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Abstract 

Cancer is one of the most devastating diseases facing society, accounting 

for some 8 millions deaths worldwide in 2008 alone, and, more alarmingly, 

the number is predicted to increase to 13.1 million in 2030. Although 

conventional cancer treatments, such as radiotherapy and chemotherapy, 

have provided profound beneficial effects for millions of cancer patients, 

serious side effects cannot be avoided, mostly due to the lack of specific 

targeting of these treatments. A long-term goal for the pharmaceutical and 

healthcare industries is to develop intelligent drug delivery systems that 

can selectively target and deliver drugs specifically to tumour region, to 

maximize their therapeutic index and reduce side-effects. 

 

Nanotechnology, the “next Industrial Revolution”, offers the possibility of 

developing new materials, structures, devices and systems at the atomic 

and molecular levels that have significantly improved physicochemical 

properties. One of the most exciting developments in nanotechnology is 

that of nanoscale drug delivery systems, which are expected to change the 

landscape of pharmaceutics in the near future. These innovative nanoscale 

drug delivery systems are capable of improving transcytosis of drugs 

across tight epithelial and endothelial barriers, targeting drugs to cell- or 

tissue-specific sites and delivering macromolecule drugs to intracellular 

sites of action.  

 

Inspired by such promise, this project aims to combine a pH-responsive 

DNA nanomachine with a biocompatible gold nanoparticle (GNP) to 

develop a new nanoscale tumour-targeting drug delivery system. 

Doxrubicin (DOX), a model anticancer drug, can bind to the system 

quickly and efficiently, and be released in a pH-responsive manner. This 

system is further modified by polyethylene glycol (PEG) for improved 

stability and stealth effect. Thus it has the potential to act as an excellent 

drug carrier. Preliminary cellular studies reveal that this system is able to 

deliver DOX to model (HeLa) cancer cells through the endocytic pathway, 

and that its cell-killing efficiency is comparable to that of the drug on its 

own. Furthermore, targeting ligands can be attached to this type of system 

for active targeting, and other functioning inorganic nanoparticles (i.e. gold 

nanorods and gold-coated magnetic nanoparticles) can also be used to 

replace the GNP as scaffold. This should allow the development of a 

multifunctional drug delivery system with the potential to offer more 

effective multi-modal therapeutic and imaging modalities.  
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1 Chapter 1: Introduction 

1.1 Nanotechnology and nanomedicine 

 

Nanotechnology 

Nanotechnology is widely regarded as being the spearhead of the next 

Industrial Revolution, in terms of the profound impact it will have on current 

science and technology. The prefix nano, derived from the Greek word for dwarf, 

means one-billionth. The U.S. National Nanotechnology Initiative defines 

nanotechnology as “science, engineering, and technology conducted at the 

nanoscale, which is about 1 to 100 nanometers” (Figure 1.1), although it 

commonly refers to structures of up to several hundred nm in size, developed by 

either top-down or bottom-up techniques[1, 2]. 

 

 

 

Figure 1.1. Schematics of some nanoscale materials, adapted from ref [3].  

 

Nanotechnology also means the ability to work at the atomic, molecular and 

supramolecular levels, allowing the design and development of materials, 
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structures, devices and systems with new and significantly improved physical 

and chemical properties.  Many of these are due to the large surface area to 

volume ratio of nanoparticles, and to the dominant quantum effects associated 

with their very small sizes[4]. 

 

The development of nanotechnology has made available a wide range of 

nanoscale products, such as nanotubes, fullerene derivatives, inorganic metal 

nanoparticles and fluorescent semiconductor nanocrystals, or quantum dots 

(QDs). These innovative tools have been used in a vast variety of disciplines, 

ranging from basic materials science, chemistry and biology, to personal 

healthcare applications. 

 

Nanotechnology-based medicine (Nanomedicine) 

 

There is no doubt that one of the most important applications of nanotechnology 

will be the development of new and effective medical treatments. The concept of 

nanotechnology-based medicine is known as nanomedicine[5-7], and it refers to 

highly specific medical interventions at the molecular scale for the diagnosis, 

prevention and treatment of disease. Thus nanomedicine covers a very large 

field, ranging from in vitro diagnostics and in vivo imaging, to therapeutic 

treatments such as targeted delivery and regenerative medicine.  

 

The new ideas and tools of nanomedicine will have significant impact on 

existing medical practices[8, 9]. For example, nanoparticles and nanomaterials 

have unique, size-dependent biophysicochemical properties[10] which do not 

exist on the macroscale. These can be used for attaching therapeutic 

components, thus overcoming many of the problems associated with 

conventional diagnosis and treatment. Although nanomedicine is still in the early 
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stages of development, it has already offered tremendous promise and the 

development of ingenious nanodevices is well on the way to revolutionising 

therapeutics and diagnostics. It is predicted that nanomedicine will expand to an 

over US$160 billion industry by 2015 [11]. 

 

 

1.2 Drug delivery and targeting 

 

 

1.2.1 Nanoscale drug delivery systems (NDDSs) 

 

 

A significant part of nanomedicine is the development of nanoscale drug 

delivery systems (Figure 1.2), which are expected to change the landscape of 

the pharmaceutical industry in the foreseeable future[12-17]. Compared to 

conventional drug delivery systems, a NDDS can significantly improve the 

delivery of poorly water-soluble drugs due to its higher surface-to-volume ratio. 

The surface properties of the NDDS, or drug nanocarrier, are known to play a 

key role in the way they interact with cells, significantly affecting the drug’s 

bioavailability. Nanocarriers can function at the cellular level and be 

endocytosed, resulting in efficient internalization by target cells. So NDDSs can 

help transcytosis of drugs across tight epithelial and endothelial barriers, 

targeting drugs to cell- or tissue-specific sites; they can deliver macromolecular 

drugs to intracellular sites of action and at the same time visualize drug delivery 

sites by combining therapeutic and targeting agents with imaging modalities[2, 

18]. 

 

Several types of NDDSs have been developed, such as polymer–drug 
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conjugates, polymeric nanoparticles, liposomes, micelles, dendrimers and 

carbon nanotubes, and these are in various stages of laboratory or clinical 

research[19]. They use various materials with unique architectures to serve as 

drug nanocarriers for the treatment of some particularly devastating diseases, 

including cancer, HIV, cardiovascular disease, and diabetes. The use of 

nanocarriers to deliver drugs safely and effectively to infected regions has 

shown great promise in treating these diseases. To date, there are quite a few 

NDDSs which have been approved for clinical use (Table 1.1)[19]. Among these, 

liposomes and polymer-drug conjugates are two of the most often-used carriers 

that have been shown to improve drug bio-availability. Although advances in 

nano systems are very promising, many challenges still remain. 

 

 

 

 

 

Figure 1.2. Development of clinical-stage NDDSs. Figure adapted from ref.[20]. 
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Table 1.1. Examples of NDDSs currently on the market[19].  

Compound Commercial name Nanocarrier Indications 

Styrene maleic 

anhydride-neocarzinostatin 

Zinostatin/Stimalmer Polymer–protein conjugate Hepatocellular carcinoma 

 

PEG -L-asparaginase Oncaspar Polymer–protein conjugate Acute lymphoblastic leukemia 

PEG -granulocyte 

colony-stimulating factor 

Neulasta/PEG filgrastim Polymer–protein conjugate Prevention of chemotherapy- 

associated neutropenia 

IL 2 fused to diphtheria toxin Ontak(Denilelukindiftitox) Immunotoxin  

(fusion protein) 

Cutaneous T-cell lymphoma 

Anti-CD33 antibody conjugated 

to calicheamicin 

Mylotarg Chemo-immunoconjugate Acute myelogenous leukemia 

Anti-CD20 conjugated to 

yttrium-90 or Indium-111 

Zevalin Radio-immunoconjugate 

 

Relapsed or refractory, 

low-grade, follicular, or 

transformed non-Hodgkin’s 

lymphoma 

Anti-CD20 conjugated to 

iodine-131 

Bexxar 

 

Radio-immunoconjugate 

 

Relapsed or refractory, 

low-grade, follicular, or 

transformed non-Hodgkin’s 

lymphoma 

Daunorubicin DaunoXome Liposomes Kaposi’s sarcoma 

Doxorubicin Myocet Liposomes 

 

Combinational therapy of 

recurrent breast cancer, ovarian 

cancer, Kaposi’s sarcoma 

Doxorubicin 

 

Doxil/Caelyx 

 

PEG -liposomes 

 

Refractory Kaposi’s sarcoma, 

recurrent breastcancer, ovarian 

cancer 

Vincristine Onco TCS Liposomes Relapsed aggressive 

non-Hodgkin’s lymphoma (NHL) 

Paclitaxel 

 

Abraxane 

 

Albumin-bound paclitaxel 

nanoparticles 

Metastatic breast cancer 

 

 

Polymer-based NDDSs, consisting mainly of polymer-drug conjugates and 

polymer nanoparticles, are among the most widely-studied vehicles for drug 

delivery. Polymer-drug conjugates, in which polymers are chemically conjugated 

with drugs, are regarded as entirely new chemical entities, as their 

pharmacokinetic profiles are distinct from those of the parent drugs[21, 22]. 

However, only a few drugs and polymers have been repeatedly used for 

developing polymer-drug conjugates; most studies have focused on 
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biodegradable polymers[23, 24]. Polymers used for making nanoparticles for 

drug delivery applications come either from synthetic polymers, of which the 

classic ones are poly(lactic acid) (PLA) and poly-(lactic-co-glycolic acid) 

(PLGA)[25, 26], or from natural polymers such as chitosan[27, 28] and 

collagen[29, 30]. These systems have been tested for drug delivery for several 

decades. They can be fabricated in a wide range of different-sized particles 

which can encapsulate drugs without chemical modification. Encapsulated 

drugs can be released in a controlled manner through surface or bulk erosion, 

or diffusion through the polymer matrix. However, the inherent structural 

heterogeneity of polymers, such as their high poly-dispersity index, may lead to 

variations between batches, which are often difficult to control and can cause 

concerns on robust formulation [31, 32]. 

 

Lipid-based NDDSs have attractive biological properties, such as excellent 

biocompatibility, biodegradability and the ability to carry both hydrophilic and 

hydrophobic drugs. They form the other major category of nanoscale drug 

delivery carriers. Most lipid-based carriers are based on liposomes and 

micelles. 

 

Liposomes are self-closed, spherical bilayer particles, prepared from cholesterol 

and non-toxic natural phospholipids. Because they are composed of natural 

materials, liposomes have the advantage of being harmless drug delivery 

carriers that can circulate in the blood for a long time when modified with 

polyethylene glycol (PEG) functional groups[33-35]. Micelles are 

self-assembled, closed lipid monolayer particles with a hydrophobic inner core 

and a hydrophilic outer shell, which can be used to carry water-insoluble 

drugs[36]. Liposome-based drug nanocarriers are the first NDDSs to have 

successfully completed clinical trials for cancer treatment [37, 38]. Despite these 
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developments, significant problems remain, most notably the following: 

relatively low carrier stability, difficulty (and sometimes impossiblility) of 

achieving a controlled release of chemotherapeutic drugs (most of which display 

a burst-releasing character), low drug-encapsulation efficiency, and non-specific 

uptake by the mononuclear phagocytic system[39-41].  

 

Dendrimers belong to a special class of polymeric NDDS. They are repeatedly 

branched to form a tree-like structure[42], and unlike ordinary polymers, they 

are prepared in a step-by-step, or generation-by-generation, fashion from 

monomers. Dendrimers of different generations are produced in precisely 

controlled shapes and sizes, and without polydispersity. Drug molecules can be 

connected for delivery either to the interior or the outer surface groups of the 

dendrimers [43]. Although dendrimer-based systems are very attractive as drug 

carriers, their use is limited by their synthetic capability, since a higher 

generation dendrimer has to be prepared by a number of repeated coupling 

reactions which must be highly efficient and produced on a large scale. 

Compared with conventional polymer or inorganic NDDSs, they are more 

complicated to prepare and hence more expensive[44, 45]. 

 

Carbon nanotubes are nanoscale tubes formed from either a single-layer 

(single- walled) or multi-layer (multi-walled) graphene sheet. Both single- and 

multi-walled carbon nanotubes have been explored as drug carriers[46, 47]. 

However, the toxicity and cytotoxicity of carbon nanotubes is a major concern if 

they are to be used at preclinical and clinical levels [48, 49]. 

1.2.2 Targeting approaches: an emerging platform for cancer therapy 

Cancer 

Cancer is one of the most devastating diseases worldwide, accounting for about 

7 million deaths each year. Despite research efforts spanning the last 40 years, 
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no significant progress has been achieved in reducing its mortality rate. More 

alarmingly, according to the World Cancer Report, cancer rates could increase 

by 50%, to 15 million new cases by the year 2020 [50]. Therefore action needs 

to be taken urgently to face this, one of our most challenging healthcare 

problems. Current cancer treatments - surgical intervention, radiotherapy, and 

chemotherapies based mainly on small-molecule-based anti-cancer drugs - 

provide not only beneficial effects but also adverse effects such as killing 

healthy cells and causing toxicity. One of the long-term goals for the 

pharmaceutical industry is to develop an intelligent drug delivery system that 

can deliver active ingredients selectively to specific parts of the body, 

maximising the therapeutic index by reducing toxicity. 

 

 
 

Figure 1.3. Schematic representation of different mechanisms by which nanocarriers can 

deliver drugs to tumours. Passive tissue targeting is achieved by EPR effect. Active cellular 

targeting (inset) can be achieved by functionalizing the surface of nanoparticles with 

ligands that promote cell-specific recognition and binding. Figure adapted from ref. [19]. 
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Targeting strategies 

In 1891, Paul Ehrlich introduced the “magic bullet” concept, the first description 

of targeted drug delivery. The magic bullet would be able to deliver drugs to the 

diseased part exclusively, at the right concentration and for the right period of 

time. Unlike traditional drug delivery systems, in which drugs are distributed 

systemically throughout the whole body via blood circulation, targeted drug 

delivery can concentrate drugs preferentially in specific parts of the body, thus 

improving drug efficacy and greatly reducing side effects. Targeted drug delivery 

systems can be used to treat many diseases, such as HIV, cardiovascular 

disease, etc. However, their most important application would be to treat cancer. 

There are two ways in which drug nanocarriers can achieve targeted drug 

delivery: passive targeting and active targeting (Figure 1.3). 

 

Passive targeting. Passive targeting for cancer therapy is based on the 

enhanced permeability and retention (EPR) effect, a characteristic property of 

tumours [51]. Because tumour cells develop very fast and require a greater 

supply of nutrients and oxygen, blood vessel walls suffer rapid and defective 

angiogenesis and become leaky. Unlike free drugs which diffuse nonspecifically 

around the whole body, nanocarriers can extravasate into tumours through the 

leaky vessels. At the same time, because lymphatic clearance is dysfunctional 

these nanocarriers can accumulate inside the tumours and release their 

encapsulated drugs. The EPR effect is an essential characteristic of solid 

tumours but not of normal healthy tissues. It provides a good opportunity for the 

passive targeting of tumours by nanocarriers and has become accepted as a 

“gold standard” in the design of passive targeted drug delivery.  

 

Active targeting. Active targeting strategy is based on the exclusive expression 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6C-4TPF4CW-4&_user=7523285&_coverDate=03%2F31%2F2009&_rdoc=1&_fmt=full&_orig=search&_cdi=5027&_sort=d&_docanchor=&view=c&_acct=C000005458&_version=1&_urlVersion=0&_userid=7523285&md5=afa60a646a8de9c6e29763cca76b03ac#secx10
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of various epitopes or receptors on the surface of cancer cells. Active targeting 

carriers can interact with antigens or receptors on target cells after 

extravasation through targeting agents (ligands), which are capable of binding 

to specific receptors on the cell surface with high specificity, stability and 

efficiency. There are several different types of ligand that can be used for active 

targeting, such as proteins (mostly antibodies and their fragments[52-54]), 

nucleic acids (aptamers), peptides, vitamins, and carbohydrates (galactose, 

lactose). They can be conjugated to drug carriers to enhance the specific 

interactions of drug delivery systems to cancer cells. This leads to significantly 

improved cellular uptake (internalization) via receptor-mediated endocytosis 

before the loaded drugs are released. The active targeting strategy has great 

potential to improve the bioavailability of drugs, and to greatly reduce the side 

effects of therapeutic drugs. 

 

With the development of nanotechnology and the discovery of new targeting 

agents, targeted delivery of therapeutic drugs at the cell- or tissue-specific level 

is becoming possible. Combining NDDSs with targeting approaches can offer 

much more effective therapeutic options with significantly reduced side effects 

for a myriad of serious disease treatments, particularly cancer therapy[55, 56]. 

In the case of cancer-specific drug delivery, NDDSs can be engineered through 

the attachment of targeting ligands that recognize and bind specifically to the 

over-expressed receptors or ligands on cancer cells (Figure 1.4). 
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Figure 1.4. Schematic representation of a nanoscale targeted drug delivery vehicle, 

composed of polymeric nanoparticles whose surface has been modified with targeting 

agents. Adapted from ref.[14].  

 

1.2.3 Poly(ethylene glycol) (PEG) and its role in drug delivery 

 

Poly(ethylene glycol) (PEG), is a polyether whose structure is shown in Figure 

1.5. PEGs are prepared by polymerization of ethylene oxide, and their molecular 

weights can range from 300 to 10,000,000 with differing physical properties (e.g. 

viscosity). As their molecular weight increases, PEGs change from viscous, 

colourless liquids to waxy solids. Due to their amphiphilic nature, PEGs are 

soluble in common non-polar organic solvents, such as benzene and 

dichloro-methane, and in polar solvents such as methanol and water, and the 

end-group modifications are relatively easy. Compared with other polymers, 

PEGs have the lowest protein or cellular adsorption in vitro or in vivo, making 

them one of the most valuable polymers in the biomedical field, and particularly 

in drug delivery systems. PEGs can be used directly to modify small molecule 

drugs and proteins[57], as well as drug carriers such as polymeric 

carriers[58-60] and liposomes[61-63]. The process of PEG modification is called 

PEGylation, and was first introduced by Davis and Abuchowski in the late 1970s 

[64-66]. Since the first PEGylated protein drug was approved in the early 1990s, 

a large number of PEGylated drugs and drug delivery systems have been 

developed and approved by regulators in the USA and the EU[67, 68] 

http://en.wikipedia.org/wiki/Ethylene_oxide
http://en.wikipedia.org/wiki/Viscosity
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(Table1.2). 

 

Figure 1.5. Molecular structure of poly(ethylene glycol). 

 

Table 1.2. Drug-delivery systems stabilized with PEG that have received regulatory 

approval in the USA and/or the EU[67].* 

 

* mPEG: methoxypoly(ethylene glycol), SSL: sterically stabilized liposome, G-CSF: granulocyte-colony 

stimulating factor, HG: human growth, VEGF: vascular endothelial growth factor, TNF: tumor necrosis 

factor. 

 

The most widely used polymer in the field of drug delivery, PEG is able to 

influence the pharmacokinetic properties of drugs and drug delivery systems[67, 

69, 70] (Figure 1.6). For example, by attaching PEGs to hydrophobic drugs and 

drug carriers, their solubility in aqueous media is increased by the hydrophilicity 

of the PEG moieties . In addition, PEGylation can also increase the size of small 
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molecule drugs or drug carriers above the renal clearance threshold, and thus 

avoid fast renal clearance. For instance, small molecule drugs, oligonucleotides 

and siRNAs can be conjugated with high molecular weight PEGs (20 

kDa-50kDa), and some macromolecules like antibodies with low molecular 

weight PEGs (1 kDa-5kDa)[67]. PEGs have highly flexible polymer chains with a 

large number of possible conformations which change constantly, resulting in a 

“conformational cloud”[71]. The steric hindrance of this “conformational cloud” 

makes drugs and drug carriers more stable, reducing aggregation during 

storage and preventing interactions with blood components and proteins in vivo. 

In addition, steric hindrance can mask the charges in charged carriers and 

decrease charge-induced interactions in vivo. Therefore, PEGylated drugs and 

drug carriers can avoid fast recognition by the immune system and subsequent 

rapid blood clearance, thereby reducing enzymatic degradation, 

immunogenicity and antigenicity. These beneficial properties that PEGylation 

can achieve in pharmacokinetics are termed the “Stealth effect”[67] (by 

reference to stealth planes) and they result in prolonged blood circulation which 

allows drug delivery systems more time to accumulate in specific sites, thus 

improving drug efficacy. 

 

Figure 1.6. Schematic showing the main advantages of PEGylated protein, adapted from 

ref.[69]. 
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The limitations of PEGs include non-biodegradability and relatively easy 

degradation when exposed to oxygen. PEGs may also cause hypersensitivity 

due to unpredictable complement activation[67]. Despite these limitations, PEG 

is the most popular polymer in pharmaceutical and biomedical applications, with 

many favourable properties, and is in fact the gold standard in the biomedical 

field as a number of PEGylated pharmaceutical products have already been 

approved and commercialized. 

 

1.3 Background of the project 

1.3.1 Metallic nanoparticles  

Even though for over three decades most studies of NDDSs have been focused 

on two classical nanomaterials, liposomes and polymeric nanoparticles, and a 

number of such systems have already been FDA approved for clinical 

applications, nonetheless they still do not meet all the requirements for an ideal 

cancer therapy drug nanocarrier (Table 1.3).  

 

Table 1.3. Ideal design of nanocarriers for cancer therapy[19]. 

Nanocarriers can offer many 

advantages over free drugs. They can: 

For rapid and effective clinical translation, the 

nanocarrier should: 

protect drugs from premature degradation; be made from a material that is biocompatible, well 

characterized, and easily functionalized; 

 

prevent drugs from interacting prematurely 

with the biological environment; 

exhibit higher differential uptake efficiency in the 

target cells over normal cells (or tissue); 

 

enhance absorption of drugs into a selected 

tissue (e.g. solid tumour); 

be either soluble or colloidal under aqueous 

conditions for increased effectiveness; 

 

control the pharmacokinetic and drug tissue 

distribution profile; 

 

have an extended circulating half-life, a low rate of 

aggregation, and a long shelf life. 

improve intracellular penetration. be biodegradable and/or able to be efficiently 

cleared from the body after drug release 

 



15 

 

Metallic nanoparticles are beginning to emerge as promising candidates for 

nanoscale drug delivery. They belong to another important class of 

nanomaterials that have specific size-dependent physico-chemical features 

such as unique magnetic and electronic properties, and they represent a new 

platform in the development of nanoparticle-based tumour-targeting drug 

delivery systems[72-76]. 

 

Table 1.4. Various metal and semiconductor nanomaterials[77]. 

Core 

particle  

Characteristics Ligand 

Au Absorption, fluorescence quenching, stability Thiol, disulfide, phosphine 

Ag Surface-enhanced fluorescence Thiol, amine 

Pt Catalytic property Thiol, phosphine, amine, isocyanide 

CdSe Luminescence, photostability  Thiol, phosphine, pyridine 

Fe2O3 Magnetic property Diol, dopamine derivative, amine 

SiO2 Biocompatibility  Alkoxysilane 

 

Many inorganic nanoparticles have been developed, such as Au, Ag and Fe3O4; 

these have unique size-dependent properties that are distinct and unavailable 

from the bulk (Table 1.4). They can be synthesized with particularly uniform 

small sizes (<50 nm) and their large surface areas allow them not only to carry 

drugs in high doses, but also to be functionalised through ligand attachments on 

the surfaces (Table 1.4). For example, targeting ligands (e.g. antibodies and 

aptamers) and reporter molecules can also be incorporated into inorganic 

nanoparticle-based drug or gene delivery systems to achieve simultaneous 

targeting and tracking/imaging functions (Figure 1.7)[78]. In addition, it has been 

proven that some metallic nanoparticle-based systems are non-toxic and 

biocompatible[79-81]. Many new targeted drug delivery systems using metal 
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nanoparticles as carriers are currently being developed for cancer treatment[80, 

82]. 

 

 
Figure 1.7. Representation of a metallic nanoparticle-based system for tumour targeting, 

delivery and imaging. Figure adapted from ref.[78]. 

 

A distinct advantage of metallic nanoparticles as compared with polymer- or 

liposome-based drug nanocarriers is that they can act not only as drug carriers, 

but also provide a unique function in cancer diagnosis and treatments by virtue 

of their electronic, magnetic and optical properties(Figure 1.8)[79, 83-86]. This 

makes it possible to develop multifunctional NDDSs that combine simultaneous 

diagnosis and treatment modalities. For example, the strong magnetic 

properties of metallic nanoparticles such as Fe3O4 can be exploited for cancer 

imaging (magnetic resonance imaging, MRI) and hyperthermia cancer 

treatment, as well as being drug nanocarriers[87-89], while gold nanorods can 

be used for photothermal therapy as they have extremely strong absorption in 

the near-infrared (NIR) region (optimal range for light penetration into 

tissues)[90-92]. These nanoparticle systems offer a promising platform for 



17 

 

developing ‘ideal’ drug carriers with their own anticancer functions. 

 

 

Figure 1.8. Types of metal nanoparticles and their applications in biotechnology. Figure 

adapted from ref.[83]. 

 

Gold Nanoparticles (GNPs) 

One of the most promising nanoscale metallic structures, gold nanoparticles 

(GNPs), have attracted considerable attention because of their extremely strong 

plasmon absorption which can be manipulated by varying nanoparticle size, 

shape and state of aggregation. They have shown great potential in a wide 

range of biomedical applications, particularly in photothermal therapy, 

biosensing, and bioimaging [92-96]. 

  

To date, many different approaches have been developed for synthesizing 

GNPs in various shapes (e.g. nanospheres and nanorods), and sizes ranging 

from one nanometer to a few micrometers. The most common method for GNP 

synthesis, introduced by Turkevich et al[97, 98] and developed by Frens[99, 

100], is based on the citrate reduction of HAuCl4 in an aqueous solution. This 

method is capable of producing GNPs with sizes ranging from ~12 nm to over 
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100 nm by varying the initial molar ratio of HAuCl4 and trisodium citrate[99]. In 

this reaction, citrate firstly acts as the reducing agent (to reduce HAuCl4 to Au0) 

and then as a stabilizing capping agent by adsorption in situ onto the formed 

GNPs, to give the particle surface negative charges which repel each other and 

prevent aggregation. The usual method of producing smaller sized GNPs, 

developed by Brust et al[101], is via a borohydride reduction of gold salt in the 

presence of thiol capping ligands in a two-phase (aqueous/organic phase) 

system, with a phase transfer reagent or a single-phase solvent. Figure 1.9 

shows a schematic of the preparation of GNPs through citrate and borohydride 

reduction, and their subsequent modification[102-108].  

 

 

 

Figure 1.9. Construction of colloidal gold nanoparticles through citrate or Brust 

reduction and subsequent modification such as digestive ripening (i), Murray 

place-exchange reaction (ii)[102-104], nucleophilic reaction (iii), and encapsulation of 

hydrophobic clusters into surfactant micelles (iv)[107, 108]. 
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There are also various ways of preparing gold nanoparticles in rod shapes 

(using bottom-up and top-down methods)[109, 110]. Among these, the 

‘seed-mediated’ growth method, developed independently by the Murphy and 

El-Sayed groups, is the most widely used (Figure 1.10), and can produce gold 

nanorods of great uniformity in high yields. 

 

 

 

Figure 1.10. Schematic of the ‘seed-mediated’ growth method of preparing gold nanorods. 

Small gold seeds are first synthesized through the reduction of chloroauric acid with 

borohydride in the presence of CTAB, then mixed with a growth solution containing 

chloroauric acid and ascorbic aid to produce CTAB-stabilised gold nanorods. Figure 

adapted from ref.[110]. 

 

GNPs have been considered as potential drug delivery carriers for cancer 

treatment because of their unique properties[111, 112]. Besides the high loading 

efficiency provided by their large surface areas, GNPs are chemically stable and 

inert in aqueous media, and have proved biocompatible with low toxicity and 

cytotoxicity in in vitro and in vivo experiments. They can be easily synthesized 

with uniform, small sizes and easily characterised by their strong surface 

plasmon absorption. Another useful feature of GNPs is their ability to strongly 

attach functional biomolecules such as peptides, antibodies and aptamers onto 

their surfaces through various affinity interactions, such as the strong gold-thiol 
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bond[113].  

 

 

 

Figure 1.11. Schematic representing a gold-coated silica NDDS for chemotherapy and 

hyperthermia cancer treatment under exposure to NIR laser light. An anticancer drug is 

loaded inside the silica core which is covered with a gold nanoshell, and thiolated PEG is 

then attached to the surface of nanoshell to achieve the stealth effect. Figure adapted from 

ref.[114]. 

 

These advantages also prompt the use of gold as ultrathin nanoshells in 

core-shell nanocomposites (such as gold-coated silica nanoparticles[115-117] 

and gold-coated magnetic nanoparticles[118, 119]), to achieve optimum tunable 

optical properties, improve chemical stability and biocompatibility of the core, 

and favour surface functionalisation (i.e. chemical conjugation)[120-122]. Gold 

nanoshells have attracted enormous scientific attention and have been 

intensively studied for their biomedical applications. For example, by tuning gold 

nanoshell thickness and core size, gold-coated silica nanoparticles (i.e. 

AuroShellTM, currently in the early stages of clinical trial [123]) can be designed 

to possess strong absorption in the near infrared region and generate heat to kill 

cancer cells[114, 124, 125]. Anticancer drugs can also be incorporated into 

gold-coated silica nanoparticles, which can be carried either on the surface 
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through conjugation or inside the cores via adsorption to the mesoporous and 

hollow structure of the cores(Figure 1.11)[114, 126]. GNPs (in the form of 

nanospheres, nanorods and nanoshells) therefore appear to offer a highly 

attractive nanoparticle-based platform for developing multifunctional targeted 

drug delivery systems for cancer treatment. 

 

1.3.2 DNA: from biology to materials 

 

Deoxyribose nucleic acid (DNA) is one of the most important molecules for life 

due to its ability to store and transmit the genetic information of all living 

organisms to subsequent generations. Well-characterized as a biological 

polymer, its non-biological functions have recently been extensively explored. 

DNA can be engineered as a building block of nanoscale materials with unique 

characteristics and defined architecture[127]. Various DNA-based nano-sized 

topologies have been developed through self-assembly, exploiting the high 

specificity of hydrogen-bonding interactions between DNA base pairs, such as 

adenine-thymine and guanine-cytosine[128]. DNA also has many advantages 

over traditional polymers[129]. DNA with monodispersity can be synthesized by 

an automated phosphoramidite chemistry, making it more cost-effective. 

Functional groups can be attached covalently to the middle or the end of the 

DNA by simple attaching chemistry. The structure of a DNA-based system can 

be precisely designed to be either rigid or flexible, by altering its length and 

topology. Other polymers cannot easily attain the unique structure of 

double-stranded (ds)DNA, around 2 nm diameter with a high degree of length 

tunability. Furthermore, DNA can be precisely manipulated by certain DNA 

enzymes, offering a very valuable molecular toolbox not only for DNA structure 

confirmation, but also for DNA structure modification.  
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Although DNA is chemically stable, it is easily degraded by DNA degrading 

enzymes (DNases), which exist in biological fluids such as serum and 

extracellular fluid, and in cytosolic compartments. To solve the problem of 

biological instability, chemical modifications can be employed to impair 

recognition and cleavage by nucleases[130]. Figure 1.12 shows various 

chemical modification strategies that have been applied to increase DNA 

stability and resistance to DNase digestions: phosphorothioate DNA, 

2-O-methyl DNA, morpholino DNA, methylphosphonate, phosphoramidate DNA 

and locked nucleic acid. A few other modifications have also been reported to 

increase DNA stability, such as covalent linkage of cholesterol[131, 132] and 

conjugation with nanoparticles[133, 134]. 

  

 

 

Figure 1.12. Structures of natural (phosphodiester) DNA and various DNA derivatives. 

Most DNA derivatives are more resistant to degradation by DNases than phosphodiesters. 

(a) phosphodiester DNA, (b) phosphothioate DNA, (c) methylphosphonate DNA, (d) 

2’-O-methyl RNA (X = O or S), (e) locked nucleic acid, (f) morpholino and (g) PNA. Figure 

adapted from ref. [130]. 

 

DNA has attracted attention due to its functionality and versatility. The specificity 

of DNA hybridization has been exploited to develop DNA nanoscale systems 

with unique molecular recognition functions, which can be applied for 
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biomedical applications such as gene regulation[133], drug delivery[135-137] 

and diagnostic detection[136, 138]. A promising new era has begun, with more 

DNA-based systems being studied and applied in the field of nanomedicine. 

 

1.3.2.1 DNA nanotechnology 

 

 

 

Figure 1.13. Assembly of a DNA branch, a two dimensional DNA network and a cube-like 

DNA nanostructure. (a) a DNA branched junction formed by four DNA strands with 

sticky-end overhangs (V, V’, H and H’, of which V’ is complementary to V and H’ is 

complementary to H), and a square-like unit formed by four DNA branched junctions, 

which can further form a two-dimensional network. (b) A more complex cube-like DNA 

nanostructure created by interconnected DNA rings in the presence of sticky ends[139]. 

Figure adapted from ref.[140]. 

 

DNA self-assembly offers a very attractive ‘bottom up’ strategy for designing 

complex nanostructures, as dsDNA has certain features, such as a diameter of 

2 nm, a repeatable unit (helical pitch) of around 3.5 nm and stiffness at a 

persistence length of up to 50 nm, which fulfill the requirement for building  

well-defined structures[140]. As well as linear double-stranded DNA formed via 

base pair recognition, more complex DNA structures can be generated by 

introducing sticky ends, which are short single-stranded overhangs at the end of 

double stranded DNAs. These structures can be DNA branches, 
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two-dimensional DNA networks, and even three-dimensional nanostructures 

(Figure 1.13). The first artificial DNA fabrication, a sticky cube made entirely of 

DNA, was constructed more than a decade ago (Figure 1.13b)[139]. Since then, 

several simple yet versatile self-assembly techniques have been developed to 

construct more complex DNA nanostructures[141-143]. 

 

DNA nanomachines 

 

As well as these complex two- and three-dimensional static DNA nanostructures, 

DNA-based nanomechanical devices (DNA nanomachines) have also been 

generated which can perform nanoscale movements responding to specific 

stimuli. Bernard Yurke and his colleagues developed a DNA nanomachine 

known as molecular tweezers (Figure 1.14)[144]. This was formed by 

hybridising three DNA strands, A, B and C, and made to open and close by the 

alternate addition of “fuel” strands F (closing strand) and F’ (opening strand). 

DNA F can hybridize with the overhangs of B and C to make the tweezers close 

and F’ can separate F from the tweezers via thermo-dynamically favoured 

hybridization to leave them open. The motion of the DNA molecular tweezer can 

be monitored by measuring the changes in fluorescence intensity as a function 

of the separation between dye TET and dye TAMRA, which were attached to the 

5’ and 3’ ends of DNA A, respectively. When the tweezers are pulled closed by F, 

fluorescence intensity is reduced due to Fluorescence Resonant Energy 

Transfer (FRET) from Dye TET to Dye TAMRA. 
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Figure 1.14. DNA-fuelled tweezers. (a) Structure of DNA tweezers created by 

hybridisation of DNA strands A, B and C. (b) Performance of DNA tweezers between open 

and closed states via alternative addition of closing strand and opening strand. Figure 

adapted from ref.[144]. 

 

1.3.2.2 i-motif DNA nanomachine 

Although the DNA molecular tweezers described above can perform precisely 

controlled motions powered by DNA fuels, they do however suffer from some 

drawbacks, such as relatively slow operational speed and gradually decreasing 

performance due to system poisoning by waste DNA produced in the cycle. 

Nevertheless, they inspired researchers to design new DNA nanomachines 

such as the i-motif DNA nanomachine. i-motif DNA contains stretches of two or 

more cytosines (C-rich domains), and at acidic pH the cytosines in the C-rich 

domains are partially protonated, which leads to the formation of triple hydrogen 

bonds between pairs of protonated (CH+) and nonprotonated (C) cytosines. As a 

result, i-motif DNA can adopt a non-B tetrameric structure (C-quadruplex), 

denoted as ‘i-DNA motif’ or ‘i-motif’, from the formation of hemiprotonated 

cytosine base pairs (Figure 1.15), instead of classic Watson-Crick base pairs. 
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Figure 1.15. (a) Scheme of the triple hydrogen bonding between cytosine and protonated 

cytosine (C·C+) base pairs; (b) Schematic representation of the i-motif structure formed by 

four DNA oligomers (5-d(TCCCCC)). Figure adapted from ref.[145] . 

 

Cytosine base pairs were first observed decades ago in acetylcytosine crystals 

[146], then later found in polydeoxyribonucleotides[147] and polyribo- 

nucleotides[148, 149]. Oligodeoxynucleotides with hemi-protonated cytosine 

base pairs formed at slightly acidic pH had been thought of as a double 

stranded DNA structure until 1993, when Kalle Gehring and colleagues used 

NMR spectroscopy to investigate the structure formed by DNA oligomers 

5-d(TCCCCC) at acidic pH. and confirmed it to be a complex four-stranded 

structure (Figure 1.15b)[145]. 

 

In this pH-dependent tetrameric conformation, two parallel strands form a 

duplex via C·C+ base pairs. One parallel-stranded duplex is linked with the 

other duplex in an orthogonal, anti-parallel orientation, through intercalation of 

the cytosine base pairs. As well as the i-motif in form of a tetramer, i-motif 

dimmers and i-motif monomers (intramolecular i-motifs) can also be formed by 

DNA strands with two and four stretches of cytosines, respectively (Figure 

1.16)[150]. Strictly speaking, the structure of an i-motif is a not true quadruplex, 
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like the G-quadruplex based on quartet formation, but a double-duplex based on 

cytosine base pairs and intercalation. 

 

Figure 1.16. Representation of i-motif structures formed by four monomers (a), two 

dimers (b) and a tetramer (c), respectively. Figure adapted from ref.[150]. 

  

Although the formation of i-motif is mainly driven by the triple-hydrogen bond 

formed between hemi-protonated CCH+ pairs at weakly acidic pH, other 

favourable interactions are also involved and contributed to its overall 

stability[150, 151]. For example, the C·CH+ base pairs are stacked nearly 

orthogonally within the i-motif structure, which form two wide grooves and two 

narrow grooves. The short distance between deoxyriboses in the narrow 

grooves can lead to the formation of relatively weak CH···O hydrogen bonds that 

are energetically favourable for i-motif formation. Also the parallel flat base pairs 

in the two intercalated duplexes within the i-motif structure allow for  stacking 

and hydrophobic interactions, reducing the  exposure of relatively hydrophobic 

bases to the aqueous environment which is also favourable. And finally, in the 

case of our specific i-motif designs, the possible formation of A=T base pairs in 

the three TAA loops at the ends of i-motif structure can further contribute to the 

overall thermodynamic stability. 

An i-motif structure can also unfold into a random coil, or form a duplex DNA 
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with a complementary DNA as a result of external stimuli such as pH changes. It 

has been reported that i-motif based nanomachines (molecular motors) can 

perform a two-stroke movement (contraction and extension), responding to 

i-motif structures (closed state) and random coils or duplex DNAs (open state) 

[152-156]. 

 

One possible way of fuelling this kind of i-motif nanomachine to repeatedly 

perform such movements is by adding DNA fuel strands (Figure 1.17a)[153]. 

The i-motif structure (core sequence) can be unfolded into a duplex DNA, which 

is driven by the addition of a complementary DNA fuel strand (red/black). To 

refold into an i-motif, the other DNA fuel strand (blue/green) is added to replace 

the core sequence, then hybridised with the red/black fuel strand, which allows 

the core sequence to be dispatched and to self-assemble into a compact i-motif 

structure. However, a byproduct, duplex DNA waste, is produced during each 

cycle in the system. This can impact on the cycling ability of this type of DNA 

nanomachine as more and more DNA waste accumulates in the system, and 

poisons it, leading to gradually decreased performance like that reported for the 

DNA tweezers above. 

 

Figure 1.17. i-motif based nanomachines fuelled by DNA strands (a) and proton (pH 

changes) (b). Figure adapted from refs[153, 157]. 

 

The other stimulus for fuelling the i-motif based nanomachine is proton (or pH 

changes), first proposed by Liu and Balasubramanian in 2003 (Figure 
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1.17b)[157]. A 21 mer single strand DNA X with four stretches of cytosines 

(5-d[(CCCTAA)3 CCC] and a complementary DNA Y with two mismatches were 

used to construct this pH-driven DNA nanomachine. To monitor the two-stroke 

movements of the i-motif machine, DNA X was labelled with a rhodamine green 

fluorophore at the 5’ end and a dabcyl quencher at the 3’ end, named X*. When 

the system pH was 5.0, DNA X (X*) folded into a compact i-motif structure and 

the fluorescence of rhodamine green was strongly quenched by the dabcyl. 

When the system pH was changed to 8.0, the i-motif unfolded into a random coil 

and hybridised to DNA Y to form a rigid duplex. Fluorescence recovery then 

became strong, because the fluorophore and quencher were widely separated 

and quenching was thus greatly reduced. This i-motif based DNA nanomachine 

was highly reversible; its operating performance showed no signs of 

degradation even after 30 full cycles, with the alternate addition of HCl and 

NaOH changing the system pH between 5.0 and 8.0. In fact it showed a very 

rapid response: the conformation changes between contraction and extension 

happened in seconds following each environmental pH change. Compared to 

the DNA-fuelled i-motif nanomachine, the proton-fuelled i-motif nanomachine 

system is more robust and displays a faster response. It is also cleaner than 

most other DNA nanomachines; the waste byproducts H2O and NaCl which 

result from the addition of HCl and NaOH seem to have no impact on the 

nanomachine’s performance, even after 30 cycles. 

 

As well as manual adjustment of the system pH, this proton-fuelled i-motif 

nanomachine can also be driven by an oscillatory chemical reaction [158, 159], 

or UV light radiation both of which can lead to the system pH being cycled 

automatically, i.e. without direct contact. This would make the i-motif based DNA 

nanomachine system highly desirable for the construction of a wide range of 

pH-responsive DNA nanostructures and devices.  
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For practical applications, DNA nanomachines should ideally be stable, robust 

and simple to operate, without generating harmful byproducts and they should 

conjugate easily to the relevant objects[155]. In these respects, the 

proton-fuelled i-motif DNA nanomachine appears to be highly attractive, and 

indeed several functioning DNA nanodevices have been successfully 

constructed using the proton-fuelled i-motif nanomachine. Some examples of 

these include: a DNA-based optical on/off nanoswitch[160], a pH-responsive 

surface that can switch between hydrophilic and hydrophobic in response to 

environmental pH [161], a controllable way of assembling  nanoscale objects 

(i.e. GNPs)[162], a device for bending microscale objects(i.e. a 

micromechanical cantilever array covered with gold-film)[163], colorimetric and 

electrochemical pH sensors[164, 165] and a synthetic nanopore that can mimic 

functions of ion channels[166]. 

 

Proton-fuelled i-motif nanomachine applied inside endosomes of living 

cells 

Endosomes are membrane-bound vesicles inside eukaryotic cells, formed 

through the endocytic process (endocytosis). They are used for transporting 

various internalized substances from plasma membrane to lysosomes for 

digestion[167] (Figure 1.18). Three different types of endosome (early 

endosomes, late endosomes and lysosomes) can be found inside the cells. 

They exhibit different morphologies and respond to different development 

stages of endosome maturation, with initial forms of early endosomes maturing 

into late endosomes and then fusing into lysosomes[168]. Due to the activity of 

the V-ATPase, endosomes at different stages have different characteristic pH 

values, which are typically in the range of 6-6.2 in early endosomes, 5.5 in late 

endosomes and 4.3-5 in lysosomes[169]. In other words, the pH value becomes 
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progressively more acidic during the process of endosome maturation. 

 

 

 

Figure 1.18. A schematic representation of the endocytic pathway. Substances outside 

cells are internalised from the plasma membrane, then are sorted and either recycled 

back to the plasma membrane through the recycling pathway or transported to lysosomes 

through late endosomes. Figure adapted from ref.[170]. 

 

 

 

Figure 1.19. (a) Working principle of an i-motif DNA nanomachine for mapping pH 

changes during endosome maturation: at pH 7.3, it is in an ‘open’ state, leading to low 

FRET and at pH 5, it is in a ‘closed’ state, resulting in high FRET; (b) Plots of normalised 

donor/acceptor (D/A) intensity ratios in vitro and inside cells (endosomes) as a function 

of pH, indicating that the intracellular pH calibration curve is overlapped with the in vitro 

pH profile. Figure adapted from ref.[171]. 
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In 2009, Krishnan and co-workers demonstrated an i-motif nanomachine that 

would work inside living cells[171]. This was used to map spatial and temporal 

pH changes related to the endosome maturation process (Figure 1.19). As 

i-motif DNAs have conformational transitions in a similar pH range, they can be 

employed to monitor and capture spatio-temporal pH changes during 

endocytosis. To do this three DNA strands, O1, O2 and O3, were designed, and 

both O1 and O2 hybridised to O3 with a one-base gap between the O1 and O2 

duplex regions. O1 and O2 both contained one single stranded overhang with 

two stretches of five cytosines, and at acidic pH the two overhangs were able to 

form an i-motif structure. By attaching an Alexa-488/ Alexa-647 FRET pair at the 

end of each overhang, an i-motif DNA system was developed as a pH sensor 

based on FRET. A intracellular pH calibration curve was obtained by measuring 

the ratio of fluorescence intensity in the donor (Alexa-488) to that of the 

acceptor (Alexa-647) (D/A) as a function of pH in endosomes, which matched 

well with that in vitro. This curve was subsequently used to monitor the 

endosomal maturation process. With time, the D/A ratios in the endosomes 

changed and pH values were determined to be 5.9 at 5 min, 5.45 at 60 min and 

5.0 at 120 min, corresponding to the different stages of endosome maturation. 

This is the first example of a DNA nanomachine that works inside living cells, 

and it may inspire researchers to develop further DNA nanomachine systems for 

in vivo applications such as diagnostics and targeted drug delivery. 

 

i-motif nanomachines functioning as potential drug carriers 

The i-motif nanomachine system (i.e. i-motif hydrogel and i-motif nanocontainer) 

has also been employed as a potential drug carrier to entrap and release drugs 

in response to pH-induced conformational changes.  

 

i-motif hydrogel 
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Liu and Zhou designed a Y-shaped DNA building block with three arms (Y-unit), 

which was able to form an i-motif DNA hydrogel by interacting with others, 

forming intermolecular i-motifs (Figure 1.20). This pH-responsive i-motif 

hydrogel can potentially be applied to entrap drugs at low pH and release them 

at high pH[172]. 

 

 

Figure 1.20. Working principle of the DNA hydrogel. (a) A Y-shaped DNA (Y unit) with 

three overhanging C-rich domains (two stretches of four cytosines) for interlocking; (b) 

Three-dimensional DNA hydrogel created through formation of i-motifs (i.e. the circled 

region) between adjacent Y units. Figure adapted from ref.[172]. 

 

Y-shaped DNA comprises three single-stranded DNAs, each containing two 

functional domains, a Y-shape domain (two DNA sequences 

half-complementary to the other two DNAs) and an i-motif domain (two 

stretches of four cytosines). GNPs were employed as a drug model for 

observing the gel-non-gel transition process, and dispersed in the system. At pH 

5.0, the three i-motif domains from each Y unit formed inter-unit i-motifs with 

their neighbouring Y units. As a result, the system turned into an unrestricted 

three-dimensional DNA assembly, a hydrogel made of entirely from DNA where 

GNPs are trapped, resulting in a red-color gel which cannot escape. At pH 8.0, 

the i-motif domains unfold into random coils and the Y-units can no longer 

interact with each other, turning the system into a solution (non-gel) state and 

releasing GNPs. This i-motif hydrogel can respond very quickly to 
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environmental pH changes, the transition between gel state and non-gel state 

taking place in one minute. However, its pH-responsiveness happens on the 

wrong side of the pH range for cancer treatment. 

 

i-motif nanocontainer 

 

 
Figure 1.21. A nanocontainer formed by attaching i-motif DNAs (also containing a spacer 

sequence) to a gold surface, where small molecules can be entrapped in the ‘closed’ state 

at low pH, and released in the ‘open’ state at high pH. Figure adapted from ref.[173]. 

 

Using a surface-based ‘bottom-up’ technique, an i-motif nanocontainer 

(nanocarrier) with the ability to catch and release small molecules was reported 

by Liu and co-workers[173]. 5’-thiol modified i-motif DNAs containing both a 

single-stranded poly-(dA)n spacer (n=10-35) and an i-motif domain 

(d[(CCCTAA)3CCC]) was designed and these i-motif DNAs were attached to the 

gold surface at pH 4.5 (Figure 1.21). The four-stranded i-motif domains are 

tightly packed, while single stranded spacers are packed with low density to 

allow space for storing small target molecules. The i-motif DNAs with these 

packing patterns cooperate with one another on the gold surface, forming a 

smart nanocontainer between the tightly packed i-motif layer and the gold 

surface. This can close or open to catch or release non-specific small molecules 
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in response to environmental pH stimuli. This nanocontainer can be designed to 

be impermeable in the closed state, and reversible transition between the 

closed and open states is rapid.  

 

Although i-motifs have been demonstrated to form hydrogels and 

nanocontainers, their loading and releasing mechanisms mean that they are still 

far from being practical as drug carriers. Unlike healthy tissues which have a 

normal pH of ~7.4, diseased regions such as tumours and intracellular 

endosomal/lysosomal compartments often exhibit abnormally high local 

acidities [169, 174]. Therefore any pH-responsive drug nanocarrier to be used 

for cancer targeting should be stable without release at physiological pH, and 

only release the loaded drugs as the environmental pH becomes weakly acidic; 

not vice versa. Therefore, i-motif based hydrogels and nanocontainers cannot 

be used for cancer targeting. 

1.3.3 Doxorubicin: from old drug to new form of chemotherapy 

Doxorubicin (DOX, trade name: Adriamycin®), an anthracycline family of 

antibiotics derived from a strain of Streptomyces, is one of the most widely-used 

active chemotherapeutic agents. It has a wide spectrum of activity against 

different types of cancer, such as bladder, breast, stomach, lung, ovaries, 

thyroid, soft tissue sarcoma and multiple myeloma [175, 176] etc. DOX consists 

of an aglycone with a tetracyclic ring and a sugar moiety (daunosamine). DOX is 

sensitive to light and degrades relatively quickly at alkaline pH while it is 

relatively stable between pH values of 2 and 7[177]. Although developed nearly 

half a century ago, the mechanism of action of DOX remains unclear currently. A 

number of mechanisms have been proposed[178, 179], including: 1) 

intercalation into the dsDNA gene to inhibit gene transcription; 2) formation of 

free radicals, resulting in gene damage and/or lipid peroxidation; 3) DNA binding 
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and alkylation; 4) DNA cross-linking; 5) intervention in DNA unwinding and 

helicase activity, and 6) inhibition of topoisomerase II activity. To date, there has 

been no unambiguous conclusion on which is the main mechanism of action yet. 

It is highly possible that DOX may exert one or more modes of action, which 

may also be dependent on its concentration. However, the uncertainty of action 

mechanism has certainly not prevented it being widely used as a model 

chemotherapy drug for cancer research studies, where the numbers of 

published papers and citations have shown an exponential increase over the 

past 10 years (Figure 1.22). 

 

Figure 1.22. Growing number of published papers (a) and citations (b) over the past 10 

years which refer to DOX as the model chemotherapy drug. These data were obtained 

from the Web of Science using the search term: topic = ‘doxorubicin’ and ‘drug delivery’ 

and ‘cancer’ on 7th May 2013. 

 

Despite extensive clinical use for several decades, its serious side effects, 

particularly irreversible cardiac damage, have significantly limited its clinical 

dosage and hence therapeutic efficacy [180, 181]. To improve cardiac safety 

and efficacy, two different approaches have been explored[179]. One is to 

develop new analogs by introducing chemical modifications, substitutions or 

conjugations in the aromatic ring and/or the sugar moiety of anthracyclines. In 

this regard, more than 2000 analogs have been developed, however, only a few 

DOX analogs, e.g. epirubicin and pirarubicin, have shown slightly better 
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therapeutic improvements and subsequently been approved as new anti-cancer 

drugs, The other more effective approach has been to improve its 

chemotherapeutical index and favourable clinical use by employing targeted 

drug nanocarriers to deliver DOX specifically into the tumour region. This can 

also reduce the risk of inducing multidrug resistance[182, 183]. To date, several 

different targeted DOX delivery systems have been developed (e.g. liposomes, 

polymer-based and inorganic nanoparticle-based nanocarriers), many of which 

have shown significant improvements in terms of both therapeutic efficacy and 

reduced side effects, some of which has already been approved for clinical use. 

In addition, a variety of DOX loading mechanisms have been successfully 

employed, such as encapsulation[184, 185], electrostatic binding[186, 187], 

physical adsorption[188] and chemical conjugation[189, 190]. 

 

     
 

Figure 1.23. (a): Molecular structure of DOX; (b): structural model of DOX intercalated 

duplex DNA[191]. 

 

Besides the loading mechanisms mentioned above, DOX can also be carried by 

dsDNAs in a form of physical conjugate dsDNA-DOX through intercalation. Due 

to the presence of flat aromatic rings in its structure and its appropriate size, the 

DOX molecule can fit itself in between two base pairs of a dsDNA with the 

daunosamine moiety locating in the minor groove and interacting with flanking 

base pairs (Figure 1.24). Such conjugate is stabilised by π-π stacking between 
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the aromatic ring of DOX and DNA bases and hydrogen bond interaction 

assisted by water molecules. dsDNA-DOX conjugate was first studied for DOX 

delivery in the1970s[192-194] and has been incorporated into nanoscale 

tumour-targeting systems in recent years, benefiting from nanotechnology 

development[195-200]. Intercalating DOX into dsDNA offers a very simple, 

direct DOX loading in native format without involving any chemical modifications 

or conjugation that may interfere with DOX activity and cytotoxicity. However, 

DOX release from such literature systems is mainly through passive 

dissociation, lacking of stimulus-responsive release. As a result, it tends to be a 

slow process, for example, only 28%[198] or 50%[200] of the loaded DOX was 

released over 24 h. Also, these systems exhibit limited stability in biological 

fluids, which can seriously limit their potential for in vivo application. Therefore 

the development of a dsDNA-DOX conjugate that can offer efficient 

environmental stimuli-triggered DOX release and good stability in biological 

relevant media is an urgent unresolved issue which is also essential to realising 

its application in vivo. 

1.4 Aims of the project 

In this project, we aim to develop a new pH-responsive targeted drug delivery 

system by combining the pH-responsiveness of the i-motif DNA nanomachine 

with the excellent biocompatibility and stability of metal nanoparticles (Figure 

1.24). We hope that this system will prove to be an effective anticancer 

treatment, combining efficient delivery with a pH-responsive release of drug 

load. 

 

Firstly, i-motif DNA strands (containing one, two or three i-motif domains to 

increase their drug loading capacity) are to be designed as the pH-responsive 

strands. The specific i-motif sequence used in this project is the C-rich strand 
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sequence of the human telomere structure, which, together with its 

complementary G-rich strand, is critical for maintaining the gene stability and 

cell division, and hence has high biological significance. C-rich sequences 

capable of forming i-motif structures  can also be found in centromeres and 

gene promoters regions, although their specific biological functions are still not 

very clear currently. These pH-responsive strands will further be used to form 

dsDNAs with complementary DNAs, acting as drug carriers where DOX can be 

readily loaded in native format through intercalation. These dsDNA-DOX 

conjugates will be studied to evaluate the feasibility of using an i-motif DNA 

nanomachine to control drug loading/releasing in a pH-responsive manner (i.e. 

loading in physiological pH and releasing in slightly acidic pH). 

 

Figure 1.24. Schematic of aims of the project: 1 to employ i-motif DNA-formed dsDNA to 

carry DOX via intercalation; 2 to attach a dsDNA-DOX conjugate to GNPs to prepare a 

pH-responsive GNP-dsDNA-DOX system; 3 to incorporate PEGs into the surface of the 

GNP-dsDNA-DOX system; 4 to synthesize a DOX dimer; 5 to prepare GNR-dsDNA-DOX and 

Fe@Au-dsDNA-DOX systems; 6 to attach targeting ligands to the surface of the 

GNP-dsDNA-DOX system for active targeting. 
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Secondly, the dsDNA-DOX conjugates are to be attached to GNPs to prepare a 

passive targeted NDDS (GNP-dsDNA-DOX conjugate), which can exploit the 

EPR effect characteristic for solid tumours and accumulate inside them. 

Relevant cellular studies are to be performed to confirm that this NDDS can be 

taken in by cells through the endocytic pathway, so that local acidic pH in 

intracellular endosomes/lysosomes will trigger DOX release inside cells, 

resulting in high cytotoxicity.  

 

Finally, several modifications based on this GNP-dsDNA-DOX system are to be 

performed, to further enhance therapeutic efficacy as follows (Figure 1.24):  

 

1. PEG will be incorporated into the surface of the system to enhance its stability 

and resistance to non-specific adsorption of biomolecules  

2. Gold nanorods and gold-coated magnetic nanoparticles are to be synthesized 

to replace the GNP when preparing GNR-dsDNA-DOX and 

Fe@Au-dsDNA-DOX, with the aim of constructing multifunctional NDDSs that 

can provide multiple therapeutic modalities with imaging capability 

3. A DOX dimer will be synthesized to investigate whether its therapeutic index 

can be enhanced and DNA binding affinity improved compared to the DOX 

monomer 

4. Targeting ligands (i.e. an RGD peptide and folic acid) will be attached to the 

surface of the system to explore the possibility of further developing this system 

into an active targeted drug delivery system, with improved cancer targeting 

ability and therapeutic efficacy. 
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2 Chapter 2: pH-responsive dsDNA-DOX conjugates 

The principle to prepare pH-responsive dsDNA-DOX conjugate is based on the 

following facts: (1) A single-stranded (ss) DNA motor containing 4-stretches of 

cytosine (C) rich sequences can reversibly switch its conformation between a 

random coil and an i-motif structure following environmental pH changes via the 

non-Watson-Crick DNA base pairings between hemiprotonated cytosines[145]. 

(2) Some well-known anticancer drugs (e.g. DOX) can intercalate with specific 

sequences within double-stranded DNA[135, 200, 201], but not with 

single-stranded or i-motif structures.  

 

Here we designed a series of single-stranded (ss) DNA motors, M1, M2 and M3, 

containing one, two and three i-motif domains respectively, where each domain 

contains four stretches of C-rich sequences, and acts as a pH responsive unit. 

These DNA motors are used to form double-stranded (ds) DNA structures with a 

complementary strand, MC2 (MC3 or MC4) which has two (three or four) base 

mismatches to the i-motif domain. PEG-modified complementary DNAs (MC2 

(PEG250) and MC2 (PEG750)) were also used to form dsDNAs with M1 in 

order to evaluate PEG effects on i-motif conformation switch. 

 

 

 

Figure 2.1. Schematic procedures of the proposed pH-responsive DNA switch system for 

reversible DOX binding and release. The fluorescence of DOX intercalated within the DNA 

duplex is quenched but becomes strongly fluorescent after release (MCn: n=2-4). 
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DOX is used as the model intercalating drug. The system design is shown 

schematically in Figure 2.1. At neutral pH or above, the DNA exists as a dsDNA 

structure such that DOX can intercalate to produce a dsDNA-DOX conjugate, 

whereas as the solution pH is changed to weakly-acidic, the i-motif domain(s) in 

M1 (M2 or M3) will fold into one (two or three) C-quadruplex (i-motif) structure, 

detaching its complementary strand so that DOX is released from the DNA 

system. We would like to study the formation of the dsDNA-DOX conjugate, the 

kinetic information about the conformation switch between the dsDNA-DOX 

conjugate and C-quadruplex + free DOX + complementary DNA states, and 

whether this switch is reversible as the solution pH is cycled between neutral 

and weakly acidic pHs. 

 

2.1 Materials and Methods 

2.1.1 Materials  

MES (2-(N-morpholino)ethane sulfonic acid monohydrate) (98%) was 

purchased from Alfa Aesar. HCl (36%), NaOH, NaCl (99.99%), and doxorubicin 

hydrochloride were purchased from Fisher Scientific. Millipore water 

(resistance >18.2 MΩ.cm), purified by ELGA Purelab classic UVF system, was 

used for making buffers in all experiments. All buffers were filtered through a 

Whatman syringe filter (0.20 µm pore size, Whatman Plc.) before use. HPLC 

purified oligonucleotides (except for MC2(PEG750), which was synthesized by  

Prof. Dongsheng Liu’s Group, Tsinghua University, China) were all purchased 

from IBA GmbH, Germany, and their sequences and abbreviations are given in 

Table 2.1. 
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Table 2.1. DNA abbreviations and their sequences (5’3’) used in this thesis. 

DNA name Sequence (5’ → 3’) 

M1 (thiol)TTT TTT TTT TCC CTA ACC CTA ACC CTA ACC C 

M2 (thiol)TTT TTT TTT TCC CTA ACC CTA ACC CTA ACC CTA 

ACC CTA ACC CTA ACC CTA ACC C 

M3 (thiol)TTT TTT TTT TCC CTA ACC CTA ACC CTA ACC CTA 

ACC CTA ACC CTA ACC CTA ACC CTA ACC CTA ACC CTA 

ACC CTA ACC C 

MC2 GTG TTA GGT TTA GGG TTA GGG 

MC3 GTG TTA GGT TTA GGG TTA GTG 

MC4 GTG TTA GGT TTA GGG ATA GTG 

MC2(PEG250)  PEG250-GTG TTA GGT TTA GGG TTA GGG 

MC2(PEG750) PEG750-GTG TTA GGT TTA GGG TTA GGG 

*MC2: two mismatches; MC3: three mismatches; MC4: four mismatches, and 

the mismatch sequences are shown in red. 

2.1.2 DNA hybridisation 

5 nmol M1, M2 or M3 was mixed with 5 (10 or 15) nmol of MC2 ( MC3, MC4, 

MC2 (PEG250) or MC2 (PEG750)), in 150 µL of MES buffer (pH 7.4, 50 mM 

MES, 0.15 M NaCl) and allowed to hybridize for 3 h to make the M1/MC3, 

M2/MC3, M3/MC3, M1/MC2, M1/MC4, M1/MC2(PEG250), and 

M1/MC2(PEG750) dsDNAs, which were then used to prepare the DOX-dsDNA 

physical conjugates.  

2.1.3 Preparation of DOX and dsDNA conjugates (dsDNA-DOX conjugates) 

2.5 nmol dsDNA was gradually added to 500 µL of 10 µM DOX MES buffer 

solution to form dsDNA-DOX conjugates, during which the fluorescence spectra 

of DOX were recorded on a Spex Fluoro Max-3 Spectrofluorometer (0.75 mL 
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quartz cuvette, excitation wavelength: 480 nm, with an emission scanning range 

of 500-720 nm). 

2.1.4 pH responsiveness and reversibility of dsDNA-DOX conjugates 

The pH of the dsDNA-DOX conjugates was then gradually adjusted from 7.4 to 

4 using 1 M HCl (in total 27.6 µL), and the pH value at each stage was obtained 

through the pH calibration curve (Figure 2.2). The resulting fluorescence spectra 

were recorded. Then the solution pH was cycled between 4 and 7.4 by alternate 

additions of 1M NaOH or 1M HCl, and the resulting fluorescence spectra were 

recorded 3 min after each solution pH change. 
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Figure 2.2. pH calibration curve. 

2.1.5 Melting temperature measurement 

dsDNAs (1 M for M1-formed dsDNAs; 0.5 M for M2/MC3 and 0.375 M for 

M3/MC3) and dsDNA-DOX conjugates (where the dsDNA concentrations were 

the same as their corresponding dsDNA-only samples, with a fixed DOX 

concentration of 5 M) were prepared in the MES buffer solution (50 mM MES, 

0.15 M NaCl, pH 7.4). Their temperature-dependent absorbances at 260 nm (i.e. 
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UV-melting curve, mainly resulting from DNA absorption) were obtained on a HP 

8452A Diode Array Spectrophotometer (temperature ramp: 0.1; holding time: 2 

min, and temperature range from 20 to 80 C). The corresponding absorbances 

at 360 and 480 nm were monitored at the same time. The MES buffer-only 

solution was used as a blank. 

2.1.6 Circular Dichroism (CD) measurement 

CD spectra of M1/MC2 (10 μM), M2/MC2 (10 μM) and M3/MC2 (10 μM) were 

obtained on a Jasco J715 spectropolarimeter. All DNAs were dissolved in the 

MES buffer (pH 7.4, 50 mM MES, 0.15 M NaCl). After the measurements at pH 

7.4, the pHs of DNAs were then adjusted to 5 by addition of 1 M HCl to get the 

CD spectra at pH 5. 

2.2 Results and discussion 

DOX possesses fluorescence properties and when it intercalates with a 

double-stranded DNA structure to form conjugate, its fluorescence is heavily 

quenched upon intercalation[202]. Therefore, its fluorescence can be used as a 

convenient way to monitor the binding and release of DOX from the dsDNA. 

2.2.1 dsDNA-DOX conjugates with a different number of i-motif unit (Comparison 

between M1, M2 and M3) 

2.2.1.1 The formation of dsDNA-DOX conjugates (M1/MC3-DOX, M2/MC3- 

DOX and M3/MC3-DOX) 

Figure 2.3 shows fluorescence spectra of DOX in the presence of different 

concentrations of added dsDNAs (M1/MC3, M2/MC3 and M3/MC3). It is clear 

that as increasing amount of dsDNA are added DOX fluorescence is 

significantly quenched, which indicates that DOX can indeed intercalate with 
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dsDNAs to form dsDNA-DOX conjugates (M1/MC3-DOX, M2/MC3-DOX and 

M3/MC3-DOX). Maximal fluorescence quenching happens at approximately 

0.35:1 molar equivalence of M1/MC3 to DOX (0.17:1 for M2/MC3; 0.12:1 for 

M3/MC3). Therefore, the dsDNA molar equivalence required for maximum 

fluorescence quenching decreases in the order of M1/MC3, M2/MC3 and 

M3/MC3, at a ratio which is inversely proportional to the number of the i-motif 

units (M1, M2 and M3 contain 1, 2, and 3 i-motif units respectively).  
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Figure 2.3. Fluorescence spectra of doxorubicin solution (10 µM) with increasing molar 

ratios of added dsDNAs (a) M1/MC3; (b) M2/MC3; (c) M3/MC3. (From top to bottom: 0, 

0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.133, 0.166, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5 

equiv).  

 

Figure 2.4 shows DOX fluorescence intensity at 590 nm (derived from Figure 

2.3), plotted against the molar ratios of dsDNA to DOX. When the same amount 
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of dsDNA was added, the amount of DOX fluorescence quenched varied for 

different dsDNAs, and increased in the order of M1/MC3, M2/MC3 and M3/MC3 

due to the different DNA lengths. The data in Figure 2.4 were also fitted by the 

Hill equation to get the Michaelis constant (K) and cooperative sites (n) (Table 

2.2). In biochemistry, Hill equation (y = Vmax*x
n/(kn + xn) ) is used for enzyme 

kinetic study where a reaction can bind more than one ligand. In this equation, 

Vmax is the maximum reaction velocity, the Michaelis constant (K) is the ligand 

concentration at which an enzyme reaction rate is half of Vmax and cooperative 

sites (n) describe the cooperativity of ligand binding where, if n = 1 

(non-cooperativity), the ligand binding affinity is independent on other bound 

ligands and if n > 1 (positive cooperativity) or n < 1 (negative cooperativity), the 

binding affinity increases or decreases after the first ligand binding. The 

Michaelis constant here represents the dsDNA equiv at which 50% of DOX is 

quenched (roughly equivalent to 50% DOX being intercalated) and the 

Michaelis constant ratio among M1/MC3, M2/MC3 and M3/MC3 is 

approximately 6:3:2, which corresponds to the ratio of the number of C-rich 

domains contained by M1, M2 and M3 (1:2:3), This suggests that DOX was 

mainly intercalated within the dsDNA structure formed at the i-motif domains, 

and not in the region containing 10 thymines, which was further confirmed in 

Chapter 3 (Figure 3.7) where when ssDNA MC2 was mixed with DOX, DOX 

fluorescence was only quenched slightly, presumably due to the electrostatic 

interaction. More importantly, by lengthening the DNA (increasing the number of 

i-motif units), a smaller amount of dsDNA is needed for the same amount of 

DOX to intercalate. In other words, the amount of DOX loading can be improved 

by lengthening DNA to form a longer dsDNA-DOX conjugate. In addition, it has 

been reported that DOX intercalates preferentially to GC pairs[135], so that the 

i-motif sequence containing C-rich domains is more favourable for DOX 

intercalating. The values of cooperative sites for the dsDNAs we used are all 
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above 1, which indicates that DOX intercalation is positively cooperative. 
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Figure 2.4. Plot of DOX fluorescence intensity versus dsDNA:DOX molar ratios for 

M1/MC3, M2/MC3 and M3/MC3, fitted by Hill equation. 

 

Table 2.2. Michaelis constant (K) and cooperative sites (n) of different dsDNAs with with 

a different number of i-motif units. 

 M1/MC3 M2/MC3 M3/MC3 

k  0.068 0.033 0.022 

n  1.32 1.68 1.82 

2.2.1.2 Adding HCl into dsDNA-DOX conjugates (formation of C-quadruplex 

and free DOX) 

Figure 2.5 gives the evolution of fluorescence spectra of the conjugates as the 

pH was lowered from 7.4 to weaker acidic conditions. Initially, almost no 

fluorescence increase was observed as the solution pH was decreased, 

indicating little DOX release. As the system pH further decreased to a certain 

critical acidic point of 5.2-5.4 (pH switching point), DOX flurescence intensity 

was found to increase dramatically, indicating the release of DOX from 

dsDNA-DOX physical conjugates. These phenomena likely resulted from the 

cytosine-rich domains in M1 (M2 or M3) forming C-quadruplex structures, 

leading to the detachment of complementary MC2 strands and release of 
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intercalated DOX from the systems (Figure 2.1), and hence a dramatic increase 

in DOX fluorescence intensity. When the system pH dropped further, the 

fluorescence intensity only increased slightly, suggesting that the majority of 

DOX had already been released from the system at the critical pH point 

(assuming that fluorescence intensity correlates with released free doxorubicin 

in solution). Thus we can conclude that DOX can indeed be released from 

M1/MC3-DOX, M2/MC3-DOX and M3/MC3-DOX conjugates in a pH responsive 

manner, and that their critical pH switching points are similar at around pH 

5.2-5.4, despite the different numbers of i-motif domains. 
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Figure 2.5. Fluorescence spectra of M1/MC3-DOX (a), M2/MC3-DOX (b) and 

M3/MC3-DOX (c) with pH adjustment (pH from bottom to top: 7.4, 7.1, 6.8, 6.6, 6.4, 6.2, 

6.0, 5.8, 5.7, 5.6, 5.4, 5.3, 5.2, 5.1, 4.8, 4.3, 3.5 and 3.1); (d) plots of fluorescence intensity at 

590 nm of M1/MC3-DOX, M2/MC3-DOX and M3/MC3-DOX as a function of pH. 
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To confirm the formation of i-motif, The structures of M1/MC2, M2/MC2 and 

M3/MC2 at pH 5 and 7 were also studied by CD spectroscopy (Figure 2.6). At 

pH 7, all DNAs exhibit the CD spectra characteristic of the dsDNA structure, 

where the positive band and the negative band appeared at around 275 nm and 

249 nm with the crossover at 259 nm. When pH was changed 5, the positive 

and negative bands of all DNAs were shifted to ~285 nm and 254 nm 

respectively with a crossover at 266 nm, which are distinct characteristics of the 

i-motif structure. The results agreed well with the literature[157], revealing that it 

is the structure transformation from dsDNA to i-motif is the cause of  DOX 

release at pH 5. 
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Figure 2.6. CD spectra of M1/MC2 (a), M2/MC2 (b) and M3/MC2 (c) at pH 5 and pH 7 

respectively (20 °C). The spectra difference showed the structure transformation between 

dsDNA (pH 7) and i-motif structure (pH 5). 
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2.2.1.3 Reversibility of the pH-responsive DNA switch 
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Figure 2.7. Fluorescence intensity at 590 nm of M1/MC3-DOX (a); M2/MC3-DOX (b) and 

M3/MC3-DOX (c) as the solution pH is cycled between 7.4 and 4.0 by alternate additions 

of 1M HCl or 1M NaOH. 

 

When the pH of the solutions was adjusted back to 7.4, the cytosines were no 

longer protonated and so the driving force (the intramolecular C-CH+ 

base-pairing) to form C-quadruplex structures broke down. The C-quadruplex 

unfolded into a random coil state, which could then hybridize with the 

complementary strand to form a dsDNA such that DOX can intercalate again, 

leading to DOX fluorescence being quenched. Figure 2.7 illustrates the 

fluorescence intensity changes as the pH of the system was cycled between 7.4 

and 4.0 by alternate additions of 1 M HCl or 1 M NaOH. It is clear that the 

system is highly reversible, and that the fluorescence intensity follows the 
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expected trend (a strong fluorescence at pH 4 which decreases significantly at 

pH 7.4) as the solution pH was cycled, indicating that this system can be used 

for efficient and controlled DOX release using pH as a trigger. A control 

experiment with a DOX-only sample (without the dsDNA) showed no 

fluorescence change within the pH region of 4-7.4 (Figure 3.8a), confirming that 

the observed DOX fluorescence change is caused by the specific intercalation 

between DOX and dsDNA. 

 

2.2.1.4 Measurement of DNA melting temperature  

 

The melting temperature (Tm) of nucleic acids is the temperature at which 50% 

of base pairs have separated. The Tm value can be very useful in evaluating the 

stability of the DNA secondary structure, which depends on base pairing. It can 

be determined by measuring UV absorption at 260 nm while gradually 

increasing temperature of the dsDNA solution, as the double helical DNA has a 

hyperchromic shift when it denatures. 

 

Figure 2.8 shows the temperature-dependent absorbances of different dsDNAs 

and dsDNA-DOX conjugates at 260, 360 and 480 nm, respectively. None of the 

components have significant absorptions at 360 nm, so the absorbance at this 

wavelength will help to identify whether there were artefacts such as bubbles 

and sample aggregates that might contribute to the absorbance changes. 

Figure 2.8 shows no observable artificial contribution to the melting curves. 

 

The Tm values, shown in Table 2.3, were calculated from the first derivative by 

the spectrophotometer software. It is interesting to note that dsDNAs formed 

between different M-strands (M1, M2 or M3) and the same complementary 

strand (MC3) have similar Tm values, and so do the corresponding 
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dsDNA-DOX conjugates. This is not unexpected since the total number of 

i-motifs is similar. The concentration ratio of dsDNAs or dsDNA-DOX conjugates 

(from M1 to M3) is 8:4:3, while the ratio of cytosine rich domains is 1:2:3, which 

allows all dsDNAs to have roughly the same number of i-motif domains 

(absorbances). If the dsDNA concentration is the same, then we would expect 

the Tm value of M3/MC3 to be highest, followed by M2/MC3 and then M1/MC3; 

and the corresponding dsDNA-DOX conjugates would also show the same 

trend. In addition, due to the same complementary strand MC3 used to form 

dsDNAs, two and three MC3s are required to hybridize with each M2/M3 to form 

M2/MC3 and M3/MC3 duplexes, which should lead to lower Tms than their 

counterpart dsDNAs using one continuous complementary DNA with a double 

or triple length of MC3. 

 

The Tm values of dsDNA-DOX conjugates are higher than their corresponding 

dsDNAs alone, which is mainly due to the contribution of extra stabilisation from 

the DNA base-DOX  stacking interactions as a result of DOX intercalation. In 

DNA,  stacking exists between adjacent nucleotides that are parallel to each 

other, allowing the bases to participate ininteractions. DOX has a polycyclic, 

aromatic and planar structure with a proper size, similar to a base pair, which 

allows DOX to intercalate and fit between base pairs to participate in 

interactions. The aromatic interaction between adjacent bases and DOX 

makes dsDNA more stable. 
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Figure 2.8. Temperature-dependent absorbance plots of M1/MC3 (a), M1/MC3-DOX (b), 

M2/MC3 (c), M2/MC3-DOX (d), M3/MC3 (e), M3/MC3-DOX (f) and MES buffer (g) at 260, 

360 and 480 nm, respectively. 

 

In these thermal denaturation experiments, we also monitored the absorbance 

at 480 nm which corresponds to the maximum absorption peak of DOX. From 

Figure 2.8, we can see that the DOX absorption profile at 480 nm matches the 

melting curve of dsDNA-DOX conjugate at 260 nm. When dsDNA dehybridised 

to ssDNAs in these experiments, the DOX which initially intercalated with the 

dsDNA was released from the conjugates, so that the increase in absorbance 

showed the same trend as the dsDNA. 

 

Table 2.3. Tm values of different dsDNA and dsDNA-Dox conjugates measured by UV 

melting. 

 

dsDNA Tm (oC) DsDNA-Dox 

M1/MC3 49.0 53.9 M1/MC3-DOX 

M2/MC3 49.9 53.7 M2/MC3-DOX 

M3/MC3 50.0 53.6 M3/MC3-DOX 
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2.2.2 dsDNA-DOX conjugates with different numbers of mismatched bases 

(Comparison between MC2, MC3 and MC4) 

In order to form a dsDNA-DOX conjugate that can respond to environmental pH 

changes, complementary DNAs, MC2, MC3 and MC4 (with two, three and four 

mismatched bases to M1 respectively) were designed to form M1/MC2-DOX, 

M1/MC3-DOX and M1/MC4-DOX conjugates to tune duplex stability. These 

mismatches may destabilise the resulting dsDNA structure, such that the 

formation of i-motifs could outcompete the dsDNA at less acidic pH with tunable 

conformation-switching points (pH switching points). In addition, these 

mismatches are able to prevent complementary DNAs from folding into 

G-quadruplexes (two or more stacked guanine tetrads)[203], which may 

interfere with the reversibility of dsDNA-DOX conjugates. 

2.2.2.1 Stability comparison  

Table 2.4. Melting temperatures (Tm) of the duplex DNAs with the different numbers of 

mismatches employed in this study with and without DOX in MES buffer.  

dsDNAs  Tm (oC, No DOX) Tm (oC, with DOX) 

M1/MC4 42 48 

M1/MC3 49 54 

M1/MC2 54 58 

 

The melting temperature measurements (Table 2.4) show that melting 

temperatures of dsDNAs decreased as the number of mismatched bases 

increased. The dsDNA M1/MC4 gives the lowest Tm (42 °C), which is 7 °C 

lower than M1/MC3 and 12 °C lower than M1/MC2, indicating that the stability of 

dsDNA decreases in this order: M1/MC2, M1/MC3 and M1/MC4; in fact, dsDNA 

stability can be tuned by varying the number of mismatches. The same trend 

can also be found among dsDNA-DOX conjugates. Observing their differences 
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in  stability, we expected that their pH switching points could be tuned by 

choosing different complementary DNAs with  different numbers of 

mismatches. 

2.2.2.2 Formation, pH-responsiveness and reversibility of M1/MCn-DOX 
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Figure 2.9. Fluorescence spectra of DOX solution (10 µM) with increasing molar ratios of 

added dsDNAs (a) M1/MC2; (b) M1/MC3; (c) M1/MC4; (from top to bottom: 0, 0.01, 0.02, 

0.04, 0.08, 0.13, 0.2, 0.3, 0.4 and 0.5 equiv) and (d) plots of fluorescence intensity of 10 µM 

DOX at 590 nm versus the dsDNA:DOX molar ratios.  

 

Table 2.5. Michaelis constant (K) and cooperative sites (n) of different dsDNAs. 

 

dsDNA  k n 

M1/MC2 0.063 1.53 

M1/MC3 0.070 1.59 

M1/MC4 0.069 1.59 
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Figure 2.9 confirms that all dsDNAs, M1/MC2, M1/MC3 and M1/MC4, can form 

dsDNA-DOX conjugates with DOX. They also have a similar Michaelis constant 

(K) (Table 2.5), suggesting that varying the mismatch number from 2 to 4 has no 

significant influence on the amount of DOX that can be intercalated with the 

dsDNA. When the system pH was adjusted to acidic pH(pH switching point 

around 5.2-5.4), DOX was released from all the conjugates (Figure 2.10), and 

the systems were also reversible when pH was cycled between 7.4 and 4.7 

(Figure 2.11), all of which indicates that all complementary DNAs (MC2, MC3 

and MC4) with various numbers of mismatches are working properly in the 

pH-responsive dsDNA-DOX systems.  
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Figure 2.10. Fluorescence spectra of (a) M1/MC2-DOX, (b) M1/MC3-DOX, (c) 

M1/MC4-DOX, (pH from bottom to top: 7.4, 7.1, 6.1, 5.9, 5.7, 5.6, 5.4, 5.3, 5.2, 5.1, 4.7) and 

(d) Plots of fluorescence intensity at 590 nm of dsDNA-DOX as a function of pH. 
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Figure 2.11. Fluorescence intensity at 590 nm of M1/MC2-DOX (a); M1/MC3-DOX (b); 

M1/MC4-DOX (c) as the solution pH is cycled between 7.4 and 4.7 by alternate additions 

of 1M HCl or 1M NaOH. 

 

But no significant differences in pH switching points were observed among the 

different complementary DNAs, which was contrary to our expectation. 

M1/MC3-DOX has nearly the same pH switching point (around 5.2) as 

M1/MC2-DOX, although the pH switching point (about 5.4) of M1/MC4-DOX is 

slightly higher. Comparing their melting temperatures, we do see considerable 

differences in stability among the dsDNAs (M1/MC2, M1/MC3 and M1/MC4) 

and their responding DOX conjugates. For example, the Tms for M1/MC2-DOX, 

M1/MC3-DOX and M1/MC4-DOX are 58 °C, 54 °C and 48 °C, respectively 

(Table 2.4). We suspect that their differences in stability may not be large 

enough to cause significant pH switching point changes. Presumably the driving 

force of pH-dependent switching here is caused by the formation of an i-motif by 
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M1, which is able to outcompete and break up  hydrogen bonds between the 

dsDNA base pairs, and the destabilizing effect caused by mismatches may be 

negligible. 

 

2.2.3 M1/MC2 conjugates with and without PEG modification (Comparison among 

MC2, MC2(PEG250) and MC2(PEG750)) 

Because of the key role that PEG plays in vivo in reducing nonspecific 

interactions with proteins and prolonging the blood circulation time, two 

PEG-modified MC2s were also employed, MC2(PEG250) and MC2(PEG750), 

with PEG molecular weights of 250 and 750 respectively. They were used to 

form M1/MC2(PEG250)-DOX and M1/MC2(PEG750)-DOX conjugates to study 

how PEG modification affects the i-motif conformation switch in comparison to 

M1/MC2-DOX conjugate. 

 

2.2.3.1 Thermal stability of M1/MC2 with and without PEG modification 

Table 2.6. Melting temperatures (Tm) of the duplex DNAs employed in this study with 

and without DOX in MES buffer.  

 

dsDNAs  Tm (oC, No DOX) Tm (oC, with DOX) 

M1/MC2 54 58 

M1/MC2(PEG250) 52 56 

M1/MC2(PEG750) 54 58 

 

Table 2.6 shows the melting temperatures of M1/MC2s, and their counterpart 

conjugates with and without PEG modifications. PEG-modified dsDNAs and 

dsDNA-DOX conjugates have very similar Tms to their non-modified 

counterparts, suggesting that PEG modifications do not change the thermal 

http://www.iciba.com/negligible
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stability of the resulting dsNDA conjugates. This is because terminal PEG 

modification has no impact on base pairing or the total number of hydrogen 

bonds of dsDNA structure.  

2.2.3.2 Formation of (PEG-modified) M1/MC2 conjugates 
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Figure 2.12. Fluorescence spectra of DOX solution (10 µM) with increasing molar ratios 

of  added dsDNAs for (a) M1/MC2; (b) M1/MC2 (PEG250); (c) M1/MC2 (PEG750); (from 

top to bottom the dsDNA to DOX ratios are 0, 0.01, 0.02, 0.04, 0.08, 0.13, 0.2, 0.3, 0.4 and 

0.5 equiv). (d) Plots of the DOX fluorescence intensity (10 µM) at 590 nm versus the 

dsDNA:DOX molar ratios.  

 

Figure 2.12 shows DOX fluorescence spectra with increasing amount of 

different dsDNAs and plots of DOX fluorescence intensity at 590 nm as a 

function of the added amount of dsDNA. With the increasing molar ratio of 
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added dsDNA (with/without PEG), DOX fluorescence intensity was quenched 

dramatically, which confirms that as well as dsDNA M1/MC2, DOX can also 

intercalate into PEG-modified dsDNAs to form PEG-modified dsDNA-DOX 

conjugates (M1/MC2(PEG250)-DOX and M1/MC2(PEG750)-DOX). The data 

were also fitted by Hill 1 equation, and the resulting Michaelis constant (K), and 

the cooperative sites (n) of different dsDNAs (Table 2.7) were similar, 

suggesting that PEG modification at the end of complementary DNA MC2 does 

not affect DOX binding properties. 

 

Table 2.7. Michaelis constant (K) and cooperative sites (n) of dsDNAs without and with 

PEG modifications. 

 

dsDNA  k n 

M1/MC2 0.063 1.53 

M1/MC2(PEG250) 0.071 1.49 

M1/MC2(PEG750) 0.061 1.44 

 

2.2.3.3 pH responsiveness and reversibility of (PEG-modified) M1/MC2 

conjugates 

 

When the pH of the conjugates was gradually adjusted to acidic, DOX 

fluorescence intensity at 590 nm from all dsDNA-DOX conjugates did not 

change noticeably until pH reached around 5.3 (pH switching point), at which 

point DOX intensity increased sharply (Figure 2.13). Again, PEG modifications 

on DNA MC2 did not cause any significant change regarding the pH switching 

point. As expected, PEG modifications did not have any impact on reversibility; 

this was confirmed by cycling pH of the conjugates between 7.4 and 4.7 (Figure 

2.14). 
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Figure 2.13. Fluorescence spectra of the (a) M1/MC2-DOX, (b) M1/MC2(PEG250)-DOX 

and (c) M1/MC2(PEG750)-DOX systems under different pH conditions. pH from bottom to 

top: 7.4, 7.1, 6.1, 5.9, 5.7, 5.6, 5.4, 5.3, 5.2, 5.1, 4.7. (d) Plots of fluorescence intensity at 590 

nm as a function of pH for the dsDNA-DOX systems. 

 

All three systems, M1/MC2-DOX, M1/MC2(PEG250)-DOX and 

M1/MC2(PEG750)-DOX, display very similar Michaelis constants (K) and pH 

switching points, revealing that PEG-modification of MC2 does not affect DOX 

binding properties, pH responsiveness and reversibility of the dsDNA-DOX 

conjugates. This is understandable given that the PEG modification happens at 

the 5’ end of the MC2 strand, which does not participate/interfere in the DNA 

base-paring with the M1 strand. 
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Figure 2.14. Fluorescence intensity at 590 nm of M1/MC2-DOX (a); 

M1/MC2(PEG250)-DOX (b); and M1/MC2(PEG750)-DOX (c) as the solution pH is cycled 

between 7.4 and 4.7 by alternative addition of 1M HCl or 1M NaOH. 

 

2.3 Conclusion 

M1, M2 and M3 (with two and three i-motif units, respectively) can successfully 

form pH responsive dsDNA-DOX conjugates, with very similar pH switching 

points of around 5.2-5.4 and pH reversibility, and DOX loading is positively 

correlated to the length of the DNA. These features can be exploited to improve  

DOX loading capacity in the next chapter through increasing the number of 

i-motif units. 

 

The thermal stabilities of both dsDNAs and dsDNA-DOX conjugates can be 
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tuned by varying the number of mismatches (2-4) in the dsDNA (dsDNA-DOX 

conjugate) structure where the dsDNA containing less mismatches displays 

higher thermal stability. However, the changes in stability caused by differences 

of MC2, MC3 and MC4 do not seem sufficient to lead to an obvious change of 

pH switching point. Thus, in the following chapters MC2 will be chosen as the 

complementary DNA for developing a GNP-dsDNA drug delivery system 

because of its higher thermal stability. 

 

PEG-modified complementary DNA MC2s can be employed to prepare 

PEG-modified dsDNA-DOX conjugates. Compared with non-PEG conjugates 

they display a very similar Michaelis constant and pH switching point (around 

5.3). PEG modifications do not affect the DOX intercalation, pH-responsiveness 

and switching reversibility of the resulting dsDNA-DOX conjugates. 
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3 Chapter 3: GNP-dsDNA conjugate as a novel targeted NDDS 

A new NDDS is designed, combining the pH-responsive dsDNA-DOX conjugate 

and a gold nanoparticle (GNP). The concept here is based on the following 

requirements for a drug nanocarrier for effective cancer therapy[10, 19, 204]: 1) 

to increase the DOX loading capacity; 2) to increase the carrier size to above 

the renal clearance threshold (∼8 nm)[205], to prolong blood circulation for long 

lasting treatment as well as effective passive targeting via the enhanced 

permeation and retention (EPR) effect[10, 19, 204] (a characteristic property of 

many tumors); and 3) to increase carrier stability and resistance against 

nuclease degradation (polyvalent DNA-GNP conjugate has been reported to 

resist nuclease degradation)[206]. 

 

Figure 3.1. Schematic representation of a GNP-dsDNA conjugate acting as a novel 

pH-targeting NDDS for DOX.  

 

In this NDDS, colloidal GNPs with uniform sizes of 14 nm and 27 nm are 

synthesized by citrate reduction methods. ssDNAs, M1 (M2 or M3) are attached 

to the GNP surface via its thiol linker, which is then followed by hybridisation 

with complementary ssDNAs (with or without PEG modification) to form a 
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GNP-dsDNA conjugate as a nanocarrier for DOX. We expect that when pH is 

lowered to acidic, DOX will be released from the systems in the same way as 

from dsDNA-DOX conjugates, due to the formation of C-quadruplex by M1 (M2 

or M3) (Figure 3.1). These systems are then used for cellular study to evaluate 

the feasibility of the GNP-dsDNA-DOX as an anticancer drug delivery platform 

and to compare their cytotoxicity with free DOX. 

3.1 Materials and Methods 

3.1.1 Materials 

Hydrogen tetrachloroaurate(III) hydrate, 99.9% (metals basis) were purchased 

from Alfa Aesar. Trisodium citrate dihydrate and HNO3 (70%) were purchased 

from Fisher Scientific. DMEM (Dulbecco’s Modified Eagle’s Medium), 

Penicillin-Streptomycin (5,000 units/mL penicillin, 5 mg/mL streptomycin) and 

PEG 6000 (poly(ethylene glycol, average MW: 6000) were purchased from 

Sigma-Aldrich.  

3.1.2 Synthesis of GNPs 

Method 1. Direct citrate reduction without pH adjustment.  

A critical requirement for this method to be successful is extremely clean 

glassware and utensils. The synthesis was carried out by following the literature 

procedures[99, 113].  

1) Fresh aqua regia was prepared by mixing HCl and HNO3 (3:1) in the fume 

hood (caution: aqua regia is a strongly corrosive and oxidative, it should not get 

into contact with any organic solvents and protective goggles and gloves must be 

worn when handling it). All glassware and utensils (e.g. 250 mL three-necked 

flask, magnetic stir bar, stoppers, condenser and other glassware) were soaked 

in aqua regia for 30 min and were then rinsed thoroughly with Millipore-filtered 

water. This procedure should be done very carefully and goggles and gloves 

must be worn. 
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2) 80 mg HAuCl4 was weighed in a large beaker and 200 mL of ultrapure water 

was added to dissolve it. The solution was then transferred to a freshly-cleaned 

250 mL three-necked flask connected to a condenser, with the other two necks 

capped by stoppers. The resulting solution was heated to reflux in a 180-200℃ 

oil bath under magnetic stirring. 

3) When the solution began to reflux, an aqueous solution of trisodium citrate 

(228 mg in 20 mL water) was quickly added to the flask via one of the flask’s 

side necks. The resulting solution was then continuously refluxed for a further 

period. The colour of the solution changed from yellow to deep red in ~1 min. 

4) After refluxing for another 50 min, a stable deep red solution was obtained. 

The heat bath was then removed and the solution was allowed to cool to room 

temperature naturally (under stirring). The prepared gold nanoparticles solution 

was then transferred to a clean glass container and stored at room temperature.  

 

Method 2. Synthesis of GNPs by citrate reduction with pH adjustment 

[207]. 

The procedures are similar to those described above, except where 20 mg 

HAuCl4 was dissolved in 200 mL of Millipore water, and the solution pH was 

adjusted to ~7 with 1M NaOH before being loaded in the three-necked flask. 

The resulting solution was heated to reflux under magnetic stirring, and then 

147 mg tri-sodium citrate (dissolved in 3 mL water) was quickly added. The 

solution was refluxed for 1 h before being allowed to cool to room temperature. 

 

The absorption spectra of synthesized GNP solutions by Method 1 (after a 

five-fold dilution) and Method 2 (after a four-fold dilution) were recorded on a 

Varian Cary 50 bio UV-Visible Spectrophotometer (ranging from 300-800 nm). 

The GNPs were then characterised by a Philips CM200 transmission electron 

microscope (TEM). The specimen for TEM study was prepared by depositing a 
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drop of the GNP solution onto a carbon-coated mesh grid. 

3.1.3 Preparation and pH responsive study of GNP(27 nm)-M2/MC2-DOX and 

GNP(14 nm)-M2/MC2-DOX conjugates 

Preparation of GNP(27 nm)-M2 and GNP(14 nm)-M2 conjugates 

GNP(27 nm)-M2 and GNP(14 nm)-M2 conjugates were prepared by following 

the literature procedures[208]. 10 nmol DNA M2 was dissolved in 100 µL of 

Millipore water and added into 2.2 mL of GNP solution (27 nm in diameter, ~7.5 

nM) or 2.2 mL of 14 nm GNP solution, 15 nM). The DNA M2/GNP solutions were 

allowed to incubate at room temperature overnight. Then NaCl solution (1 M) 

was added to the GNP solutions to increase the salt concentration to 0.1 M, 

followed by a 10-second sonication. The solutions were left for 30 min and then 

the same procedure was repeated until the NaCl concentration reached 0.3 M. 

The solutions were then left overnight for salt aging under these conditions. The 

unbound DNA M2 was then removed by centrifugation at 14000 rpm for 60 min 

on a Thermo Scientific Heraeus Fresco 21 microcentrifuge, and precipitates of 

the GNP(27 nm)-M2 and GNP(14 nm)-M2 conjugates were obtained; these 

were then dispersed in 3 mL of MES buffer (pH 7.4, 50 mM MES, 0.15 M NaCl). 

The clear supernatants were collected and used to determine the unbound DNA 

M2 concentrations by measuring the absorptions at 260 nm (εM2 = 4.87 × 105 

cm-1·M-1), which in turn allows calculation of the number of DNA strands 

attached to each GNP.  

 

Preparation of GNP(27 nm)-M2/MC2 and GNP(14 nm)-M2/MC2 conjugates 

The GNP-M2 conjugates were washed twice with MES buffer and concentrated 

in MES buffer, then mixed with ssDNA MC2 at M2:MC2 molar ratio of 1:2 and 

allowed to hybridise at room temperature for 3 h to make GNP(27 nm)-M2/MC2 

and GNP(14 nm)-M2/MC2 conjugates.  
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Formation and pH responsive study of GNP(27 nm)-M2/MC2-DOX and 

GNP(14 nm)-M2/MC2-DOX conjugates 

GNP(14 nm)-M2/MC2 and GNP(27 nm)-M2/MC2 conjugates were dispersed in 

3 mL of MES buffer, and the fluorescence spectra of GNP(14 nm)-M2/MC2 and 

GNP(27 nm)-M2/MC2 conjugates with increasing amounts of DOX were 

recorded by titrating DOX to the solutions until DOX concentration reached 10.6 

M. Then 1M HCl was added to the system to adjust the solution pH to 4.7, and 

the resulting fluorescence spectra were recorded every 15 min for 2 h. 

Fluorescence spectra of the ssDNA MC2 (13 M) and MES buffer with 

increasing amount of DOX were also measured and used as controls (final DOX 

concentration for controls: 2.1 M). 

3.1.4 Preparation of GNP-dsDNA-DOX NDDSs using 14-nm GNPs 

40 nmol M1 (M2 or M3) was added to 8.8 mL GNP (14 nm) solution (132 nmol, 

molar ratio M1:GNP = 300:1) to prepare GNP-M1, GNP-M2 and GNP-M3 

conjugates, respectively, using the same procedure as above. Then the 

amounts of unbound M1, M2 and M3 were estimated by measuring the 

absorbance at 260 nm and using εM1 = 2.65 × 105 cm-1·M-1, εM2 = 4.87 × 105 

cm-1·M-1, and εM3 = 7.09 × 105 cm-1·M-1. 

 

The red oily precipitates (GNP-M1, GNP-M2 and GNP-M3 conjugates) were 

washed twice and concentrated in MES buffer. MC2, MC2(PEG250) or 

MC2(PEG750) was added to the conjugate solutions to make the GNP-dsDNA 

nanocarriers (molar ratio M1:MC2 = 1:1, M2:MC2 = 1:2 and M3:MC2 = 1:3). 

After 3 h, DOX (500 µM, the exact volume varied from the sample sizes) was 

then added to make GNP-dsDNA-DOX NDDSs (molar ratio  DOX:M1 = 3:1, 

DOX:M2 = 6:1 and DOX:M3 = 9:1).  
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3.1.5 Dynamic light scattering (DLS) measurement  

The hydrodynamic sizes of the GNP-dsDNA nanocarriers were measured in 

MES buffer (pH 7.4) on a Brookhaven Instruments Corp BI-200SM Laser Light 

Scattering Goniometer with a BI-APD detector, using an He-Ne laser at 633 nm 

(scattering angle: 90°, temperature: 25 °C). 

3.1.6 DOX release experiment  

A certain amount of 1 M HCl was added to the GNP-dsDNADOX system in MES 

buffer (50 mM MES, 150 mM NaCl, pH = 7.4, with CDOX = 5 M) to change the 

system pH to 5.5, 5.1 or 4.7, and the resulting mixture was incubated at 37°C for 

a certain period (e.g. 2 h). Thereafter, the GNP-DNA conjugate was removed by 

centrifugation. The resulting clear supernatant was collected and its DOX 

fluorescence (originated from the released DOX) was measured against a 

pre-determined fluorescence intensity-concentration calibration curve of free 

DOX to determine the amount of DOX that had been released from the 

nanocarrier. 

3.1.7 Cell culture 

HeLa human cervix adenocarcinoma cells were grown in DMEM, supplemented 

with 10% foetal bovine serum (FBS), 100 U/mL penicillin and 100 µg/mL 

streptomycin, then cultured at 37 °C in a 5% CO2 humidified atmosphere. 

3.1.8 Confocal laser scanning microscopy  

HeLa cells were cultured overnight on collagen-pretreated coverslips in a 

24-well plate. They were then incubated with free DOX, GNP-M1/MC2 

(PEG750)-DOX, GNP-M2/MC2 (PEG750)-DOX or GNP-M3/MC2 (PEG750)- 

DOX (all containing 5 µM DOX, molar ratio M1:DOX=1:3, M2:DOX=1:6 and 

M3:DOX=1:9) in media at 37 °C for 3, 24 and 48 h respectively. Thereafter the 

medium was removed and the cells were washed three times with PBS (pH 7.4). 
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The treated HeLa cells were then imaged using a Leica SP5 confocal laser 

scanning microscope using 488 nm excitation and detecting fluorescence over a 

range of 580-600 nm. 

3.1.9 MTT cell viability assay[209]  

104 HeLa cells per well were seeded in a 96-well plate and incubated overnight. 

The culture medium was then removed and 100 μL free DOX or 

GNP-dsDNA(PEG750) nanocarriers with or without different DOX 

concentrations (molar ratio M1:DOX = 1:3, M2:DOX = 1:6 and M3:DOX = 1:9) in 

media was added and incubated at 37 °C for 18 h. After that, the cells were 

washed with PBS and the MTT (100 μL, 0.5 mg/mL in DMEM) was added to 

each cell and incubated at 37 °C for 2 h. The MTT was then removed and 100 

μL DMSO was added to each well. The plate was incubated at 37 °C for 30 min 

to dissolve the resulting formazan. Afterwards, absorbance was measured at 

550 nm using an Opsys MR™ microplate reader, and the results were 

expressed in percentages of the untreated control cells. 

3.1.10 Freeze drying 

0.5 mL of GNP-M1/MC2(PEG750)-DOX (5 μM DOX in MES buffer, 

M1:DOX=1:3) in the presence of 0%, 1%, 5% or 10% PEG 6000 was 

freeze-dried on a Virtis Benchtop K freeze dryer, and the resulting powders were 

then redispersed in 0.5 mL of water. 

3.2 Results and discussion 

3.2.1 Characterisation of GNPs 

The GNPs were prepared by two methods, and the main difference between the 

two was that in Method 2 the HAuCl4 solution pH had been adjusted to pH 7 

prior to citrate addition. As a result, the solution colour change in Method 2, from 

light yellow to red, happened much more slowly after tri-sodium citrate was 
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added and it took more than 10 min for the colour to become deep red, while in 

Method 1, the solution changed from pale yellow to deep red in 1 min. The 

appearance of red in the solution indicates the formation of unaggregated GNPs, 

caused by the strong plasmon absorption of isolated GNPs.  

 

In Method 2, the slower reduction rate was ascribed to the higher solution pH 

which decreased the reactivity of starting Au(III) complexes, and led to 

production of bigger GNPs [207]. By using a simple pH adjustment to the 

starting solution, GNPs of a bigger size were synthesized. This was confirmed 

by the UV-vis absorption spectra (Figure 3.2) and TEM imaging (Figure 3.3 & 

3.4). 

 

Figure 3.2 illustrates absorption spectra of GNPs prepared by the above two 

methods, their plasmon absorption peaks appearing at 520 and 532 nm, 

respectively. The absorption peak of the GNPs prepared by Method 2 is red 

shifted compared to that obtained by Method 1, an indication of bigger particle 

sizes. 
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Figure 3.2. UV-Vis absorption spectra of GNP solutions prepared by Methods 1 & 2. 
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The absorbance values of the GNPs at their plasmon peak wavelengths were 

used to calculate their concentrations via the Beer-Lambert law (A = εbc, where 

 is the molar extinction coefficient, b is the optical path length and c is the 

concentration. The absorption extinction coefficients (ε) used are 2.4×108 

M-1·cm-1 for 15 nm and 2.93×109 M-1·cm-1 for 25 nm GNPs [210, 211]. These 

gave calculated GNP concentrations of 15.3 (Method 1) and 0.75 nM (Method 

2). 

                       

  

Figure 3.3. TEM images of GNPs prepared by Method 1(a and b); and the corresponding 

histograms of particle size (c) and width-to-height ratio distributions (d) for a total of 71 

particles.  

 

The TEM images of GNPs prepared by these two methods show that they are 
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both isolated and unaggregated. Their diameters were easily determined by the 

Digital Micrograph Software. By measuring the diameters of different particles 

appearing in the TEM images, histograms of the resulting particle sizes and 

their width-to-height ratios were obtained, and these are shown in Figures 3.3 

and 3.4. The histograms provide a simple way of presenting GNP size 

distribution and particle shape. The sizes of GNPs prepared by Methods 1 and 2 

are uniform, with relatively narrow size distributions of 14.2 ± 1.5 nm and 27.3 ± 

3.7 nm, respectively, and the ratios of width to height are 1.00 ± 0.07 and 0.98 ± 

0.10, indicating that all GNPs are roughly spherical in shape. 

    

   

Figure 3.4. TEM images of GNPs prepared by Method 2 (a and b); and the corresponding 

histograms of particle size (c) and width-to-height ratio (w/h ratio) distributions (d) for a 

total of 57 particles. 
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From Figure 3.3 & 3.4, the relative polydispersity (Coefficient of variation) were 

derived as 10.3% and 13.5%, respectively, indicating that both GNPs are 

roughly monodisperse. In contrast, most synthetic polymer based drug carriers 

are a mixture of different lengths, which tend to have considerably higher 

polydispersities. Because of this, polymer molecular weights are usually 

average values, such as the number average molecular weight (MW) and the 

weight average molecular weight. Because the size (or MWs for polymers) of 

the drug carrier strongly affects its biodistribution and pharmakinetics, therefore, 

the use of monodisperse GNPs as drug carriers is advantageous, ensuring that 

the resulting NDDSs are of uniform sizes and components. 

3.2.2 GNP(14nm)-M2/MC2-DOX and GNP(27nm)-M2/MC2-DOX conjugates 

All the designed pH-responsive ssDNAs (M1, M2 and M3) contain not only 

i-motif domain(s) but also a T10 (10 thymines) spacer between the thiol group 

and the i-motif domain(s), which is used to extend the i-motif domain(s) away 

from the GNP surface, minimizing any non-specific interaction or steric effect 

that might interfere with i-motif formation and/or hybridisation[160, 172, 206, 

212-214]. 

 

Here, M2 was chosen first to prepare GNP-DNA conjugates with 14-nm GNPs 

and 27-nm GNPs in order to explore the curvature effects of GNPs on DNA 

surface coverage, and to evaluate their feasibilities as drug nanocarriers in 

terms of DOX intercalation and pH-responsiveness. 

 

3.2.2.1 Curvature effects on GNP-DNA conjugate 

Standard citrate-stabilized GNPs will aggregate in the presence of NaCl due to 

the screening of electrostatic repulsion. When M2, a 5’-thiol-modified DNA, is 

added to a GNP solution it will displace the weakly-bonded citrate ligands and 
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attach to the GNP surface via a strong Au-thiolate (Au-S) bond to form a 

GNP-M2 conjugate that is stable. It does not aggregate even under 1M NaCl, 

due to the multiple negative charges from the DNA phosphate backbone which 

provide enhanced electrostatic stabilisation. The amount of DNA attached to 

each GNP surface can be increased significantly with the use of sonication[134, 

208, 211]. DNA loading amount was calculated by measuring UV absorbance of 

the unbound DNA at 260 nm (εM2 = 4.87 × 105 cm-1.M-1) in the supernatant after 

centrifugation. This assumes that all the missing DNAs (initial amount – 

supernatant remains) have bound to the GNP. In the GNP(14nm)-M2 conjugate 

system, the concentrations of GNP and loaded M2 are 11 nM and 1.0 M, while 

in the GNP(27nm)-M2 system, their concentrations are 5 nM and 0.66 M, 

respectively. These values correspond to average numbers of DNA M2 loaded 

on a 14-nm GNP being 94, and 132 on a 27-nm GNP. 

 

         

 

Figure 3.5. (a) Model used to calculate the oligonucleotide footprint; (b) Schematic of the 

deflection angle between oligonucleotides. Figures adapted from ref[208] . 

 

Assuming that all GNPs are perfectly spherical in shape and are of identical 

sizes (mean size measured from TEM), and that the oligonucleotides are evenly 

distributed on the GNP surface, then the surface density of DNA (SDD), the 
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DNA footprint (K) (Figure 3.5(a)) and the deflection angle between neighbouring 

DNAs on the GNP surface (Figure 3.5(b)) can be calculated with the following 

equations:  

                      (1)    

Where N is the number of DNA strands attached on each GNP; r: GNP radius 

                      (2) 

                 (3)   

                                         (4) 

Where R is the radius of the footprint approximation on the GNP surface 

 

These values can be used to evaluate the spatial arrangement of the DNA 

strands and the effects of the radius of curvature of GNPs on DNA surface 

coverage (Table 3.1). It is clear that DNA loading on the GNP surface can be 

influenced by the surface curvature. The M2 coverage on 14-nm GNPs are 

nearly three times higher (three times lower in terms of footprint) than that on 

27-nm GNPs even though more M2 strands were attached to the latter. In other 

words, the GNP-M2 conjugate with smaller GNP diameter (14 nm) displays a 

higher surface density of DNA M2, which is in agreement with the trend reported 

in the literature[208]. 

 

Table 3.1. Surface coverage, effective footprint and deflection angle for the GNP-DNA 

conjugates prepared in this study.  

 

GNP-ssDNA Diameter 

(nm) 

Oligos/particle Coverage 

(oligos/cm2) 

Footprint 

(nm2) 

Deflection(deg) 

GNP(14nm)-M2 

 

14 94±11 (1.5 ± 0.2)×1013 6.6±1.1 23.7±2.0 

GNP(27nm)-M2 27 132±13 (5.8 ± 0.6)×1012 17.5±2.4 20.0±1.4 
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3.2.2.2 The formation of GNP(14 nm)-M2/MC2-DOX and GNP(27 nm)- 

M2/MC2-DOX conjugate 

We made the GNP-M2/MC2-DOX conjugates using GNP(14 nm)-M2 and 

GNP(27 nm)-M2 conjugates with final GNP and M2 concentrations of 11 nM/1.0 

M; and 5 nM/0.66 M for the 14 and 27 nm GNP-M2/MC2-DOX systems, 

respectively. Figures 3.6 and 3.7 are the fluorescence spectra of GNP-M2/MC2 / 

DOX and fluorescence intensity plot (at 590 nm) after addition of a certain 

amount of DOX (10.6 M). Both MES buffer and ssDNA MC2 (~13 M in MES) 

with DOX addition (2.1 M) were used as controls.  
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Figure 3.6. The fluorescence spectra of DOX in (a) MES buffer, (b) with ssDNA MC2, (c) 

with GNP(14nm)-M2/MC2 conjugate and (d) with GNP(27nm)-M2/MC2 conjugate with 

increasing DOX concentration ( from bottom to top: 0, 0.09, 0.18, 0.27, 0.45, 0.64, 1, 1.36, 

2.09, 2.82, 3.55, 4.27, 5.18, 7, 8.82 and 10.64 µM). 

 

Fluorescence emission of DOX with both GNP-M2/MC2 conjugates present was 
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heavily quenched, and their emission spectra were red shifted compared to 

those of DOX alone and DOX with MC2, which suggests that DOX can 

intercalate into both GNP(14 nm)-M2/MC2 and GNP(27 nm)-M2/MC2 

conjugates to form GNP-M2/MC2-DOX conjugates as expected, and that 

therefore both GNP-M2/MC2 conjugates can be exploited as drug (DOX) 

carriers. The difference between both conjugates using 14 nm and 27 nm gold 

NPs here is that the spectra of GNP(27 nm)-M2/MC2-DOX red shifted more 

than GNP(14 nm)-M2/MC2-DOX, probably due to the difference in size of the 

conjugates. The final molar ratios of M2 to DOX were 0.09 and 0.06 for the 14- 

and 27-nm GNP-M2/MC2-DOX systems, respectively. Both were higher than 

the Michaelis constant of M2/MC2 for DOX (0.033), so DOX intercalation in the 

dsDNA was not saturated. The fluorescence intensity of DOX with MC2 was 

lower than DOX alone at the same concentration. This is probably due to 

electrostatic interaction between DOX and ssDNA MC2 leading to slightly 

quenched DOX fluorescence. 
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Figure 3.7. Plots of DOX fluorescence intensity at 590 nm in MES buffer, ssDNA MC2, 

GNP(14 nm)-M2/MC2 conjugate and GNP(27 nm)-M2/MC2 conjugate with increasing 

DOX concentration. 
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3.2.2.3 pH responsiveness of GNP-dsDNA-DOX conjugates 
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Figure 3.8. Time-dependent fluorescence spectra of (a) MES buffer+DOX(2.1 µM), (b) 

ssDNA MC2+DOX (2.1 µM), (c) GNP(14 nm)-M2/MC2-DOX (10.6 µM) conjugate and (d) 

GNP(27 nm)-M2/MC2-DOX(10.6 µM) conjugate after pH was adjusted to 4.7 (from bottom 

to top: pH 7.4, pH 4.7 5 min, pH 4.7 15 min, pH 4.7 30 min, pH 4.7 45 min, pH 4.7 60 min, 

pH 4.7 80 min, pH 4.7 100 min, pH 4.7 120 min). 

 

Figures 3.8 and 3.9 show fluorescence spectra of GNP(14 nm)-M2/MC2-DOX 

and GNP(27 nm)-M2/MC2-DOX conjugates with pH changes. When pH was 

adjusted to ~4.7, their fluorescence peaks shifted back to the original position 

and fluorescence intensities gradually increased with time (over 2 h). This 

clearly indicates that the intercalated DOX was released slowly from both 

GNP-M2/MC2-DOX conjugates as the solution pH was decreased to weakly 

acidic, suggesting that both conjugates can be used in pH-targeted drug 

delivery applications. Furthermore, no obvious difference was found between 
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GNP(14 nm)-M2/MC2-DOX and GNP(27 nm)-M2/MC2-DOX conjugates 

regarding DOX release, suggesting that DOX release from GNP-dsDNA-DOX 

conjugate is mainly controlled by the dsDNA-DOX part, not the GNP particle 

size. In the controls, no significant change in fluorescence intensity was found 

from the DOX in the MES buffer or ssDNA MC2 solutions, confirming that 

release is specific for the conjugates because of i-motif formation. 
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Figure 3.9. Plots of DOX fluorescence intensity at 590 nm versus time for (a) MES buffer + 

DOX(2.1 µM), (b) ssDNA MC2 + DOX (2.1 µM), (c) GNP(14 nm)-M2/MC2-DOX(10.6 µM) 

conjugate and (d) GNP(27 nm)-M2/MC2-DOX(10.6 µM) conjugate after pH was adjusted 

to 4.7. 

3.2.3 GNP(14 nm)-dsDNA conjugate as a new system for drug delivery 

(GNP-dsDNA-DOX NDDS) 

To exploit the EPR effect for effective cancer targeting in vivo, the carrier size 

should normally be between that of the renal clearance threshold (∼ 8 nm)[205]  

and the average gap in leaky blood vessels in tumours (∼100 nm)[10, 19]. The 
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hydrodynamic diameters (HD) of GNP(14 nm)-dsDNA conjugates measured by 

dynamic light scattering (Table 3.2) show that the size of GNP(14 nm)-M3/MC2 

conjugate is around 70 nm, and it would be bigger if the conjugate was modified 

by PEG. To avoid the conjugate size exceeding the average gap in leaky blood 

vessels in tumours, 14-nm GNP will be used to prepare a pH-responsive 

GNP-dsDNA conjugate as a targeted NDDS, although GNP(27 nm)-dsDNA can 

also act properly in vitro. 

 

Table 3.2. Hydrodynamic diameters (HDs) of GNP-M1/MC2, GNP-M2/MC2 and 

GNP-M3/MC2 in MES buffer.  

 

GNP(14 nm)-dsDNA HD in MES buffer (nm) 

GNP(14 nm)-M1/MC2 49.5 ± 6.6  

GNP(14 nm)-M2/MC2 63.5 ± 4.6 

GNP(14 nm)-M3/MC2 69.4 ± 3.4 

 

We also found that the average numbers of attached DNA strands on each GNP 

vary between GNP-M1, GNP-M2 and GNP-M3 conjugates (around 108 strands 

for M1, 94 for M2 and 80 for M3), indicating that the number of bound DNA 

strands decreased with increasing length of DNA, which agrees well with the 

reference[215]. Despite this, the DOX loading amount can still be improved by 

increasing DNA length, based on the calculation of the DOX loading ratio 

between GNP-M1, GNP-M2 and GNP-M3 (GNP-M1 : GNP-M2 : GNP-M3 = 

108 : 2*94 : 3*80). 

3.2.3.1 DOX releasing profiles 

The following GNP-dsDNA-DOX NDDSs were prepared,: GNP-M1/MC2-DOX, 

GNP-M1/MC2(PEG250), GNP-M1/MC2(PEG750), GNP-M2/MC2(PEG750) and 

GNP-M3/MC2(PEG750), with the DOX:M1 molar ratio kept at 3:1 (6:1 for 
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DOX:M2 and 9:1 for DOX:M3), below the saturation binding capacity to ensure 

that DOX was efficiently bound to the nanocarriers.  

 

The pH-dependent DOX releasing experiments were investigated by changing 

pH to acidic. It can be seen that for both GNP-M1/MC2-DOX and 

GNP-M1/MC2(PEG750)-DOX, little DOX (less than 4% or 9%) was released at 

pH 5.5 or 5.1, and only after pH was further lowered to 4.7 was efficient DOX 

release observed (approximately 90% release in 2 h) (Figure 3.10a). 

Interestingly, the pH switching points for GNP-dsDNA-DOX systems appeared 

to be lower than their dsDNA-DOX counterparts; in addition, the DOX-release 

rate was also significantly slower (it took 2 h for most DOX to be released from 

GNP-dsDNA-DOX systems, compared with 2 mins for dsDNA-DOX systems). 

The difference may result from the much higher DNA density on the GNP, where 

interaction between neighbouring strands may provide extra-stabilisation of the 

dsDNA, leading to a lower pH switching point and a slower release of DOX. 

 

Figure 3.10b shows DOX-release profiles of non-PEG GNP-M1/MC2-DOX 

compared with PEG-modified GNP-M1/MC2-DOX NDDSs. Both 

GNP-M1/MC2(PEG250) and GNP-M1/MC2(PEG750) displayed very similar 

pH-dependent DOX-release behaviours to GNP-M1/MC2-DOX, which further 

confirms that PEG-modifications on the surface of GNP-dsDNA-DOX NDDSs 

do not influence DOX-release behaviour. 

 

Also, despite different numbers of four stretches of C-rich domains among M1, 

M2 and M3, most DOX was also released from the 

GNP-M2/MC2(PEG750)-DOX and GNP-M3/MC2(PEG750)-DOX NDDSs within 

2 h at pH 4.7 (Figure 3.10c), although the final amount of DOX released was 

slightly lower than that of GNP-M1/MC2(PEG750)-DOX, possibly due to 



85 

 

stronger electrostatic interaction of DOX with longer DNAs. 
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Figure 3.10. (a) DOX release from GNP-M1/MC2-DOX and GNP-M1/MC2 (PEG750)-DOX 

NDDSs at different acidic pHs (5.5, 5.1 and 4.7). (b) pH-triggered DOX-release profiles for 

different GNP-M1/M2-DOX systems with/without PEG-modifications at pH 4.7. (c) 

pH-triggered DOX-release profiles for GNP-M1/MC2(PEG750)-DOX, GNP-M2/MC2 

(PEG750)-DOX and GNP-M3/MC2 (PEG750)-DOX at pH 4.7. 

3.2.3.2 In vitro cell-based studies 

In vitro DOX delivery by GNP-dsDNA(PEG750) nanocarriers to immortalized 

human cervix adenocarcinoma (HeLa) cells was evaluated using confocal 

fluorescence imaging (via DOX fluorescence). Figure 3.11 reveals that all the 

nanocarriers were highly efficient at delivering DOX into cancer cells, where 

strong DOX fluorescence was observed inside the cells after 3 h. Free DOX can 

enter and accumulate in cells by diffusing, while the polyvalent GNP-dsDNA is 

internalized mainly via scavenger receptor-mediated endocytosis[216]. After 

uptake, DOX is released from the GNP-dsDNA(PEG750) carrier in the acidic 
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environment of late endosomes or lysosomes whose pHs were reported to be 

as low as 4.3[169], lower than that required for efficient DOX release (~ pH 4.7). 

The released DOX can then diffuse across the endosomal/lysosomal 

membranes and reach the nucleus to exert its toxicity. This mechanism (see 

Chapter 4) is supported by TEM analysis on HeLa cells after 3 h incubation with 

the GNP-dsDNA(PEG750) NDDS, where the GNPs were found located 

exclusively in intracellular compartments. Furthermore, this in vitro DOX release 

experiment has confirmed that significant DOX release only happens in an 

acidic environment (pH < 5.1), but not in cell culture media or in the cytosol (pH 

7-7.4). 

 

 

Figure 3.11. Confocal laser scanning microscopy images of HeLa cells treated with DOX 

and different GNP-dsDNA(PEG 750)-DOX NDDSs for 3 h, 24 h and 48 h (the left-side image 

of each set is a phase-contrast image and the right-side image of each set is a DOX 

fluorescence image). 
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After further incubation (24 h and 48 h) morphological changes, together with 

much weaker fluorescence, were observed in the cells treated with both free 

DOX and GNP-dsDNA(PEG750)-DOX, which indicates that treatment with free 

DOX or all GNP-dsDNA(PEG750)-DOX NDDSs induces cell apoptosis. In 

contrast, the cells incubated with GNP-M2/MC2(PEG750) (no DOX loading) 

appeared healthy even after 48 h incubation, and the number of live cells 

increased significantly, seeming to suggest that the GNP-dsDNA(PEG750) 

nanocarrier is non-toxic and compatible with HeLa cells in vitro. 

 

The cytotoxicity towards HeLa cells of GNP-M1/MC2(PEG750) NDDSs with 

various DOX concentrations was studied by MTT-based cell proliferation assays 

(18 h in complete growth media). The nanocarriers without DOX were found to 

be non-cytotoxic. In fact, all systems (GNP-M1/MC2(PEG750)-DOX or free 

DOX) with DOX concentration ≤ 2.5 μM exhibited no measurable cytotoxicity 

towards HeLa cells under these conditions (Figure 3.12a). As DOX 

concentration was increased, cell viability progressively decreased, suggesting 

that cytotoxicity comes from the loaded DOX, and not the carrier. More 

importantly, the GNP-M1/MC2(PEG750)-DOX NDDSs exerted similar levels of 

cytotoxicity on HeLa cells to free DOX across the entire DOX concentration 

range studied (Figure 3.12a). Besides GNP-M1/MC2(PEG750)- DOX, the 

GNP-M2/MC2(PEG750)-DOX and GNP-M3/MC2(PEG750)-DOX NDDSs 

containing 5 μM DOX (molar ratio M2:DOX=1:6 and M3:DOX=1:9) exhibited 

comparable cell cytotoxicity (Figure 3.12b), which, together with the confocal 

imaging results, further confirms that using longer DNAs to improve DOX 

loading capacity, thereby reducing the amount of GNPs, is feasible and works 

efficiently. 
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Figure 3.12. (a) MTT assay of HeLa cell viabilities after incubation with DOX and 

GNP-M1/MC2(PEG750)-DOX (DOX concentrations varied from 0 to 10 μM) for 18 h at 

37 ℃. (b) MTT assay of HeLa cell viabilities after incubation with different 

GNP-dsDNA(PEG750)-DOX NDDSs (containing 5 μM DOX) for 18 h at 37 ℃. (*p < 0.05, 

compared with control)  

 

3.2.3.3 Freeze-dried GNP-M1/MC2(PEG750)-DOX system 

 

Stability is one of the essential requirements for regulatory approval of a drug or 
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formulation[217], as the product must retain the same properties throughout the 

storage period as at its packaging time. Because nanoparticles tend to 

aggregate due to their high surface-to-volume ratio[218-220] and because DOX 

aqueous solution is not stable during long-term storage, the feasibility of 

applying freeze-drying (lyophilisation) technique to the GNP-dsDNA-DOX 

NDDS was explored. Freeze-drying has been regarded as a very useful method 

for improving long-term stability of both colloidal nanoparticles[221] and DOX.  

 

 

Figure 3.13. (a) Photographs of freeze-dried GNP-M1/MC2(PEG750)-DOX powders in the 

presence of 0%, 1%, 5% and 10% PEG 6000. (b) Photographs of the reconstituted 

solutions. 

 

From Figure 3.13 we can see that, after freeze-drying, a 

GNP-M1/MC2(PEG750)- DOX powder was obtained (without any other 

additive), but the reconstituted solution turned purple, indicating aggregation of 

GNP-M1/MC2(PEG750)-DOX. But in the presence of 1%, 5% or 10% PEG 
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6000, the reconstituted solution remained red in colour. This suggests that with 

the addition of PEG the GNP-M1/MC2(PEG750)-DOX powder is well dispersed 

in water without observable aggregation, and that freeze-drying is applicable to 

the GNP-dsDNA-DOX NDDS for long-term storage, although further 

optimisation may still be required. 

 

Our results suggest that GNP-dsDNA(PEG750)-DOX NDDSs may have good 

potential for effective cancer chemotherapy. A significant advantage of this 

nanocarrier is its simplicity, where the drug is loaded directly and conveniently in 

native form, eliminating any chemical modification or coupling steps that may 

alter the properties and/or therapeutic efficacy of the loaded drugs. More 

importantly, their distinct advantage over free DOX is nanoscale sizes (less than 

100 nm), allowing for specific cancer targeting via the EPR effect (passive 

targeting), and significant reduction of the side-effects of free DOX based 

chemotherapy. 

 

3.3 Conclusion 

14-nm and 27-nm GNPs were prepared through citrate reduction. Both can be 

employed to develop an innovative pH-responsive GNP-dsDNA drug 

nanocarrier with the capability of rapid, efficient and pH-triggered drug release. 

 

By using a PEG-modified complementary DNA to hybridise to the GNP-M1 

conjugate, the surface of GNP-dsDNA-DOX NDDS can be fully and 

conveniently PEGylated, extremely important for future in vivo applications as 

PEGylation is well-known to provide “stealth effect” for the NDDS, reducing 

non-specific interaction with serum proteins and increasing blood circulation 

time. Moreover, GNP-dsDNA(PEG)-DOX NDDSs display the same pH 

responsiveness and DOX-release profiles as non-PEG GNP-dsDNA-DOX. 
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By increasing the number of i-motif units from 1 to 3, DOX-loading efficiency 

was further improved despite a slightly decrease in the number of DNA strands 

attached to each GNP. Cellular cytotoxicity studies show that GNP-dsDNA 

nanocarriers are non-toxic, and that all of the GNP-dsDNA(PEG)-DOX NDDSs 

(containing M1, M2 and M3, respectively) can efficiently deliver DOX into HeLa 

cells with similar cytotoxicity to free DOX. 

 

In summary, the GNP-dsDNA(PEG) nanocarrier has numerous features 

essential for an ‘ideal drug nanocarrier’ for cancer treatment: uniform small 

nanoscale size (< 100 nm); the ability to resist non-specific interaction in vivo 

and to prolong its circulation time in blood (via PEG); high drug loading capacity 

(more than 300 molecules of DOX per GNP); the capacity for controlled release 

(via intracelluar endosomal/lysosomal acidic environments); it is non-toxic, 

biocompatible, water-soluble, and suitable for freeze-drying, which can greatly 

improve long-term stability. This system can be further developed into active 

targeting and/or multifunctional versions of the nanocarrier, by incorporating 

cancer cell-specific targeting ligands, or by replacing the GNP with other 

functioning nanoparticles that can provide additional therapeutic/imaging 

modalities (see Chapter 7 & 8). 
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4 Chapter 4: Mechanism of GNP-DNA cellular uptake 

Substances such as small molecules, macromolecules and nanoparticles can 

enter or leave cells either by passive diffusion or by active transport such as 

endocytosis and exocytosis. Nanoscale objects, e.g. nanoparticles, are 

generally believed to be taken up by cells through endocytosis[222-225] . 

GNP-DNA conjugate, as one of the nanoparticle systems, has been reported to 

enter cells via scavenger receptor-mediated endocytosis[216] and can be taken 

up efficiently by more than 30 types of cells lines, primary cells and neurons 

[226]. Based on the above facts, the pH-responsive GNP-dsDNA-DOX system 

is assumed to enter cells through the same mechanism (Figure 4.1), where it 

can exploit the relatively low local pH of the endocytic compartments to achieve 

pH-triggered DOX release. To verify this assumption, which is also the 

foundation of a successful pH-triggered drug release system, a few cell -based 

studies were designed and carried out using confocal fluorescence imaging and 

TEM imaging. 

 

 

Figure 4.1. Schematics of endocytic uptake and subsequent pH-triggered drug release of 

the GNP-dsDNA-DOX system. The GNP-dsDNA system first enters cells via endocytosis. As 

a result of endosome maturation its local pH decreases, leading to the release of 

intercalated DOX molecules. 
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4.1 Materials and Methods 

 

4.1.1 Materials 

A dinuclear ruthenium(II) complex, [(bpy)2 Ru (tpphz) Ru (bpy)2]
4+ (denoted as 

BPY) was synthesized by Dr. Jim A. Thomas’s Group at the University of 

Sheffield. Propidium iodide (PI) was purchased from Invitrogen. 

4.1.2 Confocal Fluorescence Imaging 

(a) Confocal fluorescence imaging of HeLa cells treated with free DOX and 

GNP-M2/MC2(PEG750)-DOX with different incubation times: 

The HeLa cells were incubated with free DOX (5 µM) and GNP-M2/MC2(PEG 

750)-DOX (containing 5 µM DOX; molar ratio of M2 to DOX = 1:6) in cell culture  

media for 5, 15, 30, 45 and 60 min, and then imaged by confocal laser scanning 

fluorescence microscopy (excitation/emission: 488 nm/580-600 nm). 

 

(b) Confocal imaging of cells treated with GNP-M2/MC2(PEG750)-BPY: 

BPY was dissolved in water and then mixed with GNP-M2/MC2-PEG750 to 

prepare GNP-M2/MC2(PEG750)-BPY in cell culture media ( molar ratio of M2 to 

BPY = 1:18). The HeLa cells were treated with GNP-M2/MC2(PEG750)-BPY 

(containing 30 µM BPY) for 3 h, after which the cells were washed with PBS and 

subsequently imaged by confocal laser scanning microscopy using 488 nm 

excitation and fluorescence detection over a range of 630-670 nm. 

 

(c) Confocal imaging of cells treated with GNP-M2/MC2(PEG750)-PI: 

PI stock solution (1 mg/mL in water) was added to GNP-M2/MC2(PEG750) to 

form GNP-M2/MC2(PEG750)-PI in cell culture media (molar ratio of M2 to PI = 

1:12). The HeLa cells were treated with GNP-M2/MC2(PEG750)-PI (containing 

10 µM PI) for 3 h, after which the cells were washed with PBS  and imaged by 
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confocal laser scanning microscopy using 488 nm excitation and fluorescence 

detection over a range of 600-630 nm.  

4.1.3 Transmission electron microscopy 

5 × 105 HeLa cells per well were seeded in 6-well plates and incubated 

overnight at 37 °C. The cells were treated with the GNP-M1/MC2(PEG750) 

-DOX in cell culture media for 3 h at 37 °C. After washing with PBS, the cells 

were detached and centrifuged. The cell pellets were fixed with 2.5% 

glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) for 2.5 h, dehydrated using 

an ascending alcohol series (20, 40, 60, 80 and 100% twice) for 20 min each 

time, then embedded in Araldite resin at 65°C overnight. A 70 nm section was 

placed on a TEM grid and stained with saturated uranyl acetate and 0.2% 

Reynolds lead citrate before TEM imaging [189, 227]. 

 

4.2 Results and Discussion 

 

4.2.1 HeLa cells treated by free DOX and GNP-M2/MC2(PEG750)-DOX for different 

incubation times 

Although GNP-DNA conjugate has been reported to enter cells through the 

endocytic pathway, we cannot completely rule out the possibility that DOX could 

first dissociate from the GNP-DNA conjugate and then diffuse into the cells. This 

is because DOX was bound in dsDNA through intercalation rather than covalent 

chemical bonding, in spite of its high affinity. To confirm that DOX was mainly 

taken up by cells in the integrated form of GNP-dsDNA-DOX conjugate without 

dissociation, confocal laser scanning microscopy was employed to follow and 

compare the kinetics of DOX uptake by HeLa cells after treatments with free 

DOX and GNP-M2/MC2(PEG750)-DOX, respectively. Confocal fluorescence 

images for cells corresponding to the different incubation times (5, 15, 30, 45 & 
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60 min) are shown in Figure 4.2.  

 

 

Figure 4.2. Confocal fluorescence images of HeLa cells after treatment with free DOX (5 

μM) (a) and GNP-M2/MC2(PEG750)-DOX (containing 5 μM DOX) (b) for 5, 15, 30, 45 and 

60 min, respectively. (Scale bar: 20 μm) 
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Figure 4.3. The average DOX fluorescence intensity inside HeLa cells as a function of 

incubation time. 

 

Figure 4.2 clearly shows significant differences in DOX uptake kinetics (via DOX 

fluorescence intensity inside cells) between the free DOX and 
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GNP-dsDNA-DOX treated HeLa cells. In the cells treated by free DOX, DOX 

fluorescence was clearly visible after just 5 min, indicating that free DOX had 

entered the cells very rapidly. Also, fluorescence intensity increased rapidly with 

the increase in incubation time, and became saturated after just 45 mins. It is 

known that DOX, being a small molecule, can enter cells quickly through simple 

diffusion, driven by a concentration gradient. In contrast, no DOX fluorescence 

was detected inside cells treated with the GNP-DNA-DOX after a 15-min 

incubation under identical instrument setup conditions. Only a very weak 

fluorescence signal was observed after 30 min; this gradually became stronger 

as the incubation time was increased to 45 and 60 min, although it was still 

much weaker than that treated by free DOX.  

 

To quantify the different uptake kinetics, the average fluorescence intensity 

inside cells was analysed at different incubation times. This was then plotted as 

a function of incubation time as shown in Figure 4.3, which reveals that the DOX 

fluorescence intensity of GNP-DNA-DOX-treated HeLa cells at 30 min is very 

weak, being only 1/25 of that of free DOX treated cells at the same incubation 

time. In addition, the DOX intensity of cells treated by GNP-DNA-DOX at 60 min 

was actually similar to that treated by free DOX for 5 min. These results suggest 

that compared to free DOX, there is approximately a one-hour delay for similar 

amounts of DOX being delivered into cells by the GNP-dsDNA carrier, despite 

both systems containing identical concentrations of DOX (5 μM). Although the 

diffusion coefficient of the GNP-DNA-DOX system, a much bigger nano objects, 

is expected to be significantly slower than that of free DOX, a small molecule 

drug, which may cause a delay for the GNP-DNA-DOX to reach extracellular 

membrane, the main factor affecting the different cell uptake kinetics observed 

here is believed to be mainly determined by the transmembrane process, not 

extracellular diffusion. This is because unlike small molecules which can directly 
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diffuse across the cell membrane (hence much faster kinetics), nanoscale 

objects however cannot across the cell membrane directly. Such distinctly 

different DOX uptake kinetics by HeLa cells between free DOX and 

GNP-DNA-DOX systems is strong evidence of different DOX uptake 

mechanisms. It is highly unlikely that DOX dissociated from the GNP-DNA 

conjugate first and then diffused into the cells. In other words, DOX was most 

probably carried by the GNP-DNA system and taken into the cells via 

endocytosis. 

4.2.2 Delivery of membrane-impermeable DNA-binding dyes by the GNP-dsDNA 

system 

Two other dsDNA intercalating agents were also studied: a dinuclear ruthenium 

(II) complex (BPY, Figure 4.4) and propidium iodide (PI). Like DOX, both 

compounds can bind with dsDNA through intercalation to form 

GNP-dsDNA-agent systems, but a major difference here is that both BPY and 

PI are cell membrane impermeable: they cannot enter the cells via simple 

diffusion. In addition, both compounds are fluorescent dyes, and their cellular 

uptake can be easily detected via their specific fluorescence. Moreover, as the 

compounds themselves are cell membrane impermeable, any fluorescence 

detected inside cells should only come from the carrier-induced delivery, 

allowing unambiguous confirmation of GNP-dsDNA carrier mediated 

intracellular delivery. 

 

Figure 4.4. Chemical structure of the diruthenium(II) complex ( [(bpy)2 Ru (tpphz) Ru 

(bpy)2]4+  (BPY).  
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BPY is a DNA intercalating agent, which produces significantly enhanced 

fluorescence when forming dsDNA-BPY conjugate. Figure 4.5 shows the 

fluorescence spectra of BPY on its own, and its dsDNA-conjugate (excitation 

wavelength: 465 nm, which is also the wavelength of maximum absorption). It is 

clear that BPY on its own displayed an emission wavelength of around 590 nm 

with relatively low intensity, whereas for BPY-M2/MC2 conjugate the emission 

wavelength shifted to 650 nm, and the fluorescence increased according to the 

molar ratio of BPY to M2/MC2 (for example, the fluorescence of the conjugate at 

a ratio of 10:1 increased by about 5 times compared to that of BPY alone). 
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Figure 4.5. (a) UV-vis absorption spectrum of BPY (3 μM BPY). (b) Fluorescence spectra 

of BPY alone (500μL, 10 μM) and BPY- M2/MC2 conjugates (molar ratios of BPY to 

M2/MC2 are 20:1 (red) and 10:1 (blue). 

 

BPY was found to be cell membrane impermeable, and so could not enter the 

cells on its own (Figure 4.6)[228]. It has been successfully delivered into cells by 

encapsulation in a biocompatible polymersome [229]. Here, BPY was added to 

GNP-M2/MC2(PEG750) using a molar ratio of 18:1 (BPY:M2) to form the 

GNP-dsDNA-BPY conjugate. After incubation with the GNP-dsDNA-BPY 

conjugate for 3 h, a confocal fluorescence microscope was used for imaging the 

HeLa cells. The resulting images (Figure 4.7) clearly show that BPY 



99 

 

fluorescence was detected inside HeLa cells, indicating that the GNP-dsDNA 

system had successfully delivered the BPY into cells with similar efficiency to 

the polymersome system reported in the literature. 

 

Figure 4.6. Confocal phase contrast (left), fluorescence (middle) and merged optical / 

fluorescence (right) images of HeLa cells after incubation with BPY alone for 3 h at 37 . 

 

 

Figure 4.7. Confocal phase contrast (left), fluorescence (middle) and merged optical / 

fluorescence (right) images of HeLa cells after incubation with the 

GNP-M2/MC2(PEG750)-BPY for 3 h at 37 ℃. 

 

We further tested the delivery of  propidium iodide (PI), another DNA 

intercalating dye that is widely used for DNA staining of dead cells and known to 
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be live cell membrane-impermeable (see Figure 4.8 for its chemical structure), 

by our GNP-dsDNA carrier. After incubation of HeLa cells with a 

GNP-M2/MC2(PEG750)-PI conjugate (M2:PI molar ratio = 1:12) for 3 h, PI 

fluorescence was clearly detected in live HeLa cells (see Figure 4.9). 

 
 

Figure 4.8. Chemical structure of PI. 

 

 

 

Figure 4.9. Confocal phase contrast (left), fluorescence (middle) and merged 

optical/fluorescence (right) images of HeLa cells after incubation with 

GNP-M2/MC2(PEG750)-PI for 3 h at 37 ℃. 

 

The successful delivery of two different cell membrane impermeable agents by 

our GNP-dsDNA nanocarrier presented above, together with that of the delivery 

of DOX shown in the previous chapter, not only confirm their 
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non-simple-diffusion delivery mechanism but also suggest that our GNP-dsDNA 

carrier can potentially act as a general, efficient intracellular delivery system for 

DNA intercalating agents. Compared to other delivery systems, a significant 

advantage here is simplicity: the agents to be delivered can be directly and 

conveniently loaded to the carrier in native form, requiring no chemical 

modification or coupling step which may alter their pharmakinetics or 

therapeutic efficacies. 

4.2.3 TEM imaging of HeLa cells treated with GNP-M2/MC2(PEG750)-DOX 

Nanoscale objects are normally taken into cells via endocytosis, and GNP-DNA 

conjugate has also been reported to enter cells through endocytosis; therefore it 

is plausible to suppose that the GNP-dsDNA-DOX based drug delivery system 

is internalised by cells via the same mechanism. Thus, as the endosome 

matures into late endosome or lysosome, progressively decreasing pH triggers 

the release of DOX from the GNP-DNA-DOX system, and the release of free 

DOX can then diffuse across the endosomal/lysosomal membranes, finally 

reaching the nucleus to exert its cytotoxicity. 

 

To further confirm this mechanism, TEM imaging was employed to trace the 

location of the GNP-DNA-DOX system after cell internalisation. After 3 h 

incubation with the GNP-DNA-DOX, the HeLa cells were fixed with 

glutaraldehyde, dehydrated, and sectioned for TEM imaging. Figure 4.10 shows 

TEM images representing two random HeLa cells, both of which clearly reveal 

that GNPs were exclusively located and accumulated within endosome- or 

lysosome-like intracellular compartments (the organic/biological components of 

the carrier cannot be observed clearly due to their low contrast to cellular 

components in TEM imaging). It has been reported that DNA remains 

chemically bonded to the GNP surface after being taken into cells[226, 230], 

therefore the TEM imaging results presented herein strongly support our 
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expectation that the GNP-dsDNA-DOX conjugates would be internalised 

through the endocytic pathway and located in endocytic compartments,. 

Therefore our proposal of exploiting the low local pH of endocytic compartments 

to trigger DOX release appears to be viable. 

 

 

Figure 4.10. TEM images of two random HeLa cells (a & b) after incubation with 

GNP-M2/MC2(PEG750)-DOX for 3 h at 37 ℃, where the GNPs were found to exclusively 

locate in endosome- or lysosome-like compartments, giving another strong evidence that 

GNP-dsDNA-DOX conjugates were internalised via the endocytic pathway. (scale bar: 1 

μm) 
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4.3 Conclusion 

 

DOX can be efficiently delivered into HeLa cells in the form of GNP-DNA-DOX 

conjugate without dissociation via the endocytic route. This is supported by the 

successful delivery of two different types of cell membrane impermeable DNA 

intercalating agents, a dinuclear Ru(II) complex (BPY) and PI, by the 

GNP-dsDNA nanocarrier, demonstrating that the GNP-DNA system can act as 

an efficient general intracellular delivering platform for DNA intercalating agents. 

The TEM images of HeLa cells incubated with GNP-DNA-DOX further confirm 

that the GNP-DNA-DOX system was taken up by cells through the endocytic 

pathway as expected. This suggests that it is both feasible and practical to 

design efficient drug nanocarriers using GNP-pH-responsive DNA conjugates 

with their high cellular uptake and efficient, pH-triggered drug release 

characteristics. 
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5 Chapter 5: PEG effects on GNP-M1/MC2 system stability 

The first use of Poly(ethylene glycol) (PEG) to modify biologically active 

macromolecules was in the 1970s, by Davis and Abuchowski[231-233]. It was 

found that PEG could prolong the circulation time of proteins and lower their 

immunogenicity. Since then PEGs of different MWs have been widely used in 

pharmaceutical and other biomedical fields[234-238]; indeed, PEG modification 

has become the gold standard, due to its ‘stealth effect’. PEG modification 

(PEGylation) is able to mask bioactive molecules such as peptides[239-242], 

proteins[243-246], enzymes[247-249] and antibodies[250-253] from interacting 

with blood components, reducing non-specific recognition and clearance by the 

body, and hence leading to prolonged circulation time and improved 

stability[234, 254, 255]. Furthermore, PEGylation can also improve drug 

solubility, its long hydrophilic chain making it highly water-soluble [234, 256]. 

 

In 1990 the first PEGylated product, PEG-bovine adenosine deaminase 

(Adagen®)[257], was approved by the Food and Drug Administration (FDA) for 

clinical application in the USA. Since then the market has seen the emergence 

of many more approved PEGylated protein products, such as 

PEG-asparaginase (Oncaspar®)[258], PEG-interferons, PEG-intron® with a 

linear PEG (12 kDa)[259], and Pegasys® with a branched PEG (2×20 kDa)[260] 

etc; these have often exhibited improved pharmacokinetics. Pegylation can be 

applied not only to drugs themselves, but also to the delivery systems (drug 

carriers) such as pegylated-liposomal doxorubicin (Caelyx® / Doxil®)[261, 262], 

to offer improved system stability in vitro[263-266] and in vivo[234, 254, 255, 

267] and improved pharmacokinetic effects.  

 

Although DNA stability against nuclease degradation can be improved via 
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conjugation with gold nanoparticles[206], the 3-fold improved protection offered 

by conjugation to GNP alone may not be able to satisfy the in vivo requirements 

when administered intravenously, because of  the long exposure to different 

enzymes and the need to protect the conjugate from detection and 

phagocytosis during blood circulation. In this project we designed pegylated 

GNP-M1/MC2 systems, using single-chain (linear) PEGs with different 

molecular weights, and a branched three-chain PEG. Their stabilities were then 

compared with unmodified GNP-M1/MC2 in a serum-containing cell culture 

medium as well as under a DNase I treatment.  

5.1 Materials and Methods 

5.1.1 Materials 

DMSO (anhydrous, ≥99.7%) was obtained from Sigma-Aldrich. MC2-SH 

(5’-HS-TTT GTG TTA GGT TTA GGG TTA GGG-3’) was purchased from IBA 

GmbH (Germany). (Methyl-PEG12)3-PEG4-Maleimide (TMM) was purchased 

from Thermo Scientific. YO-PRO-1 was purchased from Life Technologies. 

DNase I was purchased from Fisher BioReagents. 

5.1.2 Preparation of MC2(TMM) 

100 nmol MC2-SH was dissolved in 1 mL of filtered (0.22 μm syringe filter) MES 

buffer (pH 7.4, 50 mM MES, 0.15 M NaCl) to make a 100 M stock; TMM was 

dissolved in anhydrous DMSO to make a TMM stock solution of 40 mM. 0.5 mL 

of the MC2-SH stock solution (50 nmol) was mixed with 50 μL of TMM (the 

molar ratio of MC2-SH:TMM = 1:40) and the resulting mixture was allowed to 

react overnight at room temperature to form MC2(TMM). The prepared 

MC2(TMM) was stored at -20℃ before HPLC analysis and purification. 

5.1.3 HPLC analysis and purification and MALDI-MS analysis 

Both RP-HPLC analysis and purification were performed on a Gynkotek HPLC 
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Instrument at room temperature using an Phenomenex C18 column (4.6 X 250 

mm, 5 μm) with mobile phase consisting of TEAA buffer (A) and acetonitrile (B). 

UV absorbance was monitored by a Gynkotek (UVD 340S) detector at 260 nm. 

Three different gradients were tried, (5-30% B) 30min, (5-95% B) 30min, and 

(10-70% B) 30min. The final gradient chosen for analysis and purification of the 

MC2(TMM) was 10-70% (B) for 30 min. The MC2(TMM) fraction was then 

lyophilized, stored at -20℃ and identified by Matrix-assisted laser 

desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS).   

5.1.4 Assembly of PEG-modified GNP-DNA systems 

Three batches of 2.2 ml GNP solution (15 nM) were mixed with 33, 66 and 100 

µL DNA M1 (100 M) solution overnight, respectively (GNP:M1 molar ratios = 

1:100; 1:200; 1:300), and the resulting solutions were then salt-aged (0.3M 

NaCl) overnight. The samples were then centrifuged (14800 rpm * 60 min) to 

yield GNP-M1 pellets, and the DNA M1 loadings were estimated at 60, 85, and 

110 DNA M1 strands per GNP, respectively. Afterwards, the complementary 

MC2 strands (MC2, MC2(PEG250), MC2(PEG750) or MC2(TMM)) were added 

to the GNP-M1 pellets (DNA-M1:MC2 molar ratio = 1:1) and were allowed to 

hybridize in an MES buffer for 1 hr to make GNP-M1/MC2, 

GNP-M1/MC2(PEG250), GNP-M1/MC2(PEG750) and GNP-M1/MC2(TMM) 

systems (GNP-dsDNA nanocarriers). 

5.1.5 Dynamic light scattering (DLS) measurement  

The hydrodynamic sizes of the GNP-dsDNA systems were measured in both 

MES buffer (pH 7.4) and in complete DMEM media with 10% FBS. 30 µL of the 

GNP-dsDNA stock solution (0.46 M GNP) was mixed with 1.2 mL of MES 

buffer or complete DMEM, and then filtered through a Whatman syringe filter 

(0.22 μm pore size). 3 h after mixing, the hydrodynamic sizes of the systems in 

complete DMEM were measured on a Brookhaven Instruments Corp BI-200SM 
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Laser Light Scattering Goniometer with a BI-APD detector, using an He-Ne 

laser at 633 nm (scattering angle: 90°). 

5.1.6 GNP-M1/MC2 systems under deoxyribonuclease I (DNase I) degradation 

The GNP-dsDNA samples were mixed with YO-PRO-1 and diluted with reaction 

buffer to 200 µL(10 mM Tris-HCl, 2.5 mM MgCl2 and 0.5 mM CaCl2, pH 7.5) to 

give a final DNA concentration of 80 nM, and YO-PRO-1 concentration of 400 

nM. After 10-min equilibration at 37 °C, 10 µL of the DNase I mixed with reaction 

buffer (2 U/L) was added and the resulting fluorescence of the samples (EX = 

491 nm; EM = 509 nm) was measured on a fluorescence plate reader every 90 

seconds for 3 h.  

5.1.7 GNP-M1/MC2(TMM) carrier for propidium iodide (PI) delivery 

GNP-M1 conjugate was mixed with MC2(TMM) (M1:MC2(TMM) molar ratio = 

1:1) in an MES buffer (pH 7.4), and allowed to hybridize for 3 h to make a 

GNP-M1/MC2(TMM) carrier; then PI stock solution (1 mg/mL in water) was 

added to form the GNP-M1/MC2(TMM)-PI system (M1: PI molar ratio = 1:6). 

The HeLa cells were then treated with GNP-M1/MC2 (TMM)-PI (containing 10 

µM PI) for 3 h, after which the incubation buffer was removed, and the cells 

were washed with PBS three times before being imaged on a confocal laser 

scanning microscope, using 488 nm excitation and fluorescence detection over 

600-630 nm. 

 

5.2 Results and Discussion 

 

5.2.1 Preparation, purification and identification of MC2(TMM) 

5.2.1.1 Preparation of MC2(TMM) 

In order to prepare three-chain PEG-modified MC2 (MC2(TMM)), a branched 
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sulfhydryl-reactive PEGylation reagent, (Methyl-PEG12)3-PEG4-Maleimide 

(TMM, MW: 2360.75) (see Figure 5.1), was employed to react with 

thiol-modified MC2 (MC2-SH), and the reaction scheme is shown in Figure 5.2. 

Although TMM is water-soluble, and the maleimide group is relatively stable 

compared to other active functional groups (e.g. NHS ester), it still needs to be 

dissolved in an anhydrous organic solvent (e.g. DMSO) to avoid hydrolysis 

forming maleimic acid, after which it can no longer react with sulfhydryl. 

 

Figure 5.1. Chemical structure of TMM (a) and its schematic abbreviation (b). 

 

This one-step modification to make branched PEGylated MC2 is quick and 

simple. The Michael addition between the maleimide and free sulfydryl groups, 

which forms a stable thioether bond, is very efficient and specific at pH 6.5-7.5 

and was complete in just 2 h after TMM was mixed with MC2-SH at room 

temperature. The molar ratio of the reaction was 1:1, but excess TMM (e.g. 40 

molar equivalent of MC2-SH) was used here to ensure complete PEGylation of 

the MC2-SH. 

 

Figure 5.2. Schematic of the reaction between TMM and DNA MC2-SH. 
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5.2.1.2 HPLC analysis and purification 

After the MC2-SH and TMM reaction described above, reverse-phase HPLC 

was employed to analyse and purify the resulting MC2(TMM). To identify the 

new peak (for the MC2(TMM)), MC2-SH was first run by HPLC under the same 

mobile phase. The HPLC profile and the main-peak UV absorption spectra are 

shown in Figure 5.3. The retention time of MC2-SH (the main peak) was found 

to be ~10.4 min, which was further confirmed by its UV absorption at ~ 260 nm, 

the characteristic peak of DNA absorption. In the MC2-SH HPLC profile, two tiny 

peaks with retention times of 13.4 and 18.9 mins were also found. In contrast, 

the HPLC profile of TMM showed no absorption peak at ~260 nm (results not 

shown here).  

 

Figure 5.3. HPLC profile of MC2-SH (a) and UV spectrum of Peak at 10.4 min (b). 

 

The reaction mixture was run by HPLC to confirm if the reaction took place, 

identify the new MC2(TMM) peak and calculate its synthetic yield. Figure 5.4 

shows the HPLC profile and UV absorption spectra of the relevant peaks. 

Compared to the HPLC profiles of MC2-SH and TMM, it can be seen that peaks 

3 (10.8 min), 6 (13.5 min) & 13 (19 min) are from the MC2-SH with peak 3 

intensity (MC2-SH) being greatly reduced. Peaks 11 & 12, which do not have 

DNA characteristic absorptions, are from TMM. Two new peaks appeared (7 & 

8), with retention times of 14.3 and 15.1 mins respectively. Both new peaks are 
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the main peaks in the HPLC profile, and their UV absorption spectra have DNA 

characteristic peaks. The observation of a greatly reduced MC2-SH peak, 

together with the appearance of two new main peaks with strong absorption at 

260 nm, suggests that the MC2-SH was conjugated to TMM as expected. 

 

 

 

Figure 5.4. HPLC profile of reaction mixture (a) and the corresponding UV absorption 

spectra of peaks at 15.1 (b), 10.9 (c), 14.3 (d), 16.8 (e) and 18.1 (f) mins, respectively. 

 

As the relative area of peak 8 is nearly 7 times greater than that of peak 7, it is 

highly likely that peak 8 is the MC2(TMM) peak and peak 7 may be a side 
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product. Most PEGylation reagents are heterogeneous mixtures containing 

PEGs of different chain lengths. Although the TMM used here is a so-called 

homogeneous reagent, it may  not be 100% pure, which may lead to the 

formation of side products. With the above assumptions we can estimate that 

over 92% of the MC2-SH has been modified, and the synthetic yield for the 

MC2(TMM) is approximately 80%, calculated from the relative areas of peaks 3, 

7 & 8. The high yield obtained here confirms an efficient reaction between the 

maleimide and free sulfhydryl groups. 

 

 

 

Figure 5.5. Profile of semi-preparative HPLC.  

 

To further confirm that peak 8 is the correct MC2(TMM) peak, HPLC purification 

was performed using the same method as in the HPLC analysis above to get 

pure MC2(TMM) for mass spectrometry measurement. Due to the small amount 

of reaction mixture ( 50 nmol DNA in 500 μL), the same analysis column was 

also used for the DNA purification. The maximum injection amount for this HPLC 

column is 200 μL, so only three injections were required for the purification 

process. Figure 5.5 shows the HPLC purification profile, which exactly matches 

the HPLC analysis profile in Figure 5.4. The major peak with a retention time of 

around 15 min was collected. The peak intensity of a 200-μL injection is much 
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higher than the detection threshold, so the part of the peak with higher intensity 

could not be displayed properly in the profile, though this did not affect the 

purification process. 

 

After collection, the fraction was freeze-dried and then dissolved in a small 

amount of pure water. 10 μL of this solution was injected into HPLC to evaluate 

its purity (see Figure 5.6) and only one main peak was found, with a relative 

area of > 95%, indicating that purification was successful. One may note that the 

retention time of the peak varies by ± 0.5 min, possibly caused by differences in 

the batches of liquid phase. 

 

Figure 5.6. HPLC profile of purified MC2(TMM) (a) and corresponding UV absorption 

spectrum of the main peak (b). 

 

5.2.1.3 Identification of MC2(TMM) 

The purified fraction was then sent out for mass measurement, which was 

performed by Dr. Min Yang at University College London using MALDI-TOF MS; 

the result is shown in Figure 5.7. The main mass peak of the collected fraction is 

10086 (10041+2Na-H), exactly matching what is expected for the MC2(TMM) 

(10041), as the molecular weights of MC2-SH and TMM are 7681 and 2360 

respectively. No mass should be lost during the Michael reaction, which forms a 

thioether bond between the maleimide and thiol groups. The MALDI-MS 
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measurement  further confirmed that the HPLC analysis results and the 

MC2(TMM) had been successfully prepared with a high yield, through the 

efficient one-step reaction between MC2-SH and TMM. 

 

 
 

Figure 5.7. MALDI-TOF MS spectrum of MC2(TMM). 

 

5.2.2 Assembly of PEG-modified GNP-DNA systems 

 

The GNP-DNA systems were modified by  single-chain PEGs of different 

molecular weights (MWs) and a three-chain PEG (MC2(TMM)) as prepared 

above (Figure 5.8). Here we used MC2(PEG250) (PEG MW: 250) bought from 

IBA, and MC2(PEG750) (PEG MW: 750) synthesized by our collaborators at 

Tsinghua University in China, to assemble the single-chain PEGylated 

GNP-DNA system; MC2(TMM) was used to make the three-chain PEGylated 

GNP-DNA system. The assembly procedures were exactly the same as for 

those without PEG-modification. 

 



114 

 

 
Figure 5.8. Evolution of GNP-dsDNA system by PEGylation. 

 

Here, GNP-M1 conjugates with average M1 loadings of 60, 85 and 110 strands 

per GNP were obtained by incubating the GNP with different molar ratios of M1 

at 1:100, 1:200 and 1:300, respectively. They were then hybridized with equal 

molars of MC2 or MC2(PEG)s (M1:MC2 molar ratio = 1:1) to assemble 

GNP-M1/MC2, GNP-M1/MC2(PEG250), GNP-M1/MC2(PEG750) and 

GNP-M1/MC2(TMM). These systems with their different DNA surface 

coverages and PEG modifications were then tested in turn for stability. 

 

5.2.3 Effects of PEGylation on GNP-DNA system stability 

5.2.3.1 GNP-M1/MC2 systems in a serum-containing cell culture 

One way to study the PEGylation effect on GNP-DNA system stability is to 

monitor their hydrodynamic sizes, because the size of a nanocarrier is critical for 

its cancer targeting ability via the EPR effect. The ideal size of a targeted NDDS 

should be between the renal clearance threshold (~8 nm) [205, 268] and the 

average gap of leaky blood vessels in tumours (~100 nm)[269]. These  sizes 
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will also minimise capture by fixed macrophages in the liver and spleen[270]. 

Also, to avoid being recognized and cleared by the body during systemic 

circulation before accumulating in the tumour region[271, 272], drug carriers 

should not interact with blood components (i.e. not change size),  

 

Here dynamic light scattering was used to measure the hydrodynamic 

diameters (HDs) of the GNP-DNA systems and the number of M1 strands 

attached to each GNP of ~110. The HDs of the systems were monitored not only 

in MES buffer but also in cell culture media (DMEM) containing 10% Fetal 

Bovine Serum (FBS), to evaluate possible in vivo interactions between the 

serum proteins and the NDDSs which may threaten the NDDSs’ survival in the 

circulation. 

 

Figure 5.9. (a) Comparison of the hydrodynamic diameters of GNP-DNA systems in MES 

buffer and cell culture media. (b) Schematics of the interactions between the GNP-DNA 

systems and positively charged serum proteins: serum proteins can adsorb onto 

negatively charged GNP-DNA conjugate via electrostatic attractions, whereas the PEG 

chains on the PEGylated GNP-DNA conjugate can prevent serum protein adsorption. 

 

The HD of the GNP-M1/MC2 system without PEG modification was found to be 

~50 nm in an MES buffer, while those of the GNP-M1/MC2 systems with various 

PEG-modifications were all bigger, (HDs for GNP-M1/MC2(PEG250), 

GNP-M1/MC2(PEG750) and GNP-M1/MC2(TMM) were ~55, ~61 and ~70 nm, 
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respectively), due to the extra lengths of the hydrophilic PEG grafts (Figure 5.9). 

However, the HD of GNP-M1/MC2 in DMEM was found to have increased 

significantly, by ~30 nm to ~80 nm, indicating significant adsorption of serum 

proteins. This result is predictable due to the negative-charge nature of the 

GNP-M1/MC2 system, where positively charged serum proteins (or protein 

domains) can adsorb non-specifically through electrostatic interactions (Figure 

5.9b), and similar results have been reported in literature by others[273, 274]. 

 

In contrast, HDs of the PEG-modified GNP-M1/MC2 systems in cell culture 

media were very similar to those found in MES buffer, showing little change. For 

example, the HD of GNP-M1/MC2(PEG250) increased by approximately 5 nm, 

while those for GNP-M1/MC2(PEG750) and GNP-M1/MC2(TMM) nanocarriers 

showed effectively no change, suggesting little or no non-specific adsorption of 

serum proteins to the PEG-modified carriers. PEGylation is a well-established 

strategy for resisting non-specific adsorption of biomolecules on surfaces, and 

has been widely used in drug delivery and biomedical applications to improve 

pharmacokinetics and to reduce non-specific uptake [275, 276]. Here we show 

for the first time that PEGylation can be successfully applied to strongly 

negative-charged polyvalent GNP-DNA conjugates. In this case, PEGs were 

covalently attached to 5’-ends of MC2 which were then hybridized with GNP-M1, 

to form GNP-M1/MC2 covered by highly flexible PEG chains. As the number of 

M1/MC2 strands on each 13 nm GNP was quite high (ca.110), where each MC2 

carried one (or three) PEG chains, these dense, flexible, and hydrophilic PEGs 

on the nanocarrier surface were able to function as an effective shield, masking 

the negative charges of DNAs (Figure 5.9b) and effectively reducing their 

electrostatic interaction with positively-charged components in the serum.[265, 

277, 278] As a result, in cell culture media the sizes of these carriers did not 

show significant changes. GNP-M1/MC2(PEG750) showed much better 



117 

 

resistance to non-specific adsorption than GNP-M1/MC2(PEG250). This is due 

to its longer chain (with ~18 EG repeating units), which has better 

charge-masking effects than the PEG250 chain (with 6 EG units) [279, 280]. 

The charge-masking effect can be further improved by introducing a branched 

three-chain PEG (in GNP-M1/MC2(TMM)), to increase PEG density on the 

carrier surface and thus improve protein adsorption resistance [281, 282]. This 

was proved to be true in our experiments where the GNP-M1/MC2(TMM) 

showed effectively no size change in serum containing media.      

 

5.2.3.2 GNP-M1/MC2 systems’ resistance to DNase I digestion  

 

Besides the ability to resist non-specific adsorption of proteins, an effective drug 

nanocarrier should also have sufficient stability in vivo against nuclease 

degradation once it enters the body. This has been a significant challenge for 

DNA based drug carriers because of the presence of numerous nucleases in 

vivo that can degrade the carrier. The Mirkin group has reported that dense DNA 

packing on the GNP-DNA conjugate can improve the resistance of DNA to 

nuclease degradation by ~ 3 times.  Despite such an improvement in stability, it 

may still not be able to satisfy the requirements of an effective drug nanocarrier 

in vivo.  

 

To investigate whether the stability of GNP-DNA systems can be further 

improved by PEGylation and hence have potential for in vivo applications, I 

have evaluated the PEG-modification effects on GNP-DNA stability against 

nuclease degradation. Here the experiment was designed after referring to the 

literature[206], and the GNP-DNA system was treated with an enzyme, 

deoxyribonuclease I (DNase I). A different approach was used to monitor the 

DNA digestion process, using a fluorescent DNA-binding dye, YO-PRO-1 
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(EX/(EM: 491/509 nm), for a readout signal, instead of a covalently attached 

fluorescein on the complementary DNA. The DNase I digestion process was 

followed by monitoring YO-PRO-1 fluorescence with fluorescence spectroscopy.  

 

The advantages of using YO-PRO-1 as a readout signal are as follows: (1) 

YO-PRO-1 binds strongly with dsDNA by intercalation, just like DOX. Because 

the GNP-DNA system under development here is to be an anticancer NDDS, 

based on the intercalation of certain anticancer drugs (such as anthracycline) 

into DNAs for drug loading, the stability of GNP-dsDNA-YO-PRO-1 against 

nuclease degradation should be similar to those of GNP-DNA systems carrying 

anticancer drugs. (2) Unlike the covalently fluorescein-labelled DNA used in the 

literature, where each DNA strand contained just one fluorescence label, 

multiple YO-PRO-1 molecules can bind to each dsDNA, allowing a stronger 

fluorescence readout signal. Furthermore, unlike DOX which selectively binds to 

GC pairs of the DNA[135], YO-PRO-1 intercalation takes place throughout the 

dsDNA structure and does not depend on GC content[283]. So the change in 

YO-PRO-1 fluorescence intensity should present a much better reflection of the 

dsDNA degradation process by DNase I than those relying on covalent 

fluorescein labelling and/or DOX intercalation. Moreover, YO-PRO-1 by itself is 

effectively non-fluorescent, and becomes strongly fluorescent only upon dsDNA 

binding, allowing unambiguous differentiation between DNA-bound and free 

YO-PRO-1 (after DNase digestion). 



119 

 

0 50 100 150

0.0

0.3

0.6

0.9

 

 

 GNP-M1/MC2(TMM)

 M1/MC2

 GNP-M1/MC2

 GNP-M1/MC2(PEG250)

 GNP-M1/MC2(PEG750)

F
lu

o
re

s
c
e

n
c
e

(N
o

rm
a

lis
e

d
)

Time (min)
 

Figure 5.10. Comparison of the degradation rates of the dsDNA and GNP-dsDNA systems 

by DNase I via time-dependent fluorescence changes.  

 

The following samples were mixed with YO-PRO-1 with a molar ratio of M1/MC2 

to YO-PRO-1 of 1:5 : dsDNA only (M1/MC2), GNP-M1/MC2, and various 

PEGylated GNP-M1/MC2 systems all of which have the same final M1/MC2 

concentration (80 nM) and the same DNA loading for all GNP-DNA conjugates 

(85 strands of M1 per GNP),. The fluorescence changes of YO-PRO-1 with 

DNase I were monitored for 3 h and the normalised results are shown in Figure 

5.10. Here the initial rate of the DNase I degradation reaction for each system 

was obtained from the slope of the normalised curve of the linear range (within 

the first 30 mins), and the results are given in Table 5.1. 

 

Table 5.1. Comparison of initial degradation reaction velocity (min-1) over the first 30 

min derived from Figure. 5.10. 

Carriers Initial degradation reaction velocity (min-1) 

M1/MC2 3.03% ±  0.03% 

GNP-M1/MC2 1.13% ±  0.12% 

GNP-M1/MC2(PEG250) 0.75% ±  0.08% 

GNP-M1/MC2(PEG750) 0.73% ±  0.04% 

GNP-M1/MC2(PEG12)3 0.32% ±  0.06% 
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From Figure 5.10 and Table 5.1 it can be seen that the dsDNA on its own 

(M1/MC2) was digested very rapidly with an initial degradation rate of 3.03% 

min-1, and the whole degradation process was complete within 50 mins. 

Unsurprisingly, once the M1/MC2 was conjugated to GNP the degradation 

process was significantly slower; it did not complete even after 3 h with an initial 

velocity of 1.13% min-1, ~ three times slower than the dsDNA alone. This result 

is consistent with that of the literature[206], which reported similar enhanced 

stability against enzyme degradation for GNP-DNA conjugates. This is probably 

due to the strongly negative-charged surface of the GNP-DNA conjugate, 

resulting in a high local Na+ concentration which can inhibit the activity of DNase 

I and other relevant nucleases [38]. In fact, this is the proposed mechanism for 

the improved DNA stability against nuclease degradation by attaching DNA to 

GNP[206]. 

 

All PEG-modified systems were found to exhibit slower degradation processes 

than the parent GNP-M1/MC2 without PEGylation. The single PEG chain 

modified systems, GNP-M1/MC2(PEG250) and GNP-M1/MC2(PEG750) 

showed very similar initial degradation rates, approximately 0.7% min-1. The 

slowest degradation velocity, at around 0.32% min-1, was obtained for 

GNP-M1/MC2(TMM), the three-chain PEG-modified system. This is > two times 

slower than the single-chain PEG-modified systems, > three times slower than 

GNP-M1/MC2 without PEGylation, and nearly ten times slower than dsDNA on 

its own. Furthermore, the degradation process of GNP-M1/MC2(TMM) had not 

been completed after 3 h of DNase I incubation, as shown in Figure 5.10, 

indicating that the branched, multiple PEG chain-modified GNP-M1/MC2(TMM) 

system can provide much higher resistance to enzyme degradation.  
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Figure 5.11. Schematics of dsDNA (a) and PEG-modified GNP-DNA systems (b) under 

degradation by DNase I. 

 

The mechanism of a PEGylated GNP-DNA system for enhanced resistance to 

enzymatic degradation is likely to combine both steric hindrance and high local 

Na+ concentration, thereby inhibiting enzymatic activity [38]. The former is due 

to the existence of a dense PEG ‘shield’ (Figure 5.11), known as a 

‘conformational cloud’.[255, 276] The high flexibility of PEG chains leads to a 

huge number of possible conformations which constantly switch from one to 

another. This swiftly-changing conformational cloud can significantly reduce 

interactions of PEGylated objects with blood components, including enzymes. 

At the same time, the strong negative charge of densely-packed DNAs beneath 

the PEG conformational cloud can still induce high local Na+ concentrations to 

inhibit the activity of enzymes that have penetrated the PEG shield. Therefore, 

all PEG-modified GNP-DNA systems can be expected to show slower 

enzymatic degradation than non-PEGylated systems. Among these is the 

GNP-M1/MC2(TMM), which is modified by three-PEG chains and hence has a 

much higher PEG density on the surface. In addition, each branched PEG 

consists of 40 EG units, far more than those of the single-chain PEG-modified 

systems (e.g. 6 and 18 EG units per PEG for GNP-M1/MC2(PEG250) and 

GNP-M1/MC2(PEG750), respectively) Therefore a branched PEG-modified 

system with the same DNA coverage can generate a tighter and more efficient 
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‘conformational cloud’ to shield it from interacting with DNase I, and hence a 

greatly reduced rate of enzymatic degradation, as observed above[247, 249, 

281, 284]. 
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Figure 5.12. Comparison of initial degradation reaction rates (min-1) for non-PEGylated 

GNP-M1/MC2 at different DNA strand densities per GNP (60, 85 and 110). 

 

As system stability against DNase I degradation can be improved both by 

attaching DNA to GNP and by PEG modifications, it is expected that the 

combination of higher DNA density on GNP surface and a longer-branched PEG 

‘conformational cloud’ may result in higher stability for the GNP-M1/MC2(PEG) 

system. To test whether this is true, two further experiments were designed. 

 

First, a series of non-PEGylated GNP-M1/MC2 systems, with M1 loadings of 60, 

85 and 110 strands per GNP, were used to investigate how DNA density affects 

its stability as reported by the Mirkin Group[38]. Indeed, the higher the DNA 

loading per GNP, the slower the degradation rate that was obtained (see Figure 

5.12). This accords well with the literature[206], as higher DNA density causes a 

more unfavourable high local Na+ concentration,  more effectively inhibiting 

DNase activity. Compared to systems with DNA loadings of 60 and 85 strands 
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per GNP, the initial degradation rate for the system with 110 strands per GNP 

was 36% and 16% slower, respectively. A general trend of decreasing rates of 

degradation was found as DNA density rose from 60 to 110, and with higher 

density, the decreasing amplitude became smaller (Figure 5.12).  

 

Then the same experimental procedures was performed using the three-chain 

PEG-modified GNP-M1/MC2(TMM), with DNA densities of 85 and 110, against   

DNase I degradation. The normalised fluorescence response curves are shown 

in Figure 5.13, where initial degradation rates are 0.32%±0.06% and 0.25%±

0.05% min-1 respectively, confirming that the DNA degradation process was 

further slowed by increased DNA loading. The degradation rate drop here is 

22%, which is greater than that observed without PEGylation (16%), confirming 

that the improved stability of PEGylated GNP-DNA systems is due to the 

synergistic effects of DNA density and PEGylation. 

 

0 50 100 150

0.0

0.2

0.4

 

 

 80

 110

F
lu

o
re

s
c
e
n
c
e
 (

n
o
rm

a
liz

e
d
)

Time (min)

 

Figure 5.13. Comparison of the degradation rates of GNP-M1/MC2(TMM)  with DNA 

strand densities of 85 and 110 per GNP.  
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5.2.4 GNP-M1/MC2(TMM) system for PI delivery 

 

 

Figure 5.14. Confocal phase contrast (left), fluorescence (middle) and merged 

optical/fluorescence (right) images of HeLa cells after incubation with 

GNP-M1/MC2(TMM)-PI for 3 h at 37 °C. 

 

The three-chain PEG-modified system has shown better resistance to serum 

protein adsorption and DNase I degradation, indicating that the 

GNP-M1/MC2(TMM) system may have strong potential as a promising platform 

for drug delivery. Therefore, a further test was performed employing 

GNP-M1/MC2(TMM) to deliver a membrane-impermeable agent, Propidium 

Iodide (PI), into HeLa cells. After 3 h incubation with the cells, PI fluorescence 

was found clearly inside the cells through confocal fluorescence imaging (see 

Figure 5.14). This confirms that the GNP-M1/MC2(TMM) system can deliver 

intercalating agents into the cells just as well as the single-chain PEGylated 

system, as described in Chapter 4. In addition, GNP-M1/MC2(TMM)-PI system 
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showed greater stability during storage in vitro, even with excess PI (more free 

PI exists in the system), where no aggregation was observed. This is most 

probably because the long, hydrophilic branched PEG-chains produced by 

TMM modification offer greatly enhanced water-solubility and steric hindrance 

against aggregation. Therefore its stability is provided by not only electrostatic 

repulsion (true for non-PEGylated GNP-DNA systems) but also by steric 

hindrance due to PEGylation. . 

 

 

5.3 Conclusion 

 

A three-chain PEG-modified DNA, MC2(TMM), was successfully prepared 

through a one-step reaction, then purified by HPLC and identified by 

MALDI-TOF Mass Spectrometry. Hybridization of PEGylated MC2s with the 

GNP-M1 conjugate produced a series of GNP-M1/MC2(PEG) systems covered 

with a PEG ‘shield’ on their surface, which can efficiently mask the negative 

charges of DNA, preventing non-specific adsorption of positively charged serum 

proteins and greatly reducing nuclease degradation. Compared to unmodified 

systems, GNP-M1/MC2(PEG) systems showed little or no obvious change in 

size when mixed with cell culture media containing 10% FBS, and much slower 

degradation rates by DNase I (up to 10 fold). The stability of a 

GNP-M1/MC2(PEG) system can be further improved by prolonging the PEG 

length and using branched PEGs. Among all PEG-modified systems studied in 

the project, the branched three-chain PEG-modified system (GNP-M1/MC2 

(TMM)) appears to be the most promising drug delivery platform and has great 

potential for in vivo applications. 
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6 Chapter 6: Preparation, characterisation and cellular study of DOX 

dimer 

DOX, an anthracycline antibiotic, is one of the most widely-used active 

chemotherapeutic agents with a wide spectrum of activity against different types 

of cancer[175, 176]. However it has serious side effects, particularly irreversible 

cardiac damage and inducement of multi-drug resistance (MDR), that can limit 

its clinical applications[180, 181, 285]. In order to improve its 

chemotherapeutical index two strategies have been exploited, including 

development of new analogues and targeted NDDSs [286]. Analogues of DOX 

based on the same main chemical structure, such as chemical modifications of 

3’-N-amino group[287, 288] and 4’-hydroxy group[180, 289] and the synthesis of 

DOX dimers[290-292], were widely studied, with some showing greater 

anti-tumour efficacy[287, 293, 294] and/or less cardiotoxicity[295, 296]. 

 

A targeted NDDS, GNP-dsDNA-DOX, can exploit the EPR effect to target 

tumour tissue and reduce side effects without DOX modification. However, as 

DOX was carried by the GNP-dsDNA nanocarrier via intercalation, and DNA 

intercalation is considered one of main mechanisms for anticancer activity of 

anthracyclines in vivo[180], a covalently linked DOX dimer was also synthesized 

with the expectation that it may improve its DNA binding affinity to favour DOX 

(DOX dimer) loading, which in turn may lead to even higher anti-tumour acitivity 

in vivo.  

 

6.1 Materials and Methods 

6.1.1 Materials 

Bis-N-succinimidyl-(pentaethylene glycol) ester (BS(PEG)5) was purchased 
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from Thermo Scientific. Triethylamine and isopropanol were purchased from 

Fisher Scientific. Formic acid was purchased from Sigma-Aldrich. 

6.1.2 Preparation of DOX dimer 

5 mg DOX (8.6 μmol) dissolved in 5 ml methanol was mixed with 16.5 μL of 

BS(PEG)5 DMSO solution (208.6 mM) and 1.3 μL of TEA for reaction overnight 

in a 4 ℃ fridge (molar ratio of DOX to BS(PEG)5 = 2.5:1 and DOX to TEA  = 

1:1.1). 

6.1.3 Analysis of DOX dimer 

After reaction the reaction mixture, together with the two reactants (DOX and 

BS(PEG)5 ), were analysed by an HPLC-MS system. Their electrospray (ES+) 

ionisation mass spectra were obtained on a Bruker HCT Ultra mass 

spectrometer after separation by HPLC using a C18 column with mobile phase 

consisting of water (+0.1% formic acid) and acetonitrile (+0.1% formic acid). The 

process was performed within 3 min using a gradient of 5-95% B and a flow rate 

of 1.5 mL/min. 

6.1.4 Purification of DOX dimer 

6.1.4.1 Column chromatography 

0.5 mL of the reaction mixture containing DOX dimer was loaded onto a silica 

gel column, followed by addition of methanol (eluting solvent). When the 

coloured components started to elute, equal-sized (3 mL) fractions were 

collected and labelled sequentially for HPLC-MS analysis, and the fractions 

containing the peak corresponding to maximum mass-to-charge ratio (max. m/z) 

of 1411 were combined. 

6.1.4.2 Semi-prep HPLC-MS 

The reaction mixture was injected into an Agilent 1260 Mass Directed 
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Preparative HPLC using the same mobile phase and gradient as DOX dimer 

analysis above (flow rate: 5 mL/min), and the fraction containing the peak with 

1411 (m/z) was collected automatically, freeze dried on a Virtis Benchtop K 

freeze dryer, and then injected into the Bruker HCT Ultra mass spectrometer to 

determine the purity of the DOX dimer. 

6.1.4.3  ‘Solvent-rinse’ method 

1 mL of DOX dimer methanol solution was evaporated under reduced pressure, 

washed by 1 mL of isopropanol once and 250 μL of water three times, then 

dissolved in 5 mL of water. As its solubility in water (calculated via the 

Lambert-Beer law) is low, all the DOX dimer was finally dissolved in DMSO. The 

solution was monitored at each step by a Bruker HCT Ultra mass spectrometer. 

6.1.5 Stability of DOX dimer 

A saturated aqueous solution of DOX dimer was stored in a fridge at 4℃  for 

two weeks, and then HPLC-MS was employed to monitor any change in DOX 

dimer profiles by comparing the number of peaks and their relative areas. 

6.1.6 UV-vis and fluorescence spectroscopy 

UV-vis absorption spectra of DOX (38 μM) and DOX dimer (16 μM) were 

recorded on the Varian Cary 50 bio UV-visible spectrophotometer in the range 

350-650 nm. Fluorescence excitation spectra (emission wavelength: 590 nm) 

and emission spectra (excitation wavelength: 480 nm) of DOX (38 μM) and 

DOX dimer (16 μM) were recorded on the Spex Fluoro Max-3 

Spectrofluorometer. 

6.1.7 Titration of DOX dimer with dsDNA M1/MC2 

90 µL of dsDNA M1/MC2 (16.67µM) in MES buffer were titrated into DOX dimer 

(16 µM, 500 µL) in an MES buffer, and the resulting DOX dimer fluorescence 
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spectra were recorded. 

6.1.8 Confocal laser scanning microscopy 

HeLa cells were cultured overnight on collagen-pretreated coverslips in a 

24-well plate. They were incubated with DOX dimer (5 µM) for 3 h at 37°C and 

then the supernatant medium was removed and the cells were washed three 

times with PBS. The treated HeLa cells were then imaged using a Leica SP5 

confocal laser scanning microscope with excitation wavelength of 488 nm.  

6.1.9 MTT assay (DOX dimer and DOX) 

HeLa cells were treated using free DOX and DOX dimer in different 

concentrations (0.75, 1.5, 3, 4.5 and 6 µM) in full DMEM. The samples were 

removed after 18 h of incubation at 37 °C. Treated cells were washed with PBS 

and 100 μL of MTT (0.5 mg/mL in Hank’s buffer) was added to the cells at 37 °C 

for 4 h. The MTT was then removed and 200 μL DMSO was added to each well. 

The plate was incubated at 37 °C for 2 h to dissolve the formazan, after which 

absorbance was measured at 550 nm using a microplate reader. The results 

were expressed in percentages related to a control of cells not treated with 

either sample.  

 

6.2 Results and Discussion 

6.2.1 Synthesis of DOX dimer 

DOX dimer was synthesized in a one-step reaction by employing a homo- 

bifunctional crosslinker, BS(PEG)5, which contains two N-hydroxysuccinimide 

(NHS) esters, to bridge two DOX monomers by forming covalent amide bonds 

between NHS-ester active carbonyl groups and the primary amine group of 

DOX (see Figure 6.1). With PEG as a flexible spacer arm, the use of BS(PEG)5 

is expected to provide specific advantages such as maintained (or increased) 
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solubility and non-immunogenic response to the spacer itself. It is further 

anticipated that, owing to the high flexibility of the PEG chain (5 repeated units), 

the PEG spacer arm should have minimum effect on DOX intercalation, as the 

length of PEG spacer arm (2.17 nm, more than 6 DNA bases long) allows the 

two conjugated DOX molecules enough ‘space’ for both intercalations. Also, 

after intercalation the PEG spacer arm can improve the stability of 

GNP-dsDNA-DOX dimer by reducing its tendency to aggregate during storage 

in vitro, and by exerting the ‘stealth effect’ in vivo to prolong circulation time. 

 

 

 

Figure 6.1. Schematic procedure of DOX dimer preparation. 

 

As DOX exists in the form of the hydrochloride salt, the one-step conjugation 

was performed in the presence of TEA for pH adjustment to favour the formation 

of amide bonds. Also excess DOX was used for conjugation (the mixing molar 

ratio of DOX to BS(PEG)5 = 2.5:1) to ensure that both NHS-ester groups within 

one BS(PEG)5 molecule were involved in conjugation with two DOX molecules 

to form a DOX dimer (DOX-PEG-DOX) rather than the other possible 

by-product i.e. DOX-PEG. 
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6.2.2 HPLC-MS analysis 

6.2.2.1 HPLC-MS analysis of the reactants 

 

 

Figure 6.2. Representation of HPLC-MS profiles of DOX. (a) HPLC profiles detected by the 

mass spectrometer and a UV detector at ranges of 190-650 nm and at 490 nm, (from top 

to bottom); (b) mass spectrum of peak 1 of the HPLC profile under mass spectral 

detection (m/z: 544).  

 

The conjugation reaction was monitored by HPLC-MS, and Figures 6.2 & 6.3 

show HPLC-MS profiles of the reactants (DOX and BS(PEG)5). It can be seen 

that only one peak at 1.4 min was detected from DOX by both MS detector and 

UV-vis detector and its max. m/z was 544. This corresponded to the mass of 

DOX (543) with adduction of H, which together with the UV-vis absorption peak 

under the detection wavelength of 490 nm confirms that the peak was from DOX 

with a high purity of 92%.  

 

However, more than 10 peaks were detected from BS(PEG)5 by the MS 
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detector (Figure 6.3a), with peaks 5 & 6 at around 1.5 min corresponding to the 

mass of BS(PEG)5 (532) with adduction of 23 (Na) (Figure 6.3b). The max. m/z 

of the other peaks in Figure 6.3a (Table 6.1) did not match any mass of 

BS(PEG)n (n = 1-17) (Table 6.2). These results suggest that BS(PEG)5 was not 

a heterogeneous mixture of different PEG chain lengths and might contain other 

chemical species. 

 

A UV-vis absorption peak at 1.5 min, corresponding to peaks 5 & 6 in the 

HPLC-MS profile, was also detected in the range of 190-650 nm but not under 

the detection wavelength of 490 nm, and was possibly from the NHS group[297, 

298]. This would not affect the detection of DOX dimer by UV-vis detector under 

the detection wavelength of 490 nm. 

 

 

Figure 6.3. Representation of HPLC-MS profiles of BS(PEG)5. (a) HPLC profiles detected 

by mass spectrometer and UV detector under the range of 190-650 nm and at 490 nm, 

respectively from top to bottom; (b) mass spectrum of peak 6 of the HPLC profile under 

mass spectral detection (max. m/z: 555). 
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Table 6.1. Maximum m/zs of each peak of the HPLC profile of BS(PEG)5 in Figure 6.3. 

 

 

Table 6.2. Mass of BS (PEG)n (or with adduction of Na or H) (n=1-17). 

 

n of BS (PEG)n Mass of BS 

(PEG)n 

Mass + 23 

(Na) 

Mass + 1 (H) 

1 356 379 357 

2 400 423 401 

3 444 467 445 

4 488 511 489 

5 532 555 533 

6 576 599 577 

7 620 643 621 

8 664 687 665 

9 708 731 709 

10 752 775 753 

11 796 819 797 

12 840 863 841 

13 884 907 885 

14 928 951 929 

15 972 995 973 

16 1016 1039 1017 

17 1060 1083 1061 

6.2.2.2 HPLC-MS analysis of DOX dimer 

The HPLC-MS profile of the reaction mixture (Figure 6.4) also shows that more 

than 10 peaks were detected, probably due to the impurity of BS(PEG)5, and a 

UV-vis absorption peak at around 1.6 min, corresponding to peak 5 in HPLC-MS 

profile, was detected under the detection wavelength of 490 nm. This suggests 
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that peak 5 at 1.6 min was from the DOX-related product, since DOX can be 

excluded according to the result in Figure 6.2, in which DOX was eluted at 

around 1.4 min under the same HPLC condition. From the MS spectrum of peak 

5, which displayed a max. m/z of 1411 (Figure 6.4b), it can be concluded that 

peak 5 at 1.6 min corresponds exactly to the expected mass of DOX dimer (MW: 

1388) with adduction of 23 (Na), and that the preparation of DOX dimer using 

BS(PEG)5 as the crosslinker was successfully performed. 

 

 

 

Figure 6.4. Representation of HPLC-MS profiles of the reaction mixture. (a) HPLC profiles 

detected by mass spectrometer and UV detector in the range of 190-650 nm and at 490 

nm, respectively from top to bottom; (b) mass spectrum of peak 5 of the HPLC profile 

under mass spectral detection (m/z: 1411). 

6.2.3 DOX dimer purification 

Three different methods were tried for DOX dimer purification : silica gel column 

chromatography (CC), semi-preparative HPLC-MS purification and 

‘solvent-rinse’. 
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6.2.3.1 CC and Semi-preparative HPLC-MS purification 

 

 

 

Figure 6.5. Representation of HPLC-MS profiles of the reaction mixture after purification 

by CC. (a) HPLC profile detected by mass spectrometer; (b) mass spectrum of peak 2 of 

the HPLC profile (m/z: 1411). 

 

Figure 6.5 shows HPLC-MS results of the fraction with the peak of DOX dimer 

(peak 2 at 1.6 min with max. m/z of 1411) purified by CC. Besides the dimer 

peak, two other main peaks (3 & 4) were also detected and remained in the 

section. By calculating the relative area of each peak, the purity of DOX dimer 

after CC purification was estimated to be around 30%, revealing that the CC 

method was not adequate for DOX dimer purification. 

 

Compared to CC, semi-preparative HPLC-MS shows higher detection sensitivity 

and resolution, and the fraction containing DOX dimer (max. m/z: 1411) can also 

be collected automatically. From Figure 6.6 it was observed that after the 

HPLC-MS purification the fraction with a single main peak of DOX dimer was 

still hardly achieved. Because of the existence of other peaks, the purity of DOX 

dimer was calculated as being only approximately 33%, which was as inefficient 
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as the CC method.  

 

 

 

 

 

Figure 6.6. Representation of HPLC-MS profiles of the reaction mixture after purification 

by semi-preparative HPLC-MS. (a) HPLC profile detected by mass spectrometer; (b) mass 

spectrum of peak 3 of the HPLC profile (m/z: 1411).  

 

Although CC and HPLC are two standard purification methods, they appeared 

not to be suitable for DOX dimer. This is probably because so many peaks were 

detected by the highly-sensitive MS detector in both BS(PEG)5 and the reaction 

mixture, and besides, it is difficult to find an optimum mobile phase for achieving 

ideal resolution (the degree of separation between two chromatographic peaks) 

for DOX dimer purification. This resulted in coexistence of other peaks 

(chemical species) after CC or semi-preparative HPLC-MS, leading to low purity 

of DOX dimer. 

6.2.3.2 Purification via solvent-rinse method 

After the conjugation reaction, a crystal was obtained from the reaction mixture 
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by evaporation, and different solvents such as propanol, water and DMSO were 

used to dissolve the crystal. By monitoring their HPLC-MS profiles, we found 

that the solubilities of DOX dimer and other species in propanol, water and 

DMSO varied highly. By exploiting the different solubilities of the mixture in a 

variety of solvents, a method using sequential rinses with propanol and water 

was established (solvent-rinse method). 

 

Compared to the HPLC-MS profile of the reaction mixture in methanol (Figure 

6.7a), peaks 3 & 4 at 1.49 and 1.54 min in the propanol rinsing solution (Figure 

6.7b) displayed much higher intensity than DOX dimer (peak 5 at 1.64 min) and 

other components, suggesting that the main species, which were dissolved in 1 

mL of propanol and discarded, corresponded to the two peaks at 1.49 and 1.54 

min. (According to the results in Figure 6.7c they were only partially removed.) 

 

During the water rinsing steps (Figure 6.7c-e), each water rinsing solution 

contained not only peaks at 1.67 min (with the highest intensity) and 1.86 min, 

but also the dimer peak (1.64 min), indicating the loss of DOX dimer as well as 

the removal of the species eluted at 1.67 and 1.86 min. But considering that the 

water volume of each rinsing step was only 250 μL, and that the main purpose 

of purification here was to get a DOX dimer with reasonably high purity for 

characterisation and cytotoxicity evaluation, a small proportion of DOX dimer 

loss was acceptable. In addition, with water rinsing, the intensities of the peaks 

with retention times earlier than 1.6 min (DOX dimer), particularly the two main 

peaks at 1.49 and 1.54 min, declined significantly and were hardly detectable in 

the third water rinsing solution, revealing that most species eluted before DOX 

dimer were dissolved and removed by both propanol and water rinsing steps.   
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Figure 6.7. Representations of HPLC-MS profiles of each step of ‘solvent-rinse’ method, 

from top to bottom: (a) methanol solution of reaction mixture; (b) propanol rinsing 

solution; (c) first water rinsing solution; (d) second water rinsing solution; (e) third water 

rinsing solution; (f) DOX dimer water solution; (g) DOX dimer DMSO solution. 
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After the rinsing steps, 5 mL of water was added to the remaining crystal and the 

HPLC-MS profiles of the water solution (Figure 6.7f) displayed only one main 

peak at 1.64 min (max. m/z: 1411), which corresponded to DOX dimer, together 

with two small peaks at 1.7 and 1.85 min, indicating that most of the species 

eluted after DOX dimer were also successfully removed by the rinsing steps and 

that the purity of DOX dimer in water was around 65%. 

 

We also found that after rinsing the crystal was only partially dissolved in 5 mL 

of water, suggesting a low solubility of DOX dimer in water. The remaining 

crystal was finally dissolved in 1 mL of DMSO, and its HPLC-MS profile (Figure 

6.7g) further confirmed that DOX dimer was purified successfully through the 

simple solvent-rinse method. By reference to the relative areas of DOX dimer 

peaks, the purity of DOX dimer dissolved in DMSO was calculated at 

approximately 86%, much higher than that dissolved in water (65%). This is 

because of the DOX dimer’s low solubility in water, leading to a calculated purity 

(65% in water) much lower than the real value. It was also noted that the 

remaining crystal was further purified, with the small proportion of other species, 

which still remained in the crystal after rinsing(1.7 and 1.85 min), being removed 

by their dissolution in 5 mL of water. 

6.2.4 Characterisation of DOX dimer and comparison with DOX 

6.2.4.1 UV-vis absorption 

Figure 6.8 shows digital images of DOX and DOX dimer dissolved in DMSO, 

and both display the same solution colour (orange-red) as they had very similar 

UV-vis absorption spectra with absorption peaks at 480 nm (Figure 6.9). This is 

understandable because the main structure of monomers in a DOX dimer 

remains identical with DOX, and the modification of primary amine groups, 
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together with the PEG linker, does not contribute to the UV-vis spectrum in the 

detection range of 350-650 nm[299, 300].  

 

 
 

Figure 6.8. Photographs of DOX and DOX dimer in DMSO. 
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Figure 6.9. UV-vis spectra of DOX (blue) and DOX dimer (red) in water. 

6.2.4.2 DOX dimer solubility in water  

Since the molar extinction coefficient of DOX is 11500 M-1·cm-1 at 480 nm[301, 

302], the extinction coefficient of DOX dimer was expected to be around 23000 

M-1·cm-1. The solubility of DOX dimer in water at room temperature was 

calculated according to absorbance (0.372) at 480 nm, which was derived from 
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the UV-visible spectra of the saturated aqueous solution of DOX dimer, 

approximately 16 μM.  

6.2.4.3 Stability of DOX dimer aqueous solution 

HPLC-MS profiles of DOX dimer aqueous solution before and after 2 weeks’ 

storage (Figure 6.10) show that no new peak was observed after storage, and 

that the relative area of DOX dimer after two weeks (77.8%), was decreased by 

1.9%, compared with that before storage (79.3%). This suggests that DOX 

dimer is relatively stable in aqueous solution at 4 ℃, and that a newly prepared 

DOX dimer solution would be acceptable for further characterisation or cellular 

study within two weeks. 

 

 

Figure 6.10. Representive HPLC-MS profiles of DOX dimer aqueous solution on day 1 (a) 

and day 14 (b) of storage at 4 oC.    

 

6.2.4.4 DOX dimer fluorescence and DNA-binding 

DOX dimer displayed a very similar fluorescence emission spectrum (excitation 

wavelength: 480 nm) to DOX, with the same emission peak observed at 590 nm 

(Figure 6.11) because the chemical structure remains largely unchanged. This 

would facilitate the subsequent observation of HeLa cells treated with DOX 
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dimer by confocal laser scanning microscopy. 
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Figure 6.11. Fluorescence excitation and emission spectra of DOX (38 μM) (a) and DOX 

dimer (16 μM) (b) aqueous solution. 

 

Since one of the main antitumour mechanisms of DOX is DNA intercalation, 

which leads to inhibition of biosynthesis[180, 303], in vitro DNA-binding 

efficiency of DOX dimer was obtained by monitoring the fluorescence quenching 

of DOX dimer with the addition of DNA (Figure 6.12) before cellular study to 

evaluate its cytotoxicity.  
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Figure 6.12. Fluorescence emission spectra of DOX dimer (16 µM, 50 µL) with the 

addition of dsDNA M1/MC2 (16.67 µM) at pH 7.4. 

 

Unfortunately, no significant fluorescence quenching was observed with dsDNA 
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M1/MC2 added to DOX dimer, and the intensity of DOX dimer with dsDNA was 

consistent with that before the addition of DNA, which seems to suggest that the 

DOX dimer did not bind into dsDNA in the same way as DOX. 

6.2.4.5 Celluar study  

Besides the unexpected DNA titration result, confocal images of HeLa cells 

treated with the DOX dimer (2.5 μM, 3 h incubation) further confirmed that DOX 

dimer did not intercalate with dsDNA (Figure 6.13). Unlike DOX, which is mostly 

localised inside the cell nuclei (see Figure 3.11 in Chapter 3), DOX dimer 

seemed only to associate with membranes of the nuclei. Also, MTT assay 

(Figure 6.14) showed that DOX dimer is non-cytotoxic to HeLa cells after 18 h 

incubation even at a high concentration (i.e. 6 μM), whereas DOX showed 

significant cytotoxicity at this concentration. 

 

 
Figure 6.13. Confocal phase contrast, fluorescence and merged optical/fluorescence 

images of HeLa cells after incubation with DOX dimer (2.5 μM) for 3 h at 37 ℃. 
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The main difference between the structures of DOX and DOX dimer is found in 

modification at the primary amino group. Since the role of the amino group in 

binding macromolecules has been reported[291, 301, 304, 305], we can 

assume that the amino group plays a key role in intercalation and that a change 

of amino group will tend to result in DOX dimer failing to intercalate in dsDNA, 

thus not causing cytotoxicity. 
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Figure 6.14. MTT assay of HeLa cell viabilities after incubation with DOX and DOX dimer 

with different concentrations for 18 h at 37 ℃. Error bars are standard deviations of 8 

samples (n=8). 

 

6.3 Conclusion 

 

A DOX dimer was successfully synthesized in one step by using a PEG 

crosslinker, BS(PEG)5, to bridge two DOX monomers via the primary amino 

groups. It was purified by a simple ‘solvent-rinse’ method with purity of 

approximately 86%, which remains relatively stable in water at 4 oC during a 

2-week period of stability evaluation. The DOX dimer displays nearly identical 
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colour, UV spectra and fluorescence spectra to the DOX monomer, as its main 

chemical structure does not change. However, both DNA titration and confocal 

fluorescence imaging results showed that DOX dimer cannot intercalate into 

DNA, probably because of the modification of the amino group, and as a result, 

the prepared DOX dimer displayed virtually no cytotoxicity. 
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7 Chapter 7: Towards multifunctional NDDSs for cancer treatment 

The use of nanometer-sized gold particles as part of the DOX delivery vehicle 

allows such NDDSs to explore the specific features of tumour architecture (EPR 

effect) and achieve passive targeting. Besides GNP-based nanocarriers, other 

inorganic nanoparticles such as magnetic nanoparticles (MNPs)[306-312] and 

gold nanorods (GNRs)[313-316] have also been employed in anticancer drug 

delivery. The advantages of using MNPs and GNRs are that not only can they 

target cancer via their nanoscale sizes[317], but their unique magnetic and 

optical properties can also diagnose and treat cancer. Thus MNPs and GNRs 

can be exploited to assemble multifunctional NDDSs for simultaneous cancer 

imaging, and more effective combined multimodal therapies[126, 318-324]. 

 

The strong magnetic properties of MNPs (e.g.superparamagnetic iron oxide 

nanoparticles (SPIO)) can generate a greater contrast between the targeting 

tissue and the background region for magnetic resonance imaging (MRI) 

through the strong effects on T1 and T2 proton relaxation times[325-327], which 

can potentially be applied for cancer imaging[195, 328-331]. Furthermore, 

MNPs can produce ‘inductive heating’ in an alternating magnetic field to destroy 

malignant cells and deliver hyperthermia cancer treatment[89, 332].  Due to 

their strong surface plasmon resonance, GNRs  have extremely high levels of 

absorption and light scattering in the near-infrared (NIR) region of 

electromagnetic frequencies (650-900 nm); this allows efficient heat generation 

and hence kills cancer via photothermal therapy. Moreover, such wavelengths 

overlap the NIR transparent window of the human body, where laser irradiation 

can penetrate tissues up to 10 cm with very little absorption by cells, so GNRs 

can also be applied for cell imaging and hyperthermia cancer treatment[90, 323, 

333, 334]. 
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In this project, MNPs and GNRs were synthesized to assemble MNP- or GNR- 

based multifunctional NDDSs. In order to facilitate the attachment of DNAs to 

MNPs, gold shells were grown on the surface of MNPs to form gold coated 

magnetic nanoparticles (Fe@Au NPs). The prepared Fe@Au- 

M1/MC2(PEG750)-DOX or GNR-M1/MC2(PEG750)-DOX can simultaneously 

achieve passive-targeting, DOX delivery, tumour diagnosis and hyperthermia 

therapy. 

7.1 Materials and Methods 

7.1.1 Materials 

FeCl3·6H2O, FeCl2·4H2O, mercaptosuccinic acid (MSA), FeSO4·7H2O, 

hexadecyltrimethyl ammonium bromide (CTAB), octane, sodium borohydride 

and poly(ethylene glycol) methyl ether thiol (PEG-SH) were purchased from 

Sigma-Aldrich. Ammonium hydroxide, hydroxylamine, AgNO3, chloroform, 

methanol and ascorbic acid were purchased from Fisher Scientific. Tetrakis 

(hydroxymethyl) phosphonium chloride (THPC) and 1-butanol were purchased 

from Acros Organics.  

7.1.2 Preparation of Fe@Au NPs 

7.1.2.1 Method 1 (citrate reduction method) 

MNPs (Fe3O4 NPs) were first prepared by the co-precipitation method[335-338]. 

Briefly, 4.3 mL of NH4OH (28%, w/w) in 50 mL water was added to a mixture of 

iron salts (2.7g FeCl3·6H2O and 1.0 g FeCl2·4H2O in 100 mL water) to adjust pH 

to 10, during which the reaction solution was darkened by the production of 

black precipitates. The reaction mixture was heated at 80°C for 30 min and then 

at 90°C for 2 h with N2 bubbled throughout the reaction. Then 2.94 g tri-sodium 

citrate dissolved in 50 mL water was added to the mixture. When the solution 
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was cooled down to room temperature, the black precipitates (MNPs) were 

separated from the supernatant using a permanent magnet, washed twice with 

water, and re-dispersed in 50 ml of water (approximately 20 mg/mL). 

 

Fe@Au NPs were then prepared by citrate reduction of HAuCl4 to grow gold on 

the surface of MNPs. 30 mg of HAuCl4 was dissolved in 100 mL of water and 

heated to boiling. A certain quantity (45 mg or 15 mg) of MNPs, prepared as 

above, were added into the reaction solution, followed by the addition of 5 mL 

tri-sodium citrate solution (0.08 M), and the solution colour changed from brown 

to burgundy within 1 min. The solution was further boiled for 15 min.  

7.1.2.2 Method 2 (Fe3O4-s-Au) 

MNPs (Fe3O4) were first prepared using the same co-precipitation method as 

Method 1, but instead of using tri-sodium citrate, 50 mL of 0.2 M MSA was 

added to the reaction solution as a stabiliser. When the solution was cooled 

down to room temperature, the MNPs were washed twice with water and 

re-dispersed in 50 mL of water (20 mg/mL). 

 

Preparation of 1.5-nm gold seeds[339, 340]: 12 µL of THPC (80% in water, w/w) 

was mixed with 1 mL of 1M KOH solution and 45 mL of de-ionised water as the 

reducing solution; 2 mL of freshly prepared 25 mM HAuCl4 was rapidly injected 

into the reducing solution under vigorous stirring to produce brown colloidal 

gold. 

 

Preparation of Fe3O4-S-Au: 60 µL of MNPs (20 mg/mL) were mixed with 6 mL of 

gold seeds overnight to form Fe3O4-S-Au, which was then washed with pure 

water under magnetic attraction and dispersed in water (3 ml).  
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Formation of gold shells: Gold shells were expected to form on the surface of 

Fe3O4-S-Au via an iterative reduction[341, 342] of HAuCl4 by hydroxylamine 

(four iterations), and this reduction reaction was first tried in the presence of 

1.5-nm GNPs before using Fe3O4-S-Au. Basically, 0.5 mL of Fe3O4-S-Au was 

first rinsed with 1 mL of 0.1 M tri-sodium citrate and re-dispersed in 0.5 mL of 

water. During each iterative reduction, 40 µL of 40 mM hydroxylamine and 40 µL 

of HAuCl4 (2.5 mM) were alternately added into 0.5 mL of GNPs or 0.5 mL of 

Fe3O4-S-Au. 

7.1.2.3 Method 3: reverse micelle method 

First the following solutions (Table 7.1) were prepared, and then solution A was 

mixed with solution B under stirring and nitrogen protection; after 1h, solution C 

was added to the mixture followed by the addition of solution D, which was then 

stirred overnight. 

 

Table 7.1. The components of the solutions. 

Solution Components 

A 1.2 mL water, 0.067 g FeSO4·7H2O, 3.0 g CTAB, 2.5 g 1-butanol, 

7.5 g Octane  

B 1.2 mL water, 0.045 g NaBH4, 3.0 g CTAB, 2.5 g 1-butanol, 7.5 g 

Octane  

C 0.9 mL water, 0.064 g HAuCl4, 1.5 g CTAB, 1.25 g 1-butanol, 5 g 

Octane  

D 0.9 mL water, 0.054 g NaBH4, 1.5 g CTAB, 1.25 g 1-butanol, 5 g 

Octane  

 

Phase transfer: the gold-coated magnetic nanoparticles were washed twice with 

a mixture of chloroform and methanol (v/v 1:1) and a mixture of methanol and 

water (1:1) respectively, and collected using a permanent magnet. The 

nanoparticles were then re-dispersed in 50 mM citrate sodium solution, 

sonicated for 30 min, separated by centrifugation (21.1 kg, 10 min) and finally 
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re-dispersed in water (25 ml). 

Magnetisation measurement (VSM): The prepared Fe@Au NPs were dried in a 

vacuum oven at 80 ℃ overnight, and measured on a MagLab vibration sample 

magnetometer (Oxford Instruments) operating at 55 Hz with an amplitude of 1.5 

mm. The sensitivity of the instrument is about 2 μemu, with a field range of up to 

9 T. The samples were measured at room temperature (298 K) at a magnetic 

field scan rate of 9.17 mT s-1. 

7.1.3 Preparation of GNRs via seed-mediated growth method 

Seed solution preparation: 1.0 mL of 0.5 mM HAuCl4 was mixed with 1mL of 0.2 

M CTAB and stirred at 25 °C. Then 0.12 mL of ice-cold 0.01 M NaBH4 was 

added, which resulted in the formation of a seed solution with a brownish yellow 

colour. The seed solution was kept under vigorous stirring at 25 °C. 

 

Growth solution: 50 mL of 0.2 M CTAB, 2.5 mL of 0.004 M AgNO3 and 50 mL of 

0.001 M HAuCl4 were mixed together and then 670 µL of 0.079 M ascorbic acid, 

a mild reducing agent, was added to the above solution, and the solution colour 

changed from yellow to colourless. 

 

CTAB-stabilised GNRs: 120 µL of seed solution was added to the growth 

solution under gentle stirring at 25-30 °C. The colour of the solution gradually 

changed from yellow to brownish-red over the course of 20 min. The growth of 

the GNR solution was monitored by UV-visible spectra. After 2 h the GNR 

solution was centrifuged (21.1 kg, 10 min) to remove the excessive CTAB, 

washed twice with water and then re-dispersed in water (12 mL). 

 

GNR-PEG conjugate: the CTAB-stabilised GNR pellet obtained above via 

centrifugation (21.1 kg, 10 min) was added into 2.5 mM PEG-SH aqueous 

solution (24 mL) and mixed overnight. It was then centrifuged to remove the 



151 

 

excessive PEG-SH, washed twice with water and re-dispersed in water (12 mL). 

7.1.4 TEM imaging of Fe@Au NPs and GNRs 

Images of Fe@Au NPs and GNRs were taken using a Philips CM200 

transmission electron microscope at 200 kV. The specimen for TEM study was 

prepared by depositing a drop of the Fe@Au NPs (or GNRs) aqueous solution 

onto a carbon-coated mesh grid, and then air-dried.  

7.1.5 Preparation of Fe@Au-M1/MC2(PEG750)-DOX and GNR-M1/MC2(PEG750) 

-DOX NDDSs 

0.75 mL Fe@Au NPs (or 1.5 mL GNR-PEG) aqueous solution were centrifuged 

(21.1 kg, 15 min) to get pellets, which were then mixed with 30 nmol DNA M1 

overnight to form Fe@Au-M1 (or GNR-M1) conjugate. The excess unattached 

M1 was removed by centrifugation (21.1 kg,15 min), and the amount of attached 

M1 was calculated by determining the unattached amount through the UV 

absorbance at 260 nm. In the presence of MES buffer, the same amount of 

complementary DNA MC2 (PEG750) as attached M1 was then hybridised to the 

Fe@Au-M1 (or GNR-M1) conjugate for 3 h to prepare the 

Fe@Au-M1/MC2(PEG750) nanocarrier (or GNR-M1/MC2(PEG750)), which 

was followed by DOX addition (the molar ratio of DOX to M1 was 3:1) to form 

Fe@Au-M1/MC2(PEG750)-DOX (or GNR-M1/MC2(PEG750)-DOX). 

7.1.6 Confocal laser scanning microscopy 

HeLa cells were incubated with the Fe@Au-M1/MC2(PEG750)-DOX, 

CTAB-stabilised GNRs, PEG-GNRs, and GNR-M1/MC2(PEG750)-DOX for 3 h 

(DOX concentration was fixed at 5 µM; the amounts of GNRs were identical). 

They were then imaged by Confocal laser scanning microscopy 

(excitation/emission: 488 nm/580-600 nm). 
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7.1.7 Transmission electron microscopy 

5 × 105 HeLa cells per well were seeded in 6-well plates and incubated 

overnight at 37 °C. The cells were treated for 3 h at 37 °C with the 

Fe@Au-M1/MC2(PEG750)-DOX (containing 5 µM DOX) in media. After 

washing with PBS, the cells were detached and centrifuged and then the same 

procedures described in the Chapter 4 were followed, to fix the cells for TEM 

imaging. 

7.1.8 MTT cell viability assay  

104 HeLa cells per well were seeded in a 96-well plate and incubated overnight. 

The culture medium was then removed and 100 μL Fe@Au-M1/MC2(PEG750) 

or GNR-M1/MC2(PEG 750) nanocarrier with or without 5 µM DOX in media was 

added, followed by incubation at 37 °C for 18 h, and then the same MTT assay 

procedures as in Chapter 3. 

7.2 Results and discussion 

7.2.1 Characterisation of Fe@Au NPs 

7.2.1.1 Method 1 

 

Figure 7.1. Photographs of prepared nanoparticles. From left to right: Fe3O4 NPs, Fe@Au 

NPs (45 mg MNP seeds), Fe@Au NPs (15 mg MNP seeds), 14-nm GNPs. 

Citrate reduction is a simple method, reported in the literature[343-345], for 

preparing core-shell gold-coated magnetic nanoparticles (Fe@Au NPs), where 
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MNPs (Fe3O4 NPs) synthesized by co-precipitation are used as seeds, and gold 

reduced by citrate is supposed to grow on the surface of Fe3O4 NPs. Though it 

is argued that gold cannot grow on the surface of Fe3O4 NPs by the citrate 

reduction method due to the different surface energy[339], this was the first 

method tried in the project because of its simplicity. 

 

The digital images of the prepared Fe3O4 NPs and Fe@Au NPs, together with 

GNPs solution (Figure 7.1) shows that, unlike black Fe3O4 NPs and red GNPs, 

the colour of Fe@Au NPs varied depending on the amount of Fe3O4 seeds 

added. The Fe@Au NPs prepared with more Fe3O4 seeds (45 mg) were brown 

in colour, while those with less Fe3O4 seeds (15 mg) were red, closer to the 

colour of GNPs. The proportion of Fe3O4 seeds in the reaction solution 

appeared to correlate with the colour of Fe@Au NPs. 

 

 

Figure 7.2. Photographs of Fe3O4 NPs under the attraction of a permanent magnet (‘工’ 

shape (a); ‘O’ shape (b)). 

 

Fe3O4 NPs have a strong tendency to aggregate to minimize the high surface 

energy caused by the large surface-to-volume ratio of nanoparticles; this is 

unfavourable for further reaction and potential applications. By adding 

biocompatible tri-sodium citrate, which acts as an electrostatic stabilizer[346, 
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347] with one or two carboxylic groups coordinating with Fe3O4 NPs, a stable 

colloidal dispersion (‘aqueous ferrofluid’) can be formed. The surface bond 

citrates can offer sufficient electrostatic repulsion to prevent MNP aggregation 

even under an applied external magnetic field, where the Fe3O4 NPs still remain 

in the form of a dispersion and they can not be isolated from the medium by the 

magnet (Figure 7.2). 

 

 

Figure 7.3. Photographs of Fe@Au NPs under the magnetic attraction (a) and repulsion 

(b). 

 

One way to test whether Fe@Au NPs have been successfully synthesized 

through the simple citrate reduction method is to apply an external magnetic 

field to the Fe@Au NPs solution, as it is assumed that a permanent magnet can 

attract Fe@Au NPs, or separate Fe3O4 NPs from GNPs where gold growth on 

MNPs is unsuccessful. Because of the difficulty of attracting and separating 

Fe@Au NPs from the system, which was stabilised by tri-sodium citrate, the 

Fe@Au dispersion was first centrifuged to get the Fe@Au pellets to the bottom 

of the eppendorf tube before applying the permanent magnet. 

 

Figure 7.3 shows that all Fe@Au pellets were attracted or repelled by the 

external magnet without any separation between Fe3O4 and gold, which seemed 



155 

 

to suggest that Fe3O4 NPs were successfully coated with gold. But afterwards 

we were surprised to notice that if the Fe3O4 NPs were simply mixed with 14-nm 

GNPs, after centrifugation all mixed pellets including both Fe3O4 NPs and GNPs 

were attracted or repelled by the magnet without separating. Because the same 

phenomenon was observed with both prepared Fe@Au pellets and the mixture 

of Fe3O4 NPs and GNPs, we could not conclude that the preparation had been 

successful. 
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Figure 7.4. UV-visible absorption spectra of Fe3O4 NPs, Fe@Au NPs and GNPs, which were 

all dispersed in water. 

 

To further evaluate the prepared Fe@Au NPs, the UV-visible spectra of Fe@Au 

NPs, Fe3O4 NPs and 14-nm GNPs were recorded (Figure 7.4). Regardless of 

the difference in quantity of Fe3O4 seeds, both Fe@Au NPs displayed the same 

Au absorption peak at around 520 nm as GNPs only. In addition, the mixture of 

Fe3O4 NPs and GNPs showed similar UV-visible spectra with Fe@Au NPs 

(Figure 7.5). Because no red-shift (one of the features of successfully-prepared 

Fe@Au NPs[342, 348, 349]) was observed in the spectrum of Fe@Au NPs, we 

suspect that the Fe3O4 NPs were not coated with gold. Also, after incubation of 

the Fe@Au NP solution with DNA M1 overnight, followed by subsequent 
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introduction of 0.1 M NaCl to the solution, we observed black aggregation at the 

tube bottom (aggregated MNPs) with red supernatant (M1-coated GNPs) above, 

suggesting that GNPs were formed by citrate reduction but existed 

independently without growing on the surface of Fe3O4 NPs. 
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Figure 7.5. UV-visible absorption spectra of Fe3O4 NPs and mixtures of Fe3O4 NPs and 

GNPs. The mixture of Fe3O4 NPs and GNPs displayed the GNP absorption peak at 520 nm, 

the intensity of which became stronger with the addition of more GNPs. 

 

 

 

Figure 7.6. TEM images of Fe@Au NPs prepared by citrate reduction method showing 

two kinds of nanoparticles (black and grey) in the Fe@Au NPs solution. (left: scale bar 100 

nm and right: scale bar 20 nm) 
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Figure 7.7. EDX spectra of black nanoparticles (EDX 1) (a) and grey nanoparticles (EDX 2) 

(b). 

 

This view was confirmed by TEM images (Figure 7.6) and energy dispersion 

X-ray (EDX) spectra (Figure 7.7) of the prepared Fe@Au NPs. The TEM images 

show that two different nanoparticles, black and grey in colour, respectively, 
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appear to co-exist in the system with very similar sizes of around 15 nm. Their 

EDX spectra confirmed that the grey nanoparticles were Fe3O4 NPs with a peak 

at 6.4 keV corresponding to Fe, while the black ones were GNPs with peaks at 

2.5 and 9.5 keV corresponding to Au. A small Fe signal was also observed, 

probably because the black GNPs were surrounded by the grey Fe3O4 NPs. 

Based on the TEM images and EDX results, we concluded that indeed gold was 

not grown on the surface of Fe3O4 NPs, and that the preparation of Fe@Au NPs 

by this citrate reduction method was unsuccessful. Both Fe3O4 NPs and GNPs 

existed independently in the solution, and the colour of the solution (Figure 7.1) 

was affected by the proportion of Fe3O4 NPs and GNPs. 

 

7.2.1.2 Method 2 

Because gold cannot grow stably on the surface of Fe3O4 NPs, due to the 

surface energy difference, a molecular linker, mercaptosuccinic acid (MSA) was 

employed in this project to bridge the 15-nm Fe3O4 NPs with much smaller gold 

clusters (i.e. 1.5 nm). MSA contains two carboxylic groups and a thiol group, 

which can attach or bind to Fe3O4 NPs and gold clusters to form Fe3O4-S-Au 

NPs[339]. Due to the great difference in nanoparticle sizes, a number of smaller 

gold clusters are expected to attach to one of the bigger Fe3O4 NPs. Following 

further reduction more gold atoms will grow on the gold clusters which act as the 

growth seeds, eventually forming a tight gold shell around the surface of the 

Fe3O4 NP. This is called “seed and grow method” in the literature[49] 

 

15-nm Fe3O4 NPs synthesized by the co-precipitation method were stabilised by 

MSA with the thiol group stretching out to bind colloidal gold clusters (seeds) 

through the formation of an Au-S bond. According to the refs[339, 350], the size 

of gold seeds produced by the reduction of HAuCl4 with THPC is 1.5-2 nm, and 
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the size ratio of Fe3O4 NPs to gold clusters is expected to be 7-10.  

 

 

Figure 7.8. Photographs of prepared Fe3O4-s-Au NPs under magnetic attraction for 0 min 

(a) and 5 min (b). 

 

Figure 7.8 shows the prepared Fe3O4-S-Au NPs by the ‘seed and grow’ method 

were attracted to the side wall within 5 min by a permanent magnet. Unlike the 

nanoparticles prepared by the unsuccessful citrate reduction method above, 

which were hardly attracted or repelled by the permanent magnet before 

centrifugation, the Fe3O4-S-Au NPs were easily collected under an external 

magnetic field without centrifugation. 

 

After washing with water, the Fe3O4-S-Au NPs were re-dispersed in water and 

their UV-visible spectra, together with those of the gold seeds and 

MSA-stabilised Fe3O4 NPs (washed and re-dispersed in water), were  

recorded, and are depicted in Figure 7.9. Compared to the gold seeds, no clear 

red-shift of the gold NP plasmon absorption peak (an indication of forming larger 

NPs) was seen for the Fe3O4-S-Au NPs before the further reduction. 
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Figure 7.9. UV-visible spectra of MSA-stabilised Fe3O4 NPs, gold seeds and Fe3O4-S-Au.  

 

Before growing additional gold on the surface, the Fe3O4-S-Au NPs were first 

dispersed in 0.1 M tri-sodium citrate for stabilisation and then re-dispersed in 

water. Figure 7.10 shows that the gold absorption peak was red shifted when 

the Fe3O4-S-Au NPs were dispersed in the tri-sodium citrate solution; this could 

interfere with the evaluation of gold growth by UV-visible spectrometry. However, 

this red shift disappeared after the Fe3O4-S-Au NPs were re-dispersed in water.   
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Figure 7.10. UV-visible spectra of Fe3O4-S-Au NPs re-dispersed in water and 0.1 M 

tri-citrate sodium.  
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Hydroxylamine was chosen as a reducing agent to promote further gold growth. 

Before being used on Fe3O4-S-Au NPs, gold growth was first tested on the 

1.5-nm gold seeds. After the addition of hydroxylamine and HAuCl4 to the gold 

seeds solution, the gold plasmon absorption peak displayed an obvious red shift 

compared to gold seeds only (Figure 7.11), indicating that the gold seeds did 

become bigger. Therefore  the use of hydroxylamine based reduction is a 

feasible method for promoting gold nanoparticle growth.  
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Figure 7.11. UV-visible spectra of gold seeds before and after the reduction of HAuCl4 

with hydroxylamine. 

 

Gold growth on the surface of Fe3O4-S-Au NPs, expected to form a tight gold 

shell, was then performed through an iterative reduction. The UV-visible 

spectrum of each iteration was recorded in Figure 7.12, which shows that the 

gold NP plasmon absorption peak exhibits a red shift after each reduction step, 

and that the absorbance value became higher and higher during the first three 

iterations, indicating that additional gold was grown on the Fe3O4-S-Au NPs. 

Whereas after the fourth iteration, the solution became darker and a further red 

shift of the gold NP plasmon absorption peak was observed, but with decreased 



162 

 

absorbance, suggesting that gold NPs had aggregated during the fourth 

reduction. To avoid aggregation during reduction, three iterations would be 

appropriate for gold growth on Fe3O4-S-Au NPs. 
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Figure 7.12. UV-visible spectra of the Fe3O4-S-Au NPs after each iterative reduction and 

gold NP growth. 

 

 

      

Figure 7.13. TEM images of Fe3O4-S-Au before reduction showing two different kinds 

nanoparticles (black and grey) observed. (left: scale bar 100 nm and right: scale bar 20 

nm) 

 

To further characterise the Fe3O4-S-Au NPs before and after reduction by TEM 
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imaging, a 0.22-μm syringe filter was used to remove big particles. Surprisingly, 

none of the Fe3O4-S-Au NPs could pass through the filter even before iterative 

reduction. To find out the cause of this phenomenon, TEM images of 

Fe3O4-S-Au NPs before reduction (Figure 7.13) and after the first reduction 

(Figure 7.16) were taken without filtration. Two different kinds of nanoparticles 

were observed: grey ones with an average size of 13-15 nm and black ones with 

an average size of 4-5 nm. By EDX measurement it was confirmed that the grey 

nanoparticles were Fe3O4 NPs and the black ones were GNPs (Figure 7.14). 

Although the same literature procedure [339, 350] was adopted to synthesize 

the gold seeds, the average size (4-5 nm) here was 2-3 times larger than that 

reported(1.5-2 nm). According to the TEM images, the size of single particles 

should not affect the ability of nanoparticles to pass through the filter. The 

problem could come from the cross-linking of Fe3O4-S-Au clusters by MSA 

linker molecules (see Figure 7.15), where each gold seed bound with multiple 

linkers can bind to multiple Fe3O4 NPs, leading to the assembly of a 

three-dimensional Fe3O4-S-Au ‘network’ with a ‘whole’ size greater than 0.22 

μm pore size, and hence unable to pass through the filter. 

 

From Figure 7.13, it can also be seen that each Fe3O4 NP was not completely 

covered by gold seeds, which had been the premise of the following reduction 

step for forming a gold shell. It is believed that the mixing molar ratio of Fe3O4 

NPs to gold seeds may affect coverage. Here too many Fe3O4 NPs were mixed 

with too few gold seeds to form Fe3O4-S-Au NPs, leading to low coverage (on 

average only 3-4 gold seeds were attached to each Fe3O4 NP). The molar ratio 

of Fe3O4 NPs to gold seeds needs to be further optimised in order to improve 

coverage. In addition, the size ratio of Fe3O4 NPs to gold seeds may also affect 

the formation of the gold shell. The typical size ratios reported in the refs were at 

least 10:1, while some were even up to 100:1[318, 339, 350, 351]. The gold 
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seeds prepared here were much bigger than those in the literatures and the 

actual size ratio was only around 3/4:1, not big enough to integrate a complete 

layer of gold seeds onto the Fe3O4 NP surface. 

 

 

 

Figure 7.14. EDX spectra of grey nanoparticles (EDX 1) (a) and black nanoparticles (EDX 

2) (b). 
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Figure 7.15. Schematic of the Fe3O4-S-Au ‘network’ caused by cross-linking.  

The TEM image of Fe3O4-S-Au NPs after the first reduction (Figure 7.16) shows 

that the size of gold seeds became bigger than the original Fe3O4-S-Au NPs 

(Figure 7.13), indicating that the gold reduction reaction had taken place, and 

that more gold had grown on the gold seeds. Unfortunately, the gold shells were 

not formed successfully, probably due to an inappropriate mixing molar ratio and 

the size ratio of Fe3O4 NPs to gold seeds mentioned above. These were not 

further optimised because a cross-linking issue may still exist between Fe3O4 

NPs and gold seeds, and single isolated Fe3O4-S-Au NPs might not be obtained 

by this method even if gold shells were successfully formed on the surface of 

Fe3O4 NPs. 

 
Figure 7.16. TEM images of Fe3O4-S-Au after the first iteration. 
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7.2.1.3 Method 3: Micelle Method 

A reverse micelle method adapted from the literatures[352-355] was also 

performed using CTAB as the surfactant, 1-butanol as the co-surfactant and 

octane as the oil phase. Iron nanoparticles were prepared as ‘cores’ through the 

reduction of ferrous sulphate by sodium borohydride within the micelles, and 

within minutes the solution became dark, indicating the formation of the iron 

cores. The size of the cores was determined by the size of the micelles, which 

can be varied by adjusting the molar ratio of water to surfactant. Here, the ratio 

of 8:1 (water : surfactant) was chosen for micelle formation. By the sequential 

addition of HAuCl4 and sodium borohydride, gold shells were formed on the iron 

cores, the thickness of which was determined by the amount of HAuCl4.  

 

 

Figure 7.17. Photographs of prepared Fe@Au NPs under magnetic attraction for 0 min (a) 

and 5 min (b). 

Fe@Au NPs prepared by the reverse micelle method are shown in Figure 7.17. 

These were black in colour and attracted by a permanent magnet within 5 mins. 

Vibrating sample magnetometry (VSM) measurement of the Fe@Au NPs at 290 

K (Figure 7.18) showed that no coercivity (Hc) or remanence (Mr) was observed 

in the magnetisation curve, and it appeared that magnetisation did not reach 
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saturation even in a high magnetising field (9 T), which agrees with the result in 

the literature[352]. 
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Figure 7.18. Vibrating sample magnetometry (VSM) measurement of the Fe@Au NPs at 

298 K. 

 

To attach thiolated DNAs (i.e. M1) to Fe@Au NPs, phase transfer was first 

performed to disperse the Fe@Au NPs in water. Here, a new phase transfer 

method was established. Surfactants were removed by washing with a mixed 

solvent of chloroform and methanol (v/v = 1:1), followed by rinses with a 

methanol/water mixture (v/v = 1:1), after which a rinse of 50 mM tri-sodium 

citrate solution seemed to be the critical step to successful phase transfer. Most 

literatures only used mixtures of either chloroform/methanol[356] or 

methanol/water for phase transfer[357], where the Fe@Au NPs eventually 

aggregated. Whereas by adapting sequential washings with both mixtures, and 

then treating with tri-sodium citrate under sonication, the Fe@Au NPs were 

successfully and stably re-dispersed in the aqueous phase.   

 

The TEM image of the Fe@Au NPs (Figure 7.19) reveals that the nanoparticles 

are small and uniform with average sizes of ～6 nm, and the EDX result (Figure 

7.20) displays peaks at 2.2 and 6.4 keV, corresponding to Au and Fe, 

respectively. This result agrees with the ref[358], suggesting that the Fe@Au 
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NPs were successfully prepared by the reverse micelle method. As mentioned 

earlier, the size of Fe@Au NPs and the shell thickness can be further optimised 

in the future if needed, by varying the molar ratio of water to surfactant and the 

amount of HAuCl4.  

 
Figure 7.19. TEM image of Fe@Au NPs prepared by the reverse micelle method. 

 

Figure 7.20. The EDX spectrum of a Fe@Au NP. 
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7.2.2 Cellular studies using Fe@Au-M1/MC2(PEG750)-DOX  

The multifunctional NDDS, Fe@Au-M1/MC2(PEG750)-DOX, was prepared by 

attaching thiolated M1 to the gold shell of Fe@Au through Au-S bond, followed 

by the sequential additions of MC2(PEG750) for hybridisation and DOX for 

intercalation (M1/MC2(PEG750)/DOX = 1/1/3). The confocal image (Figure 7.21) 

reveals that after 3 h incubation with HeLa cells, strong DOX fluorescence was 

observed inside the cells, indicating that the Fe@Au-M1/MC2(PEG750) 

nanocarrier had successfully delivered DOX into them. It can be further 

confirmed by the TEM image of HeLa cells treated with 

Fe@Au-M1/MC2(PEG750)-DOX (Figure 7.22), in which Fe@Au-based 

nanocarriers were found inside endosome/lysosome-like compartments of the 

cells, confirming that Fe@Au-M1/MC2 (PEG750) nanocarriers can efficiently 

deliver DOX into cells via the endocytic pathway like the GNP-M1/MC2 

(PEG750) nanocarriers, where the low pH inside endosomes/lysosomes can 

trigger DOX release from the system, leading to strong DOX fluorescence inside 

the cells. 

 

Figure 7.21. Confocal phase contrast, fluorescence and merged optical/fluorescence 

images of HeLa cells after incubation with Fe@Au-M1/MC2 (PEG750)-DOX for 3 h at 

37 °C. 
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Figure 7.22. TEM images showing uptake of GNP-M1/MC2(PEG750)-DOX by HeLa cells 

(3 h incubation at 37 °C) ((a) Cell One and (b) Cell Two). 

 

An MTT assay was performed to evaluate the cytoxicity of Fe@Au-M1/MC2 

(PEG750) nanocarriers and the Fe@Au-M1/MC2(PEG750)-DOX NDDS (Figure 

7.23). Compared with the control (HeLa cells only), the Fe@Au-based 

nanocarrers were non-toxic, as expected, whereas the NDDS loaded with DOX 

showed cytoxicity comparable to that of the free DOX shown in Chapter 3 

(Figure 3.12). These results show great potential for the multifunctional 
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Fe@Au-M1/MC2(PEG750)-DOX NDDS in DOX delivery. 

 

Figure 7.23. MTT assay of HeLa cell viabilities after incubation with 

Fe@Au-M1/MC2(PEG750) and Fe@Au-M1/MC2(PEG750)-DOX (containing 5 μM DOX) 

for 18 h at 37 °C (*p < 0.05). 

 

7.2.3 Characterisation of GNRs 

 

Gold nanorods (GNRs) (Figure 7.24) were synthesized by a seed-mediated 

growth method[359, 360] in the presence of CTAB and silver nitrate, where 

CTAB acts as a capping agent (stabiliser) and the concentration of silver nitrate 

determines the aspect ratio of GNPs[90, 109, 360]. Figure 7.25 shows the 

visible-NIR spectra of the gold growth solution just after adding gold seeds. 

Beside the absorption peak at ～510 nm (cross-sectional plasmon absorption), 

another peak in the region of 700-900 nm was also observed, corresponding to 

the longitudinal  plasmon absorption, and indicating GNRs formation. The 

intensity of both peaks increased for up to 40 min, but showed no further 

increase afterwards, suggesting that the GNR formation was complete in 40 min. 

We also found a blue-shift of the longitudinal plasmon peak during the GNR 

developing period, similar to that described in the literature[361]. This was 
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thought to correlate with the change of aspect ratio during the GNR growth 

process. 

 

 
 

Figure 7.24. Photo image representing GNRs prepared by the seed-mediated growth 

method and stabilised by CTAB. 
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Figure 7.25. Visible-NIR spectra of GNRs solution growing from gold seeds as a function 

of time just after seed addition. 

 

After preparation, excess CTAB was removed through centrifugation and the 

GNR pellets were then re-dispersed in water (Figure 7.26). Its visible-NIR 

spectrum (Figure 7.27) is almost the same as that of GNRs in CTAB solution in 
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terms of absorption peak positions and absorption intensity, while the clear 

supernatant (CTAB solution) showed no absorption in the range of 400-900 nm, 

confirming that CTAB did not contribute to the absorption spectra of GNRs, and 

both absorption peaks were related to GNRs only.  

 
Figure 7.26. Photographs of GNRs solution before (a) and after centrifuging (b) and GNRs 

concentrated and redispersed in water (c). 
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Figure 7.27. Visible-NIR spectra of the seed solution and GNRs in CTAB solution and 

water. 

 

The TEM image of GNRs is shown in Figure 7.28. Based on particle analysis via 

Digital micrograph software, the length of GNRs were 39±7 nm and the aspect 

ratio of GNRs were calculated at 3.67±0.54 (n=45), which is similar to that in the 
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literature[90].  

 

 
 

Figure 7.28. TEM image representing prepared GNRs. 

 

 

7.2.4 Cellular studies using the GNRs based NDDS 

 

 

Figure 7.29. Phase contrast images of HeLa cells after incubation with CTAB-stabilised 

GNR and GNR-PEG for 3 h at 37 °C. 
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The CTAB (a cationic surfactant) surface cap was found to be highly cytotoxic 

(Figure 7.29), therefore PEG-SH was employed to coat the GNRs via the 

formation of strong Au-S bonds that successfully displace the CTAB. The 

displaced CTAB was readily removed by centrifugation. Figure 7.29 reveals that 

the GNR-PEG conjugate was non-toxic to HeLa cells, suggesting that all CTAB 

was successfully removed and that PEG-SH stabilised GNRs were not  

cytotoxic. 

 

Then DNA M1 was attached to GNR-PEG through ligand exchange to form the 

GNR-M1 conjugate. Following the same preparation procedure as 

Fe@Au-M1/MC2 (PEG750)-DOX, including MC2 (PEG750) hybridisation and 

DOX loading, the GNR-M1/MC2 (PEG750)-DOX NDDS was prepared. After 

incubation with HeLa cells it proved that, like GNP-based and Fe@Au-based 

NDDSs, the GNR-M1/MC2 (PEG750)-DOX had succeeded in delivering DOX 

into cells (Figure 7.30). In addition, MTT assay results (Figure 7.31) revealed 

that the GNR-M1/MC2 (PEG750) nanocarriers were not toxic to cells, indicating 

that GNR-based nanocarriers are suitable for cell-based drug delivery.  With 

DOX loaded, the NDDS exhibited similar cytotoxicity to GNP-based and 

Fe@Au-based systems. This is to be expected because during the 18-h 

incubation with HeLa cells, it is the released DOX from the nanosytems that 

exerts the cytotoxicity, and the process is mainly dependent on the structure 

change (i-motif formation) of the DNA nanomachine, triggered by the low pH of 

endosomes/lysosomes. Therefore the differences in size and shape of 

nanoparticles have little influence on this process. 
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Figure 7.30. Confocal phase contrast, fluorescence and merged optical/fluorescence 

images of HeLa cells after incubation with GNR-M1/MC2 (PEG750)-DOX for 3 h. 

 

 
Figure 7.31. MTT assay of HeLa cell viabilities after incubation with 

GNR-M1/MC2(PEG750) and GNR-M1/MC2(PEG750)-DOX (containing 5 μM DOX) for 18 

h at 37 °C (*p < 0.05). 
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7.3 Conclusion 

 

Three different methods have been tried to synthesize the Fe@Au NPs. Results 

show that gold cannot grow stably on the surface of Fe3O4 NPs due to different 

surface energy (Method 1), and the use of bi-functional linkers (e.g. MSA) can 

cause cross-linking among gold clusters and Fe3O4 NPs (Method 2). The 

reverse micelle method (Method 3) appears to be suitable for the preparation of 

small, uniform Fe@Au NPs (e.g. ～6 nm). After phase transfer, the Fe@Au NPs 

can be dispersed stably in water after treatment with tri-sodium citrate, which 

has been successfully used to prepare Fe@Au-based drug nanocarriers.  

 

CTAB-stabilised GNRs have been successfully synthesized via a 

seed-mediated growth method with the aspect ratio of ～3.7. In addition, 

PEG-SH has been successfully used to displace the cytotoxic CTAB surfactant 

via the formation of strong Au-S bonds, leading to non-toxic GNR-PEG; this has 

further been successfully used to develop a GNR-pH responsive DNA drug 

nanocarrier. 

 

Cell based studies revealed that both the Fe@Au-M1/MC2(PEG750) and 

GNR-M1/MC2(PEG750) nanocarriers were non-cytotoxic and can efficiently 

deliver DOX into HeLa cells, with comparable cytotoxicity to free DOX. These 

NDDSs have the potential to achieve simultaneous passive-targeting, DOX 

delivery, tumour diagnosis and hyperthermia therapy in the future. 

 

  



178 

 

8 Chapter 8: Preparation of active targeted NDDSs 

By exploiting the EPR effect, the unique characteristic of tumour vasculature, 

passive targeted NDDSs have exhibited higher efficiency and fewer side effects. 

This is due to the selective accumulation of such NDDSs in tumour tissues[10, 

19, 204]. In fact, this is the strategy employed for most nanomedicines in trials 

and clinical use. While active targeted NDDSs can be obtained by attaching 

targeting ligands (Figure 8.1), such as antibodies[362, 363], aptamers[364-366] 

and other small molecules including vitamins[367-370] and carbohydrates[371, 

372]. These can target the surface receptors which are overexpressed on 

cancer cells or cancer endothelia and then aid internalisation by cells via 

receptor-mediated endocytosis[270, 373, 374] (Figure 8.2). Compared with 

passive targeting, it is believed that active targeted systems do not alter the 

whole-body distribution, nor increase the accumulation amount in tumours, but 

do affect the distribution within tumour tissues[375-377], as the attached 

targeting ligands can increase their selectivity for the cancer cell or endothelium 

target over other unrelated cells[270, 378, 379]. Thus active targeted NDDSs 

can show further improved anticancer effects[374, 380]. 

 

 
Figure 8.1. Schematic of active targeted NDDS. 
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In this project, active targeted GNP-dsDNA-DOX NDDSs can conveniently be 

prepared by attaching targeting ligands to the complementary DNA strand MC2. 

Here, Folic acid (FA) and a RGD peptide are chosen to demonstrate the 

feasibility of preparing  MC2(FA) and MC2(RGD), which can then be used to 

assemble GNP-dsDNA(FA)-DOX and GNP-dsDNA(RGD)-DOX systems to 

specifically target cancer cells and cancer vasculature, respectively. 

 

 
Figure 8.2. A schematic illustration of the receptor-mediated endocytosis. Targeting 

ligands (e.g. FA or RGD) on the surface of the GNP-dsDNA-DOX system bind specifically to 

the surface receptors overexpressed on cancer cells or cancer endothelia, which triggers 

cell internalisation through endosomes. The acidic pH inside the endosome/lysosome 

leads to DOX release from the NDDS. 

 

8.1 Materials and Methods 

8.1.1 Materials 

MC2-amine (NH2C6-TTT TTT GTG TTA GGT TTA GGG TTA GGG) for 

preparation of MC2(FA) and new MC2-amine (NH2C6-TTT GTG TTA GGT TTA 

GGG TTA GGG) for MC2(RGD) preparation (lack of TTT compared to the 

MC2-amine) were obtained from IBA. Succinimidyl-[(N-maleimidopropionamido) 

-octa(ethylene glycol)] ester (NHS-PEG8-Maleimide) was purchased from 

Thermo Scientific. Cyclo (Arg-Gly-Asp-D-Phe-Cys) (cyclo (RGDfC)) was 

purchased from Peptides International, Inc. Folic acid and 
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dicyclohexylcarbodiimide (DCC) were purchased from Sigma-Aldrich. 

N-hydroxysuccinimide (NHS) was purchased from Alfa Aesar. Anhydrous 

dimethylsulfoxide (DMSO), ethanol, sodium acetate, NaCl, KCl, Na2HPO4 and 

KH2PO4 were purchased from Sigma-Aldrich. Triethylamine (TEA) was 

purchased from Acros Organics. 

8.1.2 Preparation of FA-NHS ester 

A literature procedure[381, 382] was used. FA (110 mg, 0.25 mmol) and 0.06 mL 

triethylamine (TEA) were added into 3 mL anhydrous DMSO. The resulting 

mixture was stirred under nitrogen in the dark at room temperature until the 

Folic acid was dissolved. Then, a solution of 62 mg DCC (0.3 mmol) and 35 mg 

NHS (0.3 mmol) dissolved in 2 mL DMSO were added to the above solution. 

The resulting solution  was stirred in the dark at room temperature under 

nitrogen protection for over 24 h to make activated folate-N-hydroxysuccinimidyl 

ester (FA-NHS). The reaction solution containing FA-NHS was then filtered to 

remove the by-product dicyclohexylurea (DCU), wrapped in foil and stored in 

the fridge. According to the literature[381], the yield of FA-NHS is around 77%, 

based on which the estimated FA-NHS concentration is approximately 0.03 M.  

8.1.3 Preparation of MC2(FA)  

100 nmol DNA MC2-amine was dissolved in 100 µL of mixture of DMSO and 

water (v/v 1:1) to make the stock solution, which was then used to make the 

MC2(FA) by the following two methods: 

Method 1: 30 µL MC2-amine (30 nmol) was mixed with 30 µL filtered FA-NHS 

(900 nmol) (the molar ratio of MC2-amine to FA-NHS  1:30) and kept to react 

overnight; meanwhile 30 µL filtered FA-NHS was mixed with 30 µL mixture of 

DMSO and water (1:1) as control. 

Method 2: 20 µL MC1-amine (20 nmol) was mixed with 20 µL filtered FA-NHS 

(600 nmol) and 20 µL water and kept overnight. 



181 

 

Samples made by methods 1 and 2 were mixed with 200 µL water, respectively, 

and  centrifuged (21.1 kg, 15 mins) to remove precipitated unreacted FA-NHS. 

The supernatants were further filtered with a 0.2 µm Whatman syringe filter and 

dialysed (MWCO: 1 kDa) against 1 litre of pure water for 48 h.  The absorption 

spectra before and after the dialysis were measured on a UV-vis spectrometer 

(5 µL of each sample was diluted with 1 mL water). 

8.1.4 HPLC analysis and purification of MC2 (FA) 

TEAA buffer (HPLC mobile phase A) preparation: 5.6 mL of acetic acid and 

13.86 mL of TEA were added to 950 mL of water. The pH of the solution was 

adjusted to 7.0 with acetic acid, and then the final volume was adjusted to 1 L by 

adding water. 

Both RP-HPLC analysis and purification were performed on the Gynkotek HPLC 

instrument at room temperature using a Phenomenex C18 column (4.6 X 250 

mm, 5 μm) with a mobile phase consisting of TEAA buffer (A) and 

acetonitrile(B)[383]. UV absorbance was monitored by a Gynkotek 

(UVD 340S) detector at 260 nm. The process was run for 30 min using a 

gradient of 5-30% B for analysis and purification. 

8.1.5 Purification of MC2(FA) via GNP-M2 mediated capture and dehybridization 

5 µL of FA-NHS stock was mixed with 5 µL of MC2-Amine (5 nmol) to make 

MC2(FA). After 12 h, GNP-M2 (M2: 3 nmol) in 100 µL MES buffer was mixed 

with the MC2(FA) solution for 3 h to capture the MC2(FA) by forming 

GNP-M2/MC2(FA). The GNP-M2/MC2(FA) pellets were then collected and 

washed four times with 1.5 mL MES buffer  by 90-min centrifugation (21.1 kg) 

to remove unreacted FA-NHS and DMSO. Though a small proportion of DMSO 

existed in the reaction mixture, it has been proved that less than 5% DMSO in 

the system will not affect the centrifuging process. The supernatants of each 

washing step were collected and monitored by UV-vis spectroscopy. 
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Thermal dehybridisation of GNP-M2/MC2(FA): 0.8 mL of water was added very 

slowly to the collected GNP-M2/MC2(FA) pellets and the pellets were kept at the 

bottom of an Eppendorf tube, which was then heated to 80°C for 8 min on a dry 

bath for dehybridization. The spectrum of the supernatant, containing MC2(FA), 

was recorded after centrifugation (21.1 kg, 90 min). 

 

8.1.6 Two-step reaction to prepare MC2-(PEG)8-RGD (also denoted as MC2(RGD)) 

The preparation of MC2-(PEG)8-Maleimide (Step One) 

100 nmol new MC2-amine was dissolved in 250 μL of pH 7.4 PBS (137 mM  

NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 2 mM KH2PO4) to make the stock. 

NHS-PEG8-Maleimide was dissolved in DMSO to make 250 mM of stock 

solution. 125 μL of new MC2-amine stock (50 nmol) was mixed with 20 μL of 

NHS-PEG8-Maleimide stock (5000 nmol) (new MC2-amine:NHS-PEG8- 

Maleimide molar ratio = 1:100) and the mixture was incubated at room 

temperature for 2 h to make MC2-(PEG)8-Maleimide.  

 

MC2-(PEG)8-Maleimide precipitation 

The prepared MC2-(PEG)8-Maleimide was purified by ethanol precipitation. 

Briefly, the mixture containing MC2-(PEG)8-Maleimide was divided between two 

tubes (around 72 μL each tube), 1.28 mL of ethanol and 0.15 mL of 3 M sodium 

acetate (pH 5.2) were added to each tube (final volume: 1.5 mL and final sodium 

acetate concentration: 0.3 M). Both samples were placed in a -20 ℃ freezer 

overnight and then centrifuged at 14800 rpm (21.1 kg) for 30 mins at 4 ℃ to get 

DNA precipitate, which was washed twice with cold 70% ethanol and dried by 

N2. 
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Preparation of MC2-(PEG)8-RGD (Step Two) 

1 mg cyclo (RGDfC) (1730 nmol) was dissolved in 1 mL of de-gassed pure 

water to make RGD stock with a final concentration of 1.73 mM. The DNA 

precipitates obtained above were combined and dissolved in 200 μL of PBS (pH 

7.4) and then mixed with 30 μL of cyclo (RGDfC). The mixture was allowed to 

react at room temperature for 2 h and then stored in the -20 ℃ freezer before 

HPLC analysis and purification. 

8.1.7 HPLC analysis and purification of MC2-(PEG)8-RGD   

The HPLC instrument and mobile phase for MC1-(PEG)8-RGD analysis and 

purification are the same as MC2(FA) analysis. Three different methods were 

tried; (5-95% B) 30min, (10-70% B) 30min and (5-40% B) 40min. In the end 

(5-40% B) 40min was chosen for analysis and purification. 

 

 

8.2 Results and discussion 

 

8.2.1 MC2(FA) preparation and GNP-M2/MC2(FA) assembly 

 

Folic acid (FA), also called vitamin B9 (see Figure 8.3 for its structure), is a 

vitamin involved in nucleotide biosynthesis and other bodily functions. It has 

been exploited as an attractive targeting ligand for cancer diagnosis and 

treatment[384, 385]. This is because folate receptors are overexpressed in 

many human tumours, including ovarian, lung, breast, kidney, brain, endometrial 

and colon cancers, but not in most normal tissues. A wide variety of folate 

conjugates have been prepared, including folate-imaging agents[386, 387], 

folate-chemotherapeutics [388-390] and folate-drug carriers[391-394], and 

these have shown promising results in sensitive and specific cancer imaging 
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and therapy. Several products have been tested in clinical trials[395, 396]. 

 

 

 

Figure 8.3. Chemical structure of folic acid. 

 

There are quite a few advantages in exploiting FA as a targeting ligand[392, 

397]. Compared with monoclonal antibodies, folic acid, a small molecule with a 

molecular weight of 441 Da, is relatively stable, inexpensive, non-immunogenic 

and easily conjugated to chemotherapeutics and carriers. Folic acid has a high 

affinity to the folate receptor with Kd around 0.1 nM, and retains this affinity in 

nM range after conjugation[398, 399]. Folate conjugates can be taken in by cells 

via folate receptor-mediated endocytosis with high efficiency. 

 

8.2.1.1 Preparation and characterisation of MC2(FA) 

 

To prepare folic acid modified complementary DNA (MC2(FA)), folic acid was 

first activated in form of FA-NHS, then reacted with amine modified MC2 

(MC2-NH2) to make MC2(FA) conjugate (Figure 8.4) through the stable amide 

bond formation. The conjugation reaction can be accomplished in two steps 

under mild conditions. 
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Figure 8.4. Schematic procedure of MC2(FA) preparation. 

 

In the second step FA-NHS was mixed with MC2-NH2 to prepare MC2(FA).   A 

mixed solvent of DMSO and water was used as the reaction medium because 

the solubilities of FA-NHS and MC2-NH2 in DMSO and water are different; 

FA-NHS is soluble in DMSO but its solubility in water is low, whereas MC2-NH2 

is not soluble in anhydrous DMSO. Here, the mixing ratios (DMSO:water) of 3:1 

(Method 1) and 1:1 (Method 2) were used for the reaction. A mixing ratio of 3:1 

was found to be the minimum proportion required to dissolve MC2-NH2. Also, 

excess FA-NHS (a molar ratio of FA-NHS to MC2-NH2  30:1) was used to 

increase the reaction yield of DNA, even though the reaction ratio was 1:1. 

 

After reaction, 200 μL water was added to 60 μL of the reaction mixture to 

precipitate excess FA-NHS resulting from its low solubility in water; this was 

then removed by centrifugation and filtration. Figure 8.5 shows the UV spectra 

of the filtered reaction mixtures made by methods 1 and 2 and the control 

(FA-NHS only). No obvious difference in the two main peak positions was 

observed between the mixtures in methods 1 and 2 . But when compared to the 

control, their peaks in the 260-280 nm range were slightly blue shifted by 4 nm 

due to DNA absorption at 260 nm. 
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Figure 8.5. UV-vis spectra of the reaction mixtures made by methods 1 and 2 before 

dialysis. 

 

The reaction mixtures and the control were then dialysed (MWCO:1 kDa) 

against pure water for 48 h to remove DMSO and excess FA-NHS, and the 

UV-vis spectra after dialysis are shown in Figure 8.6. Again, after dialysis the 

peaks in the 260-280 nm range of both reaction mixtures were blue-shifted by 

5-6 nm in comparison with FA-NHS. Compared to those measured before 

dialysis, the UV absorption of both mixtures and the control dropped by 

approximately 50%, together with much weaker ‘end absorption’ in the 200-220 

nm range, indicating that a large proportion of FA-NHS and DMSO had been 

removed. Figure 8.6 also shows the UV spectrum of the mixture of FA-NHS and 

MC2 (without amine modification) which had the same UV absorption peaks as 

both reaction mixtures, suggesting that the UV-vis spectra alone cannot give a 

definitive conclusion as to whether the MC2(FA) has been successfully 

prepared. 
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Figure 8.6. UV-vis spectra of the reaction mixtures made by methods 1 & 2 after dialysis.   

                                              

8.2.1.2 HPLC analysis of reactants and MC2(FA) 

To confirm whether the MC2(FA) conjugate was successfully synthesised, a 

reversed phase HPLC analysis was employed. The reactants, MC2-NH2 and 

FA-NHS, were first injected to confirm the retention times of their own peaks. 

Figure 8.7a shows the HPLC profile of MC2-NH2 which had a retention time of 

18.5 min, and was identified through the characteristic absorption peak of DNA 

at 260 nm (Figure 8.7b). The HPLC profile of FA-NHS (Figure 8.8a) shows three 

main peaks with retention times of 11.8, 15.7 and 16.7 min, respectively. Based 

on their UV-vis spectra, the peak at 11.8 min was believed to be FA-NHS and no 

strong evidence was found to confirm the other two peaks at 15.7 and 16.7 min, 

both of which displayed similar UV-vis spectra, although it was assumed that 

they were FA-related by-products because no further purification was performed 

at the step of FA-NHS synthesis. The uncertainty of the other two peaks should 

not affect the identification of the MC2(FA) peak, because it would be easy to 

exclude peaks having the above UV-vis spectra and retention times. 
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Figure 8.7. amine-MC2 HPLC spectra (a) and UV-vis spectra (b) corresponding to the 

peak at 18.5 min. 

 

  

Figure 8.8. FA-NHS HPLC spectra (a) and UV-vis spectra corresponding to the peak at 

11.8 min (b), 15.7 min (c) and 16.7 min (d). 

 

After the confirmation of reactant peaks, the reaction mixtures prepared by 

methods 1 and 2 were then injected in turn, and their combined HPLC profiles 

are shown in Figure 8.9. Compared to the reactants, the first three peaks had 

the same retention times as those of the FA-NHS, indicating that they were from 
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FA-NHS. Peak B had the same retention time as the main peak of MC2-NH2, 

which together with its UV-vis spectrum (Figure 8.9b), suggests that peak B is 

from unreacted MC2-NH2. Peak A, with a retention time of 20.5 min, was the 

only new peak not found in the reactants, suggesting it is possibly from the 

reacted product. This was further confirmed by the UV-vis spectrum of peak A, 

where we can see characteristic absorption peaks of the DNA at 260 nm (likely 

due to the overlap of the DNA and FA peaks in this range) and an absorption at 

355 nm from the FA part. All this evidence strongly suggests that peak A is the 

MC2(FA) peak and that the conjugation reaction was successful. 

 

 

Figure 8.9. (a) HPLC spectra of reaction mixtures made by Method 1 (yellow colour) and 

Method 2 (red colour); (b) UV-vis spectrum corresponding to peak A at 20.5 min; (c) 

UV-vis spectrum corresponding to peak B at 18.67 min. 
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From this combined HPLC profile, it can also be seen that the yields of MC2(FA) 

prepared by Methods 1 and 2 are quite different. Peak A was found in both 

methods, showing that conjugation happened in both, but the HPLC profile of 

method 2 gave a large peak B with a small peak A, indicating that MC2-NH2 had 

not fully reacted, even though > 30 molar equivalent of FA-NHS was used. This 

is possibly due to the low solubility of FA-NHS in the DMSO/water mixture with a 

ratio of 1:1. According to the relative areas of peak A and B, the synthetic yield 

of MC2(FA) prepared by method 2 was estimated at 38%. In contrast, peak B 

was not observed in the HPLC profile of the product prepared by method 1, but 

only a large peak A, suggesting that almost all the MC2-NH2 had reacted, and 

that the synthetic yield for MC2(FA) was close to unity. This demonstrates that 

the DMSO:water (v:v) 3:1 ratio in Method 1 is more suitable for the conjugation. 

 

8.2.1.3 Purification of MC2(FA) via GNP-M2 mediated capture and 

dehybridization  

 

Although HPLC is the most common method for conjugated DNA purification, it 

is expensive and laborious. Therefore a simpler approach was proposed, using 

GNP-M2 mediated target capture and subsequently release. First, MC2(FA) 

was efficiently captured by the GNP-M2 via hybridisation, allowing easy 

separation and removal of non-target species by centrifugation, and then the 

captured MC2(FA) was released from the GNP-M2 conjugate by reducing salt 

concentration and heating-induced dehybridisation. To investigate whether this 

was feasible, UV-vis spectroscopy was employed to monitor the hybridisation, 

centrifugation and dehybridisation steps via absorbances of the supernatants. 
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Figure 8.10. The UV-vis absorption spectra of the supernatant at each washing step. 

 

Figure 8.10 shows strong absorbance with peaks corresponding to the typical 

absorption of FA-NHS found in the supernatant of the first washing step, 

indicating that a large amount of excess unreacted FA-NHS was removed from 

the pellets. During the second and third washing steps, absorption levels of the 

supernatants were much lower, and no detectable absorption was found in the 

supernatant of the fourth and last washing step, suggesting that all the 

unreacted FA-NHS were removed from the GNP-M2/MC2(FA) pellets during the 

first three washing steps; and that ~ 85% of the FA-NHS and related side 

products were removed  in the first washing step. Therefore purification of 

MC2(FA) appeared to be highly possible via capture by the GNP-M2 conjugate, 

followed by washing steps. 

 

Next, thermal dehybridisation was performed to release MC2(FA) from the 

GNP-M2/MC2(FA) pellets. Here, 0.8 mL of pure water, instead of MES buffer, 

was gently added to GNP-M2/MC2(FA) pellets to keep the pellets at the bottom 

of the tube. It is well-known that the stability of DNA duplex is strongly salt 

dependent, and pure water without added salt favours dehybridisation[400]. The 
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tube, without shaking, was heated to 80 ℃ to dehybridise the MC2(FA) from the 

GNP-M2 conjugate. After that the ‘water’ supernatant was removed, centrifuged 

(to remove any residue GNP-M2) and then checked by the UV-vis spectroscopy. 

The dehybridisation processes were carried out three times and the 

corresponding UV-vis spectra of the supernatants are shown in Figure 8.11. 
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Figure 8.11. Spectra of supernatants containing MC2(FA). 

Figure 8.11 shows the UV-vis spectra of these supernatants exhibiting 

absorption peaks at 265 nm and in the 330-360 nm range, typical for MC2(FA) 

as observed in the previous HPLC spectra (Figure 8.9b). Because all the free 

FA-NHS had been removed in previous washing steps, the absorptions here 

must have come from the MC2(FA) dehybridised from the pellets during heating 

in pure water. 

 

To show the difference between FA-NHS from the washing steps and MC2(FA) 

from the heating steps, UV-vis spectra from the second washing and the second 

heating steps are plotted in Figure 8.12. This clearly shows that the absorption 

peak of MC2(FA) in the 260-280 nm range was blue shifted by 10 nm compared 
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to that of FA-NHS, the result of DNA absorption at 260 nm, revealing that 

MC2(FA) was released from the pellet during thermal dehybridisation. These 

results confirm that GNP-M2 based MC2(FA) capture and subsequent 

heat-induced release was successful. This is a simple, effective way to separate 

and purify FA-modified DNA  
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Figure 8.12. Comparison of the UV-vis absorption spectra of the supernatants obtained 

during the washing step (black line) and heat-induced release step (red line). 

 

8.2.2 Preparation, analysis and purification of MC2(RGD) 

Arginine-Glycine-Aspartic acid (RGD) is an essential cell adhesion sequence 

recognised by cell surface receptors (integrins). It was first discovered by 

Pierschbacher and Ruoslahti in 1984[401]. Its selectivity can be further 

improved by designing cyclic RGD peptides[402] which show higher binding 

affinity[403] and stability[404, 405]. It has been reported that synthetic cyclic 

RGD peptides can selectively bind to the αVβ3 integrin, which is highly 

expressed in tumour vasculature (but not on blood vessels in normal tissues) 

and is associated with angiogenesis, malignant tumour growth and 
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metastasis[403, 406]. Targeting tumour vasculature by RGD peptides has 

drawn significant attention for cancer therapy and diagnosis, for example 

through the attachments of chemotherapeutic molecules[407, 408], imaging 

agents[409-415] and drug carriers[416-419]. Here we demonstrate that RGD 

can also be attached to the complementary DNA MC2, which can be used to 

develop an RGD linked GNP-DNA-DOX system for active targeting in the future. 

 

 
 

Figure 8.13. (a) Chemical structures of NHS-(PEG)8-Maleimide and (b) cyclo (RGDfC) 

(Molecular Formula: C24H34N8O7S).  

 

8.2.2.1 Preparation of MC2(RGD) 

 

RGD-attached MC2 (MC2-(PEG)8-RGD) was prepared via a two-step reaction 

(Figure 8.14), using NHS-(PEG)8-Maleimide (Figure 8.13a) as a 

heterofunctional linker. This first reacted with MC2-NH2 to form 

MC2-(PEG)8-Maleimide through the amide bond formation between NHS and 

primary amine, and then reacted with a thiolated RGD, cyclo (RGDfC) (Figure 

8.13b) to form MC2-(PEG)8-RGD through the thioether bond formation between 

maleimide and thiol groups. This reaction sequence is based on the different 

stabilities of the NHS ester (unstable, readily hydrolysed) and the maleimide 

(relatively stable) functional groups in the reaction media (pH 7.4 PBS).  . 
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Figure 8.14. Reaction schematic of MC2(RGD) preparation. 

 

The use of a PEG linker not only facilitates RGD attachment to the 5’ end of 

MC2 in two steps, but also gives the active targeted NDDS improved stability 

and prolonged circulation. Furthermore, as PEG length is also an important 

factor in ‘stealth’ effect, the PEG length of the linker can be adjusted by the PEG 

repeating units where required. For example, NHS-(PEG)12-Maleimide and 

NHS-(PEG)24-Maleimide are both commercially available. Here, a PEG linker 

containing 8 PEG repeating units (NHS-(PEG)8-Maleimide) was chosen to 

demonstrate the feasibility of the RGD-MC2 conjugation, which can be further 

optimised in future work. 

 

In the first step, a 100-fold molar excess of NHS-(PEG)8-Maleimide was reacted 

with amine-modified MC2 in PBS (pH7.4) to ensure complete reaction of the 

MC2-NH2. After 2 h the reaction mixture was purified by ethanol precipitation to 

remove the excess unreacted NHS-(PEG)8-Maleimide which could interfere with 

the second step reaction. 

 

After precipitation by ethanol and dried by N2, the obtained DNA precipitates 
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were dissolved again in pH 7.4 PBS and then reacted with excess HS-RGD 

(DNA: HS-RGD molar ratio = 1:2) to form MC2-(PEG)8-RGD. The reaction 

process was monitored by HPLC. The final product was purified by HPLC 

instead of ethanol precipitation, because the latter can separate DNA from a 

non-DNA containing compound, but not MC2-(PEG)8-RGD from MC2-NH2 and 

MC2-(PEG)8-Maleimide. 

 

8.2.2.2 HPLC analysis and purification of MC2-(PEG)8-RGD 

 

Three solvent gradients, (5-95% B) 30 min, (5-70% B) 30 min and (5-40% B) 40 

min were tried for HPLC analysis to obtain the maximum retention time 

differences for MC2-NH2, MC2-(PEG)8-Maleimide and MC2-(PEG)8-RGD, in 

order to facilitate MC1-(PEG)8-RGD purification. The gradient of RP (5-40%) 40 

min was found to be the optimum condition and was chosen for HPLC analysis 

and purification. 

 

Only a single peak at ~15 min was observed in the HPLC profile of MC2-NH2, 

seen here in Figure 8.15a, which also shows the characteristic DNA absorption 

peak at 260 nm in the corresponding UV-vis spectrum; this suggests that 

MC2-NH2 was eluted out at ~15 min. One may note that the retention time of 

MC2-NH2 was different from that in the MC2(FA) part(18.5 min). There are two 

reasons for this earlier retention time: MC2-NH2 in this part (new MC2-NH2) is 

shorter than that used in MC2(FA) as it lacks three cytosines; also, the HPLC 

gradient used here is (5-40% B) 40min instead of (5-30% B) 40min in the 

MC2(FA) part  
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Figure 8.15. (a) HPLC profile of new MC2-NH2 and (b) UV-vis spectrum of the main peak 

at 15 min. 

 

The HPLC profile of the reaction mixture at the first step, before ethanol 

precipitation, with the UV-vis spectrum of the peak at 19.5 min, is shown in 

Figure 8.16. As the reaction mixture contained DMSO, a sharp peak at around 

2.9 min was assigned to DMSO. Apart from the DMSO peak, the retention time 

of the main peak (Peak 1) appeared at 19.5 min, 4.5 min later than that of 

MC2-NH2, confirming it as a new peak. Moreover, it has the characteristic 

absorp.tion peak of DNA at 260 nm (Figure 8.16b), suggesting that this peak 

was most likely the desired MC2-(PEG)8-Maleimide. Its yield was estimated at 

83%, based on the relative area calculation. 

 

 

 

Figure 8.16. (a) HPLC profile of MC2-(PEG)8-Maleimide and (b) UV-vis spectrum of the 

peak at 19.5 min. 
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After confirmation of the peaks from MC2-NH2 and MC2-(PEG)8-Maleimide, the 

reaction mixture of the second step was injected, and its HPLC profile is shown 

in Figure 8.17. Compared to Figure 8.15 and Figure 8.16, the main peak 

appears at 21.5 min, 6.5 min later than MC2-NH2 and 2 min later than 

MC2-(PEG)8-Maleimide. It also displays the DNA characteristic absorption peak 

at 260 nm (Figure 8.17b), confirming that the main peak at 21.5 min is due to 

MC2-(PEG)8-RGD. The HPLC results suggested that RGD has been 

successfully attached to MC2 to form MC2-(PEG)8-RGD via a two-step reaction 

using NHS-(PEG)8-Maleimide-mediated cross-linking. Based on the relative 

peak areas, the overall yield of MC2-(PEG)8-RGD was estimated as being 71%. 

 

Figure 8.17. (a) HPLC profile of MC1-(PEG)8-RGD and (b) UV-vis spectrum of the main 

peak at 21.5 min. 

 

In view of the small amount of DNA ( 50 nmol), MC2-(PEG)8-RGD was purified 

using the same C18 analysis column, but with the injection of 200 μL. Again, 

due to the intensity of MC2-(PEG)8-RGD beyond the HPLC detection range, its 

peak and retention time in Figure 8.18 were not shown properly, but this did not 

affect the purification process. The purification was complete after two injections 

and the collected fraction could be lyophilised for assembly of GNP-M1/ 

MC2-(PEG)8-RGD and future cell-based studies. 
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Figure 8.18. (a) HPLC profile of MC2-(PEG)8-RGD purification and (b) UV-vis spectrum of 

the collected fraction with retention time of 21.2 min. 

 

8.3 Conclusion 

 

A highly promising active targeting ligand, folic acid (FA), has been successfully 

conjugated to a complementary DNA to form MC2(FA). Moreover, the 

purification and assembly of MC2(FA) to form an active targeted 

GNP-M2/MC2(FA) delivery system can be achieved simultaneously by 

hybridisation to a GNP-M2 conjugate, followed by simple washing steps. In 

addition, another active targeting ligand, cyclo (RGDfC), modified MC2 has also 

been prepared successfully via a two-step reaction using a PEGylated 

heterofunctional cross linker (HNS-PEG8-maleimide). These conjugation 

reactions are simple and can be performed in two steps under mild conditions. 

Due to the ease of DNA hybridisation, surface modifications of the 

GNP-DNA-DOX system can be readily achieved by simply modifying the 5’ end 

of the complementary DNA MC2. Therefore it is relatively straightforward to 

graft  functional ligands onto the GNP-dsDNA system, making it highly 

attractive for the development of effective, targeted drug delivery for cancer 

therapy. However, owing to the time constraint of the project it is not possible to 

carry out the cellular evaluations of such active targeting systems (e.g. cell 

specific uptake, delivery efficiency and cell specific cytotoxicity etc). These will 
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most likely be carried out by future group members. 
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9 General conclusions and future research 

 

9.1 Summary 

 

All of the three i-motif DNA nanomachines we designed containing one to three 

i-motif domains (M1, M2 and M3) have been successfully used to form 

pH-responsive dsDNA-DOX conjugates, exhibiting similar critical DOX  

releasing pH points and pH-dependent DOX binding/releasing profiles. These 

conjugates form the functional part of pH-responsive nanocarriers, where DOX 

is readily loaded in native format at physiological pH to form dsDNA-DOX 

conjugates, and released at acidic pH (around 5.2-5.4 for conjugates alone) in 

response to the formation of i-motifs that trigger disassembly of the conjugates.  

 

dsDNA-DOX conjugates have been successfully conjugated to GNPs to 

develop a new pH-responsive targeted GNP-dsDNA drug nanocarrier which is 

capable of rapid, efficient and pH-triggered drug release. The surface of this 

nanocarrier can be ‘covered’ by PEGs via PEGylation of the 5’ end of the 

complementary DNA. It has been proven that PEG modification does not alter 

DOX release profiles, but can provide an effective ‘shield’ to improve stability 

against nuclease degradation and resistance to non-specific serum protein 

adsorption of the nanocarrier. Nanocarrier stability can be further improved by 

increasing PEG length and using branched PEGs.  

 

It has been confirmed that the GNP-dsDNA(PEG) nanocarrier can efficiently 

deliver DOX into HeLa cells in the form of intact conjugates without dissociation 

via the endocytic pathway, and release the loaded DOX inside cancer cells to 
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achieve similar cytotoxicity to free DOX. This nanocarrier has also been 

successfully used to deliver DNA-binding but cell membrane-impermeable 

agents (e.g. a dinuclear Ru-complex and PI). Therefore, this nanocarrier can act 

as a general, efficient intracellular delivery platform not only for DOX but also for 

other DNA intercalating agents, such as other drugs of the anthracycline family 

and DNA-binding agents. 

 

This pH-responsive GNP-dsDNA(PEG) nanocarrier displays numerous features 

necessary for an ‘ideal’ drug nanocarrier for cancer treatment: uniform 

nanoscale size (< 100 nm); the potential for resisting non-specific interaction in 

vivo and prolonging blood circulation time (via PEGylation); a high capacity for 

simple drug loading in native format without involving any chemical modification 

and/or coupling; pH-trigger release (via intracellular endosomal/lysosomal 

acidic environments); it is non-toxic, biocompatible, water-soluble, and suitable 

for freeze-drying for long-term storage.  

 

In addition, I have demonstrated that specific targeting ligands (i.e. 

cyclo(RGDfC) and folic acid) can be successfully grafted onto the surface of the 

nanocarrier by straightforward coupling chemistry to the 5’ end of 

complementary DNA, making the development of active targeted drug delivery 

systems highly feasible. Furthermore the GNP can be readily replaced by GNRs 

or Fe@Au NPs, allowing the development of more effective, multifunctional drug 

nanocarriers that combine multiple therapeutic modalities and imaging ability. 

 

In summary, the inorganic nanoparticle-pH-responsive DNA based drug 

nanocarrier developed in this thesis appears to be a very promising platform for 

drug delivery with the potential to achieve effective, multiple modal therapeutic 

treatments for cancer patients with significantly reduced side-effects. 
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9.2 Future research 

 

1) PEG is known to play a key role in determining the in vitro and in vivo stability 

of drug delivery systems, as demonstrated in Chapter 5. In the future, therefore, 

PEG can also be introduced to the GNP-M2/MC2(FA) system as required, by 

preparing MC2(PEG)FA instead of MC2(FA) conjugate. Figure 9.1 shows the 

schematic of proposed MC2(PEG)FA preparation. Firstly FA-NHS is prepared 

using the same procedure as in Chapter 8, and this can then react with 

cysteamine to form FA-SH [381]. By employing a heterofunctional PEG 

linker[420] (Maleimide-PEG-NHS), MC2-PEG-Maleimide can be obtained by 

the amide bond formation between MC2-NH2 and the PEG linker, which will 

further react with FA-SH to eventually form PEG modified MC2-FA conjugate 

(MC2(PEG)FA), with potential for improved stability and stealth effect. 
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Figure 9.1. Schematic of MC2-PEGn-FA preparation. 
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2) Further cell studies will be performed on the active targeted drug delivery 

systems (i.e. GNP-dsDNA(FA)-DOX and GNP-dsDNA(RGD)-DOX systems) to 

investigate their cell uptake specificity and cell-specific cytotoxicity.  

 

3) Cell based evaluation of multi-functional drug nanocarriers: 

GNR-dsDNA(PEG) and Fe@Au-dsDNA(PEG) systems can be evaluated with 

or without the exposure of an infrared laser light (for the GNR system) or an 

alternating magnetic field (for the Fe@Au system) to evaluate effects and 

synergy of combined chemo/photothermal or chemo/hyperthermia treatments 

against single modal treatments. 

 

4) The most promising of these new drug delivery systems at cellular levels can 

be further studied in in vivo animal models to investigate their real pre-clinical 

potential.  
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