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Mario Ricchiuto and Dr Domokos Sàrmány for all the enlightening discussions and

their suggestions while working on this thesis. I also wish to thank all the current

and past members of the Scientific Computation research group at the University of

Leeds for numerous conversations on matters not necessarily related to my research

project. In particular, Keeran Brabazon for his ‘do you fancy a cup of tea?’. Finally,

I am very grateful for the support I received from all other persons over the last

three and a half years. There were many (probably too many to include in this tiny

section) and I keep all of them in my heart - thank you guys!



Abstract

The residual distribution framework and its ability to carry out genuinely mul-

tidimensional upwinding has attracted a lot of research interest in the past three

decades. Although not as robust as other widely used approximate methods for

solving hyperbolic partial differential equations, when residual distribution schemes

do provide a plausible solution it is usually more accurate than in the case of other

approaches. Extending these methods to time-dependent problems remains one of

the main challenges in the field. In particular, constructing such a solution so that

the resulting discretisation exhibits all the desired properties available in the steady

state setting.

It is generally agreed that there is not yet an ideal generalisation of second or-

der accurate and positive compact residual distribution schemes designed within

the steady residual distribution framework to time-dependent problems. Various

approaches exist, none of which is considered optimal nor completely satisfactory.

In this thesis two possible extensions are constructed, analysed and verified numeri-

cally: continuous-in-space and discontinuous-in-space Runge-Kutta Residual Distri-

bution methods. In both cases a Runge-Kutta-type time-stepping method is used

to integrate the underlying PDEs in time. These are then combined with, respec-

tively, a continuous- and discontinuous-in-space residual distribution type spatial

approximation.

In this work a number of second order accurate linear continuous-in-space Runge-

Kutta residual distribution methods are constructed, tested experimentally and com-

pared with existing approaches. Additionally, one non-linear second order accurate

scheme is presented and verified. This scheme is shown to perform better in the

close vicinity of discontinuities (in terms of producing spurious oscillations) when

compared to linear second order schemes. The experiments are carried out on a set

of structured and unstructured triangular meshes for both scalar linear and non-

linear equations, and for the Euler equations of fluid dynamics as an example of

systems of non-linear equations.

In the case of the discontinuous-in-space Runge-Kutta residual distribution frame-

work, the thorough analysis presented here highlights a number of shortcomings of

this approach and shows that it is not as attractive as initially anticipated. Never-

theless, a rigorous overview of this approach is given. Extensive numerical results on

both structured and unstructured triangular meshes confirm the analytical results.

Only results for scalar (both linear and non-linear) equations are presented.
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Chapter 1

Introduction

1.1 Background

Many physical and biological phenomena can be viewed and described as flows of

fluids. This includes currents in oceans, atmospheric flows, lava inside the Earth,

blood in veins or flow of air around space craft, to name just a few. Originally,

such problems were studied with the aid of traditional laboratory experiments, i.e.

wind tunnels. Partial differential equations (often abbreviated to PDEs) modelling

such processes were also used, but their complexity limited practical use. It was

not until the late 1950s that researchers started using computers to simulate fluid

problems by solving the underlying PDEs numerically. Although not always entirely

reliable, computer simulations soon became very powerful and one of the key tools

in studies of fluids. These approaches eventually evolved into a separate research

field - computational fluid dynamics.

In the field of mathematical modelling and computational fluid dynamics, sys-

tems of hyperbolic conservation laws are of particular interest. They often model

a somewhat simplified scenario, i.e. some physical processes/forces are not taken

into account, yet provide a qualitatively accurate description of real life phenomena.

Such an approach reduces mathematical complexity, which then allows a significant

reduction in the expense of providing numerical predictions for many flows that

are of practical use. As an example, consider the Euler equations governing flow

1
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of inviscid compressible flow, which comprise three fundamental conservation laws:

conservation of mass, momentum and energy. This system of equations is one of

the most important systems in gas dynamics and is frequently used in aerodynam-

ics to model flow of air around aircraft (to be more precise, in the inviscid flow

regime). Although derived by neglecting various physical processes (viscous forces,

thermal conductivity and turbulence), the Euler equations are considered to be a

very useful mathematical model of the underlying fluid dynamics. In particular, in

the case of high-speed flows. Unfortunately, they admit few analytic solutions and

only for rather trivial problems. Hence the need to study alternative methods of

approximating them such as numerical approximations.

With rapid growth in available computer power, numerical simulations have be-

come one of the key research tools for studying fluid flows. In the case of hyperbolic

partial differential equations, the majority of methods applied to the solution of the

underlying flow problems are those developed within the Finite Volume (FV) frame-

work. Their popularity is largely due to their ability to mimic important physical

properties like conservation, upwinding and monotonicity. In one space dimension,

these methods have reached a high degree of sophistication and understanding and

are considered to be very elegant and physical. However, FV methods do not extend

readily to multiple dimensions. This is mainly due to the fact that the Riemann

problem [101] that they heavily depend on does not extend readily to multiple di-

mensions. The usual workaround is to apply the one dimensional FV formulation

along particular mesh directions (for instance, perpendicular to the edges). Conse-

quently, the schemes are no longer quite as physical and this causes a corresponding

decrease in accuracy via excessive numerical dissipation. This lack of a genuinely

multidimensional approach is understood to be the main factor reducing the accu-

racy of finite volume schemes on unstructured grids [35]. The construction of second

or higher-order methods within the FV framework is performed with the aid of rel-

atively expensive (especially on unstructured meshes) reconstruction of polynomials

of the proper degree. The MUSCL method method of Van Leer [104] is one example.

The underlying procedure extends the stencil of the scheme making it non-compact

and hence less efficient. Still, the flexibility, adaptability and applicability to flow

problems in domains with complicated geometry have enabled the finite volume

framework to remain the most frequent choice when simulating flows governed by

hyperbolic PDEs. Finite difference methods [98], although relatively straightfor-

ward when compared to finite volumes approximations, become rather impractical

when dealing with complex flow patterns for which unstructured grids are consid-
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ered mandatory. The main advantage of finite difference methods when compared

to finite volumes is that these methods do not introduce such a huge overhead when

constructing higher than first order approximations. Nevertheless, in this thesis the

focus is laid on numerical methods on unstructured meshes (even though structured

triangulations are also considered) and hence finite difference discretisations are not

included in the discussion.

It is generally agreed that the state of the art of numerical methods for hyperbolic

partial differential equations is not entirely satisfactory. Finite difference methods

are clearly not robust enough. Attempts at ultra-high resolution computations using

finite volume methods prove that it is not only the lack of available computer power

that limits the accuracy of computations, but also the schemes themselves which

are not able to capture highly nonlinear physical phenomena [35]. Instead, they add

superfluous waves and the reconstruction is no longer physically close to the true

solution. This is largely due to their inability to perform genuinely multidimensional

upwinding and thus failure to mimic all the physics described by the equations.

Therefore, other alternatives have to be investigated.

1.2 Multidimensional Upwinding and the Resid-

ual Distribution Framework

Every hyperbolic conservation law contains information about propagation of some

sort of physical phenomenon and, more importantly, about the preferred trajectories

along which this phenomenon propagates. Mathematically this can be explored and

investigated by the method of characteristics - see [21, 28, 48, 72, 106] for details.

Unfortunately, because of its complexity, primarily in the case of multidimensional

problems, it is an analytical rather than a computational tool. In the case of one-

dimensional problems, the method of characteristics inspired the development of

upwind schemes which are found to be very accurate, robust and efficient methods

for approximating hyperbolic PDEs. Disappointingly, there is no straightforward

way of applying upwinding in a genuinely multidimensional manner. This subject

was thoroughly studied in a series of papers by Roe [90, 91] and Deconinck [35].

Briefly speaking, the information described by any set of hyperbolic conservation

laws travels in the form of waves (see [72] to learn more about the simple wave

solutions). In the case of one-dimensional problems, these waves can only move

in one of two directions, i.e. positive or negative space direction, which can be
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easily described on a numerical level (upwinding can be viewed as the ability of an

algorithm to “follow” the appropriate direction). This is no longer the case when

multidimensional problems are considered. Now waves can travel in an infinite

number of directions which cannot be replicated in the discrete world. Instead, a

fixed number of preferred directions is chosen (usually aligned with the mesh) along

which one-dimensional problems are solved. This simplification may (and often

does) lead to misinterpretation of the flow and consequently an inaccurate solution.

Consider for instance the two-dimensional Euler equations. Locally, a solution of

this system can be represented as a sum of simple wave solutions out of which one

is an entropy wave, a second is a shear wave and the remaining two are acoustic

waves. As observed in [35], selecting wrong directions along which the upwinding

is performed (e.g. dependent on the mesh) may lead to a decomposition of a shear

wave (which does not exist in one dimension) into three one-dimensional acoustic

waves travelling with speeds which do not agree with the speed of the original wave.

The desire to construct schemes able to mimic the propagation of data in a

truly multidimensional manner (i.e. to perform multidimensional upwinding) led

to the development of wave-decomposition schemes and ultimately the Residual-

Distribution (RD) framework was proposed [89]. The superiority of this approach

over, for example, FV schemes becomes apparent when dealing with multidimen-

sional problems where physical phenomena are not necessarily aligned with the com-

putational mesh. This is the setting that currently attracts the most interest. One

of the earliest comparisons of these two approaches can be found in [93]. For other

promising experimental observations on this matter refer to [1,51] and [108]. It was

also demonstrated (see, for instance, [6,7,66,95] and [42]) that residual distribution

methods are very robust and perform well when applied to complex problems arising

in engineering and other applications, e.g. shallow water flows.

1.3 Recent Developments

The discontinuous Galerkin framework [22, 37] is a yet another approach to solving

hyperbolic PDEs that has been challenging the dominance of finite volume meth-

ods in the past 20 years. As with the latter, upwinding is performed with the aid

of the so-called numerical fluxes. In the one-dimensional setting such an approach

enables very accurate prediction of the underlying fluid flow. However, extension

to two and three-dimensional scenarios is done heuristically, which is not always

sufficient to capture complex physical phenomena present in the flow. In this re-
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spect, discontinuous Galerkin methods are similar to finite volume approximations

and are not able capable of performing genuinely multidimensional upwinding. The

main difference between the DG and FV frameworks is that the former is derived

from the Galerkin finite element framework (FE) for which a discontinuous-in-space

data representation was assumed (discontinuities in time will not be covered here).

Numerical fluxes, known from finite volume methods, are then introduced in order

to impose communication between cells, and, ultimately, guarantee stability and

physical realism (upwinding). The discontinuous Galerkin formulation, as opposed

to finite volume methods, allows detailed formal analysis and error estimation (see,

for example, [53, 55]). It facilitates h−adaptivity and is much better suited for

p−adaptivity [54] than finite volume methods. This comes from the fact that in the

case of the most successful high order finite volume schemes, e.g. the ENO [52] or

WENO [63, 71] methods, higher order approximations are achieved with the aid of

expensive nonlocal reconstruction procedures. In the case of discontinuous Galerkin

schemes higher order approximations are constructed by considering in every mesh

cell a higher order polynomial representation of the data. This can be done in each

cell separately and thus provides a natural tool for p−adaptivity. The main ad-

vantage of discontinuous Galerkin methods when compared with the Galerkin finite

element method is the locality of the resulting discrete formulation. This is achieved

by relaxing the constraint on the continuity of the underlying approximation. The

discontinuous Galerkin method also exhibits much better stability than Galerkin

FE method, which is imposed by introducing upwinding.

The discontinuous Galerkin framework was among the key inspirations that led

to the inception of the discontinuous-in-space residual distribution framework. This

recent development, proposed simultaneously by Hubbard [57, 58] and Abgrall [3],

aims at drawing together advantages of the residual distribution (multidimensional

upwinding) and discontinuous Galerkin (localised system) approaches. It is con-

structed by relaxing the constraint on the continuity of the data and allowing

discontinuities across cell interfaces. Similar philosophy lies at the centre of the

discontinuous Galerkin framework. However, discontinuous-in-space residual distri-

bution methods employ the so-called edge residuals (i.e. flux differences) rather

than numerical fluxes to introduce upwinding. It is still a very new, and neither

fully developed nor understood, strand of research. Extending this framework to

time-dependent problems is the first key goal of this thesis.

In the case of steady state problems the RD framework has reached a high level

of sophistication and understanding. The most recent reviews can be found in [38]
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and [4]. Further research is still being carried out (e.g. on discontinuous-in-space

RD methods), but the emphasis is now mainly laid on the development of residual

distribution methods for time-dependent problems. The main challenge is to design

a scheme which retains all the properties of its steady counterpart(s) (in particular

positivity and linearity preservation [38]), and which is relatively efficient. The

space-time framework investigated in [29] (see also [10, 34, 38, 44] and [31]) allows

construction of discretization with all the desired properties. Unfortunately, the

methods described are subject to a CFL-type restriction on the time-step, which is

particularly disappointing when taking into account that they are, by construction,

implicit. In the two layer variant, [32] one couples two space-time slabs at a time and

solves the equations simultaneously in both. On one hand the resulting system to be

solved at each step is larger, but on the other the construction removes from one of

the layers the restriction on the time-step. In theory this means that an arbitrarily

large time-step can be used. For a full discussion see [29]. Hubbard and Ricchiuto

[60] proposed to drive the height of one of the space-time slabs (and hence its

associated time-step) to zero so that the scheme becomes discontinuous-in-time. The

resulting formulation is simpler than the original whereas all of the desired properties

are retained. Recently, Sármány et al. [61] applied this approach to shallow water

equations to show that it outperforms other implicit residual distribution methods.

It is, however, very expensive when compared to explicit methods.

A different approach to solving time-dependent equations with the aid of the

RD framework was proposed by R. Abgrall and M. Ricchiuto in [85]. Their explicit

Runge–Kutta Residual Distribution (RKRD) framework, being explicit, solves one

of the issues mentioned above, namely the efficiency of RD methods for time-

dependent problems. The authors conducted a very rigorous study by experiment-

ing with various types of time-integration algorithms (second and third order TVD

Runge–Kutta methods [97]), formulations of the mass matrices (four distinct defini-

tions) and two types of lumping - the so-called global and selective lumping (see [85]

for the definitions). All of the schemes the authors presented (and which fall into

the framework their proposed) have similar qualitative properties - they are second

order accurate, but not completely oscillation-free. The methodology proposed by

the authors can be viewed as an approximation to the implicit Runge–Kutta residual

distribution methods introduced in this thesis. The main difference between the two

is the fact that in the case of explicit RKRD methods the resulting linear system is

diagonal (hence its explicit nature) and in the case of implicit RKRD methods the

resulting system of equations is not diagonal and has to be inverted before one can
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advance from one time level to another. Introducing the implicit RKRD framework

and comparing it in terms of accuracy, efficiency and monotonicity with its explicit

counterpart is the second main goal of this thesis.

1.4 Key Assumptions

Throughout this thesis only two-dimensional problems (i.e. with the spatial domain

embedded in R
2) will be considered. The reason for this assumption is two-fold. First

of all, the potential of residual distribution methods becomes most apparent when

multidimensional problems exhibiting complex physical phenomena are considered.

Hence these methods are of little interest in the simplified one-dimensional scenario

where the difference between particular upwind discretisations is minimal. Three-

dimensional problems are beyond the scope of this thesis and will not be covered

here. Nevertheless, it should be pointed out that concepts discussed in this thesis

quite naturally extend to more complex scenarios in R
3. Some examples are discussed

in [6].

The discrete representation of the data that is used throughout this thesis will

remain piece-wise linear. As in the case of three-dimensional computations, exten-

sion to higher order approximations, although possible (see, for example, [13]), is

beyond the scope of this thesis and will not be discussed. To avoid confusion in

the interpretation of this text, this assumption will be recalled in the text whenever

other details regarding the discussed methods are being outlined.

1.5 The Underlying Goals

The setting outlined in the previous section can be viewed as the set of constraints

within which the development of new numerical algorithms is carried out in this

thesis. There are three additional design criteria that will be taken into account

here. The following are essential in the development of flexible and robust numerical

algorithms for hyperbolic PDEs:

• Accuracy As already mentioned, only piecewise linear approximations will

be considered throughout this thesis. Quite naturally, such a setting should

lead to second order accurate schemes (super-convergence is not taken into

account). Designing a second order accurate scheme with a linear basis is one

of the key aims in this thesis.
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• Stability Conservation laws admit discontinuous solutions with piece-wise

smooth profile and without strong oscillations in the vicinity of the singular-

ities. A numerical method solving such conservation laws must be capable

of producing approximate solutions free of spurious oscillations causing insta-

bilities. Moreover, it should perform this in a parameter-free fashion, that is

independently of constants specific to particular problems.

• Efficiency The resulting discretisation should be accurate and stable and

achieve this at modest computational cost. In this thesis this is achieved by

considering only explicit time-integrators. A numerical method should also

be compact, i.e. it should compute the value of unknowns in a certain mesh

location based on information only from the closest grid-entities. Compact-

ness is one of key characteristics of residual distribution methods, which is

further enhanced in this thesis by introducing a discontinuous-in-space data

representation.

It is not always possible to combine accuracy, stability and efficiency in one

scheme. As a matter of fact, it remains an open challenge to design an algorithm

within the RD framework that for time-dependent problems is second order accu-

rate, produces solutions free of spurious oscillations and that on top of that consti-

tutes inexpensive discretisations. This thesis explores possible approaches to tackle

shortcomings in existing schemes and to design one that would indeed be accurate,

stable and efficient.

1.6 Contribution

The research presented in this thesis deals with the construction of new numerical

algorithms within the residual distribution framework and applying them to both

scalar and systems of non-linear hyperbolic partial differential equations, with the

emphasis laid on solving time-dependent problems. The contributions of this thesis

and new developments proposed can be split into three groups:

1. A thorough overview and comparison of two distinct discontinuous-in-space resid-

ual distribution frameworks, the first due to Hubbard [57] and the second pro-

posed by Abgrall [3], is given. The main difference between the two approaches

is the way edge-based residuals are treated. The discontinuous-in-space residual

distribution framework is then further extended by introducing a new distribu-

tion strategy for edge residuals. Extensive numerical comparison reveals that the
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approach proposed by Hubbard leads to the most robust discretisations (in terms

of accuracy, stability and efficiency of the available methods). Even though previ-

ous attempts were unsuccessful [57], application to time-dependent problems and

the presented numerical results show that this framework is indeed time-accurate.

2. A study of similarities between the residual distribution and finite element frame-

works is extended to the discontinuous-in-space setting. Common features of

discontinuous-in-space residual distribution and the so-called strong form of the

discontinuous Galerkin method are thoroughly discussed. A number of links be-

tween the two frameworks are highlighted and discussed. This investigation was

motivated by the desire to construct a robust, second order discontinuous-in-space

residual distribution method for time dependent problems. Comparing the two

approaches led to an introduction of a new distribution strategy for edge-based

residuals (see Point 1.).

3. The second order TVD Runge-Kutta method [97] is employed and implemented

to construct a new continuous-in-space residual distribution scheme for time-

dependent problems. The properties of the resulting discretisation are rigorously

studied with the aid of extensive numerical experiments. An efficient way of

solving the resulting linear system is also proposed. Recently, Ricchiuto and

Abgrall [85] employed a modified/shifted TVD Runge-Kutta procedure to derive

a genuinely explicit second order residual distribution scheme for which the re-

sulting linear system is diagonal. Although the results they obtained are sound

and very interesting, the comparison presented here shows that the superiority

in terms of efficiency of the genuinely explicit approach is not as striking as origi-

nally assumed. A discontinuous-in-space data representation is also incorporated

into this new framework and a number of numerical results are presented.

Furthermore, to investigate robustness of the discussed numerical schemes, the Euler

equations of fluid dynamics were discretised and solved with the aid of the presented

numerical methods.

1.7 Thesis Outline

In the following chapters different classes of residual distribution methods are derived

and discussed and the corresponding mathematical problems used in the numerical

experiments are introduced.
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Chapter 2 focuses on introducing the residual distribution (RD) framework for

scalar steady-state problems. A continuous-in-space data representation is assumed

and a review of the most successful and frequently used RD methods falling into

this category is given. The discussion is summarised with a selection of numeri-

cal results. In Chapter 3 the assumption on the continuity of the data is relaxed

and the discontinuous-in-space residual distribution framework is introduced. All

available schemes falling into this framework are first presented and then compared

experimentally. Additionally, a new way of distributing edge-based residuals is intro-

duced and evaluated numerically. Residual distribution methods for time-dependent

problems are dealt with in Chapter 4. In particular the Runge-Kutta residual dis-

tribution schemes are studied. As in Chapter 2, the discrete representation of the

data is again assumed to be continuous. A new second order approximation is intro-

duced and results of a thorough numerical investigation are presented to demonstrate

the behaviour of this new method. Incorporating the discontinuous-in-space data

representation into the new framework developed in Chapter 4 is the main goal of

Chapter 5. This new technique motivated a thorough study into similarities between

the discontinuous Galerkin and discontinuous residual distribution frameworks. The

outcome of that research is thoroughly discussed and extensive numerical results are

given. Chapter 6 is devoted to further evaluation of the numerical frameworks pre-

sented in this thesis. In particular, a detailed description of the procedure that is

used to apply residual distribution methods to the Euler equations of gas dynamics

is given. This is then followed by an extensive numerical study, carried out for both

the steady-state and transient problems. Concluding remarks and future prospects

are outlined in Chapter 7. Appendix A contains the exact solution to one of the test

problems used in Chapters 4 and 5, namely the two-dimensional inviscid Burgers’

equation. A brief overview of the notation employed in this thesis can be found

in Appendix B. Appendix C contains the derivation of the consistent mass matrix

employed in Chapters 4 and 5 and Appendix D deals with the derivation of the limit

on a time-step guaranteeing positivity of one of the schemes considered in Chapter

3. Finally, in Appendix E a compact definition of a new framework introduced in

Chapter 3 is given.



Chapter 2

The Continuous RD Framework

2.1 Introduction

Systems of nonlinear hyperbolic PDEs, such as the Euler or Shallow Water equa-

tions, are among the most interesting, but also challenging models in fluid dynamics.

Desire to increase the accuracy, efficiency and robustness with which these models

are approximated stimulated the inception of the Residual Distribution (RD) frame-

work. In practice, it is very often the case that numerical methods for this type of

complex problem are based on approximate solvers for scalar hyperbolic equations,

which are then, more or less heuristically, extended and applied to systems. This

was the case when the residual distribution methods were introduced by Roe in

1982 [89]. It is thus essential, at least as far as residual distribution schemes are

concerned, to understand how to tackle scalar equations before attempting to solve

more realistic and complex problems governed by systems of nonlinear equations.

The development of such understanding is the main purpose of this chapter. In

particular, it will be shown how residual distribution methods can be used to solve

scalar conservation laws:

∂tu+∇ · f(u) = 0 in Ω× [0, T ], (2.1)

with Ω being the spatial domain and T being a given final time.

11
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Equation (2.1) is very often considered in its integral form:

∫

Ω

∂tu dΩ+

∫

Ω

∇ · f(u) dΩ = 0 in Ω× [0, T ], (2.2)

or, equivalently, as:

∫

Ω

∂tu dΩ+

∮

∂Ω

f(u) · n dΓ = 0 in Ω× [0, T ], (2.3)

in which n is the outward unit normal to the boundary ∂Ω of Ω. The above states

that the rate of change of a given conserved quantity u in any spatial domain Ω is

balanced by the flux of this quantity (denoted here by f(u)) through the boundary

of Ω. Obviously, every function u that satisfies (2.1) will also satisfy (2.2) and

(2.3), but not necessarily vice-versa. However, balance laws are usually derived in

the integral form first and then expressed in terms of derivatives like (2.1). In this

respect, Formulations (2.2) and (2.3) are more plausible from a physical point of

view and hence the focus in this thesis is laid on finding the solution to the integral

formulation. In order to pose a well-defined mathematical and physical problem,

Equation (2.2) has to be equipped with an initial solution:

u(x, t = 0) = u0(x) x ∈ Ω,

and/or some boundary conditions defined on ∂Ω or a properly defined subset (see [48]

for details on imposing boundary conditions for this type of mathematical problems).

The main idea underlying RD discretisations is incorporating as much physics

into the computational model as possible. The challenge is particularly acute in fluid

mechanics, where a complex continuous problem is replaced by a discrete model.

In order to achieve this, Roe [89] introduced two basic concepts: ‘A fluctuation is

something detected in the data, indicating that it has not yet reached equilibrium, and

a signal is an action performed on the data so as to bring it closer to equilibrium.’

(p. 221). To see how this is applied in practice, consider the steady state counterpart

of Equation (2.2): ∫

Ω

∇ · f(u) dΩ = 0 in Ω, (2.4)

with inflow boundary conditions defined on ∂Ω. Equation (2.4) describes an equi-

librium of some physical phenomenon. In this case, reaching the state of balance

is equivalent to finding the steady state solution. To test whether this has been
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achieved, fluctuations (also referred to as residuals) are calculated:

φK =

∫

K

∇ · f(u) dΩ,

in which K is a given subset of Ω. Existence of a set K ′ ⊂ Ω such that the fluctuation

φK ′
is non-zero indicates that the equilibrium has not yet been reached. In such

a case signals, calculated as fractions of the fluctuation, are sent to mesh nodes to

iterate to the steady state. This is, in short, an outline of how residual distribution

methods came to life. A more formal definition of RD methods is given in the next

section.

Originally the RD framework was considered only in terms of steady state so-

lutions and only such problems are considered in this chapter. The definition of

the RD framework is followed by a review of its key properties, particular exam-

ples of residual distribution methods and numerical experiments to report on their

behaviour in practice.

2.2 The Framework

It is assumed that the spatial domain Ω ⊂ R
2 is subdivided into non-overlapping

triangular elements, denoted by E, belonging to Th, such that

⋃

E∈Th

E = Ω.

The triangulation is assumed to be regular in the sense that there exist constants

C1 and C2 such that

0 < C1 ≤ sup
E∈Th

h2E
|E| ≤ C2 <∞,

in which hE is the characteristic length of E (the length of its longest side) and

|E| is the area of E. Cell interfaces will be denoted by e and Di will stand for the

subset of triangles containing node xi. The median dual cell is obtained by joining

the gravity centres of triangles in Di with the midpoints of the edges meeting at xi.

This is illustrated in Figure 2.1.

For each element E ∈ Th and for each node xi ∈ E, ψE
i is defined as the linear

Lagrange basis function associated with xi respecting:

ψE
i (xj) = δij ∀i, j ∈ Th,

∑

j∈E

ψE
j = 1 ∀E ∈ Th. (2.5)
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Di Si

xi

Figure 2.1: Median dual cell Si.

As long as it does not introduce any ambiguity, the superscript E will be omitted.

The approximate solution uh is assumed to be globally continuous and linear within

each element E ∈ Th, and to be of the following form:

uh(x) =
∑

i

ψi(x) ui, (2.6)

in which ui = uh(xi). It is worth noting that the assumption on the linearity of

the underlying discrete representation can be relaxed, and indeed is when higher

than second order residual distribution methods are considered [13, 19, 74]. Such

generalisation is beyond the scope of this thesis and will not be considered here.

Only piece-wise linear approximations will be discussed.

It is clear that in order to find uh one has to construct a set of equations, ideally

linear, to which the solution gives the nodal values of the approximate solution. In

the residual distribution framework this is achieved via cell fluctuations, hereafter

referred to as residuals:

φE =

∫

E

∇ · f(u) dΩ.

These are computed for each cell E ∈ Th and then, with the aid of the distribution

coefficients βi,E , split between its vertices as shown in Figure 2.2. These fractions

will be referred to as signals and denoted as φE
i :

βi,E φ
E = φE

i .

Most of the time the subscript in the distribution coefficient βi,E will be abbreviated

to i. The second parameter (the cell) will be clear from the context. To finish the

construction of the system, for each node xi ∈ Th, assemble the signals and sum

them up. For a steady state solution these sums should be equal to 0 and the
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resulting system of equations is given by:

∑

E∈Di

βi φ
E = 0 ∀i. (2.7)

In practice, system (2.7) is solved with the aid of pseudo time-stepping:

un+1
i = uni − ∆t

|Si|
∑

E∈Di

βiφ
E ∀i, (2.8)

which is used to iterate to the steady state. Constraints on ∆t guaranteeing con-

vergence of this iteration will be discussed later (see Section 2.6.2).

β2 φ
E

β1 φ
E

β3 φ
E

φE

Figure 2.2: The distribution of the residual φE to the vertices of a cell.

Since the distribution coefficients remain unspecified, the above defines only a

framework, not a particular scheme. It is rather intuitive that the βs ought to sum

up to 1, i.e.

β1 + β2 + β3 = 1 ∀E∈Th.

If the βs do not some up to one, artificial mass is added to or taken from the system.

Other restrictions on how the available information/residuals should be distributed

will be discussed in Section 2.4. First, however, a particular example of a RD
method will be presented. This is primarily to show a very close link between the

residual distribution and finite element frameworks.

2.3 Relation to Finite Elements

The approximate solution (2.6) is assumed to be of the same form as in the case of lin-

ear Finite Element (FE) approximations [17]. A natural question to ask is whether
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there exist more links between residual distribution and finite element frameworks?

Interestingly enough, the latter can be rewritten in the RD formalism. Indeed,

consider the scalar equation (2.4). The linear system resulting from discretizing it

using the finite element method reads:

∑

E∈Di

∫

E

∇ · f(uh)ψi dΩ = 0 ∀i, (2.9)

in which, as previously, ψi stands for the Lagrange basis function associated with

node i. It is apparent that also in this case signals are being sent to each node. These

are then assembled to get the set of equations for the nodal values of the numerical

solution. The definition of the signals, at least at first sight, differs from that of

residual distribution methods. However, from the properties of the basis functions

it follows that

∑

i∈E

∫

E

∇ · f(uh)ψi dΩ =

∫

E

∇ · f(uh) dΩ = φE.

The above expression implies that:

∫

E

∇ · f(uh)ψi dΩ = βFE
i φE and βFE

i =

∫
E
∇ · f(uh)ψi dΩ∫
E
∇ · f(uh) dΩ

.

Although the distribution coefficients βFE
i are defined via a rather complicated for-

mula, the above fits nicely into the framework outlined in the previous section. As a

matter of fact, it is very often the case that the distribution coefficients are defined

implicitly via the definition of the signals, φE
i . Further examples in Section 2.6 will

confirm this.

The FE approximation becomes particularly interesting when considering the

non-conservative form of (2.4):

a(u) · ∇u = 0 in Ω,

where a(u) = ∂f
∂u

is the flux Jacobian (in the scalar case often referred to as the

advection velocity). Denoting by ~ni the outward-pointing unit normal vector to

edge ei (opposite ith vertex, illustrated in Figure 2.3), and noting that:

∇ψi = − ~ni

2|E| |ei| ∀i ∈ E,
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it follows that for constant in space advection velocities the signals in (2.9) can be

rewritten as:

∫

E

∇ · f(uh)ψi dΩ =

∫

E

a · ∇uh ψi dΩ = −
∑

j∈E

∫

E

a · uj
~nj

2|E| |ej |ψi dΩ

= −
∑

j∈E

(
a · uj

~nj

2|E| |ej |
)∫

E

ψi dΩ

= −
∑

j∈E

(
a · uj

~nj

2|E| |ej |
)
1

3
|E| = 1

3

∫

E

a · ∇uh dΩ.

This means that in the case of the constant advection equation, the finite element

approximation of (2.2) is a RD-type method for which:

βi =
1

3
∀i.

Defining a distribution for which βi =
1
3
regardless what the discretized equation is

gives the FE scheme. To be more precise, for this new method βi is always set to
1
3
. Note that the FE and FE methods are two distinct discretizations. FE is used

to denote the finite element method, and FE is a particular residual distribution

scheme which was derived from the FE method. Obviously, the FE scheme and the

finite element approximation, FE , are identical in the case of the constant advection

equation. Another feature that both approaches have in common is that for all mesh

cells E, both the FE and the FE schemes send signals to all vertices of E, no matter

what the direction of the flow is. Such methods are usually referred to as central

(as opposed to upwind methods discussed in the following section).

k

i

j
E

~nk

~ni

~nj

Figure 2.3: A generic cell E and unit outward pointing normal vectors associated with its sides.

It should be pointed out that the residual distribution framework was not derived
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from the FE approach and the above discussion should be treated as an observation,

rather than an overview of the history of the RD framework. As a matter of fact, it

was not until 1995 [20] that this close link between both frameworks was discovered.

The invention of the RD framework was driven by the desire to construct a

scheme with all the properties that an optimal method for hyperbolic problems

should have. These properties and ways of imposing them are the subject of the

next section.

2.4 Design Principles

The procedure outlined in Section 2.2 defines a framework rather than a particular

scheme. To construct a particular method within that framework, the distribution

coefficients βi have to be specified. These should be designed with care as otherwise

the resulting scheme may exhibit poor stability, give inaccurate solutions or not

converge to the solution at all. This section is concerned with the properties ideally

every scheme solving hyperbolic problems should satisfy and which are to guaran-

tee efficiency, accuracy and robustness. Alongside, restrictions on the distribution

coefficients to impose these properties are given.

Conservation guarantees that the discrete Rankine-Hugoniot condition [48] is

satisfied. It can be imposed by choosing the distribution coefficients so that:

∑

i∈E

βE
i = 1 ∀E ∈ Th, (2.10)

which was briefly discussed in Section 2.2. It guarantees that:

∑

E∈Th

∑

i∈E

βi φ
E =

∑

E∈Th

φE =

∫

Ω

∇ · f(uh) dΩ =

∮

∂Ω

f(uh) · ~n dΓ. (2.11)

The above means that the information/mass within the discrete system can only

appear/disappear through the boundary terms. In practical computations it ensures

that discontinuities are captured correctly. This is crucial as, in general, hyperbolic

PDEs do exhibit discontinuous solutions. In particular, non-linear equations with

shocks.

Positivity means that every new value un+1
i can be written as a convex combi-

nation of old values, i.e.

un+1
i =

∑

k

ck u
n
k (2.12)
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with

ck ≥ 0 and
∑

k

ck = 1. (2.13)

This guarantees that the scheme satisfies a maximum principle which prohibits the

occurrence of new extrema in the solution (see [83] and references therein for a

thorough discussion). In particular, the resulting numerical approximations are

free of unphysical oscillations even in the vicinity of sharp changes in the solution.

Positive scheme are also referred to as non-oscillatory.

Linearity preserving schemes are characterized by the ability to preserve ex-

actly steady state solutions whenever these are linear functions in space. This con-

dition is satisfied if and only if (cf. Lemma 1.6.1 in [41] ) there exists a constant

C ∈ R such that

βi,E ≤ C ∀E ∈ Th ∀i ∈ E (2.14)

for φE tending to zero. It can be shown that for residuals calculated from piece-wise

linear polynomials, a linearity preserving scheme is second order accurate [1, 13], it

is thus an accuracy requirement.

Continuity of the distribution coefficients with respect to both the numerical

solution and the advection velocity is also desirable as otherwise the scheme may

exhibit limit cycling and not converge to the solution. Nonlinear schemes are par-

ticularly sensitive in this respect.

Multidimensional upwinding not only facilitates construction of positive

schemes but is also used for physical realism. A scheme is considered to be mul-

tidimensional upwind if no signals are sent to the upstream nodes of the cell. In

one dimension it is a rather obvious restriction as there are only two directions and

only one of them can be upstream. However, in the multidimensional setting the in-

formation can travel in infinitely many directions and imposing upwinding becomes

very tricky and challenging. Schemes which are not multidimensional upwind, such

as the FE scheme, are referred to as central schemes. Multidimensional upwind

schemes will also be referred to as upwind schemes.

Note that construction of multidimensional upwind algorithms is somehow sim-

plified. As illustrated in Figure 2.4, each mesh triangle E can have only one (the

one-target case) or two (the two-target case) downstream vertices. In the one target

case an upwind scheme will send all the information to the only downstream node,

i.e. (notation as in Figure 2.4):

βi = 1, βj = 0, βk = 0.
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The two-target case is somewhat more involved as one needs to decide what fraction

of the cell residual to send to each of the two downstream nodes. This will be

addressed in Section 2.6, where examples of multidimensional upwind methods are

presented.

k

j

k

j

φE φE

i i

a

a a

a

Figure 2.4: A triangle with two inflow sides (left) and one with one inflow side (right.)

Further distinction between particular residual distribution methods can be drawn

by considering a slightly modified general framework (already considered while dis-

cussing positivity, cf. Formulation (2.12)):

un+1
i =

∑

k

ck u
n
k . (2.15)

A scheme of this form is said to be linear if in the case of the linear advection

equation all coefficients cj are independent of the solution uni . It will become clear

in Section 2.6 that all RD methods can be rewritten in the general form (2.15) (not

necessarily as a linear scheme, though). It will also turn out that from linearity of

the distribution coefficients βi (i.e. their independence from u) follows linearity of

the scheme. Clearly, a linear scheme will be, in general, cheaper then a non-linear

one. However, according to Godunov’s theorem [49] (see also Theorem 3.15 in [38]

for a similar result regarding residual distribution methods), a linear scheme cannot

be non-oscillatory and second order accurate at the same time. Hence it is necessary

to consider non-linear schemes to combine these two properties. Nevertheless, linear

schemes are still of interest as in practice they are used as building blocks for non-

linear methods which exhibit all the desired properties.
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2.5 Non-linear Equations

Thus far, it has been assumed that the cell residual φE is computed exactly. It is

a rather natural requirement but one has to realize that this may not be easy to

achieve in practice. In particular, when the flux f(uh) is a highly nonlinear function,

not to mention systems of nonlinear equations. However, if the flux Jacobian a(uh)

is linear then the following holds:

φE =

∫

E

∇ · f(uh) dΩ =

∫

E

a(uh) · ∇uh dΩ

=

(∫

E

a(uh) dΩ

)
· ∇uh|E =

exact!︷ ︸︸ ︷
|E|
3

∑

j∈E

a(uj) ·∇uh|E.
(2.16)

It gives a very straightforward and exact recipe to calculate the residuals. Moreover,

it shows that in the case of a linear flux Jacobian the advection velocity can be

assumed to be constant within each cell. Indeed, defining ū = u1+u2+u3

3
one can

write
|E|
3

∑

j∈E

a(uj) = |E| a(ū) (2.17)

in which u1, u2 and u3 are the nodal values of uh in E. Formulation (2.17), together

with (2.16) show that one can substitute a(ū) instead of a(uh) and that cell residuals

will still be calculated exactly. More importantly, conservation of the scheme will

also be preserved as:

|E| a(ū) · ∇uh|E =

∮

∂E

f(uh) · ~n dΓ.

Equipped with the above observation, one can proceed assuming that a(uh) is con-

stant within each cell.

Although the case of linear flux Jacobian may seem an oversimplified scenario,

it covers two very important examples of scalar hyperbolic equations, namely the

advection and Burgers’ equations. Since these are the only scalar equations that

will be considered in this thesis, no further discussion with regard to calculating the

residuals will be carried out. More general equations and ways of computing cell

residuals were investigated in [5] and [33]. For a brief overview consult [38]. Systems

of equations will be treated separately in Chapter 6.
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2.6 Examples of RD Schemes

In this section the most successful and frequently used linear and non-linear RD
schemes for steady state problems are introduced. A brief discussion of each scheme

with regard to the properties discussed in Section 2.4 is also given. In order to make

the presentation more compact, extra notation will be now introduced.

The so-called flow sensors have been part of the RD nomenclature almost since

the inception of the framework. They are used to define various methods within the

framework and to determine the local behaviour of the flow. For each cell E ∈ Th

and vertex i ∈ E these are defined as:

ki = −a(ū) · ~ni

2
|ei|, k+i = max(0, ki), k−i = min(0, ki), (2.18)

in which ~ni, as in Figure 2.3, is the outward pointing unit normal vector to edge ei.

Note that, from the properties of the linear Lagrange basis functions and the form

of the numerical solutions, the cell residual can be calculated exactly using:

φE =
∑

i∈E

ki ui. (2.19)

This is true provided that the flux Jacobian is linear. No other scenario will be

considered in this work.

Since the flow sensors (2.18) are linear with respect to the advection velocity

and independent of the solution, one concludes from Formulae (2.19) and (2.8)

that linearity of the distribution coefficients implies linearity of the scheme (cf.

Formulation (2.15)).

In what follows, six distinct residual distribution methods are presented.

2.6.1 The Low Diffusion A (LDA) Scheme

The design process for multidimensional upwind schemes is simplified as only the

two-target case has to be considered. A straightforward strategy can be derived by

looking at a generic triangle with two downstream vertices. As drawn in Figure

2.5, the advection velocity a divides the cell into two sub-triangles: E124 and E143.

Defining the distribution coefficients as

βLDA
3 =

|E124|
|E| , βLDA

2 =
|E143|
|E| , βLDA

1 = 0,
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gives the Low Diffusion A scheme of Roe [92], more often referred to as the LDA

scheme. Quite naturally, the closer the advection vector gets to a particular node

the bigger fraction of the cell residual that node receives. It can be deduced from

basic trigonometric identities that [41]:

βLDA
i =

k+i∑
j∈E k

+
j

≥ 0. (2.20)

The distribution coefficients do not depend on the solution and hence the scheme is

both linear and continuous. It is upwind by definition and linearity preserving as

βi ≤ 1 for i = 1, 2, 3.

Conservation follows immediately from (2.20). As a linear linearity preserving

scheme it cannot be positive. On the other hand, it produces very low cross-diffusion

which, as reported in [77], vanishes on regular grids.

4

a

1

2

3

Figure 2.5: In the two-target case the advection velocity a divides the cell into two sub-triangles.
Here cell E123 is split into triangles E143 and E124.

2.6.2 The Narrow Scheme

Another very successful upwind scheme is the N scheme (N for narrow), also due to

Roe [92]. As in the case of the LDA scheme, it can be derived based on purely geo-

metrical considerations. First, observe that the cell residual, φE, can be decomposed

as:

φE(a) =

∫

E

a · ∇uh dΩ = φE(a2) + φE(a3)
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for any vectors a2 and a3 such that

a2 + a3 = a.

Taking a2 and a3 as in Figure 2.6 gives a distribution strategy defined by:

βN
1 φ

E = 0, βN
2 φ

E = φE(a2), βN
3 φ

E = φE(a3). (2.21)

No signal is sent to the upstream node 1 and hence this scheme is upwind. The

distribution coefficients sum up to one and hence:

βN
1 φ

E + βN
2 φ

E + βN
3 φ

E = φE

which guarantees that the scheme is conservative. There is no explicit formula for

the distribution coefficients, but since the decomposition of a into its components

a2 and a3 is linear and continuous (with respect to the advection velocity and the

solution), so is the N scheme. It is positive under a CFL-type restriction [38]:

∆t ≤ |Si|∑
E∈Di

k+i
, ∀i ∈ Th. (2.22)

As a linear positive scheme it cannot be linearity preserving, but as far as first-order

schemes are concerned the N scheme is one of the most successful ones. This was

discussed in more detail in reference [100] where the authors show that among linear

positive schemes the N scheme allows the largest time-step and has the smallest cross

diffusion.

3

4

1

2

a

a3

a2

Figure 2.6: The advection velocity a can be decomposed into vectors parallel with the sides of the
triangle pointing from upstream to downstream vertices. Above, a is decomposed into a2 and a3.
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2.6.3 The BLEND Scheme

Desire to construct methods which are simultaneously linearity preserving and pos-

itive brings the need to consider non-linear distributions. A very robust scheme can

be obtained by blending the two linear schemes presented so far, namely the N and

the LDA schemes. Defining signals as:

φE
i = (1− θ(uh))φ

LDA
i + θ(uh)φ

N
i

in which θ(uh) is a blending coefficient, gives rise to the so called Blended scheme,

hereafter referred to as the BLEND scheme.

Even though the idea is quite simple, specifying θ(uh) rigorously is not obvious

at all. Fortunately, the heuristic definition of Deconinck and collaborators [7]:

θ(uh) =
|φE|∑
j∈E |φN

j |
∈ [0, 1] (2.23)

proved to give good results in a number of applications (see [11, 30, 96] or [38] and

references therein). Numerical results show that the resulting scheme is nearly

positive (small or very small overshoots and undershoots are usually present) and

exhibits accuracy of order 2. However, as reported in [51] and [83], from theoretical

point of view this scheme is not sound. Its heuristic construction complicates formal

analysis and positivity has yet to be ensured. Since both the N and the LDA schemes

are multidimensional upwind, conservative and continuous, so is the BLEND scheme.

One should bear in mind that the blending parameter is yet another degree of

freedom that has to be taken into account when implementing the BLEND scheme.

Definition (2.23) gave good results when applied to model problems, but may need

tuning when used in practical computations.

2.6.4 The PSI Scheme

The most successful non-linear scheme is the PSI scheme of Struijs [99]. It is often

referred to as the limited N scheme as its distribution coefficients are constructed

by limiting those of the N scheme:

βPSI
i =

(βN
i )+∑

j∈E(β
N
j )+

,
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in which βN
i , i = 1, 2, 3, are computed using (2.21). It is immediate to see that:

βPSI
i ≥ 0 and

∑

i∈E

βPSI
i = 1 for i = 1, 2, 3.

The scheme can therefore be claimed to be linearity preserving and conservative.

Being derived from the positive N scheme it is guaranteed to produce numerical

approximations free of spurious oscillations (see Section 3.6.7 in [38] for a thorough

mathematical justification). Multidimensional upwinding and continuity follow im-

mediately as well.

In a number of references, see for example [12, 77, 93, 100], it was reported that

for the steady scalar advection equation, especially on unstructured meshes, the PSI

scheme performs better than standard second order limited finite volume methods.

Its disadvantages when compared to the linear schemes are the difficulty with which

it can be generalised to time-dependent problems and nonlinear systems of equa-

tions and the slower convergence to the steady state it exhibits [2]. However, being

completely parameter free, it is a potential alternative to finite element methods

with stabilizing terms [20, 77].

2.6.5 The Lax-Friedrichs (LF) Scheme

To the author’s best knowledge, it was Abgrall [2] who first considered the Lax-

Friedrichs scheme in the context of the residual distribution framework. It is a

heuristic generalization of its well-studied and popular one-dimensional counterpart

and reads:

φLF
i =

1

3

(
φE + αLF

[∑

j∈E

(ui − uj)

])
, (2.24)

where αLF is the Lax-Friedrichs dissipation coefficient. The scheme can be shown

to be positive provided that [3]:

αLF ≥ max
j∈E

|kj|.

Since it is linear, it can only be first order accurate. It is conservative as

∑

i∈E

φLF
i = φE ,

but not upwind since all the vertices receive signals regardless of the direction of the

flow.
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A natural and hypothetically linearity preserving extension of the Lax-Friedrichs

scheme can be achieved by limiting its coefficients so that the Limited Lax-Friedrichs

(LLF) scheme is constructed

βLLF
i =

(βLF
i )+∑

j∈E(β
LF
j )+

,

where βLF
i =

φLF
i

φE . A similar procedure, when applied to the N scheme, gave the

very successful second order and positive PSI scheme. Unfortunately, in this case

the base scheme is not a multidimensional upwind distribution and the LLF scheme

exhibits some problems with iterative convergence which spoil the order of accuracy

and often introduce wiggles into the solution. This is observed regardless the value

of the CFL number. According to Abgrall [2] this is due to ‘the possible existence

of spurious nodes’. To cure that a stabilizing term has to be added which in turn

spoils the formal monotonicity. For a full discussion on this matter the reader is

referred to [2].

In this thesis the LF scheme is considered mainly to test its performance in the

discontinuous setting (introduced in Chapter 3) and to compare it against other

methods. This has not yet been done in the literature.

2.6.6 The Streamline Upwind (SU) Scheme

Although the FE distribution discussed in Section 2.3 is linearity preserving and

conservative, it is very unstable and hence never used in practice. As reported in [38],

introducing an upwind bias helps to stabilize the scheme. Such a bias, inspired by

the close link between the RD and FE frameworks (in particular the Streamline

Upwind Petrov Galerkin approach [18, 62, 64]), added to the FE scheme gives the

SU distribution defined as:

βSU
i =

1

3
+ kiτ, (2.25)

in which τ is a scaling parameter, taken here as

τ =

(∑

j∈E

|kj|
)−1

.

Conservation comes from the fact that in each cell E the flow sensors ki sum up to

0. Linearity and linearity preservation follow immediately.

The derivation of this scheme is based on the similarity between the RD and
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SUPG-type methods for the constant advection equation, shown for instance in [38].

Heuristic extension to a general case gives (2.25). In this respect it is very similar to

the LF residual distribution method (2.24) that was also inspired by other algorithms

known previously from different frameworks.

2.7 Numerical Results

To illustrate the properties exhibited by each scheme described in this chapter, a

brief summary of the numerical results is given. For a very thorough and extensive

numerical study of the N, LDA, PSI and BLEND schemes refer to the PhD thesis

of Paillere [77] or Struijs [99]. The LF scheme was very rigorously investigated by

Abgrall in [2] and for the SU scheme consult [18].

To perform the experiments the semi-circular linear advection equation, given

by:

(y,−x) · ∇u = 0 on Ω = [−1, 1]× [0, 1],

was used. Two distinct inflow boundary conditions were considered, each defining

a separate test case.

Test Case A: To test for positivity and see how a scheme behaves in the vicinity

of sharp changes in the solution, discontinuous inflow conditions were used:

u(x, y) =

{
1 for x ∈ [−0.5,−0.1], y = 0

0 otherwise.

The square wave profile should be advected in a circular arc without change of shape

and the exact solution is given by

u(x, y) =

{
1 for r =

√
x2 + y2 ∈ [0.1, 0.5],

0 otherwise.

Test Case B: To carry out accuracy tests and check how quickly the steady state

is obtained, smooth initial conditions were prescribed:

u(x, y) =

{
G(x) for x ∈ [−0.75,−0.25], y = 0

0 otherwise.
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in which

G(x) =

{
g(4x+ 3) for x ∈ [−0.75,−0.5],

g(−4x− 1) for x ∈ (−0.5,−0.25]

where

g(s) = s5(70s4 − 315s3 + 540s2 − 420s+ 126). (2.26)

The exact solution to this problem is

u(x, y) =

{
G(r) for r =

√
x2 + y2 ∈ [0.25,−0.75],

0 otherwise.

No boundary conditions were imposed on the outflow boundaries. In each case

the initial conditions used in the interior and on the outflow boundary were u ≡ 0.

The time-step in (2.8) was computed as (cf. the positivity restriction for (2.22)):

∆ti = CFL
|Si|∑

E∈Di
k+i

∀i ∈ Th,

i.e. local time-stepping was implemented. The CFL number was set to 0.9 for most

of the schemes except for the LF method for which it was decreased to 0.6. This

was necessary as otherwise the method did not converge and the numerical solution

exploded. The topology of the used meshes is shown in Figure 2.7.

Figure 2.7: Topology of the meshes used in the numerical tests carried out in this chapter.

Figures 2.8- 2.13 show the steady state solutions for Test Case B using six schemes
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described earlier in this chapter. As expected, the N and the LF schemes give the

most diffusive results since neither is linearity preserving. The LDA and the SU

schemes are the least diffusive schemes, but at the expense of large oscillations.

Finally, the BLEND and the PSI schemes gave best results with very little diffusion

and no spurious oscillations. A regular triangulation of 57 × 57 grid and topology

as in Figure 2.7 was used.

Figure 2.8: Solution for the LDA scheme for the Test Case A.

The convergence histories for the N, SU and the LF schemes are plotted on the

left in Figure 2.14. Corresponding results for the LDA, PSI and BLEND methods

are plotted on the right in the same figure. The convergence monitor which has

been used is the root mean square (RMS) of the residual, at each time-step given as

RMS =

√∑Nn

i=1(φi)2

Nn

,

in which Nn is the total number of degrees of freedom (nodes). It can be seen that all

schemes, apart from the LF method, converged rapidly. The CFL number for the

LF scheme was lower than the one for other schemes and the scheme was expected

to take longer to converge to the steady state. The scheme converged (the root

mean square of the residuals reached machine precision) in roughly 6700 iterations,
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Figure 2.9: Solution for the SU scheme for the Test Case A.

Figure 2.10: Solution for the N scheme for the Test Case A.
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Figure 2.11: Solution for the LF scheme for the Test Case A.

Figure 2.12: Solution for the BLEND scheme for the Test Case A.
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Figure 2.13: Solution for the PSI scheme for the Test Case A.
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Figure 2.14: Convergence histories for the N, SU, LF (left) and the LDA, PSI, BLEND (right)
schemes for Test Case B.
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which is a rather poor result.

The mesh convergence analysis, results of which are plotted in Figure 2.15 (left

for the N and the LF schemes, right for the LDA, PSI, BLEND and the SU schemes),

was carried out on a set of regular triangular meshes with the coarsest mesh of a

14×14 regular grid refined 6 times by a factor 2 in each direction. The experiments

confirmed that the LDA, SU, PSI and the BLEND schemes are second order accurate

and that the N and LF schemes exhibit only first order convergence. As previously,

the LF method gave the poorest results. The error was calculated using the root

mean square of the nodal values of the difference between the exact and the numerical

solution:

L2 error =

√∑Nn

i=1(u
exact
i − uapproxi )2

Nn

. (2.27)
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Figure 2.15: Mesh convergence for the N, LF (left) and the LDA, PSI, BLEND, SU (right) schemes
for Test Case B. The PSI and BLEND schemes gave similar results which is reflected by the fact
that the corresponding plots overlap each other.
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2.8 Summary

In this chapter the continuous residual distribution framework was defined and 6

examples of schemes fitting into it were given. Properties of each scheme are dictated

by the distribution coefficients and these, ideally, should be constructed following

the design criteria discussed in Section 2.4. In order to show how these methods fit

in between other widely used discretizations, a link between the residual distribution

and finite element approximations was discussed.

The numerical results presented in the previous section confirmed that all of

the schemes presented in Section 2.6 exhibit their theoretical properties. These

properties are summarized in Table 2.1. As expected, the PSI is currently the

best available residual distribution scheme as far as scalar hyperbolic PDEs are

concerned. Although the BLEND scheme gave similar results, contrary to the PSI

method it is not completely parameter-free and therefore a slightly less attractive

alternative. The LF scheme, even though it is positive, demonstrated very poor

convergence and accuracy and should not be considered in practice. It is, however,

one of the few known RD schemes that has been extended to the discontinuous

setting, and has never been compared with other choices. This will be addressed in

the next chapter.

Conservative Upwind Continuous Linear Positive Linearity
Preserving

LDA X X X X × X

N X X X X X ×
PSI X X X × X X

BLEND X X X × X X

SU X × X X × X

LF X × X X X ×

Table 2.1: Summary of the properties of the schemes presented in this chapter. A Xrepresents
success, while × indicates a short-coming in the method. Positivity of the BLEND scheme has not
been proved formally yet.

Extension to non-linear equations was only briefly discussed. It will be covered

in more detail in chapters on non-linear systems of equations and time-dependent

problems where more challenging cases are considered.
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The Discontinuous RD Framework

3.1 Introduction

A continuous representation of u was assumed throughout the discussion in Chap-

ter 2. Relaxing this constraint leads to a very active and promising strand of re-

search within the community, i.e. the discontinuous residual distribution framework.

Proposed simultaneously by Hubbard [57, 58] and Abgrall [3], this new concept

aims at drawing together advantages of both residual distribution and Discontinu-

ous Galerkin (DG) approaches [22,37]. The numerical solution is now assumed to be

only piecewise continuous and some sort of a ‘numerical entity’ has to be introduced

to enable communication between the cells. In the case of DG-type schemes such

communication is imposed by introducing the numerical flux, whereas in the RD
setting it is the edge residual that enables it. Formal definitions will be given in the

following sections. This new approach, as in the case of discontinuous Galerkin ap-

proximations, facilitates construction of a localised system and a simple framework

within which h− and p− adaptivity can be incorporated, features that are present

neither in the FV or continuous RD frameworks. The concept of discontinuous

residual distribution methods is relatively recent and unexplored and this chapter

aims not only at introducing it, but also at reviewing, comparing and summarizing

available results. As in the case of classical RD schemes, it was originally introduced

for steady state problems and only such are considered in this chapter.

36



Chapter 3 37 The Discontinuous RD Framework

It is worth noting that also Abgrall and Shu considered discontinuous-in-space

residual distribution schemes [14]. Their approach, however, is different from the

one employed in this thesis. In their work the degrees of freedom are located at

midpoints of the edges that connect the centroid of each element with its vertices.

That choice, motivated by orthogonality of the resulting basis functions, enabled

them to rewrite some DG methods in the RD framework and to apply stabilization

techniques known from the latter to enforce an L∞ stability of the former. Although

interesting, their approach is fundamentally different from the one implemented in

this work and will not be discussed here.

This chapter is structured as follows. First, extra notation and the framework

of discontinuous residual distribution schemes is introduced. Next, its close relation

with the discontinuous Galerkin approach is discussed, in particular it is shown that

every DG method can be viewed as a special case of a discontinuous RD scheme.

Section 3.4 outlines key properties, and the way of imposing them, ideally every

discontinuous RD method should have. Nonlinear equations are briefly discussed

in Section 3.5 and particular discontinuous RD methods are introduced in Section

3.6. Results of numerical experiments are presented and discussed in Section 3.7.

3.2 The Framework

The notation introduced in Chapter 2 remains mostly unchanged, only the numerical

solution takes a slightly more general form now:

uh(x)|E =
∑

i∈E

ψE
i (x)u

E
i ∀x ∈ E ∀E ∈ Th. (3.1)

uEi is the value of uh at xi taken in cell E and ψE
i is the linear Lagrange basis function

associated with xi (defined in Chapter 2, cf. Equation (2.5)).This definition reflects

the fact that uh is no longer assumed to be globally continuous and thus has to be

considered separately in every cell. The superscript E will be omitted whenever the

cell being considered is clear from the context.

So far only cell residuals have been used to construct the linear system. In the

discontinuous setting edge residuals, denoted by φe, play an equally important role.

These are defined by:

φe(uh) = −
∫

e

[f(uh) · n] dΓ, (3.2)

in which [f(uh) · n] represents the jump of the function f(uh) ·n across the edge, the
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sign of the difference being dictated by the direction chosen for n, the unit normal

vector to e. To be more precise:

−φe(uh) =

∫

e

[f · n] (uh) dΓ =

∫

e

(fL · nEL,e + fR · nER,e) dΓ

=

∫

e

(fL − fR) · nEL,e dΓ =

∫

e

(fR − fL) · nER,e dΓ.

The subscripts L and R mean that the value of a quantity was taken from EL and ER,

respectively, the cells associated with edge e (see Figure 3.1). The normal vectors

nEL,e and nER,e are chosen to be unit length and pointing outward from the cell

they are associated with. Obviously, φe is zero when uh is assumed to be continuous

across edge e.

cell ERcell EL

1

4 3

2

~nER,e

~nEL,e

edge e

Figure 3.1: Edge e and the two cells associated with it: EL and ER.

Similar to continuous residual distribution methods, to find the numerical solu-

tion uh one first assembles signals sent to each degree of freedom i and then solves

the resulting linear system with the aid of pseudo time-stepping:

un+1
i = uni − 3∆t

|E|
(
βE
i φ

E + αe1
i φ

e1 + αe2
i φ

e2
)

∀i. (3.3)

In analogy to cell residuals and the corresponding distribution coefficients, αe1
i and

αe2
i are the distribution coefficients for the degree of freedom i ∈ E corresponding

to the edges e1 ∈ E and e2 ∈ E, respectively, adjacent to vertex i. Note that in

the discontinuous setting each degree of freedom belongs to only one cell and two

of its edges and it seems natural to assume that it can receive signals only from the
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corresponding residuals. However, there is no clear reason why degree of freedom

i ∈ E should not receive signals from all of the edges of E :

un+1
i = uni − 3∆t

|E|

(
βiφ

E +
∑

e∈E

αiφ
e

)
∀i. (3.4)

This slight generalization of (3.3), and what Abgrall [3] and Hubbard [57] originally

proposed, has not yet been considered in the literature. All the distribution strate-

gies investigated so far are based on the simpler formulation (3.3). One possible

method based on the form (3.4) is presented in Section 3.6. Additionally, in Ap-

pendix E a more compact version of the above general Framework (3.4) is presented.

As in the continuous case, the distribution coefficients determine properties of

the scheme. Strategies for cell residuals were covered in Chapter 2 and no further

examples will be considered here. Edge residuals are specific to the framework of

discontinuous methods. All available techniques of distributing them are discussed

in Section 3.6. First, however, one particular example will be discussed. As in the

case of continuous residual distribution methods, the motivation for this is to show

how the discontinuous RD framework fits in between other more frequently used

methods.

3.3 Relation to Discontinuous Galerkin methods

Popularised by Cockburn and Shu in their series of papers [23–27], discontinuous

Galerkin methods are among the most successful and popular ways of discretising

hyperbolic equations. In this section the steady state variant of these methods is

first introduced and then rewritten in the RD framework.

To construct an equation for uEi , multiply the steady state counterpart of (2.1)

by the basis function ψi and integrate over E. Next, apply the Gauss-Green theorem

to get:

−
∫

E

f · ∇ψi dΩ +
∑

e∈E

∫

e

f ψi · nE,e dΓ = 0

in which nE,e is the outward pointing unit normal vector to edge e. Replacing u

with uh (and consequently f = f(u) with f(uh) = fh) leads to a discrete formulation:

−
∫

E

fh · ∇ψi dΩ +
∑

e∈E

∫

e

fh ψi · nE,e dΓ = 0.
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The desired equation is obtained by modifying the boundary integral by substituting

the numerical flux f̂E,e (described in detail in the next paragraph) instead of f .

Repeating the procedure for all the degrees of freedom leads to the weak form of

the DG discretization [54]:

−
∫

E

fh · ∇ψi dΩ +
∑

e∈E

∫

e

f̂E,e ψi · nE,e dΓ = 0 ∀i ∈ Th. (3.5)

Even though this is the most frequently used formulation, it is not of direct relevance

here. This is primarily because it is not obvious how to fit it into the discontinuous

residual distribution framework (cf. Scheme (3.4)). Instead, take each equation in

(3.5) and once more integrate it by parts. This leads to the strong form of the DG
discretization [54]:

∫

E

∇ · fhψi dΩ +
∑

e∈E

∫

e

(f̂E,e − fh)ψi · nE,e dΓ = 0 ∀i ∈ Th. (3.6)

Bear in mind that in order to enforce communication between cells, the numerical

flux must remain in the discrete system and hence only the first term in (3.5) was

integrated. The two formulations are mathematically equivalent.

The numerical flux is introduced to couple adjacent cells. For each cell E and

edge e ∈ E it is defined as a function of u
int(E)
h and u

ext(E)
h (see Figure 3.2 for the

notation):

f̂E,e = f̂(u
int(E)
h , u

ext(E)
h )

in which superscripts int(E) and ext(E) mean that the value of the solution is taken

from the interior and exterior, respectively, of cell E. The concept of the numerical

flux comes originally from the finite volume framework. Three standard properties

are assumed to be satisfied (discussed in detail in [48]):

A1. f̂E,e = f̂E′,e (conservation),

A2. f̂(u, u) = fh(u) (consistency),

A3. f̂ is (globally) Lipschitz continuous (provided that f is Lipschitz continuous).

The first condition is to guarantee that the Rankine-Hugoniot condition is satis-

fied and hence discontinuities are captured accurately. Consistency and Lipschitz

continuity are required for accuracy (see, for instance, the accuracy results in [25]).

To learn more about numerical fluxes, their properties or a rigorous mathematical
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discussion on the above assumptions consult one of the standard text books on dis-

continuous Galerkin methods (for example [54] or [70]) or finite volume methods

(e.g. [48, 69, 101] or [68]). Only two examples of numerical fluxes will be considered

in this work, namely the upwind and the Lax-Friedrichs flux.

cell E

u
int(E)
i

edge e

~nE,e

u
ext(E)
i

u
int(E)
j u

ext(E)
j

cell E ′

Figure 3.2: Cell E, its edge e, neighbouring cell E′ and four degrees of freedom:

u
int(E)
i , u

int(E)
j , u

ext(E)
i and u

ext(E)
j , that are used to calculate the numerical flux f̂E,e.

The upwind flux is a relatively simple, yet very popular and successful numer-

ical flux. To understand how it works consider the situation from Figure 3.2 and

observe that f̂(uint(E), uext(E)) depends on two values of uh, each of which is taken

from one or the other side of the edge. Only one of those values lies on the upstream

side of the edge and the upwind flux is defined as the value of the analytical flux f

at this value. Assuming that uint(E) is the upstream value would give:

f̂(u
int(E)
h , u

ext(E)
h ) = f(u

int(E)
h ).

Quite clearly it is conservative as no matter which side of e is currently being con-

sidered, the upstream vertex remains the same:

f̂E,e = f̂(u
int(E)
h , u

ext(E)
h ) = f(u

int(E)
h ) = f̂(u

ext(E)
h , u

int(E)
h ) = f̂E′,e.

Consistency and Lipschitz continuity (provided that f is Lipschitz) follow immedi-

ately.
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The Lax-Friedrichs flux is defined as:

f̂E,e =
f(u

int(E)
h ) + f(u

ext(E)
h )

2
+
α

2
nE,e(u

int(E)
h − u

ext(E)
h ) (3.7)

where α is the local maximum of the directional flux Jacobian; that is,

α = max
uh∈

[

u
int(E)
h

,u
ext(E)
h

]

∣∣∣∣nx

∂f1
∂u

+ ny

∂f2
∂u

∣∣∣∣ ,

where f = (f1, f2) and nE,e = (nx, ny). Also in this case assumptions A1-A3 are

satisfied. Conservation can be shown by a direct substitution:

f̂E,e =
f(u

int(E)
h ) + f(u

ext(E)
h )

2
+
α

2
nE,e(u

int(E)
h − u

ext(E)
h )

=
f(u

ext(E)
h ) + f(u

int(E)
h )

2
+
α

2
nE′,e(u

ext(E)
h − u

int(E)
h ) = f̂E′,e,

consistency is immediate and Lipschitz continuity is a consequence of f being Lips-

chitz continuous.

As in the case of continuous finite elements, it follows from the properties of the

basis functions that:

∑

i∈E

∫

E

∇ · f(uh)ψi dΩ =

∫

E

∇ · f(uh) dΩ = φE,

which implies that

∫

E

∇ · f(uh)ψi dΩ = βDG
i φE and βDG

i =

∫
E
∇ · f(uh)ψi dΩ∫
E
∇ · f(uh) dΩ

.

More importantly, a similar observation can be made about the edge residuals.

Indeed, assuming that edge e contains nodes i and j (cf. Figure 3.2) one shows that:

∑

k∈e

∫

e

(f̂ − fh)ψk · n dΓ =

=

∫

e

(f̂E,e − fh)ψj · nE,e dΓ +

∫

e

(f̂E′,e − fh)ψj · nE′,e dΓ+

+

∫

e

(f̂E,e − fh)ψi · nE,e dΓ +

∫

e

(f̂E′,e − fh)ψi · nE′,e dΓ

=

∫

e

[f(uh) · n] dΓ = φe
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which, again, shows that:

∫

e

(f̂ − fh)ψk · n dΓ = αDG
k φe and αDG

k =

∫
e
(f̂ − fh)ψk · n dΓ∫
e
[f(uh) · n] dΓ

. (3.8)

In other words, the method presented in this section is a discontinuous RD scheme.

Interestingly enough, it fits more into the formulation (3.4) than the originally con-

sidered definition (3.3) as for every edge e and for every vertex i ∈ E (e ∈ E) the

above formula specifies a signal that will be sent from edge e to vertex i (even if

i /∈ e). Note, however, that ψi vanishes on one of the edges of E and hence vertex i

will receive signals from only 2 out of 3 edges of the cell. Nevertheless, Formulation

(3.8) can accommodate more general scenarios in which different basis functions are

used and in which every vertex indeed receives signals from all edges of the cell it

belongs to. Such a situation will be considered in Section 3.6.

As pointed out in [79], the discontinuous Galerkin method has received relatively

little attention in the steady state setting. In [80, 107] the method was combined

with higher order time-stepping methods to converge to the solution. This allowed

the authors to focus on subtle issues related to improving stability when applied to

complex problems. Here, however, the focus is on testing and comparing various

methods when applied to somewhat less involved model problems. The iterator

in all cases is kept relatively simple, i.e. the forward Euler approach introduced

in Section 2.2 is used, to isolate issues related to solving the linear system. The

performance of DG discretisations in such a setting has yet to be compared against

other methods, i.e. residual distribution, by running numerical experiments on a

series of test problems. It is natural to stick with the same pseudo time-stepping

so only the aforementioned forward Euler time-stepping will be considered in the

context of steady DG methods. The numerical results are discussed in Section 3.7.

3.4 Design Principles

In the chapter on continuous residual distribution methods a guideline on how to

design distribution strategies and coefficients was given. Those design criteria were

dictated by the extensive theory on continuous methods. Unfortunately very little

is known about discontinuous residual distribution methods. In [14] the authors

proved a Lax-Wendroff-type theorem (convergence to the weak solution) and derived

accuracy conditions, but, as mentioned in the introduction, they worked with a

different discontinuous scheme. Although in [3] it is claimed that those results hold
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also for schemes of the form (3.3) or (3.4), no formal proofs are given to support that

statement or to show that the two formulations are equivalent. Moreover, proofs

in [14] utilize the underlying structure of the scheme, which, again, is different from

what is investigated here. Work therefore needs to be done before one can, with full

confidence, state that results obtained for one framework are automatically true for

the other.

If there is no theory, what are the principles one should follow while designing

the distribution coefficients? It is rather intuitive that cell residuals should be dis-

tributed following the guidelines outlined in Section 2.4. As a matter of fact, no new

distribution strategies for cells have been proposed for the discontinuous schemes

so far. There seems to be no demand for such. On the other hand, defining a dis-

tribution strategy for the edges remains an open problem. Both Hubbard [57] and

Abgrall [3] proposed their own solutions. These are presented in Section 3.6. This

section is an attempt to summarize and extend the heuristics that those algorithms

are based on.

Conservation is defined as a straightforward extension of the corresponding

concept for continuous schemes. For schemes in the general form (3.4) it is imposed

by choosing the splitting so that, as in the continuous case, the cell distribution is

conservative (cf. Condition (2.10) in Chapter 2) :

∑

i∈E

βE
i = 1 ∀E ∈ Th,

and, additionally, the edge coefficients satisfy the following condition:

∑

i∈e

αe
i = 1 ∀e ∈ Th. (3.9)

This guarantees that:

∑

E∈Th


∑

i∈E

βE
i φ

E +
∑

e∈E\∂Ω

∑

i∈e

αe
i φ

e


 =

∑

E∈Th

φE +
∑

e∈Th\∂Ω

φe

=
∑

E∈Th

∮

∂E

f(uh) · n dΓ −
∑

e∈Th\∂Ω

∫

e

[f(uh) · n] dΓ =

∮

∂Ω

f(uh) · n dΓ.

In other words, the information can only enter the domain through the boundary

terms. Recall that conservation in the continuous case was necessary to assure that

the discontinuities were captured accurately. It has yet to be assessed whether it is
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necessary and sufficient for a similar result to hold in the discontinuous setting. Split-

tings for edge-based residuals satisfying (3.9) are said to be conservative. Clearly, if

both the decomposition for edge-based and cell-based residuals is conservative then

the overall scheme is.

Positivity will also be considered in the same terms as in the continuous case.

Assume that scheme (3.4) can be rewritten as:

un+1
i =

∑

k

ck u
n
k ∀i (3.10)

in which the summation is carried out over all the degrees of freedom. The discon-

tinuous RD scheme (3.4) is positive provided that

ck ≥ 0 and
∑

k

ck = 1. (3.11)

This abstract formulation is identical to the one in the continuous case (cf. Equation

(2.12)) and therefore reasoning that is usually used in the continuous case (see, for

instance, Section 3.3 in [38]) also applies here. In other words, positive discontinuous

RD schemes give solutions free of spurious oscillations. Note that the above states

that if one takes a positive cell distribution and combines it with positive strategy

for the edges then the resulting scheme will give oscillation-free solutions. Further

remarks on positivity of particular discontinuous RD methods are made in Section

3.6.1 and Appendix D.

Linearity preservation in the continuous case is satisfied as long as the distri-

bution coefficients for cells are bounded. Applying the reasoning from [41] (Lemma

1.6.1 and its proof) to the discontinuous scheme (3.4) gives exactly the same re-

sult with no additional effort. It means that a discontinuous residual distribution

method is linearity preserving if and only if there exists a constant C ∈ R such that

all the distribution coefficients can be uniformly bounded:

βE
i ≤ C and αe

i ≤ C ∀E ∈ Th ∀e ∈ E, (3.12)

for φE and φe tending to zero. Showing that this is sufficient for the scheme to be

second order accurate is not that straightforward, but arguments from the contin-

uous framework can be quite naturally applied to the current scenario by simply

incorporating edge residuals into the original analysis from [1] and [13]. See [3] (and

introduction to this section) for a further discussion. A splitting for edge-based
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residuals is said to be linearity preserving if it satisfies (3.12). As in the case of

conservative and positive schemes, combining a linearity preserving distribution for

both cell and edge-based residuals gives a linearity preserving scheme.

Continuity and linearity in this chapter are understood in the same sense

as in the continuous case, i.e. scheme (3.4) is said to be linear/continuous if the

distribution coefficients resulting from splitting the edge and cell based residuals are

linear/continuous.

Upwinding has so far not been discussed in the discontinuous setting. Cell-

based splitting is considered upwind if it satisfies the upwinding condition discussed

in Section 2.4. Scheme (3.4) is considered upwind if the strategy employed to split

cell-based residuals is upwind and on top of that the distribution strategy for the

edges takes into account the direction of the flow.

To the author’s best knowledge, the above is the first attempt to collect and

specify design criteria one should follow while designing a distribution strategy for

discontinuous residual distribution methods. As presented, they are a quite natural

extension of the corresponding principles for continuous schemes. All of them fit

into a general rule that the discontinuous residual distribution scheme satisfies a

certain property if both the cell- and edge-based distributions do. The theory that

backs those criteria up can, in many cases, be derived by a natural generalization of

similar results for the framework of continuous methods. Suggestions how this can

be/was done were given and no further discussion on this matter will be carried out.

The main focus here is on methods for time-dependent problems and this work is

by no means an attempt to gather a complete theory for the steady discontinuous

RD framework.

3.5 Nonlinear Equations

Evaluation of the edge residual given in (3.2) is a challenge in itself. One way of

tackling it is to assume that there exists a conservative linearisation for the flux

difference [88]. In such a case, for any two arbitrary values uL and uR (for instance

the left and right-hand-side values of the numerical solution across any given edge

e), the following holds (see pages 360–361 in [88]):

f(uR)− f(uL) =
a(uR) + a(uL)

2︸ ︷︷ ︸
ã

(uR − uL). (3.13)
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The edge-based residual:

φe = −
∫

e

[f(uh) · ~n] dΓ,

can now be evaluated exactly, giving

φe =

Nq∑

l=1

wl ãl · nER,e [ul], (3.14)

in which Nq is the number of quadrature points used in integrating (3.2), wl are the

quadrature weights and ãl is the conservative averaged flux Jocobian:

ã =
a(uER

) + a(uEL
)

2

evaluated at xl. The jump [ul] is consistent with the direction chosen for the normal

vector, i.e.

[ul] = (uEL
− uER

)(xl).

For all the equations considered in this work (the advection equation, Burgers’

equation and the Euler equations), it has been assumed that the vector of variables

with respect to which the underlying equations/systems are solved vary linearly

within each mesh cell (and hence along each mesh edge) and that the flux, f , is

a polynomial function of u of order no higher than 2. For example, in the case of

the advection equation one has that f(u) = au (a being linear in space) and in

the case of the Burgers‘ equation the flux is given by f(u) =
(

u2

2
, u

2

2

)
. In such a

case Simpson’s rule is accurate enough to integrate (3.2) exactly. It has yet to be

investigated how to approach equations for which conservative linearization is not

known. This issue, however, will not be raised in this thesis.

3.6 Examples of Edge Distributions

Probably the most important ingredient of every scheme that fits into the framework

of discontinuous RD methods are distribution strategies for edge-based residuals.

In this chapter all available splittings are briefly presented and discussed. The first

two, the mED and LF schemes, are based on ideas and concepts coming directly

from the RD framework. Both approaches are very faithful to the residual distribu-

tion concept and until recently have been the only known strategies. The last two
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splittings considered in this section, the DG and m1ED distributions, are inspired

by the DG approach and its close relation to the discontinuous RD framework. In-

troduced originally in [105], these strategies were designed to improve the accuracy

of discontinuous RD methods when applied to unsteady problems (more on this

matter can be found in Chapter 5).

3.6.1 The mED scheme

Proposed by Hubbard in [57], the mED scheme was designed under the assumption

that there exists a conservative linearisation for the flux difference (see Equation

(3.13)). To ensure that edge residuals resulting from this splitting can be used

as part of a positive scheme, Hubbard [57] evaluated (3.14) using the quadrature

coefficients resulting from the Simpson’s rule. He arrived at the following formulation

(numbering as indicated on Figure 3.1):

φe =
1

2
â12 · nER,e(u1 − u2)|e| +

1

2
â43 · nER,e(u4 − u3)|e|. (3.15)

The ãij are averaged values of the flux Jacobian defined as:

â12 =
1

3

(
a1 + a2 +

a3 + a4

2

)
, â43 =

1

3

(
a3 + a4 +

a1 + a2

2

)
(3.16)

in which ai (i = 1, . . . , 4) are the values of a at the vertices of e and |e| is the length
of the edge. The definition of the mED scheme is now clear. For a generic edge e

and its vertices 1, 2, 3 and 4 (numbering as on Figure 3.1) it is given by the following

split residuals:

φmED
1 =

1

2
[â12 · nER,e]

+ (u1 − u2)|e| = α1 φ
e,

φmED
2 =

1

2
[â12 · nER,e]

− (u1 − u2)|e| = α2 φ
e,

φmED
3 =

1

2
[â43 · nER,e]

− (u4 − u3)|e| = α3 φ
e,

φmED
4 =

1

2
[â43 · nER,e]

+ (u4 − u3)|e| = α4 φ
e.

(3.17)

This distribution takes into account the direction of the flow and hence it is upwind.

The distribution coefficients sum up to 1, i.e. α1 + α2 + α3 + α4 = 1, which means

it is conservative. As noted in [57], applying (3.17) to any continuous linear steady

state leads to zero contributions from the edges, since u1 = u2 and u3 = u4. In other
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words, any continuous steady state will always be preserved by this distribution of

edge-based residuals, so the overall scheme will be linearity preserving as long as the

distribution of cell-based residuals is linearity preserving. The limit on the time-step

guaranteeing positivity is given by (cf. Equation (40) in [57] and the derivation in

Appendix D):

∆t ≤ 1

3

|E|
(kEi )

+
+ (ke1i )+ + (ke2i )+

∀E ∈ Th ∀i ∈ E, (3.18)

in which kEi is a flow sensor defined in Section 2.6 and kei is its edge-based counterpart

related to edge e and defined as kei = 1
2
ai · nE,e|e|. Edges e1 and e2 are adjacent to

cell E and such that i ∈ e1 ∩ e2. Note that the direction of the normal vector in the

definition of kei is outward from the cell vertex i belongs to. Linearity and continuity

of the distribution follow from the properties of linearization (3.16).

It is worth pointing that originally this distribution was proposed without any

specific name (see [57]). In [105], in order to distinguish it from other distributions,

it was referred to as the mED distribution. This thesis remains faithful to that

convention.

3.6.2 The LF Scheme

The (local) Lax-Friedrichs distribution for edges was proposed by Abgrall in [3]

and is based on its counterpart for cells. It is defined as

αi φ
e =

φe

4
+ αe(ui − ū), i = 1, . . . , 4, (3.19)

with

ū =
u1 + u2 + u3 + u4

4
,

where u1, u2, u3.u4 are the values of uh at the vertices of e (notation as in Figure 3.1).

This distribution is positive provided that the dissipation coefficient αe satisfies the

following inequality (consult references [2] and [3] for a proof):

αe ≥ max
i∈e

|kei |.

Conservation, linearity and continuity are immediate.This scheme is not upwind as

regardless of the direction of the flow all degrees of freedom will receive signals.

Although no theoretical results are known, numerical experiments show that this
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distribution leads to only first order accurate approximations. This should come as

no surprise as the cell-based LF distribution has identical properties.

As reported in [3], limiting the distribution coefficients in (3.19) (as in Section

2.6.5) gives a scheme which is formally second order accurate. Numerical results

show that this order is never achieved in practice which is very likely related to

instabilities that were discussed with regard to the continuous LF scheme in [2].

3.6.3 The DG Scheme

Signals resulting from theDG distribution are simply the edge integrals appearing

in the strong formulation of the discontinuous Galerkin approximation (3.6):

αDG
1 φe =

∫

e

(
f̂EL,e − fh

)
· nEL,e ψ1 dΓ,

αDG
2 φe =

∫

e

(
f̂ER,e − fh

)
· nER,e ψ2 dΓ,

αDG
3 φe =

∫

e

(
f̂ER,e − fh

)
· nER,e ψ3 dΓ,

αDG
4 φe =

∫

e

(
f̂EL,e − fh

)
· nEL,e ψ4 dΓ,

(3.20)

in which f̂E,e is the numerical flux discussed in Section 3.3 and ψi are the Lagrange

basis function associated with edge vertices. Now, since ~nER,e = −~nEL,e (and the

numerical flux is assumed to be conservative) it follows that:

∑

i∈e

αDG
i = 1.

Hence the DG distribution is conservative. Of course one has to specify f̂E,e before

this distribution can be implemented. Two numerical fluxes introduced in Section

3.3 will be considered here. Applying the Lax-Friedrichs flux will give the DG-

LF splitting and choosing the upwind flux will lead to the DG-upwind splitting.

Numerical results show that in both cases the resulting scheme is second order

accurate, but not positive. This splitting is upwind as the numerical flux takes into

account the direction of the flow. It is also continuous and linear as the signals

defined in (3.20) are continuous and linear with respect to the approximate solution

and the advection velocity (flux Jacobian).
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3.6.4 The m1ED Scheme

For every cell E consider shifted Lagrange linear basis functions ψRD
i defined as:

ψRD
i = ψi + βRD

i − 1

3
, i ∈ E,

where βRD
i is the distribution coefficient resulting from the strategy applied to dis-

tribute cell-based residual φE(uh). The motivation for introducing such basis func-

tion is given in Section 5.3.2. Note that βRD
i is constant. The m1ED strategy for

edge e ∈ E is defined by taking (3.20) and substituting ψRD
i instead of ψi :

αm1ED
i φe =

∫

e

(
f̂E,e − fh

)
· nE,e ψ

RD
i dΓ.

In the above expression i is a vertex of E. Note that ψRD
i , contrary to ψi, does not

vanish on any of the edges of E (unless βi =
1
3
). This means that now every vertex

i of E will receive a signal from side e ∈ E, regardless whether i belongs to e or not.

Being consistent with the strategy applied to cell-based residuals makes it a very

interesting alternative. It is conservative, i.e. all signals sent from edge e sum up

to φe, since
∑

i∈E ψ
RD
i = 1. Numerical results show that it is second order accurate,

but not positive. As in the case of the DG splitting, two numerical fluxes will be

considered: the Lax-Friedrichs flux (the m1ED-LF distribution) and the upwind flux

(the m1ED-upwind splitting). Similarly to the DG scheme, it is both continuous

and linear as the formula for the signals is. More comments on positivity are made

in Section 5.3.3.

More on the motivation for using the modified test function ψRD
i and further

similarities between the RD and DG frameworks (in particular the DG and m1ED

distributions) can be found in Chapter 5 in which the framework of discontinuous-in-

space schemes for time-dependent problems is discussed. Since the m1ED splitting

was originally designed for time-dependent problems it seems natural to postpone

further discussion on its derivation till Chapter 5.

3.7 Numerical Results

The number of numerical results presenting the performance of discontinuous RD
schemes that can be found in the literature is rather limited. Hubbard in his two pa-

pers on discontinuous RD schemes [57,58] considered one edge distribution, namely

the mED scheme, and experimented with it on an extensive set of test cases look-
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ing at accuracy, positivity and efficiency. Abgrall [3] also implemented only one

edge-based distribution, the limited LF scheme, but presented a very narrow set of

results (testing only positivity). Neither of them attempted to compare different

distribution strategies for the edges or to examine differences/similarities between

the RD and DG approaches. Presenting such a comparison is the main goal of this

section.

The test cases and meshes used in this section are identical to those introduced

in Section 2.7. The cell-based residuals were distributed with the aid of the PSI

scheme, and to split edge residuals distribution strategies introduced in Section 3.6

were implemented. The distribution strategy for cells was kept fixed as the focus of

interest in this chapter is different strategies for edges, not cells. As such, only edge-

based splittings are mentioned in the results, graphs and tables. The only exception

is the DG scheme which was also tested. To distinguish, the DG acronym was put

in front of the edge distribution whenever the discontinuous Galerkin method was

used instead of the PSI scheme to distribute cell-based residuals. The time-step in

(3.4) was computed as (cf. the positivity condition (3.18)):

∆ti = CFL
1

3

|E|
(kEi )

+
+ (ke1i )+ + (ke2i )+

∀E ∈ Th ∀i ∈ E.

Figures 3.3-3.8 show the steady state solutions for Test Case A obtained with

the aid of six schemes described in Section 3.6 (on a regular triangulation of 57×57

grid and with topology shown in Figure 2.7). Results of a similar experiment,

but obtained with the aid of the discontinuous Galerkin scheme (i.e. with the

discontinuous Galerkin method used to distribute cell-based residuals) are presented

in Figures 3.9-3.10. Interestingly enough, switching from the upwind to the Lax-

Friedrichs flux does not make any noticeable differences. Although DG-upwind

and DG-LF gave nice results (the solutions exhibit relatively small overshoot and

undershoot), they are not completely free of spurious oscillations (see Tables 3.1

and 3.2). Still, these two schemes led to better results than the m1ED-upwind

and m1ED-LF splittings. Only the mED and LF schemes gave genuinely positive

results, the one given by the LF method being very diffusive. The DG method

(presented in Section 3.3) gave results very similar to those obtained with the aid

of the m1ED distribution (that is the PSI scheme applied to cell residuals and the

m1ED distribution for edges). This was expected as the two schemes are very similar

(i.e. based on similar integrals with only the test function being different - this is

discussed in more detail in Chapter 5).
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The convergence histories are plotted on Figure 3.11. Recall that in most cases

the PSI scheme was used to distribute cell residuals and only the name of the distri-

bution for edge-based residuals is given. When the acronym DG is given in the front

of an edge distribution, e.g. DG-DG-upwind and DG-DG-LF, then the Discontinu-

ous Galerkin rather than the PSI scheme was used to distribute cell residuals. Most

schemes, apart from the m1ED-LF, converge rather rapidly, the m1ED-upwind, DG-

DG-upwind, and DG-DG-LF giving the best performance. The m1ED-LF scheme

never produced residuals smaller than 10−15 (the machine precision being 10−16).

Instead, it oscillated around that value with jumps smaller than 10−16. However,

with discretization errors for this test case at around 10−4 this is still a satisfactory

result. A quick comparison with the results obtained for the continuous approach

(see Figure 2.14) shows that the discontinuous RD framework is consistently slower

in terms of number of iterations than its continuous counterpart. This is related to

the more restrictive constraint on the pseudo-time-step required to impose positivity

on iteration, cf. Eqs. (2.22) and (3.18). The CFL number for this problem was set

to 0.9 for the mED, DG-upwind, m1ED-upwind and DG-DG-upwind schemes. In all

other cases a CFL number equal to 0.3 was used. The LF scheme was particularly

sensitive as CFL = 0.1 had to be used. No stability analysis is available for this

distribution and the CFL number was found experimentally. All experiments were

run on a regular triangulation of 57× 57 grid.

Results of the mesh convergence analysis are plotted on Figure 3.12. As in all

previous cases, switching from the upwind to the Lax-Friedrichs flux does not show

any noticeable differences (though the results are not identical). As expected, only

the LF scheme is first order accurate, all other schemes exhibiting second order

convergence. The m1ED and DG discretizations gave similar results. In Chapter 5

it will be shown that, in some cases, these two schemes are in fact identical.
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exact mED LF m1ED-upwind m1ED-LF DG-upwind DG-LF
min(uh) 0.0 1e− 18 0.0 −0.018 −0.018 −0.000047 −0.000048
max(uh) 1.0 1.0 1.0 1.023 1.023 1.0 1.0

Table 3.1: Minimum and maximum values of the solutions presented on Figures 3.3-3.8.

exact DG-DG-upwind DG-DG-LF
min(uh) 0.0 −0.018 −0.018
max(uh) 1.0 1.02 1.02

Table 3.2: Minimum and maximum values of the solutions presented on Figures 3.9-3.10.
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Figure 3.3: Solution for the mED scheme for the Test Case A. The PSI scheme was used to
distribute cell residuals.
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Figure 3.4: Solution for the LF scheme for the Test Case A. The PSI scheme was used to distribute
cell residuals.
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Figure 3.5: Solution for the DG-upwind scheme for the Test Case A. The PSI scheme was used to
distribute cell residuals.
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Figure 3.6: Solution for the DG-LF scheme for the Test Case A. The PSI scheme was used to
distribute cell residuals.
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Figure 3.7: Solution for the m1ED-upwind scheme for the Test Case A. The PSI scheme was used
to distribute cell residuals.
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Figure 3.8: Solution for the m1ED-LF scheme for the Test Case A. The PSI scheme was used to
distribute cell residuals.
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Figure 3.9: Solution for the DG scheme for the Test Case A using the upwind flux.
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Figure 3.10: Solution for the DG scheme for the Test Case A using the Lax-Friedrichs flux.
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Figure 3.11: Convergence histories for the mED, LF, DG-upwind, DG-LF (left) and the m1ED-
upwind, m1ED-LF, DG-DG-upwind and DG-DG-LF (right) schemes for the Test Case B.
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Figure 3.12: Mesh convergence for the mED, SU, LF, m1ED-upwind, m1ED-LF (left) and the
DG-upwind, DG-LF, DG-DG-upwind and DG-DG-LF (right) schemes for Test Case B. In all cases
switching from the upwind flux to the Lax-Friedrichs flux made very small changes and hence some
plots in the above figures seem to overlap each other.

3.8 Summary

The goal of this chapter was to introduce and discuss the discontinuous residual

distribution framework. Alongside the definition of the framework, an overview

of its properties and key design criteria were outlined. Different schemes within

this new setting are constructed by selecting a separate distribution strategy for

cell- and edge-based residuals. The former were already discussed in Chapter 2.

Characteristic to the discontinuous setting splitting strategies for edge residuals were

presented in Section 3.6. Their main properties are outlined in Table 3.3. Finally, the

resemblance between discontinuous residual distribution and discontinuous Galerkin

approaches was discussed. The discussion carried out in Section 2.3 suggests that

every DG method can be viewed as a particular discontinuous RD discretization.

Conservative Upwind Continuous Linear Positive Linearity
Preserving

mED X X X X X X

LF X × X X X ×
m1ED X X X X × X

DG X X X X × X

Table 3.3: Summary of the properties of the edge distributions presented in this chapter. A
Xrepresents success, while × indicates a short-coming in the method.
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Presented numerical results showed that the mED method for edges performs the

best, i.e. the resulting numerical scheme is second order accurate, the solution is free

of spurious oscillations and there is very little diffusion. No other method gave results

both second order accurate and positive. It should be pointed out that in the case of

the discontinuous Galerkin method no limiting to avoid oscillations was used. Such

approach guarantees a fairer comparison between the two discontinuous frameworks.

The accuracy and convergence history results show that the discontinuous Galerkin

method is a very appealing way of integrating hyperbolic PDEs.

Briefly summarizing, the main contributions of this chapter include:

• discussion of the similarities between the discontinuous residual distribution

and discontinuous Galerkin discretizations;

• introduction of the design principles for the discontinuous residual distribution

framework;

• development of the m1ED edge distribution;

• numerical comparison of different splittings for edge residuals.

As in the continuous case, extension to non-linear equations will be covered

in more detail in chapters on time-dependent problems and non-linear systems of

equations.



Chapter 4

The Continuous RKRD
Framework

4.1 Introduction

Although very interesting theoretically and frequently used in applications, steady

state models considered in Chapters 2 and 3 are not capable of describing physical

phenomena that evolve in time. Instead, time-dependent models have to be em-

ployed. This has an immediate consequence in that the success of each numerical

framework for solving hyperbolic PDEs is determined, among others, by its ability

to tackle not only steady-state, but also transient problems. Bear in mind, though,

that adding variation in time not only facilitates models capable of capturing more

information but also introduces extra complexity into the process of solving the

underlying PDE. Extending steady state methods to time-dependent problems is

therefore not always as straightforward as one may wish. In particular, finding a

construction that will enable retention of all the nice properties from the steady-state

setting very often turns out to be a serious challenge.

The above discussion bears direct relevance here. The framework of residual dis-

tribution schemes for steady state problems, at least in the case of scalar equations,

has reached a high level of sophistication and understanding. This was summarised

in Chapter 2. Even though further research is still being carried out, the emphasis is

now mainly laid on the development of RD methods for time-dependent problems.

61
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Or, to be more precise, on efficiency, accuracy and robustness of such methods.

Reviewing and contributing to this study is the main goal in this thesis. To this

end, two new approaches to solving unsteady hyperbolic PDEs are introduced, one

assuming continuous-in-space and the other assuming discontinuous-in-space data

representation. In this chapter continuity of the underlying discretization is assumed

and only the first approach will be discussed. Introduction of the second method is

the subject of Chapter 5.

It should be pointed out that all the schemes developed within the continuous

steady-state RD framework introduced in Chapter 2 are feasible for time-dependent

problems. Indeed, it suffices to prescribe appropriate boundary and initial conditions

to make them applicable to such problems. Those methods, however, reduce to first

order the accuracy for time-dependent problems, no matter what the order of the

special or temporal discretization is. To be more precise, the order of accuracy is at

most one for linearity preserving schemes even if the time derivative is discretised

using a second or higher order method. This is due to an inconsistency in the

spatial discretization (see Section 1 in reference [73] for details) and for this reason

alternative approaches need to be explored. Various competing solutions exists, each

having its advantages and flaws. The main challenge, i.e. construction of a second

order, positive and efficient scheme, remains open.

In the next section a brief overview of available RD methods for time dependent

hyperbolic PDEs is given, namely the framework of residual distribution schemes

with consistent mass matrix and the space-time framework. Only the former cat-

egory will be considered here in more detail. In Sections 4.3.1 and 4.3.2 examples

of two sub-frameworks falling into it are given: the implicit Runge-Kutta Residual

Distribution and explicit Runge-Kutta Residual Distribution methods. The main

difference between the two is that the resulting linear system is non-diagonal in the

implicit case and diagonal in the explicit. Exhaustive numerical results are presented

in Section 4.4.

4.2 The Framework

It is assumed that the temporal domain [0, T ] is discretized into a set of N + 1

discrete levels {tn}n=0,1...,N such that:

t0 = 0, tN = T, tn < tn+1 and ∆tn = tn+1 − tn.
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At each time level tn the approximate solution unh is assumed to be globally continu-

ous (this will be relaxed in the next chapter) and linear within each element E ∈ Th,

and is given by (cf. Equation (2.6)):

unh(x) =
∑

i

ψi(x) u
n
i , (4.1)

where uni = unh(xi) are the nodal values of the approximate solution at time tn. As

in the previous sections, ψi is the linear Lagrange basis function associated with xi.

Whenever the time level is clear from the context the superscript n will be omitted.

4.2.1 The Consistent Mass Matrix Formulation

The first successful attempts to construct second-order residual distribution schemes

for time-dependent problems were based on the observation, published in 1995 [20],

of the close link between the residual distribution and finite element frameworks.

This, quite naturally, led to the introduction of a mass matrixmij (see, in particular,

[73] and [36]) and coupling in space of the time derivatives of the nodal values so

that the semi-discrete counterpart of (2.2) became:

∑

E∈Di

∑

j∈E

mE
ij

duj
dt

+
∑

E∈Di

βiφ
E = 0, (4.2)

rather than (cf. Equation (2.8)):

un+1
i = uni −

∆t

|Si|
∑

E∈Di

βiφ
E ∀i. (4.3)

Note that here uni denotes the approximate solution at node xi at time t = tn.

Expression (4.3) is a simplified version of Formulation (4.2) for which the time

derivative was discretized with the aid of the Forward Euler formula, and mij was

set to |Si| for i = j and 0 for i 6= j (i.e. the mass matrix was lumped). Although the

above approach provides a framework for developing higher than first order methods,

it leaves open the issue of construction of non-oscillatory schemes. Its close relation

to finite elements has, however, enabled application of the same analytical tools and

therefore deeper investigation.

In order to construct a second order scheme using formulation (4.2) one has

to employ a linearity preservation distribution for cell residuals and discretise the

time derivative with a second order scheme, i.e. second order Runge-Kutta method.
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The definition of the mass matrix that leads in such a situation to a second order

scheme (in both space and time) is not unique and four different approaches are

known. Refer to [85] for a thorough overview and extensive numerical comparison.

Here only one of them will be employed, the reason being twofold. First of all, as

reported in [85] and [81], Formulation 2 (naming as in [85]) gives best (in terms of

accuracy and stability) results. Secondly, in the discontinuous setting (see Chapter

5) all computations will be localised and instead of one global mass matrix there

will be a separate local mass matrix in each cell. Only Formulation 2 guarantees

that those matrices are non-singular. In order to be consistent, Formulation 2 will

be employed throughout this thesis. For each cell E ∈ Th the local mass matrix is

defined as:

mE
ij =

|E|
36

(3δij + 12βi − 1) (4.4)

with δij Kronecker’s delta. It can be expanded into a matrix form as:

MRKDG = |E|




β1

3
+ 1

18
β1

3
− 1

36
β1

3
− 1

36
β2

3
− 1

36
β2

3
+ 1

18
β2

3
− 1

36
β3

3
− 1

36
β3

3
− 1

36
β3

3
+ 1

18


 .

The consistency of this mass matrix with the distribution strategy follows from the

dependency of mij on βi. This formulation was derived in [73] in which the authors

based it on the analogy of the RD framework with stabilized Galerkin finite element

schemes (discussed in Chapter 2). Those considerationsare recalled in Appendix C.

Formulation (4.2) was implemented and investigated in a number of references,

i.e. [34, 36, 73] or [19]. In all of these references the authors used multi-step meth-

ods to integrate the underlying PDE in time. It is usually argued that the major

disadvantage of these methods is the fact that they are implicit, i.e. the resulting

linear system is not diagonal (even if explicit multi-step methods are utilised) and

therefore expensive. It should come as no surprise that there have not been any at-

tempts to combine this approach with multi-stage time stepping, i.e. Runge-Kutta

methods, as such modification will not affect the implicit nature of the method.

In [85] Ricchiuto et al. modified the above framework and combined it with multi-

stage Runge-Kutta methods to obtain a genuinely explicit scheme. The resulting

scheme is indeed explicit, but the formulation is somewhat complicated. It is pre-

sented in Section 4.3.2. Lack of any results testing Formulation (4.2) (without any

modifications) combined with a multi-stage discretization in time is clearly a gap

in the literature the filling of which is one of the main contributions of this thesis.
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An example of such methods, Implicit Runge-Kutta Residual Distribution methods

(referred hereafter to as implicit RKRD methods), are presented in Section 4.3.1.

It should be pointed out that implicit refers here to the fact that the resulting linear

system is not diagonal rather than to the fact that the time-stepping procedure is

implicit. In this thesis all considered time-stepping methods are explicit! Numerical

results presented in Section 4.4, surprisingly enough, show that the loss in efficiency

due to solving a global mass matrix is not profound.

4.2.2 The Space-Time Framework

The space-time framework investigated in [29] (see also [38] and references therein)

allows construction of second order and positive discretizations. Moreover, it is very

faithful to the original spirit of RD methods which makes this approach a very

appealing solution.

In order to proceed, extra notation is now introduced. First, note that in the

space-time slab Ω× [tn, tn+1], each element E in the mesh defines a prism in space-

time, defined as (see Figure 4.1):

Etn := E × [tn, tn+1].

By abuse of notation, Etn will be considered to belong to Di if E ∈ Di. Denoting by

E

E

j

k

j

k

i

i tn

tn+1

Figure 4.1: Space-time prism Etn := E × [tn, tn+1].
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unh and un+1
h the piecewise linear discrete approximations:

unh =
∑

i∈Th

ψi(x)u
n
i un+1

h =
∑

i∈Th

ψi(x)u
n+1
i ,

the approximation of u in space and time on the space-time slab Ω× [tn, tn+1] reads

usth (x, t) =
t− tn

∆t
un+1 +

tn+1 − t

∆t
un for t ∈ [tn, tn+1].

This definition is slightly different from the one used in the previous section and is

introduced here only in order to demonstrate the space-time RD framework.

A space-time Residual Distribution scheme is defined as one that, given unh, the

discrete approximation in space of u at time tn, and given a continuous discrete

representation in space and time of the unknown u, denoted by usth , computes the

unknowns {un+1
i }i∈Th as follows:

1. ∀E∈Th compute the space-time residual

ΦEtn
=

∫ tn+1

tn

∫

E

(
∂usth
∂t

+ ∇ · f(usth )
)
dΩ dt (4.5)

2. ∀E∈Th distribute fractions of ΦEtn
to each vertex of Etn . These fractions (sig-

nals) will be denoted by ΦEtn

i,n+1 where i is one of the vertices of E.

3. ∀i ∈ Th assemble the elemental contributions from all E ∈ Di and compute

the nodal values of un+1
h by solving the algebraic system

∑

E∈Di

ΦEtn

i,n+1 = 0 ∀i ∈ Th. (4.6)

This framework allows construction of discretizations with all the desired properties,

but, unfortunately, leads to schemes which are a subject to a CFL-type restriction on

the time step. This is particularly disappointing when taking into account that these

schemes are by construction implicit. The positivity condition for this approach is

given by:

∆t = tn+1 − tn ≤ min
E∈Th

min
j∈E

2|E|
3k+j

, ∀n = 1, . . . , N.

Derivation of this condition can be found in [82]. In the literature it is also referred

to as the past-shield condition.
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The CFL restriction in the space-time framework follows from the following

reasoning. In each space-time prism Etn only the solution at the new time level, un+1
h ,

should be updated and hence receive signals. The one at the previous time level,

unh, is already known and its value is to remain unaltered. Imposing this constraint

introduces a restriction on the time-step. Interestingly enough, in the two layer

variant of the space-time framework [32] this restriction is no longer present. It works

by coupling two space-time slabs at a time and solving the equations simultaneously

in both. On one hand, the resulting system to be solved at each step is larger. On

the other, the construction removes from one of the layers the restriction on the

time-step. In theory this means that an arbitrarily large time-step can be used. For

a full discussion see [29].

This framework is beyond the scope of this thesis and is presented here only for

a brief comparison. No further details will be given.

4.3 Examples of Consistent Mass Matrix Frame-

works

In this dissertation the main focus of interest are methods falling into the framework

of consistent mass matrix schemes. Examples of two such RD discretizations for

time-dependent hyperbolic PDEs are introduced below. The first one, the implicit

RKRD framework, has not been investigated in the literature yet. The second one,

the explicit RKRD framework, was originally introduced in [85] and can be viewed

as an approximation to the former.

4.3.1 Implicit Runge-Kutta Residual Distribution Methods

The implicit Runge-Kutta Residual Distribution framework is derived by first inte-

grating (2.1) in time using the second order TVD Runge-Kutta time-stepping, due

to Osher and Shu [97]. It gives the following semi-discrete formulation:





δu1

∆t
+ ∇ · f(un) = 0,

δun+1

∆t
+

1

2

(
∇ · f(un) +∇ · f(u1)

)
= 0.

(4.7)

Here, δuk = uk − un is the increment during the current Runge-Kutta stage and u1

is the intermediate Runge-Kutta estimate approximating u at time t = tn+1. Using
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(4.2) to integrate both stages in (4.7) in space leads to:





∑

E∈Di

∑

j∈E

mE
ij

δu1j
∆t

+
∑

E∈Di

βiφ
E(un) = 0,

∑

E∈Di

∑

j∈E

mE
ij

δun+1
j

∆t
+
∑

E∈Di

1

2
βi
(
φE(un) + φE(u1)

)
= 0.

(4.8)

The above defines two linear systems to be solved at every time-step. These systems

can be written in a more general form as:





M
δu1

∆t
+ φ1 = 0,

M
δun+1

j

∆t
+ φ2 = 0,

where M is the global mass matrix, entries of which are defined by (4.4), and φ1

and φ2 are the vectors of signals each node has received. Note that the above can

be further simplified as:

{
u1 = un − ∆tM−1φ1,

un+1 = u1 − ∆tM−1φ2.
(4.9)

This is the form that was employed to carry out numerical experiments in Section

4.4.

Naturally, in order to finalize the definition of a particular scheme, one still needs

to decide which distribution strategy to implement. In this work four approaches

were examined, namely the LDA, N, SU and BLEND distribution strategies (out-

lined in Chapter 2) leading to, respectively, the RKRD-LDA, RKRD-N, RKRD-SU

and RKRD-BLEND schemes. Since the N scheme cannot be more than first order

accurate, the mass matrix in this particular case can be set as:

mN
ij = δij

|E|
3
, (4.10)

in which, as previously, δij is Kronecker’s delta. The above is simply the lumped

version of (4.4), which means that for the N scheme the resulting linear system is

diagonal. This definition will be used throughout this thesis (for the N scheme only,

though). For the BLEND scheme the mass matrix is defined as:

mBLEND
ij = θmN

ij + (1− θ)mLDA
ij ,
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and, similarly, the spatial residuals:

βBLEND
i φE = θφN

i + (1− θ)φLDA
i ,

for both the first and the second stage of the Runge-Kutta time-stepping. The

definition of the blending parameter θ is outlined in the next section.

The scheme presented in this section will be referred to as either the implicit

RKRD or simply RKRD scheme (with no direct reference to its implicit nature),

as opposed to the explicit RKRD approach outlined in Section 4.3.2 (always with

direct reference to its explicit nature).

4.3.2 Explicit Runge-Kutta Residual Distribution Methods

The method presented in Section 4.3.1 is implicit in the sense that at every time-step

two linear systems have to be solved. In [85] Ricchiuto et al. derived an approxi-

mation to that approach, namely the framework of explicit Runge-Kutta Residual

Distribution methods in which case the resulting linear systems are diagonal. It is

based on the observation that for every cell E ∈ Th and set of distribution coeffi-

cients βi there exists a uniformly bounded and locally differentiable bubble function

γi, such that
∑

i∈E γi = 0, and the following relation holds (cf. Equation (4.2)):

∑

E∈Di

∑

j∈E

mE
ij

duj
dt

+
∑

E∈Di

βiφ
E =

=

∫

E

ψi

(
∂uh
∂t

+ ∇ · f(uh)
)
dΩ +

∫

E

γi

(
∂uh
∂t

+ ∇ · f(uh)
)
dΩ.

(4.11)

For a proof of this statement and examples of bubble functions satisfying the above

refer to [85]. The Lagrange basis function ψi acts here as Galerkin test function. The

above means that every residual distribution discretization that fits into Formulation

(4.2) can be rewritten as a sum of a finite element-type term and a stabilizing bubble

function contribution. It follows immediately that the first stage in System (4.8)

can be rewritten as:

∑

E∈Di

∑

j∈E

mE
ij

δu1j
∆t

+
∑

E∈Di

βiφ
E(un) =

=

∫

E

ψi

(
δu1

∆t
+ ∇ · f(un)

)
dΩ +

∫

E

γi

(
δu1

∆t
+ ∇ · f(un)

)
dΩ.

(4.12)
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Similarly, the second stage in (4.8) can be rewritten as:

∑

E∈Di

∑

j∈E

mE
ij

δun+1
j

∆t
+
∑

E∈Di

1

2
βi
(
φE(un) + φE(u1)

)
=

=
1

2

∫

E

ψi

(
δun+1

∆t
+ ∇ · f(u1)

)
dΩ +

1

2

∫

E

γi

(
δun+1

∆t
+ ∇ · f(u1)

)
dΩ

+
1

2

∫

E

ψi

(
δun+1

∆t
+ ∇ · f(un)

)
dΩ +

1

2

∫

E

γi

(
δun+1

∆t
+ ∇ · f(un)

)
dΩ.

(4.13)

Note that using the above formulation would lead to a global non-diagonal mass ma-

trix that would have to be solved at every stage of the Runge-Kutta time-stepping.

This is despite the fact that explicit time-stepping routine is used. In order to

construct a genuinely explicit method, i.e. such that the mass matrix is diagonal,

Ricchiuto and Abgrall introduced the so-called shifted time-operator:

δuk = uk−1 − un (4.14)

and substituted it into the right-hand-side of Equations (4.12)-(4.13), but only in

the bubble contribution. In the case of the first stage (Equation (4.12)) it leads to:

∑

E∈Di

∑

j∈E

mE
ij

δu1j
∆t

+
∑

E∈Di

βiφ
E(un) ≈

≈
∫

E

ψi

(
δu1

∆t
+ ∇ · f(un)

)
dΩ +

∫

E

γi

(
δu1

∆t
+ ∇ · f(un)

)
dΩ,

(4.15)

The two formulations are no longer equal and hence the approximation sign ≈. A

similar relation holds for the second stage, i.e. Equation (4.13). The next steps

involve mainly algebraic manipulations and are rather technical so will not be pre-

sented here. The final form of the scheme is given by (referred to in [85] as the

globally lumped formulation):





|Si|
u1i − uni

∆t
+
∑

E∈Di

βiφ
E(un) = 0,

|Si|
un+1
i − u1i
∆t

+
∑

E∈Di

βiΦ
RK(un, u1) = 0.

(4.16)
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in which ΦRK is the Runge-Kutta residual defined as:

ΦRK(un, u1) =
∑

j∈E

mE
ij

u1j − unj
∆t

+
1

2
βi
(
φE(un) + φE(u1)

)
.

Formulation (4.16), as opposed to (4.8), is explicit and no linear systems have to be

solved. The authors prove in their paper that the above construction does not spoil

the overall accuracy of the scheme. Their experimental investigation also proves that

the resulting discretization is second order accurate. Numerical results in Section 4.4

do confirm that. Unfortunately, it remains unclear how to design a scheme within

this framework that would be both second order accurate and positive. The authors

suggest that the positivity is lost when the approximation (4.15) is introduced, which

may indicate that it cannot be recovered. This remains an open question. It is

worth pointing out that even though the above formulation is referred to as globally

lumped, no lumping in its traditional meaning is performed. The diagonal matrix

is obtained by simply applying an appropriate quadrature rule, i.e. guaranteeing

accuracy of order two.

As in the case of the (implicit) RKRD framework, four different distribution

strategies will be considered here, namely the LDA, SU, N and BLEND schemes.

These will lead to, respectively, the explicit RKRD-LDA, explicit RKRD-SU, ex-

plicit RKRD-N and explicit RKRD-BLEND schemes. In every cell E the blending

parameter for the BLEND scheme is defined as:

θk(uh) =

∣∣∣ΦE(k)

∣∣∣
∑

j∈E

∣∣∣ΦN(k)
j

∣∣∣

for which k = 1, 2 denotes Runge-Kutta stage and ΦE(k) the total shifted residual:

ΦE(k) =

∫

E

(
δuk + ek

)
dΩ,

with e1 and e2 being the corresponding evolution operators:

e1 = ∇ · f(un), e2 =
1

2
∇ · f(u1) +

1

2
∇ · f(un).

Finally, Φ
N(k)
j is determined by signals sent by distributing the residuals with the



Chapter 4 72 The Continuous RKRD Framework

aid of the N scheme and is defined as:

Φ
N(k)
j =

|E|
3

δuk

∆t
+ βN

j

∫

E

ek dΩ.

An identical definition of the blending parameter was used for the implicit RKRD-

BLEND scheme for which the above formulation guarantees that the resulting sys-

tem of equations is linear. Indeed, had θk(uh) depended on un+1
h (or, to be more

precise, on δuk rather than on δuk), this would not be the case and a system of non-

linear equations would be constructed instead. Note also that due to the simplified

definition of the mass matrix (4.10), the implicit RKRD-N scheme reduces to the

explicit RRKD-N scheme.

It should be pointed out that in [85] the authors, apart from Scheme (4.11),

presented one more formulation of the explicit RKRD framework: the so-called

selectively lumped explicit RKRD scheme. The two differ only slightly, the latter

being somewhat more complicated and slightly less stable (based on experimental

observations). Here only the globally lumped formulation will be considered as this

document is only meant to give an overview rather than a complete review of possible

alternatives. Moreover, as already pointed out, between the two the globally lumped

formulation is more straightforward and gives better results.

The authors in [85] do not raise the issue of stability. Instead, they report that

‘ A Fourier analysis on unstructured triangulations is under way to have a better

estimate of the time step stability limit for the linear schemes.’ [85].

4.4 Numerical Results

In order to investigate properties of the frameworks introduced in this chapter,

extensive numerical results are presented and discussed. A further study of the

explicit RKRD framework, including comparison of different types of lumping and

mass-matrices, can be found in reference [85]. To the author’s best knowledge no

other results than those presented here have been published on the implicit RKRD
framework so far. The results presented here have two objectives: to verify the

accuracy of the formulations discussed in this chapter and to test the non-oscillatory

nature of the results obtained.

Three distinct test cases were implemented. Test Cases C and D are linear equa-

tions with smooth initial conditions which were used to measure convergence rates.

Test Case E is a non-linear equation with a piece-wise constant initial condition,
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the solution to which exhibits shocks and rarefaction waves. It was employed to

investigate positivity. In all experiments, the final time was set as:

• T = 1 for Test Cases D and F;

• T = π
2
for Test Case E.

Test Case D: The so-called constant advection equation given by

∂t u + a · ∇u = 0 on Ωt = Ω× [0, 1]

with Ω = [−1, 1]× [−1, 1] and a = (1, 0). The exact solution to this problem (which

was also used to specify the initial condition at t = 0) is given by

u(x, t) =

{
z5 (70z4 − 315z3 + 540z2 − 420z + 126) if r < 0.4,

0 otherwise

in which r =
√
(x+ 0.5− t)2 + y2 and z = − r−0.4

0.4
and x = (x, y). Note that this

function is C4(Ω) regular. The boundary conditions were set to

u(x, t) = 0 on ∂Ω.

Note that for structured grids the advection velocity given above is aligned with the

mesh.

Test Case E: The rotational advection equation, given by:

∂t u + a · ∇u = 0 on Ωt = Ω× [0,
π

2
]

with Ω = [−1, 1] × [−1, 1] and a = (−y, x). The exact solution to this problem

(which was also used to specify the initial condition at t = 0) is given by

u(x, t) =

{
z5(70z4 − 315z3 + 540z2 − 420z + 126) if r < 0.4,

0 otherwise

where r =
√
(x− xc)2 + (y − yc)2 and

z = −r − 0.4

0.4
, xc =

1

2
cos
(
t − π

2

)
, yc =

1

2
cos
(
t − π

2

)
.
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The boundary conditions were set to:

u(x, t) = 0 on ∂Ω.

Contrary to Test Case D, here the advection velocity is generally not aligned with

the mesh. This test case is used to make sure that results obtained for Test Case D

are not biased by the direction of the flow.

Test Case F: The inviscid Burgers’ equation is given by:

∂t u + ∇ · f(u) = 0 on Ωt = Ω× [0, 1]

with f = (u
2

2
, u

2

2
). As for Test Cases D and E, the spatial domain is a square:

Ω = [−1, 1]× [−1, 1]. The initial condition was set to be piece-wise constant:

u(x, 0) =

{
1 if x ∈ [−0.6,−0.1]× [−0.5, 0]

0 otherwise

The boundary conditions were set to:

u(x, t) = 0 on ∂Ω.

The solution to this problem is discontinuous and exhibits rarefaction and shock

waves. It is therefore a very challenging and interesting problem that was used to

test for positivity. The exact solution to this problem is given in Appendix A.

In this chapter two types of triangulations were used, i.e. structured (regular

and isotropic) and unstructured, examples of which are illustrated in Figure 4.2.

Linear equations, as in the two previous chapters, were solved on structured grids.

To demonstrate robustness of the methods discussed here, in particular to show

that they can be used with both structured and unstructured discretizations of the

domain, an unstructured mesh with 26054 elements (topology similar to that on the

right of Figure 4.2) was used in the case of the non-linear Burgers’ equation. The

time step was calculated using (cf. Equation (68) in [85])

∆t = CFLmin
i∈Th

|Si|∑
E|i∈E

αE
, (4.17)
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with CFL number set to 0.9 and the αE coefficient defined as:

αE =
1

2
max
j∈E

∥∥∥∥
∂f(uj)

∂u

∥∥∥∥hE , (4.18)

with hE being the reference length for element E. The linear system resulting from

the implicit RKRD discretization was solved using PETSc [15] (see also the man-

ual [16]) within which the ILU preconditioned GMRES solver was used. This is the

default setting in PETSc which agrees with the type of solver that is usually sug-

gested in the case of general non-symmetric systems of equations (see, for instance,

Section 6.6.6 and Figure 6.8 in [43]). Since it gave good results, no other solver was

implemented. To guarantee convergence, the relative tolerance in PETSc, i.e. the

stopping criterion, was always set to 10−8. The initial estimate was always set to

zero.
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Figure 4.2: Representative structured (left) and unstructured (right) grids used for transient prob-
lems.

The grid convergence analysis confirmed that, within both the implicit and ex-

plicit RKRD frameworks, the N scheme is only first order accurate whereas the

LDA, SU and BLEND schemes exhibit convergence of order two. These results,

presented in Figures 4.3 and 4.4, indicate that with respect to accuracy both frame-

works perform qualitatively the same. In the implicit RKRD framework the LDA

and SU schemes gave best results, the SU scheme being noticeably more accurate

than LDA. The BLEND scheme is slightly less accurate then both of them. This is

most likely due to its nonlinear nature. Interestingly enough, moving to the explicit

RKRD framework makes the LDA and SU schemes by an order of magnitude less

accurate. Suddenly the LDA, SU and the BLEND scheme start to perform in a
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very similar manner, comparable to the implicit RKRD-BLEND scheme. In other

words, the explicit schemes are less accurate than their implicit counterparts. These

experiments were carried out on a set of regular triangular meshes (topology as on

the left of Figure 4.2) with the coarsest mesh of a 14×14 regular grid refined 6 times

by a factor 2 in each direction. The accuracy was monitored by the convergence of

the L2 norm of error (2.27) at the final time of the simulation with respect to the

exact solution. The behaviour of the L1 and L∞ norms was qualitatively and quan-

titatively very similar. Switching to unstructured meshes also led to qualitatively

identical results.
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Figure 4.3: Grid convergence for the implicit RKRD framework for Test Cases D (left) and E
(right).
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Figure 4.4: Grid convergence for the explicit RKRD framework for Test Cases D (left) and E
(right).
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In Figure 4.5 the contours, cross sections (along the symmetry line y−x = 0.1 and

y = 0.3) are plotted and the maximum and minimum values of the exact solution to

Burgers’ equation (Test Case F) are given. Similar plots and quantities are given for

the approximate solutions obtained with the aid of the implicit and explicit RKRD
frameworks, see Figures 4.6-4.13. As expected, the N scheme gave a solution free

of spurious oscillations (it is positive), though more diffusive than other schemes.

The solution obtained with the aid of the LDA scheme exhibits oscillations near

discontinuities (again, as expected). Compared to the explicit RKRD approach,

these oscillations are much more pronounced when the implicit RKRD framework

is used. To show that this was not due to the poor performance of the linear solver,

two extra experiments were carried out. First, the CFL number was decreased to

0.1, all other parameters being the same as before. The result of this experiment

is shown in Figure 4.14. Clearly the new solution is much smoother. Next, the

RKRD-LDA scheme was tested with CFL set to, as previously, 0.9 and the relative

tolerance in PETSc decreased to 10−16. The final residual in this case was roughly

(at each time-step and at each Runge-Kutta stage) equal to 10−18. Results are

shown in Figure 4.14. Clearly tuning PETSc did not help, which implies it is the

scheme itself, not the linear solver, that is unstable. Other schemes behaved similarly

regardless whether the RKRD discretization was explicit or implicit. The implicit

and explicit RKRD-BLEND schemes performed much better than the implicit and

explicit RKRD-LDA schemes, respectively. Blending helped smooth the solutions

out and the resulting approximations have smaller under/over-shoots. Although less

diffusive then the N scheme, the BLEND scheme is not 100% oscillation-free. To

summarise, the BLEND scheme gives the best trade-off between being oscillations-

free and second order accurate. In terms of accuracy the implicit framework is

more accurate, but more oscillatory than its explicit counterpart. The PSI scheme

discussed in Chapters 2 and 3 was not considered in this context as it would lead

to a genuinely implicit scheme, i.e. the resulting system of equations would be non-

linear. In this thesis the focus is laid on schemes that lead to linear systems of

equations.
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Figure 4.5: 2d Burgers’ equation: the analytical solution. Left: contours at time t = 1. Middle:
solution along line y = 0.3 and along the symmetry line. Right: minimum and maximum values
of the solution.
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Figure 4.6: 2d Burgers’ equation: implicit RKRD-LDA scheme. Left: contours at time t = 1.
Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum and maximum
values of the solution.
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Figure 4.7: 2d Burgers’ equation: implicit RKRD-SU scheme. Left: contours at time t = 1.Middle:
solution along line y = 0.3 and along the symmetry line. Right: minimum and maximum values
of the solution.
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Figure 4.8: 2d Burgers’ equation: RKRD-N scheme. Left: contours at time t = 1. Middle: solution
along line y = 0.3 and along the symmetry line. Right: minimum and maximum values of the
solution.
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Figure 4.9: 2d Burgers’ equation: implicit RKRD-BLEND scheme. Left: contours at time t = 1.
Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum and maximum
values of the solution.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

explicit RKRD−LDA

−1 −0.5 0 0.5 1

0

0.25

0.5

0.75

1

x

u

 

 

y = 0.3

symm. line

explicit RKRD−LDA

umin umax

-0.141 0.961

Figure 4.10: 2d Burgers’ equation: explicit RKRD-LDA scheme. Left: contours at time t = 1.
Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum and maximum
values of the solution.
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Figure 4.11: 2d Burgers’ equation: explicit RKRD-SU scheme. Left: contours at time t = 1.
Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum and maximum
values of the solution.
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Figure 4.12: 2d Burgers’ equation: explicit RKRD-N scheme. Left: contours at time t = 1. Middle:
solution along line y = 0.3 and along the symmetry line. Right: minimum and maximum values
of the solution.
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Figure 4.13: 2d Burgers’ equation: explicit RKRD-BLEND scheme. Left: contours at time t = 1.
Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum and maximum
values of the solution.
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Figure 4.14: 2d Burgers’ equation: implicit RKRD-LDA scheme with CFL set to 0.1. Left: contours
at time t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum
and maximum values of the solution.
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Figure 4.15: 2d Burgers’ equation: implicit RKRD-LDA scheme with relative tolerance set to
10−16. Left: contours at time t = 1. Middle: solution along line y = 0.3 and along the symmetry
line. Right: minimum and maximum values of the solution.

Finally, one should comment on scaling and performance of the linear solver that

was applied to solve linear systems resulting from the (implicit) RKRD discretiza-

tion. As mentioned earlier, only GMRES preconditioned with ILU was used. To

guarantee convergence, the linear solver was set to iterate until the relative tolerance

rtol:

rtol =
||r||l2
||b||l2

,

reached 10−8. In the above r is the current residual and b is the right-hand-side vector

(since the initial estimate was set to zero, b is also the initial residual). For all test

cases and for all schemes the linear solver converged rather rapidly (on average, in

less than 10 iterations) with the final residual equal to roughly 10−11. Some sample

results are given in Table 4.1. The extremely rapid convergence in the case of the N

scheme should come as no surprise as the resulting linear system is diagonal. The
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behaviour of the iterative solver when the BLEND scheme is used may seem odd as

the number of iterations needed for convergence for the first and the second stage

of the Runge-Kutta time-stepping differs by around 100%. This is due to the fact

that during the first stage the blending parameter picks the first order N scheme

most of the time and the system of equations is very close to a diagonal matrix. The

opposite situation is taking place during the second stage.

1568 6272 25088 100352 401408 1605632

LDA
GMRES iter. 9.84/9.84 8.52/8.52 7.95/7.95 7.76/7.76 7.74/7.74 7.63/7.63

||rF ||2 7.8e-11 1.39e-10 1.9e-11 1.92e-11 4.8e-12 6.55e-12

BLEND
GMRES iter. 4.3/6.9 4.30/7.56 4.44/8.21 4.33/8.68 3.29/7.82 4.27/8.57

||rF ||2 3.96e-11 9.84e-11 2.09e-11 2.18e-11 1.03e-11 1.03e-11

N
GMRES iter. 2/2 2/2 2/2 2/2 2/2 2/2

||rF ||2 2.5e-11 3e-17 4e-17 6e-17 7e-17 6e-17

SU
GMRES iter. 9.03/9.03 7.76/7.78 6.41/6.41 6/6 5.88/5.88 5.87/5.87

||rF ||2 1.04e-10 2.4e-11 8.78e-11 8.61e-12 1.59e-12 5.13e-13

Table 4.1: Performance of the GMRES solver when applied to the linear systems resulting from
the RKRD discretizations (Test Case E). The table shows the average number of iterations it took
to reach the stopping criterion during the first/second stage of the Runge-Kutta time-stepping and
the l2 norm of the final residual (when GMRES converged at the final time-step) at the second
stage of the RK time stepping (denoted by ||rF ||2). Results are given for the meshes used earlier
in the grid convergence analysis (with 1568, 6272, 25088, 100352, 401408 and 1605632 elements,
cf. top row of the table).

No comparison between execution times of the explicit and (implicit) RKRD
frameworks is given. This is primarily due to the fact that in the latter case a very

advanced and mature software library was used whereas the code for the explicit

framework was not optimised and all procedures were written with relatively little

emphasis on efficiency. Regardless the lack of actual results, it is worth mentioning

that the observed execution times in both cases were comparable. This, on one

hand, indicates that PETSc does indeed implement GMRES very efficiently. On

the other it suggest that the (implicit) RKRD framework is not too expensive for

applications and should be considered as an interesting alternative. Further notes

on this matter are given in Chapter 6 in which systems of non-linear equations are

considered.

4.5 Summary

In this chapter different techniques of approximating time-dependent hyperbolic

PDEs using the RD framework were outlined. The discrete solution was assumed

to be piecewise linear and continuous. The focus was laid on the framework of
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consistent mass matrix formulations combined with multi-stage second order TVD

Runge-Kutta method for integration in time. In particular, two competing tech-

niques were considered: implicit and explicit RKRD methods.

Regarding the accuracy and positivity the two approaches are very similar and

there is no clear indication which of the considered frameworks is superior. The im-

plicit RKRD methods are in general more accurate than their explicit counterparts,

but slightly less stable when it comes to non-linear equations (in particular the im-

plicit RKRD-LDA scheme). From a practical point of view, explicit methods are

cheaper and significantly simplify the process of parallelization. The whole frame-

work is a bit more complex than the implicit formulation. This becomes particularly

apparent when studying the original paper [85] in which numerous variants of the

explicit framework are discussed. Unfortunately no clear indication as which is the

optimal choice is given. Moreover, the explicit framework is not as much more effi-

cient than its implicit counterpart as expected (at least its serial implementation).

Still, there is a space for potential improvements (i.e. better implementation, paral-

lelization) which will speed the calculations up and which are not that obvious in the

case of implicit discretisations. Construction of a second order and positive scheme

still remains an open question. As far as implicit RKRD methods are concerned,

developing a genuinely non-linear scheme is a possible solution. This will, however,

lead to a set of non-linear (as opposed to linear in both the implicit and explicit

RKRD cases) set of equations. In the case of the explicit RKRD framework one

has to first investigate the impact of introducing the shifted time operator δuk with

regard to positivity. Another possibility is the limiting procedure of Hubbard and

Mebrate [59] developed for steady-state high-order methods. However in [74] it gave

only modest results when applied to time-dependent problems (the approximate

solutions are not 100% oscillation-free).

One of the most interesting things observed in this chapter is the efficiency with

which PETSc solves linear systems resulting from the (implicit) RKRD discreti-

sations. A very natural extension of the presented results would involve carrying

out a series of numerical experiments that would further compare the efficiency of

various approaches to time-dependent hyperbolic PDEs. Another possible extension

would a rigorous study of the effect of introducing the shifted time operator,δuk, on

positivity.



Chapter 5

The Discontinuous RKRD
Framework

5.1 Introduction

In the case of steady state residual distribution methods, relaxing the constraint on

the continuity of the data led to very promising results. A new, more flexible frame-

work was introduced and, as a consequence, a construction of scheme exhibiting all

the desired properties was possible. Moreover, the resulting scheme was localised

which facilitates h− and p− adaptation as well as parallelization. Extending those

results to time-dependent problems is a natural step forward which is the main goal

in this chapter.

To the author’s best knowledge the only attempt to combine discontinuous-

in-space data representation with RD schemes for time dependent problems was

carried out by Warzyński et al. in [105]. However, the authors of that paper used

only first order discretization in time and tested the resulting framework in terms

of positivity. Their results are discussed in Section 5.5. The goal of this chapter is

to further extend those results by designing a second order accurate discontinuous-

in-space RD framework for time dependent problems. This, quite naturally, will

be achieved by drawing together the framework of discontinuous RD schemes for

steady state problems, outlined in Chapter 3, and (implicit) RKRD framework from

84
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Chapter 4 for transient problems.

This chapter is organised as follows. First, the framework of discontinuous

Runge-Kutta Residual Distribution schemes is introduced. Next, it is thoroughly

analysed in terms of its relation to the discontinuous Galerkin framework. To a large

extent this will be a continuation of the discussion already started in Section 3.3. In

Section 5.4 the framework of unsteady discontinuous residual distribution methods

is introduced. Finally, extensive numerical results summarising observations made

in this chapter are given.

5.2 The Framework

The notation from Chapter 4 is kept unchanged. Only the approximate solution,

unh(x), takes now a slightly more general form:

unh(x)
∣∣
E

=
∑

i∈E

ψi(x) u
n
i , ∀x ∈ E ∀E ∈ Th. (5.1)

This reflects the fact that it is no longer assumed to be globally continuous. In

the remainder of this chapter, for clarity of presentation, the subscript h will be

omitted. It is assumed that whenever a superscript is used (e.g. n or n+1) then the

approximate rather than the exact solution is considered, i.e. unh = un. This is

mainly to clarify the discussion.

The discontinuous Runge-Kutta Residual Distribution scheme is constructed by

first integrating Equation (2.1) in time using the second order TVD Runge-Kutta

procedure, as outlined in Chapter 4. The resulting Formulation (4.7) was origi-

nally discretised with the aid of continuous RD methods. Here, that semi-discrete

equation will be discretized with the aid of discontinuous RD methods presented in

Chapter 3. The resulting formulation reads:





∑

j∈E

mE
ij

δu1j
∆t

+ βiφ
E(un) +

∑

e∈E

αi φ
e(un) = 0,

∑

j∈E

mE
ij

δun+1
j

∆t
+

1

2
βi
(
φE(un) + φE(u1)

)

+
1

2

∑

e∈E

αi

(
φe(un) + φe(u1)

)
= 0.

(5.2)

As in the previous chapters, φE and φe denote cell and edge residuals, respectively,
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and the distribution coefficients β and α are used to split them between the vertices

of E. The mass matrix, mE
ij , was introduced in Section 4.2.1 and the time-increment

operator δuk = uk − un was introduced in Section 4.3.1. In this thesis, the distri-

bution coefficients βi and αi are calculated using un during the first stage of the

Runge-Kutta time stepping, and u1 during the second stage. Particular methods

developed within this framework will be referred to as: (discontinuous) RKRD-A-B

method in which A and B stand for the distribution strategy for cells and edges,

respectively.

Note that Scheme (5.2) is very similar to the continuous RKRD scheme (cf.

Formulation (4.8)). One difference is the fact that now every degree of freedom i

belongs to only one cell, i.e. Di = E, and therefore there is no extra summation over

the elements belonging to Di. Another difference is the presence of edge residuals

which impose communication between cells.

Linear system (5.2) is block-diagonal with 3 × 3 blocks corresponding to each

cell. This effectively means that the scheme is explicit as one can easily solve 3× 3

systems analytically. There is therefore little, if any, justification in trying to com-

bine discontinuous-in-space data representation with the continuous explicit RKRD
framework investigated in Chapter 4. Instead, the discontinuous RKRD frame-

work should be considered as an alternative to both continuous implicit and explicit

RKRD approaches. Being explicit, it is more promising than the first one as no

additional work related to solving global linear systems is needed. Recall that in

the continuous RKRD setting an external numerical library was used to solve the

resulting linear system. The current framework can also be viewed as superior to

the continuous explicit RKRD discretisations in the sense that in the discontinuous

setting the explicit nature is achieved without introducing the shifted time-operator,

δuk (cf. Equation (4.14)).

5.3 Relation with the RKDG Framework

The Runge-Kutta Discontinuous Galerkin methods, due to Cockburn and Shu [23–

27], are, ever increasingly, a very popular way of discretising time-dependent hy-

perbolic PDEs. A brief introduction to their steady-state counterpart and the rela-

tion between that framework and discontinuous RD methods was given in Section

3.3. This section aims at extending those observations. First, however, the RKDG
framework is introduced.
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5.3.1 The Runge-Kutta Discontinuous Galerkin Framework

As in the case of discontinuous RKRD schemes, one starts by discretising in time.

Although different time-stepping techniques can be implemented, only the second

order TVD Runge-Kutta time-stepping will be employed here. In other words, the

first step is identical as in the previous section. Next comes the discretization in

space, which is done following the methodology outlined in Section 3.3. Again,

piecewise linear (and piecewise continuous) representation of the discrete solution

5.1 is assumed. The following fully discrete formulation is obtained:





∫

E

δu1

∆t
ψi dΩ +

∫

E

∇ · fh(un)ψi dΩ −
∑

e∈E

∫

e

(
f̂E,e − fh

)
(un) ψi · nE,e dΓ = 0

∫

E

δun+1

∆t
ψi dΩ +

1

2

∫

E

∇ · fh(un)ψi dΩ −
∑

e∈E

∫

e

(
f̂E,e − fh

)
(un) ψi · nE,e dΓ

+
1

2

∫

E

∇ · fh(u1)ψi dΩ −
∑

e∈E

∫

e

(
f̂E,e − fh

)
(u1)ψi · nE,e dΓ = 0,

(5.3)

for every degree of freedom i. The notation was introduced in Section 3.3 and here

only a brief overview is given. Each integrand in the above is multiplied by a test

function, ψi, which in this case is the Lagrange linear basis function associated

with vertex i ∈ E. Both the numerical flux f̂E,e and the unit outward pointing

normal vector nE,e change their value depending on whether they are considered

from within E or E ′ (see Figure 3.2), and hence the subscript, E,e. Recall that in

the discontinuous RKDG framework, each degree of freedom i belongs to only one

cell E and hence there is no summation over Di in (5.3). As previously, e is used to

denote edges.

Two schemes falling into the RKDG framework will be considered: the RKDG-

DG-upwind is the RKDG approximation for which the upwind flux was used and

RKDG-DG-LF is the RKDG approximation for which the Lax-Friedrichs flux was

implemented.

Formulation (5.3) can be rewritten as a discontinuous RKRD scheme. Indeed,

the distribution coefficients are given in Equation (3.8) and the mass matrix can

be calculated by using (4.4) and taking βi = 1
3
(equal to the actual distribution

coefficients when the advection velocity is constant). This algorithm can therefore

be viewed as a particular example of discontinuous RKRD discretization. This

will become even more apparent after introducing the so-called alternative basis

functions.
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5.3.2 Alternative Basis Functions

Coming back to the relation between residual distribution and finite element type

approximations (in this thesis the discontinuous Galerkin method is considered as

such), it is interesting to note that the discussion carried out in Section 2.3 can be

further extended and lead to somewhat surprising conclusions. To this end, observe

that in every cell E one can consider a set of alternative basis functions ψRD
i defined

as:

ψRD
i = ψi + αE

i . (5.4)

In the above expression αE
i is a weighting coefficient yet to be specified. These

functions were already introduced in Section 3.6.4 where the m1ED distribution for

edge residuals was defined (αE
i was then set to βRD

i − 1
3
). Here, finally, the reasoning

that led to the introduction of ψRD
i is given. ψRD

i is assumed to satisfy the following

relation:

βi φ
E =

∫

E

∇ · f(uh)ψRD
i dΩ,

where βi is the RD distribution coefficient corresponding to node i in cell E. αE
i

can be calculated quite straightforwardly by taking the above and writing:

βi φ
E =

∫

E

∇ · f(uh)ψi dΩ + αE
i φ

E =⇒ αE
i = βi − βFE

i .

The finite element distribution coefficients, βFE
i , were introduced in Section 2.3. In

the case of linear equations with constant advection velocity, Formula (C.1) reduces

to (distribution coefficients for the finite element method are all equal to 1
3
in this

case):

ψRD
i = ψi + βRD

i − 1

3
. (5.5)

Note that expression (5.5) is identical to the formula that was used in the definition

of the m1ED distribution strategy considered in Chapter 3. It will be used as the

definition of ψRD
i regardless of the equation being solved.

The above reasoning is quite standard in the RD community. März et al. [73]

used an identical technique to first derive ψRD
i and then to calculate the mass matrix

(4.4). To be more precise, Formulation (4.4) results from the evaluation of the

following integrals:

mE
ij =

∫

E

ψi ψ
RD
j dΩ.

Similar approach was used in Chapter 3 to construct the m1ED splitting for edge
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residuals.

5.3.3 Equivalence of the discontinuous RKRD and RKDG
approximations

The most interesting consequences of the derivation of ψRD
i , at least from the point

of view of this thesis, are related to the current scenario, i.e. discontinuous-in-space

RKRD discretisations. To see this, choose any RD distribution coefficients βi to

distribute cell residuals and the corresponding m1ED splitting to distribute edge

residuals (this technique was outlined in Chapter 3). This leads to the following

discontinuous RKRD scheme:





∑

j∈E

mE
ij

δu1j
∆t

+ βiφ
E(un) −

∑

e∈E

∫

e

(
f̂E,e − fh

)
(un)ψRD

i · nE,e dΓ = 0,

∑

j∈E

mE
ij

δun+1
j

∆t
+

1

2

(
βiφ

E(un) −
∑

e∈E

∫

e

(
f̂E,e − fh

)
(un)ψRD

i · nE,e dΓ

)

+
1

2

(
βiφ

E(u1) −
∑

e∈E

∫

e

(
f̂E,e − fh

) (
u1
)
ψRD
i · nE,e dΓ

)
= 0.

(5.6)

In what follows it will also be referred to as the RKRD-m1ED method. In light of

the above observation, it can be rewritten as:





∫

E

δu1

∆t
ψRD
i dΩ +

+

∫

E

∇ · fh(un)ψRD
i dΩ −

∑

e∈E

∫

e

(
f̂E,e − fh

)
(un) ψRD

i · nE,e dΓ

= 0
∫

E

δun+1

∆t
ψRD
i dΩ +

+
1

2

(∫

E

∇ · fh(un)ψRD
i dΩ −

∑

e∈E

∫

e

(
f̂E,e − fh

)
(un) ψRD

i · nE,e dΓ

)

+
1

2

(∫

E

∇ · fh(u1)ψRD
i dΩ −

∑

e∈E

∫

e

(
f̂E,e − fh

) (
u1
)
ψRD
i · nE,e dΓ

)

= 0.

(5.7)
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This formulation is very similar to theRKDG discretization (5.3), the only difference

being the definition of test functions (basis functions are kept unchanged). A natural

question arises: what is the relationship between the two formulations? It turns

out that they are, in fact, identical, but some extra work is needed to justify this

statement. It can be done in three steps. First, however, note that one can, without

loss in generality, limit the discussion to one generic cell E. This simplification is

possible due to the fact that all the schemes considered in this chapter are localised.

Step 1 In every cell E, Scheme (5.3) gives three separate equations (one for each

vertex). Summing them up and using the fact that
∑

i∈E ψ
E
i = 1, one shows that

the discrete solution, uh, satisfies:





∫

E

δu1

∆t
dΩ+

∫

E

∇ · fh(un) dΩ −
∑

e∈E

∫

e

(
f̂E,e − fh

)
(un) · nE,e dΓ = 0

∫

E

δun+1

∆t
dΩ+

1

2

∫

E

∇ · fh(un) dΩ −
∑

e∈E

∫

e

(
f̂E,e − fh

)
(un) · nE,e dΓ

+
1

2

∫

E

∇ · fh(u1) dΩ −
∑

e∈E

∫

e

(
f̂E,e − fh

)
(u1) · nE,e dΓ = 0.

(5.8)

Applying this procedure to Scheme (5.6) (also in this case the test functions sum

up to 1, i.e.
∑

i∈E ψ
RD
i = 1) shows that also the solution obtained with the aid of

Scheme (5.6) satisfies Formulation (5.8).

Step 2 The approximate solution uDG
h obtained with the aid of the RKDG scheme,

i.e. Formulation (5.3), satisfies Formulation (5.6). This follows from the fact that

every equation in (5.6) can be written as a linear combination of the corresponding

equation in (5.3) and the corresponding equation in (5.8) multiplied by
(
βRD
i − 1

3

)

(cf. Equation (5.5)). Both are satisfied by uDG
h . Recall that βi are the distribution

coefficients, which are constant in every cell.

Step 3 Finally, solutions to RKRD approximation (5.6) and RKDG approxima-

tion (5.3) are unique. This follows from the non-singularity of the corresponding

local mass matrices, given by (cf. Formulation (4.4)):

MRKDG = |E|




1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6


 , MRKRD =

|E|
36



2 + 12β1 12β1 − 1 12β1 − 1

12β2 − 1 2 + 12β2 12β2 − 1

12β3 − 1 12β3 − 1 2 + 12β3.


 ,
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The determinants of these matrices are equal to:

detMRKDG = 3|E|, detMRKRD = 3|E|( β1 + β2 + β3 ).

Since the solution to (5.3) and to (5.6) are unique, and the solution to (5.3) also

solves (5.6), then the two formulations are indeed identical. This assertion also holds

in the steady-state case. The above result was verified numerically, i.e. formulations

(5.3) and (5.6) gave identical results. It is very important as among all investi-

gated discontinuous RKRD schemes, only the discontinuous RKRD-m1ED/RKDG
scheme is genuinely second order accurate (this is investigated with detail in Sec-

tion 5.5). This also explains why the m1ED distribution leads to discretisations

producing spurious oscillations. Indeed, the above discussion shows that choosing

the m1ED edge distribution means that in fact the discontinuous Galerkin method

without limiting is being used. In [23] it was shown that this method is second

order accurate and this is confirmed experimentally in Section 5.5. According to

the famous Godunov Theorem [49] such method will not be positive. Again, this is

confirmed experimentally in Section 5.5.

5.3.4 Equivalence of the mED and DG-upwind Distribution

Strategies

Yet, one more quite striking observation can be made with regard to similarities

between the discontinuous RKRD and RKDG frameworks. Recall that piece-wise

linear representation of the approximate solution is assumed throughout this the-

sis. This means that the resulting schemes can be at most second order accurate

(super-convergence is not taken into account here) and such accuracy rate should

be regarded as optimal. Constructing an algorithm that does exhibit such accuracy

rate is one of the main challenges here. This goal cannot be achieved without, first,

identifying and then satisfying conditions that will guarantee the desired result. One

of the more natural conditions for accuracy is a constraint on the quadrature rules

used to evaluate the integrals appearing in the numerical scheme. These cannot al-

ways be computed exactly and the procedure used to evaluate their approximations

should be accurate enough not to spoil the overall order of accuracy. As explained

in Section 2.5, this is not an issue in the case of RD discretisations (as far as the test

cases considered in this thesis are concerned), but the situation becomes a bit more

complicated with discontinuous Galerkin methods for which integrands are usually

a product of two functions. For instance, for a generic cell E the signal for vertex
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i ∈ E resulting from the DG discretization is given by:

φDG
i =

∫

E

∇ · fh ψi dΩ.

This corresponds to the following signal resulting from the RD scheme:

φRD
i = βi

∫

E

∇ · fh dΩ.

It is clear enough that evaluating the first integral is somewhat more involved.

According to Cockburn and Shu (see Theorem 2.10 in reference [23]), in the case

of piece-wise linear approximations, if the quadrature rule over the edges is exact

for polynomials of degree 3, and the quadrature rule over the elements is exact

for polynomials of degree 2 then the resulting scheme is second order accurate. In

this thesis Gaussian quadrature rules were implemented (2-point for the edges and 3-

point for cells) to guarantee accuracy. Consider, however, the following scenario. Let

the advection velocity be constant (also recall that all polynomial approximations

in this thesis are piecewise linear, see also Section 3.5 to recall the type of fluxes

considered in the context of discontinous schemes) and set the numerical flux in

(3.20) to be the upwind flux. Furthermore, use the trapezium rule, which is not

exact for third order polynomials, to evaluate edge integrals in (5.3). Noting that

ψi is equal to 1 at one end of the considered edge e and 0 on the other, and that for

the constant advection equation and the upwind flux the following holds:

(
f̂E,e − fh

)
(ui) · nE,e = [a · nER,e]

+ |e|(ui,L − ui,R),

one can, by direct calculations, show that within edge e ∈ Th the resulting signals

will be given by (notation as in Figure 3.1):

φDG−upwind−TR
1 =

1

2
[a · nER,e]

+ |e|(u1 − u2) = α1 φ
e,

φDG−upwind−TR
2 =

1

2
[a · nER,e]

− |e|(u1 − u2) = α2 φ
e,

φDG−upwind−TR
3 =

1

2
[a · nER,e]

− |e|(u4 − u3) = α3 φ
e,

φDG−upwind−TR
4 =

1

2
[a · nER,e]

+ |e|(u4 − u3) = α4 φ
e.

(5.9)

This distribution strategy (i.e. DG-upwind evaluated using the trapezium rule) will

be referred to as the DG-upwind-TR scheme. For constant advection equation it
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is identical to the mED distribution presented in Section 3.6 (see Equation (3.17))

as the averaged advection velocities used in the definition of the mED splitting are

equal and satisfy:

ã12 = ã43 = a.

Note that this is the case regardless of whether the mathematical problem being

considered is steady or transient. In the general case when the advection velocity is

not constant, the DG-upwind-TR scheme is given by:

φDG−upwind−TR
1 =

1

2
[a1 · nER,e]

+ |e|(u1 − u2) = α1 φ
e,

φDG−upwind−TR
2 =

1

2
[a2 · nER,e]

− |e|(u1 − u2) = α2 φ
e,

φDG−upwind−TR
3 =

1

2
[a3 · nER,e]

− |e|(u4 − u3) = α3 φ
e,

φDG−upwind−TR
4 =

1

2
[a4 · nER,e]

+ |e|(u4 − u3) = α4 φ
e.

(5.10)

The advection velocity ak (k = 1, 2, 3, 4) is simply a evaluated at xk ∈ e (see Figure

3.1 for notation).

As already mentioned, the trapezium rule is not exact for polynomials of order

3, but according Cockburn and Shu the third order accurate quadrature rule is

only a sufficient condition for accuracy, not a necessary one. Interestingly enough,

numerical results in Section 5.5 show that it is usually possible to get a second order

scheme when the trapezium rule is used. Not in all situations, though! Similar

behaviour is observed when the mED distribution strategy is used, i.e. the resulting

discretization is second order accurate, but only in the particular situations when

the flow is not aligned with the mesh. For a fuller discussion see Section 5.5. Note

that the above remains in agreement with the results of Cockburn and Shu [23], i.e.

as long as the quadrature rules are accurate enough then the accuracy of order two

is guaranteed.

5.4 The Discontinuous Unsteady Residual Distri-

bution Framework

It is worth mentioning that as in the case of continuous RD methods for time-

dependent problems, one is free to use a simplified procedure to integrate in time.

One natural choice would be the forward Euler time-stepping procedure used in

steady-state computations (cf. Schemes (2.8) and (3.3)). The resulting approxima-
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tion reads:

un+1
i = uni − 3∆t

|E|

(
βiφ

E +
∑

e∈E

αiφ
e

)
∀i. (5.11)

Obviously such an approach leads to, at most, first order methods. It is, though, suit-

able for construction of positive schemes. As such it was examined in [105]. Those

results are presented and summarized in Section 5.5. Hereafter this approach will

be referred to as the discontinuous unsteady residual distribution scheme. Particu-

lar methods developed within this framework will be referred to as: discontinuous

unsteady A-B method in which A and B stand for the distribution strategy for cells

and edges, respectively.

5.5 Numerical Results

This section is devoted to a thorough experimental examination of the numerical

frameworks introduced in this chapter. There are two main goals here. First is to

assess the framework of discontinuous unsteady schemes by showing that indeed they

are first order accurate and, more importantly, that they facilitate construction of a

positive scheme. The second goal is to examine the discontinuous RKRD framework

by showing that the resulting discretizations are second order accurate.

From the point of view of possible applications, the scenario considered here is

identical to the one investigated in Chapter 4 (similar mathematical models), and

hence an identical set of test cases (and corresponding grids) was used. The time

step was calculated using Formulae (4.17)–(4.18) with the CFL number set to 0.3,

or 0.1 if a particular test case was unstable for CFL > 0.1. These values, as in the

case of all experiments carried out in this thesis, were chosen empirically. All errors

presented here were measured using the L2 norm, results in the L1 and L∞ norms

being qualitatively similar.

Only linear distribution strategies were considered here. In the case of discontin-

uous unsteady RD methods a non-linear splitting would only complicate the scheme

not being able to offer any benefits (the scheme will remain at most first order re-

gardless the distribution strategy). In such a case the distribution strategy for cells

was kept fixed (with one exception when the LDA scheme was used) and set to

the N scheme. As observed in Chapter 2, this is the least diffusive linear positive

scheme. As far as discontinuous RKRD schemes are concerned, it has yet to be

understood how to incorporate non-linear splittings into this framework so that the

resulting approximation is both positive and second order accurate. The blending



Chapter 5 95 The Discontinuous RKRD Framework

procedure outlined in Section 4.3.2 led to, at most, a first order scheme exhibiting

small oscillations. These results are not presented here. Since out of all linear split-

tings for cell residuals presented in this thesis only the LDA and SU schemes are

linearity preserving, these are the ones that were used to perform experiments for

this section. Additionally, the discontinuous Galerkin method was implemented so

that discontinuous RKRD methods can be compared with the RKDG framework.

Results of the grid convergence analysis for the unsteady discontinuous RD
framework are presented in Figure 5.1. The cell residuals were distributed with

the aid of the N scheme and for edge residuals four different distribution strategies

were implemented: the mED, the LF, the DG-upwind and DG-LF schemes. These

splittings were introduced in Chapter 3. Since the way cell residuals were distributed

was kept fixed, Figure 5.1 shows how switching from one splitting methodology for

edges to another affects accuracy. All the schemes except for the LF distribution

exhibit first order accuracy even for coarser meshes. The order of accuracy of the

LF scheme, estimated with the aid of errors for the two finest meshes, was 0.68. In

all cases the CFL number was set to 0.3.
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Figure 5.1: Grid convergence for the discontinuous unsteady RD framework for Test Cases D (left)
and E (right). The cell residuals were distributed with the aid of the N scheme and the mED, LF,
DG-upwind and DG-LF schemes were utilised to split the edge residuals. All schemes apart from
the LF distribution gave similar results and hence some of the plots overlap each other.

The grid convergence analysis for the discontinuous RKRD framework gave

somehow less expected results. These are presented on Figure 5.2. The cell residuals

were distributed with the aid of three different methods: the LDA, SU and DG. To

distribute the edge residuals the

• mED, m1ED-upwind, m1ED-LF (in the case of the LDA and SU schemes),
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• DG-upwind, DG-LF, DG-upwind-TR (in the case of DG cell distribution)

strategies were used. As switching from the upwind to the LF flux caused only minor

quantitative alterations to the solution, only results for the former are shown. This

is to make the presentation clearer. The results reveal that when the Test Case E

(circular advection) was used all schemes, as expected, exhibit second order accuracy.

This, however, is no longer the case when Test Case D (constant advection) is used.

The RKRD-LDA-m1ED, RKRD-SU-m1ED and RKDG schemes are indeed second

order accurate (and give identical results, which, according to observations made

in Section 5.3, was expected). On the other hand, the RKRD-LDA-mED, RKRD-

SU-mED and RKDG-DG-upwind-TR are only first order accurate. Recall from

Section 4.4 that the direction of the flow is aligned with the mesh when Test Case

D is considered. In order to develop a better understanding of this phenomenon, a

series of further experiments were carried out. Figure 5.3 shows the results of grid

convergence analysis conducted for the RKDG-DG-upwind-TR (left) and RKRD-

LDA-mED (right) schemes on a set of test cases generated by modifying Test Case

D, i.e. by altering the advection velocity between a = (1, 0.1) (not aligned with

the mesh) and a = (1, 0.0005) (almost aligned with the mesh). Note that the mesh

edges are aligned with 3 distinct vectors:

v1 = (1, 0), v2 = (1, 1) and v3 = (0, 1).

The results show that the two implemented schemes exhibit qualitatively identical

behaviour, i.e. the order of accuracy is closer to one for advection velocities close

to a = (1, 0) (aligned with the mesh) and becomes gradually two when one moves

away from this velocity. This may at first strike as unexpected behaviour, but one

should bear in mind that the theory for discontinuous Galerkin methods covers only

scenarios in which the quadrature rules are accurate enough. Using the trapezium

rule to integrate the edge residuals, i.e. selecting the DG-upwind-TR distribution,

means that some integrals in the discrete formulation are under-integrated. There-

fore, counter-intuitive results are in this case possible. Furthermore, the fact that

the mED distribution is so similar to the DG-upwind-TR distribution (see Section

5.3) suggest that similar behaviour in the case of the RKRD-LDA-mED scheme

should not surprise. Apart from the situations in which the mED or DG-upwind-

TR schemes were used, to carry out the above experiments the CFL number was

set to 0.3. The mED or DG-upwind-TR splittings were prone to instabilities and

the CFL number was decreased to 0.1 to obtain the results.
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Figure 5.2: Grid convergence for the discontinuousRKRD framework for Test Cases D (left) and E
(right). The DG, LDA and SU schemes were used to distribute cell residuals. These were combined
with different splittings for the edges. The DG-upwind and m1ED splittings (combined with the
DG and LDA/SU schemes, respectively) were used to guarantee convergence of order two. The
DG-upwind-TR and mED splittings (again, for the DG and LDA/SU schemes, respectively) only
give second order convergence when the advection velocity is not aligned with the mesh (Test Case
E).
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Figure 5.3: Grid convergence for the discontinuous RKRD framework for Test Case D with mod-
ified advection velocity a. The distribution strategy was set to be the DG scheme for cell residuals
with the DG-upwind-TR for edge residuals (left) and the LDA scheme combined with the mED
splitting (right). In both cases the scheme is first order accurate for a = (1.0, 0.0005) and becomes
gradually second order accurate as a diverges away from v1 = (1.0, 0.0).

Finally, results for Test Case F, i.e. non-linear Burgers’ equation, are shown. On

Figures 5.4-5.7 one finds the contour lines and cross-section of approximate solutions

obtained with the aid of the discontinuous unsteady N scheme combined with the

mED, LF, DG-LF and DG-upwind splittings for edge residuals. As in Chapter 3,
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the mED distribution turns out to give best results, i.e. the solution is positive

(no spurious oscillations) and is only mildly diffusive. The solution given by the

LF scheme is also positive, but much more diffusive than the one obtained with

the mED scheme. Neither the DG-LF or the DG-upwind scheme gave a positive

solution. This shows that in order to construct a discontinuous positive scheme not

only do the cell residuals have to be positive, but also the edge residuals have to be

distributed with the aid of a positive splitting. To get an idea of what happens if

the cell distribution is not positive and the edge distribution is, the discontinuous

unsteady LDA-mED scheme was also implemented. Results presented on Figure 5.8

clearly show that the resulting discretization is not positive, though the solution is

physically plausible.

Within the discontinuous RKRD framework only schemes for which the first

order N scheme was used gave a plausible answer (shown on Figure 5.9). To the

author’s best knowledge, discontinuous Galerkin approximations considered in the

literature have always been implemented with a limiting procedure. All available

results indeed indicate that this approximation should give a plausible solution for

Burgers’ equation as long as a limiting procedure is incorporated. Here, however,

such procedure was not included and the solution exploded before it reached time

t = 1.0. Again, since no limiting procedure was used such behaviour should not

surprise. As outlined in Section 5.3, other second order schemes considered in this

chapter are very similar to discontinuous Galerkin methods. Such being the case,

it comes as no surprise that these discretisations also failed to produce plausible

results.
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Figure 5.4: 2d Burgers’ equation: unsteady N-mED scheme with CFL set to 0.3. Left: contours
at time t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum
and maximum values of the solution.
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Figure 5.5: 2d Burgers’ equation: unsteady N-LF scheme with CFL set to 0.3. Left: contours at
time t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum and
maximum values of the solution.
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Figure 5.6: 2d Burgers’ equation: unsteady N-DG-LF scheme with CFL set to 0.3. Left: contours
at time t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum
and maximum values of the solution.
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Figure 5.7: 2d Burgers’ equation: unsteady N-DG-upwind scheme with CFL set to 0.3. Left:
contours at time t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right:
minimum and maximum values of the solution.
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Figure 5.8: 2d Burgers’ equation: unsteady LDA-mED scheme with CFL set to 0.3. Left: contours
at time t = 1. Middle: solution along line y = 0.3 and along the symmetry line. Right: minimum
and maximum values of the solution.
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minimum and maximum values of the solution.
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5.6 Summary

In this chapter two new frameworks for solving time-dependent hyperbolic PDEs

were presented. Both assume that the underlying representation of the approximate

solution is piece-wise linear, but not globally continuous. In this respect the methods

presented here are very similar to discontinuous Galerkin approximations.

The discontinuous unsteady RD framework enables construction of at most

first order accurate schemes. However, it leads to discretisations which are much

simpler (and cheaper) than their counterparts developed within the discontinuous

RKRD framework. Moreover, as presented in the previous section, the discontinu-

ous unsteady N-mED scheme is less diffusive than the discontinuous RKRD-N-mED

method. It is, therefore, a quite interesting alternative and can be considered in fu-

ture as a building block of higher than first order positive schemes.

The discontinuous RKRD framework facilitates construction of linear second

order accurate schemes (by, for instance, taking the LDA and m1ED-DG-upwind

distributions) and linear positive schemes (by, for instance, taking the N and mED

distributions). The resulting discretisations are only first order accurate when the

flow is aligned with the mesh and the mED scheme is used to distribute edge resid-

uals (regardless of the way cell residuals are treated). On the other hand, in more

interesting and realistic scenarios when the flow is not aligned with the mesh the or-

der of accuracy is indeed two. Construction of a scheme that would be both positive

and linearity preserving remains an open question. Also, extension to non-linear

equations has yet to be investigated. The discontinuous RKRD schemes (unless

the N scheme is used) explode almost immediately after the simulation begins. This

was observed regardless of the choice of the distribution strategy for edge based

residuals. The fact that this framework in general fails to give plausible solutions

when applied to nonlinear equations (again, unless the N scheme is used) is disap-

pointing. Especially, when compared to continuous RKRD methods discussed in

Chapter 4. On the other hand, investigating the discontinuous RKRD framework

revealed further similarities between the discontinuous residual distribution and dis-

continuous Galerkin approaches. This implies that the two should be considered as

one framework rather than competing ways of discretising PDEs. Note that there

are no indications (mathematical or experimental) that the discontinuous Galerkin

method without limiting should give plausible solution to non-linear equations. Such

being the case, the discontinuous RKRD framework cannot be expected to work

well for such problems.
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To briefly summarize, the main contributions of this chapter are the develop-

ments of:

• discontinuous unsteady RD methods for linear and non-linear equations (first

order and positive provided appropriate distributions are implemented);

• discontinuous RKRD methods for linear equations (linearity preserving);

• the discontinuous RKRD-N method for non-linear equations (positive and first

order);

• better understanding of the discontinuous RD framework, in particular its

close links with discontinuous Galerkin methods.

Even though the work on discontinuous RKRD methods is not complete, the dis-

cussed close relation between the discontinuous Galerkin framework and the dis-

continuous residual distribution framework give some indication what the potential

next steps could be. One possibility is to incorporate a DG−type limiting proce-

dure into the discontinuous RKRD framework. Another interesting extension to

the framework would be a genuinely second order accurate (for flows both aligned

and not aligned with the mesh) and positive distribution strategy for edge residuals.



Chapter 6

The Euler Equations

6.1 Introduction

Thus far, only scalar equations have been considered. It is, however, the desire

to tackle more realistic problems captured by systems of non-linear equations that

drives the development of new numerical schemes. This chapter is devoted to numer-

ical investigation of residual distribution schemes, introduced earlier in this thesis,

when applied to the Euler equations – the system of non-linear hyperbolic partial

differential equations for which the RD framework was originally incepted.

The compressible Euler equations modelling dynamics of inviscid fluids, one of

the most important and sound mathematical models in fluid dynamics, have been

thoroughly studied, both mathematically and numerically, in a number of mono-

graphs, i.e. [46, 47, 65, 67, 72] or [48], to name just a few. Here, only a brief discus-

sion of the equations is given the focus being laid on solving them numerically. In

particular with the aid of residual distribution methods. The system can be written

in a vector form as

∂tw +∇ · F = 0 (6.1)

in which w is the vector of conserved variables and F = (g,h) are the conservative

fluxes. In the two-dimensional setting, i.e. in R
2, these are given by:

w =




ρ

ρu

ρv

Etotal



, g =




ρu

ρu2 + p

ρuv

u(p+ Etotal)




h =




ρv

ρuv

ρv2 + p

v(p+ Etotal)



.

In the above u and v are the x and y components of the velocity, respectively. The

103
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total energy Etotal is related to the other quantities by a state equation which, for a

perfect gas, takes the form:

Etotal =
p

γ − 1
+

1

2
ρ
(
u2 + v2

)
.

Here γ is the ratio of specific heats (the Poisson adiabatic constant) and p is the

pressure. Only the case of air will be considered, that is γ = 1.4.

6.2 The Parameter Vector of Roe

Depending on the set of independent variables used, the Euler equations (6.1) can

take different forms. Although mathematically equivalent, the way the resulting set

of equations is solved numerically differs.

Conserved variables, introduced in the previous section, are the most natural

choice from the point of view of mechanics. Another commonly considered variant

is primitive variables v = (ρ, u, v, p)T , which, at least at the first glance, may seem

to be easier to work with as the momentum (which depends on two primitive vari-

ables) is substituted with the velocity vector. However, when it comes to numerical

computations they do not offer anything extra when compared to the conservative

variables. As a matter of fact, it is the so called “parameter vector” of Roe [88]

that adds the most in terms of numerical integration of the Euler equations. This,

yet another set of variables, enables conservative linearisation (discussed in the next

section), which facilitates construction of conservative discretisations. It is a very

desirable feature, especially when solving systems of nonlinear hyperbolic PDEs so-

lutions to which exhibit discontinuities. Conservation guarantees that those shocks

are captured consistently. For this reason the parameter vector of Roe is the most

frequently used set of variables in the residual distribution framework. This thesis

remains faithful to this trend.

The “parameter vector” of Roe, denoted here by z, is defined by

z =




z1

z2

z3

z4




=
√
ρ




1

u

v

H



,

where H = Etotal+p

ρ
is the total enthalpy. Its key property is the quadratic depen-
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dence of the conservative variables w on it:

w(z) =

(
z21 , z1z2, z1z3,

z1z4
γ

+
γ − 1

2γ
(z22 + z23)

)T

.

The same holds for the fluxes:

g(z) =

(
z1z2, z

2
2 +

γ − 1

γ

[
z1z4 −

1

2
(z22 + z23)

]
, z2z3, z2z4

)
,

h(z) =

(
z1z3, z2z3, z

2
3 +

γ − 1

γ

[
z1z4 −

1

2
(z22 + z23)

]
, z3z4

)
.

It follows immediately that the corresponding Jacobians are linear in terms of z :

∂w

∂z
=

√
ρ




2 0 0 0

u 1 0 0

v 0 1 0
1
γ
H γ−1

γ
u γ−1

γ
v 1

γ




in the case of conservative variables, and:

∂g

∂z
=

√
ρ




u 1 0 0
γ−1
γ
H γ+1

γ
u −γ−1

γ
v γ−1

γ

0 v u 0

0 H 0 u




∂h

∂z
=

√
ρ




v 0 1 0

0 v u 0
γ−1
γ
H −γ−1

γ
u γ+1

γ
v γ−1

γ

0 0 H u




in the case of the fluxes. These rather technical properties enable conservative

linearisation, which is one of the key ingredients of the considerable majority of

residual distribution methods when applied to the Euler equations.

6.3 Conservative Linearisation

The application of multidimensional upwinding techniques to nonlinear systems of

equations such as (6.1) requires the construction of an appropriate discrete form.

To ensure that the scheme captures discontinuities accurately, such a discrete for-
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mulation should be conservative. The procedure outlined below shows how this can

be achieved in practice.

By analogy with the scalar case, the cell residual, ΦE , lies at the basis of all RD
approximations of (6.1). As previously, it is defined by substituting the numerical

solution into the system and integrating it over each cell E :

ΦE =

∫

E

∇ · F(wh) dΩ =

∮

∂E

F(wh) · n dΓ. (6.2)

The subscript h is suppressed in the remainder of this chapter, though all the terms

are understood as approximations of their continuous counterparts.

In order to derive a discrete system approximating (6.1), one has to find an effi-

cient and accurate way of calculating (6.2). Evaluating it in terms of the parameter

vector gives:

ΦE =

∫

E

(
∂g

∂z
zx +

∂h

∂z
zy

)
dΩ. (6.3)

Assuming that z is piece-wise linear (and hence both zx and zy are piece-wise con-

stant), one can further expand (6.3) as:

ΦE =

(∫

E

∂g

∂z
dΩ

)
zx +

(∫

E

∂h

∂z
dΩ

)
zy. (6.4)

From quadratic dependence of the numerical flux on z (and hence the linear depen-

dence of the flux Jacobian on it), ΦE can be evaluated exactly using a one point

quadrature rule:

ΦE = |E|
(
∂g(z̄)

∂z
zx +

∂h(z̄)

∂z
zy

)
(6.5)

in which z̄ is taken as the average of the values of z at the vertices of the corre-

sponding triangle E:

z̄ =
z1 + z2 + z3

3
, with zi = z(xi) and xi ∈ E. (6.6)

Within each cell E, the gradient of z is constant. Denoting by ni the unit outward

pointing normal to edge ei ∈ E (opposite the ith vertex), it can be calculated using:

∇z = − 1

2|E| |ei|
3∑

i=1

zi ni.

Equation (6.5), gives a very simple formula for evaluating cell residuals, but ex-
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pressed in terms of Roe’s parameter vector. A similar formula in terms of the

conservative variables would be more practical and natural to work with. This can

be achieved by first noting that:

zx =
∂z

∂w
wx, zy =

∂z

∂w
wy.

and then showing that the averaged gradient of w :

ŵx =
1

|E|

∫

E

wx dΩ, ŵy =
1

|E|

∫

E

wy dΩ

can be evaluated as:

ŵx =
1

|E|

∫

E

∂w

∂z
zx dΩ =

1

|E|

∫

E

∂w

∂z
dΩ zx =

∂w(z̄)

∂z
zx,

ŵy =
1

|E|

∫

E

∂w

∂z
zy dΩ =

1

|E|

∫

E

∂w

∂z
dΩ zy =

∂w(z̄)

∂z
zy.

It now follows that (6.5) is equivalent to:

ΦE = |E|
(
∂g(z̄)

∂w
ŵx +

∂h(z̄)

∂w
ŵy

)
, (6.7)

which is the formula that is used in practice.

The linearisation process described above shows how to evaluate the cell residuals

ΦE exactly. This means the procedure outlined here is conservative as:

∑

E∈Ω

ΦE =
∑

E∈Ω

∮

∂E

Fh · n dΓ =

∮

Ω

Fh · n dΓ.

In other words, the discrete flux balance (summed up over the whole domain) re-

duces to boundary contributions, even though it is evaluated numerically. It is worth

pointing out again that conservation is important as it guarantees that the discon-

tinuities are captured accurately. Consult [38] for further details on this matter.

6.4 Matrix Distribution Schemes

Conservative linearisation discussed in the previous section is simply a tool that

is implemented to calculate cell residuals when the underlying system of PDEs

being solved is the Euler equations. The next step is to distribute those residuals
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among the vertices of the given cell and degrees of freedom located at each of those

vertices (four unknowns per vertex in the case of two-dimensional Euler equations).

Originally, this was done with the aid of wave decomposition models, investigated

in [35,39,40] and further developed in [75,78,94]. The idea behind this strategy is to

decouple the system into distinct transport equations, referred to as waves, travelling

with different speeds and in different directions. When full diagonalisation is possible

(i.e. for steady two-dimensional Euler equations in the supersonic case), methods

developed for scalar equations can be directly applied. Otherwise, other approaches

have to be implemented. Nevertheless, wave decomposition significantly simplifies

the process of solving the underlying system. This approach, although developed to

mimic the underlying physical phenomena as accurately as possible and hence very

promising, is not as robust as one would wish. In particular, it does not generalise

to time–dependent and three–dimensional problems. Instead, the so called matrix

distribution approach has been devised [7, 102, 103]. Although not as physically

sound as the wave decomposition, the matrix distribution framework proved to be

a very robust approach and has become the most popular way of extending residual

distribution methods to systems of non-linear hyperbolic equations. In particular,

definitions presented here are independent of the underlying system of PDEs being

discretized. The only condition is that the underlying system is hyperbolic.

Matrix distribution schemes are constructed by heuristically generalising their

scalar counterparts to systems of equations. Only matrix LDA, N, and BLEND

schemes will be considered here, all of which are defined with the aid of matrix flow

parameters. For every cell E ∈ Th, these are defined as (cf. Equation (2.18) in

Section 2.6):

Kj = −1

2
(A(w̄),B(w̄)) nj |ej|,

with w̄ being the cell average of w (cf. Equation (6.6)) and A and B defined as

Jacobian matrices of the fluxes:

A =
∂g

∂w
, B =

∂h

∂w
. (6.8)

Vector nj is the unit normal to edge ej (opposite the jth vertex) pointing outward

from cell E. |ej| denotes the length of ej. Note that this definition is consistent with

the definition of scalar flow sensors. Indeed, if f and u from Equation (2.2) are

substituted into (6.8) then the resulting quantity will be equal to the scalar flow

sensor, ki, introduced in Section 2.6.

Since the system is hyperbolic, the matrix flow sensor admits real eigenvalues and
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a complete set of right and left eigenvectors. In other words, it can be diagonalised:

Kj = RjΛjR
−1
j ,

with Rj being composed of the right eigenvectors of Kj and Λj containing the

corresponding eigenvalues on its diagonal and zero elsewhere. These matrices can be

found in, for example, Section 4.3.2 of the monograph by Godlewski and Raviart [48].

The authors also give a very detailed presentation of the conservative linearisation

for the two-dimensional Euler equations.

Let now λ1, λ2, λ3 and λ4 denote the non-zero entries of Λj (eigenvalues of Kj).

The following matrices based on Λj :

Λ+
j = diag{max(0, λk)}4k=1, Λ−

j = diag{min(0, λk)}4k=1,

and

|Λj | = diag |λk|4k=1 = Λ+
j − Λ−

j ,

can now be used to define:

K+
j = RjΛ

+
j R

−1
j , K−

j = RjΛ
−
j R

−1
j , |Kj | = Rj |Λj |R−1

j .

The above definitions are, again, consistent with the corresponding ones in the scalar

case, cf. Equation (2.18). It is worth recalling that for all scalar residual distribution

methods/frameworks considered here, the flow sensors are evaluated using only the

previous (already calculated) solution. This guarantees that the resulting systems of

equations are linear. Matrix flow sensors are consistent with their scalar counterparts

and hence a similar property holds in the case considered here. Particular matrix

distribution schemes can now be presented.

The LDA scheme The split residuals for the matrix LDA scheme are defined as:

φLDA
i = BLDA

i φE , BLDA
i = K+

i N, N =

(∑

j∈E

K+
j

)−1

,

The existence of matrix product K+
i N was proven in [1, 11].
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The N scheme The matrix N scheme is defined by:

φN
i = K+

i (wi − win), win = −N
∑

j∈E

K−
j wj ,

The existence of matrix N was proven in [1, 11].

The BLEND scheme The matrix BLEND scheme is given by:

φBLEND
i = ΘφN

i + (I − Θ)φLDA
i ,

with I the identity matrix. The entries of the non-linear blending matrix Θ were

computing using the following formula:

Θk,k =

∣∣φE
k

∣∣
∑

i∈E

∣∣φN
i,k

∣∣ + ǫ
, ǫ = 10−15. (6.9)

In expression (6.9), index k refers to the kth equation of the system; i.e., φE
k and

φN
i,k are the kth components of vectors φE and φN

i , respectively [33]. Note that Θ

is a diagonal matrix. Depending on the problem being solved (smooth or exhibiting

shocks), one is free to either give preference to the LDA scheme for smooth prob-

lems (set all the diagonal values to minimum), or to the N scheme for non-smooth

problems (set all the diagonal values to maximum).

The mass matrix (4.4) for systems is derived by applying the procedure outlined

in [73] to systems. Since at every vertex i ∈ E there are four degrees of freedoms,

the mass matrix coefficient mE
ij becomes a 4× 4 matrix ME

ij defined as:

ME
ij =

|E|
36

(3δijI + 12BE
i − I),

in which BE
i is the corresponding distribution matrix and I is the identity matrix.

Recall that the PSI scheme has not been implemented in the RKRD framework

because it would to lead to a genuinely non-linear discretisation. For this reason it

will not be considered in this chapter.

6.5 The Time Step

Local time-stepping was employed in the steady state case. The time step was

calculated using a straightforward extension of formula used in the scalar case (cf.
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Expression (2.22)):

∆ti = CFL
|Si|∑

E∈Di
σ(K+

i )
∀i ∈ Th,

in which σ(K+
i ) denotes the spectral radius of K+

i , i.e. its maximal eigenvalue.

A Courant-Friedrichs-Lewy (CFL) number of 0.9 was used in the interior of the

domain for all of the test cases. Boundaries were more sensitive to instabilities and

CFL = 0.25 was used for nodes located at the boundaries.

For time-dependent problems a formula similar to the one used in Chapter 4 was

implemented (cf. Expression (4.17)):

∆ti = CFL
|Si|∑

E∈Di
αE

∀i ∈ Th,

with the definition of the αE coefficient modified to reflect the fact that now systems

rather than scalar equations are considered (cf. Formula (68) in [85]):

αE =
1

2
max
j∈E

(||uj ||+ aj) .

The velocity vector uj = (uj, vj) is evaluated at vertex j ∈ E and the speed of sound

aj is given by:

aj =

√
γpj
ρj
. (6.10)

In the transient case the CFL number was set to values between 0.9 and 0.05.

Precise values are given when the corresponding results are presented.

6.6 The Boundary Conditions

The discussion on boundary conditions is carried out here rather than in one of

the earlier chapters on scalar problems as in the latter case straightforward strong

imposition of the boundary conditions (see Section 6.6.1) gave good results. Here

one additional alternative is reviewed.

The imposition of boundary conditions is, fundamentally, a physical problem,

but it must correspond to the mathematical character of the solved equations. Rel-

atively few results are available regarding their mathematical properties, let alone

their numerical implementation. A thorough, though not very up to date, review

of the available results can be found in [48], Chapter V. When it comes to RD
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discretizations the most popular approaches to applying boundary conditions are

those developed within the FV framework. It is no wonder as the former can be

recast in the formalism of the latter and vice versa. Very little, however, has been

investigated to see how different techniques affect residual distributions schemes. A

somehow more systematic approach was presented in the recently published mono-

graph of Ricchiuto [83]. Also in the PhD theses of Guzik [50] and Paillére [77] one

can find a relatively extended discussion on how the boundary conditions can be

imposed.

All the available approaches can be grouped into two categories. In order to

impose the boundary conditions strongly one basically prescribes appropriate un-

knowns with the desired values. In the weak approach the solution at the boundary

is considered to be unknown and treated as in the interior of the domain. For so

called ghost cells located outside the domain additional boundary residuals are de-

fined and corresponding signals are distributed. This is basically an RD philosophy

applied to the boundary. A similar approach is very often used for discontinuous

Galerkin approximations [23].

6.6.1 Strong Boundary Conditions

In this approach the far field state vector, w∞, is substituted for the numerical

solutions, wh. One should bear in mind, that w∞ :

w∞ =




ρ∞

(ρu)∞

(ρv)∞

E∞




has to be specified in such a way that both the underlying mathematical and me-

chanical problems are well posed. The underlying challenge is to specify the number

of unknowns to be prescribed/extrapolated at each boundary edge e. This is usually

done by looking at the signs of eigenvalues of

Cn = fnx + gny,
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in which n = (nx, ny) is a unit outward pointing normal vector to e. The eigenvalues

of Cn are given by

λ1 = λ2 = u · n, λ3 = u · n+ a, λ4 = u · n− a

where a is the speed of sound (6.10). The rule is that only information coming from

outside the computational domain (i.e. with a negative speed) may be imposed at a

physical boundary. The remaining information is naturally provided/extrapolated

by the upwind scheme used in the interior of the domain. In other words, the number

of unknowns to be prescribed is equal to the number of negative eigenvalues of Cn.

It can be shown that in the two-dimensional case (see, for instance, [47] for details)

there are:

• 4 negative eigenvalues at supersonic inlet;

• 0 negative eigenvalues at supersonic outlet

• 3 negative eigenvalues at subsonic inlet;

• 1 negative eigenvalue at subsonic outlet.

At a solid wall, the slip condition u·n = 0 implies that only one eigenvalue is positive

and hence only one quantity should be prescribed. Usually it is the tangency of the

flow itself that is imposed.

A more detailed discussion on the matter of well-posedness of the boundary

conditions can be found in [47] and [48]. In both references the authors not only

specify how many but also stipulate which quantities should be prescribed. This,

however, is done using different heuristics and it is not clear which of the approaches

is most reliable and robust. In this thesis the methodology proposed by Feistauer

et al. [47] was implemented:

• prescribe ρ, u, v and p at supersonic inlet;

• extrapolate ρ, u, v and p at supersonic outlet;

• prescribe ρ, u, v and extrapolate p at subsonic inlet;

• prescribe p and extrapolate ρ, u, v at subsonic outlet.
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6.6.2 Weak Boundary Conditions

Weak imposition of the boundary conditions was inspired by the well known ‘ghost

cell’ technique used in cell-centered finite volumes. It is probably the most robust

and faithful to the original RD concept way of prescribing boundary conditions.

In this approach, boundary nodes are treated in the similar manner as the values

from interior of the domain. In other words, a similar update procedure is being

applied to them. The only difference is the way the signals for boundary nodes are

defined, i.e. for each boundary node i ∈ Th and edge e ∈ Th, such that i ∈ e, an

additional contribution from the boundary residuals, Φe,bd, is added. This means

that at the boundary Γ, the steady state scheme becomes (cf. the scalar scheme

(2.7))): ∑

E∈Di

ΦE
i +

∑

e|i∈e

Φe,bd
i = 0.

Edge residuals are defined in such a way that the signals distributed from each

boundary edge e sum up to:

∑

i∈e

Φe,bd
i = Φe,bd =

∫

e

(
f̂E,e(wh,w∞,n)− F(wh) · n

)
dΓ, (6.11)

in which f̂E,e is a numerical flux and wh is a vector of the local states. The far field

state, w∞, represents here the flow in a fictitious cell adjacent to the boundary (ghost

cell), defined in Section 6.6.1. The unit normal n is assumed to be outward-pointing.

Following Abgrall [1], the modified Steger & Warming numerical flux will be

used:

f̂(wh,w∞,n) = C+
n
(wh)wh +C−

n
(wh)w∞.

By analogy with the original reference, particular signals are calculated with the aid

of the linear Lagrange basis functions, ψi :

Φe,bd
i =

∫

e

(
f̂(wh,w∞,n)− F(wh) · n

)
ψi dΓ. (6.12)

In Equation (6.12), ψi and f̂ are used to split Φe,bd into signals and distribute them

among the vertices of e, i.e. define the distribution strategy. To the author’s best

knowledge, with regard to the boundary conditions no other fluxes have been sug-

gested in the literature.

This approach, originally introduced by Abgrall [1], was also applied in [8] and

[4]. Ricchiuto in his recent monograph [83] suggested a similar technique, though
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discussed it only for scalar equations. In other references, i.e. [3, 6, 51, 86] and [87],

the authors also refer to weak boundary conditions, but omit some or most of the

details related to the implementation. The above methodology is obviously very

similar to the way interior and boundary edges are treated in the discontinuous

Galerkin discretizations. In this respect, the approach outlined here can be viewed

as a hybrid RD-DG method. One might be tempted to experiment with other

numerical fluxes and different distribution strategies. This, however, is a separate

research strand and will not be considered here.

Applying weak boundary conditions in the case of steady state computations

revealed that boundaries are prone to instabilities and therefore the CFL number

was decreased for the corresponding nodes. Such an approach is feasible in the

steady state case in which local time stepping can be used. It is no longer practical

in the time-dependent setting as adjusting the time step at the boundary means

that it has to be adjusted uniformly throughout the domain. For this reason weak

boundary conditions were used only for the steady-state Euler equations.

6.7 Numerical Results

The goal of this section is twofold. First, to briefly report on the numerical per-

formance of steady state residual distribution methods when applied to the steady

Euler equations. By no means is this an attempt to conduct a thorough study -

this was done by a number of authors in the past. See for instance [50, 77, 82, 99]

and [56]. The second and the key aim of this section is to present a thorough and

extensive numerical comparison of the explicit and implicit RKRD frameworks with

respect to their performance when implemented to solve the time-dependent Euler

equations. Only continuous-in-space schemes are considered. This is primarily be-

cause the results for non-linear equations presented in Chapter 5 suggest that the

discontinuous-in-space residual distribution framework is not fully developed.

In the steady state case the boundary conditions were prescribed weakly. To

avoid stability related issues, strong boundary conditions were used in the time-

dependent setting. Both structured and unstructured meshes were used. Further

details are given when particular examples are discussed.
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6.7.1 Steady State Euler Equations

Four different test problems were studied in the steady state case: two modeling

supersonic, one modeling transonic and one modeling subsonic fluid flow. The CFL

number was set to 0.9 for interior nodes and to 0.25 for boundaries, i.e. local time-

stepping was employed. For some experiments, setting the CFL number at the

boundary to values higher than 0.25 (i.e. 0.9) led to instabilities. For consistency, all

simulations were carried out with the same time-step restriction (i.e. CFL number).

Only weak boundary conditions were used in this section. All simulations were run

on unstructured meshes.

In what follows, contour plots of the local Mach number of solutions obtained

with the aid of the schemes described in this chapter are given. Since the Mach

number depends on all four physical quantities present in the equations (pressure,

density and the velocity field), it tends to be very sensitive and hence such plots are

a very good way of evaluating the results. In all four cases the N, LDA and BLEND

schemes gave plausible and satisfactory results. Shocks were captured accurately

and the obtained contour plots are similar to corresponding ones that can be found

in the literature [65,76,110]. The N scheme gave the least oscillatory, but the most

diffusive solutions. The solutions produced by the LDA scheme are less diffusive, but

much more oscillatory. Finally, the BLEND scheme coped with the system better

than the LDA scheme in terms of oscillations and better than N with respect to

diffusion of the final solution. It is, however, more diffusive than the LDA scheme

and marginally more oscillatory then the matrix N scheme.

Oblique Shock Reflection

The problem is of an oblique shock reflection [110] in the domain defined by

(x, y) ∈ [0, 4] × [0, 1]. The data for this case are chosen such that the solution

consists of three states separated by shocks. The boundary conditions were set so

that the incident shock angle was 29◦ and the free stream Mach number M∞ was

set to 2.9.

Results are shown on Figures 6.2-6.4. All schemes succeeded in capturing the

shocks. The solution obtained with the LDA scheme exhibits small oscillations near

the shocks and under-shoots in the central region of the domain (these are not

profound, though). These under-shoots were also present in the case of the BLEND

scheme, but to a considerably smaller extent. The N scheme solved this test problem

without producing non-physical oscillations or over/under-shoots. Both the LDA

and the BLEND scheme captured the shock sharply, whereas the N scheme smeared
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it across the surrounding cells (the solution is, as in the scalar case, diffused).

Initial conditions: ρ = 1.4, u = 2.9, v = 0.0, p = 1.0.

Boundary conditions:

–left boundary: supersonic inflow

(ρ = 1.0, u = 2.9, v = 0.0, p = 0.714286);

–right boundary: supersonic outflow;

–upper boundary: supersonic inflow

(ρ = 1.7, u = 2.61934, v = −0.50632, p = 1.52819);

–lower boundary: solid wall.

Grid: Topology as in Figure 6.1, 5422 nodes

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

Figure 6.1: The grid used for the oblique shock reflection test case.
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Figure 6.2: Local Mach number contours for the oblique shock reflection test case with the N
scheme.
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Figure 6.3: Local Mach number contours for the oblique shock reflection test case with the LDA
scheme.
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Figure 6.4: Local Mach number contours for the oblique shock reflection test case with the BLEND
scheme.

Ni’s Constricted Channel Flows - the subsonic case [76]

This test problem consists of flow over a ramp that is part of a circle in the domain

defined by (x, y) ∈ [0, 3]× [0, 1]. The circular arc is given a height of 0.1. The data

for this case are chosen such that the free stream Mach number is 0.5. The resulting

flow should be subsonic throughout the whole domain, shock-free and symmetric

about the centre of the construction.

Results for this test cases are presented on Figures 6.6-6.8. For each scheme

tested here, the solution is slightly smeared out towards the lower right-hand-side

corner of the domain, but almost perfectly symmetric elsewhere. There are no major

differences between the three solutions, but as usual the N scheme is more diffusive

than the LDA and BLEND schemes.

Initial conditions: ρ = 1.4, u = 0.5, v = 0.0, p = 1.0.

Boundary conditions:

–left boundary: subsonic inflow (ρ = 1.4, u = 0.5, v = 0.0);

–right boundary: subsonic outflow (p = 1.0);

–upper boundary: solid wall;

–lower boundary: solid wall.
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Grid: Topology as in Figure 6.5, 6660 nodes
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Figure 6.5: The grid for the 10% circular arc bump test case.
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Figure 6.6: Local Mach number contours for the 10% circular arc bump test case with the N
scheme.
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Figure 6.7: Local Mach number contours for the 10% circular arc bump test case with the LDA
scheme.
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Figure 6.8: Local Mach number contours for the 10% circular arc bump test case with the BLEND
scheme.

Ni’s Constricted Channel Flows - the transonic case [76]

The geometrical setting in this case is identical as in the previous section. The

initial and boundary conditions are set so that the Mach number at the inflow is

equal to 0.675. The resulting flow contains a single shock on the lower surface of the

domain.

Figures 6.9-6.11 show the local Mach number contours of the steady state so-

lutions obtained for this problem using the N, LDA and the BLEND scheme, re-

spectively. In all three cases the shock was captured sharply. The solution obtained

with the LDA scheme exhibits small overshoots close to the shock, which vanished

in the case of the N scheme and almost vanished for the BLEND scheme. The N

scheme, as previously, exhibits large amounts of numerical diffusion. The resolution

with which the LDA and BLEND schemes approximated the solution is noticeably

higher.

Initial conditions: ρ = 1.4, u = 0.675, v = 0.0, p = 1.0.

Boundary conditions:

–left boundary: subsonic inflow (ρ = 1.4, u = 0.675, v = 0.0);

–right boundary: subsonic outflow (p = 1.0);

–upper boundary: solid wall;

–lower boundary: solid wall.

Grid: Topology as in Figure 6.5, 6660 nodes
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Figure 6.9: Local Mach number contours for the 10% circular arc bump test case with the N
scheme.
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Figure 6.10: Local Mach number contours for the 10% circular arc bump test case with the LDA
scheme.
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Figure 6.11: Local Mach number contours for the 10% circular arc bump test case with the BLEND
scheme.

Ni’s Constricted Channel Flows - the supersonic case [76]

The geometrical setting for this test case is similar as in the previous section

except that the circular arc is given a height of 0.04 instead of 0.1. The data for this

case are chosen such that the free stream Mach number is 1.4. The resulting flow

should be almost completely supersonic with strong shocks at both front and the
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rear of the bump which are reflected off the walls of the channel further downstream.

Also in this case all schemes captured the shocks sharply, see Figures 6.13 -6.15.

No under/over-shoots were observed in the case of the N scheme. The solution

obtained with the BLEND scheme does exhibit some over- and under-shoots, though

these are not profound. In the case of the LDA scheme there are clearly visible

oscillations along the shocks. As expected, the LDA scheme clearly performs poorly

when the solution to the underlying problem exhibits shocks.

Initial conditions: ρ = 1.4, u = 1.4, v = 0.0, p = 1.0.

Boundary conditions:

–left boundary: supersonic inflow (ρ = 1.4, u = 1.4, v = 0.0, p = 1.0);

–right boundary: supersonic outflow;

–upper boundary: solid wall;

–lower boundary: solid wall.

Grid: Topology as in Figure 6.12, 6456 nodes
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Figure 6.12: The grid for the 4% circular arc bump test case.
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Figure 6.13: Local Mach number contours for the 4% circular arc bump test case with the N
scheme.
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Figure 6.14: Local Mach number contours for the 4% circular arc bump test case with the LDA
scheme.
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Figure 6.15: Local Mach number contours for the 4% circular arc bump test case with the BLEND
scheme.
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6.7.2 Evolutionary Euler Equations

In the time-dependent setting three distinct test problems were implemented:

• Double Mach Reflection (the solution exhibits strong shocks);

• Mach 3 Flow Over a Step (the solution exhibits strong shocks);

• Advection of a Vortex (the analytic solution is C2 regular).

The focus in this section is laid on comparing the implicit RKRD and explicit

RKRD frameworks, both introduced in Chapter 4. Both structured and unstruc-

tured meshes were used and the CFL number was varied between 0.1 and 0.9. In

the case of the Advection of a Vortex test case, the CFL number was decreased in

order to gain a clearer indication of the order of accuracy of the underlying numer-

ical approximations. For the Mach 3 Flow Over a Step test case the CFL number

was decreased only in the case of the implicit RKRD framework, for which higher

CFL numbers caused instabilities which were too strong for the algorithm to fin-

ish the simulation. The detailed configuration for each test case is given in the

corresponding paragraph. As noted in [81], shocks appearing in the Double Mach

Reflection and Mach 3 test cases are too strong for the LDA scheme to cope with.

Such being the case, only the implicit RKRD-BLEND and explicit RKRD-BLEND

schemes were considered in these cases. For a comparison with a first order scheme,

the Double Mach Reflection test case was additionally solved with the aid of the

RKRD-N scheme (for which there is no distinction between the implicit and explicit

frameworks, see Section 4.3.2). As discussed in Section 4.4, the PETSc [15, 16] nu-

merical library was used to solve linear systems resulting from the implicit RKRD
discretisations. The configuration of the linear solver remained unchanged from the

one used in Chapter 4, except that the relative tolerance, in order to speed the cal-

culations up, was set to 10−5 rather than 10−8. In most cases, reducing it, i.e. setting

it to values lower than 10−5, did not show any noticeable improvements (qualitative

nor quantitative).

Double Mach Reflection

This problem was originally introduced by Woodward et al. in [109]. It constitutes

a very severe test for the robustness of schemes designed to compute discontinuous

flows. The flow consists of the interaction of a planar right-moving Mach 10 shock

with a 30◦ ramp. In the frame of reference used, the x axis is aligned with the ramp.

The computational domain is the rectangle [0, 4]× [0, 1], with the ramp starting at
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x = 1
6
and stretching till the right-hand-side corner of the domain (x = 4, y = 0).

The simulations were run until time T = 0.2 on three unstructured meshes with

topology similar to that in Figure 6.16. The coarsest mesh had 7865 cells, then it

was refined to give a mesh with 55927 cells and finally the experiment was run on a

mesh with 278141 elements. At the initial state, the shock forms a 60◦ angle with

the x axis. See Figure 6.17 for the geometry and initial values of the solution. The

CFL number was set to 0.9.
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Figure 6.16: The coarsest grid for the Double Mach Reflection test case, 7865 cells.

1/6
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60◦

ρ = 8

p = 116.5

u ≈ 7.144

v = 4.125

ρ = 1.4

p = 1.0

u = v = 0.0shock

1.0

Figure 6.17: The geometry and initial condition for the Double Mach Reflection test case.

For this test case it is customary to plot contours of the density field. These

are presented in Figures 6.18-6.26. Only the region between x = 0 and x = 3

is displayed, although the grid continues to x = 4. The air ahead of the shock

remains undisturbed and the shorter domain makes the presentation clearer. All
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the considered schemes successfully captured the interaction between the shock and

the ramp (see [27,85] and [109] for reference results). As expected, refining the mesh

increased the resolution and the accuracy with which that interaction was resolved.

In all cases, the BLEND scheme gave a solution exhibiting higher resolution and thus

capturing the shocks more accurately than the N scheme. The coarsest mesh was

insufficient to capture the contact emanating from the triple point and refining it

led to a significant improvement. The explicit RKRD-BLEND and implicit RKRD-

BLEND schemes gave comparable results, however the one obtained with the aid

of the explicit RKRD-BLEND scheme is of noticeably higher resolution. This is

probably due to the fact that in the case of the implicit RKRD-BLEND scheme

values on the diagonal of the blending matrix Θ (cf. Equation (6.9)) were set to

the maximum value (i.e. the preference was given to the first order N scheme).

Otherwise, instabilities would stop the algorithm from completing the simulation.

The result in Figure 6.20 is comparable with those obtained in [27] and [109] on

meshes with similar resolution.
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explicit BLEND

Figure 6.18: Double Mach reflection: density contours for the explicit RKRD-BLEND scheme.
7865 cells
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explicit BLEND

Figure 6.19: Double Mach reflection: density contours for the explicit RKRD-BLEND scheme.
55927 cells
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Figure 6.20: Double Mach reflection: density contours for the explicit RKRD-BLEND scheme.
278141 cells
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explicit N

Figure 6.21: Double Mach reflection: density contours for the explicit RKRD-N scheme. 7865 cells
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explicit N

Figure 6.22: Double Mach reflection: density contours for the explicit RKRD-N scheme. 55927
cells
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Figure 6.23: Double Mach reflection: density contours for the explicit RKRD-N scheme. 278141
cells
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implicit BLEND

Figure 6.24: Double Mach reflection: density contours for the implicit RKRD-BLEND scheme.
7865 cells
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implicit BLEND

Figure 6.25: Double Mach reflection: density contours for the implicit RKRD-BLEND scheme.
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Figure 6.26: Double Mach reflection: density contours for the implicit RKRD-BLEND scheme.
278141 cells
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Mach 3 Flow Over a Step

This test was originally introduced in the paper by Emery [45] and more recently

reviewed by Woodward et al. in [109]. The problem begins with uniform Mach

3 flow in a wind tunnel containing a step. The wind tunnel is 1 length unit wide

and 3 length units long. The step is 0.2 length units high and is located 0.6 length

units from the left-hand end of the tunnel (see Figure 6.27 for the geometry and the

initial condition). The inflow and outflow conditions are prescribed at the left and

right boundaries (y = 0.0 and y = 3.0), respectively. The exit boundary condition

has no effect on the flow, because the exit velocity is always supersonic. Initially

the wind tunnel is filled with a gas, which everywhere has density 1.4, pressure 1.0,

and velocity 3. Gas with this density, pressure, and velocity is continually fed in

from the left-hand boundary. Along the walls of the tunnel reflecting boundary

conditions are applied. The corner of the step is the centre of a rarefaction fan

and hence is a singular point of the flow. Following Woodward and Colella [109], in

order to minimize numerical errors generated at this singularity, additional boundary

conditions near the corner of the step were prescribed. For every boundary cell E

located behind the step and such that 0.6 ≤ x ≤ 0.6125 ∀x ∈ E, all the variables

were reset to their initial value. This condition is based on the assumption of a nearly

steady flow in the region near the corner. The simulations were carried out on an

unstructured mesh with 71080 nodes with the reference length set to approximately
1
80

at the beginning and the end of the domain and 1
1000

at the corner of the step.

The zoom of the mesh near the singularity point is illustrated in Figure 6.28. The

CFL number was to 0.8 for the explicit framework and 0.5 for the implicit.

Density contours at times t = 0.5, t = 1.5 and t = 4.0 obtained with the aid of

explicit RKRD-BLEND and implicit RKRD-BLEND schemes are plotted on Figures

6.29-6.34. All the figures show a sharp resolution of the shocks and are comparable to

results that one can find in the literature obtained on meshes with similar resolution

(see, for instance, [60, 85] and [29]). The implicit RKRD-BLEND scheme captured

the mach stem more accurately, see Figures 6.31 and 6.34. Otherwise both schemes

behaved similarly with one exception. At time roughly equal t ≈ 2.35 the implicit

RKRD-BLEND (having set the CFL number to 0.8) gave a solution with negative

density, which almost immediately led to instabilities and the simulation stopped.

In order to obtain the solution at time t = 4.0, the CFL number was decreased to

0.5. In both the implicit and explicit case the values on the diagonal of the blending

matrix Θ (cf. Equation (6.9)) were set to maximum (i.e. the preference was given

to the first order N scheme). Otherwise, instabilities close to the corner of the step
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would prevent the algorithm from completing the simulation.

0.6

0.2

1

3

p = 1 , ρ = 1.4 , u = 3 , v = 0

Figure 6.27: Geometry and the initial condition for the Mach 3 test case.

Figure 6.28: The zoom of the grid used for the Mach 3 Flow Over a Step test case near the
singularity point.
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Figure 6.29: Mach 3 Flow Over a Step: Explicit RKRD-BLEND scheme, density contours at time
t = 0.5, CFL = 0.8
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Figure 6.30: Mach 3 Flow Over a Step: Explicit RKRD-BLEND scheme, density contours at time
t = 1.5, CFL = 0.8
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Figure 6.31: Mach 3 Flow Over a Step: Explicit RKRD-BLEND scheme, density contours at time
t = 4.0, CFL = 0.8
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Figure 6.32: Mach 3 Flow Over a Step: Implicit RKRD-BLEND scheme, density contours at time
t = 0.5, CFL = 0.5
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Figure 6.33: Mach 3 Flow Over a Step: Implicit RKRD-BLEND scheme, density contours at time
t = 1.5, CFL = 0.5
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Figure 6.34: Mach 3 Flow Over a Step: Implicit RKRD-BLEND scheme, density contours at time
t = 4.0, CFL = 0.5
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Advection of a Vortex

The following problem was originally introduced in [44]. Its main appeal is the

fact that the exact solution to this test case is known. The problem was solved on a

rectangular domain [0, 2]× [0, 1] with inflow wall on its left side (x = 0.0), outflow at

the right end of the domain (x = 2) and solid wall boundary conditions at the bottom

and the top. The density for this test was constant and set to ρ = 1.4 throughout

the domain. The centre of the vortex, (xc, yc), was initially set to (0.5, 0.5) and was

then advected during the simulation with the mean stream velocity vm = (6, 0).

The flow velocity was given by the mean vm and the circumferential perturbation,

i.e. v = vm + vp, with:

vp =

{
15 (cos(4πr) + 1) (−y, x) for r < 0.25,

(0, 0) otherwise,

with r =
√

(x− xc)2 + (y − yc)2. The pressure, similarly to the velocity vector,

was given by its mean value pm = 100 plus perturbation, i.e. p = pm + pp :

pp =

{
∆p+ C for r < 0.25,

0 otherwise,

with ∆p + C defined so that the solution is C2 regular:

∆p =
152ρ

(4π)2

(
2 cos(4πr) + 8πr sin(4πr) +

cos(8πr)

8
+ πr sin(8πr) + 12π2r2

)
.

The regularity is guaranteed by choosing C such that p|r=0.25 = pm = 100.With the

above setup the maximal Mach number in the domain is M = 0.8. The simulation

was run until time T = 1
6
.

The first set of experiments was carried out on a structured mesh with topology

as in Figure 6.41 with 161 × 81 nodes. The computations were performed with

CFL = 0.8. In Table 6.1 values of the maximum and the minimum values of

the pressure obtained are given. Isolines of the pressure inside and in the close

vicinity of the vortex are shown in Figures 6.36-6.40. The N scheme gave the most

smeared out and the least accurate result. The minimum value of the solution

in this case is much higher than the exact one. The solutions produced with the

explicit RKRD-BLEND scheme was much better in this respect, however noticeably

worse than those obtained with the (implicit and explicit) LDA and implicit RKRD-

BLEND schemes. The difference is not significant, but the solution obtained with
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the implicit RKRD-BLEND scheme resembles the exact solution, Figure 6.35, the

most. No clear superiority of either the explicit or implicit frameworks was noticed,

though the implicit RKRD-BLEND scheme gave somewhat smoother solution than

its explicit counterpart. It should be noted, though, that in this section the implicit

RKRD-BLEND scheme was set in such a way that the preference was given to the

LDA scheme (cf. Section 6.4). In [44] similar experiments for this test problem were

carried out (i.e. investigation of contour plots and the maximum/minimum values of

the numerical solutions). Values presented in Table 6.1 show similar behaviour, but

contour plots presented here (in particular those obtained with the aid explicit and

implicit RKRD-LDA schemes and implicit RKRD-BLEND) are much more faithful

to the exact solution than those presented in the literature.

Scheme N ex BLEND im BLEND ex LDA im LDA exact
pmin 98.77133 94.11941 93.5180 93.06300 92.90018 93.213
pmax 100.1191 100.1159 100.0004 100.0766 100.0803 100

Table 6.1: The minimum and maximum value of the pressure obtained with the aid of the LDA,
N and BLEND schemes using the explicit (ex) and implicit (im) RKRD frameworks.
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Figure 6.35: Travelling Vortex: pressure contours for the exact solution, 25600 cells

The grid convergence analysis was performed to investigate the order of accuracy

of the implicit/explicit RKRD-LDA and -BLEND schemes. Errors were measured

by means of the usual L∞ norm and the L2 and L1 norms of the relative pressure

error:

ǫp =
pexact − papprox

pm
,



Chapter 6 136 The Euler Equations

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

explicit N

Figure 6.36: Travelling vortex: pressure contours for the explicit RKRD-N scheme, 25600 cells
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Figure 6.37: Travelling vortex: pressure contours for the explicit RKRD-LDA scheme, 25600 cells

in which pexact and papprox are the values of the analytical and numerical (approxi-

mate) pressure, respectively. Instead of calculating the error in the whole domain,

only nodes inside and in the close vicinity of the vortex, i.e. nodes for which:

r =
√

(x− xc)2 + (y − yc)2 ≤ 0.35

were considered. Such approach guaranteed that there was no interference between

boundary and interior nodes and that the imposition of boundary conditions did

not affect the results. The experiments were performed on a set of structured and
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Figure 6.38: Travelling vortex: pressure contours for the explicit RKRD-BLEND scheme, 25600
cells
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Figure 6.39: Travelling vortex: pressure contours for the implicit RKRD-LDA scheme, 25600 cells

unstructured meshes (topology as in Figure 6.41), for which the reference length was

varied from approximately 1
10

to 1
160

in the case of unstructured meshes and from
1
20

to 1
320

in the case of structured grids. The CFL number had to be reduced to

0.4 and 0.1 for the explicit and implicit RKRD frameworks, respectively. Recall

that it was set to 0.8 to produce the contour plots, i.e. Figures 6.36-6.40. Such a

modification was necessary in order to demonstrate the accuracy for the coarsest

meshes and to obtain results exhibiting second order convergence. The simulations

were run until time T = 0.08 rather than T = 1
6
(i.e. making the vortex travel
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Figure 6.40: Travelling vortex: pressure contours for the implicit RKRD-BLEND scheme, 25600
cells

from (0.5, 0.5) to (0.98, 0.5) instead of (1.5, 0.5)). The results for the explicit RKRD

framework on unstructured and structured meshes are presented in Figures 6.42

and 6.43, respectively. Apart from the L∞ errors, the second order of accuracy is

reached almost immediately. In [85] the authors presented errors only in the L2 norm

(comparable to those obtained here) claiming that the behaviour of their schemes

(i.e. the explicit RKRD framework) is quantitatively and qualitatively very similar

in all three norms considered: L2, L1 and L∞. However, the configuration they used

was somewhat different, i.e. periodic boundary conditions and a shorter domain were

used. The results for the implicit framework on structured and unstructured meshes

are illustrated in Figures 6.44 and 6.45, respectively. Also in this case the second

order of accuracy is reached quite rapidly, but only in the L2 and L1 norms. Both,

the implicit and explicit RKRD-LDA scheme exhibited a small drop down in the

order of accuracy when moving to the finest meshes. For almost all the experiments,

the implicit framework was more accurate then its explicit counterpart.

To investigate the overhead related to solving linear systems (and using PETSc)

in the case of the implicit framework, selected execution times for the implicit and

explicit frameworks are presented in Table 6.2. The clock() function from the C

Programming Language Standard Library was used. The overhead that the implicit

framework introduced is strictly related to solving two linear systems at every time

step: one at each stage of the Runge-Kutta time stepping. This includes allocating

the memory for the linear system, M (cf. Formulation (4.9)), assembling it and
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Figure 6.41: The finest structured (left) and unstructured (right) grid used in the grid convergence
analysis for the Advection of A Vortex test case.
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Figure 6.42: Grid convergence for the explicit RKRD-LDA (left, CFL = 0.4) and -BLEND (right,
CFL = 0.4) schemes for the travelling vortex test case. Errors calculated within a sub-domain
surrounding the vortex. Simulation run until T = 0.08. Unstructured meshes.

finally inverting to get the solution at the next time step. All of these tasks were

performed in one update procedure, all other parts of the code being shared between

the implicit and explicit frameworks. In the case of the explicit RKRD framework,

the linear system M (cf. Formulation (4.9)) is diagonal and one can immediately

proceed to calculating the solution at the new time step, i.e. wn+1, based on the so-

lution at the current time, i.e. wn. Table 4.9 contains a set of two times (evaluated

on five consecutively refined meshes) for two of the tested schemes. The implicit

and explicit RKRD-LDA schemes were chosen as representatives for the implicit

and explicit RKRD frameworks, respectively. The first value (Time 1) represent

the amount of time (in seconds) it took for one time step (two Runge-Kutta stages),

i.e. the whole process of calculating wn+1 based on wn. The second value (Time

2) represents the time it took for one update procedure (within one Runge-Kutta
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Figure 6.43: Grid convergence for the explicit RKRD-LDA (left, CFL = 0.4) and -BLEND (right,
CFL = 0.4) schemes for the travelling vortex test case. Errors calculated within a sub-domain
surrounding the vortex. Simulation run until T = 0.08. Structured meshes.
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Figure 6.44: Grid convergence for the implicit RKRD-LDA (left, CFL = 0.1) and -BLEND (right,
CFL = 0.1) schemes for the travelling vortex test case. Errors calculated within a sub-domain
surrounding the vortex. Simulation run until T = 0.08. Unstructured meshes.

stage), that is creating and inverting the mass matrix, M, and then using it and

wn to calculate wn+1. In the case of the explicit RKRD framework the mass ma-

trix is diagonal and hence there is no need for an expensive procedure assembling

and inverting it. The implicit RKRD-LDA takes on average four times longer to

obtain the desired solution. For both schemes the execution time increases by a

factor of four when the mesh is refined. One should bear in mind that the above

approach gives an estimation rather than the actual execution time of the inves-

tigated procedure, and that the result has a rather low resolution (microseconds).
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Figure 6.45: Grid convergence for the implicit RKRD-LDA (left, CFL = 0.1) and -BLEND (right,
CFL = 0.1) schemes for the travelling vortex test case. Errors calculated within a sub-domain
surrounding the vortex. Simulation run until T = 0.08. Structured meshes.

This is mainly due to the implementation of the clock() function. At the same time,

the above is not an attempt to perform a thorough profiling or comparison of the

implicit and explicit frameworks. Results from Table 6.2 are presented here to draw

a general picture and to serve as guidance when considering these schemes in future.

Experiments were performed on a Desktop PC equipped with an HT Intel Xeon

core and twelve gigabytes of operating memory. All presented execution times are

averages calculated during the corresponding simulation (the Advection of a Vortex

test case, simulation run until time T = 0.08). The above study shows that the

implicit RKRD-LDA, even though in most cases it is more accurate than its explicit

counterpart, is relatively slow compared to the explicit RKRD-LDA scheme. In

the tested scenarios the gain in accuracy does not outweigh the lost in efficiency.

However, a more thorough and extensive study ought to be carried out before such

comparison can be considered complete.

6.8 Summary

In this chapter an appropriate conservative discrete form for the two-dimensional

Euler equations was presented. The outlined technique lays at the basis of every

modern residual distribution method when applied to the Euler equations. Origi-

nally, residual distribution methods were applied to the Euler equations with the

aid of wave decompositions. However, only the more popular and robust approach

of matrix distribution methods was considered.
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#Cells 474 1856 7374 29656 118522

im LDA

GMRES iter. 9.90/9.90 9.85/9.85 9.98/9.98 7.16/7.16 10.41/10.41
L2 Error 1.4219e-03 5.7804e-04 1.5207e-04 2.9426e-05 9.0165e-06
Time 1 0.120e-2 4.709e-2 1.946e-1 7.359e-1 3.305
Time 2 4.662e-3 1.818e-2 7.592e-2 2.822e-1 1.309

ex LDA
L2 Error 1.2164e-03 1.2843e-03 6.5866e-04 1.5420e-04 2.5926e-05
Time 1 2.628e-03 1.087e-02 4.3921e-02 1.760e-01 7.072e-01
Time 2 0.0 1.7e-5 1.720e-04 5.08e-04 1.885e-03

Table 6.2: Performance of the implicit (im) and explicit (ex) RKRD-LDA methods when applied
to the Advection of a Vortex test case. The table shows (1) the average number of iterations it took
to reach the stopping criterion during the first/second stage of the Runge-Kutta time-stepping (the
implicit scheme only), (2) L2 errors and (3) the amount of time (in seconds) for: one time step (
both stages, Time 1) and the update procedure (setting and solving the linear system, Time 2).
Results are given for the unstructured meshes used earlier in the grid convergence analysis (with
474, 1856, 7374, 29656 and 118522 cells, cf. top row of the table and Figures 6.42 and 6.44).

Extensive numerical results comparing the explicit and implicit RKRD frame-

works were presented. The former proved to be noticeably more stable in the sense

that in a number of scenarios it allowed larger CFL number (the Advection of a

Vortex and Mach 3 Flow Over a Step test problems) and more relaxed definition of

the blending matrix Θ (the Advection of a Vortex and the Double Mach Reflection

test case). On the other hand, the implicit framework offers a more accurate dis-

cretization. This, obviously, comes at a price - the implicit framework is on average

four times more expensive in terms of computational cost, or, to be more precise,

execution time.

To sum up, it was presented that the implicit RKRD framework is a robust

way of discretising systems of non-linear hyperbolic PDEs. In most cases it leads to

more accurate approximations than its explicit counterpart. However, this gain in

accuracy only in rare cases outweighs the computational overhead related to solving

the underlying linear system. In the case of the explicit RKRD framework this

linear system is diagonal and therefore very cheap to solve.
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Conclusions

In this work, the framework of multidimensional upwind residual distribution meth-

ods for solving hyperbolic conservation laws has been studied. The emphasis has

been laid on methods for time-dependent problems, in particular those incorporat-

ing Runge-Kutta integration in time (e.g. the first order forward Euler methods

and second order TVD Runge-Kutta method of Osher et al. [97]). In the steady

state setting, residual distribution methods have already reached a high level of

sophistication and proved to be a very successful alternative to other widely used

frameworks, e.g. finite volume and discontinuous Galerkin methods. Extension to

time-dependent problems, although possible and already achieved, brings additional

challenges which yet need to be fully resolved. The main challenge is to design a

scheme with all the desired properties, and which achieves this at a relatively low

computational cost. Constructing such a method has been the main underlying goal

of this thesis.

The main focus of interest in this thesis has been the derivation and investiga-

tion of second order accurate schemes. The underlying discrete representation of the

numerical solution has been assumed to be piece-wise linear, in case of which such

an accuracy requirement is a natural research goal. Whilst considering numerical

methods for hyperbolic PDEs, it is a very frequent requirement that the resulting

numerical approximation to the analytic solution of the underlying PDE is free of

spurious and non-physical oscillations. Constructing a scheme that is both positive

and second order accurate is even more challenging and has been intensively dis-

143
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cussed throughout this work. In order to guarantee that the resulting discretization

is efficient, only explicit time-stepping methods have been considered. Although such

choice does not guarantee that overall the resulting scheme is explicit, two discreti-

sations which are indeed fully explicit were considered, i.e. the unsteady RD and

explicit RKRD [85] frameworks, discussed in Chapter 4. The simple combination

of the second order TVD Runge-Kutta method [97] with the residual distribution

framework, i.e. the implicit RKRD framework (see Chapter 4), is an example of

an approach where explicit time-stepping does not guarantee that the overall dis-

cretisation is fully explicit. Fortunately, the resulting linear system is sparse and

a robust and efficient way of solving it was presented. This was done with the aid

of the PETSc numerical library. Moreover, the implicit scheme was, in majority of

the tested situations, more accurate than its explicit counterpart, which somehow

compensates for the extra overhead due to solving a linear system.

One of the most recent strands of research within the residual distribution com-

munity is discontinuous methods [3,14,57,58,60,61,105] (see also Chapter 3). Both,

discontinuous-in-space and discontinuous-in-time approximations are being inten-

sively studied and developed. In this thesis, the focus was laid on the former ap-

proach, the latter being derivative of frameworks based on implicit time-stepping

methods (the so-called space-time residual distribution methods [10,29,32,34,38,44])

and which are not considered here. The first successful attempt to apply the

discontinuous-in-space residual distribution framework to time-dependent problems

[105] focused on first order approximations (i.e. the forward Euler method was

used to integrate in time). Constructing a genuinely second order method for time-

dependent problems turned out to be much more challenging than originally an-

ticipated. During this process a few shortcomings of the discontinuous-in-space

framework have been discovered (see Chapter 5). Extensive numerical experiments

showed that when the underlying fluid flow is aligned (or almost aligned) with

the mesh, then the order of accuracy drops down to one. The solution to this

problem, a new distribution strategy for edges, removed this anomaly. However,

this new distribution leads to a residual distribution method which is very simi-

lar to the discontinuous Galerkin approximation [23] and consequently makes the

whole discontinuous-in-space RD approach less appealing. It is worth pointing out,

though, that it is very unlikely that in practical applications for which grids are more

often than not unstructured, the fluid flow will indeed be aligned with the mesh.

This means that even the distribution strategies for which the order of accuracy for

mesh-aligned flows drops down to one remain interesting. These distributions, in
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particular the mED method, are more faithful to the RD spirit and bear far less

resemblance to solutions known from the DG approach. There is yet another major

flaw of the discontinuous-in-space RD framework that was discovered while inves-

tigating second order schemes for time-dependent problems. This flaw is the fact

that the discontinuous RKRD framework, at least in its current state, proved to be

incapable of solving non-linear equations. This discussion was carried out in Chap-

ter 5. In the future, a “slope limiting” procedure (see the approach employed in the

discontinuous Galerkin framework [27]) will have to be introduced to overcome this

poor behaviour when dealing with non-linear equations. Interestingly enough, the

first order discontinuous-in-space approximations (i.e. the discontinuous unsteady

RD methods) coped with non-linear equations with no extra effort [105]. Although

the research presented here has not led to a fully developed second order accurate

discontinuous-in-space residual distribution framework, the discussion and analysis

carried out alongside gives a new and very thorough insight into this approach.

The above overview briefly summarises the contents of Chapters 2-5. Chapter

6 deals with the application of methods discussed in this thesis to solve the Euler

equations of fluid dynamics. As such, it is not meant to introduce any new con-

cepts. Instead, it focuses on introducing the existing methodology for extending

residual distribution methods to the Euler equations [39, 102] and applying it to

the algorithms investigated in this thesis. The chapter as whole should be regarded

as a very extensive collection of numerical results that demonstrate robustness of

discretisations techniques studied in this thesis.

7.1 Contributions

To summarise, major contributions of this thesis are listed below.

• Discontinuous Residual Distribution Framework: The framework of

discontinuous residual distribution methods has been extended by designing

one new distribution strategy for edge-based residuals, i.e. the dcmED method.

A thorough review and numerical comparison of all the available distribution

strategies for edge-based residuals demonstrated that, as far as steady state

problems are concerned, the mED distribution of Hubbard [57] performs the

best, i.e. the resulting scheme is second order accurate and positive. The

dcmED distribution leads to a second order accurate scheme, but the solution

cannot be guaranteed to be free of spurious oscillations. The LF distribution
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of Abgrall [3] gives only first order approximations and is too diffusive to be

of any practical interest. This study was presented in Chapter 3.

• Discontinuous Unsteady Residual Distribution Framework [105]:

This framework is the first successful attempt to construct discontinuous-in-

space residual distribution methods for unsteady problems. Due to the low

order time-stepping method used in this approach (first order forward Euler

method), at most first order accurate schemes can be designed within this

framework. Indeed, presented numerical results confirm that schemes devel-

oped within this framework are first order accurate. On the other hand, im-

posing positivity is very straightforward and this was validated experimentally

for both linear and non-linear problems. This framework was introduced in

Chapter 5.

• Implicit Runge-Kutta Residual Distribution Framework: Recently,

Ricchiuto et al. [85] introduced the explicit RKRD framework. Their ap-

proach guarantees that the underlying system of equations describing the re-

lation between the solution at two consequent time levels is linear and diagonal.

Within the proposed approach, second order schemes were constructed. With

respect to positivity, the presented results are promising, though not 100%

oscillation-free. The authors did not give any indication how this could be

improved. Instead, they focused on designing a relatively efficient and accu-

rate scheme. The implicit RKRD approach presented here is an alternative

to their approach. Although in this case the relation between the solution at

two consecutive time steps is described by a non-diagonal matrix, extensive

numerical results presented here show that the related overhead is not as pro-

found as originally expected. More important, the implicit framework is in

many cases more accurate than its explicit counterpart and provides a clear

indication where to look for improvements - introducing a non-linear mass ma-

trix (by modifying the blending procedure) will possibly improve the results

presented here. In particular in terms of positivity. This should be studied

in more detail in the future. Obviously, the expense of obtaining the solution

will increase. Nevertheless, without a thorough investigation it is impossible to

judge whether this extra cost will or will not introduced unbalanced overhead.

This study was carried out in Chapters 4 and 6.

• The Discontinuous Runge-Kutta Residual Distribution Framework:

Combining together ideas from the discontinuous-in-space and Runge-Kutta
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residual distribution frameworks turned out to be more challenging then orig-

inally expected. In terms of the constructed numerical methods, one can find

that the results presented here are a bit disappointing. Although the pro-

posed schemes are second order accurate, they blow up when applied to non-

linear equations. On the other hand, the research carried out whilst working

on those methods led to a number of interesting analytical results on the

discontinuous-in-space framework, and ultimately to a thorough comparison

between the discontinuous RD and discontinuous Galerkin methods. For in-

stance, it was shown that the mED distribution strategy can be viewed as

a first order approximation to DG-upwind distribution. Also, it was shown

that any discontinuous RKRD for dcmED strategy was used to distribute

edge residuals is equivalent to the discontinuous Galerkin approximation. See

Chapter 5 for more details.

7.2 Future Work

Various research avenues have been opened up by the results presented in this thesis:

• The discontinuous implicit RKRD framework is not complete. Extending it

to non-linear equations is currently the key challenge. Due to its close relation

to the DG framework, it very likely can be achieved with the aid of limiting

techniques used in the latter approach.

• In the implicit RKRD framework, the blending procedure was deliberately

designed in such a way that the resulting system of equations was linear.

Although the resulting scheme behaved very well with respect to the presence

of spurious physical oscillations, there is still room for improvement. One

possibility would be to modify the blending procedure so that the resulting

system of equations is non-linear and see how it affects the positivity. Such an

approach could be devised by heuristically extending a similar procedure for

steady state problems.

• In order to develop better understanding of the discontinuous-in-space residual

distribution framework, the truncation error analysis following the methodol-

ogy of Abgrall [1] can be carried out. The methodology devised originally for

continuous methods, could be extended to the discontinuous-in-space setting

by incorporating the edge-based signals into the original analysis. This would
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potentially result in introducing more genuinely second order discontinuous-

in-space RKRD methods.

• A thorough investigation and comparison of different techniques for prescribing

boundary conditions for the Euler equations will contribute to the rigour of

numerical methods for systems of non-linear hyperbolic PDEs.

• Explicit Runge-Kutta residual distribution methods have successfully been

applied to the equations of Shallow Water Flows [84]. Similar extension in

terms of the implicit RKRD framework can also be considered.

Additionaly, one could consider extending the presented framework to higher

than second order discretisations by following the methodology of either Abgrall and

Roe [13], Careani and Fuchs [19] or Mebrate [74]. For extension to 3-dimensional

problems refer to the approach of Abgrall and Marpeau [9].
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Appendix A

Analytical Solution to Burgers’

Equation

For the purpose of experimental investigation of Chapters 4 and 5, as one of the test

cases, nonlinear inviscid Burgers’ equation was implemented (i.e. Test Case F):

∂t u + ∇ · f(u) = 0 on Ωt = Ω× [0, 1], (A.1)

with f = (u
2

2
, u

2

2
) and Ω ⊂ R

2. Although plots of the exact solution were given (see

Figure 4.5), the analytical formula describing it was omitted. In general, finding

such a formula is not an easy task and the result very often is too complicated to

be considered practical. In some special cases, though, it is possible to give a clear

and simple answer. One particular example of such a situation was considered in

Chapters 4 and 5, where piece-wise constant initial conditions were prescribed. To

see how the solution to that problem is constructed, its one-dimensional counterpart

will be first derived.

A.1 The 1D Riemann Problem

To start with, consider the one-dimensional equivalent of (A.1):

∂t u + ∂x f(u) = 0 on [a, b]× [0, 1],
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with f(u) = u2

2
, a, b ∈ R (a < 0 < b) and the initial condition set to:

u(x, 0) =

{
ul if x < 0,

ur if x > 0,

where ul and ur are two constant states. The above problem (piece-wise constant

initial data having a single discontinuity) is known as the Riemann problem. The

solution takes one of two forms depending on the relation between ul and ur.

Case I ul > ur

The unique weak solution in this case is given by:

u(x, t) =

{
ul if x < st,

ur if x > st,

with the shock speed s defined as:

s =
f(ul) − f(ur)

ul − ur
.

Case II ul < ur

This time the weak solution is not unique. Only the so-called rarefaction wave

is stable to perturbations and physically relevant. It is given by:

u(x, t) =





ul if x < f ′(ul)t,

v(x/t) if f ′(ul)t ≤ x ≤ f ′(ur)t

ur if x > f ′(ur)t,

where v(ζ) is the solution to f ′(v(ζ)) = ζ. For f(u) = u2

2
the derivative of f(u) is

equal to u and v(ζ) = ζ. As discussed in [68], the above formula is also true in the

more general case where f is an arbitrary convex function.

Riemann problems were discussed in many classical text-books on hyperbolic

PDEs, for instance in [47, 48, 69] and [101]. A very clear derivation of the above

solution can be found in the monograph by LeVeque [68]. Although the above

formulation specifies the solution in only two particular situations, it can be easily

extended to more general case when there are more discontinuities in the data.

To this end it suffices to divide the domain into sub-domains containing only one

discontinuity each, and to solve the equation separately on every one of them.



Chapter A 152Analytical Solution to Burgers’ Equation

A.2 The 2D Riemann Problem

In order to solve (A.1), rotate the coordinate system to get a family of adjacent

one-dimensional problems. The new coordinates ξ and η are given by

ξ =

√
2

2
x +

√
2

2
y, η =

√
2

2
x −

√
2

2
y,

so that

∇ · f(u) = u (ux + uy) = u (uξξx + uηηx + uξξy + uηηy) =
√
2 ∂ξ f(u).

In other words, the two-dimensional problem is equivalent to its one-dimensional

counterpart in the new coordinate system:

∂t u + ∇ · f(u) = 0 ⇔ ∂t u +
√
2 ∂ξ f(u) = 0.

Note that rotating the coordinate system does not affect the initial data. In Chapters

4 and 5 only piece-wise constant initial data was considered and hence the one-

dimensional equivalent of (A.1) falls into the class of problems considered in the

previous section. Therefore, construction of the analytical solution for Test Case F

is accomplished.



Appendix B

Notation

To avoid ambiguity or confusion in the interpretation of the text, a brief description

of the notation employed in this thesis is outlined.

Frameworks

Frameworks for steady state problems:

RD - residual distribution

FE - finite elements

FV - finite volumes

DG - discontinuous Galerkin

discontinuous RD - discontinuous residual distribution

Frameworks for time-dependend problems

RKRD - Runge-Kutta residual distribution
(2nd order TVD Runge-Kutta method + RD)

RKDG - Runge-Kutta discontinuous Galerkin
(2nd order TVD Runge-Kutta method + DG)
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unsteady RD - unsteady residual distribution
(1st order forward Euler + RD)

disc. RKRD - discontinuous Runge-Kutta residual distribution
(2nd order TVD Runge-Kutta method + disc. RD)

disc. unsteady RD - discontinuous unsteady residual distribution
(1st order forward Euler + discontinuous RD)

Note that for the majority of the frameworks discussed here there is a number

of particular schemes that fall into it. These are denoted with standard rather than

curly font (e.g. LDA, N, RKRD-LDA ). Note also that for the finite element frame-

work, FE , only one scheme is considered and by abuse of notation that scheme is

denoted by FE . The FE scheme is a particular type of a RD scheme constructed by

looking at the similarities between the FE and RD frameworks. The FE and FE

approximations are regarded as two distinct discretisations. In the case of the dis-

continuous Galerkin framework, DG, two schemes are considered: DG-DG-upwind

(the discontinuous Galerkin scheme with the upwind flux) and DG-DG-LF (the

discontinuous Galerkin scheme with the Lax-Friedrichs flux).

Scalars, vectors and matrices

Three distinct forms of notation are used to represent different types of quantities

in the text

• Scalar quantities are denoted with lower case letter, standard font (e.g. u, v, p)

• Vectors (regardless the dimensions) are denoted using lower case bold font

(e.g. n, a,φ)

• Matrices (regardless the dimensions) are denoted using upper case bold font

(e.g. M)

In several instances upper case standard font letters are used to denote scalar and

vector quantities. Such approach was motivated by the desire to remain consistent

with the notation used in the literature. To avoid confusion, every quantity is clearly

described in the text.
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Mesh related quantities

Throughout the thesis the following notation is used:

E - mesh cell

e - mesh edge

h - mesh parameter

n - unit outward pointing normal vector

Th - the triangulation

Conservation law variables

For the scalar equations:

u - solution variable

f - the flux

a - flux Jacobian (advection velocity)

For the Euler equations:

ρ - density

p - pressure

u, v - x− and y− velocities

Etotal - total Energy

a - speed of sound

H - total enthalpy

g,h - fluxes

w - vector of conservative variable

z - parameter vector variable
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Derivation of The Consistent Mass

Matrix F2

In Chapters 4 and 5, the consistent mass matrix (4.4) was used. Recently referred

to in the literature as Formulation 2 (or F2), see [85], it is given by the following

formula:

mE
ij =

|E|
36

(3δij + 12βi − 1).

It was originally proposed in [73] and that derivation will now be recalled here.

Let ψRD
i be defined as:

ψRD
i = ψi + αE

i , (C.1)

with ψi being the standard linear Lagrange basis function associated with node i

in cell E and αE
i some weighting coefficient yet to be specified. This weighting

coefficient is meant to guarantee that the following relation is true:

∫

E

a · ∇uh ψRD
i dΩ = βiφ

E,

in which βi is a distribution coefficient resulting from a residual distribution dis-

cretisation, see Chapter 2 for details. Now, since
∫
E
a · ∇uh dΩ = φE, the offset

parameter αi must satisfy the following relation:

αi = βi −
1

φE

∫

E

a · ∇uh ψi dΩ,
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or, using notation from Section 2.3,

αi = βi − βFE
i .

Now, approximating βFE
i with βFE

i = 1
3
one obtains:

ψRD
i = ψi + βi − βFE

i .

This definition is used in the literature and in this thesis regardless of the equation

being discretised. To the author’s best knowledge, the effect of approximating βFE
i

with βFE
i on the accuracy has not yet been investigated. However, the available

numerical results show that the order of accuracy does not deteriorate.

The derivation of the mass matrix (4.4) is now obvious and reads:

mE
ij =

∫

E

ψRD
i ψj dΩ = |E|




β1

3
+ 1

18
β1

3
− 1

36
β1

3
− 1

36
β2

3
− 1

36
β2

3
+ 1

18
β2

3
− 1

36
β3

3
− 1

36
β3

3
− 1

36
β3

3
+ 1

18


 .

Note that for the above reasoning to make sense, the distribution coefficientsβi

have to be bounded, i.e. the underlying residual distribution scheme has to be

linearity preserving.
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Derivation of the Limit on the

Time-Step for the PSI-mED

Scheme

Equation (3.18) gives the limit on a time step that guarantees that a steady dis-

continuous RD scheme for which the PSI (or N) scheme was used to distribute cell

residuals and mED scheme to distribute to edge-based residuals, is positive. This

condition was originally presented in [57] but its derivation has never been published.

The following reasoning is meant to fill this gap.

Following [82], consider schemes that can be recast in the following abstract

form:

un+1
i = uni − 3∆t

|E|


∑

j∈E

cij(u
n
i − unj ) +

∑

j∈e|e∈E

cij(u
n
i − unj )


 (D.1)

According to [82] (see also references therein), if

cij ≥ 0 ∀j ∈ E and ∀j ∈ e|e∈E,

and the time-step ∆t satisfies the following condition:

∆t ≤ |E|
3(
∑

j∈E cij +
∑

j∈e|e∈E
cij)

∀i∈Th , (D.2)
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then Scheme (D.1) is positive.

Assume now that the N scheme is used to distribute cell residuals. It follows (see

Section 5.4.2.1 in [82])) that in every cell E the signal that is sent to node i ∈ Th is

equal to:

φN
i = −

∑

j∈E,j 6=i

k+i Nk
−
j (ui − uj),

with

N = −
(∑

j∈E

k−j

)−1

.

From the properties of the flow sensors one gets that:

−
∑

j∈E,j 6=i

k+i Nk
−
j = k+i ,

which is the sum of the cij coefficients corresponding to the cell-based residuals. It is

clear that in the case of the mED distribution (3.17), the corresponding edge-based

cij coefficients are equal to (kei )
+ = 1

2
(ai · nE,e)

+ |e|, in which e is one of the two

edges that node i belongs to. This shows that Condition (D.2) is equivalent to:

∆t ≤ 1

3

|E|
(kEi )

+
+ (ke1i )+ + (ke2i )+

∀E ∈ Th ∀i ∈ E,

The final step is to show that similar reasoning is true when the PSI scheme

(derived by limiting the N scheme) is used. This was shown in [82], Section 5.5.2.
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Compact Presentation of the

Discontinuous RD Framework

A Discontinuous Residual Distribution scheme is defined as a scheme that, given a

discontinuous initial solution uh :

uh(x)|E =
∑

i∈E

ψE
i (x)u

E
i ∀x ∈ E ∀E ∈ Th,

computes the next approximation of the solution, i.e. evolves in time the nodal

values of uh, by implementing the following procedure:

1. ∀E ∈ Th compute the cell residual:

φE =

∫

E

∇ · f(u) dΩ,

and ∀e ∈ E calculate the edge residuals:

φe(uh) = −
∫

e

[f(uh) · n] dΓ,

2. ∀E ∈ Th and ∀e ∈ E distribute fractions of φE and φe between the nodes of

E. Denoting by φE
i the signal sent to node i from cell E (i.e. the fraction of
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the cell residual φE assigned to node i ∈ E), by construction one must have

∑

j∈E

φE
i = φE .

Equivalently, denoting by βi the distribution coefficient corresponding to node

i :

βE
i =

φE
i

φE
,

one must have by construction

∑

j∈E

βj = 1.

Similar observation holds for φe
i , but one has to remember that each edge e

belongs to two adjacent cells: E and E ′ (cf. Figure 3.1). Denoting by φe
i the

signal sent to node i from edge e ∈ E (i.e. the fraction of the edge residual φe

assigned to node i ∈ E), by construction one must have

∑

j∈E∪E′

φe
i = φe.

Equivalently, denoting by αi the distribution coefficient corresponding to node

i :

αe
i =

φe
i

φe
,

one must have by construction

∑

j∈E∪E′

αj = 1.

3. ∀i ∈ Th assemble the contributions from E and all e ∈ E (i ∈ E) and evolve

ui in time according to (see Equation (3.4))

un+1
i = uni − 3∆t

|E|

(
βiφ

E +
∑

e∈E

αiφ
e

)
∀i.
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