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Abstract
The immune system protects the body against invading pathogens. For an immune response to

occur, a T cell must encounter a rare antigen-presenting-cell (APC) presenting its cognate antigen.

The time it takes for this encounter depends upon how quickly the T cell is moving, as well as how

many APCs carrying the T cells cognate antigen are present.

First passage processes are used to derive an equation for the encounter time of a T cell with one of

N APCs. Using this time, a rate of encounter is established, and used throughout this thesis. The

encounter rate is dependent upon the radius of the lymph node, the effective radius of the APC, and

the diffusivity of the T cell. However, the diffusivity of T cells has not been clearly established.

In vivo imaging data is used to develop a systematic method for determining the diffusivity of a

population of T cells. Due to in vivo imaging experiments having a limited sized imaging volume,

a confinement effect is observed. The expected squared displacement of imaged cells is calculated,

and the level at which a confinement plateau should be observed is determined.

T cell activation, in lymph nodes, relies upon encounters with APCs, but the number of APCs

required to initiate a T cell response is currently unknown. Using mathematical models, in

combination with experimental work, the probability of T cell-APC encounters can be quantified.

The probability of a T cell, residing in the lymph node for twenty four hours, to interact with APCs

is calculated. Extrapolating the developed models to later times and lower cell numbers than can

be achieved experimentally, a minimum number of APCs required to initiate a T cell response, for

typical human T cell precursor frequencies, is estimated.

It has been proposed that regulatory T cells suppress effector T cells via a three way interaction

with APCs, as a method of preventing autoimmunity. A stochastic model of these interactions

is developed and explored. The steady state of the system is found to depend upon the rate of

encounter of T cells and APCs, as well as the number of APCs. Stochastic effects are observed in

the model, which affect the state of the system, and are not observed in a deterministic approach.

Interactions between T cells and APCs, in lymph nodes, are crucial for initiating cell-mediated

adaptive immune responses. However, how these interactions cause activation of the T cells is not

yet fully understood. Three hypotheses have been proposed for the method of T cell activation.

These hypotheses are investigated, and models developed, in an attempt to quantify the observed

stages of the activation process. It is found that experimental results can, in part, be explained by

a probabilistic approach.
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Chapter 1

Immunology introduction

1.1 Introduction

This thesis begins with a basic introduction to the human immune system. This is followed by a

more in-depth description of the cell types that are model in this thesis, focusing on there function

and interactions with other cell types. The main cell types used for modelling purposes in this

thesis, and therefore described in this chapter, are: Dendritic cells, T cells, and a specific subset of

T cells known as regulatory T cells. The chapter describes other aspects of the immune system,

such as lymph nodes, which is the area of the immune system where all the modelling in this

thesis takes place. The chapter also describes experimental techniques which are used by my

collaborators and one of which is modelled in this thesis. The chapter concludes with an outline

of the objectives of this thesis.

The main aim of this chapter is to give the reader an overview of the basic immunological concepts

and processes required to understand the work carried out in this thesis. This chapter only begins

to scratch the surface of how the immune system operates. For the reader wanting to know further

details about immunology I refer them to the many excellent textbooks published on the topic,

such as [115].

1.2 The human immune system

The human body includes three layers of defence against microbes; the first of these are physical

and chemical barriers, preventing microbes entering the body, such as the skin, and the mucosal
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epithelial lining of the airways and gut [163]. Only when these barriers are overcome, or evaded,

does the immune system come into play.

The next layer of defence is the innate immune system [5,75,115], which is able to respond quickly

(within hours) to microbial infection with phagocytic cells, such as macrophages. Macrophages

are able to ingest and kill microbes by producing degenerative enzymes and toxic chemicals.

They also secrete cytokines, which are molecules that cause inflammation and recruit cells of the

adaptive immune system [163].

If an invading microbe cannot be eliminated by the innate immune system, the adaptive immune

system becomes activated. The adaptive immune system is more efficient at eliminating infections

as it acts in a specific manner, but it takes days rather than hours to get started. The cells of

the adaptive immune response have the ability to distinguish a specific pathogen and focus their

response against it. Cells involved in the adaptive immune response have specialised antigen

receptors on their surface that are able to recognise and respond to individual antigens on the

surface of microbes [163]. The body contains billions of lymphocytes that possess a vast repertoire

of antigen receptors, allowing the immune system to recognise virtually any antigen a person is

exposed to. The adaptive immune response is also responsible for the generation of memory cells,

which allow a second infection by the same pathogen to be dealt with more quickly and with a

greater cell numbers [163].

The major types of lymphocytes are: B cells, which upon activation differentiate into antibody-

secreting plasma cells, T cells, which differentiate into a variety of classes with differing functions,

which will be discussed later, and natural killer cells, these lack the antigen specificity and act in

an unspecific manner [163].

1.3 Dendritic cells

Dendritic cells (DCs) have long finger-like protrusions used for sampling their surrounding area.

Immature DCs migrate through the bloodstream to enter tissues, and carry specialised receptors on

their surface that are able to recognise common features of many pathogens, which they are able

to phagocytose. Phagocytosis is the process of engulfing and and breaking down an invading

microbe. DCs also take up large amounts of extracellular fluid and its contents [163]. The

pathogens they take up are digested, but their main role is not the clearance of microbes, but rather

to activate other cells to clear the infections. This is achieved by presenting antigens from the
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invading microbes on their surface (Figure 1.1). DCs then migrate to a nearby secondary lymphoid

organ [113, 228, 235, 238], such as a lymph node (LN), where there is a high concentration of

lymphatic cells of varying specificities [241]. T cells that recognise the antigen presented on a

DC can then be activated by the DC due to the expression of co-stimulatory molecules, which are

also required for T cell activation [36, 155, 156, 165, 185, 186]. Recognition of free antigen alone

is not sufficient to activate T cells, the co-stimulatory molecules expressed by the DCs are also

required. Cells that are able to present antigens to inactive T cells and activate them, are known as

antigen-presenting-cells (APCs). Macrophages are also capable of presenting antigen. However,

DCs are specialised in presenting antigen and initiating the adaptive immune response, which is

why they are called professional APCs.

Figure 1.1: Role of dendritic cells in the immune response. Source: Figure 25-5 Molecular

Biology of the Cell ( c©Garland Science 2008 [163]).

A key feature of DCs, which allows efficient sampling within the LN, by T cells, is their extensive

probing activity through the rapid motion of their dendrites. This results in the volume surveyed

by a DC becoming three-fold larger than its size [153]. The dendrites of DCs will also actively

extend towards a T cell [32].

DCs are a subclass of APCs, and a distinction between DCs and APCs is not made in this thesis.

The two terms will therefore be used interchangeably.
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1.4 T cells

T cells are divided into two main subclasses, distinguished by a cell surface protein they express on

their surface from the time they mature in the thymus. Cytotoxic T cells express the CD8 protein,

and are involved in killing infected cells. The class of T cells involved in activating cells they are

cognate to, rather than killing them, express the CD4 protein, and includes helper T cells [163].

In the absence of an infection most lymphocytes circulating in the body are small featureless

cells with few cytoplasmic organelles. These inactivated lymphocytes are known as naive.

Lymphocytes are activated by binding to an APC presenting antigen that is cognate to their

receptor. In the case of T cells, which is the cell type studied in this thesis, this is the T cell receptor

(TCR) [77, 78] (Figure 1.2). After a T cell is activated, it undergoes clonal expansion and the

daughter cells differentiate into several functional classes [34,54]. There are three major classes of

T cells, which fall into the categories of CD4+ or CD8+ T cells. Cytotoxic T cells, which express

the CD8 protein, are responsible for killing cells that are infected with viruses or other intracellular

pathogens. Helper/effector T cells, which express the CD4 protein, provide additional signals that

activate antigen stimulated B cells (Figure 1.2) to differentiate and produce antibody [47, 173].

Regulatory T cells, which express the CD4 protein, regulate the activity of other lymphocytes

and help control the immune response. During the course of the immune response some of the

activated T cells (and B cells) differentiate into memory cells. These are responsible for the long-

lasting immunity that results from the exposure to a disease or vaccination. Memory cells allow

a rapid response to reinfection by the same pathogen and can rapidly differentiate into another T

cell type. The newly activated T cells must then migrate to the site of the infection to assert their

function [139, 160].

Unlike macrophages and DCs that express receptors able to recognise general features shared

by many pathogens, each T cell expresses a receptor that is highly specific. Each T cell

clonotype emerging from the thymus differs from the others in its receptor specificity. The

diversity originates from gene rearrangement in the production of the T cells [158], ensuring that

collectively T cells are able to recognise millions of different pathogens.

Antibodies produced by B cells are able to target pathogens in the blood and extracellular spaces,

however some bacteria, parasites and all viruses replicate inside cells, where antibodies cannot

detect them. The responsibility for eliminating these invaders falls to the T cells. Cytotoxic T

cells are able to target cells infected with virus, as the infected cells express antigen derived from
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Figure 1.2: T and B cell activation. ( c©Garland Science 2008 [163])

the viruses multiplication process on their surface [163].

Naive CD4 T cells are able to differentiate into different types of effector T cells [2, 85], the

three major types being Th1, Th2, and Th17 (Figure 1.3), although more have been described

[102, 185, 220]. All these cell types are involved in combating bacterial infections. Th1 cells are

characterised by the secretion of IFN-γ and are important activators of macrophages, natural killer

cells and CD8+ T cells [214]. Th1 cells are able to deal with macrophages that have become

infected by intracellular bacteria that have evaded the macrophage degradation process. They also

function as helper cells, stimulating the production of antibodies by interacting with B cells and

producing co-stimulatory signals. Th2 cells secrete the cytokines IL-4, IL-13 and IL-25, which

are important for barrier defence at mucosal and epithelial surfaces. Th2 cells activate eosinophils,

basophils, mast cells, and alternatively activated macrophages [227]. Th17 cells produce an array

of cytokines and are responsible for regulating acute inflammation [130]. They also work with

neutrophils in the defence against extracellular bacteria [101, 142].

Naive T cells circulate from the bloodstream into LNs, the spleen and mucosa-associated lymphoid

tissues, and then back into the blood. This process allows an individual T cell to sample the

peptides presented by thousands of DCs daily [42, 180]. The efficiency at which T cells sample

antigen presenting DCs is very high, which is crucial for the initiation of the adaptive immune

response, as only one naive T cell in 104-106 is specific for a particular antigen [42].

CD4+ T cells are dependent on persistent antigen presentation by DCs for full activation and

differentiation, and renewed contacts between daughter cells and antigen-bearing DCs has been

observed [54, 171].
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Figure 1.3: Outline of function of the different classes of T cells. ( c©Garland Science 2008 [163])

1.5 Lymph nodes

Lymphocytes circulate in the blood and the lymph and are also found in lymphoid tissues

and lymphoid organs. The lymphoid organs are organised into the central/primary and

peripheral/secondary lymphoid organs. The primary lymphoid organs are the bone marrow and

thymus, and are the sites where lymphocytes are produced and mature. Secondary lymphoid

organs include the LNs, spleen and Peyer’s patches of the intestine, and are the sites of lymphocyte

interactions.

Lymph nodes are located at the points of convergence of the vessels of the lymphatic system,

and are highly organised lymphoid organs. The afferent lymphatic vessels drain fluid carrying

antigen-bearing cells from infected tissues, as well as pathogens, to the LNs. Free antigens are

able to diffuse through the extracellular fluid to the LNs, and DCs actively migrate there following

chemokine signals [15]. The same chemokines also attract other lymphocytes, which enter from

the blood via high-endothelial-venules [9, 10, 162]. Within the LN, B cells are located in the

follicles, which make up the outer cortex of the LN, and T cells are located in the surrounding

paracortical areas [97], often referred to as T cell zones.

Within the LN, the majority of naive T cells are highly motile, and display complex trajectories

[123, 156] akin to a random walk. Such behaviour allows T cells to thoroughly explore the LN,

however, the elements dictating T cell trajectories are unclear at present. It has been proposed
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Figure 1.4: Lymph node diagram. ( c©Garland Science 2008 [163])

that guidance cues dictating T cell direction might involve the fibroblastic reticular network

and/or chemokine signals [66]. The fibroblastic reticular network is a network comprising of

reticular fibres, fibrous extracellular matrix bundles, and fibroblastic reticular cells, and supports

the entire LN [91]. The role of chemokines in influencing T cell migration has been challenged

by observations of T cell trajectories using two-photon imaging, in which T cell trajectories were

found to be essentially random [155, 156], with a random walk behaviour being found for longer

timescales. In vivo tracking of T cells within LNs found the mean absolute displacement of T

cells increased proportionally with the square root of time, indicating a random walk behaviour.

The mean displacement can therefore be characterised by a motility/diffusion coefficient, this was

found by Miller et al. [156] to be 67µm2min−1 for T cells.

The high motility of T cells, combined with the less motile DCs, which probe their surrounding

area with their dendrites, leads to DCs being able to sample a large fraction of the T cell repertoire

in a short period of time. It has been estimated that between 500 and 5000 T cells are sampled by

each DC every hour [42, 51, 153].

Studies have investigated the dynamics of interactions between antigen-bearing DCs and antigen-

specific T cells. Stoll et al. [212] reported cell-cell contacts and prolonged interactions between

T cells and DCs, followed by activation, dissociation and rapid migration of T cells away from

the DC. A similar sequence of events was also observed in vivo within the LN, where DC-T

cell interactions were observed with CD4+ [154, 201] and CD8+ [42, 110, 152] T cells. Further

investigation is required to achieve a consensus for the duration of DC-T cell interactions [110,

201].
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1.6 T cell selection

The immune system is able to combat virtually any pathogen it is presented with. To achieve such

a large coverage, it must contain a repertoire of T cells able to recognise as many pathogens as

possible. This is achieved through gene rearrangement. Developing T cells undergo a process

of gene rearrangement to generate a unique receptor. This process allows the development of a

large number of TCR structures, able to recognise billions of different antigens. As this process

is random, there is inevitably receptors generated that are not functional, or self reactive. These

receptors are screened through a process of positive and negative selection [106, 137, 200, 211] in

the thymus.

A functional T cell must have a functional receptor, it must therefore recognise self-peptide:MHC

complexes to some extent, to be able to receive a survival signal in the periphery. A self-

peptide:MHC complexes is a complex of the body’s own antigen and a cell surface molecule.

This ensures only thymocytes expressing a useful T cell receptor can survive and mature. This

involves receiving a weak interaction with pMHC complexes that include thymic self-peptide,

as some foreign antigen peptide is likely to exist that has a much stronger binding with such a

receptor in the periphery. T cells without a functional receptor will not be able to undergo weak

interactions and will die from neglect.

Only 10% of T cells pass through positive selection. The other 90% of T cells die by neglect,

as they do not have a functional receptor. Those that do survive, undergo negative selection

[107, 175]. T cells whose receptors recognise self-peptide:MHC complexes too strongly are

given a signal to stimulate cell death, by apoptosis [211]. Negative selection deletes potentially

self-reactive thymocytes, thereby generating a repertoire of peripheral T cells that is largely self

tolerant [209, 211]. Less than 5% of the originally generated T cells survive thymic selection.

Inevitably some cells escape negative selection. These self-reactive cells are controlled by

peripheral tolerance mechanisms [194].

1.7 Regulatory T cells

The immune system is able to discriminate between self and non-self antigens, inhibiting

autoimmune responses, but allowing effective immune responses against microbial antigens. The

immune system is able to establish and sustain unresponsiveness to self antigens, including
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physical elimination of self reactive cells, through a process of thymic selection (Section 1.6).

There is also substantial evidence the T cell mediated suppression of self-reactive T cells is another

essential mechanism of self tolerance [65, 141, 191, 202]. Tolerance to self-antigen is primarily

achieved through thymic selection, but some auto-reactive T cells escape thymic selection or

recognise antigens that are not expressed in the thymus. This regulation is carried out by a

distinct subset of T cells [81] known as regulatory T cells (Tregs), which are functionally defined

as a T cell that inhibits an immune response by influencing the activity of other cell types [81].

There are two groups of regulatory T cells. One subset becomes committed to the Treg lineage

during development in the thymus, these are natural Tregs [192]. The other subset develops in the

periphery from uncommitted naive T cells [148].

Natural Tregs are CD4+, and express the α chain of the IL-2 receptor (CD25) [11, 193], giving

them a high affinity for the IL-2 cytokine. They also express the FOXP3 receptor [76, 109, 125].

Natural Tregs make up about 10-15% of the CD4+ cells in circulation in the human body. Natural

Tregs are potentially self-reactive T cells, that are selected in the thymus. The mode of action of

Tregs in vivo is still not fully understood, and there is a large array of literature which investigates

this [183,217,223,224]. Tregs are believed to act in either a contact-dependent fashion with other

cells, or through the secretion of cytokines, such as IL-10 and TGF-β.

The function of (natural) Tregs is to suppress the activation of self-reactive T cells. Lack of natural

Tregs is known to be the cause of several autoimmune syndromes.

1.8 Experimental techniques

1.8.1 Two-photon laser scanning microscopy

Two-photon laser scanning microscopy (TPLSM) allows the interactions of T cells and DCs to

be viewed within a LN in vivo [41, 156]. Most T cells are located near the surface of the LN, in

the paracortical area, which is approximately 150-200µm below the organ’s surface in mice. A

TPLSM experiment is carried out by acquiring sequential images of a three-dimensional volume

of a LN that contains fluorescently labelled cells. This is achieved by recording the fluorescent

signals emitted by the cells at successive focal planes, and repeating this process every 10-30

seconds for a period of up to a few hours [40]. The data set generated can be viewed as a

time-lapse movie, and important information can be extracted from these videos by manual or
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automated analysis. TPLSM achieves the same optical sectioning effect as confocal microscopy,

but it uses a different optical principle that increases depth penetration, and reduces phototoxicity

and photo-bleaching [46], making it ideally suited to imaging T cell activation at a single-cell

level [70]. Phototoxicity is the damage caused to cells due to the laser light. Photo-bleaching is the

bleaching of the fluorophores that are used to label cells of interest. A fluorophore is a florescent

chemical compound that is able to re-emit light upon light excitation. In TPLSM two extremely

short (femtosecond) pulses of light are emitted, of infrared frequency, which are absorbed almost

simultaneously by fluorophores, rather than a single photon of visible light emitted in confocal

microscopy. The energy of the photon decreases with increasing wavelength, so the two infrared

photons together provide a similar amount of energy to a blue photon, causing a green photon to

be emitted by the fluorophores, as it would in regular fluorescence. Using two photon excitation

results in fluorescence only at the focal point, due to the fluorescence emission increasing as the

square of light intensity, rather than a linear increase, as observed in confocal microscopy. This

confines photo-bleaching and phototoxicity effects to the focal plane. Using infrared light allows

deeper penetration into the tissue due to its longer wavelength.

There is less phototoxicity using TPLSM compared to other imaging methods. However, the

levels of phototoxicity are not insignificant [108], and are the cause of the limited sized imaging

volume used in TPLSM. The size of an imaging volume is dependent on the experimental setup,

with x and y dimensions typically being up to 250µm, and the z dimension typically being up

to 35µm. The depth that can be imaged is determined by the number of planes in the z-stack.

If the z-planes are further apart, a greater depth of image can be achieved, however if they are

too far apart, cells can reside in the spaces between the planes and will not be observed. The

number of z-planes imaged also affects the time between imaging points. If numerous z-planes

are taken the microscope must scan a larger area before restarting at the first plane for the next

timepoint, resulting in the time between successive timepoints increasing. Taking a smaller time

increment allows the path of cells to be imaged at a higher resolution, but has the drawback of

reducing the volume that can be imaged, and increasing the speed at which phototoxicity occurs,

thereby reducing the overall experiment duration. A balance of z-stack separation, track resolution

and experiment duration must be achieved. TPLSM also requires the LN to be exposed for

imaging to occur. Experiments take place on living mice [152, 155], but results in the mouse

being sacrificed, therefore subsequent imaging on the same mouse cannot be achieved. Recent

advances are experimenting with transplanting LNs to a mouse’s ear, allowing imaging without

harming the mouse, and subsequent imaging on the same mouse to be carried out. This method
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also avoids effects that may occur from operating on the mouse, which may affect the experiment’s

outcome. For an detailed explanation of TPLSM, please refer to these reviews [46, 79].

1.8.2 Flow cytometry

Flow cytometry is an experimental method that is able to measure and analyse multiple physical

characteristics of cells, as they flow in a stream of fluid through a beam of light [163]. The system

is also able to sort cells depending on their characteristics, by applying a charge and deflecting

them. The characteristics that can be measured include; a cell’s relative size, relative granularity

or internal complexity, and relative fluorescent intensity. These are measured by recording how

a cell scatters incident laser light and emits fluorescence. Cells being examined are labelled

with fluorescent markers, which fluoresce depending on the characteristics of each labelled cell.

The number of markers that can be detected by flow cytometry depends upon the complexity of

the machine used. The scattered and fluorescent light is collected by a system of appropriately

positioned lenses, and a combination of beam splitters and filters steer the light to the appropriate

detectors. An electrical signal is produced by the detectors proportional to the optical signal

striking them. The data is sorted and analysed by a computer, and can provide information on sub-

populations within the sample. Cells ranging in size from 0.2 to 150 micrometers can be examined

using flow cytometry. This experimental technique is used by my collaborators to obtain some of

the results presented in Chapter 6.

Figure 1.5: Diagram of flow cytometry. ( c©Garland Science 2008 [163])
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1.9 Objectives of the thesis

In this section, the initial objectives of the thesis are described. Whether or not these objectives

have been met will be evaluated in Chapter 9.

The objectives of this thesis are:

1. Study the theory of first passage processes to apply to encounters between T cells, moving

by Brownian motion within a lymph node, and encounters of APCs. Using this theory,

develop a mean first passage time equation for a uniform randomly placed particle to locate

a uniform randomly placed target.

2. Study the effect of confinement in a limited sized imaging volume, seen in two photon

microscopy experiments, on the observed mean squared displacement of the imaged cells.

An accurate understanding of artefacts introduced by two-photon imaging technology is

crucial to correctly interpreting the data produced.

3. Develop a method to calculate the diffusion coefficient of T cells, using data obtained from

two-photon microscopy experiments. The size of the diffusion coefficient is key to the

response rate of the immune system.

4. Using concepts developed in objectives one, two and three, along with experimental data, I

aim to determine the minimum number of DCs required to initiate a T cell response, given

typical T cell precursor frequencies. The number of DCs present influences the probability

of activation of the T cell response.

5. Extensive literature [49, 133] is available on deterministic models of interactions between

effector and regulatory T cells. Knowing the populations of T cells are usually quite small,

I intend to investigate the effects of a stochastic approach on the interactions of effector and

regulatory T cells.

6. In references [40,42], three hypotheses are proposed for the activation mechanism of T cells:

APC changes, T cell signal integration, and a probabilistic approach . I intend to test these

hypotheses using analytical and computational models, with the aim of determining if any

of the proposed hypotheses can explain experimental results.
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Chapter 2

Introduction to stochastic spatial

modelling and numerical methods

2.1 Introduction

The role of mathematical modelling in immunology was recognised as early as the 1960’s [96,145]

and 1970’s [24, 71, 104, 105, 132, 134, 177, 231], and immunology was one of the first biological

areas to adopt mathematical modelling. Mathematical models in immunology have been used in

areas ranging from antigen receptor interactions [178], to vaccination [7, 114, 124, 150, 161, 170].

Since the introduction of mathematical immunology, the application of mathematical models has

changed from conceptual models of basic reactions to bioinformatic analysis of high throughput

data and simulation-based analysis of complex molecular and cellular systems. Over the last

couple of decades, mathematical immunology has shifted from deterministic ODE-based models

to stochastic models. A deterministic approach predicts an outcome with absolute certainty.

Therefore, it is not able to cope with the inherent variability present in biological system. A

stochastic model provides a probability of an outcome for a given set of initial conditions.

Stochastic models of biological systems are important as they allow random variability to occur,

which is often seen in biological processes. In population level models, where the population

size is sufficiently large, a deterministic formulation can be used, and will be used in this thesis.

However, for small population sizes, extinction of the population may occur, and then it is more

realistic to use a stochastic formulation to model the variation in size, allowing fluctuations to

occur that might result in extinction.
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This chapter introduces the main mathematical techniques used in this thesis. Spatial modelling

is used throughout, therefore a large proportion of this chapter focuses on spatial modelling,

and methods of reducing error between analytical calculations of first passage times and spatial

modelling simulations. The chapter begins by reviewing the various methods proposed for how T

cells move, proposed in [92, 121, 123, 153, 225, 232]. In this thesis T cells are assumed to move

by Brownian motion. A definition of the Wiener process is given [151] and related to movement

by Brownian motion. The chapter goes on to describe the computational algorithm developed in

this thesis, which is used throughout the thesis to simulate cell movement. Errors occurring in the

computational algorithm due to using a discrete timestep size are then addressed. These errors

can occur on the boundary of the target and the boundary of the domain. Algorithms developed

in [119] are introduced to reduce these two sources of error and the efficiency of these algorithms

are tested against analytical calculations of mean first passage times. A method of reducing

the error in computational simulations further by using exponential time-stepping [117–119] is

then reviewed. The aim of reducing the amount of error in the spatial simulations carried out

is to allow a larger timestep size to be used without significantly reducing the accuracy of the

simulation. Using a larger timestep size allows a faster implementation of the simulation, reducing

on computational recourses required.

The Gillespie algorithm [83, 84] is then reviewed as a way of computationally simulating a

stochastic process. The Gillespie algorithm is used in this thesis to simulate interactions between

cells and allows a computationally faster implementation than a spatial algorithm when a spatial

aspect is not explicitly required.

Finally, other modeling efforts undertaken by various people as a way of simulating cell movement

are reviewed. This include the Cellular Potts model and a model of movement on the reticular

network. The chapter concludes with a summary of Chapters 3-8 in this thesis.

2.2 Spatial modelling

2.2.1 How do T cells move?

The question of how T cells move within a lymph node (LN) is a much debated topic. In vivo

imaging techniques, using two-photon microscopy, have allowed movies of T cell movement and

interactions to be generated. This imaging gives the impression that T cells are freely moving
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within the LN. However, it must be remembered that only a limited number of cells have been

labelled, and in reality the environment is very crowded with other cells, the reticular network, and

blood vessels. The movement of cells depends upon their intrinsic motility as well as collisions

and interactions with other cells and their surroundings [232].

Various models for T cell movement have already been proposed: (1) Simple Brownian motion, in

which a T cell’s movement is completely unbiased and follows a random walk [153], (2) persistent

motion, in which a T cell moves in one direction for a short period of time then chooses a new

random direction to move in, and repeats the process [232], (3) movement on the reticular network,

which proposes T cells move along a pre-defined network within the LN [92, 121, 123, 225].

Persistent motion has been observed in in vivo experiments [232], where T cells were observed

to move in a series of repetitive lunges, repeatedly balling-up and extending, with a period of

about two minutes, moving an average distance of about 20µm in each cycle, with peak velocities

of 25µmmin−1. After each lunge, a cell would pause and then take off in another direction. T

cells were found to travel in a fairly consistent direction during each lunge, and even to continue

to move in a consistent direction over several cycles. However, after each pause, there is a high

probability a cell will change direction. Therefore, T cells display a random walk behaviour when

visualised over tens of minutes, even though on shorter times scales their motion appears to be

more linear.

Some two-photon microscopy experiments have found T cells move along the strands of the

fibroblastic reticular cell (FRC) network [16]. Individual T cell trajectories obtained from these

studies suggest motion is random and not directed by chemical gradients over large distances. It

was found that the mean displacement of a T cell from its starting position increases linearly with

the square root of time, indicating a random walk nature of movement. It was concluded that,

even though T cells appear to move along the FRC network, due to the structure of the network,

and the frequent crossing points, movement along the network appears to be a random walk [16].

The reticular network model has the advantage of reducing the volume cells can move within,

thereby potentially increasing the rate of encounters. It does however raise lots of other problems

in setting up the mathematical system, such as: How many nodes where cells can change direction

should there be? How many connections should there be between nodes? How far apart should

nodes be? How do cells pass each other on the network? Methods of modelling the network have

been devised in [73]. However, as the number of nodes and connections tend to infinity the model

in [73] will approach a Brownian motion model.
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In this thesis, T cell movement is modelled as a simple Brownian motion, as this is the simplest

of the theories to model, and the general consensus of the experimental results reviewed in this

section and models reviewed in Section 2.6 seems to be that cell movement is like Brownian

motion on long timescales.

Beauchemin et al. [22] developed a model to simulate T cells moving along the FRC network by

having cells move for an amount of time at a given velocity in a straight line, then pause for a given

time and choose a new direction. They also used the same model to simulate cells moving without

a pause time, and found both approaches agreed with experimental data, the latter just needing a

slightly higher velocity. They conclude that, the addition of a pause time does not significantly

improve the agreement between the experimental data and numerical results. Thus, the spatial

modelling in this thesis is implemented without a pause time.

A characteristic of Brownian motion is that a particle may at first move rapidly away from

its starting point but then may backtrack, resulting in its absolute displacement increasing at a

progressively slower rate as time increases. The mean displacement, of a population of particles

undergoing Brownian motion, from the origin grows as function of the square-root of the time.

For example: in 1ms a population of uniformly randomly moving particles may have a mean

displacement of 1µm, in 100ms this increases to 10µm, and to move 100µm will take a mean

time of 10s. This relationship is determined by the diffusion coefficient, D, of the particle, giving

a formula for the mean distance, d, travelled in time, t, of

d =
√

6Dt.

The factor 6 applies for diffusion in three dimensions, it changes to 4 in two dimensions, and 2 in

one dimension.

2.2.2 The Wiener process

Let us begin by considering a one-dimensional symmetric random walk such that, in each time

unit, a particle is equally likely to take a unit step either to the left or the right. Now suppose we

speed up this process by taking smaller and smaller timesteps in smaller and smaller time intervals.

If we go to the limit in the correct manner Brownian motion is obtained.

Brownian motion is also known as the Wiener process, or the Wiener-Einstein process [221].

The term Brownian motion acknowledges Robert Brown, who in 1827 noticed pollen grains



Chapter 2. Introduction to stochastic spatial modelling and numerical methods 17

suspended in water moved constantly in a zigzag motion under a microscope. In 1905 Albert

Einstein stated laws governing Brownian motion using principles from the kinetic energy theory

of heat. However, it was Norbert Wiener’s research in 1923 that laid the mathematical foundation

for Brownian motion. Therefore, the process is often named after Wiener. Melsa and Sage [151]

related the Wiener process to the concept of Brownian motion.

Suppose W (t) is the displacement of a small particle from the origin at time t. The displacement

that occurs in the time t1 to t2 is small, and the frequency of direction changes is large. By

applying the central limit theorem to the sum of a large number of these small disturbances, it can

be assumed thatW (t2)−W (t1) has a Gaussian density. The density of the particle’s displacement

does not depend on the time of the observation, it just depends on the length of the time interval.

Therefore the probability density of the displacement from time t1 to t2 is the same as from time

t1 + t to time t2 + t.

Definition: The stochastic process {W (t)}, t ∈ [0,∞), is a Wiener process if W (t) depends

continuously on t, W (t) ∈ (−∞,∞), and the following three conditions hold [8]:

• For 0 ≤ t1 < t2 <∞, W (t2)−W (t1) is normally distributed with mean zero and variance

t2 − t1, that is, N(0, t2 − t1).

• For 0 ≤ t0 < t1 < t2 < ∞, the increments W (t1) − W (t0) and W (t2) − W (t1) are

independent.

• Prob{W (0) = 0} = 1.

The Wiener process can easily be expressed in multiple dimensions (Bt), as each of the Cartesian

components of the Wiener process in n dimensions is an independent Wiener process,

Bt = (W
(1)
t ,W

(2)
t , ...,W

(n)
t ),

where W (i)
t , i = 1, · · · , n, is a one-dimensional Wiener process.

2.2.3 Computational algorithm

To model interactions of cells moving by Brownian motion within a LN, it is necessary to devise a

spatial model of cell movements and interactions. This spatial model will be used in various forms

throughout this thesis. Algorithms used in the spatial model, described below, are given in the
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appendix. To create a model in which T cells move, within a LN, in search of antigen-presenting

cells (APCs), the following steps need to be implemented.

Step 0 (Initialisation):

• Firstly, place APCs, of effective radius b, and T cells, modelled as point particles, uniformly

randomly within a sphere of a given radius, R (A.1). The APC’s radius accounts for the

APC having dendrites, which are assumed to sample a spherical region of radius equal to

the mean dendrite length [17](Figure 2.1). The radius of a T cell is added to the APC’s

radius to give an effective radius for the APC, allowing T cells to be modelled as point

particles.

Figure 2.1: Illustration of sampling volume of an APC. Reproduced from [17].

Step 1 (Movement):

• APCs remain stationary and T cells move by Brownian motion, simulating a random walk.

• A fixed discrete timestep size, δt, is chosen and each T cell picks a distance to move in

the x, y and z dimension from a Gaussian distribution with mean zero and variance 2Dδt,

which is obtained from the definition of the Wiener process stated in section 2.2.2 with the

relation xt =
√

2DW
(1)
t , D is the diffusivity of the T cells (A.4).

• If a T cell moves outside the radius of the LN (Figure 2.2), it is reflected back in by

multiplying each of the x, y and z positions by 2R
r − 1, where r is the T cell’s distance

from the centre of the LN.

Step 2 (Encounters):

• The position of each T cell relative to its closest APC is checked to determine if they have

encountered each other.
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• If the separation distance is less than b, which incorporates the size of the APC and the T

cell, then an encounter will have occurred.

• If the separation distance is greater than b, an algorithm is used to calculate the probability

of an encounter occurring during a timestep. If this probability is greater than a uniform

random variable, between zero and one, an encounter will have occurred (A.6).

• Upon encountering an APC, a T cell can bind to the APC. If this occurs, a time to remain

bound is picked from a given distribution, with a set mean binding time. An exponential

distribution is used in this thesis.

Step 3 (Unbinding):

• After the simulation time is incremented, the same time increment must be subtracted from

the amount of time bound cells are to remain bound.

• If the time to remain bound is less than δt, the T cell is unbound from the APC it is attached

to.

• When a T cell unbinds various scenarios may occur. The T cell can be placed uniformly

randomly within the LN, and a new uniform random position chosen if they occupy the

same volume as that occupied by the APCs. This is useful for testing first passage time

equations that assume an approximately uniform random starting position of a particle. A

T cell can be placed at the edge of an APC’s zone of attraction. This seems the most likely

biological outcome, but as the movement of the T cell is uniformly random, there is a high

probability of the T cell rebinding. This can be overcome by having a deactivation time for

T cells after binding, in which they cannot rebind. If this time is long enough, the T cell

should be in an uniform random position when it is able to bind again.

Step 4 (Update):

• To improve the efficiency of simulations, instead of each T cell checking its distance from

every APC after each timestep, a T cell only needs to check its distance from the APC it is

closest to (A.5).

• This is achieved by compiling a list of the closest APC to each T cell. The list of closest

APCs does not need to be updated every timestep. The update frequency will depend upon
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the diffusivity of the T cells, and the number of APCs. A larger diffusivity and/or and greater

number of APCs will require the update interval to be smaller to prevent the closest APC to

a T cell significantly changing.

• We must now return to step 1, and continue in this way until some predefined criteria are

met, such as a specific time being exceeded or cell numbers reaching a specific value.

In step 0, when placing the APCs, the arrangement in relation to each other must be considered.

APCs can be simply placed uniformly randomly, allowing two APCs to occupy the same volume.

This outcome is not desirable in our simulations, therefore the APCs are placed so they either

occupy completely separate volumes, or they may be allowed to have a slight overlap equivalent

to the radius of the T cell. The overlap amount could even be made larger, as in reality the

shapes of the APCs would fluctuate (A.2). This is achieved by first placing the cells uniformly

randomly within the domain and replacing the cells that do not obey the desired cell overlap rules.

Placing APCs with a position that is dependent upon the position of the APCs already placed

results in a distribution of APCs that is not uniform random across the whole of the domain,

as each subsequent APC has a smaller and smaller volume which it can occupy. This does not

pose a problem for the computational modelling, it does however pose a problem for comparison

with analytical models. However, when the volume of the domain is large and the volume of

the APCs are small, and low in number, the error caused by this not truly uniform placement of

APCs is minimal. For larger APCs numbers, as considered in Chapter 6, the error becomes more

significant, and a method of compensating for this error is proposed in Chapter 6.

In step 3, the simplest way to reduce the binding times is to reduce the binding times of each cell

by the timestep size, every time the simulation time is incremented, however this proves to be

computationally inefficient. A more efficient way of reducing the binding times is to record the

amount of time since the last binding or unbinding event occurred (tpassed), and if this is greater

than the minimum binding time of all the bound cells, their binding time will be reduced by tpassed.

This procedure must also be undertaken before binding a new cell (A.3). In this model, APCs can

be given various numbers of binding sites, and interactions can occur depending on the type of

cells that are bound to an APC. This occurs, for example, in the cross-regulation model (Chapter

7).
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2.3 Error reduction algorithms

The implementation of discrete timestepping in spatial simulations introduces errors. The error

in simulations is calculated by comparing the mean first passage time (MFPT) obtained from the

simulations to the analytical solution for the MFPT (3.3.13). Using the spatial modelling algorithm

in the previous section, the MFPT is over estimated, due to the strictly positive probability that

an excursion is made inside the target region during a timestep that starts and ends inside the

region (see Figure 2.2), or outside the domain (see Figure 2.4) in a timestep that starts and ends

inside the domain [19, 23, 86, 87, 117, 118, 144, 157]. To reduce these errors, algorithms are used

to calculate the probability of encountering an APC during a timestep, and the probability to have

hit the outer boundary during a timestep. These algorithms allow a larger timestep size to be used

without introducing significant amounts of error, thereby improving the computational speed of

the simulation. Error reduction algorithms are described in the next sections.

2.3.1 Target encounters

Figure 2.2 illustrates the situation that results in overestimation of the MFPT at the surface of the

target. The blue path can be reproduced by decreasing the timestep size, but a smaller timestep size

d1

d0

Figure 2.2: Diagram showing the situation that causes overestimation of the MFPT at the target.

The green circle represents the APC/target, d0 and d1 are the distance from the centre of the target,

to the T cell, before and after the timestep. The red line indicates the path the particle has taken in

the simulation and the blue line indicates a possible path the particle could have taken if a smaller

timestep size was used, resulting in the particle encountering the target.

results in more computational time being needed to execute the program. To determine the size of

the error in the spatial code, a simple code that moves one T cell until it finds a stationary APC

in the centre of a sphere was implemented. A mean time to encounter the APC over a number
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of realisations was calculated for varying timestep sizes and compared to the MFTP calculated

analytically (3.3.10), to calculate the error in the simulation. Using this data, a curve of the form

β
√
δt could be fitted, as it was suspected the error would change as a function of

√
δt [86]. This

gave an equation for the error of 13.77
√
δt (Figure 2.3). Therefore the error in the simulation is

proportional to
√
δt, where δt is the timestep size.

The error occurs because a T cell may encounter an APC during a timestep. To overcome this

problem, an algorithm, developed by [86, 119], can be introduced to calculate the probability of

the T cell encountering an APC during a timestep. The equation used to calculate the probability

of encountering a target during a timestep is

P(encounter) = exp

(
−d0d1
Dδt

)
, (2.3.1)

where d0 is the distance from the T cell to the centre of the APC at the start of the timestep, d1

is the distance at the end of the timestep, and D is the diffusion coefficient of the T cell. This

algorithm can be implemented in the spatial code and a new error calculated by comparison to the

MFPT equation (3.3.10). Fitting a curve to the new error gives an equation for the error of 6.00δt

(Figure 2.3). The error in the code using this error reduction algorithm has now been reduced to

be proportional to δt.

Figure 2.3: Plot showing the error as the timestep size is varied, without the error reduction in

blue, with a curve of the form β
√
δt fitted to the data (yellow), and with error reduction in red,

with a curve of the form βδt fitted to the data (yellow). Parameters used: R = 1, D = 0.5,

b = 0.02. Number of realisations for each data point = 105.
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This method greatly reduces the error. However, the algorithm is not exact, and there is still

error in the algorithm as it assumes a flat boundary rather than a curved boundary. Error is also

introduced from a similar problem occurring on the boundary of the LN that the T cell is moving

within, which will be addressed in the next section.

2.3.2 Boundary collisions

As with encountering an APC, error is also introduced at the boundary of the LN due to discrete

timestepping. That is, during a timestep a T cell could have collided with the boundary, resulting

in the MFTP being overestimated. This is illustrated in Figure 2.4.

r1

r0

Figure 2.4: Diagram showing the situation that causes overestimation of the MFTP at the boundary

of the domain. The black curve represents the boundary, r0 and r1 are the distances from the centre

of the domain before and after the timestep. The red line shows the path the particle has taken,

and the blue line a potential path the particle could have taken if a smaller timestep size was used,

resulting in the particle leaving the domain.

This error can be reduced by using an algorithm to calculate the probability of a T cell hitting the

boundary during a timestep. To do this we first need to define

dw = r1 − r0,

where r0 is the distance from the centre of the LN to the T cell at the start of the timestep, and

r1 is the distance at the end of the timestep. The distance the T cell moves away from its starting

position in one timestep is a random variable, given by

max =
dw

2
+

(
dw2 − 2dt log(urv)

2

) 1
2

,

[119] where urv is a uniform random variable, between zero and one [12–14]. To determine if

the T cell has hit the boundary we need to check if r0 + max is greater than the radius of the LN

(R). If this occurs, we calculate a new distance; newr = dw−max +R, and multiply each of the

x, y and z components by newr/r1 to reflect the T cell off the boundary and back into the LN.
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We can examine how effective this method is by comparing the error in a spatial simulation, using

this algorithm, to the results of Figure 2.3. This comparison is shown in Figure 2.5. Fitting a

curve to the error in the data produced with the addition of a surface boundary algorithm gives an

equation for the error of 5.96δt2. The error in the code has now been reduced to be proportional

to δt2.

Figure 2.5: Plot showing the results for the error in the time a T cell takes to encounter an APC,

when an algorithm is only used to reduce the error on the surface of an APC (red), and when an

algorithm is additionally used to reduce the error at the boundary of the LN (green), with curves

fitted to the data (yellow). Parameters used: R = 1, D = 0.5, b = 0.02. Number of realisations

for each data point = 105.

2.3.3 Exponential timestepping

Most numerical methods that are commonly used [45, 128, 143, 182] for solving stochastic

differential equations and in spatial modelling, have a timestep of fixed length. However, it is also

possible to have a timestep with a length that is a random variable [90,168]. For example, a random

variable chosen from an exponential distribution. Using exponential timestepping, over fixed

timestepping, has the advantage that the probability of encountering a sphere during a timestep can

be calculated exactly, using methods from excursion theory [39, 69, 116, 120, 122, 126, 189]. With

exponential timestepping [117–119], instead of using timesteps of fixed size, timesteps that are

drawn from an exponential distribution with a given mean timestep size are used. To implement
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an exponential timestepping algorithm in three-dimensional space, the following steps must be

undertaken:

• Define a factor mod as: mod =
√
−2 log(1− urv1)(g21 + g22 + g23)δtD, where urv1 is a

uniform random variable between zero and one, g1, g2 and g3 are random numbers drawn

from a Gaussian distribution with mean zero and variance one, δt is the mean timestep size,

and D is the diffusion coefficient.

• Define the increment in the z dimension as dz0 = 2urv2−1, where urv2 is another uniform

random variable between zero and one.

• Define an angle as θ = 2πurv3, where urv3 is yet another uniform random variable between

zero and one.

• The increment in the x dimension is given by dx0 =
√

1− dz20 cos(θ).

• The increment in the y dimension is given by dy0 =
√

1− dz20 sin(θ).

• We now need to scale the x, y and z increments by multiplying by the function mod.

Therefore dx = mod · dx0, dy = mod · dy0 and dz = mod · dz0

To determine if a T cell has encountered an APC, or the boundary of the LN, during a timestep,

we must first calculate the distance of the T cell from its nearest APC and the distance of the T

cell to the centre of the LN. Let us denote these as d0 and r0, respectively. We now move the T

cell, as outlined above, and recalculate the distance from the nearest APC, and the distance from

the centre of the LN, and define these distances as d1 and r1.

The probability of encountering an APC is calculated by

P(encounter) = exp(−ν(re − b))
sinh(νb)

sinh(νre)
,

where ν = 1/(δtD), b is the effective radius of an APC, and re = min(d0, d1) [119]. We

then generate a uniform random variable, between zero and one, if it is less than the calculated

probability, the T cell is classified as encountering the APC.

Calculating the probability of hitting, and being reflected off, the boundary of the LN is similar.

We denote the probability by P(reflect) as follows,

P(reflect) = exp(−ν(R− rr))
sinh(νrr)

sinh(νR)
,
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where rr = max(r0, r1), and R is the radius of the LN [119]. We then generate a uniform random

variable, between zero and one, and if P(reflect) is less than the random variable, the T cell is

classed as hitting the boundary, and its position must be updated to correct for reflecting off the

boundary. An example of a python code that uses exponential timestepping is shown in B.

Figure 2.6 compares exponential timestepping to fixed timestepping with algorithms to reduce the

error on the surface of the APC and the boundary of the LN.

Figure 2.6: Comparison of error using Gaussian timestepping with algorithms to reduce the error

on the boundary of the APC and the LN (blue) and exponential timestepping (red). Curves have

been fitted to this data (shown in green). Parameters used: R = 1, D = 0.5, b = 0.01. Number of

realisations for each data point = 105.

2.4 Gillespie algorithm

Modelling a system using a deterministic approach regards the time evolution of the system as

a continuous predictable process that is frequently governed by a set of coupled ODEs. The

solution to a system of ODEs, at a given time t, is fixed for a given set of initial conditions. A

stochastic approach regards the time evolution of the system to be continuous, and is governed by

a single differential-difference equation, often referred to as the master equation. The Gillespie

algorithm [83, 84] allows exact numerical calculations within the framework of the stochastic

formalisation without having to deal with the master equation directly. The algorithm uses a
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Monte-Carlo procedure to numerically simulate the time evolution of a given system, and it

correctly accounts for the inherent fluctuations and corrections that are necessarily ignored in the

deterministic formalisation. The algorithm never approximates infinitesimal time increments by

finite steps, and is more realistic for modelling biological systems such as numbers of molecules,

cells, or individuals, as population numbers can only change in discrete integer steps, unlike in the

deterministic approach, which assume population numbers are continuous. Due to the stochastic

nature of the Gillespie algorithm it captures behaviour in which populations can switch from one

steady state to another, which can include extinction, due to random fluctuations in the system.

These fluctuations are especially significant for small cell numbers and are lost in the deterministic

approximation.

In this section we set out to solve the following general problem: If a fixed volume

contains a spatial uniform mixture of n cell species which can interact through m specified

reactions/interactions, then given the initial number of cells in these species, at a specific time,

what will these cell population levels be at any later time? The most common approach to

solving this type of problem is to translate the series of reactions into a set of ordinary differential

equations (ODEs). These ODEs are known as the reaction rate equations. Solving them for the

cell population numbers, given a specific set of initial conditions, is tantamount to solving the

general problem proposed earlier. Analytical solutions to the reaction rate equations can be found

only for rather simple cases, and it is usually necessary to solve these system numerically using

a computer. The usefulness of this approach for biological systems cannot be denied, however, it

does have its drawbacks. The approach assumes the time evolution of a biological process is both

continuous and deterministic. However, the time evolution of a biological process is evidently not

continuous as cell numbers can only change in discrete integer amounts. Nor is the time evolution a

deterministic process as it is impossible, even in principle, to predict the exact population levels at

some future time, unless we take into account the exact positions and velocities of all the molecules

in the system. In many cases the time evolution of a biological system can, to an acceptable degree,

be treated as a continuous deterministic process. However, this should not always be taken for

granted as in some case the reaction rate equations inability to describe the fluctuations in the cell

population levels can lead to serious shortcomings. Moreover, it is not guaranteed that the reaction

rate equations will provide a sufficiently accurate account of the average molecular population

levels, as, except for very simple linear systems, the average molecular population levels will

not exactly satisfy any closed system of equations [83, 84]. The Gillespie algorithm [83, 84] is

a method for computationally solving the time evolution of a biological spatially homogeneous
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system that explicitly takes account of the fact that the system is a discrete, stochastic process

instead of a continuous, deterministic process. The Gillespie algorithm offers an alternative to the

differential reaction rate equations that is free of the difficulties mentioned above.

2.4.1 Physical basis of the stochastic formulation [84]

In general a chemical/biological reaction occurs whenever two or more molecules/cells of

appropriate kind collide in an appropriate manner. Consider a system comprising of a mixture

of two cell types, S1 and S2, which are in equilibrium within a volume, V . For simplicity it is

assumed the cells are spheres of radii r1 and r2 respectively. Therefore, a 1-2 collision will occur

whenever the distance between the centres of the two cells decreases to r12 = r1 + r2. The

traditional method to calculate the rate at which these interactions occur is to begin by choosing

an arbitrary 1-2 pair of cells, and denoting the speed of cell 1 relative to cell 2 as v12. We then

observe that in the next small time interval δt, cell 1 will sweep out relative to cell 2 a ‘collision

volume’ δVcoll = πr212v12δt [84] in the sense that if the centre of cell 2 lies within the δVcoll

at time t, then the two cells will collide in the time interval (t, t + δt). We now estimate the

number of S2 cells that have a centre that lies within δVcoll, divide that number by δt, and take

the limit as δt → 0 to obtain the rate at which the S1 cells collide with the S2 cells. However, as

δVcoll → 0, the number of S2 cells that have a centre within δVcoll will either be 1 or 0, with the

zero possibility becoming more and more likely. Therefore, it is physically meaningless to talk

about the number of cells with centres laying within δVcoll in the limit of vanishingly small δt.

However, as the system is in equilibrium, the cells will at all times be distributed randomly and

uniformly throughout the volume. Therefore, the probability that the centre of an arbitrary S2 cell

will be located within δVcoll at time t will be given by the ratio δVcoll/V , which is true in the limit

of vanishingly small δVcoll. If we average this ratio over the velocity distribution of the two cell

types, it can be concluded that

δVcoll/V = V −1πr212v12δt,

which equals the average probability that a particular 1-2 cell pair will collide in the next

vanishingly small time interval δt. If at time t there are N1 of the S1 cells and N2 of the S2

cells in V , giving a total of N1N2 distinct 1-2 cell pairs, then it follows that the probability that a

1-2 collision will occur within V in the next infinitesimal time interval (t, t+ dt) is given by

N1N2πr
2
12v12dt.
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Although the number of 1-2 collisions occurring in the infinitesimal time interval cannot rigorously

be calculated, the probability of a 1-2 collision occurring can be. This means the system must be

classified by a ‘collision probability per unit’ time rather than a ‘collision rate’. This is why these

collisions constitute a stochastic process instead of a deterministic process.

2.4.2 The stochastic simulation algorithm

To be able to simulate a biological system of reactions we require a way of specifying when the

next reaction will occur and what kind of reaction it will be. What is required is a method for

generating a pair (dt, µ), where dt is the time increment and Rµ is the reaction that will occur,

from the set of random pairs whose probability density function is P (dt, µ), given by [83]:

P (dt, µ) =


aµ exp(−a0dt) if 0 ≤ dt <∞ and µ = 1, · · · ,M,

0 Otherwise.
(2.4.2)

In which aµ = hµcµ and a0 =
∑M

i=1 hici, where hµ is the number of distinct Rµ cell reactant

combinations available in the state (N1, N2, · · · , Nn), (µ = 1, · · · ,m), and cµ is a constant that

depends on the physical properties of the reacting cells and the system.

It turns out that there is a simple rigorous way of doing this using uniform random numbers.

This achieved as follows [82]: Using two uniform random numbers, u1 and u2, take dt =

(1/a0) ln(1/u1), and take µ to be the integer for which
∑µ−1

i=1 ai < u2a0 ≤
∑µ

i=1 ai. A

rigorous proof can be found in [83]. This procedure generates a random number dt according

to the probability density function P1(dt) = a0 exp(−a0dt) and an integer µ according to the

probability density function P2(µ) = aµ/a0. The stated result follows, roughly speaking, because

P1(dt)P2(µ) = P (dt, µ).

2.4.3 Computational algorithm

This section addresses the computational algorithm developed in [83, 84] used to solve the

time evolution of a biological system. An example of a generalised Gillespie algorithm for

simulating a series of reactions is outlined. For the purposes of this thesis the algorithm

is assumed to be simulating interactions between various cell types. The algorithm in this

subsection is simulating the interaction between n populations of cells with population sizes of
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(N1, N2, ..., Nn). These populations interact following the interactions (R1, R2, · · · , Rm) with

corresponding rates (r1, r2, · · · , rm).

Step 0 (Initialisation): Input desired values for the reaction rates (r1, r2, · · · , rm), for reactions

(R1, R2, · · · , Rm), and initial population numbers (N1, N2, ..., Nn).

Step 1: Calculate the ‘reaction parameters’ (a1, a2, · · · , am) by multiplying the reaction rate by

the size of each of the populations required for that reaction to occur, and the number of each of

the populations required.

Step 2: Calculate two uniform random variables, u1 and u2, in the interval zero to one. Use

these numbers to generate: (i) the time elapsed, dt, for the next reaction to occur by sampling

from an exponential distribution, dt = − log(u1)/
∑m

i=1 ai, and (ii) the reaction that has occurred

in this time interval. To determine the reaction that has occurred, all possible reactions must be

scaled into the interval zero to one. We do this for the first reaction (R1) by assigning the interval

between 0 and a1/
∑m

i=1 ai, then for reactions R2 to Rm the interval from
∑m

i=k ai/
∑m

i=1 ai,

where 2 < k < m. The reaction that occurs is then determined by the interval u2 falls into.

Step 3: Adjust the time elapsed by adding dt, and adjust the population levels to reflect the

occurrence of the reaction determined in step 2. Then return to step 1.

This process continues until a desired time or population number is reached.

2.4.4 Simple example

To illustrate the Gillespie algorithm, let us consider a simple example in which we have two cells

A and B, that bind with rate k+ and unbind with rate k−, producing two cells of type A. We have

the reactions

R1 A+B
k+−→ AB

R2 AB
k−−→ 2A+B.

Step 0: Let us start with population size of NA, NB and NAB for populations A, B and AB

respectively, where AB is the complex of A and B bound to each other. We will continue our

simulation until the time is greater than some maximum time, tstop.

Step 1: We have a1 = k+NANB and a2 = k−NAB .

Step 2: The
∑

i ai = a1 + a2, therefore dt = − log(u1)/(a1 + a2). We have the intervals:

I1 =
[
0, a1

(a1+a2)

]
for R1, and I2 =

[
a1

(a1+a2)
, 1
]

for R2. The reaction that has occurred is
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determined using the uniform random number u2.

Step 3: We now increment the time by dt, t = +dt, and adjust the population numbers

accordingly. If u2 ∈ I1, NA = NA − 1, NB = NB − 1 and NAB = NAB + 1, and if u2 ∈ I2,

NA = NA + 2, NB = NB + 1 and NAB = NAB − 1. We now check if t > tstop, if it is, we end

the simulation, if not, we return to step 1.

2.5 Green’s functions

There are many great books on Green’s functions [21, 233], therefore only a brief description

will be given. Green’s functions are used to solve inhomogeneous differential equations, with

boundary conditions. For an arbitrary differential operator L, which in this thesis will always be

the Laplacian, the Green’s function G(x|x′) is defined as

LG(x|x′) = δ(x− x′), (2.5.3)

where δ is the delta function. The solution to Lφ(x) = f(x), is given by

φ(x) =

∫
G(x,x′)f(x′)dx′. (2.5.4)

2.6 Other modelling efforts

2.6.1 Cellular Potts model of the lymph node

The Cellular Potts model (CPM) is a generalisation of the Ising model, which is used to model

magnetic interactions [99]. In the CPM, the domain is divided into a lattice of discrete sites,

and cells are described by the lattice sites they occupy [67]. This method allows the cells to

have complex shapes that can change. However, it does not model the internal structure of the

cell. The motion and interactions of cells is determined by an energy function [57]. The energy

function typically depends upon adhesion between cells, volume of a cell, and the concentration of

chemical attractants. The method is updated using a modified Metropolis Monte-Carlo algorithm

[167]. The Metropolis Monte-Carlo algorithm is a method for obtaining random samples from a

probability distribution for which direct sampling is difficult. A modification is applied for use in

higher dimensions. The Monte-Carlo algorithm chooses random updates for the lattice positions

according to how the energy of the system changes. For example, an optimal cell volume is
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normally set, if a cell’s volume is below the optimal value, the energy of the system would decrease

by increasing the volume of the cell, so the overall volume is closer to the optimal volume. An

increase in the contact area between cells will cause an increase in the energy of the system. If

a cell moves towards a chemical attractant, the energy of the system will decrease, as the cell is

moving in the chemically favoured direction. The algorithm accepts the changes with a probability

defined by the change in the overall energy of the system. Lower energy states are accepted with

a higher probability than higher energy states.

The Cellular Potts model allows detailed simulation of cell membrane movements. This thesis is

concerned with cells interacting, but not with how their membrane structures interact. The cellular

Potts model is therefore not an appropriate model for use in this thesis, as such a high level of

detail is not required.

2.6.2 Movement on the reticular network

It has been proposed that, rather than moving in three-dimensional space, T cells move along the

reticular network (RN), which fills the T cell zone of the LN [92,121,123,225]. It has been reported

that the RN acts as a conduit system, transporting soluble antigen to DCs residing in the LN [208],

and the cells of the RN secrete the T cell survival factor IL-7 [135]. There is experimental evidence

for T cells moving along the RN, and their changes in direction being correlated with branches of

the RN [16, 18, 196].

Donovan and Lythe [73] develop a model in which T cells move along a RN, by first constructing

a network, and then confining all motion to the network. Using a computational approach, they

construct a network by defining sets of vertices and the edges joining them. They assume each

vertex in the network is connected to exactly three edges, motivated by the idea of a network

growing by branches splitting into two. Various hypotheses are considered for the movement of

cells along the edges of the network. They also explore the effect moving on a RN has on the

interactions between T cells and APCs, as some APCs reside on the network [129]. It has also

been proposed that restricting motion to the RN could be a way of increasing the rate of encounters

between cells [56]. It is found that restricting movement to a RN does not necessarily increase the

frequency of encounters, compared to movement by Brownian motion in three-dimensional space.
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2.7 Chapter summary

This thesis focuses on the interactions and dynamics of lymphocytes, within LNs. The stochastic

nature of these interactions will be considered by using spatial and Gillespie models. Chapter

3 investigates the first passage processes of the time a T cell takes to locate an APC within a

LN. Chapters 4 and 5 focus on in vivo imaging experiments, analysing experimental data, and

determining the effects of confinement in a limited sized imaging volume when calculating the

diffusion coefficient of T cells. Chapter 6 makes use of experiments carried out by the Bousso

group, in Paris, to answer the question of, how many DCs are required to initiate a T cell

response? Chapter 7 investigates effector and regulatory T cell interactions by developing a

stochastic formalisation of the deterministic cross-regulation model [49, 133]. Finally, Chapter

8 will make use of mathematical models to investigate the three hypotheses for T cell activation,

proposed in [42].

2.7.1 Chapter 3

The work in Chapter 3 aims to determine the time a T cell takes to first encounter an APC

within a LN. The time for this encounter to occur is of critical importance to the activation of

a T cell response. The chapter builds up on the simple scenario of a particle in a known position

attempting to locate a fixed central target, to the case when a particle in a uniform random unknown

starting position is attempting to locate one ofN fixed targets located in unknown uniform random

positions. This is achieved by solving Poisson’s equation, and making use of Green’s functions.

The work in Chapter 3 greatly benefited from recent theoretical advances in the mathematics

describing diffusing objects in a confined region, with one or more targets [58, 61].

2.7.2 Chapter 4

The effect of confinement in a limited size imaging volume is investigated in Chapter 4. Since

the beginning of the twenty-first century advances have been made in in vivo imaging techniques,

through the development and improvement of TPLSM. These experiments generate extensive data

sets, but are limited by the size of the volume that can currently be imaged. A limited sized

imaging volume causes a confinement effect to be observed at later times in the experiments, as

cells that take looping paths will remain for longer in the imaging volume. Chapter 4 provides an
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estimation of the point at which confinement should be observed, due to a limited volume size.

2.7.3 Chapter 5

Chapter 5 makes use of work carried out in Chapter 4 to analyse data obtained from TPLSM

experiments. The chapter investigates experimental data to determine the type of motion being

observed, and calculate the motility of the cells imaged. A systematic algorithm is developed to

determine the type of motion and calculate a diffusion coefficient of cells in a TPLSM data set.

The work in this chapter, as well as work in Chapter 4, provides an insight into how the shape, and

resolution, of the imaging volume used in TPLSM experiments can be improved to give a more

informative data set.

2.7.4 Chapter 6

Chapter 6 attempts to answer the question of, how many DCs are required to initiate a T cell

response? This work was carried out in collaboration with experimentalists in Paris. Biological

experiments allow the probability of activation to be estimated using large numbers of cells, on

a short timescale. Mathematical modelling allowed extrapolation of the experimental results to

lower cell numbers and longer timescales, enabling a minimum number of DCs required to initiate

a T cell response, to be determined.

2.7.5 Chapter 7

Chapter 7 extends work done by Léon et al. [49, 133], to investigate the effect of stochastic

fluctuations on the cross-regulation model. The cross-regulation model is a model of three way

interactions between APCs, effector T cells and regulatory T cells. A stochastic model gives

a more realistic description of biological processes, allowing variability to be observed in the

system. This approach reveals aspects of the system previously not observed the the deterministic

model.

2.7.6 Chapter 8

In Chapter 8, three hypotheses of T cell activation [40, 42] are investigated. T cells are known to

undergo three distinct phases in their activation process: (1) transient interactions, (2) long-lived
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interactions, and (3) swarming. Three hypotheses have been proposed to explain this process;

APC changes, T cell signal integration, and a probabilistic approach. Chapter 8 models these

three hypotheses, with an emphasis on the probabilistic approach.
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Chapter 3

First passage processes

3.1 Introduction

First passage processes [184, 226] have relevance to many practical areas, including chemical

[100, 187] and biochemical reactions [30, 31, 63, 138], searching for food by animals [28] and

transport processes on complex networks [3, 4, 29, 166, 169, 222]. Mean first passage times

(MFPTs) associated with a random walker moving in a bounded domain, with one or more

targets are a critical step in transport-limited reactions [187], such as immune cell interactions,

for which the time for cells to encounter each other is a limiting factor in the initiation of an

immune response. MFPTs are also used in other areas of immunology, such as calculating the

arrival time of receptors at localised reactive sites on the surface of immune cells, which is the

key step in the signalling process, and therefore activation [62] of the cell upon encounter. This

chapter focuses on the larger scale of cell-cell encounters.

The aim of this chapter is to derive an equation for the target global mean first passage time

(TGMFPT) of a particle, which represents a T cell, starting in a uniform random position and

moving by Brownian motion within a bounded spherical domain that excludes the volume of the

target, representing a lymph node (LN), to encounter one or more uniformly randomly placed

fixed spherical targets, representing antigen-presenting-cells (APCs). The particles are assumed

to move with a constant diffusivity, and the targets are assumed to be stationary. The domain has

a reflecting boundary, keeping the particle confined, and the target(s) have absorbing boundaries.

Extensive research has been carried out in the area of MFPTs, and important results have been

published regarding the time for a random walker to reach a target site for the first time. This target



Chapter 3. First passage processes 38

could either be within a bounded domain, or, on the surface of the domain. Other first passage

related quantities have also been derived, such as splitting probabilities, which is the probability to

reach one target before another [3,4,27,31,35,58–62,94,103,149,181,205–207,230]. Particularly

useful to the research in this chapter, Condamin et al. [60] determine starting global mean first

passage times (SGMFPTs), and splitting probabilities, in the presence of one, and two targets, in

both discrete and continuous time, on the interior of two and three-dimensional domains. First

passage processes for more than two targets [58, 59, 62] have also been studied. Results of these

studies are used in this chapter. Other studies have found expansions for the principal eigenvalues

of the Laplacian, MFPT, and splitting probabilities for various domains [59,62], allowing optimal

positions of targets to be calculated in order to minimise search time.

This chapter begins by deriving Poisson’s equation, which is used to calculate a MFPT for a single

target in the centre of a sphere, with a particle undergoing Brownian motion searching for it. A

MFPT for a single target being ‘close’ to the centre of the sphere, where ‘close’ is defined as

being within one target radius, using an approximation proposed by Grigin [93], is investigated.

To calculate a solution for a unifromly randomly placed target within the domain, a review of

papers by Condamin et al. [60] and Chevalier et al. [58], in which they derive an equation for a

target in a fixed position anywhere within the domain, is undertaken. Using this, an equation is

derived for a uniformly randomly placed target, by integrating over all possible starting positions

within the domain. The final step is to derive a TGMFPT for multiple targets, in the domain. This

is accomplished by making use of equations for N targets, in fixed positions within the domain,

derived in [58,60]. Integrating the equation for multiple fixed targets, over the starting position of

each of the targets, results in an equation for multiple unifromly randomly placed targets within a

sphere. All the results in this chapter are tested against numerical results, generated using spatial

codes (Section 2.2.3).

The results obtained in Sections 3.2 and 3.3 have been derived previously for a multitude of

applications. The approximation in Section 3.4 was developed by Girgin [93]. To the best of my

knowledge this approximation has not been previously used to calculate the first passage quantities

derived in Section 3.4. The work in Section 3.5 to 3.8 to calculate the SGMFPT is a review of

work carried out by [58,61]. The calculations to compute the TGMFPT for one and N targets has

not been previously undertaken to the best of my knowledge.

The aim of this chapter is to derive an equation for the time a particle starting in a unifrom random

position, which excludes the volume occupied by the target, and is undergoing Brownian motion,
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takes to encounter a target in a fixed uniform random position. This is analogous to a T cell

attempting to encounter an APC within a LN. Obtaining this equation will allow a rate of encounter

between T cells and APCs to be calculated for a given set of conditions. This rate can then, and

will be, used in this thesis to simulate interactions between T cells and APCs both computationally

and analytically.

The SGMFPT refers to the MFPT for a particle starting in a uniform random unknown position,

which excludes the volume occupied by the target, to locate a target starting in a fixed known

uniform random position. The TGMFPT refers to the MFPT for a particle starting in a uniform

random unknown position, which excludes the volume occuped by the target, to locate a target

starting in a fixed unknown uniform random position.

Description Vector Radius

Initial position of particle rs rs

Target rT rT

Position of particle along path r r

Table 3.1: Table listing the parameters used to represent the positions of particles and targets.

Vector refers to a three-dimensional position and radius refers to the distance from the centre of

the domain.

Description of positions Abbreviation Notation

Prescribed particle, central target MFPT τ0(rs)

Prescribed particle, prescribed random target MFPT τ(rT , rs)

Unprescribed random particle, prescribed random target SGMFPT τ(rT )

Unprescribed random particle, unprescribed random target TGMFPT T

Table 3.2: Table listing notation used to represent first passage processes. Prescribed implies

the starting position is known, unprescribed that the starting position is unknown. All random

positions are uniform random and exclude the volume occupied by the target in the case of the

particles position.
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3.2 Poisson’s Equation [184]

Assuming a symmetric random walk, in one dimension, where there is equal probability of moving

in both directions, on the interval [x−, x+], with time increment δt, the mean time to encounter

the boundary, t(x), starting from position x, is the sum of the times for each exit path, multiplied

by the probability of that path, averaged over all paths.

t(x) =
∑
i

Pi(x)ti(x), (3.2.1)

where ti(x) is the exit time of path i, to the boundary, and Pi is the probability of path i. Figure

3.1 illustrates (3.2.1).

Figure 3.1: Diagram to illustrate (3.2.1). A particle starts at a prescribed position, within the

domain, and moves a distance chosen from a uniform distribution, independent of previous

movements, in fixed discrete timesteps until it crosses the boundary of the domain.

This mean time, obeys the recursion formula

t(x) =
1

2
[t(x+ δx) + δt] +

1

2
[t(x− δx) + δt], (3.2.2)

where δx is the increment moved in the x dimension, and the boundary conditions are t(x−) =

t(x+) = 0: the time to encounter the boundary is zero, if starting at the boundary. The relation

expresses the mean time starting at x in terms of the outcome one step in the future. The walk can

be viewed as restarting at x+ δx or x− δx after time interval δt has passed, each with probability

one half. Using the Taylor expansion on t(x+ δx) and t(x− δx), as δx→ 0, gives

t(x+ δx) = t(x) + δxt′(x) +
1

2
δx2t′′(x) + ... (3.2.3)

t(x− δx) = t(x)− δxt′(x) +
1

2
δx2t′′(x) + ... (3.2.4)
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Substituting equations (3.2.3) and (3.2.4) into equation (3.2.2) gives

t(x) = δt+ t(x) +
1

2
δx2t′′(x) + ... (3.2.5)

Dividing by δt, and rearranging, gives

Dt′′(x) = −1, (3.2.6)

where D is the diffusion coefficient. Brownian motion is the limit of a random walk as δt → 0,

with the limitD = 1
2 lim
δt→0

δx2

δt . This can be extended to three dimensions to give Poisson’s equation

D∇2τ = −1, (3.2.7)

where τ is the mean time starting from position rs, which is a three-dimensional vector.

3.3 Central target

A MFPT for a particle moving by Brownian motion, within a sphere, to find a target located in the

centre of the sphere, can be calculated by making use of Poisson’s equation (3.2.7). This problem

is illustrated in Figure (3.2).

Figure 3.2: Diagram showing a Brownian path (blue) to a target (green) located in the centre of a

sphere.

The expected time to encounter a central target, τ0, within a sphere, satisfies Poisson’s equation

(3.2.7), with a reflecting boundary condition on the surface of the sphere, dτ0(rs)
drs

∣∣∣
rs=R

= 0, and

an absorbing boundary condition on the surface of the target, τ0(rs = b) = 0, where b is the size

of the target, rs = |rs| is the distance from the centre to the starting position of the particle, and R

is the radius of the spherical domain.



Chapter 3. First passage processes 42

As the target is in the centre of the sphere there is symmetry in both the azimuthal and polar angles,

therefore τ0(rs) only depends on the distance to the particle’s initial position. Using spherical polar

coordinates Poisson’s equation (3.2.7) becomes

1

r2s

∂

∂rs

(
r2s

∂

∂rs
τ0

)
=

∂2

∂r2s
τ0 +

2

rs

∂

∂rs
τ0 = − 1

D
. (3.3.8)

Equation (3.3.8) has the general solution

τ0(rs) = − 1

6D
r2s −

c1
rs

+ c2, (3.3.9)

where c1 and c2 are integration constants. Using the boundary conditions to find c1 and c2 in

(3.3.9), gives

c1 =
R3

3D
, c2 =

1

6D

(
b2 +

2R3

b

)
,

so that

τ0(rs) =
R3

3Db
− R3

3Drs
− r2s

6D
+

b2

6D
. (3.3.10)

3.3.1 Particle in a random starting position

The SGMFPT for a particle starting in a uniform random position within the sphere, excluding

the volume occupied by the target, to find a central target, can be found by integrating equation

(3.3.10) over all the possible starting positions in the sphere, and dividing by the volume of the

sphere, minus the volume of the target, as follows:∫ 2π

0

∫ π

0
sin θ

∫ R

b
r2sτ0(rs)drsdθdφ = 4π

∫ R

b
τ0(rs)r

2
sdrs, (3.3.11)

as there is spherical symmetry. Now

4π

6D

∫ R

b

[
2R3(

r2s
b
− rs) + r2sb

2 − r4s
]
drs =

2π

45Db

[
2R5(5R− 9b) + b5(3b− 5) + 10b3R3

]
.

(3.3.12)

Dividing by the volume of the sphere minus the volume of the target; (4π(R3 − b3)/3), gives the

equation

τ0 =
R3

R3 − b3

(
R3

3Db
− 3R2

5D
+

b2

3D
− b4

6D
+

b5

10D

)
, (3.3.13)

where τ0 is used to represent the SGMFPT. For b� R, this becomes

τ0 ≈
R3

3Db
− 3R3

5D
. (3.3.14)
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3.4 Target ‘close’ to centre

The aim is to determine an equation for the time a particle moving by random motion, within a

sphere, takes to find a uniformly randomly placed target. This proves to be simple when the target

is in the centre of the sphere, as there is spherical symmetry. However, if the target is not in the

centre there is only symmetry in the azimuthal angle, therefore Poisson’s equation becomes

∇2τ(rT , rs, θ) =
1

r2s

∂

∂rs

(
r2s
∂τ

∂rs

)
+

1

r2s sin θ

∂

∂θ

(
sin θ

∂τ

∂θ

)
= − 1

D
. (3.4.15)

Separation of variable leads to the expression

τ(rT , rs, θ) =
A0

rs
+B0 −

1

6D
r2s +

∞∑
n=0

(Anr
n
s +Bnr

n+1
s )Pn(cos θ), (3.4.16)

where θ, is the polar angle between the particle and target, rT is the position of the target, the

Pn’s are Legendre polynomials, and A0, B0, An and Bn are constants. As a first approximation

(3.4.16) is expanded to order cos θ terms giving

τ(rT , rs, θ) =
A0

rs
+B0 −

1

6D
r2s +

(
A1

r2s
+B1rs

)
cos θ. (3.4.17)

At the surface of the sphere, we have a reflecting boundary condition, which implies

∂τ(rT , rs, θ)

∂rs
= 0 for rs = R, (3.4.18)

as in the previous case. The boundary condition on the surface of the target, is not as straight

forward as in the previous case. A paper by Grigin [93], proposes that an equation for the position

on the surface of a sphere ‘close’ to the centre of another sphere is given by rs = b(1 + ε cos θ),

where ε is a small parameter given by rT /b, and rT is the distance of the target from the centre of

the sphere. For this approximation to hold, the condition rT < bmust be satisfied (see Figure 3.3).

Therefore, the approximation is only useful when the target is ‘close’ to the centre of the sphere.

Using this approximation, the boundary condition for the surface of the target is given by

τ(rT , rs, θ) = 0 for rs = b(1 + ε cos θ). (3.4.19)

Using boundary conditions (3.4.18) and (3.4.19), we find

A0 = −R3

3D , B0 = 1
6Db(2R

3 + b3),

A1 = rTR
3

3D

(
b3−R3

2b3+R3

)
, B1 = 2rT

3D

(
b3−R3

2b3+R3

)
.
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Target

b

b

Figure 3.3: Setup of a problem with the centre of a target (green) within one target radius (b,

indicated by dashed line) of the centre of the sphere.

Giving the MFPT equation

τc(rs, rT , θ) =
R3

3Db
− R3

3Drs
− r2s

6D
+

b2

6D
+ (b3 −R3)

rT (R3 + 2r2s)

3Dr2s(2b
3 +R3)

cos θ, (3.4.20)

where the c subscript refers to the ‘close’ approximation. When rT → 0, we approach the case

where the target is in the centre,

τc(rs, rT , θ)→
R3

3Db
− R3

3Drs
− r2s

6D
+

b2

6D
, (3.4.21)

agreeing with (3.3.10). Equation (3.4.20) can be tested by comparing to spatial simulations

(Section 2.2.3), for varying angles (θ) around the centre. Figure 3.4 shows (3.4.20) is a better

approximation to the MFPT than assuming the target is in the centre, as in (3.3.13).

3.4.1 Random particle starting position

The SGMFPT for a particle, starting in a uniform random position within a sphere, excluding the

volume occupied by the target, to find a target, that has a centre within radius b of the centre of the

sphere, can be found by integrating (3.4.20) over all possible starting positions of the particle, as

follows∫ 2π

0

∫ π

0
sin θ

∫ R

b
r2sτc(rs, rT , θ)drsdθdφ = 2π

∫ π

0
sin θ

∫ R

(b+rT )
r2sτc(rs, rT , θ)drsdθ.

(3.4.22)

We have the lower limit of (b+rT ) on the integral over rs, to excluded the particle from starting in

a position where the target could be placed. This will lead to a larger volume being excluded than
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Figure 3.4: Comparison of numerical results from spatial simulations to the MFPT equation for a

target in the centre of a sphere (3.3.13) and the MFPT equation for a target ‘close’ to the centre

(3.4.20). Parameters used: b = 0.2, rs = 0.5, rT = 0.05, and D = 0.5. Number of realisations

used to generated each point = 106.

the target occupies, giving a upper bound on the SGMFPT. We must also divide by the volume

in which the particle could be placed, given by the volume of the sphere minus the volume of

(b+ rT ). The solution of (3.4.22) divided by the volume is given by

τ c(rT ) =
3

4π(R3 − (b+ rT )3)
2

∫ π

0
sin θ

∫ R

(b+rT )
r2sτc(rT , rs, θ)drsdθ

=
R3

R3 − (b+ rT )3

(
R3

3Db
+

r3T
3Db

− 3R2

5D
+

r5T
10DR3

−
r2T
2D

+
r4T b

2DR3
+

b2

3D

+
5r3T b

2

6DR3
+

r2T b
3

2DR3
− b5

15DR3

)
. (3.4.23)

For b� R, this implies rT � R, as rT ≤ b, (3.4.23) becomes

τ c(rT ) ≈ R3

3Db
− 3R2

5D
, (3.4.24)

which agrees with (3.3.14).

Figure 3.5 compares (3.4.23) to numerical simulations (described in Section 2.2.3). Starting

positions of the target were chosen to satisfy the condition for this approximation, of being within

one target radius of the centre of the sphere. The plots show the equation is a good approximation

to the numerical results. There is very little difference between the three cases, implying that the

target’s position, within the valid domain, does not have a large effect on the SGMFPT.
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(a) rT = 0.0. (b) rT = 0.5b.

(c) rT = b.

Figure 3.5: Comparison of (3.4.23), dotted red line, against numerical simulations, blue, for

varying starting positions as a function of the target size. Parameters used: R = 1.0, andD = 0.5.

Number of realisations used to generate each point ranges from 104 to 105.

3.4.2 Random target within b of centre

The TGMFPT for a target in a uniform random position within the valid region can be found by

integrating (3.4.23) over all possible starting positions for the target, between zero and b. We must

then divide by the volume of this region, 4
3πb

3, to obtain the TGMFPT,

Tc =
3

4πb3

∫ 2π

0

∫ π

0
sin(θ)

∫ b

0
τ c(rT )r2TdrTdθdφ

=
3

4πb3

∫ b

0
τc(rT )4πr2TdrT

= − 1

10b3D

[
43b5

30
− 37b2R3

3
− 6
√

3R3
(
b2 + 4bR+R2

)(
tan−1

(
2b+R√

3R

)
− tan−1

(
4b+R√

3R

))
18R3(b−R)(b+R) tanh−1

(
b(3b+R)

5b2 + 3bR+ 2R2

)]
. (3.4.25)

For b� R, upon performing a series expansion of the trigonometric terms, (3.4.25) becomes

Tc ≈
R3

3Db
− 3R2

5D
. (3.4.26)
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Figure 3.6: Comparison of numerical results and the TGMFPT for a target ‘close’ to the centre of

a sphere. Parameters used: R = 1.0 and D = 0.5. Number of realisations used to generate each

point ranges from 104 to 105.

A comparison of (3.4.25) against numerical results can be seen in Figure 3.6. Equation (3.4.25) is

found to be a good fit to the numerical results, when the target is placed uniformly randomly with

its centre within one target radius of the centre of the sphere and the particle is placed in a uniform

random position, which in the equation is not within b + rT of the centre, and for the numerical

simulations is not within the radius of attraction of the target.

3.5 Randomly placed target

Determining an equation for the MFPT when a target is not in the centre of a sphere proves to be

more difficult. By using a bispherical coordinate system, the boundary conditions on the target

surface can be expressed more easily. However, upon investigation of this method it was found

that the system was very complex to solve, and other methods were investigated.

3.5.1 Solution using Green’s functions

Chevalier et al. [58], derive a formula for the SGMFPT, using Green’s functions, and pseudo

Green’s functions, of a point particle, starting in a uniform random position within a spherical
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Figure 3.7: Diagram showing a Brownian path (blue), to a target (green) located in a uniform

random position within a sphere.

domain of radius one, excluding the volume occupied by the target, moving with a diffusivity D,

to find a target sphere of radius b, at a radius rT from the centre of the domain. This is illustrated

in Figure 3.8. This section reviews the work carried out by [58, 61] to derive a SGMFPT. I then

make use of this work to derive a TGMFPT given by (3.5.37).

Target

b

rT

1.0

Figure 3.8: Diagram of the problem setup with a uniform randomly placed target.

The equation found for the SGMFPT [58] is

τ(rT) =
1

3Db
+

4π

3D
H∗(rT|rT), (3.5.27)

where

H∗(rT|rT) =
1

4π(1− r2T )
+

1

4π
log

(
1

1− r2T

)
+
r2T
4π
− 7

10π
. (3.5.28)
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Giving

τ(rT) =
1

3Db
+

1

3D

(
1

1− r2T
− log(1− r2T ) + r2T −

14

5

)
. (3.5.29)

The derivation of (3.5.29) is given in the next subsection. As rT → 0, which is the case when the

target is in the centre, equation (3.5.29) becomes

τ(rT) =
1

3Db
− 3

5D
. (3.5.30)

This is equivalent to the case when the target is in the centre (3.3.13), with b� R, and R = 1.

To compute the TGMFPT for a particle starting in a uniform random position, which excludes the

volume occupied by the target, to find a target, also placed in a uniform random position, the part

of (3.5.29) that is dependent on rT , must be integrated over all possible locations of the target. Let

us introduce γ as follows

γ =
3

4π(1− b)3

∫ (1−b)

0

(
1

1− r2T
− log(1− r2T ) + r2T −

14

5

)
4πr2TdrT , (3.5.31)

so that

γ =
3

(1− b)3

∫ (1−b)

0

(
r2T

1− r2T
− r2T log(1− r2T ) + r4T −

14r2T
5

)
drT . (3.5.32)

Equation (3.5.32) can be split into three integrals

I1 =

∫ (1−b)

0

(
r2T

1− r2T

)
drT

=
1

2

(
−2(1− b) + log

(
2− b
b

))
, (3.5.33)

I2 = −
∫ (1−b)

0
r2T log(1− r2T )drT

= −1

9
(2b3 − 6b2 + 12b− 8− 3b(b2 − 3b+ 3) log(b(b− 2)) + 6 log(2− b)) (3.5.34)

I3 =

∫ (1−b)

0
r4T −

14r2T
5

drT

=

(
−b

5

5
+ b4 − 16b3

15
− 4b2

5
+

9b

5
− 11

15

)
. (3.5.35)

Combining integrals I1, I2, and I3 gives

γ =
1

30(1− b)3
(30b(b2 − 3b+ 3) log(b(2− b))− 45 log(b)− 15 log(2− b)− 18b5 + 90b4

− 116b3 − 12b2 + 132b− 76). (3.5.36)

Therefore, the TGMFPT is given by

T =
1

3Db
− γ

3D
, (3.5.37)
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where R = 1. For b� 1, this becomes

T =
1

3Db
− 1

90D
(45 log(b) + 15 log(2) + 76). (3.5.38)

3.5.2 Derivation of SGMFPT equation

The following derivation of the SGMFPT equation (3.5.29), is taken from the references by

Chevalier [58], and Condamin [60]. In this section rs, is the starting position of the particle,

rT, is the position of the target, and r is a position along the path of the target, where boldface

represents three-dimensional spatial vectors. This is illustrated in Figure 3.9.

Figure 3.9: Diagram of problem setup. The green circle represents the target, and the blue path is

the path of the particle.

The MFPT, τ(rs), for a particle, starting in position rs, to find a target in a domain, D, satisfies

the following equations [184, 188],

D∇2τ(rs) = −1 if rs ∈ D∗, (3.5.39)

τ(rs) = 0 if rs ∈ ST , (3.5.40)

∂nτ(rs) = 0 if rs ∈ SR, (3.5.41)

where ∂n is the normal derivative to the boundary of the domain. The first equation, (3.5.39), is

Poisson’s equation, and D∗ is the domain D, minus the area occupied by the target. The second

equation, (3.5.40), is an absorbing boundary condition on the surface of the target, ST . The third
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equation, (3.5.41), is a reflecting boundary condition on the boundary of the domain, SR. To solve

this problem, the Green’s function G(r|rs) is introduced, which is defined by

−∇2G(r|rs) = δ(r− rs) if r ∈ D∗, (3.5.42)

G(r|rs) = 0 if r ∈ ST , (3.5.43)

∂nG(r|rs) = 0 if r ∈ SR, (3.5.44)

where δ is the Dirac delta function with the property,
∫
D∗ δ(r − rs)dr = 1, and r is the position

of the particle along its path.

Green’s second identity [213] states∫
V

(φ1∇2φ2 − φ2∇2φ1)dV =

∮
S

(φ1∂nφ2 − φ2∂nφ1)dS, (3.5.45)

where the first integral is over the volume of the domain and the second integral is over the surfaces

of the target and domain. We must now choose φ1 and φ2. Let φ1 = τ(r) and φ2 = G(r|rs). This

gives∫
D∗

(τ(r)∇2G(r|rs)−G(r|rs)∇2τ(r))dV =

∫
Sa∪Sr

(τ(r)∂nG(r|rs)−G(r|rs)∂nτ(r))dS.

(3.5.46)

From the boundary conditions (3.5.43) and (3.5.44), the right-hand-side becomes zero. Using

(3.5.39) and (3.5.42), equation (3.5.46) becomes∫
D∗

(−τ(r)δ(r− rs) +G(r|rs)
1

D
)dV = 0. (3.5.47)

From the definition of the Dirac delta function, we get∫
D∗
τ(r)δ(r− rs)dV = τ(rs), (3.5.48)

when r = rs, as rs is not contained within the domain, D∗. Therefore the MFPT is given by

τ(rs) =
1

D

∫
D∗
G(r|rs)dV. (3.5.49)

The function G(r|rs) must now be determined. G(r|rs) is a function constructed from pseudo-

Green’s functions, that gives a constant for the occupation time across all of the domain, except

for a peak in the occupation time at the starting position of the particle, as on average it will spend

the most time there, and a dip in the occupation time near the target, as if the particle is near the

target there is a high probability it will encounter it. G(r|rs) can be written as

G(r|rs) = H(rT|rT)−H(rT|rs) +H(r|rs)−H(r|rT), (3.5.50)
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where

H(r|rT) =


1

4π|r− rT|
+H∗(r|rT) if |r− rT| > b,

1

4πb
+H∗(rT|rT) if |r− rT| < b,

(3.5.51)

where H∗ will be defined later. The second case is how the H(rT|rT) term is expressed. The

G function in (3.5.50) is a function of three variables constructed from the H functions, which

are functions of two variables. In (3.5.50), the H(r|rs) term accounts for the peak in occupation

time near the starting position and the H(r|rT) term is the dip in occupation time near the target.

The H terms are the pseudo-Green’s function [21], which are needed to allow (3.5.50) to satisfy

(3.5.42)–(3.5.44), and satisfy

−∇2H(r|rs) = δ(r− rs)−
1

V
if r ∈ D, (3.5.52)

∂nH(r|rs) = 0 if r ∈ Sr, (3.5.53)

H(r|rs) = H(rs|r), (3.5.54)∫
D
H(rs|r)drs ≡ 0, (3.5.55)

where the fourth equation can be derived from the previous three and V is the volume of the

domain. The choice of G(r|rs) is the simplest one that satisfies equations (3.5.42)–(3.5.44).

Checking if (3.5.50) satisfies (3.5.42), we get

−∇2G(r|rs) = −∇2H(rT|rT) +∇2H(rT|rs)−∇2H(r|rs) +∇2H(r|rT)

= +δ(rT − rT)− 1

V
− δ(rT − rs) +

1

V
+ δ(r− rs)−

1

V
− δ(r− rT) +

1

V

= δ(r− rs)

using (3.5.52), and that δ(rT − rT), δ(rT − rs) and δ(r − rT) are only non zero in the target

domain, which is excluded from D∗. Checking if (3.5.50) satisfies (3.5.44), we get

∂nG(r|rs) = ∂nH(rT|rT)− ∂nH(rT|rs) + ∂nH(r|rs)− ∂nH(r|rT)

= 0,

using (3.5.53). Equation (3.5.43) can however only be approximately satisfied [58, 60].
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We can now compute (3.5.49),

τ(rs) =
1

D

∫
D∗
G(r|rs)dr

=
1

D

∫
D∗

[H(rT|rT)−H(rT|rs) +H(r|rs)−H(r|rT)] dr

=
1

D

∫
D∗

[H(rT|rT)−H(rT|rs)] dr

=
V

D
[H(rT|rT)−H(rT|rs)] +O(b3G0(b)). (3.5.56)

Using (3.5.54) and (3.5.55), as well as using the fact that the integral over D∗ is almost equal to

the integral over D, with the relative order of magnitude of the correction being b3/V , in three

dimensions, where b is the radius of the target.

Equation (3.5.56) is the MFPT for a particle starting at a position rs. The SGMFPT, for a particle

starting in a uniform random position, which excludes the volume occupied by the target, is

obtained by integrating over the volume of the domain, for all starting positions of the particle, rs,

and is defined as

τ(rT) =
1

V

∫
D
τ(rs)drs

=
1

V

V

D

∫
D

[
H(rT|rT)−H(rT|rs)) +O(b3G0(b)

]
drs

=
1

D

∫
D

[
H(rT|rT) +O(b3G0(b))

]
drs

=
V

D
H(rT|rT) +O(b3G0(b)). (3.5.57)

Again using (3.5.54) and (3.5.55).

In our case the bounded domain, D, is a sphere, for which the pseudo-Green’s function is known

exactly [21] and reads

H(rT|rT) = G0(rT − rT) +H∗(rT|rT), (3.5.58)

with

G0(rT − rT) =
1

4πb
, (3.5.59)

and

H∗(rT|rT) =
rT

4π|rT − r2T rT|
+

1

4π
logA(rT) +

1

8π
(r2T + r2T )− 7

10π
, (3.5.60)

where

A(rT) =
2rT

rT − rT (rT · rT) + |rT − r2rT|
. (3.5.61)
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Setting rT = |rT|, gives

H(rT|rT) =
1

4πb
+

1

4π(1− r2T )
+

1

4π
log

(
1

1− r2T

)
+
r2T
4π
− 7

10π
. (3.5.62)

Substituting (3.5.62) into (3.5.57) gives

τ(rT) =
1

3Db
+

1

3D

(
1

(1− r2T )
− log(1− r2T ) + r2T −

14

5

)
,

where R = 1. This is (3.5.29), which we set out to derive.

3.5.3 Testing the random target equation

Equation (3.5.29) can be tested against spatial simulations of a particle moving by Brownian

motion within a sphere, until it encounters a target in a fixed position. Figure 3.10 shows a plot of

the target size, b, against the SGMFPT, τ , multiplied by the size of the target, for varying starting

positions of the target.

Figure 3.10: Target in a known starting position, rT , from the centre of the sphere. Solid lines

represent numerical simulations, and dashed lines represent equation (3.5.29). Parameters used:

D = 0.5 and R = 1. Number of realisations used to produce each point ranges from 3 × 103 to

6× 104.

The aim is to obtain a formula for the TGMFPT of a uniform randomly placed particle, excluding

the volume occupied by the target, to find a uniform randomly located target. Equation (3.3.13)

assumes the target is in the centre of the sphere, and (3.5.37) assumes the target is placed uniform
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randomly, as desired. Figure 3.11 shows these two equations, along with numerical simulations,

plotted for a varying target size, b. From Figure 3.11, it can be seen that (3.5.37) is a much better

fit to the numerical results than (3.3.13).

Figure 3.11: Comparison of (3.3.13) and (3.5.37) to numerical results from spatial simulations

with target and particle placed in uniform random positions. Parameters used: D = 0.5 and

R = 1. Number of realisations used to produce each point ranges from 104 to 2× 105.

3.5.4 The case when R 6= 1

In (3.5.38) it is assumed that the radius of the domain, R, is equal to one, for simplicity. To obtain

an equation in which R 6= 1, a simple scaling of the other two parameters must be performed. b

and D need to be divided by R and R2 respectively to obtain

T =
R3

3Db
− R2

90D

(
45 log

(
b

R

)
+ 15 log(2) + 76

)
. (3.5.63)

This scaling can be verified by comparing (3.5.63) to numerical simulations. Figure 3.12 shows

the scaling appears to be correct. The numerical results being at higher values than the analytical

equation, is due to the timestep size used not being small enough. The timestep size was chosen

to reduce the computational time required to execute the simulations.
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Figure 3.12: Comparison of (3.5.63), when R 6= 1, to numerical simulations. Parameters used:

R = 0.25, D = 0.5. Number of realisations used to produce each point ranges from 2 × 104 to

2× 106.

3.6 Two fixed targets

The next question to answer is: what is the SGMFPT for a particle to find one of multiple targets?

Let us first consider the case when there are two absorbing spherically symmetric targets, in

the domain. We must construct our Green’s function G(r|rs) from pseudo-Green’s functions,

taking into account that only one of the two targets will be encountered. In order to perform this

calculation we need to introduce splitting probabilities for the probability of encountering target

one before target two, and vice-versa. Splitting probabilities can be found by solving Laplace’s

equation with boundary conditions for the surface of the domain and the targets. The splitting

probability Pi(r), i = 1, 2 [184], for encountering target i, satisfies

D∇2Pi = 0, (3.6.64)

∂nPi(r) = 0 if r ∈ ∂D, (3.6.65)

Pi(r) = 1 if r ∈ ∂Ti, (3.6.66)

Pi(r) = 0 if r ∈ ∂Tj , j 6= i, (3.6.67)
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where ∂n is the normal derivative, ∂D is the surface of the domain, and ∂Ti and ∂Tj are the

surfaces of targets i and j. The Green’s functions for this equation can be written as

D∇2G(r|rs) = δ(r− rs), (3.6.68)

∂nPi(r) = 0 if r ∈ ∂D, (3.6.69)

G(r|rs) = 1 if r ∈ ∂Ti, (3.6.70)

G(r|rs) = 0 if r ∈ ∂Tj , j 6= i. (3.6.71)

Using Green’s second identity (3.5.45), we find

Pi(rs, rT
(1), rT

(2)) = −
∫
∂Ti

∂nG(r|rs)dr, (3.6.72)

G(r|rs) can now be written as a function of pseudo-Green’s functions [61] as follows:

G(r|rs) = ρ0(rs) +H(r|rs)− P1H(r|r1)− P2H(r|r2), (3.6.73)

where ρ0 is yet to be determined, rT(1), and rT
(2), are the positions of the two targets. The

H(r|rs) function accounts for a peak in probability near the starting position of the particle, the

negative H terms account for dips in the probability near each target, and the Pi coefficients are

the probability of being at that target. The pseudo-Green’s functions are defined as in (3.5.52)–

(3.5.55). Expression (3.6.73) satisfies (3.6.64) and (3.6.65). Equations (3.6.66), (3.6.67) and

(3.6.73), along with the condition that the splitting probabilities must sum to one, give the

following set of equations [61]:

ρ0 +H1s − P1H11 − P2H12 = 0, (3.6.74)

ρ0 +H2s − P1H12 − P2H22 = 0, (3.6.75)

P1 + P2 = 1, (3.6.76)

where Hij = H(ri|rj), and the solution of the H function is the same as in (3.5.58). Expressions

for P1, P2, and ρ0 can be obtained from (3.6.74)–(3.6.76), giving

P1 =
H1s +H22 −H2s −H12

H11 +H22 − 2H12
, (3.6.77)

P2 =
H2s +H11 −H1s −H12

H11 +H22 − 2H12
, (3.6.78)

ρ0 = P1H11 + P2H12 −H1s, (3.6.79)

Substituting into (3.5.49) gives

τtwo =
V

D

(H11 −H1S)(H22 −H2s)− (H12 −H2s)(H12 −H1s)

H11 +H22 − 2H12
. (3.6.80)
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Averaging over all starting positions of the particle by integrating (3.6.80) over rs, using the fact

that all H functions with an s subscript integrate to zero by (3.5.55), gives

τ two =
V

D

H11H22 −H2
12

H11 +H22 − 2H12
. (3.6.81)

The results of testing (3.6.81) against numerical simulations are shown in Figure 3.13. In Figure

3.13, dependent target equation, refers to (3.6.81), and independent target equation assumes that

the targets have no influence on each other, and is obtained by calculating the SGMFPT for each of

the targets using (3.5.37), and combining the solutions using the formula 1/(1/τ1 + 1/τ2), where

τ1 and τ2 are the SGMFPTs for target one and two, respectively.

(a) Targets close together. (b) Intermediate case.

(c) Targets far apart.

Figure 3.13: Comparison of (3.6.80) and (3.5.37), to numerical simulations. The three cases

examine the effect of the target’s positions, relative to each other. Parameters used: R = 1 and

D = 0.5. Number of realisations used to produce each point ranges from 5× 103 to 3× 105.

3.7 Equation for multiple targets

A general equation for the time to encounter one of N targets is given in [58] as

τN = τ
(−1)
N + τ

(0)
N + τ

(1)
N , (3.7.82)
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where

τ
(−1)
N =

1

3DS
, (3.7.83)

τ
(0)
N =

4π

3DS2

 N∑
k=1

∑
j 6=k

bjbkHjk +

N∑
k=1

b2kH
∗
kk

 , (3.7.84)

and

τ
(1)
N =

16π

3DS3

( N∑
k=1

b2kH
2
kk

)2

+
N∑
l=1

b2lH
2
ll

∑
j 6=k

bjbkHjk

+
S2

4π

N∑
k=1

∑
l 6=k

P
(1)
j bkHjk − S

 N∑
k=1

∑
j 6=k

bjb
2
kHjkH

∗
kk +

N∑
k=1

b3kH
∗2
kk

 , (3.7.85)

with

P
(1)
j =

4πbj
S2

 N∑
k=1

∑
l 6=k

bkblHlk −
N∑
k=1

∑
l 6=j

bkblHlj −
N∑
k=1

bk(bjH
∗
jj − bkH∗kk)

 , (3.7.86)

in which S =
N∑
i=1

bi, bi is the radius of target i, and H∗ij = Hij −G0(ri− rj). In our case we have

bi = b for all i, so that P (1)
j = 0 for all j ∈ {1, 2, · · · , N}.

3.7.1 Two randomly placed targets

For N = 2 we get

τ
(−1)
two =

1

6Db
, (3.7.87)

τ
(0)
two =

π

3D

(
H11 +H22 + 2H12 −

1

2bπ

)
, (3.7.88)

τ
(1)
two = −2π2b

3D
(H2

11 +H2
22 − 2H11H22), (3.7.89)

using H∗ii = Hii − 1
4πb . Numerically comparing these expressions to (3.6.81), it is found that the

two expressions, derived by different methods, give approximately the same result. Expressions

(3.7.87)-(3.7.89) will be used in what follows, as they are easier to manipulate and integrate.

To calculate the TGMFPT, averaged over all positions of the two targets within the domain, we

need to integrate (3.7.87)-(3.7.89) over the position of the first target, then the second target, and
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divide by the volume of the domain for each of the integrals, with R = 1.(
3

4π(1− b)3

)2 ∫ 1−b

0

∫ 1−b

0
(4π)2τ

(−1)
two r

2
1r

2
2dr1dr2 =

1

6Db
, (3.7.90)(

3

4π(1− b)3

)2 ∫ 1−b

0

∫ 1−b

0
(4π)2τ

(0)
twor

2
1r

2
2dr1dr2 =

1

2
T − 1

6Db
, (3.7.91)(

3

4π(1− b)3

)2 ∫ 1−b

0

∫ 1−b

0
(4π)2τ

(1)
twor

2
1r

2
2dr1dr2

= −bπ
(

1

D(1− b)3
β − 3D

4π
T 2

)
, (3.7.92)

where T is the TGMFPT to find one uniform randomly placed target given in (3.5.37) and

β =

∫ 1−b

0
4πH2

TT r
2
TdrT . (3.7.93)

To calculate (3.7.90)–(3.7.92), we make use of the property that when integrating over all starting

positions HTT = Hii, and H2
TT = H2

ii, for all i ∈ {1, 2, · · · , N}. We also use the following

property of the pseudo-Green’s functions∫ 1−b

0
Hijdri = 0, (3.7.94)

given in (3.5.55). Finally we use the result (3.5.37), to write∫ 1−b

0
4πr2THTTdrT = D(1− b)3T. (3.7.95)

Note that in (3.7.90)–(3.7.92), the first two terms sum to give T/2, which was our first

approximation for the TGMFPT of two targets, assuming the targets were independent, implying

the TGMFPT scales linearly. The third term is essentially a correction term that takes into account

the effects of the other targets. Summing the terms (3.7.90)–(3.7.92) gives the TGMFPT for two

targets

Ttwo =
1

2
T − bπ

(
1

D(1− b)3
β − 3D

4π
T 2

)
. (3.7.96)

The 1
2T in (3.7.96) gives the TGMFPT assuming the targets are independent, and the second term

is a correction term. Using numerical comparisons, it is found that the analytical correction term

(bπ(· · · )) is always positive. Therefore, Ttwo is always less than 1
2T . This implies that, assuming

the targets are independent results is an overestimation of the TGMFPT. A plot of (3.7.96) is shown

in Figure 3.14(a).

3.7.2 N randomly placed targets

To calculate the TGMFPT for N targets, we again make use of the properties that were used to

calculate (3.7.96). Rewriting (3.7.84) and (3.7.85) in a more general form by combining terms
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that will integrate to give the same result, they can be made easier to integrate (the general form

below is for integration purposes only):

τ
(−1)
N =

1

3DNb
, (3.7.97)

τ
(0)
N =

4π

3D(Nb)2
(NHii)−

1

3DNb
, (3.7.98)

τ
(1)
N = − 16π2b

3DN3

(
N(N − 1)H2

ii −
N(N − 1)

2
2HiiHjj

)
, (3.7.99)

where i 6= j. This general form is obtained by eliminating all the Hij terms, which will integrate

to zero, and examining the expansion of terms upon computing the sums, to combine terms.

Integrating (3.7.97)–(3.7.99) over the domain N times, for the N targets, and dividing by the

volume of the domain N times, gives(
3

4π(1− b)3

)N ∫ 1−b

0
. . .

∫ 1−b

0
(4π)Nτ

(−1)
N r21 . . . r

2
Ndr1 . . . drN

=
1

3DNb
, (3.7.100)(

3

4π(1− b)3

)N ∫ 1−b

0
. . .

∫ 1−b

0
(4π)Nτ

(0)
N r21 . . . r

2
Ndr1 . . . drN

=
1

N
T − 1

3DNb
, (3.7.101)(

3

4π(1− b)3

)N ∫ 1−b

0
. . .

∫ 1−b

0
(4π)Nτ

(1)
N r21 . . . r

2
Ndr1 . . . drN

= −4πb(N − 1)

N2

(
1

D(1− b)3
β − 3D

4π
T 2

)
. (3.7.102)

Giving a general formula for N uniform randomly placed targets of

TN =
T

N
− 4πb(N − 1)

N2

(
1

D(1− b)3
β − 3D

4π
T 2

)
. (3.7.103)

As N → ∞, (3.7.103) becomes linearly dependent on N , with the second term of (3.7.103)

tending to zero. We must now calculate β. This can be done by computing the integral given in



Chapter 3. First passage processes 62

(3.7.93) using Mathematica, giving

β =
1

75600π(b− 2)b2

[
−12600(b− 2)b2Li2

(
b

2

)
+ 2(b(b(b(2b(b(b(27097− 27b(b(25(b− 9)b

+ 707)− 679))− 75845) + 46998) + 525π2 + 58960)− 1050π2 − 107693) + 49245)

− 6300) + 105(b− 2)b(−30b(2b((b− 3)b+ 3)− 1) log2(2− b) + (b(8b(b(b(9(b− 5)b+ 58)

+ 21)− 111)− 3049)− 120b(b− 1)3 log(b) + 60) log(2− b)− 300 log(b)

+ b(1824 log((b− 2)2)− 60 log

(
1− b

2

)
log

(
b

2

)
+ log(b)(8b(b(b(9(b− 5)b+ 58) + 21)

−111)− 30(2b((b− 3)b+ 3)− 3) log(b) + 729))− 120(b log(2) + 2) tanh−1(1− b))
]
,

(3.7.104)

where Li2
(
b
2

)
is a polylogarithm, which can be written as a series expansion as follows

Lis(z) =

∞∑
k=1

zk

ks
, (3.7.105)

therefore

Li2

(
b

2

)
=
∞∑
k=1

(
b
2

)k
k2

=
b

2
+
b2

16
+
b3

72
+

b4

256
+ . . . (3.7.106)

The SGMFPT equation given in (3.7.82) was found by [58]. To the best of my knowledge, the

TGMFPT equation given in (3.7.103) has not been previously derived. Equation (3.7.103) is valid

for N targets. However, because the integration for randomising the starting position of each of

the targets has the upper limit of 1 − b, the targets are able to overlap. To obtain an equation

for non-overlapping targets, when integrating over all possible starting positions for a target, the

volume already occupied by the targets that have been placed must be excluded. This proves to be

a more complicated problem to solve, and is not covered in this thesis.

3.8 Testing the N target equation

To determine the accuracy of (3.7.103), we will test it against numerical simulations. The

numerical simulation requires, (1) placing targets uniform randomly within a sphere, of radius 1,

and (2) placing a particle uniform randomly, that moves by Brownian motion, until it encounters

one of the N targets. Plots comparing the numerics for two, three, and four targets, to (3.7.103)

are shown in Figure 3.14.

Figure 3.14 shows a comparison of numerical simulations, with standard error bars, (3.7.103), and

(3.5.37), assuming target independence. Standard error bars are given by the standard deviation
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(a) N = 2 (b) N = 3

(c) N = 4

Figure 3.14: Comparison of (3.7.103), assuming target dependence (red), and (3.5.37) assuming

target independence (green), to numerical results obtained from spatial simulations. Parameters

used: R = 1, D = 0.5. Number of realisations used to produce each point ranges from 5.5× 104

to 5.5× 105.

of the data, divided by the square root of the number of realisations. In all cases, assuming target

dependence (3.7.103) is a better approximation of the numerical results. There is a mismatch

between the numerical results and the analytical solution in the N = 3 and N = 4 case due to

the placement of the targets. The analytical solution assumes the targets are uniformly randomly

distributed, regardless of the position of the other targets. However, the numerical simulations

place the targets uniformly randomly in the domain excluding the volume of the other targets. The

mismatch is greater for higherN as the probability of multiple targets occupying the same domain

increases as N is increased.

Figure 3.15 shows a plot of (3.7.103), assuming dependent targets, and (3.5.37), assuming

independent targets, compared to numerical results, for varying numbers of targets. The figure

shows that the dependent target equation, (3.7.103), is a better approximation to the numerical

results. The numerical results in Figure 3.15 are a better fit than those in 3.14 as the simulations
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Figure 3.15: Comparison of (3.7.103) and (3.5.37), to numerical simulations obtained from spatial

simulations. Parameters used: R = 1, b = 0.02 and D = 0.5. Each numerical point is a mean

taken from 2.5× 105 realisations.

place all the targets in uniform random positions, regardless of the positions of the other targets.

In Figure 3.15, the error bars appear to be quite large. It must be remembered that the TGMFPT

multiplied by the number of targets, is plotted on the y axis, which is exaggerating the difference

between the two equations and the numerical results. If just the TGMFPT is plotted on the y

axis a difference between the numerical results and equation cannot easily be observed and the

error bars are tiny. The numerical results in Figure 3.15 were very computationally expensive to

produce. The program used to produce the numerical results was coded to run efficiently by using

inbuilt python packages, and simulating all ten starting numbers of APCs simultaneously. These

methods are described in Appendix B. However, hundreds of days of computing time were still

required to achieve the results shown. This was only made possible with use of a high performance

computing system (ARC1) made available to me by the University of Leeds. Further computation

could be undertaken to reduce the error bars further, but it can already be seen that the numerics are

agreeing with (3.7.103), making further computation unnecessary. The program used to produce

Figure 3.15 is shown in Appendix B.
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3.9 Summary

In this chapter, Poisson’s equation is used to derive an equation for the mean time it takes a particle,

in a prescribed position, to encounter a fixed target in the centre of a spherical domain. This is

given by

τ0(rs) =
1

6D

(
2R3

(
1

b
− 1

rs

)
+ b2 − r2s

)
.

The particle’s starting position is then averaged over the domain, to give a SGMFPT equation of

τ0 =
1

30Db(R3 − b3)
(
2R5(5R− 9b) + b5(3b− 5) + 10b3R3

)
.

An approximation proposed by Grigin [93], is used to derive an equation for a target in a position

‘close’ to the centre of the domain, and is found to be

τc(rt, rs, θ) =
1

3Dr

(
−R3 +

rs
2b

(2R3 + b3)− r3s
2

+
rT
rs

(
b3 −R3

2b3 +R3

)
(R3 + 2r3s) cos(θ)

)
.

Averaging over all possible starting positions of the particle gives

τ c(rT ) =
1

2D(R3 − (b+ rT )3)

(
−R3(R2 − (b+ rT )2) +

1

3b
(2R3 + b3)(R3 − (b+ rT )3)

−1

5
(R5 − (b+ rT )5)

)
.

Averaging over the targets starting position, within the valid region assumed by the approximation,

gives

Tc =
3

4πb3

∫ b

0
τ(rT )4πr2TdrT

= − 1

10b3D

(
43b5

30
− 37b2R3

3
− 6
√

3R3
(
b2 + 4bR+R2

)(
tan−1

(
2b+R√

3R

)
− tan−1

(
4b+R√

3R

))
18R3(b−R)(b+R) tanh−1

(
b(3b+R)

5b2 + 3bR+ 2R2

))
.

Next, an approach to solve the problem of a target in a uniform random position using Green’s

functions is used. This approach is outlined in an article, by Chevalier et al. [58]. The SGMFPT

for a target in a fixed position is given by

τ(rT) =
1

3Db
+

1

3D

(
1

1− r2T
− log(1− r2T ) + r2T −

14

5

)
,

which is the result given in [58]. Averaging the starting position gives the equation

T =
R3

3Db
− R2

90D

(
45 log

(
b

R

)
+ 15 log(2) + 76

)
.
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An equation for the time to first encounter one of N uniform random targets within a spherical

domain is found to be

TN =
T

N
− 4πb(N − 1)

N2

(
1

D(1− b)3
β − 3D

4π
T 2

)
,

where β is given in (3.7.104). Throughout the chapter the equations are tested against numerical

results generated using a spatial code developed in this thesis 2.2.3. It was found that, for each

improvement implemented to the MFTP equations, the equations become better approximations

of the numerical results.
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Chapter 4

The effects of a limited imaging volume

on in vivo imaging data

4.1 Introduction

Imaging experiments using two-photon microscopy (Section 1.8.1) enables detailed visualisation

of lymphocyte movements in vivo and provide data sets of cell positions over time. Trajectories

of the centres of mass of the cells can be plotted to determine the migratory behaviour of cell

populations. Plots of cell trajectories are commonly represented in two ways. Firstly, the

unshifted coordinates of the cells can be plotted, helping to determine if the cells prefer a particular

region. Alternatively, cell positions can be shifted to start from the origin, while maintaining their

orientation in space, allowing one to determine if the cells have a preferred direction of migration.

If the number of cell tracks observed in all possible directions is approximately equal, it can

be inferred that the cells are undergoing random motion. Plotting cell tracks gives qualitative

information about the cells, such as the type of motion the cells are undergoing. To determine

quantitative information, such as the diffusivity of a population of cells, one must analyse the

dynamics of the cells.

A frequently reported migration parameter is cell migration speed. The mean speed between two

sequential time frames can easily be estimated by dividing the displacement between the two

frames, by the time elapsed in that period. In reality, the trajectory of the cell between two points

will not be exactly straight, therefore the estimated mean speed will be an underestimate of the

actual mean speed of the cells. Longer time periods between successive points will increase the
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error in the estimated mean speed. If the cells are assumed to be undergoing a random walk,

their mean displacement in any one dimension will be zero, therefore, a more useful parameter to

measure is the diffusivity of a cell, defined as the distance squared a cell moves in a given time.

By plotting the mean displacement squared against time, information about the type of migration,

as well as the diffusivity of the cells, can be obtained. A linear increase indicates the cells are

undergoing a random walk type motion. A faster than linear increase indicates the cells are

undergoing directed migration. On long timescales, directed migration could be due to the cells

following a chemokine gradient. A slower than linear mean displacement plot indicates the cells

are somehow confined; this could be due to interactions with other cell types keeping them in a

specific region. If the cells are undergoing random motion, the diffusivity of the cell population

can be determined from the gradient of the mean displacement plot. A mean squared displacement

plot is useful for investigating cell motility, but the underlying mechanism of migration cannot

reliably be inferred from it, due to multiple underlying microprocesses giving rise to very similar

mean squared displacement plots [72, 190, 234]. For example, T cells moving within a lymph

node (LN) in randomly orientated steps of fixed duration and speed [22], result in a similar plot

to that of persistently moving cells that manoeuvre through a densely packed environment with

highly variable speeds [26]. When plotting displacement squared against time, for data obtained

from two-photon laser scanning microscopy (TPLSM) experiments, it must be remembered that

the imaging area is a finite volume, so that cells that are tracked for longer time periods have

remained in the imaging volume for longer. This may be due to the cells having a low diffusivity,

or taking a looping path. Cells that leave the imaging volume can no longer be tracked, meaning

data is only available on them for a short time periods. This results in more data being available

for smaller times, and it also causes a confinement effect, indicated by a plateau forming at later

times due to these being the cells that have remained in the imaging volume. This confinement

effect occurs because the cells that can be tracked for longer times are the ones that are remaining

in the imaging volume.

The aim of this chapter is to calculate the expected squared displacement observed for a population

of cells undergoing a random walk in a limited sized imaging volume. This is accomplished by

first solving the diffusion equation, to calculate a probability density function of the position of

particles at time t. Using the probability density function, the expected mean squared displacement

can be calculated in one and three dimensions. The expectation is then normalised for particles

shifted to have an initial position at the origin. Finally, the expectation is compared to numerically
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simulated results, and a correction developed to compensate for the large time increments used in

biological experiments.

The purpose of this chapter is to be able to estimate the diffusion coefficient of a population of cells

by fitting the expected squared displacement calculated analytically to the squared displacement

of a population of cells imaged in vivo . Comparison of the expected plateau observed due to

the limited size of the imaging volume will allow the type of motion occurring to be determined.

For example, if a plateau is observed at a lower level than the expected plateau due to a limited

size imaging volume, this could be due to the cells being confined by a biological factor, or some

other effect occurring. Previous work has been carried out to determine the effect of a limited

sized imaging volume on calculating binding time of the observed cells [26]. Work as also been

undertake to increase the accuracy of data collected from TPLSM experiments [25]. However,

to the best of my knowledge, the expected squared displacement of a population of cells has not

previously been calculated analytically, as is done in this chapter.

4.2 Expected squared displacement

4.2.1 One dimension

The density function of a particle moving by Brownian motion on the interval [−L,L], can be

found by solving the diffusion equation

∂

∂t
P (x, t) = D

∂2

∂x2
P (x, t), (4.2.1)

where P (x, t) is the density function of being at position x, at time t. We have the initial condition

P (x, 0) = δ(x − x0), where x0 is the starting position of the particle, and δ is the Dirac delta

function: the probability of being at x = x0 at time zero is one, and zero elsewhere. The boundary

conditions are P (L, t) = P (−L, t) = 0, as the particle will be absorbed at ±L. Thus, the

probability of being there is zero.

Equation (4.2.1) can be solved using separation of variables, setting

P (x, t) = X(x)T (t), (4.2.2)

and substituting into (4.2.1). Rearranging gives

T ′

T
= D

X ′′

X
. (4.2.3)
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By setting both sides equal to a constant, a, (4.2.3) can be split into two separable ODEs

X ′′ − aX = 0, (4.2.4)

T ′ − aDT = 0. (4.2.5)

The boundary conditions can only be satisfied, and do not result in a trivial solution, when a > 0.

Let a = k2, then X ′′ − k2X = 0,. This has the solution

X = c1 cos(kx) + c2 sin(kx). (4.2.6)

Applying the boundary conditions gives

X(L) = c1 cos(kL) + c2 sin(kL) = 0, (4.2.7)

X(−L) = c1 cos(kL)− c2 sin(kL) = 0, (4.2.8)

where c1 and c2 are integration constants. Adding these equations gives c1 cos(kL) = 0. If

c1 6= 0, we need cos(kL) = 0. Therefore, we have kL = (2n+1)
2 π, giving k = (2n+1)

2
π
L , where

n = 0, 1, 2, . . .. Those values of k, give c2 = 0. We have the solution

Xn(x) = c1 cos

(
(2n+ 1)

2

π

L
x

)
. (4.2.9)

Solving (4.2.5), gives the solution T = c3e
−aDt, where c3 is an integration constant. For this part

of the solution we have a = k2 =
(
(2n+1)

2
π
L

)2
. Therefore

Tn = c3e
−D (2n+1)2

4
π2

L2 t. (4.2.10)

Alternatively, (4.2.7) and (4.2.8) can be subtracted from each other to give c2 sin(kL) = 0. If

c2 6= 0, we need sin(kL) = 0, therefore we have kL = (n + 1)π, giving k = (n+1)π
L , where

n = 0, 1, 2, . . .. We use (n + 1)π, rather than nπ, to avoid division by zero. Those values of k,

give c1 = 0, giving a second solution to (4.2.4) of the form

Xn(x) = c2 sin

(
(n+ 1)π

L
x

)
. (4.2.11)

For this part of the solution, for the T equation, we have a = k2 =
(
(n+1)π
L

)2
. Therefore

Tn = c4e
−D (n+1)2π2

4L2 t, (4.2.12)

where c4 is a integration constant. The general solution to (4.2.1) is a linear combination of these

two solutions

P (x, t) =
∞∑
n=0

[
an(x0) cos

(
(2n+ 1)

2

π

L
x

)
e−D

(2n+1)2

4
π2

L2 t + bn(x0) sin

(
(n+ 1)π

L
x

)
e−D

(n+1)2π2

4L2 t

]
,

(4.2.13)
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where the an’s and bn’s are a combination of the integration constants. The an’s and bn’s can be

found by applying the initial condition, P (x, 0) = δ(x), and using a Fourier transform:

an(x0) =
1

L

∫ L

−L
cos

(
2n+ 1

2

π

L
x0

)
δ(x− x0)dx0. (4.2.14)

By definition,
∫ L
−L δ(x− x0)dx = 1, at x = x0 if x0 ∈ [−L,L]. Therefore, for the case when the

particle starts in the centre, x = 0, we get an(0) = 1/L. For the case when the particle starts at

x = x0, (4.2.14) gives

an(x0) =
1

L
cos

(
2n+ 1

2

π

L
x0

)
. (4.2.15)

The bn’s are given by

bn(x0) =
1

L
sin

(
(n+ 1)π

L
x0

)
. (4.2.16)

The mean squared position, x2t , of a particle at time t, given that the particle is within the domain,

is given by

E[x2t ] =

∫ L
−L x

2P (x, t)dx∫ L
−L P (x, t)dx

. (4.2.17)

We have ∫ L

−L
P (x, t)dx =

∞∑
n=0

4L

π(2n+ 1)
an(x0)(−1)ne−D

(2n+1)2

4
π2

L2 t, (4.2.18)

and∫ L

−L
x2P (x, t)dx =

∞∑
n=0

4L3

(2n+ 1)π
an(x0)

(
1− 8

(2n+ 1)2π2

)
(−1)ne−D

(2n+1)2

4
π2

L2 t. (4.2.19)

In (4.2.18) and (4.2.19), the terms involving bn(x0) integrate to zero. As time tends to infinity, the

E[x2t ] plateaus due to the finite length of the domain. An equation for the plateau can be found by

setting n = 0 in (4.2.18) and (4.2.19). This gives

lim
t→+∞

E[x2t ] =
4L3

π a0(x0)
(
1− 8

π2

)
e−D

1
4
π2

L2 t

4L
π a0(x0)e

−D 1
4
π2

L2 t
= (1− 8

π2
)L2. (4.2.20)

Equations (4.2.17) and (4.2.20) can be tested by comparison to results simulated numerical using

a spatial code. Figure 4.1 shows a plot of E(x2t ) starting at (a) x0 = 0, and (b) x0 = L/2, along

with results of spatial simulations.

Random starting position

To determine the expectation of the mean squared position, for a particle starting in a uniform

random position, we need to average the expectation of x2t over all possible starting positions. In
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(a) x0 = 0. (b) x0 = L/2.

Figure 4.1: E[x2t ], from (4.2.17), is shown in red, the plateau of E(x2t ) as t → +∞ (4.2.20),

is shown in green, and results of numerical simulations are shown in blue. In both simulations

L = 1.0 and D = 0.5.

this case, the x0 term occurs in the an term (4.2.15), and the bn term integrates to zero. Therefore,

only the an term needs to be integrated over, giving

ān =
1

2L

∫ L

−L
an(x0)dx0 = 2(−1)n

1

L

1

(2n+ 1)π
. (4.2.21)

The expectation of x2t for a particle starting in a uniform random position can be found by using ān

(4.2.21) in (4.2.13), in place of the an(x0) terms. Figure 4.2 shows E[x2t ] with a particle starting

in a uniform random position, with comparison to numerical results.

Figure 4.2: Particle starting in a uniform random position. E[x2t ] from (4.2.17), is shown in red,

the plateau of E[x2t ] as t→ +∞ (4.2.20), is shown in green, and results of numerical simulations

are shown in blue. In this simulation L = 1.0 and D = 0.5.
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4.2.2 Three dimensions

To calculate the mean squared position of a cell in a three-dimensional volume, with dimensions

2Lx × 2Ly × 2Lz , the diffusion equation in three dimensions must be solved. This is given by

∂

∂t
P (x, y, z, t) = D

(
∂2

∂x2
P +

∂2

∂y2
P +

∂2

∂y2
P

)
, (4.2.22)

with the initial condition P (x, y, z, 0) = δ(x)δ(y)δ(z). However, as the particle is moving by

Brownian motion and following a Wiener process, each of the Cartesian components of the Wiener

process in n dimensions is an independent Wiener process (Section 2.2.2). The expectation of the

mean squared position of a particle in a three-dimensional volume is the sum of the x, y and z

expectations in one dimension [8]. In the case when the volume is a cube, E[Xt
2] is the sum

of three copies of equation (4.2.17). If the volume does not have equal length in the x, y and z

dimensions, E[Xt
2] is the sum of the x, y and z expectations,

E[Xt
2] = E[x2t ] + E[y2t ] + E[z2t ], (4.2.23)

where Xt represents a three-dimensional vector, with Xt = x2t + y2t + z2t . The plateau is given by

the sum of three copies of the one-dimensional plateau (4.2.20), if the size of the volume is equal

in all three dimensions. For unequal lengths in three dimensions, the plateau is giving by

lim
t→∞

E[Xt
2] = (L2

x + L2
y + L2

z)

(
1− 8

π2

)
, (4.2.24)

where Lx, Ly and Lz are the distances from the origin to the boundary of the volume in the x, y

and z dimensions, respectively. Figure 4.3 shows a plot of E[X2
t ], starting at (a) x0 = y0 = z0 = 0,

and (b) x0 = Lx/2, y0 = Ly/2, and z0 = Lz/2, along with results of numerical simulations.

Figure 4.4 shows E[X2
t ] with a particle starting in a uniform random position within a cubic

volume, using a(x0), a(y0) and a(z0) as given in equation (4.2.21). The bn terms integrate to

zero, therefore need not be included.

4.3 Expectation of the normalised displacement squared

In biological experiments, where data is obtained using TPLSM, plots of displacement squared

against time are generated by subtracting a cell’s starting position from its position at time t. To

be able to compare our calculations with these plots, an expectation of the normalised particle

position must be found by subtracting the initial position of the particle, x0.
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(a) x0 = y0 = z0 = 0. (b) x0 = Lx/2, y0 = Ly/2, z0 = Lz/2.

Figure 4.3: Fixed starting positions, in three dimensions. E[X2
t ] from (4.2.23), is shown in red,

the plateau of E[X2
t ] as t→ +∞ (4.2.24), is shown in green, and results of numerical simulations

are shown in blue. In both simulations Lx = Ly = Lz = 1.0 and D = 0.5.

Figure 4.4: uniform random starting position in three dimensions. E[X2
t ] from (4.2.23), is shown

in red, the plateau of E[X2
t ] as t → +∞ (4.2.24), is shown in green, and results of numerical

simulations are shown in blue. In this simulation Lx = Ly = Lz = 1.0 and D = 0.5.

4.3.1 One dimension

In one dimension, the expectation of (xt− x0)2 can be calculated by splitting the expectation into

three parts,

E[(xt − x0)2] = E[x2t ]− 2E[xtx0] + E[x20] =

∫ L
−L x

2P (x, t)dx∫ L
−L P (x, t)dx

− 2

∫ L
−L xx0P (x, t)dx∫ L
−L P (x, t)dx

+ x20.

(4.3.25)
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The first term of (4.3.25) is the same as that given in (4.2.18) and (4.2.19). For the second term

we need to compute the integral,∫ L

−L
xx0P (x, t)dx =

∞∑
n=0

bn(x0)
2L2

π(n+ 1)
(−1)nx0e

−π
2D(n+1)2t

L2 . (4.3.26)

The plateau of the expectation function (4.3.25), as t→ +∞, is given by

lim
t→+∞

E[(xt − x0)2] =

∫ L
−L(x− x0)2P (x, t)dx∫ L

−L P (x, t)dx
= L2

(
1− 8

π2

)
+ x20. (4.3.27)

Plots of (4.3.25), and the plateau (4.3.27) are shown in Figure 4.5, for specific initial particle

positions, along with comparison to numerical simulations.

(a) x0 = 0. (b) x0 = 0.5.

Figure 4.5: E[(xt − x0)
2] from (4.3.25) is shown in red, the plateau of E[(xt − x0)

2] as t →

+∞ (4.3.27) is shown in green, and results of numerical simulations are shown in blue. In both

simulations L = 1.0 and D = 0.5.

Random starting position

The E[(xt − x0)
2] for a particle starting in a uniform random position can be calculated by

averaging over all possible starting positions, x0, and weighting each starting position by the

survival probability for a particle starting at that position remaining in the domain, [−L,L], at

time t. The survival probability of a particle in one dimension, starting at x0 is given by

S(1)(x0, t) =

∫ L

−L
P (x, t)dx =

∞∑
n=0

4L

π(2n+ 1)
cos

(
(2n+ 1)π

2L
x0

)
(−1)ne−D

(2n+1)2

4
π2

L2 t.

(4.3.28)

Figure 4.6 shows comparison of the survival probability (4.3.28) to numerical results, for varying
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Figure 4.6: Survival probability of particles starting at varying positions, x0, indicated in the

legend. Solid lines show (4.3.28) and dotted lines show numerical simulations. The results for a

uniform random starting position are averaged over multiple realisations.

starting positions in one dimension.

To calculate the mean of E[(xt − x0)2] over all starting positions, weighted by the probability of

starting in that position, we need to compute

E[(xt − x0)2] =

∫ L
−L E[(xt − x0)2]S(1)(x0, t)dx0∫ L

−L S
(1)(x0, t)dx0

, (4.3.29)

where E represents the expectation averaged over all starting positions. This can be computed

directly for the plateau, as t→ +∞, using (4.3.27);

lim
t→+∞

E[(xt − x0)2] =

∫ L
−L
(
L2
(
1− 8

π2

)
+ x20

)
S(1)(x0, t)dx0∫ L

−L S(x0, t)dx0

= L2

(
1− 8

π2

)
+

∫ L
−L x

2
0S

(1)(x0, t)dx0∫ L
−L S

(1)(x0, t)dx0

= L2

(
1− 8

π2

)
+

16L3(π2−8)
π4

16L
π2

= 2L2

(
1− 8

π2

)
. (4.3.30)

The mean of E[(xt − x0)
2] over all starting positions, for all t, cannot be easily calculated

analytically. It can be calculated numerically, by choosing a uniform random x0 within the domain

−L, to L, calculating E[(xt − x0)2], and multiplying by S(1)(x0, t) for that x0. We must then sum

the expectation, multiplied by the survival probability, for numerous x0 and divide this sum by the
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sum of the survival probabilities for the same x0,

E[(xt − x0)2] =

∑
x0

E[(xt − x0)2]S(1)(x0, t)∑
x0
S(1)(x0, t)

. (4.3.31)

A plot of (4.3.31), the plateau (4.3.30), with comparison to numerical simulations is shown in

Figure 4.7.

Figure 4.7: E[(xt−x0)2] (4.3.29), for a particle starting in a uniform random position, is shown in

red, the plateau of E[(xt − x0)2] as t→ +∞ (4.3.30), is shown in green, and results of numerical

simulations are shown in blue. In this simulations L = 1.0 and D = 0.5.

4.3.2 Three dimensions

To calculate E[(Xt − X0)2], the components of the three one-dimensional processes must be

summed, giving

E[(Xt −X0)2] = E[(xt − x0)2] + E[(yt − y0)2] + E[(zt − z0)2], (4.3.32)

where the one-dimensional expectations are given by (4.3.25). The plateau of the three-

dimensional expectation is also given by the sum of three copies of the one-dimensional plateau

in x, y and z, given by (4.3.27),

lim
t→+∞

E[(Xt −X0)2] = (L2
y + L2

y + L2
z)

(
1− 8

π2

)
+ x20 + y20 + z20 . (4.3.33)

Figure 4.8 shows a plot of (4.3.32), and the plateau (4.3.33), along with numerical simulations.
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Figure 4.8: E[(Xt − X0)2] in three dimensions (4.3.32) for a particle starting at x0 = Lx/2,

y0 = Ly/2 and z0 = Lz/2 is shown in red, the plateau of E[(Xt −X0)2] as t → +∞ (4.3.33)

is shown in green, and results of numerical simulations are shown in blue. In this simulation

Lx = Ly = Lz = 1.0 and D = 0.5.

Random starting position

For a particle starting in a uniform random position in three dimensions, the expectation must

be weighted by the survival probability in three dimensions. The survival probability in three

dimension is given by the product of the survival probability in each of the x, y and z dimensions:

S(3)(X0) = S(1)(x0)S
(1)(y0)S

(1)(z0), (4.3.34)

where S(1) is given by equation (4.3.28), and the t argument has been suppressed. A plot of

the survival probability (4.3.34), for various starting positions, is shown in Figure 4.9, with

comparison to numerical simulations.

The plateau for the three-dimensional case is calculated in the same way as in the one-dimensional

case, by multiplying the plateau for a fixed starting position (4.3.33) by the survival probability

(4.3.34), integrating over x, y and z, and dividing by the integral of S(3)(X0).

lim
t→+∞

E((Xt −X0)
2) =

∫ Lz
−Lz

∫ Ly
−Ly

∫ Lx
−Lx

(
3L2

(
1− 8

π2

)
+ x20 + y20 + z20

)
S(3)(X0)dx0dy0dz0∫ Lz

−Lz

∫ Ly
−Ly

∫ Lx
−Lx S

(3)(X0)dx0dy0dz0

= 2(L2
x + L2

y + L2
z)

(
1− 8

π2

)
. (4.3.35)

The mean of E[(Xt −X0)2], is given by weighting the expectation for each starting position by

the survival probability for that position. The analytical solution cannot easily be calculated, so a
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Figure 4.9: Survival probability of a particle in a three-dimensional volume, given by (4.3.34),

shown by solid lines, and results of numerical simulations, shown by dotted lines. In these

simulations particles have the same starting position in the x, y and z dimensions, shown in the

legend as α, where X0 = α(1, 1, 1). Lx = Ly = Lz = 1.0 and D = 0.5. The uniform random

starting position has been averaged over multiple realisations.

numerical calculation is performed in the same way as in the one-dimensional case, by summing

over multiple starting positions:

E[(Xt −X0)2] =

∑
X0

E[(Xt −X0)2]S(3)(X0)∑
X0

S(3)(X0)
, (4.3.36)

where the summation is over various starting positions, for multiple realisations. Figure 4.10

shows a plot of the expectation (4.3.36), and the plateau (4.3.35), for a particle starting in a cube,

with comparison to numerical simulations.

4.4 Application to imaging volume

The imaging volume used in TPLSM experiments is larger in the x and y dimensions than in the

z dimension, due to the way the imaging technique works. It is therefore more likely that a cell

will exit via the z boundary than via one of the x or y boundaries. Equation (4.3.36) can be tested

using an imaging volume with a z dimension that is smaller than the x and y dimensions, shown

in Figure 4.11.

Figure 4.11 shows (4.3.36) is correct for an imaging volume with an unequal size in the z

dimension. We now want to test the accuracy of the calculated expectation value when using
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Figure 4.10: E[(Xt−X0)2] in three dimensions for a particle starting in a uniform random position

(4.3.36) is shown in red, the plateau of E[(Xt − X0)2] as t → +∞ (4.3.35) is shown in green,

and results of numerical simulations are shown in blue. In this simulation Lx = Ly = Lz = 1.0

and D = 0.5.

Figure 4.11: Expectation for an imaging volume that is smaller in the z dimension than the x and

y dimensions, with particles starting in uniform random positions. Predicted mean expectation

(4.3.36), shown in red, the plateau of the mean expectation as t→ +∞ (4.3.35), shown in green,

and results of numerical simulations are shown in blue. In this simulation Lx = Ly = 1.0 and

Lz = 0.75 and D = 0.5.

parameters that are similar to those found in biological experiments. Using an imaging volume

of Lx = Ly = 117.275µm, and Lz = 15.4µm, as used in data provided by a research group in

Glasgow, (analysed in Chapter 5), along with a diffusivity of 20µm2min−1, and an imaging time

of 100 minutes, (4.3.36) can be tested.
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Figure 4.12: Predicted mean expectation (4.3.36), shown in red, with comparison to numerical

results generated using a spatial simulation are shown in blue, for an imaging volume of a size

similar to those used in biological experiments, Lx = Ly = 117.275µm, Lz = 15.4µm and

D = 20µm2min−1. Number of realisations = 108.

Figure 4.12 shows the expectation does not reach the confinement plateau by the end of the 100

minutes of imaging, and the numerical results do not extend to the full 100 minutes. There are

no numerical results for higher timepoints due to the z length being much shorter than the x

and y lengths, resulting in particles exiting via the z boundary at earlier times. To remain in the

imaging volume until a later time, with this imaging volume, a particle must move in the x and

y dimensions a lot more than the z. Movement in each dimension is equally likely, therefore this

event is uncommon. This results in a plateau, due to confinement in a limited size imaging volume,

not being observed. Increasing the diffusivity of the cells would result in the expectation reaching

the plateau quicker, however it would also result in cells exiting via the z boundary quicker and

only giving numerical values for even shorter times.

4.5 Comparison to data

Using a spatial code written in python, data equivalent to that obtained using TPLSM can be

generated. The program, placed cells inside an imaging volume of a specified size and moved the

cells following a random walk, recording their position every 30 seconds, as is done in biological

experiments. If a cell leaves the imaging volume, it is removed from the simulation. To compare

to the equation for the expected displacement squared (4.3.36), we need only consider cells that

start in the imaging volume and for only as long as they stay in the volume. Using data generated
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in this way, displacement squared against time plots, in which there will be confinement, can be

created.

Figure 4.13: Predicted mean expectation (4.3.36) is shown in red, and plateau of the mean

expectation as t → +∞ (4.3.35) is shown in green, with comparison to numerical results shown

in blue for an imaging volume of Lx = Ly = Lz = 25µm, with D = 10µm2min−1.

Figure 4.13 shows the mean displacement squared of cells moving in an imaging volume of

50µm× 50µm× 50µm, with a diffusivity of 10µm2min−1. The simulated data fits very well to

the analytical prediction. After a time of 60 minutes, the fit is not quite as good, due to there being

less data for later times, as a result of more cells having exited the imaging volume. The data for

this plot has been gathered by simulating ten million cells.

Figure 4.14: Simulated data for an imaging volume the same size as the imaging volume in the data

provided by a research group in Glasgow (Chapter 5). The predicted mean expectation (4.3.36) is

shown in red, and simulated data is shown in blue.
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Figure 4.14 shows simulated data for an imaging volume of 234.55µm × 234.55µm × 30.8µm,

with a diffusivity of 20µm2min−1. For this simulation, the data does not reach the plateau

expected for the imaging volume, and there is no data for times beyond 80 minutes. This is

due to the z dimension being a lot smaller than the x and y dimensions. If there was data from

enough cells, we should, in theory, see some cells that remain in the imaging volume long enough

to reach the plateau. However, the data used in Figure 4.14 is gathered by simulating ten million

cells, and in biological experiments there are usually around one thousand cells tracked, and this

data set is reduced after sorting. Therefore, in a biological experiment a plateau will not be seen

due to confinement in the imaging volume, when the z dimension is a lot smaller than the x and y

dimensions, which is usually the case.

4.5.1 Underestimation of plateau

When simulating data for Figure 4.13, it was discovered that the plateau the data reached is

affected by the update interval of the simulation. In Figure 4.13 data is recorded every 30 seconds

of simulated time, but the list of cells that are in the imaging volume is updated every time the

cells are moved, this update procedure is required to fit the analytical prediction. However, if the

list of cells in the imaging volume is updated every 30 seconds, the plateau of the simulated

data is overestimated (Figure 4.15(a)). This is due to cells exiting and then re-entering the

imaging volume between the 30 second updates. Therefore, on average, the cells are able to

travel further before they are classified as being outside the imaging volume, resulting in the

displacement squared being greater. The analytical prediction can be corrected by adding half

the mean displacement in one dimensions, of a cell in 30 seconds, to the length of each of the

boundaries of the imaging volume. Half the mean displacement is used as the cell must exit

the imaging volume, then re-enter, for it to continue being tracked. The mean displacement in

one dimension, for a cell moving by Brownian motion, is given by
√

2Dδt, where δt is the

update interval. The adjustment needs to be added to the Lx, Ly and Lz values, to correct for

the overestimation. The correction results in a better prediction of the plateau (Figure 4.15(b)).

The underestimation must be taken into account when predicting the plateau of data obtained

from biological experiments, as cells will be able to exit and re-enter the imaging volume between

rescanning of that section.
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(a) Unadjusted analytical results. (b) Adjusted analytical results.

Figure 4.15: Plots showing, (a) the underestimation of the analytical prediction due to updating

the list of cells in the imaging volume every 30 seconds, and (b) a simple correction to the

underestimation.

4.6 Summary

In this chapter mathematical techniques developed have allowed us to determine the expectation

of the mean squared displacement, as a function of time, and the plateau as t → +∞, of a

displacement squared against time plot, for particles starting in uniform random positions within

an imaging volume of a given size. The aim of this work was to be able to use these predictions

to determine the diffusivity of a set of cells by fitting the predictions to the data. However, due to

the disparity in size of the z dimension of the imaging volume used in biological experiments, the

displacement squared plots will not lead to a confinement plateau. Therefore, the equation for the

plateau cannot be fitted to this type of data. The mean expectation of the displacement squared

can be fitted to biological data, to try and determine the diffusivity of the observed cells. Using

data provided by a research group in Glasgow (Institute of Infection, Immunity and Inflammation,

University of Glasgow), a comparison to biological data could be made. The amount of viable

data available in this experiments is quite small, and other factors effect the interpretation of the

data, such as: persistent motion and noise in the data. The data also does not reach a plateau due to

the shape of the imaging volume. Therefore, fitting the prediction for the mean expected squared

displacement does not result in a better prediction of the diffusivity than fitting a straight line. A

more in-depth discussion and analysis of in vivo imaging data is carried out in Chapter 5.

Although the prediction of the plateau, due to confinement in an imaging volume of limited

size, cannot be used as originally intended, it does allow experimental results to be validated.
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A displacement squared plot with a plateau below the predicted one indicates the cells are in

fact confined, or that there is another factor causing confinement to be observed, such as an

underlying population of cells with a lower diffusivity, as found in Section 5.4.2. Comparison

of the predictions for the displacement squared to numerically simulated imaging experiments

revealed that large intervals in the scanning of the imaging volume cause the predictions to be

underestimated. A simple correction can be implemented to compensate for this problem, by

adding half the mean distance a cell can move in an update interval to each of the boundaries.

The underestimation is most pronounced at the plateau of the displacement squared, but when

using imaging volumes similar to those used in biological experiments, the plateau is not reached.

There will still be a slight underestimation of the slope to reach the plateau, but this will not be as

large as at the plateau. Therefore, the underestimation can most likely be ignored. Numerically

simulated imaging experiments illustrated that large amounts of data are required to achieve

relatively smooth results. In biological experiments the number of cells tracked is not very large,

with usually less than one thousand cells being tracked. To achieve smoother results techniques

will need to be developed to extract more data from the tracks already present, this is discussed in

Section 5.4.3.
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Chapter 5

Analysis of in vivo imaging data

5.1 Introduction

Lymphocytes are constantly moving between, and within, lymph nodes in an attempt to locate

antigen presenting cells (APCs) displaying their cognate antigen, to become activated. The time it

takes for an activation event to occur depends on the number of APCs presenting cognate antigen.

More importantly, it depends on how quickly the lymphocytes attempting to locate the APCs are

moving, and if they are being directed towards their target in some way. Therefore, the big question

in determining lymphocyte activation time is how ‘fast’ do lymphocytes move within the lymph

node.

Advances in imaging technology have allowed lymphocytes to be viewed in vivo, in three-

dimensional space, deep within intact lymph nodes, using two-photon laser scanning microscopy

(TPLSM) [80]. Using these imaging techniques, cell positions over time can be recorded to build

up a data set of cell tracks. From the data, one can easily obtain an ‘apparent velocity’ of the

cells by simply calculating the distance a cell has moved and dividing by the time to make that

movement. However, the ‘apparent velocity’ is not a very useful parameter to report, as time is

recorded in discrete intervals, usually of thirty to sixty seconds. Therefore, in the intervening

time, the cell may have taken any path between the initial and final position. The cell is unlikely

to have taken a straight path, as assumed when calculating a velocity, hence it is often referred

to as an ‘apparent velocity’. A more useful parameter to report is the diffusivity of cells, which

relates to the displacement squared a cell has moved in a given time. The mean diffusivity of a

population of cells can be calculated by plotting a displacement squared as a function of time for
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a population of cells, and is determined from the gradient of this plot. However, due to limitations

and complexity of the imaging technology, and image processing software, this is more difficult

than it first seems. In processing images from TPLSM experiments, it can be difficult to determine

what is a cell, and what is a fragment of a cell. Also, cells that are close together can be mistaken

for one large cell, and one large cell can be mistaken for multiple smaller cells. A snapshot of

an imaging experiment is shown in Figure 5.1, illustrating the ambiguity of what actually is a

cell. For a review of the artefacts commonly found in TPLSM data sets, and ways in which data

analysis can be used to detect and correct these artefacts, I refer the reader to a paper by Beltman et

al. [25]. Using displacement squared against time, as well as other analytical techniques, one can

also attempt to quantify the type of motion a population of cells are moving by. This motion can

be random, directed, persistent or confined [25]. The diffusivity, as well as the type of motion cells

are undergoing, is also highly dependent on the conditions that the cells are exposed to. This will

depend upon the experimental technique used. By analysing the turning angles between successive

movements of a cell, one can quantify if persistent motion is occurring within a population of cells.

Many research groups have attempted to estimate the diffusion coefficient of T cells. These

estimates range from a few micrometers squared per minute, to hundreds of micrometers squared

per minute. A paper by Miller et al. [156], calculates the T cells in their experiment to have

a diffusivity of 67µm2min−1. They find the cells undergo persistent motion on timescales of

one to three minutes, and random motion on longer timescales. In another paper by Miller

[153], they investigate the diffusion coefficient at various times of the T cell activation process.

They found that in the early stage of T cell activation (less than two hours) the cells had a

diffusivity of 9.7µm2min−1, and at a later stage (two to fourteen hours) the diffusivity dropped

to 2.3µm2min−1.

In this chapter, a data set provided by a research group at the University of Glasgow (Institute

of Infection, Immunity and Inflammation, University of Glasgow) is analysed in an attempt

to calculate the diffusion coefficient of the cells imaged, as well as the type of motion they

are undergoing. The chapter begins by analysing basic aspects of the data, such as the total

displacement of tracks, and the total time tracks occur for. The data is then broken down,

erroneous data discarded, and the remain data are re-analysed to obtain an estimate for the

diffusion coefficient of the cells. The analysis enables the development of a systematic method for

determining the diffusivity of a population of cells, which is applied to other data sets.
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Figure 5.1: Snapshot of TPLSM in vivo imaging, at timepoint 0, for the Ear1 data set, described

in Section 5.2. T cells are shown in green.

The aim of determining the type of motion T cells are undergoing is to be able to accurately model

cell movement in silico. If the cells are undergoing random motion, and the diffusivity can be

calculated, this can then be used as a parameter in spatial simulations and in MFTP equations

derived in Chapter 3.

5.2 About the data

The main data set analysed in this chapter is for an imaging period of 100 minutes, with timepoints

taken every 50.8 seconds. The imaging volume is a box with x, y, z dimensions of 234.55µm ×

234.55µm× 30.8µm. It takes two seconds to scan a frame in the x− y plane. Therefore, for this

data, the z frames must be about 1.23µm apart. This value is calculated by determining how many

planes can be scanned in a timestep (50.8 seconds), and dividing the size of the z dimension by
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this value. The other data sets analysed in Section 5.5.1 only, have the following properties: LN2:

has x, y, z dimensions of 234.55µm× 234.55µm× 32.0µm, with a timestep size of 29 seconds,

giving a z plane separation of 2.29µm. The total imaging time is 58 minutes. LN4: has x, y, z

dimensions of 206.53µm× 206.53µm× 22.0µm, with a timestep size of 32 seconds, giving a z

plane separation of 1.38µm. The total imaging time is 32 minutes. Ear1: has x, y, z dimensions of

282.85µm×282.85µm×46.0µm, with a timestep size of 50 seconds, giving a z plane separation

of 1.84µm. The total imaging time is 33.3 minutes. Figure 5.1 shows a snapshot of a z slice in an

imaging experiment carried out to obtain the Ear1 data set.

5.3 Basic analysis

Basic information about the data can be determined by plotting distributions of the displacement

of the cells, the time tracks were imaged for, and the diffusion coefficients of each cell.

(a) Total displacement. (b) Track duration.

(c) Diffusion coefficients.

Figure 5.2: Basic analysis of the whole data set.
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Figure 5.2(a) shows the distribution of displacements of individual cells, from the time they

were first tracked, to the time they were last tracked. There appears to be lots of cells with

small displacements, and fewer cells with larger displacements. A small displacement does not

necessarily mean the cell has not moved far, rather its end position is close to its starting position.

A cell could have a long track length, but end up close to where it started. This can be analysed

further by investigating the confinement ratio of the cells. The confinement ratio is defined as the

ratio of track length and total track displacement, and is sometimes referred to as the meandering

index [25]. A small displacement indicates that the cell could be confined to a certain region,

resulting in the end position being near to the start position, or the cell could not be moving much,

and has not travelled far from where it started. The mean of the total track displacements is 7.77

µm, and the standard deviation is 6.65µm.

Figure 5.2(b) shows the distributions of the duration of cell tracks. This is the time from the point

when the tracking commenced, to the time when the tracking ended. The figure shows a peak

of cells with short durations, and fewer cells with longer durations. A large peak occurs at 100

minutes as this includes all the cells that were tracked for the whole of the imaging period. The

mean of the total track durations is 15.99 minutes and the standard deviation is 22.86 minutes.

Figure 5.2(c) shows the distribution of diffusion coefficients for individual cells. The plot has been

trimmed at ten minutes on the x-axis to allow the plot to be viewed more easily. There are a few

tracks with diffusion coefficients greater than 10µm2min−1 that are not displayed on this plot.

The diffusion coefficient for each cell has been calculated by

Diffusion coefficient =
Displacement2

6× Time interval
.

As with the displacement and time interval plots, there are numerous cells with small diffusion

coefficients and few with larger diffusion coefficients. The mean diffusion coefficient for all the

cells is 2.37µm2min−1, and the standard deviation is 4.25µm2min−1.

From this basic analysis it is clear that there is a large amount of variation in the data, with all

parameters investigated having large standard deviations. The data also has lots of cells that appear

to be not moving very far, that are skewing the distributions.

5.3.1 Displacement squared

By plotting displacement squared against time, an attempt can be made to quantify the type of

motion the cells are undergoing, as well as determining an estimate for the diffusion coefficient
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of the population. On a displacement squared against time plot, a straight line indicates Brownian

motion, a line that plateaus indicates confinement, and a line that bends upwards indicates a

directional bias. However, it is not always clear how to distinguish between these effects, as there

are often several competing processes. With our data, confinement is expected, as the cells were

only tracked in a small imaging volume. Therefore, cells that remain in the imaging volume for a

longer period of time will be those that have not moved as far. A mean displacement squared plot

was generated by calculating the displacement squared from each point in a track, to the starting

point of the track, and recording the time in which the calculated displacement squared occurred.

A mean for each time was then taken. This method allows extra data to be extracted from the cell

tracks, rather than just taking the total displacement of the cells.

Figure 5.3: Mean displacement squared against time, with standard error bars. The red line is

fitted to the first five time points, giving a diffusivity of 2.33± 0.10µm2min−1.

Figure 5.3 shows that for small time intervals, approximately less than ten minutes, the cells seem

to be undergoing Brownian motion, as there is a linear increase. For larger time intervals the graph

flattens out, indicating confinement, as expected. A straight line is seen for small time intervals

as the cells have not had enough time to reach the edge of the imaging volume, so confinement

has not yet occurred. The red line on the graph is a line of the form y = a + bx, fitted to the

first five timepoints of the graph, where Brownian motion appears to be occurring. A sixth of

the gradient of this line gives the diffusion coefficient of the cells. The fitted line has a gradient

of 14.0, giving a diffusion coefficient of 2.33µm2min−1. Calculating the standard error in the

least squares fitting procedure gives an error in the gradient of 0.60, corresponding to an error
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in the diffusion coefficient of 0.10µm2min−1, making the estimate of the diffusion coefficient

2.33±0.10µm2min−1. This value of the diffusion coefficient is quite small, and is at the lower

end of the range of diffusion coefficients found in literature [153, 156]. This could be due to

tissue drift, which may occur as a result of the experimental setup moving, and the cells are in

fact stationary. These ‘stationary’ cells would therefore be skewing the diffusivity of the data set,

making it appear smaller than it actually is. This can be investigated further by calculating turning

angles, and scalar product, of the cells, as well as the tissue drift in the experiment. Analysing

the turning angles, and scalar product, will also help determine if the cells are following a random

walk, or moving with persistent motion.

At first glance, the plateau of the displacement squared plot is presumed to be due to the cells being

confined in a limited sized imaging volume. However, the level of the plateau is much smaller than

the expected plateau, calculated using (4.3.35), of about 10500. Therefore, the plateau observed

is not due to the limited sized imaging volume. Upon closer inspection, the ‘plateau’ appears to

be made up of drops, then slow increases. This could be the result of multiple populations of cells

moving with different diffusivities. Cells with a larger diffusivity will reach the boundary of the

imaging volume at smaller times. Once these cells have exited the imaging volume they will no

longer be contributing to the mean displacement. Therefore, if there is a population of cells with

a lower diffusivity remaining, they will have a larger contribution to the mean. This will cause a

drop in the mean squared displacement when the cells with a larger diffusivity exit the imaging

volume.

5.3.2 Turning angles

To determine if cells move in a persistent direction, or turn back on themselves abruptly, the angle

a cell turns between successive time points can be analysed.

In Figure 5.4 a large turning angle (greater than 90◦) indicates a cell has made a shallow turn, and

is continuing in a similar direction. A small turning angle (less than 90◦) indicates a cell has made

a sharp turn, and is moving in a direction not similar to its previous direction. This is illustrated in

Figure 5.5.

Figure 5.4 shows a wide spread of angles, ranging from approximately 0◦, meaning the cell is

going in the opposite direction, to approximately 180◦, meaning the cell is continuing in the same

direction. By fitting a sine distribution for the expected angles to the figure, it can be seen that
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Figure 5.4: Turning angles between successive vectors in tracks for the whole data set. Mean of

data is 89.0◦. Red curve shows the expected distribution of angles.

θ
θ

Figure 5.5: Illustration of turning angles. The left diagram shows a shallow turning angle, with θ

being close to 180◦. The right diagram shows a sharp turning angle, with θ being close to 0◦.

there is more small and large angles than expected, and less angles around 90◦ than expected. This

could be due to cells making small movements back and forth, perhaps due to experimental error.

5.3.3 Persistent motion

Persistent motion can be detected by analysing the scalar product of the ith and i + kth vectors

in a track, where k is the number of vectors further along the track that is being compared. For

example, if k = 1 vectors directly after each other are being compared, and if k = 2 vectors

two timesteps apart are being compared. By taking the mean of these scalar products for each k

it can be determined if there is persistent motion and at what point it occurs. A positive scalar
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product indicates the two vectors are almost parallel. A scalar product equal to zero indicates the

vectors are orthogonal to each other, and a scalar product less than zero indicates the vectors are

almost anti-parallel. The scalar product takes into account the magnitude of a vectors, as well as

the angle between the vectors. If the cells are moving following a random walk, and do not have

any persistent motion, the mean scalar product will be zero. The scalar product is calculated by:

a · b =
n∑
i=1

aibi,

where a and b are the vectors being compared. In this case we are calculating the scalar product

in three dimension, so it is given by the sum of the product of each of the x, y and z components.

Figure 5.6: Mean scalar product between timepoints of varying size, k, in the x, y and z

dimensions. Plot has been scaled to start at one for k = 0.

Figure 5.6 shows for k less than five, the mean scalar product is greater than zero, and for k greater

than and equal to five, the mean scalar product is close to zero. Indicating that for periods of about

four timesteps the cells have persistent motion, but for larger timescales there is no persistent

motion. This is consistent with experimental observations [232], where T cells were found to move

in a series of repetitive lunges. It can be concluded that the cells movement is well approximated

by Brownian motion on timescales of longer than four minutes.

5.3.4 Tissue drift

The data analysed have been obtained from an imaging experiment on a live mouse. Even though

the mouse is anaesthetised, it may still twitch or make other small movements, resulting in a
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shift in the whole imaging volume. Another factor that must be considered is that the whole

experimental setup may move or vibrate, resulting in false movements being observed in the data.

To determine if there is a directional bias in the experimental procedure, the mean movement in

each of the x, y and z directions can be plotted cumulatively. If there is no drift present, the mean

displacement between timepoints should be approximately zero, if the cells are assumed to be

undergoing Brownian motion.

Figure 5.7: Plot of cumulative mean displacement from the mean starting position, as a function

of imaging time.

Figure 5.7 shows there is tissue drift in the experiment. This is more pronounced in the x and y

directions, with the mean cell position being about 6µm from where it started, by the end of the

experiment, in both the x and y dimensions. In the z direction the mean cell position was about

3µm from where it started by the end of the experiment. This artefact can be compensated for by

subtracting the amount of drift that has occurred at a timepoint, from the cell’s x, y and z position,

at that timepoint.

5.4 Further analysis

5.4.1 Sorting data

The software that automatically tracks cell movements obtained by TPLSM is a very useful tool,

but it does have its drawbacks, and it cannot compete with a human in terms of accuracy. However,
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manually tracking cells is very time consuming, so automated software is usually used. One of the

main drawbacks of automatic tracking is that the software often cannot distinguish cells that are in

close proximity. It can track these clusters as one cell, and upon separation it is possible that the

cell identities change. This leads to artefacts occurring in the data, which must be dealt with upon

analysis.

Further analysis reveals the data set contains data from a total of 1121 cells. Some of these cells

have only one data point, which is of no use for analysing cell tracks. Excluding these leaves

734 tracks (Figure 5.8(a)). These are the set of tracks used for the basic analysis in the previous

sections. Of these 734 tracks, some of them only have information up to a timepoint before the

end of the imaging time. This is acceptable if the cell being tracked has left the imaging volume,

however, there are tracks that have ended part way through imaging and are not near the edge of the

imaging volume. Excluding these cells leaves 582 tracks (Figure 5.8(b)). The same situation can

happen in reverse, with tracks starting part way through the imaging time, which are not starting

near the edge of the imaging volume. Excluding these leaves 498 tracks (Figure 5.8(c)). There is

also a subset of tracks that do not have data for all timepoints from the time they are first detected

to the time they are last observed. Theoretically, a track could leave and re-enter the imaging

volume, which would cause a break in the tracking data. However, the software that tracks the

cells is not able to know that a cell entering is one that has previously exited, so would treat the

entering cell as a newly observed cell. To overcome this artefact, all tracks that have breaks in

their tracking of one or more timepoints were excluded. This leaves 245 tracks (Figure 5.8(d)) to

be analysed.

5.4.2 Displacement squared against time

Displacement squared against time plot can now be plotted for the sorted data set.

Figure 5.9(a), in which tissue drift is not accounted for, shows that after 40 minutes the mean

displacement of the cells drops, then slowly increases. In Figure 5.9(b), where tissue drift has

been accounted for, the increase that occurs after 40 minutes no longer occurs. It can be concluded

that this increase is due to tissue drift, and the mean displacement squared of the cells does not

change much after 40 minutes, staying around 15µm2. This equates to the cells mean displacement

after 100 minutes being about 4µm, which is less than the diameter of a T cell, 7µm. The way

the displacement squared increases up until 40 minutes, and then drops, indicates that there is

a population of cells that are barely moving (slow cells), and a population that is moving with
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(a) All tracks. (b) Excluding tracks ending not near the edge.

(c) Excluding tracks starting not near the edge. (d) Excluding track with missing timepoints.

Figure 5.8: Plots of cell tracks in the imaging volume. Box indicates imaging volume at the start

of the imaging period.

(a) Without accounting for tissue drift. (b) Accounting for tissue drift.

Figure 5.9: Plots of displacement squared against time. The red lines have been fitted to the first

few time points, to calculate the diffusivities. In (a), D = 2.93 ± 0.14µm2min−1, and in (b),

D = 2.77± 0.21µm2min−1.

a greater diffusivity. This causes a drop in the mean squared displacement as the faster moving

cells are able to leave the imaging volume at earlier times. This results in the slower cells having

a larger contribution to the mean after the faster cells have left. It also results in the standard

error bars shrinking as there is a smaller amount of variability in the displacement of the cells, as
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they are moving slower. The population of slow cells could be bound to stationary structures in

the lymph node, such as the cytoskeleton, and their small movement could be due to movement

of the cytoskeleton or other factors. In two-photon imaging experiments carried out by Miller

et al. [156], they found a population of cells attached to structures by long membrane tethers,

that were relatively stationary but exhibited probing behaviour. This behaviour suggests the cells

were interacting with unseen elements in the environment. Visualisation of the reticular network

using CMTMR staining, revealed T cells that adhered to, but did not crawl along, the fibres of the

reticular network. In the paper by Miller et al. [156] they define stationary cells to be those with a

displacement in one timestep of less than two micrometers.

To determine the diffusivity of the faster moving set of cells, the slow set of cells must be excluded,

as they will be skewing the mean displacement of the faster-moving set of cells. This was achieved

by calculating the mean distance moved in one timestep for each cell and deciding on a cut-off

to classify the two populations. Closely examining the data, I found excluding cells with a mean

displacement of less than 1.5µm in one timestep, eliminated this slow set of cells. Plots of the two

sets of tracks are shown in Figure 5.10.

(a) >1.5µm. (b) <1.5µm.

Figure 5.10: Tracks with mean displacement in one timepoint, (a) greater than, and (b) less than

1.5µm.

By excluding the slow cells, and re-plotting the displacement squared against time graph, a

diffusivity of 12.22µm2min−1 is obtained (Figure 5.11(a)). The slow population of cells has

a diffusivity of 0.32µm2min−1 (Figure 5.11(b)). These diffusivities are calculated by fitting

straight lines, to the displacement squared plots (Figure 5.11), for points when the cells appear to

be undergoing random motion. The displacement squared of the faster cells (Figure 5.11(a)) drops

after about 15 minutes, and then slowly increases again, indicating there is yet another population

of cells moving slower, that are again going to be skewing the mean of the distribution. Using the
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same process, this population of cells moving with an intermediate diffusivity, can be excluded by

removing all cells with a mean displacement in one timestep of less than 2.5µm. Plotted tracks

are shown in Figure 5.12.

(a) >1.5µm. (b) <1.5µm.

Figure 5.11: Displacement squared against time plots, with lines fitted (red) to calculate the

diffusivity. In (a) D = 12.22± 0.63µm2min−1, and in (b) D = 0.32± 0.02µm2min−1.

(a) >2.5µm. (b) >1.5µm and <2.5µm.

Figure 5.12: Tracks with mean displacement in one timepoint, (a) greater than 2.5µm, and (b)

between 1.5µm and 2.5µm.

Figure 5.13 shows the cells with larger movement in one timestep (fast cells) have a diffusivity of

23.84µm2min−1, and the cells with intermediate movement in one timestep have a diffusivity of

2.90µm2min−1. Figure 5.13(a) shows the displacement squared increases roughly linearly with

time, without the drop and increase seen in the other displacement squared graphs, indicating there

is not another underlying population of cells in this reduced data set. Due to the limited size of the

imaging volume, we would expect the displacement squared to plateau as time tends to infinity.

However, due to the z dimension being a lot smaller than the x and y dimensions, most of the cells

will escape via the z boundary, which will happen at shorter times.
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(a) >2.5µm. (b) >1.5µm and <2.5µm.

Figure 5.13: Displacement squared against time plots, with lines fitted (red), after persistent

motion stops (determined using Figure 5.17), to calculate the diffusivities. In (a)D = 23.84±0.62,

and in (b) D = 2.90± 0.20µm2min−1.

To observe a confinement effect, cells persisting in the imaging volume until later time points, by

moving in the x and y dimensions more, must be observed. To observe these tracks, there would

need to be a large amount of data points. In this subset there are only 45 tracks remaining, due to

sorting the data, which is not enough data to be able to observe these desired tracks. Therefore,

we do not observe a plateau. Instead, the displacement squared increases with time, until the

cells escape, after which point there is no more data. A slower increase in the displacement

squared is observed in Figure 5.13(a) for the first few timesteps, indicating persistent motion in

the population of cells. This can be investigated by analysing the mean turning angle between

successive movements of the cells, and the scalar product between vectors along a cell’s path.

5.4.3 Direction of motion

Using only the tracks with a mean displacement in one timestep greater than 1.5µm, the turning

angles of the cells can be analysed, shown in Figure 5.14(a). This population has a mean of

111.90◦, indicating cells generally move in a persistent direction, and are less likely to abruptly

turn back on themselves. Figure 5.14(b) shows that, cells with a mean displacement in one

timestep of less than 1.5µm, have a mean turning angle of 80.90◦, indicating these cells make

abrupt turns, and are more likely to move back in the direction they came from.

Figure 5.15 shows the analysis of turning angles for tracks with mean displacement in one

timestep, (a) greater than 2.5µm, and (b) between 1.5µm, and 2.5µm. Figure 5.15(a) shows
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(a) >1.5µm. (b) <1.5µm.

Figure 5.14: Turning angles of tracks with mean displacement in one timepoint, (a) greater than,

and (b) less than 1.5µm. Plot (a) has a mean of 111.9◦, and (b) has a mean of 80.90◦.

(a) >2.5µm. (b) >1.5µm and <2.5µm.

Figure 5.15: Turning angles of tracks with mean displacement in one timepoint, (a) greater than

2.5µm, and (b) between 1.5µm and 2.5µm. Plot (a) has a mean of 124.35◦, and plot (b) a mean

of 102.78◦.

the fast cells to have even less abrupt turning angles, with a mean of 124.35◦. The tracks in Figure

5.15(b) have a mean turning angle of 102.78◦, implying they also travel in a more persistent

direction than the slow cells.

Persistent motion can be detected by calculating the mean scalar product between the ith and

i + kth vectors along the track. Figure 5.16(a) shows the cells with a mean displacement in one

timestep greater than 1.5µm are undergoing persistent motion for the first five timepoints, after

which there appears to be no persistence. Figure 5.16(b) shows the slow cells are not displaying

persistent motion, which is expected for cells that are just moving slightly back and forth. Figure

5.17(a) shows there is again persistent motion for the first five timepoints of the fast cells, after
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(a) >1.5µm. (b) <1.5µm.

Figure 5.16: Dot product between vectors i and i + k, of tracks with mean displacement in one

timepoint: (a) greater than, and (b) less than 1.5µm. Plot has been scaled to start at one for k = 0.

(a) >2.5µm. (b) >1.5µm and <2.5µm.

Figure 5.17: Dot product between vectors i and i + k, of tracks with mean displacement in one

timepoint: (a) greater than 2.5µm, and (b) between 1.5µm and 2.5µm. Plot has been scaled to

start at one for k = 0.

which there is no persistence. For the intermediate cells (Figure 5.17(b)), there is persistent motion

for the first couple of timesteps, but not for subsequent timesteps.

It can be concluded that, there is persistent motion on short timescales (less than six timesteps), but

for longer timescales the cells movement is well approximated by Brownian motion. Ideally, for

this data, to extract the diffusion coefficient from a plot of displacement squared against time, the

displacement needs to be calculated between points separated by five timesteps, to compensate for

the persistent motion in the first five timesteps. In this chapter, displacement squared against time

graphs are generated by calculating the displacement from each point to the starting point of the

track. Compensating for persistent motion in this method would result in the first five timepoints
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being cut off the plot. The line used to calculate the diffusion coefficient is fitted to points after

persistent motion is found to stop. Therefore, removing the points where persistent motion is

occurring would not change the value of the diffusion coefficient calculated from the fitted line.

An alternative method considered for generating displacement squared plots, is to calculate the

displacement from every subsequent point in a track to the first point, then the second point, then

the third point, and so on. This multiple sampling method generates more data, especially for

small time intervals. Using this method would cause a change in the diffusion coefficient if time

points being compared are further apart. However, using this method results in long tracks having

a larger contribution to the mean of the data, due to them being sampled numerous time. For

this reason, this method of multiple sampling was not used in this chapter. This problem could

potentially be compensated for by weighting a track’s contribution to the mean, for example: all

tracks could contribute equal weight to the mean. However, it may be beneficial to take numerous

samples from long tracks, as these are the ones with the most data available, so could be the most

reliable. Short tracks can be suspicious, due to cells being miss tracked, so it may not be desirable

to weight them as heavily as the long tracks.

5.5 Procedure for calculating diffusion coefficient

Analysis of the previous data set enabled the development of a systematic procedure to calculate

the diffusion coefficient. The procedure developed consists of the following steps:

Step 1: Determine the tissue drift in the data, using the method outlined in Section 5.3.4. All

following analysis should be carried out compensating for the tissue drift in the experiment.

Step 2: Exclude all erroneous data, as outlined in Section 5.4.1.

Step 3: Using this sorted data set, plot the displacement squared against time. From this plot,

adjust the cut-off for the minimum mean displacement in one timestep until the plot does not

appear to plateau. The cut-off is generally between two and four micrometers per timestep.

Step 4: Using the trimmed data set, plot the mean scalar product between the ith and i + kth

vectors in the tracks. Using this plot, determine the point at which persistent motion becomes less

apparent (i.e. the mean scalar product is approximately zero).

Step 5: Fit a straight line to the displacement squared against time plot, starting from the timepoint

at which persistent motion is found to stop, until the point at which there is too little data for the

values to be conclusive. Using the fitted line, the diffusion coefficient can be calculated by taking

one-sixth of the gradient.
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5.5.1 Application to data sets

The procedure for calculating the diffusion coefficient can be tested by applying it to three data

sets that were also provided by the research group in Glasgow. Plots for the mean scalar product

and displacement squared, with a fitted line to calculate the diffusion coefficient, are shown in

Figures 5.18 to 5.20.

(a) Mean scalar product plot. (b) Displacement squared plot.

Figure 5.18: Data set LN2. Plots used to determine the diffusivity of the cell population, D =

7.03± 0.46µm2min−1.

(a) Mean scalar product plot. (b) Displacement squared plot.

Figure 5.19: Data set LN4. Plots used to determine the diffusivity of the cell population, D =

43.94± 3.01µm2min−1.

For these data sets, estimates for the diffusion coefficients are found to be: 7.03±0.46µm2min−1,

43.94±3.01µm2min−1, andD = 39.49±2.68µm2min−1, for LN2, LN4 and Ear1, respectively.

The amount of tracks that survive the sorting procedure for the data sets is 96, 145, and 35 tracks,

respectively.
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(a) Mean scalar product plot. (b) Displacement squared plot.

Figure 5.20: Data set Ear1. Plots used to determine the diffusivity of the cell population, D =

39.49± 2.68µm2min−1.

5.6 Processing data

To process the data set provided by the Glasgow laboratory, the programming language python was

used. The data was imported using the package numpy, and assigned a data structure, allowing

different aspects of the data to be easily called. To import the data the following commands were

used:

import numpy as np

dtyp = np.dtype([ (’tc’,np.int), (’id’,np.int), (’tp’,np.int),

(’xpos’,np.float), (’ypos’,np.float), (’zpos’,np.float)])

data = np.loadtxt(’GlasgowData01.dat’, dtype = dtyp)

In which tc is the cell number, id is the cell identity, tp is the timepoint of the data point, and

xpos, ypos and, zpos are the x, y and z position of the cell. Individual cells could then easily

be chosen by creating a boolean mask, which reads true for data relating to a specific cell and false

for all other data values. Applying this mask to the whole data set, leaves a subset of data for a

specific cell. Looping over the whole data set from the minimum to the maximum cell number,

and applying a mask as described, allows analysis of each cell track. The following commands

were used:

for i in range(data[’tc’].min(), data[’tc’].max()):

mask1 = data[data[’tc’]==i]



Chapter 5. Analysis of in vivo imaging data 107

5.7 Summary

In all the data sets, the displacement squared plots only have data for part of the total imaging time.

This occurs because the cells are primarily escaping from the imaging volume via the z boundary.

To obtain more accurate results, and be able to track cells for a larger fraction of the imaging time,

an imaging volume with a larger z dimension is required. In TPLSM experiments, the z dimension

is scanned in stacks. An increase in the size of the z dimension can be achieved in several ways.

The separation between stacks could be increased, preserving the size of the time increments at

which a z stack is scanned. However, this could lead to cells residing between the z stacks, and

not being scanned. The number of z stacks could be increased, keeping the size of the separation

between stacks. This would lead to the time increment between scanning a stack increasing, as

there are more stacks to scan. If the time increment is made too large, less information about

cell positions will be available, and cell identities could more easily be mistaken. An alternative

solution to achieve a larger z dimension would be to reduce the size of the x and y dimensions.

In the data analysed in this chapter, a z stack takes about two seconds to scan, if the x and y

dimensions are reduced, this time would be reduced, allowing more z stacks to be scanned in a

given time. This would allow a larger z dimension to be achieved, without compromising on the z

stack separation, or the size of the time increments. By having a more cube like imaging volume,

cells can be tracked for a longer period of time. This seems like a good solution to give more data,

but it has its drawbacks. The imaging is carried out in a LN of a live mouse, by exposing the LN.

The LN has an outer cortex, which must be penetrated to visualise T cell movement occurring

deeper within the LN. If a larger z dimension is used, light must penetrate deeper within the

LN, resulting in more scattering of the light, giving a decreased resolution. This limits the depth at

which imaging can be performed. The imaging technology used in these experiments is constantly

improving, and with future developments a deeper image will be able to be obtained. If a larger

z dimension cannot be used, the next best improvement to make would be to reduce the x and y

dimensions, allowing an increase of the resolution in the z dimension, or the temporal resolution.

To achieve a more accurate analysis of the data, more data points are required. A large amount of

data are lost due to the tracks appearing or disappearing part way through the imaging time, whilst

not being near the edge of the imaging volume. Data are also lost by the exclusion of tracks that

have missing timepoints. To have more data to analyse, these artefacts must be dealt with; it is

possible that this can be done on the existing data by further analysis, or it may need investigating

experimentally. More data could be obtained by carrying out experiments with exactly the same
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setup for the imaging volume and the experimental technique. In this way, data could be merged

to give a larger data set.

Analysis of data from TPLSM experiments enabled the development of a method to calculate the

mean diffusion coefficient of a data set of cell movements. The diffusion coefficients of the four

data sets analysed ranged from 7 to 44µm2min−1. This range could be due to inaccuracy in the

data, such as how many anomalous tracks needed to be excluded. Variability can also occur due

to the experimental setup. This could be due to the size of the imaging volume, the number and

separation of z stacks taken, the time at which timepoints are taken, or the biological setup of the

experiment.
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Chapter 6

How many dendritic cells are required

to initiate a T cell response?

6.1 Introduction

An adaptive immune response is initiated through encounters between rare naive antigen-specific

T cells, and antigen-bearing dendritic cells (DCs), within the lymph node (LN). However, the

number of DCs required to initiate a T cell response has never been precisely quantified [42].

Two-photon imaging experiments have revealed that, every hour, 500–5000 T cells come in close

proximity with any given DC [42, 51, 153], but only a small proportion of these T cells will be

specific for a given antigen. In the naive repertoire, T cells specific for a particular antigen,

are presented at low precursor frequencies [6, 159], typically between 10−6 − 10−5 [37, 42].

Experiments described in this chapter were carried out by Susanna Celli, Andreas Müller and

Philippe Bousso, at the Institut Pasteur, Dynamics of Immune Responses Unit, Paris, France.

Experiments were performed in a mouse popliteal LN, which contains approximately 106 T cells.

With this number of cells, the given precursor frequencies corresponds to between one and ten

T cells. Therefore, in the context of local infection, the number of DCs in the lymph node will

influence the probability that a rare antigen-specific T cell becomes activated.

Current experimental techniques are able to measure, in vivo, the proportion of T cells activated

by DCs in a LN. However, the experiments have their limitations and drawbacks. A roughly

known number of DCs can be injected into a mouse, but only a proportion of those will reach the

LN of interest. The proportion that reaches the LN can be estimated using in vivo imaging, but
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methods of counting the DCs are often inaccurate. To accurately measure T cell activation, a large

number of cells must be present. Therefore, experiments must start with hundreds of thousands

of DCs, to enable tens of thousands to reach the LN, which are required to be able to accurately

quantify the proportion of T cells activated, using flow cytometry (Section 1.8.2) or two-photon

imaging (Section 1.8.1). These drawbacks result in current experimental techniques not being able

to determine how many DCs are required to initiate a T cell response. A T cell response is initiated

within twenty four hours. Currently, in vivo imaging data cannot be gathered twenty four hours

after the experiments begin, to determine the proportion of activated T cells, as desired. Using

mathematical modelling, simulations with fewer DCs, and for later times, can be performed.

In this chapter experiments carried out by the Bousso laboratory, in Paris, are reviewed.

The experiments use flow cytometry [42, 55], and two-photon imaging [40]. Analytical and

computational mathematical models are developed, to calculate the recruitment probability for

a T cell. The models are then calibrated using experimental results, allowing extrapolation to

lower DC numbers and later times, which cannot be investigated experimentally. In theory, only

one T cell is required to initiate a T cell response, as once activated a T cell will produce multiple

copies of itself. A model is developed to calculate the probability of at least one T cell becoming

activated, allowing the minimum number of DCs required to elicit an immune response to be

calculated. Knowing the minimum number of DCs required to initiate an immune response is

important for many therapeutic applications, including DC vaccine against cancer.

6.2 Experimental design/results

Biological experiments were carried out by the Bousso laboratory (Institut Pasteur, Dynamics

of Immune Response Unit, Paris, France). They used an experimental approach achieving

synchronisation of antigen presentation [55] in the LN, allowing all the antigen to be presented

at a given time. They injected MHC class two double negative (MHC class II−/−) mice (mice

with no CD4 T cells), with wild type DCs, expressing a mature phenotype, and Marilyn CD4+

T cells. After twenty four hours, the mouse was injected with Dby peptide, resulting in antigen

presentation in the LN by the transferred DCs within minutes of injection (Figure 6.1a). After

thirty minutes, the fraction of CD4+ T cells that had received T cell receptor (TCR) signals

was determined, by measuring c-jun phosphorolation, which is a very early marker of antigen

recognition in T cells. It was found, that the fraction of T cells that received signal increased with
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the number of DCs transferred (Figures 6.1b and 6.2).

(a) Experimental system setup. (b) Results from all experimental repeats.

Figure 6.1: Experiment in which varying number of DCs are injected into mice, and the number

of activated T cells are recorded using phospho c-jun. Reproduced from [53].

Figure 6.2: Results showing flow cytometry output of the number of T cells expressing phospho

c-jun, for varying initial DC numbers. Reproduced from [53].

The number of DCs expressing green florescent protein (GFP), at the time of peptide injection

was measured to determine how many of the injected DCs reached the LN. For example, they

found that 22286 ± 797 DCs were present in the LN one day after injection of 2 × 106 DCs, and

these DCs induced c-jun phosphorolation in 48±7.6% of antigen-specific T cells in thirty minutes

(Figure 6.3).

Two photon laser scanning microscopy (TPLSM) was used to measure the time it takes for T

cells to encounter, and bind, an antigen-bearing DC, in the same conditions, with 20000 DCs. An

accumulation of T cell-DC interactions over time, as more, and more T cells encountered DCs,

was observed. In five to ten minutes 50% of T cells formed a stable contact, increasing to 88% by

thirty minutes (Figure 6.4).
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Figure 6.3: Quantifying number of DCs using GFP labelling. Green dots represent DCs.

Reproduced from [53].

(a) Image from TPLSM in vivo

experiment.

(b) Plot of results from TPLSM

experiments, showing the percentage of

attached/activated T cells as a function

of time. Each coloured line represents

one experiment.

Figure 6.4: TPLSM experiments. Reproduced from [53].

6.3 Mathematical model

To create an mathematical model, for comparison to experimental results, the probability of a T

cell encountering a DC must be calculated. We assume T cells encounter DCs at a constant rate,
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α, given by the inverse of the mean first passage time (3.5.37), which is approximately α ≈ 3Db
R3 ,

where D is the diffusivity of the T cells, b is the effective radius of the DCs, and R is the radius of

the LN. The number of T cells that have not encountered a DC will decrease exponentially with

time, giving an exponentially decreasing function for the probability of a T cell not encountering

a DC. The probability that one T cell, chosen at random, does not encounter a DC, before time t,

is given by

P(A T cell does not encounter a DC before t) = e−αNt, (6.3.1)

where t is the imaging time and N is the number of DCs. The probability that one T cell chosen

at random, does encounter a DC, is the complement of (6.3.1), given by

P(recruitment) = 1− e−αNt. (6.3.2)

This is a probability per T cell and is independent of the number of T cells.

The probability that at least one of M T cells encounters a DC, in the imaging period, can

be computed by calculating the probability that no T cells encounter an DC and taking the

complement of this probability, as was done to calculate (6.3.2). This gives

P(At least one T cell encounter an DC before t) = 1− e−αNMt, (6.3.3)

where N , α and t are defined as previously, and M is the number of T cells. This probability

depends on the number of T cells present.

Increasing the diffusivity of the T cells, or the the size of the DCs, will increase the encounter rate

in a linear manner, but increasing the radius of the LN will decrease the encounter rate in a cubed

way. Therefore, changing the size of the LN will have a much greater effect on the probabilities

stated in (6.3.2) and (6.3.3), than changing the diffusivity of the T cells or the effective radius of

the DCs.

6.4 Computational model

Using a variant of the spatial model described in Section 2.2.3, simulations of cells moving in a

LN, until they encounter a DC, can be carried out. Figure 6.5 shows the simulation setup. Figure

6.5(a), is a screenshot of a simulation of a crowded environment, with numerous DCs and T cells,

in the LN. Figure 6.5(b) shows the tracks of T cells moving by Brownian motion, in an attempt to

encounter a DC.
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(a) Model set up. (b) Movement of T cells.

Figure 6.5: Screenshots of spatial model simulations. (a) shows a crowded environment, with

randomly placed DCs (green) and T cells (blue). (b) shows tracks of T cells (blue), moving

by Brownian motion, in an attempt to encounter DCs (green). The DCs and T cells are placed

following a uniform random distribution, but are replaced if they occupy a volume that has already

been occupied by a DC.

6.4.1 Over-crowding effect

The target global mean first passage time (TGMFPT) (3.5.37) calculated for one DC uniform

randomly placed in a LN, assumes that the remaining volume of the LN is unoccupied. This is

the case when there is just one DC, but not when there are multiple DCs. For small numbers of

DCs this does not pose a big problem, as the DCs are a lot smaller than the LN, so the space

occupied by the DCs is negligible. However, when there are thousands of DCs in the LN, the

space they occupy becomes significant, leaving less free space for the T cells to move in, which

causes the TGMFPT equation to break down. The equation derived in Section 3.7.2 can be used

for multiple targets. However, this equation assumes the DCs can overlap, which is not the

case in these simulations. The equation can be used as an approximation, and will be a better

approximation than assuming the DCs are independent, meaning they have no influence on each

other, but the accuracy will decrease as the number of targets increases, due to the DCs having

a higher probability of occupying the same volume, and the amount of free volume for the T

cells to move in decreasing. A simple compensation can be implemented in an attempt to deal

with the reduced amount of free space for the T cells to move within. This is done by using the
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effective free volume, being the free space in the LN, rather than the actual volume of the LN.

This is achieved by replacing the R3 term by R3 −Nb3, where N is the number of DCs. Figure

6.6 shows the effect on the TGMFPT equation, by comparing the equation with the effective free

volume adjustment, against the equation without the adjustment.

Figure 6.6: Effect crowding of DCs has on the TGMFPT equation.

6.4.2 Correction of overestimation

In the numerical simulations, used to calculate activation probabilities, an over estimation to the

analytical prediction was found. This occurs because, when placing the T cells, if they are placed

within the zone of attraction of a DC, the position is rejected, and a new position chosen. This

results in the T cell not having a uniform random distribution across the lymph node, which the

equation for the TGMFPT is assuming. To resolve this problem, T cells were placed uniformly

randomly within the lymph node, and replaced if they occupy the effective volume of a DC.

Then the T cells were given a period of time (e.g: 20 minutes) to equilibrate, allowing their

distribution to become approximately uniform random. Any T cells encountering a DC in this

time were removed from the simulation. After the equilibration time, data was recorded assuming

the simulation started with the number of T cells present at the end of the equilibration time.
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6.4.3 Estimation of parameters

Analysis of data sets from imaging experiments carried out by the Bousso laboratory were

performed, as in Chapter 5, to determine the diffusivity of the T cells. Figure 6.7 shows

displacement squared plots of the data, with fitted lines to calculate the diffusivity.

(a) Data set one. (b) Data set two.

Figure 6.7: Analysis of displacement squared. Diffusivities calculated to be (a) 10.26 ±

0.73µm2min−1 and (b) 5.21± 0.16µm2min−1

The data was not as extensive as the data analysed in Chapter 5, resulting in a large amount of

variability in the results. From the analysis, diffusivities of 10.26 ± 0.73µm2min−1 and 5.21 ±

0.16µm2min−1 were found. During the analysis, the data used to produce Figure 6.7(a), was

found to be more reliable. Analysis of the cell tracks for the data used to generate 6.7(b) revealed

all the cells to be remaining in the same z plain throughout the imaging period. For this reason this

data set was judge to not be reliable as this should not be happening. Therefore, a diffusivity of

10µm2min−1 will be used in this chapter. The experiments were performed in a popliteal LN, the

radius of which, was measured to be approximately 400µm, although there is uncertainty in this

parameter, with some literature claiming the popliteal LN is as large as 700µm in radius [164].

The size of the DCs is a lot more uncertain as, due to their dendrites being able to reach out and

contract, their size is constantly changing [17]. T cells are known to have a fairly constant radius

of 3.5µm [1]. After consultation with the Bousso laboratory, a radius of 8µm for the DCs was

agreed upon. This results in an effective radius for the DCs of 11.5µm, and is the value used for

b. The radius of the LN was chosen to be within the range stated above, with a value of 500µm

being used.
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6.4.4 Comparison to experimental results

Experiments carried out by the Bousso laboratory found that in 5-10 minutes, 50% of T cells

had formed a stable contact, increasing to 88% by 30 minutes. Using (6.3.2) with parameters

R = 500µm, b = 11.5µm, D = 10µm2min−1, and N = 2× 105, the probability of recruitment

is found to be 50.0% in 10 minutes, increasing to 87.4% in 30 minutes, which is a very good fit

to the experimental data. The parameters R, b, and D, were chosen within realistic ranges. These

parameters are used to calculate the parameter α.

Figure 6.8: Recruitment probability for 2 × 105 DCs. Equation (6.3.2), is shown by solid lines,

numerical results, with standard error bars, are shown by crosses. Parameters used R = 500µm

and b = 11.5µm.

Figure 6.8 shows a comparison of (6.3.2) to numerical simulations, for diffusivities of

10µm2min−1 and 50µm2min−1. To simulate the numerical results shown in Figure 6.8, 2× 105

DCs were placed in the LN. This proved not to be possible when the DC’s effective volumes are

not allowed to overlap, as placing them uniformly randomly, within the free volume of the LN,

results in a large amount of wasted space. To overcome this problem, the DCs were placed with

a minimum separation between their centres of 2b1, where b1 is the actual radius of a DC. This

results in DC volumes not being able to overlap, but their effective volumes being able to overlap,

as the effective volume takes into account the size of the T cells. This setup is shown in Figure 6.9.

The analytical equation used is (6.3.2), with an effective free volume used as described in section

6.4.1. The numerical results fit surprisingly well to the theoretical equation.
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2b1

b1 + a

R

Figure 6.9: Diagram showing the setup of the computational model. Green circles represent DCs,

with their effective volume shown by a dashed line. The centres of DCs are separated by twice the

DCs actual radius, 2b1, and a is the radius of a T cell, incorporated into the DC’s effective radius.

6.4.5 Extrapolation of experimental results

Encouraged by the good fit between the model and the activation probabilities obtain from

the experimental data, the model was used to calculate recruitment probabilities for lower DC

numbers, and longer times, which can not be investigated experimentally. When using 2 × 105

DCs, in the biological experiments and mathematical model, the recruitment probability almost

reaches 100% in about 30 minutes. These large numbers of DCs are required to carry out biological

experiments, but such large numbers are not necessarily required to invoke an immune response.

Using the biological data, the model parameters could be calibrated, then, using these parameters,

other scenarios can be simulated. The recruitment probability can be calculated for varying

numbers of DCs, after six, twelve and twenty four hours. Using (6.3.2) and numerical simulations,

as shown in Figure 6.10. Figure 6.10 shows in twenty four hours, about one thousand DCs are

required to achieve approximately 100% recruitment probability for a T cell. Twenty four hours

is used, as this is the time an immune response takes to be initiated.

In theory, only one T cell needs to be activated for an immune response to occur, as once activated

the T cell will undergo clonal expansion. Using (6.3.3), the probability of at least one T cell

becoming activated can be calculated, for smaller numbers of T cells, and DCs, than can be

achieved experimentally.

Figure 6.11 shows the probability of at least one T cell becoming activated in twenty four hours,
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Figure 6.10: Recruitment probability per T cell. Equation (6.3.2) is shown by solid lines,

and numerical results, simulated using spatial simulations, by crosses. R = 500µm, D =

10µm2min−1 and b = 11.5µm.

Figure 6.11: Probability of at least one T cell encountering a DC, in twenty four hours. Equation

(6.3.3) is shown by solid lines, and numerical results, simulated using spatial simulations, by dots.

R = 500µm, D = 10µm2min−1 and b = 11.5µm.

compared to numerical simulations, for varying DC numbers, and T cell initial numbers, of

one, ten, and one hundred. These initial values of T cells, correspond to precursor frequencies

of 10−6–10−4. The precursor frequency expresses the fraction of T cells that are specific to a
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particular antigen. A mouse popliteal LN contains approximately 106 T cells. The figure shows

that approximately ten DCs are required to achieve a probability of approximately 100%, that at

least one T cell encounters a DC in twenty four hours, with one hundred searching T cells. This

number increases to approximately one hundred DCs, for ten T cells, and to approximately one

thousand DCs, for just one T cell.

6.4.6 Minimum number of DCs required to initiate an T cell response

Using (6.3.3), the number of DCs required to activate at least one T cell can be determined. Let

us assume a T cell response is initiated if the recruitment probability, in a given time period, is

greater than 50%. The number of DCs required to achieve a 50% recruitment probability, in time

T can be obtained by rearranging (6.3.3), with the recruitment probability set to 1
2 :

N∗ =
log 2

αNT
. (6.4.4)

Equation (6.4.4) can be used to calculate the minimum number of DCs required to initiate a T

cell response. Typical precursor frequencies of T cells are 10−6–10−5, equate to 1 – 10 T cells.

These values give a minimum number of DCs required to be 174 and 17 respectively, in twenty

four hours. These numbers increase to 698 and 70 respectively in a six hour period. These results

are illustrated in Figure 6.12.

Figure 6.12: Minimum number of DCs required to achieve a 50% probability of at least one T cell

encountering a DC.
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In Figure 6.12, the minimum number of DCs was calculated to achieve a 50% activation

probability. A more general version of (6.4.4) can be derived by including the term p, the

probability of encountering a DC, giving

N∗p =
log
(

1
1−p

)
αNT

. (6.4.5)

Using this equation, the minimum number of DCs required to induce a T cell response can be

calculated as a fraction of the recruitment probability required. For a T cell precursor frequency of

10−5 (10 T cells), the minimum number of DCs required for the probabilities of encounter to be

0.25, 0.5, 0.75 and 0.95, in twenty four hours, are 7, 17, 35, and 75 respectively. This is illustrated

in Figure 6.13

Figure 6.13: Minimum number of DCs required to achieve a probability p, of at least one T cell

encountering a DC.

6.5 Summary

In this chapter, it is found, that a minimum of 174 DCs are required to achieve a probability greater

than 50%, of initiating and immune response, within twenty four hours, and a precursor frequency

of 10−6 T cells. This minimum drops to 17, for a precursor frequency of 10−5 T cells. Values

of one and ten T cells are used, for precursor frequencies of 10−6 and 10−5, as the estimated

number of T cells in a mouse popliteal LN is 106. The dependence on the number of T cells can
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be removed from (6.4.4), by letting ρ equal the density of T cells in the LN, thus ρφ = N/V ,

where V = 4
3πR

3, and the fraction of antigen specific T cells, or precursor frequency, equals φ.

Doing this, gives the equation

N∗ =
log 2

4π

1

ρDbT

1

φ
, (6.5.6)

where α ≈ 3Db
R3 . This shows that N∗ is inversely proportional to the precursor frequency. In

humans, naive antigen specific T cells, are also presented at precursor frequencies of 10−6–10−5.

Therefore, the same minimum number of DCs also applies to humans. This result also means

that the number of DCs required to initiate a T cell response depends on the precursor frequency,

but not the volume of the LN. Therefore, it does not matter if the DCs specific to a particular

antigen (A∗) are all in one LN or divided between several LN as long as the precursor frequency

is the same in all LNs. The human body can only accommodate a limited number of T cells.

Therefore, to have a vast coverage by as many antigen specific T cells as possible, only a few T

cells specific to any given antigen can be present [53]. The results in this chapter suggest that

typical precursor frequencies of 10−6–10−5, allow the diversity of T cells to be maximised, but

still allows efficient T cell recruitment by low numbers of DCs. If numbers of DCs fall below this

threshold, stimulation would most likely not take place, due to lack of encounters.

This chapter considers an estimate of the minimum required of DCs needed to initiate a T cell

response, but higher numbers of DCs could further enhance the magnitude of the response, as

well as allowing successive encounter between T cells and DCs [40, 42]. On the other hand, if

chemokines are playing a role, to attract T cells to DCs, fewer DCs will be required to initiate a

response [50, 111]. DC vaccines can be used to elicit an immune response against cancer cells.

This work suggests the efficiency of delivery of DCs may not be of critical importance, as T cell

recruitment by DCs is already an efficient process. Optimising the quality and duration of the

stimulation may be of greater importance to DC vaccines [53].
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Chapter 7

Cross-regulation model

7.1 Introduction

Millions of different clonotypes of T cells are created by a stochastic recombination process during

development [106, 137, 200, 211]. Inevitably some of these clonotypes are self-reactive to the

body’s own antigens. To alleviate this problem, T cells undergo positive and negative selection,

to select out clonotypes that react to the body’s own antigens. Even with this process some self-

reactive clonotypes slip through the net, which is where regulatory T cells (Tregs) play a role.

Although it may have been agreed that Tregs are key players in avoiding autoimmunity, and are

currently the topic of intensive experimental research [44, 179, 199], the mechanism of action of

Tregs is still not fully known.

Several mechanisms for Treg mediated suppression have been suggested [195, 204]. It has

been proposed that suppression by Tregs requires direct cell-cell contact, either between Tregs

and effector T cells [203], or antigen-presenting-cells (APCs), Tregs, and effector T cells

[183, 217, 223]. Experiments in vitro have shown Tregs are unable to suppress the proliferation

of T cells when separated by a semi-permeable membrane [217, 223], and culture supernatant

of antigen-stimulated Tregs is unable to suppress T cell proliferation, indicating direct cell-cell

contact is required. Following direct cell-cell contact, Tregs may kill their target cells by a

granzyme-dependant, or perforin-dependent mechanism, or give a negative signal to the target

T cells, inhibiting their proliferation [38, 48, 89]. How exactly cell-cell suppression occurs is still

unclear. Hypotheses in the literature range from simple competition between Tregs and effector T

cells for conjugation to an APC [136, 229], to more complex interactions in which an APC relays
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a signal from a Treg to an effector cell [52, 215, 216].

Tregs do not produce the cytokine IL-2, but do express the high affinity CD25/IL-2 receptor

(IL-2R), making Tregs efficient absorbers of IL-2, thereby hindering the activation of T cells

that may rely on IL-2 to proliferate [176]. This makes Tregs highly dependent on exogenous

IL-2 for their survival in the periphery [109, 146, 174, 236, 240]. A lack of IL-2 leads to fatal

autoimmune/inflammatory disease, which is mainly due to lack of Treg survival [140]. Treg

suppression via absorption of IL-2 has been shown to be a strong mechanism in vitro [68, 203].

In vivo experiments have shown strong autoimmune responses in mice deficient in IL-2, or the

IL-2 receptor, suggesting IL-2 is essential for Treg proliferation, but is not essential for effector T

cell proliferation [198]. Experiments have shown in vitro and in vivo competition for IL-2 does

occur [20, 68, 127].

The theory of IL-2 suppression appears to disagree with experiments in which a semi-permeable

membrane, separating Tregs from their target cells, prevents suppression [38,48,89], as cytokines

diffuse easily in extracellular medium, and can diffuse hundreds of microns in the timescale of

tens of minutes. However, measurements of cytokine concentrations in cell culture supernatants

are often very low, and very low concentrations are unlikely to trigger cellular responses [33].

Therefore, concentrations of cytokines large enough may only be achieved in micro-environments

surrounding secreting cells. Also, cytokines are taken up locally by other cells, which further

restricts their spatial range [198].

The APCs that provide the proliferation signal to effector T cells are a potential target of Tregs.

Activated Tregs may down-regulate the expression of CD80 and CD86 [197], which provide co-

stimulatory signals, on APCs, as well as causing APCs to express the enzyme indoleamine 2,3-

dioxygenase [95, 172], which breaks down the amino acid, tryptophan to kynurenine, which is

toxic to T cells close to the APC.

The models in this chapter are based on Kalet Léon and Jorge Carnerio’s cross-regulation model

[49, 133] of interactions between effector (E) cells, regulatory (R) cells, and APCs, and has

received experimental support [218, 219, 239]. Léon et al.’s model is a deterministic ODE model.

Modelling biological systems using a deterministic approach can lead to unrealistic results, due

to the inherent stochastic nature of biological systems. For example, a steady state with only

a handful of cells could be achieved in a deterministic model, which in reality is likely to go

extinct due to random fluctuations. A more realistic model of a biological system is a stochastic

model, taking into account random fluctuations in the population sizes. A stochastic system can
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be implemented by listing the reactions that occur in a model, and using a Gillespie algorithm

(Section 2.4) to simulate these reactions.

CD4+ T cells are divided into multiple distinct lineages. However, for this chapter only two linages

are considered: Tregs and conventional T helper cells, also known as effector T cells. Effector T

cells control the adaptive immune response by activating, in an antigen specific fashion, other

effector cells, such as CD8+ cytotoxic T cells, B cells and macrophages. Tregs are T cells in

charge of suppressing potentially deleterious activity of conventional T helper cells [64].

As with Léon et al.’s model, the models in this chapter only consider antigen specific suppression,

and all cells in the models are assumed to be of the same clonotype. The main model examined

assumes a three-way interaction between an E cell, R cell, and APC, is required for suppression

to occur. However, this does not restrict the model to one of just cell-cell contacts, it is also a

reasonable approximation for a model in which IL-2 is secreted by E cells, upon binding with an

APC, and used to proliferate by R cells if they are in close proximity when the E cell is secreting

IL-2. Both cell types would need to be close to the APC, at the same time, for the R cell to absorb

the IL-2 being secreted by the E cell, allowing the R cell to proliferate and preventing the E cell

from proliferating due to lack of IL-2.

In this chapter, three models are considered: Model 1- competition only, Model 2- R cell

suppression only, and Model 3- R cell suppression and E cell promotion. These are the same three

model scenarios that are considered by Léon et al. For all models ODEs are determined and solved

numerically, with comparison to the stochastic system, solved using a Gillespie algorithm. For the

third model, which proves to be the most interesting, the system is non-dimensionalised, reducing

the number of parameters to two. The effects of varying these parameters are investigated, and

two differing sets of parameter values are used for the analysis, allowing comparison of the system

in two distinct parameter regimes. Steady states are obtained for the chosen parameter sets, and

their stability investigated. The effect of the initial values of cells is investigated by plotting phase

planes, to view the trajectories of the system, and considering the steady states achieved for various

sets of initial cell numbers, allowing a bifurcation in the system to be observed. The stochastic

effects of varying the initial ratio of the two cell types is investigated, and found to be significant

for certain parameter regimes.

The aim of this chapter is to develop a mathematical model that can adequately describe the

activation process of R cells and suppression of E cells by R cells. A stochastic framework is

used to incorporate the inherent stochasticity found in biological system for small cell numbers,
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which can be the case in autoimmunity. It is also hoped that a stochastic model will be able to

reveal interesting aspects of the system that are not observed in an analytical approach.

7.1.1 Model dynamics

In all three models, cells proliferate depending on which other cells have contacted a given APC in

the same time period. The rules determining cell proliferation differ for the three model scenarios

investigated. Each APC is given two binding sites for T cells to bind to, for simplicity. Both E and

R cells bind with APCs at a rate of k+, unbind at a rate of k−, and die with rate µ. In all models,

only free cells are able to die, while cells bound to an APC cannot die for the duration of the APC

contact. The on rate, k+, is given by the inverse of the first passage time for a T cell to encounter

an APC (3.5.37), and the off rate, k−, is given by the inverse of the mean binding time of a T cell

and APC. In the models, T cell proliferation occurs upon unbinding of cells.

E is used to represents effector cells and R to represent regulatory cells. The state of an APC is

expressed as Aij , where i is the number of E cells bound, and j is the number of R cells bound

to that APC. Each APC is assumed to have two binding sites. There are six basic populations

of APCs: A00, A10, A01, A11, A20 and A02. In model 2, there are extra APC populations in

which E cells are suppressed, and in model 3 there are APC populations in which R cells have

been promoted. When an E or R cell unbinds from A11, it leaves the remaining cell suppressed

(if it is an E cell, models 2 and 3) or promoted (if it is an R cell, model 3). To distinguish these

populations from A10 and A01, APCs that have an E cell bound, which has been suppressed and

will not proliferate on unbinding, are written as A∗10, and APCs that have an R cell bound, which

has been promoted and will proliferate upon unbinding, are written as A#
01. The case in which

an E or an R cell binds to one of these suppressed/promoted populations of APCs, must now be

considered. If an E cell binds to A∗10, this is represented as A∗20, indicating one of the E cells has

been suppressed and the other has not. The same concept applies to an R cell binding to give

A#
02. If an E cell binds to A#

01 it becomes A11, and if an R cell binds to A∗10 it becomes A11, as

it does not matter if a cell has previously been suppressed or promoted when the A11 complex is

formed. For the purpose of writing ODEs, the APC populations can be written in the form nk.

These populations are expressed in Table 7.1, along with the parameters used in this chapter.

In the systems investigated, the steady states obtained can be split into three categories: extinction,

in which no cells remain, autoimmunity, in which only E cells remain, and tolerance, in which both

E and R cells remain.
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Aij nk Number of cells bound

A00 n00 No cells

A10 n10 1 E cell

A01 n01 1 R cell

A20 n20 2 E cells

A02 n02 2 R cells

A11 n11 1 E cell, 1 R cell

A∗10 n∗10 1 suppressed E cell

A#
01 n#01 1 promoted R cell

A∗20 n∗20 2 E cells, 1 suppressed

A#
02 n#02 2 R cells, 1 promoted

Rate Equals

k+ Binding rate

k− Unbinding rate

µ Death rate

NA Total number of APCs

t Time

κ+ k+NA/µ (dimensionless binding rate)

κ− k−/µ (dimensionless unbinding rate)

τ tµ (dimensionless time)

Table 7.1: Tables showing notation and rates used in this chapter.
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7.2 Model 1: competition only

Firstly, we consider a model in which cells compete for the binding sites of the APCs, with no

suppression or promotion. In this model both E cells and R cells proliferate upon unbinding from

an APC, regardless of which other cells are bound to the given APC.

7.2.1 Reactions

The interactions between cells, in Model 1, can be represented as a system of reactions as follows

E
µ−→ ∅

R
µ−→ ∅

A00 + E
k+−→ A10

A00 +R
k+−→ A01

A10 + E
k+−→ A20

A10 +R
k+−→ A11

A01 + E
k+−→ A11

A01 +R
k+−→ A02

A10
k−−→ A00 + 2E

A01
k−−→ A00 + 2R

A20
2k−−→ A10 + 2E

A02
2k−−→ A01 + 2R

A11
k−−→ A01 + 2E

A11
k−−→ A10 + 2R

7.2.2 ODEs

These reactions can be written as the following system of ODEs:

dnE
dt

= 2k−(n10 + 2n20 + n11)− nEµ+ k+nE(n20 + n02 + n11 −NA), (7.2.1a)

dnR
dt

= 2k−(n01 + 2n02 + n11)− nRµ+ k+nR(n20 + n02 + n11 −NA), (7.2.1b)

dn10
dt

= k−(−n10 + 2n20 + n11)− k+(n10(2nE + nR) + nE(n01 + n20 + n02 + n11 −NA)),

(7.2.1c)

dn01
dt

= k−(−n01 + 2n02 + n11)− k+(n01(nE + 2nR) + nR(n10 + n20 + n02 + n11 −NA)),

(7.2.1d)

dn20
dt

= −2k−n20 + k+n10nE , (7.2.1e)

dn02
dt

= −2k−n02 + k+n01nR, (7.2.1f)

dn11
dt

= −2k−n11 + k+(n10nR + n01nE). (7.2.1g)
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(a) Equal proportions of E and R cells (b) Three times as many E cells as R cells.

Figure 7.1: Plots showing the solution of ODEs and Gillespie algorithm for Model 1. Parameters

used: k+ = 1.2 × 10−5minutes−1, k− = 1/60minutes−1, µ = 10−5minutes−1, and NA = 25.

Gillespie results averaged from 100 realisations in both plots.

This model is symmetric, as the populations of E and R cells can be interchanged without effecting

the dynamics of the model, therefore neither population has an advantage over the other if the

system starts with equal numbers of E and R cells. Figure 7.1 shows for (a) equal initial numbers

of E and R cells, the steady state for both cell types is equal, and for (b) unequal initial numbers of

E and R cells, the steady state achieved contains cell numbers in equal proportions to the starting

proportions of each cell type. In both Gillespie simulations, an average is taken over multiple

realisations, and compared to the ODEs. In Figure 7.1(a), the Gillespie results do not agree exactly

with the ODEs, this is due to not enough realisations have been carried out. This has been done

purposely so the Gillespie and ODEs solutions can be distinguished.

The steady state value of E and R cells can be calculated by first determining the carrying capacity

of the system. The carrying capacity is the total number of E and R cells the system can support

due to the limited number of APCs and binding sites. The carrying capacity can be found by

assuming either the E or R cells go extinct, and solving the system with the other cell type. This

gives

Carrying capacity =
k−

(
k+NA − µ+

√
k2+N

2
A − µ2

)
k+µ

. (7.2.2)

The steady state value of E and R cells is given by the initial fraction of each of the cell types

multiplied by the carrying capacity (7.2.2) of the system. This occurs because the system is

symmetric, so neither population has an advantage over the other.
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7.3 Model 2: R suppression only

We now consider a model in which R cells are able to suppress E cells, but do not require the E

cells to be able to proliferate. In this model, if an R cell binds to an APC, it receives a signal to

proliferate, regardless of what other cells are bound to that APC. If an E cell binds to an APC, and

if no R cells are bound to the same APC, it will proliferate. However, if an R cell is bound to the

APC at any time during the E cell’s binding, the E cell is suppressed and will not proliferate after

unbinding.

7.3.1 Reactions

The interactions in this model can be represented by the following system of reactions

E
µ−→ ∅

R
µ−→ ∅

A00 + E
k+−→ A10

A00 +R
k+−→ A01

A10 + E
k+−→ A20

A10 +R
k+−→ A11

A01 + E
k+−→ A11

A01 +R
k+−→ A02

A10
k−−→ A00 + 2E

A01
k−−→ A00 + 2R

A20
2k−−→ A10 + 2E

A02
2k−−→ A01 + 2R

A11
k−−→ A01 + E

A11
k−−→ A∗10 + 2R

A∗10
k−−→ A00 + E

A∗10 + E
k+−→ A∗20

A∗10 +R
k+−→ A11

A∗20
k−−→ A∗10 + 2E

A∗20
k−−→ A10 + E
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7.3.2 ODEs

These reactions can be written as the following system of ODEs:

dnE
dt

= k−(2n10 + n∗10 + 4n20 + 3n∗20 + n11)− nEµ+ k+nE(n20 + n∗20 + n02 + n11 −NA),

(7.3.3a)

dnR
dt

= 2k−(n01 + 2n02 + n11)− nRµ+ k+nR(n20 + n∗20 + n02 + n11 −NA), (7.3.3b)

dn10
dt

= k−(−n10 + 2n20 + n∗20)

− k+(n10(2nE + nR) + nE(n∗10 + n01 + n20 + n∗20 + n02 + n11 −NA)), (7.3.3c)

dn∗10
dt

= k−(−n∗10 + n∗20 + n11)− k+n∗10(nE + nR), (7.3.3d)

dn01
dt

= k−(−n01 + 2n02 + n11)

− k+(n01(nE + 2nR) + nR(n10 + n∗10 + n20 + n∗20 + n02 + n11 −NA)), (7.3.3e)

dn20
dt

= −2k−n20 + k+n10nE , (7.3.3f)

dn∗20
dt

= −2k−n
∗
20 + k+n

∗
10nE , (7.3.3g)

dn02
dt

= −2k−n02 + k+n01nR, (7.3.3h)

dn11
dt

= −2k−n11 + k+((n10 + n∗10)nR + n01nE). (7.3.3i)

Solving these ODEs using an Euler method, as well as the Gillespie algorithm, for this system

gives the plots shown in Figure 7.2. Figure 7.2 shows the R cells drive the E cells to extinction,

which is expected, as there is no restriction on the number of R cells by suppression from the

E cells. The autoimmune steady state, with only E cells, can be achieved by setting the initial

number of E cells to be much greater than the number of R cells.

7.4 Model 3: R suppression E promotion

Finally, we consider a model in which R cells are able to suppress the proliferation of E cells, and

R cells require promotion by E cells to undergo proliferation. In this model, upon an E or an R

cell binding to an APC, they proliferate following the rules outlined below, and in Figure 7.3.

For E cells:
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Figure 7.2: Dynamics of Model 2 with k+ = 1.2 × 10−5minutes−1, k− = 1/60minutes−1,

µ = 10−5minutes−1, and NA = 25, and initial values of E and R cells set to 100. Purple dotted

line shows the steady state of the system. Gillespie results averaged from 100 realisations.

• The E cell proliferates if and only if no R cells have bound to APC in the time the E cell has

been bound.

For R cells:

• The R cell proliferates if and only if an E cell has bound to the APC at any point during the

time the R cell has been bound. We call this promotion of R cells by E cells.

In this model, there are 10 populations of APCs, plus the free E cells and free R cells. The total

number of APCs is constant, therefore the A00 population can be constrained, giving a total of

11 populations, 24 reactions and 3 rates. A system of reactions for this model can be written,

following the rules of Figure 7.3, with two binding sites per APC.

7.4.1 Reactions

The interactions in Model 3 can be expressed by the following set of reactions.

Death: In principle, we can have separate death terms for E and R cells, but for simplicity both

death rates are set to be equal. We represent these as

E
µ−→ ∅ R

µ−→ ∅ (7.4.4)
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Key
Dead cell

Effector cell

Regulatory cell

APC

Figure 7.3: Diagram of interactions that can occur in Model 3, blue circles represent E cells, red

circles represent R cells, dashed circles represent dead cells, green circles represent APCs, line in

shape of ‘T’ indicates suppression of the cell contacting the flat end, and curved arrow indicates

promotion.

Binding to an empty APC: An E, or an R cell, can bind to an empty APC with rate k+. Although

there are two binding sites available, the rate of a T cell encountering an APC is independent of

the number of free binding sites.

A00 + E
k+−→ A10 A00 +R

k+−→ A01 (7.4.5)

Binding to A10:

A10 + E
k+−→ A20 A10 +R

k+−→ A11 (7.4.6)

Binding to A01:

A01 + E
k+−→ A11 A01 +R

k+−→ A02 (7.4.7)

Unbinding of E cells: Unbinding and proliferation of E cell to produce two E cells, as suppression

has not occurred. Rates are multiplied by the number of cells that can potentially unbind.

A10
k−−→ A00 + 2E A20

2k−−→ A10 + 2E (7.4.8)

Unbinding of R cells: Unbinding of an R cell, without proliferating, to produce one R cell, as

promotion has not occurred. Rates are multiplied by the number of cells that can potentially

unbind.

A01
k−−→ A00 +R A02

2k−−→ A01 +R (7.4.9)
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Unbinding from A11: The # indicates the remaining R cell is promoted, and the ∗ the remaining

E cell is suppressed.

A11
k−−→ A#

01 + E A11
k−−→ A∗10 + 2R (7.4.10)

Unbinding of suppressed/promoted cells:

A∗10
k−−→ A00 + E A#

01

k−−→ A00 + 2R (7.4.11)

Binding to A∗10: It must be noted that the complex resulting from the first reaction has an E cell

that has been suppressed, represented by the ∗. For the A11 case, the E cell is always suppressed,

therefore the ∗ is not required.

A∗10 + E
k+−→ A∗20 A∗10 +R

k+−→ A11 (7.4.12)

Binding to A#
01: Again, it must be noted that one of the resulting complexes has an R cell that has

been promoted, which is represented by the #.

A#
01 + E

k+−→ A11 A#
01 +R

k+−→ A#
02 (7.4.13)

Unbinding from A∗20: Either the suppressed, or unsuppressed E cell can unbind.

A∗20
k−−→ A10 + E A∗20

k−−→ A∗10 + 2E (7.4.14)

Unbinding from A#
02: Either the promoted, or un-promoted R cell can unbind.

A#
02

k−−→ A01 + 2R A#
02

k−−→ A#
01 +R (7.4.15)

These reactions can be represented as a diagram, shown in Figure 7.4.

7.4.2 Effector cell dynamics

Let us first consider the simple case when there are no R cells, but only E cells and APCs. The

variables of the model are the number of free E cells and the numbers ofA00,A10 andA20, denoted

as nE, n00, n10 and n20, respectively. In this case, we have the following system of ODEs:

dnE
dt

= k−(2n10 + 4n20)− k+(n00 + n10)nE − µnE, (7.4.16a)

dn00
dt

= k−n10 − k+nEn00, (7.4.16b)

dn10
dt

= 2k−n20 + k+n00nE − k−n10 − k+nEn10, (7.4.16c)

dn20
dt

= k+nEn10 − 2k−n20. (7.4.16d)
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A00

A20

A10

A01

A02

A11

A∗10

A#
01

A∗20

A#
02

Key
* Suppressed E cell
# Promoted R cell

E cell, bidirectional
E cell, uni-directional
R cell, bidirectional
R cell, uni-directional

Figure 7.4: Diagram showing the reactions that occur in Model 3. Uni-directional refers to a

reaction that occurs in only one direction, and bidirectional to a reaction that is reversible.

The total number of APCs is constant, therefore one of the populations can be eliminated as

follows:

NA = n00 + n10 + n20.

Writing n00 = NA−n10−n20, the equation for n00 (7.4.16a) can be eliminated, leaving a system

of three ODEs:

dnE
dt

= k−(2n10 + 4n20) + k+(n20 −NA)nE − µnE, (7.4.17a)

dn10
dt

= k−(−n10 + 2n20)− k+(2n10 + n20 −NA)nE, (7.4.17b)

dn20
dt

= −2k−n20 + k+n10nE. (7.4.17c)

This system can be non-dimensionalised by setting, k+ = κ+µ
NA

, k− = κ−µ, t = τ
µ and ni =

NAxi. By non-dimensionalising, the number of parameters in the system is reduced. This yields

the following dimensionless equations:

dxE
dτ

= κ−(2x10 + 4x20) + κ+(x20 − 1)xE − xE , (7.4.18a)

dx10
dτ

= κ−(−x10 + 2x20)− κ+(2x10 + x20 − 1)xE , (7.4.18b)

dx20
dτ

= −2κ−x20 + κ+x10xE , (7.4.18c)
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where x is used to represent the dimensionless variables. Non-dimensionalising reduces the

system to two parameters, κ+ and κ−. The real, non-negative, steady state solutions of (7.4.18)

are

{xE , x10, x20} = {0, 0, 0}, (7.4.19)

and

{xE , x10, x20} =

{
κ−
κ+

(
κ+ − 1 +

√
κ2+ − 1

)
,

1

κ+

(
−κ+ + 1 +

√
κ2+ − 1

)
, 1− 1

κ+

}
.

(7.4.20)

The stability of the steady states can be investigated by writing the ODE system (7.4.18) in matrix

form. The values of xE , x10 and x20 can then be set to the steady state value and eigenvalues of

the system found. If these eigenvalues are all negative, the system is stable. Analysing the stability

of these steady states reveals the zero steady state to have eigenvalues:

−2κ−,

−1

2

(
κ− + κ+ + 1 +

√
κ2− + κ−(6κ+ − 2) + (κ+ + 1)2

)
,

−1

2

(
κ− + κ+ + 1−

√
κ2− + κ−(6κ+ − 2) + (κ+ + 1)2

)
,

which are all negative. Therefore the steady state is stable when κ+ < 1. The eigenvalues of the

non-zero steady state are rather long, and are not expressed here, but are only real, negative and

therefore stable for κ+ > 1.

This simplified system of ODEs can be plotted, and are compared to stochastic simulations

generated using the Gillespie algorithm, shown in Figure 7.5

7.4.3 Regulatory cell dynamics

A non-zero steady state with no E cells and only R cells, is not possible, as the R cells rely upon

the E cells to proliferate. This can be shown by forming a system of ODEs with only R cells,

giving the following system of three ODEs:

dxR
dτ

= −xR + κ−(x01 + 2x02) + κ+xR(x02 − 1), (7.4.21a)

dx01
dτ

= κ−(−x01 + 2x02)− κ+xR(2x01 + x02 − 1), (7.4.21b)

dx02
dτ

= −2κ−x02 + κ+x01xR. (7.4.21c)
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Figure 7.5: Figure showing the ODEs (7.4.17), compared to a Gillespie simulation, for a system

with only E cells. κ+ = 3 and κ− = 500/3. Gillespie results averaged from 10 realisations.

Setting the three equations equal to zero, and solving for xR, x01 and x02, the only steady state

found is the zero state, therefore R cells cannot exist on their own. Analysing the stability of this

steady state, gives the eigenvalues:

−2κ−,

−1

2

(
κ− + κ+ + 1 +

√
(κ− + κ+ + 1)2 − 4κ−

)
,

−1

2

(
κ− + κ+ + 1−

√
(κ− + κ+ + 1)2 − 4κ−

)
,

which are all negative, and therefore the zero steady state is stable for all parameter values.
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7.4.4 ODEs with effector and regulatory cells

Dimensionless differential equations can be written for the full system, with both E and R cells, for

the mean number of cells in each populations, in which x represents the dimensionless variables:

dxE
dτ

= −xE + κ−(2x10 + x∗10 + 4x20 + 3x∗20 + x11)

+ κ+xE(x20 + x∗20 + x02 + x#02 + x11 − 1), (7.4.22a)

dxR
dτ

= −xR + κ−(x01 + 2x#01 + 2x02 + 3x#02 + 2x11)

+ κ+xR(x20 + x∗20 + x02 + x#02 + x11 − 1), (7.4.22b)

dx10
dτ

= κ−(−x10 + 2x20 + x∗20)

− κ+(x10(2xE + xR) + xE(x∗10 + x01 + x#01 + x20 + x∗20 + x02 + x#02 + x11 − 1)),

(7.4.22c)

dx∗10
dτ

= κ−(−x∗10 + x∗20 + x11)− κ+x∗10(xE + xR),

dx01
dτ

= κ−(−x01 + 2x02 + x#02) (7.4.22d)

− κ+(x01(xE + 2xR) + xR(x10 + x∗10 + x#01 + x20 + x∗20 + x02 + x#02 + x11 − 1)),

(7.4.22e)

dx#01
dτ

= κ−(−x#01 + x#02 + x11)− κ+x#01(xE + xR), (7.4.22f)

dx20
dτ

= −2κ−x20 + κ+x10xE , (7.4.22g)

dx∗20
dτ

= −2κ−x
∗
20 + κ+x

∗
10xE , (7.4.22h)

dx02
dτ

= −2κ−x02 + κ+x01xR, (7.4.22i)

dx#02
dτ

= −2κ−x
#
02 + κ+x

#
01xR, (7.4.22j)

dx11
dτ

= −2κ−x11 + κ+(x10 + x210)xR + κ+(x01x
∗
01)xE . (7.4.22k)

7.5 Analysis of Model 3

This system can be analysed using Mathematica, to find steady states. A solution cannot be found

for the general case, but steady states can be calculated for specific sets of parameter values.

To choose parameters to use in the model, the TGMFPT equation (3.5.37) was used, and a rate
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obtained from the inverse of the TGMFPT. Using realistic values for R, D and b, of 500µm,

40µm2min−1 and 11.5µm, gives a value for k+ of approximately 1.2× 10−5minutes−1. A value

for k− of 1/60minutes−1 was chosen, corresponding to a mean binding time of 60 minutes. A

death rate, µ, of 10−4minutes−1 was chosen, corresponding to a mean life span of 104 minutes,

which is approximately one week. These parameters give the dimensionless parameters κ− =

500/3, and κ+ = 0.12NA. We will investigate two values for the number of APCs, NA, of 25 and

100, corresponding to κ+ = 3 and κ+ = 12. For κ+ = 3 the following steady states are found:

• Extinction: E = R = 0.

• Autoimmunity: E = 6706, R = 0.

• Tolerant: E = 6060, R = 202 (unstable).

• Tolerant: E = 1064, R = 1106 (stable).

For κ+ = 12 the following steady states are found:

• Extinction: E = R = 0.

• Autoimmunity: E = 31887, R = 0.

• Tolerant: E = 31766, R = 40 (unstable).

• Tolerant: E = 398, R = 3008 (stable).

The steady state numbers stated are actual cell numbers, rather than the non-dimensionalised

values. Analysis of these steady states reveals for both values of κ+, the extinction steady state is

unstable, the autoimmune steady state is a stable node, and one of the tolerant steady states is a

stable spiral and the other is unstable, indicated in parentheses.

7.5.1 Carrying Capacity

To determine the total number of E and R cells that can be supported by the system the carrying

capacity can be calculated. The carrying capacity of the system can be calculated by setting
dxE
dt = dx10

dt = dx20
dt = 0 and xR = x01 = x02 = x11 = x∗10 = x#01 = x∗20 = x#02 = x11 = 0, as

the carrying capacity of the system is reached when there are no R cells, and the E cell numbers

are able to grow to the carrying capacity of the system. The only populations that will be non zero
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are xE , x10 and x20, and when the number of E cells reaches the carrying capacity, this will be a

steady state, implying the rate of change of these populations will be zero. Using these conditions

the carrying capacity of the system is found to be

xE =
κ−
κ+

(
κ+ − 1 +

√
κ2+ − 1

)
, (7.5.23)

for κ+ > 1.

7.5.2 Solution of ODEs and Gillespie algorithm

The ODEs can be solved numerically, using an Euler method. The system can also be solved using

the Gillespie algorithm, allowing stochastic effects to be studied.

Figure 7.6: Comparison of ODE model to Gillespie algorithm. Horizontal green dashed line

represents the stable tolerant state. Parameters used κ+ = 12 and κ− = 500/3. Initial cells

numbers, E = R = 100. Gillespie results averaged from 100 realisations.

Figure 7.6 shows for κ+ = 12 the ODEs, and the average of numerous Gillespie simulations give

the same results, and settle in the stable tolerant steady state. The results for the Gillespie model are

averaged over multiple realisations to form a smooth curve. In Figure 7.6, the Gillespie algorithm

agrees exactly with the ODEs for this value of κ+, indicating stochastic effects do not change the

steady state achieved in this case, and the ODEs can be used as a mean field approximation to the

stochastic system. In the case with κ+ = 3 stochastic effects have a greater contribution, resulting

in the Gillespie algorithm settling in different steady states for different realisations, due to the



Chapter 7. Cross-regulation model 141

smaller number of APCs required to give κ+ = 3. Therefore, an average of multiple realisations

could not be compared with the ODEs. Figure 7.7(a) shows the ODEs tend to the unstable tolerant

(a) ODEs.

(b) Gillespie giving the autoimmune steady

state

(c) Gillespie giving the stable tolerant steady

state

Figure 7.7: Figures showing results of (a) the ODE model and (b),(c) two different realisations

of the Gillespie algorithm in which different steady states are reached. Horizontal lines represent

the steady states. Stable tolerant state: green dashed, unstable tolerant state: green dotted, stable

autoimmune state: purple dashed. Parameters used κ+ = 3 and κ− = 500/3. Initial cells

numbers, E = R = 100.

steady state, but then move away from this steady state and approach stable tolerant steady state.

Figures 7.7 (a) and (b) show two different realisations of the Gillespie algorithm for κ+ = 3, in

which different steady states are reached.

7.5.3 Effector and regulatory cell dynamics

Plotting the number of E cells against the number of R cells allows the dynamics of the system

to be explored. In the case with κ+ = 12, the dynamics are similar for both the ODEs and one

realisation of the Gillespie algorithm (Figure 7.8), showing stochastic effects are small for large
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κ+. Figure 7.8 shows the system is attracted towards the stable tolerant steady state.

Figure 7.8: Comparison of number of E cells and R cells for ODEs and Gillespie algorithm. Blue

line indicates the trajectory of the ODEs and the yellow line the trajectory of one realisation of

the Gillespie algorithm. Stable steady states are shown by dots and the unstable steady state by a

cross. Parameters used κ+ = 3 and κ− = 500/3. Initial cells numbers, E = R = 100.

For κ+ = 3, the steady state achieved depends upon stochastic fluctuations of the system, with

two steady states being observed. Figure 7.9 shows in all cases the system approaches the unstable

(a) ODEs. (b) Gillespie autoimmune steady

state.

(c) Gillespie tolerant steady state

Figure 7.9: Comparison of number of E cells and R cells for (a) the ODE model and (b),(c) two

different realisations of the Gillespie model in which different steady states are reached. Stable

steady states are shown by dots, and the unstable steady state by a cross. Parameters used κ+ = 3

and κ− = 500/3. Initial cells numbers, E = R = 100.

tolerant steady state, but then settles in either the stable tolerant or the autoimmune steady state.
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Figures 7.7 and 7.9 illustrate stochastic fluctuations affect the steady state reached, for small values

of κ+. ODEs can be used as a mean field approximation, and will be used in this chapter. However,

it must be remembered that stochastic fluctuations play a role, and the steady state achieved in

the mean field approximation will only occur in a proportion of the realisations of the stochastic

model.

7.5.4 Phase portrait

A phase portrait can be used to view the trajectories of the ODE solutions for various initial

conditions. Phase portraits were generated using the same code used to solve the ODEs, as used

to generate Figures 7.8 and 7.9(a), but for a range of sets of initial conditions. The ODEs were

solved for a set number of time steps, and the number of E cells versus R cells for each set of initial

conditions was plotted, allowing information about the speed at which the system approaches the

steady states, dependent on where in the phase space you are, to be visualised.

(a) κ+ = 3. (b) κ+ = 12.

Figure 7.10: Phase portraits of the ODE system. Cyan dots indicate different initial conditions of

the trajectories. Steady states are indicated by coloured dots/crosses.

Figure 7.10 shows the system is attracted towards the unstable tolerant steady state, in both cases,

and then moves, more slowly, towards either the autoimmune steady state or the stable tolerant

steady state.

The steady state various sets of initial conditions settle in can be examined in more detail. This is

achieved by calculating the steady state a set of initial conditions settle in, using an Euler method,

and plotting the initial condition as dot, with a colour to indicate the steady state it has settled in.
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This is then done for multiple sets of initial conditions. Figure 7.11 shows this for (a) κ+ = 3 and

(b) κ+ = 12.

Figure 7.11(a) shows, no set of initial conditions examined settle in the unstable tolerant steady

state, and there is a bifurcation point at which the system switches from the autoimmune steady

state to the stable tolerant steady state.

Figure 7.11(b) shows, only sets of initial conditions with very low initial numbers of R cells settle

in the autoimmune steady state, all other sets of initial conditions examined settle in the stable

tolerant steady state, excluding those starting with zero E cells, which go extinct.

(a) κ+ = 3. (b) κ+ = 12.

Figure 7.11: Plots showing the steady states different sets of initial conditions settle in (dots).

Steady states are indicated by black crosses. Extinction: yellow, autoimmunity: purple, tolerance:

green.

7.5.5 Effect of κ+ and κ−

The importance of the various parameters regimes can be viewed by examining the steady states

obtained for the various regimes. By non-dimensionalising the system the number of parameters

has been reduced to two, κ+ and κ−. These parameters can be used to investigate the steady

states obtained for various set of parameters. Figure 7.12 was generated by solving the ODEs,

using Mathematica, for various pairs of parameters. The steady state achieved for a specific pair

of parameters is represented as a coloured dot, where the colour indicates the type of steady state,

being either extinct, autoimmune, or stable tolerant. In the regimes where the autoimmune steady

state is observed, the extinction state is also observed, and likewise, in the regimes where the

tolerant steady state occurs, the other two steady states also occur. Therefore, in Figure 7.12
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a yellow dot indicates the extinction steady state only, a purple dot indicates the extinction and

autoimmune steady states, and a green dot indicates all three steady states are observed.

Figure 7.12: Plot showing the steady states obtained for varying values of κ+ and κ−. Yellow dots

indicate the extinction steady state, purple indicate the extinction and autoimmune steady state,

and green indicates the extinction, autoimmune and stable tolerant steady states.

Figure 7.12 shows the unbinding rate, κ−, has no effect on the steady state obtained, and the

binding rate, κ+, is the only parameter that effects the steady state. The value of κ+ at which the

system switches from the extinction steady state, to the autoimmune steady state can be calculated

by setting the carrying capacity given in (7.5.23) to zero, and is given by

κ+ = 1.

The number of E cells in the autoimmune steady state is given by the carrying capacity of the

system (7.5.23).

From Figure 7.12, the number of APCs required to achieve the autoimmune, and the tolerant

steady state can be determined. Using the parameters defined in Section 7.5, we have κ+ =

0.12NA, where NA is the number of APCs. The autoimmune steady state exists for κ+ ≥ 1. This

corresponds to a minimum of 9 APCs being required to achieve the autoimmune steady state. The

stable tolerant steady state occurs for κ+ ' 2.15. This correspond to a minimum of 18 APCs

being required to achieve the stable tolerant steady state.
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7.5.6 The effect of κ+ on cell numbers

The effect of κ+ on the number of E and R cells can be investigated by solving the ODEs, using

the Euler method.

Figure 7.13: Plot showing how the steady state numbers of E and R cells change with varying the

value of κ+. A value of 500/3 was used for κ−. Initial values of E = R = 100 were used.

Figure 7.13 shows the number of E and R cells present in the system at the steady state, for various

parameter regimes. In the region corresponding to the extinction steady state in Figure 7.12, there

are no E or R cells. As the system moves into the autoimmune steady state observed in Figure 7.12,

there are still no R cells, but now the number of E cells at steady state increases as κ+ increases.

This increase continues until the region corresponding to the tolerant steady state in Figure 7.12

is reached, at which point a bifurcation occurs, resulting in a sudden drop in E cells and increase

in R cells, and co-existence of both E and R cells. In this region, the autoimmune steady state still

occurs, but is not the stable steady state for the set of initial conditions used.

Figure 7.13 shows the steady state achieved for initial numbers of E and R cells set to be

100. If different initial cell numbers are used, different steady states can be achieved. Using a

Mathematica code, all the steady states that occur for a specific parameter regime, regardless of

the initial conditions, can be generated, and their stability determined. Results are shown in Figure

7.14.

In Figure 7.14 the black crosses in both plots correspond to the same unstable steady state. The
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Figure 7.14: Plot showing the number of E and R cells in the various steady states as the value

of κ+ changes. Blue/red dots indicate stable steady states, black crosses indicate unstable steady

states. A value of 500/3 was used for κ−.

red dots in the bottom plot, that are not on the x-axis, correspond to the lower blue dots in the

top plot. The upper blue dots in the top plot, equate to the autoimmune steady state, and their

corresponding points on the bottom plot lie on the x-axis.

Figure 7.14 shows the extinction steady state is stable only for κ+ < 1, after which point it

becomes unstable. The autoimmune steady state exists for all values of κ+ ≥ 1, and is always

stable. The tolerant steady state is stable, and is the same tolerant steady state seen in Figure 7.13,

and a second unstable tolerant steady state is observed, in which there is a smaller number of R

cells and larger number of E cells. As κ+ increases, the unstable tolerant steady state approach

the autoimmune steady state.
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7.5.7 Stochastic effects of initial ratio of cells

To test the effect of stochastic fluctuations on the system, multiple realisations of the Gillespie

algorithm can be computed, to determine the probability of being in a specific steady state, for

varying initial ratios of E and R cells.

(a) Varying starting ratio. (b) Ratios used.

Figure 7.15: Plot (a) shows the effect of varying the starting ratio of E and R cells for κ+ = 3.

Total number of cells (E+R) is 200. Plot (b) shows the steady state the ODEs settle in for various

pairs of initial cell numbers, with black dots indicating the initial ratios used in (a). Extinction:

yellow, autoimmunity: purple, tolerance: green.

Figure 7.15(a) shows stochastic effects are present in the system, which are not observed in the

deterministic model. The initial ratio of E and R cells determine the most dominant steady state

seen, but for all initial ratios both the autoimmune and tolerant steady states were observed. The

extinction steady state was not observed in any of the simulations. Figure 7.15(a) was obtained

using the Gillespie algorithm, running simulations until either the E or R cells went extinct, or

the number of E and R cells were within 5% of the stable tolerant steady state. At this point

it was assumed the system would settle in that state. Solving the system using the ODEs, for

this parameter range and the same initial conditions, gives the autoimmune steady state when the

fraction of R cells is less than or equal to 0.2, and the tolerant steady state for higher fractions of

R cells, as shown in Figure 7.15(b).

Figure 7.15(a) shows increasing the fraction of R cell reduces the probability of autoimmunity

occurring, up until a fraction of R cells of 0.8, at which point the probability of autoimmunity

increases again. This can be investigated by examining individual realisations of the Gillespie

algorithm, for specific R cell starting ratios, shown in Figure 7.16.
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(a) R cell ratio 0.9. (b) R cell ratio 0.8. (c) R cell ratio 0.6.

Figure 7.16: Realisations of the Gillespie algorithm for high initial ratios of R cells. The green

cross indicates the unstable tolerant steady state.

The increase in the probability of autoimmunity appears to be due to the large number of R cells

present, resulting in them occupying the majority of the APC binding sites. This results in the R

cells not being able to proliferate, as they are not receiving signal from the E cells, and the E cells

dying off quicker as only free cells can die. Thus, the R cells die, as there are fewer E cells to

stimulate their proliferation. As the cell numbers drop, the E cells are able to recover quicker as

they do not depend upon the R cells to proliferate. As the E cells recover, the R cells can then

also recover, but the population levels have dropped to be near the bifurcation point of the system.

This results in more realisations settling in the autoimmune steady state, as the system is closer to

the bifurcation seen in Figure 7.11(a). Thus, only a small stochastic fluctuation is required to push

the system towards the autoimmune steady state. Figures 7.16(a)-(c) show that for larger ratios

of R cells, the cell numbers drop to lower levels, and spend longer near the bifurcation point, and

for medium ratios of R cells, the system quickly rises above the bifurcation point. The anomalous

points in 7.11(a) are caused by this effect.

In the simulations, with lower fractions of R cells (0.1 and 0.2), the system starts below the

bifurcation point, hence the ODEs settle in the autoimmune steady state. This explains the higher

probability of autoimmunity in Figure 7.15. This is illustrated in Figure 7.17

Performing a similar analysis of the steady states in the case with κ+ = 12, reveals that for all

initial R cell ratios, only the tolerant steady state is observed. This occurs because the bifurcation

of the system is at a very low level, as shown in Figure 7.11(b). Therefore, very few initial R cell

ratios are near the bifurcation point.
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(a) R cell ratio 0.1. (b) R cell ratio 0.2.

Figure 7.17: Realisations of the Gillespie algorithm for low initial ratios of R cells. The green

cross indicates the unstable tolerant steady state.

7.6 Summary

In this chapter the cross-regulation model proposed by Léon et al. [49,133] has been investigated,

and a deterministic and stochastic version of the model formulated and studied. The chapter

investigates three model variants, which were also investigated by Léon et al.: competition only,

R cell suppression only, and R cell suppression and E cell promotion. The first two models do not

exhibit any interesting dynamics, with the competition model settling in a steady state dependent

on the initial ratio of cells. In the R suppression model, E cells are driven to extinction in all

cases, except when the initial number of E cells is much greater than that of R cells, in which

case the R cells go extinct. The third model, in which R cells regulate the number of E cells,

and E cells provided a division stimulus to the R cells, proves to be the most interesting from

an immunological and mathematical perspective. The model developed by Léon et al. is a purely

deterministic model, and does not consider stochastic effects. The deterministic models developed

in this chapter were formulated in a different way to Léon et al.’s models. They were formulated

by using the reactions of the system used for the Gillespie model. This allowed direct comparison

of the deterministic and stochastic models in this chapter.

In model three, the number of steady states obtained, that are real and positive, is dependent on

the value of κ+ only, and has no dependence on κ−. For κ+ ≤ 1, only the extinction steady

state exists. For 1 < κ+ / 2.15, where the upper boundary is approximate, as it can only be

determined numerically, the extinction steady state and one autoimmune steady state exist. For

2.15 / κ+ four steady states exist: the extinction state, the autoimmune state, and two tolerant
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steady states, one of which is stable, and the other unstable. These states agree with the findings

of Léon et al. [49,133], in which they also find the same four types of steady states. They find the

unstable tolerant state to have a large number of E cells, and a small number of R cells, agreeing

with the findings of this chapter. They find the stable tolerant steady state to have a small number

of E cells and a large number of R cells, which is what is found in this chapter, for larger values

of κ+. For the parameters chosen in this chapter, to achieve the tolerant steady state eighteen

APCs are required, and to achieve the autoimmune state nine APCs are required. Below nine

APCs, extinction occurs. It must be noted that the parameters used were chosen to be biologically

significant, but there are other parameter combinations that could be chosen, which will also be

biologically significant, giving different numbers of APCs required to achieve tolerance.

The parameter κ+ equals k+NA/µ, therefore if the interaction rate, k+, of the cells is too low,

autoimmunity or extinction will occur. This makes sense biologically, as if cell interactions occur

very infrequently, they will not receive a signal to proliferate, and will die out. If the number of

APCs, NA, is too low, autoimmunity or extinction will occur. The number of APCs being low

reduces the global encounter rate between T cells and APCs, resulting in less T cells proliferating,

and T cells being more likely to die out. Finally, if the death rate, µ, is too high, this will also

result in autoimmunity or extinction, as the T cells will die before they can encounter an APC to

receive a signal to proliferate. A combination of these three parameters, that gives a large enough

κ+, are required to prevent autoimmunity or extinction.

Our investigation of stochastic effects in the cross-regulation model has revealed that for large

values of κ+, stochastic effects are not significant. However, for smaller values of κ+, that are still

within the tolerant regime, stochastic effects play a significant role, and can cause the steady state

achieved to differ for different realisations. For κ+ = 3, the system was found to settle in either

the autoimmune or tolerant steady state. This occurs because there is a bifurcation at which the

system switches between the states. For large κ+ the bifurcation occurs at very low cell numbers,

as observed in Figure 7.11(b). But, for smaller values of κ+, the bifurcation occurs at larger cell

numbers, as observed in Figure 7.11(a). Stochastic fluctuations can cause the system to move

across the bifurcation point, which would not occur in a deterministic model. The probability of a

specific steady state occurring in the stochastic system, was found to depend on the initial ratio of E

and R cells. For roughly equal initial proportions of E and R cells, the probability of autoimmunity

is low. Decreasing the proportion of R cells, increases the probability of autoimmunity, to the point

where the tolerant steady state is rarely seen. For low initial R cell ratios, the ODEs also predict
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autoimmunity. For high initial R cell ratios, the ODEs predict tolerance. Yet the stochastic model

reveals there is still a significant probability of autoimmunity. Léon et al. [49, 133] also found for

low R cell ratios, autoimmunity occurs. For large R cell ratios, the ODEs give the tolerant steady

state, however, the stochastic model reveals a slight increase in the probability of autoimmunity,

occurring due to stochastic fluctuations. This is not observed by Léon et al., due to the purely

deterministic nature of their model.

In patients with conditions which reduce their T cell numbers, such as HIV, autoimmunity is

unlikely to occur if the ratio of E and R cells remains constant. However, if the number of APCs

is depleted, or the death rate of T cells becomes too large, autoimmunity or even extinction could

occur. If only a patient’s R cells are depleted, this is likely to result in autoimmunity. In IPEX

syndrome, which causes a mutation in the FOXP3 gene [237], resulting in R cells not functioning,

autoimmunity is observed, which is also found in the model in this chapter for the same situation,

with no, or few, R cells.

Upon first devising the models in this chapter, a probability of productive binding for E cells, and

R cell was used. If a cell has a weak/unproductive binding, it cannot suppress or promote other

cells, and if a cell has a strong/productive binding, it can. Having these parameters allowed an

advantage to be given to one of the cell types if desired. This resulted in two extra populations of

cells, as in the A11 population it must be remembered if a cell has been promoted or suppressed,

depending on the strength of its binding. After initial analysis of the system, it was noticed that

there was a way for cells to have multiple chances of having a strong/weak binding. Allowing a

cell to change its binding strength during a binding is undesirable. Comparing the system to an

agent based model revealed this problem was significant. To overcome the problem the binding

state and suppression/promotion state of each cell in a complex must be recorded, resulting in over

twenty populations. This added complexity did not result in a better model, and it was decided

to keep a simpler model, in which all bindings are productive. Alternative models in which the

binding rate of one cell type was multiplied by a factor were investigated. Doing this allowed an

advantage to be given to one of the cell types, but again this did not prove to add anything extra to

the model.

Model 3, devised in this chapter, has shown interesting results, with only two parameters. Effects

not observed by Léon et al. [49, 133] are also found, by investigating the effects of stochastic

fluctuations on the system. The increased probability of autoimmunity for small numbers of APCs,

observed in Figure 7.15(a), due to stochastic effects, was observed in Model 3 in this chapter and
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was not found by Léon et al.’s deterministic approach.
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Chapter 8

Mechanisms of T cell activation

8.1 Introduction

It is believed that T cells need to undergo sustained signalling to become activated [88]. However,

it is still unclear whether sustained signalling requires a prolonged interaction, or can be generated

by multiple shorter encounters with different antigen-presenting-cells (APCs) [46]. New insights

into cell-cell interactions have been gained using two-photon laser scanning microscopy, to view

these interactions in vivo [41, 43, 156]. Several studies have tracked the dynamics of T cell-APC

contacts upon antigen recognition [42,110,152,154,212]. It has been proposed that the interactions

of T cells and APCs can be split into three phases: transient interactions, long-lived interactions,

and swarming [42, 152, 154, 212]. A study has found that the minimum contact time between T

cell receptors and APCs for activation of naive T cells is in the range of 20 hours [112]. In another

study, the duration of TCR signalling required by naive cells was found to be lower in the presence

of mature APCs, being in the range of 6 hours [131].

During phase 1: transient interactions, T cells have productive, but brief (less than ten minutes in

duration) serial encounters with APCs displaying foreign peptide [42, 110, 152, 156, 201, 212]. T

cells do not stop completely, but instead crawl on the surface of the APC. These contacts are almost

indistinguishable from those made with non-cognate APCs, but evidence suggests they are not

‘null’ and result in some level of activation, with up-regulation of CD69 activation marker being

detected [152]. Transient contacts dominated early stages of T cell-APC interactions, occurring in

the first 8 hours after antigen presentation [110, 152, 154].

In phase 2: long lived interactions, T cells arrest on APCs, forming contacts lasting several hours.
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During these contacts, conjugates appear either completely static or more dynamic, presumably

owing to the rapid motion of APCs and/or low level of T cell crawling. This stage is thought to be

the key event in T cell activation, and has been observed in all experimental conditions associated

with priming. Long lived contacts are mostly observed between 6 and 24 hours after initial antigen

presentation. The signalling occurring during sustained interactions is thought to be of functional

importance [42].

The final stage: swarming, occurs approximately 25 to 30 hours after initial antigen presentation.

T cells undergo rapid motion and brief interactions [152]. In this stage, T cells display looping

patterns around APCs [154,156,219], and remain in a confined area of the lymph node. Swarming

is thought to occur as a result of APCs releasing the antigen they have been presenting to T cells.

It must be noted that the immunological evidence presented in this section has been gathered

from experiments carried out by different laboratories, using different experimental techniques.

Hence, various and sometimes contradicting results are observed, with switches from short to

long bindings at differing times and differing durations of binding times are reported.

Three types of mechanism have been proposed to explain the three phase interaction process:

APC changes, signal integration, and a probabilistic approach [40,42]. The next three subsections

review these mechanisms. This chapter investigates the three mechanisms proposed to explain

the three stage activation process. Various mathematical models are proposed and investigated for

each of the mechanisms.

The aim of this chapter is to develop a model that can adequately describe the experimental

observations outlined above. The hope is that one of the mechanisms investigated will be able

concisely explain the experimental observations significantly better than the other mechanisms.

This would allow a mechanism for T cell activation to be proposed. Knowing the mode of T cell

activation will allow immunological models involving activation of T cells to accurately mimic

reality. It would also allow more specific targeting of therapeutic treatments.

8.1.1 APC changes

The APC changes model assumes different phases of interactions are due to the state of maturation

of the APCs. These changes could be due to the amount of antigen presentation, or co-stimulatory

molecule presentation, on the surface of the APCs. It has been suggested that APCs need to mature

before they can form long lived interactions. Experiments by Hughes and colleagues [110] found T
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cells showed a phase of transient interactions with APCs for the first 15 hours after immunisation

with antibodies, followed by a phase of stable interactions. However, when APCs were given

extra time to mature in vivo T cells were able to rapidly establish long lived contacts with APCs,

suggesting APCs and not T cells control the timing of arrest [110]. The increased expression of

adhesion molecules and co-stimulatory molecules accompanying APC maturation is thought to

contribute to the gradual ability of APCs to induce T cell arrest.

8.1.2 Signal integration

The signal integration approach proposes that T cells integrate signals they receive during the

initial phase of brief interactions with APCs, and a certain cumulative threshold of signals must be

achieved before T cells can gain the ability to arrest on APCs [54, 74, 98, 147, 152, 210]. Studies

have found T cells re-encountering APCs in the lymph node were more likely to express the high

affinity IL-2 receptor and produce IFN-γ, which is a sign of T cell activation.

8.1.3 Probabilistic approach

The probabilistic approach suggests T cells have a defined probability of arresting on an APC,

following an encounter with an antigen, determined by the strength of stimulation and the affinity

of the TCR for the antigen. If the probability is low, T cells will engage in numerous unsuccessful

binding attempts before arresting on an APC. T cells that establish long lived contacts will reside

on the APC for hours. Therefore, long lived contacts are expected to progressively accumulate

until they become the dominant type of interaction.

8.1.4 T cell swarming

T cell swarming behaviour after a long binding event is not easily modelled. A potential method

of achieving swarming is to lower the diffusion coefficient of a T cell upon unbinding, causing

it to remain near an APC for longer, but this would not necessarily result in T cells swarming

around an APC, as a T cell may move in a straight line away from the APC. T cells could be

confined to an area around an APC, but this would be forcing the T cells to stay near the APC

and would not be very natural. Attraction towards an APC could be implemented by adding a

chemokine gradient, which T cells respond to after undergoing a long binding, causing them to

continually move back towards the APC. However, this would prevent them exiting the lymph
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node (LN). A better approach is to give a T cell a probability of moving towards an APC rather

than making a random movement, determined by the distance between the T cell and APC. In the

models proposed in this chapter swarming will not be considered and only the first two stages of

activation will be investigated.

8.2 Modelling approaches

In this section, methods for mathematically modelling the three activation mechanisms outlined in

the introduction, are proposed.

8.2.1 APC changes

The binding time of a T cell on an APC can be modelled to depend on APC changes in various

ways. The maturation of APCs could depend on the time an APC resides in a LN. Either the APC

must be residing in the LN for a specific amount of time before long lived interactions can occur,

or the length of the binding time is determined by the time an APC has been residing in the LN.

A model can be implemented in which APCs must achieve a certain number of short interactions

before they are able to engage in long lived interactions. Similarly, an APC may need to achieve

a certain cumulative binding time before a long lived interaction can occur, or a combination

of cumulative interaction time and number of bindings may be required. Below six models are

proposed using the ideas mentioned.

Model IA: APCs are required to reside for a specific amount of time in the LN before they mature

and long bindings occur. Before the threshold time T cells interacting with the specific APC will

have short bindings, lasting τs, and after the threshold has been reached a T cell will have long

bindings, lasting τl. Each APC will act independently, becoming mature after a set amount of time

residing in the LN regardless of the state of the other APCs.

Model IB: The time a T cell spends bound to an APC is set to be a function of the time the APC

has resided in the LN. The binding time will be set to follow a specific distribution, such as an

exponential distribution. A maximum binding time can be specified and all binding times given as

a fraction of this.

Model IC: The cumulative time an APC has spent bound to a T cell is recorded. When this time

is greater than a given threshold value, the binding switches from short lived interactions to long
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lived interactions.

Model ID: This model operates in the same way as Model IC, but instead of a threshold of

cumulative binding time, there is a threshold that must be reached on the number of bindings

an APC has undergone.

Model IE: This model is a combination of Models IC and ID. In this model both a threshold value

on the cumulative binding time and the number of bindings must be reached before a long binding

can occur.

Model IF: The time a T cell spends bound to an APC is a function of either the number of bindings

an APC has undergone, or the cumulative time an APC has spent bound to a T cell. An upper limit

on the binding time can be set, and all binding times given as a fraction of the upper limit.

In Models IA, IC, ID and IE, the dwell time can be either a fixed value for the short bindings, and

another value for the long bindings, or a value drawn from a distribution, such as an exponential

or log-normal distribution, with a given mean for each type of binding.

After consultation with experimentalists (Dr. P. Bousso, Paris), it has been advised that APC

maturation occurs due to time events rather than binding events. It has been suggested that Model

IA, followed by Model IC, are the most realistic and will therefore be investigated.

8.2.2 Signal integration

Signal integration assumes T cells sum the signals they receive from interactions with APCs.

Signal integration by T cells from encounters with APCs can be modelled in various ways. The

amount of time a T cell has been bound for can be summed, and a long binding occurs if the

summed time is greater than a given threshold. The number of contacts a T cell has undergone

can be summed, and again if this sum is greater than a set threshold a long binding will occur. A

combination of these methods can be implemented, or a binding time that depends on the time a

T cell has already spent bound, or the number of interactions that have already occurred, could be

used. Below four potential models are proposed.

Model IIA: T cells start by undergoing short bindings, with a given binding time, τs. The binding

time of a T cell is added to a cumulative total for that specific T cell. Once the cumulative binding

time exceeds a given threshold, the specific T cell will undergo long bindings on subsequent

encounters, with binding time τl.

Model IIB: This model operates the same as Model IIA, but instead of summing the binding times
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the number of bindings are summed. It may also be desirable to add the requirement of a binding

being greater than a set duration for it to be classified as productive and contribute to the number

of bindings undergone.

Model IIC: This model is a combination of Models IIA and IIB. In this model a T cell must have a

certain number of bindings and a certain cumulative binding time before a long binding can occur.

Model IID: In this model, instead of having a long and short binding time, the binding time of a

T cell is continuous, determined by either: the number of bindings it has already undergone, or

the cumulative binding time of the T cell. The binding time is given by a function of the chosen

parameter, with an upper limit on the length of a binding.

In Models IIA, IIB and IIC the length of the short and long bindings can either be a fixed value, or

more realistically, a value chosen form a distribution, such as an exponential or log-normal, with

a given mean for short and long bindings.

After consultation with experimentalists (Dr. P. Bousso, Paris), it has been agreed that this

approach should be based on a cumulative binding time rather than the number of bindings that

have occurred, with Models IIA and IID being chosen.

8.2.3 Probabilistic approach

The simplest approach of creating a probabilistic model is to give each cell a fixed probability

of forming a long binding upon encountering an APC, regardless of the properties of the APC.

By setting long bindings to last a few hours an accumulation of long bindings will occur as time

progresses. Further complexity can be added by giving each T cell and/or APC a ‘strength’,

which determines the probability of a long binding. The strength could be made to depend on the

number of short bindings a T cell has undergone. T cells could be given specificities and their

binding probability made dependent on the similarity of the T cell and APCs specificities. Adding

extra complexity to the model is only beneficial if a simple model cannot reproduce the desired

outcome. We will therefore begin with a simple model and add complexity if required.

8.3 APC changes approach

In this section, APC changes Models IA and IC are examined. These models were chosen as they

are thought to be the most realistic. The number of T cells undergoing short bindings with APCs
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will be referred to as ‘short bound cells’, and the number of T cells undergoing long bindings with

APCs will be referred to as ‘long bound cells’.

8.3.1 Model IA

In Model IA, APCs must spend a specific amount of time in the LN before they mature and can

participate in a long binding. Before this threshold time, short bindings will occur. This time

represents the time it takes for an APC to up-regulate co-stimulatory, and adhesion molecules on

its surface. Upon encountering an APC, binding times are chosen from an exponential distribution

with mean τs for short bindings and τl for long bindings. Upon unbinding from an APC a T cell

is replaced uniformly randomly within the valid domain.

Figure 8.1: Spatial simulation of Model IA with an APC maturation time of 500 minutes.

Parameters used: R = 400µm, b = 11.5µm, D = 50µm2min−1, τs = 5 minutes, τl = 240

minutes, APCs = 200, and T cells = 9857 after equilibration.

Figure 8.1 shows results of a spatial simulation of Model IA, in which the number of cells

undergoing a short binding, at a given time, is shown in blue and those undergoing a long binding

in red. In this simulation the time for an APC to mature is set to be 500 minutes, chosen to give a

switch from short to long bindings at a point after 8 hours, as found in the literature [110,152,154].

The simulation shows a switch, at 500 minutes, in the dominant type of bindings from short to

long. Before the switch point there are only short bindings. After the switch point the number

of short bindings decays exponentially to zero, and the number of long bindings increases until it
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reaches a steady state. In this model the point at which the system switches from the dominant

type of binding being short to long is only dependent on the maturation time of APCs.

8.3.2 Model IC

In Model IC, APCs must achieve a specific cumulative binding time with T cells before they

mature and can undergo long bindings. Before this threshold of cumulative binding times, an

APC will undergo short bindings. Each APC acts independently of the other APCs in the LN,

therefore APCs will mature at different times rather than simultaneously, as in Model IA. Upon

encountering an APC, binding times are chosen from an exponential distribution with mean τs for

short bindings and τl for long bindings.

Figure 8.2: Spatial simulation of Model IC with a cumulative binding time needed to undergo

long bindings of 500 minutes. Parameters used: R = 400µm, b = 11.5µm, D = 50µm2min−1,

τs = 5 minutes, τl = 240 minutes, APCs = 200, and T cells = 9857 after equilibration.

Figure 8.2 shows results of a spatial simulation of Model IC. In the simulation APCs must have

a cumulative binding time, with T cells, of 500 minutes before they can undergo a long binding.

Short binding times are exponentially distributed with a mean of 5 minutes, therefore a mean of

100 bindings will be required to achieve a cumulative binding time of 500 minutes. However,

as multiple T cells are able to bind to an APC simultaneously, a cumulative binding time of 500

minutes can be achieved in less than 500 minutes. The figure shows an initial increase in the

number of short bound cells with no long bound cells initially. The number of short bound cells
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then begins to decay, until they reach zero, and the number of long bound cells increases to a

steady state. The switch in the dominant type of binding is seen around 6 hours. In this model

APC mature by being in contact with T cells. Therefore, if more T cells are bound to an APC, it

will mature faster. This makes the model highly dependent on the number of T cells available to

provide maturation signal and the number of APCs competing for the signal from the T cells, as

well as the threshold of binding times required. An additive effect of multiple T cells binding to

an APC may not be the best approach to take. It may be better to have an APC receive maturation

signals at a set rate, regardless of the number of T cells bound to it.

8.4 Signal integration approach

In this section, signal integration Models IIA and IID are examined. These models were chosen

as they are thought to be the most realistic from an immunological perspective.

8.4.1 Model IIA

In Model IIA, each T cell acts independently, moving by Brownian motion, in an attempt to

locate an APC. Each T cell keeps a record of the cumulative time it has been bound for. Upon

encountering an APC, a T cell will undergo a short binding if the cumulative time is below a

given threshold, and a long binding if it is above the threshold. Binding times are chosen from an

exponential distribution with mean τs for short bindings and τl for long bindings. Once a T cell’s

cumulative binding time is above the switching threshold, all its bindings will be long, and there

is no way in this model for the bindings to revert to being short again.

Figure 8.3 shows the results of a spatial simulation of Model IIA. The figure shows for a cumulative

T cell binding time needed for long bindings to occur of 35 minutes, there is a switch in the

dominant type of binding from short to long at around 8 hours. The switch point in this model

depends on the interaction rate between T cells and APCs, the number of APCs, the length of short

bindings, and the cumulative binding time required for a long binding to occur. The cumulative

binding time is chosen to be 35 minutes to achieve a switch, from short to long bindings, at around

8 hours, as observed experimentally [110, 152, 154].
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Figure 8.3: Spatial simulation of Model IIA with a cumulative binding time required for long

bindings to occur of 35 minutes. Parameters used: R = 400µm, b = 11.5µm, D =

50µm2min−1, τs = 5 minutes, τl = 240 minutes, APCs = 200, and T cells = 8025 after

equilibration.

8.4.2 Model IID

In Model IID, cells do not have long and short binding as in Model IIA, instead they have a

binding time that is a function of the cumulative time a T cell has spent bound to an APC. Upon

encountering an APC, a T cell binds for a time given by the function

tb = tmax exp

(
− 1

ξ(tc + 1)

)
, (8.4.1)

where tmax is the maximum binding time that can be assigned, tc is the cumulative time a T

cell has spent bound, and ξ is a scaling parameter. All binding times are given as a fraction of

the maximum binding time to prevent binding times becoming too large. ξ is used to adjust the

binding times, with a smaller value giving a slower growth rate. The plus one in the denominator

is required for an initial binding to occur.

Figure 8.4 shows an initial increase in the number of short bound cells, followed by a decrease

in short bound cells and an increase in the number of long bound cells. In this model a binding

time of less than ten minutes is defined as a short binding, and a binding time of greater than ten

minutes as a long binding. Ten minutes was chosen for the threshold, as literature states short

bindings last less than ten minutes [42,110,152,156,201,212]. However, the literature also states
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Figure 8.4: Spatial simulation of Model IID with a maximum binding time of 360 minutes, and

ξ = 0.15min−1. Parameters used: R = 400µm, b = 11.5µm, D = 50µm2min−1, APCs = 200,

and T cells = 8062 after equilibration.

long bindings last hours [42]. It is therefore not clear how to classify bindings in the intermediate

range, and it may be that bindings of intermediate length should not be occurring. The value of ξ

used in this simulation was chosen to give a reasonable plot, but it is not clear how to choose ξ,

or the maximum binding time, or even the function itself. This model has lots of uncertainties and

it seems unlikely the binding time will be determined by a continuous process. It is more likely a

discrete process caused by up-regulation of receptors on the surface of the T cells.

8.5 Probabilistic approach

In this section, two probabilistic models are considered. In the first model (IIIA), upon encounter

with an APC, a T cell will undergo a long or short binding with set probabilities. In the second

model (IIIB), T cells have the same binding dynamics. However, upon unbinding they enter an

inactive state in which they are able to move freely but not bind with APCs until they leave the

inactive state and return to being free cells. This inactive state is introduced to make the model

more biologically realistic.
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8.5.1 Model IIIA

In this model, T cells encounter APCs and have a long binding with probability p, or a short

binding with probability 1 − p. The rate of T cells encountering APCs, k, is given by the inverse

of the fist passage time for a T cell to encounter an APC in a spherical LN, α (3.5.37), multiplied

by the number of APCs in the LN. α is approximately equal to R3/3Db, in which R is the radius

of the LN, D the diffusion coefficient of the T cells, and b the effective radius of the APCs. T

cells are not able to die in this model as only short timescales are considered. T cells have binding

times of τs for short bindings and τl for long bindings. The unbinding rate is given by the inverse

of the binding times.

This model has three populations: nf , mean number of free cells, ns, mean number of short

bound cells, and nl, mean number of long bound cells. There is no death in this model, so the

total number of T cells is fixed at M , allowing one of the populations to be constrained by setting

nf = M − ns − nl.

We have the ODEs:

dnf
dt

= −knf +
1

τs
ns +

1

τl
nl, (8.5.2a)

dns
dt

= k(1− p)nf −
1

τs
ns, (8.5.2b)

dnl
dt

= kpnf −
1

τl
nl. (8.5.2c)

Eliminating nf results in two ODEs:

dns
dt

= k(1− p)(M − nl)− ns
(

1

τs
+ k(1− p)

)
, (8.5.3a)

dnl
dt

= kp(M − ns)− nl
(

1

τl
+ kp

)
. (8.5.3b)

A steady state can be obtained by setting dns
dt = dnl

dt = 0 and is found to be

n∗s =
k(1− p)Mτs

1 + k(p(τl − τs) + τs)
, n∗l =

kpMτl
1 + k(p(τl − τs) + τs)

. (8.5.4)

Analysing the stability of the steady state reveals it is stable for τl > τs, which always holds. Thus,

the steady state is always stable. The eigenvalues are real given that τl > τs, implying the steady

state is a node. From (8.5.4), the ratio of the mean number of short and long bound cells is given

by
n∗l
n∗s

=
p

1− p
τl
τs
. (8.5.5)
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Solutions of the ODEs

The ODEs (8.5.3) can be written in matrix form as

d

dt

 nl

ns

 =

 −kp− 1
τ l −kp

−k(1− p) −k(1− p)− 1
τs


 nl

ns

+

 Mkp

Mk(1− p)

 . (8.5.6)

The system can be solved by first finding the solution of the homogeneous part, then solving the

inhomogeneous part. The homogeneous part of the system is solved by finding the eigenvalues

and eigenvectors of the 2× 2 matrix in (8.5.6), given by

λ1 = −
(
γ + β

2η

)
, λ2 = −

(
γ − β

2η

)
, (8.5.7)

and 
α+β
ω

1

 ,


α−β
ω

1

 , (8.5.8)

where

γ = τl + τs + kτlτs, (8.5.9a)

ζ = 1 + k(p(τl − τs) + τs), (8.5.9b)

η = τlτs, (8.5.9c)

β =
√
γ2 − 4ζη, (8.5.9d)

α = −k(1− 2p)η − τl + τs, (8.5.9e)

ω = 2k(1− p)η. (8.5.9f)

The general solutions of the homogeneous part of (8.5.6) is nhoml (t)

nhoms (t)

 = c1


α+β
ω

1

 eλ1t + c2


α−β
ω

1

 eλ2t. (8.5.10)

A solution must now be found for the inhomogeneous part of the system. We guess a solution of

the form  nl

ns

 =

 a1

a2

 . (8.5.11)
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The derivative with respect to time of (8.5.11) is the zero vector. We must therefore solve 0

0

 =

 −kp− 1
τ l −kp

−k(1− p) −k(1− p)− 1
τs


 a1

a2

+

 Mkp

Mk(1− p)

 . (8.5.12)

This gives  a1

a2

 =


kMpτl
ζ

kM(1−p)τs
ζ

 . (8.5.13)

We are able to write the general solution to the system as nl

ns

 = c1


α+β
ω

1

 eλ1t + c2


α−β
ω

1

 eλ2t +


kMpτl
ζ

kM(1−p)τs
ζ

 , (8.5.14)

where c1 and c2 are constants. The eigenvalues λ1 and λ2 are always negative for τs < τl. Thus,

the exponentials in (8.5.14) tend to zero as time tends to infinity, leaving the part of the solution

that is not dependent on time, which is the steady state given in (8.5.4). c1 and c2 can be found by

applying the initial conditions of the number of short and long bound cells at time zero to be zero,

nl(0) = 0, ns(0) = 0. (8.5.15)

We find

c1 = −kM
2βζ

((−α+β)τs+p(ωτl+(α−β)τs)), c2 =
kM

2βζ
(−(α+β)τs+p(ωτl+(α+β)τs)).

(8.5.16)

Analysis of Model IIIA

The number of bound and unbound cells as a function of time can be viewed by solving the ODEs,

Gillespie algorithm (see section 2.4), and a spatial code. Results of these simulations are shown in

Figure 8.5.

Figure 8.5 shows an initial increase in the number of short bound cells, caused by a higher

probability of short bindings occurring. The number of long bound cells quickly takes over,

as although this type of binding is less probable, cells that undergo a long binding remain

bound for a greater time, allowing long bindings to accumulate. By twenty hours the system
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(a) Spatial simulation. (b) Gillespie simulation.

Figure 8.5: Plots showing Model IIIA, simulated using (a) one spatial simulation and (b) the

Gillespie algorithm, in both cases with comparison to ODEs, shown by dashed lines. (b) shows

the average of one hundred Gillespie simulations. The steady state of the system (8.5.4) is shown

by dotted lines. Parameters used: R = 400µm, b = 11.5µm, D = 50µm2min−1, τs = 5

minutes, τl = 240 minutes, p = 0.2, APCs = 200, and T cells = 8060 after equilibration.

approaches a steady state, with the number of long bindings being much greater than the

number of short bindings. The results of these simulations show that, at very early times short

bindings dominate. However, long bindings dominate at earlier times than observed in biological

experiments [110, 152, 154]. The parameters were chosen to be similar to those used in previous

chapters, which are thought to be biologically relevant. The short and long binding times were

thought to be reasonable according to literature [42,110,152,156,201,212]. With these parameters,

for short bindings to dominate at times earlier than 8 hours [110,152,154], a probability of a long

binding occurring must be set around 0.022. With this probability, long bindings dominate at later

times but are only slightly more numerous than short bindings. If long bindings are taken to have

a length of 20 hours, as found by [112], a probability of a long binding occurring of 0.011 is

required to achieve a switch from short to long bindings at a time shortly after 8 hours, shown in

Figure 8.6.

In the spatial simulation shown in Figure 8.5(a), binding times are drawn from an exponential

distribution, with mean set as τs or τl, depending on the type of binding occurring. To initialise

the simulation, T cells are placed in uniform random positions within the domain, excluding the

volume occupied by the APCs. This results in a distribution of T cells that is not uniformly

randomly distributed across the whole domain as the volume of the APCs is excluded. The

parameter k assumes a uniform random distribution across the whole domain. To allow cells to
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Figure 8.6: Figure showing a case in which there is a shift from short to long binding dominance

just after 8 hours. Parameters used: R = 400µm, b = 11.5µm, D = 50µm2min−1, τs = 5

minutes, τl = 1200 minutes, p = 0.011, APCs = 200, and T cells = 10000.

become approximately uniformly randomly distributed the T cells are placed within the domain,

excluding the volume occupied by APCs, then an equilibration time is given in which cells move

following a random walk, allowing cells to become randomly distributed through the domain. Any

T cells encountering an APC during the equilibration time are removed from the simulation. Upon

a T cell unbinding from an APC, in the spatial model, it is replaced in a valid ‘random’ position

within the domain. This is done to achieve a more accurate comparison to the first passage time

equation.

Figure 8.7 shows the trajectory the system follows to reach the steady state. The green and yellow

lines represent the nullclines, where the rate of change of short and long bound cells is zero,

implying one population is in equilibrium for the corresponding value of the other population.

The figure shows the number of short bound cells increases to the nullcline, where the rate of

change of short bound cells is zero. The system then approaches the steady state.

8.5.2 Model IIIB

In Figure 8.5(a) the spatial model allows an equilibration time to compensate for a not truly

uniform random distribution of T cells at the beginning of the simulation. To prevent T

cells immediately rebinding after an encounter with an APC, in Model IIIA they are replaced
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Figure 8.7: Plot showing the trajectory of Model IIIA (blue), for long and short bound cells.

Yellow and green lines indicate the nullclines, when the rate of change of long and short bound

cells is zero. The intersection of the nullclines is the steady state of the system. Parameters used

are the same as in Figure 8.5.

‘randomly’ in a valid position within the domain. This behaviour is unrealistic biologically as a

T cell cannot move from one position to another instantaneously. Also, the position the T cell is

placed in will not be truly uniform random across the domain as it excludes the volume occupied

by the APCs. To alleviate both of these problems, in Model IIIB, cells become inactive after

unbinding from an APC for an amount of time drawn from an exponential distribution. During

this inactive time a T cell will continue to move, but will not be able to bind to APCs. This

allows the T cells to return to a roughly uniform random position within the LN, before they can

rebind to an APC. An ODE model can be setup to simulate an inactivation time by adding an extra

population to the previous ODE system (8.5.3) to include the inactive cells.

In this model there are four populations: nf , mean number of free cells, ns, mean number of

short bound cells, nl, mean number of long bound cells, and ni, mean number of inactivated cells.

The total number of T cells is given by M , allowing one of the populations to be eliminated:

nf = M −ns−nl−ni. Upon unbinding a T cell enters an inactive state for a time τi, after which
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it returns to the population of free T cells. We have the following ODEs:

dnf
dt

= −knf +
1

τi
ni, (8.5.17a)

dns
dt

= k(1− p)nf −
1

τs
ns, (8.5.17b)

dnl
dt

= kpnf −
1

τl
nl, (8.5.17c)

dni
dt

=
1

τs
ns +

1

τl
nl −

1

τi
ni. (8.5.17d)

Eliminating nf gives the three ODEs:

dns
dt

= k(1− p)(M − nl − ni)− ns
(

1

τs
+ k(1− p)

)
, (8.5.18a)

dnf
dt

= kp(m− ns − ni)− nl
(

1

τl
+ kp

)
, (8.5.18b)

dni
dt

=
1

τs
ns +

1

τl
nl −

1

τi
ni, (8.5.18c)

in which the parameters are the same as in (8.5.3), with the addition of an inactivation time given

by τi. The steady state for this system is found to be:

ns =
kM(1− p)τs

1 + k(τi + pτl + (1− p)τs)
,

nl =
kMτl

1 + k(τi + pτl + (1− p)τs)
,

ni =
kMτi

1 + k(τi + pτl + (1− p)τs)
. (8.5.19)

Analysis of the eigenvalues reveals the steady state to be a stable node.

A plot of the solution of the ODEs can be seen in Figure 8.8, with comparison to a spatial

simulation and the mean of one hundred Gillespie simulations of the system.

Figure 8.8 has the same dynamics as Figure 8.5 for the short and long bound cells. The added

population of inactive cells does not result in the spatial model being a better fit to the ODEs.

However, the behaviour of the two models is qualitatively the same, and Model IIIB is a more

realistic version of the biological system. Further investigation is required to determine the cause

of the difference between the spatial model and ODEs in Figure 8.8(a).

8.6 Summary

In this chapter, three activation mechanisms are investigated: APC changes, signal integration,

and probabilistic approach, motivated by hypotheses in literature [40, 42]. For APC changes, two
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(a) Spatial simulation. (b) Gillespie simulation.

Figure 8.8: Plots showing Model IIIB, simulated using (a) a spatial simulation and (b) the Gillespie

algorithm, in both cases with comparison to ODEs, shown by dashed lines. (b) shows the average

of one hundred Gillespie simulations. The steady state of the ODE system (8.5.19) is shown by

dotted lines. Parameters used: R = 400µm, b = 11.5µm, D = 50µm2min−1, τs = 5 minutes,

τl = 240 minutes, τi = 60 minutes, p = 0.2, APCs = 200, and T cells = 8260 after equilibration.

models are developed. The first model (Model IA) assumes APCs must spend a specific amount of

time in the LN before they mature and are able to undergo long bindings with T cells. This results

in a switch from short to long bindings at a set timepoint, and depends on no other parameters in

the model. The second model (Model IC) assumes APCs mature due to contacts with T cells and

must have a specific cumulative binding time with T cells before they can undergo long bindings.

This model has a more gradual shift from short to long bindings than Model IA, and is dependent

on the cumulative binding time required, as well as the number of T cells and APCs in the system.

This allows manipulation of the system by adding more T cells or APCs, which could in principle

be tested experimentally. This model can be developed further by considering how APCs receive

maturation signal from the T cells. For example, APCs may not be able to receive signals from

multiple T cells simultaneously, as assumed in Model IC.

Two models are considered for the signal integration approach. The first model (Model IIA)

assumes T cells record the cumulative time they have spent bound to an APC and when this value

exceeds a given threshold, the specific T cell that has exceeded the threshold can undergo long

bindings. This model depends upon the rate of encounter between T cells and APCs, the number

of APCs, and the cumulative time required for long bindings to occur. In principle, this system can

be investigated experimentally by manipulating the number of APCs. The second model (Model

IID) assumes a T cell’s binding time is a function of the time a T cell has already spent bound to
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APCs. A function was created to give binding times as a proportion of a maximum binding time.

This model proved difficult to calibrate and did not produce the results desired. This model could

be expanded by considering different functions for the binding times.

A probabilistic approach was considered by developing two models. The first model (Model IIIA)

assumes that upon encountering an APC T cells undergo a long binding with probability p or a

short binding with probability 1 − p. In this model, to achieve a switch in the dominant type of

binding from short to long, at a time around 8 hours as stated in the literature [110, 152, 154],

with a long binding time of 20 hours [112], a probability of a long binding occurring must be

set as 0.011. A long binding time of 20 hours seems quite long considering long bindings are

observed to occur between 6 and 24 hours after initial antigen presentation [110, 201]. If 20 hour

bindings start occurring 6 hours after initial antigen presentation, they will still be occurring 24

hours after the start of antigen presentation. Using a lower long binding time can still achieve a

long binding dominance around 8 hours, but the difference between the number of short and long

bindings is small. A second probabilistic model (Model IIIB) was developed with the aim of being

more biologically realistic. Model IIIA places T cells, after unbinding, approximately uniformly

randomly within the domain, which is unrealistic. To alleviate this problem, an inactivation state

was added in Model IIIB, which T cells transfer to after unbinding. T cells in the inactive state

can move freely but cannot bind, allowing them to return to a roughly uniform random position

before being able to bind again. This did not qualitatively change the model from Model IIIA,

it did however make the model more realistic. The probabilistic models considered do not seem

to be able to satisfactorily explain the experimental observations presented in the introduction,

and a more complex model may be required. A model in which T cells return to undergoing

shorter bindings should also be investigated, and may be what is required to better explain the

experimental results.

This chapter outlines basic models of investigating the programme of activation of T cells. Due to

time constraints further investigation could not be undertaken during my PhD. It is my hope that

future work, by both mathematicians and experimentalists, will allow the programme of activation

of T cells to be determined.
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Chapter 9

Concluding remarks

This chapter provides a summary of the work in Chapters 3-8, and considers if the initial objectives

of the thesis, outlined in Section 1.9, have been fulfilled.

This thesis is concerned with the dynamics and interactions of lymphocytes within lymph nodes

(LNs). It focuses on determining how T cells move, and the diffusion coefficient they move with.

The diffusion coefficient is a key parameter in mean first passage time (MFPT) equations, used to

determine the time a T cell moving following a random walk take to encounter uniformly randomly

placed antigen-presenting-cells (APCs). The interaction rate of T cells and APCs determines the

time an immune response requires to be initiated. The number of APCs presenting antigen to

T cells is a limiting factor to the initiation of an immune response. This thesis also investigates

the minimum number of APCs required to initiate a T cell response. The result of interactions

between lymphocytes is considered in the cross-regulation model, in Chapter 7, which investigates

three-body interactions between APCs, effector T cells, and regulatory T cells, as a mechanism of

effector T cell suppression of autoimmunity. The rate of interaction of T cells and APCs is critical

to initiating an immune response, but the way in which T cells are activated, upon encountering

APCs, is still unknown. Finally, Chapter 8 investigates various hypotheses of T cell activation.

Chapter 3 of this thesis considers first passage processes. Firstly, a MFTP is derived for a particle

in a prescribed initial position to locate a fixed target in the centre of a spherical domain, using

Poisson’s equation. This is generalised to a uniformly randomly placed target to obtain a starting

global mean first passage time (SGMFPT). To derive a target global mean first passage time

(TGMFPT), for a particle and target located in uniform random initial positions, which excludes

the volume occupied by the target, using Poisson’s equation, an approximation for the surface of
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the target, and a coordinate transformation to bispherical coordinates are considered. The first

approach proves to be of limited use, and the second approach proved to be very complex to

solve. Making use of recent mathematical advances in the area of first passage processes [58], a

method to derive a SGMFPT, involving Green’s and pseudo Green’s functions was implemented.

This resulted in a solution that could be integrated to obtain a TGMFPT. The method was then

extended to include multiple uniformly randomly placed targets, to give an equation for the mean

time a particle takes to encounter one of N uniformly randomly placed targets.

Imaging experiments carried out in vivo are limited to a finite volume. A limited sized volume

results in cells that remain in the volume for a long period of time, being those that are either

not moving very fast, or are taking looping paths, making them appear confined. Confinement

is observed in displacement squared against time plots as a plateau at later times. Chapter 4

calculates the expectation of the squared displacement of cells, within a cubic domain, to predict

the displacement squared as a function of time, for a given set of parameters. It is found that,

in imaging volumes smaller in the z axis than the x and y axes, as used in in vivo imaging

experiments, a plateau is not observed due to particles exiting via the z boundary. It can be

concluded that, in imaging experiments where a confinement plateau is observed, for typical sized

imaging volumes, it is not due to a limited sized imaging volume but rather some other form of

confinement. This other form of confinement would most likely be immunological confinement,

due to chemical signals or other biological factors confining the cells to a particular region.

Chapter 5 analyses data obtained by in vivo imaging experiments. Mathematical techniques

are applied to determine the type of motion the imaged cells are undergoing, and calculate the

diffusion coefficient of the cells. A systematic method is developed to analyse a given data set

and determine a diffusion coefficient of the population of cells imaged. It is found that, due to

the small size of the z axis used, viable data is not observed at later imaging times. We conclude

that more useful information could be obtained by using a larger z dimension, or an increased z

or time resolution.

Chapter 6 investigates the minimum number of dendritic cells (DCs) required to initiate a T cell

response. A simple model is devised to calculate the probability of T cell activation in a given time,

and experimental results are used to calibrate the model. Mathematical modelling allows longer

times and lower T cell numbers to be investigated than can be done experimentally. An extension

to the model is developed to include the number of T cell searching for DCs in an attempt to

become activated. This model is used to calculate a minimum number of DCs required to initiate
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a T cell response, in twenty four hours, for typical human T cell precursor frequencies.

Chapter 7 develops a stochastic version of the cross-regulation model, first developed

deterministically in [133]. The cross-regulation model postulates that regulatory T cells

suppress effector T cells via a three way interaction with APCs, as a mechanism of preventing

autoimmunity. A stochastic model is developed showing stochastic effects are present, and

significant, for initial ratios of regulatory/effector T cell with a high fraction of regulatory T

cells. It is found that, when the initial regulatory T cell ratio is low, there is a high probability

of autoimmunity. This probability decreases as the initial ratio of regulatory T cells increases.

When the initial ratio of regulatory T cells is very large the probability of autoimmunity is found

to slightly increase due to saturation by regulatory T cells. This effect is not observed in a

deterministic approach. The binding rate of T cells is found to be the key parameter in determining

the steady state of the system, with the other parameters only affecting the timescale.

Chapter 8 investigates three mechanisms proposed to explain the three stage activation process of

T cells [40,42]. These mechanisms are: APC changes, T cell signal integration, and a probabilistic

approach. For each of the mechanisms two models are considered. We have been able to show that

all models can explain the first two stages of the activation process. However, the third stage of the

process is not covered in the scope of these models. The simple probabilistic model devised is able

to explain experimental results observed, but not as convincingly as could have been hoped for.

It is concluded that a more complex probabilistic model is required to explain the experimental

results, and the third stage of activation must also be investigated.

In Section 1.9, the initial objectives of this thesis were introduced. The success of this thesis

at completing these initial objective will now be analysed. The first objective was to derive an

equation for the time a uniformly randomly located particle, within the domain that excludes

the volume occupied by the target, moving by Brownian motion, takes to encounter a uniformly

randomly placed spherical target, within a spherical domain. Chapter 3 addresses this problem and

derives the desired equation, which had not been previously found. An equation is also derived for

the time it takes a particle to encounter one of N uniformly randomly placed targets, which again

has not been previously developed. Therefore, the first objective is met and exceeded, having

derived an equation beyond what was initially intended.

The second objective was to determine the effects of confinement in a limited sized imaging region.

Chapter 4 determines an equation for the expected squared displacement of cells as a function of

time, and the expected confinement plateau. This allows results of a given experimental setup to
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be predicted and quantified by determining the mean squared displacement plot and plateau that

should be observed and comparing to the mean squared displacement plot that is observed. From

the work in Chapter 4 and 5, ways of optimising the size and resolution of an imaging volume can

be proposed. It can be concluded that objective two has been achieved through this work.

Objective three was to develop a method of calculating the diffusion coefficient of data sets

obtained through in vivo imaging experiments. This was investigated in Chapter 6, and a method

was developed. The method developed is able to calculate the diffusion coefficient of a population

of cells in a given data set. I believe there is still scope for further development of the method

in the hope of being able to extract more information from the limited sized data sets. Objective

three has therefore been partially met, but there is still room for improvement.

The fourth object was to determine the minimum number of DCs required to initiate a T cell

response. Through collaboration with experimentalist (Dr. P. Bousso, Paris), and the development

of mathematical models, this objective was fulfilled and resulted in a publication in the Blood

journal [53]. This work is contained in Chapter 6.

Objective five was to investigate the effects of stochastic fluctuations on the cross-regulation

model. In Chapter 7, a stochastic formulation of the cross-regulation model is developed.

Stochastic effects were observed that were not seen in the deterministic model. For example, very

high initial ratios of regulatory T cells were found to increase the probability of autoimmunity.

This fulfils objective five and shows stochastic effects cannot be dismissed in biological models

when modelling small numbers of cells.

Finally, the sixth objective of determining the method of T cell activation was addressed in Chapter

7. Various models of T cell activation were investigated. These models were able to explain the

first two stages of the T cell activation process: transient interactions and long lived interactions.

However, the third stage of the activation process, swarming, was not investigated. As all the

investigated models were able to explain the experimental results, to some extent, for the first

two stages of the activation process, the activation method that is occurring biologically cannot be

determined. To be able to distinguish one of the activation methods as being able to better explain

the experimental data, the third stage of the activation process must be considered. Thus, the sixth

object was not met. Further work is required in this area to add the third stage of the activation

process to the models.

This thesis covers several interlinked projects, which have been investigated to varying degrees.
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All areas in this thesis have the potential to be expanded upon, and a few extensions will be

outlined here. In Chapter 3, an equation for the time a particle takes to locate one of N targets is

derived. However, the equation assumes the targets can overlap, which is unrealistic. For a small

number of targets, in a large domain, the error resulting from this assumption will be very small.

But, as the number of targets is increased, the error will also increase. This work can be extended

by developing an equation for non-overlapping targets. A further extension would be to add an

exit to the domain and determine the time to locate the exit and the probability of encountering

a target before exiting the domain. The work in Chapter 5 develops a method of calculating the

diffusion coefficient of cells from in vivo imaging experiments. This work can be developed by

extracting more information from the data available. Instead of just using measurements from a

point along a cell track to the start of the track, new sample tracks can be created by segmenting

existing tracks into smaller tracks. Segmentation of tracks is achieved by taking a time point and

creating a sample track from that timepoint to timepoint 2, 3, 4, etc. Then the next time point along

the track can be taken as the starting point and more sample tracks created. However, this results

in the contribution of a track to the mean squared displacement being dependent on the length of

the track. Therefore if there is an anomalous track it would be exaggerated. A method would

need to be developed to prevent this scenario occurring. Chapter 8 introduces basic methods

of investigating the hypotheses of T cell activation, but due to time constraints these methods

could not be investigated to their full potential. This work could be extended by adding further

complexity to the models developed in Chapter 8 and investigating the models proposed but not

developed, as they may result in interesting features not previously considered. To fully answer

the question of how T cells are activated, the third stage of activation must also be modelled. Also,

in the models considered in chapter 8, APCs are assumed to have an infinite number of binding

sites. This work could be extended by investigating the effect of limiting the number of binding

sites.

The work in Chapters 5, 6 and 8 was carried out using data from or in collaboration with

immunologists. Further development of work in this thesis, and the area of mathematical

immunology, is only possible by working closely with immunologists. Mathematical models can

be motivated and developed by work carried out by immunologists. In turn, the modelling efforts

of mathematicians can be used to feedback to immunologists aspects of systems that are found to

be interesting from a mathematical point of view, which could then be investigated experimentally.

Work carried out by mathematicians can also be used to suggest ways of improving current

experimental procedures, as was achieved by the work of Chapters 4 and 5.
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Appendices

A Spatial modelling

To implement a spatial model of cell movements and interactions within a LN, the programming

language python has been used. Sections A.1 to A.6 show the algorithms used to generate various

aspects of the spatial model.

A.1 Random placement of cells

To generate uniform random coordinates for a cell within a sphere of radius R, we must do the

following. A uniform random position in a cube is generated of radius R. The position is then

checked to determine if it is contained within a sphere of equal radius to the cube, if it is, the

position is accepted, if not a new position is generated. This process continues until a valid position

is chosen.

import numpy as np

def randomstart(R):

rsnow = 2*R*R

while rsnow > R*R:

x = np.random.uniform(-R, R)

y = np.random.uniform(-R, R)

z = np.random.uniform(-R, R)

rsnow = x*x + y*y + z*z

return x, y, z
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A.2 Non-overlapping APCs

To create N non-overlapping APCs, we can make use of the python package ‘numpy’. This

enables linear algebra operations to be implemented. In this example, numpy allows the distance

to every APC to be calculated simultaneously. Using numpy instead of a loop to calculate the

distance to each APC allows a quicker implementation of the algorithm. To a generate non-

overlapping position we first select a uniform random position for the APC within the domain.

If this is the first APC to be placed the position need not be checked, otherwise we must check

the distance from the other APCs that have already been placed. If the minimum of the array of

distances to the nearest APCs is greater than double the effective radius of the APC, 2b, the position

is accepted, if not a new position is generated. This process continues until valid positions have

been chosen for all the APCs needing to be placed. This generates a distribution of APC positions

which is not truly uniformly randomly distributed, as each additional APC is placed following a

uniform random distribution with the domain that is not already occupied by APCs, rather than

the whole domain.

import numpy as np

Ax = np.array([])

Ay = np.array([])

Az = np.array([])

for i in range(N):

nearestdist = 0.0

while nearestdist < 2*b:

x, y, z = randomstart(R-b)

nearestdist = R

if len(Ax) !=0:

distance = np.sqrt( (x-Ax)*(x-Ax) + (y-Ay)*(y-Ay)

+ (z-Az)*(z-Az) )

nearestdist = min( nearestdist, distance.min() )

else:

nearestdist = 2*b

Ax = np.append(Ax, x)
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Ay = np.append(Ay, y)

Az = np.append(Az, z)

A.3 Unbinding

To unbind cells, we must first determine if the time passed since the last unbinding or binding

event is greater than the minimum binding time of all the cells bound. If this condition is met, we

firstly deal with the cells that are going to unbind. To determine which cells these are we create

a mask to exclude the cells that are not bound and another mask to determine which cells have a

binding time less than tpassed. Multiplying these two masks gives the cells that need unbinding.

We now reset those cells binding times to zero, and replace them in ‘random’, valid positions. To

subtract tpassed from the remaining bound cells we need to create a mask of the cells that have a

binding time greater than tpassed, and subtract this mask multiplied by tpassed from the array of

binding times. We now determine the time until the next unbinding event occurs by finding the

minimum of the binding times. This algorithm must also be implemented if a new cell binds.

import numpy as np

if tpassed > unbind:

mask1 = bindingtime > 0

mask2 = bindingtime < tpassed

bindingtime = bindingtime - bindingtime*mask1*mask2

replace = mask1*mask2

for i in range(N):

if replace[i] == 1:

Tx[i], Ty[i], Tz[i] = randomstart(R-a)

Tclosest[i], Tdist[i] = closest(Tx[i], Ty[i],

Tz[i], Ax, Ay, Az, R)

mask3 = bindingtime > tpassed

bindingtime = bindingtime - tpassed*mask3

nz = bindingtime*(bindingtime > 0)
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unbind = nz.min()

tpassed = 0.0

A.4 Cell movement

Moving cells can be done individually for each cell or using the python module numpy, by vector

operations. To do this we generate an array of random movements, from a Gaussian distribution,

in each of the x, y and z dimensions, and add these to the cells positions. We now move any cells

that have crossed the boundary of the sphere back into the sphere. This is done by calculating the

distance of all the cells from the centre, and creating a mask of those cells that have a distance

greater than the radius of the sphere. The adjustment factor needed to reflect these cells back into

the sphere is calculated, and an array created to multiply the cell positions by, making use of our

mask.

import numpy as np

def move(x, y, z, D, dt, R):

size = len(x)

x += np.random.normal(0, np.sqrt(2*D*dt), size)

y += np.random.normal(0, np.sqrt(2*D*dt), size)

z += np.random.normal(0, np.sqrt(2*D*dt), size)

rsnow = x*x + y*y + z*z

mask = rsnow > R*R

mod = ((2*R)/sqrt(rsnow))-1

mult = np.ones(size)

mult[mask] = mod[mask]

x = mult*x

y = mult*y

z = mult*z

return x, y, z
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A.5 Closest APC

To find which APC is closest to a given T cell, the distance from the T cell to each APC is

calculated and the minimum of this array of distances is found. The index of the closest T cell

is determined using the where command. The index and the minimum distance to an APC is

returned from this algorithm. The minimum distance can then be used to determine if a T cell has

encountered an APC or not.

import numpy as np

def closest(x, y, z, Ax, Ay, Az, R):

distance = np.sqrt((x-Ax)*(x-Ax) + (y-Ay)*(y-Ay)

+ (z-Az)*(z-Az))

dist = distance.min()

jj = np.where(distance == dist)

return jj[0][0], dist

A.6 Encounter during a timestep

To calculate the probability of a T cell encountering an APC during a timestep, the position of

each T cell to its nearest APC must be calculated before and after the timestep. We firstly form an

array of the distance before the timestep by copying the array of distances from the previous loop

of the program. Arrays for the x, y, and z coordinates of the nearest APC to each T cell are created

by indexing the arrays of APC positions by the array of the indexes of the closest APC to each T

cell. Using these arrays of the coordinates of the closest APCs, the distance for each T cell to its

closest APC can be calculated after the timestep. Using the distances before and after the timestep

the probability of encountering an APC during a timestep, for each T cell, is calculated, using the

equation given in Section 2.3.1. These probabilities are tested to determine if they are greater than

a uniform random variable, between zero and one, a positive result is given for encountering an

APC.

import numpy as np

prevdist = np.copy(Tdist)
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CloseAPCx = Ax[Tclosest]

CloseAPCy = Ay[Tclosest]

CloseAPCz = Az[Tclosest]

Tdist = np.sqrt((Tx - CloseAPCx)*(Tx - CloseAPCx) +

(Ty - CloseAPCy)*(Ty - CloseAPCy) + (Tz - CloseAPCz)*(Tz-CloseAPCz))

probhit = np.exp(-((prevdist-bb)*(Tdist-bb))/(D*dt))

Random = np.random.random(N)

foundAPC = Random < probhit

B Code for encountering one of N targets

In this appendix, the code used to calculate the time for a particle to encounter one of N targets

is shown. This code was used to produce Figure 3.15. The code is able to calculate a time to

encounter one of one, two, three, up to N targets, simultaneously. In this code N is set to be

ten. This is achieved by placing the targets and one particle ‘randomly’, as described in A.1. The

particle is not placed within a target, and the targets are able to overlap, as is assumed in (3.7.103).

Each of the targets is assigned a number from one to N . The particle moves using exponential

timestepping, and the distance to each target is calculated every timestep. An algorithm is used

to determine if the particle has encountered a target. If an encounter has occurred, the number

of the target is checked, and a encounter time recorded for that number of targets, and all the

targets with a greater number. For example, with ten targets, if target seven is encountered the

time the encounter occurs at is recorded as the encounter time for seven, eight, nine and ten

targets. These targets are then removed and the simulation continues with the remaining targets,

in the example given this would be targets one to six. This procedure continues until a encounter

time has been found for all targets. If target one is the first target to be encountered, the same

encounter time would be given for all the targets and the simulation would end. By using this

procedure of numbering the targets, it allows encounter times to be found for one of N targets

simultaneously, rather than running individual simulations for each number of targets. This greatly

reduces the computational time required to execute the program. The program also becomes

quicker to execute a timestep as targets are encountered and removed, as there are less targets for

the particle to check if it has encountered. To achieve an accurate TGMFPT numerous realisations

of the program are required. Making the program used as efficient as I could, allowed more

realisations to be computed in a given time. Even with making the program efficient, Figure 3.15



Appendices 187

required vast amounts of computing power. I was fortunate to have access to the Leeds University

high performance computing system, Arc1. Utilising this system, over a years worth of computing

time was required to produce Figure 3.15.

import numpy as np

import math as m

R = 1.0 # Radius of sphere

D = 0.5 # Diffusion coefficient for particle

NR = 10000 # Number of realisations

b = 0.02 # Radius of targets

dt = 0.0001 # Timestep size

N = 10 # Number of targets

filename = ’MultRandom_sim’+str(sim)+’_N’+str(N)+’b’+str(b)

+’_dt’+str(dt)+’.dat’

## Random starting position algorithm ##

def randomstart(R):

rsnow = 2*R*R

while rsnow > R*R:

x = np.random.uniform(-R, R)

y = np.random.uniform(-R, R)

z = np.random.uniform(-R, R)

rsnow = x*x + y*y + z*z

return x, y, z

## Exponential timestepping algorithm ##

def ExpStep(nu):

urv = np.random.random()

sgs = m.sqrt(-2*m.log(1-urv))

g1 = np.random.normal(0, 1)

g2 = np.random.normal(0, 1)
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g3 = np.random.normal(0, 1)

mod = sgs*m.sqrt(g1*g1+g2*g2+g3*g3)/nu

urv = np.random.random()

dz = (2*urv-1)

angle = 2*m.pi*np.random.random()

dx = m.sqrt(1-dz*dz)*m.cos(angle)

dy = m.sqrt(1-dz*dz)*m.sin(angle)

return mod*dx, mod*dy, mod*dz

## Algorithm to calculate distance to nearest target ##

def distance(tx, ty, tz, ax, ay, az):

distance = m.sqrt((tx-ax)**2+(ty-ay)**2+(tz-az)**2)

return distance

nu = 1.0/m.sqrt(dt*D)

N_arg = np.arange(N)

j = 0

while j < NR:

j += 1

## Arrays to store data in ##

APCHit = np.zeros(N)

Tdb = np.ones(N)*R

Tda = np.ones(N)*R

dist = 0

## Set initial conditions inside sphere for the target ##

wx = np.array([])

wy = np.array([])

wz = np.array([])

for i in range(N):

x, y, z = randomstart(R-b)
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wx = np.append(wx, x)

wy = np.append(wy, y)

wz = np.append(wz, z)

## Random initial condition inside sphere for the particle ##

while dist < b:

Tx, Ty, Tz = randomstart(R)

Dist = np.sqrt((Tx-wx)*(Tx-wx) + (Ty-wy)*(Ty-wy)

+ (Tz-wz)*(Tz-wz))

dist = Dist.min()

nstep=-1

## Dynamics of system ##

while len(wx) > 0:

nstep += 1

## Distances before movement ##

Tdb = np.sqrt((Tx-wx)*(Tx-wx) + (Ty-wy)*(Ty-wy)

+ (Tz-wz)*(Tz-wz))

Rdb = m.sqrt(Tx*Tx + Ty*Ty + Tz*Tz)

## Move particle ##

dx,dy,dz = ExpStep(nu)

Tx += dx

Ty += dy

Tz += dz

## Distances after movement ##

Tda = np.sqrt((Tx-wx)*(Tx-wx) + (Ty-wy)*(Ty-wy)

+ (Tz-wz)*(Tz-wz))

Rda = m.sqrt(Tx*Tx + Ty*Ty + Tz*Tz)

## Check if encounter has occurred ##
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r = np.minimum(Tdb, Tda)

prob = np.exp(-nu*(r-b))*m.sinh(nu*b)/np.sinh(nu*r)

hit = np.random.random(len(wx)) < prob

## Records encounter times ##

for i in range(len(wx)):

if hit[i] == 1:

ZeroEntry = (APCHit == 0)

gti = (n_arg) >= i

to_add = gti*ZeroEntry*nstep*dt

APCHit += to_add

wx = wx[:i]

wy = wy[:i]

wz = wz[:i]

break

## Check if particle has hit the outer boundary ##

dw = Rda-Rdb

urv = np.random.random()

maxx = dw/2.0 + m.sqrt(dw*dw - 2*dt*m.log(urv))/2.0

if Rda + maxx > R:

newR = dw - maxx + R

Tx *= newR/Rda

Ty *= newR/Rda

Tz *= newR/Rda

Rda = newR

## Stores results ##

f = open(filename, ’a’)

print >> f, ’ ’.join(str(cell) for cell in APCHit)

f.close()
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