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Abstract 

A mechanistic investigation into the catalytic activity of half-sandwich ruthenium 

complexes, [Ru(η
5
-C5H5)(L)3]

+
 (where L = phosphorus- or nitrogen- donating ligands ) 

for the alkenylation of pyridine is reported. Mechanistic studies have demonstrated that 

[Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6] is an important intermediate in the formation of E-

2-styrylpyridine derivatives. Collaboration between the reported experimental and 

additional theoretical studies (conducted by David Johnson) has allowed for a catalytic 

cycle for the alkenylation of pyridine to be proposed, highlighting the role of vinylidene 

and pyridylidene ligands.  

A general synthetic procedure for a range of [Ru(η
5
-C5H5)(PR3)(L)2][PF6] complexes 

from [Ru(η
5
-C5H5)(NCMe)3][PF6] was performed, where R = Ph, Me, 

i
Pr, OPh; and L = 

pyridine, 3-methylpyridine, 4-methylpyridine, 4-dimethylaminopyridine, 1-

methylimidazole, t-butylimidazole. The properties of these complexes have been 

investigated.  

The reactivity of [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6] with terminal alkynes was 

investigated in two different reaction media (dichloromethane and pyridine). The 

stoichiometric reaction of [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6] with phenylacetylene in a 

dichloromethane solution generated a vinylidene-containing intermediate [Ru(η
5
-C5H5) 

(PPh3)(NC5H5)(=C=CHPh)][PF6]. This reacts further to produce a pyridylidene-

containing complex [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-C5H4NCH=CHPh)][PF6]. Upon the 

addition of excess pyridine a 1-ruthanaindolizine species is generated. Similar 

observations have been made with alkynes HC≡CR (where R = 4-F-C6H4, 4-CF3-C6H4) 

and [Ru(η
5
-C5H5)(PPh3)(L)2][PF6] (where L = 3-methylpyridine, 4-methylpyridine, 4-

dimethylaminopyridine) and the substituent effects and properties of the pyridylidene-

containing complexes are compared to the literature.  

The addition of phenylacetylene or 4-ethynyl-α,α,α-trifluorotoluene to [Ru(η
5
-C5H5) 

(PPh3)(NC5H5)2][PF6] in a pyridine solution at 50 °C produces 2-substituted E-

styrylpyridine derivatives in a 100 % atom efficient manner. The formation of the 1-

ruthanaindolizine complex results in catalyst deactivation. A range of reaction 

conditions have been investigated to identify the optimum catalyst performance.  
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Chapter 1 

Chapter 1. Introduction 

1.1 Metal complexes in catalysis 

The requirement for greener chemical processes entails that any potential waste by-

products should be avoided, with the ability of reactions to be performed with 100 % 

atom efficiency.
1-3

 Catalysis by transition metal centres allows for these goals to be 

acheived. From understanding how stoichiometric reactions proceed, a shift from 

stoichiometric to catalytic reactions via transition metal complexes provides a route to 

synthesising new carbon-carbon or carbon-heteroatom bonds in a selective manner. A 

higher atom efficiency from the removal of pre-functionalised carbon-halogen bonds 

and methods to selectively functionalise C-H bonds has become more appealing for the 

synthesis of new carbon-carbon, -oxygen or -nitrogen bonds.
4-8

 

Nobel prizes have been awarded in the areas of ‘development of the metathesis method 

in organic synthesis’ in 2005 to Chauvin, Grubbs and Schrock
9-12

 and more recently in 

2010 for the ‘palladium-catalysed cross couplings in organic synthesis’ to Heck, 

Negishi and Suzuki.
13, 14

 The mechanism-driven approach for the development of 

ruthenium catalysts in olefin metathesis lead to the formation of highly active, more 

efficient catalysts for organic and polymer chemistry.
10-12

 The usefulness of palladium 

cross coupling reactions arises from the processes being able to be performed in a 

highly selective manner, with a low catalyst loading. Additionally, there is a high 

functional group tolerance therefore reducing the number steps required to reach the 

final compound.
13-15

   

This introduction will discuss the literature surrounding the significance of transition 

metal complexes in the formation of vinylidene and pyridylidene ligands (in particular 

ruthenium complexes) as they provide a route to more atom economical reactions. 

Several aspects of vinylidene- and pyridylidene-containing complexes will be covered, 

including the mechanism through which these ligands are generated, their bonding and 

properties and lastly their roles as reactive intermediates for potential applications in the 

catalytic transformation of organic molecules is highlighted. Finally, the ruthenium-

catalysed alkenylation reaction of pyridine is mentioned to lay a foundation for the 

research described in this thesis.   
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1.2 Ligands and substituent effects 

The coordination of ligands to transition metal centres can change the reactivity the 

metal complex exhibits. The ligands and their substituents will affect the level of 

electron density present at the metal centre, the number of coordination sites available 

and will impact the environment around the metal centre.
16

 An initial discussion of 

phosphorus and nitrogen ligands with reference to their substituents will be made.  

1.2.1 Phosphorus-containing ligands 

The bonding mode of phosphorus (III) ligands to transition metals centres involves 

coordination via the lone pair of the phosphorus atom, which acts as a σ donor.
17, 18

 

Additionally, a π-acceptor interaction from the metal centre to the empty orbitals of the 

phosphorus atom can occur (Figure 1.1). The empty orbitals at the phosphorus centre 

are considered to be a σ* orbital.
19

 The strength of the interactions are determined by 

the substituents of the phosphorus ligand and the nature of the transition metal centre. 

For example, PCy3 is considered to be a better σ donor than PF3, however the latter is 

considered to be a better π-acceptor.  

 

Figure 1.1: Bonding diagram of a phosphorus (III) ligand to a transition metal centre and 

schematics of electronic and steric effects at the phosphorus atom.  

The changes in both the steric (θ) and electronic (ν) factors of the substituents of a 

phosphorus ligand, can account for the differences observed in the reactivity of 

transition metal complexes (Figure 1.1).
20-22

 A wide library of substituents at a 

phosphorus centre have been screened with respect to the electronic and steric 

parameters using [Ni(CO)4]. Substitution of the carbonyl ligand to give [Ni(CO)3L] 

(where L = phosphorus-containing ligand) was used to measure the electronic effect of 

different phosphine ligands on transition metal complexes, by observing changes in νCO 

of the A1 stretching frequency. The general trend demonstrated that more electron 

donating substituents at the phosphorus centre, the lower the νCO A1 stretching 

frequency was for the [Ni(CO)3L]. The phosphorus ligands that will be mentioned in 

this thesis are PPh3, PMe3, P
i
Pr3 and P(OPh)3 where the reported ν (cm

-1
) values 
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observed were 2068.9, 2064.1, 2059.2 and 2086.1 respectively. On going from a 

triphenylphosphine ligand to triisopropylphosphine the [Ni(CO)3L] complex has a lower 

νCO than the triphenylphosphine νCO and free νCO at 2143 cm
-1

, which indicates 

triisopropylphosphine has a larger net donation (accounts for two factors the σ donation 

and π acceptor properties) and that the CO bond order decreases. Changing the ligand 

from triphenylphosphine to triphenylphosphite also dramatically changes the steric and 

electronic properties. Triphenylphosphite exhibits a lower net donation the metal centre, 

due to the oxygen atoms being more electronegative than carbon. The net donation 

exhibited the trend P
i
Pr3 > PMe3 > PPh3 > P(OPh)3. 

The steric impact at the metal centre created by different phosphine ligands plays a 

significant role, as experimental observations could not always be explained purely by 

considering the electronic parameters.
20-22

 This was investigated by measuring the 

exchange equilibrium between NiL4 and L’ (where L = coordinated phosphorus ligand 

and L’ = attacking phosphorus ligand) where steric factors play a more dominant role. 

These data were then compared to the phosphorus ligand cone angles, where the cone 

angles were predicted assuming a tetrahedral bonding mode and where the metal to 

phosphorus bond was assumed to be 2.28 Å. A semi-quantitative study between the 

strength of coordination of the phosphorus ligands and ligand cone angles revealed that 

cone angles closer to the tetrahedral bonding orientation displayed a stronger ligand 

coordination, however when this cone angle is exceeded the stability of these species 

decreases. For the cone angles mentioned in thesis, there is a trend of P
i
Pr3 (160 °) > 

PPh3 (145 °) > P(OPh)3 (130 °) > PMe3 (118 °). The cone angle of triphenylphosphite is 

smaller than triphenylphosphine due to the oxygen atoms providing further flexibility, 

therefore rendering it is much less sterically demanding when bound to a metal centre.  

It should be noted that the Tolman cone angles mentioned above act as a guideline. 

Further investigations in to the steric influence of phosphorus ligands have been 

summarised in a review by Brown and Lee where additional factors such as 

conformation of the substituents and the effects of other ligands present at the metal 

centre have an impact on the cone angles observed at the metal centre.
23

 More recently, 

Gusev conducted theoretical calculations on a 18 electron [Ir(η
5
-C5H5)(CO)L] system 

(where L = two electron donor ligand) to analyse net donor ligand effects. This system 

posed several advantages from avoiding ligand repulsion, eliminating vibrational effects 

from a second CO ligand and removing the trans effect. The calculations exhibited very 
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similar trends to those reported by Tolman and in some cases the numerical differences 

were smaller than those originally reported.
24

  

1.2.2 Nitrogen-containing ligands 

The literature does not seem to cover the steric and electronic effects of nitrogen donor 

ligands in as much detail as phosphorus-containing ligands. However, there are a wide 

variety of chelating nitrogen coordinating ligands commonly employed in transition 

metal complexes. The types of nitrogen-containing ligands employed in this thesis are 

sp
2
-hybridised. The mono-substituted sp

2
-hybridised nitrogen ligands are used 

extensively in coordination chemistry via donation of the nitrogen lone pair.
16

 In terms 

of the σ donating and π-accepting qualities the nitrogen ligands exhibit one of the 

weakest trans effects with respect to phosphorus-containing ligand or carbon 

monoxide.
25

 The coordination of pyridine and nitrile ligands at an iron (II) species to 

generate [Fe(η
5
-C5H5)(CO)2(L)][BF4], where L = mono-substituted nitrogen ligand was 

investigated. In comparison, the nitrile ligands were found to coordinate more weakly to 

the metal centre with respect to the pyridine ligands, which were considered stronger σ-

donors.
26

  

The substituent effects of sp
2
-hybridised N-containing heterocycles of pyridines were 

established by the pKHB (hydrogen-bonding basicity) to give information on the Lewis 

base strength.
27

 A set of 65 different compounds were analysed by this method, where 

pyridine was found to have a medium base strength regarding the hydrogen bonding 

(pKHB = 1.86). Strong bases were found to be 4-methylpyridine (pKHB = 2.07) and 4-

dimethylaminopyridine (pKHB = 2.80). On the other hand pentafluoropyridine (pKHB = 

~-0.49) was described as a weak base. The steric influence of a substituent at the 2-

position of the pyridine ring generally displayed a weak base quality, however the 

electronic influence of the substituents also had an effect causing deviations from the 

expected steric trends.  In addition, theoretical calculations to determine substituent 

effects of pyridine derivatives on halogen bonding have been conducted, where similar 

finding have been reported.
28
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1.3 Vinylidenes 

1.3.1 Organic vinylidenes 

The tautomerisation of an alkyne to its carbene form gives a vinylidene species (Figure 

1.2). Free vinylidenes (R2C=C:) are extremely reactive species. Their reactivity is due to 

the presence of only six valence electrons at the terminal carbon atom.
29, 30

 The lone pair 

on the terminal carbon atom is very unstable, and hence in its free form it is in 

equilibrium with its alkyne form; where the free vinylidene has a lifetime of 10
-10

 

seconds.
30, 31

  

 

Figure 1.2: Acetylene to vinylidene tautomerisation. 

Several experimental and theoretical studies for the transformation of unsubstituted 

acetylenes to vinylidenes have found that the process is endothermic by approximately 

184-197 kJ mol
-1

.
30, 31

 An experimental study by Ervin et al. determined the bond 

dissociation energies for acetylene, HC≡CH to HC≡C + H (549.3 ± 17.6 kJ mol
-1

) and 

vinylidene, H2C=C: to HC≡C + H (351.0 ± 2.9 kJ mol
-1

) using negative ion 

photoelectron spectroscopy and gas phase proton transfer kinetics. The isomerisation for 

acetylene to vinylidene was then calculated to be 198.3 ± 17.0 kJ mol
-1

.
32

 Another 

approach reported by Colussi et al. involved the thermolysis of acetylene which yielded 

benzene, however intermediates detected via mass spectrometry suggested the initial 

formation of the vinylidene species before reacting further.
33

 Parallel to these 

experimental investigations were theoretical studies. Gallo et al. have determined using 

theoretical methods that the energy difference between acetylene and vinylidene is 

approximately 180 kJ mol
-1

 which corroborates with experimental findings.
34

  

Silvestre and Hoffman studied the isomerisation of acetylene to vinylidene via a 1,2 –

hydrogen shift using Walsh diagrams to understand the interactions of the molecular 

orbitals.
35

 Cleavage of the C-H bond results in an increase in energy of the two σC-H and 

σC-C orbitals, namely the σC-C bond which displays the highest energy and is now partly 

located in the HOMO. Additionally, the cleavage of the C-H bond has resulted in the 

LUMO being lower in energy due to fewer repulsions.  
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The interest in vinylidene species arises as they appear to be reactive intermediates in 

the formation of new molecules and therefore understanding the nature of these species 

may shed further light into reaction mechanisms.
36, 37

 Synthetically, free vinylidenes 

only exist under extremely harsh reaction conditions. In the total synthesis of the 

compounds ±-isoptychanolide and ±-clovene the construction of the backbone of the 

molecules were hypothesised to go via vinylidene intermediates. For the synthesis of  

±-isoptychanolide (a, Scheme 1.1) the formation of the vinylidene (b, Scheme 1.1)  was 

achieved by heating the alkyne (c, Scheme 1.1) at 620 K in the gas phase.
38, 39

 These 

conditions are not efficient and do not provide control over the reactivity, therefore a 

more accessible route may be achieved by introducing a transition metal centre, which 

can stabilise the vinylidene intermediate.
40

  

 

     a    b     c 

Scheme 1.1: Vinylidene intermediate for the synthesis of the backbone of ± - isoptychanolide. 

 

1.3.2 Metal vinylidenes 

1.3.2.1 Introduction  

The stabilisation of an organic vinylidene can be achieved through coordination to a 

transition metal centre, where the metal centre is essentially acting as protecting group 

to enhance the lifetime of the organic species (Figure 1.3).
31, 35, 41, 42

 The ability to 

isolate metal vinylidene complexes has allowed for a thorough investigation of the 

properties and reactivity of these species which therefore has allowed potential 

applications to be exploited.
1, 30, 31, 40, 43-47

 For example, metal vinylidene complexes 

have become a useful tool in providing a method of synthesising new carbon-carbon 

bonds or carbon-heteroatom bonds, under more atom-economical conditions. Section 

1.3.2.2 provides an insight into the molecular orbital diagram of vinylidene complexes, 

the synthesis of vinylidene ligands and reaction mechanism for the formation of these 

species in the presence of transition metal centres.  
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Figure 1.3: Alkyne to vinylidene tautomerisation at a metal centre. 

 

1.3.2.2 Molecular orbital diagram of Fischer vinylidene complexes 

The properties of the vinylidene ligand can tuned depending on the metal fragment it is 

coordinated too.
30, 31

 These can be categorised into two forms, Schrock- and Fischer- 

type vinylidene ligands.
48, 49

 Schrock-type vinylidene complexes involve the earlier 

transition metal centres and contain a nucleophilic α-carbon atom. Alternatively, the 

later transition metal centres (Groups 6-10, e.g.  ruthenium (II), manganese (I)) in a low 

oxidation state, generate Fischer-type vinylidene complexes.  

The Fischer-type vinylidene complexes involve an electron rich transition metal centre 

where there is an electrophilic α-carbon atom and nucleophilic β-carbon atom.
30, 50, 51

 A 

general molecular orbital diagram of the Fischer vinylidenes complexes shows the π 

electron distribution between the M=C bond, this interaction is between the metal dxy 

and dxz orbitals and the vinylidene π, p, and π* orbitals (Figure 1.4). The HOMO 

involves π anti-bonding interactions between the metal d orbital and the C=C bonding 

orbital. The HOMO makes the β-carbon atom or metal centre prone to electrophilic 

attack. The LUMO orbital has a significant contribution from the empty p orbital on the 

vinylidene component and hence makes the α-carbon atom electron deficient and 

therefore prone to attack by nucleophiles.  

A detailed study conducted by Kostic and Fenske calculated the molecular orbital 

diagram of several [Fe(η
5
-C5H5)]

+
 complexes which were coordinated to vinylidene 

ligands.
52

 One of the key findings was that the metal to carbon π interaction was strong 

suggesting a bond order between 2 and 3. The vinylidene ligand was modelled to 

coordinate to the metal centre in both a horizontal and vertical position, and in both of 

these cases metal to ligand π back bonding was present, where the horizontal interaction 

is preferred. Additionally, the overall charge distribution at these complexes was 

investigated. Generally, for [Fe(η
5
-C5H5)(CO)2(CCH2)]

+
, the species is electrophilic in 

nature and therefore electrophilic attack is not very likely. However, attack by 

nucleophiles has been noted to occur regioselectively at the α-carbon atom of the 

vinylidene ligand. This is due to approximately 60 % of the LUMO being localised at 
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the α-carbon atom, which accounts for the bond polarity for Fischer vinylidene 

transition metal complexes.  

 

Figure 1.4: Simplified molecular orbital diagram of the π orbital interaction for Fischer type 

transition metal vinylidene complexes.  

1.3.2.3 Synthesis of ruthenium vinylidene complexes 

Several reviews have highlighted potential synthetic pathways for the formation of 

mononuclear vinylidene transition metal complexes which includes a 1,2-hydrogen 

migration pathway of 1-alkynes at a metal centre, electrophilic attack at metal acetylide 

complexes and deprotonation of carbyne ligands.
31, 47, 53

 Generally, the formation of 

metal vinylidene complexes occur under milder reaction conditions than the metal free 

route and the properties of these ligands can be tuned by changing the metal fragment.
30

  

One of the most popular methods to achieve metal vinylidenes utilises 1-alkynes, where 

a d
6
 metal centre is required for the coordination of the alkyne. This requires a ligand at 

the metal centre to dissociate or a vacant coordination site.
30

 In 1979, Bruce and Wallis 
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published a popular method to independently synthesise cationic ruthenium vinylidene 

complexes.
54

 The complex [Ru(η
5
-C5H5)Cl(PPh3)2] (a, Scheme 1.2) could be 

transformed into a cationic ruthenium vinylidene complex by the addition of a terminal 

alkyne (HC≡CR) and a halide scavenger with a suitable counter-ion, and heating in 

methanol for a brief period of time. Prolonged heating under these nucleophilic 

conditions allows for the methanol to act as a nucleophile towards the resulting 

vinylidene species. The resulting vinylidene species [Ru(η
5
-C5H5)(PPh3)2(=C=CHR)] 

[PF6] (b, Scheme 1.2) had 18 valence electrons and a full coordination sphere.
44

 The 

NMR spectra of the vinylidene ligand exhibits extremely characteristic features for the 

complexes [Ru(η
5
-C5H5)(PPh3)2(=C=CHR)][PF6] (b, Scheme 1.2). The 

1
H NMR 

spectrum exhibits a coupling from the hydrogen atom on the β-carbon atom to the 

phosphorus-containing ligands. Additionally, the 
13

C{
1
H} NMR spectrum displays a 

downfield resonance for the α-carbon atom of the vinylidene ligand as it is generally 

detected around 360 ppm and the β-carbon atom exhibits a resonance at approximately 

120 ppm.
55

  

 

a            b 

Scheme 1.2: Synthetic preparation of metal vinylidene complexes from Bruce and Wallis. 

Alternatively, metal vinylidene complexes can be synthesised through an electrophilic 

attack at the β-carbon atom of an acetylide ligand in the presence of a counter-ion to 

yield the cationic metal species.
54

 An example by Bruce has demonstrated that the 

addition of either HBF4 or HPF6 to [Ru(η
5
-C5H5)(PPh3)2(C≡CR)] yields the respective 

vinylidene complexes. The β-carbon atom is electron rich and therefore addition of the 

electrophile at this position has been justified to be controlled by charge distribution.
30, 

31
 This process can be reversed in the presence of a nucleophile to return to the acetylide 

complex. The protonation and deprotonation steps can be repeated and quantitative 

conversion is observed for during each of these steps.
54, 56, 57

  

In the literature there are extensive examples where this type of chemistry has been 

exploited.
58, 59

 Cadierno et al. have synthesised a range of functionalised alkynes and 

enynes where the cationic ruthenium fragment [Ru(η
5
-C9H7)(PPh3)2]

+
 can be recycled 
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therefore being able to repeat this procedure.
60-63

 The chemistry entailed the addition of 

propargylic alcohols to the ruthenium complex yielding an allenylidene species, 

followed by nucleophilic attack at the electron deficient γ carbon atom. The subsequent 

acetylide complex is protonated at the β-carbon atom with HBF4.OEt2 to give the 

corresponding vinylidene species. When heated at reflux in an acetonitrile solution the 

cationic ruthenium species [Ru(η
5
-C9H7)(PPh3)2]

+
 is regenerated and the functionalised 

alkyne released.  

 

1.3.2.4 Mechanistic aspects 

There is extensive literature on the formation of metal vinylidene complexes. 

Mechanistically, there are many potential reaction pathways that could occur, some of 

the most common mechanisms include a 1,2-hydrogen migration or an oxidative 

addition followed by an 1,3-hydride shift or a route involving a metal alkenyl species 

(Scheme 1.3).  

 

Scheme 1.3: Mechanisms on the formation of a vinylidene complex, a) 1,2-hydrogen migration, 

b) oxidative addition followed by 1,3-hydride shift. 

A very detailed investigation into the 1,2-hydrogen migration mechanism in acetylene 

to vinylidene interconversion in the presence of the species [Mn(η
5
-C5H5)(CO)2] was 

conducted by Silvestre and Hoffman.
35

 The [Mn(η
5
-C5H5)(CO)2] species is isolobal to 

[Ru(η
5
-C5H5)(PR3)2]

+
 which has been studied in this thesis. The mechanism entailed 

initial coordination of the acetylene molecule to the metal fragment. A 1,2-hydrogen 

migration concerted mechanism from the η
2
-coordinated alkyne to the metal vinylidene 

species exhibited a high barrier of 230 kJ mol
-1

 and therefore this mechanism was 

disregarded. The alternative non-concerted pathway was found to have a lower 

activation barrier of approximately 121 kJ mol
-1

 for the formation of the vinylidene 
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species. The non-concerted pathway required the η
2
-alkyne species to slip to an η

1
 

coordinated alkyne through the alkyne C-H bond. This can then undergo a 1,2-hydrogen 

migration where the hydrogen atom migrates over the C≡C bond to the β-carbon atom 

and yields the vinylidene species. Additionally, the MO diagrams of the η
2
-coordinated 

alkyne and the metal vinylidene species were compared. It was found that the HOMO 

for the η
2
-coordinated alkyne complex was high in energy as it was an anti-bonding 

orbital, however for the metal vinylidene complex the HOMO displayed a degree of 

non-bonding character which is therefore lower in energy. From these calculations it is 

apparent that the more stable species is the metal vinylidene complex with respect to the 

metal η
2
-coordinated alkyne complex. Wakatsuki et al. determined that the RuX2(PPh3)3 

complex (where X = Cl, Br) in the presence of tert-butylacetylene undergoes a 1,2-

hydrogen migration pathway to give RuX2(PPh3)2(=C=CH
t
Bu). The key factors 

included i) initial σ C-H interaction at the metal centre and ii) the empty metal d orbitals 

accepting electron density from lone pair of the vinylidene ligand.
64

  

An alternative route involves the oxidative addition of the C-H bond of the acetylene 

molecule from the η
1
-coordinated species to yield a metal hydrido-acetylide. A further 

1,3-hydride shift from the metal centre to β-carbon atom results in the formation of the 

metal vinylidene complex. Silvestre and Hoffmann’s calculations revealed that the 1,3-

hydride shift possessed a higher activation barrier than the 1,2-hydrogen migration 

pathway and therefore described this route as ‘prohibitive’.
35

 Theoretical studies by De 

Angelis et al. have found that the oxidative addition followed by the 1,3-hydride shift is 

generally not favourable at d
6
 metal centres (e.g. manganese (I), ruthenium (II)) with 

respect to the 1,2-hydrogen migration pathway via the η
2
-coordinated C-H 

intermediate.
65, 66

 Wakatsuki et al. reported that it is thermodynamically unfavourable 

for the metal centre to access a d
4
 configuration.

64
 The oxidative addition has a higher 

barrier, but has been found to be more accessible when the d
6
 metal centre is more 

electron rich.
67

 A range of hydrido-acetylide complexes were synthesised by Valerga et 

al., from the electron-rich ruthenium complex, [Ru(η
5
-C5Me5)Cl(dippe)] and terminal 

alkynes in the presence of NaBPh4 in MeOH.
68-70

 These complexes were observed to 

give the vinylidene complexes via a proposed deprotonation of the hydride ligand to 

give an acetylide complex and a proton, followed by a reprotonation at the β-carbon 

atom. This has been extended to the complexes [Ru(η
5
-C5Me5)(PMe

i
Pr2)2][B{3,5-C6H3-

(CF3)2}4]
71

 and [Ru(η
5
-C5Me5)Cl(PEt3)2]

72
 where similar reactivity patterns have been 

observed. When the ruthenium centres possess less electron density due to different 
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ligands (e.g. η
5
-C5H5, η

6
-C6H6 or CO) the η

2
-coordinated alkyne species was 

observed.
69, 73

  

Another potential pathway has been reported by Oliván et al., where [RuHX(H2)L2] and 

terminal alkynes yield the hydrido-vinylidene complex [RuHX(=C=CHR)L2] (Scheme 

1.4).
60, 74

 The mechanistic and theoretical studies have found that the alkyne inserts into 

the Ru-H bond giving a 14 electron ruthenium-alkenyl complex (b, Scheme 1.4). The 

hydrogen atom at the α-carbon atom then migrates to the ruthenium centre yielding the 

final vinylidene product (c, Scheme 1.4). Theoretically this was the energetically 

preferred pathway relative to a 1,2-hydrogen migration or a 1,3-hydride shift. This 

concept has now been applied to the synthesis of enamides and enimides which have a 

strong structural link to biological molecules
75

 and in the hydration of terminal alkynes 

to give aldehydes.
76

 

 

  a    b      c 

Scheme 1.4: Formation of vinylidene complex from a ruthenium hydride complex. 

 

1.3.2.5 Terminal alkyne substituent effects on the rate of formation of vinylidene 

complexes  

The kinetic and thermodynamic effects in a reaction mixture will change the course of a 

reaction and since an equilibrium is always present between the metal vinylidene and 

the η
2
-coodinated alkyne this will impact the formation of vinylidene intermediates.

44, 60
 

The substituent effects from changing the R group in terminal alkynes for the formation 

of vinylidene complexes was investigated using [RuCl2(NCMe)(dcpmp)] where dcpmp 

= 2,6-bis((dicyclohexylphosphino)methyl)pyridine (a, Scheme 1.5).
77

 The effects of the 

R substituents at the terminal alkynes that were investigated included 4-MeOC6H4, 4-

MeC6H4, Ph, 4-BrC6H4, 4-MeO2CC6H4 and 
t
Bu, where the first five substituents 

differed in their electron donating abilities and the latter was sterically bulkier. The 

kinetic studies revealed that the formation of the vinylidene species required three major 

processes 1) dissociation of the acetonitrile ligand (slowest step) to give a five-

coordinate ruthenium species (b, Scheme 1.5), 2) coordination of the terminal alkyne 
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and 3) tautomerisation to give the vinylidene complex (c, Scheme 1.5). The more 

electron-donating substituents at the terminal alkynes increased the rate of formation of 

the vinylidene species. Additionally, the 
t
Bu substituent decreased the rate of formation 

of the vinylidene species which is probably due to the larger steric impact.  

 

   a           b     c  

Scheme 1.5: Formation of vinylidene complexes [RuCl2(=C=CHR)(dcpmp)] with different R 

substituents (where R = 4-MeOC6H4, 4-MeC6H4, Ph, 4-BrC6H4, 4-MeO2CC6H4 and 
t
Bu). 

1.3.2.6 Stabilisation of the vinylidene fragments by different d
6 

metal centre.  

The effect of varying the electron density present at ruthenium (II) centres with respect 

to the η
2
-coordinated alkyne and the metal vinylidene tautomerisation was investigated 

by De Angelis et al. An increase in the electron density at the metal centre favoured the 

formation of the more stable vinylidene complex. This was attributed to two major 

factors i) the π-acceptor properties of the vinylidene ligand and ii) avoiding the 

repulsive interaction between the filled metal d orbital and the filled π orbital of the η
2
-

coordinated alkyne.
67

 

The [Ru(η
5
-C5Me5)(

i
Pr2PXPy)]

+
 (Cp*Ru) and [RuTp(

i
Pr2PXPy)]

+
 (TpRu) fragments 

(where X = CH2, S and Py = NC5H5) were reacted with internal alkynes to give the 

corresponding vinylidene complexes through a 1,2-carbon shift. Interestingly, the TpRu 

species yielded the vinylidene complexes whereas Cp*Ru only generated the η
2
-

coordinated alkyne. This was attributed to i) a weaker interaction between the η
2
-

coordinated alkyne and TpRu; ii) a steric repulsion in the 1,2-shift of the Cp*Ru 

complex. Theoretical calculations exhibited a lower transition state to the vinylidene 

complex for TpRu of approximately 21 kJ mol
-1

 relative to Cp*Ru.
78, 79
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1.4 Reactivity of vinylidene-containing complexes 

The reactivity of ruthenium vinylidene-containing complexes has been exploited for 

applications in catalysis where these complexes are involved in either nucleophilic 

addition at the α-carbon atom, migration of the alkyl/ alkenyl group from the metal 

centre to the α-carbon atom or [2+2] cycloaddition of a metal-carbon bond with a 

carbon-carbon bond.
80-82

 This section covers the examples of ruthenium vinylidene 

chemistry and their proposed reaction mechanisms to demonstrate how these 

intermediates play a crucial role in determining the selectivity of the observed products.  

1.4.1 Dimerisation of terminal alkynes 

The catalytic coupling of terminal alkynes to give either 1,4- or 2,4-disubstituted enynes 

or butatrienes with ruthenium centres is well established in the literature (Figure 1.5).
43, 

80, 83
 The E and Z selective 1,4-enyne products are most commonly observed when 

ruthenium catalysts are employed.
84-87

 This atom efficient process has great potential, as 

if the enyne molecules are produced in a regio- and stereoselective manner the products 

have potential applications as a monomer unit for polymerisation
88

 or in natural product 

synthesis.
2
  

 

Figure 1.5: Dimerisation products from terminal alkynes: Z-, E- 1,4- and 2,4-disubstituted 

enynes and butatrienes. 

Effective ruthenium catalysts for this transformation contain electron-donating, bulky 

ligands, for example PP3 type ligands e.g. P(CH2CH2PPh2)3; NP3 type ligands e.g. 

N(CH2CH2PPh2)3; Tp or C5Me5.
84, 85, 89, 90

 A few reported successful ruthenium catalysts 

include [RuTp(L)(L’)Cl] (where L and L’ = N, P, O donor ligands)
90

, 

[Ru(PP3)H(H2)][BPh4]
84

 and [Ru(NCMe)(NP3)][OTf].
91

 General features for a 

successful catalyst include the metal complex containing labile ligands to allow for 

substitution by terminal alkynes; the coordinated ligands should be sterically bulky in 

order to stabilise a 16 electron intermediate; and avoidance of π-acceptor ligands as they 

do not promote dissociation of the ligands.
90

 Various studies have exhibited that 

changes in either the ligand environments, reaction conditions or alkyne substituents 

can impact the E:Z ratios of 1,4-disubstituted enynes,
85-87

 access competitive C-O 

formation reactions
92

 or cyclotrimerisation
93

 reactions. Additionally, the reaction 
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conditions have been developed further to allow for selective dimerisation reactions to 

occur in aqueous media
87

 or alternatively, if applicable, in neat alkyne.
91

 Interestingly, 

hydration products from the reaction of the ruthenium complexes with water were not 

observed (Section 1.4.2). 

A general mechanism for the dimerisation of terminal alkynes is mentioned below.
80

 

The addition of two equivalents of terminal alkyne to a ruthenium catalyst (a, Scheme 

1.6) yields a ruthenium alkynyl-vinylidene intermediate (b, Scheme 1.6), where it is 

possible that the alkyne undergoes a 1,2-hydrogen migration to give the vinylidene 

ligand.
84

 Complex b can then undergo a carbon-carbon coupling reaction via a 

migratory insertion of the alkynyl ligand to the vinylidene. The resulting ruthenium 

enynyl complex (c, Scheme 1.6) undergoes protonation to give the final dimerisation 

products.  

 

Scheme 1.6: General mechanism for the dimerisation of terminal to give 1,4-disubstituted 

enynes. 

Isolation and characterisation of various ruthenium intermediates has provided insight 

into the reaction mechanism. The role of vinylidene ligands was confirmed via NMR 

spectroscopy and the distinct characteristic α-carbon resonance (top left, Figure 1.6).
89

 

Bianchini et al. observed the alkynyl-hydride, [Ru(PP3)H(C≡CPh)] and bis-alkynyl, 

[Ru(PP3)(C≡CPh)2] ruthenium complexes, where the former complex was observed to 

convert to the bis-alkynyl complex. The bis-alkynyl complex was the final ruthenium 

complex observed before the formation of the Z-1,4-disubstituted enyne (middle 

reaction scheme, Figure 1.6).
94

 Additionally, several ruthenium η
3
-coordinated 

a 
b 

c 
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butenynyl complexes have been isolated and characterised by X-ray crystallography, 

where the bond lengths suggest a degree of electronic delocalisation (top right, Figure 

1.6).
84, 89, 95, 96

 

 

Figure 1.6: Significant ruthenium intermediates in the dimerisation of terminal alkynes.  

The reaction of complexes, cis-[RuCl2(P-P)2] (where P-P = dppm, dppe), with NaPF6 

and an excess phenylacetylene afforded a vinylidene species (a, Scheme 1.7). 

Subsequent deprotonation of a by another molecule of phenylacetylene, a weak 

nucleophile, yielded the alkynyl complex (b, Scheme 1.7). Coordination of a further 

alkyne molecule in the form of a vinylidene ligand yielded an alkynyl-vinylidene 

complex (c, Scheme 1.7). Mechanistic studies demonstrated that the quantity of the 

vinylidene species c reduced as the coupled butenynyl products (d and e, Scheme 1.7) 

increased. The butenynyl complex was found to be an active catalyst for the 

dimerisation of phenylacetylene.
96

  

 

Scheme 1.7: Proposed mechanism for the dimerisation of phenylacetylene with cis-

[RuCl2(dppm)2].  

a b c 

d e 
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1.4.2 Cyclotrimerisation of alkynes 

The cyclotrimerisation of alkynes provides an atom economical route for the synthesis 

of substituted aromatic compounds.
97-99

 There is no evidence of ruthenium vinylidene 

intermediate complexes, but this highlights key changes in reactivity when different 

ligands are present at the metal centre. Complexes commonly employed for these 

transformations include [Ru(η
5
-C5Me5)Cl(COD)], [Ru(η

5
-C5Me5)Cl(PPh3)2], [Ru(η

5
-

C5Me5)Cl]4, where these complexes lose ligand(s) or cleave the µ-Cl bonds to give an 

electronically unsaturated active fragment.  The proposed catalytically active fragment, 

[Ru(η
5
-C5Me5)Cl] has been studied extensively as it is believed to be responsible for the 

[2+2+2] cyclotrimerisation of alkynes, where the presence of the chloride atom is 

necessary to observe any reactivity.
100, 101

  

There is some experimental evidence for ruthenium intermediates in the 

cyclotrimerisation mechanism (Figure 1.7). Additionally, computational studies have 

provided further insight to the reaction pathway. Mechanistic investigations into the role 

of the ruthenium complex for the cyclotrimerisation reactions have been conducted.
100

 

In order to stabilise the ruthenium centre and potential 16 electron intermediates, the 

more sterically demanding η
5
-1-methoxy-2,4-tert-butyl-3-neopentyl-cyclopentadienyl 

(Cp
^
) ligand was used. Isolation and characterisation of ruthenium η

2
-coordinated 

alkyne complexes (left, Figure 1.7) and a ruthenacyclopentatriene complex (right, 

Figure 1.7) were detected by X-ray crystallography, suggesting the reaction pathway 

proceeded in a step-wise manner. Increased regioselectivity for the arene products was 

observed with Cp
^
 with respect to Cp* which was attributed to the higher steric 

demands of the Cp
^
 ligand.

100
  

 

Figure 1.7: Isolated ruthenium complexes for the cyclotrimerisation of alkynes.  

Computational studies have allowed for a general mechanism for cyclotrimerisation to 

be proposed (Scheme 1.8). The initial coordination of the alkyne (a, Scheme 1.8) gives 
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an η
2
-alkyne complex, (b, Scheme 1.8). The coordination of an additional alkyne 

molecule at a free coordination site, gives a disubstituted alkene species (c, Scheme 

1.8). The two coordinated alkyne molecules undergo an oxidative carbon-carbon 

coupling reaction to produce a ruthenacyclopentatriene species (d, Scheme 1.8). The 

metallacyclic complex d reacts with a final alkyne molecule in a few possible stages. 

The insertion of another alkyne molecule in a stepwise manner gives a 

ruthenabicyclo[3.2.0]heptatriene complex (e, Scheme 1.8), which undergoes a 

ruthenium-carbon bond cleavage reaction. This leads to either the formation of a seven 

membered metallacyclic species (f, Scheme 1.8) or a metallanorbornadiene complex (g, 

Scheme 1.8). Finally, a reductive elimination yields an arene molecule (h, Scheme 1.8) 

and regenerates the original [Ru(η
5
-C5Me5)Cl] complex (a, Scheme 1.8). The Cp* 

ligands in these systems have also been noted to undergo a change in hapticity to allow 

for the formation of the arene molecule. 
97, 100, 102-104

  

 

Scheme 1.8: General cyclotrimerisation mechanism of terminal alkynes, where Cp* = η
5
-C5Me5.    

b 

c 

f e 

d 

g 

a 

h 



50 

Chapter 1 

1.4.3 Reactivity of ruthenium vinylidenes in the presences of water 

The hydration of terminal alkynes in the presence of certain ruthenium catalysts 

generates an aldehyde. The reaction proceeds via a vinylidene intermediate which 

means the less common anti-Markovnikov selectivity is observed. This has challenged 

other metal catalysts (mercury and gold) in the field, as usually a methyl ketone is 

produced from a Markovnikov reaction (Scheme 1.9).
105, 106

 The production of primary 

alcohols from the reduction of the aldehyde products highlights a key potential 

industrial application.
107

 

 

Scheme 1.9: Reaction of water and terminal alkynes in the presence of different catalysts.  

Major contributions in the area regarding catalyst development and determination of the 

reaction mechanism are from the groups of Wakatsuki and Tokunaga, Grotjahn, and 

Bianchini et al.
30, 108, 109

 The ruthenium (II) complexes [RuCl2(C6H6)]2 in the presence 

of a phosphine ligand, P (where P = PPh2(C6F5) or P(3-C6H4SO3Na)3),
108

 [Ru(η
5
-

C5H5)Cl(dppm)] (where dppm = bis(diphenylphosphino)methane)
109

 and [Ru(η
5
-

C5H5)Cl(PPh3)2]
76

  were found to perform the transformation. In addition, bifunctional 

catalysts have successfully been applied in the synthesis of aldehydes where the rate of 

reaction is accelerated between 1000 to 10000 times.
110-112

 The air-stable, cheaper 

ruthenium pre-catalyst [Ru(η
5
-C5H5)(η

6
-naphtalene)][PF6] has been employed to 

generate an in situ catalyst in the presence of the required ligands and avoid the 

independent synthesis from the more expensive complex [Ru(η
5
-C5H5)(NCMe)3] 

[PF6].
113, 114

  

Grotjahn et al. studied the role of bifunctional catalysts for the production of aldehydes, 

where the significance of a pendant N-containing heterocyclic group (either pyridyl or 

imidazolyl derivatives) at a phosphorus ligand was investigated.
111, 115

 Evidence was 

established for the presence of a ruthenium vinylidene complex (b, Scheme 1.10) which 

arises from a π-coordinated alkyne, and for an acyl intermediate (c, Scheme 1.10).
116

 

The close proximity of the nitrogen atom allows for facile formation of the vinylidene 

ligand and the addition of water to the α-carbon atom of the vinylidene ligand via the 

movement of protons and a hydrogen bonding stabilisation.
110, 117, 118

 The 
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pyridylphosphine ligands were found to require a bulky substituent (such as tert-butyl) 

close to the nitrogen atom to prevent coordination to either the ruthenium centre or the 

α-carbon atom of the vinylidene ligand.
110

 A complete mechanism has not yet been fully 

identified, however it already differs to a reaction mechanism that has been proposed by 

Wakasuki et al. which involves a ruthenium (IV)-vinyl intermediate.
76

  

 

     a             b     c 

Scheme 1.10: Key intermediates identified in the bifunctional catalysis for the hydration of 

terminal alkynes.  

 

1.4.3.1 Involvement of a ruthenium carbonyl complex 

Ractions between metal vinylidene complexes and water have been found to produce a 

metal carbonyl complexes, indirectly suggesting the mechanism for the hydration of 

terminal alkynes goes via a vinylidene intermediate.
93, 119, 120

 Bianchini et al. conducted 

a detailed mechanistic investigation of the ruthenium complex mer, trans-

[RuCl2(PNP)(PPh3)] (where PNP = CH3CH2CH2N(CH2CH2PPh2)2) (a, Scheme 1.11), 

phenylacetylene and water. Upon conducting this experiment the carbonyl complex fac, 

cis-[RuCl2(PNP)(CO)] (b, Scheme 1.11) and toluene were detected. A reaction in the 

absence of water produces the ruthenium vinylidene complex exclusively and the 

subsequent addition of water sees the formation of the carbonyl complex (b, Scheme 

1.11).  

 

a               b 

Scheme 1.11: Reaction of mer, trans-[RuCl2(PNP)(PPh3)] (where PNP = CH3CH2CH2N 

(CH2CH2PPh2)2) with phenylacetylene and water.  
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A proposed reaction mechanism involved attack of water at the cationic ruthenium 

vinylidene complex (a, Scheme 1.12) to produce a hydroxyl-carbene intermediate (b, 

Scheme 1.12).
119, 120

 Elimination of HCl generates an unsaturated metal complex which 

contains an σ-acyl group (c, Scheme 1.12). A CO de-insertion process gives the 

ruthenium carbonyl complex (d, Scheme 1.12). The loss of toluene from the reaction 

with HCl produces the carbonyl complex (e, Scheme 1.12). 

  

Scheme 1.12: Proposed mechanism for the formation of the ruthenium carbonyl complex. 

 

  

d 

c b a 

e 
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1.4.4 Attack at vinylidene ligands by nitrogen donor groups 

Catalytic reactions involving the addition of a nitrogen centre to an alkyne molecule 

with a ruthenium catalyst have been reported. When ruthenium transition metal 

complexes are employed, some of these reactions again are proposed to go via a 

ruthenium vinylidene species; where a nucleophilic attack of the nitrogen atom at the α-

carbon atom of the vinylidene ligand occurs to generate a new carbon-nitrogen bond to 

synthesise nitriles,
121

  enamides
122, 123

 and substituted indoles.
30, 80, 124

 In comparison to 

the formation of carbon-carbon and carbon-oxygen bonds from vinylidene complexes, 

there are fewer examples with nitrogen nucleophiles.  

The enamide structure is found in natural products which are used in pharmaceutical 

drugs. Additionally, they are being used increasingly in organic synthesis. Goosen et al. 

reported the successful catalytic reaction to selectively synthesise E-enamides, where 

the ruthenium catalyst [Ru(methylallyl)(COD)] (2 mol %) was used to achieve high 

yields of above 94 % (Scheme 1.13).
123, 125

  

 

Scheme 1.13: Catalytic reaction for the formation of E-enamides. 

Recently, an investigation into the ruthenium-catalysed hydroamination reaction 

demonstrated strong evidence for the mechanism by which enamide compounds are 

synthesised.
75

 An initial N-H oxidative addition at a ruthenium (0) species (a, Scheme 

1.14) produces a ruthenium (II) hydride complex (b, Scheme 1.14). An alkyne molecule 

inserts in to the ruthenium-hydride bond (c, Scheme 1.14) to yield a ruthenium-vinyl 

species (d, Scheme 1.14), which rearranges to generate a vinylidene-containing complex 

(e, Scheme 1.14). The nitrogen donor atom attacks the α-carbon atom of the vinylidene 

ligand (f, Scheme 1.14) and a final reductive elimination step produces the E-enamide 

product with an anti-Markovnikov selectivity.  
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Scheme 1.14: Proposed mechanism for the formation of E-enamides, where L = DMAP, R1 and 

R2 = 2-pyrrolinidone, R3 = 
n
Bu and X = O.  

  

a 

b 

c 

d 

e 

f 
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1.5 Synthesis and reactivity of [(η
5
-C5H5)Ru(PR3)]

+
 fragment 

Reactive 14-electron ruthenium intermediates have applications in catalysis, where the 

vacant coordination sites at the metal centre make it is possible to carry out 

cyclotrimerisation of terminal alkynes (Section 1.4.2). This process allows for the 

formation of new carbon-carbon bonds, which is highly desirable in synthetic 

applications. Kirchner et al. have carried out an extensive investigation on the reactivity 

of the [Ru(η
5
-C5H5)(PR3)]

+
 fragment, where R = Me, Ph, Cy). The [Ru(η

5
-C5H5)(PR3) 

(NCMe)2][PF6] species was regarded as a pseudo 14 electron species, with two vacant 

coordination sites due to the labile nature of the acetonitrile ligands and therefore 

creating a reactive intermediate.
126

 The synthesis of these types of complexes were 

reported from [Ru(η
5
-C5H5)(NCMe3)3][PF6] and this method has been used widely in 

the literature due to lability of the acetonitrile ligands.
127-130

 The reactivity towards 

alkynes has also been studied.
131, 132

  

1.5.1 Synthesis and properties of pseudo 14 electron species, [Ru(η
5
-C5H5)(PR3)]

+
  

The synthesis of the [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6] (where R = Me, Ph, Cy) 

complexes (b, Scheme 1.15) were achieved from the stoichiometric addition of the 

phosphine ligand to [Ru(η
5
-C5H5)(NCMe)3][PF6] (a, Scheme 1.15).

131
 This synthetic 

procedure has been extended to other monodentate ligands such as AsPh3, SbPh3.
133

 

Merbach and Ludi have demonstrated the labile nature of the acetonitrile ligands of 

various ruthenium (II) acetonitrile complexes.
134, 135

 The complexes [Ru(NCMe)6]
2+

, 

[Ru(η
6
-C6H6)(NCMe)3]

2+
 and [Ru(η

5
-C5H5)(NCMe)3]

+
 exhibited exchange rates of 8.9 x 

10
-11

, 4.07 x 10
-5

 and 5.6 s
-1

 respectively, increasing by five orders of magnitude. 

 

           a        b 

Scheme 1.15: Synthesis of the complexes, [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6] . 

The rate constants for the exchange of acetonitrile of all the phosphine complexes 

decreased from [Ru(η
5
-C5H5)(NCMe)3][PF6], due to higher enthalpies of activation. The 

lability of the two acetonitrile groups remaining on the ruthenium metal centre for PPh3 

and PMe3 were a lot lower than [Ru(η
5
-C5H5)(NCMe)3][PF6].

131
 However, in the case of 
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PCy3, the rate of acetonitrile exchange increased, probably due to ligand repulsion 

(Table 1.1). The reaction kinetics suggested a dissociative mechanism. The two factors 

which were potentially responsible for the acetonitrile exchange rates included the 

electron donating ability (electronic) or cone angles (steric) of the phosphine ligands.  

The steric influence was reported to influence more predominantly the exchange rates, 

where the cone angles were PMe3 (118°) <PPh3 (145°) < PCy3 (180°).
20-22

 

 [Ru(η
5
-C5H5)(NCMe)3][PF6]

135
  

[Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6]

131
  

PPh3 PMe3 PCy3 

k
298

/ s
-1

 5.6 2.9 x10
-3

 2.7 x10
-3

 0.38 

Table 1.1: Rate of exchange of acetonitrile ligands in ruthenium(II) complexes.  

If the stoichiometric addition is exceeded it is possible to substitute further acetonitrile 

ligands to give [Ru(η
5
-C5H5)(PR3)2(NCMe)][PF6]. Alternatively, the stoichiometric 

addition of a different ligand to [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6] will yield a chiral 

ruthenium complex. The reactivity of [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6]  (a, Scheme 

1.16) was probed further by the addition of chelating ligands, COD and butadiene 
131, 134

 

An η
2

,η
2
-COD coordinated complex (b, Scheme 1.16).was observed with PPh3 and 

PMe3; however the coordinated butadiene species was only observed with the PMe3 

ligand. These results demonstrated that substitution of the acetonitrile ligands is highly 

dependent on the steric crowding present around the ruthenium centre.  

 

   a             b 

Scheme 1.16: Reaction of of [(η
5
-C5H5)Ru(PR3)(NCCH3)2]

+
PF6

-
 with chelating ligands, where 

L’L’ = COD R = Ph, Me and where L’L’= butadiene R= Me. 
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1.5.2 Reactivity of pseudo 14 electron species, [Ru(η
5
-C5H5)(PR3)]

+
   

The reactivity of the [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6] (where R = Me, Ph, Cy) 

complexes was probed due to the selective substitution of the acetonitrile ligands, in 

comparison to the complexes  [Ru(η
5
-C5H5)Cl(PPh3)2] or [Ru(η

5
-C5H5)Cl(CO)2] where 

selectively replacing one of the PPh3 or CO ligands is difficult.
131, 136, 137

 The addition of 

terminal alkynes, HC≡CR’ (where R’ = Ph, C6H9, 
n
Bu, H, SiMe3, C6H4-4-OMe) or 1,6-

heptadiyne to [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6] at room temperature was investigated 

(Scheme 1.17). The stoichiometric addition of 1,6-heptadiyne or alternatively two 

equivalents of HC≡CR’ yielded a range of ruthenium η
3
-allyl carbene complexes (c, 

Scheme 1.17). The reaction was complete within a few minutes and thought to proceed 

via a ruthenacyclopentatriene intermediate (b, Scheme 1.17). The alkynes were always 

found to couple selectively in a head-to-tail manner. The coupling of two alkyne 

molecules at the metal centre gives a metallacyclopentatriene complex, which are 

thought to be intermediates in cyclotrimerisation reactions (Section 1.4.2), however this 

has not been observed due to the strongly electrophilic nature of the complex and 

therefore an alternative type of reactivity has been observed where the phosphine ligand 

migrates to one of the electrophilic carbon atoms. Experimental and theoretical 

calculations support this hypothesis.
132, 138

  

 

 a             b     c 

Scheme 1.17: Reaction between [Ru(η
5
-C5H5)(PR3)(NCCH3)2][PF6] and HC≡CR’ (where R = 

Me, R’ = Ph, C6H9, 
n
Bu, H, SiMe3, C6H4-4-OMe). 

Interestingly, when a combination of PMe3 and two equivalents HC≡CR’ (where R’ = 

Ph, C6H9, 
n
Bu, H, SiMe3, C6H4-4-OMe, C6H4-4-NO2) were employed, this generated the 

ruthenium η
3
-allyl carbene complexes, that could be isolated. The characterisation of the 

η
3
-allyl carbene complexes was carried out mainly by NMR spectroscopy, where the 

13
C{

1
H} NMR spectra exhibited characteristic resonances for the carbene and terminal 

allyl carbon atoms were observed between 279-236 and 41-26 ppm respectively and 

exhibited carbon-phosphorus couplings. The high field resonance of the terminal allyl 

carbon atom was attributed to it having an sp
3
-hybridised character.

136, 139
 However, in 
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the presence of bulky PR3 substituents (e.g. Ph, Cy) the η
3
-allyl carbene complexes (a, 

Scheme 1.18) were unstable and a further C-H activation occurred at one of the R 

groups of the phosphorus ligand to give an orthometallated group on a η
4
-butadiene 

ligand (b, Scheme 1.18).
139

  

 

a            b  

Scheme 1.18: Intramolecular C-H activation of the R group of PPh3 from the η
3
-allyl carbene 

complex.  

Additionally, a further type of reactivity was exhibited by the η
3
-allyl carbene 

complexes (a, Scheme 1.19) in the presence of a donor ligand (e.g. PPh3). A 

nucleophilic addition at the ruthenium centre by a triphenylphosphine ligand resulted in 

a η
3
-butadienyl complex which had undergone a stereo-chemical change in the carbon 

chain (b, Scheme 1.19). 

 

a         b  

Scheme 1.19: Nucleophilic addition by PPh3 at the η
3
-allyl carbene complex.  

 

  



59 

Chapter 1 

1.6 Synthesis and properties of metallacyclic complexes 

This part of the introduction will describe metallacyclic complexes in the literature, 

since later in this thesis novel ruthenium-containing metallacycles will be described. 

Metallacyclic complexes containing a heteroatom have been investigated due to their 

structural properties and their involvement in the formation of carbon-carbon or carbon-

heteroatom bonds.
140, 141

 The synthesis and properties of these complexes is described 

and will provide useful information for the complexes described later.  

1.6.1 Osmium-containing metallacycles 

The formation of 3-osmaindolizine complexes and a 3-ruthenaindolizine species was 

reported by Esteruelas et al.
142, 143

 The reaction of [MTp(κ
1
-OCMe2)2(P

i
Pr3)][BF4] 

(where M = Os, Ru and Tp = hydridotris(pyrazolyl)borate) and [Os(η
5
-C5H5)(NCMe)2 

(P
i
Pr3)][PF6] with 2-vinylpyridine in the presence of base produces metal indolizine 

complexes (Figure 1.8). The aromatic 10-π indolizine rings were found have an almost 

planar geometry, where an average deviation of 0.08 Å at the nitrogen atom was found. 

X-ray crystallography revealed that the metal-carbon bond lengths of 2.000(6) (a, 

Figure 1.8) and 1.983(2) (c, Figure 1.8) Å were between that which is expected for the 

respective metal- alkenyl and alkylidene complexes, therefore demonstrating a metal-

carbon bond with partial double bond character. Additionally, the metal-nitrogen bond 

lengths were reported to be significantly shorter than in the respective metal-nitrogen 

bond to a pyridine ligand. The 
13

C{
1
H} NMR spectra exhibited resonances for the 

carbon bound directly to the metal of the 3-osmaindolizine complexes at 203.8 ppm (a, 

Figure 1.8) and 197.8 ppm (b, Figure 1.8), and for the 3-ruthenaindolizine
143

 at 226.3 

ppm (c, Figure 1.8). 

 

a    b    c 

Figure 1.8: Osmium and ruthenium indolizine complexes.  
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A set of metallopyrrole complexes (b, Scheme 1.20) were also synthesised by 

Esteruelas et al. from the addition of NaBH4 and methanol to the imino-phosphine 

complexes (a, Scheme 1.20).
144

 The chemical shifts of the carbon atoms in the 

metallocycle suggested that the electron density was delocalised around the ring. The 

13
C{

1
H} NMR spectra displayed the chemical shifts for the carbon atoms at the 

osmium-carbon were between 222-224 ppm, the carbon-hydrogen were between 126-

129 ppm and the nitrogen-carbon were between 178-180 ppm.  

 

   a         b 

Scheme 1.20: Formation of metallopyrrole complexes from an imino-phosphine derivative, 

(where R = CH3, H, Cl). 

When the alkenyl-allenylidene complexes (where R = Ph, Cy) (a, Scheme 1.21) were 

heated at reflux in an acetonitrile solution, the 1-osma-4-hydroyclopenta[c]pyrrole 

complexes were generated (f, Scheme 1.21).
145

 The mechanism of formation for the 

osmacyclopentapyrrole complex involved an initial migratory insertion of the 

allenylidene ligand into the osmium-alkenyl bond to generate an allenyl complex  (b, 

Scheme 1.21) The resulting allenyl complex (b, Scheme 1.21)  in the presence of 

acetonitrile resulted in the coordination of another acetonitrile molecule (c, Scheme 

1.21). Electrophilic addition of the acetonitrile molecule produces the metallopyrrole 

complex (d, Scheme 1.21) and a final ring closure (e, Scheme 1.21) and protonation 

generates the product.   
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Scheme 1.21: Reaction mechanism proposed for the formation of the osmacyclopyrole 

derivatives, where [Os] = [Os(P
i
Pr3)2(NCMe)] and R = Ph or Cy.  

Significant data on the nature of complexes (f, Scheme 1.21) were obtained from the IR 

spectra, 
13

C{
1
H} NMR spectra and an X-ray structure of the phenyl analogue.

145
 The 

geometry was described as a distorted octahedron, where the osmacyclopentapyrrole 

fragment has been described to contain a low level of aromaticity (opposite to Figure 

1.8). This was demonstrated in the distinct carbon-carbon bond lengths. The 
13

C{
1
H} 

NMR spectra exhibits the carbon atom coordinated to the osmium centre between 204 – 

210 ppm, which is approximately 20 ppm higher field than the previously mentioned 

metallapyrrole complex (b, Scheme 1.20). 

  

a b c 

d f e 
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1.6.2 Iridium-containing metallacycles 

Carmona et al. published the synthesis of an iridapyrrole complex (b, Scheme 1.22) 

from the Tp
Me2

Ir(C2H4)2 complex, where Tp
Me2

 = hydrotris(3,5-dimethylpyrazolyl) 

borate (a, Scheme 1.22).
146-148

 The reaction mechanism was proposed to involve a 

intramolecular [3+2] cycloaddition reaction of the iridium-vinyl and acetonitrile 

fragments. The formation of the iridapyrrole complex was catalysed by the presence of 

water and therefore suggested that the iridapyrrole species (which is not usually 

detected) may act as a reactive intermediate. The characteristic qualities of the IrNCCC 

ring was determined by NMR spectroscopy and X-ray crystallography. The 
13

C{
1
H} 

NMR spectra demonstrated that the carbon atom bound directly to the iridium centre 

resonated at 191.3 ppm, and was characteristic of the carbon atom being  in between the 

resonances expected for those belonging to a metal carbene and vinyl complex. In 

addition, the short bond lengths around the iridapyrrole ring suggested the electron 

density was delocalised.  

 

Scheme 1.22: Synthesis of an iridapyrrole complex, where [Ir] = where Tp
Me2

Ir.  

The iridium metallapyrrole complexes differ to those mentioned for the osmium system 

where a low degree of electron delocalisation was mentioned. However, in both of these 

systems the carbon atoms bonded directly to the metal centres display partial double 

bond character.  

  

a b 
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1.6.3 Ruthenium-containing metallacycles 

Several ruthenium metallacycles which incorporate a nitrogen heteroatom have been 

reported in the literature. The preparation and properties of a ruthenapyrrolinone and a 

ruthenapyrrole complex will be described.  

The reaction of allenylidene ligand (a, Scheme 1.23) with diallylamine results in the 

formation of a new carbon-nitrogen bond (b, Scheme 1.23).
149

 This process presumably 

occurring by nucleophilic attack at the electrophilic α-carbon atom. Nucleophilic attack 

of a nitrogen donor at an electron deficient α-carbon atom of ruthenium vinylidene 

ligands have been reported in the literature (Section 1.4.4). The addition of base 

NaOMe, generates a ruthenapyrrolinone species (c, Scheme 1.23). The 

ruthenapyrrolinone ring exhibits a delocalisation of electron density around the Ru-C-N 

bond, where the resonance form on the right hand side displays a more accurate 

description of the bonding (Scheme 1.23). The 
13

C{
1
H} NMR chemical shifts of the 

carbon atoms Ru-C-N and Ru-C-O were 262.2 and 259.8 ppm respectively, where the 

structure has been described to have an amino-carbene nature.  

 

Scheme 1.23: Synthesis of the ruthenapyrrolinone complex c. 

  

a b 

c 
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The 1,3-ruthenapyrrole complex in Figure 1.9 was prepared from by a dinuclear 

ruthenium complex [Ru2(μ-CN(Me)CH2Ph)(μ-CO)(CO)2(η
5
-C5H5)][SO3CF3].

150
 The 

13
C{

1
H} NMR spectrum of the RuCNCC ring displayed characteristic resonances at 

217.3 (RuCN), 152.6 (N-C-C) and 98.0 (Ru-C-C) ppm. The respective iron (II) complex 

similar to the structure in Figure 1.9 was also synthesised, where the 
13

C{
1
H} NMR 

spectrum exhibited similar peaks. The X-ray structure of the iron (II) complex, 

suggested the Fe-C-N atom possesses a diaminocarbene character (bond lengths of iron-

carbon and carbon-nitrogen were 1.937(5) and 1.356(6) Å respectively), where as the 

Fe-C-C atom was described as an enamide anion (bond lengths of iron-carbon and 

carbon-carbon were 1.967(5) and 1.309(7) Å respectively).  

 

Figure 1.9: Diagram of the ruthenapyrrole species. 

The spectroscopic data of the ruthenium metallapyrrole complexes described here have 

demonstrated that the Ru-C-N carbon atom exhibits an amino-carbene characteristic. 

However, the data for the remaining carbon atoms in the metallapyrrole is dependent on 

the substituents present.  
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1.7 N-Heterocyclic Carbenes (NHCs) 

1.7.1 Conventional N-heterocyclic carbene ligands 

Transition metal complexes containing NHC ligands have made a considerable 

contribution to the development of catalytic systems,
151

 such as the ruthenium-mediated 

olefin metathesis
10, 12, 152-155

 and palladium-catalysed cross-coupling reactions.
13, 14

 The 

most commonly employed N-heterocyclic carbenes (NHCs) employed in transition 

metal chemistry are the imidazol-2-ylidene class of ligands.
156

 There are three common 

methods to prepare these ligands, which include: i) deprotonation of the azolium salt; ii) 

reductive sulphurisation and iii) thermal α-elimination (Scheme 1.24).
157

 The strong σ 

donor properties and adaptability of the steric influence at transitions metal centres has 

made them ideal ligands.
151

   

 

Scheme 1.24: Potential methods to synthesise imidazol-2-ylidene ligands.   

The electronic configuration in NHCs determines the reactivity that will be observed. 

The carbene carbon atom in :CR2 can orientate itself in several geometries (linear, bent) 

which affects the relative energies of its orbitals (Figure 1.10). A linear carbene is an 

extreme case which is sp-hybridised and contains two non-bonding, degenerate px and 

py orbitals. However, a bent carbene geometry is sp
2
-hybridised, where the py orbital 

remains as a non-bonding orbital (also referred to as a pπ orbital). The remaining sp
2
-

hybridised orbital is stabilised, where it contains s-character and is referred to as a σ 
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orbital. For the sp
2
-hybridised system the electron distribution could yield either a triplet 

or singlet carbene. The triplet carbene has been described to have a diradical character 

where two electrons of a parallel spin fill the σ and pπ orbitals (σ
1
pπ

1
). Alternatively, a 

singlet carbene involves the electrons filling the σ orbital in an anti-parallel orientation. 

Whether the singlet or triplet carbene state is present, is dependent on the size of the 

energy gap between the σ and pπ orbitals (an energy difference of 2 eV or higher results 

in the preference of the singlet carbene). Factors which control the size of this energy 

gap include the steric and electronic properties of the α substituents to the carbene 

carbon atom.
157, 158

   

 

Figure 1.10: Electron configuration of the carbene atoms in the linear and bent geometries.  

The two adjacent nitrogen atoms in an NHC ligand stabilise the carbene tautomer 

though a mesomeric effect, where the π electrons at the nitrogen atoms interact with the 

py orbital raising the energy of this orbital (Figure 1.11).
159, 160

 The consequence is the 

energy gap between the σ and py orbital increases and therefore the singlet state is 

stabilised. When considering the bonding in NHC ligands, they are acknowledged as 

being stronger σ-donors but weaker π-acceptor ligands relative to phosphine ligands.
154, 

161-163
 Additionally, a small contribution from the electron density in the π C-N bond has 

been shown to interact with transition metal centres.
164, 165

  

 

Figure 1.11: Schematic representing stabilisation provided by adjacent nitrogen atoms to the 

carbene atom.   
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1.7.2 Rhodium-catalysed transformations via C-H activation 

Catalytic C-H activation by transition metal centres and functionalisation of these 

organic molecules to synthesise new carbon-carbon or carbon-heteroatom bonds holds 

many advantages, for example reducing the number of reaction steps to obtain an 

organic molecule by avoiding the need to synthesise pre-functionalised reagents allows 

for cheaper production of compounds and more readily accessible starting materials.
166

 

In addition, unwanted potentially toxic by-products are avoided.
167

 Bergman et al. have 

reported extensive literature on the functionalisation of rhodium N-heterocyclic carbene 

complexes.
167, 168

 These complexes have been used in coupling reactions for the 

alkylation of pyridine
169

 and other N-containing heterocycles,
170

 arylation of azoles,
171

 

synthesis of functionalised pyridines
168, 171-174

 and piperidines
175

 which play key roles in 

biological systems. In addition to rhodium (I) complexes their reactions have also 

included the less commonly used rhodium (III) complexes.
176, 177

  

Bergman et al. have also stated that it is crucial to understand the mechanism through 

which these reactions occur in order to develop more active catalytic systems.
168, 178

 

Therefore, a mechanistic study for the synthesis of N-heterocyclic carbene rhodium 

complex (b, Scheme 1.25) was reported by Bergman et al. This provided significant 

information on the C-H activation pathway and therefore the formation of the NHC 

ligands which are known to undergo coupling reactions. A mechanism-driven approach 

employing experimental techniques such as isotopic labelling and rate studies and 

theoretical computational studies were employed to identify potential intermediates. The 

reaction between [RhCl(PCy3)2] (a, Scheme 1.25)  and 3-methyl-3,4-

dihydroquinazoline yielded an NHC complex where a C-H activation occurred and the 

proton was transferred to the nitrogen atom.  

 

      a      b 

Scheme 1.25: Reaction of [RhCl(PCy3)2] and 3-methyl-3,4-dihydroquinazoline.  
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A potential intermediate was identified at a lower reaction temperature as the N-

coordinated complex (b, Scheme 1.26), which was confirmed through the use of 
15

N 

and 
13

C isotope labelling experiments. To determine the role of the N-coordinated 

complex two reactions were designed; one which looked at the reaction of 

[(PCy3)2RhCl] (a, Scheme 1.26), with the N-heterocycle; and one which began with the 

N-coordinated heterocycle. They noted the former reaction established a rapid 

equilibrium with the N-coordinated species; and that both reactions yielded the C-H 

activated species (c, Scheme 1.26). Kinetic rate studies determined that the N-

coordinated species was an intermediate in the C-H activation mechanism. A double-

labelling crossover experiment determined that the C-H activation step occurred in an 

intramolecular fashion.
178

 

 

Scheme 1.26: Potential mechanisms for the formation of the rhodium-NHC complex. 

 

1.7.3 Non-conventional N-heterocyclic carbenes: Pyridylidenes 

There has been an increase in attention focussed on the preparation of non-conventional 

NHC ligands in the literature, due to the success of traditional NHCs.  This has led to 

investigations being conducted on a variety of non-conventional NHC ligands. This 

section will discuss the properties of pyridylidene ligands, which are the carbene forms 

of six-membered N-containing heterocycles which contain only one nitrogen atom 

(Figure 1.12).
179-181

 This section will become more relevant later in this thesis, as novel 

ruthenium pyridylidene-containing complexes have been synthesised.  

a 
b 

c 
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Figure 1.12: Pyridine and pyridylidene. 

Accessing the tautomeric forms of pyridines were first mentioned in the 1930’s by 

Hammick et al. where it was proposed that a radical intermediate played a role in the 

decarboxylation of the carboxylic acids of pyridine, quinoline and isoquinoline.
182, 183

 

Since then a wide range of potential routes to access pyridylidenes have been 

described.
180

 Some of these methods include the N-functionalisation of pyridyl 

ligands,
184

 oxidative addition of halide-substituted pyridine molecules,
185, 186

 

deprotonation of a C-H bond of pyridinium salts
187-190

 and the tautomerisation of 

pyridine by transition metal complexes (Section 1.8).  

Schwarz et al. later identified that a one electron reduction of pyridine produced the 2-

carbene tautomer of pyridine in the gas phase and provided experimental and theoretical 

evidence (Figure 1.13).
191, 192

 The theoretical studies demonstrated that the 2-carbene 

tautomer of pyridine is approximately 188 - 209 kJ mol
-1

 higher in energy than pyridine. 

The gas-phase intramolecular isomerisation between pyridine and its 2-carbene 

tautomer was calculated to have a transition state of approximately 356 kJ mol
-1

 relative 

to pyridine. This high barrier suggested an isomerisation between the two forms under 

these conditions was not likely to occur, however in the condensed phase intermolecular 

processes are more likely to intervene.
193

 The 3- and 4- carbene isomers of pyridine 

have also been investigated, where these tautomers are even higher in energy than the 2-

carbene form at approximately 251 kJ mol
-1

.  

 

Figure 1.13: The tautomeric forms of pyridine. 

Recently, pyridylidenes have been coupled to imidazolidene or triazolylidene ligands at 

transition metal centres in order to study the potential coordination modes and achieve 

ligands with strong σ-donor properties.
194

 Some examples of these complexes describe 

these ligands as being robust and easily handled in the presence of air- and moisture.
195, 
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196
 Applications of these ligands include them being potential hydride carriers

195, 196
 or 

for water oxidation.
197

  

1.7.4 The nature of the metal-carbon bond in pyridylidene complexes 

The bonding of pyridylidene ligands to transition metal centres has been analysed by a 

range of spectroscopic techniques including IR, 
31

P{
1
H}, 

13
C{

1
H} NMR spectroscopy 

and X-ray crystallography.
198-200

 Additionally, computational studies are also a useful 

tool in determining the metal ligand interactions.
181

  

The bonding of pyridylidene ligands to transition metal centres has been studied by 

Frenking et al. The reported experimental and theoretical investigations are based 

around the Group 10 transition metal centre complexes, [M(PPh3)2Cl(C5H4NMe)] 

(where M = Ni, Pd and Pt).
200-202

 The 
13

C{
1
H} NMR data demonstrated that upon 

metallation the carbon bound to the metal centre (Ni, Pd) undergoes a deshielding 

effect. In the 2-pyridylidene complexes, the carbon atom at the 2-position exhibited δc 

resonances at approximately 190 ppm, where as for 2-choloropyridine the respective 

carbon atom is observed at 151.5 ppm.
200

 Similar observations were reported by Bercaw 

et al. with a range of [Pt(CH3)L(N-(2-pyridyl)-R-pyridine-2-ylidene)] complexes (where 

R = 4-H, 4-NMe2, 4-
t
Bu and L = CO, DMSO), where downfield 

13
C{

1
H} NMR 

resonances were observed between 160-175 ppm.
188

  

An investigation into an X-ray structure of Ni(PPh3)2Cl(C5H4NMe) (left, Figure 1.14) 

demonstrated that the N(1)-C(6) and C(2)-C(3) bond lengths were longer with respect to 

pyridine and therefore suggested a diene type structure.
200

 The bond lengths were found 

to follow a similar pattern to 2-pyridone (right, Figure 1.14). Interestingly, the M-C 

bond lengths to the carbon atom of the NHC ligand did not necessarily always correlate 

to the calculated bond energies.
202, 203

  

 

Figure 1.14: X-ray structure comparison of the pyridylidene ligand in Ni(PPh3)2Cl(C5H4NMe), 

pyridine and 2-pyridone.  
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DFT studies by Frenking et al. on the [MCl(PH3)L] complexes, (where M = Ni, Pd, Pt 

and L = N-heterocyclic carbene ligand) were conducted (Figure 1.15). It was established 

that there was a significant σ bonding interaction in the pyridylidene complexes, which 

resulted in an electrostatic interaction. In addition, there was also a smaller π back-

bonding interaction present in these complexes. The HOMO of the ligands was 

considered to be the σ lone pair on the carbon atom of the pyridylidene ligands. Overall, 

these studies highlighted there was a ‘non-negligible M=C bond’ present in these 

systems.
200, 202

  

 

Figure 1.15: Square planar metal complexes used for DFT calculations to determine the nature 

of the metal-carbene bond, where M = Ni, Pd, Pt.   

Raubenheiner et al. compared the bonding of different NHC ligands, a six-membered 4-

pyridylidene (left, Figure 1.16) and a five-membered imidazolin-2-ylidene (right, Figure 

1.16) at a palladium (II) transition metal centre using DFT calculations. It was 

determined that the σ orbital (HOMO) of the carbene atoms was higher in energy (1.28 

eV) for the 4-pyridylidene complex and therefore a better σ donor. Additionally, the π 

back-bonding ability in the imidazolin-2-ylidene system was more limited with respect 

to the 4-pyridylidene ligand.
204

  

 

Figure 1.16: Comparisons between a six-membered NHC and five-membered NHC ligand at a 

palladium (II) centre.  
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1.8 Tautomerisation of pyridine by transition metal centres 

Literature on the tautomerisation of pyridine and substituted pyridines by transition 

metal centres is not extremely common.  Major contributions regarding the 2-carbene 

tautomers of pyridine from 2-substituted pyridines have been made from the research 

groups of Carmona and Esteruelas et al. The most commonly employed transition metal 

centres are iridium and osmium, however some ruthenium examples have been reported 

to successfully yield the respective 2-carbene tautomer of pyridine.
205

  In a similar 

fashion to the alkyne-vinylidene tautomerisation, transition metal centres may be 

employed to reduce the activation barrier to access the tautomers of pyridine and their 

reactivity observed. The formation of pyridylidene ligands through this method is 

proposed later in this thesis.  

1.8.1 Synthesis and reactivity of iridium pyridylidene complexes 

Carmona et al. have reported a library of iridium (III) N-heterocyclic carbene (NHC) 

complexes. The synthesis of the NHC ligands from pyridine and substituted pyridines 

was achieved by heating the N-containing heterocycles in the presence of an unsaturated 

16-electron iridium (III) complex.
206-208

 The commonly employed starting materials 

included [Tp
Me2

Ir(C6H5)2(N2)] and [Tp
Ms”

Ir(N2)] (where Tp
Me2

 = hydrotris(3,5-

dimethylpyrazolyl)borate and Tp
Ms”

 = a dimetallated hydrotris(3-mesitylpyrazol-1-yl) 

borate), where substitution of the N2 ligand by the incoming N-containing heterocycles 

occurs (Figure 1.17).  

 

Figure 1.17: Iridium(III) precursors [Tp
Me2

Ir(C6H5)2(N2)] (left) and [Tp
Ms”

Ir(N2)] (right).  
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1.8.1.1 Reactivity observed with 2-substituted pyridines 

The reaction of various 2-substituted pyridines with [Tp
Me2

Ir(C6H5)2(N2)] (a, Scheme 

1.27) yielded iridium NHC complexes where the C-H bond at the 2-position of the 

aromatic molecules was activated and the hydrogen atom is transferred to the nitrogen 

atom (b, Scheme 1.27). High yields of the iridium-NHC complexes were obtained with 

the bulkier R substituents 
t
Bu, NMe2, SiMe3 under milder conditions (60 °C). However, 

when R = Me, Ph and C(O)Me, higher reaction temperatures of 90 °C were required to 

access the 2-carbene tautomer, as lower reaction temperatures generated the kinetic 

product, the N-bound complex.
206-208

 Additionally, the 2,3-substituted pyridine, 

quinoline reacted in a similar method to 2-methylpyridine and has also been extended to 

polypyridine ligands to form the corresponding pyridylidene complexes.
209-211

  

 

a       b 

Scheme 1.27: Reaction of 2-substituted pyridines with [Tp
Me2

Ir(C6H5)2(N2)], where [Ir] = 

Tp
Me2

Ir and R = Me, Ph, 
t
Bu, NMe2, C(O)Me, SiMe3. 

A potential rationalisation given for the formation of these N-heterocyclic carbene 

complexes from the 2-substituted pyridine molecules was due to decreased activity of 

the Lewis base due to an increase in steric demand at the ‘front’ of the Lewis base 

(otherwise known as ‘F-strain’).
212

 The steric strain destabilises the N-bound isomer, 

therefore generating the iridium (III) NHC complexes. The iridium (III) NHC 

complexes b (Scheme 1.27) display characteristic spectroscopic data. The 
13

C{
1
H} 

NMR spectrum displays resonances for the carbene atom between 170 - 180 ppm. 

Additionally, the X-ray crystallography data for the iridium-carbon bonds of the NHC 

complexes are between 1.98 - 1.99 Å (e.g. R =Me 1.982(2) Å, R = Ph 1.978(3) Å), 

which is significantly shorter than an iridium-carbon bond for a phenyl complex, where 

an expected bond length is approximately 2.05 Å.
213

  

Additionally, Esteruelas et al. have studied the behaviour of the iridium complexes 

IrHCl2(P
i
Pr3)2 (a, Scheme 1.28) and IrCl(η

2
-C8H14)(P

i
Pr3)2 with several N-containing 

heterocycles (quinoline, 8-methylquinoline, 2-methylpyridine, benzo[h]quinoline).
214

 

The hydride containing complex IrHCl2(P
i
Pr3)2 (a, Scheme 1.28)  reacts with the N-

containing heterocycles to produce the respective iridium (III) NHC complexes, which 

are stabilised by a N-H--Cl hydrogen bond (b, Scheme 1.28). The spectroscopic data 
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exhibited a characteristic iridium-carbon bond length of approximately 1.99 Å and in 

the 
13

C{
1
H} NMR spectrum the carbene carbon atoms were observed between 165 – 

175 ppm.  Interestingly, it was found that the lack of a hydride atom at the metal centre 

in IrCl(η
2
-C8H14)(P

i
Pr3)2 rendered the complex unable to generate the NH tautomer. A 

proposed mechanism involved an initial hydrogen migration from the iridium centre to 

the nitrogen, followed by a C-H bond activation at the 2-position of the N-containing 

heterocycle to give the final metal NHC product. The presence of a hydride atom at the 

iridium centre displayed significant changes in reactivity between the N-bound and C-

bound tautomers.  

 

         a             b 

Scheme 1.28: Reactivity observed between IrHCl2(P
i
Pr3)2 and 2-methylpyridine. 

 

1.8.1.2 Synthesis of unsubstituted iridium pyridylidene complexes 

Carmona et al. have studied the reaction of unsubstituted pyridine with 

[Tp
Me2

Ir(C6H5)2(N2)] which produced only the N-bound isomer (even when heated to 

150 °C). Similar observations were also found when either an NMe2 or CF3 substituent 

was present at the 4-position. However, when the reaction was conducted in an excess 

of pyridine or 4-substituted pyridines at elevated temperatures and for long periods of 

time the N-bound complex is the only product, suggesting it is the thermodynamic 

product of this reaction.
208

  

The reaction between [Tp
Ms

Ir(N2)] (a, Scheme 1.29) and pyridine, results in a mixture 

of products of the N-coordinated adduct (b, Scheme 1.29), and the NHC complex (c, 

Scheme 1.29) The two species did not convert between each other, hence it could be 

concluded that there are two competitive reactive pathways occurring and that the N-

coordinating adduct was not an intermediate species. The C-H activation step was 

studied in more detail in an attempt to better understand the mechanism. The kinetic 

isotope effect was studied by comparing the rates of reaction with NC5H5, and NC5D5, 

and found a kH/kD of 2.0 (±0.2) for the C-H activation route, making this the rate-

limiting step. The N-coordinated adduct did not lose any of its deuterium atoms, 
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indicating this is not involved in the mechanism for the formation of the NHC 

isomer.
207, 208

  

 

     a      b   c 

Scheme 1.29: Reaction of [Tp
Ms

Ir(N2)] and pyridine. 

An alternative route to the iridium (III) NHC complex of pyridine was achieved through 

further reactivity of the complex where R = SiMe3 (a, Scheme 1.30). The addition of 

NaOH removes the SiMe3 group to generate the pyridylidene complex (b, Scheme 

1.30).  

 

        a           b 

Scheme 1.30: Alkaline hydrolysis to produce an unsubstituted iridium pyridylidene complex, 

where [Ir] = Tp
Me2

Ir.  

 

1.8.1.3 Determining the mechanism for the formation of the iridium pyridylidene 

complexes 

Theoretical calculations on the experimental findings for the tautomerisation of 2-

substituted pyridines were conducted by Carmona et al. The stability of the 

unsubstituted pyridine complex with its carbene tautomer (c, Scheme 1.29) revealed that 

the N-bound isomer (b, Scheme 1.29) was 17.1 kJ mol
-1

 more stable. However, for 2-

methylpyridine the opposite stability was observed, where the pyridylidene complex 

was more stable by 15.1 kJ mol
-1

 (and therefore is considered the thermodynamic 

product).
208

 

The tautomerisation mechanism to the pyridylidene complex was determined to proceed 

via a σ-complex assisted metathesis mechanism (σ-CAM) (Scheme 1.31). From the σ-

C-H coordination of 2-methylpyridine species (b, Scheme 1.31), the tautomerisation 

involves a hydrogen migration of the C-H bond of the 2-methylpyridine molecule to the 

neighbouring coordinated C6H5 group, to produce a σ-bound C-H benzene intermediate 



76 

Chapter 1 

(c, Scheme 1.31). A subsequent hydrogen migration to the pyridylic nitrogen atom then 

generates the iridium (III) NHC complex (d, Scheme 1.31).
 208

  

 

 a   b       c        d 

Scheme 1.31: Proposed σ-CAM mechanism for the formation of the iridium pyridylidene 

complex of 2-methylpyridine, where [Ir] = Tp
Me2

Ir. 

Li et al. reported that the iridium (I) pyridylidene complexes (Figure 1.18) originating 

from 2,3-bipyridyl ligands, a δC for the carbene carbon atoms were in the range of 175 - 

180 ppm (consistent with those reported by Carmona et al.). These complexes were 

found to be stabilised by two factors, a chelation effect and a hydrogen bond between 

the N-H group and the oxygen atom of the tethered amide group on the basis of DFT 

calculations.  Li et al. proposed a mechanism in which the formation of the complexes 

(left, Figure 1.18) was assisted by the presence of water in the reaction mixture. The 

water molecules catalyse the reaction by allowing protons to be transferred from the C-

H bond to a hydrate intermediate (right, Figure 1.18), where a subsequent proton 

transfer yields the pyridylidene complex (left, Figure 1.18).
215, 216

  

  

Figure 1.18:Left: Iridium (I) pyridylidene complex stabilised by a hydrogen bonding, where [Ir] 

= Ir(COD); Right: Hydrate intermediate proposed by DFT mechanism, where [Ir] = Ir(COD). 
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1.8.1.4 Reactivity of the iridium pyridylidene complexes 

Carmona et al. also studied the reactivity of complex [Tp
Me2

Ir(Ph)2(pyridylidene)] with 

ethene, propene and acetylene, to give respective iridacyclic pyridylidene complexes 

(Scheme 1.32). The reaction of [Tp
Me2

Ir(Ph)2(pyridylidene)] with ethene results in an 

irreversible, clean conversion to a five membered iridacycle complex (b, Scheme 1.32). 

However, the reaction of propene is reversible and the carbon-nitrogen bond formation 

proceeds in a regioselective manner (c, Scheme 1.32). The reversibility of these 

reactions is thought to be dependent on the strength of the carbon-nitrogen bond, where 

the C(H2)-N bond is stronger relative to the C(HMe)-N bond. This was consistent with 

the inability to observe the respective iridacyclic complex when tert-butylethylene was 

used.
213, 217, 218

  

 

          a               b 

 

        a              c 

Scheme 1.32: Reactivity observed between [Tp
Me2

Ir(Ph)2(pyridylidene)] with ethylene (top) and 

propene (bottom), where R = Me or Ph and [Ir] = [Tp
Me2

Ir]. 

The reaction from the addition of acetylene to complex [Tp
Me2

Ir(Ph)2(pyridylidene)] at 

90 °C under anaerobic conditions produces a 4-membered iridacycle complex (d, 

Scheme 1.33). If an additional acetylene molecule is introduced a carbon-carbon 

coupling occurs between one of the phenyl rings and the acetylene molecule (e, Scheme 

1.33).
213

 A mechanism has been proposed by Carmona et al., which proceeds via a 

vinylidene intermediate in a pyridylidene-assisted intramolecular fashion (based on 

work published by Grotjahn et al., Section 1.4.3) and is corroborated with DFT studies 

quoting the free energies of the complexes.
217

 An initial η
2
-coordinated alkyne species 

(b, Scheme 1.33) undergoes a hydrogen atom migration to give an acetylide-

pyridylidene complex, where the hydrogen atom is abstracted by the nitrogen atom of 

the pyridyl ligand (overcomes a transition state of 12.8 kJ mol
-1

). The N-H hydrogen 
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atom then migrates to the β-carbon atom to give a vinylidene intermediate (c, Scheme 

1.33) (where transition state is 18.1 kJ mol
-1

). It is not unusual for ligands to assist in the 

formation of a metal vinylidene complex.
219, 220

 The subsequent carbon-nitrogen bond 

formation was described as ‘almost barrierless’.  

 

 

Scheme 1.33: Reaction of [Tp
Me2

Ir(Ph)2(pyridylidene)] and acetylene, where [Ir] = [Tp
Me2

Ir]. 

 

1.8.2 Synthesis and reactivity of osmium pyridylidene complexes 

An extensive set of osmium pyridylidene complexes have been reported by Esteruelas 

et al. The reaction of osmium (IV) and (VI) complexes OsH2Cl2(P
i
Pr3)2 and 

OsH6(P
i
Pr3)2  with various N-containing heterocycles is now described.  

1.8.2.1 Reactivity of 2-substituted pyridines 

The dihydride Os(IV) complex OsH2Cl2(P
i
Pr3)2 generates the NH tautomers when 

reacted with 2,3-substituted pyridines (quinoline, 8-methylquinoline, 

benzo[h]quinoline)
221, 222

 and 2-methylpyridine
223

 (Scheme 1.34). The properties of the 

osmium pyridylidene complexes have been determined, where the δc of the carbon atom 

bound to the metal centre is observed between 182-200 ppm. X-ray structures of the NH 

tautomers exhibit a range of osmium-carbon bond lengths between 2.005(6) – 2.137(5) 

Å.
221

 A key feature of these complexes is that the N-H bond forms an intramolecular 

hydrogen bond with a chloride or oxygen atom which stabilises the N-H tautomer.  

  

a b c 

d e 
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Scheme 1.34: Synthesis of osmium pyridylidene complexes from OsH2Cl2(P
i
Pr3) 2 with top 

reaction: quinoline (R = H) and 8-methylquinoline (R = Me); middle reaction: 

benzo[h]quinoline and bottom reaction: 2-methylpyridine.  

 

An alternative route from OsH6(P
i
Pr3)2 and 2-vinylpyridine produces the osmium NHC 

complex of 2-ethylpyridine in the presence of benzophenone (b, Scheme 1.35).
224

 In a 

similar manner to the previously reported complexes, the pyridylidene fragment is 

stabilised by an N-H- -O hydrogen bond to the orthometallated ketone ligand. The 

stability of this ligand was tested, and it was found that the ‘retrotautomerisation’ to 2-

vinylpyridine is disfavoured with respect to the loss of the C-H activated ketone ligand 

(Scheme 1.35).  

 

 a           b     c 

Scheme 1.35: Osmium NH tautomer of 2-ethylpyridine.  
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Differences in reactivity towards the N-containing heterocycles have been reported. The 

reaction of the osmium (IV) complex, OsH2Cl2(P
i
Pr3)2 with 2-vinylpyridine does not 

produce the NH tautomer.
224, 225

 Additionally, the reaction of the osmium (VI) complex, 

OsH6(P
i
Pr3)2 with 2-methylpyridine does not yield expected the pyridylidene complex, 

instead a C-H activation at the position generates a η
2
-(C,N) pyridyl complex (Figure 

1.19).
224

 

 

Figure 1.19: Formation of an η
2
-(C,N) pyridyl complex. 

 

1.8.2.2 Reactivity with unsubstituted pyridine 

The reactions of pyridine with OsH2Cl2(P
i
Pr3)2 (a, Scheme 1.36) and OsH6(P

i
Pr3)2 

generates the N-bound complexes OsCl2(NC5H5)3(P
i
Pr3) (b, Scheme 1.36) 

223
 and 

OsH4(NC5H5)(P
i
Pr3)2

226
 respectively. These studies highlighted the importance of the 

substituent at the 2-position of the N-containing heterocycle, where a steric hindrance 

must be experienced between the 2-substituted pyridine and the metal complex to allow 

for the pyridylidene complex to be produced, consistent with results presented by 

Carmona et al.  

 

a             b 

Scheme 1.36: Synthesis of OsCl2(NC5H5)3(P
i
Pr3).  
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1.8.2.3 Determining the mechanism for the formation of the osmium pyridylidene 

complexes 

DFT calculations for the tautomerisation mechanism of the substituted pyridines (2-

methylpyridine and quinoline) at the osmium centre OsH2Cl2(PMe3)2 were investigated 

by Esteruelas et al., where they quoted the changes in the free energy (ΔG). A general 

three step mechanism was reported involving an initial intermolecular hydrogen 

migration from the metal centre to the nitrogen atom of the heterocycle. A subsequent 

C-H activation at the 6-position of the protonated N-containing heterocycle, followed 

by a dihydride to dihydrogen tautomerisation. The systems with 2-methylpyridine and 

quinoline were both found to have different rate determining steps. The C-H activation 

at the 2-position in the case of 2-methylpyridine was the rate determining step, with a 

transition state of 30.2 kJ mol
-1

. However, the respective step with quinoline was lower 

(22.1 kJ mol
-1

), therefore making the intermolecular hydrogen migration the rate 

determining step. The differences in the two potential energy surfaces was attributed to 

the ability of quinoline to delocalise electron density within the ring and therefore 

results in a stabilisation effect.
214, 221, 223, 224, 226

  

1.8.2.4 Reactivity of the osmium pyridylidene complexes 

Esteruelas et al. recently reported the stoichiometric reaction of an  

[OsTp(κ
1
-OCMe2)2(P

i
Pr3)][BF4] complex (a, Scheme 1.37) with 2-methylpyridine in 

the presence of fluorobenzene to generate the osmium pyridylidene complex (b, Scheme 

1.37).
227

 This is consistent with the previously mentioned findings where the substituent 

in the 2-position promoted the tautomerisation to the NHC complex. The reaction of the 

pyridylidene complex (b, Scheme 1.37) with phenylacetylene produces the alkenylation 

product (f, Scheme 1.37). A reaction mechanism was proposed which involved the 

formation of an osmium pyridylidene-vinylidene complex (c, Scheme 1.37), which in 

the presence of a base deprotonates the vinylidene ligand to generate an alkynyl-

pyridylidene species (d, Scheme 1.37). Upon heating complex (d, Scheme 1.37) the 

hydrogen atom on the nitrogen atom of the pyridylidene ligand is transferred to β-

carbon of the alkynyl ligand to generate a pyridyl-vinylidene ligand (e, Scheme 1.37). 

Finally, the vinylidene ligand is proposed to undergo a 1,2-migratory insertion into the 

osmium-carbon bond to the pyridyl ligand to yield the alkenylation product (f, Scheme 

1.37). The role of transition metal pyridylidene and vinylidene complexes as reactive 

intermediates in this reaction highlights their applications in the formation of new 

carbon-carbon bonds.  
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Scheme 1.37: Alkenylation reaction involving an osmium pyridylidene-vinylidene complex, 

where [Os] = [OsTp].  

 

1.8.3 Synthesis of ruthenium pyridylidene complexes 

Esteruelas et al. reported that the ruthenium dihydride species, RuH2Cl2(P
i
Pr3)2 

generated the respective 2-carbene tautomers of quinoline (a, Figure 1.20), 8-

methylquinoline (b, Figure 1.20), benzo[h]quinoline (c, Figure 1.20)
221, 222

 and 2-

methylpyridine (d, Figure 1.20).
223

 Similar complexes were observed to those 

mentioned previously (Scheme 1.34). Stabilisation of the ruthenium NHC complex was 

achieved through a hydrogen bond between the N-H group and the adjacent Cl ligand. 

However, upon the formation of a NHC ligand at the ruthenium centre, the loss of 

dihydrogen was reported therefore creating the five coordinate complexes (Figure 1.20). 

Differences in reactivity were observed between the dihydride osmium complex 

OsH2Cl2(P
i
Pr3)2. The loss of dihydrogen from the ruthenium complexes was attributed 

to the poorer overlap between the ruthenium orbitals and the coordinated ligands with 

respect to osmium. This resulted in a weaker π back-bonding interaction to the H2 

ligand and therefore created a weaker bond.
223

     

b a 

c 

d e f 



83 

Chapter 1 

 

    a, b           c            d 

Figure 1.20: Ruthenium pyridylidene complexes with a: quinoline (R = H), b: 8-

methylquinoline (R = Me), c: benzo[h]quinoline, d: 2-methylpyridine. 

The ruthenium pyridylidene complexes exhibited characteristic NMR resonances for the 

pyridylidene ligand. In the 
13

C{
1
H}NMR spectra, the chemical shifts for the carbon 

directly coordinated to the ruthenium centre were exhibited between 205 – 220 ppm, 

which had shifted further downfield in comparison to the Ir and Os pyridylidene 

complexes. Additionally, an X-ray structure obtained of the ruthenium pyridylidene 

complex of 8-methylquinoline (b, Figure 1.20) found a ruthenium-carbon bond length 

of 1.925(3) Å. 
221-223

 

Additionally, the reaction of RuH2Cl2(P
i
Pr3)2 (a, Scheme 1.38) with pyridine only 

produced the N-bound complex (b, Scheme 1.38) (in a similar fashion to the osmium 

reaction, Section 1.8.2.2). The species was collected in a high yield (70 %) and 

considered stable (Scheme 1.38).
223

  

 

a            b 

Scheme 1.38: Reaction of RuH2Cl2(P
i
Pr3)2 with pyridine.  
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1.9  Alkenylation of pyridine 

The research in this thesis will include the functionalisation of pyridine molecules and 

therefore an introduction into the relevance has been given. Pyridine plays a crucial role 

in biologically-relevant structures, therefore the selective functionalisation of this 

molecule is highly desired.
228, 229

 A 2006 report stated that the pyridine backbone 

presented itself in 26 out of the 128 potential drug molecules, thereby signifying its 

importance for functionalisation in synthetic preparations.
230, 231

 Some key biologically-

relevant molecules are shown below. For example, the pharmaceutical molecules 

pioglitazone is used as an anti-diabetic drug (a, Figure 1.21) or epibatidine has pain-

relieving features (b, Figure 1.21) or singulair has anti-inflammatory properties against 

allergies (c, Figure 1.21).
232, 233

 On the other hand, in nature it is possible to find the 

pyridine sub-structure in nicotinic acid (vitamin B3) (d, Figure 1.21) or the oxidising 

agent nicotinamide adenine dinucleotides (NAD
+
, where the reactive part of the 

molecules is the nictotinamide) (e, Figure 1.21).
29

  

 

Figure 1.21: Important biologically relevant molecules from left to right: pioglitazone (a), 

singulair (b), epibatidine (c), nicotinic acid (d) and fragment of NAD
+
 (e).   

Unfortunately, due to the high stability of the pyridine π-system relative to benzene the 

aromatic system can be regarded as electron deficient and therefore difficult to 

functionalise via electrophilic aromatic substitution which presents significant 

challenges for synthetic chemists.
29, 228, 232

 This is represented by the pKa values of the 

C-H bonds around the pyridine ring, where the theoretically calculated values are 43.6, 

41.9 and 40.3 at the 2-, 3- and 4- positions respectively.
234

 In order to achieve 

electrophilic aromatic substitution at the more difficult 2- and 4- positions of pyridine, 

the most common methods include condensation and cycloaddition reactions or the use 

of activated pyridines.
235

 Alternatively, nucleophilic addition via a carbon-halogen bond 

could be achieved using the widely acknowledged cross-coupling methods.
236

  

b 

a c 

d 

e 
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Pyridine N-oxides exhibit higher reactivity than pyridine at the 2- and 4- positions of 

the ring as a lone pair of electron on the oxygen atom can delocalise around the pyridine 

ring. Nakao et al., reported that the alkenylation of activated pyridine molecules with 

internal alkynes occurred in a regio- and stereoselective manner at the 2-position of the 

pyridine ring. The use of either N-oxides or Lewis acids in the presence of the catalyst 

Ni(COD)2 (COD = cyclooctadiene) and a phosphorus ligand exhibited cooperative 

effects which allowed for milder reaction conditions. This was later extended to 

functionalisation reactions at the 4-position of the pyridine ring where the phosphorus 

ligand was substituted with a bulky NHC ligand, 1,3-(2,6-diisopropylphenyl)imidazol-

2-ylidene. The differences observed in the regioselectivity were stated to be due to the 

highly sensitive steric and electronic factors of the initial η
2
-interaction of the pyridine 

ring to the nickel centre.
237-239

   

 

1.9.1 Literature methods for the preparation of 2-styrylpyridine 

The thesis will focus on the synthesis of 2-styrylpyridine derivatives and therefore some 

background literature on the formation of these compounds is included. The preparation 

of E-2-styrylpyridine has been mentioned in the literature 78 times.
240

 Common 

preparation methods include the use of transition metal catalysts. The palladium cross-

coupling Mizoroki-Heck
241-246

 (coupling of an aryl halide with an alkene) or Suzuki-

Miyaura
247, 248

 (coupling of an aryl halide with an organoboronic acid) reactions are the 

most common methods. Despite low catalyst loadings these reactions usually require a 

pre-functionalised group on the pyridine ring and additional equivalents of base coupled 

with high reaction temperatures. The Suzuki-Miyaura methods require the additional 

group, however these reactions are more selective when additional functional groups are 

present on the N-containing heterocycle. A more atom economical palladium catalysed 

reaction employing pyridine has recently been reported, although reaction temperatures 

of 140 °C were required.
249

 An example of the palladium cross-coupling reaction which 

employed milder reaction conditions (60 °C) between aryl trimethoxysilanes and vinyl 

groups was demonstrated by Ye et al. (Scheme 1.39).
245

 However, the expensive silver 

fluoride salt was required in three equivalents relative to the reagents, where the fluoride 

source was thought to be responsible for activating the aryl trimethoxysilane and to 

regenerate the palladium catalyst.  
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Scheme 1.39: Palladium-catalysed route to (E)-2-styrylpyridine via an aryl trimethoxysilane and 

vinylic substrates.  

Other transition metal catalysed reactions employing rhodium,
250

 iron
251

 and copper
233

 

have also been reported to afford E-2-styrylpyridine. The iron and copper catalysed 

systems presented advantages of using cheaper more accessible metal complexes, 

however are not necessarily more atom efficient. Interestingly, a few metal free routes 

have also recently been mentioned, but reagents are pre-functionalised in order to obtain 

regioselective products.
243, 252

  

 

1.9.2 Alkenylation of Pyridine: Murakami and Hori 

In 2003, Murakami and Hori reported the ruthenium-catalysed alkenylation of pyridine 

and TMS-substituted alkynes.
253

 The synthesis of the new carbon-carbon bond was 

extremely promising considering the reaction was regio- and stereoselective, especially 

when taking into account that a direct functionalisation of the C-H bond at the 2-

position of the pyridine molecule had occurred. The catalytic reaction utilised the 

convenient precursor [Ru(η
5
-C5H5)Cl(PPh3)2] (20 mol %) in the presence of a halide 

scavenger NaPF6 (22 mol %) with respect to the TMS-substituted alkyne in a pyridine 

solutions (20 equivalents) (Scheme 1.40). The reaction mixture was heated at 150 °C for 

7 hours, where the final 2-styrylpyridine derivatives were isolated by preparative TLC.  

 

Scheme 1.40: The alkenylation reaction of pyridine and TMS-substituted alkynes with [Ru(η
5
-

C5H5)Cl(PPh3)2].  

The addition of a range of cationic ruthenium vinylidene-containing complexes  

[Ru(η
5
-C5H5)(PPh3)2(=C=CHR)][PF6] (where R = Ph, 4-F-C6H4, 4-Me-C6H4, 4-OMe-

C6H4, n-C5H11, t-C4H9) to a pyridine solution (20 equivalents) was investigated. The 

reported yields of the alkenylation products for these reactions ranged between 54-82 
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%, apart from when the sterically bulky t-C4H9 was employed, where a 0 % yield was 

obtained. The reactivity and regioselectivity of methyl substituted pyridine molecules 

was investigated in the 4-, 3- and 2- positions. Both of the 4- and 3- methyl substituted 

group produced the alkenylation products, where 3-methylpyridine regioselectively 

formed a new carbon-carbon bond at the position of the N-containing heterocycle. The 

2-methylpyridine molecule did not give any of the 2-styrylpyridine derivative 

presumably due to a steric interactions between the ruthenium centre and the methyl 

substituent.   

A proposed reaction mechanism for the alkenylation of pyridine suggested the cationic 

ruthenium vinylidene-containing complex (a, Scheme 1.41) was the active catalyst in 

the alkenylation reaction. The subsequent substitution of a phosphine ligand by pyridine 

results in the formation of (b, Scheme 1.41), which after a [2+2] cycloaddition reaction 

generates (c, Scheme 1.41). Another pyridine molecule is involved in the deprotonation 

of the of the β-hydrogen atom to give a neutral π-azaallyl complex (d, Scheme 1.41). 

This complex is then protonated at the carbon atom to yield the product (Scheme 1.41).   

 

Scheme 1.41: Proposed mechanism for alkenylation of pyridine via a vinylidene complex. 

The reported reaction conditions required high catalyst loadings (20 mol %) and 

temperatures (150 °C). When a lower catalyst loading was employed (10 mol %) the 

isolated yield dramatically reduced to 24 %. Additionally, the TMS-substituted alkyne 

was required in order to prevent the dimerisation of the alkynes, which was mainly 

observed with terminal alkynes under their reported reaction conditions (Section 1.4.1). 

Several potential factors could be changed regarding the catalyst loading, reaction 

temperatures and atom efficiency in this reaction.   

a b c 

d 



88 

Chapter 1 

1.10  Aims and objectives 

The main objective for this project was to study the behaviour of the half-sandwich 

ruthenium complexes for the alkenylation of pyridine previously published by 

Murakami and Hori.
253

 Using the knowledge gained from understanding how the 

reaction mechanism proceeds, will allow for well-educated changes to be applied to the 

catalytic system and which should eventually lead to the preparation of a novel catalytic 

system. The mechanism-led approach entailing both an experimental and theoretical 

perspective would provide significant information on the role of the ruthenium centre. 

The experimental results will be discussed in this thesis, where the major methods of 

characterisation include multinuclear NMR spectroscopy, isotopic labelling studies (
13

C 

and 
2
H), ESI and EI mass spectrometry and X-ray crystallography. The theoretical DFT 

calculations were conducted by David Johnson and will be mentioned in the last 

chapter.  

Our initial aims began with observing the roles of the proposed ruthenium pre-catalyst 

[Ru(η
5
-C5H5)Cl(PPh3)2] with alkynes in a pyridine solution and the behaviour of the 

proposed active catalyst [Ru(η
5
-C5H5)(PPh3)2(=C=CHPh)][PF6] in a pyridine solution. 

Once, the role of the ruthenium catalysts has been established further mechanistic 

investigations will be conducted. The mechanistic studies were conducted in a d2-

dichloromethane solution in order to potentially observe and isolate any relevant 

ruthenium intermediates and monitor their behaviour in solution. Further investigations 

into the substituent effects at the N-containing heterocycle and alkynes, the phosphorus 

ligand and the cyclopentadienyl ligand will be conducted to develop the ruthenium 

catalysed system and establish the scope of potential reagents. Alongside the 

experimental findings DFT calculations (from David Johnson) will be combined which 

will use a high level of theory to model the ruthenium-catalysed alkenylation of 

pyridine to gain insight into the entire catalytic cycle and the substituent effects. These 

findings will be used to develop the catalyst and allow for improvements (in terms of 

atom and energy efficiency) to be made for the alkenylation of N-containing 

heterocycles. 
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Chapter 2. Initial Mechanistic Studies 

2.1 Introduction 

Catalysts aim to perform organic transformations under more efficient reaction 

conditions and increase atom efficiency (maximise the number of atoms of the raw 

materials that end up in the product by reducing the number of side products).
2, 7, 254

 The 

simplest and most atom efficient method to synthesise C-C bonds would be to utilise 

reagents with C-H bonds.
4, 6

 This would create a truly 100 % atom efficient system, as 

there would be no need to remove any wasteful side products which are usually formed 

in C-C coupling reactions, since one of the most common methods in catalysis involves 

using a pre-functionalised C-X bond (where X = halogen or triflate).
7
 

An alkene functional group can be incorporated into an organic structure by the 

palladium catalysed Mizoroki-Heck reaction, between an organic halide and an olefin 

group.
7, 246, 255-258

 A salt of the type HX or [HNR3X] (where X = halide, R = alkyl 

group) is a typical by-product of such a reaction.
259-261

 Alternatively, a more atom 

efficient method has been reported by Fujiwara et al. who investigated alkenylation 

reactions between acetylenes and arenes in the presence of trifluoroacetic acid using 

Pd(OAc)2 as a catalyst.  This utilises C-H bond activation in a selective manner to 

create alkene/aryl products.
254, 257, 262-264

  

In 2003, Murakami and Hori published the alkenylation reaction of pyridine with TMS 

substituted alkynes.
253

 The reaction utilises a half-sandwich ruthenium complex, [Ru(η
5
-

C5H5)(PPh3)2Cl] which performs the catalytic transformation, in the presence of the 

halide scavenger NaPF6. The proposed active catalyst in the alkenylation reaction was 

the vinylidene complex [Ru(η
5
-C5H5)(PPh3)2(=C=CHPh)][PF6].

253
  

This work began by firstly examining the synthesis of [Ru(η
5
-C5H5)Cl(PPh3)2] 1 and the 

vinylidene-containing complex [Ru(η
5
-C5H5)(PPh3)2(=C=CHPh)][PF6] 2

R
. Preliminary 

mechanistic studies were based on investigating the properties of the vinylidene-

containing complexes 2
R
 in d5-pyridine to determine how the reaction proceeded. This 

resulted in the formation of several ruthenium complexes which have been identified 

and their roles within the catalytic reaction determined.  
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2.2 Pre-Catalysts and Proposed Active Catalysts 

2.2.1 Synthesis of [Ru(η
5
-C5H5)(PPh3)2Cl] 

The synthetic preparation of the ruthenium complexes [Ru(η
5
-C5H5)Cl(PPh3)2] 1,

265
 and 

[Ru(η
5
-C5H5)(PPh3)2(=C=CHPh)][PF6] 2

Ph
,
54

 are well established in the literature by 

Bruce et al. The complex 1 was implemented as a pre-catalyst in the alkenylation 

reaction, as it provided a source of a cationic ruthenium species.
253

 

 

         1 

Scheme 2.1: Synthesis of complex 1. 

The ruthenium complex [Ru(η
5
-C5H5)Cl(PPh3)2] 1 was synthesised following the 

literature preparation method.
265

 The synthetic procedure to prepare the pre-catalyst 1 

was achieved using freshly distilled dicyclopentadiene, triphenylphosphine and 

RuCl3.3H2O and heating at reflux for one hour (Scheme 2.1). The product was shown to 

be pure by NMR spectroscopy and collected as either red crystals or as an orange 

precipitate in a high yield (72 %). The characteristic signals in the 
1
H NMR spectrum 

were observed for the cyclopentadienyl protons in d2-dichloromethane at 4.09 ppm, and 

the phosphorus atom of the triphenylphosphine ligands observed in the 
31

P{
1
H} NMR 

spectrum at 39.5 ppm. 
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2.2.2 Synthesis of cationic vinylidene complexes of the type [Ru(η
5
-C5H5)(PPh3)2 

(=C=CHR)][PF6] 

The synthesis of the vinylidene complexes, [Ru(η
5
-C5H5)(PPh3)2(=C=CHR)][PF6], 2

R
 

were carried out as described by Bruce and Wallis.
54

 The complex [Ru(η
5
-

C5H5)Cl(PPh3)2] 1 was heated at reflux in the presence of a terminal alkyne and an 

appropriate halide ion scavenger, in a methanol solution. The reaction mixture was 

heated for a brief period of time (10-20 minutes) to yield the vinylidene complexes 2
R
 

(Scheme 2.2). Extensive heating may result in the α-carbon atom of the vinylidene 

ligand being susceptible to attack by nucleophiles due to its electrophilic nature; hence 

the methanol may react with the cationic vinylidene species at the α-carbon atom to give 

a methoxy carbene complex (Section 1.4.3).
266

 The products were purified by 

recrystallisation. 

 

  1        2
R
 

Scheme 2.2: General synthesis of cationic vinylidene complexes 2
R
 (R = Ph, C6H4-pMe, 

t
Bu). 

The red products 2
R
 exhibited very characteristic resonances in their NMR spectra in d2-

dichloromethane solution. For complex 2
Ph

, the proton bonded to the β-carbon atom of 

the vinylidene ligand displayed a triplet resonance at 5.43 (
4
JHP = 2.4 Hz) in the 

1
H 

NMR spectrum. Additionally, in the 
13

C{
1
H} NMR spectrum the α-carbon atom 

exhibited a triplet signal at 354.4 ppm (
2
JCP = 15.5 Hz). The 

31
P{

1
H} NMR spectrum 

exhibits two signals; one of these is a septet peak for the [PF6]
-
 at -143.5 ppm (

1
JPF = 

710 Hz); and the other for the triphenylphosphine ligands at 43.4 ppm (singlet).  

A range of cationic vinylidene species were also synthesised for use in the mechanistic 

studies in d5-pyridine: a methyl group in the 4-position on the phenyl ring of the 

vinylidene ligand 2
C6H4-4-Me

, and a 
13

C label introduced at the α-carbon position of the 

vinylidene ligand 2
Ph

-
13

C (this reaction was carried out using PhC≡
13

CH) were used to 

provide additional NMR data on how the reaction proceeded.  
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2.3 Initial Mechanistic Studies  

2.3.1 Reactivity of the vinylidene species [Ru(η
5
-C5H5)(PPh3)2(=C=CHR)][PF6] 

The alkenylation reaction published by Murakami and Hori
253

 proposed the cationic 

vinylidene complex [Ru(η
5
-C5H5)(PPh3)2(=C=CHPh)][PF6] 2

Ph
 as the active catalyst in 

the formation of 2-styrylpyridine compounds. Upon taking complex 2
Ph

 in pyridine and 

heating at 125 °C for 24 hours 2-styrylpyridine was generated.  

Our initial mechanistic studies were based on the addition of d5-pyridine to the 

vinylidene complexes 2
R
, and the reaction monitored via 

1
H, 

31
P{

1
H}, and 

13
C{

1
H} 

NMR spectroscopy.  

A mechanistic study involved the addition of 2
Ph

-
13

C to d5-pyridine, followed by 

heating the reaction mixture at 85 °C within the NMR spectrometer was carried out in 

the presence of air, where no attempt was made to dry the solvent in order to recreate 

the reported reaction conditions by Murakami and Hori (Scheme 2.3: Top reaction).
253

 

A further mechanistic study involved the addition of degassed d5-pyridine to 2
Ph

-
13

C in 

order to prevent oxidation of the reaction mixture, and heating to 125 °C in a graphite 

bath to recreate the reaction temperatures reported by Murakami and Hori (Scheme 2.3: 

Bottom reaction).
253

  

 

    2
Ph

-
13

C  

Scheme 2.3: General scheme of the reactions carried out with complex 2
Ph

-
13

C in d5-pyridine. 
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2.3.2 Initial addition of complexes 2
R
 to d5-pyridine 

On immediate addition of d5-pyridine to the complexes 2
R
 a colour change from the 

characteristic red colour of the vinylidene-containing complexes 2
R
 to bright yellow 

solution indicated a reaction had occurred. The characteristic peaks of the cationic 

vinylidene-containing complex 2
Ph

 were no longer present in the 
1
H and 

31
P{

1
H} NMR 

spectra (Scheme 2.4). The 
1
H NMR spectrum (d5-pyridine) did not exhibit the 

vinylidene proton at 5.43 ppm (CD2Cl2), and a major change in the chemical shift of the 

cyclopentadienyl protons from 5.27 ppm (CD2Cl2) to 4.58 ppm (d5-pyridine) was 

observed. In addition, in the reaction of 
13

C-labelled vinylidene 2
Ph

-
13

C to d5-pyridine in 

the 
13

C{
1
H} NMR spectrum displayed no evidence for the α-carbon atom at 354.4 ppm 

(CD2Cl2).  

        2
Ph      

3
Ph

             4 

Scheme 2.4: Observations made on initial addition of d5-pyridine to complex 2
Ph

. 

From the NMR spectra of the reaction mixture of 2
Ph

 in d5-pyridine there appeared to be 

two products in the reaction mixture in different quantities: one major and one minor 

which could be identified. This was most notably observed in the cyclopentadienyl 

region of the 
1
H NMR spectrum as there were two new singlet resonances at 4.58 and 

5.30 ppm. This was also confirmed by the 
31

P{
1
H} NMR spectrum where two 

resonances at 50.3 and 42.1 ppm were observed for two PPh3 environments. The ratio of 

the two species varied in different reaction mixtures. 

For the unlabelled vinylidene species 2
Ph

 in d5-pyridine the major species in the 
1
H 

NMR spectrum exhibited a singlet resonance for the cyclopentadienyl protons at 4.58 

ppm. For the major species in the 
31

P{
1
H} NMR spectrum a singlet was observed at 

50.2 ppm. However, in the 
13

C-labelled study a doublet peak at 50.3 ppm (
2
JPC = 24.8 

Hz) was observed. From this it was clear that the 
13

C labelled atom was coupling to the 

equivalent PPh3 groups, and hence the ruthenium centre must contain a 
13

C labelled 

organic ligand from the PhC≡
13

CH molecule. Additionally, the 
13

C{
1
H} NMR spectrum 

displayed a resonance for the 
13

C-labelled atom at 117.7 ppm (broad). The NMR data 

gathered from comparing the labelled and non-labelled studies suggested an acetylide 
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complex [Ru(η
5
-C5H5)(C≡CPh)(PPh3)2] 3

Ph
 was formed upon the addition of d5-

pyridine to 2
Ph

. This was confirmed by comparison of the NMR spectra of the reaction 

mixture with an independent synthesis of 3
Ph

 following a literature preparation by Bruce 

et al.
54

 

The minor species in the reaction mixture in the 
1
H NMR spectrum had a singlet 

cyclopentadienyl resonance at 5.30 ppm, which correlated to a singlet peak at 42.1 ppm 

in the 
31

P{
1
H} NMR spectrum (determined through relative integrations). The minor 

product present in the reaction mixture was confirmed to be the carbonyl-containing 

complex 4, which was independently synthesised by a method reported by Conroy-

Lewis and Simpson.
267

  The reaction of oxygen or water with vinylidene complexes is 

reported extensively in literature and results in the formation of a metal carbonyl 

compound (Section 1.4.3). The relative amounts of the carbonyl species 4 would 

therefore differ depending on the aerobic quality of the d5-pyridine. This would 

therefore account for the observation in reactions where the degassed d5-pyridine has 

been used, as less 4 was observed in the reaction mixture. 

At room temperature upon addition of d5-pyridine to complexes 2
R
, the major species 

was assigned as [Ru(η
5
-C5H5)(C≡CR)(PPh3)2] 3

R
, and the minor product as [Ru(η

5
-

C5H5)(PPh3)2(CO)][PF6]
 
4.  
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2.3.3 Observations made upon heating the reaction mixture of 2
R
 in d5-pyridine 

In order to recreate the reaction conditions
253

 reported by Murakami and Hori the 

reaction mixture containing 2
Ph

 in d5-pyridine (Scheme 2.4) was heated to observe the 

reaction as it proceeded, to determine any potential ruthenium intermediates. Upon 

heating the sample to 85 °C for 30 minutes within the NMR spectrometer, resonances 

for a new compound emerged in the NMR spectra. By comparison of the non-labelled 

and labelled studies the structure of the new complex was determined.  

 

 3
Ph

       5 

Scheme 2.5: Formation of a new ruthenium complex 5 upon heating the initial reaction mixture 

of 2
Ph

 in d5-pyridine. 

In the non-labelled study the 
1
H NMR spectrum at 85 °C displayed a new 

cyclopentadienyl proton environment at 4.54 ppm, and a resonance assigned to the 

terminal proton of uncoordinated phenylacetylene at 3.69 ppm. In the 
31

P{
1
H} NMR 

spectrum at 85 °C two new singlet signals were observed in a 1:1 ratio at 48.7 and -3.9 

ppm. The resonance at 48.7 ppm is in the region for a new coordinated 

triphenylphosphine resonance of a novel ruthenium complex, and the resonance at -3.9 

ppm is characteristic of uncoordinated triphenylphosphine. In addition, conversion of 

triphenylphosphine to triphenylphosphine oxide was also observed in the 
31

P{
1
H} NMR 

spectrum.  

From the 
13

C-labelled study more information was gathered about the nature of the 

ruthenium complexes formed. In the 
1
H NMR spectrum a doublet at 3.69 ppm (

1
JHC = 

252 Hz) was observed, for uncoordinated 
13

C-phenylacetylene. The signal at 3.69 ppm 

integrated in a 1:5 manner to the new cyclopentadienyl proton peak at 4.55 ppm. In 

addition, the resonance for the new ruthenium complex in the 
31

P{
1
H} NMR spectrum 

at 48.7 ppm remained as a singlet, therefore indicating there was no coupling between 

the phosphorus atom and the 
13

C-labelled atom. A resonance for the 
13

C-labelled atom 

of uncoordinated 
13

C-phenylacetylene was observed at 79.3 ppm in the 
13

C{H} NMR 

spectrum. 
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The resonances observed by NMR spectroscopy indicated that the new complex had 

lost phenylacetylene and one triphenylphosphine ligand. The loss of these ligands from 

the metal centre created two vacant coordination sites and the product was therefore 

proposed to be [Ru(η
5
-C5H5)(PPh3)(NC5D5)2][PF6] 5, due to the excess d5-pyridine in 

the reaction mixture. The full identification of 5 was determined by comparison of 

NMR spectra of the reaction mixture and an authentic sample (Section 3.4.1.2). 

A similar reaction was repeated using 2
Ph

-
13

C and degassed pyridine; the reaction was 

heated at a higher reaction temperature of 125 °C in a graphite bath and for longer time 

periods (1, 6, 23, and 47 hours). The reaction mixture was allowed to cool to room 

temperature and then monitored by NMR spectroscopy in order to observe the reactivity 

seen by Murakami and Hori (Figure 2.1).
253

 After 1 hour at 125 °C, the ratio of the 

acetylide complex 3
Ph

-
13

C and complex 5 was approximately 1:1, as the 
31

P{
1
H} NMR 

spectrum revealed two resonances at 50.3 and 49.2 ppm for the triphenylphosphine 

ligands respectively. After 47 hours the ratio of complexes 3
Ph

-
13

C:5 was approximately 

1:17, indicating the majority of the acetylide complex has been converted to 5. The 

13
C{

1
H} NMR spectra allowed the fate of the 

13
C label to be monitored through the 

reaction. After heating for 1 hour at 125 °C, the 
13

C label was observed mainly at 117.8 

and 79.9 ppm, which are peaks characteristic of the acetylide complex 3
Ph

-
13

C and 

uncoordinated PhC≡
13

CH respectively. Heating the reaction mixture for a further 6 

hours, resulted in the majority of the 
13

C label being observed at a chemical shift of 

129.2 ppm; and upon further heating, this peak increased in intensity. From comparison 

of an authentic sample of 2-styrylpyridine the peak at 129.2 ppm can be assigned as one 

of the alkene carbon atoms of the desired organic product. These observations therefore 

indicate the importance of 5 as a catalyst in the formation of 2-styrylpyridine. 
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Figure 2.1: 
 31

P{
1
H}  and 

13
C{

1
H} NMR spectra of the reaction of 2

Ph
-

13
C in degassed d5-

pyridine heated at 125 °C after a) initial addition, b) 1 hour, c) 6 hours, d) 23 hours, e) 47 hours. 

  

-560 55 50 45 40 35 30 25 20 15 10 5 0 ppm

80859095100105110115120125130 ppm

PPh3 
4 

5 

3
Ph

-
13

C 

OPPh3 

3
Ph

-
13

C 

 

PhC
13

CH 

2-styrylpyridine-
13

C 

47 hours 

 

23 hours 

 

6 hours 

 

1 hour 

 

Initial 

47 hours 

 

23 hours 

 

6 hours 

 

1 hour 

 

Initial 



98 

Chapter 2 

2.3.4 Conclusions 

In the reaction between the vinylidene-containing complexes 2
R
 and d5-pyridine, the 

immediate major ruthenium-containing species was found to be the acetylide complex 

3
R
. From this reaction it appears that the d5-pyridine is acting as a base and 

deprotonating the acidic proton on the vinylidene ligand. Upon heating the same 

reaction mixture for 6 hours (and a total duration of 47 hours) the major ruthenium-

containing complex was identified as [Ru(η
5
-C5H5)(PPh3)(NC5D5)2][PF6], 5. This has 

been determined to form concurrently with equivalent amounts of uncoordinated 

phenylacetylene and triphenylphosphine. The presence of complex 5 strongly suggests 

its role in the catalytic cycle must be significant in the formation of 2-styrylpyridine. 

Further investigations into the synthesis and reactivity of 5 would help in understanding 

its role in the catalytic system reported by Murakami and Hori.
253
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Chapter 3. Synthesis of Half-Sandwich 

Ruthenium Complexes 

3.1 Introduction 

The most common precursors to ruthenium cyclopentadienyl complexes are the species 

[Ru(η
5
-C5H5)(PPh3)2Cl], 1 or [Ru(η

5
-C5H5)(CO)2Cl].

137
 However, for a transition metal 

to perform catalytic reactions the metal centre must be coordinatively unsaturated.
134

 

The two ruthenium precursors mentioned above contain ligands (PPh3 and CO) and 

therefore may hinder a number of synthetic transformations taking place.
137

  An 

alternative approach utilises the half-sandwich ruthenium complex [Ru(η
5
-C5H5) 

(NCMe)3][PF6] 8 which provides labile acetonitrile ligands which can be easily 

substituted
135

 and therefore opens a gateway to a range of half-sandwich ruthenium 

complexes
127, 128, 131-134, 136, 139, 268

 and potential catalytic transformations.
40, 129, 269-272

  

The catalytic redox isomerisation of allylic alcohols to their corresponding aldehydes 

and ketones significantly improved when [Ru(η
5
-C5H5)(PPh3)2Cl], 1 and NH4PF6 were 

substituted with [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
. The original research 

conducted by Trost et al. reported reaction conditions where 1 (5 mol %), NH4PF6 (10 

mol %) and the allyl alcohol were heated at 100 °C in dioxane.
2, 40, 273

 The reaction was 

developed by Kirchner et al. using a significantly lower catalyst loading of 9
Ph

 (0.03 

mol %) and at a milder temperature of 80 °C, where the reaction was complete within 

10 minutes.
274

 The higher reactivity was attributed to the pseudo 14-electron [Ru(η
5
-

C5H5) (PR3)]
+
 which allows coordination of the allylic alcohol at the ruthenium centre, 

and therefore loss of a PPh3 at the ruthenium centre was not required.  

Previously [Ru(η
5
-C5H5)(PPh3)(NC5D5)2][PF6], 5 was determined to be the major 

ruthenium-containing species from the addition of 2
R
 to d5-pyridine (Chapter 2). A 

general synthesis for the [Ru(η
5
-C5H5)(PR3)(L)2][PF6] complexes (where R = Ph, OPh, 

i
Pr, Me, and L = nitrogen-containing ligand) was required. This chapter focuses on the 

synthesis and properties of half-sandwich ruthenium complexes of the type [Ru 

(η
5
-C5H5)(PR3)(L)2][PF6] from the starting cationic tris-acetonitrile ruthenium complex 

[Ru(η
5
-C5H5)(NCMe)3][PF6], 8.   
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3.2 Preparation of [Ru(η
5
-C5H5)(NCMe)3][PF6], 8  

The role of the cationic fragment [Ru(η
5
-C5H5)]

+
 in catalysis has been well documented 

(Section 1.5). The complex [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 is therefore an useful 

starting material for the synthesis of various half-sandwich ruthenium complexes, 

especially due to the labile nature of the acetonitrile ligands. However, the synthesis of 

8 has not always been simple and even purchasing it from chemical suppliers can be 

costly (Sigma-Aldrich 1g, £275.50).
275

 The synthetic preparation of 8 has been 

developed through the years and will be discussed here.  

The complex [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 can be prepared from several different 

literature methods. Gill and Mann first reported the synthesis of 8 from the irradiation of 

the species [Ru(η
5
-C5H5)(η

6
-C6H6)][PF6] in acetonitrile (Scheme 3.1).

276
 However, the 

formation of the complex [Ru(η
5
-C5H5)(η

6
-C6H6)][PF6] requires a two step process from 

RuCl3.nH2O, 1,3-cyclohexadiene in ethanol to yield [Ru(η
6
-C6H6)Cl2]2; this dimer is 

then reacted with a stoichiometric equivalent of TlCp in acetonitrile before the addition 

of NH4PF6 to precipitate the cationic product [Ru(η
5
-C5H5)(η

6
-C6H6)][PF6].

277, 278
 

Unfortunately the thallium salts and the waste products are toxic in nature and are 

difficult to remove hence this procedure would not be an ideal method to synthesise 

large batches of complex [Ru(η
5
-C5H5)(NCMe)3][PF6], 8.  

 

            8 

Scheme 3.1: Preparation of complex 8 by Gill and Mann.
276

  

An alternative method by Bennett reported the synthesis of [Ru(η
5
-C5H5)(η

6
-

C6H6)][PF6] (precursor for the formation of complex 8), using [Ru(η
6
-C6H6)Cl2]2 in the 

presence of excess cyclopentadiene with Na2CO3 in ethanol at reflux.
137

 This was 

developed from earlier research by Bennett et al. involving the substitution of Cl 

ligands from the precursor [Ru(η
6
-C6H6)Cl2]2 in the presence of the diene ligands 1,5-

cyclooctadiene or 1,3-cyclohexadiene.
279, 280

 This method avoided the use of the toxic 

thalium salts, however the reported yields were low due to a side reaction producing 

ruthenocene.
137

 In 2002, Trost and Older reported another method to prepare  

[Ru(η
5
-C5H5)(η

6
-C6H6)][PF6] from [Ru(η

6
-C6H6)Cl2]2 and found that the choice of base 
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and solvent were important in obtaining a high yield. Optimal reaction conditions were 

discovered to be the reaction between [Ru(η
6
-C6H6)Cl2]2, cyclopentadiene and K2CO3 in 

ethanol at a lower temperature of 60 °C, followed by precipitation with NH4PF6 

(Scheme 3.2). In this case only 2-3 % of ruthenocene was formed as a side product. The 

complex [Ru(η
5
-C5H5)(η

6
-C6H6)][PF6], was obtained in a high yield of 80 %, and an 

adapted procedure from Gill and Mann was used to obtain 8.
137

 

 

Scheme 3.2: Revised synthesis of precursor to complex 8 by Trost and Older.
137

 

The method used for the synthesis of complex [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 in this 

thesis has been reported by Kündig et al. (Scheme 3.3).
281, 282

 A three step process from 

the starting material RuCl3.3H2O was employed to synthesise ruthenocene 6; one of the 

cyclopentadienyl ligands was then substituted by a more labile naphthalene ligand to 

give the complex [Ru(η
5
-C5H5)(naphthalene)][PF6] 7; followed by the substitution of 

the naphthalene ring by three acetonitrile ligands to yield 8.
281

 The advantages of this 

preparation method of 8 are that it avoids the use of toxic thallium salts and there is no 

requirement for specialised photolytic quartz apparatus
137

 or continuous flow reactors 

(for alternative preparation methods for the synthesis of 8). 

Kündig et al. investigated the substitution of one of the cyclopentadienyl ligands of 

ruthenocene with an arene group. This proved to be challenge as the reaction conditions 

required for ferrocene cyclopentadienyl/arene exchange (80-100 °C, AlCl3, Al, 

methylcyclohexane) did not work for ruthenocene, 6.
282-284

 This is probably due to 

stronger π interactions between the pz orbitals of the cyclopentadienyl ligand and the dxz 

and dyz orbitals of the ruthenium centre, which results in a larger heterolytic dissociation 

energy of ruthenocene.
285, 286

 DFT studies revealed that at the B-PW91 level of theory, 

ruthenocene had a dissociation energy of 2862 kJ mol
-1

, whereas ferrocene had a lower 

dissociation energy of 2774 kJ mol
-1

 (which is within a +4 % error of experimental 

findings of 2657 kJ mol
-1

).
285

 Kündig et al. noted a patent report where TiCl4 had been 

employed to ‘trap the cyclopentadienyl ligands to form titanocene dichloride’, and upon 

the addition of this reagent to the reaction mixture and under optimised reaction 

condition 7 was synthesised in a high yield.
281, 282
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            6    7   8 

Scheme 3.3: Preparation of complex 8 from ruthenocene.
281

 

Preparation of ruthenocene, 6 was achieved by the addition of zinc to a cooled reaction 

mixture of freshly distilled dicyclopentadiene and RuCl3.3H2O in ethanol (Scheme 3.3). 

The zinc reduced the ruthenium to an oxidation state of +2, and a pale yellow complex 

was collected in a high yield (79 %).  Identification of the neutral complex was 

extremely straightforward using NMR spectroscopy, as in the 
1
H NMR and 

13
C{

1
H} 

NMR spectra, only one resonance was observed due to equivalent proton and carbon 

environments at 4.55 ppm and 70.2 ppm respectively. This was consistent with the 

literature reported data.
281, 287, 288

 

The preparation of [Ru(η
5
-C5H5)(naphthalene)][PF6] 7, required microwave irradiation 

of the sample at 194 °C for 15 minutes (Scheme 3.3). However, purification of 7 was 

not always very effective and hence the purity of the end product was compromised due 

to unidentified impurities. The ESI-MS had a peak at m/z of 295, which was indicative 

of the cationic fragment [Ru(η
5
-C5H5)(naphthalene)]

+
, and the isotope pattern matched 

that of a ruthenium containing complex. NMR spectroscopy revealed that the collected 

complex 7 was slightly impure, yet the signals observed matched those reported by 

Kundig et al.,
281

 where in the 
1
H NMR spectrum the cyclopentadienyl protons displayed 

a resonance at 5.00 ppm, and the four naphthalene resonances were seen as multiplets 

with an integration of 2H each between 6.30 – 7.73 ppm.   

The final stage of the procedure was to stir 7 in acetonitrile, in order to substitute the 

naphthalene with three acetonitrile ligands, to produce [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 

(Scheme 3.3). The reaction mixture was stirred under a nitrogen atmosphere for 48 

hours and several pentane washes were performed to remove uncoordinated 

naphthalene. The end product matched the NMR data reported.
281

 The 
1
H NMR 

spectrum had a singlet resonance at 2.37 ppm for the acetonitrile protons which 

integrated to 12H with respect to the cyclopentadienyl protons at 4.25 ppm, which had 

an integration of 5H. The ESI-MS of complex 8 contained m/z peaks with ruthenium 

isotope patterns of 248.9 and 207.9 which was interpreted as the fragments [Ru(η
5
-
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C5H5)(NCMe)2]
+
 and [Ru(η

5
-C5H5)(NCMe)]

+
 respectively. The cationic fragment of 8 

[Ru(η
5
-C5H5)(NCMe)3]

+
 could not be detected, however the expected fragmentation 

products were observed. In addition, in the ESI-MS the starting complex [Ru(η
5
-C5H5) 

(naphthalene)]
+
 fragment was not detected either. However, other ruthenium-containing 

products were present; unfortunately these have not been identified.  

The initial experiments to synthesise [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 resulted in a 

product that was approximately 70 % pure and this affected the ability to perform 

accurate stoichiometric additions at later stages.  The purity was based upon the later 

stoichiometric studies from the addition of triphenylphosphine to 8. The microwave 

reaction to synthesise 7 created many impurities and hence the purification stages 

involving extraction with dichloromethane, filtering with Celite and recrystallisation 

from diethyl ether stages needed to be repeated in order to obtain a pure product. 

A crystal suitable for X-ray diffraction of 7 was obtained from a reaction mixture 

containing 7, furan and CD2Cl2, which had been left over several weeks under a 

nitrogen atmosphere in a Youngs NMR tube, to obtain pale yellow crystals (Figure 3.1). 

The preparation of this complex had previously been reported by Kündig et al.,
281, 282

 

however a crystal structure of this specific complex has not been reported previously. 

The unit cell contained two cationic [Ru(η
5
-C5H5)(naphthalene)]

+
 units and two [PF6]

-
 

anions. Bond lengths of the two cationic units of 7 appeared to be mostly identical and 

followed the same trend stated below. The η
6
-bonding mode of ruthenium to the 

naphthalene ligand was not identical for all carbon atoms. The C-H carbon atoms had 

shorter Ru-C bond lengths between 2.2051(18) - 2.2279(19) Å, when compared to the 

quaternary carbon atoms which had Ru-C bond lengths of 2.2623(17) and 2.2653(17) Å. 

The η
5
-bonding mode between ruthenium and the cyclopentadienyl ring was shorter 

than the η
6
-bonding of ruthenium to naphthalene, as the Ru-C bond lengths were 

between 2.156(2) - 2.178(2) Å. The bond angles of the six membered ring coordinated 

to the ruthenium are not equal, and for C(19)-C(20)-C(21) and C(16)-C(21)-C(20) are 

119.37(16) ° and 118.81(16) ° respectively, which are the smallest bond angles. Similar 

observations have been noted by Hintermann et al., where the cationic unit [Ru(η
5
-

C5H5)(naphthalene)]
+
  has been crystallised with a different anion, Δ-TRISPHAT.

289
 A 

range of cationic [Ru(η
5
-C5H5)(arene)]

+
 complexes have been studied by Perekalin et 

al.,
290

 and several X-ray structures have been reported for [Ru(η
5
-C5H5)(1,4-

C6H4Me2)]
+
, [Ru(η

5
-C5H5)(C6H5COOH)]

+
, [Ru(η

5
-C5H5)(p-cymene)]

+
 and  [Ru(η

5
-

C5H5)(2,2-paracyclophene)]
+
.
291

 From studying the ruthenium to arene interactions, the 
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first three complexes are mentioned have Ru-C bonds which are either similar or shorter 

to the cationic unit [Ru(η
5
-C5H5)(naphthalene)]

+
 (approx. average 2.21 Å). However, 

the latter ruthenium cation [Ru(η
5
-C5H5)(2,2-paracyclophene)]

+
 has longer Ru-C bond 

lengths (where longest bond is 2.3400(9) Å) than those observed for the cation of 7.
291

 

 

Figure 3.1: X-Seed diagram of one of the ruthenium-containing cation [Ru(η
5
-C5H5) 

(naphthalene)]
+
  in complex 7. The [PF6]

-
 anion has been omitted for clarity, and where shown 

the thermal ellipsoids are at a 50 % probability level. There was evidence of slight disorder over 

both cyclopentadienyl rings and [PF6]
-
 anions, however a suitable model could not be fitted to 

the data. 

 Bond lengths (Å)  Bond angles (°) 

Ru(2)-C(16) 2.2150(18) C(16)-C(17)-C(18) 120.03(17) 

Ru(2)-C(17) 2.2279(19) C(19)-C(18)-C(17) 120.22(18) 

Ru(2)-C(18) 2.2182(19) C(18)-C(19)-C(20) 120.67(18) 

Ru(2)-C(19) 2.2051(18) C(19)-C(20)-C(21) 119.37(16) 

Ru(2)-C(20) 2.2623(17) C(16)-C(21)-C(20) 118.81(16) 

Ru(2)-(C21) 2.2653(17) C(17)-C(16)-C(21)  120.73(17) 

Ru(2)-C(26) 2.178(2)   

Ru(2)-C(27) 2.156(2)   

Ru(2)-C(28) 2.163(2)   

Ru(2)-C(29) 2.170(2)   

Ru(2)-C(30) 2.172(2)   

Table 3.1: Selected bond lengths (Å) and angles (°) for complex 7.   
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3.3 Mono-Substituted Half-Sandwich Ruthenium Complexes, 

[Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6], 9

R
 

The complex [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 contains labile acetonitrile ligands, which 

can be substituted with various phosphorus- or nitrogen-containing ligands.
135, 274

 Since 

the acetonitrile ligands are extremely labile the addition of phosphorus ligands may 

form mono-, bis-, or even tris-substituted complexes.
131, 134, 274

 In this thesis, complexes 

9
R
 therefore act as intermediates, through to the desired [Ru(η

5
-C5H5)(PR3)(L)2][PF6] 

complexes (where L= N-containing heterocycle). In this section, the general synthesis 

and characterisation of complexes 9
R
 are described. Kirchner et al., reported a general 

preparation method for complexes 9
R
 and we have followed this synthetic procedure.

131
 

The reactivity between 8 and PR3 ligands (where R = Ph, Me, 
i
Pr and OPh) has been 

investigated. Changing the R groups of the PR3 ligand, will change the steric and 

electronic properties at the ruthenium centre, and therefore will impact the structure of 

these complexes and impact their reactivity.
20

  

3.3.1 Synthesis of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
  

The reaction between 8 and a range of phosphorus-containing ligands has been 

investigated. The first example investigated was the reaction between 8 and 

triphenylphosphine. The alkenylation reaction of pyridine and TMS-substituted alkynes 

employs a ruthenium catalyst, 1 which contains triphenylphosphine to give 2-

styrylpyridine derivatives.
253

  

 

           8      9
Ph

 

Scheme 3.4: Stoichiometric reaction of complex 8 with triphenylphosphine. 

Complex [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6] 9

Ph
, was synthesised as described by 

Kirchner et al.,
131

 and the spectroscopic data compared to that reported (Scheme 3.4). 

The acetonitrile groups in the 
1
H NMR spectrum appeared as a doublet due to the 

protons coupling with the phosphorus atom, at 2.05 ppm (
5
JHP = 1.5 Hz), confirming 

that one triphenylphosphine ligand was coordinated to the ruthenium centre. In addition, 

the cyclopentadienyl protons exhibited a singlet resonance at 4.44 ppm. All aromatic 
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protons were between 7.28-7.50 ppm as multiplets, and integrated correctly to the 

cyclopentadienyl and acetonitrile protons. In the 
31

P{
1
H} NMR spectrum the [PF6]

-
 ion 

was seen at -143.0 ppm, and the triphenylphosphine ligand exhibited a singlet at 52.2 

ppm. No evidence for the bis-substituted complex in the 
31

P{
1
H} NMR spectrum at 51.5 

ppm was observed and this was corroborated by the 
1
H NMR spectrum due to the 

absence of a triplet resonance for the acetonitrile ligands at 2.12 ppm. An accurate ESI-

MS exhibited a ruthenium-containing peak with a m/z of 511.0889, which was 

identified as the cationic fragment [Ru(η
5
-C5H5)(PPh3)(NCMe)2]

+
 of 9

Ph
. The data 

suggested that a mono-substitution reaction had occurred between 8 and 

triphenylphosphine. 

3.3.2 Synthesis of [Ru(η
5
-C5H5)(PMe3)(NCMe)2][PF6], 9

Me
  

To investigate the reactivity of the half-sandwich ruthenium complex of the type 

[Ru(η
5
-C5H5)(PR3)(L)2][PF6] further, we expanded the library of phosphorus ligands by 

using  trimethylphosphine. Trimethylphosphine is sterically smaller and more electron-

donating in character than triphenylphosphine, hence investigation into the properties of 

these half-sandwich ruthenium complexes would be of great interest. 

 

           8        9
Me

 

Scheme 3.5: Stoichiometric reaction of complex 8 with trimethylphosphine. 

The procedure for the synthesis of complex [Ru(η
5
-C5H5)(PMe3)(NCMe)2][PF6] 9

Me
, 

involved the stoichiometric addition of trimethylphosphine to 8 in dichloromethane  as 

reported by Kirchner et al. (Scheme 3.5).
131

 A colour change of the reaction mixture 

from orange to yellow indicated a reaction has occurred.  The NMR spectra and ESI-

MS data were compared to the reported literature to confirm the formation of complex 

9
Me

.  

The 
1
H NMR spectra displayed a doublet peak at 1.51 ppm with a 

2
JHP coupling of 9.6 

Hz due to the methyl groups on the trimethylphosphine ligand. The peak at 1.51 ppm 

integrated as 9H with respect to peaks at 2.36 ppm (
5
JHP = 1.6 Hz) which had an 

integration of 6H due to the methyl groups of the acetonitrile ligands, and at 4.46 ppm 
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which had an integration of 5H due to the cyclopentadienyl ligand protons. A singlet 

resonance at 7.6 ppm in the 
31

P{
1
H} NMR spectrum indicated only one 

trimethylphosphine ligand was present. Additionally, an accurate ESI-MS exhibited at 

peak with a m/z of 325.0406 with a ruthenium isotope pattern, this was identified as the 

cationic [Ru(η
5
-C5H5)(PMe3)(NCMe)2]

+
 fragment. These data combined indicated the 

formation of 9
Me

 and that only the mono-substituted trimethylphosphine complex had 

been synthesised.  

On changing the triphenylphosphine ligand to trimethylphosphine, a difference in the 

chemical shift of the methyl groups of the acetonitrile ligands is observed. There is a 

downfield shift from 2.05 ppm (9
Ph

) to 2.36 ppm (9
Me

). 

3.3.3 Synthesis of [Ru(η
5
-C5H5)(P

i
Pr3)(NCMe)2][PF6], 9

iPr
  

Triisopropylphosphine is a more electron-donating phosphorus ligand and has a larger 

cone angle than triphenylphosphine and trimethylphosphine. The reason for studying 

this ligand was to investigate the scope of the half-sandwich ruthenium complexes in 

the catalytic reaction of 2-styrylpyridine and look at the properties of the ruthenium 

complexes.  

 

           8      9
iPr

 

Scheme 3.6: Stoichiometric reaction of complex 8 with triisopropylphosphine. 

Following the same preparation method by Kirchner et al.,
131

 the complex [Ru(η
5
-C5H5) 

(P
i
Pr3)(NCMe)2][PF6] 9

iPr
, was prepared from the stoichiometric addition of 

triisopropylphosphine to 8 (Scheme 3.6). The 
1
H NMR data displayed resonances at 

1.21 ppm and between 2.29-2.36 ppm with a multiplicity of a doublet of doublets and a 

multiplet respectively, due to the triisopropylphosphine ligand. Also, in the 
1
H NMR 

spectrum a doublet (
5
JHP = 1.1 Hz) at 2.37 ppm due to the methyl groups of the 

acetonitrile ligands was observed; the doublet is characteristic of a mono-substituted 

complex. The integration of the triisopropylphosphine ligand was 18H (1.21 ppm) and 

3H (2.29-2.36 ppm) with respect to the acetonitrile ligands of 6H, which indicated 

mono-substitution by the triisopropylphosphine ligand at the ruthenium centre. The 
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31
P{

1
H} NMR spectrum only displayed two resonances at -143.0 and 57.4 ppm, as a 

septet due to the [PF6]
-
 anion and as a singlet due to the coordinated 

triisopropylphosphine ligand respectively.  

3.3.4 Synthesis of [Ru(η
5
-C5H5)(P(OPh)3)(NCMe)2][PF6], 9

OPh
  

The phosphorus ligands that have been mentioned all have greater electron-donating 

properties with respect to triphenylphosphine. To understand the effects of different 

electronic-properties of the phosphorus ligands triphenylphosphite an electron-

withdrawing ligand was also trialled.  

 

           8      9
OPh 

Scheme 3.7: Stoichiometric reaction of complex 8 with triphenylphosphite. 

Following the synthetic preparation of Kirchner et al. complex 9
OPh

 could be 

synthesised (Scheme 3.7).
131

  There was no reported literature on the synthesis of 9
OPh

, 

however the methodology to synthesise this complex was carried out in the same 

manner as all complexes 9
R
. In the 

1
H NMR spectrum the acetonitrile proton signals 

appeared at 2.22 ppm as a doublet (
5
JHP = 1.2 Hz). In addition, the cyclopentadienyl 

protons also showed signs of coupling to the phosphite group which was not observed 

with any of the phosphine ligands, at 4.44 ppm (
3
JHP = 0.6 Hz). The phenyl groups in 

the 
1
H NMR spectrum were observed between 7.23-7.41 ppm as multiplets. The 

31
P{

1
H} NMR spectrum contained resonances for the [PF6]

-
 anion and the coordinated 

triphenylphosphite at -143.0 ppm (septet, 
1
JPF = 711 Hz) and 142.6 ppm (singlet). 
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3.4 Substitution of acetonitrile ligands in complexes 9
R
 with 

various N-containing heterocycles 

Reactions of complexes 9
R
 with various nitrogen-containing ligands has been carried 

out in order to try and obtain complexes [Ru(η
5
-C5H5)(PR3)(L)2][PF6], (where R = Ph, 

OPh, 
i
Pr, Me, and L = N-containing heterocycle). The N-containing heterocycles we 

have employed to coordinate to the cationic ruthenium complexes in this section are 

pyridine, 4-methylpyridine, 4-dimethylaminopyridine, 3-methylpyridine, 2-

methylpyridine, 1-methylimidazole and 
t
butylimidazole. Substituent effects have been 

studied extensively to determine effects on reaction rates and equilibria. A para methyl 

group donates electron density via an inductive effect, with a Hammett substituent 

effect (σp) of -0.17. Alternatively, a meta methyl substituent demonstrated a lower σm of 

-0.07. Whereas, a para dimethylamino group through a mesomeric effect, exhibits a 

larger σp of -0.83.
292-295

  

3.4.1 Reactions of complex 9
Ph

 with N-Containing Heterocycles 

3.4.1.1 Reaction of 9
Ph

 with pyridine for the preparation of complex 10
H 

The independent synthesis of 10
H

 was a significant finding, as this was the complex that 

we have hypothesised was present in the heated reaction mixture from the addition of 

d5-pyridine to complex [Ru(η
5
-C5H5)(PPh3)2(=C=CHPh)][PF6], 2

Ph
 (Chapter 2).  

 

  9
Ph

             10
H

 

Scheme 3.8: Synthesis of complex 10
H
. 

The preparation of 10
H

 involved the addition of an excess of pyridine (100 equivalents) 

to 9
Ph

 in a dichloromethane solution (Scheme 3.8). The resulting orange crystals were 

air-sensitive and were stored under a nitrogen atmosphere. A high yield of the product 

10
H

 was collected (95 %).  

The complex [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6] 10

H
, could be clearly identified by 

NMR spectroscopy in d2-dichloromethane. A 
1
H NMR spectrum revealed that the 
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cyclopentadienyl protons had shifted slightly upfield to 4.42 ppm from 4.44 ppm for 

complex 9
Ph

. In addition, the aromatic region had resonances for the phenyl groups of 

the triphenylphosphine and pyridine protons between 7.00-8.30 ppm. All coordinated 

and uncoordinated acetonitrile had been removed, as no signals were observed at 2.05 

ppm or 1.97 ppm respectively, in the 
1
H NMR spectrum. The 

31
P{

1
H} NMR spectrum 

contained peaks for the [PF6]
-
  anion and the triphenylphosphine ligand at -143.0 and 

50.2 ppm respectively. A high resolution ESI-MS detected the complete cationic 

ruthenium complex [Ru(η
5
-C5H5)(PPh3)(NC5H5)2]

+
 with a peak of m/z 587.1190. 

Fragmentation peaks for [Ru(η
5
-C5H5)(PPh3)(NC5H5)(NCCH3)]

+
 and [Ru(η

5
-

C5H5)(PPh3)(NC5H5)]
+
 were detected at a m/z of  549.1037 and  508.0772  respectively. 

Under these conditions the pyridine ligands were extremely labile and could have been 

lost or substituted very easily within the spectrometer. This is due to the sample being 

prepared in an acetonitrile solution or the presence of acetonitrile within the 

spectrometer.  

The complex 10
H

 was dissolved in d5-pyridine and 
1
H and 

31
P{

1
H} NMR spectra 

collected. The 
1
H NMR exhibited a resonance at 4.57 ppm as a singlet for the 

cyclopentadienyl protons and two multiplets at 7.36-7.42 and 7.47 ppm were observed 

for the triphenylphosphine ligand. In the 
1
H NMR spectrum, the coordinated pyridine 

molecules were no longer observed as it is possible that they are exchanging with the 

uncoordinated d5-pyridine solvent to give [Ru(η
5
-C5H5)(PPh3)(NC5D5)2][PF6],  5. The 

31
P{

1
H} NMR spectrum displayed only two resonances at -143.0 and 49.2 ppm as a 

septet and a singlet, for the [PF6]
-
 anion and the triphenylphosphine ligand respectively. 

Attempts were made to carry out a one-pot reaction to obtain complex 10
H

 from 8, by 

stoichiometric addition of triphenylphosphine in a pyridine solution; however 

uncoordinated acetonitrile present in the reaction mixture competes with the pyridine. 

This creates an equilibrium between a mono-substituted pyridine complex [Ru(η
5
-C5H5) 

(PPh3)(NC5H5)(NCMe)][PF6] and the bis-substituted pyridine complex 10
H

. Therefore, 

it has been easier to isolate the pure product 10
H

 from a stepwise procedure and 

isolating complex 9
Ph

 as an intermediate.  

Crystals suitable for X-ray crystallography were obtained by slow diffusion of either 

hexane or pentane into the reaction mixture containing complex 10
H 

(Figure 3.2, Table 

3.2). The bond angles of N(2)-Ru(1)-N(1), N(1)-Ru(1)-P(1) and N(2)-Ru(1)-P(1) were 

88.12(7), 91.04(5) and 97.35(5) ° respectively, which suggests a distorted octahedral 
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geometry. The bond angle between the two coordinated pyridine molecules is the 

smallest, due to the steric requirements of the triphenylphosphine ligand. The ruthenium 

to cyclopentadienyl ligand bonding has been studied, and the bond lengths for C(3)-

Ru(1) and C(4)-Ru(1) are 2.221(2) and 2.220(2) Å respectively, which is notably longer 

than the adjacent Ru-C bond lengths of C(2)-Ru(1) and C(5)-Ru(1) are 2.182(2) and 

2.188(2) Å respectively. From studying the structure of the cation of 10
H

 (Figure 3.2), 

the longer bond lengths could be attributed to the trans triphenylphosphine ligand which 

causes a destabilisation of these bonds as it has a higher trans influence than the 

nitrogen donor ligands. The P(1)-Ru(1) bond length was found to be 2.3181(6) Å. 

Additionally, the ruthenium to nitrogen bond lengths were statistically inequivalent, 

where the N(1)-Ru(1) of 2.1530(18) Å, was longer than N(2)-Ru(1) of 2.1293(19) Å. 

This could potentially be due to the pyridine fragment, containing N(1) being close in 

space to two phenyl rings of the triphenylphosphine ligand, where as the pyridine 

molecule belonging to N(2) is adjacent to only one phenyl ring.  

 

Figure 3.2: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(NC5H5)2]

+
 from complex 10

H
. 

Hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have been omitted for clarity, 

and where shown the thermal ellipsoids are at a 50 % probability level. The [PF6]
-
 anion was 

disordered over two positions in a ratio of 3:1.  
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 Bond lengths (Å)  Bond angles (°) 

C(1)-Ru(1) 2.220(2) N(2)-Ru(1)-N(1) 88.12(7) 

C(2)-Ru(1) 2.182(2) N(1)-Ru(1)-P(1) 91.04(5) 

C(3)-Ru(1) 2.221(2) N(2)-Ru(1)-P(1) 97.35(5) 

C(4)-Ru(1) 2.220(2) C(6)-N(1)-C(10) 116.48(19) 

C(5)-Ru(1) 2.188(2) N(1)-C(6)-C(7) 123.3(2) 

N(1)-Ru(1) 2.1530(18) C(8)-C(7)-C(6)  119.7(2) 

N(2)-Ru(1) 2.1293(19) C(7)-C(8)-C(9)  117.7(2) 

P(1)-Ru(1) 2.3181(6) C(10)-C(9)-C(8)  119.4(2) 

C(6)-N(1) 1.342(3) N(1)-C(10)-C(9)  123.4(2) 

C(10)-N(1) 1.351(3) C(11)-N(2)-C(15) 117.0(2) 

C(11)-N(2) 1.347(3) N(2)-C(11)-C(12) 122.5(2) 

C(15)-N(2) 1.351(3) C(13)-C(12)-C(11)  119.8(2) 

  C(12)-C(13)-C(14)  118.4(2) 

  C(15)-C(14)-C(13)  118.9(2) 

  N(2)-C(15)-C(14)  123.4(2) 

Table 3.2: Selected bond lengths (Å) and angles (°) for complex 10
H
. 

3.4.1.2 Reaction of 9
Ph

 with d5- pyridine for the preparation of complex 5
 

 

 

9
Ph

                 5 

Scheme 3.9: Synthesis of complex 5. 

The synthesis of [Ru(η
5
-C5H5)(PPh3)(NC5D5)2][PF6], 5 was carried out in a similar 

fashion to the synthesis of 10
H

 (Scheme 3.9). The product was collected in a high yield 

of 75 %, and 
1
H and 

31
P{

1
H} NMR spectra used for the characterisation of 5. The 

1
H 

NMR spectrum of 5 in d2-dichloromethane was similar to 10
H

, however resonances for 

the pyridine protons were absent. The 
31

P{
1
H} NMR spectrum revealed a slightly 

downfield chemical shift of 50.4 ppm. Additionally, a high resolution ESI-MS 

contained a m/z peak at 597.1823 for a ruthenium-containing complex, which was 

assigned as the cationic [Ru(η
5
-C5H5)(PPh3)(NC5D5)2]

+
 fragment.  
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3.4.1.3 Reaction of 9
Ph

 with 4-methylpyridine for the preparation of complex 10
Me 

The ability of 4-methylpyridine to act as a ligand at the ruthenium centre was evaluated. 

The methyl group in the 4-position of the N-containing heterocycle would change the 

electronic properties of the ligand and avoid any steric influences close to the ruthenium 

centre. The properties of coordinating a more electron-donating N-containing 

heterocycle to the ruthenium fragment [Ru(η
5
-C5H5)(PR3)]

+
 was investigated and 

differences were observed in the synthesis of 10
Me

.  

 

  9
Ph

            10
Me

 

Scheme 3.10: Synthesis of complex 10
Me

. 

Complex 10
Me

 was synthesised via the addition of 50 equivalents of 4-methylpyridine to 

9
Ph

 in dichloromethane (Scheme 3.10) and was fully characterised through NMR 

spectroscopy, high resolution ESI-MS, elemental analysis and X-ray crystallography.  

The 
1
H NMR spectrum of 10

Me
 in d2-dichloromethane displayed a singlet resonance for 

the cyclopentadienyl protons at 4.36 ppm. The 4-methylpyridine resonances in the 
1
H 

NMR spectrum were exhibited at 2.32 (singlet), 6.86 (doublet) and 8.10 (doublet) ppm, 

for the methyl, and the C-3/5 and C-2/6 positions protons respectively. The integration 

of the methyl group protons on the 4-methylpyridine was 6H with respect to the 

cyclopentadienyl resonance at 4.36 ppm which had an integration of 5H. In addition, the 

absence of any doublet resonance at approximately 2.05 ppm for the methyl protons of 

the acetonitrile ligands, suggested there was no acetonitrile present in the product. The 

1
H NMR spectrum indicated that substitution of both the acetonitrile ligands by 4-

methylpyridine had occurred. The 
31

P{
1
H} NMR spectrum displayed the 

triphenylphosphine resonance at 50.4 ppm (singlet). The signal for 9
Ph

 at 52.2 ppm was 

not present in the final product, suggesting all of the starting material had reacted. The 

13
C{

1
H} NMR spectrum displayed a doublet resonance at 77.9 ppm with a 

2
JCP of 1.9 

Hz for the cyclopentadienyl carbon atoms. The 
13

C{
1
H} NMR spectrum displayed a 

doublet resonance at 156.0 ppm with a 
3
JCP coupling of 2.0 Hz from the phosphorus 

atom of the triphenylphosphine ligand to the carbon atom at the C-2/6 positions of the 
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4-methylpyridine ligands. This suggested that there were two 4-methylpyridine ligands 

coordinated to the ruthenium centre in 10
Me

. 

 The high resolution ESI-MS contained an accurate m/z peak of 615.1503 with a 

ruthenium isotope pattern, which could be assigned to [Ru(η
5
-C5H5)(PPh3)(NC5H4-4-

Me)2]
+
. In addition, a signal with a m/z of 563.1187 was due to [Ru(η

5
-

C5H5)(PPh3)(NC5H4-4-Me)(NCMe)]
+
, and a m/z of 522.0929 was assigned to the loss of 

a 4-methylpyridine molecule, [Ru(η
5
-C5H5)(PPh3)(NC5H4-4-Me)]

+
.  

Crystals of 10
Me

 could be obtained from the slow diffusion of pentane into a layer of 

dichloromethane containing 10
Me

 (Figure 3.3, Table 3.3). The cation of 10
Me

 contained 

a cyclopentadienyl ruthenium fragment which was bonded to two 4-methylpyridine 

molecules through the nitrogen atoms and a triphenylphosphine ligand. The geometry of 

the ruthenium-containing cation was a distorted octahedral structure, where the bond 

angles for N(1)-Ru(1)-P(2), N(2)-Ru(1)-P(2), and N(2)-Ru(1)-N(1) were 90.10(9), 

99.77(9), and 84.17(13) ° respectively. The latter bond angle between the two 4-

methylpyridine molecules was the smallest, and could be attributed to the higher steric 

demands of the triphenylphosphine ligand. In comparison to 10
H

, the N-Ru-N bond 

angle for 10
Me

 is 3.98 ° smaller. The η
5
-bonding of the cyclopentadienyl ligand to the 

ruthenium centre is not uniform, the bond lengths of C(14)-Ru(1) and C(15)-Ru(1) are 

2.211(4) and 2.208(4) Å respectively, which are longer than the other Ru-C bond 

lengths (range from 2.149(5) -  2.169(4) Å). The longer bond lengths are a result of the 

trans triphenylphosphine ligand. A statistical difference in the ruthenium to nitrogen 

bond lengths N(1)-Ru(1) and N(2)-Ru(1) of 2.181(3) and 2.125(3) Å respectively were 

observed. The N(1) atom was closer in proximity to the quaternary carbon atom of the 

triphenylphosphine ligand (3.359 Å), possibly causing a longer Ru-N bond length. The 

P(2)-Ru(1) bond length was found to be 2.3105(9) Å, which is very similar to complex 

10
H

. 
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Figure 3.3: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(NC5H4-p-Me)2]

+
 from complex 

10
Me

. Hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have been omitted for 

clarity, and where shown the thermal ellipsoids are at a 50 % probability level. The [PF6]
-
 anion 

displayed disorder over two positions and was refined to a ratio of 74.2:25.8(9).  

 Bond lengths (Å)  Bond angles (°) 

C(13)-Ru(1)  2.169(4) N(1)-Ru(1)-P(2) 90.10(9) 

C(14)-Ru(1) 2.211(4) N(2)-Ru(1)-P(2) 99.77(9) 

C(15)-Ru(1)  2.208(4) N(2)-Ru(1)-N(1) 84.17(13) 

C(16)-Ru(1)  2.165(5) C(1)-N(1)-C(5)  116.2(4) 

C(17)-Ru(1)  2.149(5) N(1)-C(1)-C(2)  123.2(4) 

P(2)-Ru(1) 2.3105(9) C(1)-C(2)-C(3) 120.3(4) 

N(1)-Ru(1) 2.181(3) C(4)-C(3)-C(2) 116.4(4) 

N(2)-Ru(1) 2.125(3) C(3)-C(4)-C(5) 119.4(4) 

C(1)-N(1) 1.332(5) N(1)-C(5)-C(4)  124.6(4) 

C(5)-N(1) 1.357(5) C(11)-N(2)-C(7)  116.6(3) 

C(7)-N(2) 1.354(5) N(2)-C(7)-C(8) 122.5(4) 

C(11)-N(2) 1.332(5) C(7)-C(8)-C(9)  120.4(4) 

C(3)-C(6) 1.540(6) C(8)-C(9)-C(10)  117.1(4) 

C(9)-C(12) 1.494(6) C(11)-C(10)-C(9)  119.3(4) 

  N(2)-C(11)-C(10)  124.0(4) 

Table 3.3: Selected bond lengths (Å) and angles (°) for complex 10
Me

.  
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3.4.1.4 Reaction of 9
Ph

 with 4-dimethylaminopyridine for the preparation of complex 

10
NMe2 

Coordination of the ligand 4-dimethylaminopyridine to complex 9
Ph

 was also attempted. 

The substituent NMe2 in the 4-position on the pyridine ligand contributes electron 

density to the aromatic system through conjugation from the lone pair on the NMe2 

group, specifically at the C-3/5 positions and the nitrogen atom , therefore creating an 

extremely good donor ligand.
29

  The synthesis and properties of 10
NMe2

 has been 

investigated. 

 

      9
Ph

            10
NMe2

 

Scheme 3.11: Synthesis of complex 10
NMe2

. 

The synthetic preparation of 10
NMe2

 was similar to those of complexes 10
H

 and 10
Me

, 

however the addition of 4-dimethylaminopyridine was reduced to the exact equivalents 

required (two equivalents) (Scheme 3.11). Any excess 4-dimethylaminopyridine that 

remained in the reaction mixture was removed by washing the resulting precipitate with 

toluene. It was found that 10
NMe2

 was more air-sensitive in nature, probably due to the 

increase of electron density at the ruthenium centre.  

The 
1
H NMR spectrum of 10

NMe2
 in d2-dichloromethane displayed resonances at 2.96 

ppm for the methyl groups on the 4-dimethylaminopyridine ligands and at 4.25 ppm for 

the cyclopentadienyl protons; these resonances had relative integrations of 12H to 5H, 

which would only occur if two 4-dimethylaminopyridine ligands were coordinated to 

the ruthenium centre. The other peaks in the 
1
H NMR spectrum were in the aromatic 

region between 6.16-7.73 ppm. The protons at the C-2/6 and C-3/5 positions of the 4-

dimethylaminopyridine ligands displayed resonances at 7.73 and 6.16 ppm respectively, 

where both peaks integrated as 4H with respect to the cyclopentadienyl protons at 4.25 

ppm. The 
1
H NMR spectrum did not exhibit a resonance at 2.05 ppm for the methyl 

groups of the acetonitrile ligand, which strongly suggested substitution of both 

acetonitrile ligands with 4-dimethylaminopyridine. Peaks for uncoordinated DMAP at 
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2.97 ppm for the methyl groups, and at 6.48 and 8.16 ppm for the aromatic protons were 

not detected. The 
31

P{
1
H} NMR spectrum exhibited a resonance at 51.4 ppm as a 

singlet, due to the phosphorus atom of the triphenylphosphine ligand which was 

coordinated to the ruthenium centre. The 
13

C{
1
H} NMR data was consistent with what 

was observed in the 
1
H and 

31
P{

1
H} NMR spectra. A doublet resonance at 77.0 ppm for 

the cyclopentadienyl ligand displayed a 
2
JCP of 2.6 Hz. In addition, the 

13
C{

1
H} NMR 

spectrum at 155.3 ppm displayed a doublet resonance with a 
3
JCP of 1.7 Hz for the 

carbon atom at the C-2/6 positions of the 4-dimethylaminopyridine ligand, where as the 

carbon atoms at the C-3/5 positions only displayed a singlet peak at 107.8 ppm.  

The high resolution ESI-MS contained several cationic ruthenium complexes with m/z 

peaks of 673.2031, 592.1460 and 511.1205, which have been assigned as [Ru(η
5
-

C5H5)(PPh3)(NC5H4-4-NMe2)2]
+
, [Ru(η

5
-C5H5)(PPh3)(NC5H4-4-NMe2)(NCMe)]

+
, and 

[Ru(η
5
-C5H5)(PPh3)(NCMe)]

+
 respectively.  

Crystals suitable for single crystal X-ray crystallography of 10
NMe2

 were obtained 

through slow diffusion of pentane into a solution of 10
NMe2

 in dichloromethane. A 

distorted octahedral geometry was observed for the cation of 10
NMe2

 where the bond 

angles of N(1)-Ru(1)-P(1), N(3)-Ru(1)-P(1) and N(3)-Ru(1)-N(1) were 97.35(4), 

89.77(4) and 87.74(5) ° respectively. The smallest bond angle was N(3)-Ru(1)-N(1), 

which is probably due to the steric requirements of the triphenylphosphine ligand. 

However, the N(3)-Ru(1)-N(1) bond angle is closer to 10
H

 than 10
Me

. Similar to the 

previously mentioned X-ray structures, the Ru-C bond lengths of the cyclopentadienyl 

ligand trans to the triphenylphosphine ligand are significantly longer. The C(2)-Ru(1) 

and C(3)-Ru(1) bond lengths of 2.2229(17) and 2.2312(17) Å respectively, were longer 

than the other Ru-C bond lengths. For 10
NMe2

 the Ru-N bond lengths were statistically 

equivalent.  

  



118 

Chapter 3 

 

Figure 3.4: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(NC5H4-4-NMe2)2]

+
 from complex 

10
NMe2

. Hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have been omitted for 

clarity, and where shown the thermal ellipsoids are at a 50 % probability level. . The [PF6]
-
 

anion was in a special position which could not be modelled.  

 Bond lengths (Å)  Bond angles (°) 

C(1)-Ru(1)  2.1679(17) N(1)-Ru(1)-P(1) 97.35(4) 

C(2)-Ru(1) 2.2229(17) N(3)-Ru(1)-P(1) 89.77(4) 

C(3)-Ru(1)  2.2312(17) N(3)-Ru(1)-N(1) 87.74(5) 

C(4)-Ru(1)  2.1964(18) C(10)-N(1)-C(6)  114.83(15) 

C(5)-Ru(1)  2.1632(17) N(1)-C(6)-C(7)  124.99(16) 

P(1)-Ru(1) 2.3070(4) C(6)-C(7)-C(8) 119.99(16) 

N(1)-Ru(1) 2.1532(14) C(7)-C(8)-C(9) 115.12(16) 

N(3)-Ru(1) 2.1555(13) C(8)-C(9)-C(10) 120.48(16) 

C(6)-N(1) 1.358(2) N(1)-C(10)-C(9)  124.57(15) 

C(10)-N(1) 1.358(2) C(13)-N(3)-C(17)  115.38(14) 

C(13)-N(3) 1.351(2) N(3)-C(13)-C(14) 124.51(15) 

C(17)-N(3) 1.358(2) C(13)-C(14)-C(15)  119.71(16) 

  C(14)-C(15)-C(16)  116.16(15) 

  C(15)-C(16)-C(17)  119.90(15) 

  N(3)-C(17)-C(16)  124.28(16) 

Table 3.4: Selected bond lengths (Å) and angles (°) for complex 10
NMe2

.  



119 

Chapter 3 

3.4.1.5 Reaction of 9
Ph

 with 3-methylpyridine for the preparation of complex 11 

Other substituent effects have also been investigated; including the location of the 

methyl group at the C-3 position of the pyridine molecule. The reason for studying the 

formation of 11 was to observe if the methyl group would have any steric influence at 

the ruthenium centre on synthesising the half-sandwich ruthenium complex. Also, if 11 

was synthesised it would be of interest to explore if any selectivity is observed in the 

formation of the 2-styrylpyridine derivative from the alkenylation reaction. 

 

9
Ph

             11 

Scheme 3.12: Synthesis of complex 11. 

Complex 11 was prepared from 9
Ph

 in a similar manner to 10
H

, where an excess of 3-

methylpyridine (100 equivalents) was added to a dichloromethane solution of 9
Ph 

(Scheme 3.12). Orange air-sensitive crystals of the complex could be obtained through 

slow diffusion of pentane into a dichloromethane solution containing 11, and isolated in 

a reasonable yield (67 %).  

The 
1
H NMR spectrum of 11 exhibited singlet resonances for the methyl group at 2.00 

ppm and the cyclopentadienyl protons at 4.40 ppm, which integrated in a manner of 6H 

to 5H respectively. The aromatic hydrogen atoms on the 3-methylpyridine ligand 

exhibited individual resonances at 7.01, 7.49, 7.93 and 8.28 ppm, where they all 

integrate as 2H with respect to the cyclopentadienyl protons at 4.40 ppm (5H). The 

protons at the C-2/6 positions of the 3-methylpyridine were assigned at 7.93 and 8.28 

ppm which had a singlet and doublet multiplicity respectively. The integrations suggest 

that there are two 3-methylpyridine molecules coordinated to the ruthenium centre. The 

31
P{

1
H} NMR spectrum displayed a singlet resonance at 49.1 ppm for the 

triphenylphosphine ligand coordinated to the ruthenium centre, in addition to the septet 

resonance at -144.4 ppm (
1
JPF = 711 Hz) for the [PF6]

-
 anion. There are no other peaks 

for any other metal complexes. The 
13

C{
1
H} NMR spectrum displayed a peak at 18.4 

ppm for the methyl carbon atoms of 3-methylpyridine. Additionally, in the 
13

C{
1
H} 

NMR spectrum at 78.1 ppm a doublet with a 
2
JCP of 1.9 Hz, was assigned as the 
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cyclopentadienyl carbon atoms. The carbon atoms at the C-2 and C-6 positions of the 3-

methylpyridine ligands exhibited doublet signals at 154.1 and 156.7 ppm, with 
3
JCP of 

1.9 and 2.4 Hz respectively. These data suggested that two 3-methylpyridine ligands 

were coordinated to the ruthenium complex as a coupling between the carbon atoms at 

the C-2 and C-6 positions and the triphenylphosphine phosphorus atom was observed. 

The high resolution ESI-MS displayed a peak with a m/z of 615.1493 which is expected 

for [Ru(η
5
-C5H5)(PPh3)(NC5H4-3-Me)2]

+
 of 11. Further fragmentation was observed at 

563.1177 and 522.0916 for the cationic ruthenium complexes where the earlier species 

has lost a 3-methylpyridine ligand and been substituted by an acetonitrile ligand to give 

[Ru(η
5
-C5H5)(PPh3)(NC5H4-3-Me)(NCMe)]

+
 and the latter has lost a 3-methylpyridine 

ligand to yield [Ru(η
5
-C5H5)(PPh3)(NC5H4-3-Me)]

+
. 

Crystals suitable for single crystal X-ray crystallography of 11 were obtained through 

slow diffusion of pentane into a solution of the species in dichloromethane (Figure 3.5, 

Table 3.5).  In the ruthenium-containing cationic species, one of the phenyl rings of the 

triphenylphosphine ligand was disordered over two positions. The geometry of the 

ruthenium cation of 11, can be described as a distorted octahedron where the ruthenium 

bond angles of N(1)-Ru(1)-P(1), N(2)-Ru(1)-P(1), and N(2)-Ru(1)-N(1) are 90.66(5), 

96.07(5), and 89.41(7) ° respectively. The bond angle between the two 3-

methylpyridine molecules of N(2)-Ru(1)-N(1) is 89.41(7) ° is the smallest in the 

structure. The ruthenium to cyclopentadienyl ligand bonding is not equivalent, as the 

C(31)-Ru(1), C(32)-Ru(1) and C(33)-Ru(1) bonds lengths are 2.195(2), 2.224(2) and 

2.205(2) Å respectively, which are longer than the other Ru-C bond lengths. The bond 

lengths C(32)-Ru(1) and C(33)-Ru(1) are trans to a triphenylphosphine ligand. The two 

Ru-N bond lengths were not equivalent. The P(1)-Ru(1) bond length was found to be 

2.3186(6) Å.  
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Figure 3.5: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(NC5H4-3-Me)2]

+
 from complex 

11. Hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have been omitted for 

clarity, and where shown the thermal ellipsoids are at a 50 % probability level. The 

dichloromethane molecule was disordered over two positions with occupancies of 

0.55629:0.44371. The [PF6]
-
 anion was disordered in two positions, and modelled with 

occupancies of 0.67953:0.32047. A phenyl group of the triphenylphosphine ligand is disordered 

in two positions (major and minor, in a 0.75304:0.24696 ratio respectively), where the minor 

component is shown as fragmented spheres.  
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 Bond lengths (Å)  Bond angles (°) 

C(31)-Ru(1)  2.195(2) N(1)-Ru(1)-P(1) 90.66(5) 

C(32)-Ru(1) 2.224(2) N(2)-Ru(1)-P(1) 96.07(5) 

C(33)-Ru(1)  2.205(2) N(2)-Ru(1)-N(1) 89.41(7) 

C(34)-Ru(1)  2.166(2) C(1)-N(1)-C(5)  117.0(2) 

C(35)-Ru(1)  2.158(2) N(1)-C(1)-C(2)  122.8(2) 

P(1)-Ru(1) 2.3186(6) C(1)-C(2)-C(3) 119.3(3) 

N(1)-Ru(1) 2.1527(19) C(4)-C(3)-C(2) 119.0(2) 

N(2)-Ru(1) 2.135(2)  C(3)-C(4)-C(5) 118.0(2) 

C(1)-N(1) 1.354(3) N(1)-C(5)-C(4)  123.9(2) 

C(5)-N(1) 1.347(3) C(11)-N(2)-C(7) 117.1(2) 

C(7)-N(2) 1.351(3) N(2)-C(7)-C(8) 122.7(2) 

C(11)-N(2) 1.340(3) C(7)-C(8)-C(9)  119.1(3) 

C(4)-C(6) 1.496(4) C(8)-C(9)-C(10)  119.3(3) 

C(10)-C(12) 1.512(5) C(11)-C(10)-C(9)  117.7(3) 

  N(2)-C(11)-C(10)  123.9(2) 

Table 3.5: Selected bond lengths (Å) and angles (°) for complex 11. 

 

3.4.1.6 Reaction of 9
Ph

 with 2-methylpyridine for the preparation of complex 12 

The addition of 2-methylpyridine to 9
Ph 

in dichloromethane, was carried out in order to 

observe if the bis-substituted 2-methylpyridine could be synthesised. The methyl group 

in the C-2 position of the pyridine molecule provided a very clear steric hindrance with 

the nitrogen donor atom, and could inhibit the ligand from coordinating to the 

ruthenium centre.
212

 A similar procedure to the preparation of complex 10
H

 was 

followed (Scheme 3.13) where 2-methylpyridine (approximately 100 equivalents) was 

added to 9
Ph

 in a dichloromethane solution and reaction mixture stirred for 16 hours, the 

product was precipitated, collected and analysed.  

 

   9
Ph

            12 

Scheme 3.13: General synthesis of complex 12. 



123 

Chapter 3 

After the addition of 2-methylpyridine to 9
Ph

 for 16 hours, the reaction mixture had 

undergone a colour change from a yellow to a brown solution. The brown precipitate 

was collected and 
1
H and 

31
P{

1
H} NMR spectra recorded, which displayed the presence 

of several ruthenium-containing products. The 
1
H NMR spectrum indicated that there 

were three significant resonances for the cyclopentadienyl protons at 4.43 (two adjacent 

peaks) and 4.46 ppm. In addition, three sets of acetonitrile peaks were observed at 1.86, 

2.05 and 2.06 ppm as doublets with 
5
JHP couplings of approximately 1.5 Hz and no 

uncoordinated acetonitrile protons were observed at 1.97 ppm. The 
31

P{
1
H} NMR 

spectrum exhibited four resonances at -143.0, 52.2, 52.3 and 54.3 ppm, whereas the 

former resonance was for the [PF6]
-
 anion and the remaining peaks belonged to 

triphenylphosphine ligands of different ruthenium containing complexes.  

One of the complexes present in the reaction mixture was identified as the starting 

material 9
Ph

 (in the 
1
H NMR spectrum the cyclopentadienyl ligand at 4.43 ppm, 

acetonitrile ligands at 2.05 ppm; and in the 
31

P{
1
H} NMR spectrum at 52.2 ppm).  

A major complex was identified in the reaction mixture from the NMR spectra. In the 

1
H NMR spectrum, the major cyclopentadienyl resonance was seen at 4.46 ppm which 

integrated as 5H with respect to an acetonitrile ligand resonance at 1.86 ppm with an 

integration of 3H. Additionally, coordinated 2-methylpyridine aromatic resonances have 

cautiously been assigned at 6.82 (1H), ~7.20, ~7.55 (1H) and 8.81 (1H) ppm from a 
1
H 

and 2D 
1
H-

1
H COSY NMR spectra, and a broad methyl resonance was observed at 2.54 

ppm (3H). The major triphenylphosphine resonance was at 52.3 ppm in the 
31

P{
1
H} 

NMR spectrum. This species has been tentatively assigned as [Ru(η
5
-

C5H5)(PPh3)(NC5H4-2-Me)(NCMe)][PF6], 12. The literature reports the substitution of 

one acetonitrile ligand of [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 with 2-methylpyridine.

296
  

The final ruthenium-containing complex in the reaction mixture displayed in the 
1
H 

NMR spectrum a cyclopentadienyl resonance at 4.43 ppm and a corroborating 

acetonitrile peak at 2.06 ppm. The 
31

P{
1
H} NMR spectrum exhibited a resonance at 

54.3 ppm for a coordinated triphenylphosphine ligand. Unfortunately this species has 

not been fully characterised due to limited data. A report has noted that long reaction 

times of [Ru(η
5
-C5H5)(NC5H4-2-Me)(NCMe)2]

+
 results in the formation of a π-

coordinated 2-methylpyridine ligand, [Ru(η
5
-C5H5)(π-NC5H4-2-Me)]

+
 species and 

uncoordinated acetonitrile.
296
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A high resolution ESI-MS of the crude reaction mixture displayed m/z peaks at 

470.0583 and 429.0315 were assigned as the cationic species [Ru(η
5
-C5H5)(PPh3) 

(NCMe)]
+
 and [Ru(η

5
-C5H5)(PPh3)]

+
 respectively. It should be noted that the cationic 

species of complex 12 has not been observed from ESI-MS. Interestingly, m/z peaks at 

549.1048 and 508.0778 for the species [Ru(η
5
-C5H5)(PPh3)(NCMe)(NC5H5)]

+
 and 

[Ru(η
5
-C5H5)(PPh3)(NC5H5)]

+
 were observed.  

Crystals of 12 suitable for X-ray diffraction were obtained from slow diffusion of 

pentane into a dichloromethane layer containing various ruthenium complexes (Figure 

3.6). However, due to poor quality of the data, the interpretation needs to be approached 

cautiously as an R value of 8.1 % was obtained and data collection stopped prematurely. 

Although it is clear from the data that the structure of the species is [Ru(η
5
-C5H5) 

(PPh3)(NC5H4-2-Me)(NCMe)][PF6] and the 2-methylpyridine molecule is disordered 

over two positions.   

 

Figure 3.6: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(NC5H4-2-Me)(NCMe)]

+
 from 

complex 12. Hydrogen atoms and [PF6]
-
 anion have been omitted for clarity, and where shown 

the thermal ellipsoids are at a 50 % probability level. The [PF6]
-
 anion is disordered over two 

positions with a ratio of 0.668:0.332(11). The 2-methylpyridine molecule is disordered over two 

positions with a major and minor component in a ratio of 0.719:0.281(4) respectively. 
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From the data obtained from the different reaction conditions a range of ruthenium 

complexes have been formed from this reaction mixture. No evidence has been 

observed for the bis-substituted 2-methylpyridine complex, this could be attributed to 

the high steric demand at the ruthenium centre due to the methyl substituent.  

 

3.4.1.7 Reaction of 9
Ph

 with 1–methylimidazole for the preparation of complex 13
Me 

We extended our library of potential nitrogen-containing heterocycles to complex to 1-

methylimidazole, to observe if the disubstituted 1-methylimidazole complex 13
Me

 could 

be synthesised in a similar way to 10
H

. If this stage of the reaction was successful it 

would be interesting to investigate if 13
Me

 performed a catalytic alkenylation reaction as 

reported by Murakami and Hori.
253

  

 

       9
Ph

        13
Me

 

Scheme 3.14: Synthesis of complex 13
Me

. 

The reaction to synthesise 13
Me

 required the addition of 1-methylimidazole (105 

equivalents) to 9
Ph

 in dichloromethane (Scheme 3.14). From this procedure a reasonable 

yield of 63 % was obtained. The product was analysed using NMR spectroscopy, high 

resolution ESI-MS, IR spectroscopy, elemental analysis and X-ray crystallography.  

The 
1
H NMR spectrum of the product 13

Me
 exhibited a singlet at 3.49 ppm and 4.26 

ppm which integrated as 6H and 5H for the methyl groups of the imidazole ligands and 

the cyclopentadienyl protons respectively. The protons on the imidazole ligand 

exhibited a slightly more upfield chemical shift in comparison to the pyridine 

derivatives at 6.79-6.82 ppm as a multiplet and integration of 6H with respect to the 

cyclopentadienyl protons at 4.26 ppm. The remaining aromatic signals from 7.19-7.41 

ppm were assigned to the triphenylphosphine ligand. The 
31

P{
1
H} NMR spectrum 

contained two resonances at -144.4 and 51.4 ppm as a septet for the [PF6]
-
 non-

coordinating anion and a singlet for the phosphorus atom of the triphenylphosphine 

ligand respectively. There were no other triphenylphosphine peaks in the 
31

P{
1
H} NMR 
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spectrum which indicated that 13
Me

 had been formed selectively. A 
13

C{
1
H} NMR 

spectrum for 13
Me

 exhibited resonances for the methyl groups of the imidazole ligand at 

34.6 ppm as a singlet and a doublet at 75.6 ppm with a 
2
JCP of 2.4 Hz for the 

cyclopentadienyl carbon atoms. The imidazole ring carbon atoms were identified at 

121.6, 130.2 and 134.7 ppm as singlets. This is a different observation for 13
Me

 as 

complexes 10
R
 and 11 all displayed a 

3
JCP coupling between the phosphorus atom of the 

triphenylphosphine ligand and the carbon atoms at the C-2/6 positions. Unfortunately, 

exact assignment of these carbon atoms was not achieved, despite using a range of 2D 

NMR spectra such as COSY, HMQC and HMBC experiments. 

An ESI-MS of the sample revealed a m/z peak of 593.1423 with a ruthenium isotope 

pattern which is expected for the cationic fragment [Ru(η
5
-C5H5)(PPh3)(N2C4H6)2]

+
 of 

13
Me

. Another m/z peak of 511.0900 was observed with a ruthenium isotope pattern 

which was identified as [Ru(η
5
-C5H5)(PPh3)(NCMe)2]

+
, where both 1-methylimidazole 

ligands had been substituted by acetonitrile ligands.  

These data strongly suggest that 13
Me

 has been synthesised and additionally an X-ray 

structure of 13
Me

 has been obtained from the slow diffusion of pentane into a 

dichloromethane layer containing 13
Me

 (Figure 3.7, Table 3.6). The cationic unit of 

13
Me

 indicated that the two 1-methylimidazole ligands were bound to the ruthenium 

centre through the nitrogen atoms N(1) and N(3). The geometry around the ruthenium 

centre could be described as a distorted octahedron, as the bond angles for N(1)-Ru(1)-

P(1), N(3)-Ru(1)-P(1) and N(3)-Ru(1)-N(1) were found to be 95.70(6), 89.13(5) and 

85.57(8) ° respectively. The smallest bond angle was N(3)-Ru(1)-N(1), which could be 

due to the steric requirements of the triphenylphosphine ligand.  The η
5
-coordination of 

the cyclopentadienyl ligand to the ruthenium centre was not equal, as three of the bond 

lengths for C(1)-Ru(1), C(2)-Ru(1) and C(5)-Ru(1) were 2.209(3), 2.196(3) and 

2.192(3) Å respectively, which are longer than other Ru-C interactions (2.156(3) and 

2.166(3) Å). The carbon atoms C(1) and C(2) are trans to the triphenylphosphine 

ligand. The ruthenium to nitrogen bond lengths for N(1)-Ru(1) and  N(3)-Ru(1) were 

found to be 2.148(2) and 2.132(2) Å respectively. Again, a difference in the two Ru-N 

bond lengths was observed due to the orientation of the triphenylphosphine ligand. A 

Ru(1)-P(1) bond length of 2.3195(6) Å was found.  
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Figure 3.7: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(N2C4H6)2]

+
 from complex 13

Me
. 

Hydrogen atoms and [PF6]
-
 anion have been omitted for clarity, and where shown the thermal 

ellipsoids are at a 50 % probability level. The ADP of the cyclopentadienyl and one phenyl 

(C14-C19) were elongated.  Inspection of the electron density map revealed that this was due to 

a continuous variation of the position of the carbons rather than the carbons occupying two 

discrete locations and so it would have been inappropriate to use a two-site model in these 

cases. 
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 Bond lengths (Å)  Bond angles (°) 

C(1)-Ru(1)  2.209(3) N(1)-Ru(1)-P(1)  95.70(6) 

C(2)-Ru(1) 2.196(3) N(3)-Ru(1)-P(1)  89.13(5) 

C(3)-Ru(1)  2.156(3) N(3)-Ru(1)-N(1) 85.57(8) 

C(4)-Ru(1)  2.166(3) C(6)-N(1)-C(8) 104.4(2) 

C(5)-Ru(1)  2.192(3) N(2)-C(6)-N(1)  111.7(2) 

P(1)-Ru(1)  2.3195(6) C(6)-N(2)-C(7)  107.4(2) 

N(1)-Ru(1) 2.148(2) C(8)-C(7)-N(2)  106.3(3) 

N(3)-Ru(1)  2.132(2) C(7)-C(8)-N(1) 110.1(2) 

C(6)-N(1)  1.340(3) C(10)-N(3)-C(12)  105.3(2) 

C(6)-N(2)  1.335(4) N(3)-C(10)-N(4) 111.3(3) 

C(9)-N(2)  1.465(3) C(10)-N(4)-C(11) 107.2(2) 

C(7)-N(2)  1.372(3) C(12)-C(11)-N(4)  106.8(2) 

C(7)-C(8)  1.352(4) C(11)-C(12)-N(3) 109.3(2) 

C(8)-N(1)  1.381(4)   

C(10)-N(3) 1.326(3)   

C(10)-N(4)  1.342(3)   

C(13)-N(4) 1.466(3)   

C(11)-N(4)  1.366(4)   

C(11)-C(12) 1.351(4)   

C(12)-N(3) 1.383(3)   

Table 3.6: Selected bond lengths (Å) and angles (°) for complex 13
Me

. 

 

3.4.1.8 Reaction of 9
Ph

 with t-butylimidazole for the preparation of complex 13
tBu

  
 

The ability of t-butylimidazole to coordinate to the ruthenium centre was investigated. 

The t-butyl group can donate more electron density though an inductive effect to the 

imidazole ring and is also a bulkier substituent than the methyl group. The synthetic 

preparation of synthesising a half-sandwich ruthenium complex coordinated to t-

butylimidazole ligands was investigated.  
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    9
Ph

              13
tBu

 

Scheme 3.15: Synthesis of complex 13
tBu

. 

In order to synthesise 13
tBu

 a similar procedure to that for 10
H

 was used. To complex 

9
Ph

 in dichloromethane, 100 equivalents of t-butylimidazole was added and the reaction 

mixture was left to stir for 16 hours (Scheme 3.15). A product was isolated through the 

slow diffusion of pentane in a dichloromethane layer containing the yellow complex.  

The 
1
H NMR spectrum displayed two singlet resonances at 1.28 and 4.29 ppm, which 

were assigned to the t-butyl group methyl substituents and the cyclopentadienyl protons 

respectively. The peaks at 1.28 and 4.29 ppm integrated in an 18H to 5H manner 

respectively, which is indicative of a disubstituted t-butylimidazole complex. The other 

hydrogen atoms in the ring of the t-butylimidazole molecule exhibited peaks at 6.91, 

6.95 and 7.00 ppm with a triplet multiplicity due to JHH couplings (a 
1
H{

31
P} NMR 

experiment did not change the multiplicity of these resonances). The remaining peaks in 

the aromatic region were assigned to the triphenylphosphine ligand protons between 

7.11 and 7.42 ppm. The 
31

P{
1
H} NMR spectrum exhibited two resonances at -144.5 and 

51.8 ppm as a septet and a singlet respectively. These peaks were assigned as the [PF6]
-
 

anion and the latter as the phosphorus atom of the triphenylphosphine ligand 

coordinated to the ruthenium centre. The absence of a signal at 52.2 ppm for the 

triphenylphosphine ligand of complex 9
Ph

 in the 
31

P{
1
H} NMR spectrum suggested that 

the reaction had gone to completion. A 
13

C{
1
H} NMR spectrum for 13

tBu
 exhibited a 

resonance for the methyl carbon atoms at 30.1 ppm and the quartenary carbon atom at 

56.6 ppm. At 75.9 ppm a doublet with a 
2
JCP of 2.2 Hz for the cyclopentadienyl carbon 

atoms was observed. The 
13

C{
1
H} NMR spectrum also exhibited peaks for the 

imidazole ring carbon atoms at 118.0 (singlet), 134.5 (singlet) and 139.1 (doublet with a 

JCP = 2.6 Hz) ppm. This observation is different to 13
Me

 where there is no coupling 

between the imidazole carbon atoms and the triphenylphosphine ligand.  
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The ESI-MS contained a m/z peak of 677.2334 which had a ruthenium isotope pattern, 

and was assigned to the cationic ruthenium fragment [Ru(η
5
-C5H5)(PPh3)(N2C7H12)2]

+
 

of 13
tBu

. The NMR spectra and ESI-MS data combined provided supporting evidence 

for the formation of the ruthenium complex 13
tBu

.  

In addition, an X-ray structure of 13
tBu

 was obtained. Unfortunately, the crystal 

structure was not of sufficient quality to determine any structural data however a 

general diagram has been reported. The unit cell contained two molecules of 13
tBu

, 

where all atoms were approximately isotropically restrained. In both of the molecules, 

one of the tert-butyl substituents exhibited disorder over two positions, with refined 

occupancies of 0.540(13):0.460(13) and 0.537(19):0.463(19). One of the [PF6]
-
 anions 

was disordered over two positions, with occupancies of 0.781(11):0.219(11), and a 

dichloromethane molecule also displayed disorder and was modelled over three 

positions with refined occupancies of 0.526(9):0.276(14):0.199(13). 

 

Figure 3.8: X-Seed diagram of one of the two independent cations of [Ru(η
5
-C5H5)(PPh3) 

(N2C4H12)2]
+
 from 13

tBu
, where hydrogen atoms, [PF6]

-
 anions and a dichloromethane molecule 

have been omitted for clarity, and where shown the thermal ellipsoids are at a 50 % probability 

level. One the t-butyl groups exhibited disorder over two positions, where the refined 

occupancies are 0.540(13):0.460(13), and the major component is displayed in a solid line.   
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3.4.2 Reaction of complex 9
Me

 with N-containing heterocycles 

The range of phosphine ligands employed in this study was extended to include 

trimethylphosphine which has a smaller cone angle and more is electron-donating than 

triphenylphosphine.
20

 The substitution of the acetonitrile ligands has been carried out 

with pyridine and 4-dimethylaminopyridine. The synthesis and properties of these 

complexes has been studied in detail.  

3.4.2.1 Reaction of 9
Me

 with pyridine for the preparation of complex 14
H 

 

  9
Me

       14
H

 

Scheme 3.16: Synthesis of complex 14
H
. 

The reaction between complex 9
Me

 and an excess of pyridine in dichloromethane was 

carried out in order to observe if the acetonitrile ligands could be substituted with 

pyridine in a similar manner to the reaction between complex 9
Ph

 and pyridine (Scheme 

3.16). The product was characterised using NMR spectroscopy, ESI-MS, elemental 

analysis and X-ray crystallography.  

The 
1
H NMR spectrum of the product displayed resonances at 1.40 and 4.39 ppm as a 

doublet with a 
2
JHP of 26.3 Hz and a singlet respectively, which were assigned as the 

methyl group resonances of the trimethylphosphine ligand and the cyclopentadienyl 

ligand respectively. Upon running a 
1
H{

31
P} NMR spectrum, the doublet resonance at 

1.40 ppm simplified to reveal a singlet, confirming the nature of the doublet coupling, 

and is consistent with this resonance being due to the methyl groups of the phosphine 

ligand. In addition, the integration of the resonances at 1.40 and 4.39 ppm were 9H to 

5H respectively. The pyridine resonances were observed in the aromatic region at 7.28, 

7.81 and 8.41 ppm, with integrations of 4H, 2H and 4H respectively, with respect to the 

cyclopentadienyl protons at 4.39 ppm (5H), which is indicative of  two pyridine 

molecules coordinated to the ruthenium centre. The absence of the acetonitrile ligand 

resonances at approximately 2.36 ppm, indicated the loss of the acetonitrile ligands 

from the ruthenium centre and the formation of the bis-substituted pyridine complex 

14
H

. Additionally, the 
31

P{
1
H} NMR spectrum revealed only two resonances a -144.4 



132 

Chapter 3 

ppm and 3.1 ppm with a multiplicity of a septet and a singlet respectively, where the 

latter resonance was due to the phosphorus atom of the trimethylphosphine. The 

13
C{

1
H} NMR spectrum exhibited doublet resonances at 17.9 ppm and 76.0 ppm with a 

1
JCP of 26.3 Hz and a 

2
JCP of 2.3 Hz respectively, which were assigned as the methyl 

groups of the trimethylphosphine and the cyclopentadienyl ligands carbon atoms. 

Interestingly, the carbon atoms at the C-2/6 positions of the pyridine molecule at 156.7 

ppm displayed a 
3
JCP of 2.8 Hz, which suggested that the pyridine molecules were 

coordinated at the ruthenium centre. The other pyridine resonances were observed at 

126.0 and 137.4 ppm with a singlet multiplicity. 

A high resolution ESI-MS displayed the presence of several ruthenium-containing 

complexes with a m/z of 401.0717, 363.0568 and 322.0336. These signals were 

assigned to the cationic species [Ru(η
5
-C5H5)(PMe3)(NC5H5)2]

+
, [Ru(η

5
-C5H5)(PMe3) 

(NC5H5)(NCMe)]
+
 and [Ru(η

5
-C5H5)(PMe3)(NC5H5)]

+
 respectively. The elemental 

analysis of the complex 14
H

 was within an error of 0.2 %, and therefore is consistent 

with the formation of 14
H

. 

Dark yellow air-sensitive crystals suitable for X-ray crystallography could be obtained 

of the product via slow diffusion of pentane into a dichloromethane layer containing the 

species 14
H

 (Figure 3.9, Table 3.7). The cation of 14
H

 can be described as having a 

distorted octahedral geometry, where the bond angles N(1)-Ru(1)-P(1), N(2)-Ru(1)-P(1) 

and N(2)-Ru(1)-N(1) are 88.13(3), 97.25(3) and 89.04(4) ° respectively. For 

trimethylphosphine, which has a smaller cone angle
20

 than triphenylphosphine the N-

Ru-N bond angle at the ruthenium centre is no longer the smallest (in 10
H

 the N-Ru-N 

bond angle was 88.12(7) °) . The Ru-C bond lengths for the cyclopentadienyl ligand 

indicate that the η
5
-interaction is not equivalent, as the C(3)-Ru(1) and C(4)-Ru(1) 

bonds lengths are 2.2155(14) and 2.2089(15) Å respectively, as the trans 

trimethylphosphine ligand causes a destabilisation of these bonds as it has a higher trans 

influence than the nitrogen donor ligands. The P(1)-Ru(1) bond length was 2.3063(4) Å. 

Bond lengths from the ruthenium centre to the two nitrogen atoms varied by a 0.019 Å. 

Additionally, the angle through which the pyridine molecules coordinate to the 

ruthenium is not planar, and was especially noticeable in the N(2) coordinated pyridine 

molecule, as the Ru(1)-N(2)-C(13) bond angle was ‘tilted’ and measured as 159.91 °, 

where as the Ru(1)-N(1)-C(8) bond angle was 177.08 °. 
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Figure 3.9: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PMe3)(NC5H5)2]

+
 from complex 14

H
. 

Hydrogen atoms and [PF6]
-
 anion have been omitted for clarity, and where shown the thermal 

ellipsoids are at a 50 % probability level. 

 Bond lengths (Å)  Bond angles (°) 

C(1)-Ru(1)  2.1659(14) N(1)-Ru(1)-P(1)  88.13(3) 

C(2)-Ru(1) 2.1839(14) N(2)-Ru(1)-P(1) 97.25(3) 

C(3)-Ru(1)  2.2155(14) N(2)-Ru(1)-N(1)  89.04(4) 

C(4)-Ru(1)  2.2089(15) C(10)-N(1)-C(6) 116.71(12) 

C(5)-Ru(1)  2.1766(14) N(1)-C(6)-C(7)  123.25(13) 

P(1)-Ru(1) 2.3063(4) C(8)-C(7)-C(6)  119.22(14) 

N(1)-Ru(1) 2.1399(12) C(7)-C(8)-C(9)  118.31(14) 

N(2)-Ru(1)  2.1208(12) N(1)-C(10)-C(9)  123.03(14) 

C(6)-N(1)  1.3523(18) C(15)-N(2)-C(11)  117.27(13) 

C(10)-N(1)  1.3517(17) N(2)-C(11)-C(12)  122.63(14) 

C(11)-N(2)  1.3551(18) C(11)-C(12)-C(13)  119.37(15) 

C(15)- N(2)  1.3473(18) C(12)-C(13)-C(14)  118.56(15) 

  C(15)-C(14)-C(13)  119.06(15) 

  N(2)-C(15)-C(14)  123.08(14) 

Table 3.7: Selected bond lengths (Å) and angles (°) for complex 14
H
.  
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3.4.2.2 Reaction of 9
Me

 with 4-dimethylaminopyridine for the preparation of 14
NMe2 

For 9
Me

 two pyridine ligands were coordinated to give 14
H

 and also in order to 

investigate the substituent effects, the effect of an NMe2 group in the 4-position of the 

N-containing heterocycle was investigated. This section will discuss coordination of 4-

dimethylaminopyridine to 9
Me

. 

 

        9
Me

          14
NMe2

 

Scheme 3.17: Synthesis of complex 14
NMe2

. 

The synthesis of 14
NMe2

 was similar to the preparation of 10
NMe2 

(Scheme 3.17). The 

reaction was carried out through the addition of two equivalents of 4-

dimethylaminopyridine to 9
Me

 in dichloromethane. The product was purified through a 

crystallisation method involving slow diffusion of pentane into a dichloromethane layer 

containing the product 14
NMe2

.  

The 
1
H NMR spectrum of 14

NMe2
 in d2-dichloromethane exhibited two sets of 

resonances in the aliphatic region at 1.35 and 3.01 ppm, with a doublet and singlet 

multiplicity respectively. The signals at 1.35 and 3.01 ppm have relative integrations of 

9H and 12H, with respect to the cyclopentadienyl resonances at 4.24 ppm of 5H. The 

doublet resonance at 1.35 ppm with a 
2
JHP of 8.1 Hz, decoupled to a singlet peak when a 

1
H{

31
P} NMR spectrum was run on the sample. In the aromatic region of the 

1
H NMR 

spectrum, there were only two doublet peaks with an identical 
3
JHH coupling of 6.6 Hz, 

at 6.38 and 7.83 ppm, both with an integration of 4H with respect to the 

cyclopentadienyl resonance at 4.24 ppm. These have been assigned as the  protons at the 

C-3/5 positions (6.38 ppm) and the C-2/6 positions (7.83 ppm) of the 4-

dimethylaminopyridine ligands. The 
31

P{
1
H} NMR spectrum displayed two resonances 

at  -144.4 and 4.75 ppm as a septet and a singlet respectively. The peak at -144.4 ppm 

had a 
1
JPF of 710 Hz, which was due to the [PF6]

-
 non-coordinating anion, and the 

singlet signal at 4.75 ppm as the trimethylphosphine phosphorus atom. There were no 

other resonances present in the 
31

P{
1
H} NMR spectrum and this suggested there was 

only one ruthenium complex present which contained a trimethylphosphine ligand. A 
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13
C{

1
H} NMR spectrum exhibited a doublet resonance at 18.4 ppm with a 

1
JCP of 24.6 

Hz for the methyl carbon atoms of the trimethylphosphine ligand. The cyclopentadienyl 

ligand displayed a doublet resonance at 74.5 ppm with a 
2
JCP of 2.5 Hz. The peaks for 

the 4-dimethylaminopyridine ligand were observed at 39.3, 108.1, 154.1 and 155.4 

ppm. The latter resonance at 155.4 ppm was a doublet which was assigned as the carbon 

atoms at the C-2/6 positions of the 4-dimethylaminopyridine molecules and had a 
3
JCP 

of 2.4 Hz. 

The ESI-MS displayed several peaks, which had a ruthenium isotope pattern. These 

peaks had an accurate m/z of 487.1571, 406.0975 and 365.0723 and were assigned as 

the cationic fragments of [Ru(η
5
-C5H5)(PMe3)(NC5H4-4-NMe2)2]

+
, [Ru(η

5
-C5H5)(PMe3) 

(NC5H4-4-NMe2)(NCMe)]
+
, and [Ru(η

5
-C5H5)(PMe3)(NC5H4-4-NMe2)]

+
. The accurate 

m/z peak at 487.1571 for the molecular cationic species has been observed and within 

an error of 0.6 mDa, and therefore it is very likely that the 14
NMe2

 has been synthesised. 

In addition, the elemental analysis obtained was within a 0.3 % limit of what would be 

expected for 14
NMe2

.  

An X-ray structure has been collected for 14
NMe2 

via the slow diffusion of diethyl ether 

into a dichloromethane layer containing 14
NMe2

 (Figure 3.10). Unfortunately, the 

structure was greatly disordered, however it is possible to determine that the ruthenium 

cation consists of two coordinated 4-dimethylaminopyridine molecules, a 

trimethylphosphine and cyclopentadienyl ligand. The unit cell contained two molecules 

of 14
NMe2

, both of which were disordered over a mirror place in two positions. The 

trimethylphosphine and cyclopentadienyl ligands were modelled over two positions, 

where a methyl carbon atom was found to overlap with a cyclopentadienyl carbon.  
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Figure 3.10: X-Seed diagram of one of the major cations [Ru(η
5
-C5H5)(PMe3)(NC5H4-p-

NMe2)2]
+
 from complex 14

NMe2
 (with an occupancy of 0.7730(14)). Each structure contained 

two molecules of the complex, which were considerably disordered over two positions; the 

relative occupancies for one of these structures was 0.7730:0.2270(14); and for the other was  

0.5095:0.4905(14). Molecules of dichloromethane and diethyl ether were overlapped over a 

mirror plane. The hydrogen atoms, two [PF6]
-
 anions, a [Ru(η

5
-C5H5)(PMe3)(NC5H4-p-

NMe2)2]
+
, a dichloromethane and a diethyl ether molecule have been omitted for clarity, and 

where shown the thermal ellipsoids are at a 50 % probability level. 

 

3.4.3 Reaction of complex 9
iPr

 with pyridine 

In order to understand the steric and electronic effects of the phosphorus ligands, the 

steric factor of the electron-donating groups was altered.  This was investigated with the 

use of trimethylphosphine, a sterically small electron-donating phosphine ligand and 

triisopropylphosphine, a sterically bulky electron-donating phosphine ligand. The 

reaction conditions used were aimed to synthesise the bis-substituted pyridine complex 

from 9
iPr

 (Scheme 3.18).  

Three different sets of reactions were carried out to synthesise the bis-substituted 

ruthenium complex [Ru(η
5
-C5H5)(P

i
Pr3)(NC5H5)2][PF6]: 

i) Addition of pyridine (approx. 50 equivalents) 
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ii) Addition of pyridine (approx. 50 equivalents), followed by precipitation of 

the reaction mixture and further addition of pyridine (approx. 50 equivalents) 

iii) Addition of pyridine (10 equivalents) 

 

 

  9
iPr

       15 

Scheme 3.18: Synthesis of complex 15. 

In order to achieve substitution of both acetonitrile ligands from 9
iPr

 a reaction was 

carried out involving the addition of excess pyridine (reaction conditions i) 

approximately 50 equivalents) in dichloromethane and allowing the reaction to stir for 

16 hours. The crude reaction mixture was initially observed via NMR spectroscopy 

which demonstrated that a mixture of three ruthenium containing products were present. 

The resonances due to two products appeared sharp, while the resonances due to the 

other species was broad. 

One of the products in the reaction mixture was characterised by using NMR 

spectroscopy as being complex [Ru(η
5
-C5H5)(P

i
Pr3)(NCMe)(NC5H5)][PF6], 15. The 

characterisation of complex 15 was based on 
1
H and 

31
P{

1
H} NMR spectroscopy and 

ESI-MS. The 
1
H NMR spectrum displayed resonances of the isopropyl group of the 

phosphorus ligand between 1.09-1.17 ppm and at 2.24 ppm, for the methyl groups and 

the CH group of the isopropylphosphine substituent. The resonances between 1.09-1.17 

ppm and at 2.24 ppm, had integrations of 18H and 3H respectively, with respect to 

cyclopentadienyl protons at 4.51 (5H). A doublet resonance at 2.54 ppm had a 
5
JHP of 

1.2 Hz, which was assigned to the methyl group of the acetonitrile ligand. In the 

aromatic region of the 
1
H NMR spectrum resonances were identified at 7.29, 7.75 and 

8.71 ppm with integrations of 2H, 1H and 2H respectively, relative to the 

cyclopentadienyl protons, which was due a coordinated pyridine ligand. This confirms 

the presence of one acetonitrile ligand and one pyridine ligand coordinated to the 

ruthenium centre. Additionally, a resonance at 52.8 ppm in the 
31

P{
1
H} NMR spectrum 

was identified as the phosphorus atom of the coordinated triisopropylphosphine to the 

ruthenium centre. A high resolution ESI-MS included a small peak with a m/z of 
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447.1492 which was assigned to the cationic fragment of 15 [Ru(η
5
-

C5H5)(P
i
Pr3)(NCMe)(NC5H5)]

+
. Other ESI-MS peaks with a ruthenium isotope pattern 

were observed with m/z peaks of 406.1228, 368.1053 and 325.0284 which were 

identified as the cationic units [Ru(η
5
-C5H5)(P

i
Pr3)(NC5H5)]

+
, [Ru(η

5
-

C5H5)(P
i
Pr3)(NCMe)]

+
, and [Ru(η

5
-C5H5)(P

i
Pr3)]

+
 respectively.  

The reaction conditions were altered in an attempt to synthesise the pure bis-substituted 

ruthenium complex [Ru[(η
5
-C5H5)(P

i
Pr3)(NC5H5)2][PF6] (using reaction conditions ii). 

The altered reaction conditions involved placing 9
iPr

 in dichloromethane and adding an 

excess of pyridine (50 equivalents) and working up the reaction mixture to give a 

yellow-orange precipitate,  followed by the further addition of pyridine (50 equivalents) 

to drive the reaction to completion. By altering the amount of excess pyridine added to 

9
iPr

 the quantity of products present in the crude reaction mixture changed. The more 

equivalents of pyridine added to the reaction mixture reduced the intensity of the set of 

resonances which had been identified as complex 15. However, in the 
1
H NMR 

spectrum an increase in intensity of the peaks at 4.15 (5H), 7.33 (6H), 7.83 (4H), and 

8.47 (5H) ppm was observed, where the former peak can be assigned as the 

cyclopentadienyl ligand and the latter three resonances for the pyridine molecule.  In 

addition, the 
31

P{
1
H} NMR spectrum does not display an increase in any of the 

phosphorus signals for the triisopropylphosphine ligand. This species from the 
1
H NMR 

data could potentially be assigned as a tris-substituted pyridine complex [Ru(η
5
-

C5H5)(NC5H5)3]
+
. However, the integrations collected for the pyridine resonances in the 

1
H NMR spectrum are not accurate due to underlying broad peaks, and in the ESI-MS 

the  absence of the m/z peak at 404.07 for the [Ru(η
5
-C5H5)(NC5H5)3]

+
 cation does not 

support this theory.  

Under the set of reaction conditions iii, in the crude reaction mixture a mixture of 

ruthenium complexes were present even though fewer pyridine equivalents were used. 

In order to separate these complexes, purification of the crude reaction mixture was 

attempted by slow diffusion of pentane into the dichloromethane reaction mixture 

(which contained complex 15). Analysis of the resulting crystals by single crystal X-ray 

diffraction demonstrated that [Ru(η
5
-C5H5)(P

i
Pr3)(NCMe)(NC5H5)][PF6], 15, was 

present. However, the structure also exhibited an area of unresolved electron density 

which has been modelled as a [MeP
i
Pr3]

+ 
cation with a [PF6]

-
 anion (Figure 3.11).  
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Figure 3.11: X-Seed diagram of the cation [Ru(η
5
-C5H5)(P

i
Pr3)(NCMe)(NC5H5)]

+
 from complex 

15. Hydrogen atoms and a [PF6]
-
 anion have been omitted for clarity, and where shown the 

thermal ellipsoids are at a 50 % probability level. Additionally, a [MeP
i
Pr3][PF6]

 
species has 

been omitted.  

 

The reaction of 9
iPr

 with pyridine under a range of conditions has given several 

ruthenium complexes. One of these has been identified as the mono-pyridine substituted 

complex [Ru(η
5
-C5H5)(P

i
Pr3)(NCMe)(NC5H5)][PF6], 15. Another species, could 

potentially be due to the tris-pyridine substituted complex [Ru(η
5
-C5H5)(NC5H5)3][PF6], 

although assignment of this species must be considered tentatively. The remaining 

resonances observed in the NMR spectra are broad in nature, indicating fluxional 

behaviour for this ruthenium-containing complex. Triisopropylphosphine has a larger 

cone angle of 160 ° than triphenylphosphine which has a cone angle of 145 ° and this 

may cause steric crowding at the ruthenium centre if two pyridine molecules were 

coordinated.
20

 The broad resonances in the NMR spectrum may be a result of steric 

crowding at the ruthenium centre.  
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3.4.4 Reaction of complex 9
OPh

 with pyridine 

In addition to using trimethylphosphine and triisopropylphosphine that are more 

electron-donating than triphenylphosphine, the effect of an electron-withdrawing 

phosphorus ligand, triphenylphosphite was also investigated. This section will look at 

the synthesis of the bis-substituted pyridine complex from 9
OPh

.  

 

  9
OPh

       16 

Scheme 3.19: Synthesis of complex 16. 

The synthesis of 16 was achieved by the addition of 25 equivalents of pyridine to 9
OPh

 

in a dichloromethane solution which stirred for 16 hours at room temperature. 

Characterisation of 16 was achieved using NMR spectroscopy, high resolution ESI-MS, 

elemental analysis and X-ray crystallography. 

The 
1
H NMR spectrum of 16 in d2-dichloromethane exhibited a singlet resonance at 

4.39 ppm for the cyclopentadienyl protons. The remaining peaks were observed in the 

aromatic region between 7.03 and 8.41 ppm. The pyridine protons at the C-2/6 positions 

were observed at 8.41 ppm as doublet with a 
3
JHH of 5.2 Hz, which integrated as 4H 

with respect to the resonance for the cyclopentadienyl protons at 4.39 ppm with an 

integration of 5H. Additionally, the 
31

P{
1
H} NMR spectrum only displayed two 

resonances at -143.0 and 140.6 ppm as a septet with a 
1
JPF of 711 Hz, and a singlet 

respectively. The 
13

C{
1
H} NMR spectrum exhibited a doublet resonance at 80.1 ppm 

for the cyclopentadienyl ligand which had a 
2
JCP of 3.2 Hz. Interestingly, the pyridine 

carbon atoms at the C-2/6 positions were identified at 157.4 ppm as a doublet with a 

3
JCP of 2.1 Hz, suggesting the pyridine is coordinated to the ruthenium centre. The 

1
H 

NMR spectrum of 16 was quite different to the acetonitrile analogue. The 

cyclopentadienyl protons for 16 had a singlet resonance at 4.39 ppm, where as in 9
OPh

 

the cyclopentadienyl protons appeared at 4.44 ppm as a doublet. 

The ESI-MS contained peaks for several ruthenium-containing complexes with a m/z of 

635.1041, 597.0871 and 556.0623 which were identified as the cationic complexes 
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[Ru(η
5
-C5H5)(P(OPh)3)(NC5H5)2]

+
, [Ru(η

5
-C5H5)(P(OPh)3)(NC5H5)(NCMe)]

+
and the 

species [Ru(η
5
-C5H5)(P(OPh)3)(NC5H5)]

+
respectively. 

Block yellow crystals suitable for X-ray diffraction were grown by slow diffusion of 

pentane into a dichloromethane layer containing 16 (Figure 3.12). The crystal structure 

contained two areas of undefined electron density close to the ruthenium centre 

therefore lowering the reliability of this data. The X-ray data suggests that the bis-

substituted pyridine complex has been synthesised.  

 

Figure 3.12: X-Seed diagram of the cation [Ru(η
5
-C5H5)(P(OPh)3)(NC5H5)2]

+
 from complex 16. 

Hydrogen atoms and [PF6]
-
 anion have been omitted for clarity, and where shown the thermal 

ellipsoids are at a 50 % probability level. There were two large residual density peaks one close 

to Ru(1) (3.11 eA
-3

)  and one close to the P(1) (0.99 eA
-3

)  This is believed to be due to the 

presence of a minor non-merohedral twin of approximately 7% of the main crystal with the 

residual density corresponding to the sites of Ru(1) and P(1) of the twin. 
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3.5 Comparison of Half-Sandwich Ruthenium Complexes 

3.5.1 Synthesis 

The synthetic preparation of 10
Me

 and 10
NMe2

 with respect to 10
H

 was compared. A key 

difference in the synthesis of complex 10
Me

 and 10
NMe2

 was that they required fewer 

equivalents of the N-containing heterocycle (4-methylpyridine required 50 equivalents 

and 4-dimethylaminopyridine required 2 equivalents) in order to obtain the bis-

substituted heterocyclic complexes. For the synthesis of 10
H

, 100 equivalents of 

pyridine were required in order for the reaction to go to completion. This could be 

attributed to the stronger electronic donor properties of the N-containing heterocycle, 

where this has been demonstrated by Hammett substituent effects.
292-295

 Similar 

requirements were found for the synthesis of 14
H

 and 14
NMe2

. 

3.5.2 NMR spectroscopic data 

3.5.2.1 Effects of the substituents at the 4-positions 

The spectroscopic parameters for complexes 10
R
 (where R = H, Me and NMe2) were 

analysed. For 10
Me

, the NMR data displayed significant changes in the chemical shifts 

of certain protons and of the phosphorus atom. The 
1
H NMR data from complexes 10

H
, 

10
Me

 and 10
NMe2

 displayed an upfield shift in the cyclopentadienyl ligands resonances to 

4.42, 4.36 and 4.25 ppm respectively. A similar pattern is observed in the chemical 

shifts of the protons at the C-2/6 positions of the N-containing heterocycles at 8.29, 8.10 

and 7.73 ppm for where the R substituents are H, Me and NMe2 respectively. The 

31
P{

1
H} NMR chemical shifts for the triphenylphosphine ligands in complexes 10

R
 

were 50.3, 50.4 and 51.4 ppm, for the R groups H, Me and NMe2 respectively, where 

there appears to be a downfield shift. Similar observations have been made in the 

literature of cyclopentadienyl ruthenium complexes.
287, 288, 297

  

The differences in chemical shifts between complexes 10
H

 and 10
Me

 are more subtle 

(ΔδH for the cyclopentadienyl ligands was 0.06 ppm; ΔδH for the protons at the C-2/6 of 

the N-containing heterocycles was 0.19 ppm; and ΔδP for triphenylphosphine ligand 

was 0.1 ppm). However, on going from 10
Me

 to 10
NMe2

 there are larger differences in 

the chemical shifts  (ΔδH for the cyclopentadienyl ligands was 0.11 ppm; ΔδH for the 

protons at the C-2/6 positions of the N-containing heterocycles was 0.37 ppm; and ΔδP 

for triphenylphosphine ligand was 1.0 ppm). This could be attributed to the different 

methods through which the methyl group and dimethylamino group donate electron 
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density to the six-membered ring. The 4-methyl group donates electron density through 

an inductive method. However,  the 4-dimethylamino substituent is a more powerful 

electron-donating group as it donates electron density through conjugation (towards the 

nitrogen atom and the C-3 and 5 positions of the heterocycle).
29

  

The spectroscopic data for complexes 14
R
 was compared. The cyclopentadienyl ligand 

in the NMR spectra exhibited an upfield shift from complex 14
H

 to 14
NMe2

, in the 
1
H 

NMR spectra from 4.39 to 4.24 ppm  respectively, and in the 
13

C{
1
H} NMR spectra 

from 76.0 to 74.5 ppm respectively. This can be explained by the presence of the NMe2 

group in the 4-position of the six-membered N-containing heterocycle, which through 

conjugation places additional electron density at the C3/5 positions and N-donor atom 

of the heterocycle. This therefore places additional electron density at the ruthenium 

centre which can be donated the cyclopentadienyl ligand. A similar effect was seen in 

complexes 10
R
 (where R= H, Me, and NMe2).  

3.5.2.2 Position of methyl substituent 

The attempted synthesises for the bis-substituted N-containing complexes of the 3-

methylpyridine and 2-methylpyridine complexes were analysed. The addition of 2-

methylpyridine to 9
Ph

 did not generate the bis-substituted complex, possibly due to the 

steric effects of the methyl group hindering coordination of the second heterocycle.  

The data belonging to 11 was compared to complexes 10
H

 and 10
Me

 to look at the 

effects of the methyl substituent. The cyclopentadienyl protons chemical shifts in the 
1
H 

NMR spectrum for complex 11, 10
Me

 and 10
H

 were 4.40, 4.36 and 4.42 ppm 

respectively.  The cyclopentadienyl chemical shift for complex 11 is downfield of 10
Me

. 

which is due to the inductive effect of the methyl group. 

3.5.2.3 Imidazole substituents 

The complexes 13
R
 (where R= Me or 

t
Bu) have been synthesised where the substituent 

on the nitrogen atom has been changed. There are a few differences in the NMR spectra 

of complex 13
R
, where the cyclopentadienyl ligand displays a slight downfield shift in 

the 
1
H and 

13
C{

1
H} NMR spectra on changing the R group from Me to 

t
Bu, due to the 

ligand being deshielded. The next stage was to investigate the reactivity of these 

complexes with terminal alkynes. 
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3.5.3 X-ray crystallography data 

General trends observed with all of the X-ray structures reported in this chapter 

included an unequal coordination mode of the η
5
-cyclopentadienyl ligand to the 

ruthenium centre, due to the higher trans influence of the phosphorus ligand with 

respect to the nitrogen donor ligands, which destabilises the trans Ru-C bonds to the 

phosphorus. Similar observations have been reported by Kirchner et al. for the [Ru 

(η
5
-C5H5)(PR3)(NCMe)2][PF6] species, where R = Ph and Cy.

131
 Also distorted 

octahedron geometries around the ruthenium centres were observed, which is seen for 

other cyclopentadienyl ruthenium complexes.
287, 288, 297

  

The Ru-P bond lengths ranged between 2.3063(4) and 2.3186(6) Å, which are slightly 

shorter than the average Ru-P bond length for six coordinate ruthenium complexes.
298

 In 

comparison to 9
Ph

, a mono-substituted triphenylphosphine complex where the Ru-P 

bond length was 2.294(1) Å, our reported structures have a slightly longer Ru-P bond 

length.
131

 For the complexes with two coordinated N-containing heterocycles, the Ru-N 

bond lengths generally exhibited one short and one long bond length (except for 10
NMe2

, 

which was attributed to the stronger donor properties of the 4-dimethylamino 

substituent). The shorter Ru-N bond lengths ranged between 2.1208(12) and 2.135(2) Å, 

which are between the expected range for a ruthenium-pyridine complex.
298

  

A comparison of the N-Ru-N bond angles has been conducted. For 11, an increase in 

the N-Ru-N bond angle of 5.24 ° (where the N(2)-Ru(1)-N(1) was 89.41(7) °) with 

respect to complex 10
Me 

(where the N(2)-Ru(1)-N(1) was 84.17(13) °) was observed. 

This could be due to a steric influence of the methyl groups in the C-3 position of the 

pyridine molecule in 11. However, for 10
H

 (where the N(2)-Ru(1)-N(1) was 88.12(7) °) 

the N-Ru-N bond angle is larger than that observed for 10
Me

. Additionally, differences 

were observed with the PR3 ligands (where R = Ph and Me). The N-Ru-N bond angles 

for the ruthenium triphenylphosphine complexes (10
R
 (where R = H, Me and NMe2), 

11) were smaller than for the ruthenium trimethylphosphine complex 14
H

, due to the 

smaller cone angle of the trimethylphosphine ligand.     
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3.6 Conclusions  

In this chapter the synthesis of half-sandwich ruthenium complexes with the formula 

[Ru(η
5
-C5H5)(PR3)(L)2][PF6]  (where R = Ph, OPh, 

i
Pr, Me, and L = N-containing 

ligand) have been achieved. A range of phosphorus ligands have been coordinated to 

give the [Ru(η
5
-C5H5)(PR3)]

+
 fragment and the complexes 9

R
 isolated and characterised, 

following the synthetic preparation method mentioned by Kirchner et al.
131

 The 

stoichiometric addition of the phosphorus ligands must be exact, as it was found that 

due to the labile nature of the acetonitrile ligands it is easy to synthesise the bis-

substituted fragment [Ru(η
5
-C5H5)(PR3)2]

+
. 

The N-containing heterocycle, pyridine has been reacted with complexes 9
R
 (where R = 

Ph, OPh, 
i
Pr, Me). The synthesis of the bis-substituted pyridine complex [Ru(η

5
-

C5H5)(PR3)(NC5H5)2][PF6]  has been carried out successfully when R = Ph, OPh and 

Me. However, in the case of the P
i
Pr3 ligand a range of ruthenium complexes were 

synthesised and the major species identified as a mono-substituted pyridine complex 

[Ru(η
5
-C5H5)(P

i
Pr3)(NC5H5)(NCMe)][PF6], 15. A reason for the failure to synthesise 

the bis-substituted pyridine complex with triisopropylphosphine could be due to the 

large cone angle of 160 °, which will cause steric crowding around the ruthenium 

centre. The complex 9
Me

 has also been reacted with 4-dimethylaminopyridine to give 

14
NMe2

. 

Complex 9
Ph

 has been reacted with a range of N-containing heterocycles including 4-

methylpyridine, 4-dimethylaminopyridine, 3-methylpyridine, 2-methylpyridine, 1-

methylimidazole and 
t
butylimidazole. With the exception of 2-methylpyridine, all of the 

other N-containing heterocycles have given the bis-substituted complexes. The methyl 

group in the 2-position of 2-methylpyridine causes a steric clash with the metal centre 

makes it difficult for the nitrogen atom to coordinate. This reactivity has been exploited 

by Carmona
206-208

  and Esteruelas
142, 223, 225 

 to give the 2-carbene tautomers of the N-

containing heterocycles.  

The next stage was to investigate the reactivity of these complexes with various 

terminal alkynes to understand the mechanism through which the alkenylation reaction 

of pyridine takes place. From investigating the reaction pathway, we are aiming to 

understand the role of the ruthenium species and improve the catalytic reaction 

conditions. 
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Chapter 4. Coordination and Properties of 

the 2-Styrylpyridine Derivatives to Half-

Sandwich Ruthenium Complexes 

4.1 Introduction 

Transition metal complexes are often employed as catalysts to reduce energy barriers of 

reaction pathways, provide a more atom economical and cleaner route to the desired 

products.
7, 254, 299

 However, the efficiency of a catalyst is challenged by catalyst stability 

and deactivation. Deactivation of transition metal complexes in homogeneous catalysis 

could occur through several potential methods, including the precipitation of the metal 

and/or ligand; reaction of the metal centre with ligands, substrates, products or 

impurities and the formation of dimers.
300, 301

 From undertaking a mechanistic approach 

and understanding the reaction pathway, there is a possibility of improving the catalytic 

method and developing new systems.
254

  

The alkenylation of pyridine by half-sandwich ruthenium complexes generates 2-

styrylpyridine compounds,
253

 therefore understanding the bonding and properties 

between 2-styrylpyridine and the ruthenium centre is essential for the turnover of the 

product and regeneration of the catalyst. Mechanistic investigations into the 

coordination and reactivity of 2-styrylpyridine to the cationic ruthenium fragments 

[Ru(η
5
-C5H5)(PR3)]

+
 (where R = Ph, Me) and of E-2-(4-(trifluoromethyl)styryl)pyridine 

to [Ru(η
5
-C5H5)(PPh3)]

+
 were performed.   
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4.2 Reaction between 9
Ph

 and 2-styrylpyridine 

The reactivity between 2-styrylpyridine derivatives and half-sandwich ruthenium 

complexes [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6], where R = Ph and Me has been 

investigated. The synthesis and properties of these complexes are interesting due to their 

relevance in the catalytic cycle for the alkenylation of 2-styrylpyridine,
253

 and therefore 

the coordination of 2-styrylpyridine derivatives to the fragments [Ru(η
5
-C5H5)(PR3)]

+
 

has been studied.  

 

     9
Ph

           17
H 

Scheme 4.1: Reaction of complex 9
Ph

 with 2-styrylpyridine. 

4.2.1 Experimental studies 

The reactivity between 2-styrylpyridine and [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 

was investigated. In order to substitute the acetonitrile ligands from 9
Ph

, 2-

styrylpyridine was added in a stoichiometric quantity in d2-dichloromethane. The 

reaction was monitored via 
1
H and 

31
P{

1
H} NMR spectroscopy. The 

1
H NMR spectrum 

exhibited resonances in the cyclopentadienyl region at 4.43 and 4.74 ppm due to 

complexes 9
Ph

 and 17
H

. Additionally, the 
1
H NMR spectrum displayed a resonance at 

8.57 ppm for the proton  at the C-6 position of uncoordinated 2-styrylpyridine. The 

reaction appeared to reach equilibrium between 9
Ph

, uncoordinated 2-styrylpyridine and 

17
H

. 

The NMR scale reaction indicated that the reaction had not gone to completion as the 

starting material 9
Ph

 and uncoordinated 2-styrylpyridine were still observed in the 
1
H 

and 
31

P{
1
H} NMR spectra. To ensure the reaction had reached completion a reaction 

procedure was developed which involved the stoichiometric addition of 2-styrylpyridine 

to 9
Ph

 in dichloromethane. The solvent was removed under vacuum to remove any 

uncoordinated acetonitrile and therefore when the reaction mixture was re-dissolved in 

dichloromethane to allow the equilibrium to favour the formation of 17
H

 (Scheme 4.1). 

This process was repeated between 4-5 times to ensure the reaction went to completion, 
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and success was confirmed using NMR spectroscopy by the absence of the acetonitrile 

methyl groups resonances at 2.05 ppm (doublet, with a 
5
JHP of 1.5 Hz) and at 1.97 ppm 

(singlet) for coordinated or uncoordinated ligands.  

All resonances for the expected product 17
H

 were broad in the 
1
H and 

31
P{

1
H} NMR 

spectra, displaying fluxional behaviour. Some of the resonances in the 
13

C{
1
H} NMR 

spectrum were broad, however this still supported the theory that 17
H

 was exhibiting 

fluxional behaviour in solution. The cyclopentadienyl region displayed a broad 

resonance for the cyclopentadienyl protons at 4.73 ppm. In the 
1
P{

1
H} NMR spectrum, 

the resonance for the phosphorus atom of the triphenylphosphine ligand at 47.7 ppm 

was broad. The ESI-MS analysis displayed a peak with a m/z of 610.13 for the cationic 

ruthenium fragment of 17
H

. An elemental analysis of the product agreed within 0.3 % 

for  complex 17
H

, containing 0.2 equivalents of CH2Cl2 and the solvent content was 

verified by NMR spectroscopy. 

A variable temperature 
1
H and 

31
P{

1
H} NMR experiment was conducted on 17

H
 in a d2-

dichloromethane solution from 300 K to 220 K. The temperature was decreased in 20 K 

steps where NMR spectra were recorded at these intervals (Figure 4.1). The 
1
H and 

31
P{

1
H} NMR spectra appeared to get broader until 260 K, and below this point until 

220 K the resonances began to get sharper. Both the 
1
H  and 

31
P{

1
H} NMR spectra 

displayed the presence of two species in equilibrium in a ratio of ~5: 1. In the 
31

P{
1
H} 

NMR spectrum three resonances were observed at -143.0, 47.2 and 55.0 ppm, as a 

septet (
1
JPF = 711 Hz) for the [PF6]

-
 and two singlets respectively. The 

triphenylphosphine resonance at 47.2 ppm was determined to be the major species as 

this had the greatest integration, in comparison to the resonance at 55.0 ppm which 

belonged to the minor complex. The difference in the free energy of the major and 

minor complexes was calculated at 220 K, using the equation ΔG = -RTlnK. The 

difference in Gibbs free energy at 220 K of the two species in solution was calculated as 

4.3 kJ mol
-1

. 

ΔG = - 8.314 J K
-1

 mol
-1

 x 220 K x ln(1/4.53)   

ΔG220 = 4,357 J mol
-1

 = 4.3 kJ mol
-1

  

Equation 4.1: Calculating the Gibbs free energy.  

The 
1
H NMR spectrum at 220 K exhibits peaks for the major species at 4.28, 4.75, and 

6.08 ppm with relative integrations of 1H:5H:1H. The cyclopentadienyl protons were 
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assigned as the resonance at 4.75 ppm (singlet). The peaks at 4.28 and 6.08 ppm had a 

multiplicity of an apparent triplet and a doublet with 
3
JHH = 

3
JHP of 11.1 Hz, and 

3
JHH of 

10.6 Hz respectively, were assigned to the alkene functional group of 2-styrylpyridine. 

The coupling to phosphorus demonstrated this group was bound to the ruthenium 

centre. In the 
1
H NMR spectrum at 220 K, aromatic resonances were observed between 

6.51-7.74 ppm. However, there were more than the expected peaks in this region for the 

major complex in addition to the 2-styrylpyridine protons and this was due to there 

being an individual environment for each of the phenyl rings on the triphenylphosphine 

ligand. From these data the structure of the major species is thought to be 17
H

, where 

the 2-styrylpyridine is bound to the ruthenium centre via both the alkene bond and the 

nitrogen atom.  

The identity of the minor form of 17
H

 was determined through combined experimental 

NMR data and DFT calculations.  From the low variable temperature 
1
H NMR 

experimental data the minor species displayed resonances at 4.67 ppm (apparent triplet, 

3
JHH, 

3
JHP of 9.3 Hz) and 6.45 ppm (doublet, 

3
JHH of 10.1 Hz) with a relative integration 

of 1:1 respectively. These resonances were assigned to the alkene protons. Additionally, 

the proton at the C-6 position of the pyridine ring has shifted downfield  in comparison 

to the major complex 17
H

,  to a chemical shift of 8.25 ppm, which indicates a different 

environment (proton at the C-6 position of 2-styrylpyridine resonance is observed at 

approximately 7.6 ppm for the major species 17
H

, and 8.57 for uncoordinated 2-

styrylpyridine). From the NMR spectra it is reasonable to conclude that the alkene bond 

is still coordinated to the ruthenium centre as the chemical shifts are characteristic of 

alkene groups bound to a ruthenium centre, and the difference in environment of the 

pyridine proton at the C-6 position of 2-styrylpyridine suggested that the nitrogen atom 

was now closer to being uncoordinated to the ruthenium centre. The 
31

P{
1
H} NMR 

spectrum at 220 K reveals the minor species triphenylphosphine resonance is at 55.0 

ppm. The variable temperature NMR experiment suggested that there are two 

complexes in equilibrium with each other, as upon cooling the sample two sets of 

resonances were observed.  
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Figure 4.1: 
1
H NMR (top) and 

31
P{

1
H}(bottom) spectra of 17

H
 at 300 K, 280 K, 260 K, 240 K 

and 220 K. 
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Crystals of 17
H

 suitable for X-ray diffraction were grown by slow diffusion of pentane 

into a dichloromethane solution containing 17
H

 (Figure 4.2, Table 4.1). The structure 

allowed us to determine that 2-styrylpyridine was coordinated to the ruthenium centre 

via the nitrogen atom and the alkene bond of the molecule. The P(1)-Ru(1) bond length 

was 2.3498(4) Å. The ruthenium coordination to the 2-styrylpyridine molecule bond 

lengths of N(1)-Ru(1) was 2.1195(12) Å and to the alkene functional group for C(6)-

Ru(1) and C(7)-Ru(1) were 2.2074(16) and 2.2928(16) Å respectively. For the 

coordinated 2-styrylpyridine molecule of 17
H

,  the C(6)-C(7) bond length was 1.399(2) 

Å; whereas the two adjacent bonds C(5)-C(6) and C(7)-C(8) were longer at 1.478(2) 

and 1.484(2) Å respectively. This indicates there is still some double bond character for 

the alkene bond. An independent crystal structure of uncoordinated 2-styrylpyridine has 

been reported and the alkene bond length was found to be 1.321(8) Å.
302

 Thus the 

alkene bond in 17
H

 is elongated, where the longer bond length could probably be 

attributed to electron density from the ruthenium centre being donated into the anti-

bonding orbital and also donation from the π orbital to the metal. In the uncoordinated 

2-styrylpyridine crystal structure, the adjacent bond lengths to the alkene bond were 

found to be 1.486(8) and 1.462(8) Å.
302

  

The coordination of 2-vinylpyridine ligands to osmium and ruthenium centres has been 

investigated by Esteruelas et al. for the synthesis of complexes [M(Tp)(P
i
Pr3) 

(NC5H4CH=CH2)][BF4] ( where Tp = hydridotris(pyrazolyl)borate and M = Os, Ru).
142

 

The alkene chemical shifts of the ruthenium complex were at a lower field than the 

osmium complexes. The ruthenium complex in the 
1
H NMR spectrum exhibited alkene 

chemical shifts at 6.26 (CH), 4.56 and 3.86 (CH2) ppm, which is consistent with our 

NMR spectroscopic data. The carbon-carbon bond length for transition metal η
2
-

coordinated alkene complexes was reported to be between 1.340 and 1.445 Å.
303

 For 

example, the osmium complex [OsCl(P
i
Pr3)(NC5H4CH=CH) (NC5H4CH=CH2)], 

exhibited a carbon-carbon bond length for the η
2
-coordinated alkene at 1.401(4) Å and 

osmium-carbon bond lengths of 2.162(2) and 2.170(3) Å.
304

 Complexes 17
R
 (where R = 

H and CF3) exhibited carbon-carbon bond lengths for the η
2
-coordinated alkene of 

1.399(2) and 1.408(4) respectively, which is in the middle of the previously reported 

range.  
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Figure 4.2: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(NC13H11)]

+
 from complex 17

H
. 

Selected hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have been omitted for 

clarity, and where shown the thermal ellipsoids are at a 50 % probability level. 

 

 Bond lengths (Å)  Bond angles (°) 

P(1)-Ru(1) 2.3498(4) N(1)-Ru(1)-P(1)  91.71(4) 

N(1)-Ru(1) 2.1195(12) C(6)-Ru(1)-P(1)  116.98(4) 

C(6)-Ru(1) 2.2074(16) C(7)-Ru(1)-P(1)  87.55(4) 

C(7)-Ru(1) 2.2928(16) N(1)-Ru(1)-C(6) 63.63(5) 

C(1)-N(1)  1.3408(19) C(5)-N(1)-Ru(1) 97.84(9) 

C(1)-C(2)  1.388(2) N(1)-C(5)-C(6) 107.64(13) 

C(2)-C(3) 1.386(2) C(5)-C(6)-Ru(1) 90.27(10) 

C(3)-C(4)  1.394(2) C(4)-C(5)-C(6)  129.41(15) 

C(4)-C(5)  1.384(2) C(7)-C(6)-C(5)  120.18(14) 

C(5)-N(1) 1.348(2) C(6)-C(7)-Ru(1)  68.59(9) 

C(5)-C(6) 1.478(2) C(6)-C(7)-C(8)  121.13(14) 

C(6)-C(7) 1.399(2) C(1)-N(1)-C(5)  119.76(13) 

C(7)-C(8)  1.484(2)   

Table 4.1: Selected bond lengths (Å) and angles (°) for complex 17
H
. 
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4.2.2 DFT studies 

The DFT structures of 17
H

 were modelled by David Johnson, using an initial 

optimisation at the (RI)-BP86/SV(P) level and a further single point calculation at the 

PBE0/def2-TZVPP level, to provide insight in to the nature of the minor species. A 

structure where the nitrogen atom of 2-styrylpyridine was uncoordinated and a chlorine 

atom from the dichloromethane solvent was coordinated to the ruthenium centre was 

modelled, and found to be 89 kJ mol
-1

 higher in enthalpy than the major species. This 

enthalpy was not consistent with experimental evidence and therefore disregarded. 

Also, the propeller direction of the phenyl rings in the PPh3 ligand was rotated and 

modelled in a similar fashion. This indicated that there was a small difference in the 

enthalpy of 9 kJ mol
-1

 relative to the major complex, and could possibly explain the 

fluxional behaviour observed. However, it does not explain completely the differences 

observed for the chemical shifts for the pyridine protons at the C-6 position of 2-

styrylpyridine.  

A final possibility was modelled using DFT which involved changing the coordination 

mode of 2-styrylpyridine. If 2-styrylpyridine was to rotate around the carbon-carbon 

bond adjacent to the alkene bond and re-coordinate through the nitrogen atom of the 

pyridine ring it would create another orientation for the ligand to coordinate at the 

ruthenium centre (Figure 4.3). A difference in enthalpy of -16 kJ mol
-1

 was calculated 

and a difference in Gibbs free energy at 298 K was -16 kJ mol
-1

 between the two 

complexes, where the major complex was more stable and therefore lower in energy. 

This seemed like the most reasonable explanation for the minor species from the 

reaction in Scheme 4.1. From these calculations, the two conformers are the most likely 

explanation for the fluxional behaviour.  

 



154 

Chapter 4 

 

Figure 4.3: DFT calculation structures of major and minor complexes of complex 17
H
. 

Major complex 17
H

     Minor complex 

DFT calculated structure of minor complex DFT calculated structure of major complex 17
H
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4.2.3 Reactivity observed with 17
H

 in d5- pyridine 

In the catalytic reaction reported by Murakami and Hori, 2-styrylpyridine was the 

alkenylation product formed from the catalytic reaction between the half-sandwich 

ruthenium complex [Ru(η
5
-C5H5)(PPh3)2Cl], 1, NaPF6 and a TMS-substituted alkyne in 

pyridine.
253

 During the course of the catalytic cycle, 2-styrylpyridine would be 

coordinated to the ruthenium centre and it is therefore important to understand how 17
H

 

behaves in the presence of pyridine (the catalytic reaction medium). 

Complex 17
H

 was dissolved in an excess of d5-pyridine and the reaction was monitored 

via NMR spectroscopy (Scheme 4.2). The 
1
H NMR and 

31
P{

1
H} NMR spectra revealed 

that there were no broad resonances belonging to 17
H

 in the reaction mixture. In fact, 

the 
1
H NMR spectrum exhibited a sharp resonance at 4.57 ppm for cyclopentadienyl 

protons of a new complex and the 
31

P{
1
H} NMR spectrum displayed a new 

triphenylphosphine resonance at 49.1 ppm and the [PF6]
-
 anion at -143.0 ppm. These 

resonances matched those for 5, when compared to an authentic sample. Also, the 
1
H 

NMR spectrum displayed a doublet resonance at 8.03 ppm with a 
3
JHH of 16.0 Hz, 

which is characteristic of an alkene proton of uncoordinated 2-styrylpyridine. These 

observations suggested that the pyridine molecules have substituted the 2-styrylpyridine 

from 17
H

.  

 

    17
H

         5 

Scheme 4.2: Addition of excess d5-pyridine to complex 17
H
.  
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4.3 Reaction between E-2-(4-(trifluoromethyl)styryl)pyridine 

and 9
Ph

  

The substituent effects from a CF3 group in the 4-position of the phenyl ring in the 

compound 2-styrylpyridine was also investigated, to observe any differences in the 

coordination of E-2-(4-(trifluoromethyl)styryl)pyridine to the cationic ruthenium 

fragment [Ru(η
5
-C5H5)(PPh3)]

+
. Furthermore, the CF3 substituent was used to monitor 

the catalytic reactions observed in Chapter 5, and therefore it would be useful to 

determine if the coordination of E-2-(4-(trifluoromethyl)styryl)pyridine was similar to 

2-styrylpyridine. 

 

  9
Ph

         17
CF3 

Scheme 4.3: Reaction of complex 9
Ph

 with E-2-(4-(trifluoromethyl)styryl)pyridine. 

A similar method to the synthesis of 17
H

 was used to prepare 17
CF3

 (Scheme 4.3). The 

addition of E-2-(4-(trifluoromethyl)styryl)pyridine to a solution of 9
Ph

 in 

dichloromethane resulted in coordination of E-2-(4-(trifluoromethyl)styryl)pyridine 

through the nitrogen atom and the alkene functional group. The product was 

characterised by variable temperature NMR spectroscopy, ESI-MS, elemental analysis 

and X-ray crystallography. 

At 295 K, the 
1
H and 

31
P{

1
H} NMR spectra in d2-dichloromethane revealed only broad 

resonances for the final product, consistent with fluxional behaviour on the NMR 

timescale. This was similar to the properties of the solution of 17
H

 at 295 K in d2-

dichloromethane. In the 
1
H NMR spectrum at 295 K, broad signals at 4.50 and 6.51 

ppm could be observed for the alkene protons. The 
31

P{
1
H} NMR spectrum exhibited 

two peaks at -143.0 ppm (septet) and at 46.7 ppm (broad) for the [PF6]
-
 anion and 

triphenylphosphine ligand respectively. An ESI-MS displayed a m/z peak of 678.11 

with a ruthenium isotope pattern, which was assigned to the cationic ruthenium 

fragment [M
+
] of 17

CF3
. Also, elemental analysis of the species 17

CF3
 was within an 

error of 0.5 % when a molecule of CH2Cl2 was included. This is not unusual 
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considering crystals of 17
CF3

 were submitted for analysis and the crystals may contain a 

solvent molecule.  

A variable temperature 
1
H and 

31
P{

1
H} NMR experiment was conducted on 17

CF3
 from 

300 K to 220 K and spectra were recorded in 20 K intervals (Figure 4.4). In a similar 

fashion to 17
H

, on lowering the temperature of the sample for complex 17
CF3

 the 

resonances got broader until 260 K and below this temperature the peaks began to get 

sharper. At 240 K, it was apparent that there were two species in the reaction mixture, a 

major and minor complex being observed in the 
1
H and 

31
P{

1
H} NMR spectra. At 220 

K, the peaks were all well-defined. The ratio of major and minor species from the 
1
H 

NMR spectrum was found to be approximately 11:1. This was consistent with the 

31
P{

1
H} NMR spectrum at 220 K, where three resonances at -143.0, 46.9 and 54.6 ppm 

were observed for the [PF6]
-
 anion and the triphenylphosphine ligand of the major and 

minor complexes respectively. The CF3 substituent in the 4-position of the phenyl group 

favours the major complex 17
CF3

 in solution. The difference in Gibbs free energy of the 

two species solution at 220 K has been calculated and found to be 2.7 kJ mol
-1

.  

ΔG = - 8.314 J K
-1

 mol
-1

 x 220 K x ln(1/10.83)   

ΔG220 = 2,763 J mol
-1

 = 2.7 kJ mol
-1

  

Equation 4.2 : Calculating the Gibbs free energy. 

From the information gathered on 17
H

 and the similarities observed between the 

complexes 17
H

 and 17
CF3

 the minor complex could potentially be where the ligand E-2-

(4-(trifluoromethyl)styryl)pyridine has rotated around the alkene bond and has 

coordinated in two different modes to give the two isomers (Figure 4.3).  
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Figure 4.4: 
1
H NMR (top) and 

31
P{

1
H}NMR (bottom) spectra of 17

CF3
 at 300 K, 280 K, 260 K, 

240 K and 220K.  
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Crystals of 17
CF3

 suitable for X-ray diffraction were grown by slow diffusion of pentane 

into a dichloromethane solution containing the complex. An R value of 6 % was 

determined and therefore the ESDs within this structure were larger. The molecule E-2-

(4-(trifluoromethyl)styryl)pyridine was found to coordinate to the [Ru(η
5
-C5H5)(PPh3)]

+
 

fragment through the nitrogen atom and the alkene bond. A P(1)-Ru(1) bond length was 

2.3445(8) Å. The bond lengths of the ruthenium centre to E-2-(4-

(trifluoromethyl)styryl)pyridine of N(1)-Ru(1), C(6)-Ru(1) and C(7)-Ru(1) were found 

to be 2.091(3), 2.189(3), and 2.272(3) Å respectively. In comparison to 17
H

 these bond 

lengths were found to be significantly shorter. The shorter bond lengths in 17
CF3

 could 

indicate stronger coordination of the 2-styrylpyridine derivative to the ruthenium centre.  

 

Figure 4.5: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(NC14H10F3)]

+
 from complex 

17
CF3

. Selected hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have been 

omitted for clarity, and where shown the thermal ellipsoids are at a 50 % probability level. 
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 Bond lengths (Å)  Bond angles (°) 

P(1)-Ru(1) 2.3445(8) N(1)-Ru(1)-P(1)  90.24(7) 

N(1)-Ru(1) 2.091(3) C(6)-Ru(1)-P(1)  116.55(9) 

C(6)-Ru(1) 2.189(3) C(7)-Ru(1)-P(1)  85.81(8) 

C(7)-Ru(1) 2.272(3) N(1)-Ru(1)-C(6) 64.02(11) 

C(1)-N(1)  1.336(4) C(5)-N(1)-Ru(1) 97.9(2) 

C(1)-C(2)  1.376(5) N(1)-C(5)-C(6) 106.6(3) 

C(2)-C(3) 1.398(5) C(5)-C(6)-Ru(1) 90.14(19) 

C(3)-C(4)  1.384(5) C(4)-C(5)-C(6)  131.3(3) 

C(4)-C(5)  1.378(4) C(7)-C(6)-C(5)  118.3(3) 

C(5)-N(1) 1.354(4) C(6)-C(7)-Ru(1)  68.43(17) 

C(5)-C(6) 1.476(4) C(6)-C(7)-C(8)  123.3(3) 

C(6)-C(7) 1.408(4) C(1)-N(1)-C(5)  120.2(3) 

C(7)-C(8)  1.477(4)   

Table 4.2: Selected bond lengths (Å) and angles (°) for complex 17
CF3

. 

 

4.4 Reaction between 9
Me

 and 2-styrylpyridine 

Coordination of 2-styrylpyridine to a half-sandwich ruthenium complex, with a different 

phosphine ligand was also investigated. The triphenylphosphine ligand was substituted 

with trimethylphosphine. In Chapter 7, the ability of 14
H

 to perform the catalytic 

transformation of phenylacetylene and pyridine to give 2-styrylpyridine in an 

alkenylation reaction was investigated, therefore it is important to understand how the 

compound 2-styrylpyridine coordinates to the fragment [Ru(η
5
-C5H5)(PMe3)]

+
. 

 

       9
Me

        18  

Scheme 4.4: Reaction of complex 9
Me

 with 2-styrylpyridine. 

The preparation of 18 involved the addition of 2-styrylpyridine to 9
Me

 in a 

dichloromethane solution. A similar procedure for the synthesis of complexes 17
R
 was 

used for 18. The resulting yellow precipitate was washed with hexane, and a yield of 60 
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% was collected. The solubility of 18 in dichloromethane was poor, as the addition of 

20 mg of 18 was not fully soluble in approximately 0.6 ml of d2-dichloromethane. 

Approximately 10 mg of 18 was fully soluble in approximately 0.6 ml of d2-

dichloromethane. The product was characterised by NMR spectroscopy, ESI-MS, 

elemental analysis and X-ray crystallography.  

The 
1
H NMR spectrum displayed a peak at 1.63 ppm as a doublet with a 9H integration 

with respect to a broad singlet resonance at 4.84 ppm with an integration of 5H, which 

could be assigned as the methyl groups of the trimethylphosphine ligand and the 

cyclopentadienyl protons respectively. In addition, a 
1
H{

31
P} NMR spectrum revealed 

that the resonance at 1.63 ppm simplified to a singlet resonance. The aromatic signals 

for the protons of 2-styrylpyridine were observed between 6.98 and 7.88 ppm. 

Interestingly, only two resonances at 4.22 and 5.77 ppm were broad and both had an 

integration of 1H with respect to the cyclopentadienyl protons at 4.84 ppm, these were 

assigned to the alkene functional group of 2-styrylpyridine. Similar observations were 

found in the 
13

C{
1
H} NMR spectrum for the alkene resonances at 44.7 and 71.1 ppm 

which were also broad. The 
31

P{
1
H} NMR spectrum of 18 contained two sharp 

resonances at -143.0  ppm  as a septet and 11.2 ppm  as a singlet, for the [PF6]
-
 anion 

and the trimethylphosphine ligand. 

The ESI-MS exhibited two peaks with a ruthenium isotope pattern, with a m/z of 424.07 

and 325.04, which were assigned to being the [M
+
] and [M

+
 - C14H10F3N] fragments 

respectively. In addition, an elemental analysis of crystals collected of complex 18 were 

within a 0.6 % error of the calculated product 18 containing 0.15 equivalents of CH2Cl2, 

which was confirmed by NMR spectroscopy. 

Several variable temperature NMR experiments were conducted of 18 and spectra 

recorded in 20 K steps, including a low temperature experiment in d2-dichloromethane 

between 295 and 215 K; and a high temperature experiment in d2-tetrachloroethane 

between 295 and 355 K (Figure 4.6). The low temperature variable temperature 
1
H and 

31
P{

1
H} NMR spectra revealed fascinating properties belonging to the cyclopentadienyl 

and alkene protons. On cooling the sample, the 
31

P{
1
H} NMR spectrum between 295 

and 215 K exhibited only one trimethylphosphine resonance, however there is a large 

change in the chemical shift of the singlet peak from 11.2 ppm to 13.8 ppm. The 
1
H 

NMR spectra are consistent with the 
31

P{
1
H} NMR spectra, as they only display one 

cyclopentadienyl resonance. Between 295 and 275 K, the cyclopentadienyl ligand and 
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the two alkene protons appear to get broader, and below 275 K to 215 K, the resonances 

get sharper. The alkene peak at 4.22 ppm (broad, 295 K), develops in to a doublet of 

doublets at 4.02 ppm with a 
3
JHH of 9.5 Hz and 

3
JHP of 13.4 Hz. The other alkene 

resonance at 5.77 ppm (broad, 295 K), changes into a sharp doublet resonance at 5.83 

ppm with 
3
JHH of 9.5 Hz. A high variable temperature NMR experiment between 295 K 

and 355 K of 18 in d2-tetrachloroethane displayed the broad alkene and 

cyclopentadienyl resonances becoming sharper upon raising the temperature. The 

resonance for the alkene protons at 4.16 ppm (broad, 295 K) became an apparent triplet 

at 4.38 ppm with a 
3
JHP, 

3
JHH of 10.7 Hz when heated to 355 K. The other alkene proton 

at 5.72 ppm (broad, 295 K), upon heating to 355 K exhibited at 5.76 ppm a doublet 

resonance with a 
3
JHH of 9.9 Hz. Heating the sample above 355 K was not possible, as 

the sample had already begun to thermally decompose and new resonances  were 

observed in the 
1
H NMR spectrum. The variable temperature 

1
H NMR experiments 

displayed that the broad alkene resonances get sharper upon cooling and heating the 

sample, exhibited one environment for these protons.  

The 
1
H and 

31
P{

1
H} NMR spectra of 18 were different to the complexes 17

R
. For 

complexes 17
R
 in a d2-dichloromethane solution they possessed broad resonances for all 

proton environments and for the triphenylphosphine ligand in the 
31

P{
1
H} NMR 

spectrum. A precise reason has not yet been identified for the NMR spectroscopy 

observations of 18. However, potential reasons could involve steric and electronic 

factors. The Tolman cone angles
20

 of trimethylphosphine and triphenylphosphine are 

118 ° and 145 ° respectively. The smaller cone angle of trimethylphosphine ligand 

would provide fewer steric demands at the ruthenium centre, and therefore allow 

stronger coordination of 2-styrylpyridine to the metal centre. Alternatively, a similar 

justification for what was observed for complexes 17
R
 could also be occurring for 18, 

where there is an equilibrium between a major and minor species. However, in the case 

of 18 the minor species has not been detected by NMR spectroscopy.  
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Figure 4.6: Variable temperature 
1
H NMR spectra of complex 18 (top set of spectra: low 

temperature NMR spectra in CD2Cl2 at 215 K, 235 K, 255 K, 275 K, and 295 K; bottom set of 

spectra: high temperature NMR spectra in C2D2Cl4 at 295 K, 315 K, 335 K and 355 K).  
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Crystals suitable for X-ray crystallography were grown by the slow diffusion of pentane 

in to a dichloromethane solution containing 18. Unfortunately the crystal displayed 

merohedral twinning characteristics, and therefore any structural data obtained has not 

been discussed. However, we can determine that 18 has been synthesised where the 2-

styrylpyridine is coordinated via the nitrogen atom and an alkene bond. 

 

Figure 4.7: X-Seed diagram of the major cation [Ru(η
5
-C5H5)(PPh3)(NC13H11)]

+
 from complex 

18. Disorder was observed for both the ruthenium cation and the [PF6]
-
 anion. The [Ru(η

5
-C5H5) 

(PPh3)(NC13H11)]
+
 species was modelled over two locations with relative occupancies of 

0.9105:0.0895. The minor form atoms were modelled isotropically. Selected hydrogen atoms, a 

dichloromethane molecule and [PF6]
-
 anion have been omitted for clarity, and where shown the 

thermal ellipsoids are at a 50 % probability level. 
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4.5 Conclusions 

The compounds 2-styrylpyridine and E-2-(4-(trifluoromethyl)styryl)pyridine were  

reacted with 9
Ph

 to give 17
R
 (where R = H and CF3) and 2-styrylpyridine with 9

Me
 to 

yield 18. The formation of complexes 17
R
 and 18 is extremely important from a 

mechanistic point, as the coordination of the 2-styrylpyridine derivatives defines the end 

point in the catalytic cycle in the alkenylation reaction of pyridine to TMS-substituted 

alkynes. It was imperative to demonstrate that the catalyst deactivation was not 

occurring due to strong coordination of the product.  

The coordination of the 2-styrylpyridine derivatives to 9
Ph

 to generate 17
R
 (where R = H 

and CF3) suggested fluxional behaviour on an NMR timescale. From a combination of 

experimental and DFT calculations it was proposed that there were two conformational 

isomers of the ruthenium complexes 17
R
. The addition of excess d5-pyridine to complex 

17
H

, gives uncoordinated 2-styrylpyridine and 5. This is an extremely promising finding 

as it indicates that the 2-styrylpyridine product does not hinder the regeneration of 5; 

which we have found from our mechanistic studies (Chapter 2), is a key intermediate 

from the reaction mixture of [Ru(η
5
-C5H5)(PPh3)2(=C=CHR)][PF6] in d5-pyridine. In 

the literature, the coordination of 2-vinylpyridine was compared to benzophenone imine 

at the ruthenium centre, [RuPhCl(CO)(P
i
Pr3)2] where substitution by 2-vinylpyridine 

was not favoured due to its higher steric demands at the metal centre, which supports 

our findings.
305

 

The coordination of 2-styrylpyridine to 9
Me

 produced 18, which unlike 17
R
 (where R = 

H and CF3) did not exhibit complete fluxional behaviour in solution. Only the alkene 

resonances displayed broad characteristics in the 
1
H NMR spectrum, which is due to the 

differences in coordination of the trimethylphosphine with respect to 

triphenylphosphine. A reason for this behaviour has not been fully identified.   
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Chapter 5. Reactivity of Half-Sandwich 

Ruthenium Complexes: Part I 

5.1 Introduction 

The once thought inert C-H bond can be activated using transition metal centres.
4
 

Organometallic chemistry is therefore a useful tool for the selective C-H 

functionalisation of the substrates, as it presents an atom economical route to synthesise 

new carbon-carbon or carbon-heteroatom bonds for applications in organic synthesis 

and catalysis.
4, 6, 7, 166, 306

 By understanding the mechanisms of transition metal centres in 

stoichiometric chemistry, novel catalytic systems can be developed. A mechanistic 

approach was employed by Bergman et al., where they exploited rhodium C-H bond 

activation for the synthesis of various biologically relevant structures.
167, 168, 175, 178, 307, 

308
 Focussing on the C-H alkylation of N-containing heterocycles they successfully 

reported the synthesis of the alkaloid (-)-incarvillateine, which is used in pain relief.
309

 

In 2006, they highlighted that the formation an N-heterocyclic carbene  ligand at a 

rhodium centre could potentially be used further in coupling reactions.
178

  

Our goal to understand the mechanism for the alkenylation of pyridine via the half-

sandwich ruthenium complexes lead to a set of mechanistic investigations in d2-

dichloromethane.
253

  Since the ruthenium complex [Ru(η
5
-C5H5)(PPh3)(NC5D5)2][PF6],

 
  

5 was the major species observed in the reaction mixtures of complexes 2
R
 in d5-

pyridine, our aim was to study the reactivity of these types of complexes. In Chapter 3, 

a general synthetic procedure for the synthesis of a range of ruthenium complexes was 

reported. Now, the stoichiometric chemistry of 10
H

 (protio- version of 5) will be 

described in this chapter. The reactivity of complexes [Ru(η
5
-C5H5)(PR3)(L)2][PF6], 

(where R = Ph, Me, 
i
Pr, OPh)

 
 with various terminal alkynes in a dichloromethane 

solution was also investigated and is reported in the following chapter. This approach 

will allow us to gain further mechanistic insight into the role of these species. This 

chapter will focus on the reactivity of 10
H

 with various alkynes in d2-dichloromethane 

and the reactions monitored via NMR spectroscopy under a nitrogen atmosphere.  
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5.2 Reactivity of complex 10
H

 with terminal aryl alkynes 

The initial mechanistic studies in Chapter 2 identified the bis-d5-pyridine complex 5 as 

the major new ruthenium-containing species in the reaction mixture. The protio- version 

of 5 is 10
H

 and was synthesised independently in Chapter 3. This section will describe 

the reactions between 10
H

 and various alkynes in a dichloromethane solution.  

The alkenylation reactions reported by Murakami and Hori
253

 have the potential to be 

100 % atom efficient with respect to the starting materials required, which could be 

obtained by the removal of the TMS group of the alkyne 1-phenyl-2-

trimethylsilylacetylene. We have therefore studied the behaviour of terminal alkynes 

with 10
H

 in a dichloromethane solution. The full range of terminal alkynes studied 

included aryl substituents (phenylacetylene, 1-ethynyl-4-fluorobenzene, 4-ethynyl-

α,α,α-trifluorotoluene) and alkyl substituents (tert-butylacetylene, 1-hexyne). The 

reactivity of TMS-substituted alkynes 1-phenyl-2-trimethylsilylacetylene and 

trimethylsilylacetylene have also been investigated.  

This chapter will discuss the reactivity of 10
H

 with aryl terminal alkynes and a further 

deuterium labelling study in order to provide further mechanistic information. The 

following chapter will describe substituent effects, including the differences observed  

in the reactivity when alkyl and TMS-substituted alkynes are used with 10
H

. The 

mechanistic studies will hopefully provide an insight into how the ruthenium centre is 

involved in the alkenylation reaction of pyridine.
253

  

 

5.2.1 Reaction between complex 10
H

 with phenylacetylene 

The stoichiometric addition of phenylacetylene to [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6],

 

10
H

 in d2-dichloromethane was investigated. The reactions were carried out with 

phenylacetylene, and repeated with a 
13

C-label, H
13

C≡CPh to give more information on 

how the reaction proceeded (Figure 5.1). The reaction mixtures were monitored by 

NMR spectroscopy at room temperature until no more changes were observed.  
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19
H,Ph

       20
H

       21
H,H

 

 

       22
H,H

  

Scheme 5.1: Reaction of 5 with phenylacetylene in d2-dichloromethane. 

The stoichiometric reaction between  phenylacetylene and 10
H

 resulted in a reaction 

mixture in which initially three new products (19
H,Ph

, 20
H

, and a minor unknown 

species which is short-lived and only present in the initial NMR spectra) could be 

observed via 
1
H and 

31
P{

1
H} NMR spectroscopy. After 16 hours a set of NMR spectra 

were recorded which exhibited new resonances belonging to two more ruthenium 

complexes (21
H,H

 and 22
H,H

). In total there were five new ruthenium species formed 

from this reaction mixture, four of which have been identified. The discussion will 

firstly involve the characterisation of complexes 19
H,Ph

, 20
H

 and 21
H,H

; followed by 

how complex 22
H,H 

was identified.   

The initial NMR spectra of the starting material 10
H

 exhibited cyclopentadienyl proton 

resonances at 4.42 ppm in the 
1
H NMR spectrum, and the triphenylphosphine ligand at 

50.2 ppm in the 
31

P{
1
H} NMR spectrum. Uncoordinated pyridine displayed resonances 

at 8.58 (ortho protons), 7.68, and 7.28 ppm and uncoordinated phenylacetylene in the 

1
H NMR spectrum in d2-dichloromethane. The 

31
P{

1
H} NMR spectrum did not show 

any signs of uncoordinated triphenylphosphine or triphenylphosphine oxide. The 

pyridine ligands from 10
H

 appeared to be labile and were being substituted by 

phenylacetylene.  

10
H
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The reaction was left to continue at room temperature and monitored regularly via NMR 

spectroscopy. The reaction appeared to proceed slowly as the phenylacetylene proton 

resonance at 3.12 ppm was still present in the 
1
H NMR spectrum after approximately 10 

days. After 13 days, the majority of phenylacetylene had reacted, however 10
H

 was still 

present in the reaction mixture and this suggested that more than one equivalent of 

phenylacetylene had been consumed with respect to 10
H

. 

Overall, five new cyclopentadienyl ligand singlet resonances were observed: 5.48, 5.10, 

4.97, 4.95 and 4.55 ppm alongside the resonances for 10
H 

in the 
1
H NMR spectrum and  

five new triphenylphosphine resonances: 51.8, 29.7, 53.6, 53.5 and 48.0 ppm 

respectively in the 
31

P{
1
H} NMR spectrum. Integration was used to help identify the 

respective cyclopentadienyl resonances from the 
1
H NMR spectrum with the 

triphenylphosphine resonances in the 
31

P{
1
H} NMR spectrum. The manner in which the 

relative integrations of peaks changed over time was recorded from both the 
1
H and 

31
P{

1
H} NMR spectra. Unfortunately due to the number of ruthenium complexes 

present in the reaction mixture, the aromatic region in the 
1
H NMR spectrum was 

extremely complex and hence any resonances from between 7.00 – 7.75 ppm were not 

useful in the determination of the nature of the products.  

The reaction conditions were changed in order to optimise the formation of certain 

ruthenium complexes, the reasons will be explained throughout this section. The 

different reaction conditions employed between 10
H

 and phenylacetylene in 

dichloromethane include:  

i) Stoichiometric addition of phenylacetylene to 10
H

 in d2-dichloromethane; 

ii) Stoichiometric addition of 
13

C-labelled phenylacetylene to 10
H

 in d2-

dichloromethane; 

iii) Stoichiometric addition of phenylacetylene to 10
H

 in the presence of two 

equivalents of pyridine in d2-dichloromethane; 

iv) Addition of four equivalents of phenylacetylene to 10
H

 in the presence of 

four equivalents of pyridine in dichloromethane.  

 

The ratio of the complexes 10
H

, 20
H

, 21
H,H 

and
 
22

H,H
 has been calculated from the 

different reaction conditions (Table 5.1).  
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Reaction 

conditions 

Ratio of complexes 

10
H
 20

H
 21

H,H
 22

H,H
 

i 1.0 1.5 1.5 7.0 

ii 1.0 1.0 1.0 5.0 

iii - - 1.0 5.7 

iv - - 1.0 1.0 

Table 5.1: Ratio of complexes present in the reaction mixture from different conditions. 

 

 

 

Figure 5.1: The 
31

P{
1
H} NMR spectra of reaction conditions ii proceeding over time. 

5.2.1.1 The minor unknown species present in the initial reaction mixture 

A minor unknown species was observed in the initial 
1
H and 

31
P{

1
H} NMR spectra, and 

the NMR spectra recorded after 16 hours resulted in the loss of the resonances 

associated with this complex. The 
1
H NMR spectrum contained resonances for the 

cyclopentadienyl protons at 4.97 ppm, and in the 
31

P{
1
H} NMR spectrum at 53.6 ppm. 

When H
13

C≡CPh was used the 
31

P{
1
H} NMR spectrum displayed a doublet at 53.6 ppm 

with a JPC of 12.3 Hz. Due to its short-lived presence in the reaction mixture more 

information on this species has not been obtained.  

5.2.1.2 Identification of complex 19
H,Ph

 

After the addition of phenylacetylene to 10
H

 (reaction conditions i), there appeared to be 

one major new ruthenium species in the reaction mixture. The 
1
H NMR spectrum 

displayed a broad resonance for the cyclopentadienyl protons at 5.48 ppm (5H) and 

there was also a broad resonance at 5.14 ppm (1H). In the aromatic region of the 
1
H 

NMR spectrum, a pyridine signal was observed at 8.40 ppm as a multiplet which 

31323334353637383940414243444546474849505152535455 ppm

20
H

 
21

H,H
 

19
H,Ph

 

10
H

 

22
H,H

 

8 days 

24 hours 

Initial 
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integrated to 2H for the C-2/6 proton positions; when a 
1
H{

31
P} experiment was run this 

resonance simplified to a doublet, which suggested there is one pyridine molecule 

coordinated to the ruthenium centre.  The major species in the 
31

P{
1
H} NMR spectrum 

had a singlet resonance at 51.8 ppm. This suggested that one pyridine ligand had 

dissociated from 10
H

; and the triphenylphosphine ligand was still coordinated to the 

ruthenium centre. It also implied that a phenylacetylene molecule must have substituted 

one of the pyridine ligands at the ruthenium centre.  

The reaction was repeated with a 
13

C-label to give more information on the nature of the 

species. The reaction between H
13

C≡CPh and 10
H

 resulted in a change in the 

multiplicity of the resonances for 19
H,Ph

. In the 
31

P{
1
H} NMR spectrum the resonance at 

51.8 ppm  was a doublet with a  
2
JPC of 16.9 Hz. In addition, a 

13
C{

1
H} NMR spectrum 

revealed more information on the nature of this complex, as a doublet peak at 355.2 

ppm, with a 
2
JPC of 16.9 Hz  was observed. The chemical shift strongly suggests that 

19
H,Ph

 is a vinylidene-containing species.
54

 The 
1
H NMR spectrum still contained broad 

resonances at 5.48 and 5.14 ppm with an integration of 5H and 1H respectively, where 

these resonances have been assigned as the cyclopentadienyl ligand and the vinylidene 

proton respectively.  

The data are consistent with 19
H,Ph

 being a vinylidene-containing complex, where the 

other ligands at the ruthenium centre are a pyridine molecule, a triphenylphosphine 

ligand and the cyclopentadienyl ligand. However, after 24 hours the resonances for the 

vinylidene-containing complex 19
H,Ph

 began to decrease, and after 10 days could no 

longer be detected. As the resonances for complex 19
H,Ph

 decreased in intensity, 

resonances for another ruthenium-containing complex 22
H,H

 increased in intensity. 

5.2.1.3 Identification of complex 20
H

  

The initial reaction mixture of phenylacetylene to 10
H

 (reaction conditions i) contained 

resonances for the cyclopentadienyl proton at 5.10 ppm (singlet, 5H) in the 
1
H NMR 

spectrum. A doublet resonance at 5.82 ppm (1H) with a 
2
JHP of 9.8 Hz for a single 

proton coupled to a phosphorus atom was also observed. The 
31

P{
1
H} NMR spectrum 

displayed the corresponding triphenylphosphine group at 29.7 ppm (singlet).  Further 

spectra recorded after this point did not indicate any change in the amount of this 

product, suggesting that the formation of 20
H

 was complete within 30 minutes. The 

resonances belonging to 20
H

 were found to change in the reaction mixture dependant on 

the reaction conditions (Section 1.5).  
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When the reaction was repeated with the 
13

C-labelled species, H
13

C≡CPh (reaction 

conditions ii), the 
31

P{
1
H} NMR spectrum exhibited a doublet at 29.7 ppm with a 

1
JPC 

of 67.2 Hz. This indicated that the phosphorus atom of the triphenylphosphine was 

coupling to the 
13

C-labelled atom.  

The resonances for 20
H

 were very similar to those reported by Kirchner et al. for the 

product formed in the reaction between [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6] and two 

equivalents of alkyne (where R = Me, Ph or Cy).
132, 136, 138, 139

 The alkyne molecules 

react in a head-to-tail fashion at the ruthenium centre and the phosphine group migrates, 

where the newly formed organic ligand at the ruthenium centre is an η
3
-allyl carbene 

species. These reactions were reported to occur within a few minutes, consistent with 

observations made in our reactions. Kirchner et al. reported that when [Ru(η
5
-

C5H5)(PMe3)(NCMe)2][PF6], 9
Me

 is treated with two equivalents of phenylacetylene, the 

31
P{

1
H} NMR spectrum displayed a resonance at 31.5 ppm for the PMe3 group; and the 

cyclopentadienyl protons at 5.33 ppm in the 
1
H NMR spectrum. These results were very 

similar to what was observed in our reaction (Scheme 5.1). The reaction between 

[Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 and two molecules of phenylacetylene yielded 

the respective η
3
-allyl carbene complex 20

H
.
132

 However, 20
H

 was unstable and over 

time converted to give a η
4
-butadiene complex containing an orthometallated phenyl 

ligand of the triphenylphosphine ligand (Section 1.5).
139

 Therefore was no reported 

experimental literature on 20
H

 due to its unstable nature and therefore to confirm the 

presence of this species in the reaction mixture, an independent synthesis was 

conducted. Using the procedure reported by Kirchner et al.,
136

 the resonances obtained 

from the independent reaction of 9
Ph

 with two equivalents of phenylacetylene in d2-

dichloromethane were found to match the peaks belonging to 20
H

. 

Complex 20
H

 was removed from the reaction mixture by washing with pentane, or by 

changing the reaction conditions. If the stoichiometric reaction was conducted in the 

presence of two equivalents of pyridine, the formation of 20
H

 was prevented (reaction 

conditions iii). The competing reaction pathway to synthesise 20
H

 required two 

coordination sites at the ruthenium centre where both alkyne molecules could 

coordinate to form of a metallocyclopentatriene species and generate 20
H

.
132

 This 

reaction pathway was now inhibited due to the presence of excess pyridine in the 

system.  
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This implied that [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6],

 
10

H
  had similar properties to the 

complexes [Ru(η
5
-C5H5)(PR3)(NCMe)2][PF6] (where R = Me, Ph or Cy). However, it 

also appears that changing the labile acetonitrile ligands to pyridine molecules changes 

the reactivity seen with respect to terminal alkynes, as another reaction pathway is 

preferred to the formation of η
3
-allyl carbene complex (since 20

H
 is no longer the major 

complex in the reaction mixture). Additionally, this explained why there was unreacted 

10
H

 in the reaction mixture, as from the stoichiometric addition of phenylacetylene to 

10
H

 to form the η
3
-allyl carbene complex 20

H
, the reaction required two equivalents of 

phenylacetylene per ruthenium complex.  

5.2.1.4 Identification of complex 21
H,H

 

The resonances belonging to 21
H,H

 were observed in the NMR spectra 16 hours after the 

stoichiometric addition of phenylacetylene to 10
H

 (reaction conditions i). The formation 

of 21
H,H

 in the reaction mixture was minor and did not increase after the 16 hours. 

However, by changing to the reaction conditions iv, a higher quantity of 21
H,H

 was 

observed in the reaction mixture, which was determined via NMR spectroscopy. The % 

conversions to give 21
H,H

 following reaction conditions i was  approximately 10 %, 

alternatively with reaction conditions iv, an approximate 50 % conversion was 

observed.  

The 
1
H NMR spectrum exhibited a cyclopentadienyl ligand resonance at 4.55 ppm 

(singlet), and the triphenylphosphine resonance was observed at 48.0 ppm (singlet) for 

21
H,H 

in the 
31

P{
1
H} NMR spectrum. An ESI-MS of the reaction mixture with 

phenylacetylene resulted in a peak with a m/z of 712.17 and was interpreted to include 

the [Ru(η
5
-C5H5)(PPh3)]

+
, NC5H5 and two HC≡CPh fragments. 

In the equivalent experiment where H
13

C≡CPh was used (reaction conditions ii), a 

difference in the 
31

P{
1
H} NMR spectrum for the resonance at 48.0 ppm was observed. 

A resonance at 48.1 ppm was now a broad doublet of doublets which exhibited 
2
JPC 

couplings of 12.2 and 6.3 Hz between the triphenylphosphine ligand and two 
13

C atoms. 

The 
13

C{
1
H} NMR spectrum of this species in the reaction mixture, exhibited two 

13
C-

labelled enriched signals at 67.1 and 170.8 ppm as doublets with a 
2
JCP of 7.7 and 12.9 

Hz respectively. These coupling values are very similar to those observed in the 

31
P{

1
H} NMR spectrum for the resonance at 48.1 ppm. An ESI-MS of the crude 

reaction mixture exhibited a ruthenium containing peak with a m/z of 714.17 which was 

interpreted as a complex which contained the cationic fragment [Ru(η
5
-C5H5)(PPh3)]

+
, 
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NC5H5 and two H
13

C≡CPh units. An organic fragment was also observed in the ESI-MS 

with a m/z of 286.15 which matched the formula [C19
13

C2H18N]
+
. This suggested that 

the pyridine molecule was coordinated to two H
13

C≡CPh units.  

Several methods were developed in order to purify and characterise 21
H,H

. The complex 

21
H,H

 was isolated from the reaction where conditions iv were employed, by the slow 

diffusion of pentane into a dichloromethane layer containing the product. Alternatively, 

following the reaction conditions iii, only two ruthenium species remained 21
H,H

 and 

22
H,H

. Complex 22
H,H

 could be removed from the reaction mixture by the addition of 

base (Section 5.2.1.6), leaving behind 21
H,H

.   

Although an analytically pure sample of 21
H,H

 could not be obtained, the 
1
H NMR 

spectrum of 21
H,H

 exhibited broad resonances in the aromatic region suggesting 

fluxional behaviour in solution at room temperature. The 
13

C{
1
H} NMR spectrum of 

21
H,H

  also exhibited broad peaks between approximately 120 – 140 ppm. A variable 

temperature NMR experiment was conducted on a sample of 21
H,H

 in d2-

dichloromethane. A set of 
1
H and 

31
P{

1
H} NMR spectra were recorded at 20 K intervals 

from 295 K. Upon cooling the sample to 215 K, the broad resonances that were present 

at 295 K became sharper. Due to impurities in the sample, full characterisation of these 

peaks was not possible; however this complex displays fluxional behaviour at room 

temperature and cooling the sample resolves these resonances (Figure 5.2).  

 

Figure 5.2: Low variable temperature 
1
H NMR spectra of the aromatic region of 21

H,H
 at 295 K, 

275 K, 255 K, 235 K and 220 K.  

6.26.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.98.08.18.28.38.48.58.68.7 ppm

220 K 

235 K 

255 K 

275 K 

295 K 
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Crystals suitable for X-ray diffraction indicated that 21
H,H

 contained a pyridinium 

butadienyl fragment, which was coordinated through an η
3
-bonding mode of the 

butadienyl group (Figure 5.3, Table 5.2). The structure of 21
H,H

 revealed that new C-C 

and N-C bonds have been formed between two alkyne molecules and a pyridine 

molecule. The η
3
-allylic group maintains an exo orientation with respect to the η

5
-

cyclopentadienyl ligand.
310-313

 The structural data demonstrated the bond lengths of the 

ruthenium centre to the η
3
-allyl group were not equivalent as the C(37)-Ru(1) bond of 

2.086(7) Å was significantly shorter than the C(29)-Ru(1) and C(30)-Ru(1) bond 

lengths of 2.141(9) and 2.142(7)  Å respectively. This trend has been observed in many 

η
3
-butadienyl complexes, where Bruce et al. have noted that the shorter Ru-C bond is 

dependent on the substituents on the vinylic group and more pronounced differences are 

observed between Ru-C allylic bond lengths when stronger electron-withdrawing 

groups are present on the vinyl group.
314

 The η
3
-allylic group C(37)-C(30) and C(29)-

C(30) bond lengths were 1.432(9) and 1.437(10) Å  respectively, where these bond 

lengths were found to similar and could be attributed to delocalisation of the π electrons 

of the allyl group and are similar to bond lengths expected for an allyl group.
314, 315

 

However the vinyl -C=CHPh group displayed a significantly shorter bond length 

between C(37)-C(38) of 1.344(9) Å, which suggested that there is multiple bond 

character between these two carbon atoms. Additionally, the structure displayed the 

C=CHPh group is bent out of the plane of the allylic group C(29)-C(30)-C(37) where 

C(38) is bent away from the ruthenium centre and where the torsion angle between the 

allylic and vinyl group was -140.1(8) °. This suggested that the π orbitals of the allyl 

system are not conjugated with the vinylic C=CHPh π-system. It is common for the 

1,2,3-η
3
-butadienyl complexes to contain two π systems, as the energy for a η

3
-

butadienyl molybedenum complex has previously been calculated and was found to be 

more stable than the conjugated system.
316

 These are common observations for η
3
-

butadienyl complexes and have been reported for a range of 1,2,3-η
3
-butadienyl 

complexes by Brisdon and Walton.
317
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Figure 5.3: X-Seed diagram of [Ru(η
5
-C5H5)(PPh3)(η

3
-CH(NC5H5)C(C6H5)C=CH(C6H5)]

+
 from 

complex 21
H,H

. Selected hydrogen atoms, dichloromethane molecule, pentane molecule and 

[PF6]
-
 anion have been omitted for clarity, and where shown the thermal ellipsoids are at a 50 % 

probability level. The [PF6]
-
 anion was disordered over two positions which differed in the 

location of the fluorine atoms.  

 Bond lengths (Å)  Bond angles (°) 

C(29)-Ru(1) 2.141(9) C(29)-Ru(1)-P(1)  97.87(18) 

C(30)-Ru(1) 2.142(7) C(37)-Ru(1)-P(1)  94.03(18) 

C(37)-Ru(1)  2.086(7) N(1)-C(29)-C(30)  119.8(6) 

C(37)-C(38)  1.344(9) C(29)-C(30)-C(37) 116.1(6) 

C(37)-C(30)  1.432(9) C(30)-C(37)-C(38) 134.3(6) 

C(29)-C(30)  1.437(10)   

C(29)-N(1)  1.495(9)   

P(1)-Ru(1)  2.3535(18)   

Table 5.2: Selected bond lengths (Å) and angles (°) for complex 21
H,H

.  
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5.2.1.5 Identification of complex 22
H,H 

 

The species 22
H,H

 was observed in the reaction mixture, from the addition of 

phenylacetylene to 10
H

. However in order to obtain a full characterisation of this 

species a range of purification methods were attempted. This section will describe the 

purification methods employed to obtain 22
H,H

 from the other ruthenium-containing 

complexes. The initial spectroscopic observations of 22
H,H

 will then be discussed from 

reaction conditions i and ii, followed by full characterisation from a pure sample of 

22
H,H

. 

The purification of 22
H,H

 was developed by employing reaction conditions iii, where the 

excess pyridine in the system competes for coordination at the ruthenium centre and 

therefore prevents the formation of complex 20
H

. However, the presence of the excess 

pyridine in the reaction mixture also meant that the formation of the vinylidene-

containing species 19
H,H

 was hindered, as the initial 
1
H NMR spectrum (taken 

approximately 4 hours from the addition of phenylacetylene) displayed smaller 

intensities for the resonances belonging to 19
H,H

 than reaction conditions i. Due to the 

slow nature of these reactions, the reaction mixture was heated at 50 °C for 16 hours.  

 

22
H,H

       23
H,H

 

Scheme 5.2: Purification of complex 22
H,H

.  

The crude reaction mixture therefore contained two ruthenium-containing complexes 

21
H,H

 and 22
H,H

, and several methods were attempted in order to obtain a pure sample 

of 22
H,H

. Firstly crystallisation techniques of the reaction mixtures containing 

complexes 22
H,H

 and 21
H,H

 yielded two different looking crystals either clear yellow 

block, or orange ‘feathery-type’ crystals respectively. From this the appropriate crystals 

could be selected. Alternatively, the addition of 1,4-diazabicyclo[2.2.2]octane 

(DABCO) to a reaction mixture containing complexes 22
H,H

 and 21
H,H

 results in 

selective deprotonation of 22
H,H

 to give 23
H,H

 (Section 5.2.1.6) and a pentane extraction 

isolates 23
H,H

. Then a simple reprotonation of 23
H,H

 with pyridinium 

hexafluorophosphate gives 22
H,H

 (Scheme 5.2). 

22H,H + 21H,H 

- 21H,H 
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Employing reaction conditions i, resonances for 22
H,H

 were observed in the NMR 

spectra after approximately 24 hours, and the formation of this species originated from 

the cationic vinylidene-containing complex 19
H,H

. In the 
1
H NMR spectrum a resonance 

was observed at 4.95 ppm (singlet, 5H) for a cyclopentadienyl ligand. Furthermore two 

resonances at 3.64 ppm (apparent triplet, 1H) and 6.68 ppm (doublet, 
3
JHH = 7.6 Hz, 

1H) were displayed in the 
1
H NMR spectrum; where a 2D 

1
H-

1
H COSY experiment 

revealed a strong coupling between these two peaks. A 
1
H{

31
P} NMR experiment 

showed that the resonance at 3.64 ppm decoupled to give a doublet (
3
JHH = 7.5 Hz). The 

31
P{

1
H} NMR spectrum exhibited a singlet peak at 53.4 ppm for 22

H,H
.  

The reaction mixture involving H
13

C≡CPh displayed differences to the unlabelled 

experiment. In the 
1
H NMR spectrum the resonance at 6.68 ppm was now a doublet of 

doublets, which contained a 
1
JHC of 183 Hz and a 

3
JHH of 7.5 Hz. In the 

31
P{

1
H} NMR 

spectrum, the resonance at 53.4 ppm remained as a singlet, suggesting the 
13

C-label was 

not coupling with the triphenylphosphine ligand. The ESI-MS of the reaction mixture 

where H
13

C≡CPh was used included a peak with a ruthenium isotope pattern with a m/z 

611.13, which was consistent with the species containing the fragments [Ru(η
5
-C5H5) 

(PPh3)]
+
, NC5H5 and PhC

13
CH. In addition, an organic fragment with a peak of m/z 

183.09 which contains [C12
13

CH11N + H]
+
 was observed.  This was an extremely 

interesting result, as this was the mass expected for the 
13

C-labelled 2-styrylpyridine 

species in the mass spectrum. However, its exact structure could not yet be determined. 

A pure sample of 22
H,H

 was obtained therefore allowing analysis of the aromatic region 

of the 
1
H NMR spectrum. The aromatic resonances between 6.83 and 7.94 ppm 

contained both sharp and broad resonances therefore making it difficult to integrate the 

peaks accurately. There were four sharp resonances for the nitrogen heterocycle that 

were identified and were observed at 7.06, 7.15, 7.36 and 7.94 ppm, and confirmed via 

a 2D 
1
H-

1
H COSY experiment. The broad peaks in the 

1
H NMR spectrum were 

determined to be due to the phenyl groups of the triphenylphosphine ligand.  The 

13
C{

1
H} NMR spectrum displayed singlet resonances for the alkene carbon atoms at 

55.2 and 69.4 ppm. The most downfield resonance was a broad peak at 180.7 ppm, this 

was shown through a long range 2D 
1
H-

13
C HMBC experiment to couple to protons 

within the pyridine resonances. This suggested that one of the carbon atoms on the 

pyridine did not contain a C-H bond. Additionally, in the 
13

C{
1
H} NMR spectrum broad 

resonances were observed for the carbon atoms of the triphenylphosphine ligand. An 

ESI-MS of  22
H,H

 exhibited peaks with a m/z of 610.12 and 182.09 which were assigned 
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as the cationic fragment of 22
H,H

 and the organic species [C13H12N]
+
. An elemental 

analysis of 22
H,H

 was within an error of 0.2 % when a molecule of dichloromethane was 

included. 

A low variable temperature NMR experiment was conducted on a sample of 22
H,H

 

between 295 K and 225 K and 
1
H and 

31
P{

1
H} NMR spectra recorded in 10 K intervals 

(Figure 5.4). The 
1
H NMR spectrum exhibited that the broad resonances in the aromatic 

region became flatter and broader until 275 K, and below this temperature the peaks 

became more resolved. At 225 K, peaks for the phenyl ligands of the 

triphenylphosphine ligand displayed individual resonances for each phenyl ring. This is 

due to each of the phenyl rings experiencing an individual environment around the 

ruthenium centre due to restricted rotation around the Ru-P bond. The 
31

P{
1
H} NMR 

spectrum did not display any changes in the triphenylphosphine and [PF6]
-
 anion 

resonances.  

 

Figure 5.4: Low variable temperature 
1
H NMR spectra of 22

H,H
 at 295, 275, 255 and 225 K.  

Crystals suitable for X-ray diffraction were grown by the slow diffusion of pentane into 

a dichloromethane layer containing 22
H,H

, and the data demonstrated that the 

phenylacetylene had formed a bond to the pyridine moiety via the nitrogen atom; the 

carbon-hydrogen bond had been C-H functionalised to generate a new Ru-C(2) bond 

(Figure 5.5, Table 5.3). It would be interesting to note that this was an isomer of the 

intermediate in the proposed mechanism by Murakami and Hori.
253

  

The geometry of the cation of 22
H,H

 could be described as a distorted octahedron, as the 

C(6)-Ru(1)-C(12), C(6)-Ru(1)-P(1) and C(12)-Ru(1)-P(1) were found to be 84.00(7),  

90.66(5) and 87.45(5) ° respectively. The Ru-C bonds to the cyclopentadienyl ligand 

were found to be generally statistically equivalent with an average bond length of 2.240 

6.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.98.0 ppm 3.53.63.73.8 ppm

225 K 

255 K 

275 K  

295 K 
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Å. The organic fragment at the ruthenium centre could be regarded as a pyridylidene 

ligand, where the C(6)-Ru(1) bond length was 2.0390(19) Å (Section 6.14). The bond 

lengths around the pyridylidene ring were not equivalent as the bond lengths of C(6)-

N(1) and C(10)-N(1) were 1.359(2) and 1.349(2) Å respectively, which was 

significantly shorter than the adjacent bonds C(6)-C(7) and C(9)-C(10) where the bond 

lengths were 1.406(3) and 1.373(3) Å respectively. The Ru-C bond lengths to the alkene 

component was not equivalent, as the C(11)-Ru(1) was 2.152(2) Å, which was shorter 

than the C(12)-Ru(1) bond of 2.2575(19) Å. This distortion has been explained by 

Eisenstein and Hoffmann where a transition metal centres can move towards one of the 

carbon atoms of the alkene bond.
318, 319

 The alkene bond length C(11)-C(12)  was 

1.405(3) Å and found to be significantly shorter than the adjacent bonds and is 

consistent with coordinated alkene bond lengths.
298

 The Ru(1)-P(1) bond length was 

2.3367(5) Å.  

 

 

Figure 5.5: X-Seed diagram of [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-C5H4NCH=CH(C6H5)]

+
 from complex 

22
H,H

. Selected hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have been 

omitted for clarity, and where shown the thermal ellipsoids are at a 50 % probability level.  
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 Bond lengths (Å)  Bond angles (°) 

C(1)-Ru(1) 2.233(2) C(6)-Ru(1)-C(12)  84.00(7) 

C(2)-Ru(1)  2.243(2) C(6)-Ru(1)-C(11)  63.86(7) 

C(3)-Ru(1)  2.224(2) C(6)-Ru(1)-P(1)  90.66(5) 

C(4)-Ru(1)  2.247(2) C(12)-Ru(1)-P(1)  87.45(5) 

C(5)-Ru(1)  2.249(2) N(1)-C(6)-Ru(1)  99.98(12) 

C(6)-Ru(1)  2.0390(19) C(6)-N(1)-C(11)  104.09(15) 

C(6)-N(1) 1.359(2) N(1)-C(11)-Ru(1)  92.03(11) 

C(6)-C(7)  1.406(3) C(12)-C(11)-N(1)  118.05(16) 

C(7)-C(8)  1.388(3) C(11)-C(12)-Ru(1)  67.40(11) 

C(8)-C(9)  1.402(3) C(11)-C(12)-C(13)  120.38(17) 

C(9)-C(10)  1.373(3) N(1)-C(6)-C(7)  115.06(17) 

C(10)-N(1)  1.349(2) C(8)-C(7)-C(6)  119.96(18) 

C(11)-N(1)  1.453(2) C(7)-C(8)-C(9)  121.01(18) 

C(11)-Ru(1)  2.152(2) C(10)-C(9)-C(8)  119.01(19) 

C(11)-C(12)  1.405(3) N(1)-C(10)-C(9)  117.43(18) 

C(12)-Ru(1)  2.2575(19)   

C(12)-C(13)  1.486(3)   

P(1)-Ru(1)  2.3367(5)   

Table 5.3: Selected bond lengths (Å) and angles (°) for complex 22
H,H

.   

 

5.2.1.6 Deprotonation/ Addition of pyridine to complex 22
H,H

 

An investigation in to the properties of 22
H,H

 in pyridine was conducted due to this 

being the major ruthenium-containing complex present in the reaction mixture from the 

addition of phenylacetylene to 10
H

.  

 

        22
H,H

      23
H,H

 

Scheme 5.3: Addition of d5-pyridine to complex 22
H,H

.  

The addition of d5-pyridine to 22
H,H

 resulted in an immediate colour change from a pale 

yellow precipitate to deep red solution (Scheme 5.3). A set of 
1
H and 

31
P{

1
H} NMR 
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spectra were recorded of the solution. The 
1
H NMR spectrum displayed two sets of 

broad resonances, however one of these sets was slightly sharper in nature. The 
1
H 

NMR spectrum exhibited a downfield peak at 16.78 ppm (broad), due to [H-NC5H5]
+
. 

The 
1
H NMR spectrum also displayed two cyclopentadienyl resonances at 4.65 (less 

broad) and 5.12 (broader) ppm. The two alkene resonances for 22
H,H

 (3.64 and 6.68 

ppm) were no longer be observed in the 
1
H NMR spectrum. In the 

31
P{

1
H} NMR 

spectrum, only two resonances at -144.3 (septet) and at 52.2 (singlet) were observed for 

the [PF6]
-
 and 22

H,H
 respectively. Another broad resonance was expected in the 

31
P{

1
H} 

NMR spectrum for 23
H,H

, however it was not detected, this could be due to an 

equilibrium between 22
H,H

 and 23
H,H

. It is possible that pyridine is acting as a base 

towards 22
H,H

 to form a deprotonated species 23
H,H

 and therefore exhibits fluxional 

behaviour in solution on the NMR timescale. 

 

22
H,H

           23
H,H

 

Scheme 5.4: Deprotonation of 22
H,H

 with DABCO in dichloromethane. 

Subsequently, the addition of DABCO to a dichloromethane solution containing 22
H,H

 

resulted in a similar colour change from a yellow to red solution. The product was 

found to be partially soluble in pentane, and when stored at -20 °C, red crystals of the 

new species 23
H,H 

were collected. The 
1
H NMR spectrum of 23

H,H 
displayed a 

cyclopentadienyl peak at 4.75 ppm (singlet) which integrated as 5H with respect to the 

pyridine ring protons at 6.51, 6.56, 7.83 and 8.15 ppm which all had an integration of 

1H. The alkene resonances belonging to 22
H,H 

were not present, indicating that DABCO 

may have deprotonated one of the alkene protons. The 
31

P{
1
H} NMR spectrum 

possessed one resonance at 60.3 ppm as a broad singlet for the triphenylphosphine 

ligand. A 
13

C{
1
H} NMR spectrum of 23

H,H 
exhibited a resonance for the carbon atoms 

of the cyclopentadienyl ligand at 83.0 ppm as a doublet with a 
2
JCP of 1.8 Hz. 

Interestingly, two quaternary carbon atoms were observed  at 192.9  and 218.3 ppm as 

doublets with 
2
JCP couplings of 12.7 Hz and 15.3 Hz respectively. This suggested that 

there were now two Ru-C bonds in 23
H,H

. The ESI-MS of the product displayed a 

+ 21
H,H

 

- 21
H,H
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ruthenium-containing peak with a m/z of 610.1228 which was consistent with the 

reprotonation of 23
H,H 

within the mass spectrometer.  

 

5.2.2 Reaction between complex 10
H

 with 1-ethynyl-4-fluorobenzene 

The range of aryl terminal alkynes was extended by investigating the effects of a para 

substituent on the aryl group. A fluorine atom in the para position of the phenyl ring has 

an overall electron-withdrawing effect (there is a electron-withdrawing inductive effect 

and electron density is donated via a mesomeric effect).
29

 The Hammett constant of a 

para fluorine substituent was +0.06.
292-295

 The aim was to investigate the ruthenium-

containing complexes formed from the stoichiometric addition of 1-ethynyl-4-

fluorobenzene and determine if there were any changes in the reactivity towards 10
H

.  

 

        19
H,C6H4-4-F

   20
F
       21

H,C6H4-4-F
 

 

           22
H,F

 

Scheme 5.5: Reaction of 10
H
 with 1-ethynyl-4-fluorobenzene, where Ar = C6H4-4-F in d2-

dichloromethane. 

The addition of 1-ethynyl-4-fluorobenzene to 10
H

 in d2-dichlormethane was monitored 

via NMR spectroscopy (Scheme 5.5). From the 
1
H NMR spectrum the reaction initially 

contained 0.5 equivalent of 1-ethynyl-4-fluorobenzene and once this was consumed, a 

further one equivalent was added.  

The 
1
H and 

31
P{

1
H} NMR spectra for the addition of 1-ethynyl-4-fluorobenzene to 10

H
, 

displayed similar resonances for the reaction between 10
H

 and phenylacetylene. Overall, 

10
H
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from the NMR experiment five new ruthenium-containing complexes were detected, 

two of these species were short-lived intermediates (a minor unknown species and 

19
H,C6H4-4-F

) and three of these complexes remained in the final reaction mixture 

(complexes 20
F
, 21

H,F
 , 22

H,F
).  

5.2.2.1 The minor unknown species present in the initial reaction mixture 

The NMR spectra exhibited peaks for the unknown complex only after initial addition 

of the alkyne and were only present in a very small quantity. In the 
1
H NMR spectrum 

the only peak for the minor species was observed in the cyclopentadienyl region at 4.97 

ppm. The 
31

P{
1
H} NMR spectrum displayed a resonance at 53.7 ppm as a singlet for the 

triphenylphosphine ligand.  

5.2.2.2 Identification of complex 19
H,C6H4-4-F 

The other short-lived intermediate in the reaction mixture was characterised by NMR 

spectroscopy, and displayed very similar resonances and behaviour to the vinylidene-

containing complex, 19
H,Ph

. In the 
1
H NMR spectrum broad resonances were observed 

at 5.49 (5H) and 5.14 (1H) ppm for the cyclopentadienyl ligand and the vinylidene 

proton respectively. The aromatic region of the 
1
H NMR spectrum was complex and 

therefore the pyridine ligand resonances that were identified according to integrations at 

different times within the NMR spectrum were observed at 7.57 (1H) and 8.25 (2H) 

ppm for the C-4 and C-2/6 protons on the coordinated pyridine ligand respectively. The 

31
P{

1
H} NMR spectrum exhibited a triphenylphosphine ligand peak at 51.7 ppm.  

5.2.2.3 Observations for 20
F 

The reaction mixture contained resonances that were similar to those observed for 20
H

. 

The 
1
H NMR spectrum exhibited a cyclopentadienyl resonance at 5.09 ppm, and the 

31
P{

1
H} NMR spectrum displayed a peak at 29.9 ppm for a triphenylphosphine ligand. 

The information gathered from the previous study from the addition of phenylacetylene 

to 10
H

 in d2-dichloromethane was used to determine the species present in this reaction 

mixture.  

5.2.2.4 Observations for 21
H,F 

Characterisation of 21
H,F

 was based on the previous reaction between 10
H

 and 

phenylacetylene. The resonances that were observed in the NMR spectra for 21
H,F

 were 

at a similar chemical shift for 21
H,H

. The 
1
H NMR spectrum displayed the 

cyclopentadienyl ligand with a resonance at 4.57 ppm, and the 
31

P{
1
H} NMR spectrum 

displayed a peak at 47.7 ppm for a triphenylphosphine ligand.  
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5.2.2.5 Observations for 22
H,F 

The formation of 22
H,F 

in the reaction mixture was observed to increase in intensity 

when resonances belonging to 19
H,C6H4-4-F

 began to decrease. In the 
1
H NMR spectrum 

peaks at 3.62 ppm (broad dd, 
3
JHP = 10.7 Hz, 

3
JHP = 8.2 Hz), 6.66 (doublet, 

3
JHP = 8.2 

Hz) and 4.95 ppm (singlet) ppm were observed for the two alkene protons and the 

cyclopentadienyl ligand respectively. A resonance in the 
31

P{
1
H} NMR spectrum at 

53.6 ppm for the coordinated triphenylphosphine ligand of 22
H,F

 was observed.  

Crystals suitable for X-ray diffraction of 22
H,F 

were obtained by the slow diffusion of 

pentane into the reaction mixture (Figure 5.6, Table 5.4). The organic fragment of the 

molecule contained a C-H functionalised pyridine molecule, where the nitrogen atom 

had formed a bond with a carbon atom of the alkyne molecule to yield a pyridylidene-

alkene species. The geometry of the ruthenium complex could be described as a 

distorted octahedral, where the C(6)-Ru(1)-C(12), C(6)-Ru(1)-P(1) and C(12)-Ru(1)-

P(1) bond angles were 84.44(8), 90.23(6) and 88.18(5) ° respectively. The alkene bond 

C(25)-C(26) had a bond length of 1.413(3) Å, which was significantly shorter than the 

adjacent bonds C(11)-N(1) and C(13)-C(12) of 1.449(3) and 1.474(3) Å respectively. 

The C(6)-N(1) bond length was 1.352(3) Å, which was shorter than C(7)-C(6) bond 

length of 1.409(3) Å. The P(1)-Ru(1) bond length was found to be 2.3317(5) Å.  

 

Figure 5.6: X-Seed diagram of [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-C5H4NCH=CH(C6H4-4-F)]

+
 from 

complex 22
H,F

. Selected hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have 

been omitted for clarity, and where shown the thermal ellipsoids are at a 50 % probability level. 

The dichloromethane molecule was disordered over two positions in a ratio of 0.543:0.457(15). 
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 Bond lengths (Å)  Bond angles (°) 

C(1)-Ru(1)  2.224(2) C(6)-Ru(1)-C(11) 64.06(8) 

C(5)-Ru(1)  2.216(2) C(6)-N(1)-C(11) 104.53(16) 

C(4)-Ru(1)  2.250(2) N(1)-C(11)-Ru(1) 91.97(13) 

C(3)-Ru(1)  2.247(2) N(1)-C(6)-Ru(1) 99.39(13) 

C(2)-Ru(1)  2.2605(19) C(6)-Ru(1)-C(12)  84.44(8) 

C(6)-Ru(1) 2.0384(19) C(12)-C(11)-N(1)  118.16(17) 

C(6)-N(1) 1.352(3) C(11)-C(12)-C(13)  121.62(18) 

C(10)-N(1)  1.355(3) C(6)-Ru(1)-P(1)  90.23(6) 

C(10)-C(9) 1.370(4) C(11)-Ru(1)-P(1)  117.79(6) 

C(9)-C(8)  1.399(4) C(12)-Ru(1)-P(1)  88.18(5) 

C(8)-C(7)  1.379(3) N(1)-C(6)-C(7)  115.59(19) 

C(6)-C(7)  1.409(3) C(8)-C(7)-C(6)  119.5(2) 

C(11)-Ru(1) 2.137(2) C(7)-C(8)-C(9)  121.6(2) 

C(11)-N(1) 1.449(3) C(10)-C(9)-C(8)  118.7(2) 

C(12)-C(11) 1.413(3) N(1)-C(10)-C(9)  117.6(2) 

C(12)-Ru(1) 2.247(2) C(6)-N(1)-C(10)  127.0(2) 

C(12)-C(13)  1.474(3)   

P(1)-Ru(1) 2.3317(5)   

Table 5.4: Selected bond lengths (Å) and angles (°) for complex 22
H,F

.   

5.2.2.6 Summary 

From screening the stoichiometric reaction between 1-ethynyl-4-fluorobenzene and 10
H

 

we have observed the same number of ruthenium-containing complexes from the 

reaction of 10
H

 and phenylacetylene.  The presence of 20
H

 can be excluded from the 

reaction mixture by addition of excess pyridine, however due to the difficult separation 

of complexes 21
H,F

 and 22
H,F

, a decision was made to investigate the effects of 

alternative substituents on the phenyl ring of the terminal alkynes.  
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5.2.3 Reaction between complex 10
H

 with 4-ethynyl-α,α,α-trifluorotoluene 

The effect of the trifluoromethyl substituent in the 4-position of the phenyl ring with 

10
H

 was investigated. The presence of additional fluorine atoms will mean a stronger 

electron-withdrawing effect through induction. The Hammett substituent effects for a 

para trifluoromethyl group was stated as +0.54. This value is significantly larger than 

for a para fluorine (+0.06).
292-295

 A change in reactivity is therefore possible with 

respect to the previous examples of phenylacetylene and 1-ethynyl-4-fluorobenzene.  

 

       19
H,C6H4-4-CF3

          22
H,CF3

 

Scheme 5.6: Reaction of 10
H
 with 4-ethynyl-α,α,α-trifluorobenzene, where Ar = C6H4-4-CF3.  

The stoichiometric addition of 4-ethynyl-α,α,α-trifluorobenzene to 10
H

 in the presence 

of two equivalents of pyridine in a d2-dichloromethane solution was monitored by NMR 

spectroscopy (Scheme 5.6). The initial NMR spectra exhibited a set of resonances for a 

major ruthenium-containing complex 19
H,C6H4-4-CF3

; this species was an intermediate 

and reacted further to give resonances for a new ruthenium-containing complex 22
H,CF3

. 

This reaction was the most selective as the excess pyridine in the reaction mixture had 

prevented the formation of the π-allyl carbene complex 20 and the presence of the 

trifluoromethyl group on the phenyl ring of the terminal alkyne appeared to inhibit the 

formation of the pyridinium η
3
-butadienyl species 21.  

5.2.3.1 Identification of 19
H,C6H4-4-CF3

  

The intermediate 19
H,C6H4-4-CF3

 was observed via NMR spectroscopy. The 
1
H NMR 

spectrum exhibited peaks at 5.17 and 5.53 ppm with integration values of 1H and 5H 

respectively, which were assigned to the vinylidene ligand proton and the 

cyclopentadienyl ligand respectively. In addition, in the aromatic region resonances 

were exhibited at 6.99 (2H), 7.57 (1H) and 8.36 (2H) ppm for a coordinated pyridine 

ligand. The 
31

P{
1
H} NMR spectrum displayed a broad singlet at 51.0 ppm for the 

triphenylphosphine ligand of the intermediate species.  

10
H
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Interestingly, the 4-trifluoromethyl group has promoted the formation of 19
H,C6H4-4-CF3

 

as this is the major species over several days and therefore the trifluoromethyl group 

appears to stabilise the vinylidene-containing intermediate. The equivalent reaction 

carried out with phenylacetylene displayed the largest quantity of the vinylidene-

containing species 19
H,Ph

 was after initial addition and after one day the concentration 

of the vinylidene species had decreased in solution.  

5.2.3.2 Identification of 22
H,CF3 

The complex 22
H,CF3

 was the major ruthenium-containing complex at the end of the 

reaction, and was isolated via the slow diffusion of pentane or hexane into a 

dichloromethane layer containing 22
H,CF3

, and the product was isolated as pale yellow 

crystals.  

The 
1
H NMR spectrum of 22

H,CF3
 exhibited resonances at 4.99 (s), 3.60 (dd, 

3
JHP = 11.4 

Hz, 
3
JHH = 7.9 Hz) and 6.77 (d, 

3
JHH = 7.9 Hz) ppm, with integrations of 5H, 1H and 

1H, for the cyclopentadienyl ligand and the two alkene protons respectively. The 

aromatic region of the 
1
H NMR spectrum displayed sharp and broad resonances, where 

the sharper peaks were due to the pyridylidene fragment C5H4NCH=CHC6H4-4-CF3. 

The 
1
H NMR spectrum displayed four resonances at 8.00, 7.37, 7.12 and 7.08 ppm 

which were found to couple to each other through a 2D
 1

H-
1
H COSY experiment. In the 

1
H NMR spectrum the broad peaks in the aromatic region were due to the phenyl rings 

of the triphenylphosphine ligand. The 
31

P{
1
H} NMR spectrum exhibited a singlet peak 

at 52.8 ppm for the triphenylphosphine ligand. A 
13

C{
1
H} NMR spectrum displayed a 

doublet at 179.6 ppm with a 
2
JCP of 19 Hz, this suggested a Ru-C bond was present 

within this structure. A set of 2D 
1
H-

13
C HMQC and HSQC experiments demonstrated 

that the peak at 179.6 ppm was part of the nitrogen heterocycle, therefore indicating a 

C-H bond had been functionalised. The 
13

C{
1
H} NMR spectrum also exhibited quartet 

peaks due to the CF3 substituent where a 
1
JCF of 272 Hz was observed at 124.5 ppm.  

A high resolution ESI-MS of 22
H,CF3

 exhibited a m/z peak a 678.1135 which had a 

ruthenium isotope pattern was equivalent to [C37H30NF3PRu]
+
, and a fragment with a 

m/z of 250.0832 was observed for the organic fragment [C14H11F3N]
+
. Elemental 

analysis of the resulting pale yellow crystals were found to be accurate within an error 

of 0.3 %, when containing half a molecule of dichloromethane.  

A low variable temperature 
1
H and 

31
P{

1
H} NMR experiment was conducted on 22

H,CF3
 

in d2-dichloromethane (Figure 5.7). The 
31

P{
1
H} NMR spectra for the 
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triphenylphosphine resonance at low temperatures did not exhibit any changes. The 
1
H 

NMR spectra displayed broadening of the resonances until 280 K, and below this 

temperature the peaks began to get sharper. The 
1
H NMR spectra in the aromatic region 

displayed that the triphenylphosphine ligand had an individual environment for each of 

the phenyl groups. This is due to restricted rotation of the triphenylphosphine ligand at 

the ruthenium centre in solution on the NMR timescale.  

 

Figure 5.7: Low variable temperature 
1
H NMR spectra of 22

H,CF3
 at 300 K, 280 K, 260 K, 240 K 

and 220 K. 

Pale yellow crystals of 22
H,CF3

 suitable for X-ray diffraction were obtained by the slow 

diffusion of pentane into a dichloromethane solution of 22
H,CF3

. The structure of 22
H,CF3

 

revealed that the pyridine molecule had undergone a C-H functionalisation reaction to 

give a pyridylidene ligand. The cation of 22
H,CF3

 was a distorted octahedron, where the 

bond angles C(6)-Ru(1)-C(12), C(6)-Ru(1)-P(1) and C(12)-Ru(1)-P(1) were 83.61(10), 

88.60(7) and 85.76(7) ° respectively. The C(6)-Ru(1) bond length was 2.029(3) Å, 

which is consistent with literature for a pyridylidene ligand (Section 6.14). The Ru-C 

bonds to the alkene functional group, C(11)-Ru(1) and C(12)-Ru(1) were 2.127(3) and 

2.245(3) Å respectively (Section 5.2.1.5). The bond length of C(11)-C(12) was 1.411(4) 

Å which is consistent for a C=C bond.
298

 A P(1)-Ru(1) bond length of 2.3365(7) Å was 

found.  

6.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.98.08.1 ppm 3.53.6 ppm

220 K 

240 K 

260 K 

280 K  

300 K 
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Figure 5.8: X-Seed diagram of [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-C5H4NCH=CH(C6H4-4-CF3)]

+
 from 

complex 22
H,CF3

. Selected hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have 

been omitted for clarity, and where shown the thermal ellipsoids are at a 50 % probability level.  
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 Bond lengths (Å)  Bond angles (°) 

C(4)-Ru(1)  2.295(3) C(6)-Ru(1)-C(11) 64.36(11) 

C(3)-Ru(1)  2.243(3) C(6)-N(1)-C(11) 103.5(2) 

C(2)-Ru(1)  2.203(3) N(1)-C(6)-Ru(1) 99.72(18) 

C(1)-Ru(1)  2.212(3) N(1)-C(11)-Ru(1) 92.25(16) 

C(5)-Ru(1)  2.253(3) C(6)-Ru(1)-C(12) 83.61(10) 

C(6)-Ru(1) 2.029(3) C(6)-Ru(1)-P(1)  88.60(7) 

C(6)-N(1) 1.360(3) C(11)-Ru(1)-P(1)  115.80(8) 

C(10)-N(1)  1.353(3) C(12)-Ru(1)-P(1)  85.76(7) 

C(10)-C(9) 1.367(4) C(12)-C(11)-N(1)  116.9(2) 

C(9)-C(8)  1.405(4) C(11)-C(12)-C(13)  122.9(2) 

C(8)-C(7)  1.380(4) C(10)-N(1)-C(6)  126.6(2) 

C(6)-C(7)  1.401(4) N(1)-C(10)-C(9)  117.6(3) 

C(11)-N(1) 1.459(3) C(10)-C(9)-C(8)  119.1(3) 

C(11)-Ru(1) 2.127(3) C(7)-C(8)-C(9)  121.2(3) 

C(12)-C(11) 1.411(4) C(8)-C(7)-C(6)  119.6(3) 

C(12)-Ru(1) 2.245(3) N(1)-C(6)-C(7)  115.9(2) 

C(12)-C(13)  1.474(4)   

P(1)-Ru(1) 2.3365(7)   

Table 5.5: Selected bond lengths (Å) and angles (°) for complex 22
H,CF3

.   

 

5.2.3.3 Deprotonation of 22
H,CF3

  

The properties of isolated 22
H,CF3 

in d5-pyridine was investigated, as the ruthenium-

containing species contained an isomer of the 2-styrylpyridine derivative. The 

behaviour of 22
H,CF3 

in d5-pyridine would therefore give information on the role of the 

ruthenium centre in the reaction medium of the catalytic cycle (pyridine).  

 

     22
H,CF3

            23
H,CF3

 

Scheme 5.7: Addition of d5-pyridine to 22
H,CF3

, where Ar = C6H4-4-CF3. 

The complex 22
H,CF3 

was placed in d5-pyridine, and the pale yellow product changed to 

a deep red solution indicative for the formation of 23
H,CF3

. The reaction was monitored 
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by NMR spectroscopy. The 
1
H NMR spectrum of the species indicated that a new 

ruthenium species was present in the reaction mixture, as the alkene resonances for 

22
H,CF3 

were absent. In the 
1
H NMR spectrum a broad resonance at 17.4 ppm was 

observed, which is characteristic of [H-NC5H5]
+
 and a 2D

 1
H-

1
H COSY NMR 

experiment displayed that this peak did not couple to any of the resonances belonging to 

the new ruthenium complex. The integration of the remaining resonances in the 
1
H 

NMR spectrum of the new ruthenium species in the sample suggested that there was 

one fewer proton present. In the 
1
H NMR spectrum, the four protons belonging to the 

pyridylidene ligand were exhibited at 8.36, 8.09, 6.61 and 6.56 ppm, each with an 

integration of 1H with respect to the cyclopentadienyl ligand at 4.98 ppm (5H). Also, in 

the 
1
H NMR spectrum the peaks for the phenyl groups of the triphenylphosphine ligand 

were sharp, suggesting there was no longer restricted rotation of the triphenylphosphine 

ligand around the Ru-P bond on the NMR timescale.  The 
31

P{
1
H} NMR spectrum of 

the reaction mixture displayed two sets of peaks at -142.8 and 60.4 ppm as a septet and 

a singlet for the [PF6]
-
 anion and the triphenylphosphine ligand respectively. A 

13
C{

1
H} 

NMR spectrum exhibited two doublets at 190.8 and 219.4 ppm with a 
2
JCP of 13.2 and 

15.6 Hz; this could be attributed to two Ru-C bonds in 23
H,CF3

. The NMR data for 

23
H,CF3

 suggested the d5-pyridine had acted as base to deprotonate 22
H,CF3

, the proton 

had been abstracted from the alkene functional group to yield the metallacyclic species,  

23
H,CF3

.  

Attempts were made to deprotonate 22
H,CF3

 in a dichloromethane solution using the 

base, NaN(SiMe3)2. The crude reaction mixture included resonances belonging to 

23
H,CF3

, however there were also unidentified ruthenium-containing species present.  

 

        22
H,CF3

                    23
H,CF3

 

Scheme 5.8: Deprotonation of 22
H,CF3

 with DABCO in dichloromethane, where Ar = C6H4-4-

CF3. 

A more successful route involved the stoichiometric addition of DABCO to 22
H,CF3

 in 

dichloromethane, and resulted in a clean reaction to produce only one ruthenium-

containing complex, 23
H,CF3

. The red product was extracted with pentane, the solvent 
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was reduced and stored at -20 °C. Crystals of 23
H,CF3

 were obtained under these 

conditions. Complex 23
H,CF3

 was placed in d2-dichloromethane as the d5-pyridine 

resonances in the aromatic region made it difficult to fully assign all the peaks 

belonging to 23
H,CF3

. However, differences were observed in the NMR spectra from 

changing the NMR solvent. The 
1
H NMR spectrum was similar to the sample of 23

H,CF3
 

in d5-pyridine and was consistent with the loss of a proton from 22
H,CF3

. A 
1
H{

31
P} 

NMR experiment revealed a broad singlet at 6.93 ppm, with a 1H integration with 

respect to the cyclopentadienyl ligand resonance. This peak was assigned as the proton 

on the metallacycle. Interestingly, the 
31

P{
1
H} NMR spectrum of 23

H,CF3
 in d2-

dichloromethane displayed only one broad peak at 61.2 ppm for the triphenylphosphine 

ligand of 23
H,CF3

. This was different from the sharp peak observed for 23
H,CF3

 in d5-

pyridine, and could potentially be due to the slightly acidic nature of the d2-

dichloromethane solvent, which therefore causes an equilibrium between the 

deprotonated species 23
H,CF3

 and the protonated version 22
H,CF3

 in solution. This was 

also observed in the 
13

C{
1
H} NMR spectrum, as the two quaternary carbon atoms at 

190.2 and 219.3 ppm were broad. Unfortunately, one of the carbon atoms in the 

metallacycle (-Ru-C-CH-N-C-) could not be observed in the 
13

C{
1
H} NMR spectrum. A 

range of NMR experiments (DEPT 135, 
1
H-

13
C HSQC, 

1
H-

13
C HMBC and a 

quantitative 
13

C{
1
H} NMR spectra) did not exhibit any conclusive information on the 

chemical shift of this carbon atom. The carbon atom in the metallacycle -Ru-C-CH-N-

C- could have been broad due to an equilibrium existing in the d2-dichloromethane 

solution. An elemental analysis of 23
H,CF3

 was within a 0.3 % error, and consistent with 

other spectroscopic data that a deprotonation reaction had occurred.  

Red crystals of 23
H,CF3

 suitable for X-ray diffraction were grown from a pentane 

solution at -16 °C and displayed that a second C-H functionalisation reaction had 

occurred at the alkene functional group of 22
H,CF3

, to yield a five-membered 

metallacyclic species, 1-ruthanaindolizine. The geometry of 23
H,CF3

 can be described as 

distorted octahedral, where the bond angles of C(6)-Ru(1)-P(1), C(12)-Ru(1)-P(1) and 

C(6)-Ru(1)-C(12) are 86.20(6), 92.32(6) and 77.76(9) ° respectively, where the smallest 

bond angle was due to the metallacyclic ligand. The adjacent bond angles for the 

metallacycle were wider, where C(11)-C(12)-Ru(1) and N(1)-C(6)-Ru(1) had similar 

bond angles of 116.83(16) and 116.90(15) ° respectively. The Ru-C bond lengths C(6)-

Ru(1) and C(12)-Ru(1) for the C-H functionalised carbon atoms were 1.996(2) and 

2.046(2) Å respectively (Section 6.14). The pyridylidene ligand displayed significantly 
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different bond lengths around the ring, as the C(6)-C(7) and C(8)-C(9) were found to be 

significantly longer than the adjacent bonds C(6)-N(1), C(7)-C(8) and C(9)-C(10). The 

Ru-C cyclopentadienyl ligand bond lengths ranged from 2.231(2) to 2.274(2) Å and the 

P(1)-Ru(1) bond length was 2.2791(5) Å.  

 

 

Figure 5.9: X-Seed diagram of complex 23
H,CF3

. Selected hydrogen atoms and a pentane 

molecule have been omitted for clarity, and where shown the thermal ellipsoids are at a 50 % 

probability level.   
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 Bond lengths (Å)  Bond angles (°) 

C(5)-Ru(1)  2.240(2) C(6)-Ru(1)-P(1)  86.20(6) 

C(1)-Ru(1)  2.284(2) C(12)-Ru(1)-P(1)  92.32(6) 

C(2)-Ru(1)  2.264(2) C(6)-Ru(1)-C(12)  77.76(9) 

C(3)-Ru(1)  2.274(2) C(11)-C(12)-Ru(1)  116.83(16) 

C(4)-Ru(1)  2.231(2) C(12)-C(11)-N(1)  114.8(2) 

C(6)-Ru(1)  1.996(2) C(6)-N(1)-C(11)  113.72(18) 

C(6)-N(1)  1.394(3) N(1)-C(6)-Ru(1)  116.90(15) 

C(11)-N(1)  1.415(3) N(1)-C(6)-C(7)  113.94(19) 

C(11)-C(12)  1.339(3) C(10)-N(1)-C(6)  124.2(2) 

C(12)-Ru(1)  2.046(2) C(9)-C(10)-N(1)  120.5(2) 

C(12)-C(13)  1.481(3) C(10)-C(9)-C(3)  118.9(2) 

C(10)-N(1)  1.368(3) C(7)-C(8)-C(9)  119.8(2) 

C(9)-C(10)  1.353(4) C(8)-C(7)-C(6)  122.5(2) 

C(8)-C(9)  1.406(4) N(1)-C(6)-C(7)  113.94(19) 

C(7)-C(8)  1.375(3)   

C(6)-C(7) 1.420(3)   

P(1)-Ru(1)  2.2791(5)   

Table 5.6: Selected bond lengths (Å) and angles (°) for complex 23
H,CF3

.   

 

5.2.3.4 Investigating the properties of 23
H,CF3

 

The properties of 23
H,CF3

 in d5-pyridine were investigated under two different reaction 

conditions:  

i) Heating 23
H,CF3

 at 50, 100 and 150 °C in the presence of a stoichiometric 

equivalent of a pyridinium hexafluorophosphate; 

ii) Heating 23
H,CF3

 at 50 and 100 °C in the absence of the pyridinium 

hexafluorophosphate. 

 

 

  23
H,CF3

 

Scheme 5.9: Reaction upon heating 23
H,CF3

 with [D5C5NH][PF6] in d5-pyridine at 150 °C. 
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Following reaction conditions i, the reaction mixture was heated at 50, 100 and 150 °C 

and the reaction followed by NMR spectroscopy. After heating the sample at 50 and 

100 °C over several days, the NMR spectra of the reaction mixture displayed very few 

changes. However, when the reaction mixture was heated at 150 °C the 
1
H NMR 

spectrum exhibited significant changes, including the reduction in the peaks for 23
H,CF3

. 

There was also a set of new resonances at 8.76 ppm for a  proton at the C-6 of the 

pyridine ring and at 8.00 ppm an alkene peak was observed for the organic species E-2-

(4-trifluoromethyl)styrylpyridine. The 
31

P{
1
H} NMR spectrum of the reaction mixture 

displayed the reduction in the resonance at 60.4 ppm and there was increase in intensity 

at -5.4 ppm for uncoordinated triphenylphosphine. Additionally, due to the high 

temperatures employed degradation of the [PF6]
-
 anion was observed as triplet 

resonances at -13.3 and -14.4 ppm with a JPF of 953 and 947 Hz coupling were observed 

respectively for several PF2 containing species. There was no evidence for the 

regeneration of 5 in the NMR spectra, however this may be due to the high temperatures 

employed and the absence of the non-coordinating anion, [PF6]
-
. 

The reaction conditions ii, involved heating 23
H,CF3

 in d5-pyridine in the absence of the 

pyridinium hexafluorophosphate at 50 and 100 °C. When heated at 50 °C, no changes 

were observed in the NMR spectra. However, when the sample was heated at 100 °C a 

set of resonances were observed for a new ruthenium-containing complex. The reaction 

however stopped at 50 % conversion. In the 
1
H NMR spectrum a cyclopentadienyl 

resonance was observed at 4.92 ppm and the 
31

P{
1
H} NMR spectrum exhibited peaks at 

58.9 and at -5.4 ppm for the triphenylphosphine ligand of a new ruthenium-containing 

complex and uncoordinated triphenylphosphine. Unfortunately, this species could not 

be identified. However resonances for the organic species E-2-(4-

trifluromethyl)styrylpyridine were not observed, therefore highlighting that pyridinium 

hexafluorophosphate is required in order for the C-C coupling reaction to occur 

.   
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5.3 Reactivity of complex 5 with alkynes 

To gain further mechanistic insight into the formation of complexes 22
R1,R2

 a deuterium 

labelling study was carried out. In order to study the location of the C-H functionalised 

proton from the pyridine moiety in complexes 22
R1,R2

 a reaction was designed involving 

stoichiometric addition of either phenylacetylene or 4-ethynyl-α,α,α-trifluorobenzene to 

5 in the presence of two equivalents of d5-pyridine in a d2-dichloromethane solution and 

the reaction was monitored via NMR spectroscopy.  

5.3.1 Reaction between complex 5 with phenylacetylene 

 

   5            d5-19
D,H 

     d5-21
D,H

  

 

 d5-22
D,H

 

Scheme 5.10: Stoichiometric reaction of 5 with phenylacetylene in the presence of two 

equivalents of d5-pyridine. 

The stoichiometric addition of phenylacetylene to 5 and two equivalents of d5-pyridine 

in a d2-dichloromethane solution was monitored via NMR spectroscopy (Scheme 5.10). 

The initial NMR spectra of the reaction mixture displayed resonances belonging to the 

vinylidene-containing species d5-19
D,H

, where the 
1
H NMR spectrum exhibited broad 

peaks at 5.48 and 5.15 ppm for the cyclopentadienyl protons and the vinylidene proton 

respectively. The pyridine resonances were not observed due to deuteration. The 

31
P{

1
H} spectrum displayed a broad resonance at 51.9 ppm for the triphenylphosphine 

ligand.  



198 

Chapter 5 

After 24 hours the reaction mixture displayed resonances for the deuterated complex d5-

22
D,H

. In the 
1
H NMR spectrum at 4.95 ppm the cyclopentadienyl resonance was 

observed. The alkene resonances were of particular interest as these would reveal where 

the deuterium atom was incorporated. The species 22
H,H

 exhibited the alkene peaks at 

3.65 ppm (apparent t, 1H, 
3
JHH, 

3
JHP = 9.5 Hz) and at 6.63 ppm (d, 1H, 

3
JHH  = 7.8 Hz). 

The 
1
H NMR spectrum of d5-22

D,H
 from the deuterium labelling study exhibited a broad 

doublet peak at 3.65 ppm and the peak at 6.63 ppm was absent, which suggested 

deuterium incorporation has occurred at the resonance at 6.63 ppm. At this point, these 

data demonstrated that A was the species formed (Figure 5.10). A 
1
H{

31
P} NMR 

experiment revealed that the peak at 3.65 ppm decoupled to a broad singlet. The 

31
P{

1
H} NMR spectrum displayed the triphenylphosphine resonance at 53.7 ppm.  

The 
1
H NMR spectrum recorded after 5 days exhibited a doublet resonance at 6.68 ppm. 

A 
1
H-

1
H 2D COSY experiment revealed that this peak coupled strongly to the other 

alkene resonance at 3.65 ppm. The chemical shift of the alkene proton at 6.68 ppm was 

shifted slightly downfield and integration of this peak was difficult due to a noisy 

baseline. However, from these observations it is possible to conclude that over time 

deuterium scrambling was occurring. After 5 days, in the 
31

P{
1
H} NMR spectrum the 

resonance at 53.7 ppm had a shoulder, which could be due to similar species, but with 

different amounts of deuterium incorporation.  

 

 A   B   C   D 

        d5-22
D,H 

             d5-22
D,H   

      d4-22
D,H   

      d6-22
D,H

 

Figure 5.10: Potential isotopomers that could exist due to deuterium scrambling.  

After leaving the reaction mixture for 7 days, the NMR spectra became increasingly 

noisy. This made integration of the peaks difficult as many new ruthenium-containing 

species that had not been observed previously were now present (Figure 5.10).   
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5.3.2 Reaction between complex 5 with 4-ethynyl-α,α,α-trifluorotoluene 

Since the reaction between 5 and phenylacetylene gave many ruthenium-containing 

species making it difficult to integrate the alkene resonances. The reaction of 5 with 4-

ethynyl-α,α,α-trifluorotoluene was investigated. The reaction of 10
H

 and 4-ethynyl-

α,α,α-trifluorotoluene was more selective as it yielded one major species, 22
H,CF3

 and 

would hopefully give more details on the formation of 22
H,CF3

.  

 

     5 

 

               d5-19
D,C6H4-4-CF3

  

 

E   F   G   H 

        d5-22
D,CF3 

     d5-22
D,CF3   

      d4-22
D,CF3   

      d6-22
D,CF3

 

Scheme 5.11: Stoichiometric reaction of 5 with 4-ethynyl-α,α,α-trifluorotoluene in the presence 

of two equivalents of d5-pyridine. 
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The stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 5 in the presence of 

two equivalents of d5-pyridine in a d2-dichloromethane solution was monitored via 

NMR spectroscopy. The initial 
1
H NMR spectrum after the addition of 4-ethynyl-α,α,α-

trifluorobenzene exhibited broad resonances for the vinylidene-containing complex d5-

19
D,CF3

 at 5.51 and 5.17 ppm for the cyclopentadienyl ligand and the vinylidene proton 

on the β-carbon atom respectively. This was consistent with the reaction of 10
H

 and 4-

ethynyl-α,α,α-trifluorotoluene in d2-dichloromethane. 

After 24 hours, the 
1
H NMR spectrum displayed resonances for the C-H functionalised 

species 22
D,CF3

 at 4.98 and 3.60 ppm in the cyclopentadienyl and alkene region 

respectively. Interestingly, these resonances had a more complicated multiplicity, as the 

cyclopentadienyl peak at 4.98 ppm appeared to have three peaks at this chemical shift, 

suggesting three ruthenium isotopomers E, G and H were present in the reaction 

mixture. The ratio of these complexes could not be determined as the resonances of the 

isotopomers overlapped. This was also observed at 3.60 ppm where the multiplicity 

could be reported to be an apparent doublet of triplets. However, this was actually due 

to two distinct alkene peaks; where one of these peaks was a doublet of doublets (
3
JHP = 

11.4 Hz, 
3
JHH = 7.9 Hz) for G, and the other was a doublet (

3
JHP = 11.4 Hz) for E. The 

1
H NMR spectrum also exhibited a doublet peak at 6.77 ppm (

3
JHH = 7.9 Hz) due to the 

one of the alkene protons of G. The doublet at 3.60 ppm was assigned to the isotopomer 

E, where the other alkene resonance was deuterated and therefore was absent. As there 

were three isotopic isomers present in the reaction mixture and two of these have been 

observed in the 
1
H NMR spectrum, it is possible that the third species has double 

deuterium incorporation at the alkene bond for H, and is consistent with the absence of 

any other alkene resonances in the 
1
H NMR spectrum. In the 

31
P{

1
H} NMR spectrum a 

peak at 53.0 ppm  was observed for the triphenylphosphine ligand, where the peak 

appeared to have a shoulder for  the isotopic isomers of 22
D,CF3

.  

 As the reaction proceeded over several weeks, deuterium scrambling occurred in the 

reaction mixture and the ratio of the isotopomers changed.  This was observed in the 

31
P{

1
H} NMR spectrum as shoulder of the resonance at 53.0 ppm began to increase in 

intensity until both peaks were of equal intensity. Also in the 
1
H NMR spectrum the 

integrations changed over time if all the cyclopentadienyl ligand resonances at 4.98 ppm 

were integrated as 5H and compared with the alkene peaks at 3.60 ppm. After 24 hours 

the resonance at 3.60 ppm integrated to 0.7 H, and after 16 days the integration was 0.5 

H with respect to the cyclopentadienyl ligand. These observations are consistent with 
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deuterium scrambling occurring over time.
178

 Unfortunately, due to deuterium 

scrambling and difficulties in obtaining single integration values the kinetic isotope 

effect has not been determined.  

A high resolution ESI-MS of the reaction mixture after 16 days provided information on 

the deuterium incorporated complexes. A peak with a m/z of 683.1443 was observed, 

but the ruthenium isotope pattern was not consistent with one single complex. This was 

interpreted as three different ruthenium complexes which differed in the amount of 

deuterium atoms incorporated, where the highest m/z peaks were observed at 682.1423, 

683.1443 and 684.1443 for the cationic fragments of [C37H26D4F3NPRu]
+
, 

[C37H25D5F3NPRu]
+
 and [C37H24D6F3NPRu]

+
 respectively. These data are not 

conclusive, as ruthenium contains many isotopes which can distort the shape of the 

isotope pattern observed. However, the fragmentation of these species were observed 

with m/z peaks of 254.1081, 255.1141 and 256.1196 for the organic fragments 

[C14H7D4F3N]
+
, [C14H6D5F3N]

+
 and [C14H5D6F3N]

+
 respectively. The differences 

between these m/z peaks were 1.0060 and 1.0055 respectively, which is consistent with 

changing the amount of deuterium atoms present in the structure. Therefore from the 

high resolution ESI-MS there are three different products present from the reaction 

between 5 and 4-ethynyl-α,α,α-trifluorotoluene; one of these is a complex where one 

deuterium atom has been incorporated at the alkene position (m/z peaks of 683.1443 and 

255.1141); the other being where both of the alkene sites contain a C-H bond (m/z peaks 

of 682.1423 and 254.10810; and the last species is where both alkene sites have a C-D 

bond (m/z peaks of 684.1443 and 256.1196). 

5.3.3 Summary of deuterium labelling studies 

The deuterium labelling studies have exhibited that initial deuterium incorporation 

occurred at the alkene carbon atom that was bonded to the nitrogen atom. Despite 

deuterium scrambling, the initial results are consistent with the formation of the 

pyridylidene-containing complex resulting from further reactivity of the vinylidene-

containing complex.  
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5.4 Conclusions 

The reactivity of the half-sandwich ruthenium complex 10
H

 has been investigated in a 

dichloromethane solution with various aryl terminal alkynes. The stoichiometric 

addition with phenylacetylene resulted in the formation of several ruthenium complexes 

(20
H

, 21
H,H

 and 22
H,H

). The reaction conditions were optimised to avoid the formation 

of 20
H

. The intermediate vinylidene-containing species 19
H,Ph

 reacted further to yield 

22
H,H

.  

The major ruthenium-containing species was 22
H,H

 which contained a pyridylidene 

ligand, where a C-H functionalisation had occurred at the 2-position of the N-containing 

heterocycle and the nitrogen atom was bound to a pendant alkene group. The 

stoichiometric reaction with 4-ethynyl-α,α,α-trifluorotoluene in the presence of two 

equivalents of pyridine resulted in a selective reaction to give the corroborating 

pyridylidene-containing complex 22
H,CF3

. The properties of the pyridylidene-containing 

complex were of interest as the pyridylidene-alkene fragments were isomers of the 

carbon-carbon coupled 2-styrylpyridine derivatives. There are few examples in the 

literature of parent pyridine yielding a pyridylidene complex, since the N-bound version 

is usually more stable. Carmona et al. reported the formation of a pyridylidene complex 

from pyridine using the species [Tp
Ms’’

Ir(N2)].
207

 Our studies therefore have exhibited 

quite a unique type of reactivity.  

A deprotonation reaction occurred upon the addition of 22
H,CF3

 to an excess of pyridine 

to yield a 1-ruthenaindolizine species, 23
H,CF3

 and pyridinium hexafluorophosphate. The 

reactivity of 23
H,CF3

 was probed by heating the reaction mixture. No changes were 

observed when the reaction mixture was heated at 50 and 100 °C. However, the 2-

styrylpyridine derivative was formed when higher reaction temperatures of 150 °C were 

employed. This suggested 23
H,CF3

 was a thermodynamic sink in the formation of the 2-

styrylpyridine compounds.  

A deuterium labelling study between 5 and the terminal alkynes phenylacetylene and 4-

ethynyl-α,α,α-trifluorotoluene in a dichloromethane solution resulted in the formation of 

the pyridylidene-containing complexes 22 via the vinylidene-containing complexes 19. 

Initial deuterium incorporation for 22 was observed at the alkene carbon atom which 

was bonded to the nitrogen atom. The findings were consistent the vinylidene-

containing complexes 19 being intermediates for the formation of 22. 
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Chapter 6. Reactivity of Half-Sandwich 

Ruthenium Complexes: Part II 

6.1 Introduction 

The reactivity exhibited by transition metal complexes can be tuned depending on the 

ligands present. The Hammett equation has been useful in determining trends in 

reaction rates and equilibria.
295

 The Hammett values were determined by analysis of 

substituted benzoic acids to give information on the electronic effects. The substituent 

constants reported have been extensively studied and methods developed to improve the 

accuracy.
292-295, 320

 By screening and understanding substituents effects, it is possible 

that more efficient catalytic systems may be developed.  

The previous chapter discussed the reactions of 10
H

 with aryl terminal alkynes 

(phenylacetylene, 1-ethynyl-4-fluorobenzene, 4-ethynyl-α,α,α-trifluorotoluene) in a 

dichloromethane solution, where one of the most characteristic products generated a 

ruthenium pyridylidene complexes. This chapter continues from the previous chapter to 

explore the role of substituent effects (alkynes, N-containing heterocycles and 

phosphorus ligands). Several aspects will be investigated:  

1. The reactivity of 10
H

 with alkyl and TMS-substituted alkynes.  

2. The reactivity of ruthenium complexes [Ru(η
5
-C5H5)(PPh3)(NC5H4R)2][PF6] with 

different N-containing heterocycles (4-methyl, 4-dimethylamino and 3-methyl) 

towards terminal alkynes.  

3. The reactivity of ruthenium complexes [Ru(η
5
-C5H5)(PR3)(NC5H5)2][PF6], 14

H
, 16 

and [Ru(η
5
-C5H5)(P

i
Pr3)(NC5H5)(NCMe)][PF6], 15  with different phosphorus 

ligands (trimethylphosphine, triisopropylphosphine and triphenylphosphite) towards 

terminal alkynes.  

4. The reactivity of [Ru(η
5
-C5H5)(PPh3)2(L)][PF6] (where L = NCMe, NC5H5) with 

phenylacetylene will be briefly discussed.  

5. The final section in this chapter will summarise the substituent effects with respect 

to the data (NMR and X-ray crystallography).   
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6.2 Reactivity of 10
H

 with alkyl- and TMS-substituted 

alkynes 

The reactivity of 10
H

 with alkyl and TMS-substituted alkynes in a dichloromethane 

solution was investigated and the reactions monitored using NMR spectroscopy. The 

role of the terminal alkyl substituents (tert-butyl, n-butyl) and the TMS-substituted 

alkynes (trimethylsilylacetylene, 1-phenyl-2-trimethylsilylacetylene) were determined.  

6.2.1 Reaction between complex 10
H

 with tert-butylacetylene 

The range of terminal alkynes was extended from aryl to alkyl substituents. The 

reactivity of tert-butylacetylene towards complex 10
H

 in d2-dichloromethane was 

investigated. Murakami and Hori have reported that the alkyne 
t
BuC≡CTMS does not 

undergo the alkenylation reaction with pyridine.
253

 By investigating the reaction 

between 10
H

 and tert-butylacetylene and observing any potential ruthenium complexes 

formed, it may provide further mechanistic insight into how the C-C bond formation 

reaction proceeds. Also, it would be of interest to observe if any similar ruthenium 

complexes observed in the reactions between 10
H

 and the aryl terminal alkynes are 

present with the alkyl substituents.  

The reaction of 10
H

 with tert-butylacetylene was investigated under different reaction 

conditions:  

i) Stoichiometric addition of tert-butylacetylene to 10
H

 in d2-dichloromethane; 

ii) Addition of five equivalents of tert-butylacetylene to 10
H

 in d2-

dichloromethane. 
 

 

    19
H,tBu

            2
tBu

 

Scheme 6.1: Addition of tert-butylacetylene to 10
H
.  

  

10
H
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The stoichiometric addition of tert-butylacetylene to 10
H

 was monitored using NMR 

spectroscopy (reaction conditions i, Scheme 6.1). The NMR spectra displayed a set of 

resonances for a new ruthenium species, and after 24 hours the reaction appeared to be 

in equilibrium between 10
H

, tert-butylacetylene and a new complex 19
H,tBu

 in a 1:1 

ratio. The 
1
H NMR spectrum still exhibited resonances for 10

H
 as the cyclopentadienyl 

protons at 4.42 ppm, and the protons at the C-2/6 positions on the coordinated pyridine 

ligands at 8.30 ppm were observed. In the 
1
H NMR spectrum the new ruthenium 

complex, 19
H,tBu

 exhibited a singlet resonance at 5.31 ppm and a doublet peak at 3.97 

ppm (
4
JHP = 3.0 Hz). A 

1
H{

31
P} NMR experiment revealed that the doublet resonance at 

3.97 ppm decoupled to a singlet, this is characteristic of the proton on the β-carbon atom 

of the vinylidene ligand. In addition, the 
1
H NMR spectrum the protons at the C-2/6 

positions of uncoordinated pyridine had resonances at 8.58 ppm with an integration of 

2H and the methyl groups of the tert-butyl group at 1.17 ppm had an integration of 9H 

relative to the resonance at 3.97 ppm of 1H. The 
31

P{
1
H} NMR spectrum of 19

H,tBu
 

exhibited a resonance for the triphenylphosphine ligand at 53.5 ppm (singlet). Based on 

the NMR spectra the new species in the reaction mixture was assigned as the ruthenium 

vinylidene-containing complex [Ru(η
5
-C5H5)(=C=CH

t
Bu)(PPh3)(NC5H5)][PF6], 19

H,tBu
.  

The reaction conditions were changed in order to try and change the equilibrium 

position to favour the formation of 19
H,tBu

 (reaction conditions ii). The addition of 

excess tert-butylacetylene (5 equivalents) to 10
H

 was monitored by NMR spectroscopy 

(Scheme 6.1). The reaction mixture initially displayed resonances for three ruthenium-

containing complexes, as in the 
31

P{
1
H} NMR spectrum peaks at 42.7, 50.2 and 53.5 

ppm were observed. These species were identified as complexes 10
H

, 19
H,tBu

 and 2
tBu

, 

where confirmation of 10
H

 and 2
tBu

 were supported by authentic samples. After heating 

the reaction mixture for 4 days, the major species present in the reaction mixture was 

2
tBu

, as the 
1
H NMR spectrum exhibited resonances at 5.11 ppm (singlet), and the 

proton on the β-carbon atom of the vinylidene ligand displayed a resonance at 4.24 ppm 

(triplet, 
4
JHP of 2.8 Hz) for 2

tBu
. The 

31
P{

1
H} NMR spectrum included a peak at 42.7 

ppm (singlet) for both triphenylphosphine ligands at the ruthenium centre of 2
tBu

. At 

this stage there still remained an excess of tert-butylacetylene in the reaction mixture.  

The behaviour of 19
H,tBu

 within the reaction mixture upon heating suggested that it is 

converted to the more thermodynamically stable complex, 2
tBu

. Attempts were made to 

purify and isolate the species 19
H,tBu

 via many different crystallisation methods. 
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Unfortunately none of these attempts were successful, and therefore there is limited data 

for 19
H,tBu

.  

The other reactions of 10
H

 with terminal alkynes results in the vinylidene species 

19
R1,R2

 that are short-lived intermediates. This data potentially supports the observations 

reported by Murakami and Hori, since they have reported that the tert-butyl substitent 

does not generate the alkenylation product. Since 19
H,tBu

 remains in solution and not 

reacting further with pyridine, it therefore indicates that the carbon-carbon bond 

formation reaction requires the vinylidene–containing intermediate to react further with 

pyridine.  

6.2.2 Reaction between complex 10
H

 with 1-hexyne 

The effect of changing the alkyl substituent of the terminal alkyne to a less sterically 

demanding substituent (n-butyl) was investigated. The reaction of 10
H

 with 1-hexyne 

was monitored via NMR spectroscopy. Several reaction conditions were investigated:  

i) Stoichiometric addition of 1-hexyne to 10
H

 in a d2-dichloromethane solution; 

ii) Stoichiometric addition of 1-hexyne to 10
H

 in the presence of two 

equivalents of pyridine in a d2-dichloromethane solution.  

 

            19
H,nBu     

        20
nBu

 

 

          22
H,nBu

    
 
       24 

Scheme 6.2: Reaction between 10
H
 and 1-hexyne in dichloromethane, reaction conditions i.  

10
H

 



207 

Chapter 6 

Following reaction conditions i, the initial NMR spectrum exhibited resonances for two 

new ruthenium complexes which have cautiously been assigned as 19
H,nBu

 and 20
nBu

, 

where 19
H,nBu

 was a short-lived intermediate. Once the reaction had gone to completion 

there were four new ruthenium complexes present in the reaction mixture (Scheme 6.2).  

Under reaction conditions ii, the reaction proceeded to give the same resonances that 

were observed under reaction conditions i, however different quantities of the species 

are formed. The reaction proceeded more slowly than the reaction without excess 

pyridine and therefore was heated at 50 °C for 16 hours. 

6.2.2.1 Identification of 19
H,nBu

  

Employing reaction conditions i, resonances were tentatively assigned as the 

vinylidene-containing complex 19
H,nBu

 were only observed in the initial NMR spectra 

and after 24 hours were no longer present. The initial 
31

P{
1
H} NMR spectrum exhibited 

a peak at 53.3 ppm for a triphenylphosphine ligand. In the 
1
H NMR spectrum a 

resonance for the cyclopentadienyl ligand could not be observed, as it is possible that 

this peak lies underneath the d2-dichlormethane resonance. The resonance at 5.32 ppm 

was integrated with respect to the grease peak at 0.8 ppm (as this remained constant) 

and after 24 hours the integration of yhis peak decreases in intensity. Additionally, the 

cyclopentadienyl ligand resonance for 19
H,tBu

 appeared at 5.31 ppm, which indicates 

that the cyclopentadienyl ligand of 19
H,nBu

 may be at a similar chemical shift. The 
1
H 

NMR spectrum exhibited a resonance at 4.21 ppm as a triplet of doublets, with coupling 

constants of 
3
JHH of 8.3 Hz and a 

4
JHP of 2.9 Hz for the vinylidene proton. A 

1
H{

31
P} 

NMR experiment revealed that the resonance at 4.21 ppm simplified to a triplet peak. If 

the complex 19
H,nBu

 was present in the reaction mixture, the vinylidene proton would be 

expected to have this multiplicity.  

6.2.2.2 Identification of 20
nBu

 and its further reactivity to give 24 

Under reaction conditions i, the initial NMR spectra exhibited major new resonances for 

a species which has cautiously been assigned as 20
H,nBu

. The 
1
H NMR spectrum 

displayed a peak at 4.97 ppm for the cyclopentadienyl ligand. The protons on the allyl 

backbone were observed at 4.78 (broad, 1H) and 5.30 (doublet) ppm with respect to the 

cyclopentadienyl ligand at 4.97 ppm (5H) for the =C-CH-C(
n
Bu)-CHPPh3 and =C-CH-

C(
n
Bu)-CHPPh3 protons respectively. Unfortunately the resonance at 5.30 ppm overlaps 

with the d2-dichloromethane peak and therefore integration of this peak was not 

possible, however a 
1
H{

31
P} NMR spectrum revealed that this peak decouples to a 
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singlet peak. The 
31

P{
1
H} NMR spectrum displayed a peak at 31.6 ppm for the 

triphenylphosphine ligand of 20
nBu

.  

After 24 hours the resonances for 20
nBu

 began to decrease in the NMR spectra and a 

new set of peaks were observed in the NMR spectra for 24. The 
1
H NMR spectrum 

exhibited a peak at 4.17 ppm (5H) for a new cyclopentadienyl resonance and a doublet 

resonances at 3.68 (1H, 
2
JHP = 14.0 Hz) and 4.05 (1H, 

4
JHH = 4.9 Hz) ppm for the allyl 

hydrogen atoms. The 
31

P{
1
H} NMR spectrum displayed a peak at 31.1 ppm for a new 

triphenylphosphine ligand, as 20
nBu

 converted to a new unidentified complex. The work 

reported by Kirchner et al. indicates a further C-H functionalisation reaction of 20
nBu

 

occurring at the phenyl ring of the triphenylphosphine ligand reaction of the π-allyl 

carbene complex to give the species [Ru(η
5
-C5H5)(η

4
-CH(

n
Bu)CHC(

n
Bu)CH-PPh2(η

1
-

C6H4))][PF6]  24 (Section 1.5.2). The resonances from the reaction mixture were 

compared with the literature data to confirm this assignment.
132, 138

  

When the reaction conditions ii were followed, the set of resonances belonging to the π-

allyl carbene complex reduced in intensity, suggesting that the excess pyridine in the 

reaction mixture was inhibiting the formation of this species due to the pyridine 

competing for a coordination site at the ruthenium centre. This is consistent with the 

findings in previous reactions of phenylacetylene with 10
H

 (Section 5.2).  

6.2.2.3 Identification of 22
H,nBu

  

From the reaction of 1-hexyne it is possible that 22
H,nBu

 is generated, however there is 

limited evidence for this compound and therefore should be considered cautiously. Over 

the course of 8 days, the 
31

P{
1
H} NMR spectrum exhibited a signal at 56.6 ppm which 

increased in intensity. A set of corresponding resonances in the 
1
H NMR spectrum 

became evident at 5.02 (s, 5H), 2.73 (1H, broad) and 5.82 (d, 1H, 
3
JHH = 7.8 Hz) ppm 

for a cyclopentadienyl ligand, and two alkene protons respectively. A 2D 
1
H-

1
H COSY 

NMR experiment exhibited a strong coupling between the resonances at 2.73 and 5.82 

ppm, which is consistent for two alkene protons. With reaction conditions ii, the major 

resonances observed were those that were assigned tentatively as 22
H,nBu

. 

6.2.2.4 Other unknown species 

Not all of the resonances in the NMR spectra have been assigned. Another major 

species was present in the reaction mixture after 5 days. The 
1
H NMR spectrum 

exhibited a cyclopentadienyl ligand peak at 4.29 ppm, and in the 
31

P{
1
H} NMR 
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spectrum a resonance at 35.8 ppm was observed for the corresponding 

triphenylphosphine ligand.  

 

6.2.3 Reaction between complex 10
H

 with TMS-substituted alkynes 

Murakami and Hori reported the carbon-carbon bond formation reactions of TMS-

substituted alkynes and pyridine with the pre-catalyst [Ru(η
5
-C5H5)Cl(PPh3)2], 1. They 

reported the  role of the TMS group was to prevent alkyne dimerisation.
253

 An 

investigation into the reactivity between 10
H

 and TMS-containing alkynes in d2-

dichloromethane was conducted.   

6.2.3.1 Reaction between 10
H 

and 1-phenyl-2-trimethylsilylacetylene 

The stoichiometric addition of 1-phenyl-2-trimethylsilylacetylene to complex 10
H

 in d2-

dichloromethane was monitored by NMR spectroscopy at room temperature for 6 days, 

followed subsequently by heating for 16 hours at 50 °C.  

 

        10
H

 

Scheme 6.3: Stoichiometric addition of 1-phenyl-2-trimethylsilylacetylene to 10
H
. 

Initial 
1
H and 

31
P{

1
H} NMR spectra were recorded within 30 minutes of alkyne addition 

and indicated the formation of three new ruthenium-containing species. The 
31

P{
1
H} 

NMR spectrum for the triphenylphosphine resonances of the three new complexes were 

observed at 43.4, 51.6 and 61.8 ppm The 
1
H NMR spectrum also displayed resonances 

at 4.42 ppm for the cyclopentadienyl protons of 10
H

, and the TMS group of the alkyne 

at 0.24 ppm.  

The 
31

P{
1
H} NMR spectrum after 5 days demonstrated decomposition of the [PF6]

-
 

anion had occurred. A broad sextet resonance at -143.0 ppm with a 
1
JPF of 796 Hz was 

observed, which is due to a species containing a PF5 fragment. The 
1
H NMR spectrum 

in the TMS region displayed many unknown peaks. It is possible that a fluorine atom 

has been abstracted from the [PF6]
-
 anion by the silicon atom, due to a thermodynamic 
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driving force for the formation of a Si-F bond.
321-323

 The decomposition of the [PF6]
-
 

anion indicated that this was not a suitable anion for this reaction.  

After 5 days the 
31

P{
1
H} NMR spectrum the peak at 61.8 ppm was no longer observed 

and a new resonance at 40.3 ppm began to increase in intensity. The 
1
H NMR spectrum 

had a corroborating cyclopentadienyl resonance at 4.10 ppm. This new complex was 

assigned as the species [Ru(η
5
-C5H5)Cl(PPh3)2], 1. The unknown ruthenium species in 

the reaction mixture were unstable in nature with respect to 1 and therefore a chloride 

atom could have been abstracted from the d2-dichloromethane solvent, to give 1 which 

is a more thermodynamically stable complex. Unfortunately the other ruthenium 

complexes present in the reaction mixture have not been identified.  

6.2.3.2 Reaction between complex 10
H

 with trimethylsilylactylene 

The addition of trimethylsilylacetylene to 10
H

 was investigated, as research by Kirchner 

et al. demonstrated that a vinylidene-containing complex [Ru(η
5
-C5H5)(=C=CHSiMe3) 

(PPh3)(NCMe)][PF6] was generated from a reaction between [Ru(η
5
-

C5H5)(PPh3)(NCMe)2][PF6], 9
Ph

 and trimethylsilylactylene. The vinylidene species they 

identified was not isolated, as during the work-up the product decomposed.
132

 

 

        10
H

 

Scheme 6.4: Stoichiometric addition of trimethylsilylacetylene to 10
H
. 

The stoichiometric reaction between 10
H 

and trimethylsilylactylene was carried out on 

an NMR scale at room temperature in d2-dichloromethane. 
1
H and 

31
P{

1
H} NMR 

spectra were recorded within one hour of alkyne addition. From the 
31

P{
1
H} NMR 

spectrum it appeared that four new phosphorus-containing products were present at 

54.9, 54.2, 52.7 and 31.3 ppm. In the 
1
H NMR spectrum in the cyclopentadienyl proton 

region there were new resonances at 5.35, 5.23, 5.03, and 4.85 ppm. Unfortunately, the 

resonances between the two spectra could not be correlated. Also, in the 
1
H NMR 

spectrum, uncoordinated pyridine was detected with resonances observed at 8.58, 7.68 

and 7.28 ppm. After 24 hours, all resonances observed after initial alkyne addition were 

no longer present and many were displaced by different resonances. In a similar fashion 
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to the reaction with 1-phenyl-2-trimethylsilylacetylene, the 
31

P{
1
H} NMR spectrum 

displayed a new resonance at -143.0 ppm (broad sextet, 
1
JPF = 796 Hz) for a species that 

contained a PF5 group. This was attributed to the formation of Si-F bonds, where the 

fluorine atoms are abstracted from the [PF6]
-
 anion.

321-323
  

This reaction gave a multitude of species, none of which could be identified. The 

presence of the TMS group and a [PF6]
-
 anion suggested that a different non-

coordinating anion is required to stabilise any potential ruthenium intermediates due to 

the formation of Si-F bonds. The further study of the TMS-substituted alkynes was 

therefore discontinued.    
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6.3 Reactivity of complex 10
Me

 with alkynes 

Previously, in this chapter the reactivity of bis-substituted pyridine complexes 10
H

 and 5 

(NC5H5 or NC5D5) with various alkynes has been described. This chapter will now 

progress on to substituent effects, and the following section will look at the reactivity of 

a different N-containing heterocycle, 4-methylpyridine. The ligand, 4-methylpyridine is 

a stronger nitrogen donor atom than pyridine due to the inductive effect of the methyl 

substituent, and this could change the reactivity towards the terminal alkynes 

phenylacetylene and 4-ethynyl-α,α,α-trifluorotoluene.  

6.3.1 Reaction between complex 10
Me

 with phenylacetylene 

The stoichiometric addition of phenylacetylene to 10
Me

 in d2-dichloromethane was 

monitored by NMR spectroscopy (Scheme 6.5). The initial NMR spectra were recorded 

after approximately 30 minutes to reveal resonances present for three new ruthenium-

containing complexes in the reaction mixture: a minor unknown species, 19
Me,Ph

 and 

20
H

. The minor unknown species and 19
Me,Ph

 were short-lived intermediates. After 24 

hours, the reaction mixture displayed peaks for an additional two new ruthenium-

containing complexes 21
Me,H

, 22
Me,H

. After five days 10
Me

 was still present in the 

reaction mixture, therefore a further aliquot of phenylacetylene was added to the 

reaction mixture to drive the reaction to completion. This reaction followed a very 

similar pattern to the stoichiometric reaction of phenylacetylene and 10
H

. In the 
1
H 

NMR spectrum, resonances for uncoordinated 4-methylpyridine were observed at 2.34 

(3H), 7.10 (2H) and 8.41 (2H) ppm and were assigned to the methyl group and protons 

at the C-3/5 and C-2/6 positions respectively. 
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                               19
Me,Ph

        20
H

          21
Me,H

 

 

                                 22
Me,H 

Scheme 6.5: Stoichiometric reaction between 10
Me

 and phenylacetylene in dichloromethane. 

6.3.1.1 Identification of the minor unknown species 

The minor unknown species was observed in the initial 
1
H and 

31
P{

1
H} NMR spectra, 

however spectra recorded after 24 hours did not display these resonances suggesting it 

was a short-lived species. The 
1
H NMR spectrum contained a resonance at 4.94 ppm for 

the cyclopentadienyl ligand. The 
31

P{
1
H} NMR spectrum exhibited a corresponding 

peak at 53.6 ppm for the triphenylphosphine ligand.  

6.3.1.2 Identification of complex 19
Me,Ph

  

The initial NMR spectra exhibited that the major new ruthenium-containing complex in 

the reaction mixture was 19
Me,Ph

. The 
1
H NMR spectrum exhibited broad peaks at 5.13 

and 5.47 ppm with integrations of 1H and 5H for the vinylidene ligand proton and the 

cyclopentadienyl ligand respectively. Additionally, the 
1
H NMR spectrum exhibited a 

set of resonances at 2.23 (s, 3H), 6.77 (d, 2H, 
3
JHH = 6.2 Hz) and 8.17 (d, 2H, 

3
JHH = 6.2 

Hz) ppm, which were assigned to the methyl group and the protons at the C-3/5 and C-

2/6 positions respectively, of a coordinated 4-methylpyridine ligand. The 
31

P{
1
H} NMR 

spectrum exhibited a broad singlet resonance at 51.9 ppm for the triphenylphosphine 

ligand.  

10
Me
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6.3.1.3 Identification and formation of 20
H

  

The identification of 20
H

 was confirmed through an independent reaction (Section 5.2). 

However, unlike the reaction of 10
H

 with phenylacetylene, this reaction was not 

complete within 30 minutes. The peaks belonging to 20
H

 continued to increase in 

intensity for 24 hours. This could be attributed to 4-methylpyridine containing a better 

donor atom than pyridine and therefore dissociation from ruthenium is less favourable.  

6.3.1.4 Identification of 21
Me,H

  

The presence of 21
Me,H

 in the reaction mixture was tentatively assigned based on the 

previous reaction of 10
H

 with phenylacetylene. The 
1
H NMR spectrum displayed a 

resonance at 4.54 ppm for the cyclopentadienyl ligand and the 
31

P{
1
H} NMR spectrum 

exhibited a singlet at 48.0 ppm for the triphenylphosphine ligand. These are similar 

chemical shifts to 21
H,H

 and therefore the assignment must be approached cautiously. 

This was a minor side-product from the reaction and therefore was not explored further.  

6.3.1.5 Identification of 22
Me,H

  

The major species present in the reaction mixture at the end of the reaction between 

10
Me

 and phenylacetylene was 22
Me,H

. The product was purified either via the slow 

diffusion of pentane in to the reaction mixture to afford pale yellow crystals or through 

the addition of DABCO to the crude reaction mixture to afford 23
Me,H

 which was 

extracted with pentane and then reprotonated using pyridinium hexafluorophosphate to 

yield a pale yellow precipitate (Scheme 6.6). The complex 22
Me,H

 was characterised 

fully using 
1
H NMR spectroscopy and high resolution ESI-MS. The 

31
P{

1
H} and 

13
C{

1
H} NMR spectra contained unknown impurities and the elemental analysis data 

presented was from one run.  

 

 22
Me,H

         23
Me,H

 

Scheme 6.6: Purification technique for complex 22
Me,H

.   

The 
1
H NMR spectrum of 22

Me,H
 in d2-dichloromethane, exhibited peaks at 4.92 

(singlet, 5H), 3.68 (multiplet, 1H) and 6.47 (doublet, 
3
JHH = 7.8 Hz) ppm  for the 

cyclopentadienyl ligand and the two alkene protons respectively. Additionally a methyl 

+ 21
Me,H

 

- 21
Me,H

 

22
Me,H
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resonance at 2.13 ppm (singlet, 3H) for 22
Me,H

 was observed, and other resonances 

originating from the 4-methylpyridine ligand were exhibited at 6.84 (multiplet, 2H) and 

7.72 (doublet, 1H, 
3
JHH = 6.4 Hz) ppm. The integrations suggested that there was one 

fewer proton on the N-containing heterocycle, which is consistent for a C-H 

functionalisation having occurred. The aromatic region of the 
1
H NMR spectrum 

contained broad peaks for the phenyl groups of the triphenylphosphine ligand (similar 

to 22
H,H

). The 
31

P{
1
H} NMR spectrum exhibited a major peak at 52.3 ppm for the 

triphenylphosphine ligand of 22
Me,H

. The 
13

C{
1
H} NMR spectrum contained impurities, 

however the relevant resonances belonging to 22
Me,H

 were identified with 2D 
1
H-

13
C 

HSQC and 
1
H-

13
C HMBC NMR experiments. The 

13
C{

1
H} NMR spectrum exhibited 

broad signals at 54.7 and 68.6 ppm for the alkene carbon atoms. Interestingly a doublet 

peak at 178.2 ppm with a 
2
JCP of 18.4 Hz was observed, and found to show a long range 

1
H-

13
C coupling to the methyl group at 2.13 ppm, suggesting a Ru-C bond was present 

in 22
Me,H

. This data supports the theory that a C-H functionalisation reaction has 

occurred. A high resolution ESI-MS on a pure sample of 22
Me,H

 displayed a ruthenium-

containing complex with a m/z of 624.1394 consistent with the cationic species of 

22
Me,H

. 

Crystals suitable for X-ray diffraction were obtained via the slow diffusion of pentane 

into a dichloromethane layer containing 22
Me,H 

(Figure 6.1, Table 6.1). The structure of 

22
Me,H

 was found to contain a C-H functionalised pyridine ring in the form of a 

pyridylidene ligand, where the nitrogen atom was coordinated to an alkene functional 

group which came from the phenylacetylene molecule. The bond angles at the 

ruthenium centre of 22
Me,H

 for C(6)-Ru(1)-P(1), C(12)-Ru(1)-P(1) and C(6)-Ru(1)-

C(12) were 90.79(5), 84.86(5) and 83.26(7) ° respectively, indicating that geometry 

could be described as a distorted octahedron. The C(6)-Ru(1) bond length to the 

pyridylidene fragment was 2.0183(19) Å. The coordination of the ruthenium centre to 

the alkene group was not equivalent, as the C(12)-Ru(1) and C(11)-Ru(1) bond lengths 

were 2.272(2) and 2.1435(19) Å respectively. The significantly unequal ruthenium to 

alkene bond lengths have been observed by Eisentstein and Hoffmann.
318, 319

  The 

C(11)-C(12) bond length was 1.410(3) Å which was significantly shorter than the 

adjacent bonds, suggesting multiple bond character and characteristic of an alkene bond 

length.
298

 The P(1)-Ru(1) bond length was found to be 2.3215(5) Å. 
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Figure 6.1: X-Seed diagram of [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-(4-Me-C5H3N)CH=CH(C6H5)]

+
 from 

complex 22
Me,H

. Selected hydrogen atoms, a dichloromethane molecule and [PF6]
-
 anion have 

been omitted for clarity, and where shown the thermal ellipsoids are at a 50 % probability level. 

The [PF6]
-
 anion was disordered, where the fluorine atoms were in two positions.  
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 Bond lengths (Å)  Bond angles (°) 

C(3)-Ru(1)  2.217(2) C(6)-Ru(1)-P(1)  90.79(5) 

C(2)-Ru(1)  2.213(2) C(12)-Ru(1)-P(1)  84.86(5) 

C(1)-Ru(1)  2.251(2) C(6)-Ru(1)-C(12)  83.26(7) 

C(5)-Ru(1)  2.294(2) C(12)-C(11)-N(1)  117.03(17) 

C(4)-Ru(1)  2.250(2) C(6)-N(1)-C(11)  103.73(15) 

C(6)-Ru(1)  2.0183(19) N(1)-C(6)-Ru(1)  100.20(13) 

C(6)-N(1)  1.360(2) N(1)-C(11)-Ru(1)  91.62(11) 

C(11)-N(1)  1.457(2) N(1)-C(6)-C(7)  116.31(17) 

C(11)-C(12)  1.410(3) C(10)-N(1)-C(6)  125.87(17) 

C(12)-Ru(1)  2.272(2) C(9)-C(10)-N(1)  117.69(19) 

C(11)-Ru(1) 2.1435(19) C(10)-C(9)-C(8)  120.29(19) 

C(12)-C(13)  1.478(3) C(7)-C(8)-C(9)  119.27(19) 

C(10)-N(1)  1.351(2) C(8)-C(7)-C(6)  120.53(19) 

C(9)-C(10) 1.370(3)   

C(8)-C(9)  1.408(3)   

C(7)-C(8)  1.387(3)   

C(6)- C(7)  1.400(3)   

P(1)-Ru(1)  2.3215(5)   

Table 6.1: Selected bond lengths (Å) and angles (°) for complex 22
Me,H

.   

 

6.3.2 Reaction between complex 10
Me

 with 4-ethynyl-α,α,α-trifluorotoluene 

In the previous studies with 10
H

 and terminal alkynes, 4-ethynyl-α,α,α-trifluorotoluene 

displayed the highest selectivity as it yielded one major ruthenium-containing complex 

22
H,CF3

. The effect of a 4-CF3 substituent on the phenyl ring of the terminal alkyne was 

investigated and compared with the analogous reaction with 10
H

.  

The stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 10
Me

 in d2-

dichloromethane was monitored via NMR spectroscopy (Scheme 6.7). The initial NMR 

spectra recorded exhibited resonances for three new ruthenium-containing complexes, a 

minor unknown complex, 19
Me,C6H4-4-CF3

 and 20
CF3

. After 24 hours the reaction mixture 

displayed a new set of resonances belonging to a new ruthenium-containing complex 

22
Me,CF3

, and after 7 days 22
Me,CF3

 was the major species.  
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        19
Me,C6H4-4-CF3

          20
CF3

 

 

           22
Me,CF3

 

Scheme 6.7: Stoichiometric reaction between 10
Me

 and 4-ethynyl-α,α,α-trifluorotoluene in 

dichloromethane, where Ar = C6H4-4-CF3. 

6.3.2.1 Identification of the minor unknown species 

The minor unknown species was only observed in the initial NMR spectra. In the 
1
H 

NMR spectrum a singlet signal at 4.98 ppm due to the cyclopentadienyl ligand of this 

complex. The 
31

P{
1
H} NMR spectrum exhibited a resonance at 53.1 ppm for the 

corresponding triphenylphosphine ligand. The minor unknown species was a short-lived 

intermediate and displayed similar characteristics to the previous reactions.  

6.3.2.2 Identification of complex 19
Me,C6H4-4-CF3

  

The NMR spectra exhibited resonances characteristic of a vinylidene-containing 

complex 19
Me, C6H4-4-CF3

. The 
1
H NMR spectrum exhibited broad peaks at 5.51 (5H) and 

5.14 (1H) ppm for the cyclopentadienyl ligand and the vinylidene proton on the β 

carbon atom respectively. A set of resonances at 2.25 (s, 3H), 6.79 (d, 2H, 
3
JHH = 6.0 

Hz) and 8.14 (d, 2H, 
3
JHH = 6.0 Hz) were integrated with respect to the peak at 5.51 

ppm, and were assigned as a coordinated 4-methylpyridine ligand. The 
31

P{
1
H} NMR 

spectrum exhibited a resonance at 51.9 ppm for a coordinated triphenylphosphine ligand 

of 19
Me,C6H4-4-CF3

. The complex 19
Me,C6H4-4-CF3

 was the major new ruthenium-containing 

species in the reaction mixture, however it could not be isolated as it was a short-lived 

intermediate and reacted further to give 22
Me,CF3

.  

10
Me
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6.3.2.3 Identification of complex 20
CF3

  

The reaction was conducted in the absence of excess 4-methylpyridine, and due to this 

resonances similar to 20
H

 were observed in the crude reaction mixture. This species was 

thought to be 20
CF3

,  and the assignment was based on the earlier observations with 20
H

. 

Since 20
CF3

 was a side-product, it has been tentatively assigned. The initial 
1
H NMR 

spectrum exhibited a resonance at 5.18 ppm in the cyclopentadienyl region. 

Additionally, the 
31

P{
1
H} NMR spectrum displayed a peak at 31.1 ppm for the 

triphenylphosphine ligand, and this chemical shift is similar for the π-allyl carbene 

complex, 20
H

.
132, 136, 139

 After 7 days, the resonances belonging to 20
CF3

 began to 

decrease in intensity. This is similar to what was previously observed for 20
H

 by 

Kirchner et al.
136

  

6.3.2.4 Identification of 22
Me,CF3

  

When the reaction reached completion, 22
Me,CF3

 was the major-ruthenium-containing 

species present in the crude reaction mixture. The product 22
Me,CF3

 was purified via the 

slow diffusion of pentane into a dichloromethane layer containing 22
Me,CF3

 to yield a 

pale yellow precipitate which was fully characterised by NMR spectroscopy, high 

resolution ESI-MS and elemental analysis.  

The 
1
H NMR spectrum of 22

Me,CF3
 displayed resonances at 4.96 (s, 5H), 3.62 (dd, 1H, 

3
JHP = 11.6 Hz, 

3
JHH = 7.7 Hz) and 6.68 (d, 1H, 

3
JHH = 7.7 Hz) ppm for the 

cyclopentadienyl ligand and the two alkene protons respectively. The aromatic region of 

the 
1
H NMR spectrum contained both sharp and broad peaks. Through a set of 2D 

experiments 
1
H-

1
H COSY, 

1
H-

13
C HSQC and 

1
H-

13
C HMBC, a set of three sharp peaks 

were found to couple to each other at 7.82 (d, 1H, 
3
JHH = 6.8 Hz), 6.85 and 6.81 (s, 1H) 

ppm. These resonances originated from the 4-methylpyridine ligand; however 22
Me,CF3

 

was missing a proton from the proton at the C-2 position of the N-containing 

heterocycle. The broad peaks were assigned to the triphenylphosphine ligand, based on 

the behaviour of previous complexes 22
H,H

 and 22
H,CF3

. The 
31

P{
1
H} NMR spectrum 

exhibited a singlet peak at 52.9 ppm for a coordinated triphenylphosphine ligand of 

22
Me,CF3

. A 
13

C{
1
H} NMR spectrum of 22

Me,CF3
 displayed a doublet at 177.1 ppm with 

a 
2
JCP = ~18 Hz, due to a Ru-C bond present in 22

Me,CF3
. A broad peak at 65.9 ppm was 

assigned to an alkene carbon atom, unfortunately the other alkene atom was not 

observed in the 
13

C{
1
H} NMR spectrum and therefore a 2D 

1
H-

13
C HSQC experiment 

was used to identify a cross-peak at approximately 54.1 ppm. The data suggested that a 
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C-H functionalisation reaction had occurred creating a new Ru-C bond, where the 

proton has been abstracted from a 4-methylpyridine ligand at the C-2 position. 

The high resolution ESI-MS displayed a m/z peak with a ruthenium isotope pattern at 

692.1188, this was interpreted as the cationic species [Ru(η
5
-C5H5)(PPh3)(4-CH3-

C5H3NCHCHC6H4-4-CF3)]
+
 of 22

Me,CF3
, and was found to be within an error 0.7 mDa. 

An elemental analysis of the resulting pale yellow precipitate was within an error of 0.3 

%.
 

Crystals suitable for X-ray diffraction were obtained via the slow diffusion of pentane 

into a dichloromethane layer containing 22
Me,CF3

, where the unit cell contained two 

22
Me,CF3

 structures. The structure was found to contain a pyridylidene ligand, which was 

coordinated to an alkene group via the nitrogen atom. The geometry around the 

ruthenium centre could be described as a distorted octahedral structure, as the  C(6)-

Ru(1)-P(1), C(12)-Ru(1)-P(1) and C(6)-Ru(1)-C(12) bond angles were found to be 

90.64(12), 83.71(11) and 83.91(15) ° respectively. The ruthenium to cyclopentadienyl 

ligand bond lengths ranged from 2.219(4) to 2.260(5) Å. The bond length of the 

ruthenium to pyridylidene ligand, C(6)-Ru(1) was 2.028(4) Å. The P(1)-Ru(1) bond 

length was 2.3167(11) Å.  

 

Figure 6.2: X-Seed diagram of [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-(4-Me-C5H3N)CH=CH(C6H4-4-CF3)]

+
 

from complex 22
Me,CF3

. The unit cell contains two structures of 22
Me,CF3

, where only one of 

these has been displayed.  Selected hydrogen atoms and the [PF6]
-
 anion have been omitted for 

clarity, and where shown the thermal ellipsoids are at a 50 % probability level.  
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 Bond lengths (Å)  Bond angles (°) 

C(3)-Ru(1)  2.224(4) C(6)-Ru(1)-P(1)  90.64(12) 

C(2)-Ru(1)  2.260(5) C(12)-Ru(1)-P(1)  83.71(11) 

C(1)-Ru(1)  2.247(4) C(6)-Ru(1)-C(12)  83.91(15 

C(5)-Ru(1)  2.239(4) C(12)-C(11)-N(1)  117.2(4) 

C(4)-Ru(1)  2.219(4) C(6)-N(1)-C(11)  103.7(3) 

C(6)-Ru(1)  2.028(4) N(1)-C(6)-Ru(1)  100.0(3) 

C(6)-N(1)  1.359(5) N(1)-C(11)-Ru(1)  91.9(2) 

C(11)-N(1)  1.463(5) N(1)-C(6)-C(7)  115.6(4) 

C(11)-C(12)  1.408(6) C(10)-N(1)-C(6)  126.9(4) 

C(12)-Ru(1)  2.252(4) C(9)-C(10)-N(1)  117.5(4) 

C(11)-Ru(1) 2.138(4) C(10)-C(9)-C(8)  119.8(4) 

C(12)-C(13)  1.476(6) C(7)-C(8)-C(9)  119.8(4) 

C(10)-N(1)  1.341(5) C(8)-C(7)-C(6)  120.4(4) 

C(9)-C(10) 1.372(6)   

C(8)-C(9)  1.403(6)   

C(7)-C(8)  1.389(6)   

C(6)-C(7)  1.396(6)   

P(1)-Ru(1)  2.3246(12)   

Table 6.2: Selected bond lengths (Å) and angles (°) for complex 22
Me,CF3

.   

 

6.3.2.5 Deprotonation of 22
Me,CF3

  

The addition of DABCO to a dichloromethane solution containing 22
Me,CF3

 resulted in 

the formation of 23
Me,CF3

. The complex 23
Me,CF3

 was fully characterised using NMR 

spectroscopy, high resolution ESI-MS, elemental analysis and single crystal X-ray 

crystallography.  

 

    22
Me,CF3

              23
Me,CF3

 

Scheme 6.8: Deprotonation of 22
Me,CF3

 with DABCO in dichloromethane, where Ar = C6H4-4-

CF3. 
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The 
1
H NMR spectrum exhibited similar resonances to the species 23

Me,H
. In the 

1
H 

NMR spectrum the alkene peaks were no longer observed at 3.62 and 6.68 ppm, the 

total integration of the protons present in the new complex had reduced by 1H, 

suggesting a deprotonation reaction had occurred at the alkene functional group. In the 

1
H NMR spectrum the resonances belonging to the N-containing heterocycle were 

observed at 2.17 (s, 3H), 6.36 (dd, 1H, 
3
JHH = 6.5 Hz, 

4
JHH = 1.7 Hz), 7.72 (d, 1H, 

3
JHH 

= 6.4 Hz) and 7.96 (s, 1H) ppm, which indicated the C-H functionalisation species was 

still present. Also a doublet peak with at 6.98 ppm with 
4
JHP of 2.4 Hz was observed 

with an integration of 1H, this was assigned to the proton of the metallacycle. 

Interestingly the aromatic region of the 
1
H NMR spectrum now exhibited sharp 

resonances for the triphenylphosphine ligand indicating there was no longer restricted 

rotation of the Ru-P bond in 23
Me,CF3

. The 
31

P{
1
H} NMR spectrum displayed a 

downfield shift for the triphenylphosphine ligand, as a singlet at 61.7 ppm was 

observed. The 
13

C{
1
H}NMR spectrum displayed two doublets at 187.9 and 217.8 ppm 

with 
2
JCP of 13.2 and 15.8 Hz respectively. The data suggested that there were two Ru-C 

bonds in 23
Me,CF3

. The other carbon atom on the metallacycle was bonded to a hydrogen 

atom and was observed at 132.4 ppm. The CF3 substituent at the 4-position of the 

phenyl ring displayed quartet couplings in the 
13

C{
1
H}NMR spectrum at 125.5 (q, 

1
JCF 

= 271 Hz), 126.1 (q, 
2
JCF = 32.0 Hz) and 124.2 (q, 

3
JCF = 3.7 Hz) ppm.  

A high resolution ESI-MS of 23
Me,CF3

 displayed a ruthenium isotope pattern for a m/z 

peak at 691.1188 which was assigned as the complex [Ru(η
5
-C5H5)(PPh3)(4-Me-

C5H3NCHCC6H4-4-CF3)]
+
 and was consistent with a deprotonation reaction. An 

elemental analysis of the red precipitate was found to be within an error of 0.3 %.  

Crystals suitable for X-ray diffraction of 23
Me,CF3

 were obtained by cooling a pentane 

solution of the product at -20 °C. The structure confirmed that a proton has been 

abstracted from the alkene functional group to give a five-membered metallacyclic 

complex. The data obtained for 23
Me,CF3

 was not of sufficient quality to permit a 

discussion of the structural metrics.   
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Figure 6.3: X-Seed diagram of complex 23
Me,CF3

. Selected hydrogen atoms and a pentane 

molecule have been omitted for clarity, and where shown the thermal ellipsoids are at a 50 % 

probability level.  
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6.4 Reactivity of complex 10
NMe2

 with alkynes 

The previous N-containing heterocycles studied are pyridine and 4-methylpyridine, 

where the N-containing ligand is more electron-donating due to an inductive effect. The 

N-containing heterocycle 4-dimethylaminopyridine, has an NMe2 group in the 4-

position of the aromatic ring, and through conjugation donates electron density to the C-

3/5 positions and the nitrogen atom, which makes it an extremely good donating ligand. 

The reactivity of 10
NMe2

 with various terminal alkynes has been investigated. 

6.4.1 Reaction between complex 10
NMe2

 with phenylacetylene 

The stoichiometric addition of phenylacetylene to 10
NMe2

 in d2-dichloromethane was 

monitored via NMR spectroscopy (Scheme 6.9). The reaction mixture exhibited many 

resonances belonging to different unidentified ruthenium-containing complexes; and 

some of the resonances were cautiously assigned to some of the ruthenium-containing 

species observed previously. However, the reaction did yield one major ruthenium-

containing complex. The reaction was repeated with the stoichiometric addition of 
13

C-

phenylacetylene to 10
NMe2

 in d2-dichloromethane to obtain further information.  

 

        19
NMe2,Ph    

3
Ph   

1
 

 

       22
NMe2,Ph

 

Scheme 6.9: Stoichiometric reaction between 10
NMe2

 and phenylacetylene in dichloromethane. 

 

10
NMe2
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The initial NMR spectra were recorded within two hours from the addition of 

phenylacetylene, resonances for a minor unknown species and vinylidene-containing 

species 19
NMe2,Ph

 were observed. After 10 days the NMR spectra displayed peaks for a 

major ruthenium-containing complex 22
NMe2,H

.  

There were also several other ruthenium-containing complexes present in the reaction 

mixture as the reaction proceeded. In the 
1
H NMR spectrum after 10 days, the 

cyclopentadienyl region displayed peaks at 4.09 (1.3H), 4.30 (0.4 H), 4.32 (0.9 H), 4.51 

(0.4 H) and 4.70 (0.9 H) ppm with respect to the major cyclopentadienyl peak at 4.86 

ppm (5H). The 
31

P{
1
H} NMR spectrum exhibited resonances at 17.2, 40.3, 43.6, 51.6 

and 57.7 ppm. One of these species was identified as [Ru(η
5
-C5H5)(PPh3)2Cl], 1 where 

resonances in the 
1
H NMR spectrum at 4.09 ppm and in the 

31
P{

1
H} NMR spectrum at 

40.3 ppm for the triphenylphosphine ligands were observed to increase in intensity after 

48 hours. Additionally, an acetylide-containing complex was identified as  

[Ru(η
5
-C5H5)(C≡CPh)(PPh3)2] 3

Ph
 where the resonances were observed in the 

1
H NMR 

spectrum at 4.32 ppm  for the cyclopentadienyl ligand, and in the 
31

P{
1
H} NMR 

spectrum at 51.6 ppm for the triphenylphosphine ligands. The reaction with 
13

C-

phenylacetylene displayed a doublet at 51.6 ppm with a 
2
JPC = 24.3 Hz and the 

13
C{

1
H} 

NMR spectrum exhibited a small triplet at 116.7 ppm with a 
2
JCP = 24.3 Hz. 

The reaction yielded several ruthenium-containing species and therefore different 

reaction conditions were investigated in order to avoid the formation of 1 and 3
Ph

 in the 

reaction mixture. In the NMR scale reactions, the reaction was left to proceed at room 

temperature and the intensity of 1 increased over time (48 hours) as this was a 

thermodynamic sink. Hence in order to avoid the formation of 1, the reaction mixture of 

the stoichiometric addition of phenylacetylene to 10
NMe2

 in dichloromethane was heated 

at 50 °C for 22 hours. Unfortunately, under these reaction conditions there was an 

increase of 1 in the reaction mixture.  

A difference in reactivity was observed in 10
NMe2

 in comparison to 10
H

 and 10
Me

 as the 

stoichiometric addition of phenylacetylene to 10
NMe2

 did not yield the species 20
H

 or 

21
NMe2,H

. The reaction pathway for 20
H

 requires two alkyne molecules to coordinate at 

the ruthenium centre (Section 1.5) and as 4-dimethylaminopyridine is a stronger donor 

ligand this presumably indicates that both of the N-containing heterocycles do not 

dissociate from the ruthenium centre.
132, 138
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6.4.1.1 Identification of the minor unknown species 

The NMR spectra displayed resonances for a short-lived complex from the addition of 

phenylacetylene to 10
NMe2

, which was only observed in the initial NMR spectra. The 
1
H 

NMR spectrum exhibited a peak at 4.85 ppm for the cyclopentadienyl ligand of this 

species. The 
31

P{
1
H} NMR spectrum displayed a singlet at 53.9 ppm for a coordinated 

triphenylphosphine ligand. When the reaction was repeated with 
13

C-phenylacetylene 

the 
31

P{
1
H} NMR spectrum contained a doublet resonance at 53.9 ppm with a JPC = 

12.5 Hz.  

6.4.1.2 Identification of complex 19
NMe2, Ph

  

From the initial NMR spectra recorded within two hours after alkyne addition, the 
1
H 

NMR spectrum exhibited broad peaks at 5.40 and 5.04 ppm with integrations of 5H and 

1H respectively. The 
31

P{
1
H} NMR spectrum exhibited  a minor broad peak 52.7 ppm 

for the triphenylphosphine. This data should be considered cautiously as proof of the 

species 19
NMe2,Ph

 as these resonances were extremely minor in the reaction mixture and 

were not observed after 24 hours. 

From the reaction of 
13

C-phenylacetylene with 10
NMe2

, the initial 
31

P{
1
H} and 

13
C{

1
H} 

NMR spectra did not display resonances for the α-carbon atom of the vinylidene ligand 

of 
13

C-19
NMe2,Ph

. However, upon running a 
13

C{
1
H} NMR spectrum with additional 

scans (4096 scans) three resonances were observed at 349.4 (d, 
2
JPC = 18.3 Hz), 351.4 

(broad) and 353.6 (d, 
2
JPC = 16.8 Hz) ppm . This could potentially be due to different 

conformations of 
13

C-19
NMe2,Ph

 in solution, where either the vinylidene or 4-

dimethylaminopyridine ligands are undergoing slow rotation at the ruthenium centre. 

The 
13

C{
1
H} NMR spectra conducted later on the reaction mixture all required 4096 

scans to observe the α-carbon atom of the vinylidene ligand. After 24 hours, the 

13
C{

1
H} NMR spectrum only displayed one resonance at 353.6 ppm for the α-carbon 

atom of the vinylidene ligand. The 
31

P{
1
H} NMR spectrum after 24 hours displayed a 

minor peak at 52.8 ppm as a doublet with a 
2
JPC of ~16 Hz.  

These data suggest that a vinylidene-containing species is present in the reaction 

mixture, and is most likely 19
NMe2,Ph 

(based on previous findings). However, the 

vinylidene-containing complex was only a very minor part of the reaction mixture. The 

difference in reactivity of 10
NMe2

 in comparison to 10
H

 and 10
Me

 could be due to the 

strong ligand donor properties of the 4-dimethylaminopyridine ligand.  
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6.4.1.3 Identification of 22
NMe2,Ph

  

After 10 days there appeared to be one major ruthenium-containing complex, 22
NMe2,Ph

  

present in the reaction mixture. The product was purified via the slow diffusion of 

pentane into a dichloromethane layer containing 22
NMe2,Ph

 and the resulting pale yellow 

crystals were collected. Unfortunately, due to the number of ruthenium complexes 

present in the crude reaction mixture pure isolation of this species was not possible.  

The 
1
H NMR spectrum exhibited a resonance at 4.86 ppm for the cyclopentadienyl 

ligand. In addition in the 
1
H NMR spectrum resonances at 3.55 (dd, 1H, 

3
JHP = 11.7 Hz, 

3
JHH = 7.9 Hz) and at 6.32 (dd, 1H, 

3
JHH = 7.9 Hz, , 

4
JHP = 1.6 Hz) ppm were assigned to 

the alkene protons of 22
NMe2,Ph

 and found to couple in a 2D 
1
H-

1
H COSY experiment. 

When the reaction was repeated using 
13

C-phenylacetylene, the alkene peak at 6.32 ppm 

now exhibited a large 
1
JHC coupling of ~185 Hz. The aromatic region of 22

NMe2,Ph
 

contained many resonances, however the 2D 
1
H-

1
H COSY experiment assisted in 

identifying the protons belonging to the N-containing heterocycle at 5.81 (1H), 6.23 

(1H) and 7.34 ppm. This suggested that an aromatic proton was missing from the 

originating 4-dimethylaminopyridine ligand. Interestingly, in the 
1
H NMR spectrum the 

methyl substituents of the NMe2 group displayed a broad peak at 2.82 ppm (6H), 

indicating fluxional behaviour on the NMR timescale. This behaviour could potentially 

be attributed to each of the methyl groups experiencing a different environment due to 

restricted rotation around the C-N bond. The 
31

P{
1
H} NMR spectrum exhibited a singlet 

resonance at 55.3 ppm for the coordinated triphenylphosphine ligand, and this 

resonance remained a singlet in the reaction where 
13

C-phenylacetylene was employed.  

A high resolution ESI-MS of a reaction mixture containing 22
NMe2,Ph

 displayed a m/z 

peak with a ruthenium isotope pattern of 653.1655 which was consistent with the 

cationic fragment of [Ru(η
5
-C5H5)(PPh3)(4-NMe2-C5H3NCHCHC6H5)]

+
 and was found 

to be within in an error of 0.5 mDa.  

Crystals suitable for X-ray diffraction were obtained via the slow diffusion of pentane 

into a dichloromethane layer containing 22
NMe2,Ph

. The structure of 22
NMe2,Ph

 revealed 

that the 4-dimethylaminopyridine molecule had undergone a C-H functionalisation 

reaction to give a pyridylidene ligand which was bonded through the nitrogen atom to 

an alkene group. The bond angles around the ruthenium centre C(6)-Ru(1)-P(1), C(12)-

Ru(1)-P(1) and C(6)-Ru(1)-C(12) were 89.63(6), 88.70(6) and 83.83(9) ° respectively, 

therefore making the geometry of the ruthenium complex a distorted octahedron. The 
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ruthenium to cyclopentadienyl ligand bonds on average were 2.2382 Å. The ruthenium 

to alkene bond lengths C(11)-Ru(1) and C(12)-Ru(1) were 2.140(2) and 2.242(2) Å 

respectively and significantly unequal.
318, 319

 A P(1)-Ru(1) bond length of 2.3302(6) 

was found. There were significantly shorter carbon-carbon bond lengths in the 

pyridylidene fragment of C(7)-C(6) and C(10)-C(9). Similar observations were made by 

Bercaw et al. where a 4-NMe2 substituent on a pyridylidene ligand was present.
188

  

 

Figure 6.4: X-Seed diagram of [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-(4-NMe2-C5H4N)CH=CH(C6H5)]

+
 

from complex 22
NMe2,H

. Selected hydrogen atoms, two dichloromethane molecules and the 

[PF6]
-
 anion have been omitted for clarity, and where shown the thermal ellipsoids are at a 50 % 

probability level. Both of the dichloromethane molecules were disordered over two positions, 

the first was disordered in a ratio of 88:12 and the second was constrained to a disorder of 

50:50.  

  



229 

Chapter 6 

 Bond lengths (Å)  Bond angles (°) 

C(4)-Ru(1)  2.248(2) C(6)-Ru(1)-P(1)  89.63(6) 

C(5)-Ru(1)  2.214(2) C(12)-Ru(1)-P(1) 88.70(6) 

C(1)-Ru(1)  2.226(2) C(6)-Ru(1)-C(12)  83.83(9) 

C(3)-Ru(1)  2.241(2) C(6)-Ru(1)-C(11)  64.37(8) 

C(2)-Ru(1)  2.262(2) N(1)-C(6)-Ru(1)  98.80(14) 

C(6)-Ru(1)  2.043(2) C(6)-N(1)-C(11)  104.88(17) 

C(11)-Ru(1)  2.140(2) C(12)-C(11)-N(1)  117.0(2) 

C(12)-Ru(1)  2.242(2) C(11)-C(12)-C(13)  124.1(2) 

C(13)-C(12)  1.479(3) C(10)-N(1)-C(6)  124.7(2) 

C(27)-C(11)  1.407(3) N(1)-C(10)-C(9)  119.2(2) 

C(11)-N(1)  1.449(3) C(10)-C(9)-C(8)  120.2(2) 

C(6)-N(1)  1.363(3) C(7)-C(8)-C(9)  117.6(2) 

C(6)-C(7)  1.380(3) C(6)-C(7)-C(8)  121.0(2) 

C(7)-C(8)  1.418(3)   

C(8)-C(9)  1.425(4)   

C(9)-C(10)  1.360(4)   

C(10)-N(1)  1.350(3)   

C(8)-N(2)  1.349(3)   

P(1)-Ru(1)  2.3302(6)   

Table 6.3: Selected bond lengths (Å) and angles (°) for complex 22
NMe2,H

. 
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6.4.2 Reaction between complex 10
NMe2

 with 4-ethynyl-α,α,α-trifluorotoluene  

The stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 10
NMe2

 in a d2-

dichloromethane solution was monitored via NMR spectroscopy (Scheme 6.10). As the 

reaction proceeded six different ruthenium-containing species were observed, however 

not all of these were identified. The species 1 was identified to be present in the reaction 

mixture, as the 
1
H NMR spectrum exhibited a resonance at 4.09 ppm for the 

cyclopentadienyl ligand and the 
31

P{
1
H} NMR spectrum a singlet peak at 40.3 ppm for 

the triphenylphosphine ligands. The other resonances in the 
31

P{
1
H} NMR spectrum 

were seen at 51.6, 55.2, 57.7 and 64.1 ppm for the unknown complexes. 

 

                  22
NMe2,CF3   

             1 

Scheme 6.10: Stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 10
NMe2

 in d2-

dichloromethane.  

6.4.2.1 Identification of 22
NMe2,CF3

  

By studying the NMR spectra the resonances for the species 22
NMe2,CF3

 were identified 

in situ as the major species. However, due to numerous minor side products from the 

reaction 22
NMe2,CF3

 was not obtained pure and therefore not fully characterised. The 
1
H 

NMR spectrum displayed resonances at 4.90, 3.48 (dd, 
3
JHP = 11.7 Hz, 

3
JHH = 7.8 Hz) 

and 6.44 (dd, 
3
JHH = 7.8 Hz, 

3
JHP = 1.7 Hz) ppm with relative integrations of 5:1:1 and 

therefore the peaks were assigned as the cyclopentadienyl ligand and the two alkene 

protons respectively. The protons around the nitrogen-containing heterocycle were 

observed at 2.80 (broad, lies underneath other peaks), 5.79 (m, 1H) and 6.25 (dd, 
3
JHH = 

7.3 Hz, 
4
JHH = 2.8 Hz) ppm, where the final hydrogen atom on the ring was hidden in 

the aromatic region. These peaks are characteristic of the C-H functionalised species 

22
NMe2,Ph

. The aromatic region of the 
1
H NMR spectrum contained broad resonances 

probably due to the restricted rotation of the triphenylphosphine ligand (Section 

5.2.1.5). The 
31

P{
1
H} NMR spectrum exhibited a singlet resonance at 54.7 ppm for the 

coordinated triphenylphosphine ligand of 22
NMe2,CF3

.  

 

10
NMe2
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6.4.3 Reaction between complex 10
NMe2

 with tert-butylacetylene 

The stoichiometric addition of tert-butylacetylene to 10
NMe2

 in d2-dichloromethane was 

monitored via NMR spectroscopy to determine if 10
NMe2

 displayed a similar reactivity 

to 10
H

. The reaction was monitored over 18 days where few changes were observed in 

the 
1
H and 

31
P{

1
H} NMR spectra. After 18 days, 10

NMe2
 was the major ruthenium-

containing complex. The 
1
H NMR spectrum exhibited a resonance at 4.25 ppm for the 

cyclopentadienyl ligand and in the 
31

P{
1
H} NMR spectrum a peak at 51.4 ppm for the 

triphenylphosphine ligand. The peaks for tert-butylacetylene were observed in the 
1
H 

NMR spectrum at 2.09 (1H) and 1.23 (9H) ppm for the alkyne proton and the methyl 

substituents respectively. Minor resonances were observed in the 
1
H NMR spectrum at 

4.09 ppm for cyclopentadienyl protons and in the 
31

P{
1
H} NMR spectrum at 40.4 ppm 

for the coordinated triphenylphosphine ligand of 1. 

6.4.4 Reaction between complex 10
NMe2

 with 1-hexyne  

The stoichiometric addition of 1-hexyne to 10
NMe2

 in d2-dichloromethane was 

monitored via NMR spectroscopy to determine if similar reactivity to 10
H

 could be 

observed. Unfortunately the reaction gave a large number of unidentified ruthenium-

containing complexes and no useful data was obtained on the nature of the species 

formed. One of the minor ruthenium-containing species present in the reaction mixture 

was identified as 1. 
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6.5 Reactivity of complex 11 with alkynes 

The reaction between terminal alkynes and complex 11 in d2-dichloromethane was 

investigated. The 3-methylpyridine ligands introduced the concept of regioselectivity, as 

the C-H functionalisation could occur potentially at two locations of the N-containing 

heterocycle. It would be of particular interest to study as Murakami and Hori stated that 

the alkenylation reaction with 3-methylpyridine was regioselective with alkenylation 

only occurring at the C-H bond at the C-6 position.
253

  

6.5.1 Reaction between complex 11 with phenylacetylene 

The stoichiometric addition of phenylacetylene to 11 in d2-dichloromethane was 

monitored via NMR spectroscopy. The initial NMR spectra exhibited resonances for 

three new species 20
H

, 25
H

 and a minor unknown species, where the latter two 

complexes were short-lived intermediates. The identity of 20
H

 was confirmed by 

comparison with the literature (Section 5.2.1.3).
139

 After 24 hours the reaction mixture 

displayed further new resonances for 26 and 27a
H

 and 27b
H

. Once the reaction had 

reached completion there were four ruthenium-containing complexes present in the 

reaction mixture (Scheme 6.11).  

 

   25
H

   20
H

         26 

 

           27a
H

     27b
H

  

Scheme 6.11: Stoichiometric reaction between 11 and phenylacetylene in d2-dichloromethane. 

11 
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6.5.1.1 Identification of 25
H

  

The complex 25
H

 was a short-lived intermediate and was characteristic of a vinylidene-

containing complex. The 
1
H NMR spectrum displayed broad resonances at 5.49 and 

5.12 ppm with relative integrations of 5H and 1H, which were assigned as the 

cyclopentadienyl ligand and vinylidene proton on the β-carbon atom respectively. 

Additionally, the 
1
H NMR spectrum displayed peaks at 1.87 (s, 3H), 6.93 (apparent t, 

1H), 7.98 (s, 1H) and 8.27 (d, 1H) ppm for the coordinated 3-methylpyridine ligand. 

The 
31

P{
1
H} NMR spectrum exhibited a broad singlet resonance at 52.0 ppm for the 

coordinated triphenylphosphine ligand of 25
H

. The set of resonances belonging to 25 

after 24 hours began to decrease as peaks for 27a
H

 and 27b
H

 increased.  

6.5.1.2 Identification of 26  

The species 26 was characteristic of the pyridinium η
3
-butadienyl complexes, where the 

1
H NMR spectrum exhibited a singlet peak at 4.55 ppm for a cyclopentadienyl ligand, 

and in the 
31

P{
1
H} NMR spectrum a singlet peak at 48.5 ppm was observed. A high 

resolution ESI-MS of the reaction mixture exhibited a ruthenium isotope peak with a 

m/z of 726.1871 which was consistent with the expected formula [C45H39NPRu]
+
 (error 

of 1.3 mDa) and was equivalent to containing the fragments [Ru(η
5
-C5H5)(PPh3)]

+
, 

NC5H5 and two PhC≡CH  molecules. This species has been cautiously assigned as 26 

based on similar spectroscopic characteristics to 21
H,H

 (Section 5.2.1.4). 

6.5.1.3 Identification of complexes 27a
H

 and 27b
H

  

The complexes 27a
H

 and 27b
H

 were observed via 
1
H NMR spectroscopy in the reaction 

mixture after 24 hours. The 
1
H NMR spectrum exhibited two resonances at 5.07 and 

4.92 ppm, where the former peak was sharp and the latter broad for the two 

cyclopentadienyl ligands. It is possible that the broad resonance is due to the more 

sterically hindered C-H functionalised species, where the 3-methyl substituent is closer 

to the ruthenium centre. Also in the 
1
H NMR spectrum the alkene resonances exhibited 

sharp and broad features. The sharp alkene peaks were observed at 3.47 (1H, dd, 
3
JHP = 

12.3 Hz, 
3
JHH = 8.0 Hz) and 6.51 (1H, dd, 

3
JHH = 8.0 Hz, 

3
JHP = 1.5 Hz) ppm with 

respect to the peak at 5.07 ppm. The broad alkene signals were exhibited at 3.62 (1H, 

broad m) and 6.62 (1H, broad d, 
3
JHH = 8.2 Hz) ppm with respect to the peak at 4.92 

ppm. The 
31

P{
1
H} NMR spectrum exhibited the resonances for the triphenylphosphine 

ligands at 51.2 (sharp) and 53.7 (broad). A high resolution ESI displayed a m/z peak of 

624.1387 with a ruthenium isotope pattern and was consistent with a [Ru(η
5
-

C5H5)(PPh3)(κ3-C3-MeC5H3NCH=CHC6H5)]
+
 species.  
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Purification of complexes 27a
H

 and 27b
H

 was difficult due to the presence of complex 

26 (as both of these complexes have similar solubilities, Section 5.2). Reactions with 4-

ethynyl-α,α,α-trifluorotoluene were then conducted, as previous reactions indicate the 

absence of a pyridinium η
3
-butadienyl complex with this alkyne.  

 

6.5.2  Reaction between complex 11 with 4-ethynyl-α,α,α-trifluorotoluene 

In previous reactions the 4-CF3 substituent on the phenyl ring of the terminal alkyne has 

displayed a more selective reaction and the complexes of the type 21 were not observed. 

The stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 11 to a d2-

dichloromethane solution in the presence of two equivalents of 3-methylpyridine was 

monitored via NMR spectroscopy.  

 

      25
CF3

    27a
CF3

    27b
CF3

  

Scheme 6.12: Stoichiometric reaction between 11 and 4-ethynyl-α,α,α-trifluorotoluene in d2-

dichloromethane in the presence of two equivalents of 3-methylpyridine. 

The initial NMR spectra exhibited a set of resonances for a new ruthenium-containing 

complex 25
CF3

. This species was found to be short-lived in solution and therefore as the 

resonances for 25
CF3

 decreased, resonances for 27a
CF3

 and 27b
CF3

 increased in 

intensity.  

6.5.2.1 Identification of 25
CF3

  

The species 25
CF3

 was characteristic of a vinylidene-containing complex, as the 
1
H 

NMR spectrum exhibited broad peaks at 5.52 and 5.14 ppm with integrations of 5H and 

1H, which were assigned as the cyclopentadienyl ligand and the vinylidene proton on 

the β-carbon atom respectively. In addition, the 
1
H NMR spectrum exhibited peaks at 

8.27 (1H, d), 7.96 (1H, s), 6.96 (1H, dd) and 1.88 (3H, s) ppm for a coordinated 3-

methylpyridine ligand. The 
31

P{
1
H} NMR spectrum displayed a broad peak at 51.2 ppm 

for the triphenylphosphine ligand of 25
CF3

.  

11 
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6.5.2.2 Identification of complexes 27a
CF3

 and 27b
CF3

  

There were two sets of resonances for 27a
CF3

 and 27b
CF3

 in the NMR spectra (similar to 

the reaction of 11 with phenylacetylene), where one of the species had a broader set of 

peaks.  The 
1
H NMR spectrum exhibited sharp peaks at 5.10 (s), 3.44 (dd, 

3
JHP = 12.3 

Hz, 
3
JHH = 7.9 Hz) and 6.61 (dd, 

3
JHP = 1.7 Hz, 

3
JHH = 7.9 Hz) ppm for the 

cyclopentadienyl ligand and the two alkene protons respectively. The corroborating 3-

methylpyridine displayed peaks at 6.30 (broad, 1H), 7.86 (s, 1H) ppm, where one other 

aromatic hydrogen atom was in the multiplet range 7.12-7.58 ppm. This suggested a C-

H functionalisation reaction had occurred at the 3-methylpyridine ligand on the less 

hindered side to give a pyridylidene species 27a
CF3

. The 
31

P{
1
H} NMR spectrum 

displayed a sharp singlet at 50.5 ppm for the triphenylphosphine ligand of 27a
CF3

.  

The broader resonances were consistent with the species 27b
CF3

 and was confirmed by 

the 
1
H NMR spectrum in the aromatic region as the pyridylidene ligand displayed the 

three protons on the aromatic ring at 7.82 (d, 
3
JHH = 6.0 Hz) and in the multiplets 7.12-

7.58 and 6.93-7.05 ppm. The absence of the singlet resonance for the protons at the C-2 

position on the 3-methylpyridine ligand is indicative that the isomer 27b
CF3

 is present. 

The 
31

P{
1
H} NMR spectrum exhibited a broad peak at 53.0 ppm for the 

triphenylphosphine ligand of 27b
CF3

.  

A 
13

C{
1
H} NMR spectrum exhibited resonances for the two C-H functionalised carbon 

atoms at 173.9 (d, 
2
JCP = 18.9 Hz) and 179.9 (d, 

2
JCP = 16.6 Hz) ppm for the two 

isomers 27a
CF3

 and 27b
CF3

 respectively. A high resolution ESI-MS displayed a peak 

with m/z of 692.1229 for the cationic fragment [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-(Me-

C5H3N)CH=CH(C6H4-4-CF3)]
+
 of 27a

CF3
 and 27b

CF3
. 

A low variable temperature NMR study was conducted on a sample containing 27a
CF3

 

and 27b
CF3

 in d2-dichloromethane at 295 K and from 280 to 220 K in 20 K intervals 

(Figure 6.5). The 
1
H NMR spectrum displayed sharper resonances in the aromatic 

region upon cooling, due to the restricted rotation around the ruthenium-phosphorus 

bond of the triphenylphosphine ligand. Interestingly, the two isomers displayed 

different rates of rotation and this could potentially be attributed to the differences in the 

steric properties around the metal centre. The 
31

P{
1
H} NMR spectrum did not display 

any significant changes.  
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Figure 6.5: Low variable temperature 
1
H NMR experiment of 27a

CF3
 and 27b

CF3
 in d2-

dichloromethane at 295, 280, 260, 240 and 220 K.  

 

  

6.36.46.56.66.76.86.97.07.17.27.37.47.57.67.77.87.98.0 ppm 3.33.43.53.6 ppm

220 K 

240 K 

260 K 

280 K 

295 K 
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Crystals suitable for X-ray diffraction were obtained by the slow diffusion of pentane in 

to a dichloromethane layer containing 27a
CF3 

(Figure 6.6). The unit cell contained two 

structures of 27a
CF3

 and only one of these has been represented in the diagram. The 

crystal was twinned and therefore there are areas of electron density that have not been 

modelled, however the structure of 27a
CF3 

clearly illustrates that a C-H functionalisation 

reaction at the 3-methylpyridine ligand has occurred yielding a pyridylidene complex 

where the nitrogen atom is coordinated to an alkene functional group.  

  

Figure 6.6: X-Seed diagram of [Ru(η
5
-C5H5)(PPh3)(κ

3
-C3-(Me-C5H3N)CH=CH(C6H4-4-CF3)]

+
 

from complex 27a
CF3

. Selected hydrogen atoms and the [PF6]
-
 anion have been omitted for 

clarity, and where shown the thermal ellipsoids are at a 50 % probability level. The crystal was 

twinned and was modelled as two independent components. There are also minor components 

that have not been modelled and may explain the residual electron density.  
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6.6 Reactivity of complex 13
Me

 with alkynes 

The reaction of the imidazole-containing complexes 13
R
 was investigated. The previous 

reactions of complexes 10
R
 with terminal alkynes have displayed the formation of the 

N-heterocyclic carbene ligands at the two position of the six-membered N-containing 

heterocycles. The reaction of the imidazole-containing complexes 13
R
 with terminal 

alkynes was of interest as potentially the imidazole ring could undergo a C-H 

functionalisation reaction to give an N-heterocyclic carbene ligand at the ruthenium 

centre.  

6.6.1 Reaction between complex 13
Me

 with phenylacetylene 

The stoichiometric addition of phenylacetylene to 13
Me

 in d2-dichloromethane was 

monitored via NMR spectroscopy, and the reaction was repeated with 
13

C-labelled 

phenylacetylene to provide additional information on the reaction mechanism.  

In the reaction with phenylacetylene, after 24 hours, the resonances for one new minor 

ruthenium-containing complex 28
Me,H

 were observed.  Additionally after 24 hours peaks 

for uncoordinated 1-methylimidazole were observed in the 
1
H NMR at 3.66, 6.90, 6,97 

and 7.37 ppm, and these resonances increased in intensity as 13
Me

 reacted further. No 

major changes were observed in the NMR spectra after 48 hours and therefore the 

reaction mixture was heated at 50 °C for 16 hours (Scheme 6.13).  

The complex 28
Me,H

 was partially characterised via NMR spectroscopy and 

hypothesised to be a vinylidene-containing complex. The 
1
H NMR spectrum displayed 

two broad peaks at 5.43 and 5.09 ppm which had an integration of 5:1, and were 

assigned as the cyclopentadienyl protons and the hydrogen atoms at the β-carbon atom 

of the vinylidene ligand respectively. Additionally in the 
1
H NMR spectrum, singlet 

resonances at 3.39, 6.61 and 6.64 ppm with integrations of 3:1:1 with respect to the 

cyclopentadienyl ligand and were assigned to one coordinated 1-methylimidazole 

ligand. The 
31

P{
1
H} NMR spectrum exhibited a broad peak at 53.0 ppm for a 

coordinated triphenylphosphine ligand. Further resonances for this species could not be 

identified as the aromatic region was too complex. The reaction with PhC≡
13

CH 

displayed in the 
13

C{
1
H} NMR spectrum a

13
C-labelled enriched peak at 351.3 ppm 

(doublet, 
2
JCP = 17.6 Hz) which was characteristic of the α-carbon atom of a vinylidene 

ligand. Additionally, this corroborated with the 
31

P{
1
H} NMR spectrum at 53.0 ppm, as 

a doublet with a 
2
JCP of 17.6 Hz was observed for the triphenylphosphine ligand. 
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   13
Me

            28
Me,H

 

Scheme 6.13: Stoichiometric addition of phenylacetylene to 13
Me

 in d2-dichloromethane at room 

temperature. 

After heating the reaction mixture containing phenylacetylene the major species was 

still the starting material 13
Me

, however resonances in the 
31

P{
1
H} NMR spectrum 

displayed the presence of two minor unknown triphenylphosphine containing species at 

43.2 and 51.7 ppm and the resonances belonging to 28
Me,H

 were now absent. After 

heating the reaction mixture the 
1
H NMR spectrum exhibited the absence of peaks for 

uncoordinated phenylacetylene, which suggested that all the alkyne had reacted which 

only required a sub-stoichiometric quantity of 13
Me

. A further five equivalents of 

phenylacetylene were added to the reaction mixture and heated at 50 °C for 16 hours. 

The NMR spectra displayed that resonances for 13
Me

 were absent. The major 

ruthenium-containing species present in the 
31

P{
1
H} NMR spectrum was at 51.7 ppm, 

however there was still uncoordinated phenylacetylene present in the reaction mixture.  

 

   13
Me

   

Scheme 6.14: Reaction of phenylacetylene with 13
Me

 in d2-dichloromethane after heating at 50 

°C.  
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The 
1
H NMR spectrum displayed doublet peaks at 6.42 and 7.06 ppm with a 

3
JHH of 

16.2 Hz for the E-1,4-diphenylbut-1-ene-3-yne compound, and another set of doublet 

resonances were observed at 5.94 and 6.73 ppm with a 
3
JHH of 12.0 Hz due to the Z-1,4-

diphenylbut-1-ene-3-yne molecule, where the resonances were compared to those stated 

in the literature.
87, 91

 The ratio of the E:Z butenyne present in the reaction mixture was  

approximately 1:0.3 respectively. This suggested that both of the coordinated 1-

methylimidazole ligands of 13
Me

 were dissociating from the ruthenium centre and 

therefore creating two vacant coordination sites where the dimerisation reaction of the 

phenylacetylene molecules could occur.
87, 91

 On heating the reaction mixture containing 

13
C-labelled phenylacetylene, the 

13
C{

1
H} NMR spectrum displayed enhancements for 

two doublet resonances 108.3 and 89.2 ppm with a 
2
JCC of 91.9 Hz and another set of 

doublet resonances at 107.5 and 88.5 ppm with 
2
JCC of 88.7 Hz. The resonances are 

characteristic of the E and Z butenyne species.  

From the reaction mixture employing phenylacetylene, a high resolution ESI-MS 

exhibited a peak with a m/z of 185.1076 which was assigned for a [C12H12N2]
+
 

fragment, which would account for a 1-methylimidazole and phenylacetylene molecule. 

Additionally, a TOF-EI MS was also carried out on a sample of the reaction mixture 

where a m/z peak was observed at 204.09401 which corresponds to a [C16H12]
+
 species 

and was assigned to a disubstituted butenyne molecule.  

 

6.6.2 Reaction between complex 13
Me

 with 4-ethynyl-α,α,α-trifluorotoluene 

The reaction of 4-ethynyl-α,α,α-trifluorotoluene with 13
Me

 in d2-dichloromethane was 

investigated. The 4-CF3 substituent of the phenyl ring of the terminal alkyne has 

previously changed the reactivity observed in the reactions of 10
R
 with aryl terminal 

alkynes (Section 5.2.3).  

The stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 13
Me

 in a d2-

dichloromethane solution was monitored using NMR spectroscopy. The NMR spectra 

after 24 hours displayed the resonance for the presence of a minor ruthenium-containing 

complex 28
Me,CF3

 and the major ruthenium-containing species was still 13
Me

 (Scheme 

6.15).  
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  13
Me

        28
Me,CF3

 

Scheme 6.15: Stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene with 13
Me

 in d2-

dichloromethane at room temperature, where Ar = C6H4-4-CF3. 

The complex 28
Me,CF3

 was hypothesised to be a vinylidene-containing complex as 

similar resonances were observed to those reported previously in this chapter. The 
1
H 

NMR spectrum exhibited broad signals at 5.11 and 5.47 ppm with relative integrations 

of 1H and 5H, and were assigned as the vinylidene hydrogen atom on the β carbon atom 

and the cyclopentadienyl ligand respectively. There were also resonances at 3.42 (3H), 

6.60 (1H) and 6.63 (1H) ppm with integrations relative to the cyclopentadienyl ligand 

for a coordinated 1-methylimidazole ligand.  

 

   13
Me

  

Scheme 6.16: Reaction of 4-ethynyl-α,α,α-trifluorotoluene with 13
Me

 in d2-dichloromethane 

after heating at 50 °C, where Ar = C6H4-4-CF3. 

After 24 hours minor changes were observed in the NMR spectra, therefore the reaction 

mixture was heated at 50 °C for 16 hours (Scheme 6.16). The 
1
H NMR spectrum 

exhibited the absence of the peak at 3.28 ppm for the terminal proton of the 4-ethynyl-

α,α,α-trifluorotoluene molecule. The major species present in the reaction mixture was 

13
Me

 and resonances for 28
Me,CF3

 were also present. A further equivalent of 4-ethynyl-

α,α,α-trifluorotoluene was added to the reaction mixture and heated for an additional 16 

hours. The NMR spectra of the reaction mixture at this stage demonstrated that 13
Me

 

was the major ruthenium-containing complex, and 28
Me,CF3

 was present as a minor 

species among many other minor unknown compounds. The 
1
H NMR spectrum 
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displayed a doublet resonance at 6.52 ppm with a 
3
JHH of 16.3 Hz and was assigned as  

E-1,4-di-4-trifluoromethylphenylbut-1-ene-3-yne. 

A high resolution ESI-MS of the reaction mixture revealed a m/z peak at 253.0934, 

which was assigned to a [C13H12F3N2]
+
 fragment and corresponds to a 1-

methylimidazole and 4-ethynyl-α,α,α-trifluorotoluene molecule. The ESI-MS also 

exhibited m/z peaks with a ruthenium-isotope pattern at 593.1421 and 681.1232 which 

were assigned to [Ru(η
5
-C5H5)(PPh3)(N2C4H6)2]

+
 and [Ru(η

5
-C5H5)(PPh3)(N2C4H6) 

(C2HC6H4-4-CF3)]
+
 respectively. Two further m/z peaks were also observed with a 

ruthenium-isotope pattern at 773.1794 and 861.1606, which could not assigned to a 

reasonable ruthenium-containing fragment.  

 

6.6.3 Summary 

The complex 13
Me

 exhibited initial similar reactivity to complexes 10
R
 as the 

vinylidene-containing complexes were observed. However, the vinylidene-containing 

complexes 28
Me,H

 and 28
Me,CF3

 were only minor species in the reaction mixture, and did 

not appear to react further. Further heating of the system lead to dissociation of both 1-

methylimidazole ligands and therefore allowed for the dimerisation of phenylacetylene 

to occur. From these studies, we can determine that the 1-methylimidazole ligands are 

stronger nitrogen donors at the ruthenium centre than pyridine, since upon addition of 

the terminal alkynes the major species present in the reaction mixture is 13
Me

. This 

could be due to the 1-methylimidazole have a higher pKa value than pyridine.
29

 

Potential reasons for the lack of the NHC ligand could have been due to steric and 

electronic effects, as it has been found in the literature that substituents coordinated to 

the imidazole ring can stabilise the NHC tautomer, and therefore the methyl substituent 

was substituted for a tert-butyl group (Section 6.7).
164
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6.7 Reactivity of 13
tBu

 with 4-ethynyl-α,α,α-trifluorotoluene 

The reaction of 13
tBu

 with 4-ethynyl-α,α,α-trifluorotoluene was probed to observe if 

changing the methyl group to a tert-butyl substituent on the nitrogen atom would 

change the reactivity. The tert-butyl group is more sterically bulky and donates more 

electron density to the imidazole ring via an inductive effect than a methyl substituent.  

 

   13
tBu       

28
tBu,CF3

 

Scheme 6.17: Stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene with 13
tBu

 in d2-

dichloromethane at room temperature, where Ar = C6H4-4-CF3. 

The stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 13
tBu

 in d2-

dichloromethane was monitored via NMR spectroscopy. The initial NMR spectra were 

recorded within an hour from the addition of phenylacetylene and did not display any 

new resonances. The reaction mixture was left at room temperature for 24 hours and the 

subsequent NMR spectra displayed a set of resonances for a new minor ruthenium-

containing species 28
tBu,CF3

, however 13
tBu

 was still the major species (Scheme 6.17). 

The 
1
H NMR spectrum displayed peaks for a minor species 28

tBu,CF3
 which was 

characteristic of containing a vinylidene ligand with broad peaks at 5.14 and 5.48 ppm 

with integrations of 1H and 5H which was assigned as the vinylidene ligand proton on 

the β carbon atom and the cyclopentadienyl ligand respectively. Additionally, in the 
1
H 

NMR spectrum the peaks at 1.17 (9H), 6.76 (1H) and 6.84 (1H) ppm were assigned to a 

coordinated tert-butylimidazole. The 
31

P{
1
H} NMR spectrum exhibited a broad peak at 

52.5 ppm for a coordinated triphenylphosphine ligand.  
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     13
tBu

 

Scheme 6.18: Reaction of 4-ethynyl-α,α,α-trifluorotoluene with 13
tBu

 in d2-dichloromethane 

after heating at 50 °C, where Ar = C6H4-4-CF3. 

After 6 days, (since no changes were observed in the NMR spectra) the reaction mixture 

was heated at 50 °C for 16 hours where the NMR spectra exhibited resonances for 13
tBu

 

(major), 28
tBu,CF3

 (minor) amongst many minor unknown ruthenium-containing species 

(Scheme 6.18). Interesting, after heating the reaction mixture the 
1
H NMR spectrum 

displayed peaks for uncoordinated 4-ethynyl-α,α,α-trifluorotoluene in the reaction 

mixture at 3.28 ppm. Based upon these observations the reaction mixture was heated for 

a further 16 hours at 50 °C. The major species present in the reaction mixture once all 

the 4-ethynyl-α,α,α-trifluorotoluene was consumed was 13
tBu

 amongst many other 

unknown species. The 
1
H NMR spectrum displayed doublet resonances at 6.52 and 6.51 

ppm with a 
3
JHH of 16.3 and 16.2 Hz, for the E- and Z- 1,4-di-4-trifluoromethyl 

phenylbut-ene-3-yne respectively, where the major isomer was the E-disubstituted 

butenyne.  

A high resolution ESI-MS of the reaction mixture displayed m/z peaks with ruthenium 

isotope patterns at 677.2355 and 723.1723 which were assigned as the species [Ru(η
5
-

C5H5)(PPh3)(N2C3H3CH3)2]
+
 and [Ru(η

5
-C5H5)(PPh3)(N2C3H3CH3)(C2HC6H4-4-CF3)]

+
 

respectively.  

6.7.1 Summary  

The difference in the reactivity of the 13
Me

 and 13
tBu

 was observed when heating the 

reaction mixture at 50 °C for 16 hours, as the phenylacetylene all reacts in the system 

with 13
Me

 under these conditions, however the analogous reaction with 13
tBu

 required 

further heating. This could be due to the tert-butyl group donating more electron density 

to the imidazole ring and therefore creating a stronger nitrogen donor atom than 1-

methylimidazole.   

   



245 

Chapter 6 

6.8  Reactivity of complex 14
H

 with alkynes  

The reactivity of the trimethylphosphine-substituted complexes 14
H

 and 14
NMe2

 with 

terminal alkynes was investigated. The trimethylphosphine ligand is smaller and more 

electron donating than triphenylphosphine and therefore the change in the steric and 

electronic properties of the phosphorus ligand will be expected to change the reactivity 

observed towards terminal alkynes.  

6.8.1 Reaction between complex 14
H

 with phenylacetylene 

6.8.1.1 Reactivity observed in d2-dichloromethane 

The stoichiometric addition of phenylacetylene to 14
H

 in a d2-dichloromethane was 

monitored via NMR spectroscopy (Scheme 6.19). The initial NMR spectra indicated 

that most of the starting complex 14
H

 had reacted, and the one major species was 

observed in the NMR spectra, 29 (Section 1.5). A further stoichiometric equivalent of 

phenylacetylene was added to the reaction mixture to drive the reaction to completion. 

The reaction mixture was monitored after 24 hours and the resonance belonging to 29 

had decreased in intensity and a set of peaks for a new unknown ruthenium complex 

was observed in the NMR spectra. The initial 
1
H NMR spectrum also exhibited 

resonances for uncoordinated pyridine at 8.58, 7.68 and 7.28 ppm for the protons at the 

C-2/6, C-4 and C-3/5 positions respectively.  

 

 14
H

                   29    

Scheme 6.19: Reaction between 14
H 

and phenylacetylene in d2-dichloromethane. 

The 
1
H NMR spectrum exhibited a peak at 5.24 ppm (5H) for the cyclopentadienyl 

ligand, and signals at 5.79 (s, 1H) and 5.12 (d, JHP = 10.7 Hz) ppm were assigned to the 

allyl hydrogen atoms of 29. A doublet resonance at 1.33 ppm with a 
2
JHP of 13.3 Hz was 

observed for the methyl groups of the trimethylphosphine ligand. In the 
31

P{
1
H} NMR 

spectrum a peak at 33.2 ppm for the triphenylphosphine ligand was observed. The 

resonances observed in the initial NMR spectra were compared to the literature data of 

29 to confirm the presence of this complex. Additionally Kirchner et al. reported that 
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the formation of 29 is fast from 14
H

 and complete within a few minutes and this is 

consistent with our findings.
136

  

The resonances for the new unknown ruthenium complex were observed in the 
1
H NMR 

spectrum at 5.12 ppm for the cyclopentadienyl ligand. The 
31

P{
1
H} NMR spectrum 

displayed a peak at 34.2 ppm for a triphenylphosphine ligand. Interestingly the 

resonances for uncoordinated pyridine in the reaction mixture decreased after 24 hours. 

This could have been due to the nitrogen lone pair coordinating at the ruthenium centre 

of 29 , as it has been established by Kirchner et al. that two electron donor ligands (e.g 

CF3COO
-
, PPh3), can coordinate to the metal centre.

136, 139
 This is only a hypothesis and 

should be considered cautiously.  

The reaction of 14
H

 and phenylacetylene in d2-dichloromethane did not indicate the 

presence of the C-H functionalised species in the reaction mixture, as was observed in 

the reaction of 10
H

 and terminal alkynes.  The major product formed in the reaction was 

29 and a possible reason for this observation in reactivity could be attributed to the more 

electron-donating trimethylphosphine ligand in 14
H

 and therefore the pyridine ligands 

are more labile in nature. It is possible that in the presence of phenylacetylene, both 

pyridine molecules are substituted by the alkyne which prefers the reaction pathway to 

form 29 (Section 1.5). Alternatively, the smaller cone angle of trimethylphosphine may 

allow for easier coordination of the alkyne molecules. The reaction conditions were 

consequently changed to account for these observations by carrying out the 

stoichiometric addition of phenylacetylene to 14
H

 in a pyridine solution.  

6.8.1.2 Reactivity observed in d5-pyridine and pyridine 

The stoichiometric addition of phenylacetylene to 14
H

 in d5-pyridine (55 equivalents 

with respect to the alkyne) was monitored using NMR spectroscopy. The reaction was 

left to proceed at room temperature for 48 hours, however no changes were observed 

and therefore the sample was heated at 50 °C for 16 hours. The 
1
H NMR spectrum after 

heating for 16 hours demonstrated that the resonances for phenylacetylene were no 

longer present. The NMR spectra after heating the reaction still exhibited peaks 

belonging to 14
H

 in d5-pyridine, however there were peaks present for a new ruthenium-

containing species 30
D,H

. In an attempt to drive the reaction to completion a further 

equivalent of phenylacetylene was added to the reaction mixture and the resonances for 

30
D,H

 were observed to increase in intensity.  The 
1
H NMR spectrum exhibited 

additional resonances to 30
D,H

 including a doublet peak at 8.03 ppm with a 
3
JHH of 16.0 
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Hz; through a 2D 
1
H-

1
H COSY experiment this peak was found to couple to a 

resonance at 7.45 ppm under a multiplet. These resonances were characteristic of a 

trans alkene proton. Other aromatic peaks were observed at 7.30, 7.38 and 7.61 ppm for 

a phenyl ring. Since there were no additional resonances for a cyclopentadienyl ligand 

and trimethylphosphine ligand in the 
1
H and 

31
P{

1
H} NMR spectra, this suggested that 

the species must have been of an organic nature. A comparison of the 
1
H NMR spectra 

with an authentic sample of 2-styrylpyridine confirmed the presence of the compound in 

the reaction mixture. The resonances which were expected for the pyridine fragment of 

2-styrylpyridine were not observed as these were deuterated. An ESI-MS of the reaction 

mixture displayed  m/z peaks at 186.1167, 187.1229 and 188.1287 which were assigned 

as [C13H8D4N]
+
, [C13H7D5N]

+  
and [C13H6D6N]

+
 respectively, and were due to different 

levels of deuterium incorporation. These are the expected m/z peaks for the 2-

styrylpyridine compounds or the N-bound isomer. The stoichiometric addition of 

phenylacetylene to 14
H

 in d5-pyridine gave the deuterated analogues of 2-styrylpyridine 

and 30
H,H

. This therefore explained the observation that a further equivalent of 

phenylacetylene was required to form 30
H,H

.  

 

  14
H

      30
H,H 

 

Scheme 6.20: Reaction between 14
H 

and phenylacetylene in pyridine. 

The reaction was also repeated with pyridine instead of d5-pyridine to avoid deuterium 

incorporation in to the final products (Scheme 6.20). The excess solvent was removed 

under vacuum and 30
H,H

 isolated by the slow diffusion of pentane into a 

dichloromethane layer containing 30
H,H

. The identification of 30
H,H

 was based on NMR 

spectroscopy, ESI-MS and X-ray crystallography. Many attempts were made to purify 

30
H,H

 unfortunately due to the air-sensitive nature of the species in solution, purification 

was difficult and therefore full characterisation was not obtained.  

The 
1
H NMR spectrum exhibited the resonances for 30

H,H
 in d2-dichloromethane at 1.54 

(d, 9H, 
2
JHP = 9.6 Hz) and 4.99 (s, 5H) ppm for the trimethylphosphine and 

cyclopentadienyl ligands at the ruthenium centre respectively. A 2D 1H-1H COSY 

exhibited a strong coupling between the resonances at 3.57 (dd, 1H, 
3
JHP = 12.9 Hz, 
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2
JHH = 7.0 Hz) and 6.37 (dd, 

2
JHP = 7.0 Hz, 

3
JHP = 1.3 Hz) ppm which were assigned as 

to the two alkene protons. The 
31

P{
1
H} NMR spectrum displayed resonances at -143.0 

(sept, 
1
JPF = 710 Hz) and 14.8 (s) ppm for the [PF6]

-
 anion and the trimethylphosphine 

ligand respectively. The 
13

C{
1
H} NMR spectrum displayed peaks at  62.1 (d, 

2
JCP = 4.6 

Hz), 76.1 (d, 
2
JCP = 2.4 Hz) and 87.5 (d, 

2
JCP = 1.4 Hz) ppm for the two alkene carbon 

atoms and the cyclopentadienyl ligand respectively. The 
13

C{
1
H} NMR spectrum 

displayed a set of peaks at 142.7, 118.2, 137.3, 136.7 (d, 
3
JCP = 3.6 Hz) and 182.3 (d, 

2
JCP = 19.9 Hz) ppm for the pyridylidene fragment, where the latter signal was due to 

the C-H functionalised carbon atom. A high resolution ESI-MS contained a m/z peak 

with a ruthenium isotope pattern at 424.0756 which was assigned to the cationic 

fragment of 30
H,H

. 

Crystals suitable for X-ray diffraction were obtained by the slow diffusion of pentane or 

hexane into a dichloromethane layer containing 30
H,H

. The structure of 30
H,H

 contained 

a C-H functionalised pyridine molecule in the form of a pyridylidene ligand which was 

bonded through the nitrogen atom to an alkene fragment. The geometry of 30
H,H

 could 

be described as a distorted octahedral as the bond angles of C(6)-Ru(1)-P(1), C(12)-

Ru(1)-P(1) and C(6)-Ru(1)-C(12) were 86.20(6), 84.51(6) and 84.52(8) ° respectively. 

The P(1)-Ru(1) bond length was 2.2940(6) Å. The C(6)-Ru(1) bond to the pyridylidene 

ligand was 2.0101(19) Å. The bonds around the pyridylidene ligand displayed 

significantly longer bond lengths for C(6)-C(7) and C(8)-C(9) than the adjacent bonds. 

The alkene bond length C(11)-C(12) was 1.414(3) Å, which was shorter than the 

adjacent bond lengths suggesting multiple bond character.  
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Figure 6.7: X-Seed diagram of [Ru(η
5
-C5H5)(PMe3)(κ

3
-C3-C5H4N)CH=CH(C6H5)]

+
 from 

complex 30
H,H

. Selected hydrogen atoms and the [PF6]
-
 anion have been omitted for clarity, and 

where shown the thermal ellipsoids are at a 50 % probability level. The fluorine atoms of the 

[PF6]
-
 anion were disordered over two positions in a ratio of 0.6807:0.3193. There were two 

large electron density peaks Q1 and Q2 present, due to a non-merahedrol twin element that was 

too weak to model.  
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 Bond lengths (Å)  Bond angles (°) 

C(1)-Ru(1) 2.218(2) C(6)-Ru(1)-P(1) 86.20(6) 

C(2)-Ru(1) 2.199(2) C(12)-Ru(1)-P(1) 84.51(6) 

C(3)-Ru(1) 2.242(2) C(6)-Ru(1)-C(12) 84.52(8) 

C(4)-Ru(1) 2.273(2) C(6)-Ru(1)-C(11) 64.26(8) 

C(5)-Ru(1) 2.243(2) N(1)-C(6)-Ru(1) 100.20(13) 

C(6)-Ru(1) 2.0101(19) C(12)-C(13)-N(1) 117.14(18) 

C(11)-Ru(1) 2.120(2) C(11)-C(12)-C(13) 121.32(19) 

C(12)-Ru(1) 2.224(2) C(10)-N(1)-C(6) 126.49(18) 

C(11)-C(12) 1.414(3) N(1)-C(10)-C(9) 117.6(2) 

C(12)-C(13) 1.484(3) C(10)-C(9)-C(8) 119.1(2) 

C(11)-N(1) 1.449(2) C(7)-C(8)-C(9) 121.5(2) 

C(6)-N(1) 1.355(3) C(8)-C(9)-C(10) 119.1(2) 

C(6)-C(7) 1.397(3) N(1)-C(6)-C(7) 116.16(18) 

C(7)-C(8) 1.377(3)   

C(8)-C(9) 1.397(3)   

C(9)-C(10) 1.360(3)   

C(10)-N(1) 1.348(3)   

P(1)-Ru(1) 2.2940(6)   

Table 6.4: Selected bond lengths (Å) and angles (°) for complex 30
H,H

. 

 

In comparison to the reactions conducted with triphenylphosphine, the reaction of 14
H

 

(containing trimethylphosphine) with phenylacetylene requires the presence of excess 

pyridine in the system to generate the C-H activated product. Pyridine ligands are more 

labile when the phosphine ligand is trimethylphosphine and therefore additional 

pyridine was required. In the reactions with 14
H

 a vinylidene-containing species was not 

observed. This could potentially be due to vinylidene species being less favoured in a 

basic medium, due to the vinylidene proton being electrophilic in nature.
54

 In reactions 

where the in situ vinylidene-containing species 19
H,Ph

 was placed in a pyridine solution 

to observe its reactivity, 19
H,Ph

 returned to 10
H 

(equilibrium favours the formation of 

10
H

). This may possibly explain why the only ruthenium-containing complexes 

observed in these reactions are 14
H

 and 30
H,H

.  
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6.8.2 Reaction between complex 14
H

 with 4-ethynyl-α,α,α-trifluorotoluene 

Using the understanding gained from the reaction of 14
H

 with phenylacetylene in d2-

dichloromethane the stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 14
H

 

was conducted in a pyridine solution to avoid the formation of the π-allyl carbene 

complexes reported by Kirchner et al.
136

 The reaction mixture was heated at 50 °C for 

16 hours and a small aliquot placed in d2-dichloromethane to observe how the reaction 

proceeded via NMR spectroscopy. After heating the reaction mixture for 16 hours at 50 

°C, a set of resonances for 30
H,CF3

 were observed in the  NMR spectra, however 

resonances for 14
H

 and  4-ethynyl-α,α,α-trifluorotoluene were still present and therefore 

was heated for an additional 16 hours (Scheme 6.21). The characterisation of 30
H,CF3

 

has been based on  the NMR spectra from this reaction mixture and has been assigned 

cautiously. Further attempts to characterise this species were not conducted due to time 

constraints.  

 

           30
H,CF3 

Scheme 6.21: Reaction between 14
H
 and 4-ethynyl-α,α,α-trifluorotoluene in pyridine. 

The resonances observed in the 
1
H NMR spectrum in d2-dichloromethane that have 

been assigned to 30
H,CF3

 were observed at 1.52 (d, 9H,  
2
JHP = 9.7 Hz) and 5.00 (s, 5H) 

ppm for the trimethylphosphine and cyclopentadienyl ligands respectively. The 

resonances at 3.55 (dd, 1H, 
3
JHP = 12.9 Hz, 

3
JHH = 6.8Hz) and 6.48 (dd, 1H, 

3
JHH = 6.8 

Hz, 
3
JHP = 1.5 Hz) ppm were assigned to the alkene protons of 30

H,CF3
. The 

31
P{

1
H} 

NMR spectrum displayed resonances at -143.0 (sept, 
1
JPF = 710 Hz) and 14.2 (s) ppm 

for the [PF6]
-
 anion and the trimethylphosphine ligand respectively. From the 

1
H NMR 

spectrum it was not possible to determine if the organic species, E-2-(4-

trifluoromethyl)styrylpyridine was present in the reaction mixture. 

  

14
H 
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6.9  Reactivity of complex 14
NMe2

 with terminal alkynes  

The observations from the reaction of 14
H

 with phenylacetylene in d2-dichloromethane 

suggested that the pyridine ligands were extremely labile, as the formation of 29 

required the coordination of two phenylacetylene molecules at the ruthenium centre and 

is due to the fragment [Ru(η
5
-C5H5)(PMe3)]

+
 being accessible in solution. The 

coordination of 4-dimethylaminopyridine molecules to [Ru(η
5
-C5H5)(PMe3)]

+
 to give 

14
NMe2

 would therefore control the reactivity to favour the formation of the pyridylidene 

species, since 4-dimethylaminopyridine is a more strongly donating ligand than 

pyridine. The reactivity of 14
NMe2

 with terminal alkynes phenylacetylene and 4-ethynyl-

α,α,α-trifluorotoluene has been investigated.  

6.9.1 Reaction between complex 14
NMe2

 with phenylacetylene  

The addition of phenylacetylene to 14
NMe2

 in d2-dichloromethane was carried out under 

several different reaction conditions at room temperature and monitored via NMR 

spectroscopy:  

i) Stoichiometric addition of phenylacetylene to 14
NMe2

 in d2-dichloromethane; 

ii) Stoichiometric addition of phenylacetylene to 14
NMe2

 in d2-dichloromethane 

in the presence of two equivalents of 4-dimethylaminopyridine. 

Following reaction conditions i, three ruthenium-containing complexes were observed 

in the NMR spectra 29, 30
NMe2,H

 and an unknown species. When the reaction conditions 

ii were employed, the reaction was more selective and only exhibited resonances for 

30
NMe2,H

.  

 

     30
NMe2,H

 

Scheme 6.22: Reaction between 14
NMe2

 and phenylacetylene in the presence of two equivalents 

of 4-dimethylaminopyridine in d2-dichloromethane. 

The resonances for 29 were observed in the 
1
H NMR spectrum at 5.14 (d, 1H, JHP = 

10.7 Hz), 5.79 (s, 1H) and 5.24 (s, 5H) ppm for the two allyl hydrogen atoms and 

cyclopentadienyl ligand respectively. The 
31

P{
1
H} NMR spectrum contained a singlet 

14
NMe2
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peak at 33.3 ppm for the trimethylphosphine ligand of 29. To confirm the presence of 

29 in the reaction mixture, the spectra were compared to the literature data.
136

  

From the NMR spectra for reaction conditions ii, the 
1
H NMR spectrum exhibited peaks 

for 30
NMe2,H

 and all the protons were assigned. The 
1
H NMR spectrum exhibited 

resonances at 1.55 (d, 
2
JHP = 9.5 Hz) and 3.04 (s) ppm for the methyl substituents of the 

trimethylphosphine and the NMe2 groups respectively. The two alkene protons were 

observed at 3.47 (dd, 
3
JHP = 13.1 Hz, 

3
JHH = 6.9 Hz) and 6.10 (dd, 1H, 

3
JHP = 1.1 Hz, 

3
JHH = 6.9 Hz) ppm, which both integrated as 1H with respect to the cyclopentadienyl 

ligand at 4.90 (5H) ppm. Three protons for the aromatic ring of the 4-

dimethylaminopyridine ligand were observed at 6.20, 6.30 and 7.35 ppm, where the 

peak at 6.30 ppm did not display the expected doublet coupling, suggesting that a 

proton at the C-2 position was not present and a C-H functionalisation reaction had 

occurred. This is consistent with previous observations made with the 4-methylpyridine 

and 4-dimethylaminopyridine N-containing heterocycles. The 
31

P{
1
H} NMR spectrum 

displayed a singlet peak at 16.1 ppm for the trimethylphosphine ligand. A high 

resolution ESI-MS of the reaction mixture exhibited a m/z peak at 467.1195 which 

matched the cation [Ru(η
5
-C5H5)(κ

3
-C3-(4-NMe2)C5H3N-C2H2C6H5)]

+
 of  30

NMe2,H
. 

Crystals of 30
NMe2,H

 were grown and found to be suitable for X-ray diffraction by the 

slow diffusion of pentane into a dichloromethane layer containing 30
NMe2,H

 (Figure 6.8, 

Table 6.5). The crystal data displayed a large amount of disorder as both the cation and 

anion were disordered over two positions. The structure shown below confirms the 

formation of a pyridylidene ligand which is bonded to an alkene functional group 

through the nitrogen atom. A distorted octahedral geometry around the ruthenium centre 

was observed, where the C(6)-Ru(1)-P(1), C(12)-Ru(1)-P(1) and  were 89.15(6), 

83.32(5) and 84.75(7) ° respectively. The ruthenium centre exhibited an unequal 

coordination to the alkene bond where C(11)-Ru(1) and C(12)- Ru(1) were found to 

2.1332(18) and 2.2460(18) Å respectively. The C(6)-Ru(1) bond length was 2.0323(19) 

Å to the pyridylidene ligand. The C(7)-C(6) and C(10)-C(9) bond lengths of the 

pyridylidene fragment were significantly shorter than the adjacent carbon-carbon bonds. 

A set of platinium (II) complexes with chelate pyridine-pyridylidene ligands were 

studied via X-ray crystallography, where the derivative containing a 4-NMe2 substituent 

at the pyridylidene fragment exhibited similar patterns to those observed for 30
NMe2,H

.
188
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Figure 6.8: X-Seed diagram of [Ru(η
5
-C5H5)(PMe3)(κ

3
-C3-(4-NMe2)C5H4N)CH=CH(C6H5)]

+
 

from complex 30
NMe2,H

. Selected hydrogen atoms and the [PF6]
-
 anion have been omitted for 

clarity, and where shown the thermal ellipsoids are at a 50 % probability level. Both the cation 

and anion were completely disordered over two positions, with refined occupancies of 

0.9148:0.0852 (6). The cation of the largest occupancy has been displayed.  

 Bond lengths (Å)  Bond angles (°) 

C(1)-Ru(1)  2.209(2) C(6)-Ru(1)-P(1)  89.15(6) 

C(2)-Ru(1)  2.235(2) C(12)-Ru(1)-P(1)  83.32(5) 

C(3)-Ru(1)  2.256(2) C(6)-Ru(1)-C(12)  84.75(7) 

C(4)-Ru(1)  2.277(2) C(6)-N(1)-C(11)  104.42(15) 

C(5)-Ru(1)  2.246(2) C(12)-C(11)-N(1) 117.02(17) 

C(6)-Ru(1) 2.0323(19) C(11)-C(12)-C(13)  121.34(18) 

C(6)-N(1)  1.365(2) C(10)-N(1)-C(6)  124.16(19) 

C(7)-C(6)  1.379(3) N(1)-C(6)-C(7)  118.12(18) 

C(8)-C(7)  1.424(3) C(6)-C(7)-C(8)  120.4(2) 

C(9)-C(8)  1.430(3) C(7)-C(8)-C(9)  117.7(2) 

C(10)-C(9)  1.354(3) C(10)-C(9)-C(8)  120.6(2) 

C(10)-N(1)  1.362(3) C(9)-C(10)-N(1)  119.1(2) 

C(11)-N(1)  1.451(2)   

C(11)-C(12)  1.423(3)   

C(11)-Ru(1)  2.1332(18)   

C(12)- Ru(1)  2.2460(18)   

P(1)-Ru(1)  2.2978(6)   

Table 6.5: Selected bond lengths (Å) and angles (°) for complex 30
NMe2,H

 .  
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6.9.2 Reaction of complex 14
NMe2

 with 4-ethynyl-α,α,α-trifluorotoluene  

The stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 14
NMe2

 in the 

presence of two equivalents of 4-dimethylaminopyridine in d2-dichloromethane was 

investigated (Scheme 6.23). The reaction was allowed to proceed at room temperature 

and was monitored via NMR spectroscopy. One major ruthenium containing complex 

30
NMe2,CF3

 was observed, amongst many minor unidentified species.  

         30
NMe2,CF3

 

Scheme 6.23: Reaction between 14
NMe2

 and 4-ethynyl-α,α,α-trifluorotoluene in the presence of 

two equivalents of 4-dimethylaminopyridine in d2-dichloromethane. 

The species 30
NMe2,CF3

 was identified in the reaction mixture from the 
1
H and 

31
P{

1
H}  

NMR spectra. Since the reaction produced many minor unknown species the 

purification of 30
NMe2,CF3

 was challenging and not obtained. The 
1
H NMR spectrum 

exhibited the alkene proton resonances at 3.45 and 6.17 ppm where both peaks had an 

integration of 1H with respect to the cyclopentadienyl ligand peak at 4.92 ppm (s, 5H). 

Similarly to the previous pyridylidene ligands, only three protons were observed on the 

heterocycle at 6.21 (d, 
3
JHH = 6.8 Hz), 6.30 (m) and 7.40 (d, 

3
JHH = 7.2 Hz) ppm, where 

each signal had an integration of 1H with respect to the cyclopentadienyl ligand 

resonance. The 
31

P{
1
H} NMR spectrum displayed a peak at 15.6 ppm for the 

coordinated trimethylphosphine ligand. The ESI-MS of the reaction mixture exhibited 

many ruthenium-containing m/z peaks, however a m/z peak at 535.1074 was observed 

and could be assigned to the cationic fragment [Ru(η
5
-C5H5)(κ

3
-C3-(4-NMe2)C5H3N-

C2H2(4-CF3-C6H4))]
+
 of  30

NMe2,CF3
. 

Interestingly, there has been no evidence for a vinylidene-containing complex in the 

reactions where 14
NMe2

 has been reacted with terminal alkynes. This could be an effect 

of the 4-dimethylaminopyridine ligand, as it is a much strongly coordinating ligand due 

to the conjugation effect of the NMe2 group in the 4-position of the heterocycle. It is 

possible that the vinylidene-containing complex is only a minor component of the 

reaction mixture. This corroborates with the reactions of 10
NMe2

 and phenylacetylene 

(Section 6.4).   

14
NMe2
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6.10  Reactivity of complex 15 with phenylacetylene 

The reaction of 15 with phenylacetylene in d2-dichloromethane was investigated. The 

role of a more electron-donating phosphine ligand with a larger cone angle than 

triphenylphosphine was explored. The reactivity of 15 was of particular interest as 

attempts to synthesise the bis-pyridine complex was not successful due to the steric 

constraints at the ruthenium centre, and therefore this may impact the reactivity 

observed towards phenylacetylene.  

 

     15 

Scheme 6.24: Addition of phenylacetylene to 15 in d2-dichloromethane. 

Since 15 could not be obtained pure, a reaction mixture where 15 was the major species 

was used.  The initial NMR spectra from the stoichiometric addition of phenylacetylene 

to 15 were recorded within one hour. The NMR spectra indicated the presence of two 

short-lived unknown complexes, where one was a major complex and the other a minor 

complex that was only present in the initial NMR spectra. The major ruthenium-

containing species in the initial 
1
H NMR spectrum was observed at 5.64 ppm for a 

potential cyclopentadienyl ligand, and in the 
31

P{
1
H} NMR spectrum the resonance for 

the coordinated triisopropylphosphine ligand was observed at 64.8 ppm. The minor 

initial unknown species in the 
31

P{
1
H} NMR spectrum exhibited a minor broad peak at 

61.7 ppm for a triisopropylphosphine ligand. 

After 24 hours, the 
1
H NMR spectrum exhibited no resonances for uncoordinated 

phenylacetylene at 3.12 ppm. In the 
1
H NMR spectrum a resonance at 8.58 ppm (broad) 

was seen for the protons at the C-2/6 positions for uncoordinated pyridine, and also 

uncoordinated acetonitrile at 1.97 ppm (singlet). However, after 24 hours the resonances 

for the major complex decreased in intensity, as the peaks for two new unidentified 

species at 75.8 and 58.8 ppm were observed in the 
31

P{
1
H} NMR spectrum. A 2D 

1
H-

1
H COSY experiment displayed a strong coupling between two peaks at 2.01 (d, J = 8.3 

Hz) and at 6.61 (dd, J = 8.3 Hz, J = 0.9 Hz) ppm where these peaks had an equal 

integration. Unfortunately, the nature of these complexes is unknown, however it may 
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be possible that they are metal-containing intermediates in the formation of 1,4-

butenyne species.  

Additionally, the 
1
H NMR spectrum after 24 hours exhibited resonances for the 

dimerisation products E and Z- 1,4-diphenylbut-1-ene-3-yne compounds. Where the 

vinyl protons for these compounds were displayed at 6.42 ppm (doublet, 
3
JHH = 16.2 

Hz) for E-butenyne and at 6.73 and 5.98 ppm (doublet, 
3
JHH = 12.0 Hz) for Z-

butenyne.
87, 91

  

A high resolution ESI-MS of the crude reaction mixture displayed one major 

ruthenium-containing peak with a m/z of 531.1756, which was assigned to a cationic 

fragment [Ru(η
5
-C5H5)(P

i
Pr3)(CCHPh)2]

+
. This is consistent with the ruthenium-

containing species that are responsible for the dimerisation of phenylacetylene (Section 

1.4.1).  

The reaction of phenylacetylene with 15 resulted in multiple unidentified ruthenium-

containing complexes; however it is possible that some of these species are related to 

the formation of the butenyne compounds. The triisopropylphosphine ligand at the 

ruthenium centre displayed extremely different reactivity towards terminal alkynes than 

the triphenylphosphine and trimethylphosphine containing complexes. Since 

trimethylphosphine is a more electron-donating ligand than triphenylphosphine, the 

difference in reactivity difference may not be due to electronic effects. A potential 

reason for the differences in reactivity of 15 in comparison to 10
H

 could be due to the 

steric influence of the isopropyl substituents, as the triphenylphosphine-pyridylidene 

complexes 22 exhibit steric interactions at the ruthenium centre around the Ru-P bond. 

Additionally, it was not possible to synthesise a bis-substituted pyridine complex with a 

triisopropylphosphine ligand. It is therefore possible that there may a steric factor 

involved at the ruthenium centre for the coordination and reactivity of the pyridine and 

phenylacetylene molecules.  
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6.11  Reactivity of complex 16 with phenylacetylene  

The complex [Ru(η
5
-C5H5)(P(OPh)3)(NC5H5)2][PF6], 16 contained an electron-

withdrawing phosphorus ligand, triphenylphosphite. The triphenylphosphite ligand 

changes the electronic properties of the ruthenium complex, as less electron density is 

present at the ruthenium centre in comparison to the triphenylphosphine analogue 10
H

. 

The reactivity of 16 towards a stoichiometric quantity of 
13

C-phenylacetylene in d2-

dichloromethane was investigated to determine if a similar reaction of 10
H

 with 

phenylacetylene occurred (Scheme 6.25). 

 

        16 

Scheme 6.25: Stoichiometric addition of 
13

C-phenylacetylene to 16.  

The initial NMR spectra recorded after two hours at room temperature only exhibited 

resonances due to the starting materials, where the 
1
H NMR spectrum displayed a 

singlet peak at 4.39 ppm for the cyclopentadienyl ligand of 16 at a doublet peak at 3.12 

ppm with a 
1
JHC of 251 Hz for the terminal proton of 

13
C-phenylacetylene. Also the 

1
H 

NMR spectrum did not exhibit peaks for uncoordinated pyridine. The 
31

P{
1
H} NMR 

spectrum exhibited a singlet peak at 140.6 ppm for the phosphorus atom of the 

triphenylphosphite ligand. A 
13

C{
1
H} NMR spectrum displayed a singlet peak at 77.6 

ppm for the 
13

C label of 
13

C-phenylacetylene. The reaction appeared to proceed slowly 

and was therefore heated for 24 hours at 50 °C.  After heating the reaction mixture, 

the 
1
H and 

13
C{

1
H} NMR spectra no longer displayed the peaks for 

13
C-phenylacetylene 

indicating the alkyne had all reacted. Unfortunately, from the 
13

C{
1
H} NMR spectrum, 

there was no major resonance for the 
13

C label, suggesting there was no major species in 

the reaction mixture. The 
1
H and 

31
P{

1
H} NMR spectra suggested there were three 

minor new ruthenium-containing species, as in the 
1
H NMR spectrum the 

cyclopentadienyl region contained singlet peaks at 4.74, 4.82 and 4.88 ppm, and in the 

31
P{

1
H} NMR spectrum there were resonances at 171.4, 174.0 (d, JPC = 13.4 Hz) and 

198.3 ppm for the phosphorus atom of the triphenylphosphite ligand. However, the 
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major resonances in the NMR spectra belonged to 16. This data suggested that more 

than one equivalent of phenylacetylene was being consumed per ruthenium complex.  

A further reaction involving the addition of 10 equivalents of phenylacetylene to a d2-

dichloromethane solution of 16 was heated for 16 hours at 50 °C and monitored using 

NMR spectroscopy. The NMR spectra of the reaction mixture demonstrated the absence 

of the resonances belonging to 16 and multiple resonances for unidentified species. 

Only one set of peaks from the previous stoichiometric reaction was present in the 

NMR spectra, in the 
1
H NMR spectrum at 4.74 ppm for the cyclopentadienyl ligand and 

in the 
31

P{
1
H} NMR spectra at 198.3 ppm for the triphenylphosphite ligand.  

A difference in the reactivity towards phenylacetylene is observed between complexes 

16 and 10
H

. The electron-withdrawing effect of the triphenylphosphite ligand changed 

the reactivity observed when compared to triphenylphosphine. The major ruthenium 

complex initially formed upon the addition of phenylacetylene to 10
H

 is the vinylidene-

containing species 19
H,Ph

, this complex then reacts further to yield 22
H,H

. However the 

addition of phenylacetylene to 16 did not exhibit any evidence for a vinylidene-

containing complex, this could be due to the ruthenium centre being electron-deficient 

in nature. Fischer type vinylidene complexes require an electron rich metal centre to 

stabilise an electron deficient vinylidene ligand (Section 1.3.2).
324

 The absence of a 

vinylidene-containing complex from the reaction of 16 with phenylacetylene suggests 

that the ruthenium centre does not possess enough electron density to stabilise a 

vinylidene ligand at the ruthenium centre or the pyridine ligand may not be as labile.  
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6.12  Reactivity of [Ru(η
5
-C5H5)(PPh3)2]

+
 with phenylacetylene 

The addition of phenylacetylene to complexes 9
Ph

 and 31 in a d2-dichloromethane 

solution was explored. The formation of the vinylidene-containing complexes 2
Ph

 from 

the stoichiometric addition of phenylacetylene to the complexes [Ru(η
5
-

C5H5)(PPh3)2(L)][PF6] (where L = NCMe, NC5H5) was analysed in situ.  

6.12.1 Reaction of [Ru(η
5
-C5H5)(PPh3)2(NCMe)][PF6], 9

Ph
 with phenylacetylene 

 

      9
Ph

                 2
Ph

  

Scheme 6.26: Stoichiometric addition of phenylacetylene to 9
Ph

 in d2-dichloromethane. 

The stoichiometric addition of phenylacetylene to 9
Ph

 was monitored via NMR 

spectroscopy at different time periods (Scheme 6.26). The NMR spectra exhibited 

resonances for the formation of 2
Ph

 in the reaction mixture. The 
1
H NMR spectrum 

exhibited broad resonances at 5.27 (5H) and 5.43 (1H) ppm, for the cyclopentadienyl 

ligand and the proton of β carbon atom of the vinylidene ligand respectively. The 

31
P{

1
H} NMR spectrum displayed a peak at 43.9 ppm for the triphenylphosphine 

ligands of  2
Ph

. The characterisation of this species was confirmed against an authentic 

sample of 2
Ph

.  

The 
1
H NMR spectra over 1, 2, 3 and 10 days exhibited changes in the intensities for the 

resonances at 2.12 and 1.97 ppm for the acetonitrile methyl substituents of 9
Ph

 and the 

uncoordinated species respectively. The reaction mixture displayed an increase in the 

quantity of uncoordinated acetonitrile over time (Table 6.6). The reaction reached 

equilibrium between 9
Ph

 and 2
Ph

 as resonances for phenylacetylene were observed in the 

1
H NMR spectrum at 3.13 ppm.  
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Days 
Relative integrations of methyl substituents of acetonitrile 

9
Ph

 Uncoordinated 

1 1.0 0.2 

2 1.0 2.8 

3 1.0 4.0 

10 1.0 5.5 

Table 6.6: Relative integrations of acetonitrile methyl substituents of reaction mixture. 

 

6.12.2 Reaction of [Ru(η
5
-C5H5)(PPh3)2(NC5H5)][PF6], 31 with phenylacetylene 

 

31           2
Ph

  

Scheme 6.27: Stoichiometric addition of phenylacetylene to 31 in d2-dichloromethane.  

The stoichiometric addition of phenylacetylene to [Ru(η
5
-C5H5)(PPh3)2(NC5H5)][PF6] 

was monitored via NMR spectroscopy and found to give resonances belonging to 2
Ph

 by 

comparison with an authentic sample. In the 
1
H NMR spectrum the cyclopentadienyl 

resonances at 4.42 ppm and in the 
31

P{
1
H} NMR spectrum for the triphenylphosphine 

ligand at 43.4 ppm belonging to 31 were found to be absent after two days suggesting 

the reaction had gone to completion. Additionally, the 
1
H NMR spectrum displayed 

resonances at 7.70 (1H) and 8.58 (2H) ppm for uncoordinated pyridine in the reaction 

mixture.  

6.12.3 Comparison of the reaction of 9
Ph

 and 31 with phenylacetylene 

The vinylidene-containing complex 2
Ph

 was generated from the addition of 

phenylacetylene to complexes 9
Ph

 and 31. The related reaction of 9
Ph

 remained in 

equilibrium after 10 days, however the reaction of 31 went to completion within two 

days. This difference in reactivity suggests that it is possible that the pyridine molecule 

is more labile on the [Ru(η
5
-C5H5)(PPh3)2]

+
 fragment, and could be due to the higher 

steric demand of the heterocycle.    
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6.13  Properties of the vinylidene-containing complexes 19
R1,R2

 

and 28
R1,R2

  

The spectroscopic properties of complexes 19
R1,R2

 and 28
R1,R2

 will be discussed as they 

have exhibited similar behaviour in a dichloromethane solution upon the addition of 

terminal alkynes and the substituent effects will be briefly described.  

The addition of the terminal alkynes (phenylacetylene, 1-ethynyl-4-fluorobenzene, 4-

ethynyl-α,α,α-trifluorotoluene) to complexes 10
R
 or 13

R
 in dichloromethane resulted in 

the formation of the vinylidene-containing complexes 19
R1,R2

 and 28
R1,R2

 where the 

NMR spectra displayed broad resonances for these short-lived intermediates. The 

formation of 19
R1,R2

 and 28
R1,R2

 in the dichloromethane solution required the 

coordination of the terminal alkyne and dissociation of the N-containing heterocycles. 

In the literature it is well established that the vinylidene proton at the β-carbon atom is 

readily deprotonated in a basic medium,
54

 and therefore upon formation of the species 

19
R1,R2

 and 28
R1,R2

  an uncoordinated equivalent of the basic N-containing heterocycles 

will be present in the reaction mixture. In solution it is possible that an equilibrium 

exists between the vinylidene-containing species and the acetylide complex, where the 

N-containing heterocycles are acting as a base to deprotonated the vinylidene proton at 

the β-carbon atom. The only vinylidene-containing species that remained in solution 

was 19
H,tBu

 and this could potentially be attributed to the bulkiness of the tert-butyl 

group.  

The presence of the electron-withdrawing groups on the phenyl ring of 19
R1,R2

 and 

28
R1,R2

  has displayed a change in the δP of the triphenylphosphine ligands, as when the 

groups change from H, F, CF3 the chemical shifts move further upfield. For example the 

δP of 19
H,H

,19
H,C6H4-4-F

 and 19
H,C6H4-4-CF3

 are exhibited at 51.8, 51.7 and 51.0 ppm 

respectively, where the largest difference in the chemical shifts is observed between the 

F and the CF3 groups. This can be attributed to the additional fluorine atoms which 

through an inductive effect withdraw electron density from the complex.  
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6.14  Determining properties of the pyridylidene complexes 

The type of bonding in the C-H functionalised complexes could either be considered as 

a pyridinium- or carbene-type of ligand is discussed. Existing pyridylidene-containing 

transition metal complexes exhibit characteristic spectroscopic properties. A 

comparison of the spectroscopic data for the pyridylidene-containing complexes 22
R1,R2

, 

23
R1,R2

, 27
R1,R2

 and 30
R1,R2

 will be conducted. The X-ray crystallography data obtained 

for the complexes will also be compared to the established literature of pyridylidene-

containing complexes.  

6.14.1 General NMR spectroscopy data of the pyridylidene complexes 

To determine the coordination of the C-H functionalised N-containing heterocycle, 

some of the key spectroscopic data for the pyridylidene-alkene complexes have been 

presented (Table 6.7, Table 6.8 and Table 6.9). The 
13

C{
1
H}, 

1
H and 

13
P{

1
H} NMR data 

are discussed in this section. The carbon atom of the C-H functionalised pyridylidene 

ligands of 22
R1,R2

, 27
R1,R2

 and 30
R1,R2

 were observed in the 
13

C{
1
H} NMR spectrum 

between 167.2 –182.3 ppm as doublets, where a 
2
JCP of approximately 19 Hz was 

observed. The downfield shift from pyridine suggests a more carbene-type of character 

is present. The reported ruthenium pyridylidene ligands in the literature exhibit a δC for 

the carbene carbon atom between 205 – 220 ppm.
221-223

 However, higher field chemical 

shifts have been observed for the iridium and osmium pyridylidene complexes between 

170 – 200 ppm.
211

  The complexes synthesised in this thesis are therefore consistent 

with those presented in the literature (Section 1.8).  

The 
1
H NMR spectra of 22

R1,R2
, 27

R1,R2
 and 30

R1,R2
 for the coordinated alkene group at 

the ruthenium centre exhibited peaks at approximately 3.6 and 6.6 ppm, where the 

resonances at approximately 3.6 ppm displayed larger 
3
JHP coupling constants at around 

12 Hz, where as the resonances at approximately 6.6 ppm displayed smaller 
3
JHP values 

of ~1.5 Hz. Similar observations have been reported in the literature for the η
2
-

coordination of an alkene to transition metal centres.
325-328

 To analyse the metal to 

alkene bonding interaction through NMR spectroscopy, the change in the chemical 

shifts of the coordinated and uncoordinated alkene proton and carbon atoms can be 

calculated.
140, 318, 319

 The larger the difference in the chemical shifts suggests a stronger 

donation of electron density from the metal centre to the alkene.
140

 The significant 

upfield shift of one of the alkene atoms has been reported, where the shielded effect is 
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due to additional electron density from the metal centre being donated to the alkene 

group.
94, 325, 329

 

Additionally, in the 
1
H NMR spectra of 22

R1,R2
 and 27

R1,R2
 the aromatic region 

displayed broad resonances for the phenyl rings of the triphenylphosphine ligand, this 

was due to the restricted rotation of the Ru-P bond on the NMR timescale and therefore 

each of the phenyl rings experienced an individual environment. For complexes 30
R1,R2

 

there were no broad resonances were observed for the methyl substituents of the 

trimethylphosphine ligands, suggesting these species were less sterically hindered 

around the ruthenium centre.  

The 
31

P{
1
H} NMR chemical shifts for 22

R1,R2
 and 27

R1,R2
 were observed between 50.5 

– 54.7 ppm for the coordinated triphenylphosphine ligand and for the 30
R1,R2

 complexes 

the resonances were observed at approximately 15 ppm for the trimethylphosphine 

ligand. 

The spectroscopic data for the 1-ruthanaindolizine complexes 23
R1,R2

 were compared to 

the complexes 22
R1,R2

. The δC
 
for the Ru-C bonds to the pyridylidene fragment of 

23
R1,R2

 shifted further downfield and observed between 217.8 – 219.3 ppm where a 
2
JHP 

of approximately 15.5 Hz was found. The other Ru-C bond in the 
13

C{
1
H} NMR 

spectrum were observed at ~190 ppm with a smaller 
2
JHP of approximately 12.9 Hz. 

Interestingly, the δP for the triphenylphosphine ligands of 23
R1,R2

 were seen at a higher 

chemical shift of approximately 60 ppm in comparison to complexes 22
R1,R2

.  

The NMR spectroscopic data for the reported pyridylidene complexes in this chapter 

were compared and the substituent effects have been studied (Table 6.7 and Table 6.8). 

The Hammett constants have assisted in determining the electronic properties of the 

substituents.
292-295

 In all complexes 22
R1,R2

, 27
R1,R2

 and 30
R1,R2

 the resonances for the 

alkene protons, the phosphine ligand and the carbon of the pyridylidene ligand have 

been evaluated with regards to:  

i) The presence of a 4-CF3 group on the phenyl group of the terminal alkyne; 

ii) The substituents at the 4-position of the N-containing heterocycles (e.g. H, 

Me, NMe2) 

On changing the substituent at the 4-position of the terminal alkyne from H to CF3, the 

effect of an electron-withdrawing group was investigated and changes were observed in 

the 
1
H and 

31
P{

1
H} NMR spectra.

292-295
 In the 

1
H NMR spectrum the resonances 
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belonging to the alkene resonances at ~3.6 ppm all shifted upfield, where as the other 

alkene proton resonances are further downfield at ~6.6 ppm. The resonances at ~3.6 

ppm are for the alkene protons that are more closely bonded to the aryl group (Ph or 4-

CF3-C6H4). The presence of the 4-CF3 substituent has shielded the alkene protons at 

~3.6 ppm, which suggests that additional electron density is donated into the metal to 

alkene bond.
140

 Additionally, the 
31

P{
1
H} chemical shifts have shifted further upfield 

upon the presence of a 4-CF3 substituent.  

Alternatively, more electron-donating substituents on the N-containing heterocycles 

were introduced at the 4-position (H, Me and NMe2) where the C-3/5 and nitrogen 

donor atom positions are activated on the ring.
292-295

 The methyl substituent activates 

positions around the phenyl ring via an inductive effect, where as the NMe2 group 

strongly activates the positions due to conjugation. The 
31

P{
1
H} NMR chemical shifts 

as the substituents became more electron-donating all shifted further downfield, where 

the a larger difference in the chemical shifts were observed on going from Me to NMe2 

(opposite effect to the electron-withdrawing substituents above).  The 
13

C{
1
H} NMR 

chemical shifts for the C-H functionalised carbon atom on the pyridylidene ligand 

shifted upfield, indicating that the carbon atoms were shielded as the substituents on the 

N-containing heterocycle became more electron-donating. Similar trends were reported 

by Bercaw et al., when studying the effects of electron-releasing groups.
188
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Complex δH Ru-(CH(pyr)=CH(Ar)) δH Ru-(CH(pyr)=CH(Ar)) δP PR3 

22
H,H

 3.65 (app t, 
3
JHH, 

3
JHP = 9.5 Hz) 6.63 (d, 

3
JHH  = 7.8 Hz) 53.5 

22
H,CF3

 3.60 (dd, 
3
JHP = 11.4 Hz, 

3
JHH = 7.9 Hz) 6.77 (d, 

3
JHH = 7.9 Hz) 52.8 

22
Me,H

 3.68 (m) 6.47 (d, 
3
JHH = 7.8 Hz) 53.6 

22
Me,CF3

 3.62 (dd, 
3
JHP = 11.6 Hz, 

3
JHH = 7.7 Hz) 6.68 (d, 

3
JHH = 7.7 Hz) 52.9 

22
NMe2,H

 3.55 (dd, 
3
JHP = 11.7 Hz, 

3
JHH = 7.9 Hz) 6.32 (dd, 

3
JHH = 7.9 Hz, 

3
JHP = 1.6 Hz) 55.3 

22
NMe2,CF3

 3.48 (dd, 
3
JHP = 11.7 Hz, 

3
JHH = 7.8 Hz) 6.44 (dd, 

3
JHH = 7.8 Hz, 

3
JHP = 1.7 Hz) 54.7 

27a
H
 3.47 (dd, 

3
JHP = 12.3 Hz, 

3
JHH = 8.0 Hz) 6.51 (dd, 

3
JHH = 8.0 Hz, 

3
JHP = 1.5 Hz) 51.2 

27b
H
 3.62 (broad) 6.62 (broad d, 

3
JHH = 8.2 Hz) 53.7 

27a
CF3

 3.44 (dd, 
3
JHP =  12.3 Hz, 

3
JHH = 7.9 Hz) 6.61 (dd, 

3
JHH = 7.9 Hz,

 3
JHP =  1.7 Hz) 50.5 

27b
CF3

 3.57 (dd, 1H, 
3
JHP =  11.4 Hz, 

3
JHH = 7.9 Hz 6.71 (dd, 

3
JHH = 7.9 Hz, 

3
JHP =  0.9 Hz) 53.0 

30
H,H

 3.57 (dd, 
3
JHP = 12.9 Hz, 

2
JHH = 7.0 Hz) 6.37 (dd, 

2
JHP = 7.0 Hz, 

3
JHP = 1.3 Hz) 14.8 

30
H,CF3

 3.55 (dd, 
3
JHP = 12.9 Hz, 

3
JHH = 6.8Hz) 6.48 (dd, 

3
JHH = 6.8 Hz, 

3
JHP = 1.5 Hz) 14.2 

30
NMe2,H

 3.47 (dd, 
3
JHP = 13.1 Hz, 

3
JHH = 6.9 Hz) 6.10 (dd, 

3
JHH = 6.9 Hz, 

3
JHP = 1.1 Hz) 16.1 

30
NMe2,CF3

 3.45 (dd, 
3
JHP = 13.1 Hz, 

3
JHH = 6.8 Hz) 6.17 (dd, 

3
JHH = 6.8 Hz, 

3
JHP = 1.5 Hz) 15.6 

Table 6.7: Comparison of the 
1
H and 

13
P{

1
H} NMR spectroscopic data for the pyridylidene-containing complexes 22

R1,R2
, 27

R1,R2
 and 30

R1,R2
. 
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Complex δC Ru-C (alkene) δC Ru-C (pyridylidene) 

22
H,H

 55.2 (s) and 69.4 (s) 180.7 (broad) 

22
H,CF3

 66.6 (d, 
2
JCP = 3 Hz) and 54.8 (s) 179.6 (d, 

2
JCP = 19 Hz) 

22
Me,H

 54.7 (broad), 68.6 (s) 178.2 (d, 
2
JCP = 18.4 Hz) 

22
Me,CF3

 ~54.1 (lies underneath CD2Cl2 peak), 65.9 (broad) 177.1 (d, 
2
JCP = 18 Hz) 

22
NMe2,H

 53.1 (s), 68.4 (d, 
3
JCP = 2.6 Hz), 167.2 (d, 

2
JCP = 20.5 Hz) 

27a
CF3

, 27b
CF3

  173.9 (d, 
2
JCP = 18.9 Hz) and 179.9 (d, 

2
JCP = 16.6 Hz) 

30
H,H

 62.1 (d, 
2
JCP = 4.6 Hz), 76.1 (d, 

2
JCP = 2.4 Hz) 182.3 (d, 

2
JCP = 19.9 Hz) 

Table 6.8: Comparison of 
13

C{
1
H} NMR spectroscopic data for the pyridylidene-containing complexes 22

R1,R2
, 27

R1,R2
 and 30

R1,R2
. 

 

Complex δC Ru-C δC Ru-C (pyridylidene) δP PR3 

23
H,H

 192.9 (d, 
2
JCP = 12.7 Hz)) 218.3 (d, 

2
JCP = 15.3 Hz) 60.3 

23
H,CF3

 190.2 (broad) 219.3 (broad) 61.2 

23
Me,CF3

 187.9 (d, 
2
JCP = 13 Hz)  217.8 (d, 

2
JCP = 16 Hz) 61.7 

Table 6.9: Comparison of spectroscopic data for the pyridylidene-containing complexes 23
R1,R2

.  
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6.14.2 Analysis of the crystallographic data 

The X-ray data for the pyridylidene complexes mentioned in this chapter have been 

compared with the relevant literature data for iridium
206-210, 213, 217, 218

 and osmium
214, 221-

224, 227, 330
 complexes where the major contributions are from the research groups of 

Carmona and Esteruelas (Figure 6.9, Table 6.10). This will give an indication on the 

properties of these complexes. 

 The ruthenium-carbon bond length to the pyridylidene ligand was studied to provide 

information on the nature of the bonding interaction. For the complexes containing 

pyridylidene-alkene ligands 22
R1,R2

 and 30
R1,R2

, the ruthenium-carbon bonds ranged 

between 2.0101(19) - 2.043(2) Å, where these bond lengths are longer than for the 

iridium and osmium complexes apart from complex i (Table 6.10). This suggested that 

there may be more carbene character in the complexes in the literature complexes. A 

comparison of the ruthenium-carbon bond lengths to complexes containing the more 

traditional NHC ligands has also been included.
155, 331, 332

 Theoretical studies calculated 

a ruthenium-carbon (carbene) bond length of 2.108 Å for the complex 

[Ru(CO)4(nNHC)] (where nNHC = imidazol-2-ylidene).
161

 Additionally, an X-ray 

structure of a ruthenium NHC complex from Whittlesey et al. demonstrated that the 

ruthenium-carbon (carbene) bond length was 2.1282(18) Å.
333

 A set of ruthenium NHC 

complexes exhibited ruthenium-carbon (carbene) bond lengths of 2.045(2), 1.93(2), 

2.087(2) and 2.188(2) Å.
334

 Generally, the ruthenium-carbon bond lengths of the 

complexes 22
R1,R2

 and 30
R1,R2 

display shorter bond lengths in comparison to the already 

existing ruthenium NHC complexes present in the literature. This suggests there is a 

carbene-like property in the 22
R1,R2

 and 30
R1,R2

 complexes and therefore can be 

described as a pyridylidene ligand.  

The structural features from the coordination of the alkene group in the complexes 

22
R1,R2

 and 30
R1,R2

 was compared to several species reported in the literature. The 

C(11)-C(12) bond lengths for the complexes 22
R1,R2

 and 30
R1,R2

 fall in the range for 

other metal η
2
-alkene complexes (carbon-carbon bond lengths are reported to range 

between 1.40 – 1.46 Å).
218, 335

 The C(11)-C(12) bond lengths are between those 

expected for a carbon-carbon single and double bond.
335

 Additionally, there is 

significant difference in the ruthenium to carbon bond lengths of the alkene group. In 

cases where there is a strong interaction the metal-alkene coordination can be described 

as a metallacyclopropane. There are two key interactions: donation of the alkene π 
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electrons to the metal d orbitals and a metal to alkene π* back-bonding interaction. The 

geometry of cyclopentadienyl transition metal complexes with an η
2
-coordinated alkene 

group is hypothesised to be due to both electronic and steric factors, in comparison to 

octahedral species where electronic factors are more dominant.
140, 336

 A stabilisation is 

found to occur upon the metal fragment moving towards one end of the alkene bond, 

which results in the LUMO decreasing in energy and therefore becoming localised on 

the further carbon atom.
318, 319

 The NMR spectroscopic and X-ray crystallographic data 

are both consistent with the pyridylidene-alkene fragment in the half-sandwich 

ruthenium complexes 22
R1,R2

 and 30
R1,R2

. 

The 1-ruthanaindolizine complex 23
H,CF3

 displayed a shorter ruthenium-carbon bond 

length (1.996(2) Å) in comparison to the pyridylidene-alkene containing complexes, 

and can be interpreted as the species having additional carbene character. Interestingly, 

the C(6)-N and C(6)-C(7) bond length are now significantly longer. This is also 

observed in the 
13

C{
1
H} NMR spectrum as the carbon atom on the pyridylidene ligand 

exhibits a more downfield resonance at 219.3 ppm. The C(11)-C(12) bond length for 

23
H,CF3

 was shorter (1.339(3) Å) and therefore suggests this bond has more multiple 

bond character than in complexes  22
R1,R2

 and 30
R1,R2

. The C(11)-C(12) bond length of 

23
H,CF3

 was closer to f than d, which corroborates the carbon-carbon double bond 

structure. Similar 3-ruthanaindolizine and 3-osmaindolizine complexes have been 

reported by Esteruelas et al.
142, 143

 which display that there is a significant amount of 

delocalisation in their systems due to the shortening of the metal-carbon and metal-

nitrogen bond lengths. Based upon bond lengths around the ruthenacycle it is reasonable 

to suggest that delocalisation in 23
H,CF3

 exists.  
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Figure 6.9: Pyridylidene schematics and labels for Table 6.10. 
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 M-C(6) C(6)-N C(6)-C(7) C(7)-C(8) C(8)-C(9) C(9)-C(10) C(10)-N C(11)-N C(11)-C(12) M-C(11) M-C(12) 

22
H,H

 2.0390(19) 1.359(2) 1.406(3) 1.388(3) 1.402(3) 1.373(3) 1.349(2) 1.453(2) 1.405(3) 2.152(2) 2.2575(19) 

22
H,F

 2.0384(19) 1.352(3) 1.409(3) 1.379(3) 1.399(4) 1.370(4) 1.355(3) 1.449(3) 1.413(3) 2.137(2) 2.247(2) 

22
H,CF3

 2.029(3) 1.360(3) 1.401(4) 1.380(4) 1.405(4) 1.367(4) 1.353(3) 1.459(3) 1.411(4) 2.127(3) 2.245(3) 

22
Me,H

 2.0183(19) 1.360(2) 1.360(2) 1.387(3) 1.408(3) 1.370(3) 1.351(2) 1.457(2) 1.410(3) 2.1435(19) 2.272(2) 

22
Me,CF3

 2.024(4) 1.355(5) 1.387(6) 1.385(6) 1.409(6) 1.356(6) 1.355(5) 1.448(5) 1.410(6) 2.128(4) 2.256(4) 

22
NMe2,H

 2.043(2) 1.363(3) 1.380(3) 1.418(3) 1.425(4) 1.360(4) 1.350(3) 1.449(3) 1.407(3) 2.140(2) 2.242(2) 

30
H,H

 2.0101(19) 1.355(3) 1.397(3) 1.377(3) 1.397(3) 1.360(3) 1.348(3) 1.449(2) 1.414(3) 2.120(2) 2.224(2) 

30
NMe2,H

 2.0323(19) 1.365(2) 1.379(3) 1.424(3) 1.430(3) 1.354(3) 1.451(2) 1.451(2) 1.423(3) 2.1332(18) 2.2460(18) 

23
H,CF3

 1.996(2) 1.394(3) 1.420(3) 1.375(3) 1.406(4) 1.353(4) 1.368(3) 1.415(3) 1.339(3)  2.046(2) 

a
207

 1.975(2) 1.368(3) 1.423(4) 1.369(4) 1.402(3) 1.363(4) 1.361(4)     

b
206, 208

 1.982(2) 1.366(3) 1.422(2) 1.373(3) 1.402(3) 1.358(3) 1.364(2)     

c
206, 208

 1.978(3) 1.369(4) 1.431(4) 1.379(4) 1.397(6) 1.366(5) 1.396(5)     

d
217

 1.949(3) 1.384(4) 1.414(4) 1.369(5) 1.402(6) 1.371(5) 1.375(4) 1.500(4) 1.533(4)  2.063(3) 

e
213

 1.983(9) 1.347(11) 1.414(12) 1.375(13) 1.417(15) 1.356(15) 1.365(13)     

f
213

 1.989(4) 1.387(6) 1.408(6) 1.366(7) 1.386(7) 1.368(7) 1.379(6) 1.428(6) 1.327(7)  2.004(5) 

g
218

 1.959(4) 1.397(5) 1.395(6) 1.395(6) 1.384(7) 1.353(7) 1.390(5) 1.462(6) 1.402(6)   

h
227

 1.994(3) 1.379(4) 1.435(4) 1.361(5) 1.404(5) 1.363(5) 1.360(4)     

i
223

 2.055(8) 1.366(9) 1.41(1) 1.37(1) 1.39(1) 1.35(1) 1.39(1)     

j
224

 1.993(6) 1.392(7) 1.420(8) 1.374(9) 1.415(10) 1.344(9) 1.363(7)     

Table 6.10: Comparison of X-ray crystallography data for the pyridylidene-alkene complexes.   
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6.15  Conclusions 

The reactivity of complexes 10
H

 with terminal alkynes (aryl and alkyl substituents) and 

TMS-substituted alkynes in dichloromethane has been investigated. The reactions of 

10
H

 with tert-butylacetylene provided significant mechanistic evidence and suggested 

that the vinylidene-containing intermediates were important in the further reactivity of 

the half-sandwich ruthenium complexes. Reactions conducted with the TMS-substituted 

alkynes unfortunately yielded many unknown complexes and further reactivity of the 

[PF6]
-
 anion. However, these studies displayed that the choice of anions was important 

in extending the lifetime of the catalyst.  

Further investigations were made into substituent effects at the N-containing 

heterocycle and the terminal aryl alkynes. The reactivity of 10
Me

 was very similar that 

of 10
H

, where the formation of complexes 20, 21 and 22 was observed. However, more 

selective reactions were observed upon the reaction of 10
NMe2

 to generate 22
NMe2,R2

. 

Unfortunately, purification of these reactions were challenging due to the formation of 

the more thermodynamically stable, [Ru(η
5
-C5H5)(PPh3)2Cl] 1. These reactions 

generated the novel pyridylidene-alkene complexes 22 and data gathered supports the 

proposed structures. Reactions of 11 with terminal alkynes produced both isomers of the 

pyridylidene-alkene complexes 27, therefore exhibiting that there is not a significant 

selective route for the C-H functionalisation to occur. Upon the reaction of complexes 

13 with terminal alkynes the major products observed were those belonging to alkyne 

dimerisation. The formation of an NHC ligand from the imidazole rings suggested was 

not observed. The spectroscopic data of these complexes has been analysed.  

Other factors investigated included altering the phosphorus-containing ligands. The 

reactivity of complexes 14 with terminal alkynes generated the pyridylidene-alkene 

containing complexes, 30. The deprotonation of one of the alkene protons to generate 

the respective 1-ruthanaindolizine species was not obtained. Additionally, reactions 

where triisopropylphosphine and triphenylphosphite were employed did not generate 

similar products. 

 Overall, a range of novel pyridylidene-containing ruthenium complexes have been 

synthesised and their properties compared to the existing literature. The scope of these 

reactions has been tested and also provided significant mechanistic data for determining 

the potential energy surface.  
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Chapter 7. Catalysis 

7.1 Introduction 

The extensive role of [Ru(η
5
-C5H5)Cl(PPh3)2], 1 and other [Ru(η

5
-C5H5)]

+
 species for 

catalysis was described in a review by Trost.
40

 Bruce et al. reported the synthesis of 

ruthenium vinylidene complexes from terminal alkynes.
54

 The formation of ruthenium 

vinylidene complexes introduces a bond polarity to the carbon-carbon double bond and 

therefore induces selectivity in reaction products, alongside the advantage of atom 

economy from activation of the C-H bond.
46

  

Murakami and Hori employed [Ru(η
5
-C5H5)Cl(PPh3)2], 1 and NaPF6 as a more 

convenient alternative to the cationic complex [Ru(η
5
-C5H5)(PPh3)2(=C=CHPh)][PF6], 

2
Ph

 for the alkenylation reaction of pyridine with TMS-substituted alkynes. To 

understand the catalytic process, it is imperative to observe the reactivity of 1 in 

solution. When mentioning the reaction conditions employed by Murakami and Hori 

throughout this chapter it will be in reference to the paper published in 2003.
253

 

Previous chapters have discussed the mechanistic findings from stoichiometric studies 

of [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], 10

H
 with various alkynes in a dichloromethane 

solution. To build on the knowledge gained from this system, catalytic reaction 

conditions will be screened. This chapter addresses the catalytic reactions for the 

synthesis of 2-styrylpyridine derivatives. The first part of this chapter will investigate 

the role of different half-sandwich ruthenium complexes as potential catalysts for the 

alkenylation reactions. The roles of [Ru(η
5
-C5H5)Cl(PPh3)2] 1, [Ru(η

5
-

C5H5)(C≡CPh)(PPh3)2] 3
Ph

, [Ru(η
5
-C5H5) (PPh3)2(NC5H5)][PF6] 31 and [Ru(η

5
-

C5H5)(PPh3)(NC5H5)2][PF6] 10
H

 with TMS-substituted alkynes in a pyridine solution 

have been explored. The second half of the chapter looks at the development of the 

catalytic conditions originally reported by Murakami and Hori. The effects of terminal 

alkynes, lower temperatures, addition of alkynes to the reaction mixture, reduced 

catalyst loadings, changes in the reaction volume and application of microwave heating 

have been investigated.   
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7.2 Investigating the catalytic activity of complex 1 

The role of [Ru(η
5
-C5H5)Cl(PPh3)2], 1 in the alkenylation reaction of pyridine and 

TMS-substituted alkynes has been investigated. The original procedure reported for the 

alkenylation reaction to give 2-styrylpyridine has been repeated in our laboratory to 

provide a benchmark on the expected yields with respect to the literature. Additionally, 

the role of 1 in a mechanistic study has been explored and has offered information on 

how the reaction mechanism proceeds.  

7.2.1 Repeating the reported catalytic conditions from Murakami and Hori 

 

      1 

Scheme 7.1: Catalytic reaction conditions reported by Murakami and Hori.
253

  

The alkenylation reaction by Murakami and Hori was repeated as reported in the 

literature, where the reaction required 20 mol % of the pre-catalyst [Ru(η
5
-C5H5)Cl 

(PPh3)2], 1 in the presence of a halide scavenger NaPF6 to perform the carbon-carbon 

coupling reaction between 1-phenyl-2-trimethylsilylacetylene and pyridine.
253

 The 

reaction mixture was heated at 150 °C for 7 hours and the product, 2-styrylpyridine 

isolated via a preparative TLC method in a 12 % yield (Scheme 7.1). The isolated yield 

was significantly lower than reported in the literature (87 %), and although the reaction 

was repeated several times the isolated yield did not improve.  

The alkenylation reaction of 4-methylphenyl(trimethylsilyl)ethyne was also repeated 

under the reported reaction conditions mentioned by Murakami and Hori and a higher 

isolated yield of 22 % was collected. Unfortunately again this was significantly lower 

than the literature reported yield of 92 %. 

Murakami and Hori stated that when a 10 mol % catalyst loading of 1 was used the 

isolated yield of 2-styrylpyridine dropped to 24 %. This displayed that a high catalyst 

loading is required in the alkenylation reactions; however the discrepancy between the 

literature and experimental findings required further investigation in order to understand 

how the reaction proceeds.  
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7.2.2 Determining the role of 1 in the alkenylation reaction 

To understand the role of 1 in the catalytic cycle to form 2-styrylpyridine, the catalytic 

quantities were recreated in d5-pyridine. The TMS-substituted alkyne was replaced with 

the terminal alkyne H
13

C≡CPh, to gather more information and the reaction was carried 

out employing aerobic conditions where the reagents were used as supplied. The 

reaction was monitored via NMR spectroscopy (Scheme 7.2, Figure 7.1).  

 

            1 

Scheme 7.2: A mechanistic insight into the catalytic reaction between PhC
13

CH and d5-pyridine 

with 1. 

The initial NMR spectra after addition of the reagents did not display any changes at 

room temperature, and therefore the reaction mixture was heated at 50 °C for 25 

minutes. The 
1
H and 

31
P{

1
H} NMR spectra recorded after heating indicated that a 

reaction was occurring. Several ruthenium-containing products were identified in the 

reaction mixture from the NMR spectra as [Ru(η
5
-C5H5)(

13
C≡CPh)(PPh3)2] 3

Ph
, Ru[(η

5
-

C5H5)(PPh3)2(NC5H5)][PF6] 31, and [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6] 10

H
 through 

comparisons with authentic samples. Additionally, the 
31

P{
1
H} NMR spectrum also 

displayed resonances for uncoordinated triphenylphosphine and triphenylphosphine 

oxide at -5.6 ppm and 26.4 ppm respectively.  

Evidence for the acetylide species 3
Ph

 in the 
1
H NMR spectrum was determined by 

comparison with an authentic sample of the species in d5-pyridine; the species 3
Ph

 

displayed a peak at 4.59 ppm for the cyclopentadienyl ligand and in addition the 

aromatic signals were also present in the reaction mixture. The 
31

P{
1
H} NMR spectrum 

exhibited a doublet signal at 50.3 ppm with a 
2
JPC of 24.8 Hz, due to the 

triphenylphosphine ligands coupling with the 
13

C label. Additionally, this matched 

signals observed in the initial mechanistic studies where the cationic ruthenium 

vinylidene was added to d5-pyridine (Chapter 2).  

The reaction mixture was left at room temperature for 16 hours and no further reaction 

was observed. The sample was heated for a further two hours at 50 °C, and the NMR 
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spectra exhibited that the major species was 3
Ph

, and that other ruthenium-containing 

species were present in minor quantities. Further heating of the sample within the NMR 

spectrometer at 90 °C for one hour did not result in any significant changes.  

The complex 10
H

 was present in the reaction mixture however it was only observed in 

the NMR spectra after heating for 25 minutes at 50 °C, further heating of reaction 

mixture at 90 °C for one hour displayed that 10
H

 had reacted further. It is possible that 

under the catalytic conditions 10
H

 reacts with additional phenylacetylene and that the 

two species are reacting further. As the 
1
H NMR spectrum exhibited a doublet peak at 

8.03 ppm with a 
3
JHH of 16.0 Hz, which is characteristic for one the alkene protons of 2-

styrylpyridine. An ESI-MS of the reaction mixture exhibited m/z peaks at 187.1, 188.1 

and 189.1 which were assigned as the species [C12
13

CH8D4N]
+
, [C12

13
CH7D5N]

+
 and 

[C12
13

CH6D6N]
+
 respectively, where different levels of deuterium incorporation had 

occurred. The m/z peaks were consistent with either 2-styrylpyridine or the 

pyridylidene-alkene fragment from 22
H,H

.  

 

 

Figure 7.1: 
31

P{
1
H} NMR spectra of catalytic reaction of 1, NaPF6, PhC

13
CH and d5-pyridine at 

different times.  

 

  

-10-550 45 40 35 30 25 20 15 10 5 0 ppm

3
Ph

 

OPPh3 

1 

10
H
 31 

2 hours after heating at 50 °C 

25 minutes after heating at 50 °C 

Initial 

PPh3 
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7.3 Investigating the potential catalytic activity of  

[Ru(η
5
-C5H5)(C≡CPh)(PPh3)2], 3

Ph
  

The involvement of 3
Ph 

as a potential catalyst in the alkenylation reaction of 2-

styrylpyridine has been investigated with and without the presence of pyridinium 

tetrafluoroborate to determine if 3
Ph 

was catalytically active. The activity of 3
Ph 

was also 

investigated by Murakami and Hori, where they reported this species does not produce 

the alkenylation product, 2-styrylpyridine.
253

  

7.3.1.1 In the absence of pyridinium tetrafluoroborate  

A sample of 3
Ph 

in d5-pyridine was heated at 90 °C for 72 hours under aerobic 

conditions. The reaction mixture was analysed by NMR spectroscopy and ESI-MS. The 

NMR spectra after heating the reaction mixture revealed that the major species was 3
Ph

, 

where the 
1
H NMR spectrum displayed a singlet peak at 4.59 ppm for the 

cyclopentadienyl proton and the 
31

P{
1
H} NMR spectrum exhibited a singlet peak at 

50.3 ppm for the triphenylphosphine ligands. Additionally, the 
31

P{
1
H} NMR spectrum 

exhibited a minor resonance at 25.5 ppm due to triphenylphosphine oxide. The ESI-MS 

of the reaction mixture did not display a peak for 2-styrylpyridine. The data suggested 

that the alkenylation reaction to give 2-styrylpyridine had not occurred, and therefore 

the reaction may require the presence of a proton in order to observe the formation of 2-

styrylpyridine.  

7.3.1.2 In the presence of pyridinium tetrafluoroborate  

The stoichiometric addition of pyridinium tetrafluoroborate to 3
Ph 

in d5-pyridine was 

investigated by heating the reaction at 50 °C at various intervals over a total of 30 hours. 

No air-sensitive measures were employed and the reaction was monitored via NMR 

spectroscopy in order to observe if the presence of a proton in the reaction mixture 

resulted in the formation of 2-styrylpyridine.  

After heating the reaction mixture for 30 hours at 50 °C, the NMR spectra exhibited that 

the reaction mixture contained several ruthenium-containing species and two major 

resonances in the 
31

P{
1
H} NMR spectrum exhibited peaks at 50.3 and 42.0 ppm for 3

Ph 

and 4 respectively. The 
31

P{
1
H} NMR spectrum also displayed a peak at 25.5 ppm for 

triphenylphosphine oxide. The ESI-MS contained ruthenium isotope peaks with a m/z of 

793.2 and 719.1, which were assigned as the cationic fragments [Ru(η
5
-C5H5)(PPh3)2 

(C2HPh)]
+
 and [Ru(η

5
-C5H5)(PPh3)2(CO)]

+
 respectively. An IR spectrum of the reaction 
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mixture also displayed peaks at 2072.9 and 1975.2 cm
-1

 and were assigned as the νC≡C 

and νCO of 3
Ph 

and 4 respectively.  

The presence of protons in the reaction mixture would lead to an equilibrium exisiting 

in the reaction mixture between 3
Ph

 and the vinylidene-containing complex, 2
Ph

, where 

the reaction of 2
Ph

 with air or water would give 4 (Section 1.4.3). The reaction mixture 

was analysed by ESI-MS and did not display any peaks for 2-styrylpyridine which was 

consistent with the 
1
H NMR spectrum.  

Pyridinium tetrafluoroborate did not allow the alkenylation reaction for the formation of 

2-styrylpyridine. The anion dependence of reaction has not been investigated and it is 

possible that the [PF6]
-
 anion may cause a change in the reactivity. The reaction could 

be repeated with pyridinium hexafluorophosphate in order to observe if 2-styrylpyridine 

was synthesised under these reaction conditions. However, in the successful 

alkenylation reactions the NMR spectra display resonances for uncoordinated alkyne 

which has not been observed under these reaction conditions 

 

7.4 Investigating the potential catalytic activity of  

[Ru(η
5
-C5H5)(PPh3)2(NC5H5)][PF6], 31 

The role of 31 as a potential catalyst was determined as in the catalytic reaction carried 

out previously (Section 7.2.2) this species was identified in the reaction mixture. To 

determine if 31 was catalytically active in the formation of 2-styrylpyridine, a catalytic 

reaction was conducted between 1-phenyl-2-trimethylsilylacetylene and pyridine where 

20 mol % of 31 was used and the reaction mixture heated at 150 °C for 3 hours under 

non air-sensitive conditions. The reaction mixture was analysed by ESI-MS.  

The ESI-MS of the reaction mixture did not display the expected m/z peak at 182.1 for 

2-styrylpyridine. The ESI-MS revealed several ruthenium-containing peaks with m/z of 

719.1 and 536.1 were present and were assigned as the cationic fragments [Ru(η
5
-C5H5) 

(PPh3)2(CO)]
+
  and [Ru(η

5
-C5H5)(PPh3)(CO)(NC5H5)]

+
 respectively, and a m/z signal at 

279.1 was due to triphenylphosphine oxide. The data from this experiment 

demonstrated that 31 was not a catalytically active species.  

  



279 

Chapter 7 

7.5 Investigating the potential catalytic activity of  

[Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], 10

H
  

The reactivity of TMS-substituted alkynes with 10
H

 in a pyridine solution under 

catalytic quantities was investigated, in order to evaluate the role of the TMS group.  

The reaction mixtures were studied extensively by ESI-MS.  

7.5.1.1 Catalytic reaction with 1-phenyl-2-trimethylsilylacetylene 

The ability of 10
H

 to perform the alkenylation reaction between 1-phenyl-2-

trimethylsilylacetylene and pyridine with 20 mol % of 10
H

 was investigated under a 

nitrogen atmosphere. The reaction mixture was heated at 120 °C for 16 hours and the 

crude reaction mixture analysed via ESI-MS and NMR spectroscopy (Scheme 7.3). 

 

               10
H

 

Scheme 7.3: Investigating the catalytic activity of 10
H
.  

A high resolution ESI-MS displayed m/z peaks at 80.0502, 263.0985, and 279.0937 

which indicated the presence of pyridine, triphenylphosphine, and triphenylphosphine 

oxide respectively. There was a m/z peak at 182.0966 with the correct isotope pattern 

for a [C13H12N]
+
 species and this may have been due to the formation of 2-

styrylpyridine or an isomer. In addition to this several peaks with a ruthenium isotope 

pattern were observed with a m/z peak of 793.1753 and 691.1289 which were assigned 

as the [Ru(η
5
-C5H5)(PPh3)2(C2HPh)]

+
 and [Ru(η

5
-C5H5)(PPh3)2]

+
 fragments. 

Interestingly, a species with a m/z peak at 617.1289 was observed, where the isotope 

pattern was not consistent with it being a single ruthenium-containing complex (m/z 

peaks ranged between 610.1-626.1). However, it is likely that there are several 

ruthenium-containing fragments around the peak at 617 and therefore this created an 

unusual isotope pattern. Further experiments to characterise the peak at 617.1289 using 

an ESI-MS-MS method were employed, however it was not possible to isolate a single 

ruthenium-containing complex and therefore these species remain unidentified. It is also 
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important to note if the pyridylidene species 22 was present in the reaction mixture, then 

a m/z peak at 610.1242 would be expected.  

An aliquot of the crude reaction mixture was analysed via NMR spectroscopy in d2-

dichloromethane. The 
1
H NMR spectrum indicated that many side reactions occurred 

due to the presence of the TMS group on the alkyne, as there were multiple resonances 

around 0 ppm. The 
31

P{
1
H} NMR spectrum exhibited resonances for uncoordinated 

triphenylphosphine at -3.4 ppm and triphenylphosphine oxide at 28.6 ppm. There are 

also two major resonances at 40.4 and 51.7 ppm which have not been identified. The 

[PF6]
-
 resonance at -143.0 ppm is distorted, and there appears to be a broad sextet at -

143.0 ppm, for a PF5
-
-containing complex. The NMR spectra do not exhibit any peaks 

for the 2
Ph

 or 3
Ph

 in the reaction mixture, and therefore it is possible that these species 

may only be present in a minor quantity in the reaction mixture.  

This catalytic reaction suggested that 2-styrylpyridine may potentially have been formed 

during the reaction, unfortunately there were many unidentified species present in the 

reaction mixture and therefore no conclusive results have been obtained The presence of 

the TMS group has resulted in the degradation of the non-coordinating anion [PF6]
-
. The 

absence of the [PF6]
-
 anion in the reaction mixture, could lead to the difficulties in 

regeneration of a cationic catalyst and therefore these reaction conditions are not 

sustainable. 

The previous stoichiometric reaction between 10
H

 and the TMS-substituted alkynes in a 

d2-dichloromethane solution demonstrated that multiple unidentified ruthenium-

containing species were formed and that the [PF6]
-
 anion was reacting further to yield a 

PF2-containing compound (Chapter 5). These studies are both consistent with the fact 

that the [PF6]
-
 anion is not suitable for these studies and perhaps a more robust non-

coordinating anion should be implemented to allow for fewer side-products being 

generated.  
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7.5.1.2 Catalytic reaction with 1-[(trimethylsilyl)ethynyl]-4-trifluorotoluene 

A catalytic reaction between 1-[(trimethylsilyl)ethynyl]-4-trifluorotoluene and pyridine 

with 20 mol % of 10
H

 and was carried out under aerobic conditions. The reaction 

mixture was heated at 150 °C for 7 hours. The reaction mixture was analysed with 

NMR spectroscopy and ESI-MS.  

An aliquot of the crude reaction mixture was placed in CDCl3 for analysis by NMR 

spectroscopy. The 
31

P{
1
H} NMR spectrum displayed peaks at 30.6 and -4.1 ppm for 

triphenylphosphine oxide and uncoordinated triphenylphosphine. A high resolution ESI-

MS displayed a m/z peak at 250.0835 which is consistent with the cationic fragment 

[C14H11F3N]
+
 and could be interpreted as E-2-(4-trifluoromethyl)styrylpyridine. 

In order to purify the alkenylation species E-2-(4-trifluoromethyl)styrylpyridine 

preparative TLC was employed. The collected product (impure, as shown by NMR 

spectroscopy) was characterised with NMR spectroscopy in CDCl3. The 
1
H NMR 

spectrum displayed characteristic resonances in the aromatic region at 8.63 (1H, d, 
3
JHH 

= 4.7 Hz), 7.40 (1H, d, 
3
JHH = 7.8 Hz) and 7.19 (1H, m) ppm for the protons at the 6-, 3- 

and 4-position around the pyridine ring of E-2-(4-(trifluoromethyl)styrylpyridine.  
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7.6 Developing the catalytic reactions between terminal 

alkynes and [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], 10

H
   

A range of catalytic reactions between terminal alkynes and pyridine with 10
H

 have 

been investigated under a nitrogen atmosphere. An NMR-based method was developed 

to calculate the percentage conversion of the alkyne to the 2-styrylpyridine derivatives. 

The catalytic reaction conditions have been altered and either percentage yields or 

conversions calculated for the alkenylation product and the state of the ruthenium 

species at the end of the reaction mixture. 

7.6.1 Determining the percentage conversion 

A method to calculate the percentage conversion of the catalytic reactions was 

investigated as isolation of the alkenylation products resulted in significantly lower 

yields than those reported in the literature. The percentage conversion of the alkynes to 

the 2-styrylpyridine derivatives should have indicated whether the isolated yields for the 

catalytic reactions were representative. The catalyst loading in the reaction mixture was 

confirmed through the 
1
H NMR spectra where the cyclopentadienyl ligand of 10

H
 and 

the terminal proton of the alkyne were integrated with respect to each other. The 

catalytic reactions which employed 4-ethynyl-α,α,α-trifluorotoluene provided an 

additional NMR handle as the relative integrations of the CF3 substituent and [PF6]
-
 

anion in the 
19

F NMR spectra provided information on the catalyst loading and these 

data should corroborate with the 
1
H NMR spectra. In order to accurately measure the 

percentage conversions for the catalytic reactions using NMR spectroscopy, a set of T1 

(inversion recovery) measurements were conducted on a sample to containing 10
H

 and 

4-ethynyl-α,α,α-trifluorotoluene containing pyridine in a d2-dichloromethane solution. 

In the 
1
H NMR spectrum, a set of T1 measurements on the cyclopentadienyl protons of 

10
H

 at 4.57 ppm had a T1 of 4.2 seconds. However, the terminal proton did not display a 

measurable value of T1, as when a maximum time delay between the pulses was set to 

120 seconds, the intensity of the peak at 3.59 ppm still increased, and therefore an 

approximate value of 94 seconds was obtained. The percentage conversion data was 

therefore only meaningful when using 4-ethynyl-α,α,α-trifluorotoluene as the 
19

F NMR 

spectra could be used to confirm the catalyst loading. However, the NMR experiments 

suggested that a longer delay time between pulses (d1) was required and due to time 

constraints, the delay was increased to 60 seconds.   
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7.6.2 Overview of reaction conditions 

A summary of the general reaction conditions that have been investigated are shown 

below (Scheme 7.4, Table 7.1). The entries are of stoichiometric and catalytic reactions 

conditions where differences include the method of addition of the alkyne to the 

reaction mixture, changing the catalytic loading, changing the reaction volumes and 

exploring the effect of irradiating the reaction mixture. Further discussion of the entries 

has been included in the following sections.   

 

Scheme 7.4: General schematic of reagents used in developing the catalytic reaction for the 

synthesis of 2-styrylpyridine derivatives, where R = H or CF3.  

Entry Alkyne 
10

H 

(mol %) 

Pyridine 

equivalents 

Reaction 

conditions 

Time 

(hrs) 

Percentage 

Yield / 

Conversion 

1 PhC≡CH 20 20 50 °C 32 14 

2 4-CF3-C6H4C≡CH 20 20 50 °C 32 19 

3 4-CF3-C6H4C≡CH 100 55 50 °C 72 48
a
 

4 
5 x 1 equiv 

PhC≡CH 
20 55 50 °C 5 x 24 33

a
 

5 
5 x 1 equiv 

4-CF3-C6H4C≡CH 
20 55 50 °C 5 x 24 17

a
 

6 4-CF3-C6H4C≡CH 5 20 50 °C 24 2.5
b
 

7 4-CF3-C6H4C≡CH 20 55 50 °C 72 49
b
 

8 4-CF3-C6H4C≡CH 20 20 50 °C, CH2Cl2 48 24
a
 

9 4-CF3-C6H4C≡CH 20 20 
μwave, 50 °C, 

CH2Cl2 
1 7

b
 

10 4-CF3-C6H4C≡CH 20 20 μwave, 100 °C 0.5 9
b
 

Table 7.1: Summary of different reaction conditions for pyridine alkenylation reactions, where 
a
 

is the percentage isolated yield, and 
b
 is the percentage conversion which has been calculated 

relative to the [PF6]
-
 anion. The relative mol % and pyridine equivalents used are relative to the 

alkyne employed.   
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7.6.3 Investigating the catalytic reaction between 10
H

 and terminal alkynes 

The reported literature from Murakami and Hori employed TMS-substituted alkynes as 

these compounds avoided the dimerisation observed with terminal alkynes. The effects 

of using terminal alkynes (phenylacetylene and 4-ethynyl-α,α,α-trifluorotoluene) have 

been investigated, as this will avoid the degradation of the [PF6]
-
 and may potentially 

provide a more atom efficient alkenylation reaction. Following the catalytic reaction 

quantities mentioned by Murakami and Hori for the synthesis of the 2-styrylpyridine 

derivatives,
253

 the entries 1 and 2 (Table 7.1) are discussed in this section.  

7.6.3.1 Standard catalytic reactions with phenylacetylene 

The catalytic reaction conditions to synthesise 2-styrylpyridine are in entry 1. The 

reaction required phenylacetylene (1 equivalent), pyridine (20 equivalents) with 10
H

 (20 

mol %) and was heated at 50 °C over two 16 hours periods. The reaction was monitored 

by removing aliquots from the reaction mixture and placed in d2-dichloromethane, 

where the analysis was carried out by NMR spectroscopy (Scheme 7.5). 

The reaction mixture of entry 1 was heated at 50 °C for 16 hours and an aliquot 

analysed. The 
1
H NMR spectrum exhibited a peak at 3.12 ppm for the terminal proton 

of uncoordinated phenylacetylene and therefore the reaction mixture was heated for an 

additional 16 hours at 50 °C and a further aliquot removed from the reaction mixture 

and placed in d2-dichloromethane. The 
1
H NMR spectrum no longer exhibited 

resonances for uncoordinated phenylacetylene suggesting that all starting material had 

been consumed. Additionally, the 
1
H NMR spectrum exhibited that in the 

cyclopentadienyl region the resonances for 10
H

 had decreased in intensity and several 

new ruthenium-containing species were formed. The major ruthenium-containing 

species present was identified as 22
H,H

, which displayed a resonance at 4.95 ppm for the 

cyclopentadienyl ligand and this was consistent with the 
31

P{
1
H} NMR spectrum as a 

peak at 53.5 ppm for the triphenylphosphine ligand was observed. The reaction mixture 

was also analysed via TLC against an authentic sample of 2-styrylpyridine, which 

confirmed this compound was in the catalytic reaction.  

An ESI-MS of the reaction mixture displayed a m/z peak at 182.0966 for a [C13H12N]
+
 

species, which could be interpreted as 2-styrylpyridine or an isomer. The ESI-MS also 

displayed peaks for several ruthenium-containing complexes with a m/z of 610.1232, 

712.1733 and 793.1761. The m/z peak at 610.1232 displayed the expected mass for the 

cationic fragment of 22
H,H

, however it did not display the correct isotope pattern. It is 
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possible that the deprotonated species 23
H,H

 was present in the reaction mixture and 

therefore these two peaks are overlapping. The other m/z signals at 712.1733 and 

793.1761 were due to cationic fragments of 21
H,H

 and 3
Ph

 respectively. An isolated 

yield of 2-styrylpyridine 14 % was collected.  

 

          10
H

               23
H,H

 

 

                  22
H,H

  

Scheme 7.5: Catalytic reaction conditions from entry 1 displaying the formation of various 

ruthenium complexes.  

The reaction conditions mentioned in entry 1 were repeated with d5-pyridine and the 

reaction was left to proceed at room temperature. The reaction was monitored via NMR 

spectroscopy at various intervals over a period of 23 days at room temperature. After 24 

hours a doublet peak at 8.03 ppm was observed with a 
3
JHH of 16.0 Hz which was 

assigned to the one of the alkene resonances of 2-styrylpyridine and this resonance 

increased in intensity over time. The NMR spectra also displayed a new set of 

resonances for a new ruthenium-containing complex, where the 
1
H NMR spectrum 

displayed a peak at 5.00 ppm and in the 
31

P{
1
H} NMR spectrum exhibited a resonance 

at 60.5 ppm for coordinated triphenylphosphine. This new species was assigned as 

23
H,H

 and as the reaction proceeded these resonances increased in intensity to become 

the major species, as the peaks belonging to 10
H

 decreased. In addition, other minor 

ruthenium-containing species were observed in the NMR spectra, where one of these 

species was identified as 3
Ph

. In d2-dichloromethane the major species observed was 

22
H,H

. The species 22
H,H

 and 23
H,H

 are easily accessible via a protonation/ 

+ 21
H,H

 

+ 3
Ph
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deprotonation step and therefore in a more basic reaction medium the equilibrium 

favours the deprotonated species 23
H,H

. 

7.6.3.2 Catalytic reactions between 10
H

 and 4-ethynyl-α,α,α-trifluorotoluene 

The catalytic alkenylation reaction of 4-ethynyl-α,α,α-trifluorotoluene with pyridine 

was investigated (entry 2). The 4-CF3 substituent provided an additional NMR handle 

on how the reaction proceeded. In addition, the stoichiometric studies between 10
H

 and 

4-ethynyl-α,α,α-trifluorotoluene in d2-dichloromethane had demonstrated that a more 

selective reaction pathway had occurred (Chapter 5). The reaction conditions mentioned 

in entry 2 required 4-ethynyl-α,α,α-trifluorotoluene (1 equivalent) and pyridine (20 

equivalents) with 10
H

 (20 mol %) and was heated at 50 °C for two 16 hour periods. The 

aliquots of the reaction mixture were placed in d2-dichloromethane and monitored via 

NMR spectroscopy. 

Using reaction conditions from entry 2 and after heating the reaction mixture at 50 °C 

for 16 hours, the 
1
H and 

19
F NMR spectra displayed peaks for uncoordinated 4-ethynyl-

α,α,α-trifluorotoluene at 4.30 and -64.4 ppm respectively. The peaks for 10
H

 were no 

longer present in the NMR spectra and the major ruthenium-containing complex in d2-

dichloromethane was found to be 22
H,CF3

. A TLC plate of the reaction mixture at this 

point confirmed that the 2-styrylpyridine derivative had been synthesised. The reaction 

mixture was heated for an additional 16 hours at 50 °C, however further conversion of 

the alkyne to in E-2-(4-trifluoromethyl)styrylpyridine was not observed. The 
19

F NMR 

spectrum suggested that only approximately 50 % of the alkyne had reacted. This 

corroborates with previous data which suggests that the pyridylidene-containing 

complexes 22 are the deactivation products. A high resolution ESI-MS of the reaction 

mixture displayed a m/z peak at 250.0827 which was due to a [C14H11F3N]
+
 species, 

which is either due to E-2-(4-trifluoromethyl)styrylpyridine or the pyridylidene 

fragment of 22
H,CF3

. An isolated yield of E-2-(4-trifluoromethyl)styrylpyridine 19 % 

was collected.  

The catalytic reaction conditions mentioned for entry 2 were repeated with d5-pyridine 

and the reaction was monitored via NMR spectroscopy at room temperature until no 

further changed were observed and then heated at 150 °C for 16 hours. From leaving the 

reaction mixture at room temperature after 6 days, the reaction mixture displayed that 

the resonance in 
31

P{
1
H} NMR spectrum for 10

H
 was no longer present and therefore 

had all reacted. The 
1
H NMR spectrum displayed a doublet peak at 7.99 ppm with a 
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3
JHH of 16.0 Hz, which is characteristic of one of the alkene protons of E-2-(4-

trifluoromethyl)styrylpyridine. Interestingly, the 
1
H NMR spectrum demonstrated that 

the resonances for 4-ethynyl-α,α,α-trifluorotoluene were still present, as the terminal 

alkyne proton was observed at 4.30 ppm. The resonances for the alkyne remained in the 

reaction mixture even after heating the reaction mixture for 16 hours at 150 °C. This 

suggested that the reaction mixture no longer contained the active catalyst and therefore 

the alkenylation reaction was not occurring. These data suggests that the catalyst had 

been rendered inactive, and from studying the NMR spectra it appears that there is one 

major ruthenium-containing complex (amongst some minor species). The 
1
H NMR 

spectrum displayed a peak at 4.98 ppm for the cyclopentadienyl ligand and in the 

31
P{

1
H} NMR spectrum a resonance at 60.2 ppm for the triphenylphosphine ligand 

which was identified as 23
H,CF3

. The reaction mixture was heated for 16 hours at 150 °C 

and analysed via NMR spectroscopy and ESI-MS. The 
1
H and 

31
P{

1
H} NMR spectra no 

longer displayed peaks belonging to 23
H,CF3

 and the major resonances present in the 
1
H 

NMR spectrum was at 4.36 ppm for a cyclopentadienyl ligand and in the 
31

P{
1
H} NMR 

spectrum at 39.3 ppm for the triphenylphosphine ligand, which is consistent with the 

formation of 1. The chloride atom has presumably been abstracted from 

dichloromethane present in the reaction mixture. Additionally, the 
31

P{
1
H} NMR 

spectrum displayed resonances at -5.3 (singlet) and -13.7 (triplet, JPF = 945 Hz) ppm for 

a uncoordinated triphenylphosphine and an unknown PF2-containing species. A high 

resolution ESI-MS of the reaction mixture after heating at 150 °C displayed a m/z peak 

of 255.1140 and was consistent with a [C14H6D5F3N]
+
 compound for the 2-

styrylpyridine derivative and there were also additional peaks with a m/z difference of 

±1 due to different amounts of deuterium incorporation. 

7.6.3.3 Summary 

These reactions are extremely promising when compared to Murakami and Hori’s 

original catalytic conditions
253

 as it has been demonstrated that the alkenylation reaction 

has occurred at lower reaction temperatures of 50 °C, and that the use of terminal 

alkynes has created a more atom economical route to the 2-styrylpyridine derivatives. 

The lower reaction temperatures could potentially be attributed to using 10
H

 where the 

relatively more labile pyridine molecules can be substituted with alkyne molecules in 

comparison to when 2
Ph

 was employed. There was also evidence of dimerisation of the 

alkynes to give the butenyne compounds, however this was a minor part of the final 
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reaction mixture and not a major component as was found under the reaction conditions 

reported by Murakami and Hori.  

7.6.4 Investigating the stoichiometric addition of terminal alkynes to 10
H

 in a 

pyridine solution  

The low isolated yields in the previously mentioned catalytic reactions has meant 

further investigations into the stoichiometric effect of terminal alkynes (phenylacetylene 

and 4-ethynyl-α,α,α-trifluorotoluene) to 10
H

 in pyridine solutions was probed. The 

reaction mixtures were heated at 50 °C and the formation of the 2-styrylpyridine 

derivatives monitored with respect to the amount of 10
H

 present in the reaction mixture, 

where this section refers to entries 3, 4 and 5 (Table 7.1). 

7.6.4.1 Stoichiometric addition of phenylacetylene to 10
H

  

The stoichiometric addition of phenylacetylene to 10
H

 in a pyridine solution (271 

equivalents with respect to 10
H

) was heated at 50 °C for 24 hours. After which time an 

aliquot of the reaction mixture was placed in d2-dichloromethane and examined by 

NMR spectroscopy. The reaction mixture of entry 4 after a single stoichiometric 

reaction with phenylacetylene displayed peaks for 2-styrylpyridine in the 
1
H NMR 

spectrum. The 
1
H and 

31
P{

1
H} NMR spectra exhibited a set of resonances for a major 

new ruthenium-containing complex 22
H,H

 in the reaction mixture where the ratio of 10
H

 

and 22
H,H

 was found to be approximately 1:0.3.  

A further two stoichiometric equivalents of phenylacetylene were added to the reaction 

mixture and further aliquots of the reaction mixture taken at each interval. Upon further 

stoichiometric addition of phenylacetylene the resonances belonging to 22
H,H

 increased 

in intensity. After the addition of five equivalents of phenylacetylene the NMR spectra 

indicated that the major ruthenium-containing species present in the reaction mixture 

was 22
H,H

 and resonances for 10
H

 were no longer present. Additionally, the 
1
H NMR 

spectrum displayed a peak at 3.12 ppm due to uncoordinated phenylacetylene 

suggesting the reaction had not gone to completion. This is consistent with previous 

data (Chapter 5) as it suggests that 22
H,H

 is a deactivation product and therefore the 

alkenylation reaction is not occurring when this is the major species in the reaction 

mixture.  
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10
H

              23
H,H

 

Scheme 7.6: Stoichiometric addition of phenylacetylene to 10
H
 in a pyridine solution. 

The stoichiometric addition of phenylacetylene to 10
H

 in a pyridine solution was heated 

at 50 °C for 24 hours. A further four stoichiometric quantities of the alkyne were added 

to the reaction mixture in a similar fashion (Entry 4). The 2-styrylpyridine product was 

purified via a preparative TLC method and the product confirmed by 
1
H NMR 

spectroscopy where an isolated yield of 33 % was obtained.  

7.6.4.2 Stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 10
H

  

The stoichiometric addition of 4-ethynyl-α,α,α-trifluorotoluene to 10
H

  was investigated 

via NMR spectroscopy where the role of the ruthenium complex was monitored with 

respect to the formation of E-2-(4-trifluoromethyl)styrylpyridine. The stoichiometric 

addition of 4-ethynyl-α,α,α-trifluorotoluene to 10
H

 in a pyridine solution (271 

equivalents with respect to 10
H

) was heated at 50 °C for 24 hours and an aliquot of the 

reaction mixture placed in d2-dichloromethane. The 
1
H and 

19
F NMR spectra recorded 

after the initial stoichiometric reaction displayed that 4-ethynyl-α,α,α-trifluorotoluene 

had reacted, where the 
19

F NMR spectrum displayed quantitative conversion of the 

alkyne to E-2-(4-trifluoromethyl)styrylpyridine with respect to the [PF6]
-
 signals. The 

1
H and 

31
P{

1
H} NMR spectra demonstrated that the major ruthenium complex present 

in the reaction mixture was 10
H

 and resonances for 22
H,CF3 

were very minor.  

A further two stoichiometric equivalents of alkyne were added and aliquots taken from 

the reaction mixture. Upon further addition of 4-ethynyl-α,α,α-trifluorotoluene an 

increase in the resonances for the alkenylation product and for 22
H,CF3

 were observed. 

This was followed by the addition of five equivalents of alkyne to the reaction mixture 

and a final aliquot taken from the reaction mixture. After the addition of five 

equivalents of 4-ethynyl-α,α,α-trifluorotoluene, the major ruthenium complex in the 

reaction mixture was 22
H,CF3

 and the formation of the 2-styrylpyridine derivative 

ceased.  
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A stoichiometric reaction between 10
H

 and 4-ethynyl-α,α,α-trifluorotoluene in a 

pyridine solution was heated at 50 °C for 72 hours (Entry 3), and the reaction mixture 

purified by preparative TLC for the alkenylation product, E-2-(4-

trifluoromethyl)styrylpyridine. An isolated yield of 48 % was obtained and the product 

characterised by NMR spectroscopy.  

A reaction involving five stoichiometric additions of 4-ethynyl-α,α,α-trifluorotoluene to 

10
H

 in a pyridine solution every 24 hours whilst heating the reaction mixture at 50 °C 

was conducted (Entry 5). The pure species E-2-(4-trifluoromethyl)styrylpyridine was 

obtained using a preparative TLC method in a 17 % yield. 

7.6.4.3 Summary 

From these reactions it is possible to demonstrate that 10
H

 is still present after the 

stoichiometric addition of the terminal alkyne. However, further addition of alkyne 

results in the formation of the pyridylidene complexes 22 and 23 which do not perform 

the alkenylation reaction. After the addition of five equivalents of alkyne with respect to 

10
H

 to the reaction mixture, 10
H

 is no longer present in the reaction mixture. The 

catalytic reaction conditions therefore need to be adapted to ensure a higher conversion 

to the 2-styrylpyridine derivatives can be achieved.  
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7.6.5 Optimising the catalytic conditions with 10
H

 and of 4-ethynyl-α,α,α-

trifluorotoluene 

The catalytic reactions reported previously have displayed low yields and therefore a 

range of different reaction conditions have been explored to determine if a higher yield 

can be obtained. The conditions that have been changed include the catalyst loading, 

larger reaction volumes (additional pyridine or increasing the reaction volume with 

dichloromethane) and microwave reactions. The results of these variations are reported 

in this section.  

7.6.5.1 Catalyst loading 

The catalyst loading of 20 mol % has been used as an initial starting point as these were 

the ideal reaction conditions reported by Murakami and Hori.
253

 A more economical 

reaction could be achieved if the catalyst loading could be reduced therefore a lower 

catalyst loading of 5 mol % has been employed in the reaction between 4-ethynyl-α,α,α-

trifluorotoluene and 20 equivalents of pyridine (Entry 6). The reaction mixture was 

heated at 50 °C for 24 hours and was monitored using NMR spectroscopy, ESI-MS and 

TLC.  

A TLC of the reaction mixture displayed that E-2-(4-trifluoromethyl)styrylpyridine and 

unreacted 4-ethynyl-α,α,α-trifluorotoluene were present in the reaction mixture after 24 

hours.  

An aliquot of the reaction mixture was placed in d2-dichloromethane and the 
19

F NMR 

spectrum of the reaction mixture displayed the major fluorine-containing species was 4-

ethynyl-α,α,α-trifluorotoluene and there were many minor unknown fluorine 

resonances, where one of the minor peaks was due to alkenylation product, and a 

percentage conversion of approximately 2.5 % was calculated. The 
1
H NMR spectrum 

displayed many unknown ruthenium-containing species in the cyclopentadienyl region 

where a peak at 4.70 ppm was the major unidentified ruthenium-containing complex. 

The 
1
H NMR spectrum also displayed peaks for 22

H,CF3
, however this was a minor part 

of the reaction mixture.  

A high resolution ESI-MS of the final reaction mixture displayed a m/z peak at 

250.0828 due to the cationic species [C14H11F3N]
+
, which could either be due to the 2-

styrylpyridine derivative or an isomer. An peak with a ruthenium isotope pattern at m/z 

678.1112 was assigned as the cationic fragment of 22
H,CF3

. Interestingly, peaks that had 
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not been observed previously at m/z 420.1183 and 590.1518 were assigned to the 

cationic fragments [C23H15F6N]
+
 and [C32H20F9N]

+
 and corroborated with the initial 

species containing one pyridine molecule and two alkyne molecules and the second 

species containing one pyridine molecule and three alkyne molecules. These fragments 

were found to originate from [Ru(η
5
-C5H5)(PPh3)]

+
 species, as m/z peaks at 848.1440 

and 1018.1798 were found with a ruthenium isotope pattern. These complexes have 

never previously been observed in the reactions of 4-ethynyl-α,α,α-trifluorotoluene with 

10
H

 and further information of these species is required before confirming their identity.  

7.6.5.2 Additional pyridine equivalents 

A catalytic reaction employing 20 mol % of 10
H

 and 4-ethynyl-α,α,α-trifluorotoluene in 

a pyridine solution (55 equivalents with respect to alkyne) was heated at 50 °C for 72 

hours (Entry 7). The reaction was followed by NMR spectroscopy where aliquots were 

taken of the initial reaction mixture and after heating for 72 hours and placed in d2-

dichloromethane.  

The final reaction mixture in the 
19

F NMR spectrum demonstrated that the major 

species was E-2-(4-trifluoromethyl)styrylpyridine and the resonance for 4-ethynyl-

α,α,α-trifluorotoluene was not present and therefore had been consumed. Approximately 

49 percentage conversion to E-2-(4-trifluoromethyl)styrylpyridine was found, where the 

remaining alkyne had reacted to give other species. The 
1
H and 

31
P{

1
H} NMR spectra 

exhibited that there were several ruthenium-containing complexes present, where two of 

these have been identified as 10
H

 and 22
H,CF3

. Interestingly, under these reaction 

conditions 10
H

 is still present at the end of the reaction and therefore this reaction 

mixture could perform further catalysis.  

An increase in pyridine equivalents in the reaction mixture has reduced the amount of 

the deactivation species 22
H,CF3

 formed and it is likely in these reactions that the 

additional pyridine equivalents favours the formation of 10
H

.  
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7.6.5.3 Increasing reaction volume 

A catalytic reaction between 4-ethynyl-α,α,α-trifluorotoluene, pyridine (20 equivalents), 

10
H

 (20 mol %) in a dichloromethane solution (271 equivalents relative to the alkyne) 

was heated at 50 °C for 48 hours. The reaction mixture was analysed by NMR 

spectroscopy and the product purified using column chromatography (Entry 8)  

An aliquot of the reaction mixture taken after 24 hours was placed in d2-

dichloromethane. The 
1
H and 

19
F NMR spectra demonstrated that the reaction had not 

gone to completion as resonances belonging to 4-ethynyl-α,α,α-trifluorotoluene were 

still present. The reaction mixture was heated for an additional 24 hours after which 

time the NMR spectra demonstrated that the peaks belonging to 4-ethynyl-α,α,α-

trifluorotoluene were absent suggesting the reaction had gone to completion. The 
19

F 

NMR spectrum displayed that the reaction had given approximately a 50 % conversion 

to E-2-(4-trifluoromethyl)styrylpyridine.  

Different unsuccessful purification methods were attempted to try and purify the 

organic product, involving:  

i)  Acid washes with 1M HCl and extraction of ruthenium complexes with 

dichloromethane, followed by neutralisation of the aqueous phase with 

NaHCO3, and a dichloromethane extraction of the organic species; 

ii) Acid washing the reaction mixture to remove excess pyridine, followed by 

column chromatography on a base washed column with 5 % triethylamine 

with ethyl acetate and hexane (1: 3 respectively).  

However, the product was successfully purified using silica column chromatography 

where a 5 % triethylamine base wash was used and a solvent mixture of ethyl acetate 

and hexane (1: 10 respectively), and the pure product collected in a 24 % yield.  

An increase in the reaction volume has allowed all the alkyne to be consumed due to the 

change in the ratio between the alkyne: pyridine: 10
H

. The ratio between 10
H

 and alkyne 

has been reduced resulting in less of the deactivation species 23
H,CF3 

being formed.  
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7.6.5.4 Microwave reactions 

Two sets of microwave reaction conditions were employed to see if irradiating the 

catalytic reaction mixtures would reduce the long reaction times that were required with 

conventional heating and display a similar conversion to the alkenylation product 

(Entries 9 and 10).  

Entry 9 explored using the reaction quantities from Entry 8 and the sample was 

irradiated for 60 minutes at 50 °C. An aliquot of the reaction mixture was taken before 

and after heating and placed in d2-dichloromethane for analysis by NMR spectroscopy. 

The 
1
H and 

19
F NMR spectra demonstrated that approximately 50 % of the alkyne 

remained unreacted and the 
19

F NMR spectrum exhibited a 7 % conversion to the 

alkenylation product. The 
1
H NMR spectrum exhibited resonances for several 

ruthenium-containing complexes, where 10
H

 and 22
H,CF3

 were the major species.  

Entry 10 employed the catalytic quantities mentioned in Entry 2 but the reaction 

mixture was irradiated at 100 °C for 30 minutes. Aliquots of the reaction mixture were 

taken before and after irradiating the sample and placed in d2-dichloromethane. The 
19

F 

NMR spectrum demonstrated that approximately 20 % of the alkyne remained 

unreacted and a 9 % conversion to the alkenylation product had occurred. The 
1
H NMR 

spectrum displayed a doublet peak at 6.52 ppm with a 
3
JHH of 16.3 Hz and due to 

dimerisation product E-1,4-di-(4-trifluoromethylphenyl)but-1-ene-3-yne. The higher 

reaction temperatures favour the dimerisation reaction pathway as the pyridine ligand 

under these condition is probably more labile and therefore two alkyne molecules can 

coordinate at the ruthenium centre. The lower reaction temperature of 50 °C has 

therefore created a more atom economical reaction as the TMS-substituted alkyne is not 

required.  
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7.7 Conclusion 

The initial part of this chapter describes the screening of a range of potential half-

sandwich ruthenium complexes as catalysts for the synthesis of 2-styrylpyridine. The 

role of 1 as a pre-catalyst was investigated mechanistically with 
13

C-labelled 

phenylacetylene and from this reaction a variety of ruthenium complexes were 

observed. These complexes included 3
Ph

, 31 and 10
H

. The complexes 3
Ph

 and 31 did not 

display any of the desired reactivity to give 2-styrylpyridine. However, the reactivity of 

10
H

 in pyridine with TMS-substituted alkynes displayed potential as there appeared to 

be evidence of the alkenylation reaction occurring. When the reaction mixture was 

analysed by ESI-MS the ruthenium-containing complexes were difficult to identify. The 

NMR spectra of the crude reaction mixture exhibited degradation of the [PF6]
-
 non-

coordinating anion and many TMS-containing by-products. The presence of the TMS 

group made it difficult to understand the reaction mixture from a mechanistic point, and 

therefore catalytic reactions employing terminal alkynes were explored.  

The reactivity of terminal alkynes in a pyridine solution with 10
H

 gave the 2-

styrylpyridine compounds. This route was atom-economical and required lower reaction 

temperature of 50 °C, than the reported 150 °C in the literature. The isolated yields 

following the original catalytic quantities were found to be 14 and 19 %. When the 

reaction was conducted with 4-ethynyl-α,α,α-trifluorotoluene, only 50 % of the alkyne 

was consumed and 10
H

 was absent in the reaction mixture. The major ruthenium-

containing complex formed these reactions were the pyridylidene-containing species 

(22 in d2-dichloromethane and 23 in d5-pyridine) and upon further heating of the 

reaction mixture no additional organic product was observed. Based on these 

observations the reaction conditions needed to be further optimised in order to collect a 

higher yield of the 2-styrylpyridine compounds and avoid formation of the deactivation 

products 22 and 23. 

To improve the reaction conditions and to optimise the lifetime of 10
H

 in the reaction 

mixture a range of catalytic conditions were investigated. A stoichiometric study 

exhibited that upon addition of further equivalents of alkyne, the quantity of the 

deactivation species 22 or 23 increased. As this occurred lower conversion of the alkyne 

to the 2-styrylpyridine compounds was observed. The most promising results were 

found when the reaction volume was increased as it is likely that the ratio between the 

alkyne and 10
H

 decreases. The following chapter will discuss this in further detail. 
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Chapter 8. Determining the Mechanism and 

Final Conclusions 

8.1 Introduction 

The development of novel catalysts can be achieved through a fundamental 

understanding of how the reaction mechanism proceeds. One successful example of 

where this methodology has been applied is in the development of catalysts for olefin 

metathesis. The development of the ruthenium catalysts lead to higher activity and 

synthesis of a phosphine-free system.
9-12

 A similar approach has been adopted in order 

to improve the reported alkenylation reaction of pyridine.
253

  

The previous chapters have described the experimental findings from mechanistic 

studies. A range of techniques including NMR and mass spectroscopy, single crystal X-

ray crystallography and isotopic labelling studies have provided valuable information. 

The experimental findings from the mechanistic and catalytic studies have been 

summarised in the earlier part of this chapter. This will progress onto DFT calculations 

for potential reaction pathways. The theoretical calculations have been based upon 

experimental observations to determine the reaction mechanism.  

The initial mechanistic findings (Chapter 2) offered useful guidelines on the reaction 

mechanism and therefore assisted in the initial theoretical DFT calculations. The 

stoichiometric reactions from addition of alkynes to 10
H

 in dichloromethane and 

catalytic reactions provided further mechanistic insight. The full reaction mechanism 

was determined in a collaborative fashion with both experimental and theoretical 

findings providing an insight into the role of the half-sandwich ruthenium complexes in 

the alkenylation reaction of pyridine. Finally, conclusions will be drawn for this entire 

project and how this relates to current literature. It should be noted that all theoretical 

calculations mentioned were conducted by David Johnson. 
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8.2 Key experimental observations 

The important mechanistic findings from the previous chapters for the alkenylation of 

pyridine to give the 2-styrylpyridine derivatives are summarised below. These points 

have provided a framework for the DFT investigations and helped define the reaction 

mechanism and shall be referred to within this chapter.  

1. The reaction mixture of 2
Ph

 in d5-pyridine generated 3
Ph

, pyrididium 

hexafluorophosphate and a carbonyl complex. On heating the reaction mixture at 90 

°C resonances belonging to 5 were exhibited and for 2-styrylpyridine (Section 2.3). 

 

     2
Ph

           5 

2. The reaction of 10
H

 and terminal alkynes in a dichloromethane solution gave the 

vinylidene-containing complexes 19 and 25, which are short-lived intermediates 

(Section 5.2).  

 

       10
H

      19
H,Ph

  

3. The vinylidene-containing complexes 19 and 25 in a dichloromethane solution react 

further, to afford the pyridylidene-containing complexes 22, 27 and 30 (Section 5.2). 

 

     19
H,Ph

           22
H,H

  

  

3
Ph
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4. A deuterium labelling study for the formation of d5-22
H,H

 in dichloromethane 

exhibited initial selective deuterium incorporation at the α-carbon atom of the alkene 

functional group (Section 5.3). 

 

    5           19
D,Ph

     22
D,H

  

5. The addition of excess pyridine to the pyridylidene-alkene containing complexes 22 

results in the deprotonation of one of the alkene protons to give 1-ruthanaindolizine 

complexes 23 and pyridinium hexafluorophosphate (Section 5.2.1.6). 

 

      22
H,H

     23
H,H

 

6. A reaction mixture of 23
H,CF3

 and pyridinium hexafluorophosphate in a d5-pyridine 

solution when heated at 150 °C yielded E-2-(4-trifluoromethyl)styrylpyridine (at 

lower reaction temperatures of 50 and 100 °C the alkenylation reaction does not 

occur) (Section 5.2.3.4). 

 

    23
H,CF3
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7. The sub-stoichiometric reactions between terminal alkynes and 10
H

 in a pyridine 

solution (when heated at 50 °C) gave the 2-styrylpyridine compounds. At the end of 

the catalytic reaction the major ruthenium-containing species was the pyridylidene 

complexes 23 (Section 7.6.4). 

 

 10
H

               23
H,H

 

8. The N-bound 2-styrylpyridine complexes 17 displayed fluxional behaviour between 

two isomers in a dichloromethane solution at room temperature on the NMR 

timescale and dissolution in d5-pyridine resulted in formation of 5 (Section 4.2.3). 

 

    17
H

         5   
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8.3 Theoretical calculations 

An extensive DFT investigation in collaboration with David Johnson and John Slattery 

has been carried on the reactions of the cation of 10
H

 with terminal alkynes in a 

dichloromethane and pyridine solution.
337

 The data presented in this section will refer to 

ZPE-corrected SCF energies (ESCF+ZPE) and Gibbs free energies in pyridine solution 

(approximated using the COSMO solvation method and a dielectric constant of 13.26 

for pyridine) and are reported in kJ mol
-1

. For the calculations, models of the cationic 

complexes were studied with the weakly coordinating anion [PF6]
-
 excluded and no 

simplifications of the substituents were made. All the theoretical species have been 

numbered with capital letters (e.g. [A]
+
) and if the computed species have been 

observed experimentally, the label will be denoted with a * to indicate that this species 

has been modelled without the weakly coordinating anion [PF6]
-
. All energies reported 

are relative to [*10
H

]
+
, unless otherwise stated. 

The initial section will look at the formation of the vinylidene-containing complex 

[*19
H,H

]
+
 as this is shared by all three reaction pathways that were investigated. Then 

two potential mechanisms are discussed for the formation of 2-styrylpyridine and finally 

the catalyst deactivation process. Three potential energy surface pathways were 

explored to give a detailed explanation of the role of the ruthenium complexes in a 

pyridine solution. The pathways include the formation of: 

A. 2-styrylpyridine from the proposed Murakami and Hori reaction mechanism.
253

 

B. the pyridylidene-containing complexes 22
H,H

 and 23
H,H

 that leads to catalyst 

deactivation.
337

 

C. 2-styrylpyridine from our experimental and theoretical observations.
337

  

8.3.1 Formation of the vinylidene-containing complex [*19
H,H

]
+
   

The experimental findings demonstrated that the reaction of 10
H

 with phenylacetylene 

yielded the vinylidene-containing complex 19
H,H

 in a dichloromethane solution. All of 

the potential energy surfaces modelled began in a similar route with the formation of the 

vinylidene-containing complex 19
H,H

. The theoretical models of 10
H

 and 19
H,H

 are 

referred to as [*10
H

]
+
 and [*19

H,H
]
+
 respectively.  After formation of [*19

H,H
]

+
 the 

potential energy surfaces for the other three reaction mechanisms differ and have been 

described individually in the following sections.  
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The formation of the vinylidene-containing complex [*19
H,H

]
+
 was modelled to occur 

via the initial η
2
-coordination of the alkyne [A]

+
. This slips to the σ coordination of the 

C-H bond to give [B]
+
. The formation of [*19

H,H
]
+
 was achieved through a 1,2-

hydrogen migration transition state at + 76 kJ mol
-1

 relative to [*10
H

]
+
.  The ΔESCF+ZPE 

of [*19
H,H

]
+
 was -14 kJ mol

-1
 relative to [*10

H
]

+
, therefore more energetically 

favourable and consistent with experimental findings. The 1,2-hydrogen migration 

mechanism for the formation of vinylidene-containing complexes is well established in 

the literature (Section 1.3.2.4).
45

 Silvestre and Hoffman reported an activation barrier of 

121 kJ mol
-1

.
35

 Additionally, De Angelis et al. reported activation barriers between 77 

and 114 kJ mol
-1

 for a 1,2-hydrogen migration pathway.
65, 66

 Our reported findings are 

therefore comparable to those found in the literature.  

 

Figure 8.1: Potential energy surface for the formation [*19
H,H

]
+
 where [Ru] = [Ru(η

5
-C5H5) 

(PPh3)] and the relative ESCF+ZPE (top) and Gibbs free energy (bottom) in pyridine are displayed 

in kJ mol
-1

. 

The formation of the vinylidene-containing complex 19
H,H

 was proposed in the reaction 

mechanism for the formation of 2-styrylpyridine by Murakami and Hori.
253

 Our 

experimental findings have confirmed the presence of this species in the reaction 

mixture and theoretical studies display this species is thermodynamically favourable 

relative to [*10
H

]
+
 and alkyne.  
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8.3.2 Pathway A: Proposed reaction mechanism by Murakami and Hori
253

 

The reaction mechanism proposed by Murakami and Hori was investigated to probe the 

energies of the intermediates and transition states required for the formation of 2-

styrylpyridine (Figure 8.2). All energies reported are relative to [*10
H

]
+
. 

In the proposed mechanism, the vinylidene-containing complex [*19
H,H

]
+
 undergoes an 

electrophilic substitution reaction between then the α-carbon atom of the vinylidene 

ligand and the proton at the C-2 position of the pyridine ligand to directly form a 

carbon-carbon bond to give [C]
+
 (+ 136 kJ mol

-1
) This process involved a high energy 

transition state TS[*19
H,H

]
+
[C]

+
 that was + 154 kJ mol

-1
 relative to [*10

H
]

+
. 

From [C]
+
 two potential pathways were investigated to afford [E]

+
, where [E]

+
 

contained a coordinated 2-styrylpyridine molecule via the nitrogen atom and an agostic 

interaction of the α C-H bond from the alkene. The formation of [E]
+
 was energetically 

favourable at - 99 kJ mol
-1

. The first of these pathways involved deprotonation of the 

proton at the C-2 position of the N-containing heterocycle by a pyridine molecule to 

give [D] (- 61 kJ mol
-1

), followed by reprotonation at the alkenyl carbon atom bound to 

the ruthenium centre to afford [E]
+
. The second pathway from [C]

+
 involved a higher 

energy transition state TS[C]
+
[E]

+
 of + 149 kJ mol

-1
, where the hydrogen atom migrated 

from the N-containing heterocycle to the alkenyl ligand to afford [E]
+
. 

 From [E]
+
 the agostic C-H interaction was cleaved to give [F]

+
 (- 92 kJ mol

-1
) and 

coordination of the alkene bond to the ruthenium centre yielded the more stable [*17
H

]
+
 

(- 148 kJ mol
-1

). The regeneration of the starting ruthenium complex [*10
H

]
+
 and 2-

styrylpyridine *G was relatively more favourable at – 172 kJ mol
-1

. This final step is 

consistent with our experimental findings where the addition of excess pyridine to 17
H

 

regenerates 10
H

 and uncoordinated 2-styrylpyridine.  

The relatively high energy turnover-determining transition state (TDTS) of + 154 kJ 

mol
-1

 means that from [C]
+
 there is a large energetic span of + 168 kJ mol

-1
. Under the 

experimental conditions mentioned by Murakami and Hori where reaction temperatures 

of 150 °C are employed for the formation of 2-styrylpyridine.
253

 However, our 

experimental studies have determined that the alkenylation reaction can occur at a lower 

temperature of 50 °C and therefore the energetic span is too large for the relative rate of 

reaction at room temperature.  
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Figure 8.2: Potential energy surface for the formation of [*10
H
]

+
 and *G following reaction mechanism proposed by Murakami and Hori, where [Ru] = [Ru(η

5
-C5H5) 

(PPh3)] and the relative ESCF+ZPE (top) and Gibbs free energy (bottom) in pyridine are displayed in kJ mol
-1

. 
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8.3.3 Pathway B: Formation of the deactivation pyridylidene-complexes
337

  

The reaction pathway for the formation of the pyridylidene-containing complexes 22
H,H

 

and 23
H,H

 were investigated, as these were the major ruthenium-containing species 

present at the end of the catalytic reaction and further conversion to the alkenylation 

products was inhibited by their presence (Figure 8.3). The potential energy surface from 

[*19
H,H

]
+
 explored the properties of the vinylidene ligand, since when coordinated to a 

Ru(II) centre, the α carbon atom is electrophilic in nature. All energies reported are 

relative to [*10
H

]
+
, unless otherwise stated. 

The attack at the α-carbon atom by uncoordinated pyridine of [*19
H,H

]
+
 resulted in the 

formation of [H]
+
 (- 8 kJ mol

-1
). The loss of the nitrogen coordinated pyridine ligand 

resulted in [I]
+
. The C-H bond at the C-2 position of the pyridine molecule formed an 

agostic interaction with the ruthenium centre to give [J]
+
 due to the vacant coordination 

site, which was at + 29 kJ mol
-1

. The following step involved oxidative addition of the 

C-H agostic bond to the metal centre, from [J]
+
 to give [K]

+ 
(+ 55 kJ mol

-1
),  a complex 

containing a hydride ligand and where the new ruthenium-carbon bond was interpreted 

as a pyridylidene ligand. The formation of [K]
+
 involves the transition state TS[J]

+
[K]

+
 

of + 58 kJ mol
-1

 where the C-H bond undergoes a formal oxidative addition reaction at 

the ruthenium centre. (Note: An alternative C-H activation step is responsible for the 

formation of 2-styrylpyridine, Section 8.3.4). From [K]
+
 the hydride ligand migrates to 

the alkenyl carbon atom coordinated to the ruthenium centre via the transition state 

TS[K]
+
[L]

+
  (+ 56 kJ mol

-1
) to give [L]

+
 (- 3 kJ mol

-1
). The species [L]

+
 contained a 

pyridylidene-alkenyl ligand where the C-H bond of the alkene bond is agostically 

coordinated to the metal centre. The cleavage of the metal agostic C-H interaction and 

coordination via the alkene group to give [*22
H,H

]
+
 was thermodynamically more stable 

at - 84 kJ mol
-1

. Deprotonation to give [*23
H,H

]  was found to be – 42 kJ mol
-1

. 

Although formation of [*22
H,H

]
+
 was favourable, it is not as favourable as the formation 

of 2-styrylpyridine and regeneration of [*10
H

]
+
. This suggests that the formation of 

[*22
H,H

]
+
 is the kinetic product and is consistent as there is a smaller energetic span 

relative to the formation of 2-styrylpyridine (Section 8.3.4).  

The formation of 2-styrylpyridine from [*23
H,H

] was explored, and two reaction 

pathways were found to be potentially viable.  The initial pathway involved breaking 

the C-N bond through a high energy transition state TS[*23
H,H

][M] (+ 187 kJ mol
-1

) to 

give [M], where [M] is a pyridyl alkynyl complex. The alkynyl ligand of [M] could 
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isomerise to a vinylidene ligand to give [P] which is responsible for the formation of 2-

styrylpyridine (Section 8.3.4). Alternatively, a second option would be the reprotonation 

of [*23
H,H

] to give [*22
H,H

]
+
  which could slip back to [J]

+
 and a different C-H 

activation step occur. Following this reaction pathway to 2-styrylpyridine the turnover 

determining transition state is TS[P][D] which is + 95 kJ mol
-1

, therefore making the 

energetic span for this pathway + 179 kJ mol
-1

. Both of the routes display high energy 

barriers to the formation of 2-styrylpyridine.  

When considering the theoretical results it was important to observe if these findings 

corroborated with the experimental results. The potential energy surface for the 

formation of 22
H,H

 is consistent with the experimental deuterium labelling observations, 

as the location of the hydrogen atom from the C-H activation step is at the α-carbon 

atom of the alkene group. Additionally, a high barrier to access 2-styrylpyridine from 

[*23
H,H

] was consistent with experimental findings since experimentally a high reaction 

temperature of 150 °C was required. Both the experimental and theoretical studies 

suggest that the pyridylidene-containing complexes 22
H,H

 and 23
H,H

 are catalyst 

deactivation products. 
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Figure 8.3: Potential energy surface on the formation of the deactivation pyridylidene complexes [*22
H,H

]
+
 and [*23

H,H
]

+
, where [Ru] = [Ru(η

5
-C5H5)(PPh3)] and the 

relative ESCF+ZPE (top) and Gibbs free energy (bottom) in pyridine are displayed in kJ mol
-1

. 
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8.3.4 Pathway C: Pyridylidene ligands in the formation of 2-styrylpyridine
337

 

The final potential energy surface to consider is the role of the pyridylidene ligands in 

the formation of 2-styrylpyridine based upon our experimental findings (Figure 8.4). 

The route proposed by Murakami and Hori displayed high energy barriers for the 

formation of 2-styrylpyridine, which is not consistent with experimental observations 

where 2-styrylpyridine formation has been observed at lower reaction temperatures of 

50 °C. This suggested that there must another reaction pathway for the formation of 2-

styrylpyridine and the experimental observations suggested that pyridylidene ligands 

may play a crucial role.  

The formation of [J]
+
 from [*22

H,H
]
+
 followed the same route as mentioned previously. 

An alternative formal oxidative addition of the C-H bond from [J]
+
 (from a different 

isomer) can occur to give a different pyridylidene-hydride containing complex [N]
+
 at + 

8 kJ mol
-1

 via the transition state TS[J]
+
[N]

+
 (+ 25 kJ mol

-1
) which can be considered to 

be isoenergetic with [J]
+
. The deprotonation of [N]

+
 by uncoordinated pyridine yielded 

[O] at – 3 kJ mol
-1

. To obtain a new carbon-carbon bond, the carbon-nitrogen bond must 

first be cleaved via the transitions state TS[O][P] at + 94 kJ mol
-1

. The resulting 

complex [P] contains a pyridyl and a vinylidene ligand, which is + 62 kJ mol
-1

. This can 

undergo a carbon-carbon bond coupling step through a pyridyl migration via transition 

state TS[P][D] which has an ESCF+ZPE of + 95 kJ mol
-1

 to give [D]. The remaining 

process to obtain [*17
H

]
+
 has been mentioned previously in Pathway A.   

Alternatively, 2-styrylpyridine may be accessed via pyridylidene intermediates, by the 

protonation of the nitrogen atom of [P] to give [Q]
+
 (- 2 kJ mol

-1
). A pyridylidene 

migration to the α-carbon atom of the vinylidene-containing ligand via the transition 

state TS[Q]
+
[R]

+
 (+ 77 kJ mol

-1
) gives [R]

+
  at – 50 kJ mol

-1
. A deprotonation and 

reprotonation at the ruthenium-carbon alkenyl bond will then give [*17
H

]
+
 which can 

regenerate the species [*10
H

]
+
 and 2-styrylpyridine.  

The experimental results displayed that  E-stereoselectivity for 2-styrylpyridine was the 

only species observed. This has been explained from the theoretical studies as the two 

stereoisomers E-(proE) and Z-(proZ) pathways were investigated. The key feature of 

this investigation displayed that the transition state TS[P][D] was 19 kJ mol
-1

 (this is the 

TDTS for E-2-styrylpyridine formation) lower in energy than the proZ pathway as it 

avoids steric interactions between the phenyl ring and the pyridyl ligand.  
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Figure 8.4: Potential energy surface on the role of pyridylidene ligands in the formation of 2-styrylpyridine, where [Ru] = [Ru(η
5
-C5H5)(PPh3)] and the relative 

ESCF+ZPE (top) and Gibbs free energy (bottom) in pyridine are displayed in kJ mol
-1

. 
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8.4 Summary of theoretical studies 

A combined theoretical and experimental investigation has been conducted on the 

formation of 2-styrylpyridine complexes. The potential energy surfaces have been 

calculated by David Johnson. Overall, three major pathways have been explored (A: 

proposed mechanism by Murakami and Hori, B: formation of the pyridylidene 

complexes 22
H,H

 and 23
H,H

 and C: the role of pyridylidene ligands in the formation of 2-

styrylpyridine).  

The mechanism proposed by Murakami and Hori
253

 displayed a high TDTS (+ 154 kJ 

mol
-1

) and a large energetic span (+ 168 kJ mol
-1

) which was not consistent with our 

experimental observations that have found that 2-styrylpyridine is present in a reaction 

when heated a much lower reaction temperature of 50 °C. This suggested another 

reaction pathway might be responsible for the alkenylation of pyridine.  

Further investigations were made into the formation of the pyridylidene-containing 

complexes 22
H,H

 and 23
H,H

 from the vinylidene-containing complex 19
H,H

.  It was 

apparent that the reactivity of the Ru(II) vinylidene ligand was exploited, since the α-

carbon atom of the vinylidene undergoes nucleophilic attack by uncoordinated pyridine 

in the reaction mixture, to give [H]
+
. The close proximity of the C-H bond at the 2 

position of the pyridine molecule allowed an agostic interaction to form between the 

ruthenium centre, [J]
+
. This paved the way to the formation of the [*22

H,H
]

+
 which was 

a relatively low energy pathway in comparison to pathways A and C, where the 

energetic span for route was + 72 kJ mol
-1

 (TDI was [*19
H,H

] and TDTS was 

TS[J]
+
[K]

+
). The pyridylidene-containing complexes [*22

H,H
]

+
 and [*23

H,H
] are kinetic 

products and the transition states for the formation of 2-styrylpyridine from these 

species have been found to be relatively high energy (from [*22
H,H

]
+
 of – 84 kJ mol

-1
 a 

transition state of + 95 kJ mol
-1

 and from [*23
H,H

] of – 42 kJ mol
-1

 a transition state of + 

187 kJ mol
-1

 were required). This corroborated with experimental findings where high 

temperatures of 150 °C were required to obtain 2-styrylpyridine.  

The final reaction pathway C explored the role of pyridylidene ligands in the 

alkenylation reaction of pyridine. The reaction pathway displayed that cleavage of the 

C-N bond in [O] required a transition state with a + 94 kJ mol
-1

 to give either pyridyl or 

pyridylidene vinylidene-containing complexes [P] or [Q]
+
 respectively. The energetic 

span from [*10
H

]
+
 to generate 2-styrylpyridine was + 109 kJ mol

-1
 and therefore smaller 
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than the reaction mechanism proposed by Murakami and Hori. These complexes then 

underwent a carbon-carbon coupling reaction by either pyridyl or pyridylidene 

migration which followed by subsequent deprotonation/ reprotonation yielded [*17
H

]
+
. 

These results corroborated with experimental findings where the organic product was 

observed after heating at lower reaction temperatures of 50 °C.  

The difference in reactivity observed experimentally in dichloromethane (preference for 

22
H,H

) or pyridine (preference for 2-styrylpyridine) solutions can be explained with 

reference to the theoretical pathways. The catalyst deactivation species 22
H,H

 is 

preferred in a dichloromethane solution as there are fewer equivalents of uncoordinated 

pyridine present in the reaction mixture and therefore the hydride complex [K]
+
 is not 

deprotonated in solution and can migrate to generate 22
H,H

. However, in a pyridine 

solution the hydridric species [N]
+
 (where PABOON calculations suggest that the 

hydride has a partial charge more consistent with a protic species) is more likely to be 

deprotonated, which leads to the alkenylation reaction pathway being favoured.  
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8.5 Final conclusions 

This chapter has summarised the significant experimental findings obtained from 

previous chapters. The findings have been supported by theoretical studies which have 

allowed us to construct a realistic picture of the potential energy surface for the 

alkenylation of pyridine with terminal alkynes. A final catalytic cycle has been 

proposed (Scheme 8.1) for the alkenylation of pyridine to afford 2-styrylpyridine. From 

our mechanistic studies it was established that 10
H

 was the active ruthenium complex. 

In the presence of a terminal alkyne, the vinylidene-containing complex 19
H,H

 was 

obtained. Uncoordinated pyridine acts as a Lewis base towards the α-carbon atom of the 

vinylidene ligand to yield [H]
+
 and therefore brings the α C-H bond of the N-containing 

heterocycle into close proximity of the ruthenium centre to afford [J]
+
. Subsequent C-H 

activation leads to [N]
+
 or [K]

+
, where [K]

+
 leads to the formation of the kinetically 

favoured deactivation complexes, 22
H,H

 or 23
H,H

. Alternatively, deprotonation (likely to 

occur in a basic reaction medium) gives [O]. A C-N bond cleavage followed by a 

carbon-carbon bond formation step via either the pyridyl or pyridylidene complexes [P] 

or [Q]
+
 leads to 2-styrylpyridine, which can be released regenerating 10

H
.  

The formation of iridium-pyridylidene ligands in the literature has been reported by 

Carmona et al.
208

 In the case of pyridine it has been found through theoretical 

calculations that the 2-carbene tautomer is 17 kJ mol
-1

 less stable than the nitrogen 

bound complex. However with the 2-substituted pyridine complexes (2-methylpyridine 

and 2-phenylpyridine) the iridium centre stabilises the 2-carbene complex with respect 

to the N-bound tautomer and therefore the carbon bound adduct is the thermodynamic 

product. This highlights the unique qualities of our system as in order to access the 2-

carbene tautomer of pyridine a substituent at the C-6 position was not required. 

There are several literature mechanisms that have explored the potential energy surfaces 

for the formation of pyridylidene complexes. Carmona et al. have reported a mechanism 

for the formation of iridium N-heterocyclic carbene complexes.
208

 Their theoretical 

studies suggested that a σ-CAM mechanism was responsible for the formation of the 2-

carbene tautomers. An initial σ C-H bond interaction at the 2-position of the N-

containing heterocycle and the iridium centre is assisted by a phenyl ligand which 

abstracts the hydrogen atom and replaces it at the nitrogen atom to give the pyridylidene 

complex.  
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Esteruelas et al. have also investigated the formation of osmium-pyridylidene 

complexes for 2-methylpyridine.
223

 In their proposed mechanism the osmium hydride 

complexes allow for an initial intermolecular hydrogen migration from the metal 

complex to the nitrogen atom of the N-containing heterocycle. This undergoes C-H 

activation at the α bond of the N-containing heterocycle resulting in a dihydride 

complex and is followed by a dihydride-dihydrogen tautomerisation process. The C-H 

activation mechanism in these complexes required an intermolecular exchange of 

hydrogen atoms in order to stabilise the NH tautomer.  

Lastly, a detailed mechanistic study by Bergman et al. studied the C-H activation 

mechanism of N-containing heterocycles at a rhodium centre to give a N-heterocyclic 

carbene ligand.
178

 From  DFT calculation it was determined that different orientations of 

the C-H bond of the N-containing heterocycle yielded two different reaction pathways, 

however the C–H oxidative addition stages were the rate-limiting in these mechanisms.  

The mechanisms mentioned above highlight different methods for the synthesis of N-

heterocyclic carbene ligands. These mechanisms differ from our findings as in our 

system the role of the vinylidene ligand shapes the potential energy surface as it brings 

the α C-H bond of the pyridine ligand in to close proximity of the ruthenium centre and 

hence access to the pyridylidene ligands.  

Additionally, substituent effects from various phosphorus-containing ligands, nitrogen-

containing ligands and alkynes were investigated from a mechanistic perspective. 

Altering the electronic and steric factors was found to change the reactivity of the 

ruthenium centre. Trimethylphosphine is considered to increase electron density at 

metal centres with respect to PH3.
20

 In these cases, similar reactivity observed in both 

the stoichiometric chemistry in a dichloromethane solution where the formation of 

complexes 22 was observed. Alternatively, reducing electron density at the metal centre 

(with triphenylphosphite) ceased the formation of the ruthenium vinylidene-containing 

complex [Ru(η
5
-C5H5)(PR3)(L)(=C=CHPh)][PF6] and promoted a different reaction 

pathway.  

Increasing the steric influence of ligands close to the metal centre (with 

triisopropylphosphine and 2-methylpyridine) inhibited the formation of the complexes 

[Ru(η
5
-C5H5)(PR3)(L)2][PF6] (where R = Ph or 

i
Pr and L = N-containing heterocycle). 

Stronger electron-donating N-containing heterocycles with respect to pyridine were 

screened. The reported ligands Hammett values of 3-methylpyridine, 4-methylpyridine 
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and 4-dimethylaminopyridine were -0.07, -0.17 and -0.83 respectively.
292, 294, 295

 The 

earlier two ligands exhibited similar observations to pyridine, where the vinylidene-

containing complexes [Ru(η
5
-C5H5)(PPh3)(L)(=C=CHR)][PF6] could be observed. 

However, this intermediate was not detected for 4-dimethylaminopyridine which has a 

stronger electron donating ability via conjugation. In all of these cases, the formation of 

the pyridylidene-alkene complexes was observed.  

The substituents at the 4-position of the phenyl ring of terminal alkynes has included H, 

F and CF3. The electron-withdrawing effects of F and CF3 with Hammett values were 

0.06 and 0.54 respectively, therefore demonstrating that the CF3 group has a much 

larger effect.
292, 294, 295

 This was observed in the stoichiometric reactions of 10
H

 and aryl 

terminal alkynes in a dichloromethane solution, where reactions with the 4-CF3 

substituent were more selective to only generate complexes 22, due to a preference for 

the generating the vinylidene complexes 19. 

To conclude, the reaction pathway for the alkenylation of pyridine with terminal 

alkynes by 10
H

 has been investigated. The alkenylation reaction is 100 % atom efficient 

with respect to the starting materials employed and the reaction is preferred at lower 

temperatures of 50 °C. A set of novel ruthenium pyridylidene-alkene complexes have 

been identified; where the role of the pyridylidene ligands have been demonstrated to 

lead to catalyst deactivation.  

 

8.6 Future Work 

The research on the alkenylation of pyridine by 10
H

 has been extensively studied and a 

potential energy surface proposed. Based upon the knowledge gained it is possible to 

extend the research into new fields. The development of the catalytic system has been 

extended to include a wider variety of N-containing heterocycles. Additionally, the 

easier to handle, air-stable complex [Ru(η
5
-C5H5)(naphthalene)][PF6] can be employed 

to generate an in situ catalyst and prevent an extra synthetic step for formation of the 

catalyst for the alkenylation of pyridine.
282, 296, 338

 A more mechanistic approach to 

catalyst development, will include the use of non-covalent interactions to assist in the 

alkenylation reaction pathway. For example, the presence of a pyridyl group at the 

phosphorus ligand may exhibit enhanced features due to the close proximity of the 

nitrogen donor group.
112, 117
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Scheme 8.1: The proposed catalytic cycle for the alkenylation of pyridine with terminal alkynes, 

where [Ru] = [Ru(η
5
-C5H5)(PPh3)]

+
.  
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Chapter 9. Experimental 

9.1 General Considerations 

All experimental procedures were performed under an atmosphere of dinitrogen using 

standard Schlenk Line and Glove Box techniques. Dichloromethane, pentane, hexane, 

and toluene were purified with the aid of an Innovative Technologies anhydrous solvent 

engineering system. Diethyl ether was dried over sodium under argon. Pyridine 99.5 % 

was Acros Organics “Extra Dry” which was stored under nitrogen and handled in a 

Glove Box. The CD2Cl2 used for NMR experiments was dried over CaH2 and degassed 

with three freeze-pump-thaw cycles. The solvent was then transferred into NMR tubes 

fitted with PTFE Young’s taps or kept under a nitrogen atmosphere in the Glove Box. 

Unless mentioned otherwise d5-pyridine was purchased from Sigma-Aldrich and dried 

over molecular sieves 4 Å, and degassed with three freeze-pump-thaw cycles. The 

solvent was then stored under a nitrogen atmosphere in the Glove Box. Microwave 

reactions were heated in a CEM Discover Microwave. Phenylacetylene (Acros 

Organics) and purified by passage through an alumina column and degassed by three 

freeze-pump-thaw cycles. RuCl3.3H2O was supplied from Precious Metals Online. 4-

Ethynyl-α,α,α-trifluorobenzene was purchased from Sigma-Aldrich and used as 

supplied. [Ru(η
5
-C5H5)(NCMe)3][PF6] was supplied by Sigma-Aldrich, and kept at -20 

°C under a nitrogen atmosphere in the Glove Box. 4-Methylpyridine was degassed with 

three freeze-pump-thaw cycles and stored under a nitrogen atmosphere. 3-

Methylpyridine and 2-methylpyridine were deoxygenated from bubbling nitrogen gas 

through the solvent. 4-Dimethylaminopyridine was purchased from Sigma-Aldrich and 

used as supplied. 1-Methylimidazole ≥99%, purified by re-distillation was purchased 

from Sigma-Aldrich, and was deoxygenated by bubbling nitrogen gas through the 

solvent. 

NMR spectra were acquired where mentioned either on a JEOL 400 (Operating 

frequencies 
1
H 400 MHz, 

19
F 376.17 MHz, 

31
P 162 MHz, 

13
C 100 MHz); a Bruker 

AVANCE 500 (Operating frequencies 
1
H 500.23 MHz, 

31
P 202.50 MHz, 

13
C 125.77 

MHz, 
19

F 470.68 MHz); or a Bruker AV700 (Operating frequencies 
1
H 700.13 MHz, 

13
C 176.04 MHz). The 

31
P{

1
H} and 

13
C{

1
H} spectra were recorded with proton 

decoupling. Accurate mass, ESI-MS results were recorded on a Bruker micrOTOF mass 
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spectrometer, coupled to an Agilent 1200 series LC system. EI-MS was recorded on a 

Waters GCT Premier mass spectrometer, coupled to an Agilent 7890 GC system to 

provide GC-EI-MS. IR spectra were acquired either on a Thermo-Nicolet Avatar 370 

FTIR spectrometer using CsCl solution cells, or on a Unicam RS 10000 FTIR 

instrument using the ATR function under aerobic conditions. Diffraction data was either 

collected at 110(2) K on a Bruker Smart Apex diffractometer with Mo-K radiation ( = 

0.71073 Å) using a SMART CCD camera or on an Oxford Diffraction SuperNova 

diffractometer with Mo-K radiation ( = 0.71073 Å) using a EOS CCD camera, where 

the crystal was cooled with an Oxford Instruments Cryojet. 

 

9.2 Synthesis of Half Sandwich Ruthenium Complexes of the 

Type [Ru(η
5
-C5H5)(PPh3)2] 

9.2.1 Synthesis of [Ru(η
5
-C5H5)Cl(PPh3)2], 1.

265
   

A distillation set-up was used to crack dicyclopentadiene (45 mL). The round bottom 

flask containing the dimer was stirred whilst being slowly heated, the temperature at the 

top of the Vigreux column was maintained at 35 °C. 

Ethanol (1 L) was deoxygenated (2 hours) with nitrogen, and fitted with a reflux 

condenser. In a 2 L round bottom flask triphenylphosphine (21.0 g, 0.08 mol), and anti-

bumping granules were added, and the mixture heated to reflux. 

RuCl3.3H2O (4.98 g, 0.02 mol) was dissolved in deoxygenated ethanol (80 mL). The 

freshly distilled cyclopentadiene (10 mL) was added to ethanol (10 mL) under nitrogen.  

The RuCl3.3H2O solution was transferred to the round bottom flask (2 L) via a cannula 

transfer; followed similarly by the cyclopentadienyl solution. The reaction mixture was 

heated at reflux (1 hour). The solution was cooled to room temperature, and stored at -

20 °C for 16 hours to give bright red crystals. The product was air stable, and washed 

with ethanol (4 x 25 mL) and diethyl ether (4 x 25 mL).  A second batch of orange 

precipitate could be collected when the solvent was reduced. (Yield: 10.44 g, 72%) 
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Characterisation Data  

 

Figure 9.1: Labelled diagram of complex 1. 

1
H NMR (CD2Cl2, 400 MHz, 295 K): 4.09 (s, 5H, H5), 7.14 (apparent t, 12H, 

3
JHH = 7.2 

Hz, H2), 7.25 (t, 6H, 
3
JHH = 7.4 Hz, H4), 7.32-7.36 (m, 12H, H3) 

31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): 39.5 (s, PPh3) 

13
C{

1
H} NMR (CD2Cl2, 100 MHz, 295 K):  81.7 (t, 

2
JCP = 2.4 Hz, C5), 127.8 (t, 

1
JCP + 

3
JCP = 9.2 Hz, C2), 129.1 (s, C4), 134.1 (t, 

1
JCP + 

3
JCP = 10.2 Hz, C3), 138.8 (m, 

1
JCP + 

3
JCP = 39.7 Hz, C1) 

ESI-MS (MeOH, m/z): Observed 732.1573 [M
+
 –Cl +NCMe], Expected 

C43H38NP2
102

Ru 732.1532, Error = 4.1 mDa; Observed 691.1286 [M
+
 -Cl], Expected 

C41H35P2
102

Ru 691.1257, Error = 2.9 mDa. 

IR (CH2Cl2, ν /cm
-1

):  1027.8 (broad m), 1089.8 (m), 1185.6 (w), 1257.8 (s), 1266.3 (s), 

1275.5 (s), 1434.5 (m), 1456 (m), 1480.3 (w), 1506.3 (m), 1558.8 (w), 1575.7 (m), 

1635.3 (w), 1652.8 (m), 1700.0 (m), 1733.9 (w), 2854.6 (broad w), 2926.7 (broad m), 

2961.6 (broad m), 3046.4 (w), 3060.8 (w) 

1
H NMR (NC5D5, 400 MHz, 295 K): 4.35 (s, 5H, H5), 7.19 (m), 7.28 (m, 6H, H4), 7.70 

(m, 6H) 

31
P{

1
H} NMR (NC5D2, 162 MHz, 295 K): 39.8 (s, PPh3) 
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9.2.2 Preparation of [Ru(η
5
-C5H5)(PPh3)2(=C=CHPh)][PF6], 2

Ph
. 

54
 

[Ru(η
5
-C5H5)Cl(PPh3)2], 1 (241 mg, 0.33 mmol) was suspended in methanol (20 mL). 

Under nitrogen NH4PF6 (170 mg, 1.0 mmol) and phenylacetylene (55 µl, 5.0 mmol) 

were added. The bright orange reaction mixture was stirred and heated to reflux (60 °C, 

10 minutes). A colour change to a bright red indicated the completion of the reaction. 

The cooled reaction mixture was filtered to give a red solution, and the solvent was 

removed under vacuum. The red product was dissolved in dichloromethane (5 mL), and 

filtered into excess diethyl ether (20 mL) to give a red precipitate. The excess solvent 

was removed by filtration and the pale red product dried under vacuum. Limited data 

for yields.  

Characterisation Data  

 

Figure 9.2: Labelled diagram of 2
Ph

. 

1
H NMR (CD2Cl2, 400 MHz, 295 K): 5.27 (s, 5H, H11), 5.43 (t, 1H, 

4
JHP = 2.4 Hz, H6), 

7.01-7.09 (m, 14H, H2, H8), 7.16 (tt, 1H, 
3
JHH = 7.4 Hz, 

4
JHH = 1.2 Hz, H10), 7.21-7.29 

(m, 14H, H3, H9), 7.40-7.45 (m, 6H, H4) 

31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): -143.0 (sept, 

1
JPF = 710 Hz, PF6

-
), 43.9 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 95.3 (s, C11), 119.9 (s, C6), 127.5 (s), 127.5 

(s), 127.8 (s), 129.1 (m), 129.4 (s), 131.5 (s), 133.4 (m), 133.9 (m), 354.4 (t, 
2
JCP = 15.6 

Hz, C5) 

ESI-MS (MeOH, m/z): Observed 793.1721 [M
+
], Expected C49H41P2

102
Ru 793.1735, 

Error = 1.4 mDa; Observed 691.1266 [M
+
 - HCCPh], Expected C41H35P2

102
Ru 

691.1257, Error = 0.9 mDa; Observed 429.0333 [M
+
 - HCCPh – PPh3], Expected 

C23H20P
102

Ru 429.0341, Error = 0.8 mDa. 
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9.2.3 Preparation of [Ru(η
5
-C5H5)(PPh3)2(=

13
C=CHPh)][PF6], 

13
C-2

Ph
. 

54
 

[Ru(η
5
-C5H5)Cl(PPh3)2], 1 (253 mg, 0.35 mmol) was suspended in methanol (20 mL). 

Under nitrogen NH4PF6 (173 mg, 1.0 mmol) and 
13

C-phenylacetylene (50 µl, 4.5 mmol) 

were added. The bright orange reaction mixture was stirred and heated to reflux (60 °C, 

10 minutes). The cooled reaction mixture was filtered to give a red solution and the 

solvent removed under vacuum. The red product was dissolved in dichloromethane (5 

mL), and filtered into excess diethyl ether (20 mL) to give a red precipitate. The excess 

solvent was removed by filtration and the pale red product dried under vacuum. Limited 

data for yields. 

Characterisation Data 

 

Figure 9.3: Labelled diagram of 
13

C-2
Ph

. 

1
H NMR (CD2Cl2, 400 MHz, 295 K): 5.27 (6, 5H, 

4
JHH = 1.2 Hz, H11), 5.43 (m, 1H, 

H6), 7.01-7.09 (m, 14H, H2, H8), 7.16 (m, 1H, H10), 7.21-7.29 (m, 14H, H3, H9), 7.40-

7.45 (m, 6H, H4) 

31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): -143.0 (sept,

 1
JPF = 710 Hz, PF6

-
), 43.4 (d, 

2
JPC = 15.5 Hz, PPh3) 

13
C{

1
H} NMR (CD2Cl2, 100 MHz, 295 K): 95.3 (s, C11), 127.5 (s), 127.5 (s), 127.8 (s), 

129.1 (m), 129.4 (s), 131.5 (s), 133.4 (m), 133.7 (s), 354.4 (t, 
2
JCP = 15.5 Hz, C5) (Did 

not observe C6) 

ESI-MS (MeOH, m/z): Observed 794.1745 [M
+
], Expected C48

13
CH41P2

102
Ru 794.1768, 

Error = 1.0 mDa.  
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9.2.4 Preparation of [Ru(η
5
-C5H5)(PPh3)2(=C=CH(p-MeC6H4)][PF6], 2

C6H4-p-Me
. 

54
  

[Ru(η
5
-C5H5)Cl (PPh3)2], 1 (247 mg, 0.34 mmol) was suspended in methanol (20 mL). 

4-ethynyltoluene (60 µL, 0.47
 
mmol) and NH4PF6 (345 mg, 2.1 mmol) were added and 

the reaction mixture heated to reflux (10 minutes). The cooled reaction mixture was 

filtered and the red solution collected. The solvent was removed under vacuum. The 

product was extracted with dichloromethane (5 mL), and the filtrate added to an excess 

of diethyl ether. A red precipitate was collected. Limited data for yields. 

Characterisation Data 

 

Figure 9.4: Labelled diagram of 2
C6H4-p-Me

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.35 (s, 3H, H11), 5.27 (s, 5H, H12), 5.43 (t, 1H, 

4
JHP = 2.4 Hz, H6), 6.99 – 7.12 (m, 16H, H2, H8, H9), 7.25 (td, 12H, 

3
JHH = 7.7 Hz, 

4
JHP 

= 1.8 Hz, H3), 7.43 (t, 6H, 
3
JHH = 7.4 Hz, H4) 

31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): -143.5 (sept, 

1
JPF = 710 Hz, PF6

-
), 43.6 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 21.1 (s, C11), 95.2 (s, C12), 119.7 (s, C6), 

124.9 (s), 127.4 (s), 129.0 (m), 130.1 (s), 131.4 (s), 133.4 (m), 134.0 (m), 137.6 (s), 

355.5 (t, 
2
JCP = 15.4 Hz, C5) 

Low Resolution ESI-MS (CH2Cl2, m/z): Observed 807.2 [M
+
], Expected C50H43P2

102
Ru 

807.1878; Observed 691.1 [M
+
 - HCCPh], Expected C41H35P2

102
Ru 691.1257. 
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9.2.5 Synthesis of [Ru(η
5
-C5H5)(PPh3)2(=C=CH

t
Bu)][PF6], 2

tBu
. 

54
 

[Ru(η
5
-C5H5)Cl(PPh3)2], 1 (252 mg, 0.35 mmol) was suspended in methanol (20 mL). 

NH4PF6 (186 mg, 1.1 mmol) and tert-butylacetylene (64 µl, 5.2 mmol) were added. The 

reaction mixture was heated to reflux (60 °C, 15 minutes). The colour change to a bright 

orange solution indicated the completion of the reaction. The cooled reaction mixture 

was filtered to give a red solution. The solvent was removed under vacuum. The red 

product was dissolved in dichloromethane (5 mL), and filtered into excess diethyl ether 

(20 mL). The excess solvent was removed by filtration and the orange product dried 

under vacuum. Limited data for yields. 

Characterisation Data 

 

Figure 9.5: Labelled diagram of 2
tBu

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.17 (s, 9H, H8), 4.24 (t, 1H, 

4
JHP = 2.8 Hz, H6), 

5.11 (s, 5H, H9), 7.02-7.06 (m, 12H, H2), 7.26-7.29 (m, 12H, H3), 7.44 (t, 6H, 
3
JHH = 7.2 

Hz) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 42.8 (s, 

PPh3) 

ESI-MS (m/z): Observed 773.2096 [M
+
], Expected C47H45P2

102
Ru 773.2034, Error = 6.2 

mDa  
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9.2.6 Synthesis of [(Ru(η
5
-C5H5)(C≡CPh)(PPh3)2], 3

Ph
. 

54
 

[Ru(η
5
-C5H5)Cl(PPh3)2], 1 (243 mg, 0.33 mmol) was suspended in methanol (10 mL). 

Phenylacetylene (55 µl, 51 mg, 0.50 mmol) was added using a microsyringe and the 

reaction mixture heated to reflux (45 minutes). A solution of NaOMe (27 mg, 0.50 

mmol) in methanol (1 mL) was added to the cooled reaction mixture, and the bright red 

solution turned yellow. Excess solvent was removed via filtration, and the product dried 

under vacuum.  Yield (208 mg, 77 %).  

Characterisation Data 

 

Figure 9.6: Labelled diagram of 3
Ph

. 

1
H NMR (CD2Cl2, 400 MHz, 295 K): 4.32 (s, 5H, H11), 7.08- 7.16 (m, 17H, Ph), 7.22 (t, 

6H, H4), 7.45- 7.50 (m, 12H, Ph) 

31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): 50.9 (s, PPh3) 

13
C{

1
H} NMR (CD2Cl2, 100 MHz, 295 K): 85.5 (t, 

3
JCP = 2.2 Hz, C11), 114.6 (s), 116.9 

(broad), 123.3 (s), 127.6 (m), 128.0 (s), 128.8 (s), 130.6 (m), 132.2 (s), 134.1 (m), 139.3 

(m, 
1
JCP + 

3
JCP = 41.7 Hz, C1) 

ESI-MS (m/z): Observed 793.1750 [M + H]
+
, Expected C49H41P2

102
Ru 793.1721, Error 

= 2.9 mDa. 

IR (CH2Cl2, ν /cm
-1

): 2072 (C≡C stretching) 

1
H NMR (NC5D5, 400 MHz, 295 K): 4.59 (s, 5H, H11), 7.12 (t, 1H, 

3
JHH = 7.3 Hz, H10), 

7.15- 7.21 (m, 12H, Ph), 7.26 (t, 6H, H4), 7.34 (t, 2H, 
3
JHH = 7.6 Hz, H9), 7.61 (d, 2H, 

3
JHH = 7.3 Hz, H8), 7.76- 7.81 (m, 12H, Ph) 

 
31

P{
1
H} NMR (CD5N5, 162 MHz, 295 K): 50.4 (s, PPh3)  
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9.2.7 Synthesis of [Ru(η
5
-C5H5)(C≡C(p-Me(C5H4))(PPh3)2], 3

C6H4-p-Me
. 

54
 

[Ru(η
5
-C5H5)Cl(PPh3)2], 1 (247 mg, 0.34 mmol), 4-ethynyltoluene (60 mg, 0.52 mmol) 

and methanol (15 mL) were stirred and heated to reflux (45 minutes). A solution of 

NaOMe (28 mg, 0.52 mmol) in methanol (2 mL) was added to the cooled reaction 

mixture, and the bright red solution turned yellow. Excess solvent was removed by 

filtration, and the product dried under vacuum.  Yield (202 mg, 74 %). 

Characterisation Data 

 

Figure 9.7: Labelled diagram of 3
C6H4-p-Me

. 

1
H NMR (CD2Cl2, 400 MHz, 295 K): 2.30 (s, 3H, H11), 4.32 (s, 5H, H12), 7.00 (m, 4H, 

H8, H 9), 7.11 (t, 12H, 
3
JHH = 7.2 Hz, Ph), 7.20- 7.24 (t, 6H, 

3
JHH = 7.2 Hz, H4), 7.47- 

7.51 (m, 12H, Ph) 

31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): 50.8 (s, PPh3) 

13
C{

1
H} NMR (CD2Cl2, 100 MHz, 295 K): 21.2 (s, C11), 85.5 (t, 

2
JCP = 2.2 Hz, C12), 

114.3 (s), 114.4 (s), 127.6 (m), 128.1 (m), 128.8 (s), 130.5 (m), 132.9 (s), 134.1 (m), 

139.4 (m, 
1
JCP + 

3
JCP = 41.6 Hz, C1) 

ESI-MS (m/z): Observed 807.1877 [M
+
 + H], Expected C50H43P2

102
Ru 807.1878, Error 

= 0.1 mDa; Observed 691.1254 [M
+
 – C9H7], Expected C41H35P2

102
Ru 691.1257, Error 

= 0.3 mDa 

1
H NMR (NC5D5, 400 MHz, 295 K): 2.23 (s, 3H, H11), 4.58 (s, 5H, H12), 7.11-7.20 (m, 

14H, Ph), 7.26 (t, 6H, 
3
JHH = 6.8 Hz, H4), 7.53 (d, 2H, 

3
JHH = 7.9 Hz, H8), 7.77-7.81 (m, 

12H, Ph) 

31
P{

1
H} NMR (CD5N5, 162 MHz, 295 K): 51.1 (s, PPh3)  
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9.2.8 Synthesis of the [Ru(η
5
-C5H5)(PPh3)2(NC5H5)][PF6], 31. 

[Ru(η
5
-C5H5)Cl(PPh3)2], 1 (238 mg, 0.33 mmol) and NaPF6 (170 mg, 1.0 mmol) were 

suspended in methanol (20 mL) stirred. Pyridine (140 µL, 1.73 mmol) was added.  The 

reaction mixture was heated to reflux (1 hour), until it appeared yellow. The reaction 

mixture was cooled, and the solution filtered to give a yellow precipitate. The 

precipitate was dissolved in a minimum amount of dichloromethane (5 mL). Diethyl 

ether (20 mL) was added to give a yellow precipitate. The excess solution was removed 

by filtration, and the precipitate dried under vacuum. Yield (166 mg, 56 %) 

Characterisation Data 

 

Figure 9.8: Labelled diagram of 31. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 4.43 (s, 5H, H8), 6.71 (m, 2H, H6), 7.08 (m, 12H, 

H3), 7.28 (t, 12H, 
3
JHP = 7.21 Hz, H2), 7.44 (m, 7H, H4 + H7), 8.21 (dd, 2H, 

3
JHH = 6.3 

Hz, 
4
JHP = 1.2 Hz, H5) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 710 Hz, PF6

-
), 43.5 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 100 MHz, 295 K): 83.6 (t, 

3
JCP = 2.0 Hz, C8), 125.3 (s, C7), 

128.8 (m, C2/3), 130.7 (t, 
4
JCP = 1.1 Hz, C6), 134.0 (m, C2/3), 135.3 (m, 

1
JCP + 

3
JCP = 40.5 

Hz, C1), 136.9 (s, C4), 158.1 (t, 
3
JCP = 3.2 Hz, C5) 

ESI-MS: Observed 770.1675 [M
+
], Expected C46H40NP2

102
Ru 770.1686, Error = 0.1 

mDa; Observed 691.1253 [M
+
 - NC5H5], Expected C41H35P2

102
Ru 691.1252, Error = 0.1 

mDa. 

IR (CH2Cl2, ν /cm
-1

): 3054, 1480, 1435, 1268 (s), 1266 (s), 1260 (s), 1089 

Elemental Analysis: Anal. C47H42F6NP3Ru: Calc. C(60.40) H(4.41) N (1.53), Found 

C(60.28) H(4.79) N (1.44) 
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In d5-pyridine the pyridine ligand must be exchanging as it can’t be detected. 

1
H NMR (CD5N5, 400 MHz, 295 K): 4.72 (s, 5H, H8), 7.25- 7.29 (m, 12H, Ph), 7.31- 

7.35 (m, 12H, Ph), 7.48 (t, 6H, 
3
JHH = 7.22 Hz, H4) 

31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): -143.5 (sept, 

1
JPF = 710 Hz, PF6

-
), 41.6 (s, 

PPh3) 
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9.2.9 Synthesis of [Ru(η
5
-C5H5)(PPh3)2(CO)][PF6], 4.  

[Ru(η
5
-C5H5)Cl(PPh3)2], 1 (202 mg, 0.28 mmol), NH4PF6 (133 mg, 0.82 mmol) were 

suspended in methanol (10 mL). The nitrogen atmosphere was removed under vacuum, 

and the vessel placed under a CO atmosphere, sealed and stirred for 40 hours. The 

solvent was removed under vacuum. The yellow solid was placed in dichloromethane (5 

mL) and filtered into an excess of diethyl ether. The excess solvent was removed by 

filtration and a pale yellow solid dried under vacuum. Yield (0.12 g, 49 %). 

Characterisation Data 

 

Figure 9.9: Labelled diagram of 4. 

1
H NMR (CD2Cl2, 400 MHz, 295 K): 5.30 (s, 5H, H6), 7.06-7.12 (m, 12H, Ph), 7.29-

7.33 (m, 12H, Ph), 7.43-7.48 (m, 6H, H4) 

31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 43.2 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 100 MHz, 295 K):  91.2 (t, 

3
JCP = 1.4 Hz, C6), 129.4 (m, 

1
JCP + 

3
JCP = 10.7 Hz, C2/3), 131.7 (m, 

1
JCP + 

3
JCP = 2.3 Hz, C4), 133.5 (m, 

1
JCP + 

3
JCP = 10.6 

Hz, C2/3), 134.2 (m, 
1
JCP + 

3
JCP = 51.0 Hz, C1) 

ESI-MS (m/z): Observed 719.120 [M
+
], Expected C42H35OP2

102
Ru 719.1212, Error = 

0.7 mDa. 

IR (MeOH, ν /cm
-1

): 1558 (s), 1576 (m), 16161.5 (m), 1635 (w), 1652.6 (m), 1684.5 

(m), 1695.6 (s), 1700.9 (s), 1717.3 (s), 1734.2 (w), 1980.5 (CO stretching), 2926.3 

(broad m) 

1
H NMR (CD5N5, 400 MHz, 295 K): 5.30 (s, 5H, H6), 7.25 (m, 12H), 7.33 (m, 12H), 

7.47 (m, 6H, H4) 
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31
P{

1
H} NMR (CD2Cl2, 162 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 41.8 (s, 

PPh3) 

 

 

9.3 Synthesis of Half Sandwich Ruthenium Complexes 

9.3.1 Preparation of Ruthenocene, 6. 
281

 

Freshly distilled cyclopentadiene was obtained from a distillation of dicyclopentadiene 

(50 mL), where the temperature in the Vigreux column did not exceed 40 °C. 

Degassed ethanol (100 mL) and RuCl3.3H2O (5.20 g, 20.0 mmol) were stirred under 

nitrogen and freshly distilled cyclopentadiene (25 mL) was added. The reaction mixture 

was cooled in an ice bath, whilst zinc (13.1 g, 200 mmol) was slowly added. The 

reaction mixture was warmed to room temperature, and stirred (20 hours).  

The crude reaction mixture was filtered through a plug of Celite and the yellow filtrate 

collected and solvent removed. The crude product was dissolved in toluene (400 mL) 

and passed through a short silica plug. The solvent was removed to give yellow 

crystalline ruthenocene. Yield (3.65 g, 79 %). 

Characterisation Data 

 

Figure 9.10: Labelled diagram of 6. 

1
H NMR (CDCl3, 400 MHz, 295K): 4.55 (s, H1) 

13
C{

1
H} NMR (CDCl3, 100 MHz, 295K): 70.2 (s, C1) 
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9.3.2 Preparation of [Ru(η
5
-C5H5)(naphthalene)][PF6], 7. 

281
 

Ruthenocene, 6 (2.33 g, 10 mmol), naphthalene (2.55 g, 20.0 mmol), fine powder Al 

(0.135 g, 5.0 mmol) were placed in a microwave vial with a stirrer bar. The microwave 

vial and lid were pumped into the Glove Box where AlCl3 (0.260 g, 1.9 mmol) was 

added, and the microwave lid used to seal the reaction vessel. TiCl4 (0.55 mL, 5.0 

mmol) placed in a sample vial with a subaseal top and sealed. The samples were 

removed from the Glove Box. 

Degassed decalin (15 mL) was added to the added to the microwave vial, and stirred. 

TiCl4 was added to the reaction mixture and stirred (5 minutes). The microwave vial 

was irradiated (15 mins, 194 °C). 

The cooled reaction mixture was poured into an ice bath (80 mL), HCl (32%, 20 mL), 

H2O2 (30%, 20 mL) mixture and stirred (10 minutes). The reaction mixture was 

extracted with pentane (3 x 200mL). The organic layers were combined and extracted 

with water (2 x 100 mL). All aqueous layers were combined and stirred. KPF6 (2.78 g, 

15 mmol) was added and the reaction mixture stirred (15 minutes) to afford a light 

brown precipitate.  

The reaction mixture was extracted with dichloromethane (4 x 200 mL), and the organic 

layers dried with MgSO4. The yellow solution was reduced to give a orange-brown 

solid. The crude product was redissolved in dichloromethane (60 mL), and filtered 

through a plug of Celite. The Ceilte was washed with dichloromethane till washing 

became colourless. The solvent was reduced to approximately 10 mL, and poured into 

stirring diethyl ether (100 mL). The light brown precipitate was collected, and washed 

with diethyl ether (2 x 20 mL), pentane (2 x 20 mL). 

Crystals suitable for X-ray diffraction were grown unintentionally from a reaction 

mixture containing complex 7 in furan and d2-dichloromethane.   



329 

Chapter 9 

Characterisation Data 

 

Figure 9.11: Labelled diagram of 7. 

1
H NMR (CDCl3, 400 MHz, 295K): 5.00 (s, 5H, H6), 6.31-6.33 (m, 2H), 6.97-6.99 (m, 

2H), 7.57-7.60 (m, 2H), 7.70-7.73 (m, 2H) 

31
P{

1
H} NMR (CDCl3, 162 MHz, 295K): -143.5 (sept, 

1
JPF = 711 Hz, PF6

-
) 

Low Resolution ESI-MS (m/z): Observed 295.0 [M
+
], Expected C15H13

102
Ru 295.0055. 

9.3.3 Synthesis of [Ru(η
5
-C5H5)(NCMe)3][PF6], 8. 

281
 

[Ru(η
5
-C5H5)(naphthalene)][PF6] (1.02 g, 2.3 mmol) was added and acetonitrile (10 

mL) and the reaction mixture was stirred (24 hrs). The reaction mixture was washed 

with pentane (3 x10 mL). The reaction mixture was stirred (24 hrs), and was with 

pentane (4 x 5 mL). The solvent was removed under vacuum. Yield (0.50 g, 50 %). 

Characterisation Data 

 

Figure 9.12: Labelled diagram of 8. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.37 (s, 12H, H2), 4.25 (s, 5H, H3) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
) 

ESI-MS (m/z): Observed 363.0716; 317.0593; 299.0377; Observed 248.9974 [M
+
 - 

NCMe], Expected C9H11N2
102

Ru 248.9960, Error = 1.4 mDa; Observed 235.9755; 

222.9569; Observed 207.9705 [M
+
 - 2 NCMe], Expected C7H8N

102
Ru 207.9695, Error 

= 1.0 mDa. 
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9.3.4 Synthesis of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
. 

131
 

To a solution of [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 (96 mg, 0.22 mmol) and 

dichloromethane (10 mL) triphenylphosphine (56 mg, 0.21 mmol) was added, and the 

yellow reaction mixture stirred (3 hours). The solvent was removed under vacuum and a 

yellow product was collected. (135 mg, 96 %) 

Characterisation Data 

 

Figure 9.13: Labelled diagram of 9
Ph

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.05 (d, 6H, 

5
JHP = 1.5 Hz, H6), 4.44 (s, 5H, H7), 

7.28-7.31 (m, 6H, Ph), 7.42-7.50 (m, 9H, Ph) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 52.2 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 3.97 (s, C6), 77.3 (d, 

3
JCP = 2.0 Hz, C7), 

127.5 (C5), 128.9 (d, 
3
JCP = 9.9 Hz, C3), 130.7 (d, 

4
JCP = 2.3 Hz, C4), 133.8 (d, 

2
JCP = 

11.1 Hz, C2), 133.9 (d, 
1
JCP = 42.5, C1) 

ESI-MS (m/z): Observed 511.0889 [M
+
], Expected C27H26N2P

102
Ru 511.0879, Error = 

1.1 mDa; 470.0616 [M
+
 - NCMe], Expected C25H23NP

102
Ru 470.0606, Error = 1.0 

mDa.  
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9.3.5 Synthesis of [Ru(η
5
-C5H5)(PMe3)(NCMe)2][PF6], 9

Me
. 

131
 

To a solution of [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 (201 mg, 0.46 mmol) and 

dichloromethane (10 mL), trimethylphosphine (47 µL, 0.46 mmol, 1 equiv) was added. 

The reaction mixture stirred (2 hours) and the colour of the reaction mixture changed 

from orange to yellow. The solvent was removed under vacuum and a yellow product 

was collected. Yield (167 mg, 77 %). 

Characterisation Data 

 

Figure 9.14: Labelled diagram of 9
Me

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.51 (d, 9H, 

2
JHP = 9.6 Hz, H4), 2.36 (d, 6H, 

5
JHP 

= 1.6 Hz, C2), 4.46 (s, 5H, H1) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 707 Hz, PF6

-
), 7.64 (s, 

PMe3) 

13
C{

1
H} NMR (125 MHz, 295 K, CD2Cl2): 4.27 (s, C2), 18.3 (d, 

1
JCP = 28.4 Hz, C4), 

75.4 (s, C1), 126.6 (s, C3) 

ESI-MS (m/z): Observed 325.0406 [M
+
], Expected C12H20N2P

102
Ru 325.0405, Error = 

0.1 mDa 
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9.3.6 Synthesis of [Ru(η
5
-C5H5)(P

i
Pr3)(NCMe)2][PF6], 9

iPr
.
 
 

[Ru(η
5
-C5H5)(NCMe)3][PF6], 8 (100 mg, 0.23 mmol) was placed in dichloromethane (5 

mL). Tri-isopropylphosphine (44 µl, 0.23 mmol) was added using a microsyringe and 

the yellow reaction mixture stirred (18 hours).The solvent removed under vacuum, and 

a yellow product collected. (120 mg, 94 %) 

Characterisation Data 

 

Figure 9.15: Labelled diagram of 9
iPr

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.21 (dd, 18H, 

3
JHP = 13.2 Hz,

 3
JHH = 7.2 Hz, H2), 

2.29-2.36 (m, 3H, H1), 2.37 (d, 6H, 
4
JHP = 1.1 Hz, H4), 4.55 (s, 5H, H5) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, PF6

-
), 57.4 (s, P

i
Pr3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 4.4 (s, C4), 19.8 (s, C2), 26.9 (d, 

1
JCP = 19.2 

Hz, C1), 75.4 (d, 
2
JCP = 1.4 Hz), 128.3 (s, C3) 
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9.3.7 Preparation for [Ru(η
5
-C5H5)(P(OPh)3)(NCMe)2][PF6]

 
, 9

OPh
. 

To a solution of [Ru(η
5
-C5H5)(NCMe)3][PF6], 8 (70 mg, 0.16 mmol) and 

dichloromethane (10 mL), triphenylphosphite (47 mg, 0.15 mmol) was added, and the 

reaction mixture stirred (16 hours). The solvent was removed under vacuum and the 

product was collected. Yield (75 mg, 66 %). 

Characterisation Data 

 

Figure 9.16: Labelled diagram of 9
OPh

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.22 (d, 6H, 

5
JHP = 1.2 Hz, H6), 4.44 (d, 5H, 

3
JHP 

= 0.6 Hz, H7), 7.23-7.26 (m, 9H, Ph), 7.38-7.41 (m, 6H, Ph) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 142.6 (s, 

P(OPh)3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 4.2 (s, C6), 78.9 (d, 

2
JCP = 2.9 Hz, C7), 121.2 

(d, 
3
JCP = 5.1 Hz, C2), 125.5 (s, C3), 128.2 (s, C5), 130.2 (s, C4), 151.7 (d, 

2
JCP = 6.7 Hz, 

C1) 
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9.3.8 Synthesis of [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], 10

H
.  

To a solution of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph 
(80 mg, 0.12 mmol) in 

dichloromethane (10 mL), pyridine (0.98 mL, 12 mmol) was added and the reaction 

mixture stirred (18 hours). The reaction mixture was layered with either pentane or 

hexane to give orange crystals, suitable for X-ray diffraction. The excess solvent was 

removed by filtration and the air-sensitive product dried under vacuum.  Yield (85 mg, 

95%) 

Characterisation Data 

 

Figure 9.17: Labelled diagram of 10
H
. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 4.42 (s, 5H, H8), 7.05-7.08 (m, 4H, H6), 7.17-7.20 

(m, 6H, H2), 7.33-7.36 (m, 6H, H3), 7.42-7.46 (m, 3H, H4), 7.70 (tt, 2H, 
3
JHH = 7.6 Hz, 

4
JHH = 1.5 Hz, H7), 8.29 (m, 4H, H5) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 50.3 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 78.2 (d, 

2
JCP =2.2 Hz, C8), 125.6 (s, C6), 

129.1 (d, 
3
JCP = 9.5 Hz, C3), 130.7 (d, 

4
JCP =1.7 Hz, C4), 133.7 (d, 

2
JCP = 10.9 Hz, C2), 

134.2 (d, 
1
JCP = 39.9 Hz, C1), 137.4 (s, C7), 156.7 (d, 

3
JCP = 2.5 Hz, C5) 

ESI-MS (m/z): Observed 587.1190 [M
+
], Expected C33H30N2P

102
Ru 587.1193, Error = 

0.3 mDa; Observed 549.1037 [M
+ 

-NC5H5 +NCMe], Expected C30H28N2P
102

Ru 

549.1036, Error = 0.1 mDa; Observed 508.0772 [M
+ 

-NC5H5], Expected C28H25NP
102

Ru 

508.0770, Error = 0.2 mDa. 

ATR IR (ν /cm
-1

): 607.5 (s), 698.1 (m), 749.2 (m), 836.0 (s), 1089.6 (w), 1433.8 (w), 

1480.1 (w), 1600.7 (w), 2891.8 (w), 3067.2 (w) 

Elemental Analysis:  Anal. C34H30F6N2P2Ru + 1.0 CH2Cl2: Calc. C(50.01) H(3.95) 

N(3.43), Found C(49.95) H(3.92) N(3.32) 
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When complex 10
H

 is placed in d5-pyridine the resonances belonging to the coordinated 

pyridine molecules are no longer observed, as these are exchanging with uncoordinated 

d5-pyridine.  

1
H NMR (NC5D5, 500 MHz, 295 K): 4.57 (s, 5H, H8), 7.36-7.42 (m, 12H, PPh3), 7.47 

(m, 3H, PPh3)  

31
P{

1
H} NMR (NC5D5, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 49.2 (s, 

PPh3)  

9.3.9 Synthesis of [Ru(η
5
-C5H5)(PPh3)(NC5D5)2][PF6], 5.  

To a solution [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph 
(75 mg, 0.11 mmol) in 

dichloromethane (10 mL), d5-pyridine (0.70 mL, 8.7 mmol, 76 equiv) was added and 

the reaction mixture stirred (48 hours). Slow diffusion of hexane in to the reaction 

mixture afforded orange crystals. The solvent was removed by filtration and the air-

sensitive product dried under vacuum. Yield (64 mg, 75 %). 

Characterisation Data 

 

Figure 9.18: Labelled diagram of 5. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 4.42 (s, 5H, H8), 7.19 (m, 6H, H2), 7.34 (td, 6H, 

3
JHH = 7.6 Hz, 

4
JHP = 1.9 Hz, H3), 7.44 (td, 3H, 

3
JHH = 7.5 Hz, 

4
JHP = 1.3 Hz, H4) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 50.4 (s, 

PPh3) 

ESI-MS (m/z): Observed 597.1823 [M
+
], Expected C33H20D10N2P

102
Ru 597.1821, Error 

= 0.2 mDa; Observed 554.1356 [M
+ 

-NC5H5 +NCMe], Expected C30H23D5N2P
102

Ru 

554.1337, Error = 1.9 mDa; Observed 513.1056 [M
+ 

-NC5H5], Expected 

C28H20D5NP
102

Ru 513.1071, Error = 1.5 mDa. 

Elemental Analysis:  Anal. C33H20D10F6N2P2Ru + 1.0 CH2 Cl2: Calc. C(49.40) H(5.12) 

N(3.39), Found C(49.78) H(3.89) N(3.52)    
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9.3.10 Synthesis of complex [Ru(η
5
-C5H5)(PPh3)(4-methylpyridine)2][PF6], 10

Me
.  

To a solution of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 (250 mg, 0.38 mmol) in 

dichloromethane (10 mL), 4-methylpyridine (1.85 mL, 19 mmol, 50 equiv) was added 

and the reaction mixture stirred (6 hours). Slow diffusion of pentane in to the reaction 

mixture afforded orange crystals suitable for X-ray diffraction. The solvent was 

removed by filtration and the air-sensitive product dried under vacuum. Yield (177 mg, 

61 %) 

Characterisation Data 

 

Figure 9.19: Labelled diagram of 10
Me

. 

1
H NMR (500 MHz, 295 K, CD2Cl2): 2.32 (s, 6H, H2), 4.36 (s, 5H, H1), 6.86 (d, 4H, 

3
JHH = 6.3 Hz, H4), 7.18 (t, 6H,

 3
JHH, 

3
JHP = 8.9Hz, H7), 7.33 (td, 6H, 

3
JHH = 7.6 Hz,

 4
JHP 

= 1.6 Hz, H8), 7.43 (td, 3H, 
3
JHH = 7.3 Hz,

 5
JHP = 1.3 Hz, H9), 8.10 (d, 4H,

 3
JHH = 6.4 

Hz, H5) 

31
P{

1
H} NMR (202 MHz, 295 K, CD2Cl2): -143.0 (sept, 711 Hz, PF6

-
), 50.4 (s, PPh3) 

13
C{

1
H} NMR (125 MHz, 295 K, CD2Cl2): 20.9 (s, C2),  77.9 (d, 

2
JCP = 1.9 Hz, C1), 

126.5 (s, C4), 128.9 (d, 
3
JCP = 9.6 Hz, C8), 130.6 (d, 

4
JCP = 1.7 Hz, C9), 133.7 (d, 

2
JCP = 

10.6 Hz, C7), 134.5 (d, 
1
JCP = 38.9 Hz, C6), 149.7 (s, C3), 156.0 (d, 

3
JCP = 2.0 Hz, C5) 

ESI-MS (m/z): Observed 615.1503 [M
+
], Expected C35H34N2P

102
Ru 615.1498, Error = 

0.5 mDa; Observed 563.1187 [M
+
 -NC6H7 +NCMe], Expected C31H30N2P

102
Ru 

563.1185, Error = 0.2 mDa; Observed 522.0929 [M
+
 -NC6H7], Expected C29H27NP

102
Ru 

522.0919, Error = 1.0 mDa. 

Elemental Analysis: Anal. C35H34F6N2P2Ru + 0.25 CH2Cl2: Calc. C(54.22) H(4.45) 

N(3.59), Found C(54.45) H(4.10) N(3.39)  
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9.3.11 Synthesis of [Ru(η
5
-C5H5)(PPh3)(DMAP)2][PF6], 10

NMe2
. 

To a solution of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 (40 mg, 61 µmol) in 

dichloromethane (10 mL), 4-(dimethylamino)pyridine (15 mg, 122 µmol) was added to 

the yellow solution and the reaction mixture was stirred (48 hours). The excess solvent 

was removed under vacuum, and the yellow product collected. Excess 4-

(dimethylamino)pyridine was removed by washing with toluene (5 mL), and then 

washed with pentane (2 x 15 mL), and the product dried under vacuum. Crystals 

suitable for X-ray diffraction were grown by slow diffusion of pentane into a layer of 

dichloromethane containing the product. Yield (35 mg, 70%) 

Characterisation Data 

 

Figure 9.20: Labelled diagram of 10
NMe2

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.96 (s, 12H, H8), 4.25 (s, 5H, H9), 6.16-6.17 (m, 

4H, H6), 7.20-7.24 (m, 6H, H2), 7.32 (td, 6H, 
3
JHH = 7.3 Hz, 

4
JHP = 1.6 Hz, H3), 7.39-

7.41 (m, 3H, H4), 7.73 (m, 4H, H5) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.4 (s, 

PPh3) 

13
C{

1
H} NMR (125 MHz, 295 K, CD2Cl2): 39.2 (s, C8), 77.0 (d, 

2
JCP = 2.6 Hz, C9), 

107.8 (s, C6), 128.7 (d, 
3
JCP = 9.2 Hz, C3), 130.2 (d, 

4
JCP = 1.7 Hz, C4), 133.8 (d, 

2
JCP = 

10.7 Hz, C2), 135.5 (d, 
1
JCP = 37.5 Hz, C1), 154.0 (s, C7), 155.3 (d, 

3
JCP = 1.7 Hz, C5) 

ESI-MS (m/z): Observed 673.2031 [M
+
], Expected C37H40N4P

102
Ru 673.2029, Error = 

0.2 mDa; Observed 592.1460 [M
+
 -DMAP + NCMe], Expected C32H33N3P

102
Ru 

592.1450, Error = 1.0 mDa; Observed 551.1205 [M
+
 -DMAP], Expected 

C30H30N2P
102

Ru 551.1185, Error = 2.0 mDa. 
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ATR IR (ν /cm
-1

): 610.4 (s), 695.2 (m), 737.7 (w), 749.2 (w), 810.0 (m), 837.0 (s), 

950.8 (w), 1014.4 (w), 1062.6 (w), 1090.6 (w), 1182.2 (w), 1225.6 (w), 1384.7 (w), 

1433.8 (w), 1479.2 (w), 1530.3 (m), 1619.0 (m), 2906.2 (w), 3066.3 (w) 

Elemental Analysis: Anal. C37H40F6N4P2Ru + 1 CH2Cl2: Calc. C(50.56) H(4.69) 

N(6.21), Found C(50.29) H(4.63) N(6.47) 
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9.3.12 Synthesis of [Ru(η
5
-C5H5)(PPh3)(3-methylpyridine)2][PF6], 11.  

To a solution of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 (103 mg, 0.15 mmol) in 

dichloromethane (5 mL), 3-methylpyridine (1.5 mL, 15 mmol, 100 equiv) was added 

and the reaction mixture stirred (16 hours). Slow diffusion of pentane in to the reaction 

mixture afforded orange crystals, suitable for X-ray diffraction. The solvent was 

removed by filtration and the air-sensitive product dried under vacuum. Yield (80 mg, 

67 %) 

Characterisation Data 

 

Figure 9.21: Labelled diagram of 11. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.00 (s, 6H, H6), 4.40 (s, 5H, H1), 7.01 (dd, 2H, 

3
JHH = 7.6 Hz, 

3
JHH = 5.6 Hz, H3), 7.18 (m, 6H, H9), 7.34 (m, 6H, H10), 7.43 (m, 3H, 

H11), 7.49 (d, 2H, 
3
JHH = 7.7 Hz, H4), 7.93 (s, 2H, H7), 8.28 (d, 2H, 

3
JHH = 5.6 Hz, H2) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -144.4 (sept, 

1
JPF = 711 Hz, PF6

-
), 49.1 (s, 

PPh3) 

13
C{

1
H} NMR (125 MHz, 295 K, CD2Cl2): 18.4 (s, C6), 78.1 (d, 

2
JCP = 1.9 Hz, C1), 

124.9 (s, C3), 129.0 (d, 
3
JCP = 9.3 Hz, C10), 130.7 (d, 

4
JCP = 1.7 Hz, C11), 133.6 (d, 

2
JCP 

= 10.6 Hz, C9), 134.2 (d, 
1
JCP = 38.9 Hz, C8), 135.8 (s, C5), 138.0 (s, C4), 154.1 (d, 

3
JCP 

= 1.9 Hz, C7), 156.7 (d, 
3
JCP = 2.4 Hz, C2) 

ESI-MS (m/z): Observed 615.1493 [M
+
], Expected C35H34N2P

102
Ru 615.1507, Error = 

1.4 mDa; Observed 563.1177 [M
+
 -NC6H7 +NCMe], Expected C31H30N2P

102
Ru 

563.1185, Error = 0.8 mDa; Observed 522.0916 [M
+
 -NC6H7], Expected C29H27NP

102
Ru 

522.0919, Error = 0.3 mDa. 

ATR IR (ν /cm
-1

): 699.1 (s), 748.3 (m), 757.9 (m), 803.2 (m), 837.0 (s), 1088.6 (w), 

1184.1 (w), 1238.1 (w), 1436.7 (w), 1479.2 (w), 1581.4 (w), 2933.2 (w), 2962.1 (w) 
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Elemental Analysis: Anal C35H34F6N2P2Ru + 0.5 CH2Cl2: Calc. C(53.10) H(4.40) 

N(3.49), Found C(52.90) H(4.50) N(3.39)  
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9.3.13 Synthesis of [Ru(η
5
-C5H5)(PPh3)(NCMe)(2-methylpyridine)][PF6], 12.  

To a solution of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 (53 mg, 0.08 mmol) in 

dichloromethane (5 mL), 2-methylpyridine (0.75 mL, 7.6 mmol, 95 equiv) was added 

and the reaction mixture stirred (16 hours). The solvent was reduced, and an excess of 

pentane added (20 mL). The solvent was removed via filtration and the precipitate was 

dried under vacuum. The reaction mixture contained three ruthenium containing 

species. Crystals of 12 were suitable for X-ray diffraction and were grown by slow 

diffusion of pentane into a layer of dichloromethane containing 12.  

Characterisation Data 

 

Figure 9.22: Labelled diagram of 12. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.86 (d, 3H, 

5
JHP = 1.5 Hz, H6), 2.54 (broad, 3H, 

H12), 4.46 (s, 5H, H13), 6.83 (broad, 1H, H8), 7.02-7.14 (m, 14H, PPh3, H10 + impurity), 

7.30-7.38 (m, 11.6H, PPh3 + impurity), 7.41-7.47 (m, 7.5H, PPh3 + impurity), 7.54 (td, 

1H, 
3
JHH = 7.6 Hz, 

4
JHH = 1.5 Hz, H9), 8.81 (d, 1H, 

3
JHH = 4.7 Hz, H7).  

Other peaks not belonging to 9
Ph

: 2.06 (d, 
5
JHP = 1.5 Hz), 7.02-7.14 (m), 7.30-7.38 (m), 

7.41-7.47 (m), 7.61 (m), 8.45 (m) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
),  , 52.3 

(broad).  

Other peaks not belonging to 9
Ph

: 54.3 (s)  

ESI-MS (m/z): Observed 549.1048 [Ru(η
5
-C5H5)(PPh3)(NCMe)(NC5H5)]

+
, Expected 

C30H28N2P
102

Ru 549.1028, Error = 2.0 mDa; Observed 508.0778 [Ru(η
5
-

C5H5)(PPh3)(NC5H5)]
+
, Expected C28H25NP

102
Ru 508.0763, Error = 1.5 mDa; Observed 

470.0616 [Ru(η
5
-C5H5)(PPh3)(NCMe)]

+
, Expected  C25H23NP

102
Ru 470.0612, Error = 

0.4 mDa; Observed 429.0351 [Ru(η
5
-C5H5)(PPh3)]

+
, Expected  C23H20P

102
Ru 429.0346, 

Error = 0.5 mDa. 
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An impurity present in the 2-methylpyridine lead to the formation of [Ru(η
5
-C5H5) 

(PPh3)(C12H21N2)][PF6], which has been identified using X-ray crystallography.  

 

Figure 9.23: X-Seed diagram of the cation [Ru(η
5
-C5H5)(PPh3)(C12H21N2)]

+
. Selected hydrogen 

atoms and [PF6]
-
 anion have been omitted for clarity, and where shown the thermal ellipsoids 

are at a 50 % probability level. The [PF6]
-
 anion was disordered over two positions.  
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9.3.14 Synthesis of [Ru(η
5
-C5H5)(PPh3)(1-methylimidazole)2][PF6], 13

Me
. 

To a solution of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 (199 mg, 0.30 mmol) in 

dichloromethane (5 mL), 1-methylimidazole (2.5 mL, 31.3 mmol, 105 equiv) was added 

and the reaction mixture stirred (16 hours). Slow diffusion of pentane in to the reaction 

mixture afforded orange crystals of the product. The solvent was removed by filtration 

and the air-sensitive product dried under vacuum. Yield (141 mg, 63 %). 

Characterisation Data 

 

Figure 9.24: Labelled diagram of 13
Me

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 3.49 (s, 6H, H2), 4.26 (s, 5H, H1), 6.79-6.82 (m, 

6H, H3, H4, H5), 7.19 (m, 6H, H7), 7.33 (m, 6H, H8), 7.41 (m, 3H, H9) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -144.4 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.4 (s, 

PPh3) 

13
C{

1
H} NMR (125 MHz, 295 K, CD2Cl2): 34.6 (s, C2), 75.9 (d, 

2
JCP = 2.4 Hz, C1), 

121.6 (s, C3/4/5), 128.6 (d, 
3
JCP = 9.9 Hz, C8), 130.2 (s, C3/4/5), 133.8 (d, 

2
JCP = 11.0 Hz, 

C7), 134.7 (s, C3/4/5), 135.9 (d, 
1
JCP = 37.1 Hz, C6), 142.2 (d, 

4
JCP = 2.0 Hz, C9) 

ESI-MS (m/z): Observed 593.1423 [M
+
], Expected C31H32N4P

102
Ru 593.1411, Error = 

1.2 mDa; Observed 511.0900 [M
+
 - (2 N2C4H6) + (2 NCCH3)], Expected 

C27H26N2P
102

Ru 511.0879, Error = 1.1 mDa. 

ATR IR (ν /cm
-1

): 697.2 (s), 734.8 (m), 754.1 (w), 759 (w), 818.7 (s), 835.1 (s), 847.6 

(s), 1090.6 (m), 1168.7 (w), 1235.3 (w), 1260.4 (w), 1284.5 (w), 1421.4 (w), 1433.0 

(w), 1479.3 (w), 1535.2 (w), 1580.5 (w), 3159.2 (broad) 

Elemental Analysis: Anal C31H32F6N4P2Ru + 0.14 CH2Cl2: Calc. C(49.90) H(4.34) 

N(7.48), Found C(49.77) H(4.27) N(7.66)  
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9.3.15 Synthesis of [Ru(η
5
-C5H5)(PPh3)(t-butylimidazole)2][PF6], 13

tBu
. 

To a solution of [Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 (48 mg, 73 μmol) in 

dichloromethane (5 mL), t-butylimidazole (0.91 mg, 7.3 mmol, 100 equiv) was added 

and the reaction mixture stirred (16 hours). Slow diffusion of pentane in to the reaction 

mixture afforded orange crystals suitable for X-ray diffraction. The solvent was 

removed by filtration and the air-sensitive product dried under vacuum. Yield (22 mg, 

37 %) 

Characterisation Data 

 

Figure 9.25: Labelled diagram of 13
tBu

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.28 (s, 18H, H2), 4.29 (s, 5H, H1), 6.91 (t, 2H, 

X
JHH = 1.3 Hz, imidazole), 6.95 (t, 2H, JHH = 1.3 Hz, imidazole), 7.00 (t, 2H, JHH = 1.4 

Hz, imidazole), 7.11 (m, 6H, H8), 7.33 (m, 6H, H9), 7.42 (m, 3H, H10) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -144.5 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.8 (s, 

PPh3) 

13
C{

1
H} NMR (125 MHz, 295 K, CD2Cl2): 30.1 (s, C2), 56.6 (s, C3), 75.9 (d, 

2
JCP = 2.2 

Hz, C1), 118.0 (s, imidazole), 128.8 (d, 
3
JCP = 9.4 Hz, C9), 130.3 (d, 

4
JCP =  1.8 Hz, C10), 

133.7 (d, 
2
JCP = 11.1 Hz, C8), 134.5 (s, imidazole), 136.0 (d, 

1
JCP = 37.1 Hz, C7), 139.1 

(d, 
x
JCH = 2.6 Hz, imidazole) 

ESI-MS (m/z): Observed 677.2334 [M
+
], Expected C37H44N4P

102
Ru 677.2351, Error = 

1.7 mDa. 

ATR IR (ν /cm
-1

): 611.3 (s), 647.0 (m), 663.4 (m), 702.0 (s), 737.7 (m), 754.1 (m), 

814.8 (s), 822 (s), 1006.7 (w), 1091.5 (m), 1237.1 (m), 1271.8 (w), 1376.0 (w), 1433.8 

(w), 1467.6 (w), 1480.1 (w), 1503.3 (w), 1625.7 (broad), 2980.8 (w), 3407.0 (broad) 
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Elemental Analysis: Anal. C37H44F6N4P2Ru + 0.25 CH2Cl2: Calc. C(53.07) H(5.32) 

N(6.65), Found C(52.33) H(5.39) N(6.57)  
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9.3.16 Synthesis of [Ru(η
5
-C5H5)(PMe3)(NC5H5)2][PF6], 14

H
.  

To a solution of [Ru(η
5
-C5H5)(PMe3)(NCMe)2][PF6], 9

Me
 (108 mg, 0.23 mmol) in 

dichloromethane (5 mL), pyridine (1.8 mL, 22 mmol, 97 equiv) was added and the 

reaction mixture stirred (3 hours). Slow diffusion of pentane in to the reaction mixture 

afforded orange crystals, suitable for X-ray crystallography. The solvent was removed 

by filtration and the air-sensitive product dried under vacuum. Yield (83 mg, 66 %). 

Characterisation Data 

 

Figure 9.26: Labelled diagram of 14
H
. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.40 (d, 9H, 

2
JHP = 26.3 Hz, H5), 4.39 (s, 5H, H1), 

7.28 (m, 4H, H3), 7.81 (tt, 2H, 
3
JHH = 7.6 Hz, 

4
JHH = 1.5 Hz, H4), 8.41 (m, 4H, H2) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -144.4 (sept, 

1
JPF = 710 Hz, PF6

-
), 3.1 (s, 

PMe3) 

13
C{

1
H} NMR (125 MHz, 295 K, CD2Cl2): 17.9 (d, 

1
JCP = 26.3 Hz, C5), 76.0 (d, 

2
JCP = 

2.3 Hz, C1), 126.0 (s, C3), 137.4 (s, C4), 156.7 (d, 
3
JCP = 2.8 Hz, C2) 

ESI-MS (m/z): Observed 401.0717 [M
+
], Expected C18H24N2P

102
Ru 401.0720, Error = 

0.3 mDa; Observed 363.0568 [M
+
 -NC5H5 +NCMe], Expected C15H22N2P

102
Ru 

363.0559, Error = 0.9 mDa; Observed 322.0336, Expected C13H19NP
102

Ru 322.0293, 

Error = 4.3 mDa. 

ATR IR (ν /cm
-1

): 700.1 (s), 757.9 (s), 824.4 (s), 837.9 (s), 879.4 (w), 953.7 (w), 1025.0 

(w), 1060.7 (w), 1100.2 (w), 1214.0 (w), 1261.2 (w), 1285.3 (w), 1351.9 (w), 1427.1 

(w), 1445.4 (w), 1483.0 (w), 2359.5 (w), 2966.0 (w) 

Elemental Analysis: Anal. C18H24F6N2P2Ru: Calc. C(39.64) H(4.44) N(5.14), Found 

C(39.53) H(4.32) N(5.02)  
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9.3.17 Synthesis of [Ru(η
5
-C5H5)(PMe3)(DMAP)2][PF6], 14

NMe2
. 

To a solution of [Ru(η
5
-C5H5)(PMe3)(NCMe)2][PF6], 9

Me
 (103 mg, 0.22 mmol) in 

dichloromethane (10 mL), 4-dimethylaminopyridine (53 mg, 0.43 mmol, 2 equiv) was 

added and the reaction mixture stirred (16 hours). The solvent was reduced under 

vacuum (5 mL) and excess of pentane (20 mL) added to the reaction mixture to yield a 

dark yellow precipitate. The product was washed with pentane (10 mL) and the air-

sensitive product dried under vacuum. Slow diffusion of pentane in to a solution of the 

product in dichloromethane mixture afforded orange crystals, which were suitable for 

X-ray crystallography. Yield (81 mg, 59 %). 

Characterisation Data 

 

Figure 9.27: Labelled diagram of 14
NMe2

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.35 (d, 9H, 

2
JHP = 8.1 Hz, H6), 3.01 (s, 12H, H5), 

4.24 (s, 5H, H1), 6.38 (d, 4H, 
3
JHH = 6.6 Hz, H3), 7.83 (d, 4H, 

3
JHH = 6.6 Hz, H2) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -144.4 (sept, 

1
JPF = 710 Hz, PF6

-
), 4.75 (s, 

PMe3) 

13
C{

1
H} NMR (125 MHz, 295 K, CD2Cl2): 18.4 (d, 

1
JCP = 24.6 Hz, C6), 39.3 (s, C5), 

74.5 (d, 
2
JCP = 2.5 Hz, C1), 108.1 (s, C3), 154.1 (s, C4), 155.4 (d, 

3
JCP = 2.4 Hz, C2) 

ESI-MS (m/z): Observed 487.1571 [M
+
], Expected C22H34N4P

102
Ru 487.1565, Error = 

0.6 mDa; Observed 406.0975 [M
+
 -N2C7H10 +NCMe], Expected C17H27N3P

102
Ru 

406.0981, Error = 0.6 mDa; Observed 365.0723 [M
+
 -N2C7H10], Expected 

C15H24N2P
102

Ru 365.0715, Error = 0.8 mDa. 

Elemental Analysis: Anal. C22H34F6N4P2Ru: Calc. C(41.84) H(5.43) N(8.86), Found 

C(41.81) H(5.45) N(8.52) 
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9.3.18 Synthesis of [Ru(η
5
-C5H5)(P

i
Pr3)(NCMe)(NC5H5)][PF6], 15. 

[Ru(η
5
-C5H5)(P

i
Pr3)(NCMe)2][PF6], 9

iPr
 (120 mg, 0.22 mmol) was placed in 

dichloromethane (5 mL). Pyridine (0.91 mL, 11.5 mmol, 50 equiv) was added to give an 

orange reaction mixture which was stirred (16 hours). The solvent was removed under 

vacuum. The reaction gave a mixture of products. The slow diffusion of pentane into a 

dichloromethane layer containing a mixture of ruthenium complexes afforded crystals 

of 15 suitable for X-ray diffraction. 

Characterisation Data 

 

Figure 9.28: Labelled diagram of 15. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.09-1.17 (m, 18H, H2), 2.24 (sept, 3H, 

3
JHH = 7.3 

Hz, H1), 2.54 (d, 3H, 
5
JHP = 1.2 Hz, H7), 4.51 (s, 5H, H8), 7.27-7.30 (m, 2H, H4), 7.75 

(tt, 1H, H5), 8.70-8.72 (m, 2H, H3) 

Other 
1
H NMR signals: 1.15, 1.38, 2.31, 4.15, 4.17, 4.43, 7.33, 7.67, 7.84, 8.48 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 52.8 (s, 

P
i
Pr3) 

Other 
31

P{
1
H} NMR signals: 43.8, 45.8, 50.7 

ESI-MS (m/z): Observed 447.1492 [M
+
], Expected C21H34N2P

102
Ru 447.1503, Error = 

1.1 mDa; Observed 406.1228 [M
+ 

- NCMe], Expected C19H31NP
102

Ru 406.1232, Error 

= 0.4 mDa; Observed 368.1053 [M
+ 

- NC5H5], Expected C16H29NP
102

Ru 406.1232, 

Error = 2.3 mDa; Observed 325.0284 [Ru(η
5
-C5H5)(NC5H5)2]

+
,  Expected 

C15H15N2
102

Ru 325.0273, Error = 1.2 mDa.  
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9.3.19 Preparation for [Ru(η
5
-C5H5)(P(OPh)3)(NC5H5)2][PF6], 16. 

[Ru(η
5
-C5H5)(P(OPh)3)(NCMe)2][PF6], 9

OPh
 (56 mg, 79.5 µmol) was placed in 

dichloromethane (10 mL). Pyridine (0.16 mL, 2.0 mmol, 25 equiv) was added and the 

reaction mixture stirred (16 hours). The solvent was removed under vacuum.  Slow 

diffusion of pentane in to a layer of dichloromethane containing the product yielded 

crystals suitable for X-ray crystallography. Yield (46 mg, 74 %). 

Characterisation Data 

 

Figure 9.29: Labelled diagram of 16. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 4.39 (s, 5H, H8), 7.03 (d, 6H, 

3
JHH = 8.2 Hz, H2), 

7.21 (t, 4H, 
3
JHH = 7.4 Hz, H6), 7.28-7.32 (m, 9H, H3 H4), 7.86 (t, 2H, 

3
JHH = 7.6 Hz, 

H7), 8.41 (d, 4H, 
3
JHH = 5.2 Hz, H5) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 140.6 (s, 

P(OPh)3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 80.1 (d, 

2
JCP = 3.2 Hz, C8), 121.2 (d, 

3
JCP = 

4.4 Hz, C2), 125.6 (s, C6), 126.2 (s, C3/4), 130.3 (s, C3/4), 138.3 (s, C7), 151.5 (d, 
2
JCP = 

9.1 Hz, C1), 157.4 (d, 
3
JCP = 2.1 Hz, C5) 

ESI-MS (m/z): Observed 635.1041 [M
+
], Expected C33H30N2O3P

102
Ru 635.1041, Error 

= 0.1 mDa; Observed 597.0871 [M
+
 -NC5H5 +NCMe], Expected C30H28N2O3P

102
Ru 

597.0876, Error = 0.5 mDa; Observed 556.0623 [M
+
 -NC5H5], Expected 

C28H25NO3P
102

Ru 556.0610, Error = 1.3 mDa. 

ATR IR (ν /cm
-1

): 694.3 (m), 756.0 (m), 779.4 (m), 780.1 (m), ~800 (s), 877.5 (m), 

905.4 (m), 1024.0 (w), 1071.3 (w), 1095.4 (w), 1162.9 (w), 1188.0 (m), 1215.0 (w), 

1261.2 (w), 1445.4 (w), 1485.9 (m), 1588.1 (w), 2967.0 (broad w) 

Elemental Analysis: Anal. C33H30F6N2O3P2Ru + 0.15 CH2Cl2: Calc. C(50.15) H(3.85) 

N(3.54), Found C(49.82) H(3.82) N(3.25)  
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9.4 Synthesis of Half Sandwich Ruthenium Complexes of the 

Type [Ru(η
5
-C5H5)(PR3)(2-Styrylpyridine)] 

9.4.1 Synthesis of [Ru(η
5
-C5H5)(PPh3)(2-styrylpyridine)][PF6], 17

H
. 

In a Schlenk 2-styrylpyridine (14 mg, 0.07 mmol) and [Ru(η
5
-C5H5)(PPh3)(NCMe)] 

[PF6], 9
Ph

 (46 mg, 0.07 mmol) were added. Dichloromethane (5 mL) was added under 

nitrogen, and the reaction mixture stirred (1 hour). The solvent was removed under 

vacuum, and the reaction mixture re-dissolved in dichloromethane (5 mL). This process 

was repeated 4-5 times, in order to drive the reaction to completion. Crystals suitable 

for X-ray diffraction were grown by the slow diffusion of pentane in to a 

dichloromethane solution containing the complex [Ru(η
5
-C5H5)(PPh3)(NC13H11)][PF6]. 

Yield (35 mg, 66 %). 

Characterisation Data 

 

Figure 9.30: Labelled diagram of 17
H
. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 4.73 (broad s, 5H), 5.97 (broad s, 1H), 6.87 

(broad m, 3H), 7.07 (broad m, 5H), 7.23 (m, 3H), 7.38 (m, 5H), 7.51 (broad m, 3H), 

7.68 (broad m, 2H) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 47.7 

(broad s, PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K):  51.1 (broad, C6/7),  79.4 (broad, C6/7),  84.5 

(s, C1), 122.8 (s), 125.0 (s), 125.9 (s), 128.1 (s), 129.2 (s), 129.4 (d, JCP = 9.8 Hz, C14/15), 

131.5 (s, 
4
JCP = 2.1 Hz, C16), 132.6 (d, 

1
JCP = 42.6 Hz, C13), 133.8 (broad d, JCP = 7.9 

Hz, C14/15), 138.0 (s), 139.9 (s), 152.4 (s), 164.1 (s, C8) 

ESI-MS (m/z): Observed 610.1316 [M
+
], Expected C36H31NP

102
Ru 610.1242, Error = 

0.7 mDa; Observed 511.0880 [M
+
 - C13H11N + 2 NCMe] Expected C27H26N2P

102
Ru 

511.0879, Error = 0.1 mDa; Observed: 470.0618 [M
+
 - C13H11N + NCCH3], Expected 
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C25H23NP
102

Ru 470.0613, Error = 0.5 mDa; Observed 182.0891 [C13H11N +H
+
], 

Expected C13H12N 182.0964, Error = 0.7 mDa. 

Elemental Analysis: Anal. C36H31F6NP2Ru + 0.2 CH2Cl2: Calc. C(56.58) H(4.11) 

N(1.83), Found C(56.55) H(4.06) N(1.76)  

220 K 

Chenical 

Shift, δH 
Multiplicity Integration Isomer Assignment 

4.28 
Apparent t (

3
JHH, 

3
JHP = 

11.1 Hz) 
1 H Major H7 

4.33 s 1 H Minor H1 

4.67 
Apparent t (

3
JHH =

3
JHP =  

ca. 9 Hz) 
0.2 H Minor H6/H7 

4.75 s 5H Major H1 

5.84 d (7.3 Hz) 0.2 H Minor  

6.08 d (
3
JHH = 10.6 Hz) 1 H Major H6 

6.45 d (
3
JHH = 10.2 Hz) 0.2 H Minor H6/H7 

6.51 t (
3
JHH = 8.7 Hz) 2 H Major H4 

6.73 d (6.8 Hz) 2 H Major PPh3 

6.83 dd (9.5 Hz) 2 H Major PPh3 

6.96 d (7.8 Hz) 1 H Major H9/H12 

7.01-7.07 multiplet 1.2 H Major + Minor H10/H11 

7.09 d (7.3 Hz) 0.2 H Minor  

7.15 multiplet 3.2 H Major + Major PPh3 

7.23 multiplet 5.2 H Major H3+ phenyl 

7.33 multiplet 1.5 H Minor + Minor PPh3 

7.43 multiplet 6.2 H   

7.51-7.63 multiplet 5.4 H Major H9/H12 

7.74 t (
3
JHH = 7.7 Hz) 1 H Major H10/H11 

8.25 d (
3
JHH = 4.7 Hz) 0.2 H Minor H9/H12 

 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 220 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 47.2 (s, 

major species, PPh3), 55.0 (s, minor species, PPh3)  
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9.4.2 Synthesis of [Ru(η
5
-C5H5)(PPh3)(E-2-(4-(trifluoromethyl)styrylpyridine))] 

[PF6]. 

[Ru(η
5
-C5H5)(PPh3)(NCMe)2][PF6], 9

Ph
 (50 mg, 0.07 mmol) was placed in 

dichloromethane (3 mL). E-2-(4-trifluoromethyl)styrylpyridine (27 mg, 0.1 mmol) was 

added to the reaction mixture under nitrogen and stirred (1-2 hours). The solvent was 

removed under vacuum, and re-dissolved in dichloromethane (5 mL). This cycle was 

repeated 4-5 times, and then washed with pentane. The yellow-green reaction mixture 

was placed in dichloromethane, and slow diffusion of pentane in to this solution 

obtained crystals suitable for X-ray diffraction. Yield (26 mg, 41 %). 

Characterisation Data 

 

Figure 9.31: Labelled diagram of 17
CF3

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 4.50 (broad s, 1H), 4.82 (s, 5H), 6.12 (broad s, 

1H), 6.89 (broad d, 3H), 6.98 (broad s, 4H), 7.08 (m, 2H), 7.39 (broad s, 6H), 7.44 

(broad d, 3H), 7.53 (broad t, 4 H), 7.58 (broad s, 1H), 7.74 (broad t, 1H)  

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 46.7 

(PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K):  75.2 (broad alkene), 85.1 (s, C1), 122.8 (s, 

CH pyridine), 124.6 (q, 
1
JCF = 271 Hz, C2), 125.2 (s, CH pyridine), 126.0 (s, C5), 126.1 

(q, 
3
JCF = 3 Hz, C4), 128.8 (broad alkene), 129.0 (q, 

2
JCF = 32 Hz, C3), 129.5 (d, JCP = 

9.5  Hz, C15/16), 131.7 (s, C17), 132.3 (broad m, C14), 133.7 (broad s, C15/16), 138.4 (s, 

CH pyridine), 144.7 (s, C6), 152.4 (s, CH pyridine), 164.1 (s, C9) 

ESI-MS (m/z): Observed 678.1118 [M
+
], Expected C37H30NF3P

102
Ru 678.1116, Error = 

0.2 mDa 

Elemental Analysis: Anal. C37H30F9NP2Ru + 1 CH2Cl2: Calc. C(50.29) H(3.55) 

N(1.54), Found C(50.80) H(3.59) N(1.65)  
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220 K 

Chemical 

Shift, δH 
Multiplicity Integration Isomer Assignment 

4.25 
t (

3
JHH , 

3
JHP =11.1 

Hz) 
1 H Major H7 

4.39 s 0.46 H Minor H1 

4.67 t 0.09 H Minor H7/H8 

4.80 s 5 H Major H1 

5.86 d 0.07 Minor???  

6.12 d (
3
JHH = 10.5 Hz) 1 H Major H8 

6.36 d 0.09 Minor H7/H8 

6.55 t 2 H Major PPh3 

6.78 m 4 H Major + Major H5 + PPh3 

7.02 d 1 H Major H11/H12 

7.05 m H Major + Minor H11/H12 

7.12 m 0.2 H Minor  

7.24 m 4.6 H Major + Major PPh3 

7.35-7.48 m 6.80 H Major H4 + PPh3 

7.49 d 1.17 H Major H10/H13 

7.54-7.70 m 3.62 H Major PPh3 

7.75 t 1 H Major H10/H13 

8.25 d 0.07 H Minor  

 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 220 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 46.9(s, 

major species, PPh3), 54.6 (s, minor species, PPh3) 
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9.4.3 Synthesis of [Ru(η
5
-C5H5)(PMe3)(2-styrylpyridine)][PF6]. 

[Ru(η
5
-C5H5)(PMe3)(NCMe)][PF6], 9

Me
 (95 mg, 0.20 mmol) and 2-styrylpyridine (48 

mg, 0.26 mmol) were added to a Schlenk. Dichloromethane (5 mL) was added under 

nitrogen, and the reaction mixture stirred (30 mins). The solvent was removed under 

vacuum, and the reaction mixture re-dissolved in dichloromethane (15 mL). This 

process was repeated 4-5 times, in order to drive the reaction to completion. Crystals 

suitable for X-ray diffraction were grown by the slow diffusion of pentane in to a 

dichloromethane solution containing the complex [Ru(η
5
-C5H5)(PMe3)(NC13H11)] 

[PF6]. Yield (69 mg, 60 %). 

Characterisation Data 

 

Figure 9.32: Labelled diagram of 18.
 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.63 (d, 9H, 

2
JHP = 9.6 Hz, H13), 4.22 (broad, 1H, 

Halkene), 4.84 (s, 5H, H1), 5.77 (d, 1H, 
3
JHH = 8.5 Hz, Halkene), 6.98 (d, 

3
JHH = 7.9 Hz, H9), 

7.16-7.23 (m, 4H, H2 + H4 + H11), 7.26 (m, 2H, H3), 7.74 (td, 1H, 
3
JHH = 7.9 Hz, 

4
JHH = 

1.5 Hz, H10), 7.88 (d, 1H, 
3
JHH = 5.3 Hz, H12) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 710 Hz, PF6

-
), 11.2(s, 

PMe3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 18.2 (d, 

1
JCP = 32.1 Hz, C13), 44.7 (broad, 

Calkene), 71.1 (broad, Calkene), 83.91 (s, C1), 122.0 (s, C9), 125.1 (s, C11), 126.0 (s, C4), 

127.4 (s, C2), 129.3 (s, C3), 138.0 (s, C10), 141.4 (s, C5), 152.7 (d, 
3
JCP = 1.3 Hz, C12), 

165.0 (s, C8) 

ESI-MS (m/z): Observed 424.0765 [M
+
], Expected C21H25NP

102
Ru 424.0768, Error = 

0.4 mDa; Observed 325.0417 [M
+
 - C14H10F3N], Expected C12H20N2P

102
Ru 325.0405, 

Error = 1.2 mDa. 

Elemental Analysis: Anal. C21H25F6NP2Ru + 0.15 CH2Cl2: Calc. C(43.17) H(4.39) 

N(2.41), Found C(43.79) H(4.37) N(2.38) 
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1
H NMR (CD2Cl2, 500 MHz, 215 K):  1.57 (d, 9H, 

2
JHP = 9.7 Hz, H13), 3.95 (dd, 1H, 

3
JHH = 9.5 Hz, 

3
JHP = 13.0 Hz, Halkene), 4.83 (s, 5H, H1), 5.73 (d, 1H, 

3
JHH = 9.5 Hz, 

Halkene), 6.92 (d, 1H, 
3
JHH = 7.8 Hz, H9), 7.12-7.18 (m, 4H, H2 + H4 + H11), 7.22 (m, 2H, 

H3), 7.70 (td, 1H, 
3
JHH = 7.9 Hz, 

4
JHH = 1.1 Hz, H10), 7.81 (d, 1H, 

3
JHH = 5.2 Hz, H12) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 215 K): -143.2 (sept, 

1
JPF = 710 Hz, PF6

-
), 13.8 (s, 

PMe3) 
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9.5 General experimental procedure for NMR scale reactions 

9.5.1 Stoichiometric addition of alkyne to a ruthenium complex 

The ruthenium complex (0.027 mmol) was placed in d2-dichloromethane (0.55 mL). 

Under a nitrogen atmosphere a stoichiometric quantity of the alkyne (0.027 mmol) was 

added. The reaction was monitored via NMR spectroscopy.  

9.5.2 Stoichiometric reaction in the presence of two equivalents of pyridine 

The ruthenium complex, 10
H

 (0.026 mmol) was placed in d2-dichloromethane (0.55 

mL). Pyridine (0.055 mmol) was added to the reaction mixture and allowed to stand for 

5 minutes. Under a nitrogen atmosphere a stoichiometric quantity of the alkyne (0.026 

mmol) was added. The reaction was monitored via NMR spectroscopy.  

9.5.3 Stoichiometric reaction in the presence of two equivalents of 4-methyl 

pyridine 

The ruthenium complex, 10
Me

 (0.026 mmol) was placed in d2-dichloromethane (0.55 

mL). 4-Methylpyridine (0.055 mmol) was added to the reaction mixture and allowed to 

stand for 5 minutes. Under a nitrogen atmosphere a stoichiometric quantity of the 

alkyne (0.026 mmol) was added. The reaction was monitored via NMR spectroscopy.  

9.5.4 Stoichiometric reaction in the presence of two equivalents of 3-methyl 

pyridine 

The ruthenium complex, 11 (0.026 mmol) was placed in d2-dichloromethane (0.55 mL). 

3-Methylpyridine (0.055 mmol) was added to the reaction mixture and allowed to stand 

for 5 minutes. Under a nitrogen atmosphere a stoichiometric quantity of the alkyne 

(0.026 mmol) was added. The reaction was monitored via NMR spectroscopy.  
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9.6 Short-Lived Half-Sandwich Ruthenium Vinylidene 

Intermediate Complexes 19 and 28 

 

Figure 9.33: Labelled diagram of complexes 19
R1,R2

. 

9.6.1 Complex 19
H,Ph

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K):  5.14 (broad s, 1H, vinylidene proton), 5.48 (s, 

5H, η
5
-C5H5), 6.97 (m, 2H, meta pyridine), 7.55 (t, 1H, 

3
JHH = 7.6 Hz, para pyridine), 

8.39 (d, 2H, 
3
JHH = 6.5 Hz, ortho pyridine) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.8 (s, 

PPh3) 

9.6.2 Complex 
13

C-19
H,Ph

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 5.14 (broad s, 1H, vinylidene proton), 5.49 (s, 5H, 

η
5
-C5H5), 6.97 (m, 2H, meta pyridine), 7.55 (t, 1H, 

3
JHH = 7.5 Hz, para pyridine), 8.38 

(d, 2H, 
3
JHH = 6.3 Hz, ortho pyridine) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.8 (d, 

2
JCP = 16.9 Hz, PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 355.3 (d, 

2
JCP = 16.9 Hz, α-

13
C) 

9.6.3 Complex 19
H,C6H4-4-F

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 5.14 (broad singlet, 1H, vinylidene proton), 5.49 

(s, 5H, η
5
-C5H5), 6.96 (lies underneath other peaks), 7.57 (t, 1H, para pyridine), 8.35 (d, 

2H, ortho pyridine) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.7 

(broad s, PPh3) 
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9.6.4 Complex 19
H, C6H4-4-CF3

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 5.17 (broad singlet, 1H, vinylidene proton), 5.53 

(s, 5H, η
5
-C5H5), 6.99 (t, 2H, meta pyridine), 7.57 (lies under other peaks, para 

pyridine), 8.36 (d, 2H, ortho pyridine) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.0 

(broad s, PPh3) 

9.6.5 Complex 19
H,tBu

.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.17 (s, 9H, 3x CH3), 3.97 (d, 1H, , 

4
JHP = 3.0 Hz, 

vinylidene proton), 5.31 (s, η
5
-C5H5), 6.99 (m, 2H, meta pyridine), 7.23 (m ,6H, ortho 

phenyl of PPh3), 7.40 (m ,6H, meta phenyl of PPh3), 7.49 (m, 3H, para phenyl of PPh3), 

7.58 (m, 1H, para pyridine), 8.45 (m, 2H, ortho pyridine) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 53.5 

(broad s, PPh3)  

9.6.6 Complex 19
Me,Ph

.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.23 (s, 3H, CH3), 5.13 (broad, vinylidene 

proton), 5.46 (s, 5H, η
5
-C5H5), 6.77 (d, 2H, 

3
JHH = 6.2 Hz, meta 4-methylpyridine), 7.05 

(d, 2H, 
3
JHH = 7.9 Hz, vinylidene ligand phenyl ring), 8.17 (d, 2H, 

3
JHH = 6.2 Hz, ortho 

4-methylpyridine) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.9 

(broad s, PPh3) 

9.6.7 Complex 19
Me,C6H4-4-CF3

.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.25 (s, 3H, CH3), 5.14 (broad, 1H, vinylidene 

proton), 5.51 (s, 5H, η
5
-C5H5), 6.79 (d, 2H, 

3
JHH = 6.0 Hz, meta 4-methylpyridine), 8.14 

(d, 2H, 
3
JHH = 6.0 Hz, ortho 4-methylpyridine) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 51.1 

(broad s, PPh3) 
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There is limited evidence for complexes 28, characterisation data has been obtained 

from reaction mixture spectra. 

 

Figure 9.34: Labelled diagram of complexes 28
R1,R2

. 

9.6.8 Complex 28
Me,H

.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 3.39 (s, 3H, CH3), 5.09 (broad, 1H, vinylidene 

proton), 5.43 (broad, 5H, η
5
-C5H5), 6.61 (s, 1H, imidazole), 6.64 (s, 1H, imidazole) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 53.0 

(broad s, PPh3) 

9.6.9 Complex 28
Me,CF3

.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 3.42 (s, 3H, CH3), 5.11 (broad, 1H, vinylidene 

proton), 5.47 (broad, 5H, η
5
-C5H5), 6.60 (s, 1H, imidazole), 6.63 (s, 1H, imidazole) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 52.1 

(broad s, PPh3) 

9.6.10 Complex 28
tBu,CF3

.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.17 (s, 3H, 

t
Bu), 5.14 (broad, 1H, vinylidene 

proton), 5.48 (broad, 5H, η
5
-C5H5), 6.76 (s, 1H, imidazole), 6.84 (s, 1H, imidazole) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 52.5 

(broad s, PPh3) 
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9.7 Synthesis of Ruthenium C-H Functionalised Complexes 

9.7.1 Reaction of 10
H

 with phenylacetylene. 

[Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], 10

H
 (75 mg, 0.1 mmol) was added to an oven-dried 

Young’s ampule. Dichloromethane (3 mL), and pyridine (17 µL, 0.21 mmol) were 

added and the reaction mixture stirred for 15 minutes. Phenylacetylene (11 µL, 0.1 

mmol) was added to the reaction mixture and heated at 50 °C for 15 hours.  

The reaction mixture was allowed to cool to room temperature, and the solvent removed 

under vacuum. The reaction mixture was washed with pentane (10 mL). Slow diffusion 

of pentane in to dichloromethane containing the reaction mixture afforded a mixture of 

pale yellow crystals (22
H,H

) and orange crystals (21
H,H

), where a ratio for 22
H,H

:
 
21

H,H 

of 6:1 was observed. The solvent was removed by filtration and the air-sensitive 

products dried under vacuum. The relevant crystals of complex 22
H,H

 were picked from 

the crystallisation. The compound could be purified further via further crystallisations. 

Alternatively, isolation of complex 21
H,H

 could be achieved via the addition of DABCO 

to the crude reaction mixture containing complexes 21
H,H

 and 22
H,H

. The reaction 

mixture was left to stir (16 hours) and then reduced to dryness. Extraction using a 

mixture of dichloromethane (1 mL) and pentane (10 mL) afforded an orange/ brown 

precipitate of 21
H,H

, which could be further purified by slow diffusion of pentane into a 

dichloromethane solution of the complex 21
H,H

. The filtrate contained the complex 

23
H,H

, which was reduced in volume (~2 mL) and stored at -20 °C to obtain pure 

crystals of 23
H,H

. 

Yields for these complexes were not obtained due to purification difficulties.   
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Characterisation Data of 21
H,H

  

 

Figure 9.35: Labelled diagram of complex 21
H,H

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 4.55 (s, 5H, H1), 6.51-8.19 (broad peaks in 

baseline), 7.27-7.35 (m), 7.56 (t, J = 7.9Hz), 7.63 (d,J = 7.9Hz), 7.82 (s), 7.93-7.98 (m). 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 48.1 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 47.8 (d, 

2
JCP = 2.1 Hz, CX),67.1 (d, 

2
JCP = 

7.7 Hz, C5), 89.1 (s, C1), 126.5, 127.6 (d, JCP = 3.1 Hz, C4), 128.0-139.5 (br), 128.3 (s), 

128.6 (s), 128.6 (s), 128.7 (s), 128.9 (s), 128.9 (s), 129.1 (s), 129.2 (s), 129.2 (s), 129.3 

(s), 129.4 (s), 129.8 (s), 130.0 (s), 130.7 (s), 131.2-133.0 (br), 133.2-134.4 (br), 137.0-

138.3 (br), 139.8 (d, JCP = 1.9 Hz), 141.0 (s), 142.3 (d, JCP = 1.4 Hz),170.8 (d,
2
JCP = 

12.9 Hz, C3) 

ESI-MS (m/z): Observed 712.1714 [M
+
], Expected for C44H37NP

102
Ru 712.1713, Error 

= 0.0 mDa 
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Characterisation Data of 22
H,H

 

 

Figure 9.36: Labelled diagram of complex 22
H,H

.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 3.65 (apparent t, 1H, 

3
JHH, 

3
JHP = 9.5 Hz, H6), 

4.95 (s, 5H, H1), 6.63 (d, 1H, 
3
JHH  = 7.8 Hz, H7), 6.83 (m, 2H, H3), 7.06 (t, 2H, 

3
JHH = 

7.0 Hz, H9), 7.15 (d, 
3
JHH= 8.0 Hz, H11), 7.21 (m, 3H, H2, H4), 7.36 (broad, H10, PPh3), 

7.49 (broad, PPh3), 7.94 (d, 2H, 
3
JHH = 5.7 Hz, H8) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 53.5 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 55.2 (s, Calkene), 69.4 (s, Calkene), 88.5 (s, C1), 

118.5 (C9), 125.3(s, C3), 127.3 (s, C2), 129.2 (s, C4), 129.1-129.5 (broad, PPh3), 131.4 

(broad, PPh3), 132.3-134.8 (broad, PPh3), 136.6 (s, C10), 137.5  (d, 
3
JCP = 2.8 Hz, C11), 

140.7 (s, C5), 143.1 (s, C8), 180.7 (broad, C12) 

ESI-MS (m/z): Observed: 610.1276 [M
+
], Expected C36H31NP

102
Ru 610.1242, Error = 

3.4 mDa; Observed 182.0965, Expected C13H12N 182.0964, Error = 0.0. 

Elemental Analysis: Anal. C36H31F6NP2Ru + 1 CH2Cl2: Calc. C(52.93) H(3.96) 

N(1.67), Found C(53.05), H(3.94), N(1.76) 

1
H NMR (CD2Cl2, 500 MHz, 225 K): 3.48 (dd, 1H, 

2
JHP = 11.7 Hz, 

3
JHH = 8.0 Hz, H6), 

4.91 (s, 5H, H1), 6.30 (t, 2H, 
3
JHH, 

3
JHP = 9.0 Hz, a-PPh3 ortho), 6.55 (dd, 1H, 

3
JHH = 8.0 

Hz, 
2
JHP = 1.2 Hz, H7), 6.80 (2H, m, H3), 7.04 (m, 3H, H9, b-PPh3 ortho), 7.10 (d, 1H, 

3
JHH = 8.3 Hz, H11), 7.17 (m, 3H, H2, H4), 7.22 (td, 2H, 

3
JHH = 7.9 Hz, 

3
JHP = 2.6 Hz, a-

PPh3 meta), 7.26 (td, 2H, 
3
JHH = 7.8 Hz, 

3
JHP = 1.7 Hz, b-PPh3 meta), 7.35-7.49  (m, 

6H-should be 5H, H10, a-PPh3 para, b-PPh3 para, c-PPh3 ortho), 7.53 (td, 2H, 
3
JHH = 7.4 

Hz, 
3
JHP = 1.5 Hz, c-PPh3 meta), 7.59 (t, 1H, 

3
JHH = 7.8 Hz, c-PPh3 para), 7.92 (d, 1H, 

3
JHH = 6.2 Hz, H8) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 225 K): -143.2 (sept, 

1
JPF = 711 Hz, PF6

-
), 54.1 (s, 

PPh3)  
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Characterisation Data of 23
H,H

  

 

Figure 9.37: Labelled diagram of complex 23
H,H

.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 4.75 (s, 5H, H1), 6.51 (td, 1H, 

3
JHH  = 6.7 Hz, 

4
JHH  

= 1.5 Hz, H9), 6.56 (td, 1H, 
3
JHH  = 7.5 Hz, 

4
JHH  = 1.1 Hz, H10), 6.99-7.07 (m, 10H, H2 

+ H3 + H7 + H14), 7.07-7.15 (m, 8H, H4 + H15), 7.23 (m, 3H, H16), 7.83 (d, 1H, 
3
JHH = 

6.2 Hz, H8), 8.15 (d, 
3
JHH = 7.9 Hz, H11) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): 60.3 (broad s, PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 83.0 (d, 

2
JCP = 1.8 Hz, C1), 113.3 (s, C9), 

123.8 (s, C10), 125.0 (s, C2), 127.3 (d, 
3
JCP = 9.3 Hz, C15), 127.4 (s, C3/4), 127.5 (s, C3/4), 

128.7 (d, 
4
JCP = 2.3 Hz, C16), 132.2 (broad, C7), 133.5 (d, 

2
JCP = 11.1 Hz, C14), 136.7 (s, 

C11), 137.4 (broad d, 
1
JCP = 41.3 Hz, C13), 142.8 (s, C8), 153.0 (broad, C5), 192.9 (d, 

2
JCP = 12.7 Hz, C6), 218.3 (d, 

2
JCP = 15.3 Hz, C12) 

ESI-MS (m/z): Observed 610.1228 [M + H
+
], Expected C36H31NP

102
Ru 610.1242, Error 

= 0.5 mDa. 

Elemental Analysis (obtained enough sample for 1 run): Anal. C36H30NPRu + 0.15 

CH2Cl2: Calc. C(69.87), H(4.91) N(2.25), Found C(69.50) H(5.12) N(2.14) 
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9.7.2 Reaction of 10
H

 with 4-ethynyl-α,α,α-trifluorobenzene   

[Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], 10

H
 (250 mg, 0.34 mmol) was added to a Youngs 

ampule, and dichloromethane (6.25 mL) added. Pyridine (56 µL, 0.69 mmol) was 

added, and the reaction mixture stirred for 5 minutes. 4-ethynyl-α,α,α-trifluorobenzene 

(56 µL, 0.34 mmol) was added to the reaction mixture, and the system sealed. The 

reaction mixture was heated to 50 °C for 15 hours.  

The reaction mixture was allowed to cool, and the solvent removed under vacuum. The 

brown solid was washed with pentane (2 x10 mL). Slow diffusion of pentane in to the 

reaction mixture afforded pale yellow crystals. The solvent was removed by filtration 

and the air-sensitive product dried under vacuum. The compound could be purified 

further via further crystallisations. Yield (135 mg, 48 %) 

Characterisation Data 

 

Figure 9.38: Labelled diagram of complex 22
H,CF3

.   

1
H NMR (CD2Cl2, 500 MHz, 300 K): 3.60 (dd, 1H, 

3
JHP = 11.4 Hz, 

3
JHH = 7.9 Hz, H7), 

4.99 (s, 5H, H1), 6.77 (d, 1H, 
3
JHH = 7.9 Hz, H8), 6.92 (d, 2H, 

3
JHH = 8.2 Hz, H5), 7.08 

(t, 
3
JHH = 6.8 Hz, H10), 7.12 (d, 

3
JHH = 7.9 Hz, H12), 7.37 (td, 

3
JHH = 7.9 Hz, 

4
JHH = 1.2 

Hz, H11), 7.37 (broad, PPh3), 7.44 (d, 
3
JHH = 8.2 Hz, H4), 7.51 (broad, PPh3), 8.00 (d, 

1H, 
3
JHH = 6.1 Hz, H9) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 300 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 52.8 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 300 K): 54.8 (s, C8), 66.6 (d, 

2
JCP = 3 Hz, C7), 88.7 

(s, C1), 118.6 (s, C10), 124.5 (q, 
1
JCF = 272 Hz, C2), 125.5 (s, C5), 126.0 (q, 

3
JCF = 4 Hz, 

C4), 128.4 (q, 
2
JCF = 32 Hz, C3), 129.3 (broad, PPh3), 131.5 (broad, PPh3), 133.6 (broad, 

PPh3), 136.8 (s, C11), 137.4 (d, 
3
JCP = 3 Hz, C12), 143.2 (s, C9), 145.5 (s, C6), 179.6 (d, 

2
JCP = 19 Hz, C13)  
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ESI-MS (m/z): Observed 678.1135 [M
+
], Expected C37H30NF3P

102
Ru 678.1116, Error = 

2.0 mDa, Observed 250.0832, Expected C14H11F3N 250.0838, Error = 0.6 mDa. 

Elemental Analysis: Anal. C37H30F9NP2Ru + 0.5 CH2Cl2: Calc. C(52.06) H(3.61) 

N(1.62), Found C(52.11) H(3.52) N(1.89)  

1
H NMR (CD2Cl2, 500 MHz, 220 K): 3.43 (dd, 1H, 

3
JHP = 11.7 Hz, 

3
JHH = 7.9 Hz, H7), 

4.95 (s, 5H, H1), 6.31(t, 2H,
 3

JHH, 
3
JHP = 9.1 Hz, a-PPh3 ortho), 6.68 (d, 1H, 

3
JHH = 7.9 

Hz, H8), 6.89 (d, 2H, 
3
JHH = 8.1 Hz, H5), 6.99 (dd, 2H, 

3
JHP = 11.0 Hz, 

3
JHH = 7.9 Hz, b-

PPh3 ortho), 7.06 (m, 2H, H10, H12), 7.36 (m, H11),  7.22 (t, 2H,
 3

JHH = 7.7 Hz, a-PPh3 

meta), 7.29 (t, 2H, 
3
JHH = 7.7 Hz, b-PPh3 meta), 7.37 (m, 3H, a-PPh3 para) & c-PPh3 

ortho), 7.42 (d, 
3
JHH = 8.1 Hz, H4), 7.46 (t, 1H, 

3
JHH = 7.3 Hz, b-PPh3 para), 7.54 (t, 2H, 

3
JHH = 7.2 Hz, c-PPh3 meta), 7.60 (t, 1H, 

3
JHH = 7.2 Hz, c-PPh3 para), 7.98 (d, 1H, 

3
JHH 

= 6.2 Hz, H9) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 220 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 53.6 (s, 

PPh3)  
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9.7.3 Synthesis of 23
H,CF3

. 

Complex 22
H,CF3

 (31 mg, 0.037 mmol) and dichloromethane (5 mL) was added. 1,4-

Diazabicyclo[2.2.2]octane (8 mg, 0.071 mmol) was added, and stirred at room 

temperature (15 hours).  The reaction mixture solvent was removed under vacuum, and 

a red solution was extracted with pentane (2 x10 mL), and separated by filtration. The 

solvent was reduced (approximately 2 mL), and stored at -20 °C, where crystals suitable 

for X-ray diffraction were grown.  

Note: Best to carry out reaction in a Youngs ampule to avoid grease in product, as 

product is soluble in pentane.  

Characterisation Data 

 

Figure 9.39: Labelled diagram of complex 23
H,CF3

.   

1
H NMR (700 MHz, 298 K, CD2Cl2): 4.73 (s, 5H, H1), 6.52 (t, 1H, 

3
JHH = 6.7 Hz, H10), 

6.58 (t, 1H, 
3
JHH = 7.6 Hz, H11), 6.93 (broad s, 1H, H8), 7.03 (m, 6H, H15), 7.13 (m, 8H, 

H5, H16), 7.24 (t, 3H, 
3
JHH = 7.2 Hz, H17), 7.35 (d, 2H, 

3
JHH = 7.9 Hz, H4), 7.84 (d, 1H, 

3
JHH = 6.4 Hz, H12), 8.16 (d, 1H, 

3
JHH = 8.3 Hz, H9) 

31
P{

1
H} NMR (202 MHz, 295 K, CD2Cl2): 61.2 (s, PPh3) 

13
C{

1
H} NMR (176 MHz, 298 K, CD2Cl2): 83.3 (s, C1), 113.6 (s, C10), 124.2 (q, 

3
JCF = 

3.7 Hz, C4), 124.4 (s, C11), 125.5 (q, 
1
JCF = 271 Hz, C2), 126.4 (q, 

2
JCF = 31 Hz, C3), 

127.5 (d, 
3
JCP = 8 Hz, C16), 127.6 (s, C5), 128.9 (s, C17), 133.5 (d, 

2
JCP = 10 Hz, C15), 

137.0 (s, C12), 137.3 (broad d, approx 50 Hz, C14), 142.9 (s,C9), 157.9 (broad s, C6), 

190.2 (broad, C7), 219.3 (broad, C13) Unfortunately attempts to locate C8 using a range 

of 2D-NMR techniques were unsuccessful. 

ESI-MS (m/z): Observed 677.1035 [M
+
], Expected C37H29NF3P

102
Ru 677.1038, Error = 

0.3 mDa. 

Elemental Analysis: Anal. C37H29F3NP2Ru: Calc. C(65.67) H(4.32) N(2.07), Found 

C(65.42) H(4.41) N(2.07)  
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9.7.4 Reaction of 10
Me

 with phenylacetylene.  

[Ru(η
5
-C5H5)(PPh3)( 4-Me-NC5H4)2][PF6], 10

Me
 (75 mg, 0.099 mmol) was added to a 

Youngs ampule, and dichloromethane (5 mL) added. 4-Methylpyridine (20 µL, 0.20 

mmol, 2 equiv) was added, and the reaction mixture stirred for 5 minutes. 

Phenylacetylene (13 µL, 0.11 mmol) was added, and the system sealed. The reaction 

mixture was heated to 50 °C for 15 hours. An aliquot was taken of the reaction mixture 

in order to determine the % conversion to 22
Me,H

. A yield of approximately 85 % of 

22
Me,H

 was determined.  

The reaction mixture was reduced to dryness, and re-dissolved in dichloromethane (5 

mL). 1,4-Diazabicyclo[2.2.2]octane (10 mg, 0.08 mmol) was added to the reaction 

mixture and stirred (16 hours). The solvent was reduced (1 mL) under vacuum. Pentane 

(10 mL) was added to the reaction flask, and the red filtrate collected via filtration. The 

extraction was repeated twice, and the solvent removed to give 23
Me,H

. 

Pyridinium hexafluorophosphate (20 mg, 0.09 mmol) added to 23
Me,H

 in a 

dichloromethane solution (5 mL). The reaction solution turned from red to yellow. The 

filtrate was collected and reduced to give a yellow precipitate. Crystals suitable for X-

ray diffraction were grown by slow diffusion of pentane into a dichloromethane solution 

containing 22
Me,H

.  

Characterisation Data 

 

Figure 9.40: Labelled diagram of complex 22
Me,H

.    

Only 
1
H NMR spectrum and elemental analysis was pure, remaining characterisation 

was carried out on an impure sample.  

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.13 (s, 3H, H11), 3.68 (m, 1H, Halkene), 4.92 (s, 

5H, H1), 6.47 (d, 
3
JHH = 7.8 Hz, Halkene), 6.54-7.85 (broad peak, PPh3) 6.76 (m, 2H, 

H3/4), 6.84 (m, 2H, H12 + H9), 7.19 (m, 3H, H2 + H3/4), 7.37 (broad, 6H, PPh3), 7.50 

(broad, 4H, PPh3), 7.72 (d, 1H, 
3
JHH = 6.4 Hz, H8) 
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31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 53.6 (s, 

PPh3) 

Other 
31

P{
1
H} NMR impurity signals: 29.9 (s, OPPh3), 38.9 (s, impurity), 42.4 (s, 

impurity) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 22.2 (s, C11), 54.7 (broad, Calkene), 68.6 (s, 

Calkene), 88.3 (s, C1), 120.1 (s, C8/9), 125.3 (s, C3/4), 127.2 (s, C2), 129.1 (s, C3/4), 129.2 -

129.4 (broad, PPh3), 131.3 (broad, PPh3), 133.7 (broad, PPh3), 137.9 (d, 
3
JCP =3.0 Hz, 

C12), 140.8 (s, C5), 141.6 (C8/9), 149.7 (s, C10), 178.2 (d, 
2
JCP = 18.4 Hz, C13) 

Other 
13

C{
1
H} NMR impurity signals: 124.9 (s), 129.0 (s), 131.5, 132.2, 132.3, 133.5 

(t), 138.6 (s), 148.4 (s) 

ESI-MS (m/z): Observed 624.1384 [M
+
], Expected C37H33NPR

102
Ru 624.1389, Error = 

0.5 mDa; Observed 196.1114 [C14H14N
+
], Expected C14H14N 196.1121, Error = 0.7 

mDa. 

Elemental Analysis (Obtained enough sample for 1 run): Anal. C37H33F6NP2Ru + 1 

CH2Cl2: Calc. C(53.47) H(4.13) N(1.64), Found C(52.95) H(3.97) N(1.84) 
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9.7.5 Reaction of 10
Me

 with 4-ethynyl-α,α,α-trifluorobenzene. 

 [Ru(η
5
-C5H5)(PPh3)(4-Me-NC5H4)2][PF6], 10

Me
 (76 mg, 0.1 mmol), 4-methylpyridine 

(19.5 µL, 0.2 mmol) and dichloromethane were added to a Youngs ampule, and the 

reaction mixture stirred for 15 minutes. 4-ethynyl-α,α,α-trifluorobenzene (24 µL, 0.15 

mmol) was added. The reaction mixture was stirred and heated at 50 °C for 24 hours. 

The reaction mixture was allowed to cool to room temperature and the solvent was 

removed under vacuum. The reaction mixture was washed with pentane (2 x 10 mL). 

Slow diffusion of pentane (20 mL) into a dichloromethane solution containing the 

reaction mixture (2 mL) afforded crystals suitable for X-ray diffraction. The product 

could be purified further via crystallisations. Yield (46 mg, 55 %) 

Characterisation Data 

 

Figure 9.41: Labelled diagram of complex 22
Me,CF3

.    

1
H NMR (CD2Cl2, 500 MHz, 300 K): 2.13 (s, 3H, H12), 3.62 (dd, 1H, 

3
JHP = 11.6 Hz, 

3
JHH = 7.7 Hz, H7), 4.96 (s, 5H, H1),6.52-7.77 (broad, PPh3) 6.68 (d, 1H, 

3
JHH = 7.7 Hz, 

H8), 6.81 (s, 1H, H13), 6.85 (m, 3H, H5, H10), 7.32-7.42 (broad m, 8H, H4, PPh3), 7.51 

(broad, 3H, PPh3), 7.82 (d, 1H, 
3
JHH = 6.8 Hz, H9) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 300 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 52.9 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 300 K): 22.3 (s, C12), ~54.1 (lies underneath CD2Cl2 

peak, alkene), 65.9 (broad, alkene), 88.6 (s, C1), 120.3 (C10), 124.6 (q, 
1
JCF = 271 Hz, 

C2), 125.5 (s, C5), 126.0 (q, 
3
JCF = 4 Hz, C4), 128.4 (q, 

2
JCF = 32 Hz, C3), 129.3 (broad, 

PPh3), 131.4 (broad, PPh3), 133.6 (broad, PPh3), 137.8 (s, C13), 141.8 (s, C9), 145.6 (s, 

C6), 150.0 (s, C11), 177.1 (d, 
2
JCP = 18 Hz, C14)  

ESI-MS (m/z): Observed 692.1188 (M
+
), Expected C38H31F3NP

102
Ru 691.1194, Error = 

0.7 mDa 
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Elemental Analysis: Anal. C38H32F9NP2Ru: Calc. C(54.55) H(3.86) N(1.67), Found 

C(54.26) H(3.88) N(1.68)  



371 

Chapter 9 

9.7.6 Synthesis of 23
Me,CF3

.  

Complex 22
Me,CF3

 (31 mg, 0.037 mmol) in dichloromethane (5 mL) was stirred. 1,4-

Diazabicyclo[2.2.2]octane (8 mg, 0.071 mmol) was added, and stirred at room 

temperature (15 hours).  The reaction mixture solvent was removed under vacuum. The 

red product extracted with pentane (2 x10 mL), and separated by a cannula filtration. 

The pentane solvent was reduced (approximately 2 mL), and placed in the freezer, 

where crystals suitable for X-ray diffraction were grown.  

Note: Best to carry out reaction in an ampule to avoid grease in product, as product is 

soluble in pentane.  

Characterisation Data 

 

Figure 9.42: Labelled diagram of complex 23
Me,CF3

.    

1
H NMR (500 MHz, 298 K, CD2Cl2): 2.17 (s, 3H, H12), 4.72 (s, 5H, H1), 6.36 (dd, 1H, 

3
JHH = 6.5 Hz, 

4
JHH = 1.7 Hz, H10), 6.98 (d, 1H, 

4
JHP = 2.4 Hz, H8), 7.02 (t, 6H, 

3
JHH, 

3
JHP = 9.1 Hz, H16), 7.10 (d, 2H, 

3
JHH =8.0 Hz, H5), 7.14 (td, 6H, 

3
JHH = 7.6 Hz, 

4
JHP = 

1.6, H17), 7.24 (t, 3H, 
3
JHH = 7.3 Hz, 

5
JHP = 1.3 Hz, H18), 7.34 (d, 2H, 

3
JHH = 8.0 Hz, 

H17), 7.72 (d, 1H, 
3
JHH = 6.4 Hz, H9), 7.96 (s, 1H, H13) 

31
P{

1
H} NMR (202 MHz, 295 K, CD2Cl2): 61.7 (s, PPh3) 

13
C{

1
H}NMR (176 MHz, 298 K, CD2Cl2): 20.7 (s, C12), 82.8 (s, C1), 115.5 (s, C10), 

124.2 (q, 
3
JCF = 3.7 Hz, C4), 125.5 (q, 

1
JCF = 271 Hz, C2), 126.1 (q, 

2
JCF = 32.0 Hz, C3), 

127.4 (m, C17, C5), 128.8 (s, C18), 132.4 (s, C8), 133.4 (d, 
2
JCP = 11 Hz, C16), 135.6 (s, 

C11), 136.1 (s, C9), 137.0 (d, 
1
JCP = 41 Hz, C15), 142.9 (s, C13), 157.4 (s, C6), 187.9 (d, 

2
JCP = 13.2 Hz, C7), 217.8 (d, 

2
JCP = 15.8 Hz, C14)  

ESI-MS (m/z): Observed 691.1188 [M
+
], Expected C38H31F3NP

102
Ru 691.1194, Error = 

0.7 mDa. 

Elemental Analysis: Anal. C38H31F3NPRu: C(66.08) H(4.52) N(2.03), Found C(65.97) 

H(4.83) N(1.86) 
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9.7.7 Reaction of 10
NMe2

 with phenylacetylene. 

[Ru(η
5
-C5H5)(PPh3)(NC5H4-4-NMe2)2][PF6], 10

NMe2
 (72 mg, 0.08 mmol), and 

phenylacetylene (10.5 µL, 0.09 mmol) were placed in dichloromethane in a Youngs 

ampule, and the reaction mixture stirred for 5 days at room temperature (16 hours). To 

drive the reaction to completion, a further equivalent of phenylacetylene was added and 

the reaction mixture stirred for 2 days at room temperature. The solvent was removed, 

and placed in dichloromethane. The slow diffusion of pentane into the dichloromethane 

layer containing 22
NMe2,H

 afforded crystals suitable for X-ray diffraction. The product 

could be purified further via crystallisations. 

Characterisation Data 

 

Figure 9.43: Labelled diagram of complex 22
NMe2,H

.    

1
H NMR (CD2Cl2, 500 MHz, 295 K): 2.82 (broad, 6H, H11), 3.55 (dd, 1H, 

3
JHP = 11.7 

Hz, 
3
JHH = 7.9 Hz, H6), 4.86 (s, 5H, H1), 5.81 (dd, 1H, 

4
JHH = 2.4 Hz, 

5
JHH = 1.2 Hz, 

H12), 6.23 (dd, 1H, 
3
JHH = 7.3 Hz, 

4
JHH = 2.8 Hz, H9), 6.32 (dd, 1H, 

3
JHH = 7.9 Hz, 

3
JHP 

= 1.6 Hz, H7), 6.79 (m, H3), 7.14-7.19 (m H2, H4), 7.29-7.35 (broad m, 9H, H8, PPh3), 

7.36-7.55 (m ,broad, PPh3) 

Impurity peaks: 6.79 (m), 6.89 (d, 8.8 Hz), 7.06 (m), 7.14-7.19 (m), 7.29-7.35 (broad 

m), 7.36-7.55 (broad m), 7.79 (d, 1.5 Hz) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 55.3 (s, 

PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 53.1 (s, C7), 68.4 (d, 

3
JCP = 2.6 Hz, C6), 87.8 

(d, 
2
JCP = 1.1 Hz, C1), 103.1 (s, C9), 108.3 (s, C3/4), 115.7 (d, 

3
JCP = 2.9 Hz, C12), C12), 

125.0 (s, C3/4), 126.8 (s, C2), 128.9-129.4 (broad, PPh3), 130.7 (broad, PPh3), 131.1 

(broad, PPh3), 133.0-135.3 (broad, PPh3), 140.1 (s, C8), 141.4 (s, C5), 152.2 (s, C10), 

167.2 (d, 
2
JCP = 20.5 Hz, C13) 

Broad resonance for C11 was not observed, probably is hidden in baseline.  
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Impurity peaks: 7.13 (s), 33.4 (s), 34.8 (s), 39.4 (s), 40.8 (s), 40.9 (m), 82.6 (s), 108.6 

(s), 108.8 (s), 125.6 (s), 127.4 (m), 127.5, 129.0 (d, 1.1 Hz), 129.5(s), 129.7 (s), 129.9 

(s), 129.9 (s), 131.4 (s), 139.0 (s), 141.6 (s), 141.7 (s), 142.4 (s), 156.9 (s) 

ESI-MS (m/z): Observed 653.1655 [M
+
], Expected C38H36N2P

102
Ru 653.1670, Error = 

0.5 mDa. 
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9.7.8 Reaction of 11 with 4-ethynyl-α,α,α-trifluorobenzene. 

 [Ru(η
5
-C5H5)(PPh3)(3-methylpyridine)2][PF6], 11 (40 mg, 0.05 mmol) was added to a 

Youngs ampule, and dichloromethane (3 mL) added. 3-Methylpyridine (10 µL, 0.10 

mmol, 2 equiv) was added to the ampule, and the reaction mixture stirred for 5 minutes. 

4-Ethynyl-α,α,α-trifluorotoluene (9 µL, 0.05 mmol, 1 equiv) was added to the reaction 

mixture, and the system sealed. The reaction mixture was heated to 50 °C for 15 hours.  

The reaction mixture was allowed to cool, and the solvent removed under vacuum. Slow 

diffusion of pentane in to the reaction mixture afforded pale yellow crystals. The solvent 

was removed by filtration and the air-sensitive product dried under vacuum. The 

compound could be purified further via further crystallisations. The ratio of the two 

isomers changed in different reactions, although care was taken to perform reactions as 

accurately as possible.  

Characterisation Data 

 

        27a
CF3

            27b
CF3

  

Figure 9.44: Labelled diagram of complexes 27a
CF3

 and 27b
CF3

. 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.64 (s, 2H, a-H13), 2.27 (s, 3H, b-H11), 3.44 (dd, 

0.7H, 
3
JHP =  12.3 Hz, 

3
JHH = 7.9 Hz, a-Halkene), 3.57 (dd, 1H, 

3
JHP =  11.4 Hz, 

3
JHH = 7.9 

Hz,  b-Halkene), 4.95 (s, 5H, b-H1), 5.10 (s, 3H, a-H1), 6.30 (broad, 1H, b-H13), 6.61 (dd, 

1H, 
3
JHP =  1.7 Hz, 

3
JHH = 7.9 Hz, a-Halkene), 6.71 (dd, 1H,  

3
JHP =  0.9 Hz, 

3
JHH = 7.9 

Hz, b-Halkene), 6.82 (d, 1.7H, Ar-CF3), 6.91 (d, 2.4H, Ar-CF3), 6.93-7.05 (m, 5H, a-H10 + 

other aromatics), 7.12-7.58 (m, 30H, b-H12, a-H11, Ar-CF3 + other aromatic), 7.82 (d, 

0.8H, 
3
JHH = 6.0 Hz, a-H9), 7.86 (s, 1H, b-H9) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 50.5 (s, a-

PPh3), 53.0 ( broad s, b-PPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 17.8 (s), 19.9 (s), 54.5 (s), 54.6 (s), 66.5 

(m), 83.6 (s), 86.6 (s), 88.3 (d), 88.6 (d), 118.9 (s), 121.3 (m), 123.5 (d, 4.3 Hz), 124.6 
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(s), 125.5 (s), 125.7 (d, 4.3 Hz), 125.9 (q), 126.0 (s), 126.1 (q), 127.9 (m), 128.2 (s), 

128.4 (s), 128.5 (s), 128.7 (s), 128.8-129.9 (broad m), 129.0 (broad), 129.3-129.5 (m), 

131.2-131.7 (broad m) , 132.4-132.6 (broad m), 132.7-133.0 (broad m), 133.1-134.7 

(broad), 135.2-135.9 (broad), 136.7 (m), 139.0 (m), 140.9 (s), 142.5 (s), 145.5 (m), 

145.7 (m), 147.4 (m), 173.9 (d, 
2
JCP = 18.9 Hz), 179.9 (d, 

2
JCP = 16.6 Hz) 

ESI-MS (m/z): Observed 692.1229, Expected C38H32F3NP
102

Ru 692.1273 [M
+
], Error = 

3.4 mDa. 
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9.7.9 Reaction of 14
H

 with phenylacetylene. 

[Ru(η
5
-C5H5)(PMe3)(NC5H5)2][PF6], 14

H
 (40 mg, 0.07 mmol) and pyridine (1.10 mL, 

13.6 mmol, 195 equiv) were stirred. Phenylacetylene (16 µL, 0.14 mmol, 2 equiv) was 

added, and the reaction mixture was heated at 50 °C for 18 hours. The reaction mixture 

was left to cool to room temperature. The solvent was removed under vacuum. 

Dichloromethane was added to the brown precipitate (2 mL), followed by the addition 

of excess pentane (10 mL). The solvent was removed via filtration and brown 

precipitate dried under vacuum. Crystals suitable for X-ray diffraction were grown by 

slow diffusion of pentane in to a layer of dichloromethane containing the product. The 

product could be purified further by crystallisations.  

Characterisation Data 

 

Figure 9.45: Labelled diagram of complex 30
H,H

.    

1
H NMR (CD2Cl2, 500 MHz, 295 K):1.54 (d, 9H, 

2
JHP = 9.6 Hz, H13), 3.57 (dd, 1H, 

3
JHP 

= 12.9 Hz, 
3
JHH = 7.0 Hz, H6), 4.99 (s, 5H, H1), 6.37 (dd, 

2
JHP = 7.0 Hz, 

3
JHP = 1.3 Hz, 

H7), 7.04 (m, 1H, H9), 7.11 (m, 2H, H4), 7.15 (m, 1H, H2), 7.24 (m, 2H, H3), 7.46 (m, 

1H, H11), 7.53 (m, 1H, H10), 7.94 (m, 1H, H8) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 710 Hz, PF6

-
), 14.8 (s, 

PMe3) 

Other 
31

P{
1
H} NMR peaks: 28.5 (OPPh3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 19.7 (d, 

1
JCP = 34.2 Hz, C13), 62.1 (d, 

2
JCP = 

4.6 Hz, Calkene), 76.1 (d, 
2
JCP = 2.4 Hz, Calkene), 87.5 (d, 

2
JCP = 1.4 Hz, C1), 118.2 (s, C9), 

125.4 (s, C4), 126.8 (s, C2), 129.2 (s, C3), 136.7 (d, 
3
JCP = 3.6 Hz, C11), 137.3 (s, C10), 

141.9 (s, C5), 142.7 (s, C8), 182.3 (d, 
2
JCP = 19.9 Hz, C12) 

Other 
13

C{
1
H} NMR peaks: 52.4 (s), 126.0 (s), 128.0 (s), 128.2 (s), 128.4 (s), 128.8 (s), 

156.7 (d, 2.8 Hz) 
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ESI-MS (m/z): Observed 424.0756, Expected C21H25NP
102

Ru 424.0768, Error = 0.7 

mDa.  
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9.7.10 Reaction of 14
NMe2

 with phenylacetylene. 

[Ru(η
5
-C5H5)(PMe3)(DMAP)2][PF6], 14

NMe2
 (21 mg, 0.03 mmol) and 4-

dimethylaminopyridine (9 mg, 0.07 mmol) was added to d2-dichloromethane. 

Phenylacetylene (3.4 µL, 0.03 mmol) was added, and the reaction monitored via NMR 

spectroscopy.  

Reported data for 30
NMe2,H

 were observed in situ, attempts to isolate the product were 

not successful, therefore only selected data has presented.  

Characterisation Data 

 

Figure 9.46: Labelled diagram of complex 30
NMe2,H

.    

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.55 (d, 9H, 

2
JHP = 9.5 Hz, H14), 3.04 (s, 6H, H13), 

3.47 (dd, 1H, 
3
JHP = 13.1 Hz, 

3
JHH = 6.9 Hz, H6/7), 4.90 (s, 5H, H1), 6.10 (dd, 1H, 

3
JHP = 

1.1 Hz, 
3
JHH = 6.9 Hz, H6/7), 6.20 (dd, 1H, 

3
JHH = 7.3 Hz, 

4
JHH = 2.7 Hz, H9), 6.30 (m, 

1H, H11), 7.06-7.12 (m, 4H, H2 + H4 + Impurity), 7.20 (m, 2.5H, H3 + Impurity), 7.35 

(d, 1.6H, 
3
JHH = 7.3 Hz, H8) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 16.1 (s, 

PMe3) 

ESI-MS (m/z): Observed 467.1195, Expected C23H30N2P
102

Ru 467.1191, Error = 0.5 

mDa 
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9.7.11 Reaction of 14
NMe2

 with 4-ethynyl-α,α,α-trifluorobenzene. 

[Ru(η
5
-C5H5)(PMe3)(DMAP)2][PF6], 14

NMe2
 (20 mg, 0.03 mmol) and 4-

dimethylaminopyridine (9 mg, 0.07 mmol) was added to d2-dichloromethane. 4-

Ethynyl-α,α,α-trifluorotoluene (5.1 µL, 0.03 mmol) was added, and the reaction 

monitored via NMR spectroscopy.  

Reported data for 30
NMe2,CF3

 were observed in situ, attempts to isolate the product were 

not successful, therefore only selected data has presented. 

Characterisation Data 

 

Figure 9.47: Labelled diagram of complex 30
NMe2,CF3

.    

1
H NMR (CD2Cl2, 500 MHz, 295 K): 1.55 (d, 9H, 

2
JHP = 9.5 Hz, H15), 3.04 (s, 6H, H12), 

3.45 (dd, 1H, 
3
JHP = 13.1 Hz, 

3
JHH = 6.8 Hz, H7/8), 4.92 (s, 5H, H1), 6.17 (dd, 1H, 

3
JHH = 

6.8 Hz, H7/8), 6.21 (dd, 1H, 
3
JHH = 7.2 Hz, 

4
JHH = 2.7 Hz, H10), 6.30 (m, 1H, H13), 7.18 

(d, 2H, 
3
JHH = 8.1 Hz, H4/5), 7.40 (d, 1H, 

3
JHH = 7.2 Hz, H9), 7.45 (d, 2.8H, 

3
JHH = 8.1 

Hz, H4/5 + Impurity) 

31
P{

1
H} NMR (CD2Cl2, 202 MHz, 295 K): -143.0 (sept, 

1
JPF = 711 Hz, PF6

-
), 15.6 (s, 

PMe3) 

ESI-MS (m/z): Observed 535.1074, Expected C24H29N2P
102

Ru 535.1065, Error = 1.0 

mDa 
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9.8  Synthesis of Organic Species and Catalytic Reactions 

9.8.1 Synthesis of 2-Styrylpyridine Derivatives. 

Literature Preparation 

The independent synthesis of the 2-styrylpyridine derivatives was followed as 

mentioned in the literature.
245

 

General methodology for alkenylation reactions of pyridine 

The general methodology for the catalytic reactions are mentioned below, however the 

alkyne and length of heating should be changed accordingly. The reaction scale was 

generally based on 10
H

 (40 mg). 

Entry Alkyne 
10

H 

(mol %) 

Pyridine 

equivalents 

Reaction 

conditions 

Time 

(hrs) 

Percentage 

Yield / 

Conversion 

1 PhC≡CH 20 20 50 °C 32 14 

2 4-CF3-C6H4C≡CH 20 20 50 °C 32 19 

3 4-CF3-C6H4C≡CH 100 55 50 °C 72 48
a
 

4 
5 x 1 equiv 

PhC≡CH 
20 55 50 °C 5 x 24 33

a
 

5 
5 x 1 equiv 

4-CF3-C6H4C≡CH 
20 55 50 °C 5 x 24 17

a
 

6 4-CF3-C6H4C≡CH 5 20 50 °C 24 2.5
b
 

7 4-CF3-C6H4C≡CH 20 55 50 °C 72 49
b
 

8 4-CF3-C6H4C≡CH 20 20 50 °C, CH2Cl2 48 24
a
 

9 4-CF3-C6H4C≡CH 20 20 
μwave, 50 °C, 

CH2Cl2 
1 7

b
 

10 4-CF3-C6H4C≡CH 20 20 μwave, 100 °C 0.5 9
b
 

 

Reaction conditions: Entries 1, 2, 6, 7 

To a Young’s ampule under nitrogen, [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], pyridine and 

alkyne were added. The reaction mixture was heated at 50 °C . The reaction mixture 

was allowed to cool and the product purified either by preparative TLC or column 

chromatography.  

Reaction conditions: Entry 3 
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To a Young’s ampule under nitrogen, [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6] (80 mg, 0.109 

mmol, 1 equiv), pyridine (1.2 mL, 14.8 mmol), and 4-ethynyl-α,α,α-trifluorotoluene (18 

μL, 0.109 mmol, 1 equiv) were added. The reaction mixture was heated at 50 °C for 72 

hours. The reaction mixture was allowed to cool to room temperature. The product was 

purified using preparative TLC with a solvent eluent of ethyl acetate: hexane (1:3) 

followed by passage through a silica plug. Conversion was shown to be quantitative by 

19
F NMR spectroscopy. Isolated yield 13 mg, 48 %. 

Reaction conditions:  Entries 4, 5 

To a Young’s ampule under nitrogen, [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], pyridine and 

alkyne were added. The reaction mixture was heated at 50 °C . After 24 hours the 

reaction mixture was removed from the graphite bath and under nitrogen atmosphere a 

further aliquot of alkyne added and the reaction mixture heated at 50 °C. The final step 

was repeated four more times. The reaction mixture was allowed to cool and the product 

purified either by preparative TLC or column chromatography. 

Reaction conditions: Entry 8 

To a Young’s ampule under nitrogen, [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6] (80 mg, 0.109 

mmol, 20 mol %), pyridine (880 μL, 10.9 mmol, 20 equiv), dichloromethane (1.50mL, 

271 equiv) and 4-ethynyl-α,α,α-trifluorotoluene (90 μL, 0.551 mmol, 1 equiv) were 

added. The reaction mixture was heated at 50 °C for 48 hours. The product was purified 

using column chromatography. The reaction mixture was allowed to cool to room 

temperature. Conversion was shown to be ca. 50 % by 
19

F NMR spectroscopy, isolated 

yield 48 mg, 35 %. 

Reaction conditions: Entries 9, 10 

To a microwave vial under nitrogen, [Ru(η
5
-C5H5)(PPh3)(NC5H5)2][PF6], pyridine 

(entry 10: dichloromethane) and alkyne were added. The reaction mixture was heated. 

The reaction mixture was allowed to cool and the reaction mixture analysed by NMR 

spectroscopy.  

Purification 

Preparative TLC: The reaction mixture was placed on the preparative TLC plate and a 

solvent eluent of ethyl acetate: hexane (1:3) was used.  

Column chromatography: The product was purified by column chromatography using 

silica gel with an ethyl acetate: hexane (1:10) eluent to give the product.  
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Characterisation Data 

 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 7.15 (m, 1H, H2), 7.18 (d, 1H, 

3
JHH = 16.2 Hz, 

H6/7), 7.30 (t, 1H, 7.4 Hz, H11), 7.38 (m, 3H, H4 +H10), 7.58 – 7.69 (m, 4H, H6/7 + H3 + 

H9), 8.57 (d, 1H, 
3
JHH = 4.5 Hz, H1) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 122.5 (broad s, C2 + C4), 127.4 (s, C9), 

128.5 (s, C6/7), 128.7 (s, C11), 129.1 (s, C10), 132.8 (s, C6/7), 136.9 (s, C3), 137.1 (s, C8), 

150.4 (s, C1), 155.9 (s, C5) 

ESI-MS (m/z): Observed 182.0960 [M+H
+
], Expected C13H12N 182.0964, Error = 0.4 

mDa 

1
H NMR (NC5D5, 500 MHz, 295 K): 7.11 (dd, 1H, 

3
JHH = 7.4 Hz, 

4
JHH = 4.7 Hz, H2), 

7.30 (t, 1H, 
3
JHH = 7.4 Hz, H11), 7.38 (t, 2H, 

3
JHH = 7.4 Hz, H10), 7.43-7.47 (m, 2H, H4 + 

H6/7), 7.61 (td, 1H, 
3
JHH = 7.7 Hz, 

4
JHH = 1.7 Hz, H3), 7.67 (d, 2H, 

3
JHH = 7.4 Hz, H9), 

8.03 (d, 1H, 
3
JHH = 16.0 Hz, H6/7), 8.74 (underneath d5-pyridine resonance, H1) 
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Characterisation Data 

 

1
H NMR (CD2Cl2, 500 MHz, 295 K): 7.19 (m, 1H, H2), 7.27 (d, 1H, 

3
JHH = 16.1 Hz, 

H6/7), 7.41 (d, 1H, 7.8 Hz, H4), 7.64 (d, 2H, 
3
JHH = 8.4 Hz, H10), 7.67-7.72 (m, 4H, H3 + 

H9 + H6/7), 8.59 (d,
3
JHH =  4.0 Hz, H1) 

19
F NMR (CD2Cl2, 470MHz, 295 K): -64.09 (s, CF3) 

13
C{

1
H} NMR (CD2Cl2, 125 MHz, 295 K): 123.0 (s, C4), 123.0 (s, C2), 124.7 (q, 

1
JCF = 

272 Hz, C12), 126.0 (q, 
3
JCF = 3.8 Hz, C10), 127.6 (s, C9), 129.9 (q, 

2
JCF = 32.3 Hz, C11), 

130.9 (s, C6/7), 131.1 (s, C6/7), 137.0 (s, C3), 140.8 (s, C8), 150.2 (s, C1), 155.2 (s, C5) 

ESI-MS (m/z): Observed 250.0833 [M+H
+
], Expected C14H11F3N 250.0838, Error = 0.5 

mDa. 

1
H NMR (NC5D5, 500 MHz, 295 K): 7.16 (dd, 1H, 

3
J

HH
 = 6.7 Hz, 

4
JHH = 5.1 Hz, H2), 

7.47-7.54 (m, 2H, H4 + H6/7), 7.64-7.68 (m, 3H, H3 + H9/10), 7.74 (d, 2H, 
3
JHH = 7.8 Hz, 

H9/10), 8.00 (d, 1H, 
3
JHH = 15.9 Hz, H6/7), 8.76 (d, underneath d5-pyridine resonance, H1)  



384 

Chapter 9 

9.8.2 Preparation of Pyridinium Tetrafluoroborate.
339

 

A solution of pyridine (1.0 mL, 12.3 mmol) and diethyl ether (5 mL) were stirred a 

under nitrogen atmosphere and cooled in an ice bath.  To this tetrafluoroboric acid 

diethyl ether complex (2.0 mL, 15 mmol) was added slowly. A white precipitate was 

collected by filtration and washed with diethyl ether (10 mL). Yield 1.85 g, 90 %. 

Characterisation Data 

1
H NMR (NC5D5, 500 MHz, 295 K): 16.99 (broad), pyridine resonances overlap with 

d5-pyridine resonances.  

9.8.3 Preparation of Pyridinium Hexafluorophosphate.
340

 

Using aerobic reaction conditions, a solution of pyridine (1.0 mL, 12.3 mmol) and 

diethyl ether (25 mL) were stirred in a conical flask in a well ventilated fume-hood. 

Hexafluorophosphoric acid (60 % solution in water, 2.0 mL, 15 mmol) was added drop-

wise to the reaction flask.  A white precipitate was collected and dried under vacuum. 

The product was recrystallised from hot ethanol and washed with diethyl ether (2 x 50 

mL). The product was dried under vacuum.  

Characterisation Data 

1
H NMR (d6-acetone, 500 MHz, 295 K): 8.30 (m, 2H), 8.84 (m, 1H), 9.16 (m,, 2H), 

12.68 (broad) 
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 Appendix   

Complex 7 

Identification code  jml1163  

Empirical formula  C15H13F6PRu  

Formula weight  439.29  

Temperature/K  110.00(10)  

Crystal system  monoclinic  

Space group  P21/n  

a/Å  9.2345(3)  

b/Å  21.0319(10)  

c/Å  15.3415(8)  

α/°  90.00  

β/°  93.266(4)  

γ/°  90.00  

Volume/Å
3
  2974.8(2)  

Z  8  

ρcalc mg/mm
3 
 1.962  

Absorption coefficient /mm
-1

  1.221  

F(000)  1728.0  

Crystal size/mm
3
  0.3234 × 0.1041 × 0.0726  

2Θ range for data collection  5.66 to 64.56°  

Index ranges  -13 ≤ h ≤ 13, -30 ≤ k ≤ 30, -21 ≤ l ≤ 22  

Reflections collected  28152  

Independent reflections  9616[R(int) = 0.0257]  

Data/restraints/parameters  9616/0/415  

Goodness-of-fit on F2  1.047  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0285, wR2 = 0.0626  

Final R indexes [all data]  R1 = 0.0398, wR2 = 0.0686  

Largest diff. peak/hole /e Å
-3

  0.80/-0.60  
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Complex 10
H

  

Identification code  jml1002m 

Empirical formula  C34H32Cl2F6N2P2Ru 

Formula weight  816.53 

Temperature/K  110(2) 

Crystal system  Triclinic 

Space group  P-1 

a/Å  9.2639(5) 

b/Å  10.8917(5) 

c/Å  18.2008(9) 

α/°  102.0870(10) 

β/°  103.9570(10) 

γ/°  101.4050(10) 

Volume/Å
3
  1682.04(15) 

Z  2 

ρcalc mg/mm
3 
 1.612 

Absorption coefficient /mm
-1

  0.782 

F(000)  824 

Crystal size/mm
3
  0.13 x 0.08 x 0.06 

2Θ range for data collection  1.98 to 28.32°. 

Index ranges  -12 ≤ h ≤ 12, -14 ≤ k ≤ 14, -24 ≤ l ≤ 24 

Reflections collected  17464 

Independent reflections  8312 [R(int) = 0.0299] 

Data/restraints/parameters  8312 / 12 / 488 

Goodness-of-fit on F2  1.011 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0337, wR2 = 0.0729 

Final R indexes [all data]  R1 = 0.0503, wR2 = 0.0788 

Largest diff. peak/hole / e Å
-3

  0.581 and -0.717 
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Complex 10
Me

 

Identification code  jml1110 

Empirical formula  C35H34F6N2P2Ru 

Formula weight  759.65 

Temperature/K  110.0 

Crystal system  monoclinic 

Space group  P21/c 

a/Å  11.5251(3) 

b/Å  20.2284(5) 

c/Å  13.9040(3) 

α/°  90.00 

β/°  91.661(3) 

γ/°  90.00 

Volume/Å
3
  3240.14(13) 

Z  4 

ρcalc mg/mm
3 
 1.557 

Absorption coefficient /mm
-1

  0.646 

F(000)  1544 

Crystal size/mm
3
  0.1917 × 0.1057 × 0.064 

2Θ range for data collection  5.86 to 55.12° 

Index ranges  -12 ≤ h ≤ 15, -19 ≤ k ≤ 26, -18 ≤ l ≤ 13 

Reflections collected  13662 

Independent reflections  7325[R(int) = 0.0232] 

Data/restraints/parameters  7325/82/475 

Goodness-of-fit on F2  1.045 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0535, wR2 = 0.1282 

Final R indexes [all data]  R1 = 0.0648, wR2 = 0.1361 

Largest diff. peak/hole / e Å
-3

  2.586/-1.694 

  



388 

 

Complex 10
NMe2

  

Identification code  jml1307 

Empirical formula  C38H42Cl2F6N4P2Ru 

Formula weight  902.67 

Temperature/K  110.00(10) 

Crystal system  monoclinic 

Space group  C2/c 

a/Å  27.1714(3) 

b/Å  20.9945(2) 

c/Å  13.71206(17) 

α/°  90.00 

β/°  99.4272(12) 

γ/°  90.00 

Volume/Å
3
  7716.42(15) 

Z  8 

ρcalc mg/mm
3 
 1.554 

Absorption coefficient /mm
-1

  0.691 

F(000)  3680.0 

Crystal size/mm
3
  0.3313 × 0.2727 × 0.1486 

2Θ range for data collection  6.02 to 64.24° 

Index ranges  -40 ≤ h ≤ 40, -30 ≤ k ≤ 30, -20 ≤ l ≤ 20 

Reflections collected  32900 

Independent reflections  12369[R(int) = 0.0245] 

Data/restraints/parameters  12369/0/484 

Goodness-of-fit on F2  1.029 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0335, wR2 = 0.0787 

Final R indexes [all data]  R1 = 0.0408, wR2 = 0.0837 

Largest diff. peak/hole / e Å
-3

  1.48/-1.29 

 

  



389 

 

Complex 11 

Identification code  jml1211 

Empirical formula  C36H36Cl2F6N2P2Ru 

Formula weight  844.58 

Temperature/K  110.00(10) 

Crystal system  monoclinic 

Space group  P21/c 

a/Å  10.7946(5) 

b/Å  15.1082(5) 

c/Å  22.6794(10) 

α/°  90.00 

β/°  103.385(5) 

γ/°  90.00 

Volume/Å
3
  3598.2(3) 

Z  4 

ρcalc mg/mm
3 
 1.559 

Absorption coefficient /mm
-1

  0.734 

F(000)  1712.0 

Crystal size/mm
3
  0.28 × 0.08 × 0.03 

2Θ range for data collection  5.7 to 64.46° 

Index ranges  -16 ≤ h ≤ 15, -12 ≤ k ≤ 22, -33 ≤ l ≤ 32 

Reflections collected  27692 

Independent reflections  11517[R(int) = 0.0293] 

Data/restraints/parameters  11517/36/570 

Goodness-of-fit on F2  1.076 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0424, wR2 = 0.1030 

Final R indexes [all data]  R1 = 0.0560, wR2 = 0.1106 

Largest diff. peak/hole / e Å
-3

  1.08/-0.70 

  



390 

 

Complex 12 

Identification code  jml1238 

Empirical formula  C31H30F6N2P2Ru 

Formula weight  707.58 

Temperature/K  110.00(10) 

Crystal system  triclinic 

Space group  P-1 

a/Å  9.4451(4) 

b/Å  10.9135(6) 

c/Å  16.2138(7) 

α/°  102.623(4) 

β/°  95.108(3) 

γ/°  113.098(5) 

Volume/Å
3
  1471.46(14) 

Z  2 

ρcalc mg/mm
3 
 1.597 

Absorption coefficient /mm
-1

  0.705 

F(000)  716.0 

Crystal size/mm
3
  0.1951 × 0.1794 × 0.1376 

2Θ range for data collection  5.76 to 56.64° 

Index ranges  -12 ≤ h ≤ 12, -14 ≤ k ≤ 7, -21 ≤ l ≤ 21 

Reflections collected  12068 

Independent reflections  7007[R(int) = 0.0348] 

Data/restraints/parameters  7007/36/432 

Goodness-of-fit on F2  1.042 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0486, wR2 = 0.1097 

Final R indexes [all data]  R1 = 0.0816, wR2 = 0.1258 

Largest diff. peak/hole / e Å
-3

  0.99/-1.06 

  



391 

 

Complex 13
Me

  

Identification code  jml1162 

Empirical formula  C31H32N4F6P2Ru 

Formula weight  737.62 

Temperature/K  110.00(10) 

Crystal system  orthorhombic 

Space group  Pna21 

a/Å  22.6469(8) 

b/Å  13.9495(4) 

c/Å  9.7673(4) 

α/°  90.00 

β/°  90.00 

γ/°  90.00 

Volume/Å
3
  3085.60(19) 

Z  4 

ρcalc mg/mm
3 
 1.588 

Absorption coefficient /mm
-1

  0.677 

F(000)  1496.0 

Crystal size/mm
3
  0.3916 × 0.0783 × 0.0181 

2Θ range for data collection  5.84 to 64.42° 

Index ranges  -32 ≤ h ≤ 31, -20 ≤ k ≤ 20, -11 ≤ l ≤ 13 

Reflections collected  17379 

Independent reflections  8444[R(int) = 0.0297] 

Data/restraints/parameters  8444/1/399 

Goodness-of-fit on F2  1.069 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0315, wR2 = 0.0712 

Final R indexes [all data]  R1 = 0.0356, wR2 = 0.0734 

Largest diff. peak/hole / e Å
-3

  0.60/-0.40 

  



392 

 

Complex 13
tBu 

Identification code  ml1212 

Empirical formula  C37.500015H45.00003ClF6N4P2Ru 

Formula weight  864.24 

Temperature/K  110.00(10) 

Crystal system  monoclinic 

Space group  P21 

a/Å  15.4108(13) 

b/Å  9.5908(4) 

c/Å  28.366(2) 

α/°  90.00 

β/°  104.941(9) 

γ/°  90.00 

Volume/Å
3
  4050.7(5) 

Z  4 

ρcalc mg/mm
3 
 1.417 

Absorption coefficient /mm
-1

  0.591 

F(000)  1772.0 

Crystal size/mm
3
  0.2514 × 0.0821 × 0.0322 

2Θ range for data collection  5.8 to 57.6° 

Index ranges  -20 ≤ h ≤ 13, -12 ≤ k ≤ 7, -38 ≤ l ≤ 33 

Reflections collected  17416 

Independent reflections  12321[R(int) = 0.0494] 

Data/restraints/parameters  12321/545/976 

Goodness-of-fit on F2  1.152 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0949, wR2 = 0.2142 

Final R indexes [all data]  R1 = 0.1019, wR2 = 0.2189 

Largest diff. peak/hole / e Å
-3

  3.55/-1.53 

 

  



393 

 

Complex 14
H

 

Identification code  jml1164 

Empirical formula  C18H24N2F6P2Ru 

Formula weight  545.40 

Temperature/K  110.00(10) 

Crystal system  monoclinic 

Space group  C2/c 

a/Å  31.046(3) 

b/Å  8.5236(7) 

c/Å  17.2938(12) 

α/°  90.00 

β/°  108.356(8) 

γ/°  90.00 

Volume/Å
3
  4343.5(6) 

Z  8 

ρcalc mg/mm
3 
 1.668 

Absorption coefficient /mm
-1

  0.926 

F(000)  2192.0 

Crystal size/mm
3
  0.2498 × 0.2377 × 0.1032 

2Θ range for data collection  6.16 to 64.52° 

Index ranges  -43 ≤ h ≤ 45, -9 ≤ k ≤ 12, -25 ≤ l ≤ 25 

Reflections collected  22590 

Independent reflections  7006[R(int) = 0.0263] 

Data/restraints/parameters  7006/0/267 

Goodness-of-fit on F2  1.037 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0239, wR2 = 0.0529 

Final R indexes [all data]  R1 = 0.0280, wR2 = 0.0553 

Largest diff. peak/hole / e Å
-3

  0.50/-0.50 

   



394 

 

 Complex 14
NMe2

 

Identification code  jml1207  

Empirical formula  C45.25H71Cl0.5F12N8O0.25P4Ru2  

Formula weight  1302.85  

Temperature/K  110.00(10)  

Crystal system  orthorhombic  

Space group  Pbcn  

a/Å  34.2917(14)  

b/Å  18.5242(6)  

c/Å  17.6601(7)  

α/°  90.00  

β/°  90.00  

γ/°  90.00  

Volume/Å
3
  11218.1(7)  

Z  8  

ρcalc mg/mm
3 
 1.543  

Absorption coefficient /mm
-1

  0.756  

F(000)  5320.0  

Crystal size/mm
3
  0.293 × 0.1553 × 0.044  

2Θ range for data collection  5.72 to 54.12°  

Index ranges  -43 ≤ h ≤ 40, -23 ≤ k ≤ 15, -22 ≤ l ≤ 19  

Reflections collected  32357  

Independent reflections  12302[R(int) = 0.0436]  

Data/restraints/parameters  12302/71/904  

Goodness-of-fit on F2  1.060  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0727, wR2 = 0.1693  

Final R indexes [all data]  R1 = 0.0972, wR2 = 0.1849  

Largest diff. peak/hole / e Å
-3

  1.72/-1.50  

  



395 

 

 Complex 15 

Identification code  jml1018c  

Empirical formula  C136H228F42N12P14Ru6  

Formula weight  3869.36  

Temperature/K  163.0  

Crystal system  rhombohedral  

Space group  R-3:r  

a/Å  16.9556(10)  

b/Å  16.9556(10)  

c/Å  16.9556(10)  

α/°  105.795  

β/°  105.795  

γ/°  105.795  

Volume/Å
3
  4185.9(4)  

Z  1  

ρcalc mg/mm
3 
 1.5349  

Absorption coefficient /mm
-1

  0.757  

F(000)  1975.1  

Crystal size/mm
3
  0.31 × 0.07 × 0.05  

2Θ range for data collection  3.02 to 56.58°  

Index ranges  -22 ≤ h ≤ 22, -22 ≤ k ≤ 22, -22 ≤ l ≤ 21  

Reflections collected  43426  

Independent reflections  6932[R(int) = 0.0808]  

Data/restraints/parameters  6932/3/319  

Goodness-of-fit on F2  1.041  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0461, wR2 = N/A  

Final R indexes [all data]  R1 = 0.0743, wR2 = 0.1162  

Largest diff. peak/hole / e Å
-3

  1.38/-1.47  

  



396 

 

 Complex 16 

Identification code  jml1022m 

Empirical formula  C33H30F6N2O3P2Ru 

Formula weight  779.60 

Temperature/K  110(2) 

Crystal system  Monoclinic 

Space group  P2(1)/c 

a/Å  15.795(9) 

b/Å  10.873(6) 

c/Å  19.527(11) 

α/°  90 

β/°  103.318(11) 

γ/°  90 

Volume/Å
3
  3263(3) 

Z  4 

ρcalc mg/mm
3 
 1.587 

Absorption coefficient /mm
-1

  0.650 

F(000)  1576 

Crystal size/mm
3
  0.25 x 0.25 x 0.20 

2Θ range for data collection  1.32 to 25.25 

Index ranges  -18<=h<=18, -12<=k<=12, -23<=l<=23 

Reflections collected  25177 

Independent reflections  5771 [R(int) = 0.0600] 

Data/restraints/parameters  5771 / 0 / 424 

Goodness-of-fit on F2  1.095 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0653, wR2 = 0.1642 

Final R indexes [all data]  R1 = 0.0715, wR2 = 0.1685 

Largest diff. peak/hole / e Å
-3

  3.115 and -0.957 

  



397 

 

 Complex 17
H

 

Identification code  jml1107 

Empirical formula  C37H33Cl2F6NP2Ru 

Formula weight  839.55 

Temperature/K  110.0 

Crystal system  triclinic 

Space group  P-1 

a/Å  11.4116(7) 

b/Å  12.9092(6) 

c/Å  13.8078(6) 

α/°  85.101(4), 

β/°  65.774(5) 

γ/°  70.153(5) 

Volume/Å
3
  1741.34(15) 

Z  2 

ρcalc mg/mm
3 
 1.601 

Absorption coefficient /mm
-1

  0.757 

F(000)  848 

Crystal size/mm
3
  0.2745 × 0.1787 × 0.1579 

2Θ range for data collection  6.12 to 59.14° 

Index ranges  -10 ≤ h ≤ 15, -17 ≤ k ≤ 17, -18 ≤ l ≤ 19 

Reflections collected  15370 

Independent reflections  9706[R(int) = 0.0203] 

Data/restraints/parameters  9706/0/450 

Goodness-of-fit on F2  1.036 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0270, wR2 = 0.0628 

Final R indexes [all data]  R1 = 0.0307, wR2 = 0.0653 

Largest diff. peak/hole / e Å
-3

  0.596/-0.495 

  



398 

 

 Complex 17
CF3

  

Identification code  jml1146 

Empirical formula  C38H32Cl2F9NP2Ru 

Formula weight  907.56 

Temperature/K  110.00(10) 

Crystal system  monoclinic 

Space group  P21/n 

a/Å  10.7064(4) 

b/Å  18.5122(7) 

c/Å  18.6411(7) 

α/°  90.00 

β/°  90.298(3) 

γ/°  90.00 

Volume/Å
3
  3694.6(2) 

Z  4 

ρcalc mg/mm
3 
 1.632 

Absorption coefficient /mm
-1

  0.731 

F(000)  1824 

Crystal size/mm
3
  0.2257 × 0.051 × 0.0362 

2Θ range for data collection  5.82 to 55.78° 

Index ranges  -8 ≤ h ≤ 12, -14 ≤ k ≤ 24, -23 ≤ l ≤ 23 

Reflections collected  14218 

Independent reflections  7322[R(int) = 0.0334] 

Data/restraints/parameters  7322/0/478 

Goodness-of-fit on F2  1.048 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0439, wR2 = 0.0751 

Final R indexes [all data]  R1 = 0.0602, wR2 = 0.0815 

Largest diff. peak/hole / e Å
-3

  0.742/-0.829 

  



399 

 

 Complex 18 

Identification code  jml1228  

Empirical formula  C21H25F6NP2Ru  

Formula weight  568.43  

Temperature/K  110.00(10)  

Crystal system  monoclinic  

Space group  P21/n  

a/Å  11.6225(7)  

b/Å  12.7440(8)  

c/Å  15.3075(10)  

α/°  90.00  

β/°  91.431(6)  

γ/°  90.00  

Volume/Å
3
  2266.6(2)  

Z  4  

ρcalc mg/mm
3 
 1.666  

Absorption coefficient /mm
-1

  0.890  

F(000)  1144.0  

Crystal size/mm
3
  0.3456 × 0.0794 × 0.0554  

2Θ range for data collection  6.4 to 57.52°  

Index ranges  -14 ≤ h ≤ 15, -15 ≤ k ≤ 17, -16 ≤ l ≤ 20  

Reflections collected  10651  

Independent reflections  5129[R(int) = 0.0403]  

Data/restraints/parameters  5129/46/366  

Goodness-of-fit on F2  1.159  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0712, wR2 = 0.1403  

Final R indexes [all data]  R1 = 0.0953, wR2 = 0.1533  

Largest diff. peak/hole / e Å
-3

  1.93/-1.72  

  



400 

 

 Complex 21
H,H

  

Identification code  2011src0363r1 

Empirical formula  C45H39Cl2F6NP2Ru 

Formula weight  941.68 

Temperature/K  120(2) 

Crystal system  tetragonal 

Space group  P42/n 

a/Å  28.3177(16) 

b/Å  28.3177(16) 

c/Å  10.7605(6) 

α/°  90.00 

β/°  90.00 

γ/°  90.00 

Volume/Å
3
  8628.8(8) 

Z  8 

ρcalc mg/mm
3 
 1.450 

Absorption coefficient /mm
-1

  0.620 

F(000)  3824.0 

Crystal size/mm
3
  0.28 × 0.02 × 0.02 

2Θ range for data collection  5.92 to 55.24° 

Index ranges  -36 ≤ h ≤ 22, -36 ≤ k ≤ 36, -12 ≤ l ≤ 14 

Reflections collected  39939 

Independent reflections  9908[R(int) = 0.0830] 

Data/restraints/parameters  9908/30/548 

Goodness-of-fit on F2  1.047 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0981, wR2 = 0.1949 

Final R indexes [all data]  R1 = 0.1411, wR2 = 0.2139 

Largest diff. peak/hole / e Å
-3

  2.81/-0.87 

  



401 

 

 Complex 22
H,H

 

Identification code  jml1112  

Empirical formula  C36H31F6NP2Ru  

Formula weight  754.63  

Temperature/K  163  

Crystal system  monoclinic  

Space group  C2/c  

a/Å  22.6217(5)  

b/Å  20.8294(4)  

c/Å  16.0998(3)  

α/°  90.00  

β/°  102.015(2)  

γ/°  90.00  

Volume/Å
3
  7420.0(3)  

Z  8  

ρcalc mg/mm
3 
 1.351  

Absorption coefficient /mm
-1

  0.563  

F(000)  3056.0  

Crystal size/mm
3
  0.2773 × 0.1677 × 0.1  

2Θ range for data collection  6.14 to 55.12°  

Index ranges  -29 ≤ h ≤ 29, -27 ≤ k ≤ 27, -20 ≤ l ≤ 20  

Reflections collected  50183  

Independent reflections  8561[R(int) = 0.0291]  

Data/restraints/parameters  8561/0/425  

Goodness-of-fit on F2  1.113  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0262, wR2 = 0.0738  

Final R indexes [all data]  R1 = 0.0286, wR2 = 0.0749  

Largest diff. peak/hole / e Å
-3

  0.41/-0.42  

  



402 

 

 Complex 
13

C-22
H,H

  

Identification code  jml1009m 

Empirical formula  C37H33Cl2F6NP2Ru 

Formula weight  839.55 

Temperature/K  110(2) 

Crystal system  Triclinic 

Space group  P-1 

a/Å  11.3140(6) 

b/Å  12.9363(7) 

c/Å  13.8288(7) 

α/°  78.9050(10) 

β/°  66.3940(10) 

γ/°  70.5150(10) 

Volume/Å
3
  1744.35(16) 

Z  2 

ρcalc mg/mm
3 
 1.598 

Absorption coefficient /mm
-1

  0.756 

F(000)  848 

Crystal size/mm
3
  0.32 x 0.24 x 0.22 

2Θ range for data collection  1.61 to 30.01 

Index ranges  -15<=h<=15, -18<=k<=18, -19<=l<=19 

Reflections collected  19943 

Independent reflections  9826 [R(int) = 0.0225] 

Data/restraints/parameters  9826 / 0 / 449 

Goodness-of-fit on F2  1.041 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0341, wR2 = 0.0794 

Final R indexes [all data]  R1 = 0.0410, wR2 = 0.0835 

Largest diff. peak/hole / e Å
-3

  0.818 and -0. 

  



403 

 

 Complex 22
H,F

  

Identification code  jml1114 

Empirical formula  C37H32Cl2F7NP2Ru 

Formula weight  857.55 

Temperature/K  110.0 

Crystal system  triclinic 

Space group  P1 

a/Å  8.3978(5) 

b/Å  10.6030(5) 

c/Å  11.0593(6) 

α/°  64.034(5)  

β/°  83.156(4) 

γ/°  86.664(4) 

Volume/Å
3
  879.00(8) 

Z  1 

ρcalc mg/mm
3 
 1.620 

Absorption coefficient /mm
-1

  0.756 

F(000)  432 

Crystal size/mm
3
  0.187 × 0.138 × 0.119 

2Θ range for data collection  6.06 to 64.36° 

Index ranges  -12 ≤ h ≤ 12, -15 ≤ k ≤ 14, -16 ≤ l ≤ 16 

Reflections collected  21591 

Independent reflections  11047[R(int) = 0.0266] 

Data/restraints/parameters  11047/3/487 

Goodness-of-fit on F2  1.030 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0283, wR2 = 0.0653 

Final R indexes [all data]  R1 = 0.0292, wR2 = 0.0662 

Largest diff. peak/hole / e Å
-3

  0.924/-0.505 

  



404 

 

 Complex 22
H,CF3 

 

Identification code  jml1121 

Empirical formula  C38H32Cl2F9NP2Ru 

Formula weight  907.56 

Temperature/K  110.0 

Crystal system  monoclinic 

Space group  P21/n 

a/Å  10.7329(3) 

b/Å  18.4072(4) 

c/Å  18.7217(5) 

α/°  90.00 

β/°  91.511(3) 

γ/°  90.00 

Volume/Å
3
  3697.43(15) 

Z  4 

ρcalc mg/mm
3 
 1.630 

Absorption coefficient /mm
-1

  0.731 

F(000)  1824 

Crystal size/mm
3
  0.1595 × 0.1051 × 0.0832 

2Θ range for data collection  6.12 to 55.9° 

Index ranges  -6 ≤ h ≤ 14, -24 ≤ k ≤ 22, -24 ≤ l ≤ 22 

Reflections collected  14730 

Independent reflections  7417[R(int) = 0.0257] 

Data/restraints/parameters  7417/0/478 

Goodness-of-fit on F2  1.031 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0374, wR2 = 0.0759 

Final R indexes [all data]  R1 = 0.0503, wR2 = 0.0817 

Largest diff. peak/hole / e Å
-3

  0.916/-1.175 

  



405 

 

 Complex 22
Me,H 

 

Identification code  jml1109 

Empirical formula  C38H35Cl2F6NP2Ru 

Formula weight  853.58 

Temperature/K  110.0 

Crystal system  monoclinic 

Space group  C2/c 

a/Å  33.6565(11)  

b/Å  10.6213(2) 

c/Å  20.3430(5) 

α/°  90.00 

β/°  94.793(3) 

γ/°  90.00 

Volume/Å3  7246.7(3) 

Z  8 

ρcalc mg/mm3  1.565 

Absorption coefficient /mm-1  0.729 

F(000)  3456 

Crystal size/mm3  0.1972 × 0.0674 × 0.0466 

2Θ range for data collection  6.46 to 64.08° 

Index ranges  -49 ≤ h ≤ 45, -15 ≤ k ≤ 15, -16 ≤ l ≤ 30 

Reflections collected  20757 

Independent reflections  11366[R(int) = 0.0255] 

Data/restraints/parameters  11366/0/507 

Goodness-of-fit on F2  1.046 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0379, wR2 = 0.0805 

Final R indexes [all data]  R1 = 0.0513, wR2 = 0.0867 

Largest diff. peak/hole / e Å-3  1.015/-1.016 
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Complex 22
Me,CF3

  

Identification code  jml1131  

Empirical formula  C38H32F9NP2Ru  

Formula weight  836.66  

Temperature/K  109.95(10)  

Crystal system  triclinic  

Space group  P-1  

a/Å  10.3542(5)  

b/Å  17.2739(9)  

c/Å  21.0852(8)  

α/°  106.932(4)  

β/°  91.081(4)  

γ/°  103.714(4)  

Volume/Å
3
  3489.2(3)  

Z  4  

ρcalc mg/mm
3 
 1.593  

Absorption coefficient /mm
-1

  0.619  

F(000)  1688.0  

Crystal size/mm
3
  0.2067 × 0.0925 × 0.0908  

2Θ range for data collection  5.94 to 52.04°  

Index ranges  -12 ≤ h ≤ 12, -15 ≤ k ≤ 21, -26 ≤ l ≤ 25  

Reflections collected  26595  

Independent reflections  13557[R(int) = 0.0355]  

Data/restraints/parameters  13557/0/937  

Goodness-of-fit on F2  1.143  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0538, wR2 = 0.1107  

Final R indexes [all data]  R1 = 0.0681, wR2 = 0.1175  

Largest diff. peak/hole / e Å
-3

  1.19/-0.90  
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 Complex 22
NMe2,H

  

Identification code  jml1124 

Empirical formula  C39.5H39Cl3F6N2P2Ru 

Formula weight  925.09 

Temperature/K  110.0 

Crystal system  triclinic 

Space group  P-1 

a/Å  9.8503(5) 

b/Å  13.2838(7) 

c/Å  14.6501(8) 

α/°  90.431(4) 

β/°  91.645(4) 

γ/°  91.027(4) 

Volume/Å
3
  1915.80(18) 

Z  2 

ρcalc mg/mm
3 
 1.604 

Absorption coefficient /mm
-1

  0.764 

F(000)  938 

Crystal size/mm
3
  0.2459 × 0.1692 × 0.1157 

2Θ range for data collection  5.76 to 64.3° 

Index ranges  -14 ≤ h ≤ 14, -19 ≤ k ≤ 18, -21 ≤ l ≤ 21 

Reflections collected  44826 

Independent reflections  12496[R(int) = 0.0380] 

Data/restraints/parameters  12496/7/507 

Goodness-of-fit on F2  1.112 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0405, wR2 = 0.1089 

Final R indexes [all data]  R1 = 0.0465, wR2 = 0.1129 

Largest diff. peak/hole / e Å
-3

  1.213/-2.088 
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 Complex 27a
CF3

  

Identification code  jml1217_twin1_hklf4 

Empirical formula  C38H32F9NP2Ru 

Formula weight  836.66 

Temperature/K  110.00(10) 

Crystal system  triclinic 

Space group  P-1 

a/Å  10.2610(3) 

b/Å  17.4414(10) 

c/Å  20.2361(11) 

α/°  105.462(5) 

β/°  90.076(4) 

γ/°  101.595(4) 

Volume/Å
3
  3413.5(3) 

Z  4 

ρcalc mg/mm
3 
 1.628 

Absorption coefficient /mm
-1

  0.633 

F(000)  1688.0 

Crystal size/mm
3
  0.337 × 0.0855 × 0.0594 

2Θ range for data collection  5.68 to 57.16° 

Index ranges  -13 ≤ h ≤ 13, -22 ≤ k ≤ 23, -26 ≤ l ≤ 27 

Reflections collected  16509 

Independent reflections  16513[R(int) = 0.0000] 

Data/restraints/parameters  16513/6/922 

Goodness-of-fit on F2  1.026 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0608, wR2 = 0.1575 

Final R indexes [all data]  R1 = 0.0753, wR2 = 0.1659 

Largest diff. peak/hole / e Å
-3

  1.60/-1.64 
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 Complex 30
H,H 

 

Identification code  jml1233 

Empirical formula  C21H25F6NP2Ru 

Formula weight  568.43 

Temperature/K  110.00(10) 

Crystal system  monoclinic 

Space group  P21/c 

a/Å  9.98423(13) 

b/Å  12.43212(12) 

c/Å  18.40289(18) 

α/°  90.00 

β/°  104.5013(11) 

γ/°  90.00 

Volume/Å
3
  2211.49(4) 

Z  4 

ρcalc mg/mm
3 
 1.707 

Absorption coefficient /mm
-1

  0.913 

F(000)  1144.0 

Crystal size/mm
3
  0.2077 × 0.1435 × 0.12 

2Θ range for data collection  6.2 to 64.6° 

Index ranges  -14 ≤ h ≤ 14, -17 ≤ k ≤ 17, -27 ≤ l ≤ 26 

Reflections collected  20877 

Independent reflections  7196[R(int) = 0.0249] 

Data/restraints/parameters  7196/0/338 

Goodness-of-fit on F2  1.075 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0334, wR2 = 0.0798 

Final R indexes [all data]  R1 = 0.0398, wR2 = 0.0838 

Largest diff. peak/hole / e Å
-3

  2.83/-0.52 
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 Complex 30
NMe2,H

  

Identification code  jml1208a  

Empirical formula  C23H30F6N2P2Ru  

Formula weight  611.50  

Temperature/K  110.00(10)  

Crystal system  triclinic  

Space group  P-1  

a/Å  10.3293(6)  

b/Å  11.3493(6)  

c/Å  13.1950(9)  

α/°  65.248(6)  

β/°  86.687(5)  

γ/°  63.432(5)  

Volume/Å
3
  1240.32(16)  

Z  2  

ρcalc mg/mm
3 
 1.637  

Absorption coefficient /mm
-1

  0.821  

F(000)  620.0  

Crystal size/mm
3
  0.3231 × 0.2145 × 0.0974  

2Θ range for data collection  6.06 to 64.2°  

Index ranges  -13 ≤ h ≤ 14, -16 ≤ k ≤ 15, -18 ≤ l ≤ 17  

Reflections collected  12816  

Independent reflections  7729[R(int) = 0.0197]  

Data/restraints/parameters  7729/117/492  

Goodness-of-fit on F2  1.124  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0307, wR2 = 0.0736  

Final R indexes [all data]  R1 = 0.0354, wR2 = 0.0767  

Largest diff. peak/hole / e Å
-3

  0.92/-0.87  
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 Complex 30
H,CF3

  

Identification code  jml1128 

Empirical formula  C40H36F3NPRu 

Formula weight  719.74 

Temperature/K  110.0 

Crystal system  monoclinic 

Space group  P21/c 

a/Å  12.3602(11) 

b/Å  15.4872(11) 

c/Å  17.2133(10) 

α/°  90.00 

β/°  96.724(6) 

γ/°  90.00 

Volume/Å
3
  3272.4(4) 

Z  4 

ρcalc mg/mm
3 
 1.461 

Absorption coefficient /mm
-1

  0.575 

F(000)  1476 

Crystal size/mm
3
  0.1905 × 0.0984 × 0.0429 

2Θ range for data collection  6.52 to 61.18° 

Index ranges  -15 ≤ h ≤ 16, -19 ≤ k ≤ 20, -17 ≤ l ≤ 24 

Reflections collected  17427 

Independent reflections  8791[R(int) = 0.0327] 

Data/restraints/parameters  8791/0/436 

Goodness-of-fit on F2  1.059 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0360, wR2 = 0.0812 

Final R indexes [all data]  R1 = 0.0482, wR2 = 0.0879 

Largest diff. peak/hole / e Å
-3

  0.776/-0.869 
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 Complex 30
NMe2,CF3

 

Identification code  jml1138 

Empirical formula  C38H31F3NPRu 

Formula weight  690.68 

Temperature/K  110.00(10) 

Crystal system  monoclinic 

Space group  P21/c 

a/Å  11.6354(2) 

b/Å  16.8259(4) 

c/Å  17.0044(3) 

α/°  90.00 

β/°  97.6003(18) 

γ/°  90.00 

Volume/Å3  3299.82(11) 

Z  4 

ρcalc mg/mm3  1.390 

Absorption coefficient /mm-1  0.567 

F(000)  1408 

Crystal size/mm3  0.1817 × 0.0935 × 0.0894 

2Θ range for data collection  6 to 60.14° 

Index ranges  -15 ≤ h ≤ 15, 0 ≤ k ≤ 23, 0 ≤ l ≤ 23 

Reflections collected  8152 

Independent reflections  8152[R(int) = 0.0000] 

Data/restraints/parameters  8152/0/402 

Goodness-of-fit on F2  1.171 

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0728, wR2 = 0.1799 

Final R indexes [all data]  R1 = 0.0932, wR2 = 0.1892 

Largest diff. peak/hole / e Å-3  1.308/-1.234 
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 Unexpected structure from 2-methylpyridine ligand 

Identification code  jml1324  

Empirical formula  C35H40F6N2P2Ru  

Formula weight  765.70  

Temperature/K  110.00(10)  

Crystal system  monoclinic  

Space group  P21/n  

a/Å  11.0042(2)  

b/Å  17.9480(3)  

c/Å  17.2178(3)  

α/°  90.00  

β/°  104.374(2)  

γ/°  90.00  

Volume/Å
3
  3294.13(10)  

Z  4  

ρcalc mg/mm
3 
 1.544  

Absorption coefficient /mm
-1

  0.636  

F(000)  1568.0  

Crystal size/mm
3
  0.1138 × 0.1037 × 0.0325  

2Θ range for data collection  5.86 to 58.88°  

Index ranges  -10 ≤ h ≤ 15, -23 ≤ k ≤ 21, -23 ≤ l ≤ 23  

Reflections collected  15635  

Independent reflections  7827[R(int) = 0.0299]  

Data/restraints/parameters  7827/0/416  

Goodness-of-fit on F2  1.028  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0405, wR2 = 0.0896  

Final R indexes [all data]  R1 = 0.0516, wR2 = 0.0962  

Largest diff. peak/hole / e Å
-3

  0.85/-0.76  
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Definitions 

 Abbreviations 

Å Angstroms 

dppm Bis(diphenylphosphino)methane 

dppe 1,2-Bis(diphenylphosphino)ethane 

d Doublet 

δc Carbon Chemical Shift 

CO Carbon Monoxide 

PNP CH3CH2CH2N(CH2CH2PPh2)2 

COSY Correlation Spectroscopy 

Cy Cyclohexane 

COD Cyclooctadiene 

η
5
-C5H5 Cyclopentadienyl 

DABCO 1,4-Diazabicyclo[2.2.2]octane 

Tp
Ms”

 Dimetallated Hydrotris(3-mesitylpyrazol-1-yl)borate 

dd Doublet of Doublets 

DFT Density Functional Theory 

DMSO Dimethyl Sulphoxide 

EI Electron Impact 

equiv. Equivalents 

ESD Estimated Standard Deviation 

ESI Electrospray Ionisation 

FT-IR Fourier Transform Infra Red 

σp Hammett substituent effect 

Hz Hertz 

HMBC Heteronuclear Multiple Bond Correlation 

HMQC Heteronuclear Multiple Quantum Correlation 

HOMO Highest Occupied Molecular Orbital 

Tp Hydridotris(pyrazolyl)borate) 

δH Hydrogen Chemical Shift 

H Hydrogen 

Tp
Me2

 Hydrotris(3,5-dimethylpyrazolyl) borate 

i
Pr iso-Propyl 

K Kelvin 
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kJ Kilojoules 

L Ligand 

L Litres 

LUMO Lowest Unoccupied Molecular Orbital 

M Metal 

m/z Mass / Charge 

MHz Megahertz 

Cp
^
 η

5
-1-Methoxy-2,4-tert-butyl-3-neopentyl-cyclopentadienyl 

Me Methyl 

μ(prefix) Micro 

min Minutes 

m(prefix) Milli 

mg Milligram 

mol Moles 

m Multiplet 

MS Mass Spectrometry 

NHC N-Heterocyclic Carbene 

NMR Nuclear Magnetic Resonance 

NOESY Nuclear Overhauser Effect Spectroscopy 

ppm Parts Per Million 

η
5
-C5Me5 Pentamethylcyclopentadienyl 

δP Phosphorus Chemical Shift 

q Quartet 

s Singlet 

t
Bu tert-Butyl 

TLC Thin layer chromatography 

TMS Trimethylsilyl 

t Triplet 

VT Variable Temperature 

cm
-1

 Wavenumber 

σ-CAM Sigma-Complex Assisted Metathesis 
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 Diagram Labels 
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