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Abstract 

In the medical domain, semantic analysis is critical for several research questions which are not 

only limited to healthcare researchers but are of interest to NLP researchers. Yet, most of the 

data exists in the form of medical narratives. Semantic analysis of medical narratives is required 

to be carried out for the identification of semantic information and its classification with 

semantic categories. This semantic analysis is useful for domain users as well as non-domain 

users for further investigations.  

The main objective of this research is to develop a generic semantic tagger for medical 

narratives using a tag set derived from SNOMED CT® which is an international healthcare 

terminology. Towards this objective, the key hypothesis is that it is possible to identify semantic 

information (paraphrases of concepts, abbreviations of concepts and complex multiword 

concepts) in medical narratives and classify with globally known semantic categories by 

analysis of an authentic corpus of medical narratives and the language of SNOMED CT®.  

This research began with an investigation of using SNOMED CT® for identification of 

concepts in medical narratives which resulted in the derivation of a tag set. Later in this 

research, this tag set was used to develop three gold standard datasets. One of these datasets 

required anonymization because it contained four protected health information (PHI) categories. 

Therefore, a separate module was developed for the anonymization of these PHI categories. 

After the anonymization, a generic annotation scheme was developed and evaluated for the 

annotation of three gold standard datasets. One of the gold standard datasets was used to 

develop generic rule-patterns for the semantic tagger while the other two datasets were used for 

the evaluation of semantic tagger. Besides evaluation using the gold standard datasets, the 

semantic tagger was compared with three systems based on different methods, and shown to 

outperform them. 
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Important definitions 

Anonymization:  The process in which data fields that may be used to identify the individuals 

to whom the data records relate are removed from a data set. 

Corpus: Collection of documents/texts. 

De-identification: The term de-identification refers to removing identifiers from data without 

losing the linkage of hidden identifiers. 

Gold standard corpus: A corpus that contains the identified/annotated information. In Natural 

Language Processing applications, gold standard corpus is required for evaluation the 

performance of automatic system against gold standard annotations. 

Metadata: Data about data is called metadata. 

Named Entity Recognition: Anything that can be referred to by a proper name is a ‘Named 

Entity’. The process that identifies proper names in the text and classifies them with respective 

named entities is known as ‘Named Entity Recognition’. 

Natural Language Processing: Natural language processing (NLP) is a field of ‘Artificial 

Intelligence’. NLP is the ability of a computer program/application to understand natural 

language. 

Semantics: The study or science of meaning/ interpretation of language. 

Semantic Analysis: A process that determines which words or phrases in the text are relevant 

to the domain and then assigns their semantic relations. 

Semantic Tagging: The identification of semantic information in the text and its classification 

with respective semantic categories is known as semantic tagging. 

SnoMedTagger: SnoMedTagger - SNOMED CT Medical Tagger is a generic semantic tagger 

that was developed specifically for tagging semantic information medical narratives using 

semantic categories derived from an international healthcare terminology, SNOMED CT®. 
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Tagging: The identification of required information and its association with respective 

tag/category/type is called tagging. 
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Chapter 1. Introduction 

In Natural Language Processing, the term ‘Semantics’ represents the study of the meaning of a 

language. More specifically, semantics has potential use in the investigation of a number of 

research questions that are related to language (Jurafsky and Martin 2009). The identification of 

semantic information in text and its classification with respective semantic categories is known 

as semantic tagging. Semantic tagging enriches information to improve the analysis of text in a 

given domain. Semantic tagging can be carried out on spoken and written language including 

the technical language which is used in a specialised domain such as the medical domain, law, 

chemistry and so on.  

This research deals with one specialised domain - the medical domain. In the medical domain, 

much of the data exists in the form of medical narratives written by clinicians in the form of 

unstructured free text. This unstructured data resides in Electronic Health Record (EHR) 

systems. This data is a result of data entry of manual records in EHR systems, transcriptions of 

dictations by radiologists or using speech recognition software for recording consultations. This 

unstructured form (medical narratives) may suit the individual human reader who can interpret 

the subtlety of the language and use it to inform their clinical decision making, but it is difficult 

for searching, analysing and understanding the meaning of concepts or terms that are present in 

the medical narratives. Thus, NLP is needed to identify and classify important semantic 

information (concepts) within the medical narratives for more structured analysis (Meystre 

2008). The semantic tagging of the data is a necessary step in the process of using medical 

narratives to inform many research tasks such as ‘finding cause of death’, ‘extracting diagnoses 

and so on. The following section explains the identification and classification of semantic 

information (semantic tagging) in the medical domain. 

1.1 Semantic tagging in the medical domain 

In the medical domain, clinicians (domain experts in the context of this study) record their 

consultations and other clinical documents in Electronic Health Record (EHR) systems. For this 
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purpose, they use a combination of structured information, coded data, and medical narratives 

using natural language, also referred to as unstructured text. Clinical documents such as 

discharge summaries, progress notes, and medical reports contain important information which 

needs to be shared for research purposes. Where natural language is used in clinical documents, 

the semantic information varies from one clinician to another. This is because of differences in 

the expressiveness of language, the use of synonyms, paraphrases, abbreviations, etc. These 

variations in natural language free text follow informal writing structure and can therefore 

obscure important information within text. The result is that the researchers may find the 

narrative confusing, ambiguous or imprecise and this can potentially lead to misunderstanding. 

As a result, some crucial information might not be extracted from the text. In such situations, 

the identification and classification of semantic information (semantic tagging) can facilitate a 

more consistent interpretation of the natural language written by clinicians. The approach may 

also help researchers in dealing with research questions that cannot be answered by analysis of 

the structured and coded elements of EHRs.  

In the medical domain, researchers who use medical narratives in their research usually hire 

domain experts to identify and classify the semantic information within the natural language, a 

process which is time consuming and expensive. This means that non-domain users (such as 

language researchers) are dependent on domain experts to identify and classify semantic 

information. The process of ‘annotation’, i.e., the identification and classification of semantic 

information with respective semantic categories can be automated using a computerised system, 

typically referred to as a ‘semantic tagger’. In Computational Linguistics, a ‘semantic tagger’ is 

the term used in ‘Information Extraction’ (IE) applications. Another IE application called 

‘Named Entity Recognition’ is closely related to semantic tagging. The difference between 

these two applications is that named entity recognition applications only identify and classify 

proper names in the text while semantic tagging identifies and classifies semantic metadata 

(data/information about data) in the text.  



3 

 

This research study dealt with the development of a generic semantic tagger which can be 

employed for extraction of semantic information in medical narratives. The developed semantic 

tagger was named SnoMedTagger - SNOMED CT Medical Tagger (available at 

http://www.comp.leeds.ac.uk/scsh/SnoMedTagger.html) and it uses the semantic categories 

derived from an international healthcare clinical terminology SNOMED CT® or Systemised 

Nomenclature of Medicine - Clinical Terms. SNOMED CT® is globally the most 

comprehensive clinical terminology and it is specified in several US standards (Stearns et al. 

2001). SNOMED CT healthcare terminology and its components are described in detail 

in ‎Chapter 4. 

In this study, the semantic metadata of interest in medical narratives are the ‘concepts’ or 

clinical terms that can be classified into appropriate semantic categories. For instance, ‘CT 

Scan’ and ‘lungs’ belong to the semantic categories ‘Procedure’ and ‘Body Structure’, 

respectively. The metadata present in medical narratives can be in the form of individual 

concepts, paraphrases of concepts, abbreviations of concepts and complex multiword concepts. 

Chapter 2 will explore the discussion above in more detail using the more technical language of 

Natural Language Processing. 

1.2 Motivation and goals for this research 

In the medical domain a significantly large proportion of the data in medical records is in the 

form of medical narratives. This is because it is often preferred by clinicians as a way of 

recording patient health information due to its richness and convenience. However, the analysis 

of the semantic information within these medical narratives is more complex as a result 

(illustrated in Section ‎1.1). 

When non-domain researchers such as NLP researchers work on a particular research question 

that involves the use of medical narratives, they typically hire domain experts for the annotation 

of the required information to create a gold standard data (annotated information). The primary 

limitation of this approach is that it may restrict the annotated data to specific research task 

and/or question and limit more general use. This is because different researchers working on 

http://www.comp.leeds.ac.uk/scsh/SnoMedTagger.html
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medical narratives use different names for synonymous semantic categories. For instance, the 

semantic category 'Test' can also be referred to as a 'Procedure' or the semantic category 

'Treatment' can also be named as 'Medications'. In addition, the names of various semantic 

categories may or may not necessarily be the same as those used in various healthcare clinical 

terminologies. This research recognised the need for the development of a generic semantic 

tagger for medical narratives based on standard semantic categories derived from an 

international healthcare clinical terminology. In this case, such a system (semantic tagger) could 

reduce or even eliminate the need to employ domain experts when non-domain users (such as 

NLP researchers) analyse clinical documents in their research. 

In addition to this, the use of semantic categories which are derived from SNOMED CT® could 

facilitate consistent information exchange between researchers whether they are domain users or 

not. The underlying hypothesis is that it is possible to identify and classify semantic information 

in medical narratives by developing generic rule-patterns derived from the following resources: 

 An authentic corpus of medical narratives written by clinicians. 

 The language of healthcare terminology SNOMED CT®. 

The main contribution of this research has been to test this hypothesis by building a product to 

implement and refine a semantic tagger for medical narratives based on the classification 

structures in SNOMED CT®. The resulting product has been named ‘SnoMedTagger’ and is 

described in ‎Chapter 6. Other challenges were tackled as secondary contributions and these are 

explained in the next section.  

1.3 Contributions of this research 

Primary Contribution: SnoMedTagger – a semantic tagger for medical narratives using 

SNOMED CT®  

As described in Section ‎1.1, the identification and classification of semantic information is a 

pre-processing step for a range of research questions that involve the use of medical narratives. 
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For this purpose, domain experts can be hired but this approach suffers from the following 

major drawbacks.  

 The process is expensive and time consuming. 

 The identified semantic categories are inconsistent and are limited to the specific 

research question. Therefore, the identified semantic information cannot be used in 

dealing with other research questions. 

To overcome these limitations, a generic semantic tagger named SnoMedTagger was developed 

in this work. The SnoMedTagger uses a medical semantic tag set of 16 semantic categories 

derived from SNOMED CT® health care terminology  (Hina, Atwell and Johnson 2013b). The 

extraction of semantic categories from SNOMED CT is described in ‎Chapter 4, while the 

development of SnoMedTagger is explained in ‎Chapter 6. Due to the fact that SNOMED CT® 

is a comprehensive healthcare terminology for the exchange of information (SNOMED CT User 

Guide, January 2011 International Release) and it is also approved by the National Health 

Service in England (NHS-Connecting for Health), the semantic categories used in the 

SnoMedTagger are expected to be useful to domain users as well as non-domain users (Hina, 

Atwell and Johnson 2012).  

The output of SnoMedTagger on a sample text is shown in Figure ‎1-1. The SnoMedTagger was 

able to identify and classify semantic information with respective categories. However, 

abbreviation of concept ‘PTX’ was an exception. This was due to the fact that this abbreviation 

was not found in the original SNOMED CT vocabulary. Moreover, the annotators also did not 

assign any semantic category to this concept abbreviation in the gold standard dataset.  

While employing the SnoMedTagger for extraction of semantic information, the user can select 

only those semantic categories that are appropriate for their research task/question, as shown in 

Figure ‎1-1. Different colours can be chosen to differentiate between semantic categories and to 

avoid any confusion in colour coded output, the output can also be exported to XML format. 
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Figure ‎1-1: An example of the output of SnoMedTagger. 

 

Secondary Contributions: 

1) Evaluation and validation of SnoMedTagger – The existing well-known semantic 

tagging systems such as MetaMap (Aronson and Lang 2010) and onotology-based 

BioPortal web annotator (Noy et al. 2009) have not been evaluated on a gold standard 

dataset. The Metamap is considered as state-of the-art system in medical domain (Abacha 

and Zweigenbaum 2011). However, the SnoMedTagger was evaluated against two different 

gold standard datasets; Test dataset 1 and Test dataset 2. This was done to test the general 

applicability of rule-based SnoMedTagger on different medical narratives. Results of Test 

dataset 1 have been published in (Hina, Atwell and Johnson 2013b). This was followed by 

the validation of SnoMedTagger by two domain experts. It was reported that the 

SnoMedTagger, which is a rule-based system, outperformed the systems that are based on 

different methods/approaches; 1) SNOMED CT dictionary application: baseline system, 2) 

An Ontology-based ‘BioPortal’ web annotator and 3) SVM-based machine learning system 

(SVM - Support Vector Machine is a supervised machine learning classifier). 

2) Anonymization module for Test dataset 1 (Explained in Chapter 3) – In the medical 

domain, data that contain Protected Health Information (PHI) about individuals require 

anonymization. This is due to ethical issues that are associated with the use of such data. 
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The three datasets which were used in the development and evaluation of SnoMedTagger 

are; the Development dataset, the Test dataset 1 and the Test dataset 2.  

The Development dataset and the Test dataset 2 included de-identified/anonymized 

discharge summaries and progress notes which were accessed after ethical approval from 

the data providers. However, the Test dataset 1 which was obtained from an Electronic 

Health Record system known as ‘SystmOne’, mainly contained fictional information about 

individuals with some bits of real-data in it and therefore needed to be anonymized. In 

addition, the data contained a mixture of natural language and clinical codes and its 

characteristics were similar to any real data. Thus, an anonymization module was developed 

to anonymize the Test dataset 1 which can be used for the anonymization of real-data in 

SystmOne (Hina et al. 2013). This anonymization module also formed part of the ‘e-Health 

Gateway to the Clouds’ project. The objective of this project was to make authentic 

healthcare data available for research within a secure cloud-based VRE - Virtual Research 

Environment after anonymization (Smith et al. 2013). This module can be downloaded from 

http://www.comp.leeds.ac.uk/scsh/. For the fulfilment of ethical requirements, the 

anonymization is an essential pre-processing module for the SnoMedTagger in case of data 

containing PHI. 

3) General annotation guidelines for medical narratives – For the development and 

evaluation of the rule-based SnoMedTagger, annotation of gold standard datasets 

(Development dataset, Test dataset 1, Test dataset 2) was required. For this purpose, simple 

and generic annotation scheme guidelines were developed for the annotation of semantic 

information (i.e. paraphrases of the concepts, abbreviations of the concepts, complex 

multiword concepts). These annotation guidelines were developed by considering the 

language issues that cannot be tackled using dictionaries or thesauri (Hina, Atwell and 

Johnson 2011).  

 

http://www.comp.leeds.ac.uk/scsh/
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1.4 Thesis structure 

The structure of this thesis is as follows; 

Chapter 2 includes a review of the work done by other researchers on semantic tagging in the 

medical/biomedical domain using different methods and resources.  

Chapter 3 presents the development and evaluation of the anonymization module (secondary 

contribution 2). This module is not directly linked to the main contribution of this research, 

therefore instead of including its related work in Chapter 2 (Background chapter on semantic 

tagging); a complete section is included in this chapter. 

Chapter 4 explains the use of SNOMED CT healthcare clinical terminology. The development 

of the baseline system (SNOMED CT dictionary application) using dictionaries of semantic 

categories derived from SNOMED CT is also described in this chapter. 

Chapter 5 deals with the datasets that were used in this research and the annotation guidelines 

developed for the annotation of the gold standard datasets (secondary contribution 3). The 

annotation experiments that were conducted using the developed annotation guidelines and its 

evaluation are also explained in this chapter. 

Chapter 6 presents the development of the rule-based semantic tagger (SnoMedTagger) which is 

the main contribution of this research. 

Chapter 7 is regarding the evaluation and validation of the performance of SnoMedTagger 

against two different unseen gold standard test datasets (secondary contribution 1). 

Chapter 8 contains a summary of the results achieved in this research. It also includes the 

limitations and the suggested future work. 
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Chapter 2. Background 

This chapter contains a description of semantic tagging in general and the different approaches 

adopted by researchers for semantic tagging/annotation of texts in medical/biomedical domain. 

This review provided a basis for the development of SnoMedTagger, which is an NLP 

application for tagging semantic information in medical narratives. 

2.1 A brief overview of semantic tagging 

A corpus can be simply defined as a collection of texts. Tagging or annotation of a corpus (a 

collection of texts) is the process of adding tags to information in the corpus. In other words, 

tagging is an inline addition of respective category to the words in the corpus. Different types of 

tagging that are done in language research include part-of-speech tagging (Leech, Garside and 

Atwell 1983; Brill 1992; Atwell 2008; Sawalha and Atwell 2013), syntactic tagging (Zhou and 

Huang 1994; Dukes, Atwell and Habash 2013; Atwell et al. 2000; Atwell 1983) and semantic 

tagging (Demetriou and Atwell 2001; Huang et al. 2005; Brierley et al. 2013; Danso et al. 

2013). The term ‘semantic tagging’ refers to an information extraction process that enriches 

information for better analysis of text in a given domain. 

For instance, (Rau 1991) implemented an heuristic algorithm for extraction of ‘company names’ 

from financial news stories. This algorithm was not only able to extract company names but 

also their semantic variation. (Demetriou and Atwell 2001) used Longman English Dictionary 

Online (LDOCE) for semantic tagging of general English text. A different approach was 

adopted by (Boufaden 2003) based on domain specific ontology. They developed an ontology-

based domain specific semantic tagger which focused on tagging semantic information in 

transcribed telephone conversations using concepts from a Search and Rescue ontology. 

Another semantic tagger was included in the GATE (General Architecture of Text Engineering) 

software tool. The semantic tagger in the GATE was developed using JAPE - Java Annotation 

Pattern Engine rules (Cunningham, Mayard and Tablan 2000). JAPE rules are further described 
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in Section ‎6.2. In this semantic tagger, JAPE rules were developed for identification and 

classification of important semantic information in the text such as ‘date’, ‘organisation’, 

‘location’, etc., (Cunningham et al. 2002). (Nadeau, Turney and Matwin 2006)  developed an 

unsupervised system for extracting the classical categories (such as date, location) as well as 

domain specific semantic category, ‘car brands’.  

(Popov et al. 2003) proposed an innovative model for automatic semantic annotation based on 

ontology and a massive knowledge base. The ontology contained general entities on upper-level 

and domain specific entities on lower-level in hierarchy. Therefore, this type of semantic 

annotation was able to provide information of general named entities such as Person, Location, 

Organisation, etc., as well as domain specific entities such as private organisations, public 

organisations, etc. This method can be used to improve semantic enrichment in documents. 

However, may increase the processing time depending on the annotation level.  

Similarly, other researchers also reported their work on semantics using different approaches 

such as ontologies, rule-based and machine learning for identification and classification of 

semantic information using different type of texts (Yu-Chieh Wu et al. 2006; Kirchner and Sinot 

2007; Christensen et al. 2009). 

In the medical domain, semantic tagging of data was carried out in several investigations. 

Semantic tagging can be carried out for the development of an evaluation corpus. For instance, 

(Ogren, Savova and Chute 2008) annotated only the semantic category ‘Disorder’ using the 

SNOMED CT ontology. To develop an automatic CLEF (Clinical E-Science Framework) entity 

recognition system, semantic annotation was done by (Roberts A 2007) on CLEF corpus. The 

corpus contained histopathology reports, imaging reports and clinical narratives. In this project, 

researchers developed specific annotation schema for semantic entities (condition, intervention, 

investigation, result, drug or device, locus.) and their relationships (has_target, has_location, 

has_indication, has_location, co-refers, modifies [literality], modifies [sub-location], and 

modifies [negation]). This corpus is not publically available for research. 
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Since the present study dealt particularly with semantic tagging of medical/biomedical text, a 

more detailed account of relevant methods/approaches is presented in the next sections. 

2.2 Semantic tagging using ontologies or dictionaries 

Thesauri or ontologies are often used in the biomedical/medical domain. The use of ontologies 

provides synonyms (concepts/terms), hypernyms (in the hierarchy) and indexing (codes). 

Ontology-based and dictionary-based methods are usually simpler in implementation. However, 

the systems based on these methods cannot be successfully applied on medical narratives. This 

is due to limited expressiveness of language that is found in ontologies. Ontologies or 

terminologies such as Unified Medical Language - UMLS® (Lindberg, Humphreys and 

McCray 1993) are useful in extracting lexical knowledge but they do not include variations of 

phrases that occurs in medical narratives. 

(Krauthammer et al. 2000) implemented a method based on BLAST algorithm that searches 

gene names in a database. It provides approximate matches and identifies small variation in 

gene names. They developed an automatic system for the identification of gene and protein 

names in journal articles. It is instructive to mention here that maintaining and updating such 

dictionaries are not easy tasks. For instance, (Hirschman et al. 2003) reported  addition and 

withdrawal of 166 names in the Mouse Genome database
1
 within a week.  

Another approach based on dictionaries was presented by (Hanisch et al. 2003). They used a 

dictionary of gene and protein names for semantic classification in scientific literature. Their 

focus was on the automatic generation of dictionaries by extraction of symbols, aliases and gene 

names from HUGO Nomenclature (Wain et al. 2002) and their corresponding names from 

OMIM database
2
. In similar work, the synonyms of protein names were extracted from 

SWISSPROT and TREMBL databases. The extracted dictionary was then cured and pruned by 

resolving ambiguity issues and by generating more synonyms from dictionary terms. They 

                                                      
1
 http://www.informatics.jax.org/mgihome/nomen/short_genes.html 

2
 http://www.ncbi.nlm.nih.gov/omim 

http://www.informatics.jax.org/mgihome/nomen/short_genes.html
http://www.ncbi.nlm.nih.gov/omim


12 

 

calculated ‘specificity’ and ‘sensitivity’ for evaluation. Specificity measures the true negative 

rates (correctly rejected) while sensitivity measures the true positive rates (correctly 

identified/recall). Their semi-automatic approach of creating generic dictionary for the 

identification of gene and protein names with their synonyms achieved 95% specificity and 90% 

sensitivity on the corpus of MEDLINE abstracts. MEDLINE abstracts are structured articles; 

therefore the work done by these researchers did not guarantee its applicability on unstructured 

medical narratives. 

(Long 2005) used SNOMED CT healthcare clinical terminology for coding semantic 

information (‘diagnosis’, ‘procedure’) extracted from a small corpus (23 documents) of 

discharge summaries. They used simple natural language processing to locate section headers of 

documents and then identify concept phrases that maps with SNOMED CT concepts in the 

UMLS (Unified Medical Language System® (UMLS®)). The limitation of this approach is that 

it has been developed for a small set of discharge summaries that contained clues of section 

headers such as punctuation marks and cannot be applicable on any other format. In addition to 

this limitation, these researchers did not assure the applicability of this method on other data 

because it was not tested on any data. Similarly, (Ogren, Savova and Chute 2008) used 

SNOMED CT healthcare clinical terminology for the development of a gold standard dataset 

that contained 1556 concept annotations. This gold standard dataset was used to evaluate their 

biomedical named entity recognition system. This corpus was taken from Mayo clinic 

repository which consists of clinical documents transcribed by clinicians. 82,813 'Disorder' 

concepts were extracted from the SNOMED CT healthcare terminology to annotate the 

semantic category of 'Disorder'. Four annotators annotated corpus of 47,975 words with the 

'Disorder' semantic category, concept code and context. Then, the annotators used RRF 
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Browser
3

 to search concepts by keyword or hierarchical navigation for annotation. The 

following two strategies were adopted to facilitate the annotators. 

1. Two annotators were provided with a corpus that was already annotated using MetaMap 

system.  However, the annotators were allowed to add or remove annotations following the 

annotation guidelines. This approach facilitated quick review and correction of annotations. 

2. Using the same annotation guidelines, the other two annotators manually annotated the 

corpus without any pre-processing. This was done to verify the annotation guidelines. 

In both strategies, annotators annotated the corpus independently. The consensus set was 

created for both cases and the final set was mutually completed by four annotators reviewing 

consensus sets achieved from both strategy 1 and 2. The overall agreement between the two 

consensus sets was 74.6%.  

A semi-automatic tool called ‘Semantator’ was developed for annotating medical narratives 

(Song, Chute and Tao 2011). Semantator is a protégé plugin which allows manual annotation 

and semi-automatic annotation. In manual annotation, a user can annotate a piece of text using a 

class from the ontology loaded in protégé. Semi-automatic approach uses semantic web 

ontologies from BioPortal (Noy et al. 2009) and clinical Text Analysis and Knowledge 

Extraction System – cTAKES (Savova et al. 2010). The major drawback of this system is that it 

was not evaluated using any gold standard corpus of medical narratives and the gold standard 

was annotated with only one semantic category. Furthermore, the other limitations reported in 

this research are based on limited user experiences (Song, Chute and Tao 2012).  

An automatic system for the analysis of semantic information in biomedical reports was 

developed by (Hahn, Romacker and Schulz 2002). This system used a domain specific lexicon 

and performed syntactic analysis on the basis of lexical definitions and dependency grammars. 

                                                      
3
https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/RR

F_Browser.html 

https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/RRF_Browser.html
https://www.nlm.nih.gov/research/umls/implementation_resources/metamorphosys/RRF_Browser.html
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With the help of a parser, grammatical constructions of lexical items found in the text were 

analysed. The parsed information in the text that helped in the derivation of concepts was then 

enriched with semantic annotation. The semantic annotation of text was achieved by automatic 

transformation of text into description logics format which was then mapped with a medical 

knowledgebase. 

Another approach was adopted by (Baud, Rassinoux and Scherrer 1992) for the domain of 

‘digestive surgery’. They studied the representation of clinical narratives using conceptual 

graphs that were generated from single words in semantic lexicon and then used to form full 

sentences (Baud et al. 1995). This NLP system which is based on proximity parsing, allows 

browsing and encoding of concepts. In addition, the system is capable of handling multilingual 

data. However, the limitation is of being developed for specific domain (digestive surgery).  

(Albright et al. 2013) reported manual annotation of syntactic and semantic information in 

clinical narratives. Semantic annotation was done using semantic groups instead of semantic 

categories, to avoid any confusion between the synonymous semantic categories in clinical 

narratives. This research involved the use of UMLS schema for semantic annotation of the 

following semantic groups; ‘Procedure’, ‘Disorder’, ‘Concept and Ideas’, ‘Anatomy’, 

‘Chemical and Drugs’ and only one UMLS semantic category ‘Sign or Symptom’. The corpus 

was pre-annotated with UMLS entities using clinical Text Analysis and Knowledge Extraction 

System – cTAKES (Savova et al. 2010). 74% of the corpus was double annotated by two 

annotators and the rest of 26% was single annotated. The double annotated data was then 

compiled to create the gold standard dataset. The inter-annotator agreement (IAA) was 

calculated using F-measure by considering the annotations of the first annotator as gold 

standard.  For exact matches with UMLS concepts, 69.7% of IAA was reported and 75% IAA 

was achieved for partial matches. 

Systems such as MetaMap (Aronson 2001) and BioPortal web annotator (Noy et al. 2009) also 

use ontologies for identification and classification of semantic categories. Since these systems 

use a number of ontologies, a major drawback is the potential of ambiguity of semantic 
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categories. To extract the semantic information in medical/biomedical text, MetaMap uses 

ontologies with extension of special modules based on regular expressions rules. Metamap was 

developed using MEDLINE abstracts containing structured journal articles. Therefore, 

Metamap is inappropriate for use on unstructured medical narratives (Patterson, lgo and Hurdle 

2010). On the other hand, BioPortal web annotator contains more than 200 ontologies which 

can be used for the identification and classification of required semantic categories in the text 

(Noy et al. 2009). The BioPortal system is not suitable for semantic tagging of medical 

narratives because of limited language of ontologies. This point is established in ‎Chapter 5.  

In summary, in the context of the study reported in this thesis, the limitations of ontology-based 

or dictionary-based approaches include the following. 

1. Limited language of ontologies. 

2. Inconsistency of semantic information (semantic categories) used for different datasets.  

It is proposed that the above mentioned limitations can be covered by applying rules or patterns 

on the output of dictionaries or ontologies. Rule-based or pattern-based methods (explained in 

the next section) provide better options in case of a small amount of annotated data because 

other methods, such as machine learning, require large annotated data. 

2.3 Semantic tagging using rule-based approach 

One of the more widely reported techniques for identification and classification of semantic 

information in medical/ biomedical domain is the rule-based or pattern-matching approach. For 

instance, (Long 2005) used UMLS (McCray et al. 1993) for identification and classification of 

semantic information (‘diagnoses’ and ‘procedures’) in discharge summaries. This method was 

based on analysing the structure of discharge summaries to locate required section headers (past 

medical history, discharge diagnoses) followed by identification of the required semantic 

information with the help of dictionaries and regular expressions. The identified semantic 

information was then coded by using a mapping of semantic entities ‘diseases’ and ‘procedures’ 

with their relevant UMLS semantic entities (Disease or Syndrome, Fungus, Injury or Poisoning, 
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Anatomical Abnormality, Congenital Abnormality, Acquired Abnormality, Mental or 

Behavioural Dysfunction, Hazardous or Poisonous Substance, Neoplastic Process, Pathologic 

Function). The corpus used in this research contained only 23 discharge summaries. Therefore, 

the applicability of this method on other types of structured and unstructured documents is 

likely to be very limited.  

As mentioned in earlier section, the MetaMap system uses ontologies. In addition, this system 

also include rules for the semantic analysis of text (Aronson and Lang 2010). These rules split 

sentences in the form of phrases and associate identified concepts with semantic categories 

using ontologies (Aronson 2001). The MetaMap system was developed using MEDLINE 

abstracts, the structure of which is different from language used in clinical documents. In 

addition to this, the evaluation of the MetaMap system against any gold standard dataset was 

not reported. Therefore, the applicability of the system on other types of unstructured texts 

(such as medical narratives) was not claimed. The practical implementation and limitations of 

MetaMap on medical narratives are further discussed in ‎Chapter 5. 

Similarly, (Bashyam et al. 2007) also developed a module that extracted UMLS concepts from 

free text clinical radiology reports using a pattern-matching approach. They claimed that the 

processing speed of their module was faster than the MetaMap Transfer (MMTx) which is the 

Java version of MetaMap (Divita, Tse and Roth 2004). 

MedLEE is another specialised NLP system that uses frame-based parser for analysis of 

grammatical structure in text. These grammatical structures then map to a frame and convert the 

frames into phrases. These phrases are then normalised to match with controlled vocabulary for 

encoding the concepts. This system was mainly developed to transform unstructured clinical 

narratives to structured and encoded text. The transformation of unstructured information varies 

from one type of report to another. Therefore, pre-processing for different reports with respect 

to their section headers was required (Friedman 2005). Since MedLEE, there has been a 

significant amount of research in lexicon-semantic mapping of various medical 

terminologies/controlled vocabularies to the UMLS and other terminologies (McCormick, 
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Elhadad and Stetson 2008). However, these systems failed to analyse long multiword phrases, 

as reported by (Sevenster, Ommering and Qian 2012).  

(Skeppstedt, Kvist and Dalianis 2012) implemented the rule-based and terminology-based 

approach for the extraction of three semantic categories; ‘Body Structure’, ‘Disorder’ and 

‘Findings’. The main objective of this research was to evaluate the extent to which entities used 

in Swedish clinical notes are expressed in SNOMED CT. Their method was developed using 

SNOMED CT terminology because the translation of SNOMED CT was available in Swedish 

language. Moreover, these researchers used rule-based approach and lexical lookup using a 

combination of five different terminologies, and linguistic processing was done to refine the 

identification and classification of the semantic categories. The limitation of their approach is 

that they excluded the semantic category ‘Qualifier Value’ to be identified in these semantic 

categories. ‘Qualifier value’ such as ‘Right’, ‘No’, etc., indicates important information which 

cannot be passed on if excluded. By omitting ‘Qualifier value’ might effect the correct 

identification of other semantic categories such as ‘Disorder’ and ‘Findings’. For instance, the 

concept ‘No fever’ should be categorised with the semantic category ‘Findings’. This is due to 

the fact that the semantic category ‘Findings’ represents the results of clinical observation and 

‘No’ represents the value in this concept. Therefore, excluding a ‘Qualifier Value’ will miss 

important information associated in this case. This also results in false analysis and may 

categorise ‘Fever’ as ‘Findings’ which in actual is ‘Disorder’.  

Another system used regular expressions for semantic analysis by analysing domain knowledge 

in physical notes that were annotated by two reviewers (Turchin et al. 2006). Their application 

identified semantic information related to ‘blood pressure’, with the blood pressure values and 

‘treatment’ with the indication of medication in the text. Since this application was developed 

for this particular task and used data from only one source, it suffers from the limitation of 

applicability of regular expressions on any other text. 

(Pakhomov, Buntrock and Duffy 2005) applied the set of rules on dictionaries including 

SNOMED CT, MeSH, RxNorm and Mayo Synonym Clusters (MSC). This was done for the 
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identification of ‘drugs’, ‘diagnoses’ and ‘signs and symptoms’ in clinical texts. Another 

information extraction system for semantic analysis was developed by (Liu et al. 2005). This 

system was based on GATE architecture and used a rule-based section filter, annotated 

information using subset of UMLS semantic categories, rule-based  NegEx algorithm (Chapman 

et al. 2001) for negation detection and JAPE rules for the identification of specific attributes 

(Gleason score, tumour stage, status of lymph node metastasis) related to semantic information 

in pathology reports. Their approach used limited semantic categories for pathology reports. 

On the basis of the literature review presented in this section, it was concluded that the existing 

rule-based or pattern-based systems cannot be successfully applied on texts other than those that 

were used in the actual development process. This is because these systems were developed and 

evaluated for a specific type of data and limited semantic categories. In contrast, it has been 

reported that systems based on machine learning approaches generally give better results in 

identification and classification of relevant semantic information in the medical domain. The 

more relevant machine learning systems and their limitations are discussed in the next section. 

2.4 Semantic tagging using machine learning or statistical 

approaches 

Recent applications in the medical/biomedical domain are mostly based on machine learning 

(ML) methods but ML approaches require large annotated corpora (training and test). This 

requirement is not only time consuming and expensive but also suffers with the limitation of 

access to large annotated data in the medical/biomedical domain (due to ethical issues). These 

points are highlighted in the studies summarised as follows. 

(Sibanda et al. 2006) performed a semantic analysis of 48 discharge summaries. The semantic 

categories that were considered include ‘diseases’, ‘symptoms’, ‘treatments’, ‘tests’, ‘results’, 

‘dosages’, ‘substances’ and ‘practitioners’. In this work, Link Grammar Parser (Sleator and 

Tamperley 1991) was used for the extraction of syntactic features, and support vector machines 

(SVMs) for training classifier. UMLS was used for mapping of the synonymous semantic 

categories. Their baseline system found the longest string that also included a head of noun 
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phrase in a noun phrase and then used UMLS to map relevant semantic categories. This baseline 

system was also compared with the MetaMap system and the results showed that MetaMap 

outperformed the baseline system only against one semantic category, ‘disease’. The MetaMap 

system did not achieve better scores for other semantic categories. The low performance of the 

MetaMap was attributed to the fact that it used UMLS which did not contain noun phrases that 

occurred in the dataset used by these researchers. The results of these two systems (baseline and 

MetaMap) were then compared against their developed semantic category recogniser (SCR) 

which used multi-class support vector machines (SVMs). The performance of SCR was 

analysed using orthographic features (such as capitalisation, upper case, punctuation, etc.), 

lexical (such as bigrams, section headers), syntactic features (syntactic bigrams, head of noun 

phrase, part-of-speech), and ontological features (UMLS). The SCR outperformed the baseline 

system using all these features. However, on investigating a combination(s) of features, 

ontological features (UMLS) did not contribute in a better manner.   

Another system was reported by (Taira and Soderland 1999) who used maximum entropy 

classifiers for semantic analysis and parsing structures in radiology reports. As in case of many 

other NLP systems, this system contained modules of a structural analyser, lexical analyser, 

parser and semantic analyser/interpreter. Structural analyser was a conversion from a rule-based 

system to a system that used a maximum entropy classifier. It structured sentences under section 

headers after analysing sections in the document (such as ‘history’, ‘findings’, etc.). The lexical 

analyser of this system used a medical lexicon for analysing semantic and syntactic features. It 

performed tokenisation of punctuations and normalisation of numeric values (such as dates, 

etc.). The parser and semantic analyser of their system were based on statistical methods; the 

parser formulated dependency structure arcs in a sentence which were then selected on the basis 

of high probability. On the other hand, the semantic analyser used the output of parser (arcs) 

and applied rules based on semantic features. The rules were then applied on unlabelled arcs to 

formulated logical relations which were then transformed into structured output frames. These 

frames contained attributes that identified the semantic categories of ‘findings’, ‘therapeutic or 
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diagnostic procedure’ or ‘anatomic structure’. This system was evaluated using ten-fold cross 

validation via the use of a gold standard and achieved 89% precision and 90% recall.  They also 

extracted UMLS concepts from radiology reports by using the vector space model  (Bashyam 

and Taira 2005). The main limitation is the selection of a limited semantic categories and the 

use of specific type of data (radiology reports). 

Another machine learning method was adopted by (Feng et al. 2008) who employed conditional 

random field (CRF) with active learning for semantic analysis of biomedical articles. This CRF 

model was specifically implemented to examine tract tracing experiments and used features 

based on lexical knowledge, surface words, context windows, window words and dependency 

features. These researchers also investigated different set of features in combination (‘lexicon’, 

‘lexicon + surface words’, ‘lexicon + surface words + window words’, ‘lexicon + surface words 

+ window words + dependency features’). For all combinations, the system performed better 

than the baseline approach that just scanned words and phrases in the sentences from each 

lexicon. An overall F-score of 74% was reported on 16 documents. The limitation of this system 

was that the files contained variation in writing styles and thus needed more training data for 

better performance. 

(Tang et al. 2013) used conditional random fields for the classification of three semantic 

categories ‘Problem’, ‘Treatment’ and ‘Test’ in discharge summaries. However, they 

investigated the use of structural support vector machines for the identification of concepts in 

discharge summaries. The identification and classification of these semantic categories were 

performed as a part of the global NLP challenge i2b2/VA 2010 (Uzuner et al. 2011). For this 

challenge, other teams also participated and the best performing system was by (Bruijn et al. 

2010) who used the semi-supervised machine learning technique. Their system used the semi-

Markov Hidden Markov Model (HMM) for identification of concepts in the corpus. Semi-

Markov HMM was used to tag multi-token spans in the text (concept phrases) and the complete 

system achieved 85.3% f-measure. 
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In the biomedical domain, (Ananiadou et al. 2011) reported corpus annotation and approaches 

for the identification and classification of semantic categories in bacterial type IV secretion 

systems. These researchers presented four novel semantic categories for identification of gene 

and protein from the literature. They first developed training and evaluation corpus by using 

term extraction service to automatically identify multiword terms in the corpus. Two domain 

experts then reviewed negative examples in the corpus. After developing training and evaluation 

corpus, researchers evaluated three techniques listed below. 

1. Dictionary-based approach [by matching longest term]. 

2. Dictionary-based approach with corpus enrichment [tagged terms found in training corpus 

were added to static dictionary and then matching was done]. 

3. Hybrid machine learning approach using a conditional random field with dictionary-based 

information. 

F-measure score ranged between 18% to 96% for dictionary-based approach, 54% to 97% for 

dictionary-approach with corpus enrichment, and 68% to 93% for machine learning approach. 

This showed that the performance of the system was better in case of machine learning 

approach. However, this system was developed for a specific research task and data (biomedical 

text) and therefore, it cannot be used for other research questions targeting different data 

(medical narratives). 

Other than above mentioned approaches, researchers also investigated and compared a different 

combination of approaches for the semantic analysis of clinical data. For instance, an NLP 

system named ‘HITEx - Health Information Text Extraction’ was developed in order to extract 

the key findings for airway diseases from 150 discharge summaries (Zeng et al. 2006). HITEx 

extracted semantic information that categorised principal diagnosis, co-morbidity, and smoking 

status. This system used UMLS concepts for semantic extraction of the principal diagnosis 

(Demner-Fushman, Chapman and McDonald 2009). HITEx has also used NLP components of 

GATE tool for specialised classification of semantic information. After basic language 
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processing modules and noun phrase chunking, this NLP system used UMLS concept mapper to 

match concepts in the text. To classify smoking status, the SVM classifier was used to extract 

single word features. Other semantic information such as principle diagnosis and co-morbidities 

were extracted using specific modules based on regular expressions. 

In summary, the existing machine learning systems suffer from one or more of the following 

limitations. Failure at the complex level of synonymy, focus on any specific research question 

or corpus and the limited number of semantic categories using controlled 

vocabularies/ontologies. Thus, the conducted research did not provide flexibility to use data or 

annotations for general research purposes and the evaluation done by these researchers was 

restricted to specific research questions. 

2.5 Summary 

The identification and classification of semantic information in an ever increasing number of 

medical narratives in patient records is frequently required for several research applications such 

as statistical analysis, question-answering systems, negation detection, relationship extraction, 

etc. Different methods that are used for identification and classification of semantic information 

include ontology-based/dictionary-based approaches, rule-based or pattern-based approaches 

and machine learning or statistical approaches. On the basis of the review of literature presented 

in preceding sections of this chapter, we identified the following limitations and inadequacies of 

the existing approaches. 

 Generalizability of methods for different datasets. 

 Unavailability of (annotated) research data. 

 Non-standard, inconsistent and limited semantic categories. 

In addition, we noted that the problem of identification and classification of semantic 

information in medical narratives, including concept phrases, concept abbreviations and 

complex multiword concepts, has not been dealt together with in the existing literature. 

Besides helping in identifying the above mentioned limitations of existing system, the 
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background review also helped in the selection of appropriate techniques and resources for this 

research.  

Considering the limitations of available systems and resources, this research focused on 

developing a generic and comprehensive rule-based semantic tagger, which was named 

SnoMedTagger. In the development of SnoMedTagger, I did not focus on mapping concepts 

with clinical codes present in the SNOMED CT healthcare terminology. However, the aim was 

to classify the concepts into globally known semantic categories that were derived from 

SNOMED CT. The proposed identification and classification technique is expected to facilitate 

consistent information exchange between domain users (such as medical/biomedical 

researchers) as well as between non-domain users (such as language researchers). Furthermore, 

the SnoMedTagger was designed to identify semantic information (such as paraphrases of 

concepts, complex multiword concepts, and abbreviations of concepts) in different datasets. 
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Chapter 3. The module for the anonymization 

of Protected Health Information 

3.1 Introduction  

Easy access to authentic data such as discharge summaries and progress notes is a major 

challenge for researchers. Only a few research datasets have been distributed as part of the 

shared Natural Language Processing – NLP research (International Challenge: Classifying 

Clinical Free Text Using Natural Language Processing.  ; Pestian et al. 2007; i2b2: Informatics 

for Integrating Biology & the Bedside  ; Uzuner, Luo and Szolovits 2007; Uzuner et al. 2008a). 

The organisers of these research tasks distribute datasets after the approval of specific data user 

agreements. Furthermore, these datasets contain annotations specific to research tasks designed 

for a challenge and cannot be readily used for other specific research tasks. For other research 

tasks, researchers face difficulties obtaining authentic annotated datasets despite their value for 

research. 

A key reason behind the unavailability of real datasets for research is the need to respect the 

privacy of individuals such as patient, doctor, patient’s relative etc. These real datasets cannot 

be made available to researchers without careful de-identification/anonymization of Protected 

Health Information - PHI. PHI is the information that can identify an individual. According to 

(Meystre et al. 2010), the terms de-identification and anonymization can be used 

interchangeably. The term de-identification refers to removing or hiding identifiers (PHI) from 

data while in anonymization, data is transformed to be completely anonymous. One difference 

is that in the case of de-identification it is possible to link data with identifiers while the 

anonymization process does not provide any link with identifiers.  

In this study, we have followed the anonymization because the data needs to be distributed for 

research purposes and should not contain links to identifiers. Initially, we also came across the 

similar issue of data access for the development and evaluation of SnoMedTagger (‎Chapter 6) 

and this was addressed by participating in the fourth i2b2/VA shared NLP challenge (Hina et al. 
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2010). This corpus contained anonymized medical narratives and was found most feasible for 

the development and evaluation of the SnoMedtagger. Because, the SnoMedTagger was 

developed using the rule-based approach therefore required another evaluation dataset to prove 

the general applicability of the rules to more than one different dataset. Unlike the i2b2 corpus, 

the second dataset contained fictional information about individuals (Section ‎3.3 describes the 

origins of this dataset).  

The second dataset was extracted by ResearchOne database (Crossfield and Clamp 2013a) from 

an EHR-Electronic Health Record system ‘SystmOne’. SystmOne is a centralised clinical 

system (one EHR per patient) in the UK that provides the sharing of patient records between 

healthcare providers in the National Health Service (NHS). In addition to this, it contains 

functionality for integrated EHRs such as sending tasks, electronic prescribing, referral, 

appointment booking, bed management, etc. (Crossfield and Clamp 2013b). Real-data from 

SystmOne cannot be distributed for research purposes without the anonymization of PHI. For 

this reason a fictional dataset was created as an exercise using SystmOne to develop an 

anonymization module for SystmOne data. This data was representative of real-data and was 

referred to as ‘Test dataset 1’ in this research. The dataset was created during a training exercise 

for medical students to record a patient’s consultation in SystmOne (explained in Section ‎3.3). 

Moreover, this dataset was novel and challenging for anonymization because it contained a 

mixture of natural language and clinical codes. The natural language elements of the dataset 

were known to contain references to named personal health information and identifiers of 

individuals and, as such, formed a rich training dataset for developing an anonymization module 

without using real patient’s detail. The development of this anonymization module formed part 

of a project called 'e-Health GATEway to the Clouds'. This project aimed to establish a cloud-

based research platform to support e-health records research. The project focussed on 

developing an anonymization module for the open source GATE tool (Cunningham et al. 2002) 

so that e-health records could be safely used by researchers following the best practice in ethics 

and governance (Smith et al. 2013).   
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The development of this anonymization module was separate from the major contribution of 

this thesis but considered as a valuable pre-processing step for using SnoMedTagger to 

anonymize PHI where it is a mixture of medical narratives and clinical codes.  

To anonymize Test dataset 1, standard PHI categories provided by US Health Information 

Portability and Accountability Act 1996 (HIPAA) were investigated (Figure ‎3-2). According to 

the HIPAA guidelines, all proper names should be removed from the text or replaced by non-

PHI. This can be done without the categorisation of their respective PHI categories (patient’s 

name, place names, doctor’s name, partner’s name, nurse’s name, etc.). But after consultation 

with the Health Sciences researchers, it was considered to be important to replace the names 

with their respective PHI categories (e.g., doctor's name, patient's name, etc.). This was done to 

maintain the readability of the text for analysis. For this purpose, the anonymization module 

was developed to anonymize data by replacing the identified PHI with their respective PHI 

categories, an approach described in more detail in (Hina et al. 2013). In this project, the 

anonymization of PHI in medical narratives is defined as a two step process.  

1) Identification and classification of PHI. 

2) Anonymization of PHI by replacing them with their respective PHI categories, shown in 

Figure ‎3-1. 

Corpus of medical 

narratives 

containing protected 

health information 

(PHI)

Anonymised Corpus 

available for research

NLP Anonymisation module

Step-2: Replace PHIs with 

PHI categories

Step-1: Identification of 

Protected health information 

(PHI)

 

Figure ‎3-1: Steps in the anonymization process. 
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The rest of this chapter is organised as follows; Section 2 describes related work on automated 

anonymization/de-identification systems; the related work for this anonymization module is not 

included in ‘Related work’ (‎Chapter 2) of this thesis and is completely covered in this section. 

Section 3 covers the annotation of a gold standard corpus for the development and evaluation of 

this anonymization module; Section 4 contains the baseline method and method for the 

anonymization of PHI categories in Test dataset 1. The evaluation of the anonymization module 

is discussed in section 5, limitations are discussed in section 6 and lastly section 7 summarises 

the whole chapter. 

3.2 Related work 

Protection of information that identifies an individual should not be overlooked in the medical 

domain. In the United States, the Health Insurance Portability and Accountability Act provide 

18 HIPAA categories (shown in Figure ‎3-2) for the de-identification of clinical data. This 

means, at least in theory, that after the removal of these 18 PHI categories, the data can be 

viewed as safe to use.  

(Uzuner, Luo and Szolovits 2007) reported on a survey of anonymization tasks carried out as a 

part of the global Natural Language Processing (NLP) challenge, the organised by i2b2 project 

organisers. In this paper, the authors described the process of annotating the gold standard for 

the de-identification challenge. The i2b2 challenge organisers prepared data by annotating 

protected health information (PHI) and replacing PHI with realistic surrogates for evaluation. 

The gold standard data was compiled for the de-identification of following eight categories; 

Patient, Doctors, Hospitals, IDs, Dates, Locations, Phone numbers, Ages. This gold standard 

was first annotated by an automatic system and then validation was manually done by three 

annotators. After validation, annotated PHI was replaced by realistic surrogates. Inter-annotator 

agreement was not reported by these authors. 

Other than machine learning approach, some researchers proposed methods of using 

‘dictionaries’ and ‘natural language processing using features and heuristics’ for the 

anonymization of medical records (Tveit et al. 2004). Their methods were proposed for 
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anonymization of patient records but mainly focused on the anonymization of general 

practitioner records. They used a Norwegian corpus which was challenging because its 

linguistic features varied from the English language and existing approaches could not be used. 

In the first step, they constructed dictionaries using their own corpus and some external 

dictionaries from other sources such as dictionaries of medical names, geographical names and 

Norwegian person names etc. In their second step, all dictionaries were compiled in a single 

dictionary to perform the exact matching of names. Moreover, a suffix tree was used to improve 

the matching performance and the matched names were tagged with their respective types. Non 

textual types (such as dates, phone numbers, security numbers, etc.) were identified using the 

suffix tree, then all tagged words which had multiple types were investigated and untagged 

words were manually reviewed by a local clinician for tagging. Finally, all tagged words were 

replaced by pseudonyms. These researchers have not shown or discussed any aspect of 

validation or evaluation of their work which shows the limitation of their approach on other 

datasets.   

Another de-identification program was reported by (Marciniak, Mykowiecka and Rychlik 

2010). They developed a rule-based system to anonymize patient's personal information. The 

method was based on the identification of a patient by their surname, forename and date of 

birth. This approach might fit to the structured patient's records in which each document 

contains a surname, forename and date of birth but will not work for unstructured documents 

that contain random clues about someone’s personal information. These authors reported a 

number of documents in their evaluation and discussed the problems encountered during the 

anonymization of data but this method did not guarantee its general applicability on 

unstructured text. One distinct and useful implementation in this research was the creation of 

key code for each patient so that the patient's record could be reused in the future. 

 

This space is deliberately left blank due to pagination. 
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1. Names [fictitious names can be used to facilitate writing] 

2. Geographic locations smaller than a state/county, including zip codes or 

post codes 

3. All elements of dates except years relating to individuals 

4. Telephone numbers 

5. Fax numbers 

6. Email addresses 

7. Social security numbers 

8. Medical records numbers 

9. Health plan beneficiary numbers 

10. Account numbers 

11. Certificate and license numbers 

12. Vehicle identifiers  

13. Device identifiers and serial numbers 

14. Universal resource locators (URL) 

15. Internet protocol addresses (IP addresses) 

16. Biometric identifiers 

17. Full face photographs 

18. Any other unique identifying number, characteristic or code  

Figure ‎3-2: HIPAA ‘Safe Harbour’ categories
4
. 

 

In contrast with the above mentioned systems, (Szarvas, Farkas and Kocsor 2006) presented a 

de-identification method which was presented in the first i2b2 global NLP challenge on clinical 

data. They reported a novel iterative machine learning approach for named entity recognition 

(NER) using semi-structured documents. This method first tags all entities which were present 

in structured parts of the document and then this information was further used to find other PHI 

in unstructured parts of the text. To find PHI, these researchers employed orthographical 

features, frequencies of tokens, PHI phrases and lookups (dictionaries of locations names, 

diseases, non PHI tokens, etc.) for word-level classification. Using this feature set, a 

combination of two machine learning classifiers (Boosting, C4.5) was trained in three phases 

and successfully achieved 99.7534% of f-measure on the evaluation set. This method is 

                                                      
4
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specifically developed using semi-structured documents, therefore not ensuring its general 

applicability on other datasets.   

(Ruch 2000) also reported an anonymization system to de-identify name, address, phone 

number and date of birth and noted the problem of ambiguity in PHI identifiers. For instance, 

'River' can be written as common noun as well as proper noun; ‘River Song’ is a character in a 

BBC-TV programme. Such nouns do not always have clues to help resolve the ambiguity so 

should be removed/ replaced if present as PHI in the corpus. Therefore, to tackle these 

problems, a de-identification system was developed on more than 40 rules. The corpus used in 

this research was a mix of the German and English languages and was split into two sets;  

1) 20% of the corpus was used to set up the system. 

2) 80% of the corpus for evaluation. 

This system was based on; 

1) MEDTAG lexicon for lexical resources. 

2) Rule-based morphosyntactic (MS) and a word sense (WS) tagger for the disambiguation task. 

Although a 99% success rate was reported in this paper, their method was still not suitable for 

the dataset (Test dataset 1) used in this research because of different PHI categories.  

The majority of the work was done on structured data. However, some researchers also worked 

on both structured and unstructured data. For instance, (Gardner and Xiong 2009) developed a 

conceptual framework named HIDE (Health Information DE-identification) for de-identification 

of PHI in both structured and unstructured data. They employed a Bayesian classifier, sampling 

based techniques and conditional random fields based techniques for the extraction and 

identification of sensitive information from the data. Their method also provided the benefit of 

data linkage by using an identifier for an individual record and also provided three flexible 

options for the de-identification; full de-identification, partial de-identification and statistical de-

identification. Preliminary results showed overall accuracy of 75%-98% for the de-identification 

of name (with respect to how long they extend), age, account number, medical record number 
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and date. (Uzuner et al. 2008b) used different artificial and real-time corpora containing 

personal health information for a comprehensive analysis and presented a de-identifier named 

Stat De-id, based on the support vector machine (SVM) method and the local context. The 

approach was successful in proving that Stat De-id using SVM and local context outperformed 

over four systems; 1) SNoW (Roth and Yih 2002), 2) IdentiFinder (Bikel, Schwartz and 

Weischedel 1999), 3) Dictionaries + Heuristics and 4) Conditional random fields (CRF). Stat 

De-id de-identified the following seven PHI categories in discharge summaries; Patients, 

Doctors, Hospitals, IDs, Dates, Locations, Phone numbers. This method used a large number of 

features (syntactic, syntactic bigrams and semantic features). The limitation of the Stat De-id 

system was reported in terms of the absence of local context in sentences. In the i2b2 de-

identification challenge mentioned above, another participant team (Aramaki et al. 2006) 

learned local, global and external features by using conditional random fields - CRF. They used 

Beginning-Inside-Outside (BIO) tagging to identify chunks in tokens. External features used in 

this work included dictionaries of people, locations and dates; global features included 

sentential features to mark sentences and tokens from the previous sentence. 

A recent review was done by (Meystre et al. 2010) on automatic de-identification of systems 

developed after 1995. This review helped me in the completion of a literature review on 

automatic de-identification systems/tools. According to this review, the majority of work was 

done on structured data and very few researchers have focused on narratives. The review 

concluded that de-identification systems mainly address the common PHI category of names but 

also consider other, different PHI categories. Having different PHI categories is one of the 

reasons why one de-identification system cannot easily be compared with other de-identification 

systems. They analysed 18 systems including some discussed earlier in this section (Ruch 2000; 

Aramaki et al. 2006; Szarvas, Farkas and Busa-Fekete 2007; Uzuner, Luo and Szolovits 2007; 

Gardner and Xiong 2008; Uzuner et al. 2008b) and a further 12 which will be discussed in the 

following text. All 18 systems analysed in this review de-identify the general categories of 

names, ages, dates, contact details, hospitals and healthcare providers, locations and ids. In 
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terms of methods, mainly pattern-matching algorithms and machine learning methods were 

adopted while some systems used both approaches. 

(Beckwith 2006) developed an open source tool for the de-identification of pathology reports. 

The system was named HMS (Harvard Medical School) Scrubber and followed three steps to 

complete the process of de-identification. In the first step, all pathology reports were converted 

into an XML format to separate headers and text. This step gives a structured look by separating 

important PHI into headers such as date of birth, medical record number, social security 

number, accession number and pathology department. Then in the second step, pattern-

matching was performed using regular expressions to find patterns of date, telephone number, 

etc. In the last step, string matching was done to identify and remove person names and location 

names. HMS Scrubber achieved 98% of recall on 1800 reports. This system was meant to 

process structured reports and contained PHI categories different from those used in this 

research. 

In another study, researchers have also used rules, lookup tables and regular expressions to de-

identify PHI in medical documents (Gupta, Saul and Gilbertson 2004; Neamatullah 2008).  The 

PHI categories used by these researchers were specific to their individual datasets and cannot be 

compared against different datasets. Similar to the system developed by (Beckwith 2006) and 

(Gupta, Saul and Gilbertson 2004), another system named MeDS was reported by (Friedlin and 

McDonald 2008) which used regular expressions, headers and dictionaries (for persons and 

locations). They used around 50 regular expressions to identify and remove misspelled names in 

the corpus. MeDS was evaluated on two different datasets. 

1) 2400 reports (laboratory reports, narrative reports, mixed source reports). 

2) 1193 surgical reports. 

On the first dataset, MeDS was able to de-identify 99.06% of the HIPAA identifiers and 98.26% 

of the non-HIPAA identifiers. On second dataset, MeDS identified 99.47% of the HIPAA 

identifiers and 96.23% of the non-HIPAA identifiers. 
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A system called concept-match scrubber was developed by (Berman 2003). Initially, the 

documents were pre-processed by parsing text into words, sentences and stop words, and then 

the open source nomenclature UMLS was used to match and replace standard terms with their 

respective terms and codes. Then, all non-matching terms were replaced by a blocking tag. This 

system might help researchers working on statistical analysis but might not be helpful for the 

contextual analysis of documents. The authors of this work did not report any actual standard 

measurements of precision and recall but they expected their system to achieve high recall 

because documents only retained identifiers containing stop words. 

The review also included a rule-based de-identification system named ‘Scrub’ which was 

developed by (Sweeney 1996) who used several parallel detection algorithms and local 

dictionaries to de-identify proper names (first names, last names, full names), addresses, states, 

countries and cities. In this study, two set of experiments were conducted. In the first 

experiment, humans were employed to identify PHI in letters written by physicians. The second 

experiment was a computer-based approach that used a detection algorithm and knowledge 

sources. There was a separate detection algorithm for each entity (PHI) and the algorithm 

reporting the highest value of likelihood was considered in case of ambiguity. The Scrub system 

successfully de-identified personally identifying information (up to 99%-100%) in comparison 

with database lookup (achieved 32%-37%) and database lookup with cues (32%-84%).  

In comparison with the well known rule-based and pattern-matching systems, a different 

approach was adopted by (Morrison 2009) who used the natural language processing (NLP) 

system MedLEE to identify and extract medical concepts in reports. As a result of this 

extraction, the corpus only contained medical concepts without PHI. The output MedLEE was 

reviewed by a physician and only 3.2% of PHI were detected in the corpus. This approach 

suffers from the limitation of maintaining contextual information in the corpus. 

A technique based on a lexicon of names and UMLS was presented by (Thomas et al. 2002) 

which used an augmented search and replace algorithm to identify proper names in the corpus. 

Their method also included the use of regular expressions to identify prefixes and suffixes of 
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names associated with proper names. This system was evaluated against a manually developed 

gold standard of 1001 pathology reports and identified 98.7% of names in the narrative section 

and 92.7% of names in the whole corpus. 

Other than the use of dictionaries and pattern-matching using regular expressions, some 

researchers adopted machine learning and statistical approaches for the task of de-identification 

in medical records (Taira, Bui and Kangarloo 2002; Guo 2006; Hara 2006; Wellner 2007; 

Szarvas, Farkas and Busa-Fekete 2007; Uzuner et al. 2008b). Among these (Taira, Bui and 

Kangarloo 2002) used statistical modelling to identify names in patient reports while (Wellner 

2007) used two toolkits Lingpipe (LingPipe 4.1.0.) and Carafe
5
 for the identification of named 

entities in the corpus.    

In the machine learning approaches, (Guo 2006) used the support vector machine (SVM) 

method, and the well-known named entity recognition system, ANNIE (Cunningham et al. 

2002). ANNIE was used to pre-annotate the training set with a person’s name, date, etc. Then 

multiple features were used to train the SVM machine’s learning classifier including date 

features, doctor name features, etc. This system participated in the first i2b2 NLP challenge and 

achieved precision, recall and f-measure greater than 86%. (Hara 2006) also used SVM to 

develop a de-identification system. In their system, SVM was used to perform named entity 

recognition (NER) in medical reports. This system also participated in the i2b2 challenge of de-

identification and achieved 92% (approximately) of f-measure. Their method first used pattern 

matching to identify section headers, then regular expressions were used to identify dates and 

phone numbers. A sentence classifier was also used to identify PHI in sentences and finally an 

SVM based text chunker was used to identify location, patient, age, etc. 

As reviewed in this related work, researchers developed de-identification/anonymization 

systems for different named entities specific to the requirement of their datasets. These systems 

were developed using different methods for both structured and unstructured datasets which 

cannot be compared directly since they have used different named entities (PHI categories) and 
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are based on different datasets with a different nature of data (structured / unstructured). In 

comparison, the Test dataset 1 used in this research was completely different from the data used 

by previous researchers. This is because it was drawn directly from an EHR record of a 

consultation rather than from a natural language report and, as such contained a mixture of 

natural language and clinical codes. In addition to this, it contained four different PHI categories 

(Patient Names, Doctor Names, Other Names, and Place Names) which were not investigated 

together in the work done by previous researchers. The PHI category ‘Other Names’ is a new 

category for all names other than patient’s names and doctor’s names.  

As mentioned in Section ‎3.1, this Test dataset 1 was required for the evaluation of the semantic 

tagger (SnoMedTagger) developed in this research. Thus, there was a need for an  

anonymization module for SnoMedTagger in case of data containing identifiers. For this reason, 

18 HIPAA PHI categories were investigated and the above mentioned four PHI categories were 

customised according to HIPAA rules for the Test dataset 1.  

3.3 Gold standard corpus for development and evaluation of 

anonymization module 

The Test dataset 1 used in this research was created as a result of a large number of teaching lab 

sessions conducted for medical students. A paper-based form containing patient's protected 

health information (PHI) details was given to each student and a recorded consultation video 

was shown to the medical students. The medical students were then asked to record this 

consultation in SystmOne. Students were free to record the consultation in the form of a mixture 

of clinical codes (READ codes – coded vocabulary for clinical terms) and narrative text. 

Because the data was created as part of a teaching exercise, the data contained fictional names 

of patients. Most of students used natural language instead of clinical codes to record their 

observations although some of them used both clinical codes and natural language and some 

used almost exclusively codes. The data was challenging for the anonymization module because 

alphanumeric clinical codes were written within a natural language free text consultation record. 

This sample data is shown in Figure ‎3-3. 
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Because of the unavailability of large annotated data, a rule-based approach was adopted in the 

development of this module. To develop a rule-based anonymization module, 15% of Test 

dataset 1 was divided into a ‘Development set’ and the rest 85% ‘Evaluation set’ was left for the 

evaluation of the anonymization module. 

 

Figure ‎3-3: Sample text from corpus containing natural language and READ codes. 

 

In order to prepare a gold standard corpus for the development and evaluation of the 

anonymization module, an annotator manually reviewed Test dataset 1 to identify possible PHI 

categories present in the corpus. The corpus contained the following four PHI categories. 

1. Patients Name 

2. Doctors Name 

3. Other Name (person names other than patient’s names and doctor’s names) 

4. Place Name 

There were few person names in the corpus which were not under the PHI categories of 

'Patients Name' and 'Doctors Name'. Therefore, all these names were categorised under the 

category of 'Other Name'. As mentioned earlier in Section ‎3.1, after consultation with Health 

Science researchers the identification and classification of names with respect to their 

roles/occupations was decided as a requirement of this project. The significance of this 

classification was to maintain the readability and analysis of the text for researchers. All PHI 

identified by the annotator were then manually annotated with their respective PHI category to 

produce a gold standard corpus using an open source annotation tool GATE (Cunningham et al. 

2011). Corpus measurements and gold standard annotations are tabulated in Table ‎3-1. 
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Table ‎3-1: Corpus measurements and gold standard annotations. 

Types Development set (15%) 

Evaluation set 

(85%) Total  

Corpus measurements 

Patient Records 301 1683 1984 

Tokens 23031 167065 190098 

Sentences 1298 9889 11187 

Gold standard annotations 

Patients Name 376 2117 2493 

Doctors Name 1 6 7 

Other Name 2 5 7 

Place Name 2 25 27 

 

3.4 Anonymization of protected health information in 

medical narratives 

The anonymization module was developed for the anonymization of four protected health 

information (PHI) categories in the corpus containing medical narratives and clinical codes. In 

the first step of anonymization, identification and classification of PHI were required. For this 

reason, an existing named entity recogniser, 'A nearly new information extraction - ANNIE', 

provided in the open source GATE tool (Cunningham et al. 2002) was modified as a baseline 

system (explained in next section); then on the basis of the limitations observed in the baseline 

system, a rule-based system was developed for the identification and classification of PHI 

(described in Section ‎3.4.1). The reason behind implementing a rule-based approach was the 

unavailability of a large annotated corpus (training and test) which would be required for 

machine learning methods. 

3.4.1 Modification of existing named entity recogniser as baseline 

system 

In Natural Language Processing (NLP) applications, the development usually starts with a basic 

and simple approach and then progresses to an advanced application. This basic approach is 

called the ‘baseline’ application/approach. The results produced from this application, the 

baseline results, are used for comparison throughout the application development.  
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For the identification and classification of PHI in patient records, we investigated the use of 

ANNIE. This system only identifies and classifies proper names and does not distinguish names 

corresponding to their role/ occupation ('Patients Name', 'Doctors Name' and 'Other Name'), 

which was the requirement of this project.  Therefore, we modified the ANNIE application as 

baseline system by adding simple rules on the dictionaries/gazetteers of person’s names, titles, 

and by adding a dictionary of 'others' which contained roles/occupations other than the doctor's 

occupation (For example, 'sister', 'partner', 'nurse', etc.). 

The application pipeline of our baseline system included tokenisation of the corpus, splitting 

sentences, dictionaries/gazetteers, tagging the corpus with part-of-speech tags and Java 

Annotation Pattern Engine - JAPE transducers for the development of rules (Cunningham, 

Mayard and Tablan 2000), as shown in Figure ‎3-4. The general syntax of JAPE grammar rule 

is; 

Rule: Rule Name {Pattern} --> Rule {Action} 

The left hand side of each rule contains a pattern which is meant to perform the right hand side 

action subject to match the rule. The JAPE rules were applied independently without using 

output of other rules. A combination of rules creates a phase and a number of phases combine to 

form a grammar.  

Corpus of 

Patient 

records

Tokeniser

Gazetteers/ 

DIctionaries
Sentence Splitter POS tagger

ANNIE rules for 

identification of 

person names

Baseline Rules for 

identification of 

PHIs

Corpus 

tagged with 

PHI 

categories

Tokens

Match tokens Sentences

POS tagged tokens

Person names identified

 

Figure ‎3-4: System flow of baseline system for anonymization. 
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In the first step, the ANNIE tokeniser was used to tokenise the corpus and then modified 

ANNIE gazetteers were used to match tokens for the identification of PHI. These ANNIE 

gazetteers are plain text files which contain a list of entities entered per line. Each plain text file 

represents a separate set of named entities (such as 'names', 'locations', etc.). After the 

identification of names matched by the dictionaries/gazetteers, the ANNIE sentence splitter was 

used to split sentences. This sentence splitter was required prior to the ANNIE semantic tagger; 

then the ANNIE part-of-speech (POS) tagger was used in the pipeline to assign POS tags to 

tokens. This POS-tagging was also required for the application of the ANNIE semantic tagger 

because the semantic tagger contained rule-patterns based on POS tags. 

After applying the basic language processing modules from ANNIE, a set of hand-crafted rules 

was added to the application pipeline for the identification of the four PHI categories; 1) Patient 

Names, 2) Doctor Names, 3) Other Name and 4) Place Name. The baseline system mainly used 

dictionaries to identify these PHI categories and in addition to dictionaries it applied ANNIE 

rules for the identification of proper names of persons and simple JAPE rules for differentiating 

between ‘Patient Names’, ‘Doctor Names’, ‘Other Name’ and ‘Place Name’.  

For instance, for the identification of ‘Patient Names’, rules for the classification of person 

names were used from the ANNIE application; ‘Doctor Names’ were identified by rules 

searching ‘titles’ matched from the dictionary before proper names. Similarly, ‘Other Names’ 

were identified by rules that searched clues matched by dictionary of ‘others’ which appeared 

before proper names (Other Names). Finally, the ‘Place Names’ were identified by the ANNIE 

dictionaries of ‘country’, ‘cities’, ‘company’, ‘department’, etc. 

This baseline system was evaluated using standard information extraction metrics; Recall, 

Precision and F-measure (Sokolova and Lapalme 2009). The formulas of recall, precision and f-

measure are provided in Section ‎3.5. As mentioned earlier, this baseline system was developed 

using 15% of the Test Dataset 1 (Development set) and evaluated on 85% of the Test dataset 1 

(Evaluation set). The baseline system achieved overall 75% of f-measure on the Development 
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set and 76% f-measure on the Evaluation set; the detail measurements on each category for the 

development set is given in Table ‎3-2 and for the evaluation set is given in Table ‎3-3. 

Table ‎3-2: Evaluation metrics of baseline system on the Development set. 

Baseline results on Development set 

PHI 

Categories 

Correct 

matches 

Partial 

Matches 

True 

positives 

(Tp)=correct 

matches + 

partial 

matches 

False 

Negatives 

(Fn) 

False 

Positives 

(Fp) 

Recall(%) Precision(%) F-measure(%) 

Patients Name 41 277 318 58 135 85 70 77 

Doctors Name 0 0 0 1 0 0 0 0 

Other Name 0 0 0 2 0 0 0 0 

Place Name 2 0 2 0 18 100 10 18 

Micro average 43 277 320 61 153 84 68 75 

 

Table ‎3-3: Evaluation metrics of baseline system on the Evaluation set. 

Baseline results on Evaluation set 

PHI 

Categories 

Correct 

matches 

Partial 

Matches 

True 

positives 

(Tp)=correct 

matches + 

partial 

matches 

False 

Negatives 

(Fn) 

False 

Positives 

(Fp) 

Recall(%) Precision(%) F-measure(%) 

Patients Name 258 1524 1782 335 622 84 74 79 

Doctors Name 1 0 1 5 0 17 100 29 

Other Name 0 0 0 5 0 0 0 0 

Place Name 24 0 24 1 147 96 14 24 

Micro average 283 1524 1806 346 769 84 70 76 

 

In this evaluation, ‘Partial matches’ were only counted for the cases where the system was 

unable to identify ‘Correct matches’ (full names in the context of this study). For instance, 

‘Partial match’ will not be counted if the full name ‘John Smith’ is correctly identified. 

From Table ‎3-2 and Table ‎3-3, it can be observed that in the case of ‘Patient Names’, 

dictionaries were able to identify individual names (Partial names) but were not able to identify 

all full names (Correct matches of full names). Other PHI categories also suffered from low 

performance measurements due to insufficient clues for the identification and classification of 

PHI. 
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3.4.2 Rule-based module for identification, classification and 

anonymization of PHI 

After the implementation of the baseline system, it was observed that the dictionaries not only 

lose the required information but also identified the false information. Therefore, more rules 

were developed to resolve the following highlighted issues (identified by the baseline system) 

observed in the Development set; 

1. There were some Asian names and Nicknames in the corpus, which were not present in the 

dictionary.  

2. Some names in the corpus were not written in the proper format. 

For example 'Davina TRN Smith' is a patient name which is not in the dictionary but 'Davina' 

and 'Smith' were in the dictionary. In this case, 'TRN' can be assumed as a set of initials but was 

not reflecting the initials of this name. Another patient name 'mrs. parsons' was missed by 

dictionary application because it was written in lower case letters. 

3. Coded information in the corpus was picked as the short form of the place names and patient 

names. For example, in READ code 'Xa0NZ', 'NZ' was picked up as the short form of the New 

Zealand which was in the dictionary. 

4. Clinicians can write either a patient’s full name or first name or surname in medical 

narratives. Names such as 'May', 'Little', 'Short', 'Long', etc., can also occur in the form of verbs 

and adjectives in medical narratives. Thus, there is a chance of identification of such 

verbs/adjectives as names. A relevant example is shown in Figure ‎3-5.  

 

Figure ‎3-5: Example of the output of the baseline system. 

 



42 

 

5. The medical terms can be determined as proper names in the medical narratives for instance, 

'Ray' was identified as proper name in 'X Ray'. Another example was 'TIA' which is an 

abbreviation of the medical term ' transient ischemic attack' was determined as a proper name in 

the corpus. 

Because of problems described above, the existing general named entity recognition systems 

appear inappropriate for medical narratives. 

Similar to the baseline system, the dictionaries of locations, person_first (male) and person_first 

(female) names from the ANNIE application were used in the development of the rule-based 

anonymization module. The corpus was a tab delimited file, and therefore all the nicknames and 

Asian names were extracted by exporting corpus into a Excel spreadsheet. All extracted names 

were then added to the dictionary of names.  

The dictionary of location names was used to identify 'Place Names' and the remaining two 

dictionaries of names (person_first (male) and person_first (female)) were integrated in to a 

single dictionary of names. This single dictionary was compiled because the category of 'Patient 

Names' and 'Doctor Names' did not require categorisation of male and female names. Therefore, 

in addition to the names in dictionaries, a rule-based anonymization module was developed by 

analysing problems identified in the development corpus (explained in the next section). The 

complete system flow of anonymization module is shown in Figure ‎3-6. 

The pre-processing of this anonymization module included basic language processing steps 

(tokenisation, split sentences, part of speech tagging). After applying basic language processing 

modules, the dictionaries were added in to the application pipeline to look up names in the 

corpus. Finally, the rule-patterns were added to identify categories of 'Patient Name', 'Doctor 

Name', 'Other Names' and 'Place Names'.  

The dictionary named 'others' was added to identify names other than patient names and doctor 

names. This dictionary included roles and occupations which do not represent any patient name 

or doctor name. For instance, 'Nurse', 'Nurse practitioner', 'brother', 'partner', etc. can represent 
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person names in the corpus. The reason for separating dictionary of the 'others' was to 

distinguish the rules for identification of all names other than patient names and doctor names. 

Corpus containing 

medical narratives 

and medical codes

Basic language processing 

(Tokenisation, Sentence splitting, 

POS tagging)

Lexical matching

Rules + Heuristics

Dictionaries

XML Output tagged after 

identification and classification of 

PHI categories

Python program for anonymisation 

of identified PHIs

Anonymised Corpus 

available for 

research

 

Figure ‎3-6: System flow of anonymization module. 

 

Another dictionary of 'Noplace' was compiled containing the terms which were wrongly 

identified by dictionary application and for which general rules were not applicable. For all such 

cases, the rules were developed to restrict the false positives of ‘Place Names’. Some example 

rules and false positives are shown in Table ‎3-4. In addition to these dictionaries, a rule-based 

approach was adapted for the identification of PHI categories. 
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The next section describes the development of rules for identification and anonymization of four 

PHI categories in medical narratives. The anonymization of protected health information (PHI) 

was dealt with in two steps. 

1. Identification of PHI and classification with their respective PHI categories, shown in 

Figure ‎3-7. 

2. Anonymization of PHI by replacing them with their respective PHI categories, shown in 

Figure ‎3-8. 

Table ‎3-4: Examples rules to restrict the false positives of patient names and place names. 

Rules to restrict false positives of 'Patients Name' and 

'Place Name' 

False positives identified by dictionary 

application 

Rule: Nopatient 
( 

( 

{Token.orth==number} 

(NAME) 

) 

):match 

--> 

:match{ 

inputAS.remove(bindings.get("match").iterator().next()); 

} 

X76Li is READ code in which 'Li' was 

identified as 'Patient Name'. 

Rule: Noplace 
( 

{Lookup.majorType==noplace} 

):match 

--> 

:match{ 

inputAS.remove(bindings.get("match").iterator().next()); 

} 

1. Seemed Nice. 

2. NICE guidelines 

3. Split up with husband. 

Blue highlighted terms were wrongly 

identified as 'Place Names' 
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Figure ‎3-7: Identification and classification of PHI categories. 

 

 

Figure ‎3-8: Anonymization of PHI categories. 

 

3.4.2.1 Identification and classification of PHI with their respective 

PHI categories 

To develop useful rule-patterns of proper names for the identification of PHI and their 

classification with PHI categories, first a baseline system (explained in Section ‎3.4.1) was tested 

on the development set which used the dictionary to match names in the corpus. The 

observations showed that many false positives were marked by the baseline system (Table ‎3-5). 

As mentioned in section ‎3.4.2, the dictionary of names was compiled by extracting all names 

and nicknames from the corpus. The false positives such as ‘am’ or ‘read’ identified by the 

baseline system were due to nick names present in the corpus. 
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Table ‎3-5: Examples of false positives identified by dictionary application and rule-patterns 

developed to restrict them. 

Rule-patterns False Positives 

Token.category!=VBP Not drinking in 'am'. 

Token.category!=VBN She has 'read' over the info regarding smoking. 

Token.category!=VB ...cut 'short' the consumption of alcohol. 

Token.category!=RB She feels a 'little' guilty for drinking. 

Token.category!=MD ...that diabetes 'may' be related to cough. 

Token.category!=JJ 'green' spit 

Token.category!=lowercase 'little' or no exercise. 

 

In addition to the dictionary matching, the correct identification of individual names needed a 

number of rule-patterns. Therefore, a general 'Macro' rule was developed to identify individual 

names irrespective of their relevance with a PHI category, shown in Figure ‎3-9.  

 

Figure ‎3-9: Macro rule for the identification of proper names. 

 

First all single word proper names of patients were filtered by the 'Macro' rule by token 

matching in the dictionary. Then false positives were restricted using rule-patterns that checked 

the category features of the tokens. Examples of false positives are shown in Table ‎3-5 with the 

patterns developed for restricting them. This Macro rule identified single names (First name/ 

Middle name/Last name) in the corpus as these single word names appeared in the natural 

language free text. This general Macro rule was then used in the development of rule-patterns 

for names under specific PHI categories of 'Patient Names', 'Doctor Names' and 'Other Names'.  
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3.4.2.1.1 Identification and classification of ‘Patients Name’ 

In the development set of medical narratives, it was observed that the medics used different 

formats to write proper names. For instance, some medics used the first name or full name while 

others used the initials of middle names in full names. Similarly, a range of formats were 

observed in the development corpus to develop useful rules for the identification and 

classification of patient names. In addition to single word names, each consultation note started 

with full names along with nicknames. These names were separated with a tab space at the start 

of each consultation note and appeared within the text in a range of different formats. Some 

example formats of names are given in Figure ‎3-10 which were identified by the macro rule. 

 

Figure ‎3-10: Output of Macro rule. 

 

For the identification of full names of patients, several rule-patterns were developed by 

analysing the Development set. These rule-patterns were able to identify full names including 

initials and nicknames. Some example JAPE rules which successfully identified patient names 

are presented in Figure ‎3-11. 
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Figure ‎3-11: Example rules for identification and classification of Patients Name. 

 

3.4.2.1.2 Identification and classification of ‘Doctors Name’ 

During the analysis of the Development set, it was also observed that the names of doctors were 

written along with their titles or occupations (Dr, GP, Doctor, etc.). Therefore, a separate 

dictionary storing titles of doctor was created. These titles were used as a clue to identify names 

of Doctors/ General practitioners in the corpus. The same Macro rule (Figure ‎3-9) for names 

was reused to develop rules for the identification of doctor names. The rules for the 

identification of doctor names were developed by applying simple heuristics using title clues as 

shown in Figure ‎3-12. After the identification of 'Patients Name' and 'Doctors Name', rules were 

developed to identify 'Other Name' (explained in the next section). 

 

This space is deliberately left blank due to pagination. 
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Figure ‎3-12: Example rules for the identification and classification of Doctors Name. 

 

3.4.2.1.3 Identification and classification of ‘Other Name’ 

The medical narratives used in this research contained a few names other than patients and 

doctors. These names were related to other roles/occupations such as nurse, partner, husband, 

etc. These other names could not be categorised with respect to their individual 

roles/occupations because the corpus did not contain enough examples related to specific roles/ 

occupations. In addition to this, these names were not expected to be present in large numbers, 

and therefore all these examples needed to be identified and categorised as 'Other Name'. Rules 

were developed via contextual analysis of Development set for the identification and 

anonymization of 'Other Name'.  
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For example, 

Seen by Nurse practitioner Lara Jones.    // Other Name 

Split up with partner, Mark. 

Although, there were very few examples of 'Other Name' found in the corpus the dictionary of 

'others' along with rules will be able to provide strong clues for the identification of 'Other 

Name'. Example rules are shown in Figure ‎3-13. Similarly, there were few names of places 

found in the corpus but the general rules were developed on the basis of these examples, 

explained in the next section. 

 

Figure ‎3-13: Example rules for identification and classification of Other Name. 

 

3.4.2.1.4 Identification and classification of ‘Place Name’ 

As mentioned earlier, the corpus contained few but interesting examples of place names which 

appeared with general terms (general practice, hospital, group practice, etc.). For instance, 

'Headingley group practice' was a place name in the corpus in which 'Headingley' is the 

identification of place. This leads to an observation that any other city name associated with 

general terms can determine another place name such as 'Meanwood group practice', 'Sherburn 

group practice', 'Yaxley group practice', etc. These general terms do not identify any personal 
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health information in medical narratives and should be kept in the records. The anonymization 

of place names can be considered as completed by the identification and anonymization of 

'Headingley' with its PHI category. In this way, these general terms will also help to maintain 

the readability of the text for analysis, as shown in Figure ‎3-14. 

 

Figure ‎3-14: Anonymization of place name. 

 

Therefore, the existing dictionary of place names was updated with all places excluding any 

general terms (hospital, university, bus station, etc.). This updated dictionary helped in the 

identification of single word place names by applying string matching from the dictionary. On 

the other hand, it was noticed that some of place names were wrongly identified by the baseline 

system, shown in Figure ‎3-15 and therefore rule-patterns were developed to restrict wrong place 

names. 

 

Figure ‎3-15: Issues identified in the identification of place names using the baseline system. 

 

For examples 1, 2, 3 and similar cases, a rule including patterns was added to restrict the 

orthographic feature of 'lowercase', and for cases such as examples 4 and 5, a pattern was added 

to restrict the orthographic feature of 'mixedCaps' shown as follows. 

Rule: PlaceName  

( 

{ lookup. majorType==place,  //Dictionary containing place names. 

  Token.orth!=lowercase, 

  Token.orth!=mixedCaps 
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} 

):label 

 

:label.PlaceName={Rule=PlaceName} 

 

To deal with the cases that include ‘READ codes’ (such as example 5 in Figure ‎3-15), 

orthographic feature ‘mixedCaps’ was used in the pattern to restrict incorrect identification of 

place names.   

The identification and classification of PHI categories achieved 100% of f-measure on the 

development corpus and performance measurements on each category are shown in Table ‎3-6. 

The formulas used for the calculation of precision, recall and f-measure are provided in 

Section ‎3.5. 

Table ‎3-6: Performance measurements achieved on Development set. 

PHI categories 
Precision 

(%) 

Recall 

(%) 

F-Measure 

(%) 

Patients Name 99 100 100 

Doctors Name 100 100 100 

Other Name 100 100 100 

Place Name 100 100 100 

Micro Summary 99 100 100 

 

3.4.2.2 Anonymization of PHI by replacing them with their 

respective PHI categories 

After the development of the sub-module for identification and classification of PHI categories, 

the next step was to anonymize names associated with their respective PHI categories. In 

general, these PHI categories can simply be removed to complete the process of anonymization 

or alternatively can be replaced by non-identifiers ('ABC', 'XXX', etc). However, in the present 

study, the output of identification of PHI categories was first exported in XML format using an 

option available in the GATE tool shown in Figure ‎3-16.  
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Figure ‎3-16: Identification and classification of PHI categories exported in XML format. 

 

Then, a Python program was written to replace the identified PHI with their respective PHI 

categories to complete the anonymization, shown in Figure ‎3-17. The replacement of PHI with 

their respective PHI categories will help researchers to understand the context of the corpus for 

further investigations. 

 
Figure ‎3-17: Final output after anonymization of PHI with their respective PHI categories. 

 

3.5 Evaluation 

For the evaluation of identification and classification of PHI, standard information extraction 

metrics of precision, recall and f-measure were used (Sokolova and Lapalme 2009). Formulas of 

Precision, Recall and F-measure are given in this section but details of formulas are explained in 

the evaluation chapter of this thesis (‎Chapter 7). 
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Here; 

tp = True positives: Correct PHI that should be identified. 

fp = False positives: PHI that should not be identified. 

fn= False negatives: PHI that should match but did not match by the application. 

The evaluation was done against the human-annotated gold standard Evaluation set (85% of 

whole corpus) and achieved overall f-measure of 99%. The performance measurements for each 

individual PHI category are shown in Table ‎3-7 and details of true positives, false negatives, 

false positives and partial matches against gold standard annotations are provided in Table ‎3-8. 

Table ‎3-7: Identification of PHI categories evaluated against Evaluation set. 

PHI categories Recall (%) Precision (%) F-Measure (%) 

Patients Name 100 99 100 

Doctors Name 100 100 100 

Other Name 80 80 80 

Place Name 92 92 92 

Micro Summary 100 99 100 

 

 

In comparison with the baseline results, the rule-based system for identification, classification 

and anonymization of PHI categories improved 24% in overall f-measure, as shown in 

Figure ‎3-18.  

Table ‎3-8: Details of performance measurements for each PHI category on Evaluation set. 

PHI categories 

Gold 

standard 

annotations 

True 

positives (tp) 

False 

negatives 

(fn) 

False positives 

(fp) 

Patients Name 2117 2109 1 11 

Doctors Name 6 6 0 0 

Other Name 5 4 1 1 

Place Name 25 24 2 2 

Micro Summary 2153 2143 4 14 
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Figure ‎3-18: Comparison of the rule-based system with the baseline system. 

 

3.6 Discussion 

The anonymization module developed in this research scored 100% of f-measure on the 

Evaluation set that contained a mixture of natural language text and clinical codes. Along with 

this success, some false positives and false negatives were encountered during the final 

evaluation of the sub-module for identification and classification of PHI. These false positives 

were mainly because of problems that were not tackled in this study. For instance, some of the 

names that were not identified by the rule-based system were misspelled names. Misspellings of 

names were not studied in this research which is one of the limitations of this system. However, 

spell-checking had been studied by other researchers for other cases such as (Lew and Mitton 

2012). 

Similarly, in case of place names, some place names refer to local names of buildings such as 

'Worsley building'. These names were missed by our system because the dictionary of place 

names did not contain names of local buildings and it was only able to identify place name 

associated with any city or country (such as Leeds General Infirmary, Bradford General 

Infirmary, etc.). This is one of the limitations of our system. 

It was also observed that the medical students did not follow the proper format in writing 

consultation notes which in some cases lead to the identification of wrong place names. For 
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instance; in the sentence, 'Seemed Nice.', 'Nice' was wrongly identified as place name because 

of capitalisation. This is due to the fact that place names were mainly identified using 

dictionaries and rules were not developed using POS tags. This was also recognised as a 

limitation of this system.  

Also the category ‘date’ was left out because the examples associated with ‘date’ did not 

provide any clue about an individual (such as patient, doctor, etc.). These dates were written in 

incomplete formats in the dataset, such as 'Seen in 2001', 'Scan in Jan 2001'. These formats of 

dates did not identify any individual, and therefore were not dealt as PHI category in this 

research.  

Moreover, we also think that using the SnoMedTagger developed in this research to extract all 

medical terms is another approach of anonymizing data because this extraction will only leave 

terms that do not include PHI. However, this approach may not fit into research which is based 

on a contextual analysis of natural language datasets. For contextual analysis, the 

SnoMedTagger can be used to restrict medical terms which were wrongly identified as PHI.  

3.7 Summary 

This chapter outlined the development of a module for the anonymization of PHI. This 

anonymization module was used to anonymize Test dataset 1 in preparation for the evaluation 

of semantic tagger in this research (‎Chapter 8). For this anonymization module, first a corpus 

(Test dataset 1) was annotated with four PHI categories (Patient Names, Doctor Names, Other 

Name, and Place Name). This was done to develop a gold standard Development set and 

Evaluation set for the anonymization module. The anonymization module was completed by 

developing two sub-modules. 

1) A rule-based sub-module for the identification and classification of four PHI categories. This 

sub-module was developed using 15% of the gold standard Test dataset 1 and was evaluated on 

85% of gold standard Test dataset 1.  
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2) A Python program for the anonymization of PHI by replacing the identified PHI with their 

respective PHI categories. 

Lastly, the results of this anonymization module were also compared with the baseline system. 

The anonymization module outperformed the baseline system by achieving f-measure of 100% 

which was 24% higher than that achieved by the baseline system.  
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Chapter 4. SNOMED CT® clinical healthcare 

terminology  

4.1 Introduction 

In the medical domain, Electronic Health Record (EHR) systems contain a wealth of critical 

information about medical concepts. This information needs to be interpreted by other 

healthcare professionals and therefore should be shared with consistency. 

To avoid potential risks of misinterpretation and inaccuracy of clinical information, the 

International Health Terminology Standards Development Organisation (IHTSDO) develop and 

maintain Systemised Nomenclature of Medicine – Clinical Terms (SNOMED CT), clinical 

healthcare terminology and other clinical terminologies. In this research, SNOMED CT clinical 

healthcare terminology was used as a resource in the development of a semantic tagger for 

medical narratives. 

SNOMED CT is the combination of two well-known clinical terminologies; SNOMED 

Reference terminology (SNOMED RT), developed by the College of American Pathologists 

(CAP), and Clinical Terms Version 3 (CTV3), developed by the National Health Service (NHS) 

in the United Kingdom (Stearns et al. 2001). SNOMED CT was selected because it is the most 

comprehensive multilingual clinical healthcare terminology which is widely used in the world 

(NLM 2011). 

In addition to this fact, the National Center for Biomedical Ontology (NCBO) Ontology 

Recommender service was also used for the selection of the best clinical terminology for the 

corpus of medical narratives used in this research. This is a biomedical ontology recommender, 

which suggests the most appropriate ontology for annotating the relevant data (Jonquet, Musen 

and Shah 2010). It takes the decision on the basis of three criteria; ontologies that cover most 

terms/concepts present in the input text, mapping between ontologies, and size of ontologies.  
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A small part of the corpus was tested using NCBO Ontology Recommender service, and 

SNOMED CT was suggested out of more than 200 biomedical/medical terminologies for the 

corpus of the medical narratives used in this research. The SNOMED CT clinical healthcare 

terminology is distributed by the US National Library of Medicine
6
 (NLM) which supports 

research and development in the biomedical and medical domain. The NLM also provide access 

to healthcare databases such as MeSH, UMLS, and MEDLINE, and among these healthcare 

databases SNOMED CT is distributed as part of the Unified Medical Language system – UMLS 

(Unified Medical Language System® (UMLS®)) on the basis of a valid UMLS license. The 

UMLS is a meta-thesaurus that contains several medical/biomedical vocabularies for their 

interoperability between applications. SNOMED CT is also distributed as part of and a UMLS 

licence was required to access SNOMED CT files. Therefore, a UMLS license was requested 

and granted to use SNOMED CT files used in this research.   

This chapter contains the description of the SNOMED CT clinical healthcare terminology and 

its components, the extraction of SNOMED CT semantic categories and the use of these 

semantic categories in the implementation of the baseline system for this research. Finally, this 

chapter explains the medical semantic tag set derived from SNOMED CT to be used in this 

research. 

4.2 SNOMED CT healthcare clinical terminology and its 

components  

The SNOMED CT clinical healthcare terminology can be used to code or retrieve medical 

concepts and to analyse clinical information. It can also help to link data from different 

healthcare systems with standard and consistent code information. SNOMED CT is designed in 

the form of a hierarchy which contains top-level concept classes. These top-level concept 

classes are further divided into their sub-classes (Coiera 2003). Each top-level concept class and 

sub-class under the SNOMED CT hierarchy represents a semantic category and is implemented 

by three basic components. 

                                                      
6
 http://www.nlm.nih.gov/ 

http://www.nlm.nih.gov/


60 

 

 ‘Concept’ table: The SNOMED CT concept table contain 386,020 concepts (SNOMED 

CT Version 2011). Each concept in this table has a unique name which is called the ‘Fully 

Specified Name’ (FSN) of that concept. Each FSN is associated with its semantic category 

written in parenthesis. For example, Entire Heart (Body Structure).   

 ‘Description’ table: Each unique concept in the SNOMED CT concept table has other 

names (synonyms, abbreviations, etc.) which are stored in the description table. For 

instance, ‘Heart attack’ is a synonym of the concept ‘Myocardial Infarction’ which can also 

be abbreviated as ‘MI’. 

 ‘Relationship’ table: The SNOMED CT concepts are linked together by means of logical 

definition. The relationship table contains information to link the SNOMED CT concepts. 

For instance; ‘Fracture of right foot’ has a relationship with ‘Fracture of foot’. 

In this research, all the concepts were extracted from the ‘Concept’ table of SNOMED CT 

terminology (section ‎4.2.1). These concepts were then used as base vocabulary. The 

‘Description’ table and ‘Relationship’ table were not used as base vocabulary in this research 

because of the limitation of the SNOMED CT terminology to identify semantic information in 

the medical narratives. However, the concepts in ‘Description’ table were used for searching the 

equivalent multiword concepts that were written differently in the Development dataset.    

4.2.1 Extraction of SNOMED CT semantic categories 

The SNOMED CT concepts were extracted from the ‘Concept’ table to investigate the use of 

SNOMED CT concepts for the identification of concepts and their classification with respective 

semantic categories. Initially, concept extraction was investigated on the corpus of medical 

narratives by using SNOMED CT concepts without their classification with semantic categories 

The approach for doing this is more fully described in (Hina, Atwell and Johnson 2010a). This 

concept extraction showed that SNOMED CT can be used to extract individual concepts. After 

analysing the use of SNOMED CT for concept extraction, the ‘Concept table’ was pre-

processed for the extraction of concepts with their respective categories. The ‘Concept’ table, 

which was a tabs delimited file, contained the following attributes; CONCEPT ID, CONCEPT 
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STATUS, FULLY SPECIFIED NAMES, CTV3 ID, SNOMED ID, IS PRIMITIVE. The 

example of ‘Concept’ table is shown in Figure ‎4-1. 

In the first step, a Python program was written to remove all attributes from the SNOMED CT 

concept file except ‘FULLY SPECIFIED NAMES’. The attribute ‘FULLY SPECIFIED 

NAMES’ contained names of concepts along with their semantic categories. In the second step, 

another code was written to separate all the concepts with respect to their semantic categories 

from the attribute ‘FULLY SPECIFIED NAMES’ and have them to be stored in separate files. 

These separate files were used as dictionaries of each semantic category listing concepts. The 

process of separating dictionaries from the SNOMED CT concept table is shown in Figure ‎4-2. 

CONCEPT 

ID 
CONCEPT 

STATUS 
FULLYSPECIFIEDNAME 

CTV3 

ID 
SNOMED 

ID 
IS 

PRIMITIVE 

139784008 0 
Entire tuberculum sellae (body 
structure) 

XS10s T-D1463 1 

100419000 10 DUOVAC -M (product) XU07K C-D2631 1 

140087001 0 
Entire clivus ossis sphenoidalis 
(body structure) 

XS1BZ T-11183 1 

100331002 10 
DERMCAPS ES LIQUID 
(product) 

XU05n C-D2411 1 

100334005 10 
DERMOLAR SHAMPOO 
(product) 

XU05q C-D2417 1 

100361005 10 DIFIL SYRUP (product) XU06K C-D2499 1 

100362003 10 DIFIL TABS (product) XU06L C-D2501 1 

100390004 10 
DL-ALPHA TOCOPHEROL 
ACETATE INJECTION (product) 

XU06p C-D2569 1 

10039002 0 ^210m^Bismuth (substance) XU06q C-125B2 1 

100391000 10 
D-LIMONENE SHAMPOO 
(product) 

XU06r C-D2571 1 

Figure ‎4-1: Example of SNOMED CT concept table. 

 

As a result, 386,020 concepts were extracted and stored in 31 separate files (dictionaries) with 

respect to the 31 semantic categories (top-level concept classes and sub-classes), as shown in 

Table ‎4-1. These 31 semantic categories were then used to develop a dictionary application for 

the identification of concepts in medical narratives, published in (Hina, Atwell and Johnson 

2010b). 
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Figure ‎4-2: Process of extracting dictionaries of semantic categories from SNOMED CT 

concept table. 

 

After the extraction of the 31 semantic categories from the SNOMED CT concept table, a 

simple dictionary application containing 31 dictionaries was tested on 1,176 patient records 

from i2b2 corpus to evaluate the frequency of concepts with respect to semantic categories. Out 

of 31 top-level concept classes and their sub-classes (semantic categories) from SNOMED CT, 

concepts associated with 15 semantic categories were not found in the corpus of medical 

narratives used in this research. Examples of some of these semantic categories are presented in 

Table ‎4-2. These 15 semantic categories were omitted from the research for the following 

reasons. 

 The semantic categories such as 'Physical force', 'Religion', 'Lifestyle', 'Staging and 

scales', etc. were not found in the medical narratives. The concepts associated with 

these categories refer to special cases which are rarely used in general medical 

narratives.  

 

Extraction of SNOMED CT concepts 

CONCEPT 
ID 

CONCEPT 
STATUS 

FULLY SPECIFIED NAME 
CTV3 

ID 
SNOMED 

ID 
IS 

PRIMITIVE 

100449003 10 DYNATABS (product) XU07r C-D2701 1 

140390001 0 
Entire pterygoid process of sphenoid bone 
(body structure) 

XS0Js T-1119B 1 

100476003 10 EFA LIQUID (product) XU08L C-D2767 1 

100477007 10 EFA-Z PLUS (product) XU08M C-D2769 1 

10050004 0 Contusion of chest (disorder) SE21. DD-53310 0 

1005009 0 
Entire diaphragmatic lymph node (body 
structure) 

XS0wA T-C4380 1 

 

FULLY SPECIFIED NAME 

DYNATABS (product) 

Entire pterygoid process of sphenoid bone 
(body structure) 

EFA LIQUID (product) 

EFA-Z PLUS (product) 

Contusion of chest (disorder) 

Entire diaphragmatic lymph node (body 
structure) 

 

Separation of 
concepts with 

respect to their 
semantic 

categories

Separate 
dictionaries of 
SNOMED CT 

semantic 
categories

Original SNOMED CT concept file
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Table ‎4-1: Number of concepts extracted with respect to SNOMED CT top-level 

concept classes and subclasses. 

Semantic categories Number of 

concepts Top-level concept classes Sub-classes 

Administrative Concept  --  75  

 Clinical Finding  
Findings 45029  

Disorder  92492  

Procedure  
Procedure  73189  

Regime/Therapy  3627  

Observable Entity  --  8806  

Body Structure  
Body Structure  26939  

Morphologic Abnormality  5127 

Organism  --  35028  

Substance  --  25726  

Pharmaceutical/Biological Product  --  24220  

Specimen  --  1359  

Special Concept  

Inactive Concept  8  

Namespace Concept  138  

Navigational Concept  729  

Physical Object  --  5059  

Physical Force  --  178 

Event  --  8942  

Environments/geographical locations  
Environment  1250  

Geographic Location  619  

Social Context  

Social Concept  27  

Life style  30  

Occupation  6451  

Person  666  

Religion/Philosophy  226  

Situation with explicit context  --  8538  

Staging and scales  --  40  

Linkage concept  
Attribute  1157  

Link Assertion  8  

Qualifier Value  --  10043  

Record Artifact  --  294  

 

 The concepts associated with the semantic categories such as 'Administrative concept', 

'Link assertion' (For example; Has problem name, Has problem member etc.), 

'Namespace concept' (For example; Extension Namespace (1000145)), 'Inactive 
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concept' (consists of outdated concepts, ambiguous concepts, etc.), etc. were designed 

to link and describe other semantic categories in SNOMED CT clinical healthcare 

terminology. Again, they were not considered relevant to the general medical narratives 

that were the motivation for this research. 

Table ‎4-2: Examples of semantic categories that were not found in the corpus. 

Missing Semantic 

categories 
Examples 

Staging Scales Symptom ratings, exertion ratings, Chest pain rating... 

Link Assertion Has support, Has reason, Is etiology for,Has explanation... 

Religion/Philosophy Christadelphian movement, Jehovah's Witness religion... 

Life Style Criminal life style, Voluntary body tattooing... 

Special Concept 

Abnormal biochemistry finding (Navigational concept), 

Accidental alternative medicine overdose (navigational 

concept) ... 

 

The remaining 16 semantic categories, listed in Table ‎4-3, were found in the corpus (medical 

narratives) that was used in this research. These 16 semantic categories formed the medical 

semantic tag set that was employed in the development and evaluation of semantic tagger for 

medical narratives (‎Chapter 6). 

Table ‎4-3: Medical semantic tag set derived from SNOMED CT. 

Tags 
SNOMED CT 

semantic categories 

1.  Attribute 

2.  Body Structure 

3.  Disorder 

4.  Environment 

5.  Findings 

6.  Observable Entity 

7.  Occupation 

8.  Organism  

9.  Person 

10.  Physical Object 

11.  Procedure 

12.  Product or Substance 

13.  Qualifier Value 

14.  Record Artifact 

15.  Regime/Therapy 

16.  Situation 
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4.3 SNOMED CT dictionary application: Baseline system 

The purpose of developing a baseline system is already described in Section ‎3.4.1. In order to 

implement the SNOMED CT dictionary application as a baseline system, 16 separate files 

containing concepts were used as 16 separate dictionaries of semantic categories. The baseline 

system used dictionaries to match exact concepts that were present in the corpus. This baseline 

system was set up using language processing resources in GATE software tool, as shown in 

Figure ‎4-3. 

After applying basic language processing resources (Tokeniser and sentence splitter) on the 

corpus, the dictionaries were used to identify concepts in the corpus. The identified concepts 

were then classified with their respective semantic category by applying simple Java Annotation 

Pattern Engine (JAPE) rules (Cunningham, Mayard and Tablan 2000). JAPE rules are explained 

in Section ‎3.4.2.1. 

 

Figure ‎4-3: System flow of the baseline system. 

 

For example; 

Rule: BodyStructure 

( 

{lookup.majorType==Body} 

): label 

 

:label.BodyStructure= {Rule= BodyStructure}  
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This rule will first match concepts from the dictionary of ‘Body Structure’ with its majorType 

and then assign a label/tag of ‘Body Structure’ to the matched concepts. Similarly, the other 15 

semantic categories were also identified and classified by the baseline system in the corpus.  

Dictionaries predictably lose information; therefore for the initial investigation, Development 

dataset was annotated using the baseline system. The results achieved by the baseline system are 

presented in Table ‎4-4. The results indicated that the baseline system identified a very limited 

amount of semantic information on its own in the Development dataset. However, the semantic 

category ‘Attribute’ was an exception. This can be attributed to the fact that the semantic 

category ‘Attribute’ mostly contain single word concepts which were easily identified by the 

dictionary. The output produced was then manually reviewed for the identification of language 

issues associated with the concepts that were not identified by the SNOMED CT dictionary 

application (baseline system). These issues are mentioned in Table ‎4-5 and were also presented 

in (Hina, Atwell and Johnson 2011).    

Table ‎4-4: Performance measurements of the baseline system on Development dataset. 

Semantic 

Categories 

True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 604 640 94 91 93 

BodyStructure 75 221 34 93 50 

Disorder 193 376 51 95 67 

Environment 91 226 40 98 57 

Findings 217 446 49 83 61 

ObservableEntity 88 164 55 81 65 

Occupation 34 94 36 56 44 

Organism 3 7 43 75 55 

Person 145 203 71 100 83 

PhysicalObject 16 114 14 100 25 

Procedure 199 697 29 86 43 

ProductorSubstance 202 385 52 63 57 

QualifierValue 886 1347 66 68 67 

RecordArtifact 11 42 24 92 39 

Regime/Therapy 24 102 24 89 37 

Situation 22 61 36 100 53 

Micro summary 2810 5125 55 79 65 
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On observing the concepts that were not identified by the baseline systems, it was concluded 

that the dictionaries were unable to identify complex multiword concepts, concepts which were 

paraphrases of the original concepts in the dictionaries, plural concepts and abbreviations of the 

concepts.  

By considering the language issues mentioned in Table ‎4-5, where semantic categories are 

presented in parenthesis, the annotation guidelines were developed for non-domain users and 

domain experts. These annotation guidelines were used to develop the gold standard corpus of 

medical narratives (explained in ‎Chapter 5). 

Table ‎4-5: Language issues identified by SNOMED CT dictionary application. 

Example concepts found in corpus which were 

missed by SNOMED CT dictionary 

application 

Equivalent concepts present in 

SNOMED CT vocabulary/dictionaries 

Paraphrasing Problem:  Use of punctuations and linguistic features 

Example concept in the corpus: 'CT of the head, neck' 

1. CT (Procedure) 

2. CTof the head (Procedure) 

3. CT of the head, neck (Procedure) 

1. CT Scan of head (Procedure) 

2. CT Scan of neck (Procedure) 

Abbreviation/ Acronym Problem 

Example concept in the corpus: 'CPAP Pressure' 

1. CPAP Pressure (Procedure) 1. CPAP treatment 

2. CPAP - Continuous positive airways 

pressure 

3. Continuous positive airways pressure 

therapy 

4. CPAP - Continuous positive airways 

pressure therapy 

5. Continuous positive airway pressure 

ventilation treatment (Regime/therapy) 

6. Continuous positive airway pressure 

ventilation treatment (Procedure) 

7. Continuous positive airway pressure 

ventilation treatment 

Plural concepts 

Example concept in the corpus:  'legs' 

1. Legs (Body structure) 1. Entire lower limb 

2. Hind limb 

3. LL - Lower limb 

4. Lower limb 

5. Entire lower limb (body structure) 

6. Leg 

Multiword concepts (also include section headers in document) 

Example concept in the corpus:  'Chronic renal insufficiency' 

1. Chronic renal insufficiency  (Disorder) 1. Insufficiency (Findings) 

2. Chronic insufficiency (Findings) 
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In summary, the implementation of the baseline system (SNOMED CT dictionary application) 

not only provided baseline results (discussed in ‎Chapter 7) against the human-annotated gold 

standard corpus (explained in ‎Chapter 5), but were also used to analyse concepts that were not 

identified by the baseline system. Furthermore, this baseline system was also used to pre-

annotate dictionary concepts in the gold standard corpus with the medical semantic tag set 

(explained in the next section). 

4.4 Medical semantic tag set derived from SNOMED CT  

This section contains a description of the 16 semantic categories that were derived from the 

SNOMED CT top-level concept classes and sub-classes. Appendix A also includes the 

definitions that were used by annotators and reviewers (discussed in ‎Chapter 5). 

 Attribute 

The concepts in this semantic category represent relationships between SNOMED CT concepts. 

Some concepts in the ‘Attribute’ semantic category can be used to define concepts in a logical 

manner. 

Example of concepts in ‘Attribute’: Associated with, After, Causing, Due to, During, etc. 

 Body Structure  

The concepts in this semantic category are normal/abnormal anatomical structures and also 

specify the body sites involved by a disease or procedure. 

Example of concepts in ‘Body Structure’: Lung, Heart tissue, zone of lung, Polyp, etc.  

 Disorder  

The semantic category ‘Disorder’ is a sub-class of the top-level concept class ‘Clinical 

Findings’. The concepts under this semantic category are diseases or disorders and always 

represent abnormal clinical states. 

Example of concepts in ‘Disorder’: Tuberculosis, burn shock, bursitis of hand, Buruli ulcer, etc.    
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 Environment 

The semantic category ‘Environment’ contains all types of environments and locations. 

Example of concepts in ‘Environment’: Home, Emergency department, Warehouse, I.C.U., Zoo, 

etc. 

 Findings 

Like ‘Disorder’, ‘Findings’ is also a sub-class of the top-level concept class, ‘Clinical Findings’. 

The concepts under this semantic category are the results of clinical observations or 

examinations and include normal as well as abnormal clinical states. 

Example of concepts in ‘Findings’: Able to run, Absence of toe, Anxiety, Death, etc. 

 Observable Entity 

The concepts in this semantic category represent questions or procedures which can produce an 

answer or a result. These entities can also be used as an element where a value can be assigned. 

For instance, ‘Left ventricular end-diastolic pressure (Observable Entity)’ could be interpreted 

as the question, “What is the left ventricular end diastolic pressure?” or “What is the measured 

left ventricular end-diastolic pressure?” 

Observables are entities that could be used to code elements on a checklist or any element where 

a value can be assigned. For instance, ‘Colour of nail’ is an observable, whilst ‘Grey nails’ is a 

finding. 

One use for ‘Observable Entity’ in a clinical record is to code headers on a template. For 

example, ‘Gender (Observable Entity)’ could be used to code a section titled “Gender” where 

the user would answer “male” or “female”. These values of “Gender” would then constitute a 

finding. 

Example of concepts in ‘Observable Entity’: ‘colour of nail’, ‘age’, ‘gender’, ‘length of ulna’, 

‘blood pressure’, etc. 
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 Occupation 

It is a sub-class of the top-level concept class ‘social context’ and contains all concepts which 

are occupations. 

Example of concepts in ‘Occupation’: ‘doctor’, ‘general practitioner’, ‘nurse’, ‘clerk’, 

‘manager’, ‘actor’, etc. 

 Organism 

The concepts in this category include organisms of significance in human and animal medicine 

or in modelling the causes of diseases. 

Example of concepts in ‘Organism’: ‘algae’, ‘alnus’, ‘amoeba’, ‘black fly’, ‘cryptocotyle’, etc. 

 Person 

Like ‘Occupation’, it is another sub-class of the top-level concept category ‘social context’ and 

contains concepts which can be referred to as a person. 

Example of concepts in ‘Person’: ‘employer’, ‘patient’, ‘baby’, ‘father’, etc. 

 Physical Object 

Concepts in this semantic category include natural or man-made objects or objects used to 

model the concepts in the semantic category ‘Procedure’. 

Example of concepts in ‘Physical Object’: ‘book’, ‘needle’, ‘boiler’, ‘cloth’, etc.  

 Procedure 

The concepts in this category include activities performed in the provision of health care.  

Example of concepts in ‘Procedure’: ‘radiography’, ‘measles vaccination’, ‘operation on the 

ear’, ‘optimal surgery’, etc. 

 Product or Substance 

For the present study, two top-level concept classes ‘pharmaceutical/biological product’ and 

‘substance’ were combined to form this semantic category. This was done on the basis of the 
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observation by domain experts that these two semantic categories (concept classes) were 

interchangeably used in the medical narratives and mostly used to record ‘Medications’. 

However, in the original SNOMED CT hierarchy, the semantic category 

‘pharmaceutical/biological product’ contained names of drug products and the semantic 

category ‘substance’ contained chemical constituents of drug products (in the 

‘pharmaceutical/biological product’ category), food and chemical allergens and adverse 

reactions and toxicity information 

Example of concepts in ‘Product or Substance’: ‘vancomycin’ (Product), ‘VAL syrup’, ‘topical 

from Zinc’ (Product), sodium citrate (Substance), etc. 

 Qualifier Value 

The semantic category ‘Qualifier Value’ contains some of the concepts used as values for 

SNOMED CT attributes that are not present elsewhere in SNOMED CT. Such a code may be 

used as the value of an attribute in a defining relationship in pre-coordinated definitions, and/or 

as the value of an attribute in a qualifier in a post-coordinated expression. However, the values 

for attributes are not limited to this hierarchy and are also found in hierarchies other than the 

‘Qualifier value’. 

Example of concepts in ‘Qualifier Value’: ‘left’, ‘right’, ‘first’, ‘upper’, ‘unit of rate’, ‘simple’, 

etc. 

 Record Artifact 

The ‘Record Artifact’ concepts are entities created by a ‘person’ to provide information on 

events or records. 

Example of concepts in ‘Record Artifact’: ‘death summary’, ‘discharge summary’, ‘summary 

report’, ‘radiology report’, etc. 

 

 



72 

 

 Regime / Therapy 

It is a sub-class of the top-level concept class ‘Procedure’ and includes concepts focal in the 

‘Procedure’. 

Example of concepts in ‘Regime Therapy’: ‘art therapy’, ‘cold therapy, ‘ear care’, dying care’, 

etc. 

 Situation 

The concepts in ‘Procedure’ and ‘Clinical Findings’ which are one of the following types are 

‘Situation’ concepts; 

• Conditions and procedures that have not yet occurred. 

• Conditions and procedures that refer to someone other than the patient. 

• Conditions and procedures that have occurred at some time prior to the time of the current 

entry in the record. 

Example of concepts in ‘Situation’: ‘history of anaemia’, ‘family history’, ‘no nausea’, 

‘Endoscopy arranged’, etc. 

4.5 Summary 

This chapter explains the purpose of using SNOMED CT healthcare terminology, description of 

SNOMED CT and its basic components and the method developed for extracting semantic 

categories from the original SNOMED CT concept table. 

After the extraction of semantic categories from the concept table, a simple baseline system 

(SNOMED CT dictionary application) was tested to select appropriate semantic categories for 

the corpus of medical narratives used in this research. Out of 31 top-level concept classes and 

sub-classes (semantic categories) 16 semantic categories were considered appropriate for the 

medical narratives used in this research. These 16 semantic categories were then used as 

dictionaries in the baseline system for the identification of concepts and their classification with 

the respective semantic categories. The baseline system did not only provide baseline results but 
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was also used to pre-annotate the corpus for the development of the gold standard (semi-

automatic approach explained in the next chapter). 
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Chapter 5. Corpus and gold standard datasets 

5.1 Introduction 

In computational linguistics, the language engineering modules/applications (tokenisation, 

sentence splitter, named entity recognition, etc.) require annotated data for evaluation. To 

annotate this data, domain expertise is required for specialised domains such as the medical 

domain. The definition of domain expertise can vary from one researcher to another depending 

on the subjective domains (medical, chemistry, education, etc.).  

While a growing number of natural language processing (NLP) research projects have worked 

on specialised domains, it is difficult for the non-domain researchers (language researchers) to 

work on medical corpora without the involvement of domain experts. One of the more 

interesting medical corpora originates from real-time EHR systems in the form of clinical 

documents (discharge summaries, progress notes etc.) which contain information in the form of 

narratives written by clinicians using a mixture of natural language and more technical medical 

language. For certain research tasks, particularly where a large corpus requires computation 

based research, these medical narratives need to be annotated.  

In natural language processing research, the term ‘annotation’ means the identification of 

required information with its specific type/category (Part-of-speech categories, sentences, 

named entities such as ‘person’, ‘place’, etc.). These types/categories vary from one research 

objective to another. This research is aimed to help automate the process of identification and 

classification of semantic information in medical narratives. Therefore, the types/categories of 

most interest are the semantic categories specific to medical narratives (for example; ‘Disorder’, 

‘Findings’, ‘Procedure’, etc.). For effective annotation, the concepts present in the corpus of 

medical narratives should be identified and classified with their respective semantic categories 

including those written by clinicians (which involve more technical medical language). This 

automation for the identification and classification of semantic information in medical 

narratives needs to start with annotated datasets for development and evaluation. 
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As a non-domain user, difficulties were experienced in attempting the semantic analysis of 

medical narratives in this research. It was thought that the use of controlled vocabularies, such 

as SNOMED CT, could be employed for the analysis of domain knowledge. However, such 

resources also have some limitations on different datasets (Friedman et al. 2001). Therefore, 

there was a need for a comprehensive and generic annotation scheme that could be used on 

medical narratives by both domain users and non-domain users. 

In this chapter, we firstly explain the selection of the corpus for the development and evaluation 

of the SnoMedTagger. Then, the annotation guidelines for the development of a gold standard 

are described and the experiments and evaluation carried out following these annotation 

guidelines are reported. Lastly, we conclude the evaluation by presenting the inter-annotator 

agreement results and the final gold standard that was used for the development and testing of 

the SnoMedTagger developed in this research. 

5.2 Selection of development dataset and test datasets 

In the medical domain, the availability of data for research is always limited because of ethical 

reasons and access restrictions. Only a few organisations allow access to data for research, and 

this is often subject to participation in a challenge (International Challenge: Classifying 

Clinical Free Text Using Natural Language Processing.  ; Pestian et al. 2007; i2b2: Informatics 

for Integrating Biology & the Bedside), generally to tackle a specific research question (Uzuner, 

Luo and Szolovits 2007; Uzuner et al. 2008a). 

In this research, datasets were obtained from two different resources. The first dataset was 

obtained by participating in a global natural language processing challenge i2b2 for 

identification and classification of concepts. For this task, we implemented simple rules using 

SNOMED CT dictionary concepts that overlapped noun phrases for the identification of 

concepts, but unfortunately did not report any scores on the classification (Hina et al. 2010). 

The identification of noun phrases concepts was the requirement of this challenge. Moreover, 

the overlapped noun phrases were not found to be useful in the classification of complete 

semantic information in medical narratives. The i2b2 corpus was annotated by challenge 
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organisers with limited semantic categories (‘Problem’, ‘Treatment’ and ‘Test’) which were not 

following the medical semantic tag set used in this research. By participating in this NLP 

challenge, the main objective was not to win the task but to obtain an appropriate dataset for the 

development of a semantic tagger. The data selected from i2b2 corpus for the development of a 

semantic tagger was named as ‘Development dataset’. This dataset was most appropriate for the 

development of our semantic tagging application because it was reviewed by the i2b2 challenge 

committee and contained de-identified clinical documents (discharge summaries, progress 

notes) from different healthcare providers; Beth Israel Deaconess Medical Centre (MIMIC II 

database) and University of Pittsburgh Medical Centre. The corpus was written in US English 

and different healthcare partners also provided a range of variation in formatting such as 

capitalisation of section headers, use of punctuation, and lexical patterns (use of paraphrases, 

long multiword concepts). 25 clinical documents were selected from the dataset contributed by 

one of the healthcare provider for the development of the SnoMedTagger and 40 clinical 

documents from different healthcare provider’s datasets were used for testing the 

SnoMedTagger.  

In this thesis, the dataset containing 40 documents was named ‘Test dataset 2’ because the gold 

standard annotations for this Test dataset 2 were completed after ‘Test dataset 1’ (described 

in ‎Chapter 3). The reasons for using two test datasets are tabulated in Table ‎5-1. 

The second corpus ‘Test dataset 1’ (explained in Section ‎3.3) was written by medical students 

using the UK’s English. The medical students showed noticeable variation in writing up 

consultations, and therefore this dataset was deemed most appropriate to evaluate the general 

applicability of the rule-patterns of the SnoMedTagger on a different dataset. The complete 

corpus measurements of all these datasets are provided in Table ‎5-2. 

It is worth noting that the corpus is comparable in size to others used in corpus annotation 

research, for example the Quran Annotated Corpus (Dukes and Atwell 2012) (Dukes, Atwell 

and Habash 2013), Swedish corpus of clinical notes (Skeppstedt, Kvist and Dalianis 2012) and 

the Spoken English Corpus (Brierley and Atwell 2010). 
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Table ‎5-1: Reasons for choosing test datasets from different resources. 

Test datasets Language 
Methods suitable for 

evaluation 
Reasons 

Test dataset 1 English (U.K.) Rule-based 

1. Rule-based method needs to be 

tested on different and unseen 

dataset. Therefore, this Test 

dataset was most appropriate 

because it was written in English 

(U.K) which was different from 

the language analysed in the 

development of the semantic 

tagger (i.e. U.S English). 

 

2. This dataset was extracted from 

an EHR- Electronic Health 

Record system that contains a 

variation of writing styles. 

Test dataset 2 English (U.S.) 

Rule-based, 

Support Vector 

Machine (SVM) - 

Machine learning  

1.  Machine learning method 

needs data of a similar nature for 

evaluation, and because the SVM 

based system was trained using 

‘Development dataset’ from i2b2 

corpus written in U.S. English, 

therefore ‘Test dataset 2’ from the 

same corpus ensured the 

American English.  

2. Both datasets (Development 

dataset and Test dataset 2) were 

selected from different healthcare 

providers and therefore, were 

appropriate for the evaluation of 

the rule-based approach. 

 

Table ‎5-2: Corpus measurements. 

Annotations 

Development 

dataset (from 

i2b2 corpus) 

Test dataset 1 

(SystmOne) 

Test dataset 2 

(from i2b2 

corpus) 

Total 

Tokens 16380 8874 52041 77295 

Sentences 749 582 2815 4146 

Concepts 5125 2672 20853 28650 

 

5.3 Development of gold standard corpus 

For the development of a gold standard corpus for the medical/biomedical domain, general 

purpose semantic annotation platforms (such as Mechanical Turk or KIMO (Popov et al. 2003; 

Popov et al. 2004) ) are not applicable. However, ontology-based web annotators can be used in 



78 

 

the annotation of medical/biomedical text with some limitations that are described in the 

following section. 

5.3.1 Limitations in developing gold standard using existing systems 

Being non-domain users, we were highly motivated to produce a gold standard corpus for 

medical narratives without having to rely on help from domain experts. For this reason, instead 

of hiring domain experts, the following well-known systems were explored for the identification 

of SNOMED CT concepts in medical narratives. 

1. MetaMap (Aronson 2001) (Aronson and Lang 2010). 

2. BioPortal web annotator (Noy et al. 2009) (Whetzel and Team 2013). 

MetaMap provides "Semantic knowledge representation" of medical/biomedical text using 

ontologies and special modules based on regular expressions rules. These rules process the input 

text in the form of phrases and return concepts with the semantic categories using an interactive 

interface. MetaMap also allows the user to select the required ontology and semantic categories. 

One of the major drawbacks found when using MetaMap was that this system was developed 

using MEDLINE abstracts consisting of formal English language. The language in journal 

articles is quite different from the one used in medical narratives. Generally, these journal 

articles do not contain incomplete medical terms, non-standard abbreviations and variations or 

paraphrasing of multiword concepts. For this reason, a span of text taken from medical 

narratives was tested as shown in Figure ‎5-1. One example of the difference between medical 

abstracts and real world medical narratives is the use of the multiword concept, 'CT' which is a 

frequently used short form of 'CT scan', often written by clinicians in medical narratives, but not 

recognised by the MetaMap system. 

 

This space is deliberately left blank due to pagination. 
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Figure ‎5-1: Output of interactive MetaMap. 
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MetaMap was able to identify individual concepts of 'abdomen' and 'pelvis' with the semantic 

category 'Body location', but was unable to identify the complete phrase 'CT of the chest, 

abdomen, and pelvis' with the semantic category 'Therapeutic procedure'. Our conclusion from 

our trials with MetaMap was that the system cannot be used to annotate complete semantic 

information in medical narratives. This problem was also reported by other researchers (Meystre 

and Haug 2005). 

The second drawback of MetaMap highlighted by (Aronson and Lang 2010) is that this system 

has never been methodologically evaluated against a human-annotated gold standard.  Another 

issue is that MetaMap does not provide direct mapping between SNOMED CT semantic 

categories and UMLS semantic categories. This was also confirmed through personal 

communication with Dr. Alan Aronson who developed Metamap. The only information 

available about mapping UMLS and SNOMED CT semantic categories can be accessed via the 

National Library of Medicine Webpage
7
, which requires medical expertise to understand. 

Moreover, this information is insufficient for non-domain users to understand the complete 

mapping of UMLS semantic categories with the SNOMED CT semantic categories. 

The second system examined was ‘NCBO BioPortal web annotator’ which gives a selection of 

more than 200 biomedical ontologies to annotate text (Whetzel and Team 2013). BioPortal 

provides an API facility to process large datasets in batch mode. We used the SNOMED CT 

ontology to process the same input text which was used to study MetaMap; the output of 

BioPortal is shown in Figure ‎5-2. 

One limitation of the ontology-based BioPortal web annotator noticed was the limited and 

controlled language of ontology, which was insufficient to identify complete concepts written in 

medical narratives (Figure ‎5-2). This rendered BioPortal insufficient for the semantic tagging of 

medical narratives. However, to investigate the use of complete SNOMED CT ontology, the 

BioPortal system was used for evaluation against the semantic tagger developed in this research 

(explained in ‎Chapter 8).  

                                                      
7
 http://www.nlm.nih.gov/research/umls/Snomed/snomed_represented.html/ 

http://www.nlm.nih.gov/research/umls/Snomed/snomed_represented.html/
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Figure ‎5-2: Output of BioPortal web annotator. 

 

Other than these two well-known systems, other researchers reported the development of a gold 

standard dataset of 1,556 concept annotations following specific annotation guidelines to 

evaluate their biomedical named entity recognition system (Ogren, Savova and Chute 2008). In 

their research, four annotators annotated a corpus (from a Mayo Clinic repository) of 47,975 

words with three annotations; 1) concepts associated with the SNOMED CT semantic category 

'Disorder', 2) concept code and 3) context using annotation guidelines. They extracted 82,813 

'Disorder' concepts from the SNOMED CT clinical vocabulary (SNOMED CT User Guide, 

January 2011 International Release) and used Rich Release Format - RRF browser 
8
 to search 

key words of the concepts and hierarchical navigation for the annotation of concepts. For 

annotation purposes, they followed two strategies; semi-automatic and manual. In the semi-

automatic strategy, two annotators were provided with a corpus which was pre-annotated by the 

MetaMap system (Aronson 2001).  This strategy was faster because annotators only had to add 

or remove annotations following the annotation guidelines. In the manual strategy, the other two 

annotators annotated the un-annotated corpus following the same annotation guidelines and 

                                                      
8
 http://www.nlm.nih.gov/research/umls/new_users/online_learning/UMLST_009.html 

http://www.nlm.nih.gov/research/umls/new_users/online_learning/UMLST_009.htm
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achieved overall 74.6% agreement and 82.1% agreement for overlapping spans using kappa 

(Cohen 1960; Carletta 1996).   

In other cases, researchers working on medical/biomedical data have also spent a considerable 

amount of resources in designing annotation guidelines and in hiring domain experts for the 

annotation of required entities, see for example (Roberts A 2007; Ohta, Tateisi and Kim 2002; 

Wang 2007). These annotation guidelines are not generally applicable to medical narratives and 

were not considered appropriate for this research. Therefore, we aimed to develop general and 

comprehensive annotation guidelines to develop a gold standard for researchers working on 

medical narratives. Annotation experiments conducted in this research followed semi-automatic 

and manual approaches (explained in Section ‎5.4.2 and Section ‎5.4.3). 

5.3.2 Annotation guidelines 

‎Chapter 4 described the language issues identified by the baseline system (Table ‎4-5) which 

were considered to develop the annotation guidelines. These annotation guidelines were initially 

developed for non-domain users but were also used to guide domain experts later in this 

research. These annotation guidelines were based on a medical tag set derived from SNOMED 

CT. Other resources and the annotation tool used in the annotation of gold standard are as 

follows: 

1. All annotations were marked using GATE- General Architecture for Text Engineering tool 

(Cunningham et al. 2011). GATE is an open source tool for language engineering and can 

be downloaded from http://gate.ac.uk/download/. 

2. The SNOMED CT dictionary application (described in Section ‎4.3) was used for the pre-

annotation of corpus with dictionary concepts associated with 16 semantic categories.  

3. The Fact sheet in Appendix A was provided to annotators and reviewers for the description 

of 16 semantic categories. 

4. SNOMED CT clinical vocabulary version 2011. 

http://gate.ac.uk/download/
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5. BioPortal web annotator developed by (Noy et al. 2009) (described above) was used to 

verify and annotate the remaining concepts following the annotation guidelines which are 

described in this section. 

The manual annotation of a corpus is a time-consuming and expensive process. In comparison 

to manual annotation, pre-annotating the corpus automatically (using dictionaries) reduces time. 

Therefore, in the first step, annotators were required to load the SNOMED CT dictionary 

application (explained in Section ‎4.3) into the GATE tool. The corpus had been pre-annotated 

by the SNOMED CT dictionary application to help the annotator get initial annotations. This 

pre-annotation step is only required for semi-automatic annotation and should not be followed 

in case of manual approach. Each medical concept in the corpus was annotated with one or 

more semantic categories. However, this dictionary application was not be able identify all 

semantic information because the dictionaries do not contain all the concepts found in the 

corpus of medical narratives. This unidentified semantic information is the result of the rich 

expressiveness of natural language which includes paraphrases of concepts, abbreviations of 

concepts and complex multiword concepts often used in medical narratives. Examples of some 

of these were presented in Table ‎4-5. 

After annotating the corpus from the dictionary concepts, the annotators should understand the 

description and examples of semantic categories given in the ‘Fact sheet’ (Appendix A). 

Annotators should manually read each pre-annotated document to add/remove annotations 

which were missed by the SNOMED CT dictionary application considering following language 

issues: 

 Clinicians often use complex multiword and/or overlapping concepts; all overlapping 

and/or complex multiword concepts should be annotated with up to three levels of 

granularity as shown in Figure ‎5-3. The levels of granularity were decided by analysing the 

maximum length of multiword concepts that occurred in sentences. These levels of 

granularity should be followed throughout the annotation process.  
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Figure ‎5-3: Levels of granularity to be followed in gold standard annotations. 

 

 Clinicians also write incomplete concepts or short names of the concepts which will not 

be identified by SNOMED CT dictionary application. Table ‎5-3 shows examples of 

incomplete concepts in the corpus and their equivalent concepts in the SNOMED CT 

vocabulary. These concepts should be annotated by searching for keywords of the concept 

in the SNOMED CT clinical vocabulary. 

Table ‎5-3: Examples of incomplete concepts and short names of concepts missed by the 

SNOMED CT dictionary application 

Concepts missed by the SNOMED CT 

dictionary application 

Equivalent concepts in the SNOMED CT 

clinical vocabulary 

Dovonex (Semantic category= Product or 

Substance) 

 

 

Gestation (Semantic category= Findings) 

 

Brain CT (Semantic category= Procedure) 

Dovonex 50 micrograms/g (Semantic 

category= Product or Substance) 

 

Gestation finding (Semantic category= 

Findings) 

 

CT of brain/ CTScan of brain (Semantic 

category= Procedure) 

 

Alternatively, an annotator can also use the BioPortal web annotator to search for keywords 

of missed concepts as shown in Figure ‎5-4. On the other hand, domain experts can annotate 

these concepts using their own domain knowledge. 

 

This space is deliberately left blank due to pagination. 
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Figure ‎5-4: Example search results from BioPortal web annotator 

 

 Clinicians often write paraphrases and synonyms of concepts in clinical documents which 

will not be completely annotated by the SNOMED CT dictionary application. Annotators 

should annotate such concepts by searching for keywords of the concepts in the SNOMED 

CT vocabulary or by using the BioPortal web annotator. BioPortal produces a list of 

synonyms on the search of a concept, as shown in Figure ‎5-5. 

 Clinicians use abbreviations or acronyms as part of a multi-word concept. Annotators 

should annotate the abbreviations or acronyms of concepts individually as well as the 

multiword concept they appear in, as shown in Figure ‎5-6(a) Clinicians also write acronyms 

which should be annotated but are not present in clinical vocabularies. An example searched 

using the BioPortal web annotator is presented in Figure ‎5-6(b). 

 

This space is deliberately left blank due to pagination. 
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Synonyms of 'cough' obtained from the BioPortal web annotator 

 

Synonyms of 'Cardiac CT' obtained from the BioPortal web annotator 

Figure ‎5-5: Examples of synonyms obtained from the BioPortal web annotator. 

 

Considering the bulleted annotation guidelines, annotators should complete the annotation of 

the gold standard corpus. In case of manual approach, same annotation guidelines should be 

considered to produce gold standard corpus. The only difference between the two approaches 

(semi-automatic approach and manual approach) is that the semi-automatic approach requires 

pre-annotation of corpus using SNOMED CT dictionary application. 

For the applicability and verification of the developed annotation guidelines, two annotation 

experiments were conducted to develop gold standard datasets. The experiments and evaluation 

are explained in the next section. 

 

This space is deliberately left blank due to pagination. 
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Example concepts in corpus Concepts which should be annotated 

DVT Prophylaxis 1. DVT (Disorder) 

2. Prophylaxis (Procedure) 

3. DVT Prophylaxis (Procedure) 

IV fluid 1. IV (Procedure) 

2. Fluid (Product or substance) 

3. IV Fluid (Procedure) 

Head CT 1. Head (Body structure) 

2. CT (Procedure) 

Figure 5-6 (a) Compound concepts containing abbreviations. 

Sample Text: CT of the head, 

chest, and C-spine. 

Where; 

'C-spine' is not an acronym in 

SNOMED CT vocabulary as 

shown by BioPortal web 

annotator in Figure 5.6 (b) 

 

Concepts which should be annotated 

1. CT (Procedure) 

2. CT of the head (Procedure) 

3. CT of the head, chest (Procedure) 

4. CT of the head, chest, and C-spine (Procedure) 

5. head (Body structure) 

6. chest (Body structure) 

7. C-spine (Body structure) 

 

 

Figure 5-6 (b) Examples of synonyms of ‘C-spine’ searched from the BioPortal web 

annotator. 

Figure ‎5-6: Examples of abbreviations or acronyms to be annotated. 

 

5.4 Experiments and Evaluation 

Before using the annotation guidelines on a large dataset it was necessary to ensure that the 

annotation guidelines were general and comprehensible for both domain and non-domain users. 

For this reason, an annotation experiment was conducted in which a non-domain user annotated 

the development corpus and a domain expert manually reviewed the annotations to help the 

validation of the annotation guidelines following the approach explained in the following 
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section. After the validation of the annotation guidelines, domain experts were asked to annotate 

the development and test datasets for this research. 

5.4.1 Validation of annotation guidelines 

For the validation of the annotation guidelines, the Development dataset of 16,380 tokens was 

annotated by a non-domain user. These annotations were then manually reviewed by a domain 

expert. In theory, the reliability of annotations can be measured by calculating human agreement 

but to save the time and cost of annotation effort, one domain expert manually reviewed the 

annotations and verbally agreed on more than 90% of annotations. This process of validation is 

shown in Figure ‎5-7. Note that the domain expert did not help in drafting the annotation 

guidelines. 

Draft 
annotation 
guidelines

Development data 
set annotated by 
non-domain user

Review by 
domain expert

Verbal agreement on 
annotations > 90%

 
Figure ‎5-7 Annotation flow for validation of annotation guidelines 

  

Two further experiments were conducted to develop gold standard datasets for this research. In 

these experiments, semi-automatic and manual approaches were adopted and these are 

explained in following sections. 

5.4.2 Annotation of the Development dataset and Test dataset 1 using 

a semi-automatic approach 

After the validation of the annotation guidelines, the Development dataset (16380 tokens) and 

Test dataset 1 (8874 tokens) were independently annotated by two domain experts following the 

semi-automatic approach described above. The semi-automatic approach was used because of 

limited time and resources.  In this approach, the SNOMED CT dictionary application was used 

to pre-annotate the datasets with 16 semantic categories. The annotators were then asked to 

review the annotations in the corpus and add/remove annotations following the annotation 

guidelines (Section ‎5.3.2). This semi-automatic approach was found to be efficient and suitable 

for both domain users and non-domain users.  
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Inter-Annotator Agreement (IAA) is usually calculated using kappa (Cohen 1960) which was 

not applicable in this case (Hripcsak and Rothschild 2005). The reason is that the Kappa is 

calculated using κ = (Pr(a) - Pr(e))/(1-Pr(e)) where, Pr(e) is the chance agreement and Pr(a) is 

the observed agreement and the chance agreement needs to be calculated for distinct values 

which is not straight forward in this semantic annotation task (due to level of granularities). 

 Therefore, the inter-annotator agreement between the annotations was calculated using the 

Inter-Annotator Agreement (IAA), given in equation (1) which was used in annotation studies 

similar to ours (Roberts A 2007; Thompson et al. 2009; Kilicoglu et al. 2011). Table ‎5-4 shows 

IAA measurements for the Development dataset and Test dataset 1. 

                          (   )  
       

(                   )
           ( ) 

 

Table ‎5-4: Inter-annotator agreement for Development dataset and Test dataset 1. 

Annotation 

type/Semantic 

categories 

Development dataset Test dataset 1 

Base totals IAA (%) Base totals IAA (%) 

Attribute 640 76 299 99.8 

BodyStructure 221 89 25 100 

Disorder 376 85 167 97 

Environment 226 90 74 83 

Findings 446 81 244 94 

ObservableEntity 164 83 171 85 

Occupation 94 96 68 100 

Organism 7 100 Not present 

Person 203 99 200 100 

PhysicalObject 114 90 40 98 

Procedure 697 87 125 91 

ProductorSubstance 385 88 222 99 

QualifierValue 1347 86 848 94 

RecordArtifact 42 88 17 100 

Regime/Therapy 102 97 96 62 

Situation 61 93 76 93 

Overall 5125 86 2672 95.25 
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The semi-automatic approach provided high agreement scores but the disagreement was mostly 

due to the biased decision of annotators on the pre-annotated corpus (discussed in 

Section ‎5.4.4). Therefore, for Test dataset 2, the annotation guidelines were the subject of an 

experiment using a manual approach. This is explained in the next section. 

5.4.3 Annotation of Test dataset 2 using manual approach 

A manual approach to annotation is time consuming but in the case of the medical domain it 

provides more accurate annotations marked mostly using domain knowledge. This approach is 

not feasible in the case of non-domain users because non-domain users may easily miss many 

important medical and technical concepts without having any prior annotation hints. 

For the annotation of Test dataset 2 (52041 tokens), two domain experts were asked to manually 

annotate a corpus from scratch without using the SNOMED CT dictionary application for pre-

annotation. This was done to check the applicability of the annotation guidelines using domain 

expertise on a different dataset (Test dataset 2), and to avoid a biased decision on pre-annotated 

dataset.  

Table ‎5-5: Inter-annotator agreement (IAA) for Test dataset 2. 

Annotation type/ 

Semantic categories 
Base totals 

IAA of Test 

dataset 2 (%) 

Attribute 1500 96 

BodyStructure 1445 98 

Disorder 1442 95 

Environment 532 97 

Findings 2958 86 

ObservableEntity 1195 88 

Occupation 222 94 

Organism 57 93 

Person 654 99 

PhysicalObject 630 95 

Procedure 2300 95 

ProductorSubstance 1619 97 

QualifierValue 5440 97 

RecordArtifact 130 90 

Regime/Therapy 408 63 

Situation 321 85 

Overall 20853 94 
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The inter-annotator agreement was calculated using the same formula used in the semi-

automatic approach. Although, the size of Test dataset 2 was larger than the Development 

dataset and Test dataset 1, high inter-annotator agreement scores were achieved for each 

semantic category, as shown in Table ‎5-5. 

5.4.4 An investigation of the disagreed annotations 

For the disagreed annotations, we adopted the strategy of (Snyder and Palmer 2004; Girju, 

Badulescu and Moldovan 2006); (Roberts A 2007) suggestion and had a third domain expert to 

review the disagreed annotations. Table ‎5-6 shows the number of the disagreed annotations for 

each semantic category in the Development dataset and Test dataset 1 using the semi-automatic 

approach and Test dataset 2 using the manual approach. These different approaches were not 

adopted for the comparison on the same datasets, but to check the applicability of annotation 

guidelines on different datasets considering the availability of resources (cost and time).   

Table ‎5-6: Total count of disagreed concepts for each semantic category in all datasets. 

SNOMED CT 

Semantic categories 

(Annotation types) 

Number of disagreed concepts in each semantic 

category 

Development 

dataset 
Test dataset 1 Test dataset 2 

Attribute 31 3 99 

BodyStructure 35 1 63 

Disorder 70 10 125 

Environment 13 2 27 

Findings 98 22 663 

ObservableEntity 29 4 115 

Occupation 7 0 26 

Organism 0 Not present 9 

Person 3 0 11 

PhysicalObject 12 1 54 

Procedure 72 10 221 

ProductorSubstance 34 4 75 

QualifierValue 166 19 319 

RecordArtifact 5 0 25 

Regime/Therapy 6 5 201 

Situation 5 7 144 

 

For the analysis of the disagreed annotations, it was investigated that why would two domain 

experts assign different semantic categories to the same concept? At least four major reasons 

were noted as being responsible for the disagreements. 



92 

 

Firstly, in case of the semi-automatic approach, pre-annotation had an effect on the annotators 

but it was not always in the same direction. For some cases, an individual’s perspective or bias 

played a role when pre-annotation was already done by the SNOMED CT dictionary 

application, while in other cases pre-annotation was found unhelpful in the assignment of 

semantic categories. This was due to the fact that an annotator agreed on the pre-annotated 

concept for some documents while assigned different semantic category for the same concept in 

other documents. 

Secondly, the disagreement was also noticed on the basis of the semantic categories which were 

closely related in terms of definition in both cases (semi-automatic and manual approaches). For 

instance, the semantic categories, 'Findings' and 'Disorders' are subclasses of the top-level 

semantic class 'Clinical Finding'. Similarly, semantic categories, 'Procedure' and 

'Regime//Therapy' had a very thin line of explanation between them but are separate top-level 

concepts in SNOMED CT and must be marked separately, which confused the annotators.  

In some cases, one of the annotators also confused values of ‘Findings’ with ‘Observable 

Entity’ although the difference between these two categories was clearly identified in the fact 

sheet (Appendix A) given to the annotators. For instance, in the concept ‘WBC-7.7’, ‘WBC’ is 

an observable and ‘WBC-7.7’ is finding, but one of the annotators assigned both semantic 

categories (Findings, Observable Entity) to ‘WBC-7.7’. 

Thirdly, in both semi-automatic and manual approaches, it was noticed that some disagreed 

annotations were marked because of loss of concentration by the annotators after marking a 

number of documents. For instance, Annotator A marked 'left effusion' with the semantic 

category 'Findings' in most cases but did not mark the same concept in later documents. This 

was observed by the third domain expert during their review of the disagreed annotations. 

Lastly, in the semi-automatic approach, the disagreed annotations were found because, in some 

cases, an annotator noticed an important concept and assigned a relevant SNOMED CT 

semantic category even though the concept was not present in the SNOMED CT vocabulary 

because the annotator felt it was important to be annotated for research purposes. For instance, 
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one annotator annotated the concept 'leaflet' with the semantic category 'Record Artifact' even 

though the concept ‘leaflet’ was not found in the SNOMED CT clinical vocabulary.  

Finally, we concede that both semi-automatic and manual approaches have their own 

limitations, but the overall agreement score achieved by both approaches was high. Moreover, 

the applicability of the annotation guidelines was validated and evaluated for both types of users 

(domain experts and non-domain users) and the reliability of our current annotation guidelines 

was tested on datasets from two different resources. 

5.5 The gold standard datasets 

After the achievement of high inter-annotator agreement, the gold standard datasets need to be 

compiled. The reason for building a reliable gold standard annotated by the domain experts was 

to create training/development and/or test datasets to automate the process of identification and 

classification of semantic annotation in medical narratives (explained in ‎Chapter 6). There are a 

number of principles needed to compile a dataset into a gold standard for benchmarking 

(Klebanov and Beigman 2009). For instance, annotators can discuss disagreed annotations 

(Litman, Hirschberg and Swerts 2006); in the case of more than two annotators, a majority vote 

strategy can decide final labels for disagreed annotations (Vieira and Poesio 2000). Or, if none 

of these techniques are possible then disagreed annotations can be removed from the 

benchmarking gold standard dataset (Markert and Nissim 2002). 

As discussed in Section ‎5.4.4, a third domain expert reviewed and finalised the semantic 

category of each of the disagreed annotations for this research. Gold standard datasets were 

hereby compiled by constructing a consensus set from both annotation sets and by adding the 

disagreed annotations reviewed by third domain expert. All gold standard datasets 

(Development dataset, Test dataset 1, Test dataset 2) were compiled and kept separate from 

each other because we wanted to automate the process of semantic tagging for medical 

narratives using our rule-based approach.  
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The Development dataset was required for the development of the semantic tagger and the test 

datasets were required for evaluation. Table ‎5-7 shows the total number of SNOMED CT 

concepts included in the development and test datasets. To the best of our knowledge, this is the 

first general annotation scheme for medical narratives based on semantic categories derived 

from SNOMED CT. 

Table ‎5-7: Total number of SNOMED CT concepts annotated in final gold standard. 

Annotation type 

Number of SNOMED CT concepts 

Development 

set 
Test dataset 1 Test dataset 2 

Attribute 640 299 1500 

BodyStructure 221 25 1445 

Disorder 376 167 1442 

Environment 226 74 532 

Findings 446 244 2958 

ObservableEntity 164 171 1195 

Occupation 94 68 222 

Organism 7 Not present 57 

Person 203 200 654 

PhysicalObject 114 40 630 

Procedure 697 125 2300 

ProductorSubstance 385 222 1619 

QualifierValue 1347 848 5440 

RecordArtifact 42 17 130 

Regime/Therapy 102 96 408 

Situation 61 76 321 

Total 5125 2672 20853 

 

5.6 Summary 

This chapter presented the selection of datasets for the annotation of medical narratives, 

addressed the limitations of existing applications for annotation of gold standard corpus 

(medical narratives) and highlighted the issue of analysing semantic information in medical 

narratives. In addition to this, a comprehensive annotation scheme was described for both types 

of users (domain experts and non-domain users) which achieved high inter-annotator 

agreements (86%-95%) on datasets selected from two different resources. Moreover, the 

annotation scheme is based on the established medical tag set of semantic categories derived 
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from SNOMED CT healthcare clinical terminology and can be used on a range of medical 

narrative datasets. In this research, the developed gold standard datasets were used to develop 

and evaluate a novel automatic medical semantic tagger for medical narratives (described 

in ‎Chapter 6 and ‎Chapter 7). 
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Chapter 6. Semantic tagging of medical 

narratives using SNOMED CT  

On the basis of a review of literature that is presented in ‎Chapter 2, we identified the need for a 

generic and comprehensive semantic tagger which can be used for the extraction of semantic 

information from medical narratives. The development of such a semantic tagger, which was 

named as ‘SnoMedTagger’, formed the major contribution of this research study. In this 

chapter, the first section includes details of the tool(s) and the resource(s) that were required for 

the development of the SnoMedTagger. In the next section, the actual development process is 

described in detail. Lastly, the results of evaluation of the SnoMedTagger are presented.  

6.1 Software tool and resources 

In the development of SnoMedTagger, General Architecture for Text Engineering (GATE) was 

used as the software tool. Other resources that were used include the annotated Development 

dataset and the refined SNOMED CT dictionaries. This is explained in followings sections. 

6.1.1 GATE software tool 

GATE is an open source software tool which provides an infrastructure to develop and deploy 

software modules for language engineering (Cunningham et al. 2011). From the various GATE 

products, we selected GATE Developer to develop rule-based SnoMedTagger. GATE 

Developer can be used to construct applications for language engineering. It is a Java based 

graphical user interface framework that consists of language resources, processing resources and 

a visual resource. The language resources allow user to add or create corpus. The processing 

resources provide language engineering modules including tokeniser, sentence splitter, part-of-

speech tagger, named entity recogniser, co-reference resolution, etc., for development and 

deployment of an application (Brill 1992; Brill 1994; Cunningham et al. 2002). The visual 

resource provides a user friendly graphical user interface to display the processing and output of 

a developed application. 
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The CREOLE - Collection of Reusable Objects in the GATE tool provide plugins for language 

engineering. These plugins contain a number of processing resources. In this research, the 

CREOLE plugins were used to carry out basic language processing tasks (such as tokenisation, 

sentence splitting, part-of-speech tagging), morphological analysis and to create 

gazetteers/dictionaries. 

Moreover, Java Annotation Pattern Engine (JAPE) transducers, available in the GATE tool, 

were used to write rule-patterns for matching languages (Cunningham, Mayard and Tablan 

2000). The JAPE language, which is based on Common Pattern Specification Language (CPSL) 

(Appelt and Onyshkevych 1998), and it was used to develop rule-patterns for SnoMedTagger. 

This is described in the following section. 

6.1.2 Refined SNOMED CT dictionaries 

Healthcare clinical terminologies such as SNOMED CT are hierarchical and compositional and 

are built from a simple set of terms/concepts that have a specific meaning. For instance, 

‘diabetes’ represents a specific concept in SNOMED CT. Each concept is linked with its 

synonyms and with other concepts (if there is a relationship). As a result of this, the 

organisation of concepts is enormous and complex and it is difficult for users to find individual 

terms/concepts.  

Like other hierarchical and compositional healthcare terminologies, SNOMED CT terminology 

also has the limitation of carrying redundant concepts (Sable, Nash and Wang 2001). Therefore, 

instead of using the complete SNOMED CT terminology hierarchy, only the ‘Concept’ table 

was extracted, as discussed in ‎Chapter 4. The ‘Concept’ table comprises of unique, fully 

specified names of concepts. However, it also contains long multiword concepts. These long 

multiword concepts are comprised of individual concepts which could cause repetition in the 

dictionaries that were extracted from the concept file. In addition, the long multiword concepts 

could not be matched with the concepts written in medical narratives (due to the language issues 

mentioned in (Table ‎4-5). To avoid the above mentioned problems, long multiword concepts 
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needed simplification.  This simplification process, which is described in the following section, 

is referred to as ‘refinement of dictionaries’. 

6.1.2.1 Significance of refinement 

While writing a medical narrative, clinicians do not follow a standard writing style. For 

example, one clinician may want to emphasise the severity of the problem by writing a medical 

description in detail whilst another may write the similar problem in a single word. For 

example, two ways of explaining the same problem are shown in Figure ‎6-1. 

 
Figure ‎6-1 Example presenting variations in the concept written by different clinicians. 

 

In the given example, it is not necessary that the dictionaries containing long multiword 

concepts will identify the concept ‘pain in base of left lung’ or other paraphrases of this concept. 

One approach that was considered was to store every possible combination of concept phrases 

in dictionaries, but this was discounted on the basis that it was not practical because it cannot 

ensure the general applicability of dictionaries in case of medical narratives. 

From our experience working with medical narratives it was quickly apparent that clinicians 

frequently have a preference for writing abbreviations - typically they were found to either use 

abbreviations or definitions, but not both, in medical narratives. This variation in writing styles 

causes complexity when using computing techniques to aid the identification of concepts using 

dictionaries.  

In addition to the problem of variation in writing styles and abbreviations, the concepts in the 

SNOMED CT dictionaries themselves also contain some descriptions with them which do not 

need to be stored in the dictionaries because their description can result in inability to identify 

information in medical narratives. This can be understood by considering the example provided 

in Figure ‎6-1. For instance; the dictionary of the ‘Body Structure’ contains the concept ‘Lung 

(structure)’. This dictionary concept cannot be identified in the example. This is because of the 
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description ‘(structure)’ that was associated with this concept. Therefore, the dictionaries 

needed refinement to resolve problems similar to the one discussed above. In the process of 

refinement, the dictionaries of 16 semantic categories that were derived from SNOMED CT 

were refined in order to develop strong base vocabulary for the SnoMedTagger. 

6.1.2.2 Example cases of refinement 

‎Chapter 4 established that the output of SNOMED CT dictionary application (baseline system) 

was on its own not sufficient for the identification and classification of semantic information in 

medical narratives. This is due to the language issues described in Table ‎4-5. 

For instance, the concept ‘CT scan of abdomen and pelvis’ in medical narratives should be 

classified with the semantic category ‘Procedure’, but this concept is not present in the 

dictionary of ‘Procedure’. Another fact is that every clinician can express this concept with any 

variation such as ‘CT Scan of abdomen & pelvis’, ‘CT scan of abdomen, CT scan of pelvis’, 

‘CT-Scan of abdomen and pelvis’, ‘CT of abdomen’, etc. Each of these possible paraphrases for 

each concept cannot be stored in the dictionaries because it will only increase size of 

dictionaries without necessarily leading to better outcomes. To identify such concepts, generic 

rule-patterns are required which need strong dictionaries. For this purpose, all SNOMED CT 

concepts in the dictionaries that were equivalent to the concepts present in the Development 

dataset were refined. In addition, other multiword concepts in that contain three individual 

concepts (levels of granularity used in this research) were also refined. The dictionaries of 

semantic categories that were derived from SNOMED CT were refined in order to develop 

generic rule-patterns for the SnoMedTagger. Some of the more important cases of dictionary 

refinement are presented below. In the associated example(s), the semantic category is italicised 

while ‘’ represents the refinement process. The refinement was carried out automatically for 

the concepts that represent general patterns in the dictionaries (such as Case-1) while was done 

manually for the separation of multiword concepts (such as Case-2). For Case-3 and Case-4, 

Step-1 was done automatically and Step-2 was done manually. These refinement cases were 

also published in (Hina, Atwell and Johnson 2013b).  
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Case-1: Removing unnecessary words and descriptions from dictionaries. 

Concepts contained information that was not written by clinicians. Such information was not 

required for this research. Therefore, concepts were refined by removing the unnecessary 

information. Examples of such concepts are as follows. 

1. Removal of ‘[SO]’ and ‘NEC’ from concepts where [SO] = site of origin and NEC = Not 

elsewhere classified 

 

Examples; 

Concept:  ‘[SO] leg NEC – Body Structure’ 

[SO] leg NEC – Body Structure leg – Body Structure 

Concept: ‘[SO] thumb NEC– Body Structure’ 

[SO] thumb NEC– Body Structure thumb – Body Structure 

 

2. Removal of NOS from concepts where NOS= Not otherwise specified. 

Examples; 

Concept:  ‘Skin NOS – Body Structure’ 

Skin NOS – Body Structure  Skin – Body Structure 

Concept: ‘Nervous system NOS – Body Structure’ 

Nervous system NOS – Body Structure  Nervous system – Body Structure 

 

3. Removal of descriptions such as ‘(combined site)’, ‘(organ component)’, ‘(structure)’, 

‘device’, etc. 

Examples; 

Concept: ‘Joint between bodies of T7 & T8 (combined site) – Body Structure’ 



101 

 

Joint between bodies of T7 & T8 (combined site) – Body Structure  Joint between bodies of 

T7 & T8 – Body Structure  

Concept: ‘Structure of mucous gland (organ component) – Body Structure’  

Structure of mucous gland (organ component) – Body Structure  Structure of mucous gland – 

Body Structure 

Concept: ‘Vitreous membrane (structure) – Body Structure’ 

Vitreous membrane (structure) – Body Structure  Vitreous membrane – Body Structure 

Concept: ‘Dagger – device – Physical Object’  

Dagger – device – Physical Object  Dagger – Physical Object 

 

Case-2: Refinement of multiword concepts. 

All the multiword concepts were simplified into individual concepts. 

Examples; 

Concept: ‘Breast and Axillary tissue – Body Structure’  

Breast and Axillary tissue – Body Structure  1. Breast – Body Structure 

         2. Axillary tissue – Body Structure 

Concept: ‘Burn erythema of chin – Disorder’ 

Burn erythema of chin – Disorder  1. Burn erythema – Disorder 

           2. Chin – Body Structure 

Concept: ‘Avulsion of nerve of eyelid – Disorder’ 

Refinement of such multiword concepts was carried out in multiple steps, as follows. 

Step-1: Avulsion of nerve of eyelid – Disorder  1. Avulsion – Disorder 

         2. Nerve of eyelid – Body Structure 
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Step-2: Nerve of eyelid – Body Structure  1. Nerve – Body Structure 

            2. Eyelid – Body Structure 

Since some of these individual concepts were already present in the dictionary, the duplicate 

concepts were removed. The refined concepts after the removal of duplicates are; 

1. Avulsion – Disorder 

2. Nerve – Body Structure 

3. Eyelid – Body Structure 

Concept: ‘Repair of hernia of fascia of hand – Procedure’ 

Step-1: Repair of hernia of fascia of hand – Procedure 1. Repair of hernia- Procedure 

          2. Fascia of hand- Body Structure 

Step-2: 

a) Repair of hernia- Procedure  1. Repair - Procedure 

   2. Hernia - Disorder  

b) Fascia of hand – Body Structure  1. Fascia – Body Structure 

        2. Hand – Body Structure  

Refined concepts after removal of duplicates are; 

1. Repair – Procedure 

2. Hernia – Disorder 

3. Fascia – Body Structure 

4. Hand – Body Structure 

Concept: ‘Incision and exploration of rumen of stomach – Procedure’ 

Step-1:  Incision and exploration of rumen of stomach – Procedure  1. Incision and 

exploration – Procedure 

 2. Rumen of stomach - Body Structure 
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Step-2:  

a) Incision and exploration – Procedure  1. Incision - Procedure 

    2. Exploration - Procedure 

b) Rumen of stomach - Body Structure  1. Rumen – Body Structure 

  2. Stomach – Body Structure  

Refined concepts after removal of duplicates are; 

1. Incision – Procedure 

2. Exploration – Procedure 

3. Rumen – Body Structure 

4. Stomach – Body Structure 

 

Case-3: Refinement of multiword concepts containing ‘&/or’. 

Examples; 

Concept: ‘Urinary tract &/or male genital organs – Body Structure’ 

Urinary tract &/or male genital organs – Body Structure  1. Urinary tract – Body Structure 

                          2. Male genital organs – Body Structure  

Concept: ‘Mouth &/or facial operations &/or palate operations – Procedure’ 

Step-1: Mouth &/or facial operations &/or palate operations – Procedure  1. Mouth – Body 

Structure 

          2. Facial operations – Procedure 

          3. Palate operations – Procedure 
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Step-2: 

a) Facial operations – Procedure  1. Facial – Qualifier Value 

                      2. Operations – Procedure 

b) Palate operations – Procedure  1. Palate – Body Structure 

      2. Operations – Procedure 

Refined concepts after removal of duplicates are; 

1. Mouth – Body Structure 

2. Facial – Qualifier Value 

3. Palate – Body Structure 

4. Operations – Procedure 

 

Case-4: Refinement of multiword concepts containing multiple parenthesis ‘[( )]’and ‘or’. 

Examples; 

Concept:  ‘Hand bone: [other] or [metacarpals &/or phalanges] – Body Structure’ 

Step-1: 

Hand bone: [other] or [metacarpals &/or phalanges] – Body Structure  1. Hand bone - Body 

Structure 

   2. Other – Attribute 

           3. Metacarpals &/or phalanges – Body Structure 

Step-2: 

Hand bone – Body Structure  1. Hand – Body Structure 

            2. Bone – Body Structure 
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Metacarpals &/or phalanges – Body Structure 1. Metacarpals – Body Structure 

2. Phalanges – Body Structure 

Refined concepts after removal of duplicates are; 

1. Hand – Body Structure 

2. Bone – Body Structure 

3. Metacarpals – Body Structure 

4. Phalanges – Body Structure 

Concept: ‘EUA Pharynx (&[oropharynx]) or [post nasal space] – Body Structure’ 

Step-1: 

EUA Pharynx (&[oropharynx]) or [post nasal space] – Body Structure  1. EUA Pharynx – 

Procedure 

          2. &[oropharynx]) or [post nasal space] – Body Structure  

Step-2: 

EUA Pharynx – Procedure  1. EUA – Procedure 

              2. Pharynx – Body Structure 

&[oropharynx]) or [post nasal space] – Body Structure  1. Oropharynx – Body Structure 

  2. Post nasal space – Body Structure  

 

Case-5: Adding concepts to the dictionaries. 

During the development of SnoMedTagger, some concepts that were not present in the 

dictionaries were identified. The missing concepts were considered to be important for the 

identification of semantic information. Therefore, they were added to the appropriate 

dictionaries.  
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Typically such concepts were non-medical domain nouns and noun phrases. For instance, ‘bus 

station’, ‘bank branch’,  ‘ICU’, ‘pub’, ‘toilet’, etc., which were added to the dictionary of the 

semantic category ‘Environment’. Concepts such as ‘Material’, ‘product’, ‘tyre’, ‘pipe’, 

‘cigarette’, ‘cigar’, etc., were added to the dictionary of the semantic category ‘Physical Object’. 

Case-6: Separation of abbreviations from their descriptions in the concepts. 

The literature review identified several studies that reported the extraction of acronyms and 

abbreviations in biomedical text (mainly in the MEDLINE abstracts) using pattern-based 

approaches and regular expressions (Pustejovsky et al. 2001b; Pustejovsky et al. 2001a; 

Schwartz and Hearst 2003). (Nadeau and Turney 2005) adopted a supervised machine learning 

approach for the identification of an acronym-definition pair in a biomedical text. (Ao and 

Takagi 2005) presented a corpus-based algorithm for the identification of abbreviations from 

MEDLINE abstracts. In the present study, it was observed that clinicians generally prefer to 

write in either short forms (abbreviations) or long forms (definitions) of concepts while writing 

medical narratives. Abbreviations with their definitions are present as synonyms in the 

‘Description’ table of the SNOMED CT ontology, but did not contain all the possible forms that 

could be found in the medical narratives. To deal with this problem, abbreviations and their 

definitions were stored separately for each respective dictionary. For instance, consider the 

SNOMED CT concept DVT - Deep venous thrombosis which can be written in several forms 

such as DVT - (Deep venous thrombosis), DVT (Deep venous thrombosis), (Deep venous 

thrombosis), DVT, Deep venous thrombosis, (Deep venous thrombosis) DVT, DVT (Deep 

venous thrombosis), (DVT), DVT: Deep venous thrombosis, Deep venous thrombosis: DVT. 

This concept was simplified as follows. 

Concept: ‘DVT - Deep venous thrombosis – Disorder’  

DVT - Deep venous thrombosis - Disorder   1) DVT - Disorder 

      2) Deep venous thrombosis -Disorder 

This was followed by removing the duplicate concepts. 
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Another example is; 

Concept:  ‘ICU – Intensive care unit – Environment’  

ICU – Intensive care unit – Environment  1) ICU – Environment 

           2) Intensive care unit – Environment 

Abbreviation-definition pairs were not present in the Development dataset. However, a number 

of rule-patterns were developed to identify and classify such concepts that may be present in 

other datasets.  

6.1.2.3 Summary of the refinement process 

The refinement of SNOMED CT dictionaries was an intermediate stage in the development of 

the SnoMedTagger and it was conducted to construct a strong base vocabulary for generic rule-

patterns. The refinement process did not significantly affect the size of the dictionaries, as 

shown in Table ‎6-1. 

Table ‎6-1: Number of concepts in dictionaries before and after refinement process. 

Dictionaries of Semantic 

categories 

Number of concepts in dictionaries 

Before refinement After refinement 

Attribute 1158 1170 

Body Structure 26960 24833 

Disorder 92496 88857 

Environment 1253 1254 

Findings 45039 44805 

Observable Entity 8811 8752 

Occupation 6451 3378 

Organism 35028 35263 

Person 667 489 

Physical Object 5063 5117 

Procedure 73201 63883 

Product or Substance 49961 50023 

Qualifier Value 10043 10008 

Record Artifact 294 287 

Regime/Therapy 3627 3048 

Situation 8540 5504 

Total 368592 346671 

 



108 

 

6.2 Experimental setup 

This section explains the experimental setup of the rule-based SnoMedTagger that was 

developed to identify and classify paraphrases of concepts, abbreviations of concepts and 

complex multiword concepts in medical narratives. Figure ‎6-2 depicts the complete 

development process. 
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Figure ‎6-2: System flow of SnoMedTagger. 

 

The application pipeline of SnoMedTagger used 18 CREOLE components (processing 

resources in GATE tool) out of which 15 were based on JAPE transducers. These 15 JAPE 

transducers were used for the development of rule-patterns for the 15 semantic categories. The 

semantic category ‘Attribute’ is an exception. This is because the F-measure achieved by the 

baseline system for this semantic category was high (reported in Table ‎4-4). In addition, the 

semantic category ‘Attribute’ contained only single word concepts after refinement which could 

be identified using dictionaries. 
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As shown in Figure ‎6-2, the first step in the development of the SnoMedTagger was the 

application of basic language processing resources on the corpus (Development dataset in this 

case). These resources are defined below. 

GATE English Tokeniser – This processing resource joins a JAPE transducer with a normal 

tokeniser. In addition to the output produced by a normal tokeniser, the JAPE transducer adds 

rules to identify tokens such as “30s’ ”, “ ’em  ”, “ ‘s ”, “ don’t ”, etc. 

Sentence splitter - This processing resource produce the annotation type “Sentence” in corpus 

by identifying sentence breaks such as a ‘full stop’. 

Part-of-speech tagger – Part-of-speech tagger is a modified version of the Brill tagger (Brill 

1992; Brill 1994; Brill 1995) that assigns part-of-speech tags to each word. 

The tokeniser and sentence splitter annotated the corpus with the annotation types ‘Token’ and 

‘Sentence’, respectively. Then, the part-of-speech tags were assigned as features to each token 

which were used in the development of rule- patterns.  

Following the application of basic language processing resources, ‘GATE Morphological 

analyser’ was used prior to the ‘Flexible gazetteer’ to process the root feature of tokens. This 

was done for matching plural concepts using the ‘Flexible gazetteer’. The ‘Flexible gazetteer’ 

provided flexibility to match the customised output and the external gazetteers/dictionaries on 

the basis of feature used in morphological analysis. In SnoMedTagger, the ANNIE English 

gazetteer was used as an external gazetteer which contains 16 dictionaries for each semantic 

category. By external gazetteer we mean that this gazetteer will not be the part of application 

pipeline, but will serve as an input to flexible gazetteer (an internal gazetteer in the application 

pipeline).  

The flexible gazetteers would first use the output (roots of tokens) produced by morphological 

analyser and then would use the external gazetteer to identify and classify both types of 

dictionary concepts (singular and plural) in the corpus. For instance, concept ‘legs’ in the 

corpus, the flexible gazetteer will take root ‘leg’ produced by morphological analyser. Then, this 
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root will be matched with the singular concept present in the external gazetteer of 

‘BodyStructure’. 

After the identification of the gazetteer concepts in the corpus, a set of generic rule-patterns 

were developed to be included in the application pipeline of SnoMedTagger. 

The rest of this section explains the development of rule-patterns for the identification and 

classification of paraphrases of concepts, abbreviations of concepts and complex multiword 

concepts. The generic rule-patterns were derived from two resources. 

1. Analysis of language of medical narratives (Development dataset) written by clinicians. 

2. Analysis of multiword concepts in the dictionaries of semantic categories (derived from 

SNOMED CT concept file) during refinement. 

The analysis of multiword concepts in the dictionaries of semantic categories was done using 

the description logic in the SNOMED CT healthcare terminology. Description logic represents 

the classification of concepts (super concepts and sub concepts) (F. Baader and Nutt. 2002). In 

SNOMED CT, description logic is meant to define the ontology but is of limited use in 

identifying the variations of concepts written in medical narratives. Therefore, generic rule-

patterns were developed by analysing a real world dataset (Development dataset), and these 

rule-patterns were analysed during the refinement of concepts containing description logic in the 

dictionaries. During the refinement process, these rule-patterns were analysed considering their 

applicability on medical narratives. All rule-patterns were written using JAPE transducers in 

GATE tool as follows; 

Rule-pattern  Rule- action 

Here, the left hand side (LHS) consists of the rule-patterns developed for the identification of 

concepts and the right hand side (RHS) performs classification of the semantic categories on 

matching () rule-patterns. All semantic categories defined in the rule-patterns are italicised in 

following sections. 
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6.2.1 Corpus-based rule-patterns and rule-patterns derived during 

refinement of concepts 

As mentioned earlier, the rule-patterns were derived by analysis of two cases; Language of 

medical narratives (Development dataset) written by clinicians and multiword concepts 

observed in the dictionaries of semantic categories during refinement. These rule-patterns were 

developed using refined SNOMED CT dictionaries and the linguistic features that were 

identified by a part-of-speech (POS) tagger. In the following section, examples of rule-patterns 

for the cases used for the identification of paraphrases of concepts, abbreviations of concepts, 

complex multiword concepts and their classification with respective semantic categories, are 

presented. In the examples of rule-patterns, all the semantic categories are italicised. The other 

notations used in the examples are as follows; 

sp= Space Token excluding newlines and tab spaces.  

IN= Preposition or sub coordinating conjunction (category of token) 

CC= Coordinating conjunction (category of token) 

DT= Determiner (category of token) 

|=Or 

{Token.kind==punctuation,SpaceToken.string !=~ "[\\n\\r]"} = All punctuation marks by 

restricting new lines and tab spaces. 

{Token.position==startpunct, SpaceToken.string !=~ "[\\n\\r]} = All punctuation marks which 

indicate starting positions such as “, ‘, (, {, [, etc. where spaces are not equal to new lines or tab 

spaces. 

{Token.position==endpunct, SpaceToken.string !=~ "[\\n\\r]} = All punctuation marks which 

indicate ending positions such as ”, ’, ), }, ], etc. where spaces are not equal to new lines or tab 

spaces. 

Lookup.majorType =  BodyStructure (dictionary of individual body structures such as 'chest', 

'pelvis', 'leg', 'abdomen', etc.) 
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Lookup.majorType = Procedure (dictionary of individual procedures such as 'X-Ray', 

'radiography', 'CT scan', 'biopsy', etc.) 

Lookup.majorType = QualifierValue  (dictionary of individual qualifier values such as 'left', 

'right', 'upper', 'lower', etc.) 

Lookup.majorType = Disorder  (dictionary of individual disorders such as 'trauma', 'infection', 

'fracture', 'depression', etc.) 

Lookup.majorType = Situation (dictionary of individual situations such as 'history', 

'postoperative', 'preoperative', etc.) 

6.2.1.1 Identification and classification of paraphrases of concepts 

The paraphrases of concepts that were missed by the SNOMED CT dictionary application were 

identified during the refinement process and during the analysis of concepts in the Development 

dataset.  To identify paraphrases of a multiword concept, generic rule-patterns were developed. 

Examples of such generic rule-patterns are as follows. 

Examples of corpus-based rule-patterns 

Example-1 

Concept in the corpus: ‘X-ray of the chest’ – Procedure 

Possible paraphrases of this concept: ‘Radiography of chest’, ‘Radiography of the chest’, ‘X-ray 

of chest’, ‘X-Ray of the chest’, ‘Chest X-Ray’, ‘Chest x-ray’, ‘Chest CXR’, and so on. 

In above mentioned paraphrases, individual concepts (such as ‘Radiography’, ‘X-ray’, ‘CXR’, 

etc.) can be identified and classified by dictionaries. For the identification and classification of 

complete paraphrases, following rule-patterns were developed. 

Rule: Procedure 

( 

{Lookup.majorType = Procedure} {sp} {IN} {sp} {Lookup.majorType =  BodyStructure}  | 

{Lookup.majorType = Procedure} {sp} {IN} {sp} {DT} {sp} {Lookup.majorType =  

BodyStructure} | 
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{Lookup.majorType = BodyStructure} {sp} {Lookup.majorType = Procedure} 

): label 

 

: label. Procedure = {Rule = Procedure} 

 

For instance, first pattern in this rule can be described as follows; 

 

These rule-patterns are general and will extract other concepts such as; ‘GI Prophylaxis’, ‘pelvic 

lymphadenectomy’, ‘abdomen x-ray’, ‘Prostate biopsy’, ‘X-Ray of abdomen’ and so on. 

Example-2 

Concept in the corpus: ‘CT of the head and neck’ – Procedure  

Possible paraphrases of this concept: ‘CT of head and neck’, ‘CT of the head, neck’, ‘CT of 

head, neck’, ‘CT-Scan of neck and head’, ‘CT-Scan of head and neck’, ‘CT scan of the head 

and neck’, ‘CT scan of head and neck’, ‘CT scan of neck and head’, ‘CT scan of the neck and 

head’, ‘CT: head and neck’, ‘Head CT scan and Neck CT scan’, ‘CT-Head and Neck’, and etc. 

Generic rule-patterns for such concepts were written as follows; 

Rule: Procedure 

( 

{Lookup.majorType = Procedure} {sp} {IN} {sp} {Lookup.majorType =  BodyStructure} {sp} 

{CC} {sp} {Lookup.majorType =  BodyStructure} | 

{Lookup.majorType = Procedure} {sp} {IN} {sp} {DT} {sp} {Lookup.majorType =  

BodyStructure} {sp} {CC} {sp} {Lookup.majorType =  BodyStructure} | 

{Lookup.majorType = Procedure} {sp} {IN} {sp} {Lookup.majorType =  BodyStructure} 

{Token.kind = = punctuation, SpaceToken.string !=~ "[\\n\\r]"} {sp} {Lookup.majorType =  

BodyStructure} | 

X-ray   sp   of   sp   Chest 

Procedure IN Body Structure 

Procedure 
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{Lookup.majorType = Procedure} {sp} {IN} {sp} {Lookup.majorType =  BodyStructure} 

{Token.kind = = punctuation, SpaceToken.string !=~ "[\\n\\r]"} {Lookup.majorType =  

BodyStructure} | 

{Lookup.majorType = Procedure} {sp} {IN} {sp} {DT} {sp} {Lookup.majorType =  

BodyStructure} {Token.kind = = punctuation, SpaceToken.string !=~ "[\\n\\r]"} {sp} 

{Lookup.majorType =  BodyStructure} | 

{Lookup.majorType = Procedure} {Token.kind = = punctuation, SpaceToken.string !=~ 

"[\\n\\r]"} {sp} {Lookup.majorType =  BodyStructure} {sp} {CC} {sp} {Lookup.majorType =  

BodyStructure}  

): label 

 

: label. Procedure = {Rule = Procedure} 

 

For instance, the first rule-pattern in the above rule will identify paraphrases such as ‘CT of 

head and neck’, ‘CT of neck and head’, ‘CT Scan of head and neck’, ‘CT Scan of neck and 

head’, ‘CT-Scan of head and neck’, ‘CT-Scan of neck and head’, ‘Ct Scan of head and neck’, 

‘Ct Scan of neck and head’, ‘ct scan of head and neck’, ‘ct scan of neck and head’, ‘Ct-Scan of 

head and neck’, ‘Ct-Scan of neck and head’, ‘Ct-scan of head and neck’, ‘Ct-scan of neck and 

head’, etc. This rule-pattern is described as follows; 

 

 

 

Example-3 

Concept in the corpus: ‘History of breast cancer’ – Situation    

Possible paraphrases of this concept: ‘Breast cancer history’, ‘history of cancer in breast’, 

‘History: Breast cancer’, ‘History of cancer of breast’, etc. 

 

 

CT   sp  of   sp  head   sp   and  sp  neck 

Procedure Body 

Structure 

CC IN Body 

Structure 

Procedure 
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Generic rule-patterns for such concepts were written as follows; 

Rule: Situation 

( 

{Lookup.majorType = Situation} {sp} {IN} {sp} {Lookup.majorType =  BodyStructure} {sp} 

{Lookup.majorType =  Disorder}  | 

{Lookup.majorType = BodyStructure} {sp} {Lookup.majorType =  Disorder} {sp} 

{Lookup.majorType =  Situation} | 

{Lookup.majorType =  Situation} {Token.kind = = punctuation, SpaceToken.string !=~ 

"[\\n\\r]"} {sp} {Lookup.majorType =  Disorder} {sp} {IN} {sp} {Lookup.majorType =  

BodyStructure} | 

{Lookup.majorType =  Situation} {sp} {IN} {sp} {Lookup.majorType =  Disorder} {sp} {IN} 

{sp} {Lookup.majorType =  BodyStructure} 

): label 

 

: label. Situation = {Rule = Situation} 

 

These generic rule-patterns are able to identify and classify other concepts paraphrases of 

‘Situation’ associated with ‘Disorder’ (such as ‘History of trauma’, ‘History of hepatitis B’, 

etc.) 

Examples of rule-patterns analysed during refinement of dictionaries 

During the refinement process, generic rule-patterns were developed for the identification and 

classification of paraphrases for multiword concepts in the dictionaries. This identification will 

not only ensure the applicability of rule-patterns in medical narratives but will also maintain the 

identification of structured concepts present in original SNOMED CT dictionaries. 

Example-1  

SNOMED CT concept: ‘Artery of thorax and/or abdomen’ – BodyStructure 

Possible paraphrases of this concept: ‘Artery of thorax or/and abdomen’, ‘Thorax artery and 

abdomen artery’, ‘Thorax artery or abdomen artery’, ‘Artery of thorax and abdomen’, ‘Artery of 

thorax or abdomen’, ‘Artery of thorax and artery of abdomen’, ‘Artery of thorax or artery of 
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abdomen’, ‘Artery of abdomen and artery of thorax’, etc. Generic rule-patterns for this concept 

are as follows. 

Rule: BodyStructure 

( 

{Lookup.majorType =  BodyStructure}  {sp} {IN} {sp} {Lookup.majorType =  BodyStructure} 

{sp} {CC} {sp} {Lookup.majorType =  BodyStructure} | 

{Lookup.majorType =  BodyStructure} {sp} {Lookup.majorType =  BodyStructure} {sp} {CC} 

{sp} {Lookup.majorType =  BodyStructure} {sp} {Lookup.majorType =  BodyStructure} | 

{Lookup.majorType =  BodyStructure}  {sp} {IN} {sp} {Lookup.majorType =  BodyStructure} 

{sp} {CC} {sp} {Lookup.majorType =  BodyStructure} {sp} {IN} {sp} {Lookup.majorType =  

BodyStructure}| 

{Lookup.majorType =  BodyStructure}  {sp} {IN} {sp} {Lookup.majorType =  BodyStructure} 

{sp} {CC}{Token.kind = = punctuation, SpaceToken.string !=~ "[\\n\\r]"} {CC}{sp} 

{Lookup.majorType =  BodyStructure} {sp} {IN} {sp} {Lookup.majorType =  BodyStructure} 

): label 

 

:label. BodyStructure = {Rule = BodyStructure} 

 

The first rule-pattern is described as follows. 

 

 

 

Example-2 

SNOMED CT concept: ‘Allergic reaction to flour dust’ – Disorder 

Paraphrases of this concept: ‘Allergic reaction from flour dust’, ‘Flour dust allergy’, ‘Allergic 

reaction by flour dust’, ‘Allergic reaction caused by flour dust’, etc. Generic rule-patterns for 

this concept which can also identify and classify any ‘Disorder’ caused by any ‘Product or 

Substance’ are as follows. 

 

 

Artery   sp   of   sp  thorax  sp   and   sp   abdomen 

Body 

Structure 

CC IN Body 

Structure 

Body 

Structure 

Body 

Structure 
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Rule: Disorder 

( 

{Lookup.majorType =  Disorder}{sp}{Lookup.majorType =  Qualifier_Value} {sp} {IN} {sp} 

{Lookup.majorType =  ProductorSubstance} | 

{Lookup.majorType =  ProductorSubstance} {sp} {Lookup.majorType = 

Disorder}{sp}{Lookup.majorType =  Qualifier_Value} | 

{Lookup.majorType =  Disorder}  {sp} {Lookup.majorType =  Attribute}  {sp} 

{Lookup.majorType =  ProductorSubstance} 

): label 

 

: label. Disorder = {Rule = Disorder} 

 

Example-3 

SNOMED CT concept: ‘Health clinic managed by voluntary or private agent’ – Environment 

Paraphrases of this concept: ‘Health clinic managed by voluntary agent or private agent’, 

‘Health clinic organised by voluntary agent or private agent’, ‘Health clinic maintained by 

voluntary agent or private agent’, etc. All the mentioned paraphrases can be identified by 

following rule-patterns. 

Rule: Environment 

( 

{Lookup.majorType =  Environment} {sp} {Lookup.majorType =  Attribute} {sp} 

{Lookup.majorType =  QualifierValue} {sp} {Lookup.majorType =  Occupation} {sp} {CC} 

{sp} {Lookup.majorType =  QualifierValue} {Lookup.majorType =  Occupation} 

): label 

 

: label. Environment = {Rule = Environment} 

 

6.2.1.2 Identification and classification of abbreviation of concepts 

As mentioned earlier in Section ‎6.1.2.2, clinicians prefer to write either abbreviations of 

concepts or the definitions of a concept, but not both. The multiword concepts containing 

abbreviations of concepts were analysed in the Development dataset. During the refinement 

process, the abbreviation of concepts were separated from its definition and stored in the 
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relevant dictionary of a semantic category. Therefore, a multiword concept and/or its paraphrase 

containing abbreviation can be identified and classified by the generic rule-patterns. Examples 

of such rule-patterns are as follows. 

Example of corpus-based rule-pattern 

Concepts in  the corpus such as ‘GI prophylaxis’, ‘Chest CXR’, ‘lung CXR’, ‘Ct abdomen’, 

etc., the individual concepts can be identified by dictionaries while the multiword concepts 

containing abbreviations can be identified by following rule-pattern. 

Rule: Procedure 

( 

{Lookup.majorType =  BodyStructure} {sp} {Lookup.majorType =  Procedure} 

): label 

 

:label.Procedure = {Rule = Procedure} 

 

Examples of rule-patterns analysed during refinement of dictionaries 

Although before refinement the multiword concepts contained abbreviation with their 

definitions which were not present in the medical narratives, generic rule-patterns were still 

developed in order to identify abbreviations with their definitions that are commonly present in 

a structured dataset (such as MEDLINE abstracts). This was done so that the semantic tagger 

would not lose semantic information if it was applied on a structured dataset and to maintain the 

structure of the SNOMED CT dictionary concepts. 

Examples 

SNOMED CT concept: DVT - Deep venous thrombosis – Disorder can be written in several 

other  forms; 

Paraphrases of this concept: DVT, Deep venous thrombosis, DVT (Deep venous thrombosis), 

(Deep venous thrombosis), DVT, Deep venous thrombosis, (Deep venous thrombosis) DVT, 
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DVT (Deep venous thrombosis), (DVT), DVT: Deep venous thrombosis, Deep venous 

thrombosis: DVT, etc. 

The generic rule-patterns developed are as follows. 

Rule: Disorder 

( 

{Lookup.majorType = Disorder} {sp} {Token.kind = = punctuation, SpaceToken.string !=~ 

"[\\n\\r]"} {sp} {Lookup.majorType =  Disorder} | 

{Lookup.majorType =  Disorder} {Token.kind = = punctuation, SpaceToken.string !=~ 

"[\\n\\r]"} {sp} {Lookup.majorType =  Disorder} | 

{Lookup.majorType =  Disorder} {Token.kind = = punctuation, SpaceToken.string !=~ 

"[\\n\\r]"} {Lookup.majorType =  Disorder} | 

{Token.kind = = punctuation, Token.position = = startpunct, SpaceToken.string !=~ "[\\n\\r]"} 

{Lookup.majorType =  Disorder} {Token.kind = = punctuation, Token.position = = endpunct, 

SpaceToken.string !=~ "[\\n\\r]"} | 

{Token.kind = = punctuation, Token.position = = startpunct, SpaceToken.string !=~ "[\\n\\r]"} 

{Lookup.majorType =  Disorder} {Token.kind = = punctuation, Token.position = = endpunct, 

SpaceToken.string !=~ "[\\n\\r]"} {sp}{Lookup.majorType =  Disorder}| 

{Token.kind = = punctuation, Token.position = = startpunct, SpaceToken.string !=~ "[\\n\\r]"} 

{Lookup.majorType =  Disorder} {Token.kind = = punctuation, Token.position = = endpunct, 

SpaceToken.string !=~ "[\\n\\r]"} {Lookup.majorType =  Disorder}| 

{Lookup.majorType =  Disorder} {sp} {Token.kind = = punctuation, Token.position = = 

startpunct, SpaceToken.string !=~ "[\\n\\r]"} {Lookup.majorType =  Disorder} {Token.kind = = 

punctuation, Token.position = = endpunct, SpaceToken.string !=~ "[\\n\\r]"} | 

{Lookup.majorType =  Disorder} {Token.kind = = punctuation, Token.position = = startpunct, 

SpaceToken.string !=~ "[\\n\\r]"} {Lookup.majorType =  Disorder} {Token.kind = = 

punctuation, Token.position = = endpunct, SpaceToken.string !=~ "[\\n\\r]"} 

): label 

 

: label.Disorder = {Rule = Disorder}  

 

First rule-pattern is described as follows. 

 

DVT   sp   -   sp   Deep venous thrombosis 

{Token.kind = = punctuation} 

Disorder Disorder 

Disorder 
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Similar rule-patterns were developed for the other semantic categories containing abbreviations 

and their definitions. Examples of such cases include Liver function test – LFT, IV – 

Intravenous, RBC – Red blood cell, WBC – White blood cell, etc. 

6.2.1.3 Identification and classification of complex multiword 

concepts 

Clinicians write complex multiword concepts in medical narratives which dictionaries find 

difficult to identify. These multiword concepts are complex because these concepts contain 

overlapped concepts associated with more than one semantic category. All such complex 

multiword concepts require rule-patterns for all overlapped semantic categories. Examples of 

generic rule-patterns developed for complex multiword concepts are as follows. 

Examples of corpus-based rule-patterns 

Example-1 

Concept in the corpus: ‘Bilateral pelvic lymph node dissection’ – Procedure  

Individual concepts such as ‘bilateral – QualifierValue’, ‘pelvic – BodyStructure’, ‘lymph node 

– BodyStructure’, ‘dissection – Procedure’ can be identified by the relevant dictionaries. For the 

complex multiword concepts related to ‘Procedure’ and ‘BodyStructure’, the following generic 

rule-patterns were developed. 

Rule: Procedure 

( 

{Lookup.majorType =  QualifierValue} {sp} {Lookup.majorType = BodyStructure 

}{sp}{Lookup.majorType = BodyStructure }{sp} {Lookup.majorType =  Procedure} | 

{Lookup.majorType = BodyStructure }{sp}{Lookup.majorType = BodyStructure }{sp} 

{Lookup.majorType =  Procedure}| 

{Lookup.majorType = BodyStructure }{sp} {Lookup.majorType =  Procedure} 

): label 

 

:label.Procedure = {Rule = Procedure} 
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Rule: BodyStructure 

( 

{Lookup.majorType =  QualifierValue} {sp} {Lookup.majorType = BodyStructure 

}{sp}{Lookup.majorType = BodyStructure } | 

{Lookup.majorType = BodyStructure }{sp}{Lookup.majorType = BodyStructure } 

): label 

 

:label.BodyStructure = {Rule = BodyStructure} 

 

Example-2 

Concept in the corpus: ‘History of autoimmune hepatitis with cirrhosis’ – Situation 

Individual concepts such as ‘History – Situation’, ‘autoimmune – Disorder’, ‘hepatitis – 

Disorder’, ‘cirrhosis – Disorder’ can be identified by the relevant dictionaries and complex 

multiword concepts related to ‘Situation’ and ‘Disorder’ will be identified by the following 

generic rule- patterns. 

Rule: Situation 

( 

{Lookup.majorType =  Situation} {sp} {IN} {sp} {Lookup.majorType = Disorder} | 

{Lookup.majorType =  Situation} {sp} {IN} {sp} {Lookup.majorType = Disorder} {sp} {IN} 

{sp} {Lookup.majorType = Disorder}| 

{Lookup.majorType =  Situation} {sp} {IN} {sp} {Lookup.majorType = Disorder}{sp} 

{Lookup.majorType = Disorder} {sp} {IN} {sp} {Lookup.majorType = Disorder} 

): label 

 

:label.Situation = {Rule = Situation} 

 

Rule: Disorder 

( 

{Lookup.majorType = Disorder} {sp} {Lookup.majorType = Disorder}| 

{Lookup.majorType = Disorder} {sp} {IN} {sp} {Lookup.majorType = Disorder}| 
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{Lookup.majorType = Disorder}{sp} {Lookup.majorType = Disorder} {sp} {IN} {sp} 

{Lookup.majorType = Disorder} 

): label 

 

:label.Disorder = {Rule = Disorder} 

 

Example-3 

Concept in the corpus: ‘Cesarean section for rupture of membranes’ – Procedure 

Individual concepts such as ‘Cesarean section – Procedure’, ‘rupture – Disorder’, ‘membranes 

– BodyStructure’ can be identified by the relevant dictionaries and complex multiword concepts 

related to ‘Procedure’ and ‘Disorder’ can be identified by the following generic rule-patterns. 

 

Rule: Procedure 

( 

{Lookup.majorType =  Procedure} {sp} {IN} {sp} {Lookup.majorType = Disorder}{sp} {IN} 

{sp} {Lookup.majorType =  BodyStructure}  

): label 

 

:label.Procedure = {Rule = Procedure} 

 

Rule: Disorder 

( 

{Lookup.majorType = Disorder} {sp} {IN} {sp} {Lookup.majorType = BodyStructure} 

): label 

 

:label.Disorder = {Rule = Disorder} 

 

Examples of rule-patterns analysed during refinement of dictionaries 

Example-1 

SNOMED CT concept: ‘Excision of birthmark of head or neck’ – Procedure 
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Individual concepts such as ‘Excision – Procedure’, ‘birthmark – Disorder’, ‘head – 

BodyStructure’, ‘neck – BodyStructure’ can be identified by the relevant dictionaries and 

complex multiword concepts related to ‘Procedure’, ‘BodyStructure’ and ‘Disorder’ can be 

identified by following the generic rule- patterns. 

 

Rule: Procedure 

( 

{Lookup.majorType =  Procedure} {sp} {IN} {sp} {Lookup.majorType = Disorder} | 

{Lookup.majorType =  Situation} {sp} {IN} {sp} {Lookup.majorType = Disorder} {sp} {IN} 

{sp} {Lookup.majorType = BodyStructure} 

): label 

 

:label.Procedure = {Rule = Procedure} 

 

Rule: BodyStructure 

( 

{Lookup.majorType = BodyStructure} {sp} {IN} {sp} {Lookup.majorType = BodyStructure} 

): label 

 

:label. BodyStructure = {Rule = BodyStructure} 

 

Rule: Disorder 

( 

{Lookup.majorType = Disorder} {sp} {IN} {sp} {Lookup.majorType = BodyStructure} | 

{Lookup.majorType = Disorder} {sp} {IN} {sp} {Lookup.majorType = BodyStructure} {sp} 

{CC} {sp} {Lookup.majorType = BodyStructure} 

): label 

 

:label.Disorder = {Rule = Disorder} 
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Example-2 

SNOMED CT concept: ‘Erythema of mucous membrane of mouth’ – Findings 

Individual concepts such as ‘Erythema – Findings’, ‘mucous – QualifierValue’, ‘membrane – 

BodyStructure’, ‘mouth – BodyStructure’ can be identified by the relevant dictionaries and 

complex multiword concepts related to ‘Findings’ and ‘BodyStructure’ can be identified by the 

following generic rule- patterns: 

Rule: Findings 

( 

{Lookup.majorType =  Findings} {sp} {IN} {sp} {Lookup.majorType = QualifierValue}{sp} 

{Lookup.majorType = BodyStructure} | 

{Lookup.majorType =  Findings} {sp} {IN} {sp} {Lookup.majorType = QualifierValue}{sp} 

{Lookup.majorType = BodyStructure} {sp} {IN} {sp} {Lookup.majorType = BodyStructure} 

): label 

 

:label.Findings = {Rule = Findings} 

 

Rule: BodyStructure 

( 

{Lookup.majorType = QualifierValue}{sp} {Lookup.majorType = BodyStructure} | 

{Lookup.majorType = QualifierValue}{sp} {Lookup.majorType = BodyStructure} {sp} {IN} 

{sp} {Lookup.majorType = BodyStructure} 

): label 

 

:label.Findings = {Rule = Findings} 

 

Similarly, N=316 generic rule-patterns were written for the 15 semantic categories by analysing 

all possible combinations of refined dictionaries and linguistic features,  as shown in Table ‎6-2. 

The performance measurements achieved by ‘SnoMedTagger’ on the Development dataset are 

presented in Table ‎6-3.  
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After achieving better performance measurements on the Development dataset against the 

baseline results, SnoMedTagger was evaluated and validated using two different unseen gold 

standard Test datasets (‎Chapter 7). 

Table ‎6-2: Successful combinations of refined dictionaries and linguistic features used in the 

development of rule-patterns for SnoMedTagger. 
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Table ‎6-3: Performance measurements achieved by SnoMedTagger on Development dataset. 

Semantic 

Categories 

True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-measure 

(%) 

Attribute 589 640 92 92 92 

BodyStructure 156 221 71 88 78 

Disorder 291 376 77 78 77 

Environment 216 226 96 82 89 

Findings 347 446 78 75 76 

ObservableEntity 129 164 79 72 75 

Occupation 81 94 86 70 77 

Organism 5 7 71 100 83 

Person 173 203 85 98 91 

PhysicalObject 80 114 70 73 72 

Procedure 532 697 76 77 76 

ProductorSubstance 272 385 71 93 80 

QualifierValue 996 1347 74 76 75 

Record Artifact 41 42 98 93 95 

Regime/Therapy 74 102 73 86 79 

Situation 45 61 74 74 74 

Micro summary 4027 5125 79 81 80 

 

6.3 Summary  

In this chapter, the resources and tools that were used in this research were described and the 

process of the refinement of the dictionaries was explained in detail. The refined dictionaries 

were then used along with linguistic features for the development of  SnoMedTagger.  

The complete system flow of SnoMedTagger was described and the development of generic 

rule-patterns for the identification of semantic information (paraphrases of concepts, 

abbreviations of concepts and complex multiword) and their classification with semantic 

categories were presented. These generic rule-patterns were analysed using two resources; 

Medical narratives (the Development dataset) written by clinicians, and multiword concepts in 

the dictionaries of the semantic categories during refinement. Examples of rule-patterns 

analysed for both resources were also discussed in this chapter. The next chapter contains a 

complete evaluation and validation of the SnoMedTagger developed in this research. 
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Chapter 7. Evaluation and validation of the 

SnoMedTagger 

7.1 Introduction 

In Computational Linguistics, the performance of natural language processing applications 

(such as named entity recognition systems and semantic taggers) is usually evaluated against 

human-annotated gold standards. Following this approach, the SnoMedTagger, which was 

developed on the basis of rule-patterns, was evaluated against two human annotated gold 

standard test datasets (described in ‎Chapter 5). In addition, the performance of SnoMedTagger 

was also compared with the performance of the following systems. 

1. Baseline system (SNOMED CT dictionary application). 

2. SVM-based machine learning system. 

3. Ontology-based BioPortal web annotator. 

The evaluation using the two datasets proved that the SnoMedTagger can be applied on datasets 

that were quite different in origin and nature. Furthermore, the comparison with the other 

systems reviewed its performance against other approaches/methods. After these evaluations, 

the semantic information that was identified by SnoMedTagger was also validated by two 

domain experts. This validation identified changes which have helped in improving the refined 

dictionaries used by the SnoMedTagger. 

The following sections describe in detail the evaluation and validation that was carried out. 

First, the performance of the baseline system, the SnoMedTagger, the BioPortal web annotator 

and an SVM-based system was evaluated against the two gold standard test datasets; then, the 

performance of SnoMedTagger was compared with the performance of the other three systems. 

Lastly, the semantic information in the form of the output concepts was validated by two 

domain experts who were not the original annotators. To the best of our knowledge, 

SnoMedTagger is the first semantic tagger for medical narratives that has been developed using 
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globally known semantic categories derived from SNOMED CT (Hina, Atwell and Johnson 

2013a; Hina, Atwell and Johnson 2013b) and methodologically evaluated and validated on more 

than one human-annotated datasets. 

The standard metrics of recall, precision and f-measure were used in all the evaluations. These 

metrics are defined as follows. 

Recall is the percentage measurement that shows the number of correctly identified terms. The 

higher the recall rate, the better the system is in identifying correct terms. Terms represent 

concepts in this research. Recall is calculated using this formula; 

       
  

     
 

Here, 

tp = True positives: Correct concepts that should be identified. 

fn= False negatives: Concepts that should match but did not match by the application. 

Precision is the percentage measurement that shows the number of identified terms (concepts) 

regardless of whether the system failed to retrieve correct terms. The formula used for 

calculating precision is as follows; 

          
  

     
 

Here, 

fp = False positives: Concepts that matched by the application but should not be identified. 

‘F-measure’ is the percentage measurement that shows the trade-off between ‘Precision’ and 

‘Recall’. This was calculated using following formula; 
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The following analyses are based on the recall, precision and f-measure of the individual 

semantic categories. In addition, a micro summary which provides the recall, precision and f-

measure of the whole corpus, was used to compare the different systems. 

7.2 Evaluation of baseline system using gold standard test 

datasets 

As described in Section ‎4.3, a baseline system was developed using the dictionaries of semantic 

categories that were derived from SNOMED CT. This baseline system was tested on gold 

standard test datasets annotated by domain experts that were described in ‎Chapter 5. The 

baseline results were used to monitor the performance of SnoMedTagger during development 

and for comparison against other methods.  

The baseline results for the Test dataset 1 are tabulated in Table ‎7-1. These results indicate that 

the baseline system did not perform satisfactorily on the individual semantic categories. The 

semantic categories ‘Attribute’ and ‘Person’ are an exception.  

Table ‎7-1: Evaluation of baseline system against gold standard Test dataset 1. 

Semantic categories 
True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 285 299 95 74 83 

BodyStructure 4 25 15 40 22 

Disorder 30 167 19 86 31 

Environment 24 74 48 96 64 

Findings 108 244 46 78 58 

ObservableEntity 129 171 75 69 72 

Occupation 16 68 26 67 37 

Organism Not present 

Person 164 200 83 98 90 

PhysicalObject 0 40 0 0 0 

Procedure 39 125 34 83 48 

ProductorSubstance 134 222 64 58 61 

QualifierValue 492 848 58 52 55 

RecordArtifact 0 17 0 0 0 

Regime/Therapy 23 96 28 70 40 

Situation 37 76 51 86 64 

Micro summary 1485 2672 58 65 62 
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Most of the concepts in the semantic category ‘Attribute’ were single word concepts. As a result 

of this, the baseline system, which is based on dictionaries, identified a large number of 

‘Attribute’ concepts in the Test dataset 1. In case of the semantic category ‘Person’, 164 out of 

200 concepts were correctly identified by the baseline system, thus resulting in a high f-measure 

value of 90%. This can be attributed to the fact that only a few relevant multiword concepts 

were present in the Test dataset 1. The concepts associated with the semantic category 

‘Organism’ 
9
 were not present in the Test dataset 1. Thus, the performance metrics for this 

semantic category could not be calculated for this dataset. 

The results of the evaluation of the baseline system, using Test dataset 2, are provided in 

Table ‎7-2. As in the case of evaluation using Test dataset 1, the high f-measure for the semantic 

category ‘Attribute’ was related to the fact that the Test dataset 2 also contained a large number 

of single word concepts associated with this semantic category.  

Table ‎7-2: Evaluation of baseline system against gold standard Test dataset 2. 

Semantic categories 
True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 1369 1500 91 77 83 

BodyStructure 195 1445 13 86 23 

Disorder 693 1442 48 94 64 

Environment 268 532 50 87 64 

Findings 715 2958 24 80 37 

ObservableEntity 202 1195 17 68 27 

Occupation 34 222 15 87 26 

Organism 20 57 35 61 44 

Person 505 654 77 99 87 

PhysicalObject 47 630 7 72 14 

Procedure 630 2300 27 96 43 

ProductorSubstance 864 1619 53 86 66 

QualifierValue 3583 5440 66 57 61 

RecordArtifact 56 130 43 100 60 

Regime/Therapy 32 408 8 64 14 

Situation 54 321 17 42 24 

Micro Summary 9267 20853 44 71 55 

 

                                                      
9
 False positives for the semantic category ‘Organism’ were not identified. 
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Similarly, all the single word ‘Person’ concepts in the Test dataset 2 were identified by the 

baseline system. However, the multiword concepts were left unidentified, resulting in lowering 

the recall rate to 77% for this semantic category. The evaluation of the baseline system for the 

semantic category ‘Organism’ was done using Test dataset 2. Out of 57 ‘Organism’ concepts 

that were present in the Test dataset 2, only 20 concepts were identified by the baseline system. 

The evaluation presented above indicated clearly that the baseline system did not perform 

satisfactorily for almost all of the semantic categories in the two test datasets. Thus, it was 

concluded that the use of dictionary-based approach is not appropriate for identification of 

semantic information in medical narratives.  

7.3 Evaluation of SnoMedTagger using the gold standard 

test datasets 

As described in ‎Chapter 6, the SnoMedTagger was developed by considering the language 

issues (Table ‎4-5) in the concepts that were not identified by the baseline system. The 

SnoMedTagger was then evaluated using the gold standard test datasets. The results of these 

evaluations are discussed in the following text. The results of evaluation of the SnoMedTagger, 

using Test dataset 1, are presented in Table ‎7-3. These results clearly indicate that the 

SnoMedTagger performed better than the baseline system. This is depicted in Figure ‎7-1. 

Generally, the recall, precision and f-measure were considerably greater compared to those 

achieved by the baseline system. This can be attributed to the superior capability of the 

developed rule patterns to identify semantic information. 

For instance, the baseline system did not identify any of the concepts in the semantic categories 

‘Physical Object’ and ‘Record Artifact’. In contrast, the performance the SnoMedTagger was 

remarkably high as indicated by f-measure score of 84% and 65% for these two semantic 

categories, respectively. 
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Figure ‎7-1: Overall comparison of the baseline system and the SnoMedTagger on Test dataset 1. 

 

Similarly, the rule-patterns that were developed resulted in the correct identification of 

multiword concepts in the semantic category ‘Person’. As a result, the f-measure achieved by 

the SnoMedTagger for this category was 8% higher compared to that achieved by the baseline 

system.  

Table ‎7-3: Evaluation of SnoMedTagger against gold standard Test dataset 1. 

Semantic 

Categories 

True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 277 299 93 80 86 

BodyStructure 24 25 92 65 76 

Disorder 125 167 75 81 78 

Environment 48 74 65 87 74 

Findings 171 244 70 59 64 

ObservableEntity 120 171 70 70 70 

Occupation 59 68 87 73 79 

Organism Not present 

Person 196 200 98 98 98 

PhysicalObject 38 40 95 75 84 

Procedure 108 125 86 50 63 

ProductorSubstance 191 222 86 79 83 

QualifierValue 693 848 82 65 72 

RecordArtifact 10 17 59 71 65 

Regime/Therapy 81 96 84 78 81 

Situation 60 76 79 79 79 

Micro summary 2201 2672 82 71 76 

 

Baseline

SnoMedTagger

0 10 20 30 40 50 60 70 80

%

S
y
s
te

m
s

 F-measure

 Precision

 Recall



133 

 

The results of evaluation of the SnoMedTagger, using Test dataset 2, are presented in Table ‎7-4. 

The results clearly indicate that the SnoMedTagger performed considerably better than the 

baseline system, as depicted in Figure ‎7-2. 

 

Figure ‎7-2: Overall comparison of the baseline system and the SnoMedTagger on Test dataset 2. 

 

Table ‎7-4: Evaluation of SnoMedTagger against gold standard Test dataset 2. 

Semantic categories 
True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 1480 1500 99 85 91 

BodyStructure 1169 1445 81 97 88 

Disorder 1062 1442 74 98 84 

Environment 420 532 79 94 86 

Findings 1461 2958 49 84 62 

ObservableEntity 370 1195 31 81 45 

Occupation 138 222 62 77 69 

Organism 25 57 44 34 38 

Person 587 654 90 99 94 

PhysicalObject 482 630 77 81 79 

Procedure 1841 2300 80 96 87 

ProductorSubstance 1134 1619 70 98 82 

QualifierValue 5379 5440 99 85 91 

RecordArtifact 124 130 95 87 91 

Regime/Therapy 75 408 18 88 30 

Situation 233 321 73 46 56 

Micro Summary 15980 20853 77 87 82 
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It can be seen from the results that the SnoMedTagger achieved low f-measures for the semantic 

categories such as ‘Findings’, ‘Observable Entity’, ‘Regime/Therapy’ and ‘Situation’. This was 

due to the fact that the Test dataset 2 was different in terms of content from Test dataset 1. In 

addition to this fact, Test dataset 2 contained large number of concepts for each individual 

semantic category than the Test dataset 1. 

The semantic category ‘Organism’ is also an exception. For this semantic category, the 

SnoMedTagger achieved f-measure of 38% while the baseline system achieved f-measure of 

44%. However, it was noted that the recall score achieved by the SnoMedTagger was 9% higher 

than that achieved by the baseline system. This is because of the fact that the Development 

dataset contained only 7 ‘Organism’ concepts out of which 3 were identified by the baseline 

system. Thus, we were unable to develop the rule-patterns on the basis of the analysis of an 

appropriately large number of ‘Organism’ concepts. 

In summary, the evaluation of the SnoMedTagger presented above indicates that the developed 

rule-patterns can be applied on different datasets (medical narratives) for the identification of 

semantic information. For the comparison of rule-based approach of SnoMedTagger with other 

approaches, ontology-based BioPortal web annotator and SVM-based machine learning system 

was tested using same gold standard test datasets, explained in the next sections. 

7.4 Evaluation of BioPortal web annotator using gold 

standard test datasets 

‘BioPortal’ is a web portal which provides a selection of over 300 ontologies from the  

biological and medical domain (Noy et al. 2009). In this research, Bioportal web annotator was 

employed to annotate the test datasets using the SNOMED CT ontology. The Bioportal web 

annotator provides Python client code for the annotation of large datasets. This code was used to 

annotate the concepts in Test dataset 1 and Test dataset 2 with the selected 16 SNOMED CT 

semantic categories. These annotations were then compared against the two human-annotated 

gold standard test datasets.  



135 

 

The results of evaluation of the Bioportal web annotator, using Test dataset 1, are tabulated in 

Table ‎7-5. In comparison to the baseline system and the SnoMedTagger, the performance of 

Bioportal web annotator was inferior in case of the semantic category ‘Attribute’. This is 

depicted in Figure ‎7-3. This is because a number of linkage-type ‘Attribute’ concepts identified 

by domain experts in the Test dataset 1 were not identified by the Bioportal web annotator. 

Examples of such concepts are ‘with’, ‘after’, ‘in’ and so in. This is because the BioPortal web 

annotator considered such concepts as stop words in the input text. 

Table ‎7-5: Evaluation of BioPortal web annotator against gold standard Test dataset 1. 

Semantic 

Categories 

True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 74 299 25 43 31 

BodyStructure 14 25 82 30 44 

Disorder 102 167 64 39 48 

Environment 24 74 35 86 50 

Findings 117 244 48 34 40 

ObservableEntity 89 171 53 26 35 

Occupation 55 68 89 62 73 

Organism Not present 

Person 160 200 81 61 70 

PhysicalObject 3 40 10 13 12 

Procedure 48 125 41 36 38 

ProductorSubstance 183 222 88 48 62 

QualifierValue 389 848 46 36 41 

RecordArtifact 2 17 25 100 40 

Regime/Therapy 17 96 21 52 30 

Situation 48 76 67 72 69 

Micro summary 1325 2672 52 40 45 

 

Furthermore, it can be said, on the basis of the performance metrics provided in Table ‎7-5, that 

the BioPortal web annotator did not perform satisfactorily for any of the other semantic 

categories, generally. This was because of the limited language of concepts in the SNOMED CT 

ontology. Thus the ontology can be regarded as inappropriate to deal with the variation in 

writing styles found in medical narratives. This point is also considered in Section ‎5.3.1. 
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Figure ‎7-3: Comparison of baseline system, Bioportal web annotator and SnoMedTagger for the 

semantic category 'Attribute' in Test dataset 1. 

 

In case of the Test dataset 2, the generally low performance of the Bioportal web annotator is 

evident from the data provided in Table ‎7-6. Again, this low performance was due to the limited 

language of concepts in the SNOMED CT ontology.  

Table ‎7-6: Evaluation of BioPortal web annotator against gold standard Test dataset 2. 

Semantic categories 
True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 544 1500 35 64 45 

BodyStructure 863 1445 62 52 57 

Disorder 893 1442 64 49 56 

Environment 303 532 59 54 56 

Findings 959 2958 33 27 30 

ObservableEntity 240 1195 22 43 29 

Occupation 62 222 28 81 42 

Organism 39 57 75 29 41 

Person 506 654 77 75 76 

PhysicalObject 144 630 24 69 35 

Procedure 779 2300 35 49 41 

ProductorSubstance 900 1619 60 36 45 

QualifierValue 3487 5440 62 33 43 

RecordArtifact 29 130 22 94 36 

Regime/Therapy 22 408 6 35 11 

Situation 80 321 23 48 31 

Micro Summary 9850 20853 48 39 43 
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In comparison to the baseline system and the SnoMedTagger, the BioPortal achieved better 

recall rate (75%) in case of the semantic category ‘Organism’. This is presented in Figure ‎7-4.  

 

 

Figure ‎7-4: Comparison of baseline system, BioPortal web annotator and SnoMedTagger for the 

semantic category 'Organism' in Test dataset 2. 

 

This is because the concepts in this semantic category are mostly proper names. Thus, in a 

number of cases, the exact names are present in both the ‘concept table’ and ‘description table’ 

in the SNOMED CT ontology. As a result, the BioPortal identified such concepts more than 

once, resulting in an apparently high recall rate. The low precision for this semantic category 

was because of the fact that a large number of false positives were identified in the Test dataset 

2. 

7.5 Evaluation of an SVM-based machine learning system 

using gold standard test datasets 

To compare the performance of the baseline system and the SnoMedTagger with the 

performance of an appropriate machine learning approach, LibSVM, which was available as 

GATE tool, was used. LibSVM is a Java version of the Support Vector Machines (SVMs) 

package (Li and Shawe-Taylor 2003). In language processing, SVM is well-known for 

classification tasks. The system is capable of learning features with high generalisation using a 
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Kernel function. In the present study, we used a linear Kernel with the extension of multiple 

classifications (‘one vs. others’).  

In case of machine learning, a large annotated data of similar nature is preferred for training and 

testing. This is because such a data facilitates the system in learning the more appropriate 

generic features. However, in this study, we were unable to do so due to resource constraints 

such as the cost of annotating a large dataset. Therefore, for training of the SVM classifier, we 

used the Development dataset that contained 5125 concepts. This was considered a reasonable 

number of concepts for the overall training but the number of concepts associated with 

individual semantic categories was limited. The general feature set, which was used in the 

development of rule-patterns, was also used to train the classifier on the Development dataset.  

Multiple ranges and different features were tested and the best performing features and ranges, 

which are listed below, were used in the training task.  

1. Refined SNOMED CT dictionaries (for chunking individual concepts). 

2. Part-of-speech categories of three words before and three words after the dictionary concepts. 

3. Three words before and three words after the roots of the token. 

4. The type/kind of tokens for learning punctuations 4 words before and 4 words after the term.  

The ranges of features specified above facilitated the system in learning long and multiword 

concepts, while considering granularity levels, from the Development (training) dataset.  

The results of evaluation of the SVM-based system, using the Test dataset 1, are tabulated in 

Table ‎7-7. These results indicate that the SVM-based system achieved high precision rates, 

generally. However, the corresponding recall rates were generally low. This can be attributed to 

the fact that the SVM classifier was unable to predict the correct levels of granularity of the 

annotated concepts in the Test dataset 1. 

The SVM-based system outperformed the baseline system by achieving high f-measures for the 

individual semantic categories, as depicted in Figure ‎7-5. The exceptions to this are the 



139 

 

semantic categories ‘Attribute’, ‘Findings’, ‘Observable Entity’, ‘Qualifier Value’, 

‘Regime/Therapy’ and ‘Situation’. 

Table ‎7-7: Evaluation of SVM-based system against gold standard Test dataset 1. 

Semantic 

Categories 

True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 213 299 71 89 79 

BodyStructure 19 25 73 73 73 

Disorder 77 167 46 92 61 

Environment 38 74 51 95 67 

Findings 89 244 36 76 49 

ObservableEntity 55 171 32 60 42 

Occupation 40 68 59 89 71 

Organism Not present 

Person 173 200 86 98 92 

PhysicalObject 9 40 22 60 33 

Procedure 73 125 58 65 62 

ProductorSubstance 158 222 71 81 76 

QualifierValue 348 848 41 75 53 

RecordArtifact 3 17 18 50 26 

Regime/Therapy 12 96 12 75 21 

Situation 16 76 21 100 35 

Micro summary 1323 2672 49 81 61 

 

 

Figure ‎7-5: Comparison of f-measures of baseline system and SVM-based system on Test 

dataset 1. 
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This was due to the lack of training examples for each semantic category and the data imbalance 

problem that resulted in the biased prediction by the SVM classifier. In addition, the Test 

dataset 1 was different from the training data (Development dataset) in terms of its content and 

its format.  This might also be considered as a reason for the overall low performance of the 

SVM-based system. 

The Test dataset 2 was similar in nature to the training data. Therefore, the performance of the 

SVM-based system was expected to be better on the Test dataset 2. However, from the results 

of evaluation, which are presented in Table ‎7-8, it is evident that the SVM-based system did not 

achieve high f-measures for all of the semantic categories.  

Table ‎7-8: Evaluation of SVM-based system against gold standard Test dataset 2. 

Semantic categories 
True 

positives 

Actual 

concepts 

in Gold 

Standard 

Recall 

(%) 

Precision 

(%) 

F-

measure 

(%) 

Attribute 1168 1500 78 84 81 

BodyStructure 584 1445 40 93 56 

Disorder 527 1442 37 95 53 

Environment 333 532 63 97 76 

Findings 599 2958 20 84 33 

ObservableEntity 115 1195 10 85 17 

Occupation 68 222 31 80 44 

Organism 13 57 23 43 30 

Person 533 654 81 99 89 

PhysicalObject 295 630 47 86 61 

Procedure 903 2300 39 96 56 

ProductorSubstance 734 1619 45 92 61 

QualifierValue 2143 5440 39 82 53 

RecordArtifact 86 130 66 97 79 

Regime/Therapy 31 408 8 78 14 

Situation 35 321 11 50 18 

Micro Summary 8167 20853 39 88 54 

  

In comparison with the baseline results, the SVM-based system achieved low f-measure for the 

semantic categories ‘Attribute’, ‘Disorder’, ‘Findings’, ‘Organism’, ‘Product Or Substance’, 

‘Qualifier Value’ and ‘Situation’ in the Test dataset 2. This is also shown in Figure ‎7-6. The 
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reasons for this include the small size of the training data and the variation in writing styles that 

were found in Test dataset 2. 

 

Figure ‎7-6: Comparison of f-measures of baseline system and SVM-based system on Test 

dataset 2. 

  

In summary, it can be concluded that the primary contributor in the overall low performance of 

the SVM-based system was the lack of training examples in the training data (Development 

dataset). After the evaluation of all approaches on both gold standard test datasets, the 

performance of each system was compared with the performance of SnoMedTagger and this is 

discussed in the next section. 

7.6 Comparison of rule-based SnoMedTagger with other 

systems 

In the preceding sections of this chapter, the results of evaluation of the baseline system, the 

SnoMedTagger, the BioPortal web annotator and the SVM-based system are considered. In this 

section, the performance of the rule-pattern-based SnoMedTagger is compared with the 

performance of the other three systems. Table ‎7-9 provides the recall, precision and f-measure, 

achieved by the various systems, for the individual semantic categories in the Test dataset 1. 

Attribute

Body Structure

Disorder

Environment

Findings

Observable Entity

Occupation

Organism

Person

Physical Object

Procedure

Product or Substance

Qualifier Value

Record Artifact

Regime/Therapy

Situation

0 20 40 60 80

F-measure (%)

S
e

m
a

n
ti
c
 C

a
te

g
o

ri
e

s

 SVM

 Baseline



142 

 

The individual comparisons of performance measurements for each system are also presented in 

Appendix B. 

Table ‎7-9: Comparison of SnoMedTagger with baseline application, BioPortal web annotator 

and SVM-based system using Test dataset 1. 
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Attribute 95 74 83 93 80 86 25 43 31 71 89 79 

BodyStructure 15 40 22 92 65 76 82 30 44 73 73 73 

Disorder 19 86 31 75 81 78 64 39 48 46 92 61 

Environment 48 96 64 65 87 74 35 86 50 51 95 67 

Findings 46 78 58 70 59 64 48 34 40 36 76 49 

ObservableEntity 75 69 72 70 70 70 53 26 35 32 60 42 

Occupation 26 67 37 87 73 79 89 62 73 59 89 71 

Organism Not present 

Person 83 98 90 98 98 98 81 61 70 86 98 92 

PhysicalObject 0 0 0 95 75 84 10 13 12 22 60 33 

Procedure 34 83 48 86 50 63 41 36 38 58 65 62 

ProductorSubstance 64 58 61 86 79 83 88 48 62 71 81 76 

QualifierValue 58 52 55 82 65 72 46 36 41 41 75 53 

RecordArtifact 0 0 0 59 71 65 25 100 40 18 50 26 

Regime/Therapy 28 70 40 84 78 81 21 52 30 12 75 21 

Situation 51 86 64 79 79 79 67 72 69 21 100 35 

Micro summary 58 65 62 82 71 76 52 40 45 49 81 61 
 

It was noted that the overall precision of the SVM-based system was considerably higher 

compared to the precision of other systems. However, due to the generally low recall rates 

achieved by this system for the individual semantic categories, the overall f-measure was low. 

This is because of small number of training examples in the Development dataset (training 

data). In addition to this, Test dataset 1 was different from training data which also contributed 

as a reason of low performance of the SVM-based system. 

In case of SnoMedTagger, it is instructive to mention here that the Test dataset 1 was 

completely different from the Development dataset in terms of content and format. Thus, the 
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generally high recall, precision and f-measure, achieved as a result of evaluation using Test 

dataset 1, established the general applicability of the SnoMedTagger (Hina, Atwell and Johnson 

2013b).  

For the four systems, the results of evaluation using the Test dataset 2 are provided in 

Table ‎7-10. The individual comparisons of performance measurements for each system are also 

presented in Appendix C.  

Table ‎7-10: Comparison of SnoMedTagger with baseline application, BioPortal web annotator 

and SVM-based system using Test dataset 2. 
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Attribute 91 77 83 99 85 91 35 64 45 78 84 81 

BodyStructure 13 86 23 81 97 88 62 52 57 40 93 56 

Disorder 48 94 64 74 98 84 64 49 56 37 95 53 

Environment 50 87 64 79 94 86 59 54 56 63 97 76 

Findings 24 80 37 49 84 62 33 27 30 20 84 33 

ObservableEntity 17 68 27 31 81 45 22 43 29 10 85 17 

Occupation 15 87 26 62 77 69 28 81 42 31 80 44 

Organism 35 61 44 44 34 38 75 29 41 23 43 30 

Person 77 99 87 90 99 94 77 75 76 81 99 89 

PhysicalObject 7 72 14 77 81 79 24 69 35 47 86 61 

Procedure 27 96 43 80 96 87 35 49 41 39 96 56 

ProductorSubstance 53 86 66 70 98 82 60 36 45 45 92 61 

QualifierValue 66 57 61 99 85 91 62 33 43 39 82 53 

RecordArtifact 43 100 60 95 87 91 22 94 36 66 97 79 

Regime/Therapy 8 64 14 18 88 30 6 35 11 8 78 14 

Situation 17 42 24 73 46 56 23 48 31 11 50 18 

Micro summary 44 71 55 77 87 82 48 39 43 39 88 54 
 

However, Test dataset 2 contained large number of concepts associated with each semantic 

category; SnoMedTagger was able to achieve high f-measure in comparison with the other three 

systems. This ensured that the rule-patterns are generally applicable on different datasets. 
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In terms of the overall comparison on the basis of the micro summaries achieved on both test 

datasets, presented in Figure ‎7-7 and Figure ‎7-8, the following conclusions can be drawn. From 

overall comparison, it is clear that the SnoMedTagger outperformed the other three systems on 

both test datasets regardless of the size and nature. 

 

 

Figure ‎7-7: Overall performance of various systems achieved for Test dataset 1. 

 

 

Figure ‎7-8 Overall performance of various systems achieved for Test dataset 2. 
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In comparison to the other systems that were considered, the application SVM-based system 

achieved higher overall precision for the two datasets. However, the recall rates were 

considerably lower. This can be attributed due to the granularity levels which were not achieved 

within the given constraint that is the small training data. This resulted in less training for each 

individual semantic category. Therefore, it can be concluded that large and balance training data 

can contribute to the general applicability of machine learning approach on different datasets.  

As expected, the overall performance of the ontology-based Bioportal web annotator was 

inferior in comparison to the performance of the other systems. This is valid for both the Test 

dataset 1 and Test dataset 2 and it can be considered as a clear indication of the fact that 

concepts in the SNOMED CT clinical controlled vocabulary are insufficient to identify 

semantic information in medical narratives. Although, the SNOMED CT clinical vocabulary 

cannot be directly incorporated within medical narratives, it still served as a useful resource to 

recognise the gap between controlled vocabularies and medical narratives. 

7.7 Validation of the output of the SnoMedTagger 

It was considered to be important to validate the output of the SnoMedTagger. Output here 

refers to the semantic information identified by the SnoMedTagger and classified into various 

semantic categories. For validation, two general practitioners
10

 (who were not the original 

annotators) checked the following aspects in the output of the SnoMedTagger.  

 Classification of a concept in the correct semantic category. 

 Possibility of a concept belonging to more than one semantic category. 

 Identification of the complete boundaries of a concept. 

The rule-patterns and the dictionaries were updated in the light of the feedback given by the 

general practitioners. Some of the more important points that were raised and the measures 

taken to deal with the same are now presented.  

                                                      
10

 1. Dr. Marc Jamoulle, Family doctor, Health data management specialist. 

   2. Dr. Richard Gwent Jones, Consultant, Leeds Teaching Hospitals NHS Trust. 
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Few multiword concepts, such as ‘Chronic RBC’, were incorrectly identified by the 

SnoMedTagger as ‘Body Structure’. At the same time, ‘RBC’ was correctly identified as ‘Body 

Structure’. To resolve this problem, the concept value ‘chronic’ was restricted for the rule-

pattern that identified ‘chronic RBC’ as ‘Body Structure’. This was done because the rule-

pattern “({QualifierValue}{sp}{BodyStructure})” is generic, therefore, it can not be removed 

from the application. Furthermore, removing ‘chronic’ from the dictionary is likely to affect the 

general applicability of other rule-patterns. 

Classification of concepts such as ‘no lymphadenopathy’ and ‘no hepatosplenomegaly’ in the 

semantic category ‘Disorder’ was regarded as incorrect. This is because both the general 

practitioners were of the opinion that ‘no disorder’ is not a disorder. The rule-pattern that 

identified such concepts is “({QualifierValue}{sp}{Disorder})” where “no” is the “Qualifier 

Value” and “lymphadenopathy” or “hepatosplenomegaly” are the “Disorder”. This rule-pattern 

is generic; therefore, instead of removing the rule-pattern, concept value ‘no’ was restricted for 

this specific pattern. 

Furthermore, on the basis of personal experience of writing consultations, the general 

practitioners (GPs) suggested adding some of the concepts that are commonly used in medical 

narratives. Examples include ‘internal’, ‘external’, ‘lateral’, ‘lower’, ‘upper’, etc. Since these 

concepts were already present in the dictionary of ‘Qualifier Value’ and GPs were unaware of 

the concepts present in dictionaries, no further action was required in this case. 

The GPs suggested that concepts such as Aerosol, capsule, suspension, graft, etc., which were 

classified into the semantic category ‘Product Or Substance’, also belong to the semantic 

category ‘PhysicalObject’. Therefore, after getting consent of the reviewers annotators (domain 

experts involved in annotation of gold standard), such concepts were added in the dictionary of 

‘Physical Object’. 

7.8 Summary 

This chapter explained the complete evaluation and validation carried out for the 

SnoMedTagger. SnoMedTagger was first evaluated using two different gold standard test 
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datasets (Test dataset 1, Test dataset 2). Then, the performance of the baseline system, the 

BioPortal web annotator and the SVM-based system was compared with the performance of the 

rule-based SnoMedTagger. 

SnoMedTagger not only improved the f-measures up to 14%-27% against the baseline system 

using gold standard test datasets but also outperformed the ontology-based BioPortal web 

annotator and the SVM-based machine learning system. Other than the evaluation of 

SnoMedTagger against different systems, the output concepts were also validated by two 

domain experts and on the basis of their feedback, dictionaries and rule-patterns were updated. 

Although, SnoMedTagger was evaluated and validated properly, still there are some limitations 

which can be tackled as part of future work, explained in the next chapter. 
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Chapter 8. Conclusions 

The primary aim of this research was achieved by developing SnoMedTagger, which is a 

generic semantic tagger for medical narratives. The development process of the SnoMedTagger 

presented a number of challenges. The means devised to tackle these challenges are reported as 

secondary contributions of this research. This chapter summarises the outcomes of the claimed 

contributions. In addition, the limitations of this work are stated so is the potential future work. 

8.1 Summary of the results 

Primary Contribution: 

The main contribution of this research is the development of SnoMedTagger – SNOMED CT 

Medical Tagger.  The SnoMedTagger was developed using SNOMED CT, which is the 

international healthcare clinical terminology. To the best of our knowledge, SnoMedTagger is 

the first semantic tagger which can be used by researchers to identify semantic information in 

medical narratives and classify this information into globally known semantic categories that 

are derived from SNOMED CT. It has been shown in this work that the SnoMedTagger is able 

to identify and classify individual concepts, paraphrases of concepts, abbreviations of concepts 

and complex multiword concepts. Details of the development of the SnoMedTagger have been 

published, so are the results of its performance testing (Hina, Atwell and Johnson 2013b). The 

SnoMedTagger is available from http://www.comp.leeds.ac.uk/scsh/SnoMedTagger.html. 

Secondary Contributions: 

The challenges tackled during the development of SnoMedTagger were categorised as 

secondary contributions. This was done because there were no standard methods existed to 

tackle these challenges. The results of these challenges are summarised as follows. 

 Methodological evaluation and validation of SnoMedTagger - To prove the significance 

and applicability of main contribution, a comprehensive methodological evaluation and 

validation was carried out in this research which was not previously done for some state-of-

http://www.comp.leeds.ac.uk/scsh/SnoMedTagger.html
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the-art systems such as MetaMap (Aronson and Lang 2010). The evaluation of 

SnoMedTagger was done on the basis of two different gold standard test datasets that were 

annotated by two domain experts. On Test dataset 1, SnoMedTagger performed reasonably 

well and achieved an overall recall of 82%, 71% precision and 76% of f-measure; while on 

Test dataset 2, it scored 77% recall, a high precision of 87% and 82% on f-measure.  

These performance measurements demonstrated the applicability of SnoMedTagger on 

different datasets. In order to compare the rule-based approach of SnoMedTagger, the 

results were also compared against other approaches (baseline system - SNOMED CT 

dictionary application, an ontology-based BioPortal web annotator and an SVM-based 

machine learning system). SnoMedTagger outperformed all three systems with an 

improvement in accuracy of 14% against the baseline system, 31% against the existing 

ontology-based BioPortal web annotator and 15% against the SVM-based machine learning 

system on Test dataset 1 (Hina, Atwell and Johnson 2013b; Hina, Atwell and Johnson 

2013a). On Test dataset 2, SnoMedTagger achieved better f-measure with an improvement 

of 27% against the baseline system, 39% against the BioPortal web annotator and 28% 

against the SVM-based system.  

In the case of individual performance measurements (recall, precision and f- measure), the 

SVM-based machine learning system achieved high precision on both test datasets but very 

low recall because of different levels of granularity in the identification of multiword 

concepts. This low recall rate decreased the overall f-measure of this method as compared to 

overall f-measure achieved by SnoMedTagger. In the case of the machine learning method, 

it was difficult to achieve general applicability because it can only perform better in the case 

of similar data (training and test). On the other hand, the ontology-based BioPortal web 

annotator overall achieved low scores on both datasets because of the inappropriateness of 

controlled vocabularies. 

After the evaluation against gold standard test datasets and systems using different 

approaches, the output concepts from both datasets were validated by two different domain 
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experts. On the basis of feedback obtained from said domain experts, rules were re-analysed 

and dictionaries were updated. 

 Anonymization module – Besides the Development dataset and the Test dataset 2, which 

were selected from the i2b2 challenge corpus, another test dataset was required to test the 

performance of SnoMedTagger on different datasets. Therefore, a test dataset, which is 

referred to as Test dataset 1 in this work, was extracted from ‘SystmOne’. The Test dataset 

1 was representative of real data and contained fictional information of patients associated 

with four PHI categories. Therefore, anonymization of the Test dataset 1 was required.  

The existing anonymization systems were developed for corpora of different nature and for 

different PHI categories. Thus, these systems were considered inappropriate for 

anonymization of the Test dataset 1, which contained a mixture of natural language and 

clinical codes. For this reason, an anonymization module was developed for the Test dataset 

1. Evaluation against the gold standard ‘Evaluation set’ showed that the overall f-measure 

achieved by the developed anonymization module was 24% higher compared to that 

achieved by the baseline system (Hina et al. 2013). This anonymization module was also 

contributed in a project that aimed to make real-data available for researchers within cloud 

based Virtual Research Environment – VRE (Smith et al. 2013). 

 Annotation guidelines for medical narratives - To develop a gold standard corpus for the 

development and the evaluation of SnoMedTagger, general annotation guidelines were 

produced on the basis of language issues (e.g., paraphrases of concepts, abbreviations of 

concepts, and complex multiword concepts) that were identified by the baseline system 

(Hina, Atwell and Johnson 2011). For the validation of annotation guidelines, a non-domain 

user annotated the Development dataset. This annotated dataset was then reviewed by a 

domain expert who agreed on more than 90% of the annotations. After this validation, two 

domain experts followed these guidelines and used the semi-automatic approach to annotate 

the Development dataset and the Test dataset 1. However, the Test dataset 2 was annotated 

using the manual approach, as explained in ‎Chapter 5. Following the aforementioned 

procedure, high inter-annotator agreement scores ranging between 86% - 95.25% were 
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achieved. This indicated that the annotation guidelines can be reliably applied on different 

datasets. 

8.2 Limitations and suggestions for future work 

The SnoMedTagger can be employed for extraction of semantic information from medical 

narratives. However, there are limitations, which are listed as follows, so are the suggested 

actions to overcome these limitations. 

 The annotation guidelines for the annotation of gold standard dataset were used by 

domain experts and also by non-domain users. However, the inter-annotator agreement 

was not calculated in the case of non-domain users. Thus, in order to establish the utility 

of annotation guidelines for non-domain users, it is suggested to compare the inter-

annotator agreement scores for non-domain users with the inter-annotator agreement 

scores for domain experts.  

 To achieve general applicability of the SnoMedTagger, all of the annotated concepts in 

the gold standard and most of the concepts in the dictionaries were refined 

(Section ‎6.1.2). The long, multiword concepts in the dictionary that could not be refined 

due to time constraints were left in their original form. Thus, a proposed direction for 

further work is to analyse and refine such concepts followed by reformulation of the 

SnoMedTagger to achieve more detailed levels of granularity. 

 In the evaluation of SnoMedTagger on Test dataset 2, it was found that the application 

did not achieve impressive f-measures for semantic categories ‘Findings’, ‘Observable 

Entity’, ‘Regime/Therapy’ and ‘Situation’. This leads to another potential future work 

which will involve the evaluation of SnoMedTagger on specific test cases. Such test 

cases, preferably designed by domain experts, should contain multiword concepts 

selected from different datasets. The evaluation of the performance of SnoMedTagger 

will provide a basis for improving the generic rule-patterns for the above mentioned 

semantic categories. 
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 Since the performance of SVM based system (Section ‎7.5) was restricted due to small 

size of training set. Another interesting future work could involve using whole of the 

data used in this research as training set and obtaining another dataset as test set. 

 It is important to note that SNOMED CT is updated annually. As a result, the 

dictionaries used in the SnoMedTagger may need to be updated in case of addition of 

new concepts in the SNOMED CT. 

 On the basis of the limitations listed below, the evaluation of the anonymization module 

on different corpora and its modification (if required) to make it generally applicable 

are suggested as potential future work. 

 The module was developed for a specific corpus (Test dataset 1) that contained a 

mixture of medical narratives and clinical codes. In addition, the four PHI 

categories in this module are specific to the corpus that was used in this work.  

 Due to resource constraints, the performance of the rule-based anonymization 

module was not evaluated against any other corpus. For the same reason, the 

performance of the rule-based approach was not compared with the performance of 

other approaches such as machine learning approach. 

The potential applications of SnoMedTagger are also considered as part of future work. This 

involves using SnoMedTagger for developing question-answering systems such as ‘finding 

cause of death in verbal autopsies’. For this research question, the SnoMedTagger was explored 

for the extraction of features to be used in a machine learning system (Danso et al. 2013). These 

features are relevant semantic categories which will contribute in training a classifier for finding 

cause of death in verbal autopsies. Another future application for the above mentioned research 

question is an extended rule-based system which will use the semantic categories ‘Findings’ and 

‘Disorder’. Using the SnoMedTagger, these semantic categories will be extracted as potential 

features to identify ‘cause of death’ in verbal autopsies. The results will then be evaluated 

against machine learning system. 
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SnoMedTagger can also be used in finding relationships between relevant semantic information 

in medical narratives. For instance, findings the relationship between ‘Disorder’ and ‘Product or 

Substance’ for answering research question such as ‘Which medication is prescribed for which 

disease?’ or ‘Finding diagnosis and treatment information in patient’s consultation notes’, etc. 

A researcher at Kyung Hee University (South Korea) has contacted me to use our semantic 

tagger in her research on interoperability of concepts in discharge summaries and SNOMED CT 

healthcare terminology. In particular, her research is to investigate the ability of a system to 

exchange information between SNOMED CT healthcare terminology codes and the text written 

in discharge summaries. This will also lead to a future research application that will extract 

semantic information from medical narratives using SnoMedTagger and then use it to codify 

relevant concepts in SNOMED CT health care terminology. 

In addition, a medical doctor also wants to use SnoMedTagger for knowledge extraction from 

health records that are based on SNOMED CT. SnoMedTagger was implemented as a GATE 

application and relied on using other GATE components. Therefore, contributing it to the 

GATE open source tool is one way of making it available for the research community. 

An enormous amount of patient’s data exists in textual reports. This data needs to be processed 

and encoded in timely manner. This will require domain experts to manually analyse and 

encode important information in the text. This approach is time consuming and impractical. The 

use of SnoMedTagger will also be helpful in reducing human effort to analyse important 

information that resides in large volumes of patient records. However, the reliability of this 

analysis needs prior check on the selection of best performing semantic categories.  

On the basis of evaluation and practical applications discussed in this thesis, it can be concluded 

that the SnoMedTagger can be used by researchers working on research questions that involve 

medical narratives.  
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Appendices 

Appendix A : SNOMED CT fact sheet 

SNOMED CT 

Semantic 

Categories 

Description Examples 

Attribute Attribute is the sub-class of top-level concept 

class ‘linkage concept’. The concepts in this 

category are used to construct relationships 

between SNOMED CT concepts which can then 

be used to define the logical meaning of a 

concept. 

Associated with, 

after, causing, 

date, due to, 

during, etc. 

Body Structure Concepts in this category include normal and 

abnormal anatomical structures. Normal 

anatomical structures specify the body site 

involved by a disease or procedure. 

Zone of lung, 

heart tissue, ear 

structure, ear hair, 

entire heart, etc. 

Disorder  Disorder is the sub-class of top-level concept 

category ‘clinical findings’. Concepts under this 

category are descendants of ‘disease’ and refer to 

abnormal clinical states. 

Tuberculosis, 

burn shock, 

busitis of hand, 

buruli ulcer. 

Environment This semantic category contains all types of 

environments and locations.  

Home, hospital, 

warehouse, yard, 

zoo, I.C.U., etc. 

Findings Concepts which are results of clinical 

observations or examinations. These include 

normal and abnormal clinical states. 

Able to run, 

absence of toe, 

anxiety, death, 

etc. 

Observable Entity This top-level semantic category represents 

question or procedure which can produce an 

answer or a result. These entities can also be used 

as an element where a value can be assigned. 

For instance,  | Left ventricular end-diastolic 

pressure (observable entity) | could be interpreted 

as the question, “What is the left ventricular end 

diastolic pressure?” or “What is the measured left 

ventricular end-diastolic pressure?” 

Observables are entities that could be used to code 

elements on a checklist or any element where a 

value can be assigned. | Color of nail (observable 

entity) | is an observable. | Gray nails (finding) | is 

a finding. 

One use for | Observable entity | in a clinical 

record is to code headers on a template. For 

example,  | Gender (observable entity) | could be 

used to code a section of a template titled 

“Gender” where the user would choose “male” or 

“female”. “Female gender” would then constitute 

a finding. 

‘colour of nail’, 

‘age’, ‘gender’, 

‘length of ulna’, 

‘blood pressure’, 

etc. 

Occupation It is a sub-class of the top-level concept class 

‘social context’ and contains all concepts which 

are occupations. 

‘doctor’, ‘general 

practitioner’, 

‘nurse’, ‘clerk’, 
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SNOMED CT 

Semantic 

Categories 

Description Examples 

‘manager’, 

‘actor’, etc. 

Organism  Concepts in this category include organisms of 

significance in human and animal medicine or in 

modelling the causes of diseases. 

‘algae’, ‘alnus’, 

‘amoeba’, ‘black 

fly’, 

‘cryptocotyle’, 

etc. 

Person  It is another sub-class of the top-level concept 

category ‘social context’ and contains concepts 

which can be referred to as a person. 

‘employer’, 

‘patient’, ‘baby’, 

‘father’, etc. 

Physical Object Concepts in this category include natural or man-

made objects or objects used to model the 

concepts in the ‘procedure’ category. 

‘book’, ‘needle’, 

‘boiler’, ‘cloth’, 

etc.  

Procedure Concepts in this category include activities 

performed in the provision of health care.  

‘radiography’, 

‘measles 

vaccination’, 

‘operation on the 

ear’, ‘optimal 

surgery’, etc.  

Product Or 

Substance 

For the present study, two top-level concept 

categories ‘pharmaceutical/biological product’ 

and ‘substance’ were combined to form this 

semantic type. This was done on the basis of 

observation that these two semantic types were 

interchangeably used frequently in the medical 

narratives. However, in SNOMED CT the concept 

category ‘pharmaceutical/biological product’ 

contains drug products and ‘substance’ contains 

chemical constituents of drug products (in the 

‘pharmaceutical/biological product’ category), 

food and chemical allergens, adverse reactions 

and toxicity information 

‘vancomycin’ 

(Product), ‘VAL 

syrup’, ‘topical 

from Zinc’ 

(Product), sodium 

citrate 

(substance), etc.  

Qualifier Value The  | Qualifier value | hierarchy contains some of 

the concepts used as values for SNOMED CT 

attributes that are not contained elsewhere in 

SNOMED CT. Such a code may be used as the 

value of an attribute in a defining Relationship in 

pre-coordinated definitions, and/or as the value of 

an attribute in a qualifier in a post-coordinated 

expression. However, the values for attributes are 

not limited to this hierarchy and are also found in 

hierarchies other than | Qualifier value |. 

For example, the value for the attribute  | 

LATERALITY | in the concept shown below is 

taken from the | 

Qualifier value | hierarchy: 

• | Left kidney structure | | LATERALITY | | Left 

|. 

However, the value for the attribute  | FINDING 

SITE | in the concept shown below is taken from 

the | Body 

‘left’, ‘right’, 

‘first’, ‘upper’, 

‘unit of rate’, 

‘simple’, etc. 



156 

 

SNOMED CT 

Semantic 

Categories 

Description Examples 

Structure | hierarchy, not the | Qualifier value | 

hierarchy. 

• | Pneumonia | | FINDING SITE | | Lung structure 

|.  

Record Artifact   Concepts in this category are entities created by a 

‘person’ to provide information on events or 

records. 

‘death summary’, 

‘discharge 

summary’, 

‘summary report’, 

‘radiology report’, 

etc. 

Regime/Therapy It is a sub-class of top-level category ‘procedure’ 

and includes concepts focal in the ‘procedure’. 

‘art therapy’, 

‘cold therapy, ‘ear 

care’, dying care’, 

etc. 

Situation  Concepts in the  | Procedure | and |Clinical 

finding| hierarchies (given the appropriate record 

structure) can be used in a clinical record to 

represent: 

• Conditions and procedures that have not yet 

occurred (e.g. | Endoscopy arranged (situation) |); 

• Conditions and procedures that refer to someone 

other than the patient (e.g. | Family history: 

Diabetes mellitus (situation) |,  | Discussed with 

next of kin (situation) |); 

• Conditions and procedures that have occurred at 

some time prior to the time of the current entry in 

the record (e.g. | History of - aortic aneurysm 

(situation) |, |History of - splenectomy 

(situation)|). 

In each of these examples, clinical context is 

specified. The second example, in which someone 

other than the patient is the focus of the concept, 

could be represented in an application or record 

structure by combining a header term Family 

history with the value Diabetes. The specific 

context (in this case, family history) would be 

represented using the record structure. In this 

case, the pre-coordinated context-dependent 

concept | Family history: Diabetes mellitus 

(situation) | would not be used because the 

information model has already captured the 

family history aspect of the diabetes. 

Concepts in the  | Procedure | and |Clinical 

finding| hierarchy have a default context of the 

following: 

• The procedure has actually occurred(versus 

being planned or cancelled ) or the finding is 

actually present (versus being ruled out, or 

considered); 

• The procedure or finding being recorded refers 

to the patient of record (versus, for example, a 

‘history of 

anemia’, ‘family 

history’, ‘no 

nausea’, etc. 
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SNOMED CT 

Semantic 

Categories 

Description Examples 

family member); 

 • The procedure or finding is occurring now or at 

a specified time (versus some time in the past). 

In addition to using the record structure to 

represent context, there is sometimes a need to 

override these defaults and specify a particular 

context using the formal logic of the terminology. 

For that reason, SNOMED CT has developed a 

context model to allow users and/or implementers 

to specify context using the terminology, without 

depending on a particular record structure. The | 

Situation with explicit context | hierarchy and 

various attributes assigned to concepts in this 

hierarchy accomplish this. 
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Appendix B: Performance of various systems with respect to 

each semantic category in Test dataset 1 

 

Figure B - 1: Overall recalls (%) achieved by various systems on Test dataset 1. 

 

 

Figure B - 2: Overall precisions (%) achieved by various systems on Test dataset 1. 
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Figure B - 3: Overall f-measures (%) achieved by various systems on Test dataset 1. 

  

Attribute

BodyStructure

Disorder

Environment

Findings

ObservableEntity

Occupation

Person

PhysicalObject

Procedure

ProductorSubstance

QualifierValue

RecordArtifact

Regime/Therapy

Situation

0 20 40 60 80 100

%

S
e

m
a

n
ti
c
 c

a
te

g
o

ri
e

s

 SVM

 Bioportal

 SnoMedTagger

 Baseline 



160 

 

Appendix C: Performance of various systems with respect to 

each semantic category in Test dataset 2 

 
Figure C - 1: Overall recalls (%) achieved by various systems on Test dataset 2. 

 

 

 
Figure C - 2: Overall precisions (%) achieved by various systems on Test dataset 2. 

 

 

Attribute

BodyStructure

Disorder

Environment

Findings

ObservableEntity

Occupation

Organism

Person

PhysicalObject

Procedure

ProductorSubstance

QualifierValue

RecordArtifact

Regime/Therapy

Situation

0 20 40 60 80 100

%

S
e

m
a

n
ti
c
 c

a
te

g
o

ri
e

s

 SVM

 Bioportal

 SnoMedTagger

 Baseline 

Attribute

BodyStructure

Disorder

Environment

Findings

ObservableEntity

Occupation

Organism

Person

PhysicalObject

Procedure

ProductorSubstance

QualifierValue

RecordArtifact

Regime/Therapy

Situation

0 20 40 60 80 100

%

S
e

m
a

n
ti
c
 c

a
te

g
o

ri
e

s

 SVM

 Bioportal

 SnoMedTagger

 Baseline 



161 

 

 

Figure C - 3: Overall f-measure (%) achieved by various systems on Test dataset 2. 
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