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Abstract

Volcano ground deformation due to magma movement in the subsurface is commonly

modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a ho-

mogeneous, isotropic, elastic half-space, and representing respectively a magma cham-

ber and a dike. When datasets are too complex to be explained by a single deformation

source, the magmatic system is often represented by a combination of these sources and

their displacements fields are simply summed. By doing so, the assumption of homo-

geneity in the half space is violated and the resulting interaction between sources is

neglected.

This thesis seeks to determine the limits in which the combination of analytical sources

is justified, by testing the analytical surface displacements against the solutions of cor-

responding 3D finite element models, which account for the interaction between sources.

For models with dike and magma chamber aligned vertically or along the dike-strike

direction, the calculated discrepancies, and therefore the source interaction, are in-

significant (< 5%), independently of the source separation. Although the discrepancies

depend on the physical model parameters and can not be generalized, for models with

a magma chamber next to a dike (in the direction perpendicular to the dike-strike), or

for horizontally or vertically aligned pressurized magma chambers, care must be taken

for source separation of less than 4 times the radius of the magma chamber as the

discrepancies can reach 20% at a wall-to-wall distance of 0.5 source radii. Furthermore,

a statistical study of the retrieved source parameters employing an inversion scheme

(based on analytical solutions, hence neglecting the source interaction), demonstrates

the difficulty of solving the structure of vertically layered magmatic system without

additional, e.g. petrological, constraints. Finally, modelling the dike employing various

FE methods has pointed out the fact that the rheology of the magma needs to be

integrated in future numerical modelling approaches.
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Chapter 1

Introduction

1.1 Volcanic ground deformation

One of the first theories linking volcano deformation and subsurface processes is at-

tributable to the geologist C. von Buch. In 1815, following observations at basaltic

shields in the Canary islands, von Buch proposed the ‘crater of elevation’ theory, where

an inflating deep magmatic source would induce the uplift of originally horizontal lava

flows, the related expansion leading to the collapse of a summit caldera (Celâl Sengôr,

2003, p.83). From the early nineteen hundreds onwards, deformation surveys in vol-

canic areas have become more and more common, due to the development of both

ground- and space-based geophysical methods such as trilateration or the Global Posi-

tioning System (GPS). The deformation time series gathered, in few instances spanning

over 50 years (e.g. ca. 100 years at Aira caldera, Japan and Kilauea, Hawaii, Dvorak

and Dzurisin, 1997), has concurred to a better understanding of magmatic processes

in general, to a better knowledge of the magmatic plumbing system of specific vol-

canoes, hereby improving their monitoring. In the following sections, I first consider

some potential sources of deformation in volcanic areas and the techniques employed to

monitor the deformation at the surface. Then, after describing common displacement

patterns observed, I introduce modelling methods of the ground deformation, aiming

at retrieving the source parameters. Finally, I state the aims of this thesis and give an

overview of Chapter 2-6.

1.1.1 Potential sources of surface deformation

Ground deformation in volcanic areas reflects the response of the host rock to stress

changes within the crust. The stress changes can be due to:

1



§1.1 Volcanic ground deformation 2

1. Isostatic adjustments, regional or local uplift/subsidence due e.g. to melting ice-

caps, mantle plumes, or lava (un)loading of the edifice (Grapenthin et al., 2010;

Sparks, 2003).

2. Tectonic processes, modulated by the volcano activity, e.g. regional displacements

due to plate tectonics, etc. (Roman et al., 2008).

3. Surface processes related in particular to magma extrusion (e.g. dome building,

lava flows) or gravitational effect (e.g. flank collapse, edifice subsidence).

4. Magma transfers into/from a magmatic reservoir (Decker et al., 1983; Dvorak

and Dzurisin, 1997; Segall, 2010; Tryggvason, 1986).

5. Exsolution of the volatiles in a stagnating, cooling, magma within the magma

chamber or conduit (Anderson et al., 2010; Huppert and Woods, 2002; Sparks,

2003; Voight et al., 1999).

6. Hydrothermal activity (Camacho et al., 2011; Peltier et al., 2009; Price, 2004).

Amongst the relatively local subsurface processes listed above (processes (4)-(6)),

magma transfers contribute the most to surface deformation. When the magma fills

or departs from a magma reservoir, when it propagates through horizontal sills or

sub-vertical dikes and conduits, sometimes reaching the surface, the surrounding crust

must accommodate the volume change and the related pressure change exerted at

the magma/crust interface by deforming. Depending on the intrusion rates and rock

temperature, the deformation behaviour of an elastic crust can be either brittle (high

intrusion rate, low temperature), or linear-elastic and ductile (low intrusion rate, high

temperature). In the following chapters, a ‘linear-elastic’ behaviour will simply be

referred to as ‘elastic’. Examples of brittle and elastic surface deformation patterns

include, respectively, normal faulting and graben formation in rift zone (Dzurisin, 2000;

Pollard et al., 1983), and edifice inflation/deflation (e.g. Bianchi et al., 1987; Bonforte

et al., 2008; Decker et al., 1983; Dvorak and Dzurisin, 1997; Genco and Ripepe, 2010;

Janssen, 2007; Mogi, 1958; Palano et al., 2012; Segall, 2010; Wadge et al., 2006). In

the latter example, inflation and deflation patterns usually correspond, respectively,

to the pressurization and depressurization either of the magma chamber or within the

hydrothermal system. Magma chamber pressurization can be attributed, as mentioned

above, to the intrusion of new magma. However the magma chamber volume increase
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can be also related to the exsolution of the volatiles (mostly H2O) of a stagnating,

cooling, magma within the chamber. Similarly, surface inflation can be measured when

fluids of the hydrothermal system become entrapped and pressurized in a layer sealed

by mineral deposits, close to the magma/rock interface (Dvorak and Dzurisin, 1997;

Peltier et al., 2009). In all cases, when the stresses applied on the magma chamber

or sealed aquifer walls overcome the confining, lithostatic pressure, fracturing occurs

and magma and volatiles are released via magmatic intrusions, magmatic conduit, or

fumaroles. This depressurization of the system is associated with a surface deflation.

More recent studies have also shown that shear stresses produced either on the conduit

wall as the magma ascends towards the surface (Green et al., 2006; Anderson and Segall,

2011), or in a magma chamber, can also contribute to the deformation measured at

the surface (Anderson and Segall, 2011). Finally, it is worth mentioning, that ground

deformation does not always accompany the transfer of magma between reservoirs, e.g.

when there is no volume imbalance between the magma entering and leaving a specific

part of the magmatic system, hence no net surplus or deficit.

1.1.2 Monitoring methods

The diversity of the deformation sources is echoed in the diversity and complexity of the

surface deformation patterns measured in volcanic settings. In addition, the amplitude

and extent of the surface deformation field also depend on the mechanical properties of

the crust and on the topography. Various geodetic monitoring methods are used, both

ground- and space-based, to allow the detection of slight and slow displacements, or

covering a broad area in space and time (Table 1.1).

Standard volcano deformation techniques record temporal variations in either:

� benchmark locations, using GPS (episodic and continuous stations), and InSAR;

� relative distances (horizontal and vertical), using Electronic Distance Measure-

ments (EDM), precise levelling, strainmeters, extensometers measuring the open-

ing of fractures (Schmid et al., 2012, Piton de la Fournaise, Réunion);

� angles, using tiltmeters.

GPS, tilt and strain measurements can be made either episodically or continuously,

their datasets being in general streamed towards a centre where they are processed,
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Method Achievable accuracy Common network extent

EDM <1 cm <50 km
Iwatsubo and Swanson (1992); Stiros et al. (2010)

Precise levelling <5 mm <100 km
Murray and Wooller (2002); Dzurisin (1992a)

Strainmeter 10−12 <50 km
Sparks (2003); Linde et al. (2010)

Tiltmeter 0.1 µrad <10 km
Dzurisin (1992b); Voight et al. (1998)

GPS cm to <1 cm <100 km
Segall and Davis (1997); Janssen (2007); Bonforte et al. (2008); Shepherd et al. (1998)

InSAR cm to <1 cm >100 km
Lu et al. (2000); Pritchard and Simons (2002)

Table 1.1: Standard methods of detection of the deformation signal: achievable accuracies
and common network extent. InSAR accuracy is given in the direction of the line-of-sight. The
achievable spatial coverage of the deformation signal varies depending on the signal itself (i.e.
as well as its source), on the sensitivity of the instrument, and on environmental factors such
as topography, weather conditions, etc.

e.g. in volcano observatories. More recently, InSAR has been increasingly used in

volcano monitoring. Indeed, this remote sensing method presents the advantage of de-

tecting small displacements over large areas, however with a very low sampling rate.

On the other hand, GPS has a high sampling rate, but low spatial coverage. Combin-

ing these two methods allows us improving potentially the ability to forecast eruptions

(Massonnet et al., 1995; Lu et al., 2002; Dzurisin, 2003; Pritchard and Simons, 2002).

Ideally, volcano deformation surveys must take into account the process studied, the

accumulated knowledge about the specific volcanic system, in order to constrain the

expected deformation spatially and temporally and consequently choose the appropri-

ate method(s) and equipment(s).

Theoretically, modern methods like GPS or InSAR allow detecting displacements

associated with small-moderate eruptions (Volcanic Explosivity Index of 1-2, Dzurisin,

2000). However, in reality, measurements of surface displacements in volcanic areas

are hindered by difficult access or financial limitations. Hence, ground deformation

monitoring is often greatly improved by combining several of the methods mentioned

above (Palano et al., 2007; Segall, 2013; Dzurisin, 2003; Voight et al., 1999), and by

complementing it with other geophysical (seismology, gravity or resistivity surveys),

geological, petrological and geochemical datasets for a better understanding of the
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evolution of the magmatic system.

1.1.3 Surface displacement patterns

As volcano-seismicity or gas monitoring, surface displacements monitoring is a com-

mon method to measure and forecast the short-term activity of the volcano. Surface

deformation is not systematically observed prior or during an eruption (e.g. Mount

St Helens, 2004-2010 eruption, Palano et al., 2012; Lascar volcano, Chile, eruptions

between 1993-2000, Pritchard and Simons, 2002). When observed, however, surface

deformation points towards potentially active volcanoes. For instance Pritchard and

Simons (2002) have detected a ‘background level’ deformation of ≈2 cm/yr at various

South American volcanoes. Sometimes detectable months before the onset of the erup-

tion, surface deformation is also one of the earliest signs of volcanic unrest (Dzurisin,

2003; Dvorak and Dzurisin, 1997; Sparks, 2003; Linde et al., 1993), e.g. significant de-

formation has been observed at Mount Peulik volcano, Alaska, considered a dormant

volcano, at least a year before the first earthquake swarm (Lu et al., 2002).

Volcanic deformation patterns are usually complex and irregular, however many

eruptions are characterized by regular pressure-cycles such as inflation-deflation pat-

terns (Figure 1.1). Prior to an eruption, a radial inflation pattern is likely to be the

surface expression of the magma chamber pressurization, with the maximum amplitude

located above the deformation source. The period of inflation can vary in duration from

few weeks to months (Dvorak and Dzurisin, 1997), even at the same volcano. The infla-

tion rate ranges from 0.1 to 100 cm/yr (Fournier et al., 2010, 2012), and the maximum

amplitude can reach more than 100 m, e.g. during the intrusion of a cryptodome like at

Mount St Helens in 1980 (Lipman et al., 1981, p.122). In contrast, deflation rates can

be rapid relative to the inflation rates, e.g. 10-100 mm/day but only a few mm/day,

respectively, at Kilauea, Hawaii (Dvorak and Dzurisin, 1997). Deflation is assumed to

reflect the depressurization of the magma chamber, and the propagation of the magma

through dikes or a preexisting conduit. Dikes up to tens of kilometres length and few

meters wide can be emplaced in less than a few hours (Dvorak and Dzurisin, 1997).

They produce at the surface a characteristic ‘ridge-trough-ridge’ pattern (Pollard et al.,

1983), with deflation above the dike encompassed by two inflating areas. If, and when,

the magma withdrawn from the magma chamber reaches the surface, either via a dike
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(i.e. fissure eruption) or a conduit, the deflation rate decreases rapidly together with

the rate of pressurization of the magma chamber. For instance, a drop in extension

rate from 25 to 4 cm/yr was observed at Pu’u O’o, Hawaii, when the activity passed

from intrusive to extrusive (Cayol et al., 2000).

While at stratovolcanoes significant displacements tend to be localized within few

meters to kilometers from the vent (Dvorak and Dzurisin, 1997), they can, at calderas,

be detected as well over a much broader area of more than 100 km2 (Dvorak and

Dzurisin, 1997). With the improvement of equipment (amongst which is InSAR technol-

ogy) and the increasing duration of the ground deformation datasets, inflation-deflation

cycles have been revealed at many magmatic system (Figure 1.1). These exhibit pe-

riods ranging from few minutes (Genco and Ripepe, 2010), few hours or days (Voight

et al., 1998; Anderson et al., 2010) to several years (Mattioli et al., 2010). The inflation

and deflation rates are related to the pressure difference between the deeper (feeding)

reservoir and the shallower (fed) chamber (Dvorak and Dzurisin, 1997). Many volca-

noes inflate rapidly at first, then inflation levels out before a rapid deflation occurs.

When deformation monitoring help predicting the short-term eruptive behaviour of

a volcano, deformation modelling attempts to image the plumbing system and predict

the evolution of the volcanic system in the future.
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1.2 Modelling of volcanic ground deformation

Mathematical models are a simplification of a natural process or system, represented

by a set of equations. In volcano deformation studies, much efforts have been made to

develop mathematical models in order to determine the geometry, depth and physical

parameters of the deformation source such as pressure change. More recently, the short-

period deformation signals such as tilt and strain (Voight et al., 1998) have also been

modelled in relationship with the release of the volatiles of the magma and with the

stresses exerted by the rising magma on the conduit walls (Green et al., 2006; Watson

et al., 2000; Nishimura, 2009; Iguchi et al., 2008; Albino et al., 2011). Analytical and

numerical modelling are two different yet complementary possible approaches. On the

one hand, analytical models are very efficient computing-time wise, and the source pa-

rameters retrieved with inversion schemes are accurate enough relatively to the spatial

and temporal accuracy of the data available. On the other hand, numerical models are

often more realistic, can integrate several physical processes (Currenti et al., 2011; Al-

bino et al., 2011; Collinson and Neuberg, 2012), and can be inverted for sources whose

geometry is not defined a priori (Trasatti et al., 2011).

Analytical models of volcano deformation are available for sources of various simple

geometries generally embedded in a homogeneous, isotropic, elastic half-space. Magma

Figure 1.1 (preceding page): Cyclic inflation-deflation ground deformation patterns in
various volcanic settings and at different time-scales. A. Mount St Helens, Washington.
Inflation-deflation cycles, with period of few hours, as observed at the NDM tiltmeter in early
2008, showing episodic tilt activity only before mid-January (modified after Anderson et al.,
2010; B. Stromboli volcano, Italy. Inflation-deflation cycles, with period of few minutes,
recorded at the LSC, OHO and LFS tilt stations, showing inflation before the explosive onset,
marked by gray lines (modified after Genco and Ripepe, 2010; C. Soufrière Hills Volcano,
Montserrat. Short-term tilt cycles with period of few hours recorded between January 1-
6, 1997 and trend leading up January 1, 1997 (left, modified after Voight et al., 1998) and
long-term inflation-deflation cycles since 1998, with period of few months-years, measured by
radial component of MVO1 GPS continuous station (red) and by vertical component of HARR
GPS station (black), compared with seismic and SO2 flux measured with COSPEC (green) and
DOAS (blue) (right, modified after Cole et al., 2012); D. Krafla caldera, Iceland. Elevation
change of benchmark FM5596 situated in the middle of the caldera with comparison to a
benchmark located 12 km to the South. Cycles last few months and are limited by eruption
(modified after Dvorak and Dzurisin, 1997); E. Kilauea volcano, Hawaii. Tilt cycles of
few days recorded between May and October 1983 (modified after Dvorak and Dzurisin, 1997);
F. Yellowstone caldera, Wyoming. Inflation-deflation profiles between Lake Butte and
Canyon Junction measured in 1976 and from 1983 to 1993. The deformation rates varied: after
a measured uplift at 22 mm/yr during 1976-84, no deformation has been detected during 1984-
85, before a deflation occurring between 10-30 mm/yr between 1985-93 (modified after Dvorak
and Dzurisin, 1997)
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chambers, sills, and pressurized hydrothermal systems are either modelled as a pressur-

ized point source (Mogi, 1958; Okada, 1992) or as finite sources of various shapes, such

as a spheroid (McTigue, 1987), a horizontal penny-shaped or elliptical crack (Fialko

et al., 2001a), or a saucer-shaped sill (Galland and Scheibert, 2013). Magmatic conduits

and dikes are modelled either as vertically elongated ellipsoid (Bonaccorso and Davis,

1999), as vertical or inclined finite elliptical pressurized cracks (Pollard and Holzhausen,

1979; Davis, 1983), or as finite rectangular dislocation sources opening evenly (Okada,

1985, 1992). Finally, some models account for visco-elastic crustal behaviour (Dragoni

and Magnanensi, 1989; Piombo et al., 2007).

The following study concentrates on the surface deformation related to volume

changes of magma chambers and dikes within an elastic crust. The Mogi point source

and Okada rectangular dislocation source, hereafter referred to as ‘Mogi’ and ‘Okada’

models, are certainly the most widely used analytical models to calculate surface de-

formation related to the pressurization of a magma chamber or the opening of a dike

(e.g. Abidin et al., 2005; Hughes, 2011; Sanderson et al., 2010; Stiros et al., 2010;

Sturkell, 2003). This is due to the fact that they explain well many deformation pat-

terns through simple equations governed by only a few parameters (Masterlark, 2007;

Dvorak and Dzurisin, 1997). These two analytical models simplify the geometry and

physical properties of the magmatic system and its surrounding. The elasticity as-

sumption implies that displacements on the source walls must be small compared to

the source main dimensions. The deformation source is embedded in a homogeneous

and isotropic elastic half-space, the half-space assumption implying a flat and stress-

free surface. For the Mogi source to be considered a point source, it must be located at

a depth more than five times its radius (Lisowski, 2007). In this simplified approach,

several aspects are neglected: the properties of the magma within the source, such as

its compressibility, surface topography, and 3D heterogeneities in the crust.

Several studies comparing numerical and analytical results have quantified the errors

introduced when these aspects are neglected. Neglecting the topography or variations

in the mechanical properties of the crust can introduce significant errors when predict-

ing the surface deformation and when estimating the volume change of the source or

its depth (e.g. Cayol and Cornet, 1998; Long and Grosfils, 2009; Lungarini et al., 2005;

Masterlark, 2007; de Zeeuw-van Dalfsen et al., 2012; Williams and Wadge, 1998).
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In general, the geometry of magmatic systems is often complex, and they are of-

ten represented by a combination of several sources if a single source model does not

explain a complex dataset. Many magmatic systems are modelled with a magma cham-

ber where the magma originates and propagates either towards the surface or laterally

through a dike or conduit. Examples for this set of models are Mt Etna, Sicily (Palano

et al., 2008), Stromboli Volcano, Aeolian Islands (Bonaccorso et al., 2008), Kilauea

Volcano, Hawaii (Yang and Davis, 1992), Izu islands, Japan (Nishimura et al., 2001).

Occasionally, magma chambers are also feeding a juxtaposed dike, i.e. side-by-side

in the strike-perpendicular direction of the dike, e.g. at Krafla Volcano, Iceland (Ar-

nadóttir et al., 1998), or at Kilauea Volcano, Hawaii (Montgomery-Brown et al., 2010).

When the magmatic system is modelled with several magma chambers, those are either

vertically stacked or more often stacked with a horizontal offset, e.g. for Unzen Vol-

cano, Japan (Kohno et al., 2008), Long Valley Caldera, California (Tiampo et al., 2000).

In cases such as those, the different analytical deformation sources are combined,

and their respective deformation fields are summed. However, by doing so, the homo-

geneous half-space assumption is violated, in the sense that the source interaction is

neglected. The effect of the source interaction has been addressed in rock mechanics

and engineering studies in 2 and 3D. However they focus on cracks, holes or cavities

subjected to a far-field tension or compression and on the estimation of the effective

crustal elasticity or stress intensity factors (Gdoutos, 1981; Gorbatikh et al., 2007;

Grechka and Kachanov, 2006; Kachanov, 1987, 2003). Generalizing for 2D cavities,

Jaeger et al. (2007, p.250) indicates that if the cavity is not located too close to any

adjacent cavities or other boundaries, such as the ground surface, the infinite rock mass

assumption (homogeneous half-space) is reasonable. Accordingly, the nearest distance

to another cavity or other type of boundary should be at least three times the charac-

teristic dimension of the cavity in order for this assumption to be met. In the context of

volcano deformation however, the effect of source interactions, and for various arrange-

ments of Mogi and Okada sources in 3D, has not been addressed yet. Such interaction

introduces uncertainties additional to those eventually caused by neglecting topogra-

phy and heterogeneities. It is my aim of the present study to isolate and quantify these

uncertainties.



§1.3 Project aims 11

1.3 Project aims

This project seeks to determine the limitations of combining several Mogi and Okada

sources, to quantify the errors made by violating fundamental assumptions and ne-

glecting the source interactions, and to study the implications for numerical modelling

approaches of magma storage. This will be addressed by:

� testing the combined analytical solutions against the comprehensive numerical

solutions of several sets of models, summing analytical Mogi and Okada solutions

and quantifying the errors induced;

� testing a finite analytical model of a spherical magma chambers (McTigue, 1987),

to compare with the discrepancies calculated with the Mogi model;

� modelling the dike with several numerical methods, to investigate how this choice

and its physical meaning can influence the discrepancies between analytical and

numerical models;

� performing analytical inversions of the numerical solutions, in order to estimate

how these uncertainties map into the determination of inverted model parameters.

1.4 Thesis overview

The overall structure of this study takes the form of six chapters, including this in-

troductory chapter. Chapter Two describes and gives the limitations of the analytical

models of magma chambers and dikes either used in the combined analytical models

(Mogi, 1958; McTigue, 1987; Okada, 1992) or leading to a numerical method (Davis,

1983). Chapter Three presents the various numerical methods employed to model

magma chambers and dikes, and their calibration against analytical solutions. Chap-

ters Four and Five are concerned with the main questions of this study. Chapter 4

gives a description of the geometry and physical parameters of the computed models,

including three case studies, and quantifies the discrepancies between analytical and

numerical models. Chapter Five presents the results of analytical inversions of several

of the numerical models performed in Chapter Four, and summarizes the finding of

both chapters. Finally, the conclusion gives a brief summary and discussion of the

findings, and identifies topics of future research.



Chapter 2

Analytical modelling of dike and

magma chamber

Analytical solutions are obtained from sets of equations representing simplified source

and medium properties. Many analytical models were developed to account for various

source geometries and various crustal rheologies. Because of their simplicity and wide

suitability to observed data, the two predominantly used sources are the Mogi (1958)

and Okada (1992) models, respectively representing a point source and a rectangular

source in an infinite homogeneous and isotropic half-space

2.1 Principles and previous studies

The first volcanological studies relating surface deformation with a magmatic reservoir

at depth have used simple point source models embedded within an elastic crust (Ander-

son, 1936; Mogi, 1958). Since then, the models have been diversified and have become

more complex to account for the variety of the magmatic settings, for the complexity

of the deformation field, and more recently, supported by the increase in computing-

power, for more detailed datasets, with high spatial and temporal resolution. The main

advancements in analytical modelling have concerned three main points: the geometry

of the deformation sources, the crustal rheology, and the magma properties.

In general, magmatic systems are not yet well understood. This is stressed by the

coexistence of the traditional magmatic model, consisting of a big, fluid-filled magma

chamber from which dikes or a conduit originate, with more recent models consist-

ing of a system of stacked sill-like bodies with a fluid centre and “mushy” periphery

(Figure 2.1). Analytical models cannot account for the complexity of the magmatic

12
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“mush”, however solutions for various simple 3D geometries have been found in addi-

tion to the earlier point source solution used in particular by Mogi (1958). Amongst

those solutions, the most common source geometries include pressurized finite spheres

(McTigue, 1987), pressurized prolate or oblate ellipsoids (Davis, 1986; Yang et al., 1988;

Bonaccorso and Davis, 1999), pressurized penny-shaped bodies (Fialko et al., 2001b),

pressurized rectangular source (Davis, 1983), and rectangular (Okada, 1985, 1992) or

cylindrical (Bonaccorso and Davis, 1999; Nishimura, 2009) dislocation sources, which

model either magma chambers, sills, dikes or conduits (Figure 2.1). When the sur-

face displacements cannot be explained by a single deformation source, the magmatic

system is thought to be more complex, and several of these analytical models are com-

bined. This can also be the case if alternative data sets such as seismic tomography or

gravity are jointly considered.

Compared to the diversity of the source geometries now available through analytical

models of surface deformation, including a more complex medium or magma rheology

quickly leads to equations which can only be solved numerically. However, although

almost all analytical models are designed for an elastic homogeneous and isotropic half-

space, now analytical expressions have been extended to calculate the deformation field

to visco-elastic half-space (Bonafede and Ferrari, 2009; Piombo et al., 2007). Moreover,

in order to model the change in elastic properties of the medium directly surrounding

the magma chamber, due to its high temperature, Bonafede and Ferrari (2009) have

also derived the displacements due to a pressurized magma chamber surrounded by a

visco-elastic shell in a homogeneous and isotropic half-space.

Similarly, in the vast majority of analytical models, the magma is considered as

an incompressible fluid. However, some authors have expressed the surface uplift in

relation with the volume change of a spherical source filled with magma of depth-

independent compressibility (Delaney and McTigue, 1994; Johnson, 1992; Johnson

et al., 2000), although the expressions to calculate both horizontal and vertical sur-

face displacements caused by the volume change of a compressible magma within a

reservoir are not given explicitly. Other authors have focused on the discrepancies in

volume change during transfer of compressible magma between sources of different ge-

ometries (Rivalta and Segall, 2008). Finally, some studies have recently coupled solid

mechanics and conduit flow in order to expand the use of surface deformation data

beyond the estimation of location and volume change of magmatic sources and exploit
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(a) (b)

Figure 2.1: (a) A representation of a magmatic system, the ‘magmatic mush column’, where
colour hotness portrays magma temperature and small black squares depict large crystals. The
mush column is characterized by a complex variety of local crystallization environments with
different cooling rates (after Zellmer and Annen (2008)). (b) Some of the deformation source
geometries representing magma chambers, sills, dikes or conduits: oblate to prolate pressurized
spheroids (Davis, 1986; Yang et al., 1988; Bonaccorso and Davis, 1999; McTigue, 1987; Mogi,
1958) and open pressurized conduit (Bonaccorso and Davis, 1999) (modified after Lisowski,
2007).

the spatial and temporal richness of recent geodetic datasets. Nishimura (2009) has

derived time-dependent equations relating surface displacements due to normal and

shear stresses to compressible and incompressible magma rising into a cylindrical con-

duit. Anderson and Segall (2011) have developed an analytical model to link surface

deformation and effusion rate to magma rising from a magma chamber into a cylindri-

cal conduit closed by a plug.

While analytical models have become more diversified in relation to the source geom-

etry, medium rheology and magma properties, yet the Mogi and Okada models are

the most widely used. This is due to the simplicity of the equations which are easily

inverted. Furthermore, the predicted displacements model appropriately the geodetic

datasets. Finally, the available datasets are often too poor to justify the use of more

complex models.

2.2 A classic magma chamber model: The Mogi model

2.2.1 Mathematical description

Mogi (1958) is one of the firsts to have applied to a volcanic setting the equations for

the deformation induced by a nucleus-of-strain in a homogeneous isotropic elastic half-
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(a) (b)

Figure 2.2: (a) Geometry and physical parameters for spherical pressure source models (Mogi,
1958; McTigue, 1987) embedded in an homogeneous isotropic elastic half-space (adapted from
Lisowski, 2007). For the Mogi source, the radius-to-depth ratio a/d < 0.3 and the Poisson’s
ratio ν = 0.25. (b) Vertical (top) and horizontal (bottom) profiles calculated with various a/d
ratio for the point source model (‘PS’, Mogi, 1958, in full line ) and finite spherical model (‘FS’,
McTigue, 1987, dashed line). The distance from the origin is normalized by the source depth.

space. Instead of giving here the full solution to this problem, solved by Melan (1932),

Mindlin (1936), McTigue (1987), and outlined in Segall (2010), I only describe hereafter

the principal characteristics of the surface displacements obtained by the Mogi model.

For a magma chamber with a radius-to-depth ratio a/d� 1, and assuming a Poisson’s

ratio ν = 0.25, the horizontal and vertical surface displacements at the surface location

with coordinates (x, y) are given by Ux

Uy

Uz

 =
3a3∆P

4GR3

 x

y

d

 , (2.1)

where Ux, Uy and Uz are the horizontal and vertical surface displacements, a and d are

the radius and depth of the source, ∆P is the pressure difference between the medium

and the interior of the source, R is the distance to the source centre, and G is the

medium shear modulus (Figure 2.2).

2.2.2 Description of the surface deformation

The surface displacements are axisymmetric relatively to the origin (i.e. to the projec-

tion at the surface of the source centre), with the strength of the source equal to the
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factor

3a3∆P

4GR3
, (2.2)

The radial displacement Ur =
√
Ux

2 + Uy
2 at a radial distance r on the surface is

given by

Ur =
3a3∆P

4GR3
r (2.3)

Moreover, the peak magnitude of the displacements is proportional to the source

volume and pressure change, and inversely proportional to its depth and medium shear

modulus, while the displacements wavelength increases with the source depth (Fig-

ure 2.3). The maximum vertical displacements occur directly above the source, falling

to half at a distance of ≈ 0.7d. The maximum horizontal displacements occur at a

distance of ±d/
√

2, and exceed the vertical displacements magnitude after a distance

of ±d from the origin. Hence, it is possible to deduce the source depth solely by mea-

suring the vertical displacements, or by comparing radial (i.e. horizontal) and vertical

displacements, or by calculating the ratio (Uz/Ur)r which equals the source depth d.

2.3 A classic dike model: The Okada model

2.3.1 Crack and Dislocation models

Magmatic dikes are fractures whose length and width are orders of magnitude big-

ger than the thickness, which allows to consider them as planar features and neglect

their surface irregularities and thickness variations (Pollard and Holzhausen, 1979; Ka-

vanagh and Sparks, 2011; Davis, 1983). Two types of analytical solutions have been

formulated to compute the deformation field generated by an opening dike in an ho-

mogeneous, isotropic, elastic half-space. On the one hand a set of solutions defines the

dike as a uniformly pressurized penny-shaped or elliptical 2D slit or 3D crack (Pollard

and Holzhausen, 1979). In this case, the dike deforms into an ellipsoid with maximum

displacements in its centre if far enough from the free surface, or in proximity to its

shallowest tip when close from the free surface (Pollard and Holzhausen, 1979). On the

other hand, another set of solutions approximate the dike to a rectangular dislocation

source (Okada, 1985; Yang and Davis, 1986; Okada, 1992). Despite the fact that pres-

surized models are more realistic, Davis (1983) has nevertheless demonstrated that the
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Figure 2.3: Sensitivity of the horizontal (left) and vertical (right) displacements of a Mogi
source to source radius a (top), pressure change ∆P (middle), and shear modulus G (bottom).
The source is originally defined with a radius a=500 m at depth d=5 km, overpressurized by
∆P=10 MPa in a medium with shear modulus G=4 GPa and Poisson’s ratio ν = 0.25 (solid
red line)

.
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(a) (b)

Figure 2.4: (a) Geometry and physical parameters for a rectangular finite dislocation source
embedded in an homogeneous isotropic elastic half-space, with Poisson’s ratio ν = 0.25 (Okada,
1985, 1992, adapted from Lisowski, 2007). U1, U2 and U3 correspond to the strike-slip, dip-slip
and tensile components, respectively. (b) Deformation field generated by an Okada source
corresponding to a vertical dike opening by 1 m, of width and length equal to 1 km, and with
depth-to-top at 1 km. The surface projection of the dike is indicated by the yellow line on the
y-axis

discrepancies are negligible between the vertical surface displacements computed for

a pressurized elliptical crack compared to a rectangular dislocation source of identical

volume, the latter being more computer-efficient. Moreover, the limited quality and

quantity of data generally only allow an approximation of the dike parameters through

analytical inversions.

2.3.2 Mathematical description

The deformation field induced by dike emplacement is often inverted by means of

finite rectangular dislocation source with a tensile component. Basing his work on a

previous study by Steketee (1958), Okada (1985, 1992) has integrated the solution of the

deformation field due to a point source of dislocation over a finite rectangular source.

By doing so, he has formulated the deformation field due to, or to a combination of, a

shear, strike-slip and tensile finite dislocation in an elastic homogeneous and isotropic

half space with Poisson’s ratio ν = 0.25 (Figures 2.4 & 2.5).

For a tensile dislocation, after having defined the dike depth-to-top, width, length,

dip and opening, the horizontal and vertical surface displacements Ux, Uy and Uz, are

given by (Okada, 1985):
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Ux =
U3

2π

[
q2

R(R+ η)
− I3 sin2 δ

]
Uy =

U3

2π

[
−d̃q

R(R+ ξ)
− sin δ

{
ξq

R(R+ η)
− tan−1 ξη

qR

}
− I1 sin2 δ

]

Uz =
U3

2π

[
ỹq

R(R+ ξ)
+ cos δ

{
ξq

R(R+ η)
− tan−1 ξη

qR

}
− I5 sin2 δ

] (2.4)

where U3 corresponds to tensile component of the dislocation, the length and width

of the dike are respectively represented in the variables ξ and η (see Okada, 1985, for

details), δ is the dip angle of the dike, (Figure 2.4), λ and µ are the Lamé constants

and, for a vertical dike (δ = ±90), the remaining coefficients are given by:



I1 = − µ

2(λ+ µ)

ηq

(R+ d)2

I3 =
µ

2(λ+ µ)

[
η

R+ d̃
+

ỹq

(R+ d̃)2
− ln(R+ η)

]
I4 = − µ

λ+ µ

q

R+ d̃

I5 = − µ

λ+ µ

ξ sin δ

R+ d̃

(2.5)

and 

p = y cos δ + d sin δ

q = y sin δ − d cos δ

ỹ = η cos δ + q sin δ

d̃ = η cos δ − q cos δ

R2 = ξ2 + η2 + q2 = ξ2 + ỹ2 + d̃2.

(2.6)

2.3.3 Description of the surface deformation

The surface deformation induced by a vertical opening dike is symmetric relative to

the dike axis and characterized by a subsidence directly above it, with a steep gradient

at the edges of the dike. Further away, two uplift lobes encompass this central zone

of subsidence. The maximum magnitude of the vertical displacements Uz are located

at a distance ≈ 0.8d from the dike while the horizontal displacements maxima are

at a distance ≈ 1.25d (Figures 2.4 & 2.5). The wavelength and magnitude of the

horizontal and vertical surface displacements are related to both the dislocation type

and magnitude, and to the geometry of the dike, that is to its dip, its (horizontal)
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length, its depth-to-top and to a lesser extent its (vertical) width (Figure 2.5).

2.4 Assumptions and limitations applying to the Mogi

and Okada models

Analytical models are widely used in volcano deformation studies and acknowledging

their inherent limitations and particularly their geometric and physical assumptions is

necessary for a critical interpretation of their solutions.

2.4.1 A non-unique solution

As shown by the expression of the Mogi source strength (Eq. 2.2) and in Figures 2.3

& 2.5, several combinations of source parameters can give similar surface deformation

pattern when employing the expressions derived by Mogi (1958) and Okada (1985,

1992), and source and medium parameters cannot be separated (Figure 2.6).

For the Mogi source, it is common to solve this problem using the volume change of

the magma chamber ∆V = π∆Pa3/G rather than modelling radius (a) and pressure

change (∆P ), as long as it does not correspond to a combination of radius and ∆P

which does not overcome the crustal strength. Furthermore, Delaney and McTigue

(1994) have proposed expressions to derive the volume change of a finite spherical

source from the surface displacements, providing the Poisson’s ratio ν is specified, as

∆Vuplift

∆Vinjection
= 2(1− ν) (2.7)

where ∆Vinjection is the magma chamber volume change, ∆Vuplift is the integral of

the vertical displacement at the surface, and ν is Poisson’s ratio.

Additionally, because of the sparsity and the uncertainties of the deformation data,

it is often possible to fit several models to the same datasets, even with deformation

patterns as distinctive as those induced by a dike emplacement or when using both

horizontal and vertical surface displacements. Finally, heterogeneities in the medium

or non-negligible topography such as stratovolcanoes can lead to misinterpretation of

the deformation field as induced by a sill-like source rather than by a spherical source

(Cayol and Cornet, 1998).
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Figure 2.5: Sensitivity of the horizontal (left) and vertical (right) displacements of a dike
(Okada source) to the source opening (top), depth-to-top d (2nd row), width W (3nd row) and
to its length L (bottom). The source dimensions are originally of 1 km width, 1 km length, it
opens by 1 m and is located such that its top reaches 1 km depth (solid red line).
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Figure 2.6: Non-uniqueness of the Mogi source: the trade-off between source radius and depth
is demonstrated by the identical values of the maximum surface displacement uzmax (normalized
by their maximum) which can be obtained for several combinations of radius and depth. The
solutions are calculated with a pressurization ∆P = 10 MPa, Shear modulus G = 4 GPa, and
Poisson’s ratio ν = 0.25.

2.4.2 Physical properties of the crust and the impact of the topogra-

phy

Although tomographic investigations can quantify the shear modulus (G) as well as

Poisson’s ratio, and image their variations, information on the elastic parameters is

lacking at the vast majority of volcanoes. Because of this lack of information and to

simplify their equations, most of analytical volcano deformation models assume the

crust as an infinite homogeneous isotropic elastic half-space.

Strictly speaking these models apply only to short-term, low temperatures cases,

where the strains on the source walls are small. The value of the factor ∆P/G in the

Mogi model (Eq. 2.1) must also reflect an elastic behaviour of the crust and not corre-

spond to large irreversible processes such as caldera collapses (Lisowski, 2007).

Overall, the evaluation of the physical parameters of the crust is not straight-

forward, and assuming the crust as homogeneous and isotropic is highly questionable

in volcanic areas, where the host rock is more likely to be layered, fractured, henceforth

having structural and physical properties varying in both lateral and vertical directions.

Numerous comparisons between solutions of numerical and analytical models have also
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shown the effects of neglecting lateral and vertical structural heterogeneities. Master-

lark (2007) and Magni et al. (2008) have shown that the presence of a shallow, low-

rigidity layer, increases both horizontal and vertical displacements, especially as the

layer is finite in extent like a caldera, rather than an infinite horizontal layer. In fact,

Masterlark (2007), who studied the difference between analytical and numerical mod-

els, notes that the error induced by regional-scale heterogeneities modelled by infinite

superposed layers are insignificant relative to local-scale, caldera-like heterogeneities,

and can be neglected for studies at volcano-scale.

Heterogeneities in the physical properties of the crust can also be a consequence of

the existing stress field interacting with regional- or local-scale processes such as plate

tectonics, crustal loading (Grapenthin et al., 2010), or the presence of other magmatic

bodies or aquifers and hence pore fluids. For examples, the undrained and drained Pois-

son’s ratio of a granitic crust are respectively 0.25 (Poisson solid, as assumed by the

Mogi model) and 0.34, causing surface displacements predictions to diverge by ≈ 40%

(Masterlark, 2007).

While the half-space assumption implies a flat surface, the topography in volcanic

areas can be, however, of the order of kilometers (Masterlark, 2007). Cayol and Cornet

(1998) have estimated the error induced when neglecting the effect of the topography

with the Mogi model at basaltic shield volcanoes for a 10, 20 degrees slopes, and an-

desitic stratovolcanoes with a 30 degrees slope. They have demonstrated that for an

edifice with slopes from 10 to 30 degrees the volume change of the source are overesti-

mated by 10 to 50 %, respectively, and that for stratovolcanoes, the near-field surface

displacement pattern differs from the half-space predictions. Assuming a deformation

source below the summit and a source radius a, the maximum vertical displacement is

not observed at the summit but at a distance of 3a, and the minimum vertical displace-

ment is located at the summit instead of in the far-field. For volcanoes with a slope

> 20 degrees, the tilt sign is reversed compared to the Mogi model predictions within

a distance of 3a from the summit, which could lead to misinterpreting the deflation of

the magma chamber for its inflation. This pattern was also observed by Trasatti et al.

(2003) and by Meo et al. (2008), who have used a Digital Elevation Model (D.E.M) of

Mount Vesuvius (Italy) topography in place of an axisymmetric volcano model as in

Cayol and Cornet (1998). By doing so, they have additionally observed the asymmetry
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of the displacement field and that the horizontal components Ux and Uy are not reduced

to zero along their y and x axes, respectively.

Several methods have been found to correct the Mogi model solution from the dis-

crepancies induced when neglecting the topography. The source depth computed by

inverting the surface displacements is correct if considered from a reference elevation

either located at an average altitude (Lisowski, 2007; Williams et al., 2000) instead

of from sea level, the latter corresponding to the half-space case, or at the summit of

the volcano, in particular for a volcano with steeper topography (Cayol and Cornet,

1998; Williams et al., 2000). Following McTigue and Segall (1988) and Williams and

Wadge (1998), Williams et al. (2000) have proposed an analytical method to correct for

the topographic effect. Although analytical models are corrected from the topographic

effect when the more precise topographic corrections are applied, their solutions fitting

with the numerical solutions, the simpler corrections are much more commonly applied

(Masterlark, 2007).

2.4.3 Source geometry and magma properties

The point source assumption of the Mogi model limits the application of the model to

only a few volcanic systems, where the magma chamber radius is small relatively to

its depth. In order to solve this issue, McTigue (1987) applies corrections to suppress

the stresses which are added on the magma chamber walls when introducing the free

surface of the half-space. These corrections have a common factor of (a/d)3 and become

significant when a/d > 0.3 (McTigue, 1987; Lisowski, 2007; and Figure 2.2b). The

equations of the surface displacements for a finite, spherical, pressurized source in an

homogeneous, isotropic, elastic half-space are given by Ux

Uy

Uz

 = a3∆P
(1− ν)

GR3

(
1 +

(a
d

)3
(

(1 + ν)

2(−7 + 5ν)
+

15d2(−2 + ν)

4R2(−7 + 5ν)

)) x

y

d

 (2.8)

where Ux, Uy and Uz are the horizontal and vertical surface displacements, ∆P is the

pressure difference between the medium and the interior of the source, a is the radius

of the source, d is the depth of the source centre, R is the distance to the source centre,

G is the medium shear modulus and ν is its Poisson’s ratio (Figure 2.2).

The physics of the intrusion may be more complicated than just one inflating or
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deflating source and in general several physical factors should be taken into account

in order to constrain the geometry of the sources, for example neither the Mogi nor

the Okada models take into consideration mass conservation, and hence, the surface

deformation caused by a second reservoir where magma might originate from or migrate

to (Trasatti et al., 2011). Moreover, if the mass is conserved, the volume change of the

source might be different depending on the shape of the reservoirs (Rivalta and Segall,

2008). Additionally, the absence of shear stresses on the source walls implies that the

cavity or dike is fluid-filled before the (de)pressurization of the magma chambers or

the dike opening (Trasatti et al., 2011). The Mogi model potentially permits such a

scenario if the pressure change is induced by the mere exsolution of volatiles. On the

contrary, the Okada model, representing a dislocation source opening evenly, is not a

physically realistic model of an opening, propagating dike, which is more likely to have

a crack-like shape due the pressurization of its walls.

Furthermore, in both the Mogi and the Okada models the properties of the magma

such as its compressibility are ignored. In order to take the magma compressibility into

account, Johnson et al. (2000), following Delaney and McTigue (1994) (see Equation

2.7) relates the Mogi source to the induced surface volume changes by

∆Vedifice

∆Vmagma
=

2(1− ν)

1 +
4G

3K∗

(2.9)

where G is the medium shear modulus, ν is its Poisson’s ratio, ∆Vedifice and ∆Vmagma

are the uplift volume and the volume of magma (intruded or withdrawn), respectively,

and K∗ is the effective bulk modulus (incompressibility) of the magma in the reservoir:

K∗ = K for N < Ns, (2.10a)

K∗ =
K

1 +
KNρmRT

P 2ω

for N > Ns, (2.10b)

where K is the gas-free melt bulk modulus, ρm is the bulk magma density, R =

8.314 m3Pa/mol◦K is the gas constant, T is the absolute temperature, P is the av-

erage pressure assumed to be lithostatic, and ω is the molar mass of gas. Finally, N is

the total weight fraction of a gas phase, exsolved and dissolved, in the magma and Ns

the maximum amount of this gas phase which can be dissolved. Although the effect of
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the compressibility of the magma is here included, nevertheless Equations 2.9-2.10b do

not take into account the expansion of the magma as it progresses towards the surface

(Rivalta and Segall, 2008).

2.5 Summary

In this section, I have described the surface displacements pattern induced by the vol-

ume change of a spherical magma chamber and by the opening of a dike, as modelled

by the Mogi and Okada sources. These two analytical models have the merit of hav-

ing simple expressions, which can be easily inverted, and which reproduce deformation

datasets with uncomplicated symmetry. Moreover, analytical modelling is in general

computationally very efficient and many analytical models exist to overcome the vari-

ous limitations of the Mogi and Okada model assumptions. However, the complexity of

the mathematics involved hinders finding analytical expressions that would surmount

several of these limitations, possibly simultaneously, in order to represent more complex

datasets. In particular, no study has been carried out on the discrepancies introduced

when neglecting the interaction between several deformation sources. Moreover, in the

Mogi and Okada models, the magma is treated as an incompressible fluid or liquid.

Although numerical forward modelling is computationally more expensive, this alter-

native method of studying volcano deformation allows building more complex models

that can integrate several physical processes. In this context, analytical models -in par-

ticular very simple ones like the Mogi or Okada sources- can be used for the calibration

of the numerical models, as described in Chapter 3, or as first approximations of the

deformation source position, shape, and overpressure (Bonaccorso, 2006), but also in

cases where the interaction between multiple analytical sources can be neglected; this

is investigated in Chapter 4.



Chapter 3

Finite Element modelling of dike

and magma chamber

Finite element models are commonly employed in structural analysis, where the physics

or the geometry of the problems considered are often too complex to be solved with an

exact analytical solution. With numerical studies (e.g. Finite Element, FE) it is possible

to model magmatic systems where the rheology of the crust is anelastic, where it is

inhomogeneous, or where significant topography is present. Here I employ the Finite

Element modelling package COMSOL Multiphysics®to assess the errors introduced

when neglecting some assumptions of the analytical models such as the Mogi or Okada

models. Before evaluating the discrepancies due to the source interaction of several

magmatic sources (Chapters 4-5), I describe below the main principles of Finite Element

modelling, and I illustrate the design of magma chamber and dike models comparable

to the Mogi and Okada analytical sources. I use a common benchmark test to calibrate

the numerical models in deformation modelling comparing analytical and numerical

solutions of equivalent models.

3.1 Introduction to Finite Element numerical modelling

(FEM)

3.1.1 General principles

The analytical models simplify the physical problems and solve the exact equations

of elasticity, while satisfying a set of assumptions at the boundaries of an infinite or

finite volume. Finite elements models solve the complete set of elasticity equations at

certain locations only (e.g. at mesh nodes) of a finite volume, satisfying the physical

27
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constraints given by the boundary conditions. The displacement within elements is

then interpolated from the nodal displacements. A FE analysis consists of several

consecutive steps, once the physical problem to address has been formulated:

1. the definition of the structural problem, i.e. of the general geometry, material

properties and physical laws of the model;

2. the construction of the computational model, comprising the discretization of the

geometry in a mesh of elements and the definition of the boundary conditions;

3. the solving step of the problem, expressed as the global system of equation as-

sembling the element equations through a ‘shape function’;

4. the post-processing system during which the variables of interest are plotted and

analysed.

Two types of errors, modelling error and computational error, emerge during a FE

analysis. The former is related to the formulation of the physical problem and to the

simplifications made compared to the ‘real problem’, including the restriction from an

infinite to a finite domain, and can be reduced by re-defining the problem. The latter

consists of the numerical error due to the rounded solutions, in general insignificant

compared to the discretization error, which can be reduced with a finer mesh. Once

the FE model is built, it is then necessary to validate it against either experimental

data or against the equivalent ‘exact’ analytical solution.

3.1.2 Definition of the structural problems in dike and magma cham-

ber FE analysis (steps 1-2) and computational errors

The deformation field induced by a pressurized magma chamber or opening dike in

an elastic crust is a solid mechanics problem. It can be addressed either in 3D or 2D

axisymmetric for the case of a magma chamber, or in 3D with or without plane sym-

metry for the case of a dike. In COMSOL Multiphysics®, this type of model can be

built within the ‘Solid Mechanics’ interface, where the implemented equations solve for

the displacements at the model nodes. Although it is possible to build smaller models

taking advantage of the axis or plane of symmetry of the model geometry, the models

are constructed in 3 dimensions, from the perspective of building more complex models



§3.1 Introduction to Finite Element numerical modelling (FEM) 29

with no element of symmetry later in the study.

Several issues have to be addressed before an FE model comparable to Mogi and Okada

models can be found. Firstly, the homogeneous half-space assumption of the Mogi and

Okada models is reproduced in the FE models by a large enough elastic volume and by

zero-displacement (‘Fixed’) conditions on its lateral and bottom boundaries. Alterna-

tively, a ‘Roller’ condition can be applied on the lateral boundaries, constraining the

boundaries only in the normal direction while they can move vertically. If the domain

is large enough, the solutions obtained when imposing either a ‘Fixed’ or ‘Roller’ con-

dition on the lateral boundaries will be similar. The physical constraints include the

definition of the elastic properties of the medium, such as its Young’s modulus (E) and

Poisson’s ratio (ν), either user-defined or loaded from COMSOL Multiphysics®library

of commonly used materials (e.g. granite, etc). The domain, prismatic, is chosen big

enough for these boundary conditions not to distort the numerical solution where the

displacement is studied. The surface, i.e. the top boundary of the volume, is flat and

stress-free.

Secondly, the compromise between the computational capacity and the resolution of

the mesh influences the accuracy of the solution, defining the computational error. For

both magma chamber and dike models, the elements have to be the smallest, mini-

mizing the inaccuracy due to the discretization, on the deformation sources where the

source volume change is imposed, and above the source on the surface where the defor-

mation field amplitude and gradient are the greatest. COMSOL Multiphysics®offers

the possibility to create this type of ‘user-controlled’ mesh, where the number of nodes

or their emplacement can be specified. Although quadrilateral 2D meshes (in 3D hex-

ahedra) are more adapted for some physical problems, triangular elements (tetrahedra

in 3D) have been chosen for all of the following models, in particular because they are

the only elements available for spherical geometries.

The description of the boundary conditions and of the mesh specific to the FE models

of a magma chamber and dike, equivalent to the Mogi and Okada analytical models,

as well as the model calibrations, are described in Sections 3.2 and 3.3. The calibra-

tion of Finite Element models being a case-by-case process, the following validation

results cannot be generalized. Nevertheless, the same methodology will be employed in

Chapter 4, where discrepancies between analytical and FE models are studied.
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3.1.3 Calibration of the FE models: quantifying the numerical error

The solution of the FE models of a magma chamber and of a dike are validated against

the ‘exact’ analytical solutions of the Mogi and Okada source, respectively. In order

to estimate the errors, I calculate the mean surface absolute discrepancies ε (Equa-

tion 3.1) following Currenti et al. (2008), and the local discrepancies Ξ (Equation 3.2)

at the maximum (U
∣∣∣
max

) or the minimum (U
∣∣∣
min

) of the vertical or horizontal surface

displacements. These two estimates have been chosen because ε expresses the datafit of

the entire dataset, while Ξ links to the modelling process employing a single datapoint

at the maximum of the ground deformation.

The average of the absolute discrepancies ε [%] is computed at each surface node nor-

malized by the average surface analytical solution UAn,

εj =

N∑
i=1

|UAn
ji −UFE

ji |
N

N∑
i=1
|UAn

ji |
N

× 100, (3.1)

with UAn
ji and UFE

ji being the analytical or numerical horizontal (Uxi, Uyi) or vertical

(Uzi) surface displacements calculated at the surface node i located at coordinates

(x, y, 0), with N being the total number of surface nodes.

The local discrepancies (Ξ in [%]) correspond to the normalized difference at the min-

imum (Ξx

∣∣∣
min

, Ξz

∣∣∣
min

) or maximum (Ξx

∣∣∣
max

, Ξz

∣∣∣
max

) of the analytical and numerical

surface displacements. Taking Ξx

∣∣∣
min

and Ξz

∣∣∣
max

as examples:

Ξx

∣∣∣
min

=
abs

{
UAn
x

∣∣∣
min
− UFE

x

∣∣∣
min

}
abs

{
UAn
x

∣∣∣
min

} × 100 (3.2a)

or Ξz

∣∣∣
max

=
abs

{
UAn
z

∣∣∣
max
− UFE

z

∣∣∣
max

}
abs

{
UAn
z

∣∣∣
max

} × 100 (3.2b)

3.2 Finite Elements magma chamber model

3.2.1 Geometry, mesh, and physical constraints

The FE model of a spherical magma chamber that I compare to the Mogi model, consists

of a pressurized spherical cavity embedded in the elastic domain, with a radius-to-depth

ratio of a/d < 0.3. For this model, several physical constraints have to be defined:
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the elastic properties of the domain, the domain lateral boundary conditions, and the

pressure difference applied on the cavity walls. The physical constraints regarding the

domain and its lateral boundaries are defined as described previously in Section 3.1.2.

Additionally, the difference in pressure between the domain and the interior of the

cavity is modelled by a ‘Load’ boundary condition, either as a ‘Pressure’ or as ‘Force

per unit area’ applied normal to the cavity surface, and closely enough to prevent the

underestimation of surface displacements when compared to the analytical solutions

(Table 3.1). The dimensions of the cavity and of the domain differ by more than two

orders of magnitude which hinder the implementation of the mesh. Hence an additional,

smaller subdomain is introduced at the centre of the domain, encompassing the cavity

and creating a central small surface at the origin, where the mesh is finer than for the

rest of the surface (Figure 3.1). Two lines are also added to the geometry along the x

and y axis in order to define the repartition of the surface mesh nodes, including at the

origin, and in order to calculate the maximum local discrepancies Ξx

∣∣∣
max

and Ξz

∣∣∣
max

.
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(a) (b)

Figure 3.1: Example of the geometry and mesh employed in FE models of a magma chamber
(a) and of a dike (b), corresponding to the Mogi and Okada sources. In both cases the mesh
is finer on the source walls, and at the surface above the source, where the displacements peak
(e.g. Ux are plotted in (a)). A ‘Fixed’ or ‘Roller’ condition is imposed on the lateral boundaries
of the domain, while its bottom boundary is fixed and the top surface is left stress-free. For
the dike model, the inner boundaries (in blue) are defined as identity pair which ensures the
continuity of the medium. However, the dike, here modelled with Method 1 (see section 3.3.1),
is opening by a total amount of Ux.
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Source Magma Dike
parameters chamber Method 1 Method 2 Method 3

Geometry:
Radius 50 m n/a n/a n/a

Length×Width n/a 1×1 km 1×1 km 1×1 km
Depth-to-centre 1 km n/a n/a n/a

Depth-to-top n/a 1 km 1 km 1 km

Model
variables

dP = 20 MPa
uop = 1 m

uop = 1 m

dP = 12 MPa
uB1 = u(2)

uB = uop/2 m
uB1x = genext1(uB1)
uB2 = uB1x − uop

Boundary ‘Load’ ‘Prescribed displacement’ ‘Load’

condition −dP (1) −u(1)
B −u(3)

B2 −dP (1)

Table 3.1: Summary of the source geometry and boundary conditions applied on the cavity
and dike boundaries in the FE models calibrated. The dike is modelled with Methods 1-3 as
described in section 3.3.1. (1) indicates that the boundary condition is applied normal to all
source boundaries (with positive values going ‘out’ of the model). For Method 2, a function
(genext) is defined to make available the displacements of one boundary on the other while the
model is being solved. (2) indicates the definition is applied only on one of the dike boundary
(B1) and (3) that the variable is defined, or the boundary condition is applied, on the second
dike boundary (B2).

3.2.2 FE model of a magma chamber: calibration methodology

The spherical source considered is 50 m radius with a radius-to-depth ratio a/d = 0.05,

which is within the Mogi model limitations, and is pressurized by ∆P = 20 MPa (Ta-

ble 3.1). Although the 50 m source radius is smaller than typical magma chamber radii,

ranging from 500 to 7000 m (Marsh, 1989), it allows a first evaluation of the necessary

domain and mesh sizes minimizing the computing time. However, the calibration of

Finite Element models is a case-by-case process, hence the following validation results

cannot be generalized.

Several tests have been carried out, varying the size of the domain and of the inner

domain, the size of the mesh, and the constraints on the lateral boundaries. The ap-

propriate geometry and mesh of the model must minimize the differences between the

numerical and analytical displacement patterns and amplitudes. Hence for each model

I evaluate this misfit qualitatively (e.g. Figure 3.3), as well as quantitatively through

the surface and maximum discrepancies ε and Ξ (Table 3.2, Figure 3.2) as defined in

section 3.1.3.

For the calibrated model, the comparison between the displacement patterns and
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discrepancies of the various tests emphasizes that:

� the misfit with the analytical solution is acceptably reduced when the lateral

extent of the domain is 400 times bigger than the magma chamber radius (i.e.

20×20 km, see models #T3b vs #T2a), and its vertical extent is 200 times greater

than the magma chamber radius that is 10 times than the magma chamber depth

(i.e. a domain depth of 10 km, see models #T2a vs #T4c). An inner domain

around the origin with a lateral extent of 40 times the magma chamber radius is

suitable (i.e. 2× 2 km, see models #T4a vs #T4b);

� constraining the lateral boundaries of the domain with either a ‘Fixed’ or a ‘Roller’

condition has no significant impact on the FE solution for a 20×20×10 km domain

(models #T2b vs #T2c), although it does for smaller domains (models #T3b vs

#T3c). Additionally, three 20 × 20 × 10 km models were designed with either

4, 10, or 40 nodes on the edges of the domain and applying either a ‘Fixed’ or

‘Roller’ condition on the lateral boundaries. To emphasize the influence of the

lateral boundary mesh and physical constraints, the pressurization of the source

was set to ∆P = 100 MPa (models not listed in Table 3.2). A difference smaller

than 0.05% between the misfits calculated for each of these supplementary models

confirm that a domain of 20× 20× 10 km is large enough;

� a large error can be introduced between analytical and numerical solution if the

inner surface mesh is too coarse, due to the interpolation of the FE solution

between the nodes (see Figure 3.3(a1)-(b1), model #T2a), but also because there

are fewer elements hence the solution is less accurate at the nodes themselves.

Similarly, when the mesh of the cavity is too coarse, the pressure is not distributed

uniformly on its walls (Figure 3.4). A mesh of ≈ 6000 triangular elements at the

surface and of ≈ 13000 triangular elements on the cavity walls reduces the misfit

with the Mogi solution to an acceptable level.
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Figure 3.2: Horizontal and vertical surface discrepancies ε (top) and maximum local dis-
crepancies Ξ (bottom) obtained for the domain geometries and meshes of the models tested
in Table 3.2, when compared to an equivalent Mogi source solution. The source is located at
depth d = 1 km, has a radius of a = 50 m, is pressurized by ∆P = 20 MPa in a medium with
shear modulus G = 4 GPa and Poisson’s ratio ν = 0.25. See also Table 3.2, Figures 3.3 & 3.4.
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Figure 3.3: Calibration of FE model of a spherical magma chamber: Ux (a1-3 ) and Uz (b1-
3 ) profiles along the x-axis for the domain geometry, mesh and lateral boundary conditions
tested in some of the models listed in Table 3.2. The analytical solution is represented by
a thick solid black line. The FE horizontal and vertical displacements are normalized by the
maximum analytical horizontal or vertical displacement, respectively. The distance to the origin
is normalized by 10 km, the maximum distance to the origin in the analytical model. The source
centre is located at depth d = 1 km, has a radius of a = 50 m, is overpressurized by ∆P=20
MPa in a medium with shear modulus G = 4 GPa and Poisson’s ratio ν = 0.25. The effect
of the various geometry, mesh and lateral boundary conditions are particularly noticeable at
the maximum horizontal and vertical displacement ((a1) and (b1)) and at the edge of the FE
domain ((a2) and (b2)). See also Table 3.2, Figures 3.2 & 3.4.
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(a) Model T2a: surface mesh (b) Model T2a: magma chamber mesh

(c) Model T4a: surface mesh (d) Model T4a: magma chamber mesh

Figure 3.4: Calibration of FE model of a spherical magma chamber: example of meshes at
the surface of the domain and on the cavity walls. The colorscales indicate the total surface
displacement [mm] ((a) and (c)), and the variation in [Pa] from the overpressure ∆P = 20
MPa ((b) and (d)). The edges of the mesh elements are represented in black. In model T2a
((a) and (b)), the meshes are not fine enough (Table 3.2) resulting in a noticeable departure
from the overpressure imposed on the magma chamber walls ((b)) and in a misfit with the
analytical solution (Figure 3.3). This is quantified by surface discrepancies up to 3.5%, and
local maximum discrepancies up to 1.5% (Table 3.2). In model T4a ((c) and (d)), the meshes
are fine, resulting in surface and local maximum misfits only up to 0.9% and 0.2%, respectively
(Table 3.2).
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3.3 Finite Element dike models

3.3.1 Domain geometry and modelling methods

The FE representation of a dike equivalent to the Okada model consists of a rectangular

source embedded in an elastic domain. As for the magma chamber model, the elastic

properties of the domain and the lateral boundary conditions are defined as described

in section 3.1.2. The overall geometry of the domain is represented in Figure 3.1(b).

It is composed of two boxes joined at the x = 0 plane where the dike is modelled as a

rectangular discontinuity. The same Young’s modulus E is imposed in the two boxes

as well as a Poisson’s ratio of ν = 0.25.

Several approaches can be taken to model a dike numerically. In the three methods

tested in this study (Figure 3.5), the deformation source is composed of two rectangular

surfaces representing the dike walls, initially welded. An ‘identity pair’ condition is

imposed on the two surfaces surrounding the dike, to ensure the continuity of the

deformation field in the elastic medium (Figure 3.1). The boundary conditions applied

on the dike walls depend on the method employed.

In the first numerical approach (‘Method 1’), a constant normal displacement of

±Uop/2 is applied to the wall of a vertical dike , such that Uop is the total opening of

the dike and the centre of the dike is fixed in space. Although this method is used in

numerical modelling (Currenti et al., 2008; Pulvirenti et al., 2009, e.g. ), note that, in

contrast to Method 1, the central plane of an inclined or horizontal Okada source is not

fixed, but is shifted towards the free surface (Figure 3.6). Method 1 is hence used for

vertical dikes, when the center of the dike is not shifted by other forces in the medium.

In the second approach (‘Method 2’), a constant displacement Uop is imposed be-

tween the two dike walls without fixing their location. Methods 1 & 2 will provide

identical results if no second source is employed. However, Method 2 can account for

the response of the dike geometry to the stress-field of a secondary source. Finally,

Davis (1983) showed that the vertical displacements due to a rectangular tensile source

and a pressurized elliptical crack after Pollard and Holzhausen (1979) are similar when

their volume change is nearly equal and their depth-to-top is deep enough, i.e. at a

ratio of depth to half-length of 1.25 (see Figure 3.9 and Table 3.4).

Hence in ‘Method 3’, I model the dike as a pressurized tabular source with a volume

change equivalent to the one of the analytical Okada source (Figure 3.5). Note that in
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Figure 3.5: Finite element numerical methods employed to model a spherical pressurized
source and a dike source equivalent to the analytical Mogi and Okada sources. Magma chamber:
a load is applied normal to the surface of the spherical source. The dike is modelled with three
different methods. Method 1: a constant normal displacement of ±Uop/2 is applied to the dike
walls; Method 2: a constant displacement Uop is applied between the two dike walls without
fixing their location; Method 3: a pressure normal to the dike walls is applied such that its
volume change corresponds to the volume of the analytical Okada source.
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(a) Sill depth 500 m (b) Sill depth 15 m

Figure 3.6: Surface total displacements due to an horizontal 1×1 km Okada source opening by
10 m at a depth d = 500 m (a) and at a depth d = 15 m (b). In the latter case the deformation
of almost 10 m demonstrates that the central plane is shifted towards the free surface. This
can not be modelled numerically with Method 1 but with Method 2.

Davis (1983) the dike is elliptical.

In COMSOL Multiphysics®, for Method 1 and Method 3, a ‘Prescribed displace-

ment’ or a ‘Load’ boundary conditions are applied normal to the dike walls, respectively.

For Method 2, a function is defined to make available the displacements of one dike

wall on the other dike wall, while solving the model. A ‘Prescribed displacement’ is

then imposed on this second boundary, which equals to the first boundary displacement

minus Uop (Table 3.1).

3.3.2 Calibration

The analytical solution of the Okada dislocation source is employed to validate all the

FE dike models (Currenti et al., 2008; Pulvirenti et al., 2009). The effect of the domain

size and of the mesh size are investigated for a 1× 1 km dike with depth-to-top d = 1

km, and opening Uop = 1 m. In the medium, the Poisson’s ratio is set to ν = 0.25, and

the Young’s modulus to E = 30 GPa, which is a common value for the crustal rigidity of

volcanic environments (Albino et al., 2010; Beauducel et al., 2000; Palano et al., 2008).

As for the magma chamber model, a smaller ‘inner’ surface of 6 × 6 km is designed

above the source around the origin. The central boundaries surrounding the dike are

defined as an identity pair, on which the nodes are automatically located at the same

coordinates, improving the quality of the final solution. Table 3.3 and Figure 3.7 below
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give the main parameters of the mesh and the surface and local maximum discrepancies

with the analytical solution. As for the Mogi model, the calibration emphasizes the need

for a fine mesh above the source, in particular near the origin above the dike where the

vertical gradient of the displacement is important, and on the source walls (models #5

and #7, Table 3.3 and Figure 3.7). Overall, the discrepancies are higher than those for

the Mogi model. This is due to the introduction of the central surfaces surrounding the

dike (Figure 3.1) and to the dike boundary conditions when it is modelled with Methods

1 & 2. Indeed, in these cases, a discontinuity is created at the edges of the dike, where

the constant opening applied is inconsistent with the surrounding surfaces defined as

identity pair (Figure 3.8). With Method 3, the displacements on the surrounding

surfaces are three times smaller than those induced by Method 1-2 (Figure 3.8(d)-(f)),

and are less extended. Despite these numerical errors introduced by the modelling

methods, the discrepancies at the surface can be kept below 5%.

Finally, the solution of Methods 1-3 are compared for a 1 × 1 km dike opening

by 1 m (or by a pressurization ∆P = 12 MPa for Method 3) for several dike depth-

to-top (Figure 3.9 and Table 3.4). When comparing with the solution of the Okada

analytical dislocation source, Method 3 gives the strongest discrepancies for a very

shallow dike. However, the surface and maximum local discrepancies calculated for the

three methods are comparable for a depth-to-top larger than 1 km. This confirms the

results of Pollard and Holzhausen (1979) that the surface displacements calculated by

either a pressurized or a dislocation source are similar for a depth to half-length ratio of

at least 1.25, which would correspond to a depth-to-top of 0.625 km for the parameters

used here. Moreover, when the dike is deep enough, the discrepancies calculated for

Method 3 are the smallest, because, in contrast to Methods 1 & 2, the dike boundary

conditions and the surrounding surfaces boundary condition are not inconsistent.

3.4 Summary

In this Chapter, the steps that must be taken when using Finite Element numerical

methods have been described. The definition of the structural model, including the

correct design of the geometry and of the physical constraints corresponding to the

physical problem considered is an important step. It has been described for a magma

chamber and a dike model embedded in an homogeneous, isotropic, elastic medium.

These two models are validated against the analytical solutions of the Mogi and the



§3.4 Summary 43

Model # 1 2 3 4 5

Mesh
statistics

Tetrahedra 65809 3203 35103 46634 9693

Inner Surface(2) 7200 132 2380 5049 800

Dike(2) 800 68 68 68 200
Total mesh points 16160 1029 8009 10472 2751

Computing time [s] 467 3 147 275 17

B
en

ch
m

ar
k
in

g
[%

]

εx 5.64 22.96 18.23 19.28 13.34
εy 3.58 19.83 15.25 14.83 8.77
εz 3.12 17.50 14.30 14.34 7.84

Ξx

∣∣∣
min

= Ξx

∣∣∣
max

3.62 20.26 15.08 15.47 9.18

Ξz

∣∣∣
min

4.53 15.89 15.58 15.94 8.27

Ξz

∣∣∣
max

3.08 21.89 13.98 14.89 8.53

Model # 6 7 8 9 10 11

Mesh
statistics

Tetrahedra 77445 6374 11863 29471 47465 81004

Inner Surface(2) 20000 800 800 4586 9074 20000

Dike(2) 200 50 50 620 620 800
Total mesh points 19606 1758 2855 8118 12631 81215

Computing time [s] 1240 10 21 57 214 1434

B
en

ch
m

ar
k
in

g
[%

]

εx 7.77 18.14 18.60 6.12 5.53 5.04
εy 7.14 16.23 15.11 4.37 4.09 4.03
εz 6.11 14.65 13.85 3.60 3.47 3.31

Ξx

∣∣∣
min

= Ξx

∣∣∣
max

7.45 16.26 15.71 4.64 4.27 4.20

Ξz

∣∣∣
min

7.83 14.83 16.19 5.40 5.06 5.01

Ξz

∣∣∣
max

7.80 14.53 14.80 4.56 3.78 3.52

Table 3.3: FE model of a dike: Models statistics and benchmarking of the various test models
ran, against Okada (1992) solution. In all models, the 1 × 1 km dike opens by 1 m, with its
depth-to-top at 2 km. The medium elastic parameters are ν = 0.25 and E = 30 GPa. The
domain is 50× 50× 35 km and the inner surface with a denser mesh, located above the source
at the surface, is 6× 6 km; (2)Elements are triangular. See also Figure 3.7.
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Figure 3.7: Horizontal and vertical surface discrepancies εx, εy, and εz (top) and maximum
local discrepancies Ξx, and Ξz (bottom) obtained for the domain geometries and meshes of the
models tested in Table 3.3, when compared to an equivalent Okada source solution. The 1× 1
km is opening by 1 m, with its depth-to-top d = 2 km, in a medium with Young’s modulus
E = 30 GPa and Poisson’s ratio ν = 0.25. See also Table 3.3.

Dike Modelling ε (%) Ξ (%)

depth-to-top method εx εy εz Ξx

∣∣∣
min

Ξx

∣∣∣
max

Ξz

∣∣∣
min

Ξz

∣∣∣
max

2
k
m

M1 2.6 2.6 2.8 1.0 3.3 3.5 1.2
M2 2.0 2.6 2.8 2.2 2.1 3.5 1.2
M3 0.6 0.8 3.4 0.4 0.3 1.0 1.0

1
k
m

M1 4.0 3.0 2.0 5.0 0.3 2.5 2.3
M2 2.5 2.9 2.3 2.4 2.6 2.6 2.1
M3 0.8 1.3 1.9 0.4 0.8 0.0 0.2

0.
2

k
m M1 3.0 3.0 2.0 4.0 4.0 2.0 3.0

M2 2.9 3.1 2.3 3.7 3.5 2.1 2.8
M3 5.0 10.0 10.0 1.0 1.0 10.0 7.0

Table 3.4: Surface and local maximum discrepancies for a dike with depth-to-top at 0.2 km, 1
km and 2 km modelled with the numerical Methods 1-3. The dike opens by 1 m and its height
and width are 1 km. Note that in the absence of a secondary source and for a depth-to-top
larger than 1 km all three methods yield similar results matching the analytical Okada solution.
See also Figure 3.9.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: FE dike models: 3D perspective of the total displacements imposed on the dike
walls (left) and computed next to the dike (right, note that the dike is here hidden and its
location is marked by the white rectangle). The dike is either modelled with Method 1 (a)-
(b), Method 2 (c)-(d), in which case the opening is 1 m, or with Method 3 (e)-(f), in which
case the dike is overpressurized by ∆P = 12 MPa. For Methods 1-2, the dike opening is
modelled through a displacement prescribed on the dike walls. The dislocation imposed on
the dike boundaries and edges is inconsistent with the identity pair condition imposed on the
surrounding surfaces, keeping them welded. This inconsistency introduces an error close to the
source, highlighted here by total displacements ([m]) larger than 0.5 m in some places along
the dike edges ((a) and (c)), and of non-zero displacements on the surrounding surfaces, whose
maximum are significantly smaller with Method 3 (0.216 m, (f)) than with Methods 1-2 (≈ 0.6
m, (b) and (d). Note that the displacements maximum is given above the color-scale.
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Figure 3.9: Surface displacement profiles for a dike with depth-to-top at 0.2 km (left), 1 km
(centre) and 2 km (right) calculated either analytically or computed using Methods 1-3. The
dike height and width are 1 km. When modelled with either the Okada model or with the
FE Method 1 and Method 2 (represented here with filled circles and circles, respectively), the
dike opens by 1 m. When modelled with Method 3 (represented with crosses), the dike is
pressurized by 12 MPa, such that its volume change is similar to the dike volume change
obtained with the other methods. The horizontal Ux and vertical Uz surface displacements are

normalized by UAn
x

∣∣∣
max

and UAn
z

∣∣∣
max

, respectively. Note that in the absence of a secondary

source and for a depth-to-top larger than 1 km all three methods yield similar results matching
the analytical Okada solution. See also Table 3.4.
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Okada models, respectively. During the calibration process, I have determined for the

various models the domain size and mesh density that reduce the numerical error to an

acceptable level. The appropriate domain size and mesh density depend on the model

parameters, including the source dimensions, the source pressurization or opening, and

the elastic properties of the medium. For example, I have found that for the models

considered, a dense mesh on the wall of the deformation source and above it at the

surface, and a domain with lateral extent 200 times the magma chamber radius, or 50

times the dike width (i.e. 50000 times the dike opening) induce numerical errors of less

than 5%. Smaller errors were achieved for the Mogi source models, with Ξ and ε less

than 3%.

The calibration of the dike modelled as either a dislocation tensile source (Methods

1 & 2) or as a pressurized tabular crack (Method 3) confirms that the results of the

surface displacements of the three methods are similar to the Okada analytical solutions

despite the different dike shapes for depth-to-top of 1 and 2 km (Figure 3.9). Although

Method 1 is employed by some authors (e.g. Currenti et al., 2008; Pulvirenti et al.,

2009), Method 2 corresponds more closely to the Okada model, in the sense that it

accounts for the presence of the free surface.

In Chapter 4, the effect of the source interactions is quantified in a system combining

several magma chamber(s) and a dike. In such cases, several Mogi and Okada sources

are simply combined, and the discrepancies between the sum of the analytical solutions

are evaluated against the corresponding complete numerical solutions.



Chapter 4

On precisely modelling surface

deformation due to interacting

magma chambers and dikes

As stated in the introduction, most magmatic systems are composed of a network of

reservoirs, sills, dikes, or conduits, e.g. Soufrière Hills Volcano (Elsworth et al., 2008;

Foroozan et al., 2010), Eyjafjallajoküll, Iceland (Sigmundsson et al., 2010a), etc. In

those cases, the surface deformation is often studied via models combining Mogi and

Okada analytical sources. In general, their respective deformation fields are simply

summed, violating the homogeneity condition (Section 2.4), and hence neglecting the

interaction between the sources. In this Chapter, I quantify the effect of neglecting the

source interaction, comparing the combined analytical models with the corresponding

FE models. My purpose is to define the limitations of combining analytical models, and

hence to provide guidance when and under which conditions the superposition of ana-

lytical models induces a large error and when it does not. First, I describe the various

model scenarios designed and calibrate the FE models, next I analyse the discrepancies

between analytical and FE models. Lastly, I employ the same methodology for three

case studies, two adapted from models of the volcanic plumbing system of Soufrière

Hill volcano, Montserrat, West Indies, and the other from the magmatic system of the

Dabbahu segment, Afar, Ethiopia.

48
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4.1 Method

4.1.1 Description of models scenarios A-D

The surface displacements induced by Mogi and Okada sources are controlled by the

geometry, the volume change of the source(s), and by the elastic properties of the

medium. In this study I focus on the effect of the model geometry and show results

from more than 150 configurations in which I vary:

� source geometry (spherical and/or rectangular sources)

� source separation

� relative source position

� ratio between radius and depth of spherical sources

� pressure difference between spherical sources and medium.

Two main types of models are considered, with either two spherical sources (Models

A and B) or one spherical and one rectangular source (Models C and D). Geometrically,

the sources are arranged such that their centres are either lined-up vertically (Models A

& C), horizontally along the x-axis (Model B), horizontally in the strike-perpendicular

direction of the dike (Model DI), and horizontally in the strike-parallel direction of

the dike (Model DII). In the following, I will refer to these three geometries as mod-

els with ‘superposed’, ‘juxtaposed’ and ‘aligned’ sources, respectively. All models are

schematized in Figure 4.1 and their geometrical and physical parameters are listed in

Table 4.1. I choose crustal elastic parameters representative of a volcanic environment,

and fix in all models the medium Poisson’s ratio and Young’s modulus to ν = 0.25 and

E = 10 GPa, respectively as found at Soufrière Hill volcano (Linde et al., 2010).

In Models A and B, the two sources, identical in size, are either superposed (Models

A) or juxtaposed (Models B). The Mogi source radius (a) is set to 50 m or 500 m. I

vary the depth (d) of the upper source (source 1) such that its radius/depth ratio is

either 0.1 (Groups G1 & G1’), 0.05 (Group G2), or 0.5 (Group G3). In the last case of

a/d = 0.5, the source is too close to the surface (McTigue, 1987), violating the point

source assumption of the Mogi model, thus I have employed the finite source analytical

solution given by McTigue (1987). Various pressure differences have been tested, e.g.

in Model A ∆P1 = ±∆P2 = 20 MPa or ∆P1 = ∆P2 = 200 MPa, where ∆P1 and ∆P2
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Figure 4.1: Model scenarios. Two spherical sources superposed (Model A) or juxtaposed
(Model B); One spherical and one dike sources superposed (Model C), or one spherical source
offset to a dike in strike-perpendicular and strike-parallel directions referred to in text as ‘jux-
taposed’ and ‘aligned’, respectively (Models DI & DII). The separation between the sources is
increased from 2.5 to 10 radii (Models A and B) or 1.5 to 9 source radius unit (Models C and
D). Geometry and physical parameters are listed in Table 4.1.

is the overpressure of the upper and the bottom sources, respectively.

In Models C & D (Figure 4.1) the Mogi and Okada sources are either superposed

(Model C), juxtaposed (Model DI), or aligned (Model DII). The dimensions of the

Okada source are set to 1 × 1 km with an opening of 1 m and depth-to-top of 1 km

(Model C), or 2 km (Models D). The Mogi source radius is set to 500 m, and the

pressure difference ∆P = ±20 MPa.

The centre-to-centre distance separating the sources ranges from 2.5 to 10 times the

source radius in Models A-B and the separation between the Mogi source centre and

the closest boundary of the Okada source varies from 1.5 to 9 source radii in Models

C-D.
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4.1.2 Estimation of discrepancies and model calibration

Throughout this study, I calibrate the FE models of the individual sources and quan-

tify the effect of the source interaction by calculating the discrepancies between the

displacements of corresponding analytical and FE models at the surface (ε, Equation

3.1), and at the maximum (Ξ, Equation 3.2), as defined in Section 3.1.3.

I employ the same calibration procedure as described in Chapter 3 for the spherical

source (Models A-D) and the dike source (Models C & D). In order to ensure that I use

the domain size and the mesh density which bring the numerical error to an acceptable

level, for all model scenarios and source separations considered, I validate models cor-

responding to the shallowest spherical sources in Models A-D (scenarios ‘a’, Table 4.1),

and sources closest to the lateral or bottom boundaries (scenarios ‘f’, Table 4.1). As

observed in Chapter 3, the appropriate mesh density and domain size depend on the

sources type, geometry and physical parameters. The domain dimensions and main

features of the mesh employed later in this study are listed in Table 4.2, with the

discrepancies calculated during the validation process. Overall, these domain size and

mesh density yield a maximum error of 5%.

Furthermore, although imposed on the surface and on the source walls, the repar-

tition of the nodes is not controlled within the entire domain and, when a second

geometry is added to the domain, the mesh differs from the mesh generated during the

calibration with one source only. In order to investigate the effect of the addition of

a second geometry in the domain, I use the source parameters of Model A-G1a (Ta-

ble 4.1), calibrate Source 1 adding a (‘full ’) spherical subdomain, identical to Source 2,

with physical properties identical to those of the main domain, such that the medium

is homogeneous. Table 4.3 lists the mesh parameters with and without the full sphere,

as well as the misfits obtained compared to the equivalent analytical solutions. The

discrepancies for a spherical source are similar to the discrepancies for a model with a

spherical source and the additional subdomain, demonstrating that no significant error

is introduced with the addition of a second spherical subdomain, as far as the mesh is

concerned.

Finally, the sum of the analytical solutions of models combining Mogi and Okada

sources have been compared with the sum of the individual numerical solutions of each

source, yielding also negligible discrepancies (‘M1+M2’ and ‘M+0 (DIa)’ in Table 4.2).

According to the various tests described above, discrepancies larger than 5% will
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be considered as significant, and caused by the presence of a second deformation source

and the resulting source interaction.
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Model #
Without spherical With spherical

subdomain subdomain

Domain dimensions(1) [km] 20×20×10

Inner domain(1) [km] 2×2×1.5

Lateral boundary Fixed

Mesh
statistics

Tetrahedra 247111 467715

Surface(2) 5216 5216

Inner Surface(2) 2982 2982

Cavity(2) 12732 12732 (×2)

A.E.Q(3) 0.73 0.73

Degrees of Freedom 1044960 1929558
Computing time [s] 445 4842

B
en

ch
m

ar
k
in

g
[%

]

εx = εy 1.13 1.14
εz 1.07 1.10

Ξx

∣∣∣
min

= Ξx

∣∣∣
max

0.08 0.11

Ξz

∣∣∣
max

0.47 0.52

Table 4.3: Calibration of combined sources models: error introduced by the addition of
a second spherical subdomain. Description of the domain geometry, models statistics and
benchmarking calculated for a model with one pressurized cavity (i.e. as in Chapter 3) and
a model with a pressurized cavity and an additional spherical domain. In the latter case,
the sphere, centred at depth 1125 m like in Model G1a (Table 4.1), has the same elastic
properties as the elastic medium hence the medium is kept homogeneous. In all models, the
medium elastic parameters are ν = 0.25 and E = 10 GPa. The magma chamber is 50 m
radius, its centre is located at 1 km depth, and is pressurized by ∆P = 20 MPa. (1)Domain
dimensions correspond to Width×Length×Height; (2)Elements are triangular; (3)‘A.E.Q’ is the
average elements quality, a dimensionless quantity between 0 and 1, where 0 and 1 represent a
degenerated and a perfectly regular element, respectively.

4.2 Results

In the following sections, I present the results for superposed or juxtaposed spherical

sources (Models A & B, respectively) and for juxtaposed dike and spherical source

(Model DI) that give significant discrepancies between analytical and FEM surface

displacements. While I give here a subset of the results for Models A, B and DI, I list

the full set of results in the Appendix A.

4.2.1 Effect of source types and relative position

Models C & DII: superposed or aligned spherical source and dike

Models C & DII always yield negligible discrepancies (< 5%), as represented in Fig-

ures 4.2 & 4.3, and listed in Table A-3, and are not further described.
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Model #
∆P1 ∆P1

∆P2
Uop

Maximum discrepancies obtained [%] Dlimit
(1)

[MPa] εx εy εz Ξx Ξz [radii]

A, G1a
20 1 n/a 3.3 3.3 5.6 7.0 13.9 4
200 1 n/a 3.3 3.3 5.6 7.0 13.9 4
10 1 n/a 3.3 3.3 5.6 7.0 13.9 -
20 1/2 n/a 3.6 3.6 5.7 7.3 16.1 -
40 2 n/a 3.1 3.1 5.5 6.6 12.0 -
20 -1 n/a 6.5 5.6 11.4 7.2 13.6 4
200 -1 n/a 6.5 5.6 11.4 7.2 13.6 -
20 -1/2 n/a 8.5 8.5 7.6 1.5 16.2 4

B,G1’a
20 1 n/a 5.3 5.8 4.6 1.4 6.3 4
200 1 n/a 5.3 5.8 4.6 1.4 6.3 -
20 -1 n/a 9.6 13.1 12.3 8.9 13.8 4

Ca
20 n/a 1 1.3 1.2 1.6 1.2 1.5 < 1.5
-20 n/a 1 4.1 0.4 1.9 4.0 1.0 2

DI,m1
20 n/a 1 m 97.2 12.3 12.6 82.3 15.1 9+
-20 n/a 1 m 553.7 9.8 22.5 298.8 5.3 9+

DI,m1
20 n/a 2 m 39.3 18.5 12.1 41.1 14.7 -
-20 n/a 2 m 723.5 14.9 30.8 657.4 1.7 -

DI,m2
20 n/a 1 m 7.1 7.6 5.7 5.9 7.2 3
-20 n/a 1 m 24.1 7.6 6.8 8.7 7.0 3

DI,m2
20 n/a 2 m 11.0 17.0 9.7 11.0 10.7 -
-20 n/a 2 m 49.0 13.7 15.4 18.8 12.6 -

DI,m3
20 n/a 12 MPa 14.3 12.3 9.1 11.2 5.5 3
-20 n/a 12 MPa 11.1 15.5 11.9 17.6 12.9 3

DI,m3
20 n/a 23 MPa 16.5 23.5 13.2 26.6 11.8 -
-20 n/a 23 MPa 30.3 19.2 17.5 23.1 19.2 -

DII,m1
20 n/a 1 0.3 0.7 1.5 0.2 0.7 < 1.5
-20 n/a 1 0.9 1.4 1.4 0.7 1.7 < 1.5

Table 4.4: Models A-D: Maximum discrepancies found either for various pressurization (∆P1,
∆P2) of the two spherical sources in Models A-B or for various pressurization of the spherical
source (∆P1) and various dike opening (Uop, Methods 1-2) or dike pressurization (∆P2, Method

3). Dlimit
(1) corresponds to the source separation where the discrepancies become negligible,

that is smaller than 5% as defined in the calibration process. In all models, the Poisson’s
ratio ν = 0.25 and the Young’s modulus E=10 GPa. Models for which only the closest source
separation was tested are indicated by ‘-’.
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Figure 4.2: Model C: Surface (ε) and maximum local (Ξ) discrepancies vs source separation
obtained for models combining a dike superposed to a spherical source. The dike is opening
by 1 m and the spherical source is pressurized by either ∆P = +20 MPa (left column: a, c)
or by ∆P = −20 MPa (right column: b, d). Corresponding discrepancies values are listed in
Table A-3.



§4.2 Results 59

Figure 4.3: Model DII: Surface (ε) and maximum local (Ξ) discrepancies vs source separation
obtained for models combining a dike aligned to a spherical source. The dike is opening by
1 m and the spherical source is pressurized by either ∆P = +20 MPa (left column: a, c) or
by ∆P = −20 MPa (right column: b, d). Corresponding discrepancies values are listed in
Table A-3.
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Models A & B: superposed and juxtaposed spherical sources

The results of Model A and Model B highlight how the discrepancies between analytical

and numerical models depend on both geometry and on the combination of inflating

or deflating sources.

When the two sources are inflating, superposed sources (Model A) produce overall

greater discrepancies than juxtaposed sources (Model B): e.g. for Model A, at 2.5 radii

separation, ε, Ξx and Ξz are 9%, 7% and 14%, respectively, while for Model B ε reaches

7%, Ξx is always negligible, and Ξz is 10% (Figures 4.5 & 4.6 and Tables A-1 & A-2).

However, when one of the sources is deflating, the discrepancies for both models are

similar. For Models A and B, all discrepancies are negligible (< 5%) beyond a source

separation (centre-to-centre) of 4 radii.

Depending on the position of the sources and their pressurization (inflation or de-

flation) the analytical models either under- or overestimate the surface displacements

(Figure 4.7). Two overpressurized sources ‘shield’ each other and their inflation is

buffered where the sources are the closest (Figure 4.4a). However, when one of the

two sources is inflating and the second deflating, the former expands into the space

vacated by the latter, this effect being the strongest where the sources are the closest

(Figure 4.4b). At the surface, for both Models A and B and the parameters chosen, the

discrepancies are significant ( 5%) up to a horizontal distance of 3 km (Ux) and 5 km

(Uz). In the case where two sources are superposed, the analytical solution overesti-

mates both horizontal and vertical displacements for two inflating sources (Figure 4.7a),

but underestimates them for one inflating and one deflating source (Figure 4.7b). In

the scenario of two juxtaposed sources (Model B), the analytical model underestimates

the surface displacements when the two sources are inflating or overestimates them

when one of the sources is deflating (Figure 4.7c and d).

Finally, the discrepancies computed between the numerical solution and McTigue’s

finite spherical source solution (Group 3 in Models A & B) do not clearly differ from

those calculated using Mogi’s point source (Groups 1-2). The surface discrepancies ε

are similar for Models A & B. In contrast, when the two spheres are superposed and

inflating (Model A), the finite source solution reduces Ξx to 5% (Groups 1-2: 8%) and

Ξz to 7% (Groups 1-2: 15%). In case of the juxtaposed sources (Model B), when one

of the source is deflating, Ξx is similar to the discrepancies between analytical point

source (Groups 1-2) and FE model, but McTigue’s solution reduces Ξz to 7% (Groups
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(a) Model A (∆P1 = ∆P2 = 20 MPa) (b) Model A (∆P1 = −∆P2 = 20 MPa)

Figure 4.4: Models A (Group G1’a): 2D perspective of the displacement vector magnitude [m]
deforming the walls of a spherical source pressurized by ∆P1 = 20 MPa superposed to another
spherical source pressurized by either ∆P2 = 20 MPa (left) or ∆P2 = −20 MPa) (right), in an
homogeneous medium. Note that the source deformation is magnified by a factor of 100 and
the difference in scale between (a) and (b).

1-2: 14%).
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Figure 4.5: Model A: Surface (ε) and maximum local (Ξ) discrepancies vs source separa-
tion obtained for models combining two superposed spherical sources. The shallower source is
pressurized by ∆P1 = +20 MPa and the deeper source is either pressurized by ∆P2 = +20
MPa (left column: a, b, c) or under-pressurized by ∆P2 = −20 MPa (right column: d, e, f ).
Corresponding discrepancies values are listed in Table A-1.
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Figure 4.6: Model B: Surface (ε) and maximum local (Ξ) discrepancies vs source separation
obtained for models combining two juxtaposed spherical sources, one of them being pressurized
by ∆P1 = +20 MPa and the other one being either pressurized by ∆P2 = +20 MPa (left
column: a, b, c) or pressurized by ∆P2 = −20 MPa (right column: d, e, f ). Corresponding
discrepancies values are listed in Table A-2.
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(a) Model A, ∆P2 = +20 MPa, Distance 2.5 radii
(G1’a)

(b) Model A, ∆P2 = −20 MPa, Distance 2.5
radii (G1’a)

(c) Model B, ∆P2 = +20 MPa, Distance 2.5 radii
(G1’a)

(d) Model B, ∆P2 = −20 MPa, Distance 2.5
radii (G1’a)

Figure 4.7: Models A-B (Group G1’a): Surface displacements across the centre of the defor-
mation sources for models with two superposed (Model A) or two juxtaposed sources (Model B)
separated by a distance of 2.5 radii. The lower of right-hand source (Source 2) pressurization
is either ∆P2 = 20 MPa (left column: a,c) or ∆P2 = −20 MPa (right column: b, d). The
profiles for further source separation are presented in Figures A-2 & A-3.



§4.2 Results 65

Model DI, Methods 1-3: juxtaposed tensile rectangular and spherical sources

The discrepancies computed for Model DI strongly depend on the approach employed

to model the opening dike (Figure 3.5). The results of the three approaches (Methods

1-3) are compared in Figure 4.8, in Figure A-1, and in Figure 4.9 (see also Table A-4).

The conditions applied on the dike boundaries (displacements or pressure) are directly

related to the way the sources can deform and influence each other (Figure 4.10).

Using Method 1, a fixed displacement prescribed on both dike walls immobilizes

the dike, prevents further deformation, though the spherical source deforms. Method

1 gives analytical and numerical surface displacements that differ radically in the dike

opening direction (the x direction for the models considered). Consequently, the dis-

crepancies (ε and Ξ) in this direction are two orders of magnitude larger than in the

other directions (see Table A-4 in Appendix). When the spherical source inflates, εx

and Ξx reach 97% and 82% (Appendix, Figure A-1). They even reach 550% and 300%,

respectively, when the spherical source deflates (Figure 4.8). The remaining discrep-

ancies in vertical (εz) and strike (εy) directions are, however, of the same order of

magnitude as those computed for Models A and B: εz and Ξz are up to 13% and 15%

for an inflating sphere and up to 23% and 5% for a deflating source. All discrepancies

become negligible beyond 9 radii separation.

In contrast to Method 1, when using Methods 2 and 3 (displacement of a flexible

dike wall with constant opening, or pressurized tabular crack) all discrepancies are of

comparable magnitude to models A & B. With these two methods (2 & 3), both the

dike and the spherical source can deform (Figure 4.10). This is reflected in the mag-

nitude of the surface discrepancies: while εy is on average lower than both εx and εz

for a rigid dike (Method 1), all components of the surface discrepancies are within 2%

for source separation of 3 radii and beyond. For both methods, neglecting the source

interaction leads to significant discrepancies up to a horizontal distance of 5 km (Ux)

and 3 km (Uz), with an underestimation of Uz and overall a slight overestimation of

Ux (Figure 4.9).

With Method 2, the dike is simply ‘pushed’ away from or ‘pulled’ towards the inflat-

ing or deflating sphere, which in turn deforms in response to the dike opening, constant

over the dike plane.

The discrepancies computed with Method 2, which is the closest to an Okada rect-

angular tensile dislocation, are on average the lowest calculated between the 3 methods,
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and are significant only up to 2 radii source separation (Figure 4.8, and also Figure A-

1). Regarding the surface discrepancies, εx is still larger than εz, with 7% vs 6% and

24% vs 7% for inflating and deflating sphere, respectively. However Ξx and Ξz are sim-

ilar, with maximum values for Ξx and Ξz of 6% and 7%, respectively, for an inflating

sphere, and 9% and 7% for a deflating source.

A pressurized tabular crack, Method 3, does not open uniformly as the Okada ana-

lytical model or Methods 1 or 2, but deformation of the dike walls results in a bulging

shape (Figure 3.5). In the presence of an additional inflating or deflating source, the

resulting shape will be more complex (Figure 4.10). The discrepancies are overall inter-

mediate to those calculated with the two other methods and become negligible beyond

3 radii separation (Figure 4.8). This is the most realistic model for a pressurised dike.
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Figure 4.8: Model DI: Surface (ε) and maximum local (Ξ) discrepancies vs source separation
obtained for models combining a spherical source pressurized by ∆P = −20 MPa juxtaposed
to a dike opening by 1 m, modelled with Methods 1-3 (from top to bottom). Corresponding
discrepancies values are listed in Table A-4.
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(a) Method 1, Distance 1.5 radii, ∆P = +20 MPa (b) Method 1, Distance 1.5 radii, ∆P = −20 MPa

(c) Method 2, Distance 1.5 radii, ∆P = +20 MPa (d) Method 2, Distance 1.5 radii, ∆P = −20 MPa

(e) Method 3, Distance 1.5 radii, ∆P = +20 MPa (f) Method 3, Distance 1.5 radii, ∆P = −20 MPa

Figure 4.9: Model DIa: Surface displacements across the centre of the deformation sources
for models of a dike opening by 1 m, modelled by Methods 1-3, juxtaposed to a spherical source
pressurized by either ∆P2 = +20 MPa (left column: a, c, e) or ∆P2 = −20 MPa (right column:
b, d, f ). The sources are separated by a distance of 1.5 radii. The profiles for further source
separation are presented in Figure A-4, Figures A-5 & A-6.
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(a) Method 1 (∆P = 20 MPa) (b) Method 1 (∆P = −20 MPa)

(c) Method 2 (∆P = 20 MPa) (d) Method 2 (∆P = −20 MPa)

(e) Method 3 (∆P = 20 MPa) (f) Method 3 (∆P = −20 MPa)

Figure 4.10: Models DI: 3D perspective of the displacement vector magnitude [m] on the walls
of a dike opening by 1 m, modelled with Methods 1-3, juxtaposed to an inflating, ∆P = +20
MPa (left), or a deflating, ∆P = −20 MPa, spherical source (right), in an homogeneous medium.
The distance between sources is 1.5 radii (Group DIa). The upper scale corresponds to the
horizontal displacement of the dike walls, to emphasize how Methods 1-3 differ. The lower
scale corresponds to the total deformation of the spherical source. The source deformation is
magnified by a factor of 100. Note that, with Method 1 (upper panel: a, b), the dike opening
is constant as imposed by the boundary conditions and only the spherical source is deforming.
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4.2.2 Effect of the radius/depth ratio

In Models A and B, the effect of the distance between sources and free surface has

also been tested with various (upper source) radius/depth ratios (a/d) and was found

to generally have little influence on the magnitude of the discrepancies: the surface

discrepancies computed for a/d =0.1 and 0.05 are all within 5%, and Ξx and Ξz differ

less than 2%. For Model A, most of the discrepancies calculated for the two groups

with same radius-to-depth ratio a/d = 0.1 (Models A-G1a and G1’a, Figures 4.5 & 4.6)

differ by less than 1%. Overall, independent of the a/d ratio, the discrepancies always

follow the same trend and are all negligible beyond 4 radii separation.

4.2.3 Effect of source strength and geometry (Models A + Models

DI)

The results listed in Table 4.4 underline the fact that the discrepancies vary with the

pressure difference or displacements applied to the spherical or dislocation source walls.

For the three models A, B and DI, I found that the discrepancies are in general larger

if one of the sources is deflating.

Table 4.4 also highlights how far the discrepancies depend on the geometry. Dis-

crepancies are higher for Model DI than for Models A and B, although they decrease

more rapidly and are only significant (> 5%) for source separation of less than 3 radii

for model DI (Methods 2 and 3), and 4 radii for Model A.

The various pressure differences tested in Model A indicate that the discrepancies

are identical for all multiples of the chosen ∆P1/∆P2 ratio. The magnitude of dis-

crepancies increases with the magnitude of the deeper source pressurization (∆P2) for

a constant pressurization of the upper source (∆P1).

The various openings or pressures applied on the dike wall in Model DI (Meth-

ods 2 and 3) also show that the closest results to the analytical solution are generally

given when the dike is modelled with Method 2, with the exception of the surface dis-

crepancies εx, which is closer to the analytical solution when modelled with Method

3.
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4.3 Case studies

4.3.1 Models scenarios

In the following section, I apply our methodology to three examples (referred as Models

CS1-3) where analytical models were combined. In line with Section 4.1.1, I construct

FE models with geometries and physical parameters equivalent to the analytical models

presented in these case studies, which are depicted in Figure 4.11, and their parame-

ters are summarized in Table 4.5. I then calculate the discrepancies between FE and

analytical models to estimate the effect of neglecting the source interactions.

I have adapted these cases from Elsworth et al. (2008) and Linde et al. (2010) who

employed analytical models to represent the volcanic plumbing system of Soufrière Hill

volcano, Montserrat, West Indies, for the first episode of unrest (15 Nov. 1995-10 March

1998) and an explosion during March 2004, respectively. In the third case study, Wright

et al. (2006) modelled the magmatic system of the Dabbahu segment, Afar, Ethiopia,

for the rifting episode that occurred between 14 Sept.-4 Oct. 2005.

Model CS1, representing Soufrière Hills Volcano (SHV), consists of 2 superposed

spherical magma chambers, and corresponds to our Model A with two superposed Mogi

sources, separated by 6 source radii and with a ratio of source radius to depth of 0.17

(upper source). In Model CS2, the SHV magmatic system composed of a dike (Okada

source) superposed to a spherical pressure source (Mogi source).This model corresponds

to our Model C, with a distance between the magma chamber centre and the bottom of

the dike of 1.4 times the magma chamber radius. In Model CS3, I focus on the northern

section of the Dabbahu-Gab’ho segment (Wright et al., 2006; Ayele et al., 2009), where

two deflating magma chambers are located on either side of the dike. Compared to

their original models, I focus merely on an opening dike without shear components.

This scenario corresponds to our Model DI, where the dike has been modelled with

Method 2 (see Section 4.1.1).

4.3.2 Results

The discrepancies computed for CS1-3, listed in Table 4.5, are in good agreement with

our previous results. In Model CS2, as in Model C, both surface (ε) and maximum

discrepancies (Ξ) are negligible (< 5%). Models CS1 and CS3 have a set of geometrical
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Figure 4.11: Case studies CS1-3. CS1 and CS2, corresponding to our Models A and C
respectively, are adapted from Elsworth et al. (2008) and Linde et al. (2010) analytical models
of the plumbing system of Soufrière Hills Volcano, Montserrat, West Indies. CS3, corresponding
to our Model DI, is adapted from the Dabbahu segment, Afar, Ethiopia magmatic system as
described by Wright et al. (2006). Geometry and physical parameters are listed in Table 4.5.
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and physical parameters more complex than Models A and D1, henceforth producing

a different, more intricate, deformation pattern (see e.g. Figure 4.12a). However, as

expected from Model A and DI, the discrepancies of Model CS1 are weaker than those of

Model CS3. In Model CS1, analytical and FEM solutions fit closely, with the exception

of the near-field vertical displacements. Henceforth, the surface and horizontal (Ξx

∣∣∣
min

and Ξx

∣∣∣
max

) discrepancies of Model CS1 are insignificant, but Ξz

∣∣∣
max

are significant

and reach 18.5%. In Model CS3, horizontal and vertical surface discrepancies are up

to 20%, and reflect how the analytical and FEM solutions differ by 10-15% over a 10

km2 area encompassing the three sources, with maxima of 25% for Uz and Ux above or

slightly offset of the spherical sources, respectively (Figure 4.11).
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Model CS1 Model CS2 Model CS3

Mogi source 1

Centre position [km] (0,0,-6) (0,0,-5) (3,6.5,-5)
radius [km] 1 0.5 1

∆P1 9.29 MPa -2.5 MPa -2.03 GPa

∆V 1 [km3] 0.03 -0.2

Mogi source 2

Centre position [km] (0,0,-12) n/a (-4,-1,-5)
radius [km] 1 n/a 1

∆P2 51.25 MPa n/a -3.06 GPa

∆V 2 [km3] -0.16 -0.3

Okada source
Centre position [km] n/a (0,0,-2.85) (0,0,-5.5)
width× height [km] n/a 2.9× 1 12× 7

Opening [m] n/a 0.16 8

Source separation [radii] 6 1.4
Mogi1-Ok.: 4
Mogi2-Ok.:: 3

Crustal E [GPa] 2.5 10 80
properties ν 0.25 0.25 0.25

Discrepancies [%]

εx 3.3 0.9 20.7
εy 3.2 0.6 17.50
εz 3.2 1.9 20.8

Ξx

∣∣∣
min

0.1 2.2 2.4

Ξx

∣∣∣
max

0.0 0.6 10.3

Ξz

∣∣∣
min

2.4 1.0 13.7

Ξz

∣∣∣
max

18.5 1.8 16.0

Table 4.5: Geometry, physical parameters and discrepancies obtained for Models CS1-3 (Fig-
ure 4.11 and Figure 4.12). Parameters are adapted from Elsworth et al. (2008), Linde et al.
(2010) and Wright et al. (2006) for the volcanic plumbing system of Soufrière Hills Volcano,
Montserrat, West Indies and from Wright et al. (2006) for the magmatic system of the Dabbahu-
Gab’ho segment, Afar, Ethiopia. Overpressures are either given in the referenced works or,
where indicated, derived from the source volume change (Delaney and McTigue, 1994). In
CS3, I chose a common value of 1 km for the magma chambers radius, otherwise unknown.
The Young’s modulus of 80 GPa is taken from Hamling et al. (2010). In the FE model, dikes
are modelled with Method 2, described in Section 3.3.1.
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Model CS3

Source 1 & 2 radii 0.5 km 1 km

Mogi source 2
∆P1[GPa] -16.03 -2.03

∆V 1 [km3] -0.2 -0.2

Mogi source 2
∆P2[GPa] -24.50 -3.06

∆V 2 [km3] -0.3 -0.3

Source distance Mogi1-Ok.: 2.5 Mogi1-Ok.: 2
(wall-to-wall [km]) Mogi2-Ok.: 3.5 Mogi2-Ok.: 3

Discrepancies [%]

εx 15.8 20.7
εy 14.4 17.5
εz 7.6 20.8

Ξx

∣∣∣
min

3.4 2.4

Ξx

∣∣∣
max

3.7 10.3

Ξz

∣∣∣
min

4.6 13.7

Ξz

∣∣∣
max

5.8 16.0

Table 4.6: Models CS3: discrepancies variations depending on the assumed radius of the
magma chamber. The discrepancies calculated previously for magma chambers with a radius
a = 1 km (Figure 4.11 and Figure 4.12) are compared with the discrepancies computed when
the radius is decreased to a = 0.5 km. The models parameters, other than source radius and
dependable variables, are identical to those listed for model CS3 in Table 4.5.

For both models CS1 and CS3, the significant discrepancies calculated contrast

with the negligible discrepancies calculated for Models A and DI with similar source

separations. This is particularly due to the 8 m opening of the dike in CS3, against only

1 m in DI, and to the high overpressures applied on most of the magma chambers walls

in the two case studies, overpressures possibly too high for the deformation to remain

elastic. In Model CS3, I chose a magma chamber radius of 1 km, as commonly observed

(Marsh, 1989) and calculated the overpressure from the volume change given in Wright

et al. (2006), and from the relation between radius, pressure and volume changes given

in Delaney and McTigue (1994), where pressure and radius are inversely proportional.

As shown in Table 4.6, increasing the magma chamber radii would induce a trade-off

between decreasing the source interaction by decreasing the overpressure applied, and

increasing the source interaction as the sources would grow closer.

4.4 Summary

In this chapter, I have quantified the effect of neglecting the interaction between sources

in models combining several Mogi and Okada sources. It is difficult to deduce a general
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(a) Model CS1: Displacements profiles (m)

(b) Model CS3: discrepancies in Ux (%) (c) Model CS3: discrepancies in Uz (%)

Figure 4.12: Model CS1 and CS3 (adapted from Elsworth et al., 2008 and Wright et al., 2006
for SHV, Montserrat, West Indies and the Dabbahu segment, Afar, Ethiopia, respectively).
Top: Model CS1. Profiles of the analytical and numerical solutions for the two sources indi-
vidually and combined. Bottom: Model CS3. Contourmaps of the horizontal (b) and vertical

(c) discrepancies [%] between analytical and FE solutions, normalized by UAn
z

∣∣∣
max

UAn
z

∣∣∣
max

,

respectively. Projection of the source position onto the surface is indicated in yellow. Negligible
discrepancies (< 5%) are mapped in grey. Corresponding geometry, physical parameters and
discrepancies values are listed in Table 4.5.
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rule for the discrepancies between analytical and FE solutions valid for all the geome-

tries and parameters investigated. Nevertheless, I can extract the following findings

from our models:

� The discrepancies induced when aligning and superposing a Mogi and an Okada

source in Models C and DII (Figure 4.1) are always negligible (< 5%).

� In contrast, models with superposed or juxtaposed Mogi sources (Models A and

B) and models with juxtaposed Mogi and Okada sources (Models DI) result in

analytical solutions differing from the numerical solution by up to 15%, 14%,

and 25%, respectively. For these three models, the discrepancies are maximal

when the sources are the closest, and are significant up to a horizontal distance

of 5 km. All surface and maximum discrepancies computed for Models A & B

become negligible when the sources are separated by 4 radii or more (Figure 4.5

to Figure 4.8).

� For model DI, in the case where the dike opening is modelled with relative dis-

placements of the dike walls (Method 2) or pressure difference (Method 3), all

discrepancies become insignificant for a source separation of more than 3 radii.

However, when applying fixed displacements (Method 1), which implies that the

medium is not elastic anymore at the dike boundaries, the discrepancies are up

to 300% and significant for a source separation of at least 9 radii.

� When applying our methodology to three case studies adapted from the magmatic

systems of Soufrière Hills Volcano, Montserrat, West Indies (Models CS1-2) and

the Dabbahu segment, Afar, Ethiopia (Model CS3), I find discrepancies that are

consistent with the above results. Indeed, employing model parameters adapted

from studies on these three magma systems, the discrepancies calculated are also

significant in the case of models with superposed magma chambers or juxtaposed

dike and magma chamber, while they are negligible when a dike is superposed to a

magma chamber. Additionally, these models highlight how the source interaction

and the discrepancies are related to the trade-off between overpressure and radius.

In Chapter 5, I investigate how the estimation of model parameters is affected by

neglecting the source interaction when two analytical models are combined, or in other

words how the neglected source interaction is mapped into model parameters to be

inverted for.



Chapter 5

Mapping the neglected source

interaction into model

parameters

Datasets of ground deformation are often inverted for geophysical model parameters,

such as magma chamber pressure and volume, as well as its location. Therefore, in this

chapter, I focus on evaluating how neglecting the source interaction, i.e. the discrep-

ancies, affect the retrieval of the source parameters. Concentrating on Models A and

DI where discrepancies are largest, I first investigate the sensitivity of the surface and

maximum discrepancies to individual variations of ∆P , dike opening, and source sep-

aration. Then, I perform analytical inversions of the synthetic FE solutions of Models

A and DI, to estimate to which extent the model parameters are affected by neglecting

the source interaction when two analytical models are combined.

5.1 Sensitivity analysis

5.1.1 Method

I use the numerical solutions of Model A-G1’a and Model DIa as a reference where

source interaction is accounted for (see Table 5.1 for a summary of the corresponding

model parameters) and I vary in the combined analytical model where source inter-

action is neglected either the source separation, the Mogi source pressurization ∆P1

or ∆P2 (Figure 5.1), or the dike opening in order to match the numerical reference

model (Figures 5.2 & 5.3 for Methods 1-2, and Figure 5.4 for Method 3). This mis-

fit is quantified by the discrepancies as defined in Section 3.1.3 (Equations 3.1 & 3.2)

78
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and therefore quantifies the error in the determination of the model parameters due to

source interaction. I plot a grid of the discrepancies ε and Ξ as well as the mean of

ε, calculated for a range of each of the three parameters: source separation, pressure

∆P1 and ∆P2 and dike opening. Red grid points correspond to negligible discrepancies

hence to a best-fit between the numerically generated dataset (reference model) and

the analytical combined model. The vertical red line indicates the parameter values of

the reference numerical model, which the analytical models aim to retrieve. In this way,

I can quantify how the interaction of deformation sources, neglected by the analytical

models, maps into distorted model parameters. By varying one model parameter at the

time, I assess the sensitivity of the model solution to this model parameter. Table 5.2

give a summary of the results.

5.1.2 Results

The sensitivity analysis of Model A-G1’a (Figure 5.1) shows that the discrepancies I try

to minimize are, for the range of values chosen, more sensitive to the source separation

than to the overpressure in the spherical sources, particularly for the shallower source

(∆P1). Compared to the reference model, the discrepancies map into incorrect model

parameters where ∆P1 is underestimated by 10 − 20%, ∆P2 by 20 − 35%, and the

source separation is overestimated by 70 − 100%. The fact that the red grid points,

calculated for the various discrepancies, overlap vertically, indicates that the solution

of the respective model parameter satisfies all components of the surface displacement.

The sensitivity analysis of Model DIa (dike juxtaposed to chamber) is represented

in Figure 5.4 for a dike modelled with Method 3, and in Figures 5.2 & 5.3 for a dike

modelled with Method 1 and 2, respectively:

1. Method 1: The high discrepancies throughout Figure 5.2 demonstrate that no

analytical model was found fitting the reference numerical surface displacements.

The mean surface discrepancies are systematically larger than 70%, dominated by

εx larger than 100%. Taken separately, the minima for εy and εz are still between

6− 25%, and would yield a dike opening underestimated by up to 50%, a source

separation overestimated by up to 45%, but a reasonable ∆P only 5% off its

actual value (Table 5.1). The large values of Ξ
∣∣∣
min

or Ξ
∣∣∣
max

(e.g. Ξx

∣∣∣
max

> 150%)

emphasize how strongly the analytical and numerical surface displacements differ,
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and that combining a Mogi and Okada solutions can never represent a scenario

where the dike is fixed in space and the magma chamber accounts for all the

deformation triggered by the interacting sources, such as was modelled through

Method 1.

2. Method 2: Compared to the previous method, the dike modelled with Method 2

can now be deformed remaining at a constant opening of 1 m. In this case, the

results depicted in Figure 5.3 show that an inversion using the analytical models

would lead to an underestimation of the dike opening by 20% and to an incorrect

estimation of ∆P and source separation by up to 10%, with a minimum mean(ε)

of 10%. For the parameter range given, the spread of the smaller discrepancies

points out that the model is more sensitive to the dike opening than to ∆P , but

even more to the source separation.

3. Method 3: When the numerical model is realized by a tabular crack (Method

3), the volume change of the numerical pressurized crack is equivalent to the

volume change of an Okada source of same dimensions and opening by 1 m. An

inversion using the analytical models points to a source pressurization and a dike

opening within 10% and 20% of their actual value, respectively, and a source

separation overestimated by up to 25% (Figure 5.4). The minimum mean(ε) and

ε are approximately equal to 7%. As for Method 2, the various discrepancies

computed for Method 3 indicate that the model solution is more sensitive to

a variation in dike opening and ∆P , but less sensitive to a change in source

separation.
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Model A-G1’a
Model DIa

M1 M2 M3

Mogi source 1
Centre position [km] (0,0,-5) (0.75,0,-2.5)

radius [km] 0.5 0.5
∆P1 [MPa] 20 -20

Mogi source 2
Centre position [km] (0,0,-6.25) n/a

radius [km] 0.5 n/a
∆P2 [MPa] 20 n/a

Okada source

Centre position [km] n/a (0,0,-2.5)
width× height [km] n/a 1× 1

Opening [m] n/a 1 1 n/a
∆P [MPa] n/a n/a n/a 12

Source separation [radii] 2.5 1.5

Discrepancies [%]

εx 11.6 553.7 24.1 11.1
εy 11.4 9.8 7.6 15.5
εz 14.1 22.5 6.8 11.9

Ξx

∣∣∣
min 8.1

298.8 8.7 17.6

Ξx

∣∣∣
max

185.1 0.5 2.7

Ξz

∣∣∣
min 15.5

5.3 7.0 12.9

Ξz

∣∣∣
max

n/a n/a n/a

Table 5.1: Summary of parameters and discrepancies for Models A-G1’a and DIa (Methods
M1-3) used as references in the sensitivity analysis tests (Table 5.2, Figures 5.1-5.4). The
results of the corresponding Monte-Carlo inversions are listed in Table 5.3. The domain elastic
parameters are E = 10 GPa and ν = 0.25.
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To summarize, when modelling a magmatic system composed of two Mogi sources,

neglecting the source interaction ultimately leads to a significant underestimation of

pressurization and an overestimation of the source separation by a factor of ≈2 if the

original sources are as close as 2.5 radii.

When modelling a magmatic system composed of a dike juxtaposed to a magma

chamber (Model DI), the discrepancies are enormous when Method 1 is employed,

≥ 150% in x-axis direction, i.e. in the dike of the dike opening and alignment of the

sources. This is due to the fact that the dike is fixed in space and the ‘interaction’ be-

tween the two sources results in the deformation of the spherical source only, while the

dike acts as a rigid, pinned, barrier. When comparing the reference numerical model

using Method 2 or 3, the discrepancies are much smaller and tend to be more sensitive

to a variation in dike opening and ∆P , but less sensitive to source separation. When

using Method 2, neglecting the source interaction is likely to lead to an underestima-

tion of the dike opening by up to 20% and to give a comparatively better estimate

of the source pressurization and the distance between sources. With Method 3, the

discrepancies calculated for each parameter range indicate stronger dissimilarities be-

tween the numerical and analytical solutions than with Method 2. Given that Method

3 is the closest to a realistic, pressurized dike, the discrepancies between Method 3 and

analytical solutions provide a measure of the error made when a real dike is modelled

with a constant-opening dislocation.

5.2 Inversions

5.2.1 Method

While the ‘grids’ in Figures 5.1-5.4 give some valuable insight into how each of the

deformation components contributes to the estimation of a model parameter such as

∆P , source separation and dike opening, a common inversion scheme will seek to

minimize the misfit between input data and analytical model prediction in all data

components simultaneously. Therefore, I take the scenarios of Model A-G1’ & DIa

and use their respective FE surface displacements as input data for the parameter

inversion based on the solution of Mogi and Okada. In other words, I assume that

the FE solutions represent the displacement fields for real cases where magma sources

close to each other interact, and estimate how strongly this interaction affects the joint



§5.2 Inversions 84

Figure 5.1: Sensitivity analysis for a model with two superposed Mogi sources of radii a =500
m and upper source radius-over-depth ratio a/d =0.1 (Model A-G1’a). The numerical solution
is taken as reference and in the analytical model I vary either the source separation, ∆P1, or
∆P2 (from top to bottom panel). The red lines indicate the position of the reference model
parameters (here A-G1’a). Reading each panel horizontally, the colour code refers to the value
of the surface discrepancies (ε), their mean, and of the discrepancies at the extrema (Ξ). Values
in red are discrepancies below 5% and indicate a good fit between the analytical and reference
models. Reading the panels vertically gives an estimate of each discrepancy component for a

give model parameter, indicating their respective sensitivity. Note that Ξx

∣∣∣
min

= Ξx

∣∣∣
max

due to

symmetry. Additionnally, the FEM Uz

∣∣∣
min

tend to zero hence Ξz

∣∣∣
min

results will not be taken

into account. The parameter ranges showing the best-fit to the numerical model are listed in
Table 5.2.
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Figure 5.2: Sensitivity analysis for a model of a dike opening by 1 m, modelled with Method
1, juxtaposed to a deflating spherical source (∆P = −20 MPa). The sources are separated by a
distance of 1.5 radii (Model DI -M1a). The numerical solution is taken as reference and in the
analytical model I vary either the source separation, ∆P1, or ∆P2 (from top to bottom panel).
The red lines indicate the position of the reference model parameters (here A-G1’a). Reading
each panel horizontally, the colour code refers to the value of the surface discrepancies (ε), their
mean, and of the discrepancies at the extrema (Ξ). Values in red are discrepancies below 5% and
indicate a good fit between the analytical and reference models. Reading the panels vertically
gives an estimate of each discrepancy component for a give model parameter, indicating their

respective sensitivity. In this model the FEM Ux

∣∣∣
max

tend to zero hence Ξx

∣∣∣
max

results will not

be taken into account. The parameter ranges showing the best-fit to the numerical model are
listed in Table 5.2.
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Figure 5.3: Sensitivity analysis for a model of a dike opening by 1 m, modelled with Method
2, juxtaposed to a deflating spherical source (∆P = −20 MPa). The sources are separated by
a distance of 1.5 radii (Model DI-M2a). The numerical solution is taken as reference and in the
analytical model I vary either the source separation, ∆P1, or ∆P2 (from top to bottom panel).
The red lines indicate the position of the reference model parameters (here A-G1’a). Reading
each panel horizontally, the colour code refers to the value of the surface discrepancies (ε), their
mean, and of the discrepancies at the extrema (Ξ). Values in red are discrepancies below 5% and
indicate a good fit between the analytical and reference models. Reading the panels vertically
gives an estimate of each discrepancy component for a give model parameter, indicating their

respective sensitivity. In this model the FEM Ux

∣∣∣
max

tend to zero hence Ξx

∣∣∣
max

results will not

be taken into account. The parameter ranges showing the best-fit to the numerical model are
listed in Table 5.2.
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Figure 5.4: Sensitivity analysis for a model of a dike opening by 1 m, modelled with Method
3, juxtaposed to a deflating spherical source (∆P = −20 MPa). The sources are separated by
a distance of 1.5 radii (Model DI-M3a). The numerical solution is taken as reference and in
the analytical model I vary either the source separation, ∆P1, or ∆P2 (from top to bottom
panel). The red lines indicate the position of the reference model parameters (here DI-M3a).
Reading each panel horizontally, the colour code refers to the value of the variation of surface
discrepancies (ε), their mean, and of the discrepancies at the extrema (Ξ). Values in red are
discrepancies below 5% and indicate a good fit between the analytical and reference models.
Reading the panels vertically gives an estimate of each discrepancy component for a give model

parameter, indicating their respective sensitivity. In this model the FEM Ux

∣∣∣
max

tend to zero

hence Ξx

∣∣∣
max

results will not be taken into account. The parameter ranges showing the best-fit

to the numerical model are listed in Table 5.2.
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retrieval of the model parameters by inversion of a model based on linear superposition

of Mogi and Okada models with analytical models. I employ a hybrid Monte-Carlo,

downhill simplex inversion scheme (Clarke, 1996; Wright et al., 1999, kindly provided

by Prof T.Wright) to estimate volume change, dike opening and source location. With

this method, calculation of the L2-norm allows to find the minimum misfit between the

FE input and the analytically modelled displacements. To make sure the parameters

retrieved do not correspond to local minima, I restart the inversion 2000 times with

200 randomly chosen starting parameter values. As previously, the full domain of the

FE models are 200× 200× 100 km for Model A and 110× 100× 35 km for Model DI,

in order to avoid including FEM boundary effects in the solution. However, I invert

for all models the horizontal and vertical FE displacements only in a 30× 30 km area

in the centre of the models. The dimension of this area corresponds to the spatial

extent of GPS or InSAR data often used during inversions. The source parameters

inverted for are indicated in bold in Table 5.3. In Inversions #1, #2, and #3, I have

tried to retrieve only one source parameter: the dike position, the dike opening, and

the magma chamber volume change, respectively (Model DI), or the deeper magma

chamber position (Source 2), Source 2 volume change, and Source 1 volume change,

respectively (Model A). In Inversions #4, I have jointly inverted for dike opening and

magma chamber volume change (Model DIa), or the two magma chambers volume

change (Model A). In inversions #5, I have tried to retrieve both source positions, dike

opening (Model DI) and/or the magma chamber(s) volume change.

5.2.2 Results

For Model DI (numerical Method 2), whether independently or jointly inverted for, the

source deflation ∆V (∆P ) is similar to its reference value, the dike opening is under-

estimated by 30 and the source separation is only slightly over-estimated (Table 5.3).

Hence, when modelling magmatic system with a dike aside a magma chamber, it is

possible to retrieve the parameters of the two sources relatively well when employing

an inversion scheme based on the Mogi and Okada analytical solutions.

For Model A, I have run the inversions with source separation between 2.5 and

9 radii for the numerical model with interacting sources (rows a-f in Table 5.3). In

order to separate the effect of the numerical noise in the FE models from the source

interaction I also have added the individual FE displacements generated by each of
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Source parameters Reference
model

Inversions #

#1 #2 #3 #4 #5
D

Ia
(M

2
) Mogi

source

∆V [10−3 km3] -1.9 -1.9 -1.9 -1.9 -1.9 -1.9
∆P [MPa] -20.0 -20.0 -20.0 -19.7 -18.9 -19.0

x [m] 750 750 750 750 750 744

Okada
source

Opening [m] 1 1 0.72 1 0.68 0.70
x [m] 0 -238 0 0 0 -178

Source separation [radii] 1.5 1.97 1.5 1.5 1.5 1.84

A
-G

1
’a

Mogi
source 1

∆V1 [10−3 km3] 1.9 1.9 1.9 1.6 1.4 3.8
∆P1 [MPa] 20.0 20.0 20.0 16.4 13.9 38.2
depth [km] 5.00 5.00 5.00 5.00 5.00 5.72

Mogi
source 2

∆V2 [10−3 km3] 1.9 1.9 1.4 1.9 2.3 -1.2×1014

∆P2 [MPa] 20.0 20.0 14.8 20.0 23.6 -1.2×1015

depth [km] 6.25 7.42 6.25 6.25 6.25 2.70×108

Source separation [radii] 2.5 4.8 2.5 2.5 2.5 5.4×108

A
-G

1’
b

Mogi
source 1

∆V1 [10−3 km3] 1.9 1.9 1.9 1.7 1.6 -25.2
∆P1 [MPa] 20.0 20.0 20.0 17.7 16.8 -256.4
depth [km] 5.00 5.00 5.00 5.00 5.00 5.09

Mogi
source 2

∆V2 [10−3 km3] 1.9 1.9 1.6 1.9 2.1 28.7
∆P2 [MPa] 20.0 20.0 16.5 20.0 21.4 292.7
depth [km] 6.50 7.26 6.50 6.50 6.50 5.14

Source separation [radii] 3.0 4.5 3.0 3.0 3.0 5.1

A
-G

1’
c

Mogi
source 1

∆V1 [10−3 km3] 1.9 1.9 1.9 1.9 1.9 2.8
∆P1 [MPa] 20.0 20.0 20.0 18.9 18.9 29.1
depth [km] 5.00 5.00 5.00 5.00 5.00 5.38

Mogi
source 2

∆V2 [10−3 km3] 1.9 1.9 1.8 1.9 2.0 0.8
∆P2 [MPa] 20.0 20.0 18.1 20.0 20.0 8.5
depth [km] 7.00 7.40 7.00 7.00 7.00 7.53

Source separation [radii] 4.0 4.8 4.0 4.0 4.0 4.3

A
-G

1’
d

Mogi
source 1

∆V1 [10−3 km3] 1.9 1.9 1.9 1.9 1.8 2.1
∆P1 [MPa] 20.0 20.0 20.0 19.4 18.6 21.2
depth [km] 5.00 5.00 5.00 5.00 5.00 5.12

Mogi
source 2

∆V2 [10−3 km3] 1.9 1.9 1.8 1.9 1.9 1.7
∆P2 [MPa] 20.0 20.0 18.8 20.0 19.7 17.3
depth [km] 7.50 7.75 7.50 7.50 7.50 7.34

Source separation [radii] 5.0 5.5 5.0 5.0 5.0 4.4

A
-G

1’
e

Mogi
source 1

∆V1 [10−3 km3] 1.9 1.9 1.9 1.9 2.0 1.8
∆P1 [MPa] 20.0 20.0 20.0 19.8 20.0 18.0
depth [km] 5.00 5.00 5.00 5.00 5.00 4.92

Mogi
source 2

∆V2 [10−3 km3] 1.9 1.9 1.9 1.9 1.9 2.0
∆P2 [MPa] 20.0 20.0 19.4 20.0 19.4 20.6
depth [km] 9.00 9.16 9.00 9.00 9.00 8.32

Source separation [radii] 8.0 8.3 8.0 8.0 8.0 6.8

A
-G

1’
f

Mogi
source 1

∆V1 [10−3 km3] 1.9 1.9 1.9 1.9 2.0 1.9
∆P1 [MPa] 20.0 20.0 20.0 19.8 20.0 19.20
depth [km] 5.00 5.00 5.00 5.00 5.00 4.97

Mogi
source 2

∆V2 [10−3 km3] 1.9 1.9 1.9 1.9 1.9 1.9
∆P2 [MPa] 20.0 20.0 19.4 20.0 19.3 19.3
depth [km] 10.00 10.17 10.00 10.00 10.00 9.48

Source separation [radii] 9.0 10.3 9.0 9.0 9.0 9.0

Table 5.3: Inversions of the synthetic datasets (numerical reference model) using combined
analytical models corresponding to Models A-G1’a-f, and DIa. In Model A, two spherical
sources of radius a = 500 m, and pressurized by ∆P1 = ∆P2 = 20 MPa, are superposed by
a distance of 2.5 (G1’a) to 10 radii (G1’f). In Model DI, a 1 × 1 km dike opening by 1 m
is juxtaposed by 1.5 radii (i.e. 750 m) to a deflating source (∆P = −20 MPa). Note that
inversions #1 through #3 retrieve only one parameter (in bold) while inversions #4 and #5
attempt to obtain several parameters simultaneously.
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the sources for all source separations, and I have inverted the sum, in the following

referred to as ‘M1+M2’. This sum is identical to the analytical solution except for

the numerical error introduced by the FE method (see ‘M1+M2’ in Table A-1). As a

reference, I have furthermore inverted the sum of the analytical solutions for the same

set of model parameters. In this case, the inversions have retrieved the original param-

eters, pointing out the fact that only the numerical error introduced by the FE method

affects the results of inversions of the ‘M1+M2’ solutions. In Figure 5.5, I compare

the normalized error between reference and retrieved parameters for both interacting

and non-interacting source solutions. This figure therefore highlights how the results

of the inversions are affected both by neglecting the surface interaction and by noise

contamination. Overall, the influence of the source interaction on the retrieved pa-

rameters is significant until a minimum source separation of 8 radii is reached. When

all but one parameters are fixed (Inversions #1-3 in Figure 5.5a), the error for the

‘M1+M2’ parameters only reach ±2%. The inversion results are in realistic ranges, but

are affected by large or very large errors, in particular when one inverts for the depth

of the deep source. The solutions for the full FE model confirm our previous results

underestimating ∆V , hence ∆P , by up to 30% and overestimating the source separa-

tion by up to 20%. When ∆V 1 and ∆V 2 are simultaneously inverted for (Inversion

#4, Figure 5.5b), neglecting the interaction between sources lead to underestimating

the volume change of the upper source by 30% while overestimating the lower volume

change by 20% when the distance between sources is 2.5 radii. When the sources are

separated by more than 2.5 radii, the two volume changes can be retrieved with 5%.

When depths and ∆V are jointly inverted for (Inversion #5, Figure 5.5c), the inver-

sion is unstable for small source separation (< 4 radii) and still incorrectly estimated

until 8 radii, when all parameters are retrieved within ±10%. This indicates that even

small uncertainties in deformation data (here produced by the FE method) can lead to

unrealistic source parameters if the inversion is based on source models which are in

close vicinity to each other.

5.3 Summary

In this chapter, I have investigated how neglecting the source interaction by combin-

ing analytical models can affect the estimation of the source parameters, such as the
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Figure 5.5: Inversions of the synthetic datasets (numerical reference model) using combined
analytical models corresponding to Model A-G1’a to f. The reference models consist of two
superposed spherical sources of radius a=500 m pressurized by ∆P1 = ∆P2 = 20 MPa. The
errors obtained for the full FE model and for the ‘M1+M2’ summed model are indicated as
a solid and dotted line, respectively. The sources are separated by a distance of 2.5, 3, 4, 5,
8, 9 radii. The error between reference and retrieved parameter normalized by the reference
parameter is plotted against the reference model source separation. (a) Inversions #1 - #3
retrieve only one parameter at a time, (b) Inversions #4 retrieve both source volume change
∆V , (c) Inversions #5 retrieve all parameters, source volume changes and depths, (d) Sketch
of Model A and source parameters inverted for.
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Figure 5.6: Profiles above the source centre comparing the analytical (left) and FE (right)
vertical and horizontal surface displacements for models with two superposed spherical sources
(Model A-G1’) for source separations between 2.5-10 radii. For easier comparison, I mirrored
the horizontal displacements of the FE solution.
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magma chamber overpressure, the dike opening or the source separation. To that end,

I have performed the sensitivity analysis of models with superposed magma chambers

(Model A-G1’) and with juxtaposed magma chamber and dike (Model DI). Using an

inversion algorithm based on a linear addition of the Mogi and Okada solutions, I have

also inverted the surface displacements computed with the FE models, and investigated

the solutions when the source parameters are either individually or jointly inverted for.

Overall, the deformation fields of Models A-G1’ and DI, with source separation of 2.5

or 1.5 source radii, respectively, are less sensitive to a variation in overpressure or dike

opening than to the source separation, for the range of parameter values searched.

The sensitivity analysis shows that neglecting the source interaction leads to under-

or overestimating the magmatic pressure, dike opening or overestimating the source

separation. The inversion of the FE surface displacements of Model DI gives source

parameters only slightly different to their set values. However, neglecting the source

interaction in models with superposed spherical magma chambers, leads to an un-

derestimation of the source pressurizations, and to an overestimation of the source

separation, up to a source separation of 5 radii, when those parameters are inverted

individually (Inversions #1-#3). Co-inverting the magma volume changes ∆V 1 and

∆V 2 (Inversion #4)leads to an underestimation of the lower source volume change but

an overestimation of the upper source volume change, up to a source separation of about

3 radii. When the volume changes and depths of the two sources are co-inverted, the

parameters retrieved are unrealistic for at least one of the sources, up to a separation

of 8 source radii. In Inversions #4 and #5, it seems that the inversion scheme cannot

solve for the parameters of two close sources, and ‘attempts’ to either merge the two

imposed sources or to reducing the effect of one of them, e.g. increasing its depth or

reducing its volume change.

In order to understand why source interaction affects heavily the inversion results, I

have plotted the surface displacement solutions for different source separation in Fig-

ure 5.6, where I compare FEM and analytical models. The curves corresponding to the

analytical solutions are well separated from each other and progressively less peaked

for increasing source separation, while the numerical solutions overlap, or even show an

inversion in the curve progression, for source separation up to 5-8 radii. This shows how

source interaction induces a strong component of non-uniqueness to the displacement

field.



Chapter 6

Discussion and conclusions

6.1 Summary

Analytical and Finite Element models are two complementary and widely employed

methods to model volcano deformation data and retrieve source parameters. The de-

formation field of complex models can be solved with the Finite Element methods, that

solve for the full elasticity equations at the nodes of the model. Analytical methods

give the exact solution, at any location, of the elasticity equations simplified by a set

of assumptions. The Mogi and Okada sources are the two analytical models that are

the most frequently used to model the deformation field due to the pressure change

in a magma chamber or due to a dike intrusion. The homogeneous, isotropic, elastic

half-space assumption, inherent to these two models, implies the absence of topography,

the uniformity of the elastic properties, such as the Young’s modulus, and the absence

of any external stress-field. The external stress-field can be a regional stress-field or

can be introduced, in magmatic systems, by the presence of one or more additional

deformation sources.

Various studies have shown that neglecting the topography or the crustal hetero-

geneities can lead to significant discrepancies when computing the surface displace-

ments or the source parameters (e.g. Cayol and Cornet, 1998; Masterlark, 2007; Magni

et al., 2008; Trasatti et al., 2003), and some authors have elaborated methods to cor-

rect for neglecting the topography (Williams and Wadge, 1998; Williams et al., 2000).

However, when several analytical sources are combined to model a magmatic system,

their interaction is usually neglected and their respective solutions for the surface dis-

placements are simply summed.

94
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In the present work, I have evaluated the limits of combining Mogi and Okada ana-

lytical sources for several model scenarios and studied the implications for numerical

modelling of magma storage by employing various FE modelling methods.

The classic methodology to assess the impact of neglecting the analytical assump-

tions consists in comparing the analytical solutions with the solutions of equivalent

numerical models (Boundary or Finite elements), and eventually to evaluate the errors.

Following the same methodology, I have quantified the discrepancies introduced when

neglecting the interaction between combined Mogi and Okada sources. For several

model scenarios representing geometrical simplifications of magmatic systems, I have

compared the analytical surface displacements with the equivalent numerical model

solutions, which also account for the source interaction. I have carried out a series

of synthetic tests combining either two spherical sources representing magma chamber

models, or a magma chamber and an adjacent dike model. As model parameters I

have used the relative source positions, dike opening and the source pressurization. I

have modelled numerically the Mogi source by embedding a pressurized cavity (corre-

sponding to a fluid-filled magma chamber) into a large numerical domain representing

a half-space. To model numerically the Okada source, I have tested three approaches:

applying a constant normal displacement on the dike walls (Method 1); imposing a

constant displacement on one of the dike walls with respect to the other (Method 2);

and applying a pressure normal to the dike walls (Method 3). To quantify the discrep-

ancies between analytical and numerical solutions, I have estimated the differences in

the surface displacements either by considering the entire surface (ε) or by examining

the difference at the extrema of the surface displacement (Ξ).

I have demonstrated that discrepancies are negligible for all models with super-

posed or aligned dike and magma chamber (Models C & DII). However in all other

cases tested, neglecting the source interaction introduces significant discrepancies whose

magnitude depends on the source type, model geometry, and on the source strength

(pressurization or dike opening). FE and analytical models differ the most in the near

field, where volume or pressure estimates of magma intrusions are dominated by large

amplitudes. The discrepancies decrease with increasing source separation, yet number

and diversity of the parameters involved prevent the derivation of a simple mathemat-
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ical expression to estimate these discrepancies. Instead I have considered the model

scenarios separately.

Amongst these scenarios, I have found that when two pressurized sources are either su-

perposed (Model A) or juxtaposed (Model B) they interact, for example, by shielding

each other if they are both inflating. Neglecting this interaction causes discrepancies

of up to 16% at 2.5 radii source separation. The discrepancies between analytical and

numerical solutions become negligible for a source separation of more than 4 radii.

Depending on the pressurization of the sources (inflation or deflation), and on their po-

sition, the analytical models either under- or over-estimate the surface displacements

(Figures 4.7 & 4.9). Additionally, I have found that the discrepancies computed are

overall similar for a particular model geometry and source pressurization, regardless of

the radius-over-depth ratio (a/d) or the use of McTigue’s expression for a finite source.

In models with juxtaposed dike/magma chambers (Model DI), neglecting the source

interaction will also lead to significant discrepancies in surface displacements, which,

however, depend strongly on the approach taken to model the dike numerically. While

large discrepancies (> 550%) are calculated when modelling the dike with the numeri-

cal Method 1, employing Methods 2 and 3 induces discrepancies up to 25% and 18%,

respectively, and become negligible beyond 3 radii separation.

In addition to these scenarios (Models A-D), I have applied the same approach to three

case studies based on the magmatic systems of Soufrière Hills Volcano, Montserrat,

West Indies (Models CS1 and CS2, similar to Models A and DII, respectively) and of

the Dabbahu segment, Afar, Ethiopia (Models CS3, similar to Model DI). The results

of these case studies are in agreement with the theoretical models, showing significant

discrepancies for models with superposed magma chambers or with juxtaposed dike

and magma chambers.

Moreover, in order to estimate how neglecting the source interaction map into source

parameters, I have carried out analytical inversions of the FE solutions for models with

superposed overpressurized spherical source separated by 2.5 to 10 source radii (Model

A-G1’a-f). The parameters retrieved indicate that the fine structure of deep storage

systems are ‘intrinsically’ impossible to determine by means of geodetic data only: when

the vertical distance between different magma chambers is small, they interact and the

solution is not unique, and when the distance is large, the magma chambers do not
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interact much, but the signal of the deeper source will become too small to be resolved.

When it is possible to invert for one source parameter only, or if the source location

can be constrained and only the volume change of the two sources are co-inverted for,

then the source parameters are within 5% when the source are separated by more than

4 radii. Additionally, when inverting jointly for all source volume changes and depths,

the source interaction but also the noise contamination can make the solution unstable

although all source parameters are retrieved within±10% beyond the threshold distance

of 8 radii.

6.2 Discussion

In this section, I am focusing on two findings and two limitations of the study, and

I try to analyse in a broader context some of the results summarized above. These

four focus points are (1) the importance of the chosen FE numerical methods; (2)

the similar discrepancies obtained for a same, fixed, ratio of relative pressurization

∆P1/∆P2; (3) the effect of source discrepancies in comparison with the effect of the

crustal heterogeneities; and (4) the limitations of the inversion results for models with

superposed spherical sources (Model A).

6.2.1 FE modelling methods: limitations and outcome

Pressurized magma chambers and opening dikes are often represented in 3D Finite

Element models by, respectively, either pressurized cavities (Section 3.2) or by two

surfaces representing the dike walls, on which is either applied a constant, normal,

displacement or a constant pressure (respectively Methods 1 & 3, Section 3.3). In the

case of a magma chamber, this modelling method ignores the compressibility of the

magma in the magma chamber. Building on previous works (Delaney and McTigue,

1994; Johnson, 1992), Johnson et al. (2000) have emphasized that the deformation of

the source depends on the compressibility of the magma, and have shown how, when a

fixed volume of magma enters a magma chamber within an elastic domain, the surface

displacements depend on the ratio between the shear modulus of the crust and the bulk

modulus of the fluid. In the present study, I have shown that spherical deformation

sources deform when adjacent to another deformation source and interact. On the one

hand it is important to note that, for the model scenarios considered, my results are

limited to calculations where the magma compressibility is ignored. On the other hand,
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these results highlight the need for alternative FE models of magma chambers, where

the magma compressibility is taken into account. In such models, the deformation of the

source walls will diminish with magma compressibility, for a specified magma volume

and crustal shear modulus. Consequently, it is expected that the interaction between

sources and the misfit between the analytical Mogi solution and the FE solution will

differ from those obtained in this study. In any cases, although the source interaction

might be negligible, using an analytical inversion scheme not taking into account the

compressibility of the deformation sources will lead to discrepancies between the source

volumes changes, or between the source volume changes and the erupted volume (de

Zeeuw-van Dalfsen et al., 2005; Mastin et al., 2008; Nobile et al., 2012; Pagli et al.,

2007; Rivalta and Segall, 2008; Voight et al., 2010).

In the case of the dike, although Methods 1-3 give identical surface displacements

when the dike is the only source in the FE model and is deep enough, the variations

in the discrepancies obtained when two sources are combined, emphasize that each

method represents a dike with a different physical behaviour and, therefore, a different

interaction with the adjacent spherical source.

Method 1, limited to vertical dikes, is not realistic and should be avoided when mod-

elling several interacting sources: the medium responds elastically to the dike walls,

which are fixed in space. As demonstrated in Section 4.2 (e.g. Figure 4.8), mod-

elling deformation sources embedded in such heterogeneous medium with the analytical

Okada solution leads to large discrepancies (> 550%). In contrast to Method 1, both

Method 2 and Method 3 represent a non-rigid dike, with walls able to deform when

subjected to the deformation field due to the combined sources. In Method 3, the static

dike is subjected to a uniform internal pressure. When no other source is present, the

regional stress is also uniform and the dike cross section is elliptical, as predicted by the

equations of elasticity (Pollard and Muller, 1976). However, it opens asymmetrically

when another source is present and, as with Method 2, the dike is either ‘pushed away’

from the spherical source when it is inflating, or ‘pulled’ towards it when it is deflating.

The discrepancies induced when neglecting this deformation are up to 25% and 18%

for Methods 2 and 3, respectively, but become negligible beyond 3 radii separation.

Although the physical model behind Method 1 is unrealistic, it is sometimes em-

ployed to model a dike (Currenti et al., 2008, 2011; Pulvirenti et al., 2009), in particular
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because it is easily comparable with the Okada analytical model. It generates correct

surface displacements when the dike is either the only deformation source or is far

enough from other deformation sources such that it does not interact with them. How-

ever, the discrepancies summarized in Table 4.4 point out that modelling a dike with

Method 1 when it is close enough to another deformation source, leads to very large

errors. Moreover, the discrepancies, generally smaller for Method 2 than for Method 3,

suggest that for a dike juxtaposed to a magma chamber, a flexible dike model can be

represented by an Okada source, when it is further than 3 radii from the Mogi source.

6.2.2 Source proximity vs source strength

The results obtained for the various pressurization values listed in Table 4.4, specifically

the equivalent discrepancies for the same ratio ∆P1/∆P2, reveal that the discrepancies

of Models A & B are do not depend on the pressurization applied to each individual

source (∆P1&∆P2), but rather on the pressurization ratio. This is because the overall

stress field resulting from the source interaction and affecting their deformation is the

same for a same ∆P1/∆P2 ratio. Similarly, for models with similar sources, both

sources are affected in the same manner by the elastic properties of the crust (as long

as the medium is homogeneous).

This is demonstrated in Table 6.1 below, where I compare the discrepancies obtained

for crustal Young’s modulus E = 10 GPa and E = 20 GPa, for models with two inflating

magma chambers either superposed or juxtaposed (Models A & B, respectively), and for

model with an opening dike juxtaposed to a magma chamber (Model DI). For Models

A & B, the surface and maximum discrepancies are independent of a variation of the

Young’s modulus E of the surrounding medium. On the contrary, the discrepancies

obtained for Model DI vary depending on the Young’s modulus E (Table 6.1), because

the volume change of the two source types are not identical (McTigue, 1987; Davis,

1983).

Overall, for Models A & B, the discrepancies depend on the proximity of interacting

surfaces rather than on the strength of the deformation sources. Hence, in order to

avoid closely spaced deformation sources, one could decrease their radius and therefore

increase the distance between the interacting surfaces, while maintaining the same

strength by increasing the pressure, due to the trade-off between radius and pressure

change (a3∆P , Mogi, 1958). However, this relationship implies that a small change in
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Model
ε (%) Ξ (%)

εx εy εz Ξx

∣∣∣
min

Ξx

∣∣∣
max

Ξz

∣∣∣
min

Ξz

∣∣∣
max

A-G1’
E=10 GPa 3.34 3.35 5.85 6.97 6.99 13.67 n/a
E=20 GPa 3.34 3.35 5.85 6.98 6.99 13.66 n/a

B
E=10 GPa 4.5 4.4 3.8 1.4 1.5 4.7 n/a
E=20 GPa 4.5 4.4 3.8 1.4 1.5 4.7 n/a

Model DI
E=10 GPa 7.1 7.6 5.7 5.9 2.7 n/a 7.2
E=20 GPa 11.7 9.5 9.6 7.6 13.0 n/a 10.1

Table 6.1: Effect of Young’s modulus on the surface (ε) and maximum (Ξ) discrepancies
obtained for models with two superposed or juxtaposed inflating magma chambers (Models A
& B, respectively), and for model with an inflating spherical source next to a dike opening by 1
m (Model DI, Method 2). For Models A & B the sources are separated by 2.5 source radii, and
for Model DI by 1.5 source radius. In all cases, the magma chamber is pressurized by ∆P = 20
and the Poisson’s ratio of the crust is ν = 0.25.

the radius must be compensated by a large increase in pressure, which will be limited

by the strength of the crust.

6.2.3 Source interaction vs medium heterogeneities

As mentioned in Section 2.4.2, the Mogi and Okada models assume that deformation

sources are embedded within an homogeneous crust, hence without any lateral or ver-

tical variations of Young’s modulus. This assumption being often violated for volcanic

systems, several studies have shown that neglecting the crustal heterogeneities can

introduce significant errors when modelling analytically the deformation field (Master-

lark, 2003, 2007; Hautmann et al., 2010; Foroozan et al., 2010; Trasatti et al., 2003),

the magnitude of which varies depending on the geometry of the heterogeneity body

(or layer), on it’s rigidity relative to the surrounding crust, and on the geometry and

strength of the deformation source itself.

In order to compare the effect of neglecting the source interaction with the effect of

neglecting the medium heterogeneity, I consider two models, referred to in the following

as Models H1 & H2 (Figure 6.1), modified after Model A with two superposed spherical

sources, with radii of a = 500 m and pressurized by ∆P1 = ∆P2 = 20 MPa (Figure 4.1,

Model A-G1’). Model H1 consists of two superposed sources embedded in a medium

with an upper softer layer with Young’s modulus E = 1 GPa, which represents e.g.

volcanic material weaker than bedrock. Model H2 consists of two superposed magma

chambers located underneath a stiffer body, which could represent e.g. a previously

emplaced sill, more rigid than the rest of the medium, as detected at Iwate volcano
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(Aizawa et al., 2009). The Young’s modulus of the sill is E = 20 GPa while the crust

has a Young’s modulus E = 10 GPa, as in Model H1. Additionally, a third set of

tests, referred to ‘Sum’ in Figure 6.3 is created by computing two other models with

the medium elastic properties of model H1: in the first one, only the upper source is

embedded within the medium, and in the second one only the lower source is present.

The solutions of model with the upper source and of the model with the lower source

are then added. The same methodology is applied for model H2 crustal properties,

such that a set of the ‘Sum’ solutions for all source separation for Model H1, and for

all source separation for Model H2 are obtained. While the analytical solution neglects

both the effect of medium heterogeneity and source interaction, the FE model solution

accounts for both of them, and the summed solution allows to evaluate the effect of the

heterogeneity alone. All numerical models are first calibrated against a corresponding

Mogi solution, setting the same elastic properties to the lower and upper layer or to

the crust and sill, such that the medium is homogeneous. For both Models H1 & H2,

I calculate surface and maximum discrepancies between numerical and analytical solu-

tion for a source separation increasing from 2.5 to 10 radii. The displacement profiles

of Models H1 and H2 are given in figure Figure 6.2. The discrepancies calculated for

Models H1 and H2, as well as the results of the homogeneous model (Model A) are

represented in Figure 6.3 and are summarized in Table B-1.

In the case of Model H1, the numerical horizontal and vertical displacements, which

depend only weakly on the source separation, peak higher than the analytical solution

in a narrow area above the source (here with 3 km2 and 10 km2 for Uz and Ux, respec-

tively). These results are consistent with the results of Trasatti et al. (2003); Fernandez

and Rundle (1994), who studied the effects of the presence of a weaker layer above one

pressurized spherical source embedded in an elastic medium. On the contrary, in the

case of Model H2, the numerical surface displacements are smaller than the analyt-

ical displacements until 3 radii source separation, and only slightly smaller than the

numerical surface displacement obtained in the homogeneous Model A (Figures 5.6

& A-2). Consequently, the discrepancies obtained for Model H1 between numerical

and analytical models are much stronger than those obtained for Model H2, for all

source separation. The discrepancies of Model H1 ‘full’ and ‘summed’ solution differ

by a maximum of 20% when they are the closest, and beyond a distance of 3 radii,

all discrepancies are approximately stable, reaching e.g. 55% and 15% for εx and εz,
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Figure 6.1: Effect of crustal heterogeneities: sketch of Models H1 and H2. In Model H1, the
crust is heterogeneous, with a 2 km thick upper layer, relatively soft compared to the rest of
the crust, with E = 1 GPa and E = 10 GPa, respectively. In Model H2, a 3 × 3 × 1 km rigid
sill, modelled as a prolate spheroid, with E = 20 GPa is located at 2 km depth, above the
two spherical sources, in a crust with E = 10 GPa. In all models, the two spherical sources,
with radii a = 500 m, are pressurized by ∆P1 = ∆P2 = 20 MPa, and the Poisson’s ratio is
ν = 0.25. The upper source is located at 5 km depth and the lower source depth varies as in the
homogeneous Model A, with the source separation increasing from 2.5 to 10 radii (Table 4.1).
See also corresponding discrepancies in Figure 6.3

respectively (Figure 6.3a-c). In contrast to Model H1, the discrepancies obtained for

Model H2 are similar within ±3% of the discrepancies for Model A, becoming negligible

after a distance of 3-4 radii. The discrepancies obtained for the ‘summed solution’ are

negligible for all source separations.

Again, it is important to note that these results depend on both the source and the

medium parameters chosen. However, it is possible to conclude from these results that

neglecting the source interaction can in some cases introduce significant discrepancies

compared to those introduced by neglecting crust heterogeneities. While in Model H1,

with a weaker surface layer, neglecting the heterogeneity of the medium affects the sur-

face displacement more strongly than neglecting the source interaction, and ‘hides’ the

effect of the source interaction. On the contrary, the presence of a stiff sill (Model H2)

does not introduce significant discrepancies between numerical and analytical surface

displacements, while the source interaction does.
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Figure 6.2: Effect of crustal heterogeneities: surface displacements profiles (Ux and Uz) of
Models H1 and H2, compared with the analytical solutions, for models with source separations
of 2.5, 3, and 4 source radii. In Model H1, the crust is heterogeneous, with a 2 km thick
upper layer, relatively soft compared to the rest of the crust, with E = 1 GPa and E = 10
GPa, respectively. In Model H2, a 3 × 3 × 1 km rigid sill, modelled as a prolate spheroid,
with E = 20 GPa is located at 2 km depth, above the two spherical sources, in a crust with
E = 10 GPa. In all models, the two spherical sources, with radii a = 500 m, are pressurized by
∆P1 = ∆P2 = 20 MPa, and the Poisson’s ration is ν = 0.25. The upper source is located at
5 km depth and the lower source depth varies depending on the source separation (Table 4.1).
See also corresponding Figures 6.1 & 6.3 for corresponding models geometries & discrepancies,
respectively.
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Figure 6.3: Effect of crustal heterogeneities: Model A-G1’ compared to Models H1 and H2:
Surface (ε) and maximum local (Ξ) discrepancies [%]. The ‘Full solution’ correspond to the
solution of the FE model with the two sources. The ‘Summed solution’ correspond to the sum
of the solution of two models, one with the upper source and the second one with the lower
source. The comparison between the ‘Full’ and the ‘Summed’ solutions allow to isolate the
effect of the source interaction. In all models, the two spherical sources, with radii a = 500
m, are pressurized by ∆P1 = ∆P2 = 20 MPa, and the Poisson’s ratio is ν = 0.25. In Model
A, the crust is homogeneous, with Young’s modulus E = 10 GPa. In Model H1, the crust is
heterogeneous, with an 2 km thick upper layer, relatively soft compared to the rest of the crust
with E = 1 GPa and E = 10 GPa, respectively. In Model H2, a 3 × 3 × 1 km rigid sill with
E = 20 GPa is located at 2 km depth, above the two spherical sources, in a crust with E = 10
GPa. See also Figure 6.1 for models geometries, and Table B-1 for discrepancies values.
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6.2.4 Generalization of inversion results

In Section 5.2, I have shown that, for models with two overpressurized sources (Model

A) separated by 2.5 to 10 source radii, the source parameters retrieved by an analytical

inversion scheme neglecting the source interaction, can lead to erroneous model pa-

rameters of depths and volume change (i.e. pressurization). Depending on the number

of parameters co-inverted for and on the source separation, the inversion results can

be unrealistic. For joint inversions of all depths and volume changes (Inversion #5), I

have also noticed that the analytical inversion scheme seems to attempt a minimization

of the effect of one of the two sources by either merging it with the other source, or

by increasing its depth, or by reducing its volume change. This behaviour indicates a

trade-off between model parameters, and the corresponding problems of resolving single

model parameters independently. While this trade-off was found considering only one

single model, I present the following statistical tests to evaluate if my findings can be

generalized and if they are applicable to ‘real’ deformation fields and associated analyt-

ical inversions. The results of the statistical study are given, describing the error on the

source parameters retrieved during an analytical inversion of 100 synthetic datasets of

the ‘full’ solution for two superposed spherical sources separated by 2.5, 3, 4, 5, 8 and

10 radii (Model A-G1’a-f). To generate the datasets, I have first added to the original

synthetic dataset of Model A-G’1 Gaussian noise with a standard deviation equal to 1

cm, equivalent to data noise in e.g. GPS measurements. I have then applied a bootstrap

method, commonly used for deformation datasets, to obtain the final 100 re-sampled

synthetic datasets with added noise (Foroozan et al., 2010; Gottsmann et al., 2006;

Efron and Tibshirani, 1986; Lisowski, 2007). As in Section 5.2, each dataset is either

inverted for the lower source depth z2 (Inversion #1) or volume change ∆V2 (Inversion

#2), and for the volume change of the upper source (Inversion #3). In Inversion #4

the volume changes of the two sources are inverted for, and in Inversion #5 the depth

and the volume changes of the two sources are inverted for. Additionally, to be able

to differentiate errors introduced by source interaction and those introduced by the

added noise, I have also performed the same inversions on 100 synthetic datasets of

the summed ‘M1+M2’ solutions (see Section 5.2). Finally, in order to evaluate if the

accuracy of the source parameters retrieved is related to the number of data points, I

have performed a second statistical study of 6000 inversions. As in the bootstrap study,

I first add Gaussian noise with a standard deviation of 1 cm to the original synthetic
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dataset and to the ‘M1+M2’ solution for each source separation. Then, instead of

employing a bootstrap technique, I have produced, using as input these datasets with

added noise, 100 samples with only 500 data points instead of the original 1600 data

points. Note that in this case the datasets are not bootstrapped. Overall, both the

bootstrap and downsampling studies have given similar results, hence only the results

of the bootstrap study are shown below, while the results of the downsampled study

are kept in Appendix C (Table C-2, Figures C-3-C-2).

In Table 6.2, I present only a subset of the results and give the mean and standard

deviation of the maximum errors on the parameters retrieved in Inversions #1-5, ob-

tained where the sources are the closest (2.5 radii distance). The distribution of the

errors made on the retrieved parameters for all models and inversions are represented

in Figure 6.4 for Inversions #1-3 and in Figures 6.5 & 6.6 for Inversions #4-5, along

with the results obtained in Section 5.2. The corresponding numerical results are also

given in Appendix C (Table C-1).

The results obtained in the statistical studies, either applying a bootstrapped or

downsampling method, are consistent with our previous results of Section 5.2. When

inverting for only one parameter (Inversions #1-3, Tables 6.2 & C-2, Figure 6.4 and

Figure C-3), the depth of the lower source, i.e. the source separation, is overestimated

by up to 16% (σ ≈ 2%), its volume change is in average underestimated by up to

23% (σ ≈ 3%) and the volume change of the upper source is in average underestimated

by as much as 16% (σ ≈ 2%). When the source parameters were retrieved within

5% for source separation of more than 4 radii, here the comparison between full and

summed solution shows that the source interaction can still introduce bigger errors, of

up to 17% (σ ≈ 4%), at this distance. If the errors on the source parameters decrease

with the source separation, however, when the sources are separated by more than 8

radii, the errors average and standard deviation on the lower source depth and volume

change are, again unexpectedly high, for both full and summed solution, whether I use

a bootstrap or a downsampling method. This demonstrates that, as the lower source is

getting deeper and its effect on the surface deformation lessens, retrieving its parame-

ters are hindered, particularly by the introduction of the noise.

While, when inverting the original FE model solution, the source parameters could

still be retrieved within 10% for a source separation of more than 4 radii in Inversion

#4, and 8 radii in Inversions #5, the calculations are unstable when inverting the noisy
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re-sampled dataset (Figures 6.5 & 6.6, and Figures C-4 & C-5). For Inversions #4, the

inverse linear relationship between the error on ∆V1 and on ∆V2 is highlighted in Fig-

ure 6.7a, together with the fact that the inversion scheme tries to retrieve an overall

∆V consistent with the surface displacements, rather than solving for the individual

∆V1 and ∆V2 (see also Figure C-6 in appendix). For Inversions #5 where the depths

and volume changes of the two sources are co-inverted, Figure 6.7c shows a similar

process, and the inversion results can be divided in two parameters combinations: one

representing a source at 5 km (i.e. close to z1 or z2) and either a very deep or a very

shallow source causing barely any deformation. Hence, neither the very deep or the

very shallow source have a significant effect on the surface deformation. Note that in

Inversions #5, carried out on the downsampled data sets, a third combination of source

parameters consists of two sources close to each other and overall ∆V ≈ ∆V1 + ∆V2,

where ∆V1 and ∆V2 taken separately can be unrealistic (Figure C-6c).

Overall, the statistical studies presented show that the errors obtained when in-

verting the original solution of the FE model (Section 5.2) are coherent with the errors

which could be made when inverting a real deformation dataset with Gaussian noise of

σ = 1 cm, either with a minimum of 500 data points, or using a bootstrap re-sampling

technique for 1600 data points. Hence these results imply that for magmatic systems

with a complex, fine structure, with two or more storage zones at different depths

(i.e. smaller deformation sources within a same magma reservoir, rather than distinct

bigger magma chambers, e.g. Sigmundsson et al., 2010b, on Eyjafjallajokull Volcano,

Iceland), it would be difficult, at the very least, to invert for source depth and volume

change at once, and independent information on source depth, for example petrological

constraints, should be integrated in the procedure as an additional constraint.
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Distribution of errors on retrieved parameters

Model
A (‘full’) A (Summed ‘M1+M2’)

Noisy, Bootstrapped Noisy, Bootstrapped)

Inversions Mean σ Min. Max. Mean σ Min. Max.

#1 z2 16.2 2.3 10.4 22.7 3.8 2.4 -2.7 9.0

#2 ∆V2 -23.1 2.7 -30.4 -15.9 -4.9 3.8 -13.3 7.3

#3 ∆V1 -16.2 1.9 -21.3 -11.2 -3.8 2.6 -9.6 4.4

#4
∆V1 -32.2 19.3 -78.1 -32.2 -37.5 23.0 -102.1 21.1

∆V2 22.9 28.1 -41.4 88.1 48.4 32.8 -26.0 140.6

#5

∆V1 -1235.58 2540.08 -7451.55 7653.59 -1761.4 3602.6 -7538.4 6809.6

∆z1 10.68 22.37 -31.24 63.68 -1815.2 2284.1 -7694.3 2721.1

∆V2 1197.69 2526.16 -7699.64 7427.02 34.1 34.1 -95.3 85.7

∆z2 -51.98 46.75 -99.10 34.50 1746.4 2250.1 -2788.5 7602.2

Table 6.2: Inversion #1-5, Model A-G1’a (2.5 radii separation): distribution of the errors on
the parameters retrieved in the 100 inversions of the synthetic (FE) solution. An additional
Gaussian noise with standard deviation 1 cm was added to the numerical solution, which has
been then bootstrapped. The mean, the standard deviation (sigma), the minimum and the
maximum error on each parameters are given for each Inversions of the ‘full’ solution of Model
A, and of the summed ‘M1+M2’ solution and relative parameters to which was added some
Gaussian noise and bootstrapped. The errors distribution is also represented in Figure 6.4,
Figures 6.5 & 6.6. See Tables C-1 & C-2 for the entire set of the error distribution of the
synthetic solution with added noise and either bootstrapped or downsampled.
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Figure 6.4: Inversions #1-3: errors between original and retrieved parameters values obtained
for a population of 100 inversions of the solution of the synthetic datasets (numerical reference
model), using combined analytical models corresponding to Model A-G1’a to f. The reference
models consist of two superposed spherical sources of radius a=500 m pressurized by ∆P1 =
∆P2 = 20 MPa. A Gaussian noise with standard deviation 1 cm has been added to the synthetic
solution, which has then been bootstrapped. The population of error between reference and
retrieved parameter normalized by the reference parameter is plotted against the reference
model source separation. The error distribution obtained for the full FE model and for the
‘M1+M2’ summed model are indicated in coloured and grey, respectively. The box-and-whiskers
plot indicate the minimum, the first quartile, the median, the third quartile and the maximum
of the error population. The errors obtained in Chapter 5 for the original synthetic dataset
are indicated with a solid line for the full FE model and with a dotted line for the ‘M1+M2’
summed model. The sources are separated by a distance of 2.5, 3, 4, 5, 8, 9 radii. Inversions
#1 - #3 retrieve only one parameter at a time: (a) the deeper source depth z2, (b) the deeper
source volume change ∆V2, (c) the shallower source volume change ∆V1. (d) Sketch of Model
A and source parameters inverted for.
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Figure 6.5: Inversions #4: errors between original and retrieved parameters values obtained
for a population of 100 inversions of the solution of the synthetic datasets (numerical reference
model), using combined analytical models corresponding to Model A-G1’a to f. The reference
models consist of two superposed spherical sources of radius a=500 m pressurized by ∆P1 =
∆P2 = 20 MPa. A Gaussian noise with standard deviation 1 cm has been added to the synthetic
solution, which has then been bootstrapped. The population of error between reference and
retrieved parameter normalized by the reference parameter is plotted against the reference
model source separation. The error distribution obtained for the full FE model and for the
‘M1+M2’ summed model are indicated in coloured and grey, respectively. The box-and-whiskers
plot indicate the minimum, the first quartile, the median, the third quartile and the maximum
of the error population. The errors obtained in Chapter 5 for the original synthetic dataset
are indicated with a solid line for the full FE model and with a dotted line for the ‘M1+M2’
summed model. The sources are separated by a distance of 2.5, 3, 4, 5, 8, 9 radii. Inversions
#4 retrieve both source volume change: (a) the deeper source volume change ∆V2, and (b) the
shallower source volume change ∆V1.
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Figure 6.6: Inversions #5: errors between original and retrieved parameters values obtained
for a population of 100 inversions of the solution of the synthetic datasets (numerical reference
model), using combined analytical models corresponding to Model A-G1’a to f. The reference
models consist of two superposed spherical sources of radius a=500 m pressurized by ∆P1 =
∆P2 = 20 MPa. A Gaussian noise with standard deviation 1 cm has been added to the synthetic
solution, which has then been bootstrapped. The population of error between reference and
retrieved parameter normalized by the reference parameter is plotted against the reference
model source separation. The error distribution obtained for the full FE model and for the
‘M1+M2’ summed model are indicated in coloured and grey, respectively. The box-and-whiskers
plot indicate the minimum, the first quartile, the median, the third quartile and the maximum
of the error population. The errors obtained in Chapter 5 for the original synthetic dataset
are indicated with a solid line for the full FE model and with a dotted line for the ‘M1+M2’
summed model. The sources are separated by a distance of 2.5, 3, 4, 5, 8, 9 radii. Inversions
#5 retrieve all parameters, source volume changes and depths: (a) the deeper source volume
change ∆V2 and (b) depth ∆z2, and (c) the shallower source volume change ∆V1 and (d) depth
z1.
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(a) Inv #4: Errors for ∆V1 and ∆V2 (b) Sketch of Model A

(c) Distribution of the errors obtained for ∆V1, z1, ∆V2 and z2

Figure 6.7: Summary of the results of Inversions #4-5: relationship between the errors ob-
tained for 100 co-inversions of either the volume changes ∆V1 and ∆V2 (Inversion #4), or
volume changes and depths of the two sources (see also Figures 6.5 & 6.6. The reference mod-
els consist of two superposed spherical sources of radius a=500 m, at a distance of 2.5 radii,
pressurized by ∆P1 = ∆P2 = 20 MPa (Model A-G1’a). A Gaussian noise with standard
deviation 1 cm has been added to the synthetic solution, which has then been bootstrapped.
(a) Relationship between the errors obtained during the co-inversion of the two sources volume
change (Inversion #4, Figure 6.5). The colour scale give the ratio between the volume of the
upper and the lower source (∆V1/∆V2), (b) Sketch of Model A and source parameters inverted
for, (c) Errors obtained for the volume change and depth (circle) of the two sources (filled
circle): ∆V1 (orange), z1 (clear blue), ∆V2 (red) and z2 (dark blue). While all the inversions
results are represented in the upper subfigure, the middle and lower subfigures show that there
is two types of models obtained, both with a source at approximately 5 km depth and volume
∆V ≈ ∆V1 +∆V2. The second source is either very shallow and weak (Combination 2), or very
deep with variable strength (Combination 1). In both cases the second source has a negligible
effect on the surface deformation.
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6.3 Conclusions

This study has been concerned with accurately modelling surface deformation when

magmatic systems are composed of several reservoirs, employing either analytical solu-

tions or the Finite Elements method.

The main focus of this work has been to evaluate the effect of neglecting the source

interaction when jointly employing two widely used analytical models, the Mogi point

source and the Okada source, and simply adding their solutions. First I have calculated

the discrepancies between analytical and numerical solutions introduced on the surface

displacements, to determine the overall error. Then I have estimated how these dis-

crepancies map into source parameters, when inverting the synthetic FE displacements

with an inversion code based on the analytical solutions, i.e. neglecting the source in-

teraction. Additionally, I have explored the importance of the choice of the modelling

method testing a finite spherical analytical source (McTigue, 1987), and three different

FE methods to model a dike-like structure.

In Chapter 4, I have compared the analytical summed solutions and the compre-

hensive FE solutions of four model scenarios. I have shown that, within the source

parameters investigated, the discrepancies introduced by neglecting the source inter-

action are always negligible in systems where a magma chamber is located below a

dike or aligned along its strike direction. However, the discrepancies are significant

(> 5%) when two magma chambers are located above each other, side by side, or when

a dike and a magma chamber are located side by side. In these cases, the discrepancies

reach ≈ 20% when the sources are separated by a distance of 1.5 or 2.5 radii (magma

chamber and dike, or two magma chambers, respectively) and become negligible after

a source separation of about 4 radii. Additionally, I adapted three case studies, two

related to the Soufrière Hills Volcano, Montserrat, and one to the Dabbahu-Gab’ho

segment, with similar geometries to the scenarios previously tested, but with different

source dimensions and pressurization or dike opening. On the one hand, these three

models have confirmed the previous results, in the sense that e.g. the discrepancies

were negligible for models with a dike superposed to a magma chamber. On the other

hand, these models have pointed out that the discrepancies calculated are extremely

variable, depending on the sources geometry, on the source physical parameters, but
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also on the crust elastic properties. In Section 6.2.2, I have shown that the discrepan-

cies depend on the elastic properties of the crust if the source types differ, while, for

a same model geometry, they depend only on the ratio between the chamber pressur-

izations ∆P1/∆P2. This is because two identical source are affected (and deform) in

the same way by a same pressure change or respond on the same way to the elastic

properties of the crust as long as it is homogenous. Their interaction and induced

discrepancies remain constant. It is beyond the scope of this study, if at all possible, to

find a general relation between those parameters and the discrepancies introduced by

the source interaction. However, the calculated discrepancies highlight that care needs

to be taken when the surface deformation is interpreted as resulting from either two

distinct, close, magma chambers, or perhaps more realistically from two zones of the

same magma chamber. Similarly, care should also be taken when the surface deforma-

tion is interpreted as resulting from e.g. a magma chamber feeding a dike, juxtaposed

in its strike-perpendicular direction.

In Chapter 5, I have evaluated the effect of neglecting the source interaction when

the surface displacements are inverted analytically to retrieve the source parameters,

i.e. the depth and volume change, for models with superposed magma chamber and

juxtaposed magma chamber and dike. Again my results vary with the model geometry

and the parameter(s) inverted for. For a model with a magma chamber juxtaposed

to a dike, the error between original and retrieved value was insignificant, indepen-

dently of the number of parameters inverted for. However, the inversions of the surface

displacements for models with two superposed magma chambers have demonstrated

the difficulty to solve for a finely structured magmatic system with stacked deforming

sources. This trade-off problem has been confirmed in Chapter 6 with a statistical anal-

ysis: when only the depth of the lower source or the volume change of the sources is

inverted for, they are still over- or underestimated by up to 30%, but can be recovered

within 5% if the sources are separated by more than 4 radii. However, as the lower

source gets deeper, its impact on the surface deformation at the surface decreases and

even a small contribution of measurement noise can prevent the retrieval of the deeper

source parameters. When several source parameters are jointly inverted for, the results

obtained cannot be trusted.
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In parallel, I have found that the discrepancies induced when using an analytical

finite source model are similar to those obtained when employing an analytical point

source model, which only confirms the fact that the discrepancies are introduced by

the source interaction and are not related to the distance to the surface. However,

this study has also demonstrated how important the choice of the Finite Element

modelling method is when the sources are close enough to interact. Although the three

methods tested to model the dike numerically - i.e. applying a fix displacement or a

pressure on each boundary, or a relative displacement between boundaries - have given

identical displacements when the dike is the only source in the FE model, they represent

different physical conditions. Although applying fixed displacements (opening) on the

dike boundary is not a realistic dike model as the dike is then rigid, this method can

be used as long as no significant external stress-field causes the dike to deform, e.g. a

second magmatic source, the load of the edifice, or regional tectonic stresses. On the

contrary, with the two other methods, the dike can deform and interact with another

deformation source. Hence, on one side the discrepancies calculated show that the

source interaction can in some cases be significant enough to lead to over- or under-

estimate the source parameters, but also that when the source are close enough to

interact the source surfaces of the numerical models employed should both be able to

deform under external stresses.

6.3.1 Future research

The focus of the study has evolved around quantifying the discrepancies affecting the

deformation field by neglecting the source interaction when combining the Mogi and

Okada model. The difficulty of formulating a general relationship between model pa-

rameters and discrepancies at the surface is a unsatisfying aspect of this study. How-

ever, I showed in Section 6.2.2 that for models combining two magma chambers, the

discrepancies seem to depend only on the geometry of the model and on the ratio

between magma chamber pressurization. Varying the geometry of the model and the

pressurization ratio even further, although limited to models with two spherical magma

chambers, will provide an extended and useful catalogue of discrepancies depending on

the position of the magma chambers relatively to the free surface, on their relative

position, and on the pressurization ratio.

The emphasis of the thesis was restricted to comparing Finite Element and analyt-
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ical models, henceforth designing numerical source and domain constraints equivalent

to the simple analytical model assumptions. However, one of the strengths of the Finite

Element methods is to be able to solve problems with complex geometry and physics.

Hence in future research, this strength could be exploited to compare the effect of

neglecting the source interaction simultaneously to e.g. the topography, the medium

heterogeneities (as piloted in Section 6.2.3), which could mask the presence of a second

magmatic source or can lead to under- or over-estimate of the surface deformation,

and ultimately the source parameters. Furthermore, most models neglect the mag-

matic conduit connecting one magma reservoir with the other, although some studies

have already highlighted that shear stresses along conduits can cause significant surface

displacements (Nishimura, 2009; Anderson and Segall, 2011). Similarly, significant sur-

face displacement can also be related to surface processes such as the loading/unloading

history of the volcanic edifice in relation to e.g. erupted material (Grapenthin et al.,

2010; Odbert et al., 2013) or icecap retreat (Auriac et al., 2013; Pagli et al., 2007), or

by lava flow cooling and contraction at the surface (Toombs and Wadge, 2009) or at

depth (de Zeeuw-van Dalfsen et al., 2005; Sigmundsson et al., 1997). In other words,

while this thesis separated the effect of source interaction, future FEM modelling could

advance deformation modelling in a wider context. Such a widened approach has to

rely on other types of data available, e.g. tomography for crustal heterogeneities or

petrological data including the compressibility of the source, which I consider of high

priority in future research. As discussed, one of the interesting results of this study is

the fact that sources do interact when they are close enough to each other, and that in

those cases the deformation of the source and of the surface is related in particular to

the properties of the magma within the reservoir. While some analytical expressions

exists to relate surface deformation and the magma input into spherical compressible

magma chambers for an elastic medium, analytical and numerical models are mostly

still treating the magma as incompressible, and compressibility has yet to be integrated

into numerical models. Developing a numerical method to relate the deformation of a

compressible magma chamber and the surface deformation, and hence trying to inte-

grate more systematically geophysical and geological data, would with no doubt lead

us towards more realistic results, improving significantly volcano deformation models,

and ultimately volcano deformation monitoring.
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Model
∆P1 = ∆P2 = 20 MPa ∆P1 = −∆P2 = 20 MPa
εx εy εz Ξx Ξz εx εy εz Ξx Ξz

G1a 6.0 5.3 4.9 0.6 7.9 7.4 9.7 8.9 7.1 13.5
G1b 6.4 5.6 5.3 1.4 9.0 4.4 5.6 5.4 4.2 8.4
G1c 2.1 1.6 1.8 0.1 1.9 1.9 2.6 2.4 1.8 3.7
G1d 1.3 0.9 1.3 0.3 0.9 1.0 1.5 1.4 0.9 2.0
G1e 0.8 0.4 1.2 0.2 0.0 0.3 0.5 0.4 0.2 0.5
G1f 0.7 0.4 1.2 0.2 0.1 0.2 0.4 0.4 0.2 0.0

G1’a 5.3 5.8 4.6 1.4 6.3 9.6 13.1 12.3 8.9 13.8
G1’b 4.5 4.7 3.8 1.1 3.5 6.0 8.2 10.0 6.0 9.1
G1’c 3.3 2.6 2.8 1.9 0.8 3.5 5.2 4.6 3.0 4.8
G1’d 3.3 2.1 3.2 1.9 0.2 1.4 1.8 2.0 1.5 2.9
G1’e 3.3 1.5 3.4 2 1.7 0.8 1.4 1.3 0.7 1.1
G1’f 4 2.0 3.4 3.0 2.0 0.7 1.2 1.0 0.6 0.7

G2a 4.8 5.5 4.7 0.5 7.2 8.1 10.9 10.0 7.5 14.0
G2b 3.3 3.5 3.0 0.3 4.0 5.0 6.2 6.0 4.0 8.6
G2c 1.9 1.8 1.8 0.3 1.4 2.1 3.3 2.8 1.8 4.1
G2d 1.3 1.2 1.5 1.3 0.3 1.2 1.8 1.7 0.9 1.3
G2e 1.0 0.7 1.7 0.4 0.7 0.5 0.7 0.7 0.4 0.7
G2f 1.0 0.7 1.7 0.5 0.6 0.3 0.6 0.5 0.2 0.1

G3a 6.7 5.9 6.7 2.1 9.8 5.7 8.0 6.8 7.3 7.1
G3b 5.4 3.6 4.8 1.9 5.0 2.9 4.0 3.4 3.1 2.5
G3c 4.5 1.6 3.7 1.2 2.0 1.0 1.9 1.2 0.0 0.9
G3d 4.1 1.4 3.9 0.9 1.4 0.9 1.2 1.0 0.8 0.9
G3e 3.7 1.6 4.1 0.8 1.2 1.2 0.8 1.0 0.9 1.9
G3f 3.7 1.7 4.2 1.0 1.3 1.2 0.7 1.0 0.9 1.9

Table A-2: Model B, Groups 1-3: Surface (ε) and maximum local (Ξ) discrepancies [%]
obtained for ∆P1 = ∆P2 = 20 MPa. Elastic parameters are ν = 0.25 and E = 10 GPa. See
also Figure 4.6.
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Model
ε (%) Ξ (%)

εx εy εz Ξx

∣∣∣
min

Ξx

∣∣∣
max

Ξz

∣∣∣
min

Ξz

∣∣∣
max

∆
P

=
20

M
P

a Ca 1.3 1.2 1.6 n/a 1.2 n/a 1.5
Cb 0.7 1.0 1.3 n/a 0.8 n/a 1.1
Cc 0.4 0.6 0.9 n/a 0.4 n/a 0.4
Cd 0.2 0.6 1.0 n/a 0.1 n/a 0.1
Ce 0.2 0.5 1.3 n/a 0.2 n/a 0.2
Cf 0.3 0.5 1.4 n/a 0.01 n/a 0.3

∆
P

=
-2

0
M

P
a Ca 4.1 0.4 1.9 2.4 4.0 1.0 n/a

Cb 4.0 0.4 1.6 1.7 1.9 0.8 n/a
Cc 1.3 0.4 1.3 1.3 0.8 0.4 n/a
Cd 0.3 0.4 1.1 2.2 0.1 0.4 3.8
Ce 0.2 0.4 0.9 4.1 0.2 0.5 0.3
Cf 0.2 0.5 0.9 3.0 0.1 0.2 0.1

∆
P

=
20

M
P

a DIIa 0.3 0.7 1.5 0.2 0.1 n/a 0.7
DIIb 0.4 0.7 1.3 0.2 0.4 n/a 0.3
DIIc 0.4 0.7 1.2 0.3 0.5 n/a 0.1
DIId 0.4 0.7 1.2 0.3 0.3 n/a 0.1
DIIe 0.4 0.9 1.3 0.3 0.3 n/a 0.4
DIIf 0.5 1.0 0.7 0.3 0.4 0.5 n/a

∆
P

=
-2

0
M

P
a DIIa 0.9 1.4 1.4 0.7 0.6 1.7 n/a

DIIb 0.8 1.1 1.1 0.5 0.3 1.3 n/a
DIIc 0.7 0.9 0.9 0.6 0.2 0.9 n/a
DIId 0.5 0.7 0.8 0.4 0.3 0.6 n/a
DIIe 0.5 0.9 0.8 0.4 0.6 0.7 n/a
DIIf 0.4 1.0 1.2 0.3 0.3 n/a 0.3

Table A-3: Model C and D2: Surface (ε) and maximum local (Ξ) discrepancies obtained for an
dike opening by 1 m superposed (Model C) or horizontaly aligned (Model DII, see Figure 4.1)
to either an inflating (∆P = 20 MPa) or a deflating spherical source (∆P = −20 MPa). Elastic
parameters are ν = 0.25 and E = 10 GPa.
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Model
ε (%) Ξ (%)

εx εy εz Ξx

∣∣∣
min

Ξx

∣∣∣
max

Ξz

∣∣∣
min

Ξz

∣∣∣
max

M
o
d

el
D

I,
d

ik
e

op
.

1
m

∆
P

=
20

M
P

a

DIa 97.2 12.3 12.6 82.3 57.5 n/a 15.1

DIb 87.7 9.6 9.0 61.4 42.6 n/a 11.5

DIc 45.8 4.2 6.1 42.3 27.0 n/a 6.9

DId 28.3 2.3 4.1 26.5 16.0 n/a 4.1

DIe 12.0 1.8 2.2 13.0 6.1 n/a 1.5

DIf 8.7 2.2 2.4 8.4 3.9 n/a 0.6

∆
P

=
-2

0
M

P
a

DIa 553.7 9.8 22.5 298.8 185.1 5.3 n/a

DIb 382.5 10.1 12.6 200.2 65.8 3.6 n/a

DIc 148.0 3.4 6.6 86.5 54.3 2.6 468.6

DId 74.5 2.2 4.1 43.1 31.6 1.5 83.9

DIe 19.8 1.2 2.0 9.2 7.1 0.4 16.5

DIf 12.0 1.1 1.9 5.1 3.7 0.3 12.1

M
o
d

el
D

I,
re

l.
d

ik
e

op
.

1
m

∆
P

=
20

M
P

a

DIa 7.1 7.6 5.7 5.9 2.7 n/a 7.2

DIb 4.5 5.4 4.2 4.1 0.8 n/a 5.7

DIc 1.8 2.0 2.4 1.8 0.7 n/a 3.4

DId 0.8 0.7 1.8 0.2 1.1 n/a 2.2

DIe 0.8 1.2 1.4 0.3 1.0 n/a 1.1

DIf 0.8 1.8 1.9 1.0 0.9 n/a 0.5

∆
P

=
-2

0
M

P
a

DIa 24.1 7.6 6.8 8.7 0.5 7.0 n/a

DIb 13.3 5.0 4.2 4.4 0.6 5.1 n/a

DIc 3.6 1.9 1.6 1.0 0.9 2.9 n/a

DId 1.3 1.0 1.3 0.4 0.7 1.6 n/a

DIe 1.6 0.7 1.0 0.8 1.0 0.1 6.4

DIf 1.3 0.8 1.4 0.2 0.9 0.1 6.0

M
o
d

el
D

I,
cr

ac
k

12
M

P
a

∆
P

=
20

M
P

a

DIa 14.3 12.3 9.1 11.2 9.3 n/a 5.5

DIb 9.2 6.9 6.6 8.6 5.9 n/a 4.2

DIc 3.9 3.0 3.1 4.8 1.9 n/a 2.4

DId 2.0 1.3 2.0 0.2 0.6 n/a 1.5

DIe 1.0 0.7 1.5 0.2 0.0 n/a 0.8

DIf 1.1 1.2 2.2 1.6 0.1 n/a 0.3

∆
P

=
-2

0
M

P
a

DIa 11.1 15.5 11.9 17.6 2.7 12.9 n/a

DIb 5.6 6.0 5.7 5.5 0.2 6.9 n/a

DIc 2.8 1.9 2.0 0.4 0.9 3.2 n/a

DId 1.5 1.0 1.2 0.5 0.7 1.5 n/a

DIe 0.6 0.6 0.6 0.7 0.2 0.2 0.9

DIf 0.5 0.9 1.0 0.7 0.1 0.2 1.6

Table A-4: Model DI, Methods 1-3: Discrepancies obtained for a spherical source pressurized
by ∆P = 20 MPa or ∆P = −20 MPa and a dike opening by 1 m modelled applying on
its walls either a fixed displacements (Method 1), relative displacements (Method 2), or an
overpressure of 12 MPa (Method 3). Elastic parameters are ν = 0.25 and E = 10 GPa. See
also corresponding Figures 4.8 & A-1
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Figure A-1: Model DI: Surface (ε) and maximum local (Ξ) discrepancies obtained for models
combining a spherical source pressurized by ∆P = +20 MPa juxtaposed to a dike opening by
1 m, modelled with Methods 1-3 (from top to bottom). Corresponding discrepancies values are
listed in Table A-4.
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Model
‘Full solution’ ‘Summed solution’

εx εz Ξx Ξz εx εz Ξx Ξz

G1a 3.3 5.6 7.0 13.9 − − − −
G1b 2.2 4.1 4.6 8.9 − − − −
G1c 1.1 2.4 2.2 4.2 − − − −
G1d 0.7 1.7 1.1 2.3 − − − −
G1e 0.4 1.2 0.3 0.7 − − − −
G1f 0.4 1.1 0.2 0.5 − − − −
H1a 54.1 9.9 67.2 23.5 56.3 15.2 79.2 40.7
H1b 54.4 11.6 70.9 29.6 56.1 15.0 78.9 40.4
H1c 54.9 13.0 74.8 35.0 55.8 14.6 78.4 39.9
H1d 55.1 13.4 76.2 36.9 55.6 14.2 78.1 39.7
H1e 55.0 13.3 77.5 38.9 55.0 13.5 78.1 39.5
H1f 54.8 13.1 78.2 39.7 54.9 13.2 78.3 39.8

H2a 3.7 5.7 8.2 9.6 1.7 1.9 1.0 4.6
H2b 2.8 4.2 5.7 4.5 1.7 1.9 1.0 4.6
H2c 2.2 2.7 3.2 0.4 1.7 1.9 1.0 4.5
H2d 1.9 2.2 2.2 2.3 1.0 1.9 1.0 4.5
H2e 1.8 2.0 1.3 4.0 1.7 1.9 1.0 4.5
H2f 2.0 2.3 1.3 4.1 2.4 2.8 1.5 3.9

Table B-1: Effect of crustal heterogeneities: Model A-G1’ compared to Models H1 and H2:
Surface (ε) and maximum local (Ξ) discrepancies [%]. The ‘Full solution’ correspond to the
solution of the FE model with the two sources. The ‘Summed solution’ correspond to the sum
of the solution of two models, one with the upper source and the second one with the lower
source. The comparison between the ‘Full’ and the ‘Summed’ solutions allow to isolate the
effect of the source interaction. In all models, the two spherical sources, with radii a = 500m,
are pressurized by ∆P1 = ∆P2 = 20 MPa, and the Poisson’s ration is ν = 0.25. In Model
A, the crust is homogeneous, with Young’s modulus E = 10 GPa. In Model H1, the crust is
heterogeneous, with an 2 km thick upper layer, relatively soft compared to the rest of the crust
with E = 1 GPa and E = 10 GPa, respectively. In Model H2, a 3x3x1 km rigid sill with E = 20
GPa is located at 2 km depth, above the two spherical sources, in a crust with E = 10 GPa.
See also Figures 6.1 & 6.3.
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(a) Full dataset, Ux (b) Full dataset, Uz

(c) Full dataset, noise added, Ux (d) Full dataset, noise added, Uz

(e) Full dataset, noise added and down-
sampled, Ux

(f) Full dataset, noise added and down-
sampled, Uz

Figure C-1: Inversions of Models A, ‘full’ model: example of the noise introduced on the
synthetic data and comparison of the data distribution for the complete and the downsampled
solution. The model consists of two superposed sources Models A (Group G1’a), separated by
a distance of 2.5 and pressurized by ∆P1 = ∆P2 = 20 MPa. The distribution of the complete
‘original’ synthetic dataset without any added noise is shown (top), after the addition of A
Gaussian noise with 1 cm standard deviation (middle), and thirdly after having been down-
sampled from 1600 to 500 data points (bottom) are represented. The colour scheme indicates
the magnitude of the surface displacements (Ux or Uz, respectively left and right)) and the
position of the sources is represented (black circle).
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(a) Full dataset, Ux (b) Full dataset, Uz

(c) Full dataset, noise added, Ux (d) Full dataset, noise added, Uz

(e) Full dataset, noise added and down-
sampled, Ux

(f) Full dataset, noise added and down-
sampled, Uz

Figure C-2: Inversions of Models A, summed ‘M1+M2’ model: example of the noise intro-
duced on the synthetic data and comparison of the data distribution for the complete and the
downsampled solution. The model consists of two superposed sources Models A (Group G1’a),
separated by a distance of 2.5 and pressurized by ∆P1 = ∆P2 = 20 MPa. The distribution
of the complete ‘original’ synthetic dataset without any added noise is shown (top), after the
addition of A Gaussian noise with 1 cm standard deviation (middle), and thirdly after having
been downsampled from 1600 to 500 data points (bottom) are represented. The colour scheme
indicates the magnitude of the surface displacements (Ux or Uz, respectively left and right))
and the position of the sources is represented (black circle).
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Figure C-3: Inversions #1-3: errors between original and retrieved parameters values obtained
for a population of 100 inversions of the solution of the synthetic datasets (numerical reference
model), using combined analytical models corresponding to Model A-G1’a to f. The reference
models consist of two superposed spherical sources of radius a=500 m pressurized by ∆P1 =
∆P2 = 20 MPa. A Gaussian noise with σ = 1 cm has been added to the synthetic solution,
which has then been downsampled from 1600 to 500 data points. The population of error
between reference and retrieved parameter normalized by the reference parameter is plotted
against the reference model source separation. The error distribution obtained for the full FE
model and for the ‘M1+M2’ summed model are indicated in coloured and grey, respectively.
The box-and-whiskers plot indicate the minimum, the first quartile, the median, the third
quartile and the maximum of the error population. The error obtained in Chapter 5 for the
original synthetic dataset are indicated with a solid line for the full FE model and with a dotted
line for the ‘M1+M2’ summed model. The sources are separated by a distance of 2.5, 3, 4, 5, 8,
9 radii. Inversions #1 - #3 retrieve only one parameter at a time: (a) the deeper source depth
z2, (b) the deeper source volume change ∆V2, (c) the shallower source volume change ∆V1. (d)
Sketch of Model A and source parameters inverted for.
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Figure C-4: Inversions #4: errors between original and retrieved parameters values obtained
for a population of 100 inversions of the solution of the synthetic datasets (numerical reference
model), using combined analytical models corresponding to Model A-G1’a to f. The reference
models consist of two superposed spherical sources of radius a=500 m pressurized by ∆P1 =
∆P2 = 20 MPa. A Gaussian noise with σ = 1 cm of up to 1 cm has been added to the synthetic
solution, which has then been downsampled from 1600 to 500 data points. The population
of error between reference and retrieved parameter normalized by the reference parameter is
plotted against the reference model source separation. The error distribution obtained for
the full FE model and for the ‘M1+M2’ summed model are indicated in coloured and grey,
respectively. The box-and-whiskers plot indicate the minimum, the first quartile, the median,
the third quartile and the maximum of the error population. The error obtained in Chapter 5
for the original synthetic dataset are indicated with a solid line for the full FE model and with
a dotted line for the ‘M1+M2’ summed model. The sources are separated by a distance of 2.5,
3, 4, 5, 8, 9 radii. Inversions #4 retrieve both source volume change: (a) the deeper source
volume change ∆V2, and (b) the shallower source volume change ∆V1.
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Figure C-5: Inversions #5: errors between original and retrieved parameters values obtained
for a population of 100 inversions of the solution of the synthetic datasets (numerical reference
model), using combined analytical models corresponding to Model A-G1’a to f. The reference
models consist of two superposed spherical sources of radius a=500 m pressurized by ∆P1 =
∆P2 = 20 MPa. A Gaussian noise with σ = 1 cm has been added to the synthetic solution,
which has then been downsampled from 1600 to 500 data points. The population of error
between reference and retrieved parameter normalized by the reference parameter is plotted
against the reference model source separation. The error distribution obtained for the full FE
model and for the ‘M1+M2’ summed model are indicated in coloured and grey, respectively. The
box-and-whiskers plot indicate the minimum, the first quartile, the median, the third quartile
and the maximum of the error population. The error obtained in Chapter 5 for the original
synthetic dataset are indicated with a solid line for the full FE model and with a dotted line
for the ‘M1+M2’ summed model. The sources are separated by a distance of 2.5, 3, 4, 5, 8, 9
radii. Inversions #5 retrieve all parameters, source volume changes and depths: (a) the deeper
source volume change ∆V2 and (b) depth ∆z2, and (c) the shallower source volume change ∆V1
and (d) depth z1.
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(a) Inv #4: Errors for ∆V1 and ∆V2 (b) Sketch of Model A

(c) Distribution of the errors obtained for ∆V1, z1, ∆V2 and z2

Figure C-6: Summary of the results of Inversions #4-5: relationship between the errors
obtained for 100 co-inversions of either the volume changes ∆V1 and ∆V2 (Inversion #4),
or volume changes and depths of the two sources (see also Figures C-4 & C-5). The reference
model consists of two superposed spherical sources of radius a=500 m, at a distance of 2.5 radii,
pressurized by ∆P1 = ∆P2 = 20 MPa (Model A-G1’a). A Gaussian noise A Gaussian noise
with σ = 1 cm has been added to the synthetic solution, which has then been downsampled
from 1600 to 500 data points. (a) Relationship between the errors obtained during the co-
inversion of the two sources volume change (Inversion #4, Figure 6.5). The colour scale give
the ratio between the volume of the upper and the lower source (∆V1/∆V2), (b) Sketch of
Model A and source parameters inverted for, (c) Errors obtained for the volume change and
depth (circle) of the two sources (filled circle): ∆V1 (orange), z1 (clear blue), ∆V2 (red) and z2
(dark blue). While all the inversions results are represented in the upper subfigure, the middle
and lower subfigures show that there is two types of models obtained, both with a source at
approximately 5 km depth and volume ∆V ≈ ∆V1 + ∆V2. The second source is either very
shallow and weak (Combination 2), or very deep with variable strength (Combination 1). In
both cases the second source as a negligible effect on the surface deformation.
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