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ABSTRACT

We construct some uncountable set theoretical structures with trivial automorphism

group but admitting non-trivial epimorphism and/or embedding monoids.

The structures we consider are Suslin trees, dense subchains of the real line and

graphs with vertices in ω1.
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Chapter 1

Introduction

�Begin at the beginning,� the King said, very gravely, �and go on till you

come to an end; then stop.�

� Lewis Carroll, Alice in Wonderland

From the beginning of time, the automorphism group of a structure has been

a focus of study. It is often used as an important invariant of the structure and

it enshrines a great deal of information about it. Thus, one method for classifying

structures is via their automorphism groups, and indeed much work has been done

concerning the reconstruction of various structures from their automorphism groups.

See [Rub93] and [Rub94] for an account of some of these results.

Nevertheless, apart from Aut(P ), there are �ve monoids naturally associated in

[LT12] with every partial order (P,⩽), these are: the monoids of embeddings, bimor-

phisms, monomorphisms, epimorphisms and endomorphisms, denoted by Emb(P,⩽),

Bi(P,⩽), Mon(P,⩽), Epi(P,⩽) and End(P,⩽) respectively. Here an endomorphism

of a relational structure is a map from the structure to itself which preserves all re-

lations (but not necessarily their negations); it is a monomorphism if it is also

injective, an epimorphism if it is surjective, a bimorphism if it is both, and an

embedding if it is an isomorphism to a substructure (in which case it must also

preserve the negations of relations). In fact, these monoids form a lattice -see Figure

1.1.

A structure that has a rich automorphism group is called homogeneous and this

topic has been widely developed. The diametrically opposed notion of rigid struc-
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Figure 1.1: Lattice for monoids of order preserving maps on posets.

tures then becomes a natural subject of study. A structure is said to be rigid if it

admits only the identity as an automorphism. Some rigid structures can be trivially

seen to be so, such as any �nite linear order. Moreover, any well ordered chain is

rigid, so to get more interesting examples we require (X,⩽) to be dense without

endpoints. It is now clear that (X,⩽) cannot be countable, as if so it would have

to be isomorphic to (Q,⩽), which has 2ℵ0 automorphisms. However, for some struc-

tures it may be highly non-trivial to decide whether or not it is rigid, or indeed

the construction of rigid structures of certain kinds may be quite involved. A wide

variety of rigid structures has been studied; Gaifman and Specker constructed 2ℵ1

rigid Aronszajn trees in [GS64], and there are Shelah's absolute rigid trees in [She82],

Nešetřil's rigid graphs in [Nes02] and many more.

In this work, we focus on particular cases of the following structures: trees, linear

orders and graphs. First concentrating on the study of trees, we chie�y consider

Suslin trees at cardinality ω1 and above. The classical construction of Jensen of a

Suslin tree in the constructible universe L [Jen68], had the additional property of

being rigid, though he provided some modi�cations of the method to get Suslin trees

with a speci�ed number of automorphisms [DJ74] and Jech gave a classi�cation

of possible cardinalities of the automorphism group of any ω1 tree [Jec72]. Also,

Avraham [Avr79] and Todorcevic [Tod78] obtained results on rigid Aronzajn trees

which I shall recall. In addition, some of the methods used to construct a Suslin tree

in forcing extensions result in rigid structures.
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In the chapters of the thesis treating Suslin trees, Chapter 2 and Chapter 3, we

recall some of the classical results in which rigid or homogeneous trees are constructed

using the combinatorial principle ◊ or forcing and we extend these by considering

some kinds of endomorphisms in place of automorphisms. In some cases, the existing

models already provide examples of what is desired, for instance of a Suslin tree which

admits no level preserving endomorphism, in other cases the existing constructions

are adapted. The two main topics, constructions using ◊ or its relatives at higher

cardinalities, and using the method of forcing, form the subjects of Chapter 2 and

Chapter 3 respectively. Linking this material with the work on chains in Chapter

4, we also consider the existence of Suslin lines which are rigid or partially rigid as

well as the way in which some of the results on Suslin trees transfer to ones for Suslin

lines .

For linear orders a classical result of Dushnik and Miller provides us with a dense rigid

subset of the real line. At higher cardinalities, methods of Shelah give constructions

of several rigid chains using stationary sets to `encode' gaps (Dedekind cuts) and

stop them from being moved. When working with chains we have that Mon = Emb

and Bi = Aut, so that the diagram in Figure 1.1 reduces to that in Figure 1.2.

Figure 1.2: Lattice for moniods of order preserving maps on chains

This is because if f is a monomorphism of a chain then it must actually preserve <

(as well as ⩽) so that Mon = Emb (and similarly Bi = Aut). Also in the cases we

consider in Chapter 4, if a function has dense image then it belongs to the monoid

Epi, which contains only continuous functions (for if we have an order preserving

function with dense image, it must be a continuous surjection -see Lemma 4.4).



4 Chapter 1. Introduction

Dushnik and Miller in [DM40] showed that there is a dense subset X ⊆ R of size

continuum which is rigid but said nothing about the other monoids. Droste and

Truss in [DT01], using a similar method, found a dense subset of R of size continuum

which is rigid, but it admits many embeddings, i.e. meaning that the whole chain

can be embedded between any two elements of (X,⩽). In Chapter 4 we investigate

the structure of these monoids when insisting that Aut(X,⩽) is trivial. Moreover,

we can even retain a trivial Epi(X,⩽) while having many non-trivial embeddings,

though if Emb(X,⩽) is trivial, so is Epi(X,⩽) (a fact that is true for any chain X

as we remark below, assuming AC).

There is no way of getting rid of all endomorphisms using this method, for instance

any constant map will always lie in End(X,⩽), but we can ask if we still can preserve

some �signi�cant" ones without having any epimorphism or embedding other than

the identity, that is keeping both Epi(X,⩽) and Emb(X,⩽) trivial. It turns out that

the answer to this question is yes.

Finally in Chapter 5 we turn our attention to graphs. Here again it is not hard

to construct rigid graphs in which points are distinguished by their distinct degrees,

so the real challenge comes about in constructing graphs with various degrees of

rigidity which are elementarily equivalent to the random graph -the analogue for

chains in this context of dense linear orders without endpoints. Two main methods

are considered, forcing with �nite or countable conditions, giving rise to uncountable

graphs Γω1 and ∆ω1 , respectively in generic extensions. These graphs share some

properties, for instance as we said before, they are elementarily equivalent to the

Random graph, but they also di�er in certain respects, for example ∆ω1 is saturated

but Γω1 is not; inM[∆ω1], CH necessarily holds (even if it didn't hold in the ground

model M) but as the extension from M to M[Γω1] is c.c.c., any failure of CH in M

is preserved in M[Γω1].



Chapter 2

Suslin Trees and Lines constructed

using Diamond

�Once there was a tree, and she loved a little boy.�

� Shel Silverstein, The Giving Tree

In the �rst construction that Jensen gave of a Suslin tree, (T,⩽) turned out to

be automorphism rigid [Jen68]. Our aim in this chapter is to investigate the rigidity

properties of Suslin trees constructed assuming the combinatorial principle ◊.

We show that Jensen's tree not only has a trivial automorphism group, but it does

not admit any level preserving endomorphism; we modify this construction to obtain

a Suslin tree with no non-identity-embeddings and one that is totally rigid. Also,

we discuss some of Jensen's methods for transferring results about order preserv-

ing functions from Suslin trees to Suslin lines, in particular we modify one of his

arguments to get Lemma 2.14 which connects level preserving epimorphisms in a

Suslin tree to epimorphisms in a Suslin line. Our main constructions are of a rigid

Suslin tree admitting a non-identity embedding (Section 2.3) and a rigid Suslin

tree admitting a non-identity epimorphism (Section 2.4). Later on in Section 2.5,

we highlight some remarks linking these results with constructions in Chapter 4,

in particular that the last one also admits non-identity embeddings and �nish this

chapter with some of the earlier results in Section 2.1, generalized to κ+-Suslin

trees for any uncountable κ.
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2.1 Background and Preliminaries

A tree (T,⩽) is a partially ordered set with the requirement that for any point x

in T , the set x↓ = {y ∈ T ∣ y ⩽ x} of predecessors of x is well ordered by the relation

⩽. We usually abuse notation and let T stand for (T,⩽) and x ⩽ y if either x = y or

x < y, in which case we say that y extends x. For an ordinal α, the α-th level of

T , denoted by Tα, is the set of all points (or nodes) of T such that the corresponding

set x↓ has order type α, i.e. Tα = {x ∈ T ∣ ot(x↓) = α}.

We let T ↾ C = {x ∈ T ∣ x ∈ Tα, α ∈ C} be the restriction of T to C, where C is

a set of ordinals, and if x ∈ T we let T x be the set of all extensions of x. The set

ht(T ) = sup{ot(x) + 1 ∣ x ∈ T} is the height of T and if ht(T ) = α we say T is an

α-tree. A branch of T is a maximal linearly ordered set of T and if the branch has

order type α we say that it is an α-branch. We say that an α-branch b has been

extended, if there is x ∈ Tα such that x > t, for all t ∈ b. We denote by [T ] the set of

all branches of T and similarly [T ↾ α] is the set of α-branches in T , for α < ht(T ).

A set of pairwise incomparable elements under ⩽ is an antichain of T . An antichain

A has been sealed at level α if for every x ∈ A there is tx ∈ Tα which is compatible

with x.

Figure 2.1: Notation on a Suslin Tree

A simple example of a tree is 2<ω (the set of �nite binary sequences, whose branches
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form the Cantor set) ordered by extension. It is an ω-tree, and for each n ∈ ω the

sets T ↾ n and Tn are countable. Also, it has a unique minimal element, which we

call the root and 2ω-many (ω)-branches.

A useful property to have in a tree is normality. A normal α-tree T is a tree

satisfying the following properties:

1. It has a unique minimal element called the root.

2. ht(T ) = α.

3. Each level of T has cardinality < α.

4. If x is in level Tβ , for β < α, then x has extensions at each higher level less

than α.

5. If x is not maximal in T , then it has (at least) two extensions in the next level.

We say that the tree T splits.

6. If x, y are in the same level, β ∈ Lim(α) (β is a limit ordinal less than α), and

x↓ = y↓, then x = y, that is, an element in a limit level is identi�ed with the set

of its predecessors.

If in 5. above we ask for only two immediate successors then the resulting tree will

be a normal binary tree. If we ask for γ-many elements immediately above each

point in the tree then we say that T is a γ-splitting normal tree.

Continuing to �x notation, if κ is any ordinal, we write α ∈ Lim(κ) instead of �α is

a limit ordinal less than κ".

A Suslin tree (ST) is a normal ω1-tree where every antichain is at most countable.

This implies that a ST has no ω1-branches. If we weaken the condition of having

only countable antichains to having every level of the tree countable but still having

no ω1-branches, then we get an Aronszajn tree (AT). The existence of normal ω1

Aronszajn trees is provable within ZFC. Moreover, it was proved (independently) by
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Stevo Todorcevic [Tod78] and Uri Avraham [Avr79] that it is possible to construct a

rigid AT in ZFC. In fact, Todorcevic's AT is totally rigid, meaning that whenever

x and y are two distinct nodes in T then T x ≇ T y. Both proofs make use of the 2ℵ1

non-isomorphic ATs given by Gaifman and Specker in [GS64] but di�er slightly in

details.

The intuitive idea is that we want to use the trees in [GS64] to code the elements

of the �nal tree and then use the fact that they are non-isomorphic to stop any

automorphism from sending a node to another.

Avraham's construction de�nes a �nal tree R, as the union of countably many trees

Rn, with n ∈ ω. We start by letting {X} ∪ {Xγ,n ∣ γ ∈ ω1, n ∈ ω} be a collection of

pairwise disjoint uncountable subsets of ω1, so that T (X) and T (Xγ,n) are copies of

the corresponding non-isomorphic ATs as in [GS64] on X and Xγ,n. The intuitive

idea is that we want to use the trees in [GS64] to code the elements of the �nal

tree and then use the fact that they are non-isomorphic to stop any automorphism

from sending a node to another. But just planting the trees above each node is

not enough because at the end the tree above a node can still be isomorphic to the

tree above another node, so we need to look for di�erent properties that keep the

tree above each node in some sense �unique" and at the same time preserved under

automorphisms. The trees in [GS64] have precisely what we need in the following

additional properties.

P1. For every x ∈ T (Xγ,n) there is an uncountable Ax ⊆ T (Xγ,n)x every two ele-

ments of which meet at a level in Xγ,n, and

P2. There is no uncountable subset of T (Xγ,n)x every two elements of which meet

at a level in ω1 ∖Xγ,n.

We let R0 = T (X) and assume we have de�ned Rn. Then we enumerate the elements

of Rn as {anγ ∶ γ ∈ ω1, n ∈ ω}. Notice that each anγ is in Rnα for some α ∈ ω1.

Now, for every anγ ∈ Rnα we look at an element (any element) bnγ ∈ T (Xγ,n) at level
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Figure 2.2: Avraham's construction

α + 1 and place T (Xγ,n)b
n
γ (the tree above bnγ together with bnγ ) above a

n
γ , so that

Rn+1 = Rn ∪ {T (Xγ,n)b
n
γ ∣ γ ∈ ω1} (see Figure 2.2), where

x < y in Rn+1 ←→ x < y in Rn,

x ∈ (anγ)↓ and y = bnγ or

x < y in T (Xγ,n)b
n
γ

To see that R is rigid suppose f is a non-trivial automorphism of R sending f(x)

to y ≠ x. Then we can �nd a subset Ax as in P1 and this translates into a subset

Ay = f[Ax] above y, which will contradict P2.

Todorcevic's construction takes T as the union ⋃{Tα ∣ α ∈ ω1} of Aronszajn trees

and also makes use of a family F = {T (Xδ) ∣ δ ∈ ω1} of non-isomorphic AT's.

T 0 = T (X0) and having de�ned the trees T β for every β < α such that β < γ

implies T β < T γ , if α ∈ Lim(ω1), we de�ne Tα as Tα = ⋃
β<α

T β . If α = β + 1, then,

for every x ∈ T ββ (the β-th level of T β), we choose T (Xδx) ∈ F that hasn't yet

been used in the construction and Tα is the tree T β ∪ {T (Xδx) ∣ x ∈ T ββ } and the

ordering: ⩽Tα↾ T β =⩽Tβ , ⩽Tα↾ T (Xδx)β =⩽T (Xδx)β and x ⩽Tα T (Xδx) and T (Xδx) is

incompatible in Tα with everything not in x↓.
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However, the existence of a Suslin tree is independent of the axioms of ZFC. The �rst

step towards showing this consistency was made by Tennenbaum in 1963 ∗ [Ten68]

when he proved the consistency result Con(ZFC) implies Con(ZFC + ¬SH) by

forcing using �nite trees as conditions to generate a generic Suslin tree. On the

other hand, Solovay and Tennenbaum in [ST71] constructed a generic model using

(iterated) forcing where there are no Suslin trees using (ironically) Suslin trees as

conditions for the partial order: if we force using a ST, then in the generic extension

it acquires an ω1-branch, so it is no longer Suslin.

A little after Tennenbaum, Jech [Jec67] and Jensen [Jen68] also constructed Suslin

trees. The former also used the method of forcing but now with countable trees

as conditions and the latter showed that in Gödel's constructible universe L, there

is a Suslin tree. In order to construct his tree, Jensen works inside L using ideas

from Gödel's Condensation Lemma�. He later formulated a general combinatorial

principle denoted by ◊ (diamond), which captures the essence of the argument used

for his construction.

Recall that if κ is an ordinal, a club in κ is a closed (it contains all its accumulation

points) and unbounded subset of κ and a set is stationary in κ if it intersects every

club in κ. Then ◊ stands for the following statement,

◊: There is a sequence (Sα ∣ α < ω1) such that Sα ⊆ α, with the property that

whenever X ⊆ ω1, the set S = {α ∈ ω1 ∣X ∩ α = Sα} is stationary in ω1.

We call the sequence (Sα ∣ α < ω1) a ◊-sequence. Intuitively, this principle gives

us an approximation of any subset X of ω1 by its intersection with a large enough

subset of ω1. This principle implies the existence of a Suslin tree, it is independent

of ZFC and it was proved by Jensen [Jen68] to be true under the assumption V =

L.

∗This information was taken from [Kan06]
�Gödel's Condensation Lemma states that for every limit ordinal δ, if M ≺ (Lδ, ∈) then the

transitive collapse of M is Lγ for some γ ⩽ δ.



Chapter 2. Suslin Trees and Lines constructed using Diamond 11

Although Jensen carried out the construction of a Suslin tree inside L, the result can

be obtained solely from the assumption of the existence of a ◊-sequence. The proof

uses the fact that ◊ implies CH: Let (Sα ∣ α < ω1) be a ◊- sequence. Then for every

X ⊆ ω (which is also a subset of ω1), there is α ∈ ω1 such that X ∩ α = Sα using the

principle, but in fact since X is countable, there is some α satisfying X∩α =X = Sα.

If we de�ne f ∶ P(ω)Ð→ ω1 by f(X) = min{α ∣X = Sα}, then it follows that f is an

injective function.

Using the same basic construction, Jensen produced a rigid Suslin tree. The following

is our generalization of his argument to level preserving endomorphisms and will be

shown using Lemma 2.25 (here we use the particular case when κ = ω1). That

is, there is a ◊-sequence if and only if there is a ◊g-sequence, where ◊g is de�ned

analogously to ◊,

◊g: There is a sequence (gα ∣ α ∈ ω1) such that gα ∶ α Ð→ α and if g ∶ ω1 Ð→ ω1 is

any function, then the set G = {α ∈ ω1 ∣ g ↾ α = gα} is stationary in ω1.

Proposition 2.1. If ◊ holds then there is a Suslin tree that admits no non-trivial

level preserving endomorphisms.

Proof. The resulting tree T , will be a normal ω1-Suslin tree which is ω-splitting and

will be constructed by recursion on α < ω1 (the levels of T ). At stage α we choose

which elements to add to Tα from the set Wα (de�ned below), so that T ↾ β is an

end-extension of T ↾ α for all β > α.

We de�ne the sequence (Wα)α∈ω1 as follows,

W0 = root = zero

Wn+1 = [ωn, ωn+1), for n ∈ ω,

Wα = [ωα, ωα+1) for α ⩾ ω
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T0 consists the root element. Assume we have de�ned Tα. To de�ne Tα+1, for each

element x ∈ Tα we place ω-many elements of Wα+1 as immediate successors of x. If

α ∈ Lim(ω1) and we want to de�ne Tα, we follow a di�erent approach.

We turn to look at both, our ◊-sequence (Sα)α∈ω1 and our ◊g-sequence (gα)α∈ω1 .

We will use the ◊-sequence to seal maximal antichains of the form Sα (and hence

produce a Suslin tree) and the ◊g-sequence to stop gα from being a level preserv-

ing endomorphism of the resulting Suslin tree T . We have the following possible

outcomes.

⋆1. Sα is not a maximal antichain of T ↾ α and gα is not a non-trivial

order preserving endomorphism of T ↾ α.

In this case, for each t ∈ T ↾ α we choose a branch bt containing t and we extend it

using elements from Wα. Since T ↾ α is countable so is Tα.

⋆2. Sα is a maximal antichain of T ↾ α and gα is not a non-trivial order

preserving endomorphism of T ↾ α.

Then, for each t ∈ T ↾ α, there is a ∈ Sα that is compatible with t. Hence, if we let

b∗t ∈ [T ↾ α] contain t and a, we extend every branch in the set {b∗t ∣ t ∈ T ↾ α} which

is countable, taking elements from Wα. So we have sealed the antichain Sα ensuring

that it stays maximal in T ↾ (α + 1).

⋆3. Sα is not a maximal antichain of T ↾ α and gα is a non-trivial order

preserving endomorphism of T ↾ α.

Then there is a node xα ∈ T ↾ α which is moved by gα, so we let b ∈ [T ↾ α] be such

that xα ∈ b and gα[b] ≠ b. Notice that since gα is a level preserving homomorphism,

gα[b] is also an element of [T ↾ α] and hence it must be the case that gα[⋃ b] =

⋃ gα[b]. For each t ∈ T ↾ α, we choose an α-branch bt that contains t and such that

bt ≠ gα[b]; this can be done since our tree T ↾ α is ω-splitting and normal, so for each

t ∈ T ↾ α there are ω-many choices for bt. In this way, we extend every α-branch in
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the set {bt ∣ t ∈ T ↾ α} ∪ {b} using the elements in Wα.

⋆4. Sα is a maximal antichain of T ↾ α and gα is a non-trivial order pre-

serving endomorphism of T ↾ α.

Again, we let b be an element of [T ↾ α] such that b ≠ gα[b], and choose an α-branch

b∗t for each t ∈ T ↾ α containing t and an element of Sα which is comparable with

t and such that b∗t ≠ gα[b]. This choice is possible, for the only problem that could

arise is when t ∈ gα[b]; then there is a ∈ Sα which is compatible with t. If a is also

in gα[b], we let y > t in T ↾ α be such that y ∉ gα[b]. Then there is ay ∈ Sα which

is compatible with y, but ay ∉ gα[b] since otherwise a and ay would be compatible.

So we let b∗t ∈ [T ↾ α] be the α-branch containing, t, y and ay and we extend all the

α-branches in the set {b∗t ∣ t ∈ T ↾ α} ∪ {b}.

Having taken care of all the possible cases, we let T = ⋃
α∈ω1

T ↾ α. Notice that we

have ensured that T is a normal ω-splitting tree, so it only remains to show that it

has no uncountable antichains.

T has no uncountable antichains.

This will follow from the next couple of lemmas.

Lemma 2.2. Let A be a maximal antichain of T . Then the following set is a club

subset of ω1.

C = {α ∈ ω1 ∣ A ∩ (T ↾ α) is a maximal antichain of T ↾ α}

Proof. Closure. Let λ ∈ Lim(ω1) and (αη)η∈λ be a sequence of elements in C. Let

α = sup
η∈λ

αη and x ∈ (T ↾ α) ∖ A. Then x ∈ T ↾ η for some η ∈ λ and A ∩ (T ↾ η)

is a maximal antichain of T ↾ αη. So x is compatible with an element of A, hence

A ∩ (T ↾ α) is a maximal antichain of T ↾ α.

Unboundedness. Let γ ∈ ω1. Since T ↾ γ is countable, we can �nd α1 ∈ ω1 such that



14 Chapter 2. Suslin Trees and Lines constructed using Diamond

α1 > γ and every element of T ↾ γ is compatible with some element in A ∩ (T ↾ α1).

Therefore we can construct an increasing sequence (αn)n∈ω such that α0 = γ and

(∀x ∈ T ↾ αn)(∃a ∈ A ∩ (T ↾ αn+1)[x, a are compatible ].

Let α = sup
n∈ω

αn. Then, by the same argument as in the proof of closure of C,

α ∈ C.

The next claim allows us to assume that T ↾ α = α.

Lemma 2.3. The set C ′ = {α ∈ ω1 ∣ ωα = α} is a club in ω1.

Proof. This follows because the function f ∶ ω1 Ð→ ω1 de�ned by f(β) = ωβ is clearly

a normal function and hence the set of its �xed points forms a club.

So, let A be a maximal antichain in T . Recall that S = {α ∈ ω1 ∣ A ∩ α = Sα} is a

stationary subset of ω1. Then there is α ∈ C ∩C ′ ∩S such that A∩ (T ↾ α) = Sα is a

maximal antichain of T ↾ α, but in ⋆1 and ⋆2 we have sealed this antichain to stay

maximal in T ↾ (α + 1) and hence in T . Hence A = Sα and A is countable.

The last claim of this construction tells us that our tree T does not admit any

non-trivial level preserving endomorphism.

Claim 2.4. If f is a level preserving endomorphism of T , then f is the identity.

Proof. Let f be a non-trivial level preserving endomorphism of T . Then f ⊆ ω1 ×ω1

and hence the set G = {α ∈ ω1 ∣ f ↾ α = gα} is stationary in ω1. Using Lemma 2.3

there is α ∈ ω1 such that

f ↾ (T ↾ α) = gα.

Now, since f is a non-trivial level preserving endomorphism, there is γ ∈ ω1 such
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that f(x) ≠ x for some x ∈ Tγ . Hence f ↾ (T ↾ β) is non-trivial for all β > γ, so

C2 = {β > γ ∣ f ↾ (T ↾ β) is a non-trivial endomorphism of T ↾ β}

is a club. Therefore there is α ∈ C ′∩C2∩G such that f ↾ (T ↾ α) = gα is a non-trivial

endomorphism of T ↾ α.

But during our construction (case ⋆3 and case ⋆4) of T , we made sure of stopping

gα (and hencef) from being an endomorphism of T ↾ α. This gives a contradiction.

,

Using a slight modi�cation of the above argument we can also get a Suslin tree that

admits no non-trivial embedding.

Proposition 2.5. If ◊ holds, then there is an embedding-rigid Suslin tree.

Proof. To prove this we modify the construction in Proposition 2.1 only in case

⋆3 and case ⋆4 for α ∈ Lim(ω1) in the following manner.

If gα is a non-trivial embedding of T ↾ α, we choose an α-branch b ∈ [T ↾ α] such

that b contains a point which is moved by gα and with the property that gα[b] ⊈ b

using the next claim.

Claim 2.6. There is y ∈ T ↾ α such that y and gα(y) are incompatible.

Proof. First notice that gα is injective so it has to preserve order-types. Hence

gα can't move points to a lower level, so we can assume there is x ∈ T ↾ α with

ht(x) < ht(gα(x)). Then x ∈ Tξ for some ξ ∈ α. Let ξ be minimal with this property,

so that gα is the identity on T ↾ α. Let y > x be in the same level as gα(x). Then

gα(y) > gα(x) and hence gα(y) ∈ T gα(x) but y is incompatible with gα(x). Thus y is

incompatible with gα(y). See Figure 2.3.

,
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Figure 2.3: Picture to illustrate Claim 2.6

So, we let b be an α-branch containing y as inClaim 2.6 and gα[b] satis�es gα[b] ⊈ b.

Observe that gα[b] may not be an element of [T ↾ α] , but we can choose an α-branch

bgα(y) containing gα[b]. Then we extend all branches in the set {bt ∣ t ∈ T ↾ α} ∪ {b}

(where bt contains t) if we are in case ⋆3 and if we are in case ⋆4 we extend all

branches in the set {b∗t ∣ t ∈ T ↾ α} ∪ {b} (where b∗t contains both, t and an element

a ∈ Sα), taking elements from Wα as in Proposition 2.1.

Therefore, if f is a non-identity embedding of the resulting tree T , then there is a

point that is moved by f say at level ξ. But then, there is an α ∈ G, given by our ◊g-

sequence, where α > ξ and f ↾ α = gα. Using Lemma 2.3, we can choose α such that

f ↾ (T ↾ α) = gα is a non-trivial embedding of T ↾ α and we have chosen gα such that

gα[b] ⊆ bgα(y) ⊈ b for some b ∈ [T ↾ α]. Since gα preserves order-types, gα(⋃ b) ∈ Tβ

for some β ⩾ α. But gα is an embedding of T ↾ α, hence gα[⋃ b] = ⋃ bgα(y) and we

have de�ned Tα so that b is extended but not bgα(y), hence gα = f ↾ (T ↾ α) cannot

be an embedding, giving us a contradiction.

The next result shows that there is a Suslin tree that does not admit any isomorphism

between cones.

Proposition 2.7. Assume ◊. Then there is a totally rigid Suslin tree T .
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Proof. For this proof, we will use the following principle,

◊k: There is a sequence (Kα ∣ α ∈ ω1) such that Kα ⊆ α × α and for any subset

X ⊆ ω1 × ω1 the set K = {α ∈ ω1 ∣X ∩ (α × α) =Kα} is stationary in ω1.

The ◊k principle is equivalent to ◊. This equivalence can be seen in the proof of

Lemma 2.25. Once more, we will modify the proof of Proposition 2.1 altering

only case ⋆3 and case ⋆4, which is where ◊k will take the role of ◊g.

So, assume α ∈ Lim(ω1) and we are trying to de�ne which branches to extend in Tα.

We look at our ◊k-sequence, and if for two di�erent x, y ∈ T ↾ α, Kα is a well-de�ned

isomorphism between (T ↾ α)x and (T ↾ α)y, that is,

Kα = {⟨z, fα(z)⟩ ∈ (T ↾ α)2 ∣ z ⩾ x ∧ fα(z) ⩾ y}

for some isomorphism fα, then we let b ∈ [T ↾ α] be a branch containing x and

bfα ∈ T ↾ α a branch containing fα[b ∩ (T ↾ α)x] . Using Claim 2.6 we can choose

b such that b ≠ bfα .

If we are in case ⋆3, then Sα is not a maximal antichain of T ↾ α and we use the

element of Wα to extend all branches in the set {bt ∣ t ∈ T ↾ α}∪ {b}, where bt is any

α-branch containing t. Since T ↾ α is a normal ω-splitting tree, we can choose these

bt so that bt ≠ bfα .

If Sα is a maximal antichain of T ↾ α, then we are in case ⋆4. Here we extend all

branches in the set {b∗t ∣ t ∈ T ↾ α}∪{b}, where t ∈ b∗t ∈ [T ↾ α], taking elements from

Wα. Using the same argument as in case ⋆4 in Proposition 2.1, we can choose

b∗t ≠ bfα so that it contains an element of Sα. Then T = ⋃
α∈ω1

T ↾ α, as usual.

To see that our construction is enough, assume f ∶ T x Ð→ T y is an isomorphism, for

distinct x, y ∈ T . Then x ∈ Tξ, y ∈ Tη, f(x) = y and without loss of generality we can

assume ξ < η.
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Now, notice that f will eventually �x a higher level: let β ∈ ω1 be the unique

ordinal satisfying ξ + β = η and set γ = ξ + ωβ+1. Then Tγ is the desired level: let

z > x and z ∈ Tγ . Then ot(x) < ot(z) = ξ + ωβ+1 and since f is an isomorphism,

ot(f(z)) = η + ωβ+1. Hence

γ = ξ + ωβ+1 = ξ + (β + ωβ+1) = (ξ + β) + ωβ+1 = η + ωβ+1,

since β ∈ ωβ+1 implies β + ωβ+1 = ωβ+1.

Since f is an isomorphism it will preserve levels at every level Tα for α > γ. Thus,

f[T x ↾ α] = T y ↾ α so f ↾ α is an isomorphism between the cones T x ↾ α and T y ↾ α,

for every α > γ. Now we use ◊k together with Lemma 2.3 to �nd δ ∈ ω1, δ > γ

such that f ∩ δ = Kδ and such that f ∩ δ = f ↾ δ. Thus f ↾ δ = fδ is an isomorphism

between T x ∩ δ and T y ∩ δ and we are now in case ⋆4, where we constructed our tree

such that fδ cannot be extended to an isomorphism of T x and T y, contradicting our

original assumption.

After looking at the above constructions, we could try modifying them so that we

have a Suslin tree with a non-identity embedding while preserving its rigidity with

respect to automorphisms. There are simple ways of giving embeddings to the tree;

we start with a node, add ω-many immediate successors and put Jensen's rigid tree

T above each of them, then we get a Suslin tree with an embedding sending each

copy of T to the right. However, this also has many automorphisms (See Figure

2.4).

Moreover, Jensen already constructed a Suslin tree with exactly two automorphisms,

in a slightly less trivial manner which he used to give the associated Suslin line a

reversible ordering. The idea is to get rid o� all the unwanted automorphisms in the

same way that we got rid of the non-identity ones, by not extending the images of

some branch under the unwanted automorphisms and making sure we close under

the automorphism we wish to preserve. This clearly works if we want to preserve
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any �nite number of automorphisms but we may run into trouble if we try to use the

same technique to preserve countably many of them, a problem that is consistent

with the result of [Jec72] stating that a normal ω1-tree can only have either �nitely

many automorphisms or between 2ℵ0 and 2ℵ1 , inclusive.

Figure 2.4: Suslin tree with embedding and automorphism monoids non-trivial.

As for an example of a Suslin tree that admits exactly ℵ1 automorphisms, Jensen

constructed a homogeneous Suslin tree (where homogeneous means that for any

two points x, y ∈ Tα and any α ∈ ω1, there is an automorphism of (T,⩽T ) that sends

x to y). We will sketch the construction to illustrate the method.

The construction is also done by trans�nite induction on the levels of the tree and

we regard a point x ∈ T at level α < ω1 as an α-binary sequence (that is, an element

of 2α ). For T0 and successor levels the construction is exactly the same as we have

seen, and at limit stages α ∈ Lim(ω1) we use ◊ to make the resulting tree Suslin (as in

Proposition 2.1 for case ⋆1 and case ⋆2) and in addition to the usual construction

we choose a branch, b in [T ↾ α] and we extend all branches in the set

Bα = {d ∈ [T ↾ α] ∣ d and b di�er only in an initial segment }

So we choose to adjoin a point above all those branches that are eventually the same

as b. The �nal tree is T = ⋃
α<ω1

Tα.
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To see that this tree is indeed homogeneous, we notice that if two α-branches di�er

only in an initial segment then they di�er in �nitely many entries (as sequences),

and then the tree T is closed under the automorphisms fN , for �nite N ⊆ ω1, de�ned

by,

fN(x(ν)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(ν) if ν ∉ N

1 − x(ν) if ν ∈ N

Recalling that ◊ implies CH, we get ℵ1 automorphisms.

2.2 Suslin Lines

In 1920 there appeared for the �rst time a problem that is now known as the Suslin

Problem, due to a Russian mathematician called Mikhail Suslin [Mik20]. The prob-

lem asks whether the following statement is true:

SH - Every complete dense linear order without endpoints and with the countable

chain condition� is isomorphic to the real line

This assertion is known as Suslin's Hypothesis (SH). This was a natural question

since Cantor proved that we can characterize the real line as the unique complete

separable dense linear order without endpoints. Then the hypothesis asks whether

we can weaken the requirement of separability to that of the c.c.c.

A counterexample to SH is called a Suslin line (SL) and the existence of such a

structure is equivalent to the existence of a Suslin tree (ST) and hence independent

of ZFC. We will prove this equivalence for completeness.

Lemma 2.8 (Kurepa). There is a Suslin tree if and only if there is a Suslin line.

Proof. First we'll show how to get from a SL to a ST following a very standard

construction.
�Here the countable chain condition (c.c.c) states that every family of pairwise disjoint open

intervals is at most countable.
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Let S be a SL. We will construct a binary ω1-normal ST by recursively de�ning the

levels of the tree. The tree will consist of closed intervals of S ordered by reverse

inclusion.

- T0 = {S},

- If α = β + 1, then for each interval I ∈ Tβ we choose I0, I1 such that I = I0 ∪ I1

and I0 ∩ I1 = ∅, and let Tα = ⋃{{I0, I1} ∣ I ∈ Tβ and ∣I ∣ > 1},

- If α ∈ Lim(ω1), then

Tα = {⋂ b ∣ b ⊂ ⋃{Tβ ∣ β < α}, for all β < α, b ∩ Tβ ≠ ∅, and ⋂ b ≠ ∅}

Then T = ⋃
α<ω1

Tα. Now we assume that there is an uncountable branch b = {Iα ∣

α < ω1} in T and let B = {aα ∣ α < ω1} be the set of left points of the elements of

b. Then, since two intervals are comparable if one of them contains the other, then

B is a strictly increasing sequence, giving rise to uncountably many disjoint open

intervals in S .

Moreover, if we have an uncountable antichain A = {Iα ∣ α < ω1} in T , then each Iα

contains an open interval (aα, bα) so that {(aα, bα) ∣ α ∈ ω1} is an uncountable set

of pairwise disjoint open intervals in S. The fact that the height of T is indeed ω1

comes from the remark that each level of T forms an antichain and that each level

of T is countable. Therefore T is a ST.

Next, let T be a normal ST. The resulting SL, S, will consist of branches of T ordered

lexicographically,

De�nition 2.9. Let (T,⩽T ) be a tree.

a) The lexicographical ordering, ⪯lex of [T ] is de�ned as follows for b, d ∈ [T ];

given an increasing ordering to the right on each level of T , let s be the least point

where b and d di�er and s0, s1 the two immediate successors of s. Then b ⪯lex d i�

s0 ∈ b.
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b) The lexicographical ordering, ⪯lex of T is the ordering: for t, s ∈ T , s ⪯lex t i�

either s ⩽T t or s↓ ⪯lex t↓.

The lexicographical ordering on the levels of T that we use is the one arising when we

order the successors of every node as elements of N. Then, S is a complete linearly

ordered dense set. It is clearly a linear ordering and if we insist on eliminating the

branch of T containing only zeros (as elements of N) then it has no end points. For

completeness, let A ⊆ S be a subset bounded by B. We shall construct a least upper

bound b = {bν ∶ ν < γ} as a branch in T by recursion on γ < ω1.

For b0 = root. If ν is a successor, then bν = max{x ∈ Tν ∩ A}, which exists as A is

bounded, then Tν ∩A is bounded by Tν ∩B. Notice that bβ < bβ+1, since otherwise

bν+1 > x for all x ∈ Tν+1 ∩A and x > bν (this is possible since we are in a successor

level and bν belongs to a branch in A), but then the immediate predecessor of bν+1,y

will be greater than bn but bν+1 ∈ A and so must y, contradicting maximality of bν .

If ν ⩽ Lim(γ), we look at our already constructed b ↾ ν. If b ↾ ν has no extension on

Tν , then b ↾ ν is a maximal chain in T and hence it is an element of S, so we let b

be this branch.

Claim 2.10. For every s ∈ A, this branch b satis�es b ⩾ s.

Proof. Let s ∈ A, then by construction sβ ⩽lex bβ for sβ, bβ ∈ ω and β < ν and

sν ⩽lex bβ for every β < ν, otherwise sν >lex bβ and hence s > b in S by normality of

T , so there is η < ν such that sη > bη contradicting maximality of bη. ,

Otherwise, b ↾ ν has an extension on Tν , and we want to let this extension be bν ,

and by the last claim bν ⩾lex xβ , for every xβ ∈ x ∈ A.

Claim 2.11. bν ∈ A ∩ Tν .

Proof. Let s∗ν = max{sν ∣ s ∈ A}, which exists since B ∩ Tν is a upper bound of {sν ∣

s ∈ A}. Then by the claim above we have that s∗ν ⩽lex bν , so let's assume s∗ν <lex bν .
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Then, by normality of T , there is t ∈ Tη, for η < ν such that t = max{s∗β ∣ s∗β = bβ}

so that s∗η+1 <lex bη+1 = max{x ∈ A ∩ Tη+1 ∈ A}. So there is a branch containing bη+1,

say s, and hence s >lex s∗ in S. Therefore sν > s∗ν since s ≠ s∗ below Tν , giving a

contradiction - See Figure 2.5. So s∗ν = bν . ,

Figure 2.5: Picture to illustrate Claim 2.11.

This concludes our construction of b = supA. Notice that it must terminate at some

level γ < ω1 since T is Suslin and b ∩ Tν is contained always in some element of A

which means b belongs to A.

To show S is dense, let s < t for s ≠ t in S. Then s <leq t are two elements of [T ] and

hence there is ρ ∈ Tη such that ρ = max{sβ ∣ sβ = tβ} for some η < min{ht(s), ht(t)}.

Then ρ⌢sη+1 ∈ s and ρ⌢tη+1 ∈ t, for sη+1, tη+1 ∈ N, and sη+1 <lex tη+1. If tν+1 >lex

sη+1 + 1, we can �nd a ∈ (sη+1, tη+1) and we let s∗ be any branch containing a.

Otherwise tν+1 = sη+1+1 and we let s∗ be a branch containing ρ⌢sη+1
⌢b for b >lex sη+2.

Then s < s∗ < t in S.

It has also the c.c.c., for if (s, t) is an open interval in S, there is u ∈ T such that

Iu = {x ∈ S ∣ u ∈ x} is an open interval contained in (s, t), and if Iu ∩ Iv = ∅ then u, v

are incomparable. So every uncountable family of disjoint open intervals in S gives

rise to an uncountable antichain in T .
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Furthermore, S is not separable. If A is a set of countable subset of [T ] let α be an

ordinal which is above all branches in A, then if s ∈ Tα, Ix is an open interval on S

that does not contain any element on A, hence A cannot be dense.

With this result we transform SH into a purely combinatorial problem since a Suslin

line has the c.c.c. if and only if the corresponding Suslin tree satis�es the c.c.c..

Seeing this close relation between Suslin trees and lines, we can ask what other

properties are preserved from the line to the tree and vice versa or in what way

these properties are manifested in both structures.

In this sense, much has been done in terms of the automorphism group of both of

them [DJ74], [FH09], [Jec72] and in this section we will investigate other monoids

associated with the line (e.g. embeddings and epimorphisms).

Let's remark that if in the above construction of a Suslin line from the tree we also

insist in not adding to the line the branches which contain a subchain of the form

s⌢(0,0,0, ...), for s ∈ [T ↾ α] for some α < ω1 and (0,0,0, ...), a chain of limit height

containing only zeros, then we can also make the set Sα = {s ↾ α ∈ [T ↾ α] ∣ s ∈ S}

an ordered set without endpoints. Notice that this won't interfere with S being

complete or even dense. If instead of an ℵ0-splitting tree we want a n-splitting one

for n ∈ ω, then in addition and in order to make the resulting tree dense, we would

have to identify `adjacent' branches, that is if s is a node in T , then only one of

s⌢(m,n − 1, n − 1, ...) or s⌢(m + 1,0,0, ..) will be element of S.

Notice that when de�ning the lexicographical ordering on T to construct the line in

Lemma 2.8, we could have asked for the ordering of the immediate successors of a

node in T to be that of Z instead, and it will still work, but if we try to use Q we

would have problems with completeness. In fact, the resulting Suslin line S will not

be complete since we can't de�ne a least upper bound at successor levels of T .

The following two lemmas (taken from [Tod84], but also appearing in [DJ74]) show

how can we relate automorphisms of Suslin tree and of lines, but actually Lemma
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2.12 works for any normal Aronszajn tree.

Lemma 2.12. Let C ⊆ ω1 be a club. Then every lexicographical automorphism σ of

T ↾ C determines a unique automorphism σ of the corresponding Suslin line.

Lemma 2.13. If T is a Suslin tree and f is an automorphism of the corresponding

Suslin line, then there is a club C ⊆ ω1 and a lexicographical automorphism σ of

T ↾ C such that f = σ.

The �rst result is actually a particular case of the following result that we extend

and prove here.

Lemma 2.14. Let C ⊆ ω1 be a club. If σ is a lexicographical level preserving epimor-

phism on T ↾ C, then there is a unique epimorphism σ on the corresponding Suslin

line S constructed using T .

Proof. Without loss of generality we can assume C contains only limit ordinals. Let

α ∈ C and let Sα = {b ↾ α ∣ b ∈ S} be the set of all α-initial segments of branches that

we decided to add to S to make it a linear continuum. Then Sα is itself an ordered

continuum. We have remarked before that it is an ordered set without endpoints. It

is complete by construction and the same argument in Lemma 2.12 used to prove

that S is dense, applies to show that Sα is dense.

Since in addition Tα is dense in Sα, Sα is isomorphic to R. To show that the α-

th level of T is indeed dense in Sα, let s <lex t be in Sα and assume towards a

contradiction that there is no b ∈ T ↾ α such that b ∈ (s, t) and b ∩ Tα ≠ ∅. Let s0, t0

be the �rst two points where they di�er, and let x >lex s1 = s⌢0a, for some a ∈ N and

s1 ∈ s. Then, since no branch between s and t is extended to level Tα, this violates

the normality of T .

Therefore Sα is isomorphic to R and thus, by Lemma 4.4 there is a unique epimor-

phim σα on Sα extending σ ↾ Tα.

Claim 2.15. If α < β, then σα ↾ (Sα ∖ Tα) ⊆ σβ(Sβ ∖ Tβ).
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Proof. Let s ∈ Sα ∖ Tα and such that s = sup{sn ∈ Tα ∣ n ∈ ω}, then s is also

the supremum of the set {s′n ∈ Tβ ∣ n ∈ ω}, where sn < s′n (possible since Tβ is

dense in Sβ and the branches extending each sn form an open interval on Sβ )

and these supremums are taken from the lexicographical ordering that we have on

the T . This is because σα is continuous. Hence σα(s) = sup{(σ ↾ Tα)(sn) ∣ n ∈ ω}

= sup{(σ ↾ Tα)(s′n) ∣ n ∈ ω} = σβ(s). ,

Therefore σ = ⋃
α∈C

σα(Sα ∖ Tα) is an epimorphism of S.

In general it is not the case that every map on T whose restriction to a club set is

an automorphism is also an automorphism of T .

Proposition 2.16. Let C ⊆ ω1 be a club. There is a normal ω1-tree (T,⩽) with a

map σC ∶ T Ð→ T such that σC ↾ (T ↾ C) is a non-trivial automorphism of T ↾ C,

but σC is not an automorphism of T .

Proof. Let σ be any non-trivial automorphism of T , C = {cα ∣ α ∈ ω1} a club on ω1

and assume without loss of generality that it consists only of limit ordinals.

Then we can de�ne σC ∶ T Ð→ T to agree with σ in T ↾ C and if s is not in T ↾ C

then s ∈ T s0 ∩ (T ↾ cα+1) for some s0, in T ↾ cα and we let σC(s) = σ(s0).

Figure 2.6: σ acting on T.
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Then σC is clearly not an automorphism of T but it restricts to the automorphism

of T ↾ C.

It is clear that an automorphism of (T,⩽T ) cannot be an automorphism of (T,⪯lex),

since the latter is a linear ordering and we always have incomparable elements with

respect to ⩽T .

So any automorphism of a Suslin tree T that cannot be extended to a lexicographical

automorphism of T ↾ C cannot be an automorphism of a Suslin line S. Therefore

not every automorphism of T will give rise to an automorphism of the corresponding

S.

Also, if σ is a lexicographical automorphism of T ↾ C, (where T is a normal tree),

then it can be extended to a lexicographical automorphism of T and if we have a

lexicographical automorphism of T then the restriction to T ↾ C is clearly a lexi-

cographical automorphism. But if σ is an automorphism of (T ↾ C,⪯lex) not every

extension of σ will be an automorphism of (T,⪯lex), so we cannot in general compare

the automorphism group of T with the one of the corresponding line, and looking at

automorphisms on a club subset of the tree is enough to determine an automorphism

of the line.

2.3 An automorphism rigid Suslin tree that admits a

non-identity embedding

Now, we will use the construction of a rigid Suslin tree T to get a tree T that admits

an embedding to a proper cone, that is T ≅ Tx0 for some x0 ∈ Tξ with ξ ∈ Lim(ω1).

Proposition 2.17. If ◊ holds, then there is a Suslin tree T, with trivial automor-

phism group but with a non identity embedding.

Proof. Let T be the totally rigid Suslin tree of Proposition 2.7 and �x x0 ∈ Tξ
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for ξ ∈ Lim(ω1). Let U0 = T ∖ T x0 . The desired Suslin tree will be the union of

countably many sets Un de�ned as follows (see Figure 2.7),

Un = {⋃(x0↓)n⌢s↓ ∣ s ∈ U0}, where (x0↓)n is the concatenation of x0↓, n times.

Figure 2.7: U0 and U1

Notice that we still need to take care that the elements we put above the branches

(x0↓)n⌢s↓ are ordinals chosen in such a way that T ↾ α is an initial segment of ω1,

for every α ∈ ω1. Then T = ⋃
n∈ω

Un.

Notice that since (x0↓)ω ∉ T , T is clearly a normal ω1-tree, being the countable union

of ω1-subtrees taken from T , which is normal.

To see that it is indeed a Suslin tree, we need only to verify that any antichain in

T is at most countable. Since U0 is a subset of T it has no uncountable antichains,

and therefore, every antichain of Un is at most countable, for all n ∈ ω. Hence every

antichain of T must be at most countable, being the countable union of antichains

that are at most countable. Now that we have a Suslin tree we will equip it with the

natural embedding, the one sending T to the cone above x0.

Claim 2.18. The tree T admits a (continuous) non-identity embedding.

Proof. We will de�ne a function σ from T into Tx0 that lifts the set Un to Un+1 in

the obvious way:

If x ∈ Un then σ(x) = ⋃(x0↓)⌢x↓,
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This is evidently an injective function and it is additionally a continuous function.

For let (xν ∶ ν ∈ γ) be a sequence of length γ ∈ Lim(ω1) with ⋃ν∈γ xν = x. Then,

⋃
ν∈γ

σ(xν) = ⋃
ν∈γ

(x0↓)⌢xν↓

= (x0↓)⌢(⋃
ν∈γ

xν↓)

= (x0↓)⌢x↓

= σ(x)

To see that is order preserving let x ∈ Un and y > x. Then either y ∈ Un or x =

⋃(x0↓)n+1. Hence

σ(x) =⋃ (x0↓)⌢x↓ ∧ σ(y) =⋃ (x0↓)⌢y↓

and thus σ(x) < σ(y), or x = ⋃(x0↓)n+1 and σ(x) = ⋃(x0↓)n+2 and y ∈ Um for some

m ⩾ n + 1, so σ(x) < σ(y). ,

In view of the above claim, we remark that in Proposition 2.5 we showed that there

is a level that is �xed setwise. In this case, this level is the ξ.ω-the level of T : say

x = (x0↓)n⌢s↓ ∈ Un for n ∈ ω and s ∈ U0, then x has order type ot(x) = ξ.n+ot(s) = ξ.ω

and hence ot(s) = ξ.ω. But σ is an injective function, so ot(σ(x)) = ξ.(n+1)+ot(s) =

ξ.(n+1)+ξ.ω = ξ.ω, since σ(x) is in Un+1. Therefore σ(x) is also in level ξ.ω. Then,

by continuity σ will �x all levels above ξ.ω and no level will be �xed below it.

Now, the tree T not only satis�es that the embedding monoid is non-trivial, but the

automorphism group stays trivial.

Claim 2.19. The tree T is automorphism rigid.

Proof. Let θ be a non-identity automorphism of T. Then we can �nd x ∈ Un with

θ(x) ≠ x and by the above remark also both in the same limit level.

Now, if θ(x) and x are always in the same Un, say x = ⋃(x0↓)n⌢s1 and σ(x) =

⋃(x0↓)n⌢s2 for two distinct s1, s2 ∈ U0, then s1, s2 are also in the same level. Hence
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θ takes s1 to s2, and the cones above s1 and s2 are isomorphic. Therefore we can

�nd an α ∈ K such that Kα = σ ↾ α where we made sure in Proposition 2.7, that

σ cannot be extended to be an isomorphism in the α-th level.

If on the other hand there is x ∈ Un with θ(x) in Um for some m ≠ n, let n be the

least with this property. Assume without loss of generality that n <m, and let l > 0

be the di�erence between them. Then for s1 and s2 in U0,

x =⋃ (x0↓)n⌢s1↓ and

θ(x) =⋃ (x0↓)n⌢(x0↓)l
⌢
s2↓

Notice that (x0↓)n and (x0↓)l must be �xed by the automorphism θ since x0 is in U0

which is rigid. Therefore

θ(s1↓) = (x0↓)l⌢s2↓ so for some s3 ∈ U0

s1↓ = (x0↓)l⌢s3↓

But s1 is in U0 and hence it cannot extend x0, contradiction. Therefore θ cannot be

a non-identity automorphism of T. ,

2.4 An automorphism rigid Suslin tree admitting a non-

trivial level preserving epimorphism

We start the construction of a Suslin tree by trans�nite induction on the levels of the

tree and at the same time we will be de�ning a function σ that will be our desired

non-trivial epimorphism. The epimorphism will violate injectivity `at the beginning'

and the e�ect will `propagate' throughout the entire tree. However, by the usual

method we can ensure (automorphism-)rigidity of our resulting tree. (See Figure

2.8). We will construct a normal ℵ0-splitting tree whose elements we will regard as

countable sequences with entries in ω (to facilitate the de�nition of σ), but also as
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elements of ω1 (to make easier the construction of a normal ST) as we have been

using during this section and the distinction should be clear from context.

Let T0 = {root}, or the empty sequence and σ(root) = root.

Having de�ned Tβ and σ on Tβ , for every β < α and some α ∈ ω1 , let Tα+1 = {x⌢k ∣

x ∈ Tα, k ∈ ω} and if x⌢k = t ∈ Tα+1 then we de�ne σ(t) = σ(x)⌢(k � 1) where,

k � 1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if k = 0

k − 1 if k > 0

From this it follows that σm(t) = σ(x)m⌢(k�m) and σ−m(t) = σ(x)−m⌢(k+̇m) where,

k �m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if k ∈ {0,1, ...m}

k −m if k >m
k+̇m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{0,1, ...m} if k ∈ {0,1, ...m}

k +m if k >m

Figure 2.8: σ acting on T

Now, if α ∈ Lim(ω1), we will choose which α-branches we want to extend in order to

maintain T ↾ (α + 1) closed under σ and σ surjective, so it will have to satisfy these

two conditions:

1. For every t ∈ T ↾ (α + 1) , σ(t) ∈ T ↾ (α + 1) for every positive n.

2. For every t ∈ T ↾ (α + 1) there is s ∈ T ↾ (α + 1) such that σ(s) = t.

In addition, we want to get rid of every non-identity automorphism on T ↾ (α + 1),

so we look at the α-th element of the ◊-sequence (gν ∶ ν ∈ ω1) in order to ensure
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rigidity and then we take care of sealing maximal antichains with the help of the

α-th element in the ◊-sequence (Sν ∶ ν ∈ ω1). We shall do this in cases, but �rst let's

de�ne what we mean by the set σ−m[b] for every m ⩾ 1, where b is an α-branch,

which we de�ne by induction on the elements of b; �rst we will de�ne what σ−1[b]

is for an α-branch and then we extend to every m > 1. The idea is that this set

consists of countably many branches whose restriction to a level β < α contains only

elements of σ−m(x) for x ∈ b in level β.

For x = root, σ−1(root) = root.

Having de�ned σ−1[b ∩ Tβ] for every β < α (that is, ∀w ∈ b ∩ (T ↾ α)) we want

now to de�ne σ−1[b]:

a. If α = β + 1. If x is in the α-th level of b, that is if x ∈ Tα ∩ b, then

σ−1(x) ⊂ Tα and choose elements in this set such that for each y ∈ σ−1(w)

already chosen for w ∈ Tβ ∩ b, pick two di�erent elements y1, y2 in σ−1(x)

(or one if there is only one element) such that they both extend y, and

let y1, y2 be the elements of σ−1[b ∩ Tα]. Notice that y1 and y2 are quite

arbitrary so we have some freedom to choose them carefully, freedom that

we may use further in the construction.

b. If α ∈ Lim(ω1), let σ−1[b] consist of countably many branches bx in σ
−1[b∩

T ↾ α] for every x ∈ T ↾ α, such that x ∈ bx.

Now, once we have de�ned what σ−1[b] is for α ∈ ω1, we assume we have the de�nition

of σ−p[b] for p = m − 1. We look at every branch d ∈ σ−p[b] and de�ne σ−1[d] as

above. Thus, the following is clearly countable

σ−m[b] = ⋃
d∈σ−p[b]

σ−1[d].

Hence, if we include a branch d in σ−(m+1)[b] for some α-branch b, we have ensured

that σ[d] is in σ−m[b]



Chapter 2. Suslin Trees and Lines constructed using Diamond 33

⋆1. Sα is not a maximal antichain and gα is the identity automorphism

on T ↾ α.

In this case we do not need to take care of either of Sα or gα so we concentrate on

trying to preserve σ as an epimorphism of T ↾ α.

For each t ∈ T ↾ α we extend an α-branch bt containing t and let σ(⋃ bt) = ⋃
x∈bt

σ(x).

Also, we extend the branches in the set σm[bt] for every m ∈ ω (which is exactly

one for each m and t) and for every dmt ∈ σm[bt], we extend the set σ−1[dmt] as

explained before and then we iterate to get σ−p[dmt] for every p ⩾ 1.

⋆2. Sα is a maximal antichain but gα is the identity automorphism on

T ↾ α.

Here we need only seal the maximal antichain so that it stays maximal from here

on. In order to do this, we notice that because Sα is maximal, for every t ∈ T ↾ α,

there is a ∈ Sα compatible with t. Let b∗t be a chosen α-branch containing t and a.

Then we extend every branch in the set {b∗t ∣ t ∈ T ↾ α} and proceed as in case ⋆1

with b∗t instead of bt.

From now on b∗t will denote a branch going through t and an element of the antichain

Sα.

⋆2. Sα is a maximal antichain of T ↾ α and gα is a non-trivial automor-

phism of T ↾ α.

In this case there is an element t0 ∈ T ↾ α which is moved by gα.

The idea is to destroy the automorphism gα by �nding a branch b that contains t0

whose image under gα is contained in a branch going through gα(t0) (and therefore

di�erent from b) and then extend the former but not the latter, stopping gα from

becoming an automorphism of T ↾ (α + 1) and hence of T .

Notice that since gα is an automorphism of T ↾ α, gα preserves levels.
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So, we want to choose bt0 ∈ [T ↾ α] so that gα[bt0] ≠ bt0 as branches, and

A. gα[bt0] ⊈ σm[bt0] and gα[bt0] ∉ σ−m[bt0] for any positive m. This is because

once we extend bt0 we need to extend its image under σ to ensure σ stays

surjective, but at the same time we need to extend the image of this image

and so on.

If b∗t is an α-branch containing t and an element of Sα, then for every branch b∗t ∈

[T ↾ α] we have to extend σm[b∗t ] for every m > 0, so we need to choose b∗t for every

t ∈ T ↾ α such that:

B. gα[b∗t0] ≠ σ
m[b∗t ] as branches, for any positive m,

C. There exists b∗x ∈ [T ↾ α] such that σm[b∗x] = b∗t ,

D. gα[bt0] is not a branch of σ−m[b∗t ] for any positive m.

In order to do this, we will use the following lemma.

Lemma 2.20. It is always possible to �nd two di�erent branches bt and b
′
t so that

both contain t and an element of Sα.

Proof. Let bt be chosen so that t, a ∈ bt and a ∈ Sα. Let x = max{t, a} and y ∉ bt be

an extension of x (which is possible since x is ω-splitting). Because Sα is maximal,

there is ay ∈ Sα which is compatible with y so that b∗y ≠ bt.

First, we will concentrate on �nding bt0 satisfying condition A and then we will use

a similar method to choose carefully the remaining branches to extend so that they

satisfy the rest of the conditions.

● Assume that for some t0 ∈ T ↾ α, gα(t0) ≠ σm(t0) and gα(t0) ∉ σ−m(t0) for all

m > 0.
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Here we need only to worry about sealing the maximal antichain Sα since our as-

sumption on t0 is precisely what we need for the requirement in A to be satis�ed by

any branch containing t0. For this, we let our bt0 be a branch b∗t0 but using Lemma

2.20 to ensure b∗gα(t0) ≠ gα[bt0], and since gα(t0) ∉ σ−m(t0) for any m > 0, we can

also choose b∗σ−m(t0) ≠ gα[bt0].

If our assumption is not satis�ed, we have either gα(t0) = σm(t0) or gα(t0) ∈ σ−m(t0)

for some m > 0. Notice that in either case, we need only to take care of one part

of condition A : if gα(t0) = σm(t0), then σ−m(t0) ≠ gα(t0) since our epimorphism σ

sends nodes in the tree �to the left� whereas the inverse moves �to the right� (and

they are both level preserving maps) and thus, the inverse image of a point above t0

will always be �to the right� but gα has to preserve order and therefore will stay �to

the left� above σ(t0). Hence, σ−m[bt0] cannot contain gα[bt0], as desired. The same

argument applies when gα(t0) ∈ σ−m(t0).

● If gα(t0) = σm(t0) for some m > 0.

Then we let m be the minimum such that this happens. In this case we will also

take care to choose a branch in which the epimorphisms σm and gα di�er at some

point, so we can close T ↾ α under σ. This will be possible because we have chosen

our epimorphism to be not injective, unlike the automorphism gα, so we will take

advantage of this feature to de�ne bt0 .

So, let's �rst take care of Sα. Let t
∗ = max{t0, a} for some a ∈ Sα that is comparable

with t0. Notice that gα(t∗) ≠ t∗.

Next, take y0 = t∗⌢0 and y1 = t∗⌢1 be the �rst two immediate successors of t∗, then

their image under σ is the same σm(y0) = σm(y1) = σm(t∗)⌢0 (in fact, we can take

any of the �rst m successors of t∗ for this to hold). Since gα is an automorphism,

t0 ⩽ t∗ < y0 and t0 ⩽ t∗ < y1 imply

gα(t0) < gα(y0) ≠ y0,
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gα(t0) < gα(y1) ≠ y1,

gα(y0) ≠ gα(y1)

Therefore we can't have both σm(y0) = gα(y0) and σm(y1) = gα(y1), so we let ym be

one among y0 and y1 satisfying σm(ym) ≠ gα(ym).

Choosing a branch containing ym will take care of condition A for m, but we need to

make sure we can do this for all n > 0. Notice that since m is the minimum satisfying

gα(t0) = σm(t0), we have that gα(t0) ≠ σn(t0) for all n < m, so we need only take

care of n ⩾m.

Claim 2.21. For all n ⩾ m there is a sequence t∗ < ym < t1 < ... < tl such that

σn(ti) ≠ gα(ti) for all i ∈ {1,2, ...l} and l =m + n.

Proof. We will prove this by induction. We have proved the base case n = m above

so we will prove the case for n + 1 assuming σn(tl) ≠ gα(tl). Let tj = t⌢l j be the j-th

immediate successor of tl, with j ∈ {0,1, ...n + 1}, then σn+1(tj) = 0 for every j but

this is not the case for gα as gα(tj) ≠ gα(th) for all j ≠ h, therefore not all the tj 's

can have gα(tj) = σn+1(tj) and we let s be any element of {tj ∣ j ∈ {0,1, ...n + 1}}

satisfying σn+1(s) ≠ gα(s). ,

Hence we have shown that for every m > 0, there is a chain b of order type ot(b) =

ot(t∗↓)+ω that contains at least one element ym > t∗ for which the m-th iteration of

the epimorphism σ is not equal to the image of ym under gα, so taking an α-branch

containing this chain will give us our desired bt0 with the property gα[bt0] ≠ σm[bt0].

● If gα(t0) = σ−m(t0) for some m > 0.

In this case we argue in a similar way as in the above case, this time concentrating

on σ−m instead. Let m be the minimum value for which the above assumption holds

and let t∗ be as above. Then there is an immediate successor of t∗, ym = t∗⌢i for

i ∈ ω, such that gα(ym) ∉ σ−m(ym).
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Otherwise, if we let {yi ∣ i ∈ ω} be an enumeration of the immediate successors of t∗

and assume gα(yi) ∈ σ−m(yi) for all i ∈ ω, then for i ≠ j we have

yi ≠ yj ,

σ−m(yi) ∩ σ−m(yj) = ∅,

gα(yi) ∈ σ−m(yi),

gα(yj) ∈ σ−m(yj)

So if we take two di�erent elements w1 ≠ w2 in σ−m(y0) (we take y0 because it is

an element that we can be sure will have more than one pre-image according to our

de�nition of σ, but we could've taken any i ∈ {0,1, ...m}), then g−1
α (w1) ≠ g−1

α (w2)

but g−1
α (w1) corresponds to some yi and g

−1
α (w2) to a di�erent yj , thus gα(yi) = w1

and gα(yj) = w2, so w1 ∈ σ−m(yi) and w2 ∈ σ−m(yj), which is not possible.

Therefore there is some ym > t∗ such that gα(ym) ∉ σ−m(ym) for some m > 0. Again,

this property holds for every n ⩽m so we just need to take care of everything above

m.

Claim 2.22. For all n ⩾ m there is a sequence t∗ < ym < t1 < t2... < tn−m such that

gα(ti) ∉ σ−n(ti).

Proof. We will prove this by induction and the base case n = m has been done

above. Therefore, assuming the premise above we will prove it for n + 1. We know

that σ−m(tn−m) does not contain gα(tn−m). Assume towards a contradiction that

we can't �nd such t. Let {yi ∣ i ∈ ω} be an enumeration of the immediate successors

of tn−m, and proceed as in the base case above. ,

Hence, we take bt0 to be a branch containing t∗ and ym together with the sequence

{ti ∣ i ∈ ω} which satis�es gα[bt0] ∉ σ−n[bt0] for all n > 0.

This concludes the search for our branch bt0 satisfying the requirements on A. We

will extend bt0 , as well as b
∗
gα(t∗) ≠ gα[bt0]. Next we will take care of B,C, and D.
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Let t ∈ (T ↾ α) ∖ (bt0 ∪ gα[bt0]). To satisfy condition B, we want to extend b∗t and

σm[b∗t ] for all m > 0.

I shall make use of the following terminology: Let t, y ∈ T ↾ α be two α-sequences,

then we say that `t is to the right of y' if and only if on the least entry where they

di�er, say ν < α, y(ν) < t(ν). In this case we also say that `y is to the left of t'.

So, we want gα[bt0] ≠ σm[b∗t ] for all m > 0, and this is given by the next claim.

Claim 2.23. For all m > 0, there is yB,m ∈ T ↾ α extending t∗ such that σm(ym) ∉

gα[bt0].

Proof. If there is some element of gα[bt0] to the right of t∗, then any extension of t∗

will satisfy the claim since σm moves points to the left, so assume t∗ is to the left

of every element of gα[bt0]. Let x0 ∈ gα[bt0] be the unique element on the branch

gα[bt0] in the same level as the immediate successors of t∗ (the next level above t∗)

and look at σ−m(x0). Then not all the immediate successors of t∗ are part of this set

(otherwise, for all y = t∗i for all i ∈ ω, x0 = σm(y) = σm(t∗)⌢σm(i) = σm(t∗)⌢(i �m),

but i �m is equal to zero for i ∈ {0, ...m} and equal to i −m for i > m). So let

yB,m ∈ {t∗⌢i ∣ i ∈ ω} ∖ σ−m(x0). Then σm(yB,m) ≠ x0 and hence not in gα[bt0], since

σ preserves levels. ,

Therefore, if we choose yB,m > t∗ as above for each t ∈ T ↾ α so that t∗ is to the left

of gα[bt0], and any extension of t∗ if t∗ is to the right of gα[bt0], then we satisfy B

for some m > 0.

Next, in addition to this, we have to �nd an extension yD,m of yB,m, such that

gα[bt0] ⊈ σ−m[b∗t ], that is, σ−m(yD,m) ∩ gα[bt0] = ∅.

Once more, if yB,m is to the left of gα[bt0], then any extension will work, so we assume

it is to the right. Let x ∈ gα[bt0] so that x is in the same level as the immediate

successors of t∗ and look at σm(x). Then any element yD,m in {t∗⌢i ∣ i ∈ ω}∖{σm(x)}

will satisfy our requirement in D for m > 0.
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Hence, the sequence yD,m > yB,m > t∗ ⩾ t satis�es B and D for a given m > 0. Using

the above technique we can construct by induction on m a sequence of elements

that will de�ne our branch b∗t , so that at each step m we add two new elements

yD,m, yB,m that will take care of conditions B and D for that given m, and such that

yD,m > yB,m > yD,m−1 > yB,m−1 > ...yD,0 > yB,0 > t∗.

Then we choose b∗t to be a branch containing this sequence.

To get C we need: given t ∈ T ↾ α andm > 0, there is x ∈ T ↾ α such that σm[b∗x] = b∗t .

Here we will reconstruct the set of branches σ−m[b∗t ] by induction on the elements

of b∗t .

As usual, for x = root, σ−m(root) = root. Assume we have de�ned σ−m[x↓ ∖ {x}] for

x ∈ b∗t in Tγ . Assume further that x is in a level corresponding to a successor ordinal,

that is, γ = β + 1. If ∣σ−m(x)∣ > 1 and we choose elements in σ−m(x) such that for

each z ∈ Tβ already chosen, there are two elements in σ−m(x) extending z, if there is

only one point in σ−m(x), we add it . The worst case scenario would be if σ−m(x)

contains only one element and it happens to be in gα[bt0] ∪ bt0 , but even if this is

the case, once we run into yD,m we will make sure there is some z ∈ b∗t satisfying

gα[bt0] ⊈ σ−m[b∗t ]. If γ is a limit level, then we choose to extend ℵ0 branches from the

ones we have collected previously so that their extensions are elements of σ−m(x).

Thus, σ−m[b∗t ] will be the union of countably-many of these branches, and in order

to satisfy C. we extend every branch in this set, and this concludes case ⋆3.

⋆4. Sα is not a maximal antichain of T ↾ α and gα is a non-trivial auto-

morphism of T ↾ α.

This case is completely analogous to case ⋆4, the only di�erence being that we need

not to stop Sα from being a maximal antichain and hence t∗ becomes just t.

Hence, to de�ne Tα we extend the following branches:

bt0 ∪ b∗gα[t0] ∪ {b∗t ∣ t ∈ T ↾ α} ∪ ⋃
m>0

{σm[b∗t ] ∣ t ∈ T ↾ α} ∪ ⋃
m>0

{σ−m[b∗t ] ∣ t ∈ T ↾ α}
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which is a countable set. The resulting tree is clearly Suslin since we have been

taking care of maximal antichains in the usual way using our ◊-sequence.

2.5 Remarks

Notice that by contrast with the result of Lemma 4.8 obtained for linear orderings

presented in Chapter 4, in general it is not the case that an epimorphism of a tree

(T,⩽) gives rise to an embedding of (T,⩽), as illustrated by the following example.

Let (T,⩽) be de�ned as: T0 = root consisting of a single element following by T1, a

set of nodes of order-type (ω + 1).ω. Then we add an n-branch above every node in

n ×m for every n,m ∈ ω and ω-branches above each (ω,m)-node in T1, as seen in

Figure 2.9.

Figure 2.9: A tree with an epimorphism which does not give rise to any embedding.

Now, we will de�ne an epimorphism f on (T,⩽) by its actions on the branches of

the tree. Let bn,m be the m-th branch of height n, for m ∈ (ω + 1) and n ⩾ 1.
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f(bn,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

bn,m−1 if n < ω,m > 0

bn,m+1 if n = ω

�rst n + 1 elements of bω,0 if m = 0

Then, let's try de�ning an embedding g from f by choosing an element of each

inverse image under f−1. Since f is injective on most of the elements on T we just

need to check how the action of g on the branch bω,0 could be de�ned. Since g must

preserve levels, it maps bω,0 ∩T1 to some bn,m ∩T1 for �nite n. But this implies that

it maps the whole of bω,0 to bn,m which is impossible while preserving levels, since

bω,0 is in�nite but bn,m is �nite.

However, in the case of the tree we constructed with the non-trivial epimorphism it is

possible to de�ne this embedding with a couple of modi�cations to the construction.

The trouble could be that once we take the set of branches σ−1[b] for an α-branch on

a limit level, we can't simply let g[b] be any branch on this set since for two di�erent

α-branches b1 ≠ b2, sharing a point x, there are two branches in σ−1[b] containing

two di�erent point of σ−1(x).

To solve this problem, let us rede�ne σ−1[b∗t ] for b∗t ∈ [T ↾ α] and α ∈ Lim(ω1), for

any branches b∗t that have extensions t∗ on Tα. Looking at t∗ as α-sequences, order

them lexicographically, and let {t∗β ∶ β ∈ ω} be an increasing sequence formed by all

these extensions.

Now, choose as usual σ−1(root) = root and σ−1(x) for all x ∈ b∗t0 . If σ
−1(x) has been

chosen for every x ∈ b∗tβ , to de�ne the elements of σ−1(x) for x ∈ b∗tβ+1 , if x belongs

to some of the branches b∗tγ for γ ⩽ β, then σ−1(x) has been chosen and if x is not

a member of these branches we choose some di�erent elements in σ−1(x) following

the same pattern as in our construction. Finally, to de�ne the set of branches in

σ−1[b∗tβ ] for β ∈ ω, choose countably many branches from ⋃
x∈b∗tβ

σ−1(x).

The idea is that the branches that we extend for σ−1[b∗t ], will now have the property

that they agree, i.e. if x ∈ b∗t ∩ b∗u then σ−1(x) = σ−1[b∗t ] ∩ σ−1[b∗u] ∩ Tht(x).
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To de�ne g we look at t∗ ∈ Tα, for α ∈ Lim(ω1) and let g[b∗t ] be any element of

σ−1[b∗t ] and g(t∗) = ⋃ g[b∗t ]. This will take care thus of all the elements in T ↾ α

since we have extended an α-branch b∗t for each t ∈ T ↾ α. It is clear from the

construction that g is indeed an embedding.

The reason why it was possible for us to de�ne g from our σ, is that the following

property holds. For every z ⊃ y and every x ∈ σ−1(y), there is an extension w ⊃ x

such that σ(w) = z, for let z = y⌢k for k ∈ ω, and let x ∈ σ−1(y), then w = x⌢(k+̇1).

If k > 0, σ(w) = σ(x)⌢k = y⌢k = z and if k = 0, w = σ(x)⌢0 = y⌢0 = z.

Therefore, if we try to construct a tree that will admit a non-trivial epimorphism

but that does not admit a non-trivial embedding the best place to start is to try and

construct something that violates this property.

2.6 κ+-Suslin trees

In this section we generalize the results of Section 2.1 to Suslin trees with height

κ+ for an in�nite cardinal κ. For this, we de�ne a κ-Suslin tree T as a κ-tree such

that:

1. T is normal

2. ht(T ) = κ

3. ∣Tα∣ < κ for every α < κ.

But when studying in�nite cardinals we are faced with the following splitting cate-

gories:

1. singular cardinals
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2. regular cardinals

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

successors of other regulars

limit cardinals

successors of singular cardinals

As a matter of fact, the mere existence of a regular limit cardinal (also called weakly

inaccessible cardinal) is independent of ZFC. On the other hand, if κ is a singular

cardinal, the situation is quite strange: we can �nd a κ-tree which is not normal but

it has no antichains nor chains of cardinality κ, but if we require the tree to be

normal then it necessarily has an antichain of cardinality κ, preventing it from being

Suslin.

Lemma 2.24. If κ is a singular cardinal and T is a normal κ-tree then there is an

antichain of cardinality κ.

Proof. Let κ and T be as in the statement above and let cf(κ) = λ < κ. Then we

can �nd a sequence (cξ)ξ<λ of cardinals less than κ such that

κ = ⋃
ξ<λ

cξ

Without loss of generality we can assume all of the elements in this sequence to be

cardinals greater than λ. Now, we will construct an antichain A of cardinality κ in

stages and we'll let A be the union,

A = ⋃
α<λ

Aα

We look at Tc0 , the c0-th level of T , and �nd a partition of it into the disjoint union

of λ-many subsets Ucξ , for each ξ < λ

Tc0 = ⋃̇ξ<λUcξ such that ∣Ucξ ∣ = cξ

We can de�nitely do this because c0 is greater than λ and since T is normal each

level has cardinality at least cν < κ. Now we de�ne Aα for ξ < λ as follows,
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A0 = U0 and Aξ = {s ⩾T t ∣ t ∈ Ucξ ∧ s ∈ Tcξ}

Intuitively what we are doing here is take advantage of the fact that each level is

itself an antichain of T and the fact that we have a sequence of cf(κ)-many cardinals

whose limit is κ, and since we are requiring these cardinals to be above cf(κ) and

we know that the cardinality of the cν-th level is at least cν , so each Aξ is at least

of cardinality cξ. See Figure 2.10.

Figure 2.10: The elements of the sequence (Aξ ∶ ξ ∈ λ)

Then clearly Aα being a subset of an antichain its itself an antichain. In addition, if

α < β then Aα ∩Aβ = ∅ and moreover they are incomparable since Aβ was chosen to

be in a higher level and its elements are extensions of elements that are incomparable

with Aα (namely extensions of nodes in the c0-th level). Therefore A is an antichain

and

κ ⩾ ∣A∣ = ⋃
α<λ

∣Aα∣ ⩾ ⋃
α<λ

cα = κ

The �rst inequality holds because T has only κ-many elements, and so ∣A∣ = κ as

required.

Therefore, the existence of a κ+-Suslin tree seems to be more involved than the

existence of an ω1-Suslin tree (which follows from ◊). For the above reasons, we

concentrate on constructing Suslin trees only for regular cardinals of the form κ+.
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Moreover, if κ is a regular cardinal the existence of a κ+-Suslin tree follows from

`GCH + ◊κ+(E)' ([Jen68]) for a suitable stationary E ⊆ κ+. The principle ◊κ+(E)

is a generalization of ◊ and is de�ned as follows.

Let κ > ω be a regular cardinal and E a stationary subset of κ,

◊κ(E) ∶ There is a sequence (Sα ∣ α ∈ E) such that Sα ⊆ α, with the property that

whenever X ⊆ κ, the set {α ∈ E ∣X ∩ α = Sα} is stationary in κ.

◊κ(E)g ∶ There is a sequence (gα ∣ α ∈ E) such that gα ∈ αα, with the property that

whenever g ⊆ κκ, the set {α ∈ E ∣ g ↾ α = gα} is stationary in κ.

Our principle ◊ is precisely ◊ω1(ω1). Regarding these results, Jensen [DJ74] showed

Con(GCH + ¬◊ω2(E)) and Shelah [50] established Con(◊ω1 + ¬◊ω1(E)).

The next lemma shows that ◊κ(E) and ◊κ(E)g are actually equivalent.

Lemma 2.25. ◊κ(E) holds if and only if ◊κ(E)g does.

Proof. First we'll show ◊κ(E)g → ◊κ(E). Let (gα)α∈E be a ◊κ(E)g-sequence and

de�ne

Sα = {β < α ∣ gα(β) = 1}

for each α ∈ E. Let X ⊆ κ be arbitrary and f = χX be the characteristic function of

X. Then G = {α ∈ E ∣ f ↾ α = gα} is stationary. We want to show for each α ∈ E :

χX ↾ α = gα →X ∩ α = Sα.

Let α ∈ E and assume χX ↾ α = gα. If β ∈ X ∩ α, then χX(β) = 1 = gα(β) and

hence β ∈ Sα. On the other hand, if β ∈ Sα, then χX(β) = gα(β) = 1, so β ∈ X ∩ α.

Therefore,

G ⊆ {α ∈ E ∣X ∩ α = Sα} = S
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and since G is stationary in κ, so is S.

Now, we shall show that ◊κ(E) → ◊κ(E)g. Let (Sα)α∈E be a ◊κ(E)-sequence. Let

π ∶ κÐ→ κ×κ be an order isomorphism from (κ,⩽) (the ordinal order) to (κ×κ,⪯),

where we de�ne ≺ on κ × κ by,

(α1, β1) ⪯ (α2, β2)←→max{α1, β1} < max{α2, β2} or

max{α1, β1} = max{α2, β2} ∧ (β1 < β2) or

max{α1, β1} = max{α2, β2} ∧ (β1 = β2) ∧ (α1 < α2).

De�ne, for each α ∈ E,

gα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

π[Sα] if it is a well-de�ned function on α

id otherwise

This means, gα(x) = β if (x,β) ∈ π[Sα] when π[Sα] ⊆ κ×κ is a well-de�ned function.

To show that this sequence of functions satis�es the requirements of ◊κ(E)g, we

shall need a couple of claims.

Claim 2.26. The set C = {α < κ ∣ π[α] = α × α is a bijection } is a club.

Proof. To show this, we'll show that the following function g ∶ κ Ð→ κ, is a normal

function, that is, that it is increasing and continuous.

g(α) = ot(α × α).

To see that g is continuous, let λ ∈ Lim(κ) and (αη)η∈λ be an increasing sequence

with α = sup
η∈λ

αη. Then

⋃
η∈λ

g(αη) = ⋃
η∈λ

ot(αη × αη) = ot(α × α) = g(α).

To show that α ⩽ g(α), notice that (β,0) ⪯ (α,α) for every β < α and the set
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{(β,0) ∣ β ∈ α} ⊆ α × α has clearly order-type α. Hence α ⩽ ot(α × α) = g(α).

Since g is a normal function the set

C = {α ∈ κ ∣ g(α) = α}

is a club subset of κ �, proving the claim. ,

Let f ⊆ κ × κ be an arbitrary function and set X ⊆ κ to be X = π−1[f]. Then, the

set S = {α ∈ E ∣ π−1[f] ∩ α = Sα} is a stationary subset of κ.

Claim 2.27. The set A = {α ∈ κ ∣ f[α] ⊆ α} is a club subset of κ.

Proof. Closure clear since f preserves unions. To see that A is unbounded, let

γ ∈ κ. Construct a sequence (αn)n∈ω such that α0 = γ and αn+1 = sup
n∈ω

f[αn], so that

f[αn] ⊆ αn+1. Hence, if α = sup
n∈ω

αn,

f[α] = f[⋃
n∈ω

αn] = ⋃
n∈ω

f[αn] ⊆ ⋃
n∈ω

αn = α.

,

Moreover, the set I = A∩C ∩S ⊆ E is a stationary subset of κ (it is the intersection

of a club and a stationary set), so it is enough to show that if α ∈ I, then f ↾ α = α,

for then I ⊆ {α ∈ E ∣ f ↾ α = α}.

Let α ∈ I. Then π−1[f] ∩ α = Sα and since π is a bijection π[Sα] = π[π−1[f] ∩ α] =

f ∩ π[α] = f ∩ α × α = f ↾ α, and since Sα ⊆ α, gα = π[Sα] ⊆ π[α] = α × α, as

required.

But Jensen's construction using ◊κ+(E) works only for regular κ. In order to expand

this result to allow also singular cardinals, he made use of the principle ◻κ(E) , which

we now describe.

�This is a standard result, see [Jec02]
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Let κ be an in�nite cardinal and E a subset of κ+. By ◻κ(E) we mean the following

statement,

◻κ(E) ∶ There is a sequence (Cα ∣ α ∈ Lim(κ+)) such that

a) Cα is a club in α,

b) if cf(α) is less than κ, then ot(Cα) is less than κ,

c) whenever β < α is a limit point of Cα, then β ∉ E and Cβ = Cα ∩ β.

Although this statement is provable in ZFC for κ = ω, the same is not possible for

κ = ω1. However, if V = L then ◻κ(∅) (which we denote by ◻κ) holds for any

in�nite κ. Furthermore ◻κ gives a stationary E for which ◻κ(E) holds.

According to T. Eisworth in [Eis12], ◻κ `is quite persistent'. This is because once ◻κ

holds in a model, as long as we preserve κ and κ+ we will have it in any extension.

Continuing with our survey of results, Avraham, Shelah and Solovay showed in [AS87]

that if λ is a strong limit singular, then ‘CHλ + ∃λ+-Suslin tree', even though it is

consistent with GCH that there are no λ+- Suslin trees [She84a]. GCH also implies

some of the consequences of ◊ even when ◊ fails in the model [She03].

In Proposition 2.28 further on in this section, we construct a κ+-Suslin tree for any

in�nite cardinal κ (satisfying some rigidity properties), if ◻κ(E) and ◊κ+(E) hold

together in our model for some stationary E ⊆ κ+. Our result will be an extension of

Jensen's work in [Jen68], who showed that both principles, ◻κ(E) and ◊κ+(E) hold

in L.

Nevertheless, in Shelah [She84b], the consistency of `◻∗λ + GCH' with ¬◊λ+(E) is

shown, for a strong limit singular λ and ◻∗λ a weakening of ◻λ. Also, Gitik and Rinot

in [GR12] showed that `GCH holds above ω + ¬◊ω(E)' is consistent relative to

the existence of a super compact cardinal for a suitable E. For an extensive review

of the work done around these principles see [Rin10], and for a clear exposition of
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some of the results concerning ◻ and ◊ in L, see [Dev84].

Proposition 2.28. Let κ be an in�nite cardinal. If there is a stationary subset E

of κ+ such that both ◻κ(E) and ◊κ+(E) hold, then,

C1. there is a κ+-Suslin tree which admits no level preserving endomorphism other

than the identity,

C2. there is a κ+-Suslin tree which admits no embedding other than the identity,

C3. there is a κ+-Suslin tree which is totally rigid.

Proof. We will show C1 �rst and state how to modify the construction to obtain C2

and C3. This proof is a generalization of that of Proposition 2.1 and the basic

idea is the same. We construct a normal ω-splitting κ+-Suslin tree whose elements

are those of κ+.

The construction is as usual by trans�nite induction on κ+. At stage α < κ+we

decide which α-branches to extend in level α so that the tree T ↾ (α+1) is a normal

ω-splitting tree, and if α < β as ordinals, we de�ne T ↾ β as an end extension of

T ↾ α and the ordinals appearing in T ↾ α form an initial segment of the ordinals in

T ↾ β. The resulting tree T is the union

T = ⋃
α∈κ+

T ↾ α = ⋃
α∈κ+

Tα.

We start by de�ning T0 = root. T1 contains the elements of ω as immediate successors

of the root. Now, we recall our de�nition of W , a family of subsets of ω1 as in

Proposition 2.1:

W0 = root = zero

Wn+1 = [ωn, ωn+1), for n ∈ ω,

Wα = [ωα, ωα+1) for α ⩾ ω
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So this de�nition still works for α ∈ κ+. Also notice that Lemma 2.3 still holds for

κ+ in place of ω1, since ω
α = α for every α ⩾ ω1.

Hence, assume we have de�ned T ↾ α. If α = β + 1, we take elements from Wα and

place ω-many immediate successors on top of each x ∈ Tβ . If α ∈ Lim(κ+), we use

our ◊κ+(E)-sequence, (Sα ∶ α ∈ E), to ensure that T ↾ (α + 1) will be a normal

ω-splitting (α+1)-tree; our ◊κ+(E)g-sequence, (gα ∶ α ∈ E), to stop a potential level

preserving endomorphism (=̇ l.p.-end) of T ↾ α extending to a l.p.-end of T ↾ (α+1);

�nally, our ◻κ(E)-sequence (Cα ∶ α ∈ κ+) will be used to make sure we can always

extend the desired α-branches.

We will extend α-branches in the set

Bα = {bx(α) ∣ x ∈ T ↾ α}.

We shall de�ne precisely how these branches are constructed later on. For now,

assume we have constructed the set Bα. To decide which branches to extend in Tα,

we distinguish various cases.

If α ∉ E, we need only to extend every branch in the set Bα, taking elements from

Wα. Otherwise α ∈ E and the cases are analogous to the ones in Proposition 2.1.

⋆1. α ∈ E ∧ Sα is not a maximal antichain of T ↾ α ∧ gα is not a non-trivial

l.p.-end of T ↾ α.

Then we proceed as if α was not in E, that is, extending every branch in Bα.

⋆2. α ∈ E ∧ Sα is a maximal antichain of T ↾ α ∧ gα is not a non-trivial

l.p.-end of T ↾ α.

Then we extend the branches in the subset B∗
α ⊆ Bα consisting of all the branches

bx(α) ∈ Bα for those x ∈ T ↾ α extending some element of Sα. That is,

B∗
α = {bx(α) ∈ Bα ∣ (∃a ∈ Sα)[x >T a]}.
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The next claim shows that it is enough to extend the branches in B∗
α to have for

every y ∈ T ↾ α, a branch bx(α) ∈ B∗
α containing x and which is extended in Tα

(which we require for normality).

Claim 2.29. (∀y ∈ T ↾ α)(∃x >T y)(∃a ∈ Sα)[a <T x].

Proof. Let y ∈ T ↾ α. Since Sα is a maximal antichain of T ↾ α, there is a ∈ Sα which

is compatible with y. If a <T y we are done, so assume a >T y and let x be any

immediate successor of a. ,

⋆3. α ∈ E ∧ Sα is not a maximal antichain of T ↾ α ∧ gα is a non-trivial

l.p.-end of T ↾ α.

Here, we will stop gα from becoming a l.p.-end of T ↾ α. Since gα is non-trivial, there

are two distinct points x, y ∈ T ↾ α such that gα(x) = y and hence gα[(T ↾ α)x] ⊆

(T ↾ α)y. So, there is z ∈ (T ↾ α)x such that bz(α) ∈ Bα ∧ gα[bz(α) ≠ bz(α)] and we

extend all branches in Bα ∖ {gα[bz(α)]}.

We need only to check that for all v ∈ gα[bz(α)], there is w ∈ T ↾ α such that

v ∈ bw(α). So, let v ∈ gα[bz(α)], then let w >T v be an immediate successor of v

which is not in gα[bz(α)]. This can be done because T ↾ α is ω-splitting. Hence

v ∈ bw(α) and bw(α) ≠ gα[bz(α)].

⋆4. α ∈ E ∧ Sα is a maximal antichain of T ↾ α ∧ gα is a non-trivial l.p.-end

of T ↾ α.

For this, we will combine cases ⋆2 and ⋆3 to choose a branch b ∈ B∗
α such that

gα[b] ≠ b and then extend all branches in B∗
α∖{gα[b]}. So, let x ≠ y witness the non-

triviality of gα. Then there is z ∈ (T ↾ α)x such that bz(α) ∈ B∗
α and gα[bz(α)] using

Claim 2.29. Similarly, if v ∈ gα[bz(α)], we let w >T v be an immediate successor

of v which is not in gα[bz(α)]. Hence there is b∗ ∈ B∗
α containing w and satisfying

b∗ ≠ gα[bz(α)].

This �nishes all the cases so now we show how to choose the elements of Bα for α ∈
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Lim(κ+).

Let x ∈ T ↾ α. Then we look at our ◻κ(E)-sequence and let {γν ∣ ν ∈ λ} be an

enumeration of Cα, for ot(Cα) = λ. Set νx = min{ν ∣ x ∈ T ↾ γν}, and de�ne a

sequence (px(ν) ∶ νx ⩽ ν < λ) of compatible elements of T ↾ α as follows,

px(νx) = min{y ∈ Tγνx ∣ y >T x} as ordinals

px(ν + 1) = min{y ∈ Tγν+1 ∣ y >T px(ν)} as ordinals

and if η ∈ Lim(λ)

px(η) = y ∈ Tγη such that (∀ν < η)[ν ⩾ νx Ð→ px(ν) <T y]

Figure 2.11: De�ning bx(α).

Then,

bx(α) = {y ∈ T ↾ α ∣ (∃ν < η)[y ⩽T px(ν)]}

is an α-branch extending every element of the sequence (px(ν) ∶ νx ⩽ ν < λ).

Now, this construction is consistent, in the sense that for every η ∈ Lim(λ), we can

�nd px(η) ∈ Tγη as above.

Claim 2.30. (∃!y ∈ Tγη)[νx ⩽ ν < η ∧ px(ν) <T y].

Proof. By part c) in ◻κ(E), since γη is a limit point of Cα, we have γη ∉ E and

Cγη = γη ∩Cα.



Chapter 2. Suslin Trees and Lines constructed using Diamond 53

Now, we have de�ned px(ν) so that px(ν) ∈ Tγν and hence {px(ν) ∣ νx ⩽ ν < η} ⊆

bx(γη). Since γη is not in E and we have asked to extend every branch bx(γη) on

level γη, there is y ∈ Tγη extending bx(γη). The uniqueness follows from the fact that

T ↾ α was constructed to be normal. ,

Next, to show that T is a Suslin tree we notice that Lemma 2.2 and Lemma 2.3

in Proposition 2.1 are independent of κ+ and hence they hold in this construction.

The same arguments used in Claim 2.4 to show that our ω1-Suslin tree does not

admit a non-trivial l.p-end apply here for our κ+-Suslin tree, since E is stationary.

For the proof of point C2, Claim 2.6 still holds for α ∈ κ+. So if we are in case

⋆3 as above, gα is non-trivial and we can choose a branch b ∈ Bα that contains y

(a point moved by gα) and such that gα[b] ⊈ b. Now we choose an α-branch e that

contains gα[b] and extend every branch in bα ∖ {e} and there is an extended branch

in Bα that contains every element of e, so we have normality.

If, on the other hand, we are in case ⋆4, we still can �nd b∗ ∈ B∗
α containing y as we

did for C1 above, using Claim 2.29. So gα[b∗] ⊆ e∗ for some e∗ ∈ [T ↾ α] and we

extend every branch in B∗
α ∖ {e∗} as before.

To show that the resulting tree T admits no non-trivial embedding, assume f is a

non-trivial embedding of T . Then there is a level, say ξ < κ+ that contains a point

moved by f . Then by ◊κ+(E), there is α > ξ such that f ↾ α = gα. Using Lemma

2.3 we can choose α so that f ↾ (T ↾ α) = gα, since in the lemma C ′ is a club and E

is stationary. The rest of the argument is the same as in Proposition 2.5.

To show that C3 holds, we need the following principle which is the analogue of ◊k+ .

For κ+ > ω a regular cardinal and E a stationary subset of κ+,

◊κ(E)k ∶ There is a sequence (Kα ∣ α ∈ E) such that Kα ⊆ α × α, with the property that

whenever X ⊆ κ+ × κ+, the set {α ∈ E ∣X ∩ α × α =Kα} is stationary in κ+.



54 Chapter 2. Suslin Trees and Lines constructed using Diamond

which can be seen by the proof of Lemma 2.25 to be equivalent to ◊κ(E). We

want to construct a tree where any isomorphism between di�erent cones must be the

identity. To de�ne this tree we just change the construction on case ⋆3 and case ⋆4

above, but we use ◊κ(E)k instead of ◊κ(E)g.

If we �nd ourselves in case ⋆3, then Sα is not a maximal antichain of T ↾ α and

there are distinct x, y ∈ T ↾ α such that Kα is a well-de�ned isomorphism f between

the cones (T ↾ α)x and (T ↾ α)y, that is

Kα = {⟨z, f(z)⟩ ∈ (T ↾ α) × (T ↾ α) ∣ z ⩾T y ∧ f(z) ⩾T y}.

So in this case we choose a branch b ∈ Bα and an α-branch e ∈ T ↾ α such that

f[b ∩ (T ↾ α)x] ⊆ e and b ≠ e (using Claim 2.6) and we extend all branches in

Bα ∖ {e}. By the same argument as in case ⋆3 for C1, we assure normality.

If we are in case ⋆4, now Sα is in addition a maximal antichain of T ↾ α and we

choose a branch b∗ ∈ B∗
α that contains x. By again using Claim 2.29 we extend all

branches in B∗
α ∖ {e∗}, where e∗ is an α-branch containing f[b∗ ∩ (T ↾ α)x] ⊆ e∗.

To show that the resulting tree is in fact totally rigid, assume f is an isomorphism

between two di�erent cones and the argument is completely analogous to that of

Proposition 2.7.



Chapter 3

Suslin Trees constructed by

Forcing

�Trees are poems the earth writes upon the sky, we fell them down and turn

them into paper, that we may record our emptiness.�

� Kahlil Gibran

Within the present chapter, we will be using the method of forcing to construct

Suslin trees with certain rigidity properties. This method has been widely studied

since its beginning in the earlies `60's [Coh66] and there are many books in the

literature explaining this method, [Jec02] and [Jec86] for example. Nevertheless, we

still write in Section 3.1 a bit of the basics if only to �x some notation.

The two main constructions are due to Jech [Jec67] and Tennenbaum [Ten68], and

use countable and �nite conditions respectively. Since Jech's generic extension adds a

Suslin tree and a ◊-sequence (see Lemma 3.2) we concentrate only on Tennenbaum's

generic extension using �nite conditions. The resulting Suslin tree can be proved to

be rigid and level preserving rigid using suitable density arguments, so in Section

3.2 we give a modi�cation of this forcing notion to obtain a rigid Suslin tree that

admits a non-trivial level preserving endomorphism.
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3.1 Preliminaries

Let P be a partial order over a countable transitive model M . Then we call M our

ground model, P is going to be our forcing notion and the elements of P are the

forcing conditions. If two conditions p, t ∈ P satisfy p ≤ t in P, then we say that p

extends (or is stronger than) t. If

(∃r ∈ P)[r ≤ p ∧ r ≤ t],

then p, t are compatible conditions. If two conditions are not compatible, then they

are incompatible and a set A ⊆ P of incompatible conditions is an antichain. The

set P has the c.c.c. if every antichain is at most countable.

Notice that if our notion of forcing P is a tree, two conditions are compatible precisely

when they are comparable.

Now, the idea of forcing is to extend our ground model M to a model M[G] con-

taining M , by adding a generic set G. To de�ne what G is, �rst let's say D ⊆ P is

dense in P if,

(∀p ∈ P)(∃t ∈D)[t ≤ p].

If p ∈ P, the set D′ is said to be dense below p if

(∀q ≤ p)(∃t ∈D′)[t ≤ p].

A set G ⊆ P is generic over M if

1. G is a �lter,

2. G ∩D ≠ ∅ for every dense D ⊆ P lying in M .

The generic set G will in general not be in the ground model M and hence M[G] is

a proper extension of M . A nice feature of this method is that we can still get some
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information about M[G] from elements in M . For instance, if a ∈M[G], then there

is ȧ ∈M called the name for a, with an interpretation in M[G], ȧG for all generic

G ⊆ P. Naturally, elements in M also have names and a canonical name for an

element a ∈M is such that ȧG = a, so we won't distinguish between the element and

its canonical name. We also have a forcing relation ⊩ and a forcing language,

but we are not discussing these here.

Finally, the main theorem about forcing gives us a relation between formulas in

M[G] and in M ,

M[G] ⊧ ϕ(a) if and only if (∃p ∈ G)[p ⊩ ⌜ϕ(ȧ)⌝],

where p ⊩ ⌜ϕ(ȧ)⌝ is meant to be read as `p forces ϕ(ȧ)'.

Now we are ready to start our constructions. The next theorem shows how Jech

got a Suslin tree using a partial order with countable conditions. This is a very well

known result and can be found in [Jec02], so we only sketch the construction.

Theorem 3.1 (Jech, countable conditions). There is a generic model in which there

is a Suslin tree.

Proof. The forcing notion P consists of normal α-trees T for α < ω1, such that

the elements of T are functions from β < α to ω,

T is closed under initial segments,

T is ω-splitting,

T ≤ S i� there is α < ht(T ) such that S = T ↾ α.

This forcing notion is clearly ℵ0-closed since T = ⋃
n∈ω

Tn is an extension of a sequence

T0 ≥ T1 ≥ ...Tn... of countably many of these normal trees. Therefore ω1 is preserved.

If we let G be any generic set of conditions and we let T = ⋃{T ∈ G} .
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The proof that T is a normal ω1-tree follows similar patterns as in Proposition

2.1, and every antichain A of T is at most countable because the next set is dense

in P,

D = {T ′ ≤ T ∣ there is a maximal antichain A′ in T ′ with all elements in A′

below some �xed α < ht(T ′) and T ′ ⊩ ⌜Ȧ′ ⊂ Ȧ⌝}

It turns out that this notion of forcing also adds a ◊-sequence (this follows from

Lemma 3.2 below, since the notions of forcing are equivalent) and hence our work

in the previous chapter shows that we can get Suslin trees with the same rigidity

properties that we got in Section 2.1 in this generic model.

Lemma 3.2. There is a notion of forcing that adds a ◊-sequence.

Proof. The notion of forcing P consists of countable sequences p = (Sξ ∶ ξ < α) for

α < ω1 satisfying,

Sξ ⊆ ξ,

p ≤ q i� p extends q as a sequence.

This notion is countably closed and hence it preserves ω1. If we let G ⊆ P be generic

over M , then we claim that our ◊-sequence is de�ned as S = ⋃
p∈G

p.

Let M[G] ⊩ ⌜X ⊆ ω1⌝. We want to show that

M[G] ⊩ ⌜{α ∈ ω1 ∣X ∩ α = Sα} is stationary in ω1⌝.

So let C be a club in ω1. Then there is a condition p ∈ G with

p ⊩ ⌜Ċ is a club ∧ Ẋ ⊆ ω1⌝.
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We will show that the following set is dense below p,

D = {q ≤ p ∣ (∃α ∈ ω1)[q ⊩ ⌜α ∈ Ċ ∧ Ẋ ∩ α = Sα⌝]}.

Let p = (Sξ ∶ ξ < β). Since each of the elements of p are countable subsets of ω1 and

P is countably closed, X ∩β is a countable subset that lies in the ground model. So,

if we de�ne Sβ =X ∩ β then Sβ ∈M .

Hence, if we let p′ = p ∪ {Sβ} then p′ ≤ p and p′ ⊩ ⌜Ẋ ∩ β = Sβ⌝.

Since p′ forces C to be unbounded, there is β0 > β and q0 ≤ p′ such that

q0 ⊩ ⌜β0 ∈ Ċ ∧ Ẋ ∩ β = Sβ⌝.

Now let β′0 be such that q0 = (Sξ ∶ ξ < β′0) and de�ne Sβ′0 = X ∩ β′0. Hence, if

q′0 = q0 ∪ {Sβ′0} then there is β1 > β′0 and q1 ≤ q′0 such that

q1 ⊩ ⌜β1 ∈ Ċ ∧ Ẋ ∩ β′0 = Sβ′0⌝.

Following this procedure, we can �nd decreasing countable sequences of conditions

(qn ∶ n ∈ ω), (q′n ∶ n ∈ ω) and increasing countable sequences of ordinals (βn ∶ n ∈ ω),

(β′n ∶ n ∈ ω) such that,

1. β < β0 < β′0 < β1 < β′1...

2. p > p′ ≥ q0 > q′0 ≥ q1...

3. Sβ′n ∈ q
′
n

4. qn+1 ⊩ ⌜βn+1 ∈ Ċ ∧ Ẋ ∩ β′n = Sβ′n⌝

5. sup
n∈ω

qn = sup
n∈ω

q′n = qω

Hence ⋃
n∈ω

qn = ⋃
n∈ω

q′n = qω and sup
n∈ω

βn = sup
n∈ω

β′n = βω. So, if we de�ne Sβω = ⋃Sβn
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(= ⋃Sβ′n), then Sβω ⊆ βω and it satis�es

qω ⊩ ⌜βω ∈ Ċ ∧ Ẋ ∩ βω = Sβω⌝.

Therefore D is dense below p and hence there is q ∈D ∩G witnessing

M[G] ⊩ ⌜C ∩ {α ∈ ω1 ∣X ∩ α = Sα} ≠ ∅⌝.

Another way to get a Suslin tree by forcing is by using �nite conditions, and when

working with uncountable many �nite sets the following lemma is often useful.

Lemma 3.3 (∆- System Lemma). Let W be an uncountable collection of �nite

sets. Then there is an uncountable Z ⊂W and a �nite set S such that X ∩Y = S for

any two distinct X,Y ∈ Z.

Theorem 3.4 (Tennenbaum, �nite conditions). There is a generic model in which

there is a Suslin tree.

Proof. We provide only the notion of forcing used to prove this result and skip the

details since they are similar to the arguments used to construct the tree in Section

3.2.

The notion of forcing is the set P of �nite trees (t,<t) satisfying

t ⊆ ω1

α <t β → α < β

(t1,<t1) extends (t2,<t2) i� t1 extends t2 as trees.

We let G be a generic set of conditions and de�ne T as the union ⋃{t ∶ t ∈ G}. Then

T is a Suslin tree. We shall identify the tree (t1,<t1) with its underlying set t1.
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3.2 There is a forcing extension M[G], where there is a

Suslin tree which is automorphism rigid but admits a

non-trivial level preserving epimorphism (using �nite

conditions)

Let P be the notion of forcing consisting of ordered pairs (t, f), where t is a �nite

tree and f is a homomorphism of (t,<) that preserves the �rst coordinate, where

the �nite tree t is required to satisfy t ⊆ ω1 × ω and (0, n) ∈ t Ð→ n = 0 ( then

(0,0) ⩽ (α,n) for every (α,n) ∈ ω1 × ω).

Notation.

- Given an enumeration of elements of P, we write (t, f)η in place of (tη, fη).

- If t is a �nite tree de�ned as above, then t0 is the projection to the �rst

coordinate and similarly for t1. That is

t0 = {α ∣ (∃n)(α,n) ∈ t} and t1 = {n ∣ (∃α)(α,n) ∈ t}

The ordering on t must satisfy

(α,n) <t (β,m)Ð→ α < β as ordinals

so that (α,n) is incompatible with (α,m) in t if n ≠m. The partial ordering of P is

given by

(t, f)2 ≤P (t, f)1 ←→ t2 is an extension of t1, and

f1 = f2 ↾ t1.

The idea is that the �rst coordinate of an element (α,n) of a �nite tree t correspond-

ing to a condition (t, f) will denote the level in which the element lies in the tree T
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in the generic extension, whereas the second is just part of an enumeration of the

level. If (t, f) is in a generic subset of P, then t is a �nite subtree of our desired

Suslin tree T and f is a partial homomorphism of T which will be extended to an

epimorphism of the entire T .

Claim 3.5. P satis�es the c.c.c.

Proof. Let A be an uncountable antichain in P, A = {(t, f)η ∣ η ∈ ω1}. Let A0 = {tη ∣

(t, f)η ∈ A}. Then (tη,⩽tη) is a �nite tree for each η ∈ ω1 and A0 is also uncountable.

Using the ∆-System Lemma we can �nd W ⊆ A0 which is also uncountable and a

�nite set S such that tη ∩ tν = S for all η ≠ ν in ω1.

We want S to be an `initial' segment of uncountably many elements of W . For this,

we need the conditions to agree in the ordering and also push down S.

So, let tη ≅ tν whenever (⩽tη↾ S) = (⩽tν↾ S). Since S is �nite there are only �nitely

many possibilities for the order on S and hence there is an uncountable equivalence

class W1 ⊆W .

The next lemma will be used very much during the rest of the construction.

Lemma 3.6 ((⋆): Pushing down X). For each α ∈ ω1 and a �nite X with S0 ⊆X ⊆

α and max(X) < α, there is an uncountable subset Z ⊆W1 such that min(t0∖X) ⩾ α,

for every t ∈ Z.

Proof. Let α and X as stated. Then α ∖X has only countably many �nite subsets

and thus the set B = {t0 ∩ α ≠ X ∣ t ∈ W1} is a family of �nite subsets of α that is

disjoint outside X (since X contains S0 and tη ∩ tν = S for every tη, tν ∈ W1) and

hence it is countable. See Figure 3.1.

Therefore, the set Z = {t ∈ W1 ∣ t ∩ α = X} is uncountable, and since all of them

agree only on S, below α, we get min(t0 ∖ S0) ⩾ α for every t ∈ Z.
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Figure 3.1: Pushing down X

Hence, using Lemma (⋆), we can �nd an uncountable W2 ⊆W1 such that, if βmax =

max{β ∶ (β, k) ∈ S} and αη = min{α ∈ tη ∶ α ∉ S0 ∧ tη ∈W1}, then

W2 = {tη ∣ βmax < αη}

is uncountable, and so is

W ′
2 = {(t, f)η ∈ A ∣ tη ∈W2}

Now, let (t, f)η, (t, f)ν be elements of W ′
2. Then (t, f)η ≅1 (t, f)ν if and only if

(fη ↾ S) = (fν ↾ S), that is, if fη and fν agree on how they act on S. Since S is

�nite, there are �nitely many ways in which a homomorphism can act on S and hence

there is an uncountable ≅1-equivalence class. Let W3 ⊆ W ′
2 be such an equivalence

class.

Thus, for every (t, f)η ≠ (t, f)ν in W3, S is an initial segment of tν , tη and (fν ↾ S) =

(fη ↾ S).

Let (q, g)1 be any element of W3. Then there is (q, g)2 ∈W3 such that (q, g)1 is an

initial segment of some (q, g)2 using Lemma (⋆) and X = q1, with the additional

property that (g1 ↾ q1) = (g2 ↾ q1). Considering q = q1 ∪ q2 with g = g1 on q1 and

g = g2 on q2 shows that q1, q2 are compatible. However, q1 and q2 are both in A, so

A cannot be an antichain of P.

Hence P preserves ω1 and we can de�ne the following structure
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T = ⋃
(t,f)∈G

t

for some generic subset G over P. Then T is clearly a tree and we can show that it

is a splitting tree. Let

M[G] ⊧ ⌜(γ, k) ∈ T ⌝

for some γ ∈ ω1 and k ∈ ω. Then there is (t, f) ∈ G satisfying,

(t, f) ⊩ ⌜(γ, k) ∈ Ṫ ⌝

Notice that we can choose (t, f)′ extending (t, f) so that (γ, k) ∈ t′. To do this, let

αmax = max{α ∶ (α,n) ∈ t} and nmax = max{n ∶ (αmax, n) ∈ t}

Assume that (γ, k) is not in t. Then we can let t′ = t∪{(γ, k)} and the order is given

by,

⩽t′↾ t = ⩽t and (γ, k) >t′ (α,n)max

We let f ′ act on t′ by de�ning,

f ′ ↾ t = f and f ′(γ, k) = f(α,n)max

Therefore (t, f)′ extends (t, f) and t′ contains the element (γ, k).

Next, we shall show that the following set is dense,

D = {(q, g) ≤ (t, f)′ ∣(∃α,β ∈ ω1)[α,β > γ ∧ nα, nβ > k,

(α,nα), (β,nβ) ∈ q ∧ nα ≠ nβ]}

Let α = β be greater than every ordinal appearing in t′ and choose any nα ∈ ω,

say nα = 0. Then de�ne q = t′ ∪ {(α,0), (α,1)} with the ordering ⩽t′= ⩽q↾ t′ and
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(γ, k) ⩽q (α,0), (α,1). Additionally, we let g be equal to f ′ on t′ and g(α,0) =

g(α,1) = f ′(γ, k).

So (q, g) ∈D, D is a dense subset of P and hence G∩D is non-empty and thus there

is an extension (q, g) of (t, f) in G such that (q, g) ⊩ ⌜Ṫ is a splitting tree ⌝.

Now we want to show that T is Suslin.

Claim 3.7. Every antichain in T is at most countable.

Proof. Assume towards a contradiction that there is A ⊆ T in the generic extension

such that,

M[G] ⊧ ⌜Ȧ is an uncountable antichain of Ṫ ⌝

Then there is a condition (f, t)0 ∈ G such that

(t, f)0 ⊩ ⌜Ȧ is an uncountable antichain of Ṫ ⌝

Then t0 is a �nite approximation to T . Let (t, f)1 be an extension of (t, f)0 and

(α,n)1 ∈ ω1 × ω with the properties,

(α,n)1 ∉ t0

(α,n)1 ∈ t1

(t, f)1 ⊩ ⌜Ȧ is uncountable and (α,n)1 ∈ Ȧ⌝

Similarly, we can get an uncountable set W = {(t, f)η ∈ P ∣ η ∈ ω1} of conditions

and a corresponding set Z = {(α,n)η ∈ ω1 × ω ∣ η ∈ ω1} (all of whose elements are
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di�erent) such that,

(f, t)η extends (f, t)0

(α,n)η ∉ t0

(α,n)η ∈ tη

(t, f)η ⊩ ⌜Ȧ is uncountable and (α,n)η ∈ Ȧ⌝

And (α,n)η is maximal in tη with this property.

Then the setW 0 = {tη ∣ (t, f)η ∈W} is also uncountable and the ∆-System Lemma

gives us an uncountable subset W 0
1 ⊆ W 0 and a �nite S such that tη ∩ tν = S for

every tη, tν ∈W 0
1 .

Since there are only �nitely many ways in which we can order S, there is an un-

countable subset W 0
2 ⊆W 0

1 such that

(⩽tη↾ S) = (⩽tν↾ S) for every two di�erent elements tη, tν ∈W 0
2

Now we `push down' the subset S so that it is an initial subset of uncountably many

elements in W 0
2 using Lemma (⋆). So, if we de�ne min(tη ∖ S) and max(S) as

follows,

min(tη ∖ S) = (α,n)min and max(tη ∖ S) = (α,n)max with

αmin = min(t0η ∖ S0), nmin = min{k ∶ (αmin, k) ∈ tη ∖ S} and

αmax = max(S0), nmax = max{k ∶ (αmax, k) ∈ S}

we can �nd an uncountable subset W 0
3 ⊆W 0

2 with

W 0
3 = {tη ∈W 0

2 ∣ min(tη ∖ S) > max(S)}.

Since S is �nite there are �nitely many ways in which an homomorphism can act on
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S, so we let (t, f)η ≅1 (t, f)ν whenever tη, tν ∈ W 0
3 and (fη ↾ S) = (fν ↾ S). Thus,

there is an uncountable ≅1-equivalence class W4.

Therefore for every two elements (t, f)η ≠ (t, f)ν of W4 the following properties,

which we denote by [÷×] hold,

1 S is an initial segment of tη,

2 (fη ↾ S) = (fν ↾ S),

3 tη ∩ tν = S

4 (α,n)η ∈ tη,

5 (α,n)η ∉ t0

6 (t, f)η ⊩ ⌜Ȧ is uncountable and (α,n)η ∈ Ȧ⌝

Moreover, we can �nd an uncountable subset W5 ⊆W4 with the additional property

that (α,n)η is not in S. To show this, we assume to the contrary that for every

uncountable Z ⊆ W4, there is a condition (t, f)eta ∈ Z such that (α,n)η ∈ S. Let

W4 = ⋃
n∈ω

Zn be a partition into countably many subsets Zn ⊂W4 such that ∣Zn∣ = ℵ1.

Then for each Zm, there us a corresponding (t, f)ηm ∈ Zm with (α,n)ηm ∈ S. Since

S is �nite and the Zm's disjoint, there are two distinct (α,n)ηm and (α,n)ηk which

are comparable in S and such that

(t, f)ηm ⊩ ⌜Ȧ is an antichain ∧ (α,n)ηm ∈ S⌝

and

(t, f)ηk ⊩ ⌜Ȧ is an antichain ∧ (α,n)ηk ∈ S⌝.

Now we can construct a condition (r, h) that extends both (t, f)ηm and (t, f)ηk which
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will give us a contradiction. Since tetam ∩ tηk = S we de�ne (r, h) by

r = tetam ∪ tηk with the ordering

⩽r↾ tetam = ⩽tetam

⩽r↾ tetak = ⩽tetak

And the homomorphism acting by

h ↾ tηm = tηm and h ↾ tηk = tηk

And �nally (r, h) satis�es,

(r, h) ⊩ ⌜Ȧ is an antichain ∧ (α,n)ηm , (α,n)ηm ∈ Ȧ ∈ Ȧ and they are compatible ⌝.

This gives a contradiction.

Thus W5 satis�es the properties in [÷×] with the following modi�cation,

4′ (α,n)η ∈ tη ∖ S,

Let (q, g)0 ∈W5 be arbitrary. Then, it follows from Lemma (⋆) that there there is

an uncountable W6 ⊆W5 with the additional property,

7 min(tη ∖ q0) = min(tη ∖ S) > max(q0)

Also, it is possible to have (α,n)η >tη (β, k) for uncountably many ν's and a

�xed maximal (β, k) ∈ S, since S is �nite. So let W7 ⊆ W6 be the set satisfying

also the following condition for bη, bν maximal branches of tη, tν respectively and

(t, f)η, (t, f)ν ∈W7,

8 bη ∩ S = bν ∩ S
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Let bq0 be a branch on q0 containing (α,n)q0 (where (q, g)0 ⊩ ⌜(α,n)q0 ∈ Ȧ⌝). Then,

condition 8. assures us that every branch on an element tη ∈W 0
7 containing (α,n)η,

agrees on S. So, let (t, f)τ be an arbitrary element of W7. We will construct a

condition (q, g) extending (q, g)0 and (t, f)τ (see Figure 3.2),

Figure 3.2: Choosing q.

q = q0 ∪ tτ with the ordering

⩽q↾ q0 = ⩽q0

⩽q↾ tτ = ⩽tτ

max(bq0) <q min(bτ ∖ S)

Then (q,⩽q) is a �nite tree and we let g be de�ned by

g ↾ q0 = g0 and g ↾ tτ = fτ
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Thus,

(q, g) ⊩ ⌜Ȧ is an uncountable antichain of Ṫ , (α,n)τ , (α,n)q0 ∈ Ȧ

and (α,n)τ , (α,n)q0 are compatible ⌝

Giving clearly a contradiction.

Hence, there are no uncountable antichains in T . With this and the fact that T is

splitting we get that T is actually an ω1- Suslin tree.

Now, remembering that T = ⋃
(t,f)∈G

t for some generic G ⊆ P, if we let F be the

function on T de�ned by

F (α,n) = f(α,n) for (α,n) ∈ t and (t, f) ∈ G,

then, we can prove that this is a non-identity level preserving epimorphism of T .

Claim 3.8. The α-th level of T is the set {(α,n) ∈ T ∣ n ∈ ω}.

Proof. Let M[G] ⊧ ⌜(α,n) ∈ T ⌝. Then there is a condition (t, f) ∈ G with (t, f) ⊩

⌜(α,n) ∈ Ṫ ⌝. We have to show that the set C = {s ∈ T ∣ s < (α,n)} is a chain of order-

type α, so we can assume (α,n) ∈ t. Since we have asked for (0, n) ∈ t Ð→ n = 0, we

can also assume α > 0.

We shall prove that C is in fact the set {(β,mβ) ∣ β < α} for some mβ ∈ ω,∗ that is,

for each β < α, the following set is dense below (t, f),

Dβ = {(q, g) ≤ (t, f) ∣ (∃m)(β,m) ∈ C ∩ q}.

Let (q, g) ≤ (t, f). We look at the �rst projection of the root of q, αmin. Take

γ∗ = max{γ ⩽ β ∶ (γ, k) <q (α,n)} and n∗ = max{n ∶ (γ, k) ∈ q}. If γ∗ = β we are

done. If αmin < β < α as ordinals, de�ne q′ = q∪{(β,nβ)} with nβ = n∗+1, ordered by

∗This works because we have de�ned our �nite trees so that C cannot contain (β,m1) and
(β,m2) for m1 ≠m2, so (β,mβ) < (γ,nγ)←→ β < γ
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(γ,n)∗ <q (β,nβ) <q (α,n) and g′ extending g as g′(β,nβ) = g(γ,n)∗. If β ⩽ αmin,

we just let (β,nβ) be the new root of q′ = q ∪ {(β,nβ)} with g′(β,nβ) = (β,nβ).

Hence, the resulting map F is actually a level preserving map on T , since we have

required from a condition (t, f) ∈ P that the homomorphism f preserves the �rst

coordinate, so the next proposition shows that F is an epimorphism.

Proposition 3.9. F is a non-trivial level preserving epimorphism of T .

Proof. Let M[G] ⊧ ⌜(α,n)0 ∈ Ṫ ⌝. Then there is a condition (t, f)0 ∈ G such that

(t, f)0 ⊩ ⌜(α,n)0 ∈ Ṫ ⌝

and by extending (t, f)0 if necessary we can assume (α,n)0 ∈ t0. We want to show

that there is a condition (q, g) ∈ G and (α0,m) ∈ ω1 × ω such that

(q, g) ⊩ ⌜Ḟ (α0,m) = (α,n)0⌝

For this, we shall show that the following set is dense in P.

D = {(t, f) ≤ (t, f)0 ∣ (∃m ∈ ω)[(α0,m) ∈ t ∧ f(α0,m) = (α,n)0 ∧m ≠ n0]}

Take (t, f) extending (t, f)0. If there is m ≠ n0 such that (α0,m) ∈ f−1(α,n)0 ⊆ t,

then (t, f) ∈ D. So assume there is no such (α0,m) ∈ t, that is f−1(α,n)0 = ∅ or

f(α,n)0 = (α,n)0.

Since we have asked from our conditions that (0, n) Ð→ n = 0, and f preserves the

�rst coordinate, f(0,0) = (0,0) and hence we are also assuming (0,0) ∉ t. Look

at the predecessors of (α,n)0. If there is some (maximal) (α,n)1 <t (α,n)0 such

that f(α1, k) = (α,n)1 for some k ≠ n1 in ω, let (α0,m) be such that m > max{n ∶

(α0, n) ∈ t} and de�ne (q, g) as follows (see Figure 3.3);
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Figure 3.3: Extending t when (∃(α,n)1 <t (α,n)0)[f(α1, k) = (α,n)1]

q = t ∪ {(α0,m)} with the ordering

⩽q↾ t = ⩽t

(α0,m) >q (α0, k)

Then (q,⩽q) is a �nite tree and de�ne g by

g ↾ t = f and g(α0,m) = (α,n)0

Then g is an homomorphism since (α1, k) <q (α0,m) implies g(α1, k) = (α,n)1 <q

(α,n)0 = g(α0,m).

Otherwise, f−1 is either empty or f is the identity on every element (α,n)i <t (α,n)0,

for i ∈ I and some �nite index set I. Then, for each (α,n)i ⩽t (α,n)0, we choose

(αi,m), with m > max{ni ∶ i ∈ I}, and let (q, g) be de�ned as follows (See Figure
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3.4),

q = t ∪ {(0,0} ∪ {(αi,m) ∣(α,n)i ⩽t (α,n)0} with the ordering

⩽q↾ t = ⩽t

(αi,m) <q (αi+1,m)

(0,0) <q (α,n)max(I), (αmax(I),m)

So (q,⩽q) is a �nite tree and we can de�ne g as,

g ↾ t = f and g(αi,m) = (α,n)i

Figure 3.4: Extending t when f−1 is either empty or f is the identity on (α,n)0↓

Hence we have found that (q, g) is inD, and sinceD is dense in P, there is (q, g) in the

intersection D∩G for some generic G ⊆ P and thus (q, g) ⊩ ⌜Ḟ (α0,m) = (α,n)0⌝.

Hence, T is a Suslin tree that admits a non-trivial level preserving epimorphism F ,

and now we show that in addition it stays rigid.

Proposition 3.10. T admits no automorphism other than the identity.
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Proof. Let M[G] ⊧ ⌜σ is a non-trivial automorphism of T ⌝ for some generic G ⊆ P.

Then there is a condition (q, g)0 ∈ G with

(q, g)0 ⊩ ⌜σ̇ is a non-trivial automorphism of Ṫ ⌝.

Since T is an ω1-tree which splits, if there is a point in T that is moved by σ, the

whole cone above that point is moved by σ and thus, there is a condition (g, q)1 ∈ G

extending (q, g)0 with,

(q, g)1 ⊩ ⌜ supp ˙(σ) is uncountable⌝.

Now, because ω1 is preserved in M[G], for each di�erent (τ, nτ) ∈ supp(σ) there is

a condition (t, f)τ ∈ G such that

(t, f)τ ⊩ ⌜σ̇(τ, nτ) = (τ, nτ)′, τ = τ ′ ∧ nτ ≠ n′τ ⌝.

By adjoining them if necessary we can assume that both (τ, nτ) and (τ, n′τ) are in

tτ . Then, the set

W = {(t, f)τ ∈ G ∣ (t, f)τ ⊩ ⌜σ̇(τ, nτ) = (τ, n′τ) ∧ nτ ≠ n′τ ⌝}

is uncountable, and so is the set W 0 = {tτ ∣ (t, f)τ ∈ W}. Using the ∆-System

Lemma several times just as we have been doing, we get a set W4 satisfying condi-

tions similar to [÷×] for two di�erent elements of W4, (t, f)τ and (t, f)η,

i) S is an initial segment of tτ ,

ii) (fη ↾ S) = (fτ ↾ S),

iii) tη ∩ tτ = S

iv) (τ, nτ), (τ, n′τ) ∈ tτ ,

v) (τ, nτ), (τ, n′τ) ∉ q1

vi) (t, f)τ ⊩ ⌜σ̇(τ, nτ) = (τ, n′τ) ∧ nτ ≠ n′τ ⌝



Chapter 3. Suslin Trees constructed by Forcing 75

Next, we �nd an uncountable W5 ⊆W4 whose elements satisfy in addition,

vii) (τ, nτ), (τ, n′τ) ∈ tτ ∖ S.

For this, we assume on the contrary that there are uncountably many elements

(t, f)τ ∈ W4 such that (τ, nτ) ∈ S. But then there is (β,m) ∈ S such that (τ, nτ) =

(β,m) for uncountably many elements in W4, but this is impossible since we have

asked for (τ, nτ) to be di�erent from (η,nη) whenever τ ≠ η. The same argument

applies for (τ, n′τ) because σ is an automorphism. So we have an uncountable subset

of W4 as claimed.

Moreover, since S is �nite, there is an uncountable W6 ⊆W5 satisfying the following

for branches bτ ∈ [tτ ] and bη ∈ [tη] containing (τ, nτ), (η,nη) respectively,

viii) bτ ∩ S = bη ∩ S for all τ ≠ η

So we have uncountably many elements (t, f)τ whose corresponding branches bτ

agree on S (which is an initial segment of tτ ).

Now let (q, g)2 ∈ W6 with (q, g)2 ⊩ ⌜σ̇(α, k)2 = (α, k′)2⌝. Then we can get an

uncountable W7 ⊆W6 whose elements agree only on S, by Lemma (⋆).

ix) min(tτ ∖ q2) = min(tτ ∖ S) > max(q2) as ordinals.

So, what we want is to �nd a condition (q, g)3 extending (q, g)2 ∈ G such that

(q, g)3 ⊩ ⌜σ̇(τ, nτ) = (τ, n′τ), σ̇(η,nη) = (η,n′η) ∧ nτ ≠ n′τ , nη ≠ n′η

and (τ, nτ) <q3 (η,nη) but (τ, n′τ) ≰q3 (η,n′η)⌝

which would give us that (q, g)3 ⊩ ⌜σ̇ is not an automorphism of Ṫ ⌝, contradicting

or original assumption. So, take any element (t, f)τ ∈W7 and let(q, g)3 be as follows

(see Figure 3.5),
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Figure 3.5: Choosing q3

q3 = q2 ∪ tτ with the ordering

⩽q3↾ q2 = ⩽q2

⩽q3↾ tτ = ⩽tτ

min(bτ ∖ S) >q3 max(bq2 ∖ S) with

(g3 ↾ q2) = g2 and (g3 ↾ tτ) = fτ

where bq2 is a branch containing (α, k)2. Then clearly (τ, nτ) >q3 (α, k)2 but (τ, n′τ)

cannot be compatible with (α, k′)2 because this point is incompatible with (α, k)2,

giving us a contradiction.



Chapter 4

Dense Subchains of R

�Each move is dictated by the previous one � that is the meaning of order.�

� Tom Stoppard, Rosencrantz and Guildenstern Are Dead

In this chapter we are concerned with rigidity properties of subchains of the

real line. Section 4.1 introduces some notation and explains the method used by

Dushnik and Miller in [DM40] to give the background that will be needed to carry out

all the constructions in this chapter. The following section (Section 4.2) presents

our construction of a dense subset X of R that is rigid and whose Epi monoid

contains (N2,+), which shows in particular that it is possible to use this method

to ensure that (X,⩽) can be rigid but Epi(X,⩽) is non-trivial. In Section 4.3 we

give an example of a densely ordered chain (X,⩽) with trivial epimorphism monoid

and non-trivial embedding monoid. Section 4.4 treats the case of endomorphisms,

showing that we can keep the epimorphism and embedding monoids trivial (and

hence the structure is still rigid) while having a non-trivial endomorphism monoid.

Lastly, Section 4.5 discusses the case when our chains have cardinality κ > ℵ0.

4.1 Background

Following the method used by Dushnik and Miller to produce a rigid dense subset

of R we shall construct two disjoint sets X and Y . Here X will be our desired set

while Y contains elements that prevent each non-identity automorphism (embedding
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or epimorphism depending on the case). The construction is done by a trans�nite

induction along an enumeration of the monoid over R which we want to trivialise

over X, adding elements to X and Y at each successor step and taking unions at

limit steps. For this to work, by a diagonal argument, we need to consider only

2ℵ0 = c many functions. For if Q ⊆X ⊆ R, then it is easy to see that ∣Aut(X,⩽)∣ = c,

since any automorphism is determined by its action on Q, and (2ℵ0)ℵ0 = 2ℵ0 = c; this

(continuity) argument extends easily to Epi(X,⩽). For Emb(X,⩽) a sightly more

involved argument is required and it follows from the next result.

Lemma 4.1. If Q ⊆X ⊆ R, where Xhas cardinality c, then ∣End(X,⩽)∣ = c.

Proof. Let f ∈ End(X,⩽) be an order preserving function, and let Df be the set of

its discontinuities in X. Then Df is countable: since f is order preserving, for every

x ∈X it has left and right limits, f−x and f+x respectively, and by monotonicity a point

x is a discontinuity if and only if f−x < f+x . Let Ux be the open interval (f−x , f+x ),

for each x in Df . Then these intervals are disjoint for any two distinct points in

Df , for if x < y are points in X and we choose z ∈ (x, y), it must be the case that

f+x ⩽ fz ⩽ f−y and hence (f−x , f+x )∩(f−y , f+y ) = ∅. Since each of these intervals contains

a distinct rational there are countably many intervals Ux, therefore countably many

points in Df .

Now let C be a countable subset of X and let FC be the set of order preserving

functions f ∈ End(X ⩽) whose set of discontinuities Df is contained in C. Then if

f, g ∈ FC agree on the set C ∪Q, then they must agree on the whole of X. To prove

the last statement let x ∈ X ∖ (C ∪Q), and take a sequence (xn)n∈N of elements in

Q converging to x. Since x is not in Df or Dg, both fxn and gxn converge, but

fxn = gxn by hypothesis and the functions are continuous at x, therefore gx = fx.

Finally, there are c many functions f ∶ Q ∪ C → X and hence ∣FC ∣ is at most c.

Also, there are c many possible choices of C, therefore the cardinality of the union

⋃C⊂X FC , which is the set of all order-preserving functions, is at most c. Since there
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are at least as many order-preserving functions as elements in X, the cardinality of

the union above is precisely c.

We now turn to the construction based on Dushnk and Miller. We construct, by

trans�nite induction, sequences (Xα)α<c,(Yα)α<c such that for each α < c,

1∗. Xα ∩ Yα = ∅

2∗. ∣Xα∣, ∣Yα∣ < c

and we set X = ⋃α<cXα and Y = ⋃α<c Yα. We start the constructions by de�ning

X0 = Q, so that the resulting X is necessarily dense, and Y0 = ∅. Since X is dense,

every element of the monoid on X extends to an element of the same monoid on R,

as follows from the proof of Lemma 4.1 ( if x ∈ R ∖X, then x is the supremum of

countably many elements of X, (xn ∶ n ∈ ω), and we let f(x) = sup
n∈ω

f(xn) ). To see

that it is uniquely extended in the case of Aut and Epi see Lemma 4.3.

Our de�nition of Xα+1 will depend on what are we trying to preserve on our �nal X,

but will in all cases contain a to-be-chosen element xα satisfying certain requirements.

On the other hand Yα+1 = Yα ∪ {fαxα} will be the same in each case (where fα is an

element of the monoid we are trying to maintain trivial). The whole construction

will be based on �nding a point xα not previously in our already constructed Xα

such that conditions 1∗ and 2∗ are also satis�ed by Xα+1 and Yα+1. Usually this

point will be found among the elements of a set I such that fαI ∩ I = ∅; so the

construction is reduced to �nding an appropriate I and choosing a point here such

that Xα+1, Yα+1 also satisfy the requirements imposed by conditions 1∗ and 2∗.

Since all members of the monoids that we will try to `kill' are non-trivial there is

always a point x∗ which is moved by fα. As a remark we prove the following useful

lemma.

Lemma 4.2. If f is an order preserving function on R and fx ≠ x for some x ∈ R,

then there is a non-empty open interval U such that fU ∩U = ∅.
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Proof. Assume without loss of generality that fx < x. Let ε = 1
2 ∣fx − x∣ and take

U = (x−ε, x). Then since f is order preserving, for every y ∈ U , y < x implies fy ⩽ fx

and hence fU ∩U = ∅.

This lemma allows us to simplify some arguments in the constructions for if an order

preserving function moves an integer, then it must move an interval containing it.

As remarked above, any automorphism of a dense subset of R extends uniquely to

an automorphism of the whole real line; the same result is required for epimorphisms

and we make use of the following lemma.

Lemma 4.3. If f ∈ Epi(X,⩽) for a dense X ⊆ R, then f = F ↾ X for a unique

F ∈ Epi(R,⩽).

Proof. De�ne F ∶ RÐ→ R by

Fx = sup{fy ∣ y ∈X,y ⩽ x}.

Then by monotonicity of f on X it is clear that Fx = fx for every x ∈X.

1. F is well-de�ned. By uniqueness of the supremum and since f is itself well

de�ned, F is well de�ned as well.

2. F is order preserving. Let x < y be elements in R. Then

Fx = sup{fz ∣ z ∈X,z ⩽ x} and Fy = sup{fw ∣ w ∈X,w ⩽ y}

but z ⩽ x implies z ⩽ y by assumption, therefore

{fz ∣ z ∈X,z ⩽ x} ⊆ {fw ∣ w ∈X,w ⩽ y}

and hence Fx ⩽ Fy.

3. F is surjective. Let y ∈ R. If y ∈ X this follows from f being surjective on

X, therefore we will only consider y ∈ R ∖X. We will show that if A = {z ∈
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X ∣ fz ⩽ y} and x = supA then y = Fx. If z ∈ A then fz ⩽ y and so Fx ⩽ y.

Suppose for a contradiction that Fx < y. Since X is dense, there is w ∈ X

with Fx < w < y. Since f is surjective on X, there is u ∈ X with fu = w. As

f(u) < y, u ∈ A so u ⩽ x and w = fu ⩽ Fx, which gives a contradiction.

4. F is continuous. By Lemma 4.4, see below, since we now know that F is order

preserving and surjective.

5. F is unique. It is well known that if two functions F , G are continuous on a

set Y and they agree on a dense subset of Y then they actually agree on Y

itself.

We now give the proof of what we claimed in the introduction regarding the conti-

nuity of epimorphisms.

Lemma 4.4. If f ∶ RÐ→ R is an order preserving map with dense image, then f is

a continuous epimorphism.

Proof. First we show that f must be surjective. Suppose not for contradiction. Then

there is an element x ∈ R such that x ∉ Im(f). Consider

A = f−1(−∞, x) and B = f−1(x,∞).

Then A∩B = ∅, for otherwise there would be an element y ∈ A∩B so that f(y) < x

and f(y) > x. Also A < B, for suppose there is a ∈ A and b ∈ B such that b ⩽ a. Then

x < f(b) ⩽ f(a) < x

which is clearly a contradiction. Note also that A ∪B = R since x ∉ Im(f).

Since Im(f) is dense, both A and B are non-empty. That B is non-empty implies

A is bounded above and so it has a supremum, and similarly B has an in�mum, let:
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a∗ =sup(A) and b∗ =inf(B).

Since A ∪ B = R, A ∩ B = ∅ and A < B we get a∗ = b∗, for a∗ ⩽ b∗ is clear, and if

a∗ < b∗ this would be contrary to A ∪ B = R. Again using A ∪ B = R, a∗ must be

either in A or B. If a∗ ∈ B then f(a∗) > x. As Im(f) is dense there exists y such

that

x < f(y) < f(a∗).

This implies y < a∗, so y ∈ A giving f(y) < x, a contradiction. In the same way, if

we assume a∗ ∈ A we get a similar contradiction. Therefore our hypothesis on the

existence of such an x not in the image of f is impossible, hence f must be surjective.

Now let x be in R and V an open interval around f(x). Let (y1, y2) ⊂ V be such

that y1 < f(x) < y2. Since f is surjective, both y1 and y2 are in the image of f . Let

x1 ∈ f−1{y1} and x2 ∈ f−1{y2}, then

y1 < f(x) < y2 implies x1 < x < x2

because f is order preserving. Now for each z ∈ (x1, x2) we have

f(x1) = y1 ⩽ f(z) ⩽ y2 = f(x2),

so that f(x1, x2) is completely contained in V .

We will �nish this section with a couple of results before starting the constructions.

Lemma 4.5. There are 2ℵ0 epimorphisms of the structure (N,⩽).

Proof. For each A ⊆ N we can de�ne a function fA ∶ N→ N by

fA(2n) = n and fA(2n + 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n + 1 if n ∈ A

n if n ∉ A .
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Then the set {fA ∣ A ⊆ N} is a family of epimorphisms of (N,⩽) and if A,B are two

distinct subsets of N, then fA ≠ fB.

The next proposition tells us that if we have a non-trivial epimorphism on a chain,

then we are bound to have many of them.

Proposition 4.6. If (X,⩽) is a chain having a non-identity epimorphism, then it

has at least 2ℵ0 epimorphisms. In particular, if X is a dense subset of R, then (X,⩽)

has exactly 2ℵ0 epimorphisms.

Proof. Let f ∈ Epi(X,⩽) be non-trivial. Let a0, a1 in X be such that a0 = fa1 and

a1 ≠ a0; without loss of generality assume a0 < a1. Since f is surjective we may

�nd a sequence (an)n∈N in X such that for each n ∈ N, fan+1 = an. It follows that

a0 < a1 < ...., for if an+1 ⩽ an, then applying f n-times we get that a1 ⩽ a0.

Now, for each epimorphism θ of (N,⩽), we will de�ne a corresponding fθ of (X,⩽)

mapping an to aθ(n). Then di�erent epimorphisms of (N,⩽) give rise to distinct

epimorphisms of (X,⩽) and previous lemma will ensure there are at least 2ℵ0 of

them.

Observe that θ(n) ⩽ n and for each n, θ(n + 1) = θ(n) or θ(n) + 1. Let fθ �x

all points not in ⋃
n∈N

[an, an+1] and set fθan = aθ(n). Finally, we have to de�ne fθ

inside the interval [an, an+1]. This is done by mapping the entire closed interval to

{aθ(n)} if θ(n) = θ(n + 1) and mapping [an, an+1] onto [aθ(n), aθ(n+1)] using fn−θ(n)

if θ(n) = θ(n + 1). Therefore we have de�ned fθ as follows

fθ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if x ∉ ⋃
n∈ω

[an, an+1]

aθ(n) if x ∈ [an, an+1] and θ(n + 1) = θ(n)

fn−θ(n)x if x ∈ [an, an+1] and θ(n + 1) = θ(n) + 1

The next corollary follows from the proof of the last proposition.
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Figure 4.1: fθ

Corollary 4.7. Epi(N,⩽) can be embedded in Epi(X ⩽), and so Epi(X,⩽) is not

commutative.

Proof. This follows from the fact that fθ was de�ned to act on {an ∶ n ∈ N} in

precisely the same way that θ acts on N.

Proposition 4.8. If Epi(X,⩽) is non-trivial, then so is Emb(X,⩽).

Proof. Let f ∈ Epi(X,⩽) be non-trivial. De�ne g by letting g(x) ∈ f−1x, in such a

way that if ∣f−1(x)∣ > 1, then g(x) ≠ x. Since f is not the identity and fg is, there

is some a ∈X such that f(a) ≠ a and hence a ∉ f−1a so g(a) ≠ a.

Also, g is an embedding: for suppose a < b but g(b) ⩽ g(a), then f(g(b)) ⩽ f(g(a))

which implies b ⩽ a, giving a contradiction.

We remark that in the proof of Proposition 4.6 there are epimorphisms of (X,⩽)

provided by the map f and the sequence (an ∶ n ∈ ω) other than those we have

described, thanks to the density of X. Let b0 < b1 < ... < b2N+1 or b0 < b1 < ..... be an

in�nite sequence such that a0 ⩽ bn < sup
m∈ω

am for each n and such that for each n < N

(or each n in case of an in�nite sequence), fkn(b2n+1) = b2n for some integer kn ⩾ 1.
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Then we can de�ne an epimorphism ϕ on X corresponding to this sequence: ϕ �xes

all points of X not in ⋃
n∈ω

[an, an+1] and otherwise,

ϕf(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x if a0 ⩽ x ⩽ b0

b0 if b0 ⩽ x ⩽ b1

fk0(x) if b1 ⩽ x ⩽ b2

fk0(b2) if b2 ⩽ x ⩽ b3

fk0+k1(x) if b3 ⩽ x ⩽ b4

fk0+k1(b4) if b4 ⩽ x ⩽ b5

⋮

.

Figure 4.2: ϕf

Intuitively, each interval [b2n, b2n+1] is mapped to a singleton, and other points are

mapped by a suitable power of f to give continuity. In the proof of Proposition

4.6 we glued together maps on intervals with endpoints in {an ∶ n ∈ ω}; here we

allow ourselves to glue intermediate intervals which are still `compatible' with f .

Finally let's say that maps ϕf of this form are generated from f in a wide sense,

from the action of f on ⋃
n∈ω

[bn, bn+1], for a corresponding sequence Bϕ as above.
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4.2 Construction of a dense rigid subchain of R with

speci�ed epimorphism monoid

In this section, we are trying to de�ne a dense rigid subchain X of R which admits

epimorphisms generated by the following two commuting epimorphisms,

gx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x for x ⩽ 0

0 for 0 ⩽ x ⩽ 1

x − 1 for x > 1

hx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 1 for x ⩽ −1

0 for −1 ⩽ x ⩽ 0

x for x > 0

That is, we want to construct X so that any epimorphism of (X,⩽) has the form

gnhm for some n,m ⩾ 0.

However, the above discussion shows that we cannot avoid also admitting epimor-

phisms generated from gh in a wide sense, for which the corresponding b0 is equal

to zero.

ϕfx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x = 0

gαix for x > 0 ∧ x ∈ [b2i−1, b2i]

hαix for x < 0 ∧ x ∈ [b2i−1, b2i]

bi for x ∈ [b2i, b2i+1]

where αi =
i−1

∑
j=0

kj and [b2i−1, b2i] is mapped to [bi−1, bi] via gαi or hαi respectively.

This is still however quite a restricted class of maps and we want to show that X

can be constructed so that there are no epimorphisms apart from these.

The following tables will be useful as they show the values of gnhm for positive

m,n ∈ N:

Proposition 4.9. There is a dense rigid chain X ⊂ R, with Epi(X,⩽) ≠ {id} and

which contains every epimorphism generated from g and h.
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x ⩽ −m x ∈ [−m,0] x ∈ [0, n] x ⩾ n
hmx = x +m hmx = 0 hmx = x hmx = x
gnx = x gnx = x gnx = 0 gnx = x − n

Table 4.1: .

x < 0 x > 0

h−mx = x −m h−mx = x
g−nx = x g−nx = x + n

Table 4.2: .

Proof. Let {fα ∶ α < c} be an enumeration of all non-identity epimorphisms of R

not generated from g and h in a wide sense or generated from g and h but which

corresponding b0 is not equal to 0. As seen in Section 4.1, we start our construction

with X0 = Q and Y0 = ∅. Consider the inductive step, in which we are given disjoint

Xα, Yα, each of cardinality less than c. Then, for stage α + 1, we have to choose

xα ∉Xα ∪ Yα such that

� Xα+1 =Xα ∪ {gnhmxα ∣m ∈ Z}

� Yα+1 = Yα ∪ {fαxα}

So, the following conditions are required,

1. gnhmxα ∉ Yα,

So that the image (under the epimorphism gh) of the element we are trying to

add to X is not already in the set of undesired elements.

2. fαxα ∉Xα,

So that the image (under the epimorphism) that we want to avoid having in

X is not already in Xα

3. fαxα ≠ gnhmxα,

Because by adding xα we need to add also all its images under gnhm to preserve

them as epimorphisms of X.
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Let H = ⋃
m,n∈Z

gnhmYα.

First assume there is a non-empty open interval I such that its image J under fα

is also non-empty and open such that for all x ∈ I, fαx − x ∉ Z. Then we can pick

yα ∈ J ∖(Xα∪fα(Xα∪H)) (since ∣J ∣ = c) and xα such that fαxα = yα. Since xα ∉Xα,

xα ≠ 0 so we can assume without loss of generality that xα > 0. Then gnhmxα = gnxα

and

gnxα =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if x ∈ [0, n]

xα − n if x > n

So, if xα > n, gnhmxα − xα ∈ Z and it follows that gnhmxα ≠ fαxα. If xα ∈ [0, n],

gnhmxα = 0 and hence gnhmxα ≠ fαxα since yα ∉Xα.

Otherwise no such intervals I and J exist. Therefore we either have to �nd another

method of choosing xα, or show that fα is generated from g and h in a wide sense

with b0 = 0. To analyse this we use the auxiliary function jα = fαx−x, noticing that

both jα and fα are continuous.

Claim 4.10. The auxiliary function jα is decreasing, that is, if a ⩽ b then jαa ⩾ jαb.

Proof. Suppose on the contrary that for some a < b, jαa < jαb. Using the Intermediate

Value Theorem, jα[a, b] contains all values in [jαa, jαb], so by cutting down [a, b] we

may assume that the interval [jαa, jαb] does not contain any integer, i.e. [jαa, jαb]∩

Z = ∅. Let

a∗ = sup{x ∈ [a, b] ∶ jαx = jαa} and b∗ = inf{x ∈ [a∗, b] ∶ jαx = jαb}

Then jαa
∗ < jαb∗ and jα[a∗, b∗] = [jαa∗, jαb∗]. Hence for some x such that a ⩽ x ⩽ b,

jαx = fαx − x ∉ Z. Our assumption implies that fα is constant on [a∗, b∗] for

otherwise we could �nd intervals I and J as before. Let fαx = c on [a∗, b∗]. Then

jαa
∗ = c − a∗ > c − b∗ = jαb∗, giving a contradiction. ,

Now, jα may be constant on an interval [a, b], but then the value of this constant

must be an integer (as otherwise fαx = jαx + x and we could �nd suitable I and J).
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So we can consider maximal intervals on which jα is constant, and in any interval

in which jα is nowhere constant, fα must be constant itself as otherwise we will get

our I and J again. Therefore we can think of R as the union of intervals on which

one of the following holds,

� jα is constant with integer value n and then fαx = x + n,

� fα is constant with some value c and so jαx = c − x.

So, suppose that fα0 > 0. Since fα is an epimorphism fαx Ð→ −∞ when x Ð→ −∞,

therefore there is a value below zero that is mapped to a positive number by fα. In

fact, we can �nd an interval of (−∞,0) with positive image. Let I ⊂ (−∞,0) be a

non-empty open interval such that J = fαI is also a non-empty open interval and

J ⊂ (0,∞). Then, we have to choose xα ∈ I such that fαxα ≠ gnhmxα.

Since gn �xes the negative axis, we need just to consider the actions of hm. But

hmx < 0 and fαx > 0 for each x ∈ I. Hence any x ∈ I will satisfy hmx ≠ fαx, so we let

y ∈ J ∖ (Xα ∪ fα(Xα ∪H)) and de�ne xα = fαy. If fα0 < 0 we argue in a similar way.

If fα0 = 0, then we can write fα as the product of two epimorphisms on R, one that

�xes the negative axis and another that �xes the positive axis. Since fα is either

constant or fα = x + n for some n ∈ Z, fα is generated from gh in a wide sense. If

its corresponding b0 is zero, we are done, since we cannot avoid this function, but

if b0 ≠ 0 (say > 0), then either the corresponding sequence B = (bi ∣∈ ω) lies in the

positive axis or in the negative axis.

If B ⊆ (0,∞), then we look at gn, since fα and hm agree on [0,∞). Since 0 < b0 and

fα �xes everything before b0, fα and gn disagree on (0,minn, b0) and here we can

�nd suitable I and J .

For B ⊆ (−∞,0), a similar argument applies.
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To conclude, we remark on what can be said about the value of Epi(X,⩽) in this

case. From the construction, it is clear that any epimorphism of X �xes zero (from

Table 1 we can see that gnhm0 = 0 for any m,n ∈ Z and if ϕgh is generated in a wide

sense by g and h then ϕgh moves only elements that gh already moved) and any

epimorphism of Z that �xes zero gives rise to an epimorphism of X, which already

gives us 2ℵ0 epimorphisms. However, we are still avoiding quite an extensive family

of epimorphisms, and the ones that we keep are formed thanks to the fact that

intervals in the real line are isomorphic to each other.

4.3 Construction of a dense rigid subset of R with trivial

epimorphism monoid and speci�ed embedding monoid

We remark that the method used in [DT01] can be easily adapted to give an ex-

ample of a rigid chain, even with trivial epimorphism monoid, which admits many

embeddings, using a method involving Baire category. However we are principally

interested in controlling the behaviour of the monoids, and here Emb(X,⩽) is enor-

mous, so instead we follow the method of Section 4.2 to �nd situations where

Emb(X,⩽) is of speci�ed isomorphism type, e.g. (N2,+).

Proposition 4.11. There is a dense rigid subset of R, X, with Emb(X,⩽) ≅ (N2,+)

and Epi(X,⩽) = {id}.

Proof. The idea is to proceed analogously to the previous section but this time

preserve all embeddings generated by the following:

gx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x for x ⩽ 0

x + 1 for x > 0
and hx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − 1 for x < 0

x for x ⩾ 0

Notice that since g and h act on disjoint intervals they commute and now we want

to destroy all non-identity epimorphisms and embeddings not of the form gnhm for



Chapter 4. Dense Subchains of R 91

any integers n,m ⩾ 0, which we enumerate as {fα ∣ α < c}. To have a clearer idea of

what the functions we preserve look like, see Table 3 for m,n ⩾ 0.

x < 0 x > 0

hmx = x −m hmx = x
gnx = x gnx = x + n

Table 4.3: .

We start again setting X0 = Q and Y0 = ∅ and proceed by trans�nite induction on

α < c. Assuming the induction hypothesis that for some α < c we have Xα ∩ Yα = ∅,

where Xα and Yα are of cardinality less than c, we move on to the step α+ 1, where

we concentrate on choosing a point xα not in Xα ∪ Yα satisfying:

� Xα+1 =Xα ∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Gxα = {gnxα ∣ n ⩾ 0} for xα > 0

Hxα = {hnxα ∣ n ⩾ 0} for xα < 0

� Yα+1 = Yα ∪ {fαxα}

so that Xα+1 and Yα+1 are disjoint and have cardinality less than c, which are pre-

cisely the conditions that we assume for Xα and Yα in our induction hypothesis.

This means that we will require the following conditions,

- Xα ∩ Yα = ∅,

- fαxα ∉Xα, that is xα ∉ f−1
α Xα,

- Gxα ∩Yα = ∅ =Hxα ∩Xα, which means that for every n ⩾ 0 the following holds,

xα ∉ g−nYα for xα > 0

xα ∉ h−nYα for xα < 0

- fαxα ∉ Gxα ∪Hxα . That is, for every n ⩾ 0,

fαxα ≠ gnxα for xα > 0

fαxα ≠ hnxα for xα < 0

Notice that 0 is already in X0 so we do not need to take care of it as a possibility

for xα. Also, the �rst of the above requirements is already satis�ed by induction



92 Chapter 4. Dense Subchains of R

hypothesis and since g and h are embeddings the sets g−nYα and h−nYα have cardi-

nality less than c for every n ⩾ 0. So the strategy again will be to �nd a set I, so

that the set and its image are disjoint (which can be done since in particular none of

the fα's are the identity) and of cardinality c, then try to make I miss the following

set M and fαI miss both Gx and Hx for every x ∈ I (although this is more than

necessary, for we need only one x that satis�es these conditions),

M =Xα ∪ Yα ∪ ⋃
n∈ω

g−nYα ∪ ⋃
n∈ω

h−nYα

In order to do this we will consider �rst the case when we choose fα as an epimor-

phism and then when we choose it as an embedding.

fα is an epimorphism

We start by assuming that we have picked an epimorphism fα and we split this case

into two, and for simplicity we de�ne a new function jαx = fαx − x and we recall

that it is continuous.

Case 1 . fα moves a point below 0.

This case tells us that our function jα is not zero in R− and we consider a further

two cases,

Case (1.1). There is a point x < 0 for which jαx ≠ −m for every integer m ⩾ 0.

Then jαx is in the interval (−(n + 1),−n) for some n ⩾ 0, and either jα is constant

on the interval (−∞,0) or we can �nd an open interval J contained in (−(n+1),−n)

which is part of the image of jα. If the latter holds, let I0 = j−1
α J and take I =

f−1
α (fαI0 ∖ fαXα) and let xα be any point in I ∖M .

Otherwise jαx = −k for some real k ∉ Z for every x < 0. In this case let I be any

interval of the form (−(n + 1),−n) for some integer n > 0, such that −k ∉ I and take

xα to be any element of I ∖ (M ∪ (Xα + k)), where Xα + k = {x + k ∣ x ∈Xα}.
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Case (1.2). For all x < 0 there is m ∈ N such that jαx = −m.

By continuity, jα must be constant on (−∞,0) and since we are assuming that there

is at least one point for which jα is not zero, we get m > 0. But fα is not of the form

hn for any n ∈ N, in particular for n = m, and we are assuming fα and hm coincide

on (−∞,0), so fα cannot be the identity on [0,∞). Let x ∈ (n,n + 1) be moved by

fα for the least n ⩾ 0.

If jαx < 0, either one of the intervals (jαx,−m) or (−m,jαx) is also part of the image

of jα, or jαx = −m for all x > 0. If the latter holds, let I be any open interval on (0,∞)

and take xα ∈ I ∖ (M ∪ (Xα +m)). If either (jαx,−m) or (−m,jαx) are in the image

of jα let I = (min{jαx,−(m + 1)},−m) in the �rst case, I = (−m,min{jαx,−m + 1})

in the second and take any element of I ∖ (M ∪ (Xα +m)) as xα.

If jαx > 0 then the interval (−m,0) must be part of the image of jα. Therefore let

V = (−m,0) ∖ fαXα, I = f−1
α V and xα ∈ I ∖M .

Case 2 . fα �xes every element below zero and moves something in (0,∞).

In this case we proceed as in Case (1.2) with −m = 0, so we have strictly the case

when jαx > 0 and we take the interval V = (0,min{1, jαx}) ∖ fαXα.

Now we consider how to choose xα if we pick an embedding.

fα is an embedding

Case 3 . There is a point less than zero moved by fα.

A usual, we let x be moved by fα in the interval (−n − 1,−n), for the least integer

n ⩾ 0. If fαx < x let V = (−n − 1, x), then fαV ∩ V = ∅ and V is also moved by fα.

Since fα is an embedding V is also moved by f−1
α , so we let I = f−1

α (V ∖Dfα). If

fαx > x we let I = (x,min{−n, fαx}) and in both cases I is disjoint from its image
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and I ⊆ (−n − 1,−n). Therefore for all x ∈ I, ∣fαx − x∣ < 1 and hence fαx ≠ hmx for

any m ⩾ 0.

Finally, we let xα be a point in the set I ∖(M ∪f−1
α (Xα∖Dfα)∪Dfα), recalling that

Dfα is the set of discontinuities of fα.

Case 4 . fα �xes everything less than zero and moves something in (0,∞).

Here we let x ∈ (n,n + 1) be moved by fα for the least n ⩾ 0 and proceed similarly

to Case 3.

The above construction for n = 2 is done to illustrate the method, but this can be

generalized to any n ∈ N, as long as the generating embeddings have disjoint support

(i.e. the sets of points which are moved by the embeddings are disjoint), which will

also ensure that they are distinct and are such that they are speci�ed by their actions

on Q. For instance, de�ne for each n ∈ N,

gnx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x for x ∉ (n,n + 1)

n + φgφ−1x for x ∈ (n,n + 1)

where g is any �xed embedding, we can take the above for example, and φ is an order

preserving isomorphism from the real line to the interval (0,1). Then any �nite set

of gn's will satisfy our requirements since their supports are clearly disjoint.

4.4 A dense set X ⊆ R which is embedding and epimor-

phism rigid with non-trivial endomorphism monoid

Since, for whichever chain (X,⩽) we consider there are endomorphisms we cannot

destroy (such as constant maps), the strongest result we can at present aim for is to

�nd a dense chain X ⊂ R which is rigid for both epimorphisms and embeddings but

which is preserved by some speci�c endomorphism of none of these �obvious" kinds.



Chapter 4. Dense Subchains of R 95

Proposition 4.12. There is a dense subchain, X, of the real line of cardinality

continuum with Epi(X,⩽) = {id} = Emb(X,⩽) and whose endomorphism monoid

contains a monoid isomorphic to (N,+).

Proof. In order to prove this, we will begin the construction by �destroying" all em-

beddings and epimorphisms di�erent from the identity but preserving all endomor-

phisms generated by the following function (which is clearly neither an embedding

nor an epimorphism):

h(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 for x ⩽ 0

2
π arctanx for x > 0

As usual, we enumerate all epimorphisms and embeddings of R as {fα ∶ α < c} and

hence we shall do our construction by trans�nite induction on α < c. Starting again

with the rationals as X0 and withY0 empty. As our induction step, we assume that

Xα and Yα are disjoint and of cardinality less than c and we will choose a point

xα ∉Xα ∪ Yα and de�ne:

� Xα+1 =Xα ∪ {hnxα ∣ n ⩾ 0}

� Yα+1 = Yα ∪ {fαxα}

The point xα will be chosen so that Xα+1 ∩Yα+1 = ∅ and both Xα+1 and Yα+1 are of

cardinality less than c. Notice that the second requirement is satis�ed by induction

hypothesis and the fact that {hnxα ∣ n ⩾ 0} is countable. For disjointness we will

require in addition:

� fαxα ∉Xα

� xα ∉ h−nYα for every n ⩾ 0

� hnxα ≠ fαxα for every n ⩾ 0
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If we de�ne H = {h−nYα ∶ n ⩾ 0} then, since 0 ∉ Yα by hypothesis, we have that

∣H ∣ < c. De�ne the set M as:

M =H ∪Xα ∪ Yα

Now, the proof will be divided into cases corresponding to our choice of fα, and the

aim will be to �nd either an interval or a set I of cardinality c which is disjoint from

its image and whose elements satisfy the above requirements, so we will take xα to

be in the set I but to miss M .

fα is an epimorphism

Case 1 . There is some point x less than zero which is moved by fα.

If fαx < x let V = (fαx,x)∖Xα. Otherwise fαx > x and we take V = (x,min{0, fαx})∖

Xα. In either case if we let I = f−1
α V then I ∩ fαI = ∅, so any element of the set

I ∖M will ful�l the requirements for xα, in particular for any y ∈ I ∖M and any

n > 1, fαy ≠ hny since either y < 0 and 0 ∉ fαI or y > 0 and fαy < 0.

Case 2 . fα �xes all elements in (−∞,0] and moves a point greater than 1.

Then we take x in the interval (n,n + 1) moved by fα for the least n ⩾ 1. If fαx < x

let V = (fαx,x) and J = f−1
α V ∖Xα. Then J and its image are disjoint and J is

moved by fα. If fαx > x let J = (x, fαx). Then I = f−1
α J clearly satis�es fαI ∩ I = ∅

and it is also moved by fα, therefore I ⊆ (n,∞) and hence for every y ∈ I, fαy ≠ hny

for any n ⩾ 0 since Im hn ⊆ (0,1). Take xα to be in I ∖M .

Case 3 . fα �xes everything not in (0,1].

Because fα is continuous and order preserving it actually �xes everything not in

(0,1). Notice also that for every x ∈ (0,1)

hnx < 1
2 so hnx < x for every n ⩾ 1.
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Now, since fα is not the identity it must move something in the interval (0,1). If

there is a point x∗ with fαx
∗ > x∗, let V = (x∗, fαx∗) ∖Xα and I = f−1

α V . Then

fαI ∩ I = ∅ and for every x in I, hnx < x < fαx for every n ⩾ 0, hence any element in

I ∖M will work as xα.

If there is no such x∗, viz., fαx < x for every x ∈ (0,1), we split into two additional

cases.

Case (3.1). hx < fαx < x for every x ∈ (0,1).

Then we take any element x in the interval (0,1) to de�ne V = (fαx,x) ∖Xα and

I = f−1
α V . Hence for every y ∈ I and for every n ⩾ 0, fαy ≠ hny, so take xα in the set

I ∖M .

Figure 4.3: Diagram to illustrate Case (3.1)

Case (3.2). fαx
∗ < hx∗ < x∗ for some x∗ ∈ (0,1).

For this case we will need the help of the following function,

gαx = 1
2(x + hx)

Notice that gα is continuous, injective and satis�es hx < gαx < x for every x in

(0,1). Now, fαx∗ < hx∗ < gαx∗ < x∗ but fα1 = 1 > gα1, therefore there is an element

z ∈ (x∗,1) such that fαz = gαz < 1. Moreover, since all these functions are continuous

and h < gα < id, there is an open interval V1 completely contained in (gαz, z) whose
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inverse image under fα satis�es hx < gαx < fαx < x for all x ∈ f−1
α V1, which takes us

back to Case (3.1) letting V = V1 ∖Xα.

Figure 4.4: Diagram to illustrate Case (3.2)

fα is an embedding

We consider now the case when fα is an non-identity embedding and hence there is

a point moved by it.

Case 1 . fα moves a point x less than zero.

If fαx < x, let I = (fαx,x), otherwise I = (x,min{fαx,0}). Then fαI ∩ I = ∅ so any

element y in I ∖ (f−1
α (Xα ∖Dfα)∪M ∪Dfα) satis�es fαy ≠ hny for every n ⩾ 0 since

f−1
α 0 ∉ I, so let y be xα.

Case 2 . fα �xes all elements less than or equal to zero and moves something in

(1,∞).

In this case we as usual let x ∈ (n,n+1) be moved by fα for the least natural number

n ⩾ 1. If fαx < x let I = (min{fαx,n}, x). Then fαI < I and f2
αI < fαI since fα is

an embedding therefore fαI is also moved and hence it is contained in the interval

(n,n + 1). If fαx > x let I = (x, fαx) so that fαI ⊆ (n,∞). In both cases fαy ≠ hmy
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for every m ⩾ 0 and every y ∈ I since n is greater or equal to 1, so take xα to be an

element in I ∖ (f−1
α (Xα ∖Dfα) ∪M ∪Dfα).

Case 3 . fα �xes everything not in (0,1).

Recall that hnx ⩽ hx < x and 0 < fαx < 1 for all x ∈ (0,1). Since fα is not the

identity it must move some point x ∈ (0,1). If the right limit f+α satis�es f+αx > x

we let I = (x, f+αx) so that fαy ≠ hny for any y ∈ I and n ⩾ 0 since hny < y < fαy.

Otherwise, f+αx < x and one of the following two cases holds. The strategy in these

cases will be to �nd a set for which each point on it has image under fα is greater

than 1
2 , so that it cannot agree with hn for any n ⩾ 1.

Case (3.1). f+αx ⩽ 1
2 < x

Let J = (1
2 , x)∖(Dfα∪fαDfα). Then J and its image under fα are disjoint. Moreover,

f−1
α J is also moved by fα and hence it is contained in (0,1). Let I = f−1

α J and take

xα in I ∖ (f−1
α (Xα ∖Dfα) ∪M ∪Dfα).

Case (3.2). 1
2 ⩽ f+αx < x.

Since x is moved by fα, fαx ∈ (0,1). Then either fαx < x or fαx > x. If the former

holds we let J = (fαx,x)∖(Dfα ∪fαDfα) and we are back in Case (3.1). Otherwise,

let I = (x, fαx) and take xα to be any element in I ∖ (f−1
α (Xα ∖Dfα)∪M ∪Dfα)

4.5 Higher cardinalities (regular)

In [DT01], Droste and Truss constructed a densely ordered chain of cardinality κ for

any uncountable cardinal which was automorphism rigid, using a di�erent method

from the diagonalization using by Dushnik and Miller in [DM40]. We will show

that with a slight modi�cation to the argument they used, we can get their chain

of cardinality κ, for regular κ, epimorphism rigid. For this we shall need to use the

following result.
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Lemma 4.13. Let X be the rigid chain constructed in the paper [DT01] and X its or-

der completion. Then if f ∈ Epi(X,⩽), f is continuous. Moreover, if f ∈ Epi(X,⩽),

then f extends to an epimorphism of X.

Proof. This result holds because we are working in the completion of a dense chain,

and it is precisely analogous to the proof of continuity in Lemma 4.4; and the

second part is the same as in the proof of Lemma 4.3.

The construction of X will be in stages, and will result in the union ⋃
n∈ω

Xn, where

each Xn is dense. Let X0 = Lκ, where Lκ = κ.Q with the lexicographical order-

ing. Now, let A be a family of κ pairwise disjoint stationary subsets of κ, and let

{An ∣ n ∈ ω} be a partition of A, where ∣An∣ = κ for each n ∈ ω.

Assuming we have constructed Xn, to de�ne Xn+1 we will make use of the elements

of An. Let Bn = {x ∈ Xn ∣ x lies in a copy of Q added in the previous stage} and

let's enumerate the elements of An as

An = {Sx ⊆ κ ∣ x ∈ Bn}

The stationary set Sx ∈ An is going to be used as a `code' for x during the construction

of Xn+1. Thus, Xn+1 will consist of Xn with Lκ,Sx added to every corresponding

x ∈ Bn, where

Lκ,Sx = κ.Q ∪ {(α,−∞) ∣ α ∈ Sx}

ordered lexicographically. That is, Lκ with a point {−∞} put in the gaps between

the copies of Q corresponding to elements of Sx. Notice that the elements of Bn

have co�nality ω but we shall see that after being coded in this step, each x ∈ Bn

will be the supremum of a set of order-type Sx. Hence every element of Bn will have

co�nality κ and the set of points that have been coded by stage n+1 is dense in Xn.

So let f be a non-trivial epimorphism of X. Since the set of coded points is dense

in X there is a coded point x ∈ X such that f(x) = y for y ∈ X di�erent from x.
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Because the only cuts of Xn that are realized during the construction are those of

the form ({z ∶ z < x},{z ∶ z ⩾ x}) for x ∈ Xn, and these cuts are only realized at one

stage of the construction, x is the supremum of a set of type Sx in X (this is the

copy of the stationary Sx ∈ A that was put immediately to the left of x) - this is

what we mean when we say that x has been coded by Sx.

Moreover, if we let Lx = {(α,−∞) ∣ α ∈ κ∖{0}} be a subset of Lκ,Sx , de�ned at stage

n where x was coded, then Lx is a club of the set (−∞, x)∩Xn+1, and since none of

the cuts ({z ∶ z < t},{z ∶ z > t}) for t ∈ Lx is realized at any stage, Lx is still a club

in X. In addition, Lx ∩X is still the same Sx as was added at stage n. Notice that

the same remarks apply to Ly.

Enumerate Lx and Ly as Lx = {xα ∣ 0 < α < κ} and Ly = {yα ∣ 0 < α < κ}, in an

increasing manner. Since (X,⩽) is densely ordered, f extends to an epimorphism of

(X,⩽).

Claim 4.14. The set C = {α ∈ κ ∣ f(xα) = yα} is a club in κ.

Proof. For closure: Let α1, α2, ... < αβ < ... be an increasing sequence such that

αβ ∈ C for all β < λ < κ. Let

xαs = sup
β<λ

xαβ and yαs = sup
β<λ

yαβ

Since αβ is in C for all β < λ, fα(xαβ) = yα. Hence, because Lx and Ly are both

clubs in X and f is continuous on X, xαs ∈ Lx, yαs ∈ Ly and

f(xαs) = sup
β<λ

f(xαβ) = sup
β<λ

yαβ = yαs

So αs ∈ C.

For unboundedness: Let λ < κ. We want to show there is α ∈ C with λ < α < κ.

Let xλ ∈ Lx and look at fxλ . We will construct two sequences (xγn ∶ n ⩾ 1) and

(yγn ∶ n ⩾ 1) as follows.
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Since Ly is unbounded in X, there is yγ1 ∈ Ly such that f(xγ) < yγ1 . Then, because

Lx is unbounded, we can de�ne xγ2 ∈ Lx to be the smallest element of Lx that is

greater than every element of f−1{yγ1}. Since f is order preserving, f(xγ2) must be

greater than yγ1 and we now let yγ2 ∈ Ly be the smallest element of Ly greater than

yγ1 , and we iterate this process to obtain the desired sequences, with the property

that xγn−1 < xγn and yγn < f(xγn) < yγn+1 . Now, because Lx and Ly are closed and

f is continuous, there are xγ ∈ Lx and yγ ∈ Ly such that

if xγ = sup
n⩾1

xγn then yγ = sup
n⩾1

yγn = sup
n⩾1

f(xγn) = f(xγ)

Therefore γ ∈ C and since the sequence (xγn ∶ n ⩾ 1) is increasing, we have λ < γ.

Since Sx is stationary, Sx ∩C ≠ ∅. Let α ∈ Sx ∩C. Then xα ∈ X (being in Lx) and

f(xα) = yα ∈ X (since f is surjective on X). So α ∈ Sy (since yα ∈ Ly) contradicting

our assumption that Sx∩Sy = ∅, hence showing that there cannot be any non-identity

epimorphism of (X,⩽). ,

In fact, the above proof also shows that X doesn't even have any local embeddings,

by which we mean the following,

If (x, y) ≅ (a, b) are two non-empty intervals of X, then x = a and y = b.

If we have a chain that satis�es this property for any two intervals, then we say that

the chain is strongly rigid.

Now, it is possible to get an automorphism rigid chain which is not locally rigid: let

X be as in Lemma 4.13, and choose two di�erent coded elements a, b ∈ X. We let

X ′ be the chain obtained by putting a copy (a, b)1, of the interval (a, b), immediately

to the right of b, so that every element in (a, b) is less than every element of (a, b)1,

and every element of this is less b - see Figure 4.5.

Then X ′ is clearly not strongly rigid, but it stays automorphism rigid on the whole

chain, for if f is an automorphism of X ′ then, since f still has to preserve the
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Figure 4.5: X ′ is an automorphism rigid chain which is not locally rigid.

�coding" of its coded points, it will �x every element x ⩽ a and every x ⩾ b. It cannot

send x ∈ (a, b) to a distinct point of (a, b) because of our construction, and hence

the only other place that x can be sent to is the copy x1 of x in (a, b)1. But then if

x < x1 < b and f(x) = x1, we must have f(x) = x1 < f(x1) < f(b) = b, hence violating

the fact that we can't move a point to any element of the same copy.

We can even do more than this. If we let C = {(a, b)n ∣ n ∈ ω} be a set of ω-many

copies of (a, b) = (a, b)0 added toX in the obvious way, then we get an automorphism

rigid chain (X ′,⩽′) (for it must preserve each copy rigid and can't move anything

upwards since it �xes everything below a) with some epimorphisms, in fact for each

ϕ ∈ Epi(N,⩽), if we write xϕ(n) for the copy of x ∈ (a, b) that lies in (a, b)ϕ(n), then

fϕ may be de�ned as

fϕ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xϕ(n) if x ∈ (a, b)n for some n

x if x ∉ ⋃
n∈ω

(a, b)n

Then fϕ[(a, b)n] = (a, b)ϕ(n) and fϕ is identity elsewhere,which is an epimorphism

of (X ′,⩽′). Moreover, since any epimorphism ψ of X ′ must �x everything below a

and below b, ψ must be generated in the wide sense from one of fϕ, for some ϕ ∈

Epi(N,⩽) (take the sequence (bn ∶ n ∈ N) to be such that bn < bn+1 in (a, b) but bn

lies in the n-th copy (a, b)n of (a, b)).



Chapter 5

Graphs

�What we call chaos is just patterns we haven't recognized. What we call

random is just patterns we can't decipher. What we can't understand we

call nonsense.�

� Chuck Palahniuk, Survivor

5.1 Introduction

The countable random graph (also known as Rado's graph or the Erdös-Rényi

graph) is the unique (up to isomorphism) countable graph with the following prop-

erty,

ARP: If U and V are two �nite and disjoint sets of vertices, then there is a vertex

x ∉ U ∪ V which is joined to all elements in U and none of V .

The initials ARP stand for Alice's Restaurant Property, and according to J.

Spencer in [Spe01], this name was �rst used by Peter Winkler in allusion to the refrain

in a song by Arlo Guthrie - you can get anything you want at Alice's Restaurant.

The proof of uniqueness of Γ follows a standard back-and-forth argument.

The study of the random graph has been very well developed since the 1960's after

Erdös and Rényi published a very in�uential paper [ER60] and much work has been

done about it.
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In this chapter, we shall denote the Random Graph by Γ. To �x some notation,

we will be working with graphs G that have a set of vertices in some ordinal κ (for

example, the vertices of Γ are in ω), and if α and β in κ are adjacent (joined) by an

edge, then we write α ∼ β. If α is joined to every element of the set U , then we simply

write α ∼ U . If α ∈ κ is a vertex of G, then we denote by E(α) = {β ∈ κ ∣ α ∼ β} the

set of vertices that are joined to α and NE(α) = {β ∈ κ ∣ β ≁ α} ∖ {α} the vertices

that are not joined to α. If A ⊆ κ is the set of vertices of a subgraph g of G, then we

say A is the domain of g and we denote it by dom(g).

Now, the story looks a bit di�erent once we look at uncountable graphs. For instance,

there are many uncountable graphs satisfying ARP, while CH implies that there is

only one ω1-graph up to isomorphism which is saturated (see Theorem 5.1 below).

But even now, there will be many (non-saturated) ARP graphs of cardinality ℵ1.

When we say that an uncountable graph ∣G∣ = ℵ1 is saturated, we mean that it

satis�es the following statement, which is a natural generalization of our ARP, in

the sense that if G is saturated then it clearly satis�es ARP.

(*) If U and V are two countable and disjoint sets of vertices, then there is a

vertex x ∉ U ∪ V which is joined to all elements in U and none of V .

Theorem 5.1 (Literature ∗). Assume CH. Then there is an ω1-graph G which is

saturated.

Proof. We will construct G inductively. Let G0 be our countable random graph Γ.

Let A = {An ⊂ ω1 ∣ n ∈ ω} be such that for each n,m ∈ ω, ∣An∣ = ℵ1, An ∩Am = ∅ and

⋃
n∈ω

An = ω1 ∖ω. The elements of A are going to comprise the family of vertices of G.

Next, we will enumerate all the pairs (U,V ) of disjoint countable subsets of G0 and

put a witness to (*) for each one of them from the elements in A0. Notice that since

we are assuming that CH holds, we have ω1- many of them. Then we shall proceed

∗This result is well known and appears in [CK73] page 216
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in a similar way to de�ne what to do with the rest of the elements in A.

For each n ∈ ω, we let Bn = {(Unν , V n
ν ) ∣ ν ∈ ω1} be the collection of all disjoint pairs

of countable subsets of Gn. Now for each (Unν , V n
ν ) ∈ Bn, we look at xnν ∈ An and

de�ne the relations:

xnν ∼ Unν and xnν ≁ V n
ν

And let Gn+1 = Gn ∪An. Then the graph G = ⋃
n∈ω
Gn satis�es (*).

In the countable case, having the property ARP is equivalent to being homoge-

neous�, in the same way that being saturated is equivalent to being ℵ1-homogeneous�.

Lemma 5.2. If G is a saturated ω1-graph then it is ℵ1-homogeneous.

We will see in this chapter that the notions of ARP, saturation and homogeneity

do not coincide in general.

5.2 Generically constructed graph, Γω1

In this section we will construct an ω1-graph that satis�es the ARP but is not

homogeneous.

Proposition 5.3. There is a model M where there is a rigid graph Γω1 that satis�es

ARP.

Proof. We will make use of a forcing model to prove the above statement. Our

notion of forcing is set of all �nite graphs with vertices in ω1 ordered by extension,

that is

�Any isomorphism between �nite structures, extends to an automorphism of the whole structure.
�Any isomorphism between countable substructures, extends to an automorphism of the whole

structure.
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PΓ = {p ∣ p is a graph, dom(p) ⊆ ω1 and ∣dom(p)∣ < ℵ0} and

q ≤ p (q extends p) i� dom(p) ⊆ dom(q) ∧ ∀α,β ∈ dom(p), α ∼ β in p i� α ∼ β in q.

Then Γω1 = ⋃G for some generic G ⊆ PΓ. We will prove �rst that any automorphism

of Γω1 will move uncountably many points, and we shall denote by supp(f) the set

of elements moved by a function f .

Lemma 5.4. If θ ∈ Epi(Γω1) or θ ∈ Emb(Γω1) and θ is not the identity map,

then θ has uncountable support, that is, the set of vertices that are moved by θ is

uncountable.

Proof. Assume by way of contradiction that there is a condition p ∈ G such that

p ⊩ ⌜θ̇ has countable support ⌝, i.e. there is ξ ∈M such that for some α ≠ β ∈ supp(θ)

p ⊩ ⌜θ̇ ∈ Epi(Γω1) or θ̇ ∈ Emb(Γω1), supp(θ̇) ⊆ ξ ∧ θ(α) = β⌝

Now, since p is �nite, we can �nd δ > ξ and δ ∉ dom(p) and de�ne a condition q ∈ P

by,

q = p ∪ {δ ∼ α} ∪ {δ ≁ β}

Then, q ⊩ ⌜θ̇(δ) = δ ∧α ∼ δ ∧ θ̇(α) = β ≁ θ̇(δ)⌝. Since q ≤ p this gives a contradiction.

So, in particular this works for θ ∈ Aut(Γω1). Now we will see that the ARP holds

for our generically constructed Γω1 .

Claim 5.5. Γω1 satis�es ARP.

Proof. For each pair of �nite disjoint subsets U,V of ω1 let

DU,V = {p ∈ PΓ ∣ ∃α ∈ dom(p) ∖ (U ∪ V ), U ⊆ E(α) ∧ V ⊆ NE(α)}
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Note that DU,V ∈M . We will show that this subset is dense in PΓ.

Let q ∈ PΓ. Let p be a �nite graph extending q, with domain equal to dom(q)∪(U∪V ).

Now, let α ∈ ω1∖ dom(p), and de�ne p′ extending p so that dom(p′) = dom(p)∪ {α}

and

γ ∼ β in p′ ↔ (γ ∼ β in p) or (γ = α ∧ β ∈ U) ∨ (β = α ∧ γ ∈ U)

Then p′ ≤ q and p′ ∈DU,V . Hence for each �nite disjoint U,V ⊆ ω1, DU,V is dense in

PΓ and it intersects the generic subset G, so for each U,V there is a condition in G

that forces the property, therefore the generically constructed graph satis�es ARP.

,

The next claim shows that Γω1 is rigid in the generic extension.

Claim 5.6. If θ is an automorphism of Γω1, then θ is the identity.

Proof. Assume θ is a non trivial automorphism of Γω1 , that is,

1 ⊩ ⌜θ̇ is a non-identity automorphism of ω1⌝

For each α ∈ supp(θ) let pα be a condition in G such that for some α ≠ α1

pα ⊩ ⌜θ̇α = α1⌝.

By extending pα if necessary, we can assume α ∈ dom(pα). Then by Claim 5.4

above, we have an uncountable set of �nite conditions so we can use the ∆-System

Lemma to �nd an uncountable Z ⊆ P and a �nite subset S satisfying pα ∩ pβ = S,

for any two distinct pα, pβ in Z.

Now choose pα, pβ ∈ Z with α,β and their images under θ not contained in S (which

can be done because we are working with �nite sets, and both supp(θ) and its image

under θ are uncountable). Let q be the graph
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q = pα ∪ pβ ∪ {α ∼ β} ∪ {α1 ≁ β1}.

Then q extends both pα and pβ but q ⊩ ⌜θ̇ is not an automorphism of Γ̇ω1⌝. ,

This �nishes the proof of Proposition 5.3.

The above proof still works to show that Γω1 does not admit embeddings or epimor-

phisms other than the identity and it is enough to prove that Im(supp(θ)) is also

uncountable and follow the arguments as in Claim 5.6.

Claim 5.7. If θ is either an epimorphism or an embedding of Γω1, then θ(supp(θ))

is uncountable.

Proof. Consider �rst that we are dealing with an epimorphism. Assume by way

of contradiction that p ⊩ ⌜θ̇ ∈ Epi( ˙Γω1)∧ Im(supp(θ̇)) is countable⌝. Then, there is

ξ < ω1 such that p ⊩ ⌜θ̇(supp(θ̇)) ⊆ ξ⌝. Since every element of ω1∖supp(θ) is mapped

to itself, we have

p ⊩ ⌜ Im(θ̇) ⊆ ξ ∪ (ω1 ∖ supp(θ̇))⌝

Now, because θ ∈ Epi(Γω1) and we are assuming that the image of supp(θ) is count-

able, p ⊩ ⌜supp(θ̇) ≠ ω1⌝, and since we have also shown that supp(θ) is uncountable

this implies that p ⊩ ⌜(supp(θ̇)∖ ξ) ≠ ∅⌝. Hence, p ⊩ ⌜supp(θ̇)∖ ξ ⊈ Im(θ̇)⌝, which is

a contradiction with θ being surjective.

To conclude, we just remark that if θ is an embedding then it must be injective and

since supp(θ) is uncountable, so is its image. ,

The following are some properties of our generically constructed random graph, Γω1 .

Proposition 5.8. Γω1 is not saturated.

Proof. Let A = {n ∣ n ∈ ω} and B = {ω+n ∣ n ∈ ω}. We'll prove that for each α ⩾ ω.2,

we can �nd an element x in A and another y in B so that α is joined to both x and

y. For α ∈ ω1 ∖ (A ∪B) we will show the following set is dense in PΓ
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Dα = {p ∈ PΓ ∣ (∃x ∈ dom(p) ∩A)(∃y ∈ dom(p) ∩B)[α ∈ E(x) ∧ α ∈ E(y)]}

Let q ∈ PΓ. Since A,B are countable and dom(p) is �nite, we can �nd x ∈ A ∖

(dom(p) ∪ {α}) and y ∈ B ∖ (dom(q) ∪ {α}). Let p = q ∪ {α ∼ x} ∪ {α ∼ y}. Then p

extends q and p ∈Dα.

Hence, for each α ∉ (A ∪ B) there is a condition in G preventing α from being a

witness for ℵ1 saturation of Γω1 .

Observe that Γω1 is speci�ed by E(x) and NE(x) for all x ∈ ω1. We will show that

these two sets are stationary for each x ∈ ω1. The proofs are very similar so we will

only give the details for E(x).

Proposition 5.9. Let x ∈ Γω1. Then E(x) and NE(x) are stationary in ω1.

Proof. Let C ∈ M[G] be a club in ω1 and x ∈ Γω1 . Then there is a condition

p ∈ G satisfying p ⊩ ⌜Ċ is a club in ω1⌝. We want to show that there is q ∈ G with

q ⊩ ⌜Ė(x) ∩ Ċ ≠ ∅⌝, that is, there is α ∈ ω1 such that p ⊩ ⌜α ∈ Ċ ∧ α ∼ x⌝.

Since C ∈ M[G] is a club and PΓ is c.c.c., there is D ∈ M , D ⊆ C which is also a

club in ω1 and hence we need only to show D ∩E(x) is non-empty. To see this, let

D = {α ∣ p ⊩ ⌜α ∈ Ċ⌝} ∈M . Then clearly D ⊆ C, that is, p ⊩ ⌜D ⊆ Ċ⌝. We shall show

D is a club.

For closure, let (αν ∶ ν < λ ∈ Lim(ω1)) be an increasing sequence of elements in D

with α′ = sup{αν ∶ ν < λ}. Then, for all αν , p ⊩ ⌜αν ∈ Ċ⌝ and p ⊩ ⌜Ċ is closed ⌝,

hence p ⊩ ⌜∀αν , αν ∈ Ċ ∧ Ċ is closed⌝ and thus p ⊩ ⌜α′ ∈ Ċ.

For unboundedness, let α0 < ω1. We want to show that there is α > α0 such that

p ⊩ ⌜α0 ∈ Ċ⌝. Since p ⊩ ⌜Ċ is unbounded ⌝, then p ⊩ ⌜α0 < γ̇ ∈ Ċ⌝ for some γ ∈ M .

Now, we can get a maximal antichain A of conditions and a sequence of ordinals

(γq ∶ q ∈ A) satisfying q ⊩ ⌜γ̇ = γq⌝. Since PΓ is c.c.c., A is countable so let α1 be the

supremum of the γq's, which is countable. Then p ⊩ ⌜(∃γ ∈ Ċ)α0 < γ ⩽ α1⌝. In the
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same manner, we �nd an increasing sequence (αn ∶ n ∈ ω) such that

p ⊩ ⌜(∃γ ∈ Ċ)αn < γ ⩽ αn+1⌝

and let α = sup
n∈ω

αn. Then p ⊩ ⌜α0 < α ∈ Ċ⌝, as required.

Now, we will show that the next set is dense below p,

B = {q ≤ p ∣ q ⊩ ⌜∃α ∈D,α ∼ x⌝}

Let q ≤ p. By extending it if necessary, we can assume x ∈ dom(q). Let αmax =

max{γ ∈ q} which is less than ω1. Then, since D is unbounded in ω1, we can �nd a

countable α > αmax in D. De�ne a �nite graph q′ by dom(q′) = dom(q) ∪ {α} and

α ∼ x, then q′ ∈ B.

Hence B ∈M is dense and B∩G ≠ ∅. Since p ⊩ ⌜D ⊆ Ċ⌝ we have q′ ⊩ ⌜α ∼ x∧α ∈ Ċ⌝,

as required.

To show that NE(x) is stationary, we show that the set is dense in a similar manner,

B′ = {q ≤ p ∣ q ⊩ ⌜∃α ∈D,α ≁ x⌝}.

Moreover, for each pair of disjoint �nite subsets U,V of ω1 and x ∉ U ∪ V , the set

⋂
x∈U

E(x) ∪ ⋂
x∈V

NE(x) = {α ∈ ω1 ∣ α ∼ U ∧ α ≁ V } is also stationary. This is shown in

the same way as in the proposition above since the following set is dense in PΓ for

each U,V ,

DU,V = {p ∈ PΓ ∣ (∃α)[α ∉ (U ∪ V ) ∧ α ∈D ∧ α ∼ U ∧ α ≁ V ]} ∈M

Proposition 5.10. For each α ∈ ω1, let Γα be the subgraph of Γω1 whose domain

is given by the set Xα = {ω.α + n ∣ n ∈ ω}. Then Γα is isomorphic to the countable

random graph.
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Proof. Let α ∈ ω1 and �x two �nite and disjoint subsets U,V ⊆Xα. Let

Dα
U,V = {p ∈ PΓ ∣ ∃γ ∈ (dom(p) ∩Xα) ∖ (U ∪ V )[γ ∼ U and γ ≁ V ]}.

Then Dα
U,V ∈ M and it is dense in PΓ just as in the proof of Claim 5.5, so it

intersects our generic set G, and this establishes the ARP for Γω1 .

5.3 Generically constructed graph, ∆ω1

In this section we turn our attention to another graph, constructed analogously to

Γω1 .

We now let P∆ be the notion of forcing that consists of all countable graphs with

vertices in ω1,

P∆ = {p ∣ p is a graph, dom(p) ⊂ ω1 and ∣ dom(p)∣ = ℵ0} and

q ≤ p (q extends p) i� dom(p) ⊆ dom(q) and ∀α,β ∈ dom(p),

α ∼ β in q i� α ∼ β in p.

Then ∆ω1 = ⋃G for some generic G ⊆ P∆.

This notion of forcing is countably closed: for let p0 ⩾ p1 ⩾ .. be a decreasing countable

sequence of conditions in P∆, then ⋃
n∈ω

pn is a countable graph with vertices in ω1.

Proposition 5.11. The graph ∆ω1 is saturated.

Proof. Let U,V be two disjoint countable subsets of ω1 in the generic extension

M[G]. Since P∆ is countably closed, M[G] and the ground model M share the

same countable subsets of ordinals, hence U,V are in M . We will show that the

following set is dense in P∆ for each pair U,V of disjoint countable subsets of ω1.

DU,V = {p ∈ P∆ ∣ (∃γ ∈ ω1 ∖ (U ∪ V ))[γ ∼ U and γ ≁ V ]}
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Let q ∈ P∆. Let q′ extend q such that dom(q′) = dom(q) ∪ (U ∪ V ). Since q′ is

countable, q′ ∈ Pω1 and we can �nd γ ∈ ω1∖ dom(q′) and de�ne a countable graph p

such that,

dom(p) = dom(q′) ∪ {γ}

β ∼ α↔ (β ∼ α in q′), or

(β = γ ∧ α ∈ U) ∨ (α = γ ∧ β ∈ U)

Then p ≤ q′ ≤ q and p ∈DU,V , therefore DU,V is dense in P∆ and hence for each U,V ,

DU,V ∩G ≠ ∅ and there is a condition p ∈ G that forces (*).

We will show that this notion of forcing collapses 2ω to ω1.

Proposition 5.12. M[V ] ⊧ ⌜c = ℵ1⌝.

Proof. We already know that 2ℵ0 ⩾ ℵ1 so we will concentrate in showing we can

�nd 2ℵ0 di�erent elements in ∆ω1 , which is an ω1 graph. Let {qη ∣ η ∈ ω} be an

enumeration of the rational numbers Q. Now, for each ν ∈ R ∖Q (irrational), let

Uν = {η ∣ qη <R ν}

Vν = {η ∣ qη >R ν}

which are both countable subsets of ω1 and since ∆ω1 is saturated, there is xν ∈ ∆ω1

such that xν ∼ Uν and xν ≁ Vν . There are 2ℵ0 irrationals, so this gives us 2ℵ0

distinct members of ∆ω1 , for if ν < υ are both irrational numbers, then there is ρ

such that ρ ∈ (ν, υ) and ρ is joined to xυ but not to xν . Therefore xν ≠ xυ and hence

2ℵ0 = ℵ1.

Proposition 5.13. Let x ∈ ∆ω1 . Then E(x) and NE(x) are stationary in ω1.

Proof. We will only show the statement for E(x) since the proof for NE(x) is
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completely analogous. Let C be a club in ω1. Then, there is p ∈ G such that

p ⊩ ⌜Ċ is a club in ω1⌝. We want to �nd a condition extending p that forces the

intersection E(x) ∩C to be non-empty, so will show that the following set is dense

below p.

D = {q ≤ p ∣ (∃α < ω1)[q ⊩ ⌜α ∈ Ċ ∧ α ∼ x]⌝}

Let q ≤ p. Let α > sup{γ ∶ γ ∈ q}. Then α ∉ q. Since q extends p, there is an ordinal

β0 > α (and hence not in q) and a condition r0 ≤ q such that r0 ⊩ ⌜α < β0 ∈ Ċ⌝.

Similarly, there is β1 > sup(r0), β1 > β0 and r1 ≤ r0 such that r1 ⊩ ⌜β0 < β1 ∈ Ċ⌝ (and

hence β1 ∉ r0).

Hence, we can construct in this manner a sequence of conditions r0 ≥ r1 ≥ ...rn ≥ ...

and an increasing sequence of ordinals β0 < β1...βn < ... satisfying

rn ⊩ ⌜βn−1 < βn ∈ Ċ⌝ and βn > sup(rn−1).

Since P∆ is countably closed, rω = ⋃
n∈ω

rn is a condition in P∆ extending every rn,

and if βω = sup
n∈ω

βn, then βω > sup(rn) so βω ∉ rn, for each n ∈ ω and hence βω ∉ rω.

Since all these conditions force C to be a club we have rω ⊩ ⌜βω ∈ Ċ⌝.

Finally we de�ne q′ ∈ P∆ by,

q′ = rω ∪ {x ∼ βω}
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