removed and centrifuged at 300 g for 10 min. The 

cell pellet was resuspended in EGM and 20 µl removed and mixed with 20 µl of 

Trypan Blue (Sigma-Aldrich) for a cell count to determine the number of live and 

dead non-adherent cells per well using a haemocytometer. Dead cells were 

distinguished as dark blue cells due to the absorption of trypan blue. In one 

well, 10 random images (200x magnification) were taken to assess changes to 
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cell area during culture. From the 10 images taken on day 2, 4 and 7 of culture, 

20 cells were chosen at random and cell area was quantified using analysis 

software (ImageJ 1.42q,  Bethesda, MD, USA). 

3.12.2 Colony forming unit (CFU) assay 

The number of CFUs cultured in vitro have an inverse relationship with the 

presence of cardiovascular disease risk factors (Hill et al., 2003). CFUs were 

cultured  ccording to the m nuf cturer’s instructions (StemCell Technologies, 

Vancouver, BC, Canada). The peripheral blood mononuclear cells were isolated 

(section 3.12.1) and 5x106 cells were suspended in 2 ml of EndoCult growth 

medium (StemCell Technologies) and cultured in one well of a fibronectin 

coated 6-well plate (Becton Dickinson) for 48 hours. The non-adherent cells 

were collected from the well and seeded in duplicate on a 24-well fibronectin 

coated plate (Becton Dickinson) at a density of 1x106 cells/well. Following 3 

further days of culture the non-adherent cells were removed and the number of 

CFUs per well counted and an average calculated. CFUs were defined as 

clusters of >100 round cells with spindle shaped cells surrounding the core.  

Due to the expense of the specialised EndoCult medium, attempts were made 

to culture CFUs using EGM-2 medium and M199 medium supplemented with 

20% foetal calf serum (FCS), growth factors and antibiotics as originally 

described (Hill et al., 2003). However, these attempts failed as no CFUs formed. 

Additionally, it has been shown that CFUs are composed mainly of 

monocytes/macrophages that ingest bacteria and do not form blood vessels in 

vivo (Yoder et al., 2007). As the angiogenic potential of these cells are unclear 

and only appear in a specific medium, CFUs were not assessed in chapters 4 

and 6.   
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3.12.3 Boyden chamber migration assay 

CACs are mobilised and migrate to areas of vascular damage in response to 

different stimuli such as VEGF (Asahara et al., 1999). The migratory ability of 

CACs towards VEGF can be measured in vitro using a Boyden chamber assay, 

which is impaired in the presence of cardiovascular disease risk factors (Vasa 

et al., 2001). Boyden chambers (Becton Dickinson) containing a semi-

permeable membrane with 8 µm pores were placed into wells containing either 

750 μl of unsupplemented EBM (negative control) or VEGF (50 ng/ml in 750 μl 

EBM; R&D systems). After 7 days of culture, 4x104 CACs in 500 µl of 

unsupplemented EBM were placed into the Boyden chambers and incubated for 

24 hours. Subsequently, cells were fixed with ethanol and non-migrated cells 

were removed from the upper surface of the Boyden chamber with a cotton 

swab. Migrated cells on the lower surface of the chamber were stained with 

haematoxylin and eosin and 10 random microscopic images (x200 

magnification) were collected for quantification of migrated cells. The ability of 

cells to migrate to a chemoattractant was calculated as the difference between 

the number of migrated cells to VEGF and the number of migrated cells to the 

negative control. The assay was performed in triplicate in each condition if 

enough CACs were harvested on day 7 and an average per 10 high powered 

fields calculated.  

This assay was not completed in chapter 6 because the number of migrated 

cells was substantially lower than the reported values in the literature and in 

some participants CACs migrated more in the negative control. A potential 

reason for the low numbers could be that only 4x104 CACs were used per well 

whereas 1x105 have been used in the other studies (Vasa et al., 2001). 



- 100 - 

However, this number could not be increased because not enough CACs would 

be available for the other functional assays. 

3.12.4 CAC adhesion to fibronectin 

CACs aid in vascular repair by homing and adhering to areas of damage 

(Urbich & Dimmeler, 2004). The adhesion to fibronectin assay has been 

described elsewhere (George et al., 2003) and is impaired in patients with CAD 

(Huang et al., 2007) and in-stent restenosis (George et al., 2003). Thus, 

impaired adhesive ability of CACs may represent an impaired reparative 

capacity. For determination of the adhesive ability to fibronectin, CACs following 

7 days of culture were placed in 24-well fibronectin coated plates (Millipore) at a 

density of 5x104 per well in 1 ml of EGM. After incubation for 24 hrs, non-

adherent cells were removed by gently washing with PBS and 10 random 

microscopic images (x200 magnification) were collected for quantification of 

adherent cells. Assays were performed in triplicate if enough CACs were 

harvested on day 7, and an average number of adherent cells per high powered 

field calculated. 

3.12.5 CAC adhesion to vascular smooth muscle cells (VSMCs) 

3.12.5.1 Pilot work 

In chapter 6, a new method for assessing CAC function was developed as the 

migration assay was discontinued (see above). The adhesive ability of CACs 

are important for endothelial repair/angiogenesis as they act by adhering to 

existing endothelial cells in areas of ischaemia or vascular damage (Chavakis et 

al., 2005) and secrete angiogenic growth factors (Rehman et al., 2003). 

Therefore, the adhesion to fibronectin assay was modified to make it 

representative of endothelial damage in vivo. Initially human umbilical vein 

endothelial cells (HUVECs) were chosen instead of fibronectin as CACs from 
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diabetic patients with peripheral artery disease (PAD) showed impaired 

adhesion to HUVECs when compared to diabetic patients without PAD (Fadini 

et al., 2006c). The assay was tested on two pilot participants. A confluent 

monolayer of HUVECs (Life technologies, Invitrogen) was prepared 48 hours 

before the assay by plating 16000 cells/cm2 (passage 1 to 5) in wells of a 12-

well tissue culture plate (Becton Dickinson). CACs from the participants were 

cultured for 7 days (section 3.12.1) and 105 adherent CACs were added to each 

HUVEC well and incubated at 37ºC for 4 and 24 hours. At each time point the 

non-adherent cells were removed by washing with PBS and 10 random 

microscopic images taken. However, the HUVEC monolayer changed in 

appearance and cells began to come off the plate (Figure 3.13). Additionally, 

the healthy HUVEC monolayer is not representative of a damaged vessel. 

CACs have been shown to adhere to the de-endothelialised area of the carotid 

artery following artificial injury in mice (Walter et al., 2002; Werner et al., 2003). 

Therefore, an adhesion assay was developed using vascular smooth muscle 

cells (VSMCs) to represent a denuded vessel.  

 

Figure 3.13. Circulating angiogenic cell (CAC) adhesion to a HUVEC 
monolayer after 4 hours (A) and 24 hours (B) incubation.  
 

CACs were cultured from 2 pilot participants for 7 days and confluent 

monolayers of saphenous vein smooth muscles cells (passage 6) prepared by 
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placing 2x104 cells per well of a 96-well plate. The smooth muscle cells were 

collected from patients undergoing coronary artery bypass graft surgery in the 

Leeds General Infirmary. The first pilot experiment involved determining the 

density of cultured CACs to apply to the VSMCs. CACs at densities of 6x103, 

104, 1.25x104 and 2.5x104 were added to wells of VSMCs in 250 µl of EGM. 

After 1 hour, non-adherent cells were removed by washing with PBS and cells 

were fixed with 4% paraformaldehyde (100 µl/well). 5 random microscopic 

images were taken per well (100x magnification) and the average number of 

adherent cells per image calculated. The number of adherent CACs after one 

hour increased with larger densities of CACs per well (Figure 3.14). Therefore, 

the highest density of 2.5x104 was chosen so that a time course of adhesion 

could be measured up to one hour. 

 

Figure 3.14. Determining the density of CACs for the adhesion to 
saphenous vein smooth muscle cell assay.  The average number (+SD) of 
adherent cells per microscopic image increased with the higher the 
density of CACs. 
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Using the VSMCs from the same passage, CACs from the second pilot 

participant were added to the monolayers in duplicate at a density of 2.5x104/ 

well. After 10 min, 20 min, 30 min and 60 min the non-adherent cells were 

removed by washing with PBS. Cells were fixed with 4% paraformaldehyde 

(100 µl/well) and 5 random microscopic images were taken per well (100x 

magnification). The number of adherent cells per image were counted and an 

average of the duplicate wells at each time point was calculated. The number of 

adherent CACs increased progressively the longer the incubation period. Unlike 

the HUVEC adhesion assay, the VSMCs remained as a confluent monolayer 

and was therefore used as a functional assay in chapter 6 (refer to section 

3.12.5.2 for protocol). 

 
Figure 3.15. Time course of CAC adhesion to saphenous vascular smooth 
muscle cells. The average number (+SD) of adherent CACs were 
quantified following 10, 20, 30 and 60 min incubation. 
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3.12.5.2 VSMC adhesion protocol 

Saphenous vein smooth muscle cells were collected from the Leeds General 

Infirmary from patients undergoing coronary artery bypass graft surgery. From 

the unused saphenous vein tissue, the medial layer was extracted and the 

smooth muscle cells were cultured and subsequently stored in liquid nitrogen 

until required for the adhesion assay. The cultured CACs from participants that 

were not being used in the paracrine function assay (section 3.12.6) were 

harvested on day 7 (refer to section 3.12.1). Confluent monolayers of 

saphenous vein smooth muscle cells (passage 2-6) were prepared in wells of a 

96 well plate. CACs were placed in wells with the smooth muscle cell 

monolayers in duplicate at a density of 2.5x104/ well in 250 µl of EGM. The 

number of adherent CACs to the monolayers were counted after 10, 20, 30, 60 

min and 24 and 48 hrs incubation. At each time point the non-adherent CACs 

were removed by washing with PBS and cells were fixed with 4% 

paraformaldehyde (100 µl/well). Paraformaldehyde was not added at 24 hrs to 

allow measurement of adherence after 48 hrs. 5 random microscopic images 

were taken per well (100x magnification) and the number of adherent cells per 

image were counted and an average of the duplicate wells at each time point 

calculated. 

3.12.6 CAC paracrine function 

CACs cultured for 4-7 days secrete angiogenic growth factors and thus may aid 

in endothelial repair/angiogenesis in a paracrine manner through activating the 

proliferation of existing endothelial cells (Rehman et al., 2003). To assess CACs 

paracrine function, condition medium was collected during culture. In detail, on 

day 4 of culture non-adherent cells were removed from the wells that were not 

being cultured for any other functional assay. The wells were washed in PBS 
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and 1 ml of M199 medium supplemented with 1% FCS (Sigma-Aldrich) was 

added to each well and incubated for 24 hours. The conditioned medium was 

removed on day 5 and centrifuged at 600 g for 10 min at 4°C to remove any 

non-adherent cells. The medium was snap frozen in liquid nitrogen and stored 

at -80°C until analysis. To normalise the amount of angiogenic growth factors in 

the medium to 105 CACs, the number of non-adherent cells in the pellet 

following conditioned medium centrifugation and the number of adherent cells in 

one well were counted using haemocytometry. The number of adherent cells 

were detached using trypsin and centrifuged at 300 g for 10 min (refer to 

section 3.12.1). The amount of VEGF, SDF-1α  nd gr nulocyte colony 

stimulating factor (G-CSF) in the conditioned medium was measured using 

ELISA kits  ccording to the m nuf cturer’s instructions (R&D systems). 

Standards and participant conditioned medium samples were performed in 

duplicate and analysed as described previously (refer to section 3.10). 

3.13   Statistical analysis 

All analysis was completed using statistical software (SPSS v.19, IBM 

Corporation, Somers, NY, USA). Data were assessed for normal distribution 

using the Kolmogorov-Smirnov test. If data were skewed, variables were 

transformed (detail is provided within the chapters) or non-parametric tests were 

conducted. Differences between training groups at pre-training (chapters 4 and 

6) or between exercise sessions at pre-exercise (chapter 5) were assessed via 

  student’s independent t-test and one-way ANOVA, respectively. If differences 

were observed, the pre-training/exercise value would be used as a covariate in 

the subsequent analysis. The effect of the training or exercise bout was 

analysed using a repeated measures ANOVA (mixed mode for chapters 4 and 6 

and two-way within subject for chapter 5). Effect size was determined by 
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Cohen’s d  which was calculated as the difference between the pre and post-

intervention means divided by the pre-intervention standard deviation of the 

variable (Field, 2013). The 95% confidence intervals (CIs) for the pre to post-

training differences were presented in variables that showed a close to 

significant change following training. Pearson correlations were performed to 

establish relationships between variables. Significance was accepted as p < 

0.05 and values presented as mean ± standard deviation. Power calculations 

were conducted using statistical software  

(http://hedwig.mgh.harvard.edu/sample_size/js/js_parallel_quant.html). 

 

   

http://hedwig.mgh.harvard.edu/sample_size/js/js_parallel_quant.html
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Chapter 4 A comparison between the effects of sprint interval 
and sprint continuous training on vascular health and repair in 

young premenopausal women 

Aspects from this chapter were presented at the following conferences: 

 The Systems Biology of Exercise: Cardio-respiratory and Metabolic 

Integration, University of Leeds, UK, August 2012. 

 Annual Congress of American College of Sports Medicine, Annual 

Meeting, San Francisco, CA, June 2012. 

 Annual Faculty of Biological Sciences Postgraduate Symposium, 

University of Leeds, UK, March 2012: 1st prize for institute poster 

presentation. 

And published in: 

Medicine and Science in Sports and Exercise (2012). 44(5S): S2828, p.733. 

4.1 Introduction 

The risk of CVD increases throughout the lifespan due in part to reduced 

endothelial function and nitric oxide bioavailability (Taddei et al., 2001), cardio-

respiratory fitness (Fitzgerald et al., 1997), arterial compliance (Moreau et al., 

2003) and CAC number and function (Scheubel et al., 2003; Heiss et al., 2005). 

Physical activity and exercise can ameliorate these risk factors however, 

participation levels are low. Only 4% of women in England achieve the 

government recommended guidelines for exercise participation of at least 30 

min of moderate-intensity continuous exercise on 5 days per week (British Heart 

Foundation, 2012). Furthermore, the rates of exercise participation decline 

throughout the female lifespan from 8% between the ages 16-34 yrs, to 0% 

from 65+ yrs (British Heart Foundation, 2012). Given th t women reported ―  
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l ck of leisure time‖  s the m in b rrier to exercise p rticip tion (Joint Health 

Surveys Unit, 2008), an increasing number of studies within the literature have 

focused on the benefits of high-intensity training interventions with reduced 

weekly time commitment. One type of high-intensity exercise emerging within 

the literature is sprint interval training (SIT), consisting of multiple bursts of 

maximal exertion separated by rest periods.  

Few studies have assessed the effects of SIT upon the cardiovascular system, 

although Rakobowchuk et al., (2008) reported an increased endothelial function 

and distensibility of the popliteal artery in healthy individuals after only 6 weeks 

of SIT. A possible mechanism for this improvement is an increased expression 

of endothelial nitric oxide synthase (eNOS) as observed in rodents following SIT 

(Laughlin et al., 2004). Additionally, 6 weeks of SIT in sedentary males 

increased eNOS content in the muscle microvasculature in the exercising limb 

(Cocks et al., 2013). However, the impact of SIT upon systemic endothelial 

function assessed at the brachial artery and on CAC number and function which 

aid in vascular repair, has not been investigated. Additionally, due to the active 

recovery periods involved in SIT sessions, total session duration is not much 

shorter than the recommended government guidelines of 30 min of moderate-

intensity continuous exercise. A less time committing approach would be the 

performance of a single continuous sprint which would serve to shorten the total 

training session duration. 

Sprint continuous training (SCT) sessions involve one sustained maximal effort 

sprint without rest periods. This type of training may be more appealing for 

training purposes than SIT as the time commitment is less. An acute bout of 

SCT has beneficial effects on metabolic health in overweight/obese men, with 

immediate increases in insulin sensitivity and reductions in insulin resistance 
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(Whyte et al., 2013). However, the chronic effects of SCT on systemic 

endothelial function and repair are unknown and have not been compared with 

SIT. Therefore, the aim of this chapter was to determine and compare the 

effects of work-matched SIT with a less time committing SCT protocol on 

brachial artery endothelial function, arterial stiffness, cardio-respiratory fitness 

and CAC number and function.  

4.2 Methods 

4.2.1 Participants  

Twelve healthy eumenorrheic females (age: 22 ± 2 yrs; BMI: 23.6 ± 1.8 kg·m-2) 

volunteered for the study through poster and email advertisements placed 

around the University of Leeds campus. Exclusion criteria other than specified 

in the general methods, chapter 3, section 3.1, included use of hormonal 

contraceptives in the last 6 months.   

4.2.2 Experimental protocol 

Measurements were undertaken pre and following the completion of a 4-week 

sprint training programme. The exercise training programme duration was 

chosen to ensure participants were assessed in the same phase of their 

individual menstrual cycle, and to determine if changes in vascular health can 

occur as quickly as those reported in skeletal muscle oxidative capacity (Gibala 

et al., 2006). For both pre and post-testing assessments, participants attended 

the laboratory on two separate days. On the first visit the vascular measures 

were undertaken prior to a fasted venous blood sample collection (~31 ml) for 

CAC enumeration and functional assessments. On the second visit a cardio-

respiratory fitness test was completed for the assessment of maximal aerobic 

capacity (V O2m x) and the lactate threshold (LT). Control factors for these two 

sessions are specified in the general methods, chapter 3, section 3.2. 
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Participants were matched for relative V O2m x  (Figure 4.2a) and assigned to 

either a SIT (n = 6) or SCT (n = 6) training group. Post-testing measures were 

acquired 4 weeks later between 48 and 72 hrs after the last training session.  

4.2.3 Variables assessed pre and post-training 

The protocols for the following variables are described in detail in the general 

methods chapter (chapter 3).  

4.2.3.1 Cardio-respiratory fitness 

A seated ramp incremental step exercise test (RISE-105) was performed for the 

assessment of V O2   , the LT, RI test duration and WRpeak (section 3.3). The 

ramp rate of the RI stage of the test was 1 W/4 s and the step exercise work-

rate set at 105% WRpeak. At pre-training the SE test was excluded from analysis 

in 3 participants due to two participants performing non-seated cycling and 

equipment failure. In these participants, the V O2     value from the RI stage of 

the test was reported as V O2   . 

4.2.3.2 Vascular measures 

The following vascular measures were completed at pre and post-exercise 

training (sections 3.4-3.8): BMI, resting HR, brachial artery FMD, peak reactive 

hyperaemia, peak shear rate, AUCpeak and AUC60 and their corresponding VTIs, 

brachial artery blood pressure, PWVcr, PWVbf and carotid arterial blood 

pressure, cross-section l compli nce (CSC), distensibility, β-stiffness index and 

IMT. During recording of brachial artery blood velocity the Doppler insonation 

angle for each participant between pre and post-testing was within 3°. 

4.2.3.3 CAC number and function 

A 31 ml fasted blood sample was taken following the procedure outlined in 

section 3.9. 1 ml of the blood was analysed for CAC number via flow cytometry 
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following the modified ISHAGE protocol described in section 3.11.2.2. The 

remaining 30 ml sample was used for functional assessment of CACs. Briefly, 

mononuclear cells were separated from the blood, plated on fibronectin coated 

wells and cultured for 7 days with medium changes on days 2, 4 and 6 as 

described in detail in section 3.12.1. On day 7, one well of adherent CACs was 

stained with DiI-AcLDL and lectin to determine phenotype while the remaining 

wells of adherent CACs were detached and used in functional assessment 

assays. The ability of CACs to migrate to a chemoattractant and adhere to 

fibronectin were assessed (refer to sections 3.12.3-3.12.4 for details).  

4.2.4 Exercise training protocol 

Participants completed 3 supervised sprint training sessions per week in the 

laboratory for a 4-week period. All sprints were performed on a cycler ergometer 

(Ergomedic 874E Peak bike, Monark Exercise AB, Sweden) connected to 

software (Monark anaerobic test software, Monark Exercise AB HUR OY, 

Karleby, Finland) for the calculation of average power. In each training session 

participants in the SIT group completed four 30 s maximal effort sprints 

(Wingate test) at a resistance equivalent to 7.5% of body weight. The resistance 

was applied when the participant reached a cadence of 140-150 rpm and each 

Wingate test was separated by 4.5 min of unloaded pedalling. SIT sessions 

were based on previous studies (Rakobowchuk et al., 2008) whereby vascular 

function was seen to improve with SIT training. Participants in the SCT group 

completed a full SIT session as their first training session for the purpose of 

calculating the total work achieved from the four 30 s sprints. Total work for the 

training session was calculated in kJ as the sum of the work in each of the 4 

Wingate tests from the recording of average power using the following equation: 
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Where ave power is the average power produced during 1 Wingate test (J/s), 

and 30 s  is the duration of the test.  

The total number of revolutions performed on the cycle ergometer to achieve 

this total work was also calculated for the purpose of work-matching (see below) 

using the following equation:  

             
                   

  
 

Where 0.009804 is the conversion factor for kJ to kg-m,   is the circumference 

(m) of the flywheel on the cycle ergometer and   is the resistance applied (kg). 

For the remaining training sessions the SCT group completed a single 

continuous maximal effort sprint. To enable a sustained sprint the cycle 

ergometer resistance was reduced by a third of the SIT session resistance to 

5% of body mass. The resistance was applied when the participant reached a 

cadence of 140-150 rpm. To ensure the sprint was work-matched with the SIT 

session, the sprint was stopped when the participant achieved the equivalent 

total number of revolutions attained across the 4 Wingate tests in their first SIT 

session. As the resistance was reduced by one third, the total number of 

revolutions was increased by one third. Figure 4.1 shows a schematic 

representation of the SIT  nd SCT sessions. In both groups’ sessions, strong 

verbal motivation was provided to encourage participants to maintain a fast 

cadence throughout the sprints. All sessions were followed by a short cool-

down that was similar between the groups. Thus, the training groups by design 

both involved maximal exertion sprints, were matched for relative work but 

differed in regards to session duration and the interval vs. continuous nature of 

the exercise. Participants in the SCT group completed an extra 30 s Wingate 



- 113 - 

test at the end of training to assess changes in peak power from pre to post-

training. 

 

Figure 4.1. Schematic of sprint interval (SIT) and sprint continuous 
training (SCT).  SIT sessions (solid black bars) involved a maximal 30 s 
sprint at 7.5% of body weight (ave: 5.1 ± 0.6 kg) followed by 4.5 min of 
unloaded pedalling, repeated 4 times. SCT sessions (striped gray bar) 
involved a maximal sprint at 5% of body weight (ave: 3.4 ± 0.4 kg) which 
ended when the participant completed the same amount of work which 
was achieved in their first SIT session. On average SCT duration was 3.5 ± 
0.2 min. 
  

4.2.5 Statistical analysis 

Statistical analysis procedures are detailed in the general methods, chapter 3, 

section 3.13. All data were normally distributed and no training group 

differences in any variable were observed at pre-training. Work completed 

during session one was ev lu ted for tr ining group differences vi    Student’s 

independent t-test. The effect of the training interventions was analysed using a 

mixed mode repeated measures ANOVA with time (pre vs. post-training) as the 

within-subjects factor and training group (SIT vs. SCT) as the between-subjects 
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factor. Paired t-tests were conducted for post-hoc analysis to identify which 

exercise bout showed a significant change. Given the lack of knowledge 

regarding CAC and exercise in females, CAC number was selected as the 

primary outcome. Using the previously reported increase of 8.7 CD34+ cells/µl 

with a standard deviation of 3.0, following a supramaximal bout of exercise in a 

healthy population (Morici et al., 2005), a minimum of 8 participants in total were 

required to obt in 80% power (α = 0.05), if the difference between treatments 

was 8.7, in a two-treatment parallel-design study. 

4.3 Results 

4.3.1 Participants and training effect 

Participant characteristics are displayed in Table 4.1. BMI, resting HR and 

brachial artery BP did not change following training (p > 0.05). By design both 

the tr ining groups’ session dur tion (SIT: 20 min, SCT: 3.5 ± 0.2 min)  nd 

resistance applied to the cycle ergometer (SIT: 5.1 ± 0.6 kg, SCT: 3.4 ± 0.4 kg) 

were greater in the SIT group. Work completed per session did not significantly 

differ between the groups (SIT: 45.9 ± 6.3 kJ vs. SCT: 47.6 ± 6.2 kJ, p = 0.66). 

Peak and average power calculated for a single 30 s Wingate test did not 

increase from session 1 to post-training in either group (p > 0.05). Both absolute 

(p = 0.048) and relative V O2m x (p = 0.046) increased with training with no time 

by group interaction (p > 0.05, Table 4.1, Figure 4.2a). The estimated LT also 

increased with training in both groups (Figure 4.2b); although significance was 

not reached (p = 0.08) the 95% confidence interval (CI) for pre to post-training 

difference ranged from -11 to 164 ml/min. The RI test duration and WRpeak 

significantly increased following training in both groups (p < 0.001, time by 

group interaction for both p = 0.05), with a larger increase following SIT (Table 

4.1, Figure 4.2c). 
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Table 4.1. Participant characteristics and cardio-respiratory fitness (mean 
± SD) at pre and post 4 weeks of either sprint interval (SIT) or sprint 
continuous training (SCT). 

* indicates a significant main time effect (p < 0.05). No group differences at 
baseline were observed (p > 0.05). RI test duration time by group interaction 
was close to significant (p = 0.05) with a large effect size with SIT (SIT: d = 0.8, 
SCT: d = 0.5). HR = heart rate, bpm = beats per minute, SBP = systolic blood 
pressure, DBP = diastolic blood pressure, MAP = mean arterial pressure, PP = 

pulse pressure, V O2m x = maximal oxygen uptake, RI = ramp incremental.  

 SIT (n = 6) 

       Pre                        Post                   

SCT (n = 6) 

      Pre                    Post 

BMI (kg∙m
-2

) 23.6 ± 1.8 23.8 ± 1.6 23.1 ± 2.3 22.9 ± 2.6 

Resting HR (bpm) 55 ± 10 56 ± 6 62 ± 8 64 ± 12 

Brachial artery SBP 
(mmHg) 

115 ± 7.0 117 ± 11 112 ± 12 111 ± 11 

Brachial artery DBP 
(mmHg) 

73 ± 5 72 ± 11 76 ± 9 72 ± 7 

Brachial artery MAP 
(mmHg) 

87 ± 5 87 ± 10 88 ± 10 85 ± 8 

Brachial artery PP 
(mmHg) 

41 ± 6 45 ± 8 36 ± 5 39 ± 7 

* Absolute V O2m x 

(L·min
-1

) 
2.34 ± 0.37 2.55 ± 0.31 2.24 ± 0.22 

2.30 ± 
0.21 

* RI test duration 

(min) 
12.14 ± 1.74 13.44 ± 1.55 12.06 ± 1.18 

12.73 ± 
0.9 

Lactate threshold (%) 48.4 ± 7.4 46.4 ± 5.4 49.0 ± 6.4 51.9 ± 8.1 



- 116 - 

 

  

a 
* 

b 

* 

c 

S IT S C T

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

R
I 

W
R

p
e

a
k
 (

W
)

d  =  0 .7 4 d  =  0 .5 7

* 

Figure 4.2. Changes in cardio-respiratory fitness following sprint interval 

(SIT) and sprint continuous training (SCT). * indicates a significant pre to 

post-training difference in both groups (time effect: p < 0.05). a) Relative 

maximal oxygen uptake (   2max) increased following both SIT and SCT (p 
= 0.046) with no group by time interaction (p = 0.49). b) The estimated 
lactate threshold (LT) followed a trend to increase in both training groups 
(main time effect  p = 0.08) with no group by time interaction (p = 0.30). c) 
The ramp incremental (RI) test work-rate peak (WRpeak) significantly 
increased in both groups (main time effect p = 0.0001) with a greater 
increase following SIT (group by time interaction p = 0.05). d = cohen’s 
effect size. 
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4.3.2 Brachial artery endothelial function  

Resting brachial artery diameter and time from cuff release to peak dilation 

were unchanged following training in both groups (p > 0.05, Table 4.2). 

However, absolute and relative FMD showed a trend for an increase (FMDrel by 

~19%, FMDabs by ~23%) following SIT but little change following SCT (Table 

4.2, Figure 4.3). Although the main time effect was not significant (p = 0.81), the 

time by group interaction showed a trend (p = 0.08), with 67% of participants in 

the SIT increasing FMD (FMDrel: 95% CI for pre to post-training difference: -0.59 

to 2.43%) and 67% of SCT participants exhibiting little change (FMDrel: 95% CI 

for pre to post-training difference: -2.29 to 0.86%). Larger increases in absolute 

FMD occurred in participants with lower pre-training levels of absolute FMD (r = 

-0.57, p = 0.06). Peak reactive hyperaemia, peak shear rate, AUCpeak and 

AUC60 did not change in either training groups (p > 0.05, Table 4.2). Absolute 

FMD did not significantly correlate with shear rate (p > 0.05), therefore, FMD 

was not normalised to shear rate AUC.  
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Table 4.2. Brachial artery endothelial function (mean ± SD) at pre and post 
4 weeks of either sprint interval (SIT) or sprint continuous training (SCT). 

Absolute FMD time by group interaction was close to significant (p = 0.08). AUC 
= area under the shear rate curve and FMD = flow-mediated dilation.  

 

 

Figure 4.3. Brachial artery endothelial function following sprint interval 
(SIT) and sprint continuous training (SCT).  Brachial artery FMD displayed 
a trend for an increase following SIT (n = 6) but little change following SCT 
(n = 6; main time effect p = 0.81; time by group interaction p = 0.08). 
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 SIT (n = 6) 

       Pre                        Post                   

SCT (n = 6) 

      Pre                    Post 

Peak reactive 
hyperaemia (cm·s

-1
) 

98.8 ± 23.6 97.3 ± 19.4 82.0 ± 14.7 90.1 ± 8.7 

Peak shear rate (s
-1

) 2628.6 ± 1063.6 2564.3 ± 803.3 2126.1 ± 449.2 
2394.5 ± 

301.0 

AUCpeak (a.u.) 

 
31325  ± 11174 30406 ± 13875 27646 ± 6595 

31396 ± 
6366 

AUC60 (a.u.) 

 

39815 ± 14654 39648 ± 16146 39596 ± 5261 
43901 ± 

6012 

Insonation angle (°) 69 ± 1 68 ± 2 68 ± 2 68 ± 1 

Brachial artery 
baseline diameter 
(mm) 

3.2 ± 0.8 3.2 ± 0.8 3.1 ± 0.5 3.1 ± 0.5 

Absolute FMD (mm) 0.15 ± 0.09 0.18 ± 0.07 0.22 ± 0.08 
0.20 ± 
0.08 

Time from cuff release 
to peak diameter (s) 

38 ± 8 35 ± 4 34 ± 9 34 ± 6 
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4.3.3 Arterial stiffness 

Carotid to radial and brachial to foot PWV did not alter following training in 

either group (p > 0.05) indicating that sprint training did not affect upper limb or 

central PWV (Table 4.3). Carotid artery IMT, distensibility, cross-sectional 

compliance and stiffness index were also unaltered following both types of 

training (p > 0.05; Table 4.3). 

Table 4.3. Arterial stiffness (mean ± SD) pre and post either sprint interval 
(SIT) or sprint continuous training (SCT). 

No group differences at pre-training, training effects or time by group  
interactions were found (p >0.05). PWVcr = carotid-radial pulse wave velocity, 
PWVbf = brachial-foot pulse wave velocity, IMT = intima-media thickness, SBP = 
systolic blood pressure, PP = pulse pressure, CSA = cross-sectional area, CSC 
= cross-section l compli nce, DD = distensibilty, SI = β-stiffness index. 

 

4.3.4 Training effect on CAC number 

At post-testing, one participant was excluded from analysis from the SCT group 

due to technical problems with the flow cytometer. Circulating CD34+ cells 

increased following both SIT (by ~44%; n = 6) and SCT (by ~28%; n = 5; main 

time effect p = 0.02) with no time by group interaction (p = 0.83; Figure 4.4a). 

However, CD34+CD45dim did not change following either type of training (main 

 
SIT (n = 6) SCT (n = 6) 

Pre Post Pre Post 
PWVcr (m·s

-1
) 6.0 ± 0.8 6.2 ± 0.5 6.6 ± 0.8 7.4 ± 0.7 

PWVbf (m·s
-1

) 7.4 ± 0.9 7.8 ± 1.4 8.2 ± 1.6 7.4 ± 1.1 

Carotid artery IMT 
(mm) 

0.31 ± 0.10 0.36 ± 0.07 0.33 ± 0.09 0.35  ± 0.06 

Carotid artery SBP 
(mmHg) 

103 ± 6 104 ± 11 101 ± 11 98 ± 10 

Carotid artery PP 
(mmHg) 

29 ± 4 31 ± 5 25 ± 3 27 ± 5 

C rotid ΔCSA within 
heart cycle (mm

2
)  

6.2 ± 1.3 6.0 ± 0.7 6.2 ± 1.5 6.2 ± 1.5 

Carotid artery CSC 
(mm

2
/mmHg) 

0.22 ± 0.05 0.19 ± 0.03 0.25 ± 0.06 0.24 ± 0.08 

Carotid artery DD 
(mm/mmHg) 

 0.01 ± 0.002  0.01 ± 0.002 0.01 ± 0.002 0.01 ± 0.002 

Carotid artery SI 
(a.u.) 

3.3 ± 0.8  3.6 ± 0.8 3.0 ± 0.6 3.4 ± 1.2 
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time effect p = 0.21, time by group interaction p = 0.67; Figure 4.4b). Changes 

in CD34+ cells with training did not correlate with pre-training FMD or changes 

in FMD following tr ining (Pre FMD r = 0.14, ΔFMD r = 0.34, p > 0.05).  

 

 

 

 

4.3.5 CAC function 

At post-testing 1 participant from the SCT group was excluded from the 

adhesion and migration assays, and 1 participant from the SIT group excluded 

from the migration assay due to low cell number at harvest on day 7. The 

a 

* 

b 

Figure 4.4. The effects of sprint interval (SIT) and sprint continuous 

training (SCT) on circulating angiogenic cell (CAC) number. * indicates a 

significant pre to post-training difference in both groups (p < 0.05). a) 
CD34+ cells increased following both SIT (n = 6) and SCT (n = 5; main time 
effect p = 0.02) with no time by group interaction (p = 0.83). However, b) 
CD34+/CD45dim cells did not change following either training (main time 
effect p = 0.21; time by group interaction p = 0.67). 
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function of CACs did not significantly improve with either type of training (main 

time effect, adhesion p = 0.47, migration p = 0.63, DiI-AcLDL & lectin p = 0.25; 

time by group interaction p > 0.05; Table 4.4). However, whilst training induced 

changes in CAC adhesion were not related to pre-training levels (p > 0.05), 

changes in CAC migration were greater in participants with lower pre-training 

levels of CAC migration (r = -0.67, p = 0.03). 

Table 4.4. Circulating angiogenic cell (CAC) function following either 
sprint interval (SIT) or sprint continuous training (SCT). 

No group differences at pre-training, training effects or time by group 
interactions were found (p >0.05). CAC = circulating angiogenic cells. 

4.4 Discussion 

The present study to the  uthor’s knowledge w s the first to ex mine the effects 

of sprint training on brachial artery function as an indicator of systemic vascular 

function, and the mobilisation and function of circulating cells that may 

contribute to endothelial repair. Furthermore, novel comparisons were made 

between SIT and SCT to explore whether sprint training involving a continuous 

work-rate stimulus has differential effects on the vasculature than work matched 

sprinting of an interval nature. The main findings were that despite the lower 

training time commitment, SCT improved cardio-respiratory fitness to a similar 

extent as SIT. Furthermore, increased mobilisation of circulating CD34+ cells 

was observed following both types of training, but arterial stiffness, 

 
SIT (mean ± SD) SCT (mean ± SD) 

Pre Post Pre Post 
DiI-AcLDL & lectin 
CACs/ microscopic 
image (SIT: n = 6; 
SCT: n = 6) 

18 ± 7 14 ± 8 12 ± 11 11 ± 6 

CAC adhesion/ 
microscopic image 
(SIT: n = 6; SCT: n = 
5) 

11 ± 8 8 ± 6 13 ± 8 11 ± 12 

CAC migration/10 
microscopic images 
(SIT: n = 5; SCT: n = 
5) 

2 ± 3 4 ± 7 1 ± 4 2 ± 2 
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CD34+CD45dim mobilisation and CAC function remained unchanged. 

Additionally, there was a trend for brachial artery FMD to increase following SIT 

with little change following SCT.  

4.4.1 Improvements in exercise tolerance 

Recently,   ―l ck of time‖ h s been highlighted  s the gener l publics’ m in 

barrier to exercise thus, several studies have focused on how supramaximal but 

less time committing exercise can be equally as beneficial to health and fitness 

as longer methods of exercise training. Improvements in V O2    by ~10% have 

been observed following as little as 6 weeks of Wingate test based SIT 

(Burgomaster et al., 2008). In agreement, the present study found similar 

increases in V O2   . Increases in V O2m x following exercise training involves a 

greater delivery and utilisation of oxygen to working muscles. From a vascular 

perspective, adaptations enabling this increase include capillary proliferation 

and an increased endothelial vasodilation and reduced arterial stiffness of the 

arteries supplying blood to the working muscles (Poole et al., 2012), which has 

been reported in the popliteal artery following SIT (Rakobowchuk et al., 2008). 

Other reported mechanisms for these rapid improvements include an increased 

skeletal muscle glycolytic and oxidative maximal enzyme activity (MacDougall 

et al., 1998; Burgomaster et al., 2008). Additionally, following both training 

types, there was a near significant improvement in the LT and a significant 

increase in the RI test duration and WRpeak, with greater improvements following 

SIT. Since V O2    is a strong predictor of future cardiac events (Laukkanen et 

al., 2004), and the LT and WRpeak are markers of exercise tolerance that are 

associated with poorer cardiac outcomes (Myers et al., 1998), this type of 

training may be favourable to those who wish to rapidly increase their cardio-

respiratory fitness and/or cardiovascular health. Thus, participation in this type 
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of exercise in women throughout the lifespan, may partly mitigate the decline in 

cardiovascular health and fitness associated with ageing and menopausal 

status.  

4.4.2 Differential effects of SIT and SCT on brachial artery 
endothelial function 

Although the sample size is small, the results indicated a close to significant 

trend for an increase in brachial artery FMD following SIT but little change after 

SCT, without any changes in peak reactive hyperaemia, peak shear rate, 

AUCpeak or AUC60. Several reasons may explain this potential difference 

between SIT and SCT. Given that brachial artery FMD is largely nitric oxide 

dependent (Doshi et al., 2001), this result suggests that SIT may provide a 

greater stimuli for increased nitric oxide bioavailability than SCT. Improvements 

in brachial artery endothelial function following lower limb exercise training in 

healthy populations have occurred as early as 2 weeks and begun to return to 

baseline at 4 weeks due to arterial remodelling (Birk et al., 2012). This may 

explain why other studies adopting longer training protocols have not observed 

a change (Rakobowchuk et al., 2012). Therefore, it is plausible that if 

endothelial function in the present study had been assessed after 2 weeks a 

larger magnitude of change may have been present. 

Increases in brachial artery FMD following exercise training are believed to be 

caused by increases in brachial artery blood flow antegrade shear stress 

(Tinken et al., 2010) which induce nitric oxide release through activation of 

eNOS (Boo et al., 2002; Hambrecht et al., 2003). However, in the initial 5 min 

from lower limb cycling onset, mean brachial artery blood flow decreases due to 

an increase in retrograde flow caused by forearm resistance vessel 

vasoconstriction as shown in Figure 4.5 (Thijssen et al., 2009a; Simmons et al., 
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2011). As opposed to antegrade shear stress, retrograde shear stress is pro-

atherogenic as it increases reactive oxygen species, which reduces nitric oxide 

bioavailability (Laughlin et al., 2008). Additionally, greater oscillatory and 

retrograde shear rate in the brachial artery, activates the endothelium and 

increases damage, evidenced by significantly higher levels of circulating 

endothelial microparticles during the period of induced disturbed flow (Jenkins 

et al., 2013). Furthermore, retrograde shear stress reduces brachial artery FMD 

in a dose-dependent manner (Thijssen et al., 2009c).   

 

 

 

Since SCT duration was less than 5 min in our study, it is possible that the 

brachial artery endothelium experienced retrograde shear stress, which may 

have negated improvements in endothelial function by reducing nitric oxide 

bioavailability. In contrast, SIT duration was 20 min which allows sufficient time 

a 

b 

Figure 4.5. Upper arm blood flow response to lower limb cycling exercise. 
Forearm vascular conductance (a) and brachial artery retrograde shear 
rate (b) during 30 min of lower-limb cycling exercise at 120 W in 14 young 
healthy male participants. Reproduced from Simmons et al., (2011).  
* indicates a significant difference from baseline (p < 0.05).  
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for antegrade shear stress to increase and for retrograde shear stress to return 

to baseline due to reductions in downstream peripheral resistance caused by 

thermoregulatory cutaneous vasodilation (Simmons et al., 2011). Thus, SIT with 

intervals of 30 s may be more beneficial for brachial artery adaptations due to 

increases in antegrade shear stress that augment nitric oxide production, 

whereas SCT duration may be too short to induce the increases in antegrade 

shear stress required for improvements in FMD. However, further studies 

investigating blood flow responses to SIT and SCT are required to validate this 

suggestion. 

Superior health benefits have been reported following interval exercise training 

compared to continuous exercise training, which have often been related to a 

higher exercise intensity, shear stress and work done experienced during 

interval exercise (Wisloff et al., 2007). In the present study, SCT and SIT were 

both of a high intensity and matched for work. Therefore, it may be that the 

profile of the repeated increments and decrements in work rate provided a 

greater stimulus for vascular adaptations than a continuous work rate. Evidence 

from in vitro studies on endothelial cells suggests that the temporal gradients in 

shear stress are more important than the magnitude of the shear for eNOS 

activation and nitric oxide production. A rapid increase in shear stress from a 

pre-existing level creates a burst in nitric oxide production (Kuchan & Frangos, 

1994). Subsequently, exposure to a sustained magnitude of this shear stress 

reduced the rate of nitric oxide production. Additionally, repeated impulses in 

shear stress have been seen to produce a large increase in nitric oxide 

production, whereas a slow ramp increase in flow to the equivalent magnitude 

had no effect (Dusserre et al., 2004). This was thought to be due to the 

activation of eNOS by platelet endothelial cell activation molecule-1 (PECAM-1) 
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which may only sense shear stress when rapid changes occur due to its 

sheltered position at cell-cell junctions (Dusserre et al., 2004). Therefore, given 

that our SIT sessions involved 4 periods of rapid increases in shear stress 

compared to a single increase in the SCT, it seems reasonable to suggest that 

SIT provided a greater stimulus for nitric oxide synthesis. Furthermore, it is 

likely that the elevation in shear stress would have occurred for longer during 

SIT due to longer session duration. The measurement of shear stress during 

SIT and SCT and further in vitro studies examining endothelial cell responses to 

continuous and periodic fluctuations in shear stress are required to validate 

these suggestions. 

4.4.3 Unaltered arterial stiffness following sprint training 

PWV, a measure of arterial stiffness associated with increased CVD risk 

(Nichols & O'Rourke, 2005), did not change with training both centrally and in 

the upper limb, indicating an unaltered arterial stiffness. Conversely, a previous 

study has observed an increased popliteal arterial distensibility following 6 

weeks of SIT (Rakobowchuk et al., 2008). This suggests that sprint training can 

reduce arterial stiffness in the exercising limbs but maintains arterial stiffness 

centrally and in the untrained upper limbs in a healthy population.  

Carotid arterial distensibility and IMT are linked to CVD progression (Simons et 

al., 1999). In the present study, carotid arterial stiffness and IMT did not change 

following SIT or SCT in agreement with a previous study following SIT in 

healthy individuals (Rakobowchuk et al., 2008). Healthy pre-training vasculature 

most likely explains the lack of training effect as carotid distensibility and IMT 

were similar to previously reported values in a healthy population (Tanaka et al., 

2002; Rakobowchuk et al., 2008) 
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4.4.4 Training effect on CAC mobilisation and function 

The present study is the first to evaluate the effects of sprint training on CAC 

mobilisation and function and demonstrated an increase in circulating CD34+ 

cells following SIT and SCT but no change in its subpopulation CD34+CD45dim, 

suggesting that a different subpopulation of CD34+ cells were mobilised. The 

enhanced CD34+ cells did not correlate with FMD at pre-training or training 

induced changes in FMD indicating a healthy brachial artery endothelial 

function. Furthermore, cultured CACs adhesive and migratory ability did not 

alter following both training programmes. Conversely, increases in CAC function 

following exercise training have been documented in populations with or at risk 

of CVD (Sandri et al., 2005; Steiner et al., 2005; Sarto et al., 2007). However, 

healthy individuals do not exhibit impaired CAC function (Vasa et al., 2001), 

which likely explains why no increase in CAC function was observed in the 

present study. Furthermore, increases in CAC migratory ability occurred in 

those with lower pre-training levels in the present study, supporting the 

suggestion that exercise training increases CAC function only when individuals 

exhibit impaired CAC function at pre-training.  

CD34+ haematopoietic cells have been reported to migrate towards arterial 

injury (Walter et al., 2002), adhere to implanted grafts (Shi et al., 1998) and 

restore circulation to the ischaemic limb of mice (Hur et al., 2004) providing 

evidence for their role in endothelial repair and angiogenesis. The present study 

is the first to show elevated numbers of CACs following exercise training in a 

healthy population and suggests an increased reparative potential if required. In 

contrast, no change in CACs was observed following 8 weeks of continuous 

endurance training in healthy older men (Thijssen et al., 2006) and in our lab 

following 6 weeks of moderate intensity interval training in healthy young adults 
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(Rakobowchuk et al., 2012). Although in the latter study, some participants 

exhibited a sustained mobilisation of CACs following heavy intensity interval 

training, which may have been a result of the higher exercise intensity. This 

evidence combined with the sustained mobilisation of CACs following both SIT 

and SCT in the present study suggests that the high intensity nature and not the 

duration or the interval vs. continuous nature of the exercise was the main 

contributor to these increases. This supports the theory that a greater metabolic 

stress during exercise leads to a sustained upregulation of CACs in healthy 

individuals as both training programmes in the present study involved maximal 

exertion sprints that likely achieved V O2    (Whyte et al., 2013). With increases 

in exercise intensity, greater levels of oxidative stress are produced (Goto et al., 

2003) which activates the endothelium, leading to secretion of VEGF and SDF-

1α from endotheli l cells th t  id in the mobilis tion  nd homing of CACs 

(Zampetaki et al., 2008). Conversely, acute bouts of moderate-intensity 

exercise below the LT in healthy individuals have been shown to elevate CACs 

(Laufs et al., 2005; Cubbon et al., 2010) via a nitric oxide mediated pathway 

with levels returning to baseline after 24hrs. Taken together, these data 

suggests that for chronic increases in CACs following exercise training in 

healthy individuals, a higher level of oxidative and metabolic stress is required 

during exercise sessions. 

4.4.5 Conclusions and future work  

Sprint continuous training elicits similar increases in cardio-respiratory fitness 

and stem cell mobilisation as work-matched sprint interval training in a young 

healthy population, even though on average SCT session duration was only 3.5 

min. However, brachial artery endothelial-dependent FMD may benefit more so 

following SIT due to the type or profile of shear stress experienced during the 
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exercise. The participation of such exercise throughout   women’s lifesp n m y 

lead to a greater vascular health and quality of life at older age after the 

menopausal transition. Furthermore, increases in these variables in sedentary 

postmenopausal women or other populations at risk from CVD, might be of 

great benefit as these individuals exhibit impaired vascular function and repair. 

However, sprint training might not be appropriate for these populations as high 

motivation is required, and enjoyment will likely be low due to the feelings of 

nausea often associated with this type of maximal exercise. Therefore, future 

studies are warranted to adapt this type of training for women with or at risk of 

CVD such as postmenopausal women, by lowering the intensity. A recent study 

has started progress by adapting SIT for coronary artery disease patients and 

found increases in brachial artery FMD (Currie et al., 2013). Training sessions 

were 2/week for 12 weeks and involved cycling at 90% of maximal HR for 60 s 

with a 60 s recovery period, repeated 10 times. However, other measures of 

vascular health such as arterial stiffness and CAC number and function 

following this type of training in CVD at risk populations have not been studied. 

Additionally, the intensity of the interval exercise cannot be confirmed using a 

percentage of HRmax, as explained in the next chapter. Thus, the following 

chapters investigate how interval exercise with short work and recovery periods 

effect vascular health and repair in postmenopausal women and obese women 

who display risk factors for CVD. 

4.4.6 Study limitations 

Comparisons between studies examining exercise induced CAC mobilisation is 

difficult due to the different antigens used to define cells and the various 

methods and gating strategies used for cell enumeration. This may explain why 

previous studies have shown no change in CAC number following exercise 
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training in healthy individuals whereas the present study reported an elevation. 

Inclusion of the endothelial cell specific marker VEGFR-2/KDR could not be 

included due to absence of the isotype control as discussed in the general 

methods, chapter 3, section 3.11.2. The addition of this antibody should be 

included in future studies (as seen in chapters 5 and 6) as it provides insight 

into the destination of the progenitor cells. Nevertheless, out of all its 

subpopulations, CD34+ cells have been shown to be the best predictor of CVD, 

and therefore has an important role in maintaining vascular health (Fadini et al., 

2006b). We observed no alteration in CAC function following training however 

the paracrine function of these cells was not assessed. Addition of this 

measurement may have given insight into the impact the increase in CD34+ 

cells had on the vasculature.  

Finally, the duration of the training programme was relatively short (4 weeks); 

therefore it is unknown whether greater increases in the parameters measured 

may occur with further training. Future training studies (as seen in chapter 6) 

would benefit from a longer duration with measures assessed at different time 

points throughout the training programme.  
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Chapter 5 The effects of acute continuous and interval 
exercise on vascular function and repair in postmenopausal 

women 

Aspects from this chapter were presented at the following conferences: 

 European College of Sports Science, Annual meeting, Liverpool, UK, 

July 2011.  

 European Society of Cardiology, EuroPRevent, Geneva, Switzerland, 

April 2011. 

 American College of Sports Medicine’s Conference on Integr tive 

Physiology of Exercise, Miami Beach, Florida, September 2010. 

And published in: 

The European Journal of Cardiovascular Prevention and Rehabilitation. (2011). 

18(S1): S51. 

5.1 Introduction 

The risk of CVD in women significantly increases after the menopause due to 

the loss of oestrogen. The change in hormonal status additive to increasing age 

reduces endothelial function (Taddei et al., 1996), increases arterial stiffness 

(Moreau et al., 2003) and reduces the number and function of CACs (Fadini et 

al., 2008). Current guidelines for women recommend lifestyle interventions such 

as exercise for prevention of CVD and myocardial infarction, rather than 

pharmacological approaches such as hormone replacement therapy due to the 

potential adverse side effects/risks associated with these drugs (Mosca et al., 

2011). Aerobic exercise training studies in postmenopausal women have 

demonstrated increases in endothelial function (Akazawa et al., 2012; Swift et 

al., 2012) and plasma nitrite/nitrate (Zaros et al., 2009) and reductions in BMI 
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(Sugawara et al., 2006), arterial stiffness  (Moreau et al., 2003), and oxidative 

stress (Attipoe et al., 2008) which augment vascular health. Conversely, some 

studies have reported no change in endothelial function following exercise 

training in postmenopausal women (Casey et al., 2007; Pierce et al., 2008). 

These contrasting results might be explained by the different exercise methods 

and definitions of intensity used by different researchers.  

Most if not all studies within the literature define exercise intensity using a 

percentage of V O2m x, HRmax or HR reserve. This method does not accurately 

normalise the intensity of the exercise between participants as individuals 

exercising at the same percentage of V O2m x or HRmax can be above or below 

their individual LT (Meyer et al., 1999). Similarly, individuals with the same 

V O2m x  and cycling at the same percentage of V O2m x  can be exercising in 

different exercise intensity domains [i.e. moderate, heavy, very heavy and 

severe Rossiter, (2011)]. Thus, the physiological stimulus for vascular 

adaptations may vary between participants which may lead to the discrepancy 

in results between studies or indeed between participants following the same 

intervention. Furthermore, the lack of control for intensity reduces the ability to 

identify the type and intensity of exercise that will yield the greatest benefits in 

health for specific populations, such as postmenopausal women. When different 

modes of exercise are compared such as interval vs. continuous, it is especially 

important to control for intensity in order to identify which type of exercise is 

better. 

Recent evidence suggests that interval exercise is more or equally effective 

than the government guidelines of moderate-intensity continuous exercise for 

improving cardio-respiratory fitness, endothelial function and arterial stiffness 

(Wisloff et al., 2007; Tjønna et al., 2008; Ciolac et al., 2010; Guimaraes et al., 



- 133 - 

2010; Tordi et al., 2010). Indeed, as seen in the previous chapter, interval type 

exercise appeared superior to a continuous mode for increasing brachial artery 

FMD. However, a comparison between interval and continuous exercise on 

these variables has not been investigated in postmenopausal women. 

Additionally, the effect of exercise per se on CAC number and function in 

postmenopausal women has not been studied. Furthermore, given that 

moderate-intensity is defined as exercise that does not cause a sustained 

accumulation in blood lactate in addition to V O2  falling at or below the LT 

(Rossiter, 2011), it is impossible to determine whether participants in both the 

interval and continuous groups in these previous studies, were exercising below 

their relative LT, and additionally if interval and continuous sessions were 

equally matched for intensity. Consequently, participants may have been 

exercising at a higher relative intensity in the interval sessions than the 

continuous sessions, which could explain the greater vascular improvements 

observed following interval exercise in some studies (Wisloff et al., 2007; 

Schjerve et al., 2008; Tjønna et al., 2008; Ciolac et al., 2010; Guimaraes et al., 

2010).  

Therefore, the aims of this chapter were to 1) compare the acute effects of 

interval and continuous exercise, both within the moderate-intensity domain, on 

endothelial function, arterial stiffness and CAC number and function in post-

menopausal women, and 2) compare these effects with a heavy-intensity 

interval session in a sub-set of participants to determine if a higher intensity 

stimulus has a greater impact on markers of vascular health. The advantages of 

investigating the acute effects of different types of exercise are two-fold. Firstly, 

it allows identification of exercise that has an immediate impact on markers of 

vascular health, which would be beneficial to individuals with poor vascular 
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health and secondly, it allows identification of the type and intensity of exercise 

that may yield the greatest improvements to vascular health if undertaken 

chronically. It was hypothesised that interval exercise would be superior to 

continuous exercise for improving markers of vascular health and repair due to 

the brief excursions to higher work-rates, and that due to the higher intensity, 

heavy-intensity interval exercise would exert greater effects. 

5.2 Methods 

5.2.1 Participants  

Fifteen healthy postmenopausal women (age: 63 ± 4 yrs) volunteered for the 

study through poster and email advertisements placed around the local area. 

Postmenopausal status was defined as absence of menstrual cycle for at least 

2 years and was confirmed through follicle stimulating hormone (FSH) greater 

than 30 iU∙l-1 (refer to section 5.2.3). Exclusion criteria other than specified in 

the general methods, chapter 3, section 3.1, included exercising greater than 

twice per week and was confirmed orally prior to participation. A resting 12-lead 

ECG was used at pre-testing and throughout the maximal exercise test to 

confirm absence of ECG abnormalities.  

5.2.2 Experimental protocol 

For the assessment and calculation of work-rate for the exercise bouts, 

participants attended the University of Leeds exercise physiology laboratory on 

two occasions, each separated by one week. On visit one vascular measures 

and a fasted blood sample (~60 ml) for the assessment of blood markers and 

CAC number and function were completed. On the second visit a cardio-

respiratory fitness test was completed for the assessment of peak aerobic 

capacity (V̇O2peak ) and the LT to enable calculation of the work-rates for the 

subsequent exercise bouts. Control factors for these two sessions are specified 



- 135 - 

in the general methods, chapter 3, section 3.2. Following these visits, 

participants attended the laboratory on two further occasions, each separated 

by ≥1 week for completion of a 30 min moderate-intensity continuous and a 30 

min moderate-intensity interval exercise bout on a cycle ergometer. Once these 

sessions had been completed the study was extended to compare the acute 

effects of a heavy-intensity interval exercise bout on a cycle ergometer. For this 

second phase, a sub-set of participants (n = 9) attended the laboratory on one 

further occasion for completion of a 30 min heavy-intensity interval exercise 

bout. Participants refrained from consuming food and caffeine in the 2 hours 

prior to the exercise session visits. To assess the acute effects of each of the 

exercise bouts on markers of vascular health, the vascular measures were 

assessed pre and 15 min post-exercise. To assess the acute exercise effects 

on CAC number and function, a ~50 ml fasted blood sample was acquired 30 

min post-exercise and results compared with that of visit one. A schematic of 

the protocol can be viewed in Figure 5.1. 
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5.2.3 Variables assessed pre and post-exercise session 

The protocols for the following variables are described in detail in the general 

methods chapter (chapter 3).  

5.2.3.1 Cardio-respiratory fitness 

A seated ramp-incremental exercise test with a ramp-rate of 10 W/min was 

performed for the assessment of V̇O2peak and the LT (section 3.3). and for 

calculation of the work-rates achieved at these points for the subsequent 

exercise sessions (i.e. WRpeak and WRLT).  

5.2.3.2 Vascular measures 

The following vascular measures were completed on visit one and at pre and 

post-exercise: BMI (section 3.4.1), brachial artery endothelial function for the 

measurement of FMD, peak reactive hyperaemia, peak shear rate, AUCpeak, 

Visit 1 
Assessments undertaken (n = 15): Vascular, blood markers, CAC number and function 

Visit 2 
Assessments undertaken (n = 15): Cardio-respiratory fitness 

Moderate-intensity continuous exercise bout 
30 min of moderate-intensity continuous cycling (n = 15). The vascular measures were 
completed at pre and 15 min post-exercise. A blood sample was drawn at 30 min post-
exercise for CAC number and function analysis. 

Moderate-intensity interval exercise bout 
30 min of moderate-intensity interval cycling (n = 15). The vascular measures were 
completed at pre and 15 min post-exercise. A blood sample was drawn at 30 min post-
exercise for CAC number and function analysis. 

Heavy-intensity interval exercise bout 
30 min of heavy-intensity interval cycling (n = 9). The vascular measures were completed 
at pre and 15 min post-exercise. A blood sample was drawn at 30 min post-exercise for 
CAC number and function analysis. 

Figure 5.1. A flow-chart of the experimental protocol.  
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AUC60 and AUC90 and their corresponding VTIs (section 3.5), brachial artery 

blood pressure (section 3.7), carotid arterial stiffness for assessment of cross-

section l compli nce (CSC), distensibility,  nd β-stiffness index (section 3.8). 

During recording of brachial artery blood velocity the insonation angle for each 

participant between pre and post-testing and between different exercise visits 

was within 2°. 

5.2.3.3 Blood markers and CAC number and function 

A fasted blood sample was drawn on visit one and post-exercise following the 

protocol in section 3.9. A 50 ml blood sample was collected and divided into 

EDTA vacutainers for analysis of CAC number and function. On visit one only 

an extra 10 ml of blood was collected in either serum vacutainers containing a 

clot accelerator or plasma EDTA vacutainers and sent to the Leeds General 

Infirmary Pathology services to test for serum FSH levels, cholesterol profile, 

insulin, and plasma glucose and haemoglobin A1c (HbA1c). CACs were 

enumerated from 21 ml of blood via flow cytometry using a commercially 

available kit (EPC enrichment and enumeration kit, Miltenyi Biotec; section 

3.11.2.1). CACs were defined as CD34+, double positive (CD34+KDR+) or triple 

positive (CD34+KDR+CD133+). To assess the in vitro function of CACs, the 

ability to migrate to a chemoattractant, adhere to fibronectin and to form CFUs 

was determined. The detailed protocol for cell culture and the functional assays 

are described in the general methods chapter sections 3.12.1-3.12.4. Briefly, 25 

ml of blood was mixed with 25 ml of PBS and the mononuclear cells separated 

by ficoll density-gradient centrifugation. For quantification of cell phenotype 

adherent CACs were double stained with DiI-AcLDL and lectin on day 7. For the 

migration and adhesion assays, cells were cultured for 7 days with daily 

medium changes. Assays were performed in triplicate and an average 
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calculated if the required number of adherent cells on day 7 were harvested. If 

insufficient cells were harvested the assay was performed in duplicate or 

individually. For CFU assessment, CACs were cultured for 48 hrs initially. The 

non-adherent cells were then replated and cultured for a further 72 hrs, 

whereupon  the number of CFUs were counted per well. 

5.2.4 Exercise session protocols 

All participants completed a 30 min moderate-intensity continuous (CON) and a 

30 min moderate-intensity interval (MOD INT) exercise bout on a cycle 

ergometer (Lode BV, Excalibur Sport V2.0, the Netherlands) on two separate 

days. A sub-set of 9 participants completed a third session involving a 30 min 

heavy-intensity interval (HEAVY INT) exercise bout to compare the effects 

following a higher intensity exercise session.  

The CON exercise bout involved cycling at 80% of WRLT and was therefore in 

the moderate-intensity domain as V O2 was below the LT (Rossiter, 2011). The 

MOD INT and HEAVY INT exercise bouts were based on a study by Turner et 

al., (2006), which investigated the physiological responses to different 

work:recovery duty cycles, and identified the interval exercise sessions that 

represent exercise in the moderate and heavy-intensity domains. Therefore, in 

the present study, this enabled CON exercise to be matched with INT for the 

moderate-intensity domain, and for the subsequent comparison with heavy-

intensity INT exercise. In this previous study, four duty cycles were studied in 

four separate 30 min exercise sessions. All sessions were conducted with a 1:2 

work:recovery ratio at 120% WRpeak with the recovery periods undertaken at 20 

W. Given that all sessions were of an equal duration and utilised the same 

work-rates; the work completed in all sessions was identical. The authors 

recorded HR, V O2 and blood lactate throughout each session with 
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work:recovery ratios of 10:20, 30:60, 60:120, 90:180 s. The results indicated 

that the 10:20 s duty cycle presented characteristics of the moderate-intensity 

domain, as blood lactate accumulation was not sustained and average V O2 was 

not significantly greater than the LT throughout the 30 min session (Figure 

5.2a,e). The 30:60 s duty cycle presented characteristics of heavy-intensity 

continuous exercise as the peaks of the V O2 profile increased from rest and 

stabilised at a level above the LT at ~10-15 min. Blood lactate increased above 

resting levels and plateaued at an elevated level from ~10 min (Figure 5.2b,e). 

The 60:120 s and 90:180 s duty cycles were characteristic of the very-heavy 

and severe exercise intensity domains, as blood lactate and the peaks of the 

V O2  profile continued to increase throughout the sessions, and not all 

participants could complete the entire 30 min session (Figure 5.2c-e). For the 

purposes of the present study, the acute INT exercise bouts were required to be 

both above and below the LT. As such, the chosen duty cycles for the MOD INT 

and HEAVY INT exercise bouts were 10:20 s and 30:60 s duty cycles, 

respectively. However, in the present study a population of sedentary 

postmenopausal women were studied as opposed to the study by Turner et al., 

(2006), which was conducted in healthy young males. Therefore, the work-rate 

was reduced to 90% WRpeak assuming that the physiological responses to the 

10:20 and 30:60 s duty cycle exercise sessions would be characteristic of the 

moderate and heavy-intensity domains, respectively. Brachial artery blood 

pressure and heart rate was recorded in 5 min intervals throughout each 

session using a manual sphygmomanometer and a polar heart rate monitor 

(Kempele, Finland), respectively.  
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5.2.5 Statistical analysis 

There were no differences in all variables at pre-exercise between the visits. A 

non-p r metric Friedm n’s ANOVA w s conducted on CAC number only  s 

data was not normally distributed and could not be corrected using 

transformation. The data were examined by 1) a two-way within-subject 

a 

b 

c 

d 

e 

Figure 5.2. Representation of the    2  and blood lactate responses to 

different interval exercise duty cycles. During the 10:20 s session the    2 
rises to a level around the LT (a; 2.05 L∙min-1) and there is no blood lactate 

accumulation (e; open circles). During the 30:60 s session the    2 peaks 
increase above the LT and plateau (b) and the blood lactate significantly 
rises above resting levels but remains constant (e; closed circles). During 

the 60:120 s session the    2 peaks reach close to    2    and increase 
through the session (c) and blood lactate increases continuously 
throughout the session (e; open squares). Participants could not 

complete the 30 min duration of the 90:180 s session due to    2    
attained (d) and the blood lactate levels steeply increasing from exercise 
onset (e; closed squares). Modified from Turner et al., (2006). 
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repeated measures ANOVA for the moderate-intensity exercise bouts with time 

(pre vs. post-exercise) and exercise type (CON, MOD INT) treated as the 

independent variables, and 2) in the sub-set of 9 participants an additional 

ANOVA was performed to analyse the acute effects of a heavy-intensity INT 

exercise bout. Thus, the independent variable exercise type included CON, 

MOD INT and HEAVY INT. In one participant at the CON exercise and two 

participants at MOD INT exercise session, post-exercise FMD was compared 

with visit one due to poor image quality at pre-exercise. Paired t-tests were 

conducted for post-hoc analysis to identify which exercise bout showed a 

significant change. Paired t-tests were performed on exercise session average 

work-rates and work done to compare differences between the CON and INT 

exercise bouts. Due to the experimental design, the MOD and HEAVY INT 

exercise bouts were matched for average work-rate and work done, therefore 

comparisons between these two sessions were not required. Given the potential 

different responses in brachial artery FMD following interval and continuous 

type exercise observed in the previous chapter, brachial artery FMD was 

selected as the primary outcome. Using the previously reported acute increase 

of 4.6% in brachial artery FMD, following 45 min of treadmill exercise in 

postmenopausal women (Harvey et al., 2005), and a standard deviation of 3% 

(reported from healthy women in chapter 4), a minimum of 9 participants in total 

were required to obt in 80% power (α = 0.05) in a two-treatment crossover 

study. 

Several experimental issues were experienced during the study which resulted 

in participants excluded from analysis. These issues are listed below; 

 Poor image quality of the ultrasound images 

 Flow cytometry error/failure 
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 Low cell numbers separated at the start of cell culture 

 Insufficient cells harvested on day 7 of cell culture 

Therefore, the number of participants included in each analysis within this 

chapter is specified for each measure.  

5.3 Results 

5.3.1 Participant and exercise session characteristics 

Participant characteristics are displayed in Table 5.1. Postmenopausal status 

was confirmed as FSH levels were >30 iU∙l-1. Total cholesterol and LDL were 

higher than the desirable healthy range (>5.2 mmol∙l-1 and >3.4 mmol∙l-1, 

respectively).   

Table 5.1. Participant characteristics of postmenopausal women from visit 
one. 

Reduced n (number of participants) for specific variables due to blood tests 
showing erroneous results. BMI = body mass index, SBP = systolic blood 
pressure, DBP = diastolic blood pressure, MAP = mean arterial pressure, 
HbA1c = haemoglobin A1c, HDL = high-density lipoprotein, LDL = low-density 
lipoprotein and FSH = follicle stimulating hormone. 

 

 n Visit one (Mean ± SD) 
Age (yrs) 15 63 ± 4 

BMI (kg∙m
-2

) 15 25.0 ± 3.1 

Brachial artery SBP (mmHg) 15 137 ± 15 

Brachial artery DBP (mmHg) 15 84 ± 5 

Brachial artery MAP (mmHg) 15 102 ± 8 

Pl sm  glucose (mmol∙l
-1

) 13 4.8 ± 0.5 

HbA1c (mmol∙mol HB
-1

) 14 39 ± 2 

Tot l cholesterol (mmol∙l
-1

) 14 5.9 ± 1.0 

HDL (mmol∙l
-1

) 14 1.9 ± 0.5 

LDL (mmol∙l
-1

) 14 3.5 ± 0.8 

Cholesterol:HDL ratio 14 3.1 ± 0.7 

Triglycerides (mmol∙l
-1

) 14 1.0 ± 0.4 

FSH (iU∙l
-1

) 13 69.9 ± 31.0 

Insulin (mU∙l
-1

) 14 6.5 ± 3.1 
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All 15 participants completed the CON and MOD INT exercise sessions with 9 

participants completing a further HEAVY INT exercise session. Participants 

absolute and relative V O2pe k  were 1.40 ± 0.29 L·min-1 and                            

21.6 ± 5.4 ml·kg·min-1, respectively. The within-exercise session characteristics 

are displayed in Table 5.2. Average work-rate for the interval sessions was 

c lcul ted from 70%Δ work-rate and the recovery periods of 20 W. By design 

the average work-rate and work done during the MOD INT and HEAVY INT 

exercise sessions were equal. The average work-rate and work done was 

significantly higher in the CON exercise sessions when compared with the INT 

sessions (p = 0.001, Table 5.2).  

Table 5.2. Exercise session characteristics (mean ± SD) for the continuous 
(CON) and interval (INT) exercise sessions. 

* indicates a significant difference to the CON exercise session (p < 0.05). 

V O2pe k = peak oxygen uptake, RI = ramp incremental, WR = work-rate, HR = 

heart rate, SBP = systolic blood pressure, DBP = diastolic blood pressure. 

 

5.3.2 Brachial artery endothelial function in postmenopausal women 
following a 30 min bout of continuous and interval exercise 

FMD was not normalised to shear rate as a significant correlation was not 

observed between absolute FMD and peak shear rate, AUCpeak, AUC60 and 

AUC90 (p > 0.05). Brachial artery endothelial function did not change following 

an acute bout of CON and MOD INT exercise in 14 postmenopausal women (p 

> 0.05, Table 5.3). There were no significant changes in brachial artery resting 

diameter (p = 0.53), time from cuff deflation to peak diameter (p = 0.86), 

 CON MOD INT HEAVY INT 

Average WR (W) 35 ± 6 30 ± 1.5 * 30 ± 1.5 * 

Work done (kJ) 63.9 ± 10.1 54.0 ± 2.8 * 54.0 ± 2.8 * 

Average session HR 
(bpm) 

107 ± 13 103 ± 12 103 ± 9 

Average session SBP 
(mmHg) 

157 ± 17 150 ± 16 149 ± 20 

Average session DBP 
(mmHg) 

83 ± 6 82 ± 5 80 ± 6 
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absolute FMD (p = 0.49), relative FMD (p = 0.90), VTIpeak (p = 0.44), VTI60 (p = 

0.32), VTI90 (p = 0.40), peak reactive hyperaemia (p = 0.52), peak shear rate (p 

= 0.29), shear rate AUCpeak (p = 0.44), shear rate AUC60 (p = 0.27) and shear 

rate AUC90 (p = 0.34). Additionally, there were no time by exercise type 

interactions in these variables (p > 0.05).   

Table 5.3. Brachial artery endothelial function (mean ± SD) pre and post an 
acute 30 min bout of moderate-intensity continuous (CON) and interval 
(MOD INT) exercise (n = 14) and heavy-intensity interval (HEAVY INT) 
exercise (n = 8). Data reported from two separate ANOVAs. 

FMD = flow-mediated dilation, VTI = velocity-time integral, AUC = shear rate 
area under the curve. 

 

In the HEAVY INT analysis in the subset of participants, 8 participants were 

included in the analysis. There were no significant changes following any 

exercise bout and no time by exercise type interactions (Table 5.3) in brachial 

 
CON  MOD INT  Heavy INT 

Pre Post Pre Post Pre Post 
Resting diameter (mm) 3.5 ± 0.4 3.4 ± 0.4 3.5 ± 0.4 3.4 ± 0.4 3.3 ± 0.5 3.4 ± 0.4 

Time from cuff release 
to peak diameter (s) 

46 ± 17 50 ± 23 54 ± 17 51 ± 18 69 ± 21 77 ± 29 

Insonation angle (°) 68 ± 1 68 ± 1 68 ± 1 68 ± 1 68 ± 1 68 ± 1 

Absolute FMD (mm) 
0.22 ± 
0.08 

0.19 ± 
0.12 

0.19 ± 
0.08 

0.18 ± 
0.09 

0.16 ± 
0.04 

0.14 ± 
0.06 

VTIpeak (cm) 
1471 ± 

614 
1720 ± 

700 
1681 ± 

597 
1719 ± 

709 
1937 ± 

942 
2250 ± 

817 

VTI60 (cm) 
1660 ± 

501 
1898 ± 

424 
1806 ± 

435 
1861 ± 

410 
1851 ± 

884 
1945 ± 

452 

VTI90 (cm) 
2135 ± 

665 
2385 ± 

618 
2281 ± 

564 
2364 ± 

579 
2234 ± 
1112 

2425 ± 
606 

Peak reactive 
hyperaemia (cm·s

-1
) 

 72.8 ± 
27.7  

78.2 ± 
28.1 

87.6 ± 
32.8 

87.4 ± 
24.8 

96.5 ± 
41.4 

102.4 ± 
24.6 

Peak shear rate (s
-1

) 
1681 ± 

658  
1850 ± 

734 
2072 ± 

892 
2096 ± 

723 
2349 ± 
1020 

2463 ± 
621 

AUCpeak (a.u.) 
33803 ± 
15453 

39766 ± 
14131 

39477 ± 
15399 

40027 ± 
14399 

46578 ± 
21982 

53954 ± 
19873 

AUC60 (a.u.) 
38342 ± 
13224 

44365 ± 
9434 

42292 ± 
11723 

44053 ± 
9443 

44430 ± 
20151 

46649 ± 
11587 

AUC90 (a.u.) 
49228 ± 
17293 

55511 ± 
12836 

53211 ± 
14127 

55796 ± 
12521 

53401 ± 
24891 

57871 ± 
14281 
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artery resting diameter (p = 0.76), time from cuff deflation to peak diameter (p = 

0.68), absolute FMD (p = 0.85), relative FMD (p = 0.80, Figure 5.3), VTIpeak (p = 

0.37), VTI60 (p = 0.33), VTI90 (p = 0.26), peak reactive hyperaemia (p = 0.42), 

peak shear rate (p = 0.33), shear rate AUCpeak (p = 0.33), shear rate AUC60 (p = 

0.25) and shear rate AUC90 (p = 0.19).  

 

Figure 5.3. Brachial artery flow-mediated dilation (FMD, mean ± SD) pre 
and post a 30 min bout of moderate-intensity continuous (CON), interval 
(MOD INT) and heavy-intensity interval (HEAVY INT) exercise (n = 8, p > 
0.05). No acute exercise effects were observed (p > 0.05). 

 

5.3.3 Carotid arterial stiffness in postmenopausal women following 
a 30 min bout of continuous and interval exercise 

Blood pressure and carotid arterial stiffness did not change following an acute 

bout of CON and MOD INT exercise in 15 postmenopausal women (p > 0.05). 

There were no significant changes after either exercise bout in brachial artery 

SBP (p = 0.35), DBP (p = 0.17), MAP (p = 0.14), and PP (p = 0.86) and carotid 

artery SBP (p = 0.13), PP (p = 0.32), delta CSA (p = 0.82), CSC (p = 0.65), 

distensibility (p = 0.45) and SI (p = 0.43). Additionally, there were no significant 

time by exercise type interactions (p > 0.05).  
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Table 5.4. Brachial artery blood pressure and carotid arterial stiffness 
(mean ± SD) pre and post an acute 30 min bout of moderate-intensity 
continuous (CON) and interval (MOD INT) exercise and heavy-intensity 
interval (HEAVY INT) exercise (n = 9). No acute exercise effects were 
observed (p > 0.05). 

DBP = di stolic blood pressure, MAP = me n  rteri l pressure, ΔCSA = delt  
cross-sectional area, CSC = cross-section l compli nce, SI = β-stiffness index. 

 

Inclusion of the HEAVY INT exercise session into the ANOVA revealed that 

there were also no changes or time by exercise type interactions (p < 0.05, 

Table 5.4) in brachial artery DBP (p = 0.60), MAP (p = 0.62), and carotid artery 

delta CSA (p = 0.85), CSC (p = 0.71), distensibility (p = 0.75) and SI (p = 0.88). 

However, there was a significant time by exercise type interaction in brachial 

artery SBP (p = 0.01), PP (p = 0.01) and carotid artery SBP (p = 0.02) and PP 

(p = 0.01). As shown in Figure 5.4, brachial artery SBP (p = 0.04), PP (p = 0.06) 

and carotid artery SBP (p = 0.08) were elevated 15 min after cessation of 

HEAVY INT exercise by 6 mmHg, 5 mmHg and 4 mmHg, respectively. In 

contrast following MOD INT exercise, brachial artery PP (p = 0.06) and carotid 

artery PP (p = 0.04) reduced by 5 mmHg and 7 mmHg, respectively. There 

were no changes following CON exercise (p > 0.05). Participants with a higher 

brachial artery PP and carotid artery SBP and PP before exercise had a greater 

reduction in brachial artery PP (r = -0.72, p = 0.03, n = 9) and carotid artery 

 
CON  MOD INT  HEAVY INT 

Pre Post Pre Post Pre Post 
Brachial artery 
DBP (mmHg) 

85 ± 6 81 ± 6 81 ± 7 81 ± 9 83 ± 5 83 ± 6 

Brachial artery 
MAP (mmHg) 

101 ± 7 99 ± 7 99 ± 11 98  ± 11 100 ± 6 102 ± 8 

C rotid ΔCSA 
(mm

2
)  

4.4 ± 1.6 4.6 ± 1.1 4.2 ± 1.3 4.1 ± 1.2 4.5 ± 1.9 4.2 ± 1.4 

Carotid artery 
CSC 
(mm

2
/mmHg) 

0.12 ± 
0.04 

0.12 ± 
0.02 

0.10 ± 
0.04 

0.11 ± 0.03 0.11 ± 0.04 0.10 ± 0.03 

Carotid artery 
distensibility 
(mm/mmHg) 

 0.003 ± 
0.001  

0.003 ± 
0.001 

0.003 ± 
0.001 

0.003 ± 
0.001 

0.003 ± 
0.001 

0.003 ± 
0.001 

Carotid artery SI 
(a.u.) 

6.8 ± 1.9  6.4 ± 1.3 8.1 ± 2.8 7.3 ± 2.0 7.3 ± 2.4 8.2 ± 2.2 
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SBP (r = -0.67, p = 0.048, n = 9)  and PP (r = -0.84, p = 0.04, n = 9) following 

the MOD INT exercise session only. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4. Brachial and carotid artery systolic (SBP) and pulse pressure 
(PP, mean ± SD) pre and post a 30 min bout of moderate-intensity 
continuous (CON), interval (MOD INT) and heavy-intensity interval (HEAVY 
INT) exercise (n = 9). * indicates a significant difference between pre and 

post-exercise (p < 0.05).   indicates a close to significant trend between 
pre and post-exercise (p < 0.08). There was a significant time by exercise 
type interaction (p < 0.05) in all measures.  
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5.3.4 CAC number in postmenopausal women following a 30 min 
bout of continuous and interval exercise 

The number of CD34+, CD34+KDR+ and CD34+KDR+CD133+ circulating 

angiogenic cells were enumerated following each exercise session. There was 

no significant change following the CON and MOD INT exercise bout (n = 9) in 

CD34+ cells (p = 0.28), CD34+KDR+ cells (p = 0.57) and CD34+KDR+CD133+ 

cells (p = 0.74). Additionally, there was no significant change in the subset of 6 

participants following the HEAVY INT bout in all CAC populations (p > 0.05, 

Table 5.5). 

Table 5.5. Circulating angiogenic cell number (mean ± SD) at visit one and 
post an acute 30 min bout of moderate-intensity continuous (CON) and 
interval (MOD INT) exercise and heavy-intensity interval (HEAVY INT) 
exercise (n = 6). 

 

5.3.5 CAC function in postmenopausal women following a 30 min 
bout of continuous and interval exercise 

The ability of cultured cells to uptake DiI-AcLDL and lectin was quantified on 

day 7 of cell culture. There was no significant change following the CON and 

MOD INT exercise bout (p = 0.42, n = 10, Table 5.6) and in the subset of 5 

participants following the HEAVY INT bout (p = 0.58) and no time by exercise 

type interactions (p > 0.05). Due to the low n value (n = 5) in the ANOVA and a 

greater number of DiI/lectin CACs following HEAVY INT, paired t-tests were 

performed on the exercise bouts, which revealed a significant increase following 

 
Visit one CON MOD INT HEAVY INT 

CD34
+
 cells /10 ml 

blood 
279672 ± 
133899 

219226 ± 
122865 

263816 ± 
110710 

231205 ± 
91468 

CD34
+
KDR

+
 cells /10 ml 

blood 
251 ± 176 108 ± 119 244 ± 188 144 ± 201 

CD34
+
KDR

+
CD133

+
 

cells /10 ml blood 
68 ± 102 11 ± 13 40 ± 85 14 ± 26 
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HEAVY INT exercise (n = 7, p = 0.02, Figure 5.5) whereas there were no 

changes after CON and MOD INT exercise (n = 11, p > 0.05),  

 

Figure 5.5. The number (mean ± SD) of DiI-AcLDL and lectin stained CACs 
after 7 days of culture at visit one and following a 30 min bout of heavy-

intensity interval exercise (HEAVY INT).* indicates a significant difference 

between visit one (p < 0.05). 
 

5.3.5.1 The migratory ability of CACs in postmenopausal women following 
a 30 min bout of continuous and interval exercise 

To assess the functional ability of cultured CACs to migrate to a 

chemoattractant after 24 hrs, the number of cells migrated towards a control 

vehicle was subtracted from the number of cells migrated towards VEGF. In 

several participants the value was negative (i.e. the number of migrated cells 

was higher towards the control vehicle). In these cases a zero value was 

reported. The migratory ability of CACs did not change following the CON and 

MOD INT exercise bout (p = 0.62, n = 13, Table 5.6) or in the subset of 6 

participants following the HEAVY INT bout (p = 0.38, Figure 5.6) and no time by 

exercise type interactions were observed (p > 0.05). However, there was a 
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large effect size for a decrease in CAC migration following HEAVY INT exercise 

(d = 0.9). 

Table 5.6. Circulating angiogenic cell (CAC) function (mean ± SD) at visit 
one and post an acute 30 min bout of moderate-intensity continuous 
(MOD CON) and interval (INT) exercise. Data reported from the moderate-
intensity ANOVA. 

** indicates a significant time effect and time by exercise type interaction (p < 
0.05). 

 
Figure 5.6. The number (mean ± SD) of migrated CACs to VEGF at visit 
one and following a 30 min moderate-intensity continuous (CON), 
moderate-intensity interval (MOD INT) and heavy-intensity interval 
(HEAVY INT) exercise bout (n = 6).  The ability of CACs to migrate did not 
change following either exercise bout (p = 0.38) and there was no time by 
exercise type interaction (p = 0.15). Cohen’s d = effect size. 
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Visit one CON MOD INT 

DiI-AcLDL & lectin CACs/ 
microscopic image (n = 
10) 

6 ± 5 5 ± 3 7 ± 5 

CAC migration/10 
microscopic images (n = 
13) 

4 ± 4 4 ± 3 5 ± 6 

CAC adhesion/ 
microscopic image (n = 
12) 

8 ± 6 7 ± 5 8 ± 5 

CFUs /well (n = 14) ** 12 ± 10 13 ± 14 32 ± 30 

     VISIT 1   CON   MOD INT  HEAVY INT 
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5.3.5.2 The adhesive ability of CACs in postmenopausal women following 
a 30 min bout of continuous and interval exercise 

To assess the adhesive ability of CACs following an acute exercise bout the 

number of cultured CACs that adhered to fibronectin over 24 hrs was counted. 

The adhesive ability of CACs did not change following the CON and MOD INT 

exercise bout (p = 0.98, time by exercise p = 0.70, n = 12, Table 5.6) or in the 

subset of 7 participants following the HEAVY INT bout (p = 0.60). There was a 

close to significant time by exercise type interaction between the three exercise 

sessions (n = 7, p = 0.06, Figure 5.7). However, paired t-tests revealed no 

significant difference between visit one and post-exercise in all sessions          

(p > 0.05), and the effect sizes for an increase in CAC adhesion following 

HEAVY INT and a decrease following MOD INT were modest (Figure 5.7). 

 
Figure 5.7. The number (mean ± SD) of adhered CACs to fibronectin at 
visit one and following a 30 min moderate-intensity continuous (CON), 
moderate-intensity interval (MOD INT) and heavy-intensity interval 
(HEAVY INT) exercise bout (n = 7).  There was no time effect (p = 0.60) but 
a close to significant time by exercise type interaction (p = 0.06). 
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5.3.5.3 The number of CFUs in postmenopausal women following a 30 
min bout of continuous and interval exercise 

Comparisons between the CON and MOD INT exercise session (n = 14) 

revealed a significant time effect (p = 0.02) with a significant increase following 

the MOD INT exercise session but no change following the CON exercise 

session (time x exercise type p = 0.02, Table 5.6). There was a significant time 

effect (p = 0.007) in the sub-set of 9 participants following the CON, MOD INT 

and HEAVY INT exercise sessions and a significant time by exercise type 

interaction (p = 0.01, Figure 5.8). Paired t-tests revealed a significant increase 

from visit one to post MOD INT by 139% (n = 9, p = 0.045) and post HEAVY 

INT by 238% (n = 9, p = 0.01) but no change following CON exercise (n = 9, p = 

0.60, Figure 5.8). There was no significant difference between the change from 

visit one to MOD INT and from visit one to HEAVY INT (n = 9, p = 0.32). This 

suggests that interval exercise increases CFUs regardless of intensity but 

moderate-intensity continuous exercise has no effect. 
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Figure 5.8. The number (mean ± SD) of colony-forming units (CFUs) at 
visit one and following a 30 min moderate-intensity continuous (CON), 
moderate-intensity interval (MOD INT) and heavy-intensity interval 
(HEAVY INT) exercise bout (n = 9). * indicates a significant difference from 
visit one. CFUs increased following the MOD INT (p = 0.045) and the 
HEAVY INT (p = 0.008) exercise bout. 

 

5.4 Discussion 

The population of postmenopausal women studied were healthy but presented 

risk factors for CVD. As a group, BMI was borderline overweight, total 

cholesterol and LDL were in the undesirable range and SBP was close to stage 

1 hypertension [>140 mmHg, ACSM, (2006)]. Additionally, V O2   , a predictor 

of mortality (Laukkanen et al., 2004) was lower than the young females in the 

previous chapter (young: 35 ± 5 ml·kg·min-1, Postmenopausal: 22 ± 5  

ml·kg·min-1). Thus, these individuals would benefit from a lifestyle intervention 

such as exercise. The present study was the first to compare the acute effects 

of continuous and interval exercise, that were controlled for intensity, on 

vascular health in postmenopausal women. The main findings were that 

moderate-intensity (i.e. below the LT) continuous exercise had no immediate 

effect on endothelial function, carotid arterial stiffness and CAC number and 
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function. Conversely, in a sub-set of participants, moderate-intensity interval 

exercise acutely reduced carotid and brachial blood pressure and increased the 

ability of cultured CACs to form colonies in vitro. Additionally, work-matched 

interval exercise at a heavy-intensity also increased the number of CFUs, but 

appeared to elevate carotid and brachial blood pressure at 15 min post 

exercise.  

5.4.1 Continuous and interval exercise did not acutely effect 
endothelial function 

Moderate-intensity continuous and interval exercise and heavy-intensity interval 

exercise had no effect of brachial artery endothelial function in postmenopausal 

women. In response to lower-limb exercise, measurement of upper limb 

vascular function is used to reflect systemic endothelial function. Thus, the 

findings of the present study suggest that for increases in systemic endothelial 

function in postmenopausal women to occur, a greater stimulus or repeated 

acute exercise bouts are required. Conversely, an absolute increase of ~5% in 

brachial artery FMD was observed in a previous study observed following 45 

min continuous treadmill exercise at 60% V O2     in postmenopausal women 

with similar FMD values as participants in the present study [~5%, Harvey et al.,  

(2005)]. Greater endothelial function following exercise is mediated by 

increases in nitric oxide bioavailability which induces vasodilation (Jungersten et 

al., 1997; Rognmo et al., 2008). During exercise, the endothelium experiences a 

greater magnitude of shear stress due to an increase in blood flow (Tinken et 

al., 2010) that occurs in blood vessels supplying the working muscles and in the 

non-exercising limbs such as the brachial artery during cycling (Thijssen et al., 

2009a). Shear stress increases nitric oxide production following exercise 

through phosphorylation of eNOS by AMPK (Zhang et al., 2006) or the PI3K/Akt 

pathway (Wang et al., 2010). Therefore, given that the exercise duration was 
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greater in the study by Harvey et al., (2005) and a different definition of intensity 

adopted, participants may have experienced a greater shear stress and 

consequently enhanced nitric oxide bioavailability than the postmenopausal 

women in the present study, thus, explaining the discrepancy between these 

results. On the other hand, heavy-intensity interval exercise which would be 

expected to induce higher levels of shear stress, also had no impact on brachial 

artery FMD in the present study. This could be due to the reasons stated above 

or that blood pressure (present study; 137/84 mmHg vs. Harvey et al; 108/64 

mmHg) and age (present study 64 ± 4 yrs vs. Harvey et al. 54 ± 2 yrs) were 

higher in postmenopausal women in the present study. Hypertension and older 

age (>60 years) have an additive effect on reducing nitric oxide bioavailability 

and increasing oxidative stress (Taddei et al., 2001). Consequently, the 

postmenopausal women in the present study may require a higher level of 

absolute shear stress during exercise to counteract potential higher levels of 

oxidative stress and increase nitric oxide bioavailability. Additionally, the 

sensitivity of the endothelium to detect shear stress and trigger nitric oxide 

synthesis may have been reduced. Aged endothelial cells in vitro exhibit 

impaired eNOS protein upregulation in response to shear stress, when 

compared to young cells in the same culture conditions (Hoffmann et al., 2001). 

Thus, a greater shear stress stimulus than younger women may be required to 

induce the same increases in nitric oxide. Therefore, an acute exercise bout of 

a higher relative intensity may be required to initiate short-term changes in 

brachial artery FMD in this older population of postmenopausal women. 

5.4.2 Divergent effects of acute continuous and interval exercise on 
blood pressure 

The postmenop us l women in the present study h d gre ter (≥ 10 mmHg) 

carotid and brachial SBP, DBP, MAP and PP than the young women in the 
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previous chapter, placing individuals at a greater risk of CVD (Franklin et al., 

1999). Moderate-intensity continuous exercise did not reduce carotid or brachial 

artery blood pressure in postmenopausal women in the present study at 15 min 

post exercise. In contrast, brachial and carotid artery PP reduced following 

moderate-intensity interval exercise, whereas brachial artery SBP and PP and 

carotid artery SBP increased following heavy-intensity interval exercise. Thus, 

interval exercise appears to have a differential acute effect on blood pressure 

compared to continuous exercise.  

Following moderate-intensity interval exercise, carotid and brachial artery PP 

reduced by 7 and 5 mmHg, respectively. This was caused by the reductions 

(although, not significant) in carotid and brachial SBP by 5 mmHg and 6 mmHg, 

respectively. These modest reductions in blood pressure have clinical 

importance as long term reductions in SBP by 5 mmHg decreases the risk of all 

cause mortality by 7% (Stamler et al., 1989). Post-exercise hypotension is 

caused by reductions in systemic vascular resistance through alterations in 

neural control, such as reduced sympathetic nerve activity which decreases 

vasoconstriction, and by increases in vasodilatiors such as nitric oxide, 

prostaglandins, histamine and adenosine (Halliwill et al., 2013). Conversely, in 

the present study, heavy-intensity interval exercise elevated brachial and 

carotid artery SBP, 15 min post-exercise. Given that exercise at a higher 

intensity produces greater oxidative stress (Goto et al., 2003), and increasing 

age is associated with higher levels of oxidative stress (Taddei et al., 2001), the 

elevated blood pressure post HEAVY INT exercise may be due to a lower 

bioavailability of vasodilators due to a greater level of ROS. Alternatively, 

hypotension might have been experienced post HEAVY INT at a later time point 

than 15 min post exercise due to the higher intensity of the exercise. However, 
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a time course post-exercise of blood pressure changes was not measured, 

which is a limitation of the study. Thus, it is not possible to determine whether 

MOD INT or HEAVY INT is better for acute alterations in blood pressure in 

postmenopausal women. It is important to note, that although reductions in PP 

post-MOD INT was observed in the subset of 9 participants; no changes were  

observed in the initial analysis between CON and MOD INT, when all 15 

participants were included. A significant negative correlation between pre and 

delta MOD INT blood pressures (brachial artery PP, carotid artery PP and SBP) 

was only observed in the subset of 9 participants and not in the main group of 

15 participants.  

The absence of change in blood pressure post-CON exercise cannot be 

explained by either the exercise intensity or the time of the assessment (i.e. 15 

min post-exercise), as interval exercise of the same intensity (moderate) 

measured at the same time point post-exercise, showed reductions in PP. This 

is in agreement with a previous study which reported hypotension (brachial 

artery SBP, MAP) at 15-30 min post-interval exercise, but not following post-

continuous exercise, in healthy young men (Tordi et al., 2010). The authors 

suggested that the fluctuations in cardiac output and thus, shear stress during 

interval exercise may have provided a greater stimulus for increases in 

vasodilators and the subsequent reduction in peripheral resistance. Thus, 

interval exercise might be a more potent stimulus than continuous exercise for 

reductions in blood pressure in postmenopausal women. However, future 

studies are required to examine the long-term effects of interval and continuous 

exercise training on blood pressure in postmenopausal women. 
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5.4.3 Carotid arterial stiffness was not acutely altered by continuous 
and interval exercise 

Carotid arterial stiffness was higher in postmenopausal women than values 

reported from young women in the previous chapter and similar to values 

reported in a previous study in postmenopausal women (Moreau et al., 2003). 

Acute changes in carotid arterial stiffness following a single bout of continuous 

and interval exercise have not been studied in postmenopausal women. The 

results of the present study observed no changes in any parameter of carotid 

arterial stiffness following any exercise bout. Acute changes in arterial 

compliance are related to functional alterations in vascular tone caused by 

changes in vasodilator bioavailability, especially nitric oxide (Sugawara et al., 

2007). Despite observing modest changes to carotid artery blood pressure, no 

change in endothelial function (a reflection of nitric oxide bioavailability) was 

observed, and likely explains why carotid arterial stiffness was unaltered. A 

potential explanation for no change in vascular tone relates to a low shear 

stress stimulus during exercise as mentioned previously. For carotid arterial 

stiffness to change, it is likely that repeated acute exercise bouts are required. 

Indeed, previous continuous exercise training studies in postmenopausal 

women have observed decreases in carotid arterial stiffness, which were 

suggested to be caused by reductions in the vasoconstrictor tone of vascular 

smooth muscle cells, and/or increases in the elastin and reductions in the 

collagen content of arterial walls (Moreau et al., 2003; Sugawara et al., 2006). 

Future studies are required to compare the effects of continuous and interval 

exercise training on carotid arterial stiffness in postmenopausal women. 
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5.4.4 Circulating angiogenic cells were not mobilisised following an 
acute bout of continuous and interval exercise 

The present study was the first to compare CAC mobilisation following exercise 

in postmenopausal women. Furthermore, novel comparisons were made 

between interval and continuous exercise sessions. Although many studies 

have observed acute increases in CAC number following maximal and 

submaximal exercise in healthy and diseased populations (Adams et al., 2004; 

Rehman et al., 2004; Laufs et al., 2005; Sandri et al., 2005; Van Craenenbroeck 

et al., 2008; Möbius-Winkler et al., 2009; Cubbon et al., 2010), a few have not 

(Shaffer et al., 2006; Thijssen et al., 2006; Van Craenenbroeck et al., 2010). In 

agreement with the latter, this study also observed no increase in CACs 

following continuous and interval exercise at moderate and heavy-intensity. 

Potential explanations for these discrepancies might be explained by the 

population studied, the antibodies used to define a CAC, the volume and 

intensity of the exercise and the techniques used to analyse cell number (i.e. 

differences in the flow cytometer and gating strategies used). Acute exercise 

induced CAC mobilisation is mechanistically driven by an increase in shear-

stress induced nitric oxide (Cubbon et al., 2010). Thus, due to reasons 

previously mentioned such as an impaired endothelial sensitivity, a larger 

magnitude of shear stress might be required to mobilise CACs in 

postmenopausal women. This could be achieved by exercising at a higher 

intensity or by repeated acute bouts in a training programme.   

5.4.5 Interval exercise acutely increases circulating angiogenic cell 
CFUs 

The acute effect of exercise on CAC function has rarely been studied. The 

increase in CFUs following interval exercise regardless of intensity, but not 

following continuous exercise suggests that interval exercise is superior for 
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improving CAC function in postmenopausal women. However, this is potentially 

confounded by a trend (non-sig) for a reduction in CAC migration to VEGF 

following heavy-intensity interval exercise. An explanation for this discrepancy 

might be that the cells assessed in the migration and CFU assays are from two 

distinct populations. CACs cultured for 7 days that were used in the migration 

assay are believed to aid in endothelial repair through the secretion of cytokines 

and growth factors, and exhibit endothelial markers and characteristics 

(Rehman et al., 2003; Hur et al., 2004). In contrast, the CFUs are formed from 

the non-adherent cells collected on day 2 of culture, and although low numbers 

are associated with a greater risk of CVD (Hill et al., 2003), the cells do not 

show endothelial characteristics such as tubule formation and are mainly 

monocytes (Rohde et al., 2006). Indeed, it is suggested that CFUs are 

aggregated monocytes and T-cells (Rohde et al., 2007) and reflect the 

interactive ability of the cells (Hirschi et al., 2008). Given this, it is plausible that 

interval exercise produced a greater immune response than continuous 

exercise which contributed to a greater number of CFUs. Increases in immune 

cells following exercise are mediated by increased inflammation and damage 

induced during exercise (Pedersen & Hoffman-Goetz, 2000; Woods et al., 

2009). Thus, interval exercise of moderate and heavy-intensity might induce 

greater vascular/muscular stress than continuous exercise which increases the 

activity of immune cells that might aid in repair of vascular damage. Further 

investigation is warranted to validate this suggestion. Furthermore, greater 

damage/oxidative stress is produced at higher intensities (Goto et al., 2003), 

which might explain the decrease in CAC migration to VEGF following heavy-

intensity interval exercise. Evidence suggests that repeated exposure to acute 

exercise-induced inflammation is required for long term reductions in oxidative 
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stress and increased anti-oxidant activity (Gomes et al., 2012). Thus, if 

postmenopausal women continue to perform interval exercise long term, greater 

vascular health benefits might be gained than that of continuous exercise. 

Nevertheless, if interval exercise induces greater acute vascular stress/immune 

response; the mechanisms for this remain unknown. Potentially, the fluctuations 

in cardiac output that result from the changes in work-rate associated with 

interval exercise have differential effects on the vasculature. Again, further 

investigations are required to discover these mechanisms.  

5.4.6 Conclusions and future work 

In conclusion, the government recommended guidelines of 30 min of moderate-

intensity continuous exercise does not have an immediate impact on vascular 

health and repair in postmenopausal women. In contrast, interval exercise of a 

moderate and heavy-intensity is more potent for vascular changes. In 

postmenopausal women with a high blood pressure, moderate-intensity interval 

exercise might be better to induce reductions in SBP. For increases in nitric 

oxide for improvements in endothelial function and CAC number, a higher 

intensity, longer bouts and/or repeated exposure to shear is likely required for 

improvements in a population of postmenopausal women exhibiting CVD risk 

factors. Interval exercise of a moderate and heavy-intensity increases the 

colony-forming ability of cells potentially involved in the repair of vascular 

damage. Thus, investigations of the long-term impact this specific type of 

interval exercise has on vascular health and repair are warranted in 

postmenopausal women and other populations that are at risk of developing 

CVD, such as obesity. Additionally, as moderate-intensity continuous exercise 

had no immediate impact on vascular health and repair in postmenopausal 

women, heavy-intensity continuous exercise should be investigated. 
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5.4.7 Study limitations 

The techniques used to measure CAC cell number and function may have 

limited the ability to detect changes to these variables following exercise due 

the exclusion of many participants. The flow cytometer failure occurred several 

times which significantly reduced the number of participants that could be 

included in the CAC number analysis. This led to the purchase of a new flow 

cytometer which was used for subsequent studies. In a few participants the 

migration and adhesion CAC function analysis could not be completed because 

not enough cells were collected on day 7 of culture. In future studies the cell 

culture was adjusted so that more cells would survive culture, in addition to cell 

culture characteristics measured to identify differences from pre to post-training 

(refer to section 3.12.1 in the general methods, chapter 3). Furthermore, 

different techniques for assessing CAC function were piloted, which involved a 

lower number of cells on day 7 of culture, to resolve the problem of too few cells 

harvested at the end of culture. The CAC migration assay in the present and 

previous chapter had specific limitations. Firstly, the reported values in the 

literature (Laufs et al., 2005) are higher than those reported in populations of 

young and postmenopausal women in the present and previous chapters. 

Additionally, in a few participants more cells migrated to the control stimuli 

rather than VEGF, which has either not been observed or not discussed in 

previous studies. Furthermore, for both the migration and adhesion assays, the 

analysis was conducted following a 24 hr incubation period after 7 days of 

culture. Thus, short term changes were not examined. Future studies should 

examine a time course of changes in CAC function from day 7 of culture to +24 

hr post. Consequently, in the next chapter as discussed in section 3.12.5 of the 
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general methods, chapter 3, a new method to assess CAC function was 

developed which involved a time course of change. 

The interval exercise bouts in the present study were modified from the original 

study by Turner et al., (2006) as discussed. However, blood lactate and  V O2 

were not recorded during the sessions, therefore the exercise intensity of the 

moderate and heavy-intensity exercise bouts could not be confirmed. The 

addition of these measures during exercise sessions should be included in 

future exercise studies to confirm that the exercise is in the correct intensity 

domain.   
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Chapter 6 The impact of heavy-intensity interval and 
continuous exercise training on vascular health and repair 

in obese/overweight premenopausal women 

Aspects from this chapter were presented at the following conferences: 

 European College of Sports Science, Annual meeting, Barcelona, Spain, 

June 2013. 

 American Physiological Society Intersociety Meeting: The Integrative 

Biology of Exercise VI, Westminster, CO, October 2012. 

6.1 Introduction 

Obesity is a major health burden, responsible for 5% of all global deaths (World 

Health Organisation, 2011) which significantly increases the risk of developing 

CVD. Worldwide, 35% of women are overweight and 13.8% are obese (World 

Health Organisation, 2011). Overweight/obese (BMI > 25.0 kg·m-2) adults 

exhibit an impaired endothelial function (Perticone et al., 2001), increased 

inflammatory cytokines, adhesion molecules and oxidative stress (Ziccardi et 

al., 2002; Furukawa et al., 2004), reduced number and function of CACs 

(Muller-Ehmsen et al., 2008; Heida et al., 2010), and augmented arterial 

stiffness (Zebekakis et al., 2005). Lifestyle interventions such as exercise can 

reduce the risk of CVD in obesity by ameliorating the changes in the above 

variables. Given that the prevalence of obesity is growing with an estimated 11 

million more adults in the UK (increase from 26% to 35-43% in women) to suffer 

from the condition from 2010 to 2030 (Wang et al., 2011), it is especially 

important to identify the most effective exercise that will yield the greatest 

benefits to vascular health and repair. 
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The American Heart Association (AHA) recommend that for overweight/obese 

women who need to lose weight, a minimum of 60-90 min of moderate-intensity 

exercise should be achieved on all days of the week (Mosca et al., 2011). 

However, vascular health can be improved without weight loss. In mice 

following exercise training without reductions in weight, an increased 

endothelial-dependent vasodilation, nitric oxide bioavailability, superoxide 

dismutase, total and phosphorylated eNOS and reduced oxidative stress was 

reported (Moien-afshari et al., 2008). Similarly, in overweight/obese adults 

following exercise training without changes in BMI, inflammatory cytokines and 

endothelial-dependent vasodilation increased, and systolic blood pressure 

reduced (Dekker et al., 2007; Kadoglou et al., 2007; Mestek et al., 2010). 

Furthermore, reductions in arterial stiffness and increases in CAC number have 

been observed following exercise training in obese adults with only small 

reductions in BMI (~1 kg·m-2 (Cesari et al., 2012; McNeilly et al., 2012)]. 

Additionally, the AHA recommendations are impracticable for many, given that 

the greatest barrier to exercise in women is a lack of time, as mentioned in 

chapter 4. Time-efficient methods of exercise such as sprint training as seen in 

previous studies (Burgomaster et al., 2008; Rakobowchuk et al., 2008) and in 

chapter 4, increased cardio-respiratory fitness, endothelial function and CAC 

number in healthy adults. In obese sedentary men, 2 weeks of SIT improved 

V O2m x, insulin sensitivity and reduced systolic blood pressure (Whyte et al., 

2010). However, this type of exercise requires strong motivation and is often 

accompanied by feelings of nausea. Thus, this method of training may likely be 

unenjoyable in sedentary overweight/obese women, leading to reduced 

exercise adherence. 
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 The effects of alternative interval exercise protocols involving short 

work:recovery duty cycles on vascular health and repair have recently been 

investigated. In coronary artery disease patients, 12 weeks of interval exercise 

involving 60 s: 60 s work:recovery duty cycles improved brachial artery FMD to 

a similar extent as continuous exercise of a greater volume (Currie et al., 2013). 

Additionally, an acute bout of interval exercise involving 1:2 work:recovery duty 

cycles in postmenopausal women in the previous chapter (section 5.3.5.3) 

increased CAC colony forming units, whereas continuous exercise had no acute 

effect on vascular health and repair. Moreover, moderate and heavy-intensity 

interval exercise training involving a 1:2 work:recovery duty cycle ratio, 

improved endothelial reactivity to low shear stress in healthy individuals 

(Rakobowchuk et al., 2012). However, the effects of this type of interval 

exercise on vascular health and repair has not been assessed in obese women. 

Although interval exercise has been shown to improve elements of vascular 

health to a similar or greater extent than continuous exercise; the intensity of 

the exercise groups have not been appropriately matched in previous studies. 

In obese patients with the metabolic syndrome, 16 weeks of interval exercise 

involving 4 x 4 min periods at 90% HRmax separated by 3 min recovery at 70% 

HRmax, increased nitric oxide and endothelial function to a greater extent than 

continuous exercise at 70% HRmax (Tjønna et al., 2008). As explained in the 

previous chapter, prescribing exercise using a percentage of HRmax does not 

take into account individual differences in the LT, and thus, the intensity of the 

exercise cannot be defined. In the previous chapter exercise intensity was 

defined according to exercise intensity domains. An acute bout of heavy-

intensity interval exercise was compared with moderate-intensity continuous 

and interval exercise in postmenopausal women, with results suggesting that 
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moderate-intensity continuous exercise had no immediate effect on vascular 

health and repair, and may not be as effective for ameliorating CVD risk factors 

as interval exercise. However, heavy-intensity interval exercise has not been 

compared to heavy-intensity continuous exercise. Therefore, the aims of this 

chapter were to compare heavy-intensity interval exercise training involving 

short work:recovery duty cycles, with work-matched heavy-intensity continuous 

exercise training on vascular health and repair in overweight/obese women. 

6.2 Methods 

6.2.1 Participants 

Participants were recruited through poster and email advertisements placed 

around the local area and by contacting participants from a previous study who 

had given consent to be contacted in the future for further studies. Twenty 

healthy overweight/obese women (age: 42 ± 6 yrs) volunteered for the study. 

Participants were required to h ve   BMI ≥27 kg·m-2 and/or a WHR >0.8. 

Exclusion criteria (chapter 3, section 3.1) were confirmed prior to participation 

through a telephone interview.  

6.2.2 Experimental protocol 

Participants attended the University of Leeds laboratory on two occasions prior 

to the completion of a 12 week exercise training programme. On visit one, 

vascular measures and a fasted blood sample (60 ml) for the assessment of 

blood plasma inflammatory markers and CAC number and function were 

completed. On the second visit a cardio-respiratory fitness test was completed 

for the assessment of maximal aerobic capacity (V O2m x), the LT and to enable 

calculation of the work-rates in the exercise sessions. Control factors for these 

two sessions are specified in the general methods, chapter 3, section 3.2. 

Following the exercise intervention, the vascular and blood assessments were 
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completed between 48-72 hrs after the last training session and the cardio-

respiratory fitness test completed within one week. After completion of the pre-

training assessments, participants were matched for age and BMI and assigned 

to either a heavy-intensity interval (INT, n = 10) or heavy-intensity continuous 

(CON, n = 10) exercise training group. Exercise sessions were supervised at 

the University of Leeds exercise physiology laboratory twice per week with one 

unsupervised exercise session performed at home. After ~4 weeks participants 

attended the laboratory to assess short term functional changes in brachial 

artery endothelial function. At mid-point in the exercise training programme (6 

weeks), participants completed a cardio-respiratory fitness test instead of a 

training session to assess changes in V O2m x and the LT. If necessary, exercise 

session work-rates were adjusted if increases in the V O2m x and the LT were 

observed. To control for hormonal influences, participants who were not taking 

any hormonal contraception completed the vascular and blood assessments 

between day 1-10 of the menstrual cycle. However, one participant was 

assessed during the late luteal phase at all time points due to scheduling 

constraints. Individuals who were taking the combined contraceptive pill were 

assessed between day 1-7 of the ―pill free‖ week. Thus, p rticip nts were 

assessed when oestrogen levels were at the lowest. For participants who were 

taking progesterone only contraception and had an absence of menses, the 

vascular and blood assessments were acquired at any time.  

6.2.3 Variables assessed pre, mid and post-training 

The protocols for the following variables are described in detail in the general 

methods chapter (chapter 3).  
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6.2.3.1 Cardio-respiratory fitness 

At pre, mid and post-training a seated ramp-incremental step exercise test 

(RISE-105) was performed for the assessment of V O2   , LT, RI test duration, 

WRpeak (section 3.3) and for calculation of the work-rates achieved at these 

points for the subsequent exercise sessions. The ramp rate of the RI stage of 

the test was 12 W/min and the step exercise work-rate set at 105% WRpeak. Due 

to equipment failure, the SE test was not completed in one participant at pre-

training, one participant at mid-training and two participants at post-training. In 

these participants, the V O2     value from the RI stage of the test was reported 

as V O2    WRLT and the exercise session work-rates were determined 

independently by two researchers and an average calculated. 

6.2.3.2 Vascular measures 

The following vascular measures were completed at pre and post-exercise 

(sections 3.4-3.8): BMI, WHR, resting HR, brachial artery FMD, peak reactive 

hyperaemia, peak shear rate, AUCpeak, AUC60 and AUC90 and their 

corresponding VTIs, brachial artery blood pressure, PWVcr, PWVbf, and carotid 

arterial blood pressure, cross-section l compli nce (CSC), distensibility, β-

stiffness index and IMT. During recording of brachial artery blood velocity, the 

Doppler insonation angle for each participant between pre and post-testing was 

within 3°. Brachial artery endothelial function was also assessed at ~4 weeks 

from the start of training, following the same protocol as pre and post-training. 

6.2.3.3 Blood markers and CAC number and function 

At pre and post-training a 60 ml fasted blood sample was taken following the 

procedure outlined in section 3.9 and collected in EDTA vacutainers and a 

sodium citrate tube (for SDF-1α  n lysis) for pl sm  infl mm tory m rkers  nd 

CAC number and function analysis. Blood plasma was separated and analysed 
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for TNF-α, IL-6, hsCRP, sVCAM-1, VEGF and SDF-1α ( ssessed from pl telet 

free plasma) using commercially available ELISA kits (section 3.10) for the 

assessment of inflammatory makers and cytokines involved in CAC 

mobilisation. For flow cytometry CAC enumeration, 10 ml of blood was used to 

quantify the number of CD34+, CD34+CD45dim and CD34+CD45dimKDR+ CACs 

following a modified ISHAGE protocol described in section 3.11.2.3. The 

number of leukocytes within this sample was counted using a haemocytometer 

and reported per ml of blood. The remaining 30 ml blood sample was used for 

functional assessment of CACs (section 3.12). Briefly, mononuclear cells were 

separated from the blood, plated on fibronectin own-coated wells and cultured 

for 7 days. Cell growth characteristics were determined on days 2, 4 and 7 of 

culture. The secretion of VEGF, SDF-1α  nd G-CSF from CACs was measured 

from conditioned medium using commercially available ELISA kits for 

assessment of paracrine function. The function of CACs cultured for 7 days was 

assessed by their ability to adhere to a monolayer of saphenous vein VSMCs in 

vitro. The VSMCs were collected from non-diabetic male patients (age: 54-68 

yrs) undergoing coronary artery bypass graft surgery. For each participant at 

pre and post-testing, the CAC adhesion assay was performed on VSMCs 

collected from the same patient.  

6.2.4 Exercise training protocol 

Participants completed 2 supervised training sessions per week in the 

laboratory for a 12-week period. All sessions were performed on a cycle 

ergometer (Lode BV, Excalibur Sport V2.0, the Netherlands). An unsupervised 

exercise session was performed weekly. In this session, participants were 

instructed to complete one 30 min brisk walk each week. All participants 

exercised in the heavy-intensity domain regardless of exercise type, and groups 
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were matched for work. To confirm that participants were within the correct 

exercise intensity domain, during the first training session breath by breath data 

was collected for analysis of V O2 and fingertip capillary blood samples were 

acquired using an automated blood lactate analyser (Lactate Pro, Arkray, 

Japan) to determine blood lactate concentrations. At rest prior to the exercise 

session, two blood lactate samples were obtained at 5 min intervals and an 

average calculated. For the INT group, blood lactate was taken every 5 min in 

the first training session. As CON exercise sessions were shorter than the INT 

exercise sessions, because groups were matched for work (section 6.2.4.2), 

blood lactate was taken every 4 min on the 3rd-6th training session when the 

dur tion of the session w s ≥16 min. 

6.2.4.1 Interval exercise sessions 

Interval exercise sessions were based on the 1:2 (work:recovery) duty cycles 

first described by Turner et al., (2006). The duty cycles and their corresponding 

intensity domains are discussed in chapter 5, section 5.2.4 (Figure 5.2). In the 

previous chapter (chapter 5), the duty cycle work-rates were adjusted to be 

suitable for the population of postmenopausal women. In the present chapter, 

the duty cycles were modified further and involved 40 s at 70% delta work-rate 

followed by 80 s active recovery at 20 W. 70% delta ( ) is 70% of the difference 

between WRpeak and WRLT calculated as: 

                              

This work-rate was chosen instead of normalising to a percentage of 

V O2m x WRpeak as   takes into account individual differences in the LT, 

whereas scaling to a percentage of V O2m x  can place individuals in different 

intensity domains (i.e. above or below the LT). For example, as demonstrated 
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by Rossiter, (2011) in two participants performing constant load exercise (30 

min) at the same work-rate and the same percentage of V O2m x  (85%), one 

participant could not complete the session due to attainment of V O2m x . 

However, the other participant completed the entire session with V O2 attaining 

a steady-state. Thus, normalising to a percentage of V O2m x to define exercise 

intensity can result in participants experiencing different physiological stresses. 

The work-r te of 70%Δ w s chosen  s it is  bove critic l power (i.e. the highest 

constant load work-rate that can be attained whilst remaining at a steady-state) 

and thus, cannot be sustained when performed continuously (Cannon et al., 

2011). INT exercise duty cycles at this work-rate were piloted in one participant. 

Initially, a 30:60 s duty cycle was chosen as this has been shown to be 

characteristic of heavy-intensity exercise (Turner et al., 2006). As the work-rate 

was modified from the original study, a further session was completed involving 

a longer duty cycle of 40:80 s. Breath by breath data was collected throughout 

the session for analysis of V O2. Both sessions were characteristic of heavy-

intensity interval exercise as the peaks of the V O2 profile were above the LT 

and remained at that level throughout (Figure 6.1). Therefore, the 40:80 s duty 

cycle was chosen as the V O2-time integral (21051 ml) and the average V O2 

(1076 ml∙min-1) was slightly greater than the 30:60 s session (20260 ml and 

1034 ml∙min-1, respectively), and thus, might provide a greater stimulus for 

physiological adaptations. 

For all participants in the INT exercise group, session duration in week one was 

20 min, which increased to 25 min in week 2, 30 min in week 3, 35 min in week 

7 and 40 min in week 10.  
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Figure 6.1. The    2 profile during a INT exercise session involving 40:80 s 

duty cycles in a pilot participant.  The peaks of the    2 oscillations are 
above the individual lactate threshold (LT, blue dashed line, 859 ml∙min-1) 
and remains stable, thus, in the heavy-intensity domain.   
  

6.2.4.2 Continuous exercise sessions 

The CON exercise sessions involved cycling at 20%  work-rate for the duration 

of the session. 20%  was chosen so that participants would be exercising 

above their individual LT but below critical power and thus, in the heavy-

intensity domain (Cannon et al., 2011). To enable participants in the CON 

exercise group to complete the same amount of work (kJ) as the participants in 

the INT exercise group, the amount of work that would be completed if the CON 

participants completed an INT exercise session was calculated. This was 

calculated for each INT session duration (i.e. 20, 25, 30, 35, 40 min). 

Subsequently, the CON duration for each session was calculated using the 

following equation: 
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 Where      (J) is the amount completed in an INT exercise session involving 

40 s at 70%  work-rate and 80 s at 20 W, and       (J/s) is the CON exercise 

session work-rate of 20% . The group average CON exercise session durations 

for weeks 1, 2, 3-6, 7-9 and 10-12 were 13.3 ± 1.3 min, 16.6 ± 1.7 min, 19.9 ± 

2.0 min, 22.5 ± 2.1 min and 25.8 ± 2.4 min, respectively. Thus, exercise groups 

were matched for exercise intensity domain (heavy) and for work done, but 

differed in regards to session duration and the work-rate profile (interval vs. 

continuous). Figure 6.2 shows a schematic representation of the INT and CON 

exercise sessions in week one. 

 

Figure 6.2. Schematic of the heavy-intensity interval (INT) and continuous 
(CON) exercise training sessions in week one. INT exercise sessions 
(solid black bars) involved 40:80 s duty cycles at 70%delta work-rate (ave: 
124 ± 25 W) followed by 20 W recovery for 20 min duration. Work-matched 
CON exercise sessions (striped gray area) involved a continuous work-
rate (ave: 85 ± 16W) which finished when the participant completed the 
same amount of work which would be achieved in an INT exercise 
session. Average CON duration in week 1 was 13.3 ± 1.3 min. The work-
rates for both groups were above the lactate threshold (LT, red circle) 
work-rate (WRLT ave: 62 ± 15 W).     
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6.2.5 Statistical analysis 

The v ri ble ―time from cuff rele se to pe k di meter‖ w s not norm lly 

distributed therefore, the positive skew was corrected using reciprocal 

transformation of the variable (1/x). CAC number was also not normally 

distributed. Therefore, to correct for the positive skew, CD34+ and 

CD34+CD45dim CACs were natural log (lnx) transformed and 

CD34+CD45dimKDR+ CACs squ re root tr nsformed (√x),  s lnx c nnot be 

applied to zero values. The effect of the training interventions was analysed 

using a mixed mode repeated measures ANOVA with time (pre vs. post-

training) as the within-subjects factor and training group (INT vs. CON) as the 

between-subjects factor. For the assessment of endothelial function and cardio-

respiratory fitness, mid-training was added as a time factor to the ANOVA. At 

pre-training there were significantly lower numbers of CD34+CD45dim CACs in 

the INT training group when compared to the CON group (p = 0.01). Therefore, 

pre-training values of CD34+CD45dim CACs were added as a covariate to the 

ANOVA. Paired t-tests were conducted for post-hoc analysis to identify which 

exercise bout showed a significant change. The percentage change in CAC 

adhesion from pre to post-training was analysed for group differences via a 

Mann-Whitney test, as data could not be normally distributed using 

transformations. Exercise session characteristics and the percentage change 

from pre to post-training in cell area were assessed for training group 

differences vi    Student’s independent t-test. To assess the changes in blood 

lactate levels between rest and each time point during the first exercise session, 

a repeated measures ANOVA was performed with time as the within-subjects 

factor. Following continuous exercise training in overweight/obese adults, 

previous studies reported increases in brachial artery FMD from 2% to 5% 
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(Lavrenc  ic  et al., 2000; Tjønna et al., 2008; Stensvold et al., 2010). Therefore 

using an increase of 4% in brachial artery FMD and a standard deviation of 3% 

(reported from healthy women in chapter 4), a minimum of 20 participants in 

tot l were required to obt in 80% power (α = 0.05) in   two-treatment parallel-

design study. 

6.3 Results 

6.3.1 Exercise session characteristics 

In previous studies CON exercise sessions have been matched for intensity 

with INT exercise sessions using the INT session average percentage of 

V O2    (Tjønna et al., 2008; Tordi et al., 2010; Bartlett et al., 2012). In this study 

the average within exercise V O2 from the INT exercise group w s 1036 ml∙min-1 

which equated to ~50% of V O2   . If participants in the CON exercise group 

were to exercise at a constant work-rate equivalent to 50% of V O2   , some 

participants would be above and others below their individual LT (Figure 6.3). 

Thus, participants would be exercising in different intensity domains and would 

not be matched to the INT exercise sessions in the heavy-intensity domain. 
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Figure 6.3. The percentage difference from the lactate threshold (LT) if 
participants in the CON exercise group were to exercise at the average 

percentage of    2    from the INT exercise group (50%    2     If 

participants in the CON exercise group were working at 50% of    2   , 
two participants would be above their individual LT and in the heavy-
intensity domain where as the remaining participants would be below 
their LT and in the moderate-intensity domain.  
 

Therefore, in the present study INT and CON exercise groups were matched to 

the heavy-intensity domain and not scaled to a fixed percentage of V O2   . The 

group average characteristics of the first exercise session are displayed in 

Table 6.1. Work completed and average HR did not differ significantly between 

groups (p > 0.05). Average V O2 was significantly greater in the CON exercise 

group when compared with the INT exercise group (p < 0.01, Table 6.1). 

However, both the INT and CON exercise sessions were confirmed to be of a 

heavy-intensity as V O2  during the CON session increased to above the 

individual LT and attained a steady-state (Rossiter, 2011), and the peaks of the 

V O2  profile during the INT session also increased to above the LT and 
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remained at a stable level [Figure 6.5; Turner et al., (2006)]. Additionally, blood 

lactate levels were significantly elevated above resting values at each time point 

during the exercise session (p < 0.001, Figure 6.4), and plateaued in both 

groups (blood lactate levels between the final 3 time points during the exercise 

session were not significantly different in both groups, p > 0.05), which is 

characteristic of heavy-intensity exercise (Rossiter, 2011).  

Table 6.1. The average (mean ± SD) exercise session characteristics 
during the first interval (INT) and continuous (CON) exercise training 
sessions. 

* indicates a significant difference between the INT training group (p < 0.01). 

WRLT = work-rate at the lactate threshold,  WR = difference between the work-

rate at the LT and V O2   , HR = heart rate and bpm = beats per minute. 

 
INT  CON 

WRLT (W) 57 ± 15 68 ± 14 

70%  WR (W) 124 ± 25 127 ± 23 

20%  WR (W) n/a 85 ± 16 

Average work/session (kJ) 66 ± 10 67 ± 9 

Average V O2/session 
(ml∙min-1) 

1036 ± 112 1331 ± 198 * 

Average HR/session (bpm) 121 ± 17 132 ± 5 
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Figure 6.4. Group average (± SD) blood lactate response to interval (INT) 

and continuous (CON) exercise. * indicates a significant difference from 

rest (p < 0.05). Blood lactate levels were not significantly different between 
the two final time points in both exercise groups. 
 

Figure 6.5 displays the group average V O2 response to the first INT and CON 

exercise training session. The group average area under the V O2 - time curve 

for the first training session was greater in the INT exercise group (20175 ml) 

when compared to the CON exercise group (17120 ml).  
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Figure 6.5. Group average (± SD)    2 response to interval (INT, closed 
circles, shaded grey work-rate profile) and continuous (CON, open circles, 
striped work-rate profile) exercise in training session one. The red dashed 

line represents group average    2    (2096 ± 337 ml∙min
-1) and the blue 

dashed line represents group average lactate threshold (LT, 1113 ± 208 
ml∙min-1). 

 

Figure 6.6 displays the group average HR response to the first INT and CON 

exercise training session. The group average area under the HR - time curve for 

the first training session was greater in the INT exercise group (2417 beats) 

when compared to the CON exercise group (1726 beats). On average, 

participants in the INT exercise group were cycling at a lower average 

percentage of HRmax (67 %) whereas the CON exercise group were cycling at 

75% of HRmax. 
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Figure 6.6. Group average (± SD) heart rate (HR) response to interval (INT, 
closed circles, shaded grey work-rate profile) and continuous (CON, open 
circles, striped work-rate profile) exercise in training session one. The red 
dashed line represents group average maximal heart rate (HRmax, 179 ± 9 
bpm).  

 

6.3.2 Participant characteristics 

One participant from the INT exercise group completed only 10 weeks of 

training due to injury, which was not related to the exercise training programme. 

Also, one participant from the CON exercise group completed 10 weeks of 

training due to holiday, but the duration of the sessions were increased to 

enable the participant to complete the correct amount of total work that would 

have been achieved if she had completed the total 12 weeks. All other 

participants completed the full training programme. Participant demographics 

(mean ± SD) are displayed in Table 6.2. There was no effect of the training 

regardless of exercise group on BMI, WHR, resting HR and brachial artery 

DBP, MAP and PP. However, brachial artery SBP showed a trend for a 

reduction following training in both groups (time effect p = 0.08, time by group 
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interaction p > 0.05). The 95% CIs for the pre to post-training difference in SBP 

for the INT and CON group were -12 to +0.4 mmHg and -5 to +4 mmHg, 

respectively (Figure 6.7a). Participants with a higher pre-training SBP gained a 

greater reduction in SBP following training (r = -0.47, p = 0.04). However, when 

the correlation analysis was performed on the individual groups, only the INT 

group showed a significant negative correlation between pre-training and delta 

SBP (INT: r = -0.77, p = 0.01; CON: r = -0.29, p = 0.41, Figure 6.7b-c).  

Blood plasma was analysed from 17 participants (INT n = 7, CON n = 10) due 

to difficulties in blood collection and 2 participants who did not want to give 

blood. The levels of TNF-α were undetect ble in the pl sm  using the ELISA kit 

in all participants and therefore analysis was not performed on this variable. 

There were no observed changes in plasma concentrations of IL-6 (p = 0.84), 

hsCRP (p = 0.54) and sVCAM-1 (p = 0.42) with no time by group interactions (p 

> 0.05, Table 6.2). 
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Table 6.2. Participant demographics (mean ± SD) at pre and post 12 weeks 
of either interval (INT) or continuous (CON) exercise training. 

BMI = body mass index, WHR = waist to hip ratio, HR = heart rate, SBP = 
systolic blood pressure, DBP = diastolic blood pressure, MAP = mean arterial 
pressure, PP = pulse pressure, IL-6 = interleukin-6, hsCRP = high sensitivity C-
reactive protein and sVCAM-1 = soluble vascular cell adhesion molecule-1. 

 
INT (n = 10) CON (n = 10) 

Pre Post Pre Post 

BMI (kg∙m-2) 32.7 ± 3.6 32.0 ± 3.6 31.3 ± 3.7 31.0 ± 3.5 

WHR (a.u.) 0.90 ± 0.1 0.89 ± 0.1 0.90 ± 0.1 0.90 ± 0.1 

Resting HR 
(bpm) 

68 ± 6 68 ± 11 66 ± 10 68 ± 7 

Brachial artery 
SBP (mmHg) 

124 ± 11 119 ± 7 125 ± 15 124 ± 15 

Brachial artery 
DBP (mmHg) 

81 ± 9 79 ± 8 82 ± 10 82 ± 10 

Brachial artery 
MAP (mmHg) 

96 ± 10 92 ± 8 96 ± 11 96 ± 11 

Brachial artery 
PP (mmHg) 

43 ± 5 40 ± 3 43 ± 11 42 ± 8 

Plasma IL-6 
(pg/ml) 

3.2 ± 0.8 3.4 ± 1.5 3.6 ± 1.0 3.5 ± 0.9 

Plasma hsCRP 
(µg/ml) 

1.9 ± 1.3 1.7 ± 1.2 1.9 ± 1.3 1.8 ± 1.9 

Plasma sVCAM-
1 (ng/ml) 

511 ± 56 502 ± 52 512 ± 80 503 ± 61 
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Figure 6.7. Changes in brachial artery systolic blood pressure (SBP) with 
exercise training. A medium effect size (d = 0.5) for a decrease in SBP 
following interval exercise was observed (a). Participants in the interval 
training group with a higher pre-training SBP exhibited a larger decrease 
in SBP post-training (b, p < 0.05). However, in the continuous training 
group a correlation was not observed (c, p > 0.05). d indicates cohen’s 
effect size. 
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6.3.3 Cardio-respiratory fitness at pre, mid and post 12-weeks of an 
interval and continuous exercise training programme in 
overweight/obese women 

Cardio-respiratory fitness was assessed in 17 participants (INT n = 8, CON n = 

9) at pre, mid and post-training due to 2 participants at mid-training unavailable 

for testing  nd 1 p rticip nt’s d t   t post-training excluded due to injury. 

Absolute V O2    significantly increased following training in both groups (p = 

0.02) with no time by group interaction (p = 0.17). Absolute V O2    was 

significantly increased from pre to mid-training by 4% (p = 0.01, 95% CI for pre 

to post-training difference +0.018 to +0.147 L·min-1), but no further increases 

were observed at post-training (Figure 6.8). Relative V O2    also increased with 

training regardless of training group although significance was not reached (p = 

0.07, d = 0.4, time by group interaction p = 0.50, Table 6.3). The increase in 

absolute and relative V O2    from pre to post-training was greater in 

participants with a lower pre-training V O2    (absolute V O2   : r = -0.50 p = 

0.04; relative V O2   : r = -0.46, p = 0.06).  

Table 6.3. Cardio-respiratory fitness (mean ± SD) pre, mid and post 12-
weeks of either heavy-intensity interval (INT) or continuous (CON) 
exercise training.  

V O2    =  maximal oxygen uptake 

The estimated LT did not change with training in either group (LT (ml) p = 0.35, 

LT as a percentage of V O2    p = 0.99) and there was no time by group 

interaction (p > 0.05, Table 6.3). The RI test duration and WRpeak significantly 

 
INT (n = 8) CON (n = 9) 

Pre Mid Post Pre Mid Post 

Relative V O2    
(ml·kg·min

-1
) 

24.1 ± 
2.9 

26.0 ± 
3.0 

25.3 ± 
3.3 

24.6 ± 
2.7 

25.0 ± 
2.3 

25.7 ± 
2.3 

Lactate threshold (ml) 
1077 ± 

187 
1178 ± 

279 
1169 ± 

247 
1181 ± 

239 
1191 ± 

227 
1181 ± 

183 

Lactate threshold (%) 52 ± 7 54 ± 4 55 ± 8 56 ± 6 55 ± 5 54 ± 5 
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increased throughout the training programme by 10% and 11%, respectively (RI 

duration p = 0.0001, WRpeak p = 0.0001) regardless of group (time by group 

interaction p > 0.05). Significant increases were observed between pre to mid-

training (RI duration p = 0.01, WRpeak p = 0.0001), mid to post-training (RI 

duration p = 0.03, WRpeak p = 0.03) and pre to post-training (RI duration p = 

0.001, WRpeak p = 0.0001, Figure 6.8).     
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Figure 6.8. Changes in cardio-respiratory fitness at pre, mid and post 

interval and continuous training. * indicates a significant difference (p < 

0.05). a) Absolute maximal oxygen uptake (   2max) increased from pre to 
mid and pre to post-training (p < 0.05). The ramp incremental (RI) test 
duration (b) and RI work-rate peak (WRpeak, c) increased between each time 
point of the training programme (p < 0.05). There were no group by time 
interactions (p > 0.05). 
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6.3.4 The effect of a 12-week interval and continuous exercise 
training programme on brachial artery endothelial function in 
overweight/obese women 

Resting brachial artery diameter and time from cuff release to peak dilation did 

not significantly change from pre to post-training in either group (p > 0.05, Table 

6.4). Relative and absolute FMD showed a close to significant reduction 

following training (FMDrel: p = 0.07, Figure 6.9a; FMDabs p = 0.05, Table 6.4). 

Although, there was no time by group interaction this reduction appeared to be 

driven by ~2% decrease in the INT training group, whereas there was little 

change following CON training (Figure 6.9a). Post-hoc paired t-tests revealed a 

significant decrease in FMDrel in the INT training group (p = 0.03, 95% CI for pre 

to post-training difference -3.6 to -0.3%) but no change following CON training 

(95% CI for pre to post-training difference -2.5 to +1.8%, p = 0.73). Participants 

with a smaller FMD at pre-training tended to exhibit an increase in FMD 

following training (r = -0.49, p = 0.03, Figure 6.9b).   

Table 6.4. Brachial artery endothelial function (mean ± SD) pre and post 
12-weeks of either heavy-intensity interval (INT) or continuous (CON) 
exercise training.  

* indicates a significant main time effect (p < 0.05). FMD = flow-mediated 
dilation, VTIpeak = velocity time integral from cuff deflation to peak diameter and 
AUCpeak = shear rate area under the curve from cuff deflation to peak diameter. 

 
INT (n = 10) CON (n = 10) 

Pre Post Pre Post 
Resting diameter (mm) 3.40 ± 0.70 3.49 ± 0.63 3.43 ± 0.49 3.44 ± 0.56 

Time from cuff release to peak 
diameter (reciprocal transformed) 

0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 

Insonation angle (°) 68 ± 1 68 ± 1 68 ± 1 68 ± 1 

Absolute FMD (mm) * 0.28 ± 0.09 0.21 ± 0.07 0.25 ± 0.10 0.24 ± 0.11 

VTIpeak (cm)  1727 ± 542 1262 ± 405 1499 ± 413 1559 ± 687 

Peak reactive hyperaemia (cm·s
-1

)  92 ± 27  83 ± 21 99 ± 19 95 ± 21 

Peak shear rate (s
-1

) 2232 ± 717  1950 ± 573 2356 ± 637 2287 ± 735 

AUCpeak (a.u.) 
40698 ± 
14395 

29709 ± 
11103 

35921 ± 
12231 

35636 ± 
15245 
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The VTIpeak, AUCpeak and peak reactive hyperaemia and shear rate were not 

significantly changed with training (VTIpeak p = 0.20, AUCpeak p = 0.15, Peak 

reactive hyperaemia p = 0.20, peak shear rate p = 0.11) and there was no time 

by group interaction (p > 0.05, Table 6.4). However, the VTI and shear rate 

AUC for 60 s showed a close to significant trend for a reduction following 
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Figure 6.9. Brachial artery flow-mediated dilation (mean ± SD) following 
interval and continuous exercise training. a) * indicates a significant 
decrease in FMD from pre to post-training following interval exercise (p = 
0.03). b) A significant negative correlation was observed between pre-
training FMD and the pre to post-training change (r = -0.49, p = 0.03). 
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training in both groups (VTI60 p = 0.09, 95% CI for pre to post-training difference 

-440 to +33 cm; AUC60 p = 0.05, 95% CI for pre to post-training difference  

-11128 to +52 a.u.) with no time by group interaction (p > 0.05). However, this 

decrease was larger following INT training (VTI60 p = 0.09, 95% CI for pre to 

post-training difference -799 to +67 cm; AUC60 p = 0.06,  95% CI for pre to post-

training difference -20053 to +592 a.u.; Figure 6.10a,c) compared with CON 

training (VTI60 p = 0.73, AUC60 p = 0.64). Furthermore, the VTI90 showed a 

close to significant reduction and AUC90 significantly reduced following training 

in both groups (VTI90 p = 0.06, 95% CI for pre to post-training difference -537 to 

+15 cm; AUC90 p = 0.04, 95% CI for pre to post-training difference -13858 to -

406 a.u.) with a close to significant time by group interaction (VTI90 p = 0.09, 

AUC90 p = 0.08, Figure 6.10b,d). Post-hoc paired t-tests revealed a significant 

reduction in AUC90 (p = 0.04, 95% CI for pre to post-training difference -25350 

to -704 a.u.) and a close to significant decrease in VTI90 (p = 0.05, 95% CI for 

pre to post-training difference -994 to +7 cm) following INT training but no 

significant change following CON training (VTI90 p = 0.84, AUC90 p = 0.72). 

Absolute FMD showed a significant positive correlation with shear rate AUC at 

the post-training time point only (AUCpeak r = 0.61, p = 0.005; AUC60 r = 0.52, p 

= 0.02; AUC90 r = 0.55, p = 0.01). Therefore, FMD was not normalised to shear 

rate AUC. The change from pre to post-training in FMD did not correlate with 

the change from pre to post-training in peak reactive hyperaemia, peak shear 

rate and the VTIs and shear rate AUCs (p > 0.05). Assessment of brachial 

artery endothelial function was completed between weeks 3-4 of training. 

However, due to menstrual cycle differences from pre-training and participant 

unavailability, this assessment was not completed in 5 participants (INT n = 6, 

CON n = 9). Therefore a separate ANOVA was conducted in 15 participants to 
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compare differences in endothelial function at pre, mid and post-testing. There 

were no changes in any variables between the time points and no time by group 

interactions (p > 0.05). 
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Figure 6.10. The velocity time integrals (VTI60 and VTI90) and shear rate area under the curves (AUC60 and AUC90) following 
interval and continuous training. * indicates a significant difference (p < 0.05). † indicates a close to significant difference  
(p ≤ 0.09).  TI60 (a) and AUC60 (c) reduced following interval training (p > 0.05). VTI90 (b) reduced following training with a greater 
decrease following interval training (p = 0.05) than continuous training (p > 0.05). AUC90 (d) significantly reduced following 
training (p = 0.04)  with a greater reduction following interval training (p = 0.04, group by time interaction p = 0.08). 
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6.3.5 The effect of a 12-week interval and continuous exercise 
training programme on arterial stiffness in overweight/obese 
women 

Due to difficulties with tonometry recordings, one participant was excluded from 

PWVcr analysis in the CON group and two participants were excluded from 

PWVbf analysis in the CON group. Peripheral and central PWV did not change 

following either INT or CON exercise training (PWVcr p = 0.13, PWVbf p = 0.60) 

with no time by group interaction (p > 0.05, Table 6.5). Carotid arterial stiffness 

did not change following training in either group (IMT p = 0.50, carotid artery 

SBP p = 0.11, Carotid artery PP p = 0.25, ΔCSA p = 0.64, CSC p = 1.00, 

distensibility p =0.49, SI p = 0.95, Table 6.5) with no time by group interactions 

(p > 0.05). 

Table 6.5. Arterial stiffness (mean ± SD) pre and post either interval (INT) 
or continuous exercise training (CON). 

¹ indicates that 10 participants were included in the analysis from the CON 
group except for PWV. PWVcr = carotid-radial pulse wave velocity, PWVbf = 
brachial-foot pulse wave velocity, IMT = intima-media thickness, SBP = systolic 
blood pressure, PP = pulse pressure, ΔCSA = difference between maximum 
and minimum cross-sectional area, CSC = cross-sectional compliance, DD = 
distensibilty, SI = β-stiffness index. 

 
INT (n = 10) CON (n = 10)¹ 

Pre Post Pre Post 
PWVcr (m·s

-1
) CON n = 9 6.9 ± 0.9 7.2 ± 1.0 7.5 ± 0.7 7.8 ± 1.0 

PWVbf (m·s
-1

) CON n = 8 7.6 ± 1.2 8.0 ± 0.8 8.7 ± 2.2 7.8 ± 1.1 

Carotid artery IMT (mm) 0.39 ± 0.04 0.41 ± 0.04 0.44 ± 0.05 0.44  ± 0.05 

Carotid artery SBP (mmHg) 112 ± 11 108 ± 8 113 ± 13 111 ± 14 

Carotid artery PP (mmHg) 31 ± 4 29 ± 5 31 ± 8 30 ± 6 

C rotid ΔCSA within he rt cycle 
(mm

2
)  

4.3 ± 0.6 4.4 ± 0.9 4.7 ± 1.4 4.5 ± 1.1 

Carotid artery CSC (mm
2
/mmHg) 0.14 ± 0.03 0.16 ± 0.04 0.17 ± 0.08 0.15 ± 0.04 

Carotid artery DD (mm/mmHg) 
 0.005 ± 
0.001  

0.005 ± 
0.001 

0.005 ± 
0.003 

0.004 ± 
0.001 

Carotid artery SI (a.u.) 5.2 ± 1.2  5.3 ± 1.2 5.5 ± 2.3 5.5 ± 1.0 
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6.3.6 The effect of a 12-week interval and continuous exercise 
training programme on cytokine concentrations and CAC 
number 

CAC number was analysed from 16 participants (INT n = 6, CON n = 10) as 

pilot work for the enumeration protocol was being undertaken and 2 participants 

did not want to give blood. Following training, CD34+ and CD34+CD45dimKDR+ 

CACs did not change (CD34+ p = 0.17, CD34+CD45dimKDR+ p = 0.25, Table 

6.6) in either group (time by group interaction p > 0.05). Results from the 

ANCOVA show a significant increase in CD34+CD45dim CACs following training 

(p = 0.03). Although a time by group interaction was not observed (p = 0.50), 

there was a large effect size for an increase following INT (d = 1.0) but no 

change following CON (Figure 6.11a). Post-training SD was used in the effect 

size calculation as the pre-training values did not have a SD due to covariate 

analysis. The pre-training values had a significant impact on the effect of the 

training on CD34+CD45dim CACs (time by pre-training CD34+CD45dim CACs 

interaction p = 0.04). 

Table 6.6. Circulating angiogenic cell (CAC) number, plasma SDF-1α  and 
leukocyte number (mean ± SD) pre and post either interval (INT) or 
continuous exercise training (CON). 

1 indicates that the number of participants included in the analysis from the INT 
group are specified for each variable individually. SDF-1α = strom l derived 
factor-1 alpha. 

 

 

 
INT1 CON (n = 10) 

Pre Post Pre Post 
CD34

+
 CACs (/ 10

5
 leukocytes) 

INT: n = 6 
2.9 ± 0.2 3.2 ± 0.6 3.2 ± 0.4 3.2 ± 0.4 

CD34
+
CD45

dim
KDR

+
 CACs (/ 10

5
 

leukocytes)  INT: n = 6 
0.4 ± 0.3 0.5 ± 0.4 0.5 ± 0.3 0.7 ± 0.6 

Plasma SDF-1α (pg/ml) INT: n = 8 1436 ± 174 1399 ± 238 1440 ± 315 1619 ± 222 

Leukocytes (/ml of blood) INT: n = 
7 

6,078571 ± 
2,292534 

6,253837 ± 
1,094102 

5,874286 ± 
1,259923 

5,570000 ± 
991408 
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Plasma VEGF and SDF-1α were  n lysed from 17  nd 18 p rticip nts 

respectively, due to reasons previously stated. Following exercise training 

plasma VEGF increased significantly in both groups (p = 0.02, group by time 

interaction p = 0.87; Figure 6.11b), whereas no changes were observed in 

plasma SDF-1α (p > 0.05, Table 6.6). Changes in CAC number following 

training were not related to changes in FMD or plasma VEGF (p > 0.05). 

Leukocyte number did not change after either training type (p > 0.05, n =17, 

Table 6.6). 

 

 

a 

b 

Figure 6.11. CD34+CD45dim cells (a) and plasma VEGF (b, mean ± SD) 
following interval and continuous exercise training. * indicates a 
significant difference from pre-training in both groups (p > 0.05). d 
indicates cohen’s effect size. 
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6.3.7 The effect of a 12-week interval and continuous exercise 
training programme on CAC culture growth characteristics 

During post-testing the cell culture incubator became infected. Therefore, many 

participants had to be excluded from analysis due to unreliable data or cell 

death. Data analysed from 11 participants showed that the number of adherent 

live cells at the end of cell culture on day 7 was not significantly different 

between pre and post training in either training group (p = 0.59, time by group 

interaction p = 0.62, Table 6.7). The number of non-adherent cells collected 

during culture was analysed in 14 participants on day 2 only, due to the reasons 

previously stated. The total number of non-adherent cells and the percentage of 

dead non-adherent cells also did not change with training in either group (p > 

0.05, Table 6.7). 

Table 6.7. Cell culture growth characteristics (mean ± SD) pre and post 
either interval (INT) or continuous exercise training (CON). 

 

Cell area was measured on day 2 (n = 14), 4 (n = 11) and 7 (n = 11) of culture. 

There was no difference between pre and post-training on day 2 (p = 0.40), day 

4 (p = 0.53) and day 7 (p = 0.25) in either training group (time by group 

interaction p > 0.05). The exercise training group average percentage change in 

cell area from pre to post-training was not significantly different between training 

groups during cell culture (p > 0.05) as  illustrated in Figure 6.12. 

 
INT CON  

Pre Post Pre Post 
Day 7 adherent cells / well (INT: n 
= 6; CON: n = 5) 

130000 ± 
23476 

131111 ± 
79740 

119400 ± 
43536 

145000 ± 
41046 

Day 2 total non-adherent cells / 
well (INT: n = 5; CON: n = 9) 

1,946667 ± 
787002 

1,636000 ± 
653853 

2,089259 ± 
414580 

1,832037 ± 
767422 

Day 2 percentage of dead non-
adherent cells / well (INT: n = 5; 
CON: n = 9) 

8.6 ± 5.4 11.3 ± 3.7 7.3 ± 3.9 8.6 ± 6.2 
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6.3.8 The effect of a 12-week interval and continuous exercise 
training programme on CAC paracrine activity and adhesive 
functional ability 

Due to the cell culture incubator infection, undetectable values in the ELISA kit 

analysis of cytokines and two participants unwilling to give blood, CAC secretion 

of VEGF, SDF-1α  nd G-CSF was analysed from 11, 14 and 8 participants, 

respectively. Following training in both groups there was no significant change 

in secretion of VEGF (p = 0.29), SDF-1α (p = 0.53) and G-CSF (p = 0.61, Table 

6.8). A close to significant time by group interaction was observed for G-CSF (p 

= 0.06). However, the post-training changes were very small (1-2 pg/105 cells) 

in both groups (95% CI for difference INT: -7 to +2 pg/105 cells; CON: -0.1 to +3 

pg/105 cells). 

 

 

Figure 6.12. The group average (± SD) percentage change in cell area from 
pre to post-training during cell culture in the interval (n = 6) and 
continuous (n = 8) training groups. There was no difference between the 
training groups on day 2 (p = 0.75), day 4 (p = 0.19) and day 7 (p = 0.97) on 
cell culture. 
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Table 6.8. Cytokine secretion from cell culture conditioned medium (mean 
± SD) pre and post either interval (INT) or continuous exercise training 
(CON). 

VEGF = vascular endothelial growth factor, SDF-1α = strom l derived f ctor- 1 
alpha and GCSF = granulocyte colony stimulating factor. 

 

The ability of cultured CACs to adhere to a monolayer of saphenous vein 

VSMCs was analysed from 8 participants (INT n = 4, CON n = 4) due to the 

reasons previously stated. At the 20 min time point, CAC adhesion at pre-

training was significantly higher in the CON group compared to the INT group (p 

< 0.05). Consequently, the pre-training values were added as a covariate to the 

ANOVA for the 20 min time point only. A greater number of CACs adhered to 

VSMCs following INT training at the 10 min (time by group interaction p = 0.04) 

and 30 min (time by group interaction p = 0.08) time points only. As illustrated in 

Figure 6.13 the average percentage change in CAC adhesion was significantly 

higher following INT training at the 10 min time point (p = 0.03) whereas there 

was little change with CON training. There were no significant differences 

between the training groups at any other time point (p > 0.05). 

 
INT CON  

Pre Post Pre Post 
Secreted VEGF (pg/10

5
 cells) INT: 

n = 5; CON: n = 8 
11 ± 7 6 ± 2 8 ± 6 9 ± 7 

Secreted SDF-1α (pg/10
5
 cells) 

INT: n = 5; CON: n = 9 
552 ± 210 589 ± 415 640 ± 309 739 ± 482 

Secreted GCSF (pg/10
5
 cells) INT: 

n = 4; CON: n = 4 
4 ± 3 2 ± 1 3 ± 2 4 ± 3 
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CAC 
adhesion to 
VSMCs 

Figure 6.13. CAC adhesion to a monolayer of VSMCs. Images of the 
adherence of CACs to VSMCs at pre (a) and post (b) training from one 
participant in the interval training group. c) A time course of the group 
average (± SD) percentage change in CAC adherence to VSMCs from pre 

to post interval (n = 4) and continuous (n = 4) training. * indicates a 

significant difference between the training groups (p < 0.05).  
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6.4 Discussion 

The present study was the first to match interval and continuous exercise 

training for the heavy-intensity domain and compare their effects on vascular 

health in overweight/obese women. The main findings were that heavy-intensity 

interval exercise training had superior effects on CAC number and function but 

conversely reduced brachial artery FMD, whereas intensity and work matched 

continuous exercise training had no effect. Nonetheless, continuous exercise 

training improved cardio-respiratory fitness and plasma VEGF to the same 

extent as interval exercise, suggesting that increases in these parameters were 

unrelated to the mechanisms responsible for altering FMD and CAC number 

and function.  

6.4.1 Interval exercise training reduced brachial artery FMD whereas 
continuous exercise training had no effect 

Following 12 weeks of heavy-intensity cycling training in middle-aged 

overweight/obese women, interval exercise reduced upper limb brachial artery 

FMD whereas continuous exercise had no effect. Given that improvements in 

brachial artery endothelial function following exercise training are mediated by 

increased nitric oxide bioavailability induced by increases in shear stress during 

the exercise sessions (Tinken et al., 2010; Birk et al., 2012); the absence of 

improvements following continuous exercise training might be related to an 

insufficient volume of shear stress experienced by participants during the 

exercise sessions. Another potential explanation might be related to the time 

course for upper limb arterial adaptations to lower limb exercise. Arterial 

functional alterations occur rapidly with exercise training followed by structural 

adaptations. This was evidenced in humans where brachial artery FMD and 

maximal dilator capacity, as a measure of endothelial function and arterial 
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structural changes respectively, were assessed every 2 weeks during an 8 

week cycling and running training programme in healthy males (Tinken et al., 

2008). As shown in Figure 6.14, FMD increased after 2 weeks of training and 

subsequently declined at 8 weeks to the same levels as the pre-training values. 

In contrast, maximal dilator capacity continued to increase throughout the 

training programme, thereby suggesting that endothelial function was reducing 

to pre-training levels due to arterial remodelling. Hence, this might explain why 

no changes in endothelial function were observed following 12 weeks of 

continuous exercise training. FMD was measured at 4 weeks and no changes 

were found, however, at this point the artery might have remodelled, therefore 

negating improvements in function. However, this does not explain why brachial 

artery FMD was reduced following work and intensity matched interval exercise 

training.  

 

 

 

The decrease in brachial artery FMD following interval exercise training was 

surprising as previous studies have reported improvements following 12 weeks 
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Figure 6.14. Brachial artery flow-mediated dilation (FMD) and maximal 
dilator capacity (mean ± standard error mean) across an 8-week cycling 
training programme. * indicates a significant difference from pre-training 
(p < 0.05). Reproduced from Tinken et al., (2008). 
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of interval exercise training in obese adults (Schjerve et al., 2008; Tjønna et al., 

2008; Stensvold et al., 2010) and after 8 weeks in obese rats (Haram et al., 

2008). However, the previous studies in humans used upper arm inflation to 

create ischaemia during the FMD assessment, which is not totally endothelial 

and nitric oxide dependent, (Doshi et al., 2001). Thus, the increase in FMD 

post-interval training in the previous studies (Schjerve et al., 2008; Tjønna et al., 

2008; Stensvold et al., 2010) may not have reflected increased endothelial 

function. Moreover, a different type of interval exercise was adopted in the 

previous studies, which involved 4 x 4 min periods at ~90% HRmax separated by 

3 min recovery at ~70% HRmax. In the present study, interval exercise sessions 

involved repe ted duty cycles of 40 s  t 70%Δ work-rate followed by 80 s active 

recovery at 20 W. Thus, the differences in intensity and work-rate profiles during 

interval exercise between the present and previous studies might have 

contributed to the different results observed.  

A reduction in brachial artery endothelial function has been reported following 

aerobic exercise training in one previous study (Bergholm et al., 1999). In this 

previous study, the increase in blood flow in response to acetylcholine infusion 

in the forearm, decreased following 3 months of continuous running exercise, 

involving four 1 hr sessions per week at 70-80% V O2    in healthy males 

(Bergholm et al., 1999). The impairment in endothelial function was explained 

by an increase in oxidative stress and a reduction in anti-oxidant enzymes post-

training. This was also observed in another study in which oxidative stress 

increased and acetylcholine-induced vasodilation remained unchanged, 

following high-intensity continuous exercise training [12 weeks of 30 min cycling 

at 75% V O2    on 5-7 days/week; Goto et al., (2003)]. However, an increase in 

oxidative stress following interval exercise training in the present study is 
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unlikely, given that 1) interval and continuous exercise sessions were matched 

for intensity and work and FMD did not change with continuous exercise 

training, and 2) CAC number and function appeared to improve following 

interval exercise training, with reduced oxidative stress a suggested mechanism 

(Fernandes et al., 2012). Therefore, other explanations could be related to 

changes in vessel vasomotor tone. 

Following interval exercise training a reduction in post-ischaemic shear rate 

AUC60+90 was observed in combination with the decrease in FMD. Given that 

shear stress is the stimulus for FMD, the reduced shear rate AUC may in part 

explain the decreased FMD. Increased forearm vascular resistance can reduce 

brachial artery shear rate (Simmons et al., 2011). However, augmented 

peripheral resistance post-exercise training is unlikely as brachial artery SBP 

showed a trend for a reduction following interval exercise, which is usually 

related to reduced peripheral resistance and/or increased vessel function 

(Guimaraes et al., 2010). Forearm vascular remodelling could potentially 

explain the reduction in shear rate AUC. If participants in the interval exercise 

group had lost lean or fat mass from the forearm, it could be postulated that the 

ischaemic stimulus would be smaller post exercise and thus, the resultant shear 

rate and FMD would also be reduced. However, further studies would be 

required to validate this theory.  

Another potential explanation for the reduction in FMD post-interval exercise 

training, could be related to enhanced brachial artery vasomotor control. In a 

previous study we observed no changes in FMD but reported a greater 

constriction to reduced flow during the period of forearm occlusion in the 

brachial artery following interval exercise of the same nature as the present 

study [i.e. 1:2 work:recovery duty cycles (Rakobowchuk et al., 2012)]. As low-
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flow mediated constriction was not measured in the present study we cannot 

identify whether vasoconstrictor tone and endothelial sensitivity was enhanced 

with exercise training. Furthermore, maximal dilator capacity, which indicates 

arterial structural changes was not measured in the present study. If the 

maximal dilator capacity had increased, then the reduction in FMD following 

interval exercise training would not indicate a reduction in endothelial function, 

but instead reflect arterial remodelling. The fluctuations in blood flow associated 

with variable work-rates during interval exercise sessions as mentioned in 

previous chapters, may explain the differences observed between interval and 

continuous training. However, further studies are required to measure blood 

flow during this type of interval exercise, and to examine the effects of these 

profiles on endothelial cells in vitro. 

6.4.2 Increased cardio-respiratory fitness following both interval 
and continuous exercise training 

Both heavy-intensity interval and continuous exercise training increased V O2    

and indicators of exercise tolerance (RI test duration and WRpeak), which is 

consistent with previous interval and continuous exercise training studies in 

obese adults (Schjerve et al., 2008; Tjønna et al., 2008). Given that both 

training groups were in the heavy-intensity domain, the intensity of the exercise 

was likely the mechanism for the adaptation and not the interval or continuous 

nature of the exercise. Further evidence in support of intensity as the mediator 

for enhanced cardio-respiratory fitness is provided by a study which reported an 

increase in V O2    following heavy-intensity interval exercise, but no change 

following moderate-intensity interval exercise involving the same 1:2 ratio of 

work:recovery duty cycles (Rakobowchuk et al., 2012). Mechanisms underlying 

the improvement in cardio-respiratory fitness involve an increased delivery of 
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blood in combination with an increased utilisation of oxygen to working muscles. 

In obese adults following exercise training, an increase in stroke volume and 

skeletal muscle mitochondrial capacity has been reported (Tjønna et al., 2008). 

Other mechanisms relate to an increased endothelial vasodilation and reduced 

arterial stiffness of the lower limb arteries, which would potentially enable a 

greater delivery of oxygen to the periphery, as reported in the popliteal artery 

following cycling exercise training (Rakobowchuk et al., 2008). The increase in 

V O2    occurred within the first 6 weeks of exercise training with no further 

improvements between mid and post-training. Although the increase in V O2    

was small in the present study, it is reported that an increase in V O2    by        

1 ml∙kg∙min-1 reduces the risk of all-cause and cardiovascular related death by 

15% (Keteyian et al., 2008). Thus, the exercise training adopted in the present 

study might be prescribed to women with low V O2    values and poor 

cardiovascular health. 

6.4.3 Unchanged arterial stiffness following interval and continuous 
exercise training 

No changes in central and peripheral PWV or carotid arterial stiffness were 

observed following either heavy-intensity interval and continuous exercise 

training in overweight/obese women. Improvements in arterial stiffness are 

determined by functional and structural  alterations in the vessel wall. The 

increase in pulsatile pressure on the arterial wall during exercise is suggested to 

initiate increased elastin synthesis by vascular smooth muscle cells (Matsuda et 

al., 1993), and/or decreased cross-linking of connective tissue (Joyner, 2000), 

thus reducing arterial stiffness. It could be suggested that in the present study 

the intra-luminal pressure during exercise was not great enough to stimulate 

these structural adaptations, or that a greater volume of exercise is required in 
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overweight/obese women for arterial stiffness alterations to occur. However, 

reductions in arterial stiffness have been observed in obese adults following 12 

weeks of continuous running exercise (Miyaki et al., 2009b). The increase in 

carotid arterial cross-section l compli nce  nd reduction in β-stiffness index 

were concomitant with an increase in plasma nitric oxide and reduction in 

endothelin-1. The alteration in systemic redox status was suggested to enhance 

arterial vasomotor tone, contributing to the reduced arterial stiffness. Therefore, 

the lack of improvement in endothelial function in the present study might have 

impaired reductions in arterial stiffness. Alternatively, the contrasting results in 

the present study might be explained by no changes to BMI, as the previous 

study observed reduced BMI, fat mass and LDL and total cholesterol levels, 

which will likely have contributed to an increased arterial function by reducing 

inflammation (Miyaki et al., 2009b). A greater exercise volume in the previous 

study (40-60 min, 3 days/week) compared to the current study most likely 

explains the weight loss experienced by participants in the previous study. 

Thus, for improvements in arterial stiffness following exercise training in 

overweight/obese women, a reduction in BMI and fat mass might be required, 

which could be achieved by a greater exercise training volume/stimulus. 

6.4.4 Interval exercise training but not continuous increased 
circulating angiogenic cell number 

An increased number of CACs following 12 weeks of continuous exercise 

training has been reported in coronary artery disease (Steiner et al., 2005), 

chronic heart failure (Erbs et al., 2010) and obese patients (Cesari et al., 2012). 

However, the present study was the first to compare the effects of 12 weeks of 

interval and continuous exercise training on CAC number in a population of 

overweight/obese women. Despite only small changes, interval exercise training 
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appeared to increase CD34+CD45dim cell number whereas continuous exercise 

training had no effect. There were no changes in CD34+CD45dimKDR+ cells. 

Although the increase in CACs was not necessarily endothelial specific, CD34+ 

cells are haematopoietic stem cells which have been shown to migrate and 

adhere to capillaries in an ischaemic hind-limb mouse model (Asahara et al., 

1997) and are negatively correlated with CVD risk factors (Fadini et al., 2006b). 

Thus, the increase following interval exercise training may partly ameliorate 

CVD risk factors by contributing to vascular repair or angiogenesis. However, as 

only a small increase was noted, the impact on vascular health is unclear. 

Given that larger changes in CAC number were observed in participants with 

smaller pre-training numbers, the magnitude of the increase may be larger or 

have a greater impact in obese women with poorer cardiovascular health. 

Moreover, larger increases might be gained if exercise training was combined 

with weight loss, as greater reductions in BMI correlated with larger increases in 

CD34+ cells following a 6 month weight loss diet in obese adults (Muller-

Ehmsen et al., 2008). Nevertheless, in a population of healthy obese women, 

the increased CACs following interval exercise training indicates a greater 

capacity to maintain vascular homeostasis if required. Future studies 

investigating exercise training and CAC number should focus on whether 

increases have a beneficial impact on vascular health and repair. For example 

by isolating CACs pre and post-training and infusing the cells to ischaemic hind-

limb rodent models or to artificially injured vessels.  

The mechanisms responsible for exercise training induced increases in CAC 

number include an increase in nitric oxide bioavailability (Steiner et al., 2005) 

through an eNOS dependent pathway (Laufs et al., 2004) and/or a reduction in 

inflammation and oxidative stress (Erbs et al., 2010; Fernandes et al., 2012). 
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This altered anti-atherogenic environment may contribute to enhanced CAC 

survival through an increase in telomerase activity (Werner et al., 2009) and 

reduced apoptosis (Laufs et al., 2004). Although endothelial-dependent 

vasodilation in the brachial artery which reflects nitric oxide bioavailability did 

not increase following interval exercise training, this might not reflect systemic 

nitric oxide bioavailability, as vasomotor tone can differ from limb to limb 

(Thijssen et al., 2011b). Therefore, it could be suggested that interval exercise 

increased nitric oxide bioavailability and reduced oxidative stress systemically, 

contributing to an increased mobilisation of CACs. 

The increase in CACs following interval exercise cannot be explained by the 

intensity of the exercise given that intensity and work matched continuous 

exercise had no effect on CAC number. Additionally, differences in the 

haemodynamics between interval and continuous exercise does not explain the 

contrasting results, as moderate-intensity continuous exercise training 

increased CAC number in overweight/obese adults in a previous study (Cesari 

et al., 2012). An alternative explanation could be the duration of the exercise 

sessions. Following an acute bout of moderate-intensity running, CACs were 

mobilised following a 30 min bout, but not after a 10 min bout, suggesting that a 

threshold must be attained for CAC mobilisation (Laufs et al., 2005). Given that 

in the present study continuous exercise sessions ranged from a minimum 12 

min in the first week to a maximum of 30 min in the final week, CACs may not 

have been acutely mobilised following a continuous exercise session, thus 

explaining why no changes were observed post-training. However, conversely 

plasma VEGF which is involved in CAC mobilisation and angiogenesis 

(Asahara et al., 1999; Zentilin et al., 2006) increased similarly following both 

interval and continuous exercise training. The relationship between VEGF and 
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CAC mobilisation is complex as many studies show an exercise-mediated 

increase in VEGF simultaneously with an increase in CACs (Laufs et al., 2004; 

Sandri et al., 2005; Sarto et al., 2007; Erbs et al., 2010), whereas others did not 

(Laufs et al., 2005; Steiner et al., 2005). In the present study, the increase in 

VEGF was relatively small (~10 pg/ml) in comparison to other studies [~56 

pg/ml (Sandri et al., 2005)] and did not correlate with changes in CAC number. 

Similar discrepancies have been reported elsewhere. In a study investigating 

capillary angiogenesis in response to differing severities of muscle overload, 

VEGF was increased to a similar extent in all conditions despite capillary 

density increasing in only the stronger muscle overload conditions (Egginton et 

al., 2011). The authors postulated that VEGF creates a pro-angiogenic 

environment but that other mediating factors such as the balance between pro 

and anti-angiogenic molecules are required to elicit angiogenesis. Thus, interval 

exercise potentially due to a longer training session stimulus, might have 

created a greater pro-angiogenic milieu enabling enhanced CAC mobilisation 

and survival. Further evidence is provided by an increase in CAC adhesion 

following interval exercise training. 

6.4.5 Interval exercise training but not continuous increased 
circulating angiogenic cell adhesive ability 

CACs contribute to vascular repair and angiogenesis by homing and adhering 

to the endothelium (Urbich & Dimmeler, 2004) and secreting angiogenic growth 

factors (Rehman et al., 2003). Although participant numbers were very small, 

the present study observed an increase in cultivated CAC adhesion to VSMCs 

at the 10 min time point following interval exercise training but not continuous, 

without alterations to CAC paracrine activity. The monolayer of VSMCs 

reflected a denuded vessel lining in vivo, as a representation of arterial damage. 
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Given that cell culture characteristics and cell area did not change post exercise 

training, any differences between cell culture conditions between pre and post-

training cannot explain the increased adhesion observed. Thus, in a population 

of middle-aged overweight/obese women, interval exercise training potentially 

increased the capacity for endothelial repair or angiogenesis by improving the 

ability of CACs to rapidly respond and adhere to damage, injury or other 

vascular stresses. This is consistent with a previous study following exercise 

training in adults with the metabolic syndrome, where injection of cultivated 

CACs into mice with induced carotid arterial injury, improved re-

endothelialisation greater than the control group (Sonnenschein et al., 2011). 

Similar improvements in CAC function following exercise training have been 

reported in other ― t risk‖ popul tions. An incre sed in vitro CAC migration and 

incorporation into tubule structures has been reported following exercise 

training in peripheral artery disease (Sandri et al., 2005), chronic heart failure 

(Erbs et al., 2010) and middle-aged and older sedentary males (Hoetzer et al., 

2007). The mechanisms responsible for CAC adhesion to the vasculature 

involve the binding of integrins and receptors present on CACs to ligands 

expressed in the arterial wall (Urbich & Dimmeler, 2004). Inhibition of SDF-1α 

receptors CXCR4 and CXCR7 impairs adhesion to collagen and fibronectin in 

vitro (Dai et al., 2011). Addition lly, αvβ3  nd αvβ5 blockade reduced carotid 

artery reendothelialisation in rats (Walter et al., 2002). Indeed, exercise training 

increased CXCR4 expression on CACs in CAD patients (Sandri et al., 2005).  

Other reported contributing factors to improved CAC function following exercise 

training are reduced superoxide production and increased nitric oxide from 

CACs (Sonnenschein et al., 2011), reduced systemic oxidative stress (Erbs et 

al., 2010) and increased cell survival (Werner et al., 2009). Thus, interval 
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exercise might have increased expression of integrins and receptors on CACs 

by reduced superoxide interaction, enabling rapid adhesion after culture. This 

might translate into a faster in vivo response mechanism to vascular repair or 

maintenance post exercise training.  

The increase in CAC adhesion post interval exercise training but not continuous 

exercise training is unusual as all studies reporting improvements in CAC 

function have involved continuous exercise training (Sandri et al., 2005; Hoetzer 

et al., 2007; Sarto et al., 2007; Erbs et al., 2010; Sonnenschein et al., 2011). 

However, as intensity was controlled for, the difference in session duration as 

explained in the previous chapter might explain the divergent results following 

interval and continuous exercise training.  

6.4.6 Conclusions 

In conclusion, brachial artery FMD and post-ischaemic shear rate reduced but 

CAC number and function increased following interval exercise training only. 

Similar increases in V O2    and VEGF were observed following both interval 

and continuous exercise training, suggesting that the intensity of the exercise 

determined these adaptations. The differences in session duration and/or the 

blood flow profile between interval and continuous exercise training may explain 

the divergent results observed. The reduction in brachial artery FMD does not 

necessarily indicate poorer vascular health. Brachial artery dysfunction is 

related to coronary artery dysfunction (Anderson et al., 1995; Takase et al., 

1998) but conversely, a recent study indicated that brachial artery FMD might 

not reflect systemic endothelial function as FMD differs from limb to limb 

(Thijssen et al., 2011b). Hence, although FMD reduced following interval 

exercise training in the brachial artery, it may be enhanced elsewhere in the 

arterial tree, likely in the lower-limbs. Future studies are required to assess 
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blood flow responses to interval exercise in different arteries and assess 

endothelial function throughout the arterial tree. Although changes were 

observed following exercise training, overweight/obese women might require a 

higher frequency of exercise sessions per week to induce a greater response. 

6.4.7 Limitations and future work 

The study was limited by the small number of participants that could be included 

in the cell function analysis due to cell culture contamination. Similarly, cell 

number was only analysed in six participants in the interval exercise training 

group. Therefore, strong conclusions cannot be made. Nevertheless, 

suggestions and hypotheses can be postulated, which require validation 

through future investigations. The paracrine activity of cells was assessed from 

the secretion of VEGF, SDF-1α  nd G-CSF. These cytokines have previously 

been shown to be secreted into conditioned medium from early culture CACs 

and are involved in CAC mobilisation, homing and adherence (Rehman et al., 

2003; Ceradini et al., 2004; Hur et al., 2004). Since the concentrations of these 

cytokines did not increase post-training, it was concluded that the paracrine 

activity was unaltered by the exercise. However, other factors that were not 

analysed such as nitric oxide, oxidative stress and MCP-1 might have changed 

following training. Therefore, future studies should include a wide array of pro 

and anti-angiogenic molecules in the analysis. Many of the discussion points 

refer to blood flow profiles and shear stress during exercise as a mechanism for 

changes following training. Thus, future studies should focus on measuring 

blood flow during exercise and relate the arterial shear stress patterns to 

vascular outcomes.  
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Chapter 7 General Discussion 

7.1 Overview of thesis rationale and purpose 

The increase in CVD risk throughout the female lifespan due to advancing age 

and the loss of oestrogen at the menopause is well known. Although CVD 

prevalence is lower in pre-menopausal women when compared to men, 

morbidity is very high and is augmented by the presence of CVD risk factors 

such as obesity. Indeed, global CVD mortality rates are greater in women than 

men. Despite this, fewer research studies had investigated the effect of 

interventions on women’s he lth. Therefore, this thesis focused specific lly on 

different populations of women. 

A key target for CVD prevention strategies is the vasculature, as endothelial 

dysfunction and stiffening of the vessel wall accelerates atherosclerosis, the 

underlying cause of many CVDs. A further mediator of vascular homeostasis 

involves the contribution of circulating angiogenic cells (CACs) to vascular 

repair. All of these factors, which worsen throughout the female lifespan, can be 

improved with exercise training. 

The recommended UK government guidelines for exercise participation in 

 dults (≥30 min moder te-intensity exercise on 5 days/week) is very general 

regarding the type and definition of intensity, and might not be optimal to gain 

the greatest benefits to vascular health. Additionally, these guidelines may not 

be applicable to everyone as the optimum exercise prescription may vary 

between populations (i.e. healthy, male vs. female, obese, heart failure, 

postmenopausal etc.). Furthermore, exercise adherence rates are very low (4% 

of women  chieve the recommended guidelines) with ―  l ck of time‖  nd ―not 
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motiv ted‖ cited  s the two m in b rriers to exercise p rticip tion (British Heart 

Foundation, 2012). With this in mind, researchers started to explore the impact 

of different types of exercise on cardiovascular health. Recently, interval 

exercise has been a focal point of interest as it can be more time-efficient, 

enjoyable and can exert similar or superior improvements on markers of 

vascular health, when compared to traditional continuous exercise training 

methods, and thus, may increase exercise participation rates (Wisloff et al., 

2007; Haram et al., 2008; Rakobowchuk et al., 2008; Tjønna et al., 2008). 

Therefore, this thesis sought to compare the effects of interval and continuous 

exercise on endothelial function, arterial stiffness and CAC number and function 

(as markers of vascular health) in young healthy, middle-aged obese and 

postmenopausal women. 

7.2 Design of the exercise sessions 

An important mediator of the physiological adaptations to exercise is exercise 

intensity and should therefore be carefully considered when designing an 

exercise intervention. Greater physiological stresses exerted at higher exercise 

intensities have shown to be beneficial for improving markers of vascular health 

such as endothelial function (Walsh et al., 2003; Rakobowchuk et al., 2008; 

Silva et al., 2012). Conversely, other studies have reported adverse 

consequences following high-intensity exercise training with reductions in 

endothelial function and increases in oxidative stress (Bergholm et al., 1999; 

Goto et al., 2003). Despite these contrasting results and importance of exercise 

intensity, the definition of moderate and high-intensity is poorly defined within 

the literature. The majority of studies normalise intensity to a percentage of 

V O2m x , HRmax or HRR. Although easy to calculate and prescribe, these 

methods do not accurately control for differences in metabolic stress between 
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individuals. At a given percentage of V O2m x or HRmax, some individuals may be 

exercising above their individual lactate threshold, while others can be 

exercising below and thus, at a different intensity (Meyer et al., 1999; Scharhag-

Rosenberger et al., 2010; Rossiter, 2011). Consequently, the physiological and 

metabolic stress during exercise between individuals would be heterogeneous 

and hence, may contribute to the discrepancy in vascular health outcomes 

observed following exercise training in the literature. Additionally, when 

comparing the effects of different types of exercise such as interval and 

continuous exercise, it is important to control for the factors that are known to 

mediate adaptations, in order to determine if one type is better than the other for 

vascular health improvements. For example, Wisloff et al., (2007) observed 

larger increases in endothelial-dependent vasodilation following interval 

exercise compared to continuous exercise training. However, interval exercise 

sessions were likely of a higher intensity than continuous exercise sessions and 

therefore, the difference in results may actually be mediated by the difference in 

exercise intensity and not the interval vs. continuous nature of the exercise. 

Therefore, in this thesis, exercise intensity was either maximal or defined 

according to the exercise intensity domains, where moderate-intensity is 

exercise below the individual lactate threshold and heavy-intensity just above 

the lactate threshold (Rossiter, 2011). A novel aspect from chapters 5 and 6 

was that interval and continuous exercise sessions were matched to an 

intensity domain, in attempt to exclude exercise intensity as a mechanism for 

any potential differences in outcome between the two exercise types. This 

allowed the effects of the different work-rate profiles associated with interval 

and continuous exercise on vascular health to be examined. 
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7.3 Summary of key findings 

In chapter 4, in a population of healthy young females, sprint interval and sprint 

continuous exercise training similarly increased cardio-respiratory fitness, 

exercise tolerance and CD34+ cell number, but only interval type exercise 

appeared to change endothelial function, indicated by an increased brachial 

artery FMD only in the interval exercise training group. It was therefore 

suggested that the intensity of the exercise might be a more important 

determinant than the interval vs. continuous nature of the exercise, for 

increasing cardio-respiratory fitness and mobilisation and survival of 

haematopoietic progenitor cells, that may aid in endothelial repair or 

angiogenesis. In contrast, it was hypothesised that the different shear stress 

profiles experienced by the endothelium during interval and continuous exercise 

might explain the different outcome in FMD, due to repeated sudden increases 

in shear stress associated with interval exercise, potentially providing a greater 

stimulus for endothelial cells. However, in chapter 6 in a population of middle-

aged overweight/obese women, heavy-intensity interval exercise training 

reduced brachial artery FMD, but appeared to increase CD34+CD45dim cell 

number and CAC adhesive ability, whereas heavy-intensity and work matched 

continuous exercise training had no effect. Although limited by low participant 

number in CAC number and function analysis, the results suggest that unlike in 

a healthy female population where intensity appears to be the most important 

mediator for CAC release, in a different population of women with presence of 

CVD risk factors, the interval vs. continuous nature of the exercise influences 

CAC number and function differently. Likewise, FMD was only altered following 

interval exercise training, which is similar to the findings from the first study. 

Even though FMD reduced following interval exercise training, which may or 
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may not signify a reduction in endothelial function, it still highlights that the 

fluctuations in work-rate and arterial shear stress during interval exercise, has a 

different impact on the endothelium than a continuous work-rate and level of 

shear stress experienced during continuous exercise sessions. In agreement 

with the first study, cardio-respiratory fitness and exercise tolerance increased 

following both intensity and work matched interval and continuous exercise 

training, thus, supporting the theory that the intensity of the exercise mediates 

improvements in fitness, and not the type of aerobic exercise undertaken. 

In chapter 5, the acute effect of moderate-intensity continuous and moderate 

and heavy-intensity interval exercise on markers of vascular health, was 

assessed in postmenopausal women. The aim was to determine if interval 

exercise had a greater immediate impact on vascular health than continuous 

exercise, and would therefore be more beneficial for postmenopausal women if 

undertaken chronically. Following the moderate-intensity interval exercise 

session, reductions in brachial and carotid artery pulse pressure were observed, 

whilst brachial and carotid artery systolic blood pressure and brachial artery 

pulse pressure increased following heavy-intensity interval exercise. The 

opposite results were most likely due to the time point of assessment post-

exercise (15 min). Additionally, both moderate and heavy-intensity interval 

exercise increased the number of CAC colony-forming units post-exercise, 

whereas moderate-intensity continuous exercise had no effect on any of the 

variables measured at 15 min post-exercise. The results from this acute 

exercise study suggest that interval exercise may be more effective than the 

government recommended guidelines of 30 min of moderate-intensity 

continuous exercise, for reducing blood pressure and increasing the interactive 
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ability of angiogenic cells and thus, may partly contribute to preventing the 

decline in cardiovascular health associated with postmenopausal women.  

As a whole, the studies in this thesis found that interval exercise both acutely 

and chronically, modified more variables related to vascular health in different 

populations of women than continuous exercise, even when exercise intensity 

was controlled. Therefore, as illustrated in Figure 7.1, interval exercise may be 

more effective than continuous exercise in rectifying the imbalance in vascular 

homeostasis that is associated with advancing age, oestrogen loss at the 

menopause and obesity, by reducing vascular damage and increasing vascular 

repair. The results from this thesis support previous research in which interval 

exercise exerted similar and superior effects on markers of vascular health such 

as cardio-respiratory fitness and endothelial function (Wisloff et al., 2007; 

Tjønna et al., 2008; Currie et al., 2013). In addition, the effects on CAC number 

and function following interval and continuous exercise were compared for the 

first time, with interval exercise demonstrating similar or superior increases than 

continuous exercise, especially in CAC function. In contrast, markers of central 

and peripheral arterial stiffness were not altered following either interval or 

continuous exercise in any of the studies in this thesis in women across the 

lifespan. This might be related to good arterial distensibility prior to exercise or 

an insufficient stimulus for adaptation. Additionally, a higher frequency of 

exercise sessions may need to be performed each week for reductions in 

systemic arterial stiffness as observed in previous studies (Sugawara et al., 

2006; Guimaraes et al., 2010). 
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The combination of examining several markers of vascular health together in 

each participant following exercise, revealed that exercise does not modify all 

aspects of vascular health or effect all variables equally, or indeed in the same 

direction. For example in chapter 6, following interval exercise training, brachial 

artery FMD decreased but CAC number and function increased. This complex 

relationship between exercise and markers of vascular health has implications 

for exercise prescription. 

- Endothelial function 
- CAC number 
- CAC function 
- VEGF 
- Cardio-respiratory  
  fitness 
 

Vascular 

homeostasis 

Interval exercise 

Continuous exercise 

Vascular 

homeostasis 

- CAC number 
- VEGF 
- Cardio-respiratory  
  fitness 

- Blood pressure 
 

Figure 7.1. The effect of interval and continuous exercise on vascular 
homeostasis. Given that interval exercise modified more vascular health 
markers than continuous exercise in this thesis, it is suggested that 
interval exercise may be more beneficial than continuous exercise in 
rectifying the imbalance between vascular damage and repair, in 
populations of women who present risk factors for cardiovascular 
disease. CAC = circulating angiogenic cell, VEGF = vascular endothelial 
growth factor. 
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7.4 Implications for exercise prescription in women  

The benefits of exercise participation to cardiovascular health is well known and 

strongly encouraged by the government, physicians and healthcare 

professionals, in order to reduce the high rates of CVD morbidity and mortality. 

However, exercise should not be viewed  s   ―one size fits  ll‖ ther py. The 

results observed in this thesis together with inconsistencies in the literature 

suggest that exercise prescription should be individualised or specified for 

different populations. From the studies carried out in this thesis, it was observed 

that 1) different exercise types (interval vs. continuous) exert different effects on 

the same variable, 2) exercise has different effects on different markers on 

vascular health, and 3) the impact of exercise is influenced by the initial 

vascular health of individuals. Thus, exercise prescription is more complicated 

than originally perceived. The observation in this thesis that exercise whether 

studied acutely or chronically, can improve one marker of vascular health such 

as endothelial function, but have no effect on a different marker such as arterial 

stiffness, raises the question of how to decide which type and intensity of 

exercise should be recommended to which population? Potentially, the best 

course of action is firstly to identify which physiological marker requires the 

most attention, and when improved with exercise will bring about the greatest 

reductions to CVD risk. Secondly, the type of exercise that will yield the greatest 

improvements to the desired variable should be determined and prescribed. For 

example, in obese women, if the greatest gains in vascular health are achieved 

by weight loss, then the interval and continuous exercise training programme 

adopted in chapter 6 should not be prescribed, as participants did not lose 

weight. Likewise, in a population of hypertensive postmenopausal women, the 

greatest reductions to CVD risk could be attained through reductions in blood 



- 221 - 
 

pressure. Given that a 30 min bout of moderate-intensity interval exercise 

immediately reduced blood pressure in postmenopausal women in chapter 5, 

with larger changes observed in individuals with a higher blood pressure at pre-

exercise; moderate-intensity interval exercise involving 10 s of work and 20 s of 

active recovery may be favourable for hypertensive postmenopausal women. 

Furthermore, for healthy women without risk factors for CVD, exercise 

participation throughout the lifespan can reduce the increased CVD risk 

associated with advancing age, by attenuating the decline in endothelial 

function (DeSouza et al., 2000), CAC number and function (Yang et al., 2013) 

and arterial compliance (Tanaka et al., 2002), caused by advancing age and the 

menopause. Given that V O2m x is one of the main predictors of CVD morbidity 

and mortality (Laukkanen et al., 2004; Aspenes et al., 2011) and declines with 

age in women (Fitzgerald et al., 1997), it could be suggested that in healthy 

women without CVD risk factors, the most important goal in relation to vascular 

health is the attainment and maintenance of a high level of cardio-respiratory 

fitness throughout the lifespan. As observed in chapters 4 and 6 in this thesis 

and in previous studies (Burgomaster et al., 2008; Rakobowchuk et al., 2012), 

exercise at higher intensities produces greater increases in V O2m x than lower 

exercise intensities, which appears to be independent of the type of exercise 

undertaken. Therefore, an exercise mode which is of a high intensity but short 

duration may be favourable to healthy women.  

 

.   



- 222 - 
 

7.5 Limitations and future work 

One of the main limitations experienced in chapters 4-6 of this thesis was the 

reduction in the number of participants that could be included in analysis, due to 

equipment failure and problems with cell culture. Therefore, it was not possible 

to draw firm conclusions, especially relating to the effects of exercise on 

circulating angiogenic cell number and function. Furthermore, the implications of 

increased CAC number and function on vascular health following exercise is 

unclear due to the lack of research in this area, and the lack of consensus on 

what a CAC is and what it does. Moreover, although the culture of CACs 

allowed the assessment of CAC function, analysis of CACs in vitro may not 

necessarily reflect how the cells behave in vivo. Consequently, future studies 

should focus on isolating CACs from peripheral blood before and after exercise 

using antibodies, and applying the cells to models of vascular damage in vivo 

such as infusion into ischaemic hind limb of mice.  

In the experimental studies in this thesis, several mechanisms for the changes 

observed following exercise were proposed, including greater nitric oxide 

bioavailability, reduced oxidative stress, enhanced anti-oxidant enzyme activity, 

arterial structural changes and exercise session duration. Additionally, one of 

the main discussion points throughout the thesis was how the differences in 

haemodynamics and shear stress patterns, between interval and continuous 

exercise, may have contributed to the divergent results observed. However, 

these factors were not measured in this thesis. Although the aim of this thesis 

was not to identify the mechanisms by which interval and continuous exercise 

modify the variables measured, the addition of assessments of nitric oxide, 

oxidative stress and in-exercise blood flow would have enhanced the study. 

Therefore, future studies are required to measure blood flow and shear stress 



- 223 - 
 

during interval and continuous exercise, and subsequently apply these profiles 

to endothelial cells in order to examine the impact on cellular redox state. These 

studies are necessary to validate the suggestion raised in this thesis that the 

fluctuations in work-rate and shear stress associated with interval exercise, 

provides a greater stimulus for enhanced endothelial function. 

The interval and continuous exercise protocols adopted in this thesis were 

chosen to control for exercise intensity. However, this stringent control makes it 

difficult to translate to the public. In chapter 4, specialised equipment was used 

and in chapters 5-6, a maximal exercise test was required in order to calculate 

the exercise session work-rates. Since, nearly all members of the public do not 

have access to these facilities, future studies should investigate how exercise 

prescribed using laboratory equipment can be prescribed without the use of any 

equipment. 

7.6 Conclusion 

To summarise, the main purpose of the thesis was to compare the effects of 

interval and continuous exercise on markers of vascular health in different 

populations of women. For the first time, exercise sessions were controlled to 

an exercise intensity domain, thereby allowing exercise intensity to be excluded 

as a mechanism for any differences in outcome between interval and 

continuous exercise. The data presented indicated that in some variables 

related to vascular health, interval exercise produced similar or superior effects, 

which is in agreement with previous studies in the literature. Therefore, interval 

exercise involving short work:recovery duty cycles may be more beneficial to 

women across the lifespan than the government recommended guidelines of 

moderate-intensity continuous exercise, by ameliorating more CVD risk factors. 
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However, much research is still required. Only three different populations of 

women were studied, therefore comparisons between the exercise types should 

be completed in women with different CVD risk factors, or indeed in females 

who suffer from CVD. Secondly, the effects of the interval exercise protocol 

used in chapter 6 on endothelial function should be measured in a different 

population of women and in different arteries, to assess whether the decrease 

in FMD observed following interval exercise training in overweight/obese 

women, is reflective of reduced endothelial function or as a result of other 

mechanisms. Finally, the mechanisms contributing to the different outcomes 

observed between interval and continuous exercise needs to be elucidated. It is 

hoped that the mechanism postulated in this thesis relating to the potential 

different effects that the in-exercise shear stress patterns have on the 

endothelium during interval and continuous exercise, will be explored in the 

future.  
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