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Abstract 

Ligand-activation of the constitutively expressed nuclear receptor PPARγ in 

normal human urothelial (NHU) cells in vitro entrains a programme of 

transcriptional changes resulting in expression of gene and protein markers 

associated with in vivo differentiated urothelium.  

It was hypothesised that, after induction of differentiation, PPARγ would 

translocate to the nucleus and facilitate targeted expression of differentiation-

associated genes through altering chromatin constitution. To address this 

hypothesis, differential solubility of chromatin and nuclear-matrix bound proteins 

were exploited to observe changes in PPARγ localisation. In addition, label-free 

mass spectrometric analysis of NHU extracts was undertaken to discern if 

differential relative abundance of chromatin-associated proteins could be 

detected, and next-generation sequencing technologies were employed to assess 

the changes induced in the chromatin environment by sequencing RNA 

transcripts (RNA-seq), performing high-throughput chromosome conformation 

(HiC), assessing transcription factor binding via formaldehyde-assisted isolation 

of regulatory elements (FAIRE), and histone epigenetic markers of transcription 

(ChIP-seq).  

Potentially novel PPARγ isoforms were observed by western blot, with little 

localisation alterations between differentiated and control NHU cells. 

Differentiation markers were downregulated after treatment with siRNA 

specifically targeting PPARγ2, without significant reduction in PPARγ abundance. 

Label-free mass spectrometry detected peptides from chromatin-associated 

proteins involved as having differential abundance between extracts from 

differentiated and control NHU cells. RNA transcriptomics revealed upregulation 

of novel transcription factors not previously associated with urothelial 

differentiation. Preliminary FAIRE results revealed the presence of regulatory 

elements unique to terminally differentiated cells.  

This study extends the understanding of the behaviour of PPARγ in NHU 

differentiation, identified chromatin constituents with potential roles in 

differentiation and provided a rich transcriptomics resource which will be a 

valuable tool in assessment of the impact of transcription factor binding on local 

chromatin organisation during urothelial differentiation.  
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Chapter 1 

 Introduction 1

1.1 The Urothelium 

It was the aim of the work contained in this thesis to understand the changes in 

the chromatin environment which occur when differentiation is established in 

proliferating human urothelial cells in vitro through treatment with agonists 

targeting nuclear receptors and inhibition of the cell cycle. This brief introductory 

chapter outlines the advances in the culture of urothelial cells which have enabled 

this study to take place, and a rationale for the approaches used in studying 

urothelial differentiation. 

In situ, urothelium is a transitional epithelium which functions as the protective 

urinary barrier of the bladder and the ureter (1). Superficial urothelial cells 

(Figure 1.1.1) express a range of cell-cell contact proteins which aid the formation 

of the barrier to fluid transfer (2), as well as some apical plaque proteins which are 

only known to be expressed by urothelium (3, 4).  

 

Figure 1.1.1. Illustration of cell layers in human urothelium. Superficial cells 

cover several intermediate cells, earning them the moniker “umbrella cells”. 

They express a range of plaque proteins which maintain a protective barrier 

in the lumen of the bladder. Superficial and intermediate cells have a range 

of cell-cell contact proteins which help to maintain tight cell junctions, 

thought to aid the formation of a strong trans-epithelial barrier. Basal cells 

are connected to the basement membrane and are more cylindrical than the 

other layers.  
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1.2 Tissue Engineering and Cellular Differentiation 

A major goal of tissue engineering is to repair or replace tissue or organs. Various 

approaches have been employed in pursuit of this goal, including use of synthetic 

or biological-derived matrix to encourage in vivo repair of native tissues, or in 

vitro culture of cells on a matrix under conditions designed to facilitate the cells to 

form functional replacement tissues or organs.  

Use of matrices with and without pre-seeded cells has been successfully employed 

in vivo to encourage repair of tissues such as skin and cornea (5, 6). Implantation 

of tissues constructed in vitro has been achieved in some cases, with one example 

in which decellularised donor trachea was used as a scaffold for the expansion in 

culture of the patients’ existing tracheal cells prior to successful implantation (7). 

For more complex organs, successes have been modest. Muscle and epithelial cells 

from the bladders of human myelomeningocele patients have been cultured in 

vitro on a shaped acellular matrix to produce an organ with gross tissue 

architecture and morphology resembling that of normal bladder. However, limited 

follow up after transplantation showed the engineered bladders had at best 

equivocal function to the diseased native bladder (8). These examples have 

demonstrated proof of principle that construction and transplantation of 

engineered tissues and organs are possible, but questions remain about whether 

more effort should be committed to improving and investigating the functionality 

of the engineered organs before transplantation into patients. 

In order to understand how to culture a fully functional tissue in vitro, knowledge 

is required of the molecular cues which drive the differentiation of cells into the 

desired phenotype. Much research in recent years has been directed towards 

controlled differentiation of stem cells, which are a preferable source of cells for 

tissue engineering in cases where primary cells from the target organ or tissue are 

unsuitable for expansion. "Stem cells" is a term which describes a population of 

undifferentiated cells which retain the potential to differentiate into one or more 

cell types. The range of tissue types which the stem cell can differentiate into 

depends on the source. Freshly fertilised embryos are totipotent as the constituent 

cells can differentiated into any tissue, inner cells from the blastocyst are 

pluripotent as they can differentiate into many different tissue types, and 

progenitor populations present in tissues may be committed to a specific lineage 

and thus are considered unipotent. In the case of human urothelium, a resident 
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stem cell population is yet to be identified, although such a population is 

presumed to exist as candidate slow-cycling potential progenitor cells have been 

identified in mouse and rat (9, 10). These stem cells in bladder may not inherently 

be "stem" cells, as the possibility remains that the urothelial cells are being kept in 

a progenitor state by the niche in which they reside (11). In the absence of lineage-

specific stem cells from the target tissue, stem cells from other sources can 

potentially be "transdifferentiated" into the required cell lineage. These can 

include stem cells from other tissues, embryonic stem cells cloned from the host, 

or induced pluripotent stem cells (iPS) (12, 13).  

The most complete transformation of pluripotent progenitor cells directed to 

differentiate into urothelium has been reported in mouse embryonic stem cells 

(ESCs), which were induced to differentiate solely into urothelium by xenografting 

cultures of ESCs and fetal bladder mesenchyme into adult rats (14, 15). A similar 

study from some of the same group of authors also achieved urothelial 

differentiation of rat bone-marrow derived mesenchymal stem cells co-cultured 

with fetal bladder mesenchyme xenografted into nude mice (16).  Although the 

instructive nature of the fetal mesenchyme is vital to direct the urothelial 

differentiation of the ESCs, in both studies the specific signalling mechanisms 

which enabled this specification remained unstudied. Some potential clues as to 

the molecular signals directing urothelial differentiation have been uncovered in 

studies where mouse ESCs were induced to express urothelial markers in vitro by 

addition of all-trans retinoic acid (17), but this method has not been successfully 

used to generate organised or functional tissue.  

Across various tissue types, some progress has been made in directed 

differentiation of stem cells in vitro (18-20). Transdifferentiation of tissue-specific 

stem cells has been attempted with the use of intestinal stem cells implanted into 

mouse bladders, but with limited expression of urothelial markers (21). However, 

safety concerns about the therapeutic use of iPS and transdifferentiated cells 

remain due to potential existence of epigenetic differences with the native tissue 

progenitor cells which could affect the capacity to form functionally differentiated 

tissue of the desired phenotype (22-24), as well as the ability of iPS cells to form 

teratomas when injected into nude mice (13). 

In the case of the urothelium, primary tissue samples retain significant 

proliferative capacity in vitro, making it possible to study differentiation of the 

tissue (25-28). Function differentiation of primary cell cultures in vitro has its 
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own inherent issues, chiefly heterogeneity between donors due to differing genetic 

backgrounds and often unknown environmental influences. This is exemplified by 

a study which showed in vitro differentiation of pre-adipocytes into adipocytes 

varies between donors, with some having a poor expression of differentiation 

markers (29). Although problems caused by heterogeneity of primary cell cultures 

in in vitro research into differentiation can be partly overcome by using 

immortalised or tumour-derived cell lines, immortalised urothelial cells have been 

reported to have limited capacity for differentiation, and are ultimately not 

suitable for transplant (30, 31).  

Therefore, when investigating in vitro differentiation of normal primary cells, the 

use of replicate donor lines to test reproducibility of observed experimental 

outcomes is required. When interpreting the results from such primary cultures it 

is important to keep in mind that in addition to variation between donors, within 

the culture there may be a heterogeneous response to any stimuli. This type of 

variable response to induction of gene expression is exemplified by studies 

showing that even within homogeneous cell populations induced to express 

particular genes, at any one time a significant proportion of the population is not 

actively transcribing the gene (32, 33). In primary cell cultures, this heterogeneous 

response to stimuli likely reflects the natural phenotypic plasticity of the cells, 

wherein a relatively uniform progenitor population can differentiate into each 

layer of the tissue. Thus any induction of differentiation in vitro will likely not 

result in the complete ablation of the expression of markers which are associated 

with a less differentiated phenotype.  Therefore any novel differentiation-

associated proteins discovered through in vitro work with primary cultures would 

benefit from validation such as reproduction of in vitro results with multiple 

donors, or identification of candidate protein localisation within in situ 

differentiated cells in vivo. 

Current models of directed in vitro differentiation of human urothelium are based 

on pharmacological activation of peroxisome-proliferator-activated receptor 

gamma (PPARγ), which in turn upregulates several other transcription factors, 

including forkhead box A1 (FOXA1), which have been shown to contribute to 

expression of urothelial-specific marker genes (26, 34). Other studies have 

associated expression of several transcription factors with the development or 

maintenance of the urothelial phenotype in the mouse or human embryo, 

including Foxa1, Foxa2 (14), grainyhead like 3 (Grhl3) (35), Kruppel-like factor 5 
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(KLF5) (36), PPARγ (37).  This seemingly complex web of transcription factors 

contributing to cell identity mirrors findings in current genomics research, which 

has highlighted that cell-type specific gene expression is achieved by hierarchies of 

interacting transcription factors promoting and repressing transcription at sites 

along the genome, with the outcome dependent on the mix of transcription factors 

interacting with each locus (38-40). It is therefore desirable to further understand 

which urothelial differentiation-associated genes are influenced by which DNA-

binding proteins in order to better understand which transcription factors 

markers could be used as targets to improve, or as markers to better assess, in 

vitro differentiation.  

 

1.3 Proliferation and Differentiation in Urothelium 

Cells in all layers of in situ urothelium from many distinct mammalian species are 

mostly quiescent (41, 42), and a similar status is observed in explant cultures of 

human bladder (43, 44). However, cells from all layers of the urothelium have 

been observed to have markers of active proliferation (41, 45), and when 

disaggregated in culture the vast majority of human urothelial cells survive and go 

on to express markers of the cell cycle (25). Thus, even the superficial cells which 

express unique terminal differentiation markers are able to re-enter the cell cycle 

and proliferate, the ability to do which is thought to enable the urothelium to 

regenerate a functional barrier rapidly after injury. The capability to progress from 

a quiescent differentiated state to a proliferative phenotype and then revert back 

again makes the urothelium unlike other stratified epithelia, in which terminally 

differentiated cells are generally replenished solely by proliferation and 

subsequent differentiation of underlying cell layers. Understanding the plasticity 

of the urothelial phenotype is complex, but beginning to be elucidated. 

Evidence suggests that the signalling from the stroma which drives proliferation of 

candidate stem cells in mouse urothelium after injury is mediated through the 

sonic hedgehog-wnt pathway (9). Bladder urothelium and prostate are derived 

from the same embryonic progenitor population, and a study has shown that the 

balance of expression of the nuclear receptors peroxisome proliferator activated 

receptor gamma (PPARγ) and androgen receptor (AR) in human prostate-derived 

cells was able to alter the expression of urothelial and prostate differentiation 

markers (46). The same study showed that when these cell cultured were 

explanted into mice, further phenotypic changes occurred when both PPARγ and 
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AR were reduced in abundance in response to knockdown of PPARγ, whereupon 

the cells expressed differentiation markers of neither prostate or urothelium but 

did express markers of a disease state known as keratinising squamous metaplasia 

(KSM).  

The study of such animal-derived and closely related systems such as prostate can 

give clues to the signalling which is potentially active in urothelium, but does not 

necessarily translate to understanding how human urothelial tissue functions. 

Early experiments of in vitro cultures of human tissue explants showed that 

urothelial cells survive in culture, but that serum was necessary for the superficial 

cells to retain their differentiated morphology and generate a functional barrier 

(43). Research using in vitro explant models has advantages over isolated culture 

of cells as stromal-epithelial signalling can be maintained, but such studies of 

human tissue are hampered by the need for relatively large amounts of normal 

tissue and the difficulties associated with obtaining it. By contrast, the ability of 

urothelial cells to proliferate and re-differentiate has been exploited to enable 

development of in vitro culture models which circumvent the problems of 

studying undifferentiated cells in culture.  

Normal human urothelial (NHU) cells have been shown to be able to proliferate as 

finite cell lines in culture (25, 47), with proliferation stimulated by an autocrine 

epidermal growth factor (EGF) feedback loop wherein the cells produce the EGF 

ligand and stimulate their own proliferation (48). Culturing NHU cells in the 

absence of nuclear receptor ligands by using serum-free medium prevents the pro-

differentiation signalling which allows this proliferation to take place. This results 

in the expression of cytokeratin 14 (CK14) and a reduction in cytokeratin 13 

(CK13). CK13 is expressed by basal and intermediate urothelial cells in vivo, and  

CK14 is usually only observed in urothelium in disease states such as KSM which 

are characterised by a switch in differentiation status (49, 50). Addition of serum 

to culture medium has been shown by several different research groups to be able 

to generate phenotypically normal urothelium with functional barriers (27, 47, 

51). Although it is likely that this is achieved by restoration of nuclear receptor 

signalling, the complexity of factors in serum means that these studies were not 

able to answer the question of how the differentiation was induced. 

A more reductionist approach to identifying differentiation mechanisms has 

enabled identification of the likely nuclear receptor signalling pathways which 

facilitate expression of differentiation markers in cultured normal human 
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urothelial (NHU) cells. Squamous metaplasia is a condition where the normal 

urothelium is replaced by stratified squamous epithelium, it occurs in a wide 

range of epithelia and is often associated with vitamin A deficiency (52, 53). 

Vitamin A metabolites are ligands required for function of nuclear receptors such 

as retinoid X receptors (RXR)(54) and retinoid A receptors (RAR) (55). Varley et 

al (56) showed that NHU cells cultured under serum-free conditions treated with 

the RAR ligand 13-cis-RA showed a reduction in CK14 and increase in CK13, 

suggesting the generation of a phenotype more akin to the in vivo situation. 

However, as normal in vivo superficial human urothelial cells express cytokeratin 

20 (CK20), and no expression of this marker could be detected after treatment 

with 13-cis-RA, the authors determined that the cells had returned from an 

undifferentiated state to a more basal-intermediate urothelial cell type, but that 

terminal differentiation had not been initiated.  

Further work by Varley et al (56) indicated that in vivo squamous metaplasia of 

urothelium was associated with loss of nuclear localisation of the nuclear hormone 

receptor PPARγ, which is a known RXRα heterodimerisation partner (57). 

Treatment of cultured NHU cells with the PPARγ agonist troglitazone (TZ) 

instigated the same CK14 to CK13 switch as 13-cis-RA, but still without the CK20 

expression (26). Blocking the EGF receptor with PD153035 (PD) in combination 

with TZ resulted in a more reproducible initiation of the CK14-CK13 switch and 

the upregulation of CK20 (Table 1.1.1). Addition of epidermal growth factor 

receptor (EGFR) inhibitors alone could not induce this change in expression, and 

inhibition of PPARγ activity using antagonists prevented this change in gene 

expression, establishing the probability that PPARγ activation was required for in 

vitro differentiation in urothelium.  
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It was later established that although EGFR or phosphoinositide 3 kinase (PI3K) 

inhibition in combination with TZ treatment could effectively induce 

differentiation, specific inhibition of the downstream kinase Extracellular signal-

regulated kinase 1 (ERK1) and ERK2 with U0126 also improved differentiation in 

combination with TZ. ERK1/2 are known inhibitors of PPARγ activity through 

modulation of a phosphoserine at position 84 of PPARγ (58-60), and it was 

demonstrated that EGFR inhibition reduced the relative levels of activated 

phosphorylated ERK1/2 and concurrently reduced the relative levels of PPARγ 

phosphorylated at serine 84. As the EGFR-ERK signalling pathway is central to 

proliferation of in vitro urothelial cells, these results suggested that ERK1/2 

simultaneously drives proliferation and inhibits differentiation in NHU cells.  

Uroplakin 2 (UPK2) is an integral component of the barrier plaques formed at the 

apical surface of the urothelium, and is only known to be expressed in superficial 

urothelial cells (3, 61). In the in vitro differentiation of NHU cells, there is a delay 

of 2-3 days before significant upregulation of UPK2. However, the promoter 

sequence 2000 bp upstream from the transcription start site of UPK2 does not 

contain any PPARγ sequence-specific binding motifs. This observation led to 

investigations into the possibility that other transcription factors upregulated by 

PPARγ were involved in the regulation of differentiation-associated genes. The 

resulting study established that RNA from several transcription factors, including 

forkhead box A1 (FOXA1) and interferon-regulatory factor (IRF1), were 

upregulated within 12 h of induction of differentiation. FOXA1 and IRF1 were 

shown to have a role to play in the expression of differentiation-associated genes 

Treatment 

Cytokeratin Marker ↓ 
Untreated 

+13-cis-

RA 
+TZ 

+TZ 

+PD153035 

CK20 -Terminal 

Differentiation 
- - - + 

CK13 – Intermediate 

Differentiation 
- + + + 

CK14 - Undifferentiated + - - - 

Table 1.1.1. Cytokeratin (CK) expression as markers of differentiation in 

human urothelial cells. Treatment of NHU cells in vitro with compounds 

targeting RAR (13-cis-RA), PPARγ (Troglitazone) and EGFR signalling 

pathway (PD153035) results in upregulation (+) or downregulation of 

specific cytokeratins.   
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when siRNA targeting each gene reduced upregulation of CK13 after induction of 

differentiation (34).  

These studies have reasonably well established that PPARγ is the master regulator 

of differentiation in urothelium. However, much remains unanswered about how 

the interactions of PPARγ and other transcription factors co-ordinate the change 

in urothelial phenotype after PPARγ is activated. New genomic and post-genomic 

techniques have made it possible to attempt to identify multiple chromatin-

binding factors and to understand how multiple factors bind to the DNA and 

influence the activity of the chromatin across large genomic regions. These 

genome-wide studies of transcription factor binding undertaken by the 

encyclopaedia of DNA elements (ENCODE) consortium have shown that the 

interaction of myriad factors is needed to control gene expression (38). Utilising 

such approaches to assess changes in chromatin composition during urothelial 

differentiation could allow insight into the complexities of differentiation in a 

more comprehensive, hypothesis-free manner.  
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1.4 Thesis Aims 

It was the aim of the work in this thesis to establish whether PPARγ expression 

and localisation altered during in vitro differentiation, and to utilise post-genomic 

technologies to identify novel chromatin-binding factors which alter their 

association with the chromatin during differentiation.  

The three results chapters in this thesis are split into sections along the basis of 

the approaches that were used to attempt to investigate the chromatin landscape 

and transcription factors which control human urothelial differentiation: 

 Investigations of PPARγ isoform presence and distribution during 

differentiation using molecular biology and indirect immunofluorescence 

approaches.  

 Label-free mass spectrometry based investigation of changes in chromatin-

associated protein abundance during differentiation. 

 Utilisation of next-generation sequencing technologies to investigate 

epigenetic and chromatin changes occurring during of human urothelial 

differentiation.
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 Materials and Methods 2

2.1 Practical Work and Collaborations 

Practical work was carried out in the Jack Birch Unit in the Department of Biology 

at the University of York, the Centre of Excellence in Mass Spectrometry (CoEMS) 

in the Department of Biology at the University of York, or at The Genome Analysis 

Centre (TGAC) in Norwich.  

Mass spectrometric equipment in CoEMS was maintained by Dr David Ashford. 

TGAC staff was responsible for the final steps in the preparation of samples for 

next generation sequencing and the execution of bioinformatics workflows.  

 

2.2 H2O and Buffers 

All references to H2O in this thesis refer to double distilled H2O which was further 

purified by reverse-osmosis in an ELGA purewater system (ELGA process water, 

UK) to a resistivity of 18.2 Ω.  

To reduce contamination from nucleases in molecular biology experiments 

involving manipulation of DNA, ELGA purified water was treated with 1 mL 

diethylpyrocarbonate (DEPC) per 1 L water and autoclaved before adding to 

relevant buffers. Where certified nuclease-free water (Promega, Cat # P1193) was 

used this is noted. 

Buffer recipes are in the appendix, section 7.4.  

 

2.3 Tissue Culture 

2.3.1 Overview 

Tissue culture was carried out using aseptic technique in class II laminar air flow 

hoods. Surfaces were cleaned with 70% (v/v) ethanol before and after use. 

Keratinocyte serum-free medium (Life Technologies, Cat #10744-019) was 

replenished on cell monolayers every 2 to 3 days or as stated. KSFM was 

supplemented with provided 5 ng/mL recombinant human epidermal growth 

factor (EGF), 50 g/mL bovine pituitary extract (BPE) and additional 30 ng/mL 
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cholera toxin (Sigma Aldrich, Cat # C8052). This “complete” KSFM (KSFMc) was 

used for all NHU cell cultures. 

 

Cultures were maintained in HeraCell 240 incubators (Thermo Scientific) at 37°C 

in a humidified atmosphere of 5% CO2 in air. All other cell culture reagents were 

tissue culture grade and purchased from Sigma, unless otherwise stated. Waste 

cells and medium were aspirated by vacuum into a Buchner flask containing 10% 

(w/v) Virkon sterilising agent (SLS, Cat # CLE-1554) for decontamination. All 

tissue culture centrifugation steps were performed in a Sigma benchtop swing-

angle centrifuge at 250 g for 5 min. Waste cells and medium were decontaminated 

in 10% (w/v) Virkon. 

 

2.3.2 Urothelial Samples, Cell Culture and Storage 

Human urological specimens of urinary bladder, ureter and renal pelvis were 

obtained with informed consent from patients with no previous history of 

urothelial neoplasia with relevant Research Ethics Committee approval. On 

arrival, samples were allocated a laboratory record number (Y-number, e.g. Y967).   

Primary urothelial cell cultures were established from urological specimens as 

previously described (25). Samples were stripped of fat and connective tissue in 

sterile Petri dishes using scissors and forceps. The remaining sample was 

incubated in medium containing 0.1% (w/v) ethylenediaminetetraacetic acid 

(EDTA) for 4 h at 37oc to aid dissociation of the urothelium from the basement 

membrane. After incubation, sheets of urothelial cells were gently detached from 

the stroma using forceps, collected by centrifugation, resuspended in 2 mL (200 

units per mL) collagenase IV (Sigma Aldrich, Cat # C5138) in Hank's balanced salt 

solution (HBSS) with Ca2+ Mg2+ (Life Sciences, Cat # 24020-091) and 10mM  4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.6) to 

disaggregate cells, and incubated at 37°C for 20 min. Cells were collected by 

centrifugation and seeded at a density of at least 4 x104 cells / cm2 in KSFMc 

medium. All NHU cells were cultured on PrimariaTM 10 cm dishes, 25 cm2 flasks 

or 75 cm2 flasks (SLS, Cat # 353803, 353808 and 353810 respectively). 

NHU cells were subcultured when they reached near confluence by incubating cell 

monolayers in PBS with 0.1% (w/v) EDTA for 5 min at 37 oC, or until cells visibly 
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dissociated from each other. Cells were then incubated in 0.3 - 1 mL, depending 

on flask size, of Hank’s balanced salt solution (Life Technologies, Cat # 14170-

070) containing 0.25% (w/v) trypsin (Sigma Aldrich, Cat # T4549) and 0.02% 

(w/v) EDTA for 1 min at 37°C. Cells were harvested into 5 mL KSFMc containing 

1.5 mg/mL trypsin inhibitor (Sigma Aldrich, Cat # T6522). Cells were centrifuged, 

supernatant aspirated and resuspended in KSFMc before being split into fresh 

flasks or dishes. Cells were passaged using split ratios of 1:3 to 1:5. All experiments 

were performed on cells of passage 3-5. 

Cells were cryopreserved in a liquid nitrogen-containing storage Dewar at -196 oC 

after harvesting as for passaging, and collecting by centrifugation.  Cells from one 

T75 cm2 flask were resuspended in 6 mL ice-cold KSFMc containing 10% (v/v) 

fetal bovine serum (FBS) and 10% (v/v) dimethyl sulfoxide (DMSO). 1 mL of cell 

suspension was aliquoted into 1 mL polypropylene cryovials and transferred to an 

isopropanol-filled freezing container (Sigma Aldrich, Cat # C1562) to buffer 

temperature change to approximately -1°C per min. Cells were kept at -80 °C 

overnight (not more than 24 hours), and transferred to liquid nitrogen. Cells were 

recovered by thawing in a 37°C water bath. Cells were then immediately diluted 

with 5 mL KSFMc, centrifuged and medium aspirated. Cells were resuspended in 

KSFMc and plated at the required density. Medium was changed 24 h after 

seeding to remove unattached cells. 

 

2.3.3 Cell Counting 

When cells needed to be counted, counts of single-cell suspensions were 

performed using an “Improved Neubauer” haemocytometer (VWR International). 

Cells were counted in four of the 4x4 grid and average number of cells per grid 

calculated. This average is then multiplied by 1x104 to obtain a cell count per mL 

of medium. 

 

2.3.4 In vitro Differentiation of Normal Human Urothelial Cells  

Troglitazone (TZ) (Sigma Aldrich, Cat # T2573) was solubilised in sterile filtered 

DMSO (SLS, Cat # D2650), to a final molarity of 100 mM. PD153035 (PD) 

(Calbiochem, Cat # 234490) was solubilised in DMSO, to a final molarity of 10 

mM.  
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NHU cells were cultured to 70-80% confluence in KSFMc. For differentiation, 

medium was replaced with KSFMc containing TZ (1 μM) and PD (5 μM) diluted in 

DMSO totalling 0.1% of the medium volume. For control experiments performed 

without the presence of TZ and PD, KSFMc with 0.1% DMSO (v/v) was added as a 

vehicle control. After 24 h, medium was replenished with KSFMc with PD (5 μM) 

for differentiation-induced cells, or with 0.1% (v/v) DMSO for control cells. For 

later time-points, medium was changed as at 24 h after another 48 h (72 h total), 

and again after another 48 h (120 h total). All differentiation experiments were 

performed after four or five routine passages of 1:2 split of cells after an initial 

split of 1:6 from freshly isolated cells.  

 

2.3.5 Fixation of Cultured Cells in Formaldehyde 

Cells were cultured in 10 cm PrimariaTM dishes (SLS, Cat # 353803) and treated 

with 7 mL medium containing required compounds. Dishes were placed on an 

orbital shaker and 189 μL of 37% (w/v) formaldehyde added drop-wise directly to 

the medium to a final concentration of 1%. After 10 min, cross-linking was 

quenched by addition of 798 μL 125 mM glycine to a final concentration of 12.5 

mM, followed by incubation for 5 min. Cells were rinsed and scrape harvested in 

PBS and then transferred to 15 mL centrifuge tubes. Cells were pelleted by 

centrifugation at 800 g for 5 min, and the supernatants thoroughly aspirated and 

cell pellets stored at -80 oC until use.  

 

2.3.6 Transfection of NHU cells with siRNA 

NHU cells were cultured 25 cm2 PrimariaTM flasks to 70-80% confluence. For each 

dish, 30 μL of 20 μM relevant siRNA oligomers (Materials and Methods 1.7.3) 

were mixed with 3 mL KSFM medium without supplements and incubated for 10 

minutes. 9 μL oligofectamine (Life Technologies, Cat # 12252-011) was mixed with 

36 μL KSFM without supplements, then mixed with the siRNA from the previous 

step, and then incubated for 20 minutes. Oligofectamine forms stable complexes 

with oligonucleotides which the cell imports, allowing their interaction with the 

RNAi machinery and subsequent degradation of target mRNA.  

The siRNA was diluted to 3 mL with KSFM without supplements to give a final 

siRNA concentration of 200 nm. Medium was aspirated from NHU cells and they 
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were then washed with 3 mL KSFM without supplements, before adding the 

siRNA. Cells were placed in the 37oC incubator (5% O2) for 7 h.  

After incubation cells were mixed with 1.3 mL medium containing supplements at 

three times the normal dilution, and either TZ (3 μM) and PD (3 μM) or 0.3% 

DMSO for 24 h. For cells cultured for 72 h, medium was replaced with 3.3 mL 

KSFM containing the normal dilution of supplements and 1 μM PD in the case of 

TZ and PD treated cells, or 0.1% DMSO in the case of DMSO treated cells.  

 

2.4 Western Blotting 

2.4.1 Protein Harvesting  

Culture medium was aspirated and cells washed twice briefly with 3-5 mL cold 

PBS before aspirating PBS. Cells were scrape-harvested in 50 μL 2% (w/v) SDS 

western blot buffer per ~2 X 106 cells and transferred to a 1.5 mL micro-centrifuge 

tube.  

Cell material was sonicated on ice for 2 X 10 s, with a 10 s rest between bursts, 

using a Branson Sonifier set to 25 W, 40% amplitude. Whole cell lysate was left to 

chill for 30 min on ice before centrifuging at 18,000 g for 30 min in a centrifuge 

chilled to 4oC. Supernatant was removed to fresh micro-centrifuge tube(s) and 

stored at -80oC until use.  

 

2.4.2 Coomassie Assay  

The protein content of sodium dodecyl sulfate (SDS) free samples was determined 

using the Coomassie protein assay reagent kit (Pierce, Cat # 23236), which is a 

colorimetric variant of the Bradford assay. Coomassie reagent donates an electron 

to proteins in the solution being measured, and then binds non-covalently the 

hydrophobic pockets exposed by the disruption of tertiary structure caused by the 

electron donation. Under acidic conditions the reagents’ absorbance spectrum is 

shifted by this binding, allowing detection of a colorimetric change in the solution. 

To achieve this, protein samples were diluted 1:12.5 in H2O, and 10 µL of each 

sample aliquoted in duplicate into a 96-well plate with 200 µL Coomassie reagent.  

Absorbance of sample at test (570 nm) and reference (630 nm) wavelengths was 

measured using a MRX II 96-well plate spectrophotometer (Dynex).  Samples 
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were measured alongside bovine serum albumin (BSA) (Pierce, Cat # 23210B) 

diluted to concentrations ranging from 0 to 1000 µg/mL in H2O. The Revelation 

software package (Dynex) was used to plot BSA standard curve and calculate the 

R2 value for the concentration range.  The average of duplicate absorbance 

readings from each sample was used to estimate the protein concentration by 

comparison with the BSA standard curve. 

 

2.4.3 BCA Assay 

Where protein samples containing SDS, but without DTT, needed to be quantified, 

the bicinchonic acid (BCA) assay was used. The BCA assay uses the reduction of 

Cu2+ to Cu1+ by protein in an alkaline medium (the biuret reaction) to generate a 

reaction with bicinchonic acid and the Cu+ ion, which changes its absorbance 

maxima after the reaction. BCA reagents were mixed with samples following the 

instructions in the BCA protein assay kit (Thermo Scientific, Cat # PN23227). 

Samples were then prepared and absorbance measured using the same approach 

as the Coomassie assay with the exception that the absorbance maxima measured 

was at 562 nm.  

 

2.4.4 SDS-PAGE and Western Blot 

Protein samples (20 μg as measured by Coomassie assay unless otherwise stated) 

were mixed with 4X lithium dodecyl sulfate (LDS) (Life Technologies, Cat # 

NP0007) and 10X reducing agent (Life Technologies, Cat # NP0004). Reagents 

were diluted to a final concentration of 1X with H2O into volumes suitable to fit 

into wells, and then heated to 70 oC for 10 min.  

Proteins were resolved by electrophoresis through 1 mm thick 10 or 15 well 4-12% 

Bis-Tris NuPAGE pre-cast polyacrylamide gels as required. 5 µL of All-Blue pre-

stained marker (BioRad, Cat # 161-0373) was run as a protein size marker. 4-12% 

Bis-Tris gels were run in 1X MOPS buffer (Life Technologies, Cat # NP0001-02) 

which gives maximum separation of proteins around 50 kDa. 500 μL antioxidant 

(Life Technologies, Cat # NP0005) was added to the inner chamber of the tank 

during electrophoresis, which was performed at 200 V for 50 minutes or until the 

running buffer reached the foot of the gel.  



 

36 
 

Chapter 2 

Gels were removed from casts, the gel from around the wells and foot removed, 

and then rinsed in H2O before equilibration in transfer buffer for 10 min. 

Polyvinyldifluoride (PVDF)  sheets (Millipore, IPVH20200) were cut to size and 

dipped in methanol to wet, rinsed in H2O and equilibrated in transfer buffer for 10 

min. Protein was transferred to PVDF by semi-dry transfer between fibre blotting 

pads (Life Sciences, E-PAGE™ Blotting Pads (Reusable), 8.6 cm x 13.5 cm, Cat # 

LC2101) and filter paper (Whatman Grade 1, 150 mM) at 30 V for 2 h, keeping the 

tank on ice. PVDF membrane was rinsed in Tris buffered saline (TBS) (pH 7.4). 

 

2.4.5 Antibody Labelling of Membranes and Scanning 

Before application of antibodies, all PVDF membranes with transferred protein 

were blocked for 1 h in 1:1 mixture of TBS (pH 7.4) and Odyssey blocking buffer 

(Li-CoR, Cat # 927-40000) which is optimised to reduce autofluorescence of the 

membranes at detection wavelengths of the Li-CoR scanner system. For specificity 

control, 680 or 800 nM Alexa tagged secondary antibody (Table 2.4.1) raised 

against the host of the primary antibody were diluted in 1:1 mix of TBS with added 

0.1% (w/v) Tween-20 (Sigma Aldrich, Cat # P9416) (TBST) and blocking buffer, 

and incubated with membrane for 1 h in the dark. Membranes were then washed 

four times for 5 min in TBST.  
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Antigen Supplier 

Antibody 

Clone or 

Catalogue # 

Host Production 

Dilution 

for 

Labelling 

PPARγ Santa Cruz Sc-7273 (E8) Mouse Monoclonal 1:500 

PPARγ2 
Sigma 

Aldrich 
P0744 Rabbit Polyclonal 1:500 

FOXA1 Santa Cruz Sc-6553 (C20) Goat Polyclonal 1:500 

Claudin 4 Zymed 32-9400 Mouse Monoclonal 1:1000 

Cytokeratin 13 AbNova mab 1864 Mouse Monoclonal 1:2000 

Beta Actin 
Sigma 

Aldrich 
A5441 Mouse Monoclonal 1:10,000 

Histone H3 
Cell 

Signalling 
4620 Rabbit Monoclonal 1:2000 

      

LAMP1 
R&D 

Systems 
AF4800 Sheep Polyclonal 1:1000 

Alexa 680 

conjugated anti-

Rabbit IgG 

Rockland 611-131-122 Goat Polyclonal 1:10,000 

Alexa 700 

conjugated anti-

mouse IgG 

Molecular 

Probes 
A10038 Donkey Polyclonal 1:10,000 

Alexa 700 

conjugated anti-

goat IgG 

Molecular 

Probes 
A21084 Donkey Polyclonal 1:10,000 

Table 2.4.1 Antibodies used for western blotting. All antibodies were diluted 

in a 1:1 mixture of TBS (pH 7.4) and blocking buffer (Odyssey). 

 

After incubation with secondary antibodies, membranes were then scanned on the 

Li-CoR Odyssey scanner (Odyssey CLx Scanner, LiCoR). The LiCoR uses laser 

excitation at 685 and 785 nm to stimulate emission from the Alexa-conjugated 

secondary antibodies and a scan-head with 700 and 800 nm filters to detect their 

respective emissions. Scans were analysed using Odyssey v1.1 software (Li-CoR).  
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Figure 2.4.1 Example secondary only control western blot. Eluates (Elu) from 

a Pierce Catch and release immunoprecipitation and 1 μL of anti-PPARγ 

antibody (81B8 clone) (Ab) were subjected to western blot and labelled with 

anti-mouse (700 nm, red) and anti-rabbit secondary (680 nm, green) 

antibodies as described in Materials and Methods 2.4. The eluates show no 

reactivity to the secondary antibodies, whereas the PPARγ antibody binds to 

the anti-rabbit antibody (green). LDR = protein size ladder.  

 

If no labelling was visible after secondary only control incubations, blots were 

used for labelling with primary antibodies, whereby membranes were mixed with 

primary antibody diluted in 1:1 mixture of TBST and incubated overnight at 4oC. 

Membranes were washed four times for 5 min each in TBST.  

Band intensities were measured using the Odyssey software by drawing boxes 

around the protein band to calculate densitometry following background 

subtraction using the median intensity of pixels on the left and right of the box out 

to three pixels each side. Densitometry of beta-actin protein was measured on the 

same blot for use as a loading control to normalise protein loading in each lane.  

 

2.4.6 Recycling western blot membranes 

If membranes required removal of bound antibodies before re-use with other 

antibodies, these were stripped by incubating for 30 min in high pH western blot 

recycling kit (Source Bioscience, Cat # 90100). After stripping, secondary 

antibody was applied and membrane scanned as above to confirm removal of 

primary antibodies.   
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2.5 Cell Extractions and Immunoprecipitation 

2.5.1 Nuclear Complex Co-IP Extracts 

The Nuclear Complex Co-IP kit (Active Motif, Cat # 54001) contains hypotonic 

lysis buffers, chromatin fragmentation and low-salt nuclear extraction buffers 

specifically developed for the extraction of protein-DNA complexes. The methods 

in the manufacturer’s manual were followed, and using the reagents supplied in 

the kit. Samples and centrifugation steps were maintained at 4°C or on ice unless 

otherwise stated.  

For nuclear extract preparation, buffers and inhibitors supplied in concentrated 

form were diluted to 1X with H2O fresh for each experiment. Cells were scrape-

harvested into the required volume of phosphate buffered saline (PBS) (Sigma 

Aldrich, Cat # p4417) containing the phosphatase inhibitors provided. The cell 

suspension was centrifuged at 300 g for 5 min and the cell pellet resuspended in 

hypertonic buffer (500 µL per 8.8 X 106 cells) for 15 min. After incubation, 25 µL 

of the provided detergent was added and the suspension centrifuged at 18,000 g 

for 30 s. The supernatant was retained as the cytoplasmic fraction. The pellet 

containing nuclei was suspended in 100 µL ‘Complete Digestion buffer’ with 

added 0.5 µL ‘Enzymatic Shearing Cocktail’, and incubated for 90 min. 2 µL 0.5 M 

EDTA was added to stop the enzymatic reaction and samples centrifuged for 10 

min at 18,000 g. The supernatant containing the nuclear fraction was transferred 

to pre-chilled micro-centrifuge tubes and the protein concentration calculated 

using the Coomassie protein assay (Materials and Methods 2.4.2). 

 

2.5.2  Millipore Catch and Release Immunoprecipitation 

The Millipore Catch and Release IP kit (Millipore Cat # 17-500) is supplied with a 

proprietary resin which reversibly binds a ligand with affinity for immunoglobulin 

domains of antibodies. This resin-ligand complex was mixed with antibody and 

200 μg (as measured by Coomassie assay) of protein-DNA complexes which had 

been extracted using the Nuclear Complex Co-IP kit diluted to 500 μL in Millipore 

“Wash Buffer”. Samples were kept at 4 oC or on ice unless otherwise stated and all 

centrifugation was carried out at 2000 g. 

The mixture was incubated in the provided spin-filter column for 90 min with 

end-over-end rotation. After incubation, the non-bound protein fraction was 

removed by centrifugation for 30 s. Resin-antibody-protein complexes were 
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washed by centrifuging with 6 x 400 μL of “Wash Buffer”, with 0.1 % (w/v) BSA in 

the first three washes to aid removal of non-specifically bound proteins. Antibody-

protein complexes were eluted by addition of 75 μL of “Denaturing Elution Buffer” 

with freshly added 5 % (v/v) 2-mercaptoethanol before centrifugation. 25 μL of 

eluates and non-bound fraction was used for western blotting as described in 

Materials and Methods 2.4.  

 

2.5.3 Pierce Direct IP 

The Pierce Direct IP kit (Pierce, Cat # 26148) utilises sodium cyanoborohydride to 

form a Schiff’s base between primary or secondary amines in the antibody and 

functionalised aldehyde compounds on the proprietary agarose resin. The agarose 

then retains the antibody after elution performed at or below 70oC. All wash steps 

were carried out by centrifugation in spin-filter columns at 1,000 g for 1 min, with 

centrifugation carried out at 4oC after immunoprecipitation. 

20 μL resin slurry was added to spin-filter columns and washed twice by 

centrifuging through 200 μL ‘Coupling Buffer’ before adding the desired amount 

of antibody in 200 μL ‘Coupling Buffer’. 5 M sodium cyanoborohydride was mixed 

with resin-antibody mixture and incubated for 2 hours at ambient temperature 

with end-over-end rotation. The reaction was quenched by mixing in ‘Quenching 

Buffer’. The agarose was then washed by centrifuging with 6 x 200 μL ‘Wash 

Solution’ and prepared for immunoprecipitation by washing with 3 x 200 μL ‘IP 

Wash Buffer’.  

Agarose-antibody complex was mixed with 200 μg of chromatin extract obtained 

with Nuclear Complex Co-IP kit diluted to 500 μL in ‘IP wash’ buffer. The mixture 

was incubated for 90 min at 4oC with end-over-end rotation. Unbound proteins 

were removed by centrifugation and retained. Agarose-antibody-protein 

complexes were washed by centrifuging with 5 x 400 μL ice-cold ‘IP wash buffer’, 

and then 1 x with pH neutral ‘Conditioning Buffer’ before elution of the bound 

protein at ambient temperature in 25 μL low-pH ‘Elution Buffer’. A further 50 μL 

‘Elution Buffer’ was added to the agarose for 10 min at ambient temperature, and 

then the buffer collected by centrifugation. 25 μL of eluates and non-bound 

fraction was used for western blotting as described in Materials and Methods 2.4.  
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2.5.4 Antibodies used for Immunoprecipitation from Co-IP Nuclear 

Extracts 

When using the Millipore Catch and Release system, specified amounts or 

dilutions of antibodies were incubated directly in 200 μg of protein-DNA extracts 

diluted to 500 μL. When using the Pierce Direct IP kit, the amount of antibody 

bound to the agarose was based on the final immunoprecipitation volume 

concentration. Antibodies used are detailed in Table 2.3.4.1. 

As a control for immunoprecipitation of proteins which bind to immunoglobulin G 

(IgG) proteins, parallel precipitations were performed using anti-IgG antibodies 

and the eluates analysed alongside those of target antigens.  

Antigen Supplier 

Antibody 

Clone or 

Catalogue # 

Amount 

per IP 
Host Production 

PPARγ 
Cell 

Signaling 
81B8 1:50 Rabbit Monoclonal 

Normal Rabbit 

IgG 
Santa Cruz Sc-2027 2 μg Rabbit Polyclonal 

Table 2.5.1. Antibodies used for immunoprecipitation. Cell Signaling 

provide antibodies in solution without giving the concentration of the 

antibody, instead giving a recommended dilution at which to use for 

particular. As such, when using the Pierce Direct IP kit, if the 

immunoprecipitation was to be performed in 500 μL volume then 10 μL 

of antibody solution was bound to the agarose.  

 

2.5.5 Western Blots of Immunoprecipitations  

Western blots were always performed using antibodies which were not raised in 

the same host as the antibody used for immunoprecipitation to prevent bands 

from anti-host secondary antibodies appearing on membranes and confounding 

results (Figure 2.4.1).  
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2.6 Cytoskeletal (CSK) Extractions 

2.6.1 Sequential CSK-NaCl extraction 

Nuclear receptor proteins have been shown to have differential resistance to 

extraction by salt concentrations depending on their ligand-bound or 

transcriptional status (62). Using buffers containing detergent to perforate the cell 

membrane and salt of increasing concentrations to draw out the proteins across 

an osmotic gradient, isoforms of proteins have been shown to be differentially 

extracted, implying occupation of alternative functional compartments within the 

cell such as the nuclear matrix or chromatin (63). These buffers are known as 

cytoskeletal (CSK) buffers, as they were originally designed to extract all cell 

contents but the cytoskeleton.  

CSK buffers were made to recipes described in Ainscough et al (64). Sodium 

chloride (NaCl) concentrations were variable and are described for each step. CSK 

buffer contained 0.1% v/v Triton-X100 (Sigma Aldrich, Cat # 93443) unless 

stated.  For extractions, cells were cultured in 10 cm dishes were rinsed twice with 

ice-cold PBS and scrape harvested in 1 mL CSK buffer with 0.1 M NaCl, no 

detergent and freshly added 0.1 mM ATP with 1:500 protease inhibitors (Sigma 

Aldrich, Cat # P8340), 1 mM DTT and 1 mM PMSF. Cells were transferred to 15 

mL centrifuge tubes along with remaining cell material harvested from dishes in 

another 3 mL of buffer. Cells were centrifuged at 4oC for 5 min at 300 g. 

Supernatant was discarded and cells re-suspended in 100 μL CSK with 0.1 M NaCl 

and 0.1% (v/v) Triton-X100, then incubated on ice for 5 min, then gently pipetted 

up and down five times using a cut-end 20-200 μL pipette tip. Cells were 

centrifuged at 8,000 g for 2 min, and supernatants retained. Incubations were 

then repeated with CSK buffers containing 0.1% Triton-X100 and sequentially 

increasing NaCl concentrations of 0.2 M, 0.4 M, 0.5 M, 1 M and 2 M. After the 

final incubation, the cell pellet was washed briefly without disruption in CSK with 

0.1 M NaCl and no detergent. Pellet was then re-suspended in either 100 μL 2% 

(w/v) SDS western blot buffer or 100 μL CSK buffer with no added NaCl or 

detergent.  

Cell pellets solubilised in SDS were then sonicated as for whole cell extracts taken 

for western blotting (Materials and Methods 2.4.1). Cell material in CSK buffer 

was pre-mixed with 4X LDS buffer, 10X reducing agent solution and H2O to a 

final volume of 160 μL with buffers diluted to 1X. Cell pellets in CSK were 

sonicated as for SDS samples, but with centrifugation at ambient temperature for 
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10 min as chilled centrifugation was not required to remove SDS. For western 

blotting, protein from pellets taken in SDS were prepared as whole cell extracts 

with the exception that 10 μg protein rather than 20 μg protein was loaded as 

higher inputs appeared to affect the quality of electrophoresis, possibly due to the 

high salt content of the pellets. For cell material taken in CSK buffer, 10 μL of the 

final 160 μL volume after dilution in LDS and reducing agents was heated to 70oC 

for 10 minutes and loaded onto western blots.   

2.6.2 CSK-DNase Extractions 

Although CSK extraction using high salt can reveal which proteins which have 

high affinity for the nuclear compartment, this does not discern if the protein is 

bound primarily to the DNA or is in complex with the structural proteins of the 

nucleus. To shed light on whether the proteins with high resistance to extraction 

(>0.5 M NaCl) were bound primarily to the DNA or the structural elements of the 

nucleus, cells were pre-extracted with CSK buffer with detergent and 0.5 M NaCl, 

and then incubated with the nuclease DNaseI to digest DNA before re-extraction 

of solubilised DNA and protein with CSK buffer with detergent and 0.5 M NaCl. 

Therefore if the protein is part of a complex bound only to the DNA and not the 

nuclear matrix then it should be released when the DNA is digested.  

CSK buffer was prepared as for sequential extractions, except that aliquots with 

NaCl and detergent had 0.1% Triton-X100 and 0.1 M or 0.5 M NaCl, or 0.2% 

Triton-X100 and 1 M NaCl.  

Three dishes were prepared per time-point, one for NaCl extraction and one each 

for DNaseI and control extractions to be performed with and without enzyme 

respectively. Cells were cultured as required, then scrape-harvested and the first 

incubation performed in CSK with 0.1% Triton-X100 and 0.1 M NaCl, all as CSK-

NaCl extractions.  

After first extraction, the second incubation was performed with CSK with 0.1% 

Triton-X100 and 0.5 M NaCl. After harvesting supernatants, two pellets were then 

re-suspended in 50 μL 1X DNaseI buffer (Cambio, Cat # D9902K) with or without 

a 1:30 dilution of DNaseI enzyme (Cambio, Cat # D9902K) and incubated at 25oC 

for 30 min. Meanwhile, the remaining pellet was re-suspended in 100 μL CSK 

buffer with no added NaCl or detergent and prepared for western blotting as CSK-

NaCl pellets. After incubation, the two other pellets were mixed 1:1 with CSK with 

0.2% Triton-X100 and 1 M NaCl, and then incubated on ice for 5 min. The cell 
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suspension was then gently pipetted up and down 5 times with a cut-end 20-200 

μL pipette tip before centrifugation and collection of supernatants. Pellets were 

then prepared for western blotting in CSK buffer as previous pellets. Supernatants 

and pellets were prepared for western blotting as for CSK-NaCl extractions.  

 

2.6.3 Indirect Immunofluorescence Confocal Microscopy 

Cells were seeded onto 12-well glass slides (CA Hendley, Cat # PH-057) in 50 μL 

droplets at 1x105 cells per mL Cells were left for 4 h to attach, and chambers of 

Heraeus boxes (Greiner, Cat # 96077308) flooded with 7 mL of appropriate 

medium. Cell were then cultured until 70-80% confluent and treated as required. 

To maintain structural integrity of cells after fixation to allow 3D confocal 

microscopy to be performed, cells were fixed in 1:1 mixture of methanol: acetone 

for 30 s before sequentially adding 1:1 methanol: acetone diluted with 25, 50 and 

75 % PBS for 30 s each. Cells were then rinsed twice with PBS and transferred into 

fresh Heraeus boxes, and kept in PBS.  

Immunolabelling was performed immediately after fixation. Appropriate primary 

antibodies (Table 2.6.1) were prepared by diluting in TBS with 0.1% w/v bovine 

serum albumin (BSA). Wells on slides were surrounded by liquid repellent grease 

(Dako Pen, Dako, Cat # S2002) to contain liquid within individual wells. Slides 

were tapped to remove PBS and 20 μL spots of antibody solution or TBS added to 

wells. In experiments where cellular differentiation had been induced, positive 

control antibodies targeting markers of differentiation were included to test for 

presence or localisation of differentiation markers. 

Antibodies were incubated overnight at 4oC, and then slides were rinsed in PBS 

before 3 X 5 min washes in PBS on an orbital shaker. Slides were tapped to 

remove excess PBS and relevant secondary antibodies (Table 2.6.1) at pre-titrated 

dilutions were added in 25 μL drops to each well, and then incubated for 1 h at 

ambient temperature in the dark to protect fluorophores from UV light. Slides 

were rinsed and washed in PBS as before, and then incubated for 5 min on an 

orbital shaker with slides immersed in PBS with 0.1 μg/mL Hoechst 33258 to 

stain nuclear DNA. Slides were washed 1 X 5 min in PBS on an orbital shaker and 

then rinsed in ddH2O. Slides were covered in antifade solution and mounted with 

glass coverslips. 
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Antigen Supplier 

Antibody 

Clone or 

Catalogue # 

Host Production 

Dilution 

for 

Labelling 

PPARγ GlaxoSmithKline P&A53.25 Mouse Monoclonal 1:400 

AQP3 Santa Cruz 9885 Goat Polyclonal 1:100 

Alexa 594 

anti-Mouse 

IgG 

Molecular 

Probes 
A-11005 Donkey Polyclonal 1:500 

Alexa 488 

anti-Goat 

IgG 

Molecular 

Probes 
A11055 Donkey Polyclonal 1:500 

Table 2.6.1 Antibodies used for confocal microscopy.  

 

Microscopy was carried out on an LSM 710 instrument (Zeiss), fitted with 

appropriate lasers (488, 555 and 594 nm) for antibody fluorophore excitation and 

the x60 objective lens used. Although secondary antibodies were chosen to avoid 

cross-over of excitation and emission spectra (Alexa 488, 555 and 647 fluorophore 

conjugated secondary antibodies), further care was taken by optimising the 

instrument to avoid acquisition of emissions from wavelengths with potential for 

bleed-through.  Each fluorophore was excited separately and individual images 

taken and merged as a single image. Secondary antibody only (no primary) 

controls were included with each experiment to ascertain if significant non-

specific adsorption of secondary antibodies was occurring (Figure 2.6.1). 

 

Figure 2.6.1. NHU cells extracted with 

CSK buffer containing 0.5 M NaCl 

prepared for immunofluorescence. Cell 

prepared as described above with only 

secondary antibodies (anti-mouse 594 

nm and anti-goat 488 nm) applied. Cells 

show weak background at 594 nm, and 

none at 488 nm.  
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2.7 Genomics 

2.7.1 RNA purification 

Cells were cultured in 25 cm2 flasks, and at the relevant time points were rinsed 

with phosphate buffered saline (PBS). 3 mL of TrizolTM solution was added to 

flasks and left to incubate on a rocking platform for 5 min before scrape-

harvesting and transferring to a diethylpyrocarbonate (DEPC) treated 12 mL 

centrifuge tube. RNA was isolated in the aqueous phase following partition 

induced by the addition of 0.6 mL chloroform. The upper, aqueous phase was 

withdrawn after centrifugation at 12,000 xg for 30 min at 4oC. 1.5 mL isopropanol 

was added to the aqueous phase and the tube was incubated at ambient 

temperature for 10 min. RNA was precipitated by centrifugation at 12,000 xg for 

20 min at 4oC. Isopropanol was aspirated and the RNA pellet washed by vortexing 

in 3 mL 75% ethanol before centrifugation at 7,500 g for 5 min at 4oC. Ethanol 

was aspirated and the pellets air-dried. Pellets were re-suspended in 900 μL 

nuclease-free H2O, then mixed with 100 μL 3 M sodium acetate solution in 1.5 mL 

microcentrifuge tubes. Samples were incubated at -80oC for 1 h and centrifuged at 

18,000 g for 30 min at 4oC. Supernatant was removed and pellets washed with 

500 μL 75% ethanol. Pellets were air-dried and re-suspended in 30 μL nuclease-

free H2O. DNA was digested by mixing with 3.3 μL 10X DNaseI buffer and 1 μL (2 

U/μL) DNaseI enzyme from Ambion DNA-free kit (Life Technologies, Cat # 

AM1906). Samples were incubated for 30 minutes at 37oC. 3.3 μL DNase 

inactivation reagent was mixed into samples before incubation at ambient 

temperature for 2 min. Samples were centrifuged at 8,000 g for 90 s to pellet the 

DNase inactivation reagent and the supernatant removed to a fresh tube and 

retained as the purified RNA fraction. 1 μL (40 U/μL) of RNAseOUT (Life 

Technologies, Cat # 10777-019) was mixed into samples to prevent degradation of 

RNA by RNases.  

 

2.7.2 cDNA Synthesis with Random Hexamers 

Complementary DNA (cDNA) was synthesised from purified mRNA by second 

strand synthesis by the use of reverse transcriptase and random 6-mer primers to 

the RNA template from the SuperScript® II First Strand Synthesis Kit (Life 

Technologies, Cat # 18064-014). 1 μg of DNase treated RNA was mixed with 1 μL 

(50 ng/μL) random hexamers and nuclease-free H2O in a final volume of 10 μL. 

Samples were incubated at 65oC to anneal primers to RNA. To each sample the 
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following volumes of reagents from the kit were added: 2 μL 10X RT buffer, 4 μL 

25 mM MgCl2, 2 μL 0.1 M DTT and 1 μL dNTP mix. Samples were incubated at 

25oC for 2 minutes.  As a control for the presence of contaminating DNA, two of 

each sample was prepared and at this stage one sample mixed with 1 μL (50 U/μL) 

of Superscript II reverse transcriptase, and the other with 1 μL nuclease-free H2O. 

Samples were then incubated at 25oC for 10 min followed by 50 min at 42oC to 

allow the reverse transcription process to occur, and then heated to 70oC for 15 

min to inactivate the enzyme. Where required, 1 μL RNase H (2 U/μL) was added 

to samples to improve PCR efficiency over long templates by degrading the RNA: 

cDNA complexes. Samples were then used neat for RT-PCR reactions. 

 

2.7.3 Polymerase Chain Reaction 

PCR was performed using a T100 thermal cycler (BioRad) and the GoTaq reagent 

kit (Promega, Cat # M5005).  PCR reactions were made to total volumes of 20 μL 

to the manufacturers recommended recipe, with 2 μM of sense and antisense 

primers, 2.5 mM MgCl2, and nuclease-free H2O. The amount of DNA included 

depended on the experiment being performed. DNA was denatured by heating to 

95oC for 5 minutes, followed by the desired number of cycles of amplification with 

set to denature for 30 s at 95oC, anneal at optimal temperature  

DNA was denatured for 2 minutes at 94oC followed by 35 cycles of denaturation 

for 30 seconds at 94oC, annealing for 30 seconds at 50-65oC (depending on 

optimal temperature for primer) and 1 minute/kb DNA at 72oC for extension.  A 

final elongation phase of 10 minutes at 72oC was followed by incubation at 4oC.  

2.7.4 Gel Electrophoresis 

Isolated DNA was visualised under UV light after separation by gel 

electrophoresis.  Electrophoresis grade agarose was boiled in 1x Tris-Borate-EDTA 

(TBE) buffer and cooled to 50oC before adding 1/10,000 (v/v) GelRed (Cambridge 

Bioscience, Cat # BT41003), which fluoresces under UV light when it intercalates 

with double stranded DNA. Gels were cast and allowed to set PCR products, 

diluted 1:5 (v/v) in Blue/Orange loading dye (Promega, Cat # G1881), and 

Hyperladder I or IV (Bioline, Cat # BIO-33029 and BIO-33025 respectively) were 

electrophoresed on the gel submerged in 1x TBE at 5V/cm for required amount of 

time to resolve bands.  Gel images were captured digitally using a Gene Genius Gel 

Imaging System (Syngene) with GeneSnap software.   
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2.7.5 Primer Design and Optimisation 

Primers were designed against target regions using the National Center for 

Biotechnology Information (NCBI) primer-BLAST tool with default settings 

applied and target Tm of 60oC (http://www.ncbi.nlm.nih.gov/tools/primer-blast/).  

Primers were subjected to gradient PCR in the presence of template human 

genomic DNA (Roche, Cat # 11691112001) for ChIP based experiments (Figure 

2.7.1), or 3C / HiC libraries for chromosome conformation capture (Figure 2.7.2).  

 

Figure 2.7.1. PCR gradients for ChIP primers. Primers targeting regions 400-

600 bp upstream from the transcription start sites of CLDN6 and GAPDH 

were subjected to 28 cycles of PCR in the presence of 200 ng template human 

genomic DNA. Wells labelled 1-8 were subjected to annealing temperatures 

of 55oC, 56.4oC, 57.8oC, 59.2oC, 60.7oC, 62.2oC, 63.5oC and 65oC respectively. 

No template control reactions were run in parallel as negative controls. 60oC 

was chosen as the annealing temperature for both sets of primers (sequences 

in Materials and Methods 2.7.5.3).  
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Figure 2.7.2. PCR gradient for HiC primers. Chromosome conformation 

capture was performed on NHU cells and 500 ng of DNA subjected to 34 

cycles of PCR. Wells 1-12 were subjected to annealing temperatures of 55.1oC, 

55.5oC, 56.3oC, 57.7oC, 59.4oC, 61.4oC, 63.3oC, 65.3oC, 67.6oC, 69.0oC, 69.7oC 

and 70.2oC respectively. 69oC was chosen as the optimal temperature for this 

set of primers targeting two potential interacting regions around the GAPDH 

locus. Primer 1: 5’-CAAGCATTCCTGGGGTGGCA-3’, Primer 2: 5’-

TGCAGCATCTCCTTACCCCCAGGA-3’.  

 

2.7.6 siRNA oligomers 

siRNA was purchased from MWG Eurofins. PPARγ2 siRNA sequence: 5’- 

AACUCUGGGAGAUUCUCC-3’, PPARγ1/2 siRNA sequence: 5’-

GAAGACAUUCCAUUCACAA-3’, control luciferase sequence: 5’-

CGUACGCGGAAUACUUCGA-3’. siRNA sequences were checked against the 

human genome assembly hg19 using ensembl (www.ensemble.org). After 

substituting uracil for thymine, both sequences were observed to match their 

intended targets in exon 1 and 2 for PPARγ1 and PPARγ1/2 respectively (Figure 

1.7.3). Firefly luciferase sequence is used as a control for the oligonucleotide 

transfection process as it has little homology to any part of the human genome, 

and thus should not interfere significantly with the expression of known genes 

(65). Although nonspecific effects have been observed in some circumstances (66), 

inclusion of a nonspecific control as such controls for cell systems prone to 

reactions to the presence of double stranded RNA. Luciferase sequence used 

matches that used by Sakurai et al (67). 
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Figure 2.7.3. siRNA targets exons of PPARγ. Transcript name PPARG-002, 

with siRNA targets underlined in red. Image from www.ensemble.org 

retrieved using build hg19 of the human genome.  

 

2.7.7 RNA-seq 

Whole RNA from differentiated and control NHU cells at 24 and 144 h in three 

donor lines was isolated for massively-parallel sequencing. RNA was quantitated 

and a 1 μL  aliquot of 1 μg / μL RNA was electrophoresed on a Bioanalyzer 

(Agilent), using the RNA integrity number (RIN) interpretation of electrophoretic 

trace features as a guide to RNA quality (68).  

 

2.7.8 High-throughput Chromosome Conformation Capture (HiC) 

Chromosome conformation capture (3C), first described by Dekker et al (69) aims 

to probe the DNA interactions by ligating together regions of DNA which were 

interacting as part of the same protein-DNA complex at the time of fixation. This 

allows the long-range interactions of the genome to be analysed, furthering 

understanding of the compartmentalisation of the genome and how regions of 

genes are transcribed in a co-ordinated manner.  

High-throughput 3C (HiC) aims to describe these interactions across the whole 

genome by utilising next-generation sequencing. To achieve ligation of separate 

but interacting DNA strands, DNA is digested with an enzyme which cuts every 

few kb and leaves complementary overhangs as for standard 3C. In HiC, these 

overhangs are filled in with nucleotides including a biotinylated cytosine and then 

randomly re-ligated. This is done because sequencing a standard 3C library would 

result in very low numbers of reads which originated from ligated DNA, as they 

are relatively rare within the overall DNA sequence. Incorporation of biotin 

enables affinity purification of the ligated DNA, thus vastly increasing the 

information yield per number of sequenced bases.  



 

51 
 

Chapter 2 

Protocols used here were developed based on the supplementary methods of the 

HiC publications by Belton et al (70) and Lieberman-Aiden et al (71).  

 

 Cell Lysis and Chromatin Digestion with HindIII 2.7.8.1

To construct HiC libraries, DNA was first extracted by lysing cells and then 

digested with the nuclease HindIII. Pellets of approximately 24 x 106 scrape-

harvested, formaldehyde-fixed cells (combined pellets of 6 x 10 cm diameter 

dishes at 4 x 106 per 10 cm dish) from each experimental time-point stored at -

80oC were thawed and re-suspended in 1 mL lysis buffer  with 1:500 protease 

inhibitors (Sigma Aldrich, P8340).  

To separate the nuclei from the cell debris, the cell lysate was incubated on ice for 

15 min and then passed through a 21-gauge needle 10 times before transfer to a 1.5 

mL micro-centrifuge tube and centrifuged at 2,000 g for 5 min. The supernatant 

was discarded and the pelleted cell material was washed in 500 μL ice-cold 

NEBuffer 2. The suspension was then pelleted for 5 min at 2,000 g at ambient 

temperature, then the supernatant discarded and the previous wash repeated. The 

pellet was re-suspended in NEBuffer 2 so that the final volume of pellet plus 

buffer was 260 μL and then split into 5 x 50 μL aliquots in 1.5 mL micro-

centrifuge tubes.  

To remove proteins not cross-linked to DNA, 312 μL NEBuffer 2 and 38 μL 1 % 

SDS was added to each tube, and then mixed carefully to avoid foaming. Samples 

were incubated for 10 min at 65oC for 10 min and then immediately placed on ice. 

44 μL of 10% Triton-X100 was added to each tube to allow SDS and Triton-X100 

to form mixed micelles and remove SDS from proteins. 400 units HindIII enzyme 

(NEB, Cat # R0104T) were added to each tube and samples incubated at 37oC 

overnight on a rocking platform.  

 

 Fill-in of DNA Overhangs and Ligation 2.7.8.2

To the four tubes destined for HiC, the components in Table 2.7.1 were added to 

catalyse the incorporation of nucleotides into the 5’ overhangs left by the HindIII 

digestion. To enable downstream assessment of sequences present at ligation 

junctions which had or had not been filled in, 60 μL H2O was added to one tube in 

place of other reagents so that no filling in of complementary overhangs would 
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occur. This procedure is the same as that used in the standard 3C protocol where 

the nuclease-digested DNA ends are ligated together without the incorporation of 

nucleotides.    

 

End-Fill Master Mix Supplier Cat # 1 x Reaction 

Nuclease-free H2O Promega P1193 2.0 μL 

10x NEBuffer 2 NEB B7002S 6.0 μL 

10 mM dATP Life Technologies 10297-018 1.5 μL 

10 mM dGTP Life Technologies 10297-018 1.5 μL 

10 mM dTTP Life Technologies 10297-018 1.5 μL 

0.4 mM biotin-14-dCTP Life Technologies 19518-018 37.5 μL 

5 U/ μL Klenow Fragment NEB M0212L 10.0 μL 

Table 2.7.1 Components of reaction for HiC fill-in of overhangs after HindIII 

digestion.  

 

Samples were incubated at 37oC for 75 min with mixing by inversion every 15 min, 

and then placed on ice. 96 μL 10% SDS was added to all tubes and mixed carefully 

to avoid foaming. Samples were incubated at 65oC for 30 min and placed on ice.  

To facilitate ligation of DNA ends which were part of the same complex at the time 

of fixation, and not simply proximal to one another by chance in solution, samples 

were transferred to 15 mL centrifuge tubes and mixed with 7.58 mL ligation 

buffer. 50 μL of 1 U/μL T4 DNA ligase (NEB, Cat # M0203L) solution was added 

to HiC samples, and 10 μL added to 3C samples. More ligase was added to HiC 

samples as the blunt-end ligation is less efficient than that between 

complementary overhangs. Samples were incubated at ambient temperature 

overnight.    

 

 Reversal of Cross-Links and Purification of DNA 2.7.8.3

To remove protein and recover DNA from fixed complexes, 50 μL of 10 mg/mL 

proteinase K solution was added before incubation at 65°C overnight. Another 50 

μL of proteinase K solution was then added to each tube and incubation continued 

for a further 2 h. Tubes were cooled to ambient temperature and the contents 

transferred to 50 mL conical tubes. DNA was extracted by twice adding two 

volumes of a 1:1 mixture of saturated phenol (pH 8.0):chloroform to each tube, 
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vortexing for 30 s and spinning at 3,000 x g for 10 min. Aqueous phases from 

matched HiC or 3C time-points were retained and mixed in fresh 50 mL tubes. 

Volumes were brought up to 40 mL with TE buffer for HiC samples and 10 mL for 

3C samples. 1/10 volume of 3 M sodium acetate (pH 5.2) was added and mixed. 

2.5 x volume of ice-cold ethanol was added to samples, before inverting several 

times to mix well. Samples were split over several 13 mL centrifuge tubes designed 

to withstand centrifugation >10,000 x g (Sarstedt, Cat # 55.518) and incubated at 

-80oC for 1 h. Tubes were spun at 12,000 x g and throughout for 20 min at 4oC. 

Supernatants were carefully discarded so as not to dislodge pellets. HiC pellets 

were-recombined into the same 2 mL of TE buffer, or 1 mL for 3C sample, and 

placed in a fresh 15 mL centrifuge tube. Samples were mixed 1:1 with phenol (pH 

8.0): chloroform and then vortexed for 1 min and centrifuged at 2,500 g for 5 min 

at ambient temperature. The aqueous phase was transferred to a fresh 15 mL 

centrifuge tube and mixed with 1/10 volume 3 M sodium acetate (pH 5.2). 2.5x 

volume of ice-cold ethanol was added, and sample mixed before and transferred to 

1.5 mL micro-centrifuge tubes. Samples were incubated at -80oC for 30 min, and 

then spun at 18,000 g for 30 min at 4oC. Supernatants were discarded and pellets 

air-dried. Pellets from the same time-point were combined by re-suspending in 

the same 500 μL TE. Each sample was loaded onto a 30 kDa spin-filter (Millipore, 

Cat # UFC503096) and volume reduced by centrifugation at 18,000 g for 10 min. 

Flow-through was discarded and 450 μL TE centrifuged through as before another 

three times. DNA was recovered by inverting the filter in a fresh collection tube 

and spinning for 2 min at 18,000 g. Volumes of HiC samples were adjusted to 100 

μL, and those of 3C samples to 25 μL, using TE buffer. 2 μL RNAse A (1 mg/mL) 

was added to each sample, before incubation at 37oC for 30 min. 5 μL aliquots 

were taken and stored at -20oC. Remaining DNA was stored at -80oC.  

 

 Library Quality Control – Library Size Distribution and PCR 2.7.8.4

Digest 

DNA was quantitated by absorbance at 260 nm on a Nanodrop N-8000 

spectrophotometer. 500 ng of each library was electrophoretically separated on a 

0.75 % agarose gel. Libraries were expected to run as bands around 10 kb, with as 

little smearing towards smaller fragment sizes as possible. Smearing of DNA was 

compared to that in the supplementary methods of Lieberman-Aiden et al (71) as 

a benchmark.   



 

54 
 

Chapter 2 

To assess success of biotin incorporation at ligated junctions, digestion of a PCR 

product was performed. After HindIII digestion of the DNA, the cut-ends which 

are closer together are more likely to be part of the same complex and re-ligate to 

one another, but these may still be many kilobases apart on the genome. As 

ligation in HiC is done as a blunt-end ligation after filling in overhangs, the 

orientation of the strands can be reversed. This reversal of strand orientation at 

re-ligation sites allows primers to be designed against the reference genome in the 

sense orientation directly upstream of two HindIII recognition sequences which 

will only result in a PCR product in the case of a successful ligation. Successfully 

filled-in HiC samples will have altered sequence at the ligation junction, which 

should cleave in the presence of NheI enzyme as opposed to HindIII.  

Primers were designed around two HindIII sites near the GAPDH locus, which is 

likely to have open chromatin amenable to digestion and ligation because GAPDH 

is constitutively expressed in all human cell types tested (72). Primers were 

designed using PrimerBlast with the sequence downstream from the HindIII 

recognition site reversed to allow primers to be designed against the intended 

target sequence which would be produced upon ligation of the target HindIII 

junctions.  

500 ng DNA was added to each PCR reaction and to ensure sufficient yield of PCR 

product for digestion, eight reactions were performed for each time-point. 34 

cycles of PCR were performed using the Go-Taq hot start polymerase (Promega, 

Cat # M5001) PCR kit, with the reagents detailed in Table 2.5.2. 

Component Supplier 
Catalogue 

# 
Volume 

500 ng HiC / 3C DNA N/A N/A As required 

5X GoTaq Buffer (Green) Promega M5001 4 μL 

10 mM dNTP mix Life Technologies 10297-018 0.4 μL 

25 mM MgCl2 Promega M5001 2 μL 

Forward primer (100 mM) MWG Eurofins Custom 2 μL 

Reverse primer (100 mM) MWG Eurofins Custom 2 μL 

GoTaq polymerase Promega M5001 0.1 μL 

Nuclease-free H2O Promega P1193 

Sufficient to bring 

final volume to 20 

μL 

Table 2.7.2. GoTaq PCR components. 
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PCR was performed on a thermal cycler (Bio-Rad T100) under the conditions 

outlined in Table 2.7.3. 

Step  Temperature Time 

1 95oC 5 min 

 go to 2  

2 95oC 30 s 

3 60oC 30 s 

4 72oC 45 s 

 go to step 2 34 cycles 

 go to step 5  

5 72oC 5 min 

 go to step 6  

6 4oC Hold 

Table 2.7.3. HiC PCR protocol. 

 

The eight PCR products from the each time point were combined and purified 

using a Qiagen PCR purification kit to remove reagents, then resuspended in H2O. 

PCR products were incubated with HindIII, NheI, no enzyme or both enzymes to 

test digestion (Table 2.7.4).  

 Supplier 
Catalogue 

# 

No 

Enzyme 

(µL) 

HindIII 

(µL) 

NheI 

(µL) 

Both 

Enzymes 

(µL) 

PCR product N/A N/A 15.0 15.0 15.0 15.0 

10X NEBuffer 2 NEB B7002 1.9 1.9 1.9 1.9 

10 mg/mL BSA NEB B9001 0.19 0.19 0.19 0.19 

HindIII (1 U / 

μL) 
NEB R0104 --- 0.95 --- 0.95 

NheI (1 U / μL) NEB R0131 --- --- 0.95 0.95 

Nuclease-free 

H2O 
Promega P1193 1.9 0.95 0.95 --- 

Table 2.7.4. Components of nuclease digestion reaction for HiC PCR 

products. 

  

The digestion mixture was incubated for 2 hours and mixed with 6x loading 

buffer, and then electrophoresed on a 2% agarose gel until the digested and 

undigested bands could be resolved from one another. Images of the gel were 
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taken using a GeneSnap camera with a long-wave UV source lamp (Syngene). 

Intensity of cut and uncut bands in each digest lane were measured in the ImageJ 

(http://rsbweb.nih.gov/ij/) software (version 1.47) by taking the sum pixel 

intensity within a box of equal size drawn around all bands. Percentage efficiency 

of digestion was estimated by comparing the ratio of intensity from cut to uncut 

band. Typical efficiency reported in the literature for digestion of HiC bands by 

NheI is 20-30% (71), which was used as a minimum baseline for accepting 

libraries as successful. 

 

 Removal of Biotin from Unligated Ends 2.7.8.5

To remove unligated HindIII cut sites where biotin had been incorporated, 

exonuclease activity of Klenow polymerase was used to recede exposed DNA ends 

and thus remove biotin from unligated cut sites. 25 μg of HiC DNA was split into 

five tubes and each incubated with T4 DNA polymerase at 20oC for 4 hours with 

the reagents detailed in Table 2.7.5.  

 

 

Reagent Supplier Catalogue 

# 

Amount 

Hi-C DNA sample N/A N/A 5 µg 

10 mg/mL BSA NEB B9001 0.5 µL 

10X NEBuffer 2 NEB B7002 5 µL 

2.5 mM dATP 
Life 

Technologies 
10297-018 0.5 µL 

2.5 mM dGTP 
Life 

Technologies 
10297-018 0.5 µL 

3,000 U/mL T4 DNA 

polymerase 
NEB M0203 5 µL 

Nuclease free water Promega P1193 
Sufficient to bring final volume 

to 50 µL 

Table 2.7.5 Reaction components for removal of biotin from unligated ends.  

 

After completion of the reaction, 2 μL 0.5 M EDTA solution was added to stop the 

reaction. Samples were pooled into matched time-points and subjected to a 
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phenol: chloroform purification and clean-up on 30 kDa spin-filter columns as in 

Materials and Methods 1.7.4, with the exception that washes on filters were 

performed with nuclease-free water. Samples were recovered from spin filters and 

volumes brought to 105 μL.  

 

 HiC Library Sonication 2.7.8.6

Current generation high-throughput sequencing platforms are designed to process 

many relatively short read lengths (25-100 bp) in parallel. To demonstrate DNA 

interactions in HiC data, a sequence read must encounter the ligation junction. To 

make the 10 kb HiC libraries amenable to next-generation sequencing, samples 

were sheared to 150 bp on a Covaris S2 (Covaris) instrument with the parameters 

detailed in Table 2.7.6. After three cycles of sonication, the size-distribution of 

libraries was checked by electrophoretically separating 2 μL of the sample on a 2% 

agarose gel.  

Duty Cycle    10% 

Intensity    5 

Cycles per Burst   200 

Set Mode    Frequency sweeping 

Continuous degassing Yes 

Process time:     60 s  

Number of cycles   3 – 4 

Table 2.7.6 Covaris S2 settings for HiC library sonication. 

 Size Fractionation of Libraries 2.7.8.7

Ideal fragment length for sequencing HiC samples is 100-200 bp. Ampure XP 

beads (Beckman Coulter, Cat # A63880) size-selectively precipitate DNA 

depending on the ratio of the liquid phase to beads in the mixture. Fragments 

>300 bp were selectively removed by mixing a low ratio of beads into the 

fragmented library and recovering the beads. Remaining DNA not bound to the 

beads was precipitated from the supernatant by the addition of a higher ratio of 

beads.  

Sonicated libraries were diluted to 500 μL with buffer EB (Qiagen, Cat # 19086), 

mixed with 450 μL of Ampure XP bead mixture and incubated at ambient 

temperature for 10 min. Beads were recovered on a magnetic particle separator, 
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and the supernatant with the <300 bp fragments was removed to a new micro-

centrifuge tube. The beads with the >300 bp fragments were retained.  

In a fresh tube, 500 μL of Ampure XP beads were collected on a magnetic particle 

separator, the supernatant was removed and the beads re-suspended in a fresh 

aliquot of 100 μL Ampure XP bead mixture. This concentrated bead mixture was 

mixed with the supernatant from the initial HiC >300 bp fragment removal, thus 

creating a high ratio of beads to aid recovery of small DNA fragments >100 bp. 

This mixture was incubated for 10 min before recovering the beads on a magnetic 

particle separator and removing the supernatant.  

Both sets of beads with >300 bp and 100-300 bp fragments were washed twice 

with 1 mL of 70% ethanol, recovering beads on the magnet between each wash. 

Beads were then air-dried until ethanol was completely evaporated. 150 μL buffer 

EB was added to beads to elute the DNA, beads recovered and supernatant 

removed to a fresh micro-centrifuge tube. Supernatants were concentrated by 

centrifuging for 2 min at 18,000 x g in tubes with built-in 30 kDa filter 

membranes. Membrane tubes with DNA concentrate were inverted into fresh 

collection tubes and spun as before to recover DNA. The volume of samples was 

brought to 52 μL with nuclease-free water.  

The size of the DNA fragments was checked on a Bioanalyzer (Agilent) system. 

Firstly, samples were quantitated on the QuBit Fluorometer (Life Technologies) 

and then diluted to 1 ng/μL. Size distribution of DNA in samples was analysed 

using electrophoresis separation on the Bioanalyzer, using a high sensitivity kit 

(Agilent, Cat # 5067-4626).  Fragmented, size selected libraries were expected to 

have peak DNA content centred on 200 bp. Where libraries had such a 

distribution, processing was continued.   
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 End Repair A-tailing  2.7.8.8

To repair the DNA ends damaged by sonication, end-repair was performed by 

recessing DNA ends to blunt ends with 5´-phosphates and 3´-hydroxyl groups to 

enable downstream annealing of sequencing primers. The end repair reaction 

components used are detailed in Table 2.7.7.  

Component Supplier Catalogue # Volume 

HiC Library (100-300 bp) N/A N/A 50 μL 

10X repair buffer NEB E6050 6 μL 

End repair mix (NEB) NEB E6050 3.5 μL 

Nuclease-free water NEB B1052 0.5 μL 

Table 2.7.7. A-tailing reaction.  

 

The reaction was incubated for 30 min at 20oC in a thermal cycler. Samples were 

purified using a MinElute PCR purification kit (Qiagen, Cat # 28004), using 

multiple columns if libraries had more than the 5 μg DNA capacity of min-elute 

columns. To improve recovery from columns, samples were eluted with two 

double-step elutions. The first elution was performed using 20 μL TLE (10 mM 

Tris (pH 8.0), 0.1 mM EDTA) at 6,000 g for 1 min, then the eluate re-loaded and 

the column centrifuged at 18,000 g for 1 min. The second elution was a repeat of 

the first, with fresh 15 μL TLE. Eluates were then combined.   

To enable ligation of sequencing primers and prevent concatenation of fragments 

during ligation, dAMP was incorporated onto the 3’ of the blunt end of DNA, 

known as “A-tailing”. A-tailing was carried out using the reaction detailed in Table 

2.7.8.  

Component Supplier Catalogue # Volume 

HiC Library N/A N/A 35 µL 

10X  NEBnext A-tailing NEB E6053 5 µL 

Nuclease free water NEB B1052 6 μL 

Klenow fragment (5U/ µL) NEB M0212 4 µL 

Table 2.7.8.  A-tailing reagents    

 

The reaction was incubated in a thermal cycler for 30 min at 37oC then at 65oC for 

20 min to inactivate Klenow fragment. Samples were then combined and diluted 

to 400 μL with TLE. 
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 Biotin Pull Down 2.7.8.9

To further increase the proportion of reads which contain target ligation 

junctions, streptavidin purification of biotinylated DNA was performed. 2 μL of 

magnetic streptavidin C1 beads (Life Technologies, Cat # 65001) per μg of DNA 

were aliquoted into a 1.5 mL Lo-Bind microcentrifuge tube (Eppendorf, Cat # 

0030108116). 400 μL Tween wash buffer (TWB) was added to the beads, then the 

beads reclaimed on a magnet. All subsequent library preparation was carried out 

in Lo-Bind microfuge tubes to reduce adsorption of DNA onto tubes.  

Supernatant was removed and the TWB wash repeated. Supernatant was removed 

and beads suspended in 400 μL 2X binding buffer (BB) (10 mM Tris-HCl (pH 

8.0), 1 mM EDTA and 2 M NaCl). Beads were then mixed with the HiC library. 

The sample was incubated for 15 min with rotation at ambient temperature. Beads 

were collected on a magnet, and supernatant discarded. Beads were resuspended 

in 400 μL 1X BB and transferred to a fresh tube. Beads were collected against a 

magnet, and the supernatant retained. Beads were resuspended in 100 μL 1X T4 

DNA ligation buffer (Life Technologies, Cat # 15224017) and again transferred to 

a new tube. Beads were reclaimed against the magnet, and supernatant removed 

before moving immediately to adapter ligation.  

 

 Illumina adapter ligation and paired end PCR  2.7.8.10

To amplify the captured library fragments, the sequencing primers were ligated 

prior to amplification by PCR. Streptavidin beads with HiC library beads were 

resuspended in T4 DNA ligase mix and sequencing adapters as detailed in Table 

2.7.9. Samples were to be duplexed in the sequencer, so barcoded adapters were 

used to allow downstream identification of libraries.  

Component Supplier Catalogue # Volume 

HiC library beads N/A N/A N/A 

5X T4 ligation buffer Life Technologies 15224017 40 μL 

T4 ligase 1 U / μL Life Technologies 15224017 20 μL 

TruSeq adapter Illumina FC-121-2001 1 μL 

Nuclease free water NEB B1052 139 μL 

Table 2.7.9.  Illumina paired-end sequencing adapters. 
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Libraries were incubated overnight with rotation at ambient temperature. Beads 

were then washed twice with 400 μL TWB and incubation for 5 min, reclaiming 

the beads on the magnet after each wash. Beads were resuspended in 200 μL 1X 

BB and transferred to a new tube. Beads were reclaimed and washed twice in 200 

μL NEBuffer 2, transferring to a new tube between washes. Beads were reclaimed 

on a magnet and resuspended in 20 μL NEBuffer2.  

Two PCR reactions were set up for each library with the components in Table 

2.7.10. 
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Component Supplier Catalogue # Volume 

TruSeq master mix Illumina FC-121-2001 10 μL 

Primer cocktail Illumina FC-121-2001 2 μL 

Resuspension buffer Beckman Coulter A63880 6.5 μL 

Bead-bound Hi-C DNA N/A N/A 1.5 µL 

Table 2.7.10. HiC PCR components 

 

Insufficient amplification results in too little material for sequencing, and 

excessive amplification can result in formation of PCR artefacts and introduce 

biases into the content of the library. To optimise the number of amplification 

cycles, one PCR was run for 12 cycles and one for 18 cycles on a thermal cycler 

using the programme outlined in Table 2.7.11.  

Step Temperature Time 

1 98°C 30 s 

2 98°C 10 s 

3 65°C 30 s 

4 72°C 30 s 

5 Go to 2 
12 or 18 

cycles 

6 72°C 7 min 

Table 2.7.11 HiC library amplification 

PCR protocol 

 

Amplified libraries were purified using a Qiagen PCR purification kit. DNA 

quantity and size-distribution was assessed by QuBit and Bioanalyzer as in 

Materials and Methods 1.7.8. If libraries had a total of >20 ng of DNA after 12 

cycles they were accepted for sequencing. If DNA was insufficient at 12 or 18 

cycles, PCR was repeated with extra template in the mix (up to 4 μL template 

solution). If total DNA was <10 ng after using increased template volume in PCR, 

libraries were rejected.  
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 Quality Control – Library Digestion 2.7.8.11

Biotinylated ligation junctions should contain NheI digestion sites, as 

demonstrated in the PCR product digest. Although libraries may contain some 

NheI sites by chance, amplified libraries should contain significant amounts of 

NheI sites. Belton et al (70) demonstrated that libraries which degraded 

significantly in the presence of NheI had high proportions of ligation junctions 

and gave good results in sequencing. 10 ng of library solution was incubated with 

NheI enzyme as outlined in Table 2.7.12. 

Component Supplier Catalogue # Volume 

10X NEBuffer 2 NEB B7002 1.5 µL 

Nuclease Free Water NEB B1052 to 15 µL 

NheI (1 U / μL) NEB R0131 1 µL 

BSA 10X NEB B9001 1.5 µL 

Hi-C Library N/A N/A 10 ng 

Table 2.7.12. HiC library digestion.  

  

Samples were incubated overnight on a thermal cycler at 37oC, with the lid heated 

to 105oC to prevent condensation of the sample. Samples were purified using a 

Qiagen MinElute kit, and eluted in 10 μL TE. Size-distribution of 1 μL aliquots of 

library solutions was assessed on the Bioanalyzer system. If the peak at 350 bp 

had significantly degraded and the distribution shifted toward smaller fragments, 

as compared to the assessment done after amplification, this was taken as 

demonstration that sequencing was likely to produce satisfactory results.  

 

2.7.9 ChIP-PCR, ChIP-Seq and FAIRE 

 Fragmentation of DNA by Sonication 2.7.9.1

Each 1 x 10 cm dish of formaldehyde-fixed cells were resuspended in 1 mL of cold 

“swelling buffer with freshly added 0.5% NP-40 and 1:500 protease inhibitors. 

Samples were incubated on ice for 20 min with gentle shaking on an orbital 

shaker. Samples were then centrifuged at 800 g for 5 min at 4oC. Pellet was then 

resuspended in modified Tris-EDTA (TE) buffer.  

Samples were suspended in a Bioruptor pre-chilled to 4oC (Diagenode). For initial 

optimization, samples were sonicated for 15 cycles of 5 min sonication at full 
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power, with 30 second on / off cycles. After each 5 min cycle, ice was replenished 

in the sonicator bath, a 10 μL aliquot was taken from the sample, and buffer 

volume topped up with modified TSE.  

Aliquots were topped up to 250 μL with modified TE buffer, and then incubated at 

65oC overnight to reverse cross-links. Samples were cooled to ambient 

temperature and 240 μL modified TE buffer and 10 μL of 10 mg/mL proteinase K 

was added to each aliquot before incubation for 2 hours at 37oC.  

Fragmented DNA was purified by phenol: chloroform phase separation. To each 

sample, 500 μL of a 1:1 mixture of phenol: chloroform was added before vortexing 

for 30 s. Samples were then centrifuged for 15 min at 14,000 g for 15 min at 

ambient temperature. The transparent upper phase was removed to a fresh 1.5 mL 

centrifuge tube. To this tube, 1 mL of ice-cold ethanol was added before incubating 

the sample at 80 oC for 30 min. Samples were then centrifuged at 18,000 g for 30 

min at 4oC. The supernatant was removed and the pellet washed with 1 mL 70% 

ethanol. Samples were then centrifuged at 18,000 g for 15 min at 4oC. The ethanol 

was removed and the pellets air-dried. Pellets were resuspended in 25 μL modified 

TE buffer. To each sample, 1 μL of 1 U / μL RNase A solution was added, and 

samples incubated at 37oC for 15 min.  

DNA in each sample was quantitated by measurement of fluorescence at 260 nm 

using a Nanodrop (Thermo Scientific) spectrophotometer. 500 ng of DNA was 

electrophoretically separated on a 0.75% agarose gel. The number of cycles where 

the DNA was fragmented to 100-300 bp was chosen as the optimum number of 

cycles for sonication (9 cycles).  

For all sonication performed, aliquots were always taken after the final sonication 

cycle and subjected to purification, and fragmentation of DNA assessed by 

electrophoresis through agarose gels as above.  

 

 ChIP 2.7.9.2

Magnetic protein-G conjugated Dynabeads (Life Sciences, Cat # 100-04D) were 

used for immunoprecipitations. Before beads were used for immunoprecipitations 

(IP), beads were pre-blocked to reduce non-specific binding. To achieve this, every 

100 μL of bead suspension was mixed with 1 mL of buffer to be used for IP. Beads 

were recovered on a magnet and mixed with another 1 mL of IP buffer a total of 

three times. Beads were then mixed with 1 mL blocking buffer (0.2 mg/mL 
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glycogen, 0.2 mg/mL BSA and 0.2 mg/mL yeast tRNA in IP buffer) and incubated 

with rotation overnight at 4oC. Beads were recovered and washed twice as before 

with IP buffer before diluting to starting volume in IP buffer.  

Sonicated chromatin from 1 x 10 cm dish was buffer-exchanged into 

radioimmunoprecipitation assay (RIPA) buffer for immunoprecipitation by 

loading onto an Amicon 30 kDa filter unit (Millipore, Cat # UFC503096). Sample 

was concentrated by centrifugation at 18,000 g for 10 min. 200 μL RIPA buffer 

was added to the unit, and centrifugation repeated. This process was repeated 

twice more and samples recovered into a new tube and diluted to 200 μL with 

RIPA buffer. A 10 μL aliquot of chromatin was kept as an “input” control for PCR 

reactions. 

Chromatin solution was diluted to 2 mL with radioimmunoprecipitation assay 

buffer (RIPA) buffer and 40 μL of blocked Dynabeads added to pre-clear 

chromatin which binds non-specifically to Dynabeads. Chromatin was incubated 

for 90 min with rotation at 4oC before recovery of beads. Chromatin supernatant 

was aspirated from the beads and then split into 500 μL aliquots before addition 

of appropriate antibodies against target or control IgG (Table 2.7.13). The 

chromatin-antibody mixture was incubated overnight at 4oC with rotation. 20 μL 

blocked Dynabead suspension were added to the chromatin-antibody mixture, 

and incubated at 4oC with rotation for a further 90 min.  

Antigen Supplier 

Antibody 

Clone or 

Catalogue # 

Host Production Dilution 

Histone H3 
Cell 

Signalling 
4620 Rabbit Monoclonal 1:2000 

Histone 

H3K4me3 

Cell 

Signalling 
9733 Rabbit Monoclonal 1:2000 

Histone 

H3K27me3 

Cell 

Signalling 
9751 Rabbit Monoclonal 1:2000 

Rabbit IgG Rockland 611-131-122 Goat Polyclonal 1:10,000 

Table 2.7.13 Antibodies used for ChIP.  

 

Beads were recovered and the supernatant retained as the non-bound fraction. 

Beads were then washed three times by resuspending in 500 μL RIPA buffer and 

recovery on the magnet, and transferred to a fresh tube. Beads were then washed 
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another three times in RIPA buffer, with a final wash in TE buffer with 50 mM 

NaCl. Supernatant was removed and beads resuspended in elution buffer (1 % w/v 

SDS, 10 mM EDTA, 50 mM Tris-HCl pH 8). Samples were then heated to 65oC for 

30 min. Beads were retained and the supernatant removed to a fresh tube.  1 μL of 

1 U / μL RNase A solution was added to samples, which were then mixed and 

incubated at 37oC for 15 min. DNA was purified from samples using a Qiagen PCR 

purification kit according to the manufacturer’s instructions, with elution in 20 μL 

TE buffer.  Samples were stored at -80oC until use.  

 

 ChIP-PCR 2.7.9.3

Chromatin immunoprecipitation (ChIP) success was ascertained by ChIP-PCR. 

Targets for ChIP were histone H3 trimethylated at lysine 4 (H3K4me3) or lysine 

27 (H3K27me3), which are respectively markers for transcriptionally active and 

repressed genomic regions across multiple human cell types. Although the specific 

genomic sites with these histone markers varies depending on transcriptional 

activity of the surrounding genes, where they are present the abundance is highest 

upstream of transcription start sites (TSS) with a peak around 500 bp upstream. 

Two candidate genes were chosen based on expected transcription levels: GAPDH 

as a target for H3K4me3, as it ubiquitously expressed in most human tissues (72); 

claudin 6 for H3K27me3, as it has been demonstrated not to be expressed in NHU 

cells under the differentiated and control conditions used in this study (2).  

The Ensemble genome browser (www.ensemble.org) was used to identify the 

transcription start sites for CLDN6 (16:3064713:-1) and GAPDH (12:6643093:1), 

and export 1 kb of 5’ flanking nucleotide sequences. This sequence was input into 

primer design software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The 

software was instructed to design a PCR product of 100-200 bp within 250 bp of 

the 500th base in the sequence (Table 2.7.14). The search target was the human 

reference genome (hg19) and all other settings were left as default. The highest 

ranked primer pair with no other hits in the genome was chosen.  
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CLDN6 

AGATGGCACCACTGCACTCTAGCCTGGGCCACAGAGCGAGACTCCTCGTCTCAAACAAA

CAAACAAAACAAATGGACAAGTTTTGAGCCTTAAACTCAGGGCTAGAATTGAACCATTC

TACACGGAAACTGCTTGGAAATCGCACCGTCCTGTCATCCTGCTTTTTGCCGCCTTGC

AGCCTGATCACTGGCTCTGGCCTTGGACTGTCATTGTATAGGTTTCATCCTGTTATCTT

TCATTTGCATTCAGGATAGCCAGGGCAGGGCTGCTTGCACAGTCACTGTCATCAGCC

AGTGCCTGTCACATAACTAGAAAGAATAATAAATGCTAAAGCATTAAGTGTCCATTTTGC

CCACGAGAAGTGAGGCTCAGGGAGCATGTCTTGACTGAGTTCCAGGATGTGATGACCAC

TTTCCAGGGTGCATGCCCCTAGAGTCCTGTCCACATGTGGCCTGAGGTCTGGGCCTGCC

AGGCCTCACCTTGTTGTGCTTCTGTCCCAAACACAGTGCAGCTCCTTCAACCTCGCCATG

GCCTCTG 

GAPDH 

AGGAGGGACTTAGAGAAGGGGTGGGCTTGCCCTGTCCAGTTAATTTCTGACCTTTAC

TCCTGCCCTTTGAGTTTGATGATGCTGAGTGTACAAGCGTTTTCTCCCTAAAGGGTGCA

GCTGAGCTAGGCAGCAGCAAGCATTCCTGGGGTGGCATAGTGGGGTGGTGAATACC

ATGTACAAAGCTTGTGCCCAGACTGTGGGTGGCAGTGCCCCACATGGCCGCTTCTCCTG

GAAGGGCTTCGTATGACTGGGGGTGTTGGGCAGCCCTGGAGCCTTCAGTTGCAGCCAT

GCCTTAAGCCAGGCCAGCCTGGCAGGGAAGCTCAAGGGAGATAAAATTCAACCTCTTGG

GCCCTCCTGGGGGTAAGGAGATGCTGCATTCGCCCTCTTAATGGGGAGGTGGCCTAGG

GCTGCTCACATATTCTGGAGGAGCCTCCCCTCCTCATGCCTTCTTGCCTCTTGTCTCTTA

GATTTGGTCGTATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTAAAGTGGAT

ATTGTTGCCATCAATGACCCCTTCATTGACCTCAACTACATG 

Target Gene 

Promoter 
Sense Primer 5’ 3’ Antisense Primer 5’ 3’ 

CLDN6 TTTGCCGCCTTGCAGCCTGA AGCAGCCCTGCCCTGGCTAT 

GAPDH AAGGGGTGGGCTTGCCCTGT TGCCACCCCAGGAATGCTTGC 

Table 2.7.14 ChIP-PCR Primer Design. Partial sequence of the CLDN6 and GAPDH 

promoter regions shown for illustrative purposes. Primer targets are underlined in bold 

text, and ATG TSS codon of the gene is in bold italicised text. CLDN6 primers target a 

region 277-364 bp upstream from the TSS, and the GAPDH primers targeted a regions 

412-549 bp upstream from the TSS.  

 

1 μL of purified ChIP-DNA solution and chromatin IP “input” were prepared for 

PCR using the GoTaq (Promega) PCR kit with the reagents outlined in Table 

2.7.15. 

 

 



 

68 
 

Chapter 2 

Reagent Volume (μL) 

GoTaq 5X Flexi Buffer 4 

MgCl2 25 mM 2 

Pre-mixed nucleotides (10 mM each) 0.4 

Sense primer (10 mM) 2 

Antisense primer (10 mM) 2 

H2O 8.6 

DNA 1 

Total Volume 20 μL 

Table 2.7.15. PCR reagents for ChIP-PCR 

 

PCR was then performed using the conditions outlined in Table 2.7.16.  

Step Temperature Time 

1 98 °C 30 s 

2 98°C 10 s 

3 60°C 30 s 

4 72°C 30 s 

5 Go to 2 
12 or 18 

cycles 

6 72°C 7 min 

Table 2.7.16. ChIP-PCR amplification 

PCR settings.  

 

10 μL of PCR reactions were separated by electrophoresis on a 2 % agarose gel and 

gels photographed under UV light to visualise DNA bands.  

 

2.7.10 Next Generation Sequencing 

Once samples were generated in a format ready for sequencing, they were 

submitted to TGAC (Norwich, UK).  

RNA and FAIRE samples were submitted as unprocessed purified samples, then 

fragmented and sequencing primers adapted by TGAC.  ChIP-seq libraries were 

submitted after primers were adapted and final amplification tested using the 

same approach that was used for the HiC libraries.  
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All sample libraries were tagged with Illumina barcoded sequencing primers to 

allow multiplexing where necessary. Samples were all quantitated by QuBit and 

average fragment lengths calculated using the Bioanalyzer data. Samples were 

then diluted to the same molarity and small aliquots compared for amplification 

characteristics by qPCR. Samples which amplified successfully were considered as 

having passed the quality control criteria. 

 

 RNA-Seq Library Construction 2.7.10.1

To prepare RNA samples for sequencing, the submitted RNA was adapted to 

sequencing primers using the Illumina TruSeq RNA kit (Illumina, Cat # RS-122-

2201), following the manufacturer’s instructions. In brief, 1 µg of total RNA was 

purified and enriched for mRNA using provided poly-T oligonucleotide attached 

magnetic beads. Two rounds of purification were used. During the second elution 

of poly-A RNA, the RNA was fragmented and primed for cDNA synthesis. cDNA 

synthesis was carried out using SuperScript II Reverse Transcriptase (Invitrogen, 

Cat # 18064022) and random primers. Second strand cDNA synthesis was carried 

out and the DNA was subjected to end repair, “A” tailing and ligation. cDNA 

templates were enriched by 15 cycles of PCR as per manufacturer's instructions. 

The amplified library was quantified using a Bioanalyzer DNA 100 Chip. The 

library was normalised to 10 nM for generation of sequence clusters on a 

sequencing flow-cell on the Illumina c-Bot instrument. 

  

Sequencing library cluster generation was carried out on a flow cell on the 

Illumina cBot according to the manufacturer’s instructions. Following the 

clustering procedure 100 cycles of single end sequencing was performed with 

TruSeq Rapid SBS sequencing chemistry, HCS 2.0.10 software and RTA 1.17 on 

the HiSeq platform. FASTQ files were generated and demultiplexed according to 

library-specific indices by CASAVA (Illumina). 

  

Libraries were multiplexed 6 per lane, yielding a minimum of 17 million pairs of 

reads per sample. 

  

 ChIP-Seq Library Construction 2.7.10.2

To prepare DNA captured by ChIP for sequencing, the TruSeq ChIP sample 

preparation kit (Illumina, Cat # IP-202-1012) was used by TGAC following the 
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manufacturer’s recommended protocol.  In brief, 5–10 ng ChIP DNA was blunt-

ended and phosphorylated, and a single 'A' nucleotide added to the 3' ends of the 

fragments in preparation for ligation to an adapter with a single-base 'T' 

overhang.   The ligation products were purified and accurately size-selected by 

agarose gel electrophoresis. Size-selected DNA was then purified and PCR-

amplified to enrich for fragments with adapters on both ends. The final purified 

product was then quantitated using a combination of Bioanalyzer DNA HS Chip 

(Agilent) on a 2100 Bioanalyzer and Qubit 2.0 (Invitrogen). The libraries were 

normalised to 10nM, pooled and q-PCR was performed prior to cluster generation. 

  

Samples were sequenced on an Illumina HiSeq 2500 (Rapid-Run mode) 

clustering and sequencing using 50 bp single-end reads. The 8 libraries were 

normalised and equimolar pooled to 10 nM. The library pool was then diluted to 2 

nM with NaOH and 4.5μL transferred into 995.5 μL HT1 to give a final 

concentration of 9pM. 135 μL of the diluted library pool was then transferred into 

a 200 μL strip tube and placed on ice before loading onto the Illumina cBot 

utilising the Rapid Duo cBot sample loading kit (Illumina, Cat # CT-402-4001) 

using the RR_TemplateHyb_FirstExt_vR recipe to allow the pool to be run on a 

single lane of a HiSeq 2500 Rapid flow cell. The rapid flow cell was loaded onto 

the Illumina HiSeq2500 instrument following the manufacturer’s instructions and 

onboard clustering was performed using the TruSeq Rapid Paired-end cluster 

generation kit. Following the clustering procedure 50 cycles of single end 

sequencing was performed with TruSeq Rapid SBS sequencing chemistry, HCS 

2.0.10 and RTA 1.17 softwares. 

  

Libraries were multiplexed 8 per lane, yielding a minimum of 13 million pairs of 

reads per sample. 

  

 FAIRE Library Construction 2.7.10.3

DNA obtained using the FAIRE protocol was prepared for sequencing as for ChIP-

seq. Samples were multiplexed four per 100 bp paired-end HiSeq lane, yielding a 

minimum of 55 million pairs of reads per sample. 
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2.7.11 Bioinformatics 

 RNA-seq Mapping 2.7.11.1

To allow sequenced RNA to be mapped to the genome, reads were aligned using 

tophat2 version 2.0.8 (http://tophat.cbcb.umd.edu/) using default parameters 

(73). Alignment was performed to (74)both the Ensembl GRCh37 and UCSC hg19 

annotation.  The genome sequence indexes were downloaded from the TopHat 

website (http://tophat.cbcb.umd.edu/igenomes.shtml).  TopHat aligns RNA-Seq 

reads using the bowtie short read aligner (Bowtie2 version 2.0.6 http://bowtie-

bio.sourceforge.net/index.shtml) and then analyzes the mapping results to 

identify splice junctions between exons. 

 

 ChIP-seq Mapping 2.7.11.2

Sequence reads from ChIP DNA were aligned to the genome using bowtie2 version 

2.0.6 using default parameters against the UCSC hg19 genome downloaded from 

iGenomes  (ftp://igenome:G3nom3s4u@ussd-

ftp.illumina.com/Homo_sapiens/UCSC/hg19/Homo_sapiens_UCSC_hg19.tar.gz

) (75). 

Duplicated aligned reads were removed using samtools rmdup. This removes 

potential PCR duplicates: if multiple read pairs have identical external 

coordinates, only the pair with highest mapping quality is retained (76). 

Peak were called using MACS version 1.4.2 using the following options --

nolambda –nomodel. This skips the model building step and the local background 

estimation as recommended for histone modification (77). 

 

 FAIRE-seq Mapping 2.7.11.3

DNA sequence reads obtained from FAIRE samples were aligned to the genome 

using bowtie2 version 2.0.6 against the UCSC hg19 genome using the following 

options --no-discordant --no-mixed –maxins 400 (properly paired reads with a 

maximum fragment length of 400).  Duplicated reads were removed from the 

alignment bam files using samtools rmdup.  The deduplicated bam files were 

converted to bed files using bedtools bamtobed.  
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Peaks were called using zinba . The first step involved generating an alignability 

file (athresh=4). Minimum number of hits per read allowed during the mapping 

process extension =120    average fragment library length. The second step involve 

generating a basealigncount file extension – average fragment library length – 120 

filetype='bed'. The third step involves calling the peaks. zinba( align='alignallchr/',  

numProc=8,  seq='LIB4142_LDI3552.bed',  basecountfile= 'LIB4142.basecount',  

filetype="bed",  outfile="L4142Rzinba", twoBit="hg19.2bit",  extension=120,  

printFullOut=1,  refinepeaks=1,   broad=F,   input="none") 

 

 Gene Ontology and Promoter Analysis 2.7.11.4

Ensemble sequence tags (ENST) were converted to “associated gene names” using 

the Ensemble BioMart tool (http://www.ensembl.org/biomart/martview). Genes 

lists were submitted to GSEA (http://www.broadinstitute.org/gsea) the gene 

ontology service as separate lists, and the top ten gene sets returning a p-value of 

≤0.05 under the headings “canonical pathways”, “transcription factor targets” and 

“GO molecular function”.  

 

2.8 Mass Spectrometry 

2.8.1 Filter Aided Sample Preparation (FASP) 

Protein solutions of 0.1-2 M CSK extracts (not mixed with LDS which would 

interfere with Coomassie assay) were measured by Coomassie assay to contain 

0.25-0.4 μg/μL protein when 1 x 10 cm dish of cells was extracted in volumes of 

100 μL (data not shown). To obtain at least 4 μg of protein, 25 μL of CSK extracts 

pre-mixed with NuPAGE LDS and reducing buffers to 1X were loaded onto an 

Amicon 30 kDa filter unit (Millipore, Cat # UFC503096) and an adapted version 

of the filter aided  sample preparation protocol from Wisniewski et al (78)was 

followed to buffer exchange and tryptically digest proteins in CSK extracts.  

200 μL UA buffer (8 M urea with 0.1 M Tris-HCl, pH 8.5) was added to each unit. 

Samples were then centrifuged at 18,000 g for 15 min at 20oC. The annotation of 

the filter pore size is based on the average molecular weight globular protein 

which the pores will retain when proteins are in a native conformation. Under 

denaturing conditions, such as presence of LDS or urea, the tertiary protein 

structure unfolds and the protein will not pass through the pores in the filter. 
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Flow-through from filters was discarded, a further 200 μL UA buffer was added to 

the samples and centrifugation was repeated, then the process was repeated once 

more. Cysteines in protein samples were then alkylated by addition of 100 μL 0.05 

M iodacetamide in UA buffer, and incubating for 15 min at ambient temperature 

in the dark. Samples were washed through once with 200 μL UA as before.  

After washing in UA buffer, sample was buffer exchanged by centrifuging through 

four times with 200 μL 50 mM ammonium bicarbonate (ABC) pH 7.8 in H2O. 

Samples were then proteolytically digested by addition of 0.04 μg trypsin in 30 μL 

50 mM ABC (approximately 100:1 protein: trypsin ratio). Filter units were sealed 

with parafilm and incubated overnight at 37oC. Digested peptides are sufficiently 

small to pass through the filter pores, so were collected by centrifugation at 

18,000 g for 10 min. A further 50 μL of 50 mM ABC was centrifuged through the 

filter units. Samples were analysed for peptide content using 260/280nm ratios 

on a Nanodrop spectrophotometer. 

 

2.8.2 In-gel digestion 

When CSK extract samples for proteomics were processed using in-gel digestion, 

25 μL of samples were pre-mixed with NuPAGE LDS and reducing buffer to 1X 

dilution and electrophoresed into NuPAGE 4-12% BisTris gels at 200 V until the 

dye front reached 1 cm into the gel. Samples were spaced with an empty lane 

between each sample to avoid cross-contamination, and each 1 cm portion of the 

lane containing the protein was excised using a fresh scalpel. Gel pieces were cut 

into approximate 1 mm cubes and placed into Lo-bind microcentrifuge tubes. Gel 

pieces were washed by addition of 200 μL 100 mM ABC in a 1:1 (v:v) mixture of 

acetonitrile and H2O for 20 min. The supernatant was removed and the wash step 

repeated. A further wash was performed with 100% acetonitrile, and gel pieces 

were dried in a Speedvac centrifugal concentrator on medium heat setting for 20 

min.  

Protein in dried gel pieces was reduced by addition of 200 μL 100 mM ABC with 

10 mM dithiothreitol, followed by one hour incubation at 56oC and then removal 

of supernatant. Cysteines in proteins were alkylated by addition of 200 μL 100 

mM ABC with 50 mM iodoacetamide and incubation at ambient temperature in 

the dark for 30 min. 
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The supernatant was removed and the gel pieces washed in 200 μL 100 mM ABC 

for 15 min. The supernatant was again removed and gel pieces washed with 25 

mM ABC in a 1:1 mixture of acetonitrile and H2O for 15 min. Supernatant was 

removed and gel pieces washed in 100% acetonitrile for 5 min. Supernatant was 

removed and gel pieces dried in a Speedvac set to medium heat for 20 min.   

0.04 μg of trypsin dissolved in 20 μL 25 mM ABC solution was allowed to absorb 

into gel pieces for 10 min. 25 mM ABC was added to gel pieces until they were 

covered in liquid, the tubes sealed and incubated overnight at 37oC. Supernatant 

was recovered from gel pieces and transferred to a separated tube. Gel pieces were 

washed 3 x 15 minutes with 50 % ACN in H2O and supernatant retained and 

added to previous tube after each wash. Solutions were lyophilised for 20-30 

minutes in a Speedvac on medium drying setting. Samples were re-suspended in 

12 μL 0.1 % trifluoroacetic acid in H2O and peptide content estimated by 

measuring 280 nm emission on a Nanodrop spectrophotometer. 

 

2.8.3 Liquid Chromatography and Mass Spectrometry (LC-MS) 

Peptide samples were diluted to 100 ng/μL with 0.1% TFA in H2O and loaded onto 

a nanoAcquity UPLC system (Waters) equipped with a nanoAcquity Symmetry 

C18, 5 µm trap (180 µm x 20 mm, Waters) and a nanoAcquity BEH130 1.7 µm C18 

capillary column (75 μm x 250 mm, Waters). The trap was washed for 5 min with 

0.1% (v/v) aqueous formic acid at a trapping flow rate of 10 µL/min, after which 

flow was switched to the capillary column.  Separation was achieved using a 

gradient elution of two solvents. Solvent A was 0.1% (v/v) formic acid and solvent 

B was acetonitrile containing 0.1% (v/v) formic acid, and the gradient profile was 

as follows: initial conditions 5% solvent B (2 min), followed by a linear gradient to 

35% solvent B over 120 min, then a linear gradient to 50% solvent B over 5 min, 

followed by a wash with 95% solvent B for 10 min. During the gradient, the flow 

rate for the capillary column was 300 nL/min and the column temperature was 

set to 60°C. After completion of the gradient, the column was returned to initial 

conditions and re-equilibrated for 30 min before subsequent injections.  

The nanoLC system was interfaced with a maXis MS/MS System (Bruker 

Daltonics) with a nano electrospray source fitted with a steel emitter needle (180 

µm O.D. x 30 µm I.D., Proxeon). 
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To ensure samples had sufficient peptides to yield identifications, initial runs used 

a single injection of 300 ng of peptide onto the LC-MS system, and positive ESI- 

MS and MS/MS spectra were acquired using the ‘AutoMSMS’ mode to enable data 

dependent acquisition (DDA) of product ion spectra. The instrument settings used 

were: ion spray voltage= 1,400 V, dry gas= 4 L/min, dry gas temperature =160 °C, 

ion acquisition range= m/z 50-2,200. AutoMSMS settings were: MS: 0.5 s 

(acquisition of survey spectrum), MS/MS (collision induced dissociation (CID) 

with N2 as collision gas): ion acquisition range=m/z 300-1,500, 0.1 s acquisition 

time for precursor intensities above 100,000 counts, and for signals of lower 

intensities (down to 1,000 counts) acquisition time increased linearly to 1s.  The 

collision energy and isolation width settings were automatically calculated using 

the AutoMSMS fragmentation table: 5 precursor ions, absolute threshold 1,000 

counts, preferred charge states= 2 – 4, singly charged ions excluded. One MS/MS 

spectrum was acquired for each precursor ion and former target ions were 

excluded for 30 s. 

When the data were collected for relative quantification, injection volumes were 

normalised based on the total ion intensity as observed when extracted ion 

chromatograms were visualised in the Data Analysis software (Bruker). 80 – 120 

ng of peptides in solution, as measured by Nanodrop spectrophotometry were 

injected into the LC-MS system, and positive ESI- mass spectra were acquired 

using the same parameters as described above for MS/MS with the exception that 

AutoMSMS mode was switched off. Three injections where total ion intensity was 

relatively consistent within replicates were acquired per sample.  

When data was collected using scheduled precursor lists (SPL), a single injection 

containing 1.2 μg of peptides in solution per sample was injected into the LC-MS 

system, and positive ESI mass spectra were acquired using the same parameters 

as described above for MS/MS with the exceptions that AutoMSMS mode was 

switched off and active exclusion of acquisition of MS/MS for ions not included in 

the SPL was switched on. 
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2.8.4 Generation of Compound Lists from MS-only Data 

LC-MS data from MS-only analysis were imported into Data Analysis (Bruker) 

and processed using the Bruker “Find Molecular Features” (FMF) algorithm. The 

FMF script is proprietary, but is described as being based on the principle that the 

chromatographic peak maxima of a compounds’ ions in each of the different 

charge states it is measured in will be highly correlated in elution time (Figure 

2.8.1). 

 

 

 

Figure 2.8.1. Feature picking by the FMF algorithm and alignment. Peaks are 

converted to line spectra and designated as a feature if they display 

characteristics such as tight time correlation, narrow m/z range and 

additional features such as 2+ and 3+ ions being the expected distance from 

one another in the m/z range. Features can then be aligned in the time 

dimension between several runs, such as triplicate MS-only data from two 

samples as was done here. The intensity of the peaks within feature which 

are reproducible between runs can then be compared across samples. 

 

The algorithm converts profile spectra to line spectra and then defines features in 

sequential mass spectra which have peaks in a narrow mass range, calculated 

using the MS peak width. The criteria of time correlation and expected m/z 

differences between sequential charge states must be satisfied for the algorithm to 

designate the identification of a feature (compound). 

Once a likely feature is identified, chromatographic traces are plotted and the 

peaks in each defined. Chromatographic peaks which have a difference in m/z 
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distance consistent with being the same compound in different charge states are 

assigned a charge status based on the algorithm’s interpretation of these m/z 

distances. The algorithm then assigns a single calculated mass to each peak cluster 

based on the average mass of the peaks in the cluster, based on the interpretation 

of the charges. Compounds are then defined as peaks clusters which have the 

same neutral mass and highly correlated chromatographic peaks.  

FMF was applied to MS-runs with a signal to noise ratio threshold of 3 (range 

0.001 to 1000), which determines that the signal from a peak must be three times 

that of the background. The correlation coefficient was set to 0.7, which 

determines that clusters of peaks within a narrow m/z range with a calculated 

time correlation above 0.7 (range 0-1) will be subjected to evaluation as potential 

charge states of a compound. Minimum compound length was set to 20, which 

requires that each compound was observed in at least 20 consecutive mass 

spectra. The smoothing width was set to 10, which determines the number of 

compound peaks to be used for calculation of smoothed chromatographic peaks. 

Additional smoothing was applied, which smoothes individual peaks within 

compound prior to creation of chromatographic peaks. This prevents isolated 

peaks from non-related compounds interrupting true compounds in complex 

samples. The “Proteomics” option was also applied, which compares the 

intensities of compounds across the likely charge-states with the expected pattern 

of decreasing intensity with increasing charge, and omits the features if they do 

not follow the expected pattern. Retention times at the beginning (0-35 min) and 

end (120-165) of the elution gradient were excluded from feature generation. 

Additionally, only compounds with m/z 300-1600 were included, excluding a 

window of m/z 1221-1225 around the lockmass calibration compound. 

 

2.8.5 Label Free Relative Quantifications in Bruker ProfileAnalysis 

Each FMF processed trace was then imported into ProfileAnalysis (Version 2.0, 

Bruker). Traces were split into groups according to the sample from which they 

came for Student’s t-tests calculation. The MS parameters for Student’s t-test 

model generation included time-alignment of compounds, using an algorithm 

which takes into account non-linear shifts in retention times (79). This aligns 

features in all traces with similar elution characteristics, using an automatically 

determined master run as the anchor point for all elution times. Advanced bucket 

generation was used, which creates a new “bucket”, or bin, for grouping of 
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compounds between runs with similar properties based on the properties of the 

compound calculated by the FMF algorithm. Data regions for bucket generation 

were given the same time and m/z exclusion parameters as the FMF files. Time 

and mass tolerances for bucket generation were calculated automatically from 

time alignment. Normalisation was set to quantile, which attempts to normalise 

the distribution of the intensity of features in LC-MS runs to correct for variations 

in injection volumes between runs. Student’s t-test values can only be calculated 

by the ProfileAnalysis software when a group contains non-zero values. Therefore, 

with a comparison of three samples in each group, to increase stringency of 

compounds included in intensity calculations it was determined that only one 

missing value in the six would be tolerated. This was achieved by filtering buckets 

which contained values from <5 of the 6 runs. Student’s t-tests models were 

generated for all pairwise comparisons between samples.  

 

2.8.6 Scheduled Precursor List Generation 

Retention times and m/z of compounds identified as having differential 

abundance ≥2-fold with a p≤0.05 in pairwise comparisons were exported into 

scheduled precursor lists. Lists were checked for density, so that less than 20 

events occurred within every 1 min to allow the mass spectrometer to collect 

sufficient ions for MS/MS on each event. In cases where lists were too dense, 

events were split into separate lists until densities reduced to acceptable levels.  

 

2.8.7 Mascot searches 

MS/MS data from DDA and SPL analyses were either imported into ProteinScape 

(Bruker) and submitted to Mascot (Matrix Science) from within the Bruker 

software, or exported from Progenesis in .mgf format and submitted directly to 

the Mascot server. Mascot searches were performed with the following 

parameters:  Database: IPI_Human, Taxonomy: All Entries, Enzyme: Trypsin, 

Modifications: Carbamidomethyl (C) Fixed, Oxidation (M): Variable, Peptide tol -

/+ 10.0 ppm, #13C: 0, 0.1 Da, Peptide Charge 2+ and 3+: monoisotopic, 

Instrument type CID: maXis. 
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2.8.8 Calculations of p-Values for Buckets Generated in 

ProfileAnalysis 

When Student’s t-tests were calculated manually for peptides which were absent 

in one of the samples, no filtering was applied in ProfileAnalysis and all 

compounds were exported. P-values were calculated using a 2-tailed t-test as 

performed in ProfileAnalysis (Bruker). Where all samples in one triplicate group 

were zero, it was required that intensity counts were present in all three of the 

comparator triplicate group for p-values to be accepted. 

 

2.8.9 Nonlinear Dynamics Progenesis LC-MS 

MS-only and MS/MS data were converted to mzXML using Compass (Bruker). 

Files were imported into the Progenesis software and the MS peaks aligned for all 

imported runs. Runs were then designated into groups for comparison, and 

MS/MS data from DDA analyses exported and converted to .mgf for submission to 

the Mascot search engine.   

Peaks which had variance between groups sufficiently low to return a p-value of 

≤0.05, and had a fold-change between the groups of ≥2 were included for 

comparison. Compounds were further filtered for those with retention times 

>0.25 s and with intensity counts of <1000.  The SPL list was generated from the 

remaining MS peaks. 
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 PPARγ in Differentiation of Human 3

Urothelium in vitro 

3.1 PPARγ  

3.1.1 Nuclear Receptor PPARγ  

Peroxisome-proliferator activated receptors (PPARα, PPARβ/δ, and PPARγ) are a 

sub-family of the nuclear receptor (NR) superfamily, so named from the ability of 

the first discovered of the sub-family, PPARα, to induce proliferation of the 

peroxisome sub-cellular organelles in response to a variety of compounds. PPARγ, 

although homologous with PPARα and PPARβ/δ, does not share this function. 

One or more isoforms of PPARγ are implicated in the control of cell identity in a 

variety of tissues, especially adipocytes. PPARγ has two known major protein 

variants, γ1 and γ2. There are four known promoters (γ1-4) for PPARγ. As the 

final transcripts for γ1 and γ3 only differ in 5’ untranslated regions they both 

encode the same protein product (PPARγ1) (80-82). PPARγ2 coding sequence 

contains one more 5’ exon than PPARγ1 that encodes extra 28 amino acid at the 

N-terminus, making it the largest of the canonical isoforms. PPARγ4 codes for a 

protein six amino acid longer than PPARγ1, whose gene expression was 

discovered first described in rhesus macrophages (83), and protein expression has 

been observed at low levels in human macrophages(84).  

As a NR, PPARγ consists of distinct domains which are conserved across the 

superfamily and have well described function. It is the properties of these physical 

features that places PPARγ at the nexus of distinct cell signalling networks. A 

general outline of NRs is that the activation function 1 (AF1) and AF2 domains 

facilitate interactions with co-factors; the DNA binding domain binds sequence-

specific DNA stands, and the hinge region connects between the DNA-binding 

domain and the ligand-binding domain (Figure 3.1.1). Ligands with different 

affinities vary in the extent to which their binding causes conformational changes 

in the AF2 domain, thus affecting the surface presented for interactions with co-

factors (85), and hence the different effects on transcription that each compound 

exhibits.  
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Figure 3.1.1. Structural Outline of PPARγ2 domains. Numbered amino 

acids depict exon boundaries. Amino acid 1-28 are the additional exon 

unique to PPARγ, and 28-505 are the constituents of PPARγ1. The N-

terminal AF1 region of PPARγ1 has weak ligand-independent 

transcriptional activation capability through interaction with proteins 

such as p300 (86). The DNA-binding domain provides sequence-specific 

DNA binding when dimerised with RXRα. The hinge region facilitates 

flexing of the DNA binding domain away from the ligand-binding 

domain (LBD). The LBD contains the AF2 domain which interacts with 

cofactors in a ligand-dependent fashion (86). The DNA binding, hinge 

region and LBD all contribute to heterodimerisation with RXR (87). 

 

PPARγ2 was first identified in mammals alongside its heterodimerisation partner 

retinoid X receptor (RXRα), as part of the binding complex at an enhancer of the 

fat-specific AP2 gene (57, 88). Much of the initial work on PPARγ2 was 

undertaken to elucidate its role in adipose cell differentiation, but interest 

gathered pace once it was identified as the target for a class of anti-diabetic drugs 

known as thiazolidinediones (TZDs) which modulate insulin sensitivity (89, 90).  

There is evidence that PPARγ isoforms are also involved in pathways which 

influence the differentiation status of other cell types, including, but not limited 

to, osteoblasts, macrophages, urothelium and prostate (46, 91-95). During the 

differentiation of osteoblasts and macrophages, PPARγ has been observed to 

associate with many different co-factors, some of which have proven to be 

essential for development of the differentiated phenotype (96-98). The co-factors 

involved in urothelial and prostate differentiation are less well understood. Across 

all cell types where it is implicated in differentiation, PPARγ has been found to be 

affected by several distinct cellular signalling pathways which directly post-

translationally modify it or its interactors (60, 99-101).  
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3.1.2 PPARγ in Adipogenesis 

In vitro differentiation of mouse adipocyte precursor 3T3-L1 cells can be initiated 

by inhibition of the cell cycle, after which Cyclin D1 drives upregulation of CCAAT 

enhancer-binding protein (C/EBP) δ and C/EBPβ, which in turn promote 

expression of PPARγ and C/EBPα (102). PPARγ then dimerises with RXRα, and 

the heterodimer binds DNA at sequence-specific motifs known as peroxisome 

proliferator response elements (PPREs) (103). During adipogenesis, 

PPARγ/RXRα binding occurs at PPREs in enhancers of adipogenic genes, 

including one for PPARγ itself, thus driving a positive feedback loop which results 

in a self-sustaining programme of changes in gene expression (39, 88).  

This simple outline of adipogenesis can be misleading, as there are other subtle 

controls on PPARγ activity which must first be overcome before adipogenesis can 

begin. Activation of glucocorticoid receptor (GR) alongside the inhibition of the 

cell cycle enhances adipogenesis, as the activated GR remodels the epigenetic 

environment on the chromatin at sites around adipogenic genes, thus “preparing” 

the sites at which PPARγ will bind (104). PPARγ/RXRα heterodimers can then 

bind to DNA, but transcriptional activity remains inhibited as nuclear receptor co-

repressor 1 (NCOR) and NCOR2 and their associated protein complexes (105) 

bind to the PPARγ/RXRα on the DNA. Further on in the differentiation process, 

NCOR1 or NCOR2 are replaced by transcriptional activators. In adipocytes, it is 

not clear what signals this cofactor exchange, but in other systems it is mediated 

by either protein kinase C (PKC), casein kinase (CK1), or glycogen synthase kinase 

(GSK) which phosphorylate NCOR complex members F-box-like/WD repeat-

containing proteins TBL1 (TBL1X) or TBL1XR1 (106). 

PPARγ and co-operating transcription factor proteins such as C/EBPα serve as 

foundations which bring transcriptional co-activator proteins into contact with the 

DNA (107). In adipogenesis, PPARγ has been shown to bind to general nuclear 

receptor co-activators, including thyroid hormone receptor associated protein 220 

(TRAP220) (108), steroid receptor co-activator 1 (SRC-1) (109), and PPARγ 

coactivator proteins 1A  and 1B (PGC-1α and PGC-1β) (110, 111). This profligate co-

factor binding creates redundancy in the necessity for PPARγ co-factors, as 

demonstrated when genetic ablation of C/EBPα in mouse pre-adipocytes did not 

affect the adipogenic capacity of the cells (112). 

In in vitro adipogenesis, differentiation of several different pre-adipocyte cell lines 

can be achieved through treatment with the same cocktail of compounds 
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(reviewed in (113)). Several transcription factors and co-factors have been shown 

to be necessary for adipogenesis (reviewed in (112)). However, only PPARγ (γ1 and 

γ2) has been shown to be able to trans-differentiate fibroblasts into adipocytes 

when over-expressed in the presence of PPARγ-activating ligands (114). It has 

been reported that ligand binding is necessary for PPARγ to facilitate binding to 

adipogenic co-factors, by virtue of the induced conformational change in the AF2 

domain in the LBD to expose interaction domains (106).  

However, it has also been reported that a PPARγ mutated in the ligand-binding 

domain (Q286P), which lacked increased transcriptional activity in response to 

exogenous agonists, was still capable of inducing adipogenesis when ectopically-

expressed in fibroblasts lacking wild-type PPARγ (114). The authors proposed that 

although they could not rule out the possibility of endogenous ligands being 

present that bound the mutant PPARγ in preference to the introduced ligands, the 

relative amount of nuclear PPARγ in their expression system were similar to that 

of fully differentiated adipocytes. The expression observed in the PPARγ-

transfected fibroblast cells was much higher than at the onset of adipogenesis and 

so a more abundant PPARγ with weaker transcriptional activity was proposed to 

have overcome the necessity for added PPARγ ligand to increase transcriptional 

activity during induction of differentiation. Interestingly, the same study showed 

that mutation of the AF2 domain (E499Q) prevented differentiation, implying 

that the C-terminus of PPARγ is necessary for adipogenesis. This was 

corroborated by a similar study, in which the truncation of five C-terminal amino 

acid of PPARγ2 produced a dominant negative isoform able to occupy the PPRE 

sites on the genome, but that was unable to induce adipogenesis(115). PPARγ 

splice variants lacking the ligand-binding domain have been reported to be 

expressed in cancer-derived cell lines, with the implication that cellular 

differentiation is deficient in these cancers due to the presence of such dominant 

negative isoforms of PPARγ which are unable to initiate transcription as well as 

the wild-type protein (116, 117). 

The N-terminal region of PPARγ has also been shown to have significant effects 

on adipogenesis. PPARγ1 or PPARγ2 overexpression in mouse pre-adipocytes can 

induce adipogenesis, although PPARγ2 is more potent (112), implying that the 

additional domain in PPARγ2 influences adipogenesis,  likely through recruitment 

of co-factors which do not bind PPARγ1. Replacing the N-terminus of PPARδ with 

that of PPARγ2 (residues 1-203) imparts significant adipogenic ability on the 
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fusion protein (118). However, deletion of the N-terminus of PPARγ2 results in 

greater adipogenic potential in cells expressing the truncated protein, an 

observation attributed to the loss of an inhibitory phosphoserine on residue 112 

(88). Other domain deletion studies showed PPARγ2 with a truncated N-terminus 

(removal of residues 1-136) maintains the ability to upregulate 95% of PPARγ-

induced adipogenic genes (86). This deletion did not affect the binding of the 

transcriptional regulator TRAP220 to PPARγ, but did prevent the attachment of 

Cyclic AMP-responsive element-binding protein (CREB) and p300.   

 

3.1.3 PPARγ in Differentiation of Macrophages and Osteoblasts 

Examples of the function of PPARγ in cell types other than adipocytes highlight its 

context-dependent mode of action. In macrophages and osteoblasts, the role of 

PPARγ is different from that in adipocytes. Signalling through PPARγ has been 

shown to influence mouse macrophage cells in their ability to become “alternately 

activated”, anti-inflammatory macrophages. The way PPARγ affects gene 

expression in this context is very different to that in adipogenesis. In 

macrophages, monomeric ligand-bound PPARγ covalently bound to small 

ubiquitin-like modifier (SUMO) binds to NCOR1-nuclear factor κ B (NF-κB) 

complexes on the DNA, obstructing binding of the 19S proteasome (119). This 

prevents degradation of the inhibitory complexes, thereby repressing NF-κB 

target genes.  

Cells harvested from bone mesenchyme can be differentiated into adipocytes, 

chondrocytes, myocytes or osteoblasts (reviewed in (91)).Thus, as PPARγ drives 

the adipogenic potential of these cells, it is an inhibitor of osteogenesis. Canonical 

Wnt-β-catenin and non-canonical Wnt signalling in osteoblasts suppress the 

activity of PPARγ via recruitment of histone deacetylases and methyltransferases 

to DNA-bound PPARγ, thus directly repressing PPARγ-influenced gene 

expression. 
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3.1.4 PPARγ in Differentiation of Prostate and Urothelium 

PPARγ isoforms are expressed in both prostate epithelia and urothelium, both of 

which arise from the embryonic urogenital epithelium (120). The necessity for 

PPARγ activation in directing a programme of gene expression changes which 

culminates in late/terminal differentiation of urothelial cells is reasonably well 

established, although the cofactors that help drive PPARγ-based transcription are 

not well understood.  

In normal human urothelial (NHU) cells, PPARγ is constitutively expressed. 

When NHU cells are cultured in serum free medium, spontaneous upregulation of 

the urothelial differentiation marker gene uroplakin 2 (UPK2) has been shown not 

to occur (25). Treatment of NHU cells with the PPARγ-specific ligand troglitazone 

(TZ) can induce upregulation of urothelial differentiation markers. However, 

concurrent inhibition of the EGFR with PD153035 (PD) or inhibition of the EGFR 

target proteins ERK1/2 or PI3K ensures a more robust expression of the 

differentiation marker UPK2, as well as cytokeratins and tight junction proteins 

associated with intermediate and superficial native urothelium (Table 3.1.1) (2, 26, 

121). Two genes, aquaporin 3 (AQP3) and fatty acid binding protein 4 (FABP4), 

which have PPRE elements in their promoters are rapidly and highly upregulated 

after induction of differentiation in NHU cells in vitro (122). PPARγ-specific 

inhibitors that prevent TZD binding to PPARγ attenuate the differentiation-

associated changes in gene and protein expression (2), as does whole-gene siRNA 

targeting of PPARγ (34). 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1.1 Expression of selected proteins associated with urothelial differentiation in vitro and in vivo. Histological data from 

previous publications (2, 25) has demonstrated the distribution of keratins and claudins in native human urothelium, a selection of 

which are displayed here. Treatment of cells with TZ and PD153035 results in upregulation of the protein markers (2) apart from 

CK14. CK14 is a squamous marker that is not expressed in normal native urothelium  (25) and is downregulated by in vitro 

differentiation. 

Protein expression change after 

TZ&PD treatment in vitro.  

CLDN3 CLDN4 CLDN5 CLDN7 CK14 CK13 

↑↑ ↑↑ ↑↑ ↑ ↓ ↑↑ 

       

Key  (Protein expression change) Upregulated ↑↑ Downregulated ↓ Slight upregulation ↑ 

Expression and 

localisation  in 

normal urothelium 

in vivo 

 CLDN3 CLDN4 CLDN5 CLDN7 CK14 CK13 

Superficial  X      

Upper Intermediate       

Lower Intermediate       

Basal       

Key  (Protein localisation) 

Kissing Points of Cells X 

Intercellular Junction  

Diffuse Cytoplasmic  

Negative  
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Taken together, the above studies provide strong evidence that PPARγ activation 

is both necessary and sufficient for in vitro differentiation of NHU cells. However, 

although PPARγ is able to initiate differentiation, there is evidence that 

transcription factors upregulated by PPARγ have a role to play in maintaining 

expression of differentiation markers. The initial hypothesis for the existence of 

such intermediary factors came about because the urothelial differentiation 

marker UPK2 does not have a PPRE in the promoter region 2000 bp upstream 

from the transcription start site, and upregulation of UPK2 mRNA levels occurs 

24-48 h after induction of differentiation with TZ and PD, later than other 

markers such as AQP3 and FABP4 which upregulate within 6 h (34). This 

circumstantial evidence suggested that PPARγ was driving expression gene 

expression after ligand treatment, but not directly regulating the terminal 

differentiation markers from their promoters. A subsequent investigation 

identified several transcription factors including forkhead box A1 (FOXA1) and 

interferon regulatory factor (IRF1) which had PPREs in their own promoters, and 

were upregulated within 12 h of induction of differentiation. Both factors were 

shown to bind to the promoter region of UPK2 (34). Their influence on terminal 

differentiation was further confirmed by siRNA knockdown, which inhibited the 

expression of the differentiation markers cytokeratin 13 (CK13) and claudin 3 

(CLDN3). This established that PPARγ-driven upregulation of FOXA1 and IRF1 

was able to drive upregulation of terminal differentiation markers in urothelium. 

As well as transcription factors which upregulate urothelial differentiation, there 

is some knowledge of those which can inhibit it. Application of transforming 

growth factor beta-1 (TGFβ1) to NHU cells significantly reduces UPK2 

upregulation after induction of differentiation with TZ and PD, without affecting 

ERK or RAC-alpha serine/threonine-protein kinase (AKT) signalling (123). TGFβ1 

signalling affects transcriptional activity of mothers against decapentaplegic 

homolog (SMAD) proteins, of which SMAD3 was demonstrated to be upregulated 

in NHU cells after induction of differentiation.  

Androgen receptor is considered the main driver of differentiation in prostate 

cells, but recent work in human prostate cells suggests that the relative abundance 

of PPARγ1 and PPARγ2 has a role to play in shaping prostatic cell identity (46). 

Cultured benign human prostate epithelial cells (BHPrEs) were shown to express 

a greater abundance of PPARγ2 as compared to PPARγ1. shRNA knockdown of 

PPARγ2 reportedly promoted transdifferentiation into urothelium, as measured 
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by expression of cytokeratin 20 which is normally restricted to superficial 

urothelial cells in vivo. However, the knockdown of PPARγ2 protein was far from 

complete, making the assertion that absence of PPARγ2 allows urogenital cells to 

differentiate into urothelium a questionable conclusion. In addition, although the 

PPARγ2 knockdown BHPrE cells expressed the urothelial differentiation marker 

CK20, they also expressed CK14. The authors suggest that CK14 is a marker of 

basal urothelium, when it is in fact only observed in human urothelium in 

squamous metaplasia, wherein cells are improperly differentiated (49). The 

conclusion that knockdown of PPARγ2 in prostate helping to achieve a 

transdifferentiation to urothelium is therefore based on keratin expression 

patterns which do not match with observations of native urothelium. When Strand 

et al cultured their PPARγ2 knockdown cells in an in vivo explant setting, 

structures resembling urothelium developed. However, the knockdown of PPARγ2 

was not assessed in the in vivo explants and the conclusion that PPARγ2 

knockdown aid urothelial differentiation also assumes that PPARγ2 is not 

expressed in differentiated urothelium, which is unresolved.  

The same study by Strand et al (46) showed that concurrent shRNA knockdown of 

both PPARγ1 and PPARγ2 isoforms also reduced expression of androgen receptor, 

with cells adopting a squamous undifferentiated phenotype. This squamous 

phenotype in PPARγ1/2 knockdown BHPrE cells has a similar keratin expression 

profile to that seen in normal human urothelium cultured in serum and NR-ligand 

free conditions (25, 56), indicating that there may be some similarities in 

phenotype between proliferative undifferentiated urogenital-derived cells with 

non-ligand activated PPARγ.  
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Figure 3.1.2. Cytokeratin and PPARγ expression in BHPrE cells as 

observed by Strand et al (46). Urothelium and prostate both derive 

from the same embryonic urogenital sinus, which expresses CK14 (124). 

Normal prostate cells show expression of PPARγ1, PPARγ2 and AR, and 

do not have expression of CK14 or CK20. Normal urothelium does not 

express AR or CK14, and expresses PPARγ1 and CK20, but expression of 

PPARγ2 is unknown. shRNA knockout of PPARγ2 by Strand et al in an 

in vitro setting resulted in a change in expression of CK isoforms in 

BHPrE cells from a prostate phenotype negative for CK14 and CK20, to 

a phenotype where it was positive for both. shRNA knockdown of 

PPARγ1/2 by the same authors resulted in a shift of expression to a 

CK20 negative and CK14 positive phenotype.  

 

3.1.5 Isoforms of PPARγ in Urothelium 

The work in prostate cells discussed above highlights that the isoforms of PPARγ 

that are present throughout the in vitro differentiation process are unknown. 

Varley et al (26) performed immunoprecipitation to PPARγ, and when 

immunoblotting against phosphorylated PPARγ observed two isoforms of PPARγ 

at 50 and 52 kDa in non-differentiated cells. 

Georgopoulos et al (31) reported an increase an isoform of the presumed 52 kDa 

isoform of PPARγ 24 h after induction of differentiation with TZ and PD in NHU 

cells. This upregulation did not occur in telomerase (hTERT) immortalised human 

urothelial cells, which have compromised differentiation capacity (31). In 

addition, Georgopoulos et al also reported a PPARγ-reactive band above the 

PPARγ bands which resembled the 50 and 52 kDa isoforms reported by Varley et 
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al. Since Varley et al (26)have shown that the 50 and 52 kDa isoforms are both 

phosphorylated in non-differentiation induced cells, then these must be distinct 

isoforms and not a closely migrating phosphorylated and non-phosphorylated 

doublet which is often observed for PPARγ1 and PPARγ2 (125).  

The calculated molecular weights of PPARγ1 and PPARγ2 based on the amino acid 

sequences in the Uniprot (www.uniprot.org) database are 55.4 and 58.6 kDa 

respectively. Tontonoz et al (88) cloned and expressed human PPARγ2 in an 

L[35S]-methionine in vitro translation system, which gave rise to two major bands 

at 56 and 52 kDa along with a faint band below 52 kDa, as detected by 

autoradiography. The band annotated as 52 kDa was equivalent to the separately 

expressed and purified PPARγ1 run in a parallel lane on their western blot (Figure 

3.1.2). The identity of the smaller band below the PPARγ1 is not discussed in the 

above publication, despite the objective evidence of its presence.  

This pattern of three PPARγ bands from in vitro translation resembles that 

obtained from immunoblotting of whole cell lysates of differentiated 3T3-L1 

adipocytes, although the annotation of the which protein is PPARγ1 and which is 

PPARγ2 differs between publications (126, 127). Fleming (122) showed that 

extracts from nuclei of differentiated 3T3-L1 and NHU cells contained two PPARγ 

species each, as did whole cell lysates of undifferentiated NHU cells.  As PPARγ2 

is the larger isoform in 3T3-L1 cells, it was therefore assumed that the larger 

isoform of PPARγ in nuclear extracts from NHU cells was PPARγ2 and the PPARγ 

at 50 kDa was PPARγ1. However, the presence of only two PPARγ-reactive bands 

does not agree with the observations of Georgopoulos et al, who reported three 

PPARγ-reactive bands on western blots of whole cell lysates of NHU cells 

(Appendix Figure 7.1.1). Thus there remains an unanswered question about which 

isoforms of PPARγ are present in NHU cells, and what their contribution is to 

differentiation.  

If the 50 and 52 kDa PPARγ in NHU cells are indeed PPARγ1 and PPARγ2 

accompanied by a higher molecular weight isoform in NHU cells, there is evidence 

from other cell types as to what their origins may be. Publications which address 

the issue of high molecular weight PPARγ-reactive bands are most often studying 

the post-translational modification of PPARγ (119, 128-132). Gibbings et al (128) 

observed a close migration of two isoforms of PPARγ annotated as 50 and 55 kDa, 

with a higher molecular weight isoform annotated as 62 or 67 kDa depending on 

the cell type investigated. In addition to this, Gibbings et al saw a reduction in the 
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higher molecular weight isoforms of PPARγ annotated as 62 / 67 kDa of PPARγ 

when using siRNA targeting SUMO1. They thus concluded that these higher 

molecular weight isoforms are post-translationally modified by SUMOylation. 

This observation has been replicated elsewhere by Floyd et al (132), who were able 

to generate higher molecular weight PPARγ by mixing PPARγ and the proteins 

involved in SUMOylation together in an in vitro translation system. This in vitro 

translation system used PPARγ2 DNA as a template, yet gave rise to four bands 

detected by autoradiography. PPARγ2 transcript has two known transcription 

start sites, one of which is the start site for PPARγ1 (83). The two bands which 

were lower in molecular weight than PPARγ1 and PPARγ2, at 42 and 44 kDa were 

not discussed in the paper by Floyd et al, and have not been investigated 

elsewhere. It remains a possibility that these are variants produced by the 

presence of extra start codons; however Floyd et al did not detail whether they 

used plasmid-containing genomic DNA sequence of PPARγ2 or DNA amplified 

from translated PPARγ2 mRNA as a template for transcription. Genomic DNA 

would have included intronic DNA with potential alternative transcription start 

sites downstream of that of PPARγ1, but isolated PPARγ2 cDNA would not have.  

This mixture of reports of sizes of PPARγ across several different cells types has 

makes it difficult to ascertain the identity of PPARγ proteins when interpreting the 

literature, and the identity of many potential transcript variants or post-

translationally modified isoforms remains unresolved.  

 

3.1.6 Localisation of Nuclear Receptors and Transcriptional Activity 

PPARγ has been observed by immunofluorescence to change localisation to the 

nucleus in response to inhibition of EGFR using PD (26). This observation is in 

agreement with previous studies which showed PPARγ phosphorylation by ERK 

affects localisation (60). However, other studies of PPARγ in NHU cells have 

reported a mixed cytoplasmic and nuclear localisation (56) or a predominantly 

nuclear localisation in untreated near-confluent cells (56, 95, 121, 133).   

One simple way to assess if an expressed transcription factor has the potential to 

initiate transcriptional activity is to observe its localisation in the cell. Nuclear 

localisation of NRs can be either ligand-dependent, as for glucocorticoid receptor, 

or ligand-independent as has been shown for the PPARs (134). However, although 

PPARs are generally nuclear, the picture is complicated by the addition of post-
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translational modifications which can cause it to become localised in the 

cytoplasm (100, 135). Thus, for nuclear receptors the localisation pattern and 

binding affinity for the nuclear compartment is highly context dependent and 

indicative of the functional status of the protein.  

Non-phosphorylated PPARs are reported to be localised to the nucleus regardless 

of their liganded status, with transcriptional control of PPARs being dependent on 

the change of binding partners from transcriptional repressors to activators upon 

binding of agonist ligands (100, 115, 136). Work using ectopic expression of 

PPARγ and RXRα demonstrated that the PPARγ/RXRα heterodimer is able to 

bind DNA in the absence of exogenous ligand (137), but that once ligand binds the 

diffusion rate of PPARγ is slowed as measured by fluorescence resonance energy 

transfer, suggesting the PPARγ/RXRα dimer is interacting with alternative 

binding partners (138). However, as the authors highlighted, these results are 

complicated by the observed cell-cell variation in localisation and abundance of 

PPARγ due to differing transfection efficiencies, and the inability to rule out the 

presence of endogenous ligands which might affect localisation.  

This potential exchange of co-factors and movement of PPARγ underscores that 

the nucleus is a dynamic organelle, which contains many structures and 

complexes that influence the behaviour of proteins within it. The structural 

elements of the nucleus consist of what is loosely termed the “nuclear matrix” 

(NM), which is an overarching term for a group of structures including a 

filamentous skeleton in the nucleus and large RNA and ribonucleoprotein 

complexes implicated in the control of transcription (reviewed in (62)). Chromatin 

and its constituent proteins can interact with the NM to varying degrees. The 

binding affinity of an NR-containing chromatin-bound complex for the nuclear 

matrix or chromatin can be ascertained by the addition of buffers containing 

detergent and varying molarities of salt, a method dubbed cytoskeletal (CSK) 

extraction (139). Extraction with 2 M NaCl and 0.1% w/v Triton-X100 removes a 

large proportion of the histones from the cell, and the non-extracted nuclear 

proteins are thought to be bound to the NM. Pre-digesting DNA with nucleases 

before salt extraction can extract some proteins bound to DNA which are not 

extracted by salt alone. Studies with estrogen receptor alpha (ERα) exemplify the 

utility of this approach in identifying the development of NR-NM interactions 

after a change in liganded status of the NR. Within 30 minutes of addition of ER-

specific ligands, nuclear foci of ERα were visualised by Stenoien et al (140). These 
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foci were not removed by CSK with salt alone or after nuclease digestion, and were 

induced to form with addition of ERα agonists or antagonists. Interestingly, 

transcriptional co-activators such as SRC-1 did not co-localise with the foci unless 

a strong agonist was added.  

NM resident transcriptional repressors have been described for PPARγ. Scaffold 

attachment factor B1 (SAFB1) was identified to interact with the DNA binding and 

LBD of PPARγ by Debril et a(141), following transfection of cells with constructs 

of combinations of PPARγ domains. SAFB1 also interacted with all other nuclear 

receptors tested and inhibited their transcriptional activity, thereby leading to the 

conclusion it is a general repressor for nuclear receptors. Expression of SAFB1 was 

found to be reduced during adipogenesis, leading to speculation that it has an 

inhibitory role in differentiation of pre-adipocytes. The localisation of a 

transcription factor and its resistance to extraction can help to identify whether it 

is resident on the chromatin and if it alters its resistance to extraction after ligand 

treatment.  
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3.2 Experimental Aims and Approach 

3.2.1 Aims 

It was the aim of the work described in this chapter to further investigate the 

expression and localisation of PPARγ isoforms in NHU cells during in vitro 

differentiation, and where possible to assess their relative contributions to 

differentiation.  

It was hypothesised that PPARγ isoforms in NHU cells would translocate to the 

nucleus and move from a CSK soluble to insoluble fraction after induction of 

induction of differentiation with TZ and PD. A further hypothesis was that the use 

of siRNA specific to PPARγ2 would inhibit the expression of differentiation 

markers in NHU cells and enable identification of PPARγ2 by reducing expression 

of PPARγ2 protein.  

 

3.2.2 Experimental Approach 

 Overview 3.2.2.1

Nuclear fractionations, CSK-NaCl and CSK-DNaseI-NaCl extractions were 

performed on NHU cells, and localisation of PPARγ was assessed by 

immunofluorescence and western blotting. This was intended to test if PPARγ 

translocates to the nucleus upon stimulation of differentiation and whether it is 

part of the nuclease-sensitive chromatin fraction.  

Immunoprecipitations targeting PPARγ were performed to assess whether 

isoforms of PPARγ identified on western blots also precipitated when using anti-

PPARγ antibodies. This was performed in order to resolve whether all bands 

observed by western blotting are genuine isoforms of PPARγ rather than non-

specific targets of the antibody.  

siRNA was utilised to knock down PPARγ1 and PPARγ2 during in vitro 

differentiation of NHU cells by targeting a sequence of coding RNA common to 

both isoforms, or PPARγ2 alone was targeted using a sequence in PPARγ2 not 

contained in PPARγ1. Western blotting was then used to asses which PPARγ 

isoforms altered in abundance during differentiation, as well as monitoring the 

upregulation of protein markers of differentiation. The purpose of this experiment 

was to test if the abundance of any isoforms of PPARγ was affected by the 
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introduction of siRNA targeting the exon which differentiates PPARγ2 from 

PPARγ1.  

Anacardic acid, a known inhibitor of SUMOylation, was applied to NHU cells at 

concentrations ranging from 0-10 μM, and western blotting was used to assess if 

the relative abundance of the 50 and 58 kDa isoforms of PPARγ altered in 

response. This experiment was designed to test if the abundance of any isoforms 

of PPARγ was affected by inhibiting the process of SUMOylation.  

 

 Anti-PPARγ Antibodies 3.2.2.2

All described major PPARγ isoforms share six coding exons, which constitute the 

totality of the PPARγ1 protein. PPARγ2 has an N-terminal addition of 28 amino 

acids. Thus, all antibodies which detect PPARγ1 also detect PPARγ2. Three mouse 

monoclonal antibodies targeting PPARγ were used in this study (Figure 3.2.1). An 

antibody which binds the C-terminus (E8 clone, Santa Cruz) was used for all 

western blot analyses, and another antibody targeting the same region (81B8 

clone, Cell Signaling) was used for immunoprecipitations. For 

immunofluorescence studies, an antibody targeting an N-terminal region common 

to both PPARγ1 and PPARγ2 was used (gift from GSK (142)).   

 

Figure 3.2.1. Anti-PPARγ antibody binding sites. The GSK antibody used for 

immunofluorescence studies was raised against an N-terminal region of 

PPARγ common to both PPARγ1 and PPARγ2 (142). The Santa Cruz (sc-7273, 

E8 clone) antibody used for western blotting was raised using a peptide 

matching amino acids 480-505 of PPARγ2. The antibody used for 

immunoprecipitations was the 81B8 clone (Cell Signalling), which is raised 

using a peptide from the same C-terminal region of PPARγ as the E8 

antibody. The PPARγ2 antibody was raised using a peptide matching the N-

terminal 28 amino acids of PPARγ with an added cysteine at the N-terminus 

of the peptide to improve immunogenicity.  
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 Nuclear Extractions and Immunoprecipitations 3.2.2.3

A “nuclear complex Co-IP” kit (Active Motif, Cat#54001) was used to 

hypotonically lyse scrape-harvested NHU cells in the presence of phosphatase 

inhibitors. Nuclei were then collected by centrifugation and supernatant retained 

as the cytoplasmic fraction. Nuclei were resuspended in a low salt (0.075 M) 

buffer and DNA enzymatically fragmented to release intact protein-DNA 

complexes. Nuclei were collected by centrifugation and supernatant retained as 

the nuclear extract. All extraction steps were carried out on ice or at 4oC. Proteins 

extracted by hypotonic lysis, extraction after DNA fragmentation, and the 

remaining fraction were compared by western blot for presence of PPARγ 

isoforms.  

To provide additional evidence that PPARγ isoforms observed by western blots in 

fractionated cells were genuinely PPARγ, 200 μg (as measured by Coomassie 

assay) of NHU cell nuclear extracts obtained using the nuclear Co-IP kit were 

subjected to immunoprecipitation with anti-PPARγ (81B8) antibody using two 

different agarose immunoprecipitation kits (Pierce Direct IP kit, Cat#26148 and 

Millipore Catch and Release 2.0, Cat# 17-500). The Millipore resin precipitates 

protein-antibody complexes directly onto the resin by binding to the antibody. The 

approach used in the Pierce kit is to first cross-link antibody to the resin before 

mixing the antibody-resin mixture with the extract. Immunoprecipitations using 

both kits were performed overnight at 4oC with 200 μg of protein from the 

nuclease-sensitive fraction of extracts performed with the Nuclear-Co-IP kit. Anti-

rabbit IgG immunoprecipitations were also performed to assess the non-specific 

retention of protein in the agarose-antibody system.  

  

 CSK Extractions 3.2.2.4

CSK buffer extractions were performed using cells 6 to 144 h after induction of 

differentiation. Both stepwise salt extractions with increasing concentrations of 

(0.1 to 2 M) NaCl, and single salt extractions (0.5 M NaCl) followed by digestion of 

DNA before re-extraction (0.5 M NaCl) were performed.  

Extractions were performed on both control and differentiating cultures at several 

time-points after induction of differentiation. Where DNase digestion was 

performed between extractions, identical extractions were carried out in parallel 
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without DNase. This was intended to control for proteins released non-specifically 

during the incubation period.  

PPARγ relative abundance in extracts and pellets was determined by western blot. 

PPARγ localisation after DNase extractions was also investigated by indirect 

immunofluorescence in fixed cells with maintained 3D structure imaged on a 

single z-plane using confocal microscopy. This was intended to allow visual 

assessment of PPARγ localisation.  

 

 PCR and siRNA to PPARγ2 and PPARγ1/2 3.2.2.5

cDNA libraries were constructed using RNA isolated from control and 

differentiation induced cells at 24 h and 144 h after treatment. PCR was 

performed using forward primers targeting the first coding exon of PPARγ1 or 

PPARγ2, with reverse primer in the final coding exon common to PPARγ1 and 

PPARγ2. Reverse transcriptase negative cDNA samples were also subjected to 

PCR to control for presence of contaminating DNA. The presence of full-length 

PPARγ1 and PPARγ2 mRNA was assessed using RT-PCR targeting the extreme 5’ 

and 3’ exons of each mRNA. PCR products were separated on 0.75% agarose gels 

and imaged on a UV-imaging system (GeneGenius, Syngene). 

siRNA was designed to target PPARγ2 and PPARγ1/2 and transfected into cells 

before induction of differentiation (Materials and Methods 2.4.6). Expression of 

PPARγ and differentiation markers was assessed by western blot of whole cell 

lysates in transfected NHU cells treated for 24 or 72 h with TZ and PD153035 or 

0.1% DMSO vehicle control. Transfection with siRNA targeting the non-human 

luciferase gene was included alongside anti-PPARγ siRNA to control for any none 

gene-specific effects the transfection procedure may have had on the NHU cells.  

 

 SUMOylation inhibition 3.2.2.6

PPARγ activity has been demonstrated to be regulated by SUMOylation in 

multiple cell types (119, 128-132). To investigate if any PPARγ-reactive bands on 

western blot were potentially SUMOylated, NHU cells were treated with anacardic 

acid, a known inhibitor of SUMOylation (143). NHU cells were cultured as 

described in Materials and Methods 2.3 to 70% confluence and medium changed 

to include 1, 5 or 10 μM anacardic acid or 0.1% DMSO as vehicle control. After 8 
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hours, cells were harvested in CSK buffer with added 2% SDS and sonicated as 

described in Materials and Methods 2.4.  

Protein content of lysates was quantitated using the BCA assay and 20 μg 

subjected to western blot as described in Materials and Methods 2.4. Abundance 

of PPARγ isoforms and histone H3 acetylated at lysine 4 (H3K4me3) was assessed 

by densitometry using the Odyssey software (Li-CoR version, 1.2.15) as described 

in Materials and Methods 2.4.4. As anacardic acid also inhibits histone 

acetyltransferase activity, the relative levels of H3K4me3 were assessed to 

determine whether anacardic acid was having an effect on this in NHU cells. 

Relative abundance of bands on western blots were normalised to beta-actin as a 

control to account for potential differential overall protein content of lanes.  
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3.3 Results 

3.3.1 Nuclear Extractions and Immunoprecipitations 

Before proceeding with investigation of PPARγ isoform behaviour, successful 

induction of differentiation was demonstrated by detection of upregulation of the 

differentiation marker FOXA1 in whole cell lysates prepared from parallel cultures 

to those used for nuclear extraction and immunoprecipitation (Figure 3.3.1). 

 

 

Figure 3.3.1. FOXA1 upregulation in response to induction of differentiation.  

2 NHU cell lines used for nuclear extractions and immunoprecipitations 

were subjected to differentiation-inducing (+) or control (-) culture 

conditions for 24 h before harvesting. 20 μg whole cell lysates were subjected 

to SDS-PAGE and western blot, and membranes labelled using anti-FOXA1 

(C20 clone, Santa Cruz) and relevant secondary antibodies. Cell line Y933 

(left blot) and Y1086 (right blot) showed apparent increase in amounts of 

FOXA1 labelling in response to differentiation.  

 

NHU cells were fractionated into cytoplasmic, nuclease-sensitive and non-

solubilised fractions using the Active Motif Nuclear Co-IP kit. Western blots of 

cytoplasmic extracts obtained after hypotonic lysis showed weak presence of 50 

kDa PPARγ in control extracts, the relative abundance of which was reduced in 

differentiated extracts (Figure 3.3.2). In both differentiation-induced and control 

cell extracts, the majority of the PPARγ at 50 and 52 kDa was in the nuclear 

fraction extracted after nuclease fragmentation, with some PPARγ at this 

molecular weight remaining in the pellet of material not solubilised by nuclease 

fragmentation. A third distinct PPARγ was clearly evident above the 50 and 52 

kDa isoforms in the non-extracted pellets, with a faint band visible at the same 

height in the nuclear extracts. Other prominent bands at around 42, 32, 30 and 25 
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kDa were present, of which the majority of the protein was in the cytoplasmic and 

nuclear extract fractions, apart from the 42 kDa fraction which was of similar 

abundance in the nuclear extracts and pellets. These smaller bands were variable 

in abundance between cell lines, as was the relative abundance of the isoform of 

PPARγ at 52 kDa (Appendix Figures 7.1.2.1 and 7.1.2.3).  

 

Figure 3.3.2. Fractionation of NHU cells using Nuclear Co-IP kit with (+) and 

without (-) induction of differentiation. NHU cells contain multiple PPARγ-

reactive proteins, which appear similarly distributed in differentiation-

induced and control cells apart from a small amount of PPARγ at 50 kDa in 

the cytoplasmic fraction. Proteins extracted from hypotonically lysed cells 

are the “cytoplasmic” fraction. Nuclear proteins isolated after nuclease 

digestion and low-salt extraction are labelled “extract”, and remaining non-

extracted proteins are labelled “pellet. The doublet at 50 and 52 kDa and the 

higher band at 58 kDa resemble those previously observed in extracts from 

NHU cells (31, 122). Cell line This blot is representative of a total of three 

separate extractions performed on three separate NHU donor lines, although 

the detection of any PPARγ in the cytoplasmic fraction was inconsistent 

(Appendix 7.1.2.1 and 7.1.2.3).  

 

Immunoprecipitations were then performed of the nuclease-treated ‘nuclear’ 

extracts using a different anti-PPARγ antibody in order to provide additional 

evidence that the isoforms of PPARγ observed by western blot were not products 



 

101 
 

Chapter 3 

of non-specific interaction of the antibody used to label blot membranes. Western 

blots of bound and non-bound fractions from immunoprecipitations showed that 

most PPARγ isoforms present in nuclear extracts were present in the bound 

fraction of immunoprecipitations (Figure 3.3.3). An additional band at 64 kDa 

was visible in the bound fraction which was not detected in the input nuclear 

extracts. A proportion of the PPARγ at 50 and 52 kDa did not bind to the affinity 

resin, which may be PPARγ which is part of a complex wherein the antibody 

binding epitope is masked, or the proportion of PPARγ that was in excess of the 

capacity of the antibody-resin mixture included in the IP. Further experiments 

were performed using differing amounts of antibody which appeared to give 

similar retention of PPARγ, suggesting that the capacity of the antibody had not 

been reached (Appendix Figure 7.1.2.1). As the resin was used at a fraction of its 10 

μg antibody capacity, this suggested that the resin was also not being saturated. 

This strongly suggests that the binding capacity of the system was not reached, 

and that in some complexes PPARγ epitopes were masked. 
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Figure 3.3.3. Immunoprecipitation of multiple PPARγ isoforms from nuclear 

Co-IP extracts. NHU cell line Y933 treated with TZ&PD for 24 hours was 

subjected to extraction with the Nuclear Complex Co-IP kit. 200 μg nuclear 

extracts were immunoprecipitated against PPARγ (81B8 clone) using either 

the Millipore Catch and Release or Pierce Direct IP kits. 20 μg of extract 

(input) was compared by western blot with 10 % of non-bound (NB) and 50 % 

of bound (B) fractions from immunoprecipitations. Most of the PPARγ-

reactive bands visible in the input fraction were present to some degree in 

the bound fraction from the immunoprecipitation. The exceptions to this 

were the bands at 35 kDa and 17 kDa which did not precipitate, and the band 

at 64 kDa which did precipitate but was not detected in the input. 

 

To confirm the specificity of PPARγ immunoprecipitation, the Millipore catch and 

release immunoprecipitation system was compared to that of another supplier: 

the Direct IP kit from Pierce. Similar results were seen, whereby most isoforms of 

PPARγ observed in nuclear extracts were successfully immunoprecipitated (Figure 

3.3.4). Control anti-rabbit IgG immunoprecipitations showed some background 

levels of PPARγ in the Millipore, but not in Pierce immunoprecipitation systems. 

Further experiments using resin only immunoprecipitations showed that some 

background was inherent to the Millipore system, but that the Pierce system was 

almost completely devoid of non-specific retention (Appendix Figure 7.1.3). This 



 

103 
 

Chapter 3 

showed that the isoforms of PPARγ isolated in the both the Millipore and Pierce 

system were genuine, but that the Millipore system suffered from some 

background non-specific pull down.  

 

 

Figure 3.3.4. IP to PPARγ from nuclear extracts using Millipore and Pierce 

immunoprecipitation kits. IP with anti-PPARγ antibody (81B8), incubated 

with Nuclear Co-IP extracts from cell line Y933 treated with TZ&PD for 24 h 

(Y933). Both immunoprecipitation systems resulted in capture of multiple 

PPARγ-reactive bands observed in the nuclear extracts (input). Some non-

specific retention was detected in the Millipore system when control 

precipitations were performed with anti-Rabbit IgG (red dashed box). No 

background PPARγ was detected with control immunoprecipitations using 

the Pierce system. 

 

3.3.2 Sequential CSK Extractions 

To further investigate the solubility of PPARγ isoforms during differentiation, 

CSK-NaCl extractions were used to sequentially extract protein from cells using 

stepwise increasing NaCl concentrations, with the extracts visualised using 

western blotting with the E8 clone anti-PPARγ antibody. Most PPARγ-reactive 

bands at 50 kDa and below which were present in the cells at 6 h were extracted 

by 0.5 M NaCl (Figure 3.3.5). Most of the 58 kDa isoform remained in the 

insoluble fraction, along with traces of the isoforms at 50 and 42 kDa. Most 

strikingly, there was no appreciable difference in extraction profile between 
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control and differentiation-induced cells. Histone H3 was included as a control to 

observe the concentration of NaCl which began to disrupt histone occupancy in 

the nucleus and to confirm the stringency of the extraction. pERK was almost 

absent from whole cell extracts in differentiation-induced cells indicating 

successful blocking of EGFR signalling by PD153035. 

 



 

 
 

 

Figure 3.3.5. PPARγ and pERK in sequential CSK salt extracts of cell lysates 6 hours after induction of differentiation. Control and 

differentiation-induced cells were sequentially extracted in CSK buffer with 0.1% Triton-X100 and NaCl from 0.1 to 2 M. Material 

remaining in pellets after extraction was solubilised in 2% SDS lysis buffer. Parallel cultures were used for whole cell extracts 

(WCE). PPARγ extraction was not affected by induction of differentiation. Most Histone H3 did not extract until addition of 1 M 

NaCl, showing that chromatin integrity was intact up to at least 0.5 M NaCl. H3 also serves as a loading control, showing 

comparable protein amounts between equivalent extracts of control and differentiated cells. pERK was almost absent in cells 

treated with TZ & PD, demonstrating EGFR inhibition. Claudin 5 was more abundant in parallel cultures at 72 h time point in 

TZ&PD treated cells, showing successful induction of differentiation over the time-course of treatment. NHU cell line Y1152. 

 



 

106 
 

Chapter 3 

The sequential salt extraction procedure was also carried out on differentiated and 

control lysates of cells 144 h after treatment (Figure 3.3.6). PPARγ 

immunoreactive bands ≤52 kDa were more resistant to NaCl extraction than at 6 

h, yet extraction profiles were similar for both differentiated and control cells. 

Most notable was the increased relative abundance of the PPARγ band at 52 kDa 

in differentiated and control cells, which was both more abundant and resistant to 

extraction in differentiated than control cells. The 37 kDa band was slightly more 

abundant in the control than differentiated cells in the 1 M fraction. Most of the 

PPARγ-reactive bands appeared to be represented in the pellet, although the 

resolution of the bands was poor, likely due to the high salt content, as was the 

reproducibility of the observation of 58 kDa isoforms of PPARγ in whole cell 

extracts. These observations were repeated in later experiments (Chapter 4), 

where changing the buffer from SDS to LDS for pellet solubilisation greatly 

increased the blots of CSK extraction pellets – and the 42 and 58 kDa PPARγ were 

consistently observed in the non-extracted fraction.  

 



 

 
 

 

Figure 3.3.6. PPARγ localisation in sequential CSK salt extracts 6 days after induction of differentiation.  (Top blot) undifferentiated 

(TZ&PD -) and differentiation-induced (TZ&PD +) NHU cells were treated for 144 h and harvested before re-suspension in 100 μL 

CSK buffer with 0.1% Triton-X100 containing sequential NaCl concentrations from 0.1 to 2 M. Extracts were mixed with 4X LDS and 

reducing agents before blotting against PPARγ. Extraction profiles show that the 52 kDa band was slightly more resistant to 

extraction in differentiation-induced cells, remaining up to 1 M. PPARγ-reactive bands <50 kDa all showed profiles indistinguishable 

between differentiated and control cells. Bands in pellet lanes are poor quality but show the retention of the 58 kDa PPARγ-reactive 

band. Bottom blot: upregulation of FOXA1, which resides in the 0.4-0.5 M NaCl fraction, can be seen in differentiated cells. NHU cell 

line Y1052. 



 

108 
 

Chapter 3 

3.3.3 CSK-DNase Extractions – Western Blots 

To assess the sensitivity of NaCl-resistant PPARγ isoforms to nuclease digestion in 

the CSK extraction system, NHU cells 24 and 144 h after differentiation were 

subjected to extraction in CSK buffer with 0.5 M NaCl before and after incubation 

with DNaseI. In this setup, whole cell extracts and insoluble pellets remaining 

after CSK extractions were lysed in CSK buffer with added LDS as for sequential 

CSK extracts (Materials and Methods 3.6.1), rather than using 2% SDS as 

previously. This was because it was observed that use of CSK buffer greatly 

increased the quality of the appearance of bands in the pellets. Whole cell extracts 

were included to allow equal loading.  

In whole cell extracts lysed in CSK buffer, the PPARγ-reactive band at 58 kDa was 

clearly present in control and differentiated cells (Figure 3.3.7) after 24 and 144 h. 

The main change in extraction profile of PPARγ over time was the increased 

relative abundance of PPARγ at 52 kDa in the 0.5 M pre-DNase extracts in the 144 

h sample. DNase treated cells released the same amount of PPARγ at 50 and 52 

kDa in both time-points. The 58 kDa isoform was not extracted at either time-

point. 
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Figure 3.3.7. Western blot of CSK-DNase extracts at 24 and 144 h. Western 

blots of whole cell lysates (WCE), pre-DNase extracts (0.5 M) and post-DNase 

extracts (DNase) immunolabelled for PPARγ. Similar extraction profiles are 

seen for PPARγ in control (TZ&PD -) and differentiated (TZ&PD+) cells at 24 

h. 52 kDa PPARγ was relatively more abundant in 0.5 M pre-DNase extracts 

taken from differentiated cells after 144 h than at 24 h (asterisk). Multiple 

64-75 and an 80 kDa PPARγ2-reactive isoforms were also visible in both 

WCE at 144 h. NHU line Y1120. Western blot labelled with E8 clone anti-

PPARγ antibody (red) and anti-PPARγ2 antibody.  

 

To test whether the PPARγ released after DNase treatment was specific to the 

addition of the DNase and not just a result of incubation conditions, extractions 

were carried out on differentiated and control cells at 6, 24 and 144 hours with 

and without DNase, and the material remaining behind in the pellets was blotted. 

As with the whole cell extracts, solubilising the pellets in CSK buffer rather than 

SDS showed a consistent presence of the 58 kDa isoform of PPARγ. Similar to the 

Nuclear-Co-IP extractions, pellets remaining after salt extractions showed higher 

relative abundance of bands at 58 and 42 kDa compared to 50 and 52 kDa (Figure 

3.3.8).  

The relative abundance of PPARγ isoforms remaining behind in pellets did not 

appear to change with the addition of DNase, suggesting that PPARγ isoforms 
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resistant to the initial extraction with 0.5 M NaCl were not more susceptible to 

extraction after the addition of DNase. PPARγ at 50 kDa was more abundant in 

pellets from differentiated cells at early time-points (6 h) than in those from non-

differentiated cells. However, this trend reversed at 24 h, where there was less 

PPARγ at 50 kDa relative to 58 and 42 kDa in differentiation-induced cells. As 

DNase extractions should contain either the same or less bands than control 

extractions due to the digestion of DNA, it was noted that at 6 h and 24 h there 

seemed to be greater abundance of the 50 kDa PPARγ in DNase extracted cells. As 

the PPARγ at these time points was so low in abundance, it is likely that the same 

difficulties experienced solubilising the pellets as before may have hampered the 

reproducibility of low abundance bands. Immunoblots of DNase extracts showed 

that histone H3 was extracted in much greater abundance when cells were 

incubated with DNase (Figure 3.3.9), showing that the enzyme was effective. 

 

Figure 3.3.8. DNase extracted pellets. Western blot showing presence of 

PPARγ-reactive bands in DNase and control extracted pellets. Cells 

were cultured for 6-144 h with TZ&PD (+) or DMSO control (-). Cells 

were then pre-extracted with 0.5 M NaCl and incubated in DNaseI 

buffer with (DNaseI) or without (Control) enzyme before re-extracting 

with 0.5 M NaCl. The remaining pellets were solubilised by sonication 

in CSK buffer and LDS, prior to SDS-PAGE separations and western 

blotting. All time-points show presence of 42, 50 and 58 kDa PPARγ in 

all pellets.  
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Figure 3.3.9. Histones in DNase extracts and pellets. DNase extracted 

cell pellets show extraction of histones after addition of DNaseI, 

indicating enzyme was active. Cells were cultured for 6-144 h with 

TZ&PD (+) or DMSO control (-). Cells were then pre-extracted with 0.5 

M NaCl and incubated in DNaseI buffer with (DNaseI) or without 

(Control) enzyme before re-extracting with 0.5 M NaCl prior to analysis 

of the extract or pellet using SDS-PAGE and western blotting.  
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3.3.4 DNase extractions – Confocal Immunofluorescence 

Indirect immunofluorescence was performed before and after the different stages 

of CSK-DNase extraction (with 0.5 M NaCl) in order to assess if any differences in 

PPARγ cellular localisation and resistance to extraction could be identified 

between control and differentiated NHU cells. Cells were kept hydrated after 

fixation in a 1:1 mixture of methanol and acetone to allow proteins to maintain a 

more native three-dimensional conformation and enable localisation to be 

assessed by confocal microscopy (Materials and Methods 2.6.3).  

Differentiated and control NHU cells at 24 and 144 h showed some evidence of 

nuclear foci when labelled with anti-PPARγ antibodies in cells before extraction. 

Foci were more prominent following CSK-NaCl extraction up to 0.5 M NaCl and 

subsequent CSK-DNase treatment in cells at 24 h, and of similar appearance at 

144 h before and after extraction. PPARγ labelling on the outer and inner nuclear 

periphery was much more distinct in cells after DNase digestion, especially in cells 

at 144 h. The distribution patterns of PPARγ were similar between TZ&PD treated 

and DMSO control cells at each time point. Similar results were obtained from 

independent cell lines (Figures 3.3.10 A and B).  

 

 



 

 
 

A  B  

Figure 3.3.10 A, B. Immunofluorescence in two NHU donor lines showing nuclear localisation and resistance to extraction of 

PPARγ (red) in NHU cells with and without induction of differentiation. NHU cells were treated with control or differentiation-

inducing agents as annotated. Cells were either not extracted (Total), extracted for 5 minutes using CSK (0.5 M NaCl), or CSK 

extracted followed by DNase digestion and repeat CSK extraction (DNase Digest). Extraction did not disrupt foci (white arrows) of 

PPARγ in the nucleus, even after treatment of cells with DNaseI enzyme which degraded DNA (blue). Differentiation marker 

aquaporin 3  (green) relocates to the membrane in differentiation-induced NHU cells (144), confirming differentiation induction. 

Cells were fixed in 1:1 methanol and acetone for 30 seconds and buffer-exchanged into PBS before incubating with primary 

antibodies overnight followed by relevant secondary antibodies for 1 h and Hoecsht 33258 staining. Images taken on Zeiss LSM-

710 confocal microscope at 60 X magnification. 3.3.10 A = NHU donor line Y1185, 3.3.10 B = NHU donor line Y1085. 
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3.3.5 PPARγ mRNA Expression in Differentiation 

Expression of PPARγ transcript was investigated by RT-PCR to assess the extent 

to which PPARγ 2 was expressed over the course of differentiation of NHU cells.  

PPARγ2 expression was investigated using a forward PCR primer in the upstream 

exon possessed by PPARγ2 (exon “B”, Figure 3.3.11). PPARγ4 and PPARγ5 

transcripts also contain this exon and could be amplified alongside PPARγ2, 

although these would be 200 bp longer than the expected PPARγ2 amplicon. PCR 

targeting PPARγ exons 1-6 was performed in parallel to gauge overall levels of 

PPARγ transcript and as an internal control.  

 



 

 
 

 

Figure 3.3.11. PPARγ transcript variants. Exons 1-6 are common to all PPARγ isoforms, with variants gaining exons from upstream 

regions. PPARγ transcripts 1, 3, 5 and 7 all result in PPARγ1 protein due to absence of a start codon in exons A1 and A2 or the stop 

codon in exon D. Transcripts 4 and 6 result in PPARγ4 protein due to exon C containing both a stop and start codon. Adapted from 

(83). 
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PPARγ expression increased over time in both differentiated and control cells, but 

had greater relative abundance in differentiated cells at each time point (Figure 

3.3.12). PCR products from PPARγ exons 1-6 were detected at all time-points, with 

possible splice variants visible underneath the expected full-length PCR product. 

PPARγ2-specific PCR product was much more weakly expressed, needing 40 

cycles of PCR to give a product in control and differentiated cells at 144 h (Top 

right, Figure 3.3.12). The presence of shorter than expected PCR products when 

amplifying from cDNA using primers targeting exon 1 and exon 6 of PPARγ1 was 

repeated using cDNA from an independent NHU cell line (Figure 3.3.13). The 

presence of these bands suggests that in addition to the full-length canonical 

transcript, there are PPARγ transcripts variants present that amplify when using 

primers targeting the 5’- and 3’ terminal exons of canonical PPARγ1 mRNA.  

  



 

 
 

 

                                                                           
 
Figure 3.3.12. Full length PPARγ mRNA PCR. PCR product spanning exons 1-6 was present at the expected size of 1,209 bp after 30 

cycles (top left), along with smaller products visible at around 1 kb, 750 bp and 600 bp (white arrows). Use of a forward primer in 

PPARγ2 specific exon “B” required 40 cycles of amplification before a product was detected, which was only present in 144 h samples 

(top right). cDNA was synthesised from 1 μg total RNA from cells treated with differentiation or control agents for 24 or 144 hours, 

diluted to 20 μL and 1 μL used per PCR reaction. PCR from cDNA syntheses without reverse transcriptase (bottom left, bottom right) 

produced no amplicons. Primers; exon “B” forward: 5’-TCCTTCACTGATACACTGTCTGC-3’, exon 1 forward: 5’-

ACTTTGGGATCAGCTCCGTG-3’, exon 6 reverse 5’-GGGCTTGTAGCAGGTTGTCT-3’. All primers had a Tm of 60oC (-/+ 1oC). Thermal 

profile: 95oC 2 min then cycles of 95oC for 30 s, 60oC for 30 s and 72oC for 2 min followed by final 72oC for 5 minutes. GoTaq 

(Promega) PCR kit used for amplification.  
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Figure 3.3.13. PPARγ full length PCR independent cell line. PCR 

targeting PPARγ exons 1-6 shows amplicons present below expected 

length, with two around 1 kb and one around 750 bp (arrows). This 

suggests the presence of splice variants missing exons totalling around 

200 and 450 bp in length. RNA harvested from cell line Y1085 after 

culturing to 70% confluence and treating with 0.1% DMSO for 24 h.  

Primers and PCR as for Figure 3.3.10, 34 cycles PCR. Reverse 

transcriptase negative cDNA transcription (RT-) and water only no 

template control (NTC) included as negative controls for amplification 

of background DNA. 

 

3.3.6 siRNA to PPARγ 

 siRNAs were generated based on shRNA targets of Strand et al (46). PPARγ was 

targeted in order to assess the effects of PPARγ expression levels and the ability of 

NHU cells to differentiate. PPARγ2 was targeted using siRNA to the first coding 

exon of PPARγ2. siRNA was also used which targeted the first coding exon of 

PPARγ1. As this would also bind the PPARγ2 transcript, it was referred to as 

PPARγ1/2.  

NHU cells exposed to control siRNA (luciferase) and induced to differentiate had 

>5-fold increased expression of PPARγ at 52 kDa, as well as the differentiation 

markers cytokeratin 13 (CK13) and claudin 4 (CLDN4) after 72 h differentiation 

(Figure 3.3.14, Figure 3.3.15). Upregulation of all of these proteins was attenuated 

by the addition of PPARγ2 siRNA, whereas PPARγ1/2 siRNA slightly increased 

the relative levels of differentiation markers.  

Compared to luciferase siRNA controls, PPARγ2 siRNA reduced expression of 

PPARγ2 by >50% at every time-point during differentiation. There was a 25% 

reduction in upregulation of CK13 expression in cells exposed to PPARγ2 siRNA, 
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but not in response to PPARγ1/2 siRNA. CLDN4 upregulation was reduced >60% 

in differentiated cells at 72 h when exposed to PPARγ2 siRNA.  

In both differentiation-induced and control NHU cells at both time points, 

PPARγ1/2 siRNA increased the amount of CLDN4 expression relative to siRNA 

treated cells. A similar effect was seen for CK13 at 72 h.  

The PPARγ isoforms at 42, 50 and 58 kDa were only slightly downregulated by the 

PPARγ1/2 siRNA in differentiation-induced cells at 72 h (Figure 3.3.14). The 

upregulation of the 42, 50, 52 and 58kDa PPARγ bands seen in differentiation-

induced cells exposed to control siRNA was stopped by PPARγ2 siRNA. As 

evidenced by PCR, PPARγ1 transcript was very abundant relative to the amount of 

PPARγ2 transcript detected. It is therefore likely that siRNA to PPARγ1/2 was 

much less efficient than that targeting PPARγ2.  
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Densitometry Measurements of Western Blot 

 

 
Figure 3.3.14. Effects of PPARγ siRNA on expression of PPARγ isoforms.  

In densitometry graphs, 24D, 72D and 24T, 72T designate control (D=DMSO) 

and differentiated (T=TZPD) cells at 24 and 72 h. Upregulation of PPARγ 

isoforms observed during differentiation in the presence of luciferase 

control siRNA was attenuated by both PPARγ1/2 and PPARγ2 siRNA at 72 h, 

with the greatest effect from PPARγ2 siRNA. NHU cells were transfected with 

200 mm siRNA for 7 hours before addition of control (0.1% DMSO) or 

differentiation-inducing (TZ & PD) agents. Cells were harvested in CSK 

buffer with added 2% SDS, and reducing agents omitted to enable 

quantitation by BCA assay and loading of 20 µg per lane. All densitometry 

measurement areas were of the same size for each measured band, with 

background correction taken as the median pixel intensity in a region 2 

pixels wide adjacent to the measured region. 
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Densitometry Measurements of Western Blot 

 

Figure 3.3.15. Effects of PPARγ siRNA on differentiation marker expression. 

24D, 72D and 24T, 72T designate control (D=DMSO) and differentiated 

(T=TZPD) cells at 24 and 72 h respectively. PPARγ2 siRNA attenuated 

upregulation of cytokeratin 13 (CK13) and claudin 4 (CLDN4) at 72 h 

differentiation as compared to luciferase siRNA. CLDN4 upregulation was 

reduced by PPARγ2 siRNA as compared to luciferase siRNA, but slightly 

increased in PPARγ1/2 siRNA in all time-points. CK13 upregulation at 72 h in 

response to differentiation was also attenuated by PPARγ2 siRNA as 

compared to luciferase control, but an increase was observed in 

differentiated cells exposed to PPARγ1/2 siRNA. Blots were from replicate 

aliquots of the same samples in Figure 3.3.14, and thus prepared and 

analysed identically. 
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3.3.7 Anacardic Acid 

To investigate the possibility that any PPARγ isoforms present in NHU cells are a 

post-translationally modified isoform of PPARγ, relative levels of PPARγ-reactive 

bands were monitored in response to treatment of cells with 1-10 μM anacardic 

acid. Anacardic acid can prevent the formation of the SUMOylation precursor 

complexes, preventing ligation of SUMO to target proteins (143). NHU cells were 

cultured to 70% confluence and medium changed to include 1, 5 or 10 μM 

anacardic acid or 0.1% DMSO vehicle control. Cells were harvested after 8 hours 

in CSK buffer with added 2% SDS, and protein quantitated by BCA assay. Western 

blots were loaded with 20 μg immunolabelled with antibodies to PPARγ (E8 

clone), PPARγ2, histone H acetylated at lysine 4 (H3K4Ac) and beta actin. 

 Anacardic acid is also a known histone acetyltransferase inhibitor (145). As such 

the H3K4Ac abundance was investigated to monitor the effect of anacardic acid. 

Treatment with 10 μM anacardic acid slightly reduced relative amounts of 58 kDa 

PPARγ and similarly slightly increased abundance of 50 kDa PPARγ. Blots were 

also labelled using an antibody targeting PPARγ2 (Figure 3.3.16).  
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Figure 3.3.16. Modulation of PPARγ isoform abundance in undifferentiated 

NHU cells treated with 0, 1, 5 or 10 μM anacardic acid for 8 h. Lysates blotted 

for PPARγ (red), PPARγ2 (green) (left blot), H3K4Ac (right bottom blot) and 

beta-actin (right top blot). Graph of densitometry measurements normalised 

to beta-actin shows PPARγ-E8 immunoreactive bands at 50 kDa increase and 

80 kDa isoform decrease, in relative abundance in response to anacardic 

acid. H3K4Ac reduction was dose-dependent in response to anacardic acid.  
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3.3.8 Overview of Results 

 The original hypothesis that PPARγ would translocate to the nucleus in 

response to differentiation was not fully supported, as the majority of the 

PPARγ at 50 and 52 kDa was located in the nuclear fraction of nuclear co-IP 

extracts from NHU cells cultured to at least 70% confluence, independent of 

induction of differentiation.   

 Not all PPARγ protein was released from nuclei after nuclease digestion, in 

either nuclear co-IP fractionation or CSK-DNase extractions. The presence of 

non-extracted PPARγ-reactive proteins observed in non-extracted portion of 

cells after CSK extraction was corroborated by the observation of nuclear by 

immunofluorescence after CSK-DNase extractions.  

 The two PPARγ isoforms at 50 and 52 kDa in the nuclear extract fraction from 

nuclear co-IP extractions corresponded with those observed in identical 

extracts of previous studies of NHU cells. Inspection of the non -extracted 

pellets revealed another, distinct isoform at 58 kDa, agreeing with other 

observations of three major PPARγ bands between 50 and 60 kDa in NHU 

cells.  

 Some PPARγ isoforms in nuclear extract fractions were successfully 

immunoprecipitated when using anti-PPARγ antibodies, including the 50, 52, 

58 kDa isoforms as well as a low abundance 64 kDa isoform.  

 Most of the PPARγ-reactive bands were soluble to some degree up to 2 M NaCl 

in CSK extractions, although most of the 58 kDa band and a significant 

proportion of the 42 kDa band remained in the insoluble fraction. The 

extraction profiles of PPARγ between control and differentiated NHU cells 

were strikingly similar at all time points observed. 

 PCR amplification of full-length PPARγ1 mRNA resulted in one larger than 

expected, and multiple smaller than expected amplicons, suggestive of the 

possible presence of splice variants All observed isoforms appeared to be 

qualitatively upregulated to a similar degree at each time-point. 

 An increase in the 52 kDa isoform over time was seen across different 

experiments. siRNA targeting PPARγ2 dramatically attenuated the 

upregulation of the 52 kDa PPARγ isoform, and inhibited the upregulation of 

the 58, 50 and 42 kDa PPARγ isoforms as well as differentiation markers CK13 

and CLDN4.  

 Treatment with 10 μM anacardic acid for 8 h slightly reduced the relative 

abundance of 58 kDa PPARγ, whilst the 50 kDa PPARγ slightly increased in 
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abundance. Using an antibody targeting PPARγ2 labelled the 58 kDa isoform 

as well as resulting in the presence of 37 kDa and 80 kDa bands. The 80 kDa 

PPARγ2-reactive band and H3K4Ac decreased in abundance in a dose-

dependent manner in the presence of anacardic acid.  
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3.4 Discussion 

3.4.1 Identity of PPARγ Isoforms in NHU Cells 

The current study clearly demonstrated the presence of three high abundance 

PPARγ-reactive bands at 50, 52 and 58 kDa in NHU cells, strongly resembling the 

pattern of bands observed in NHU cells by Georgopoulos et al (31). When Fleming 

(122) compared PPARγ in whole cell lysates from undifferentiated NHU cells 

prepared in SDS with the 3T3-L1 nuclear co-IP extracts two PPARγ-reactive bands 

were observed in both extracts. This led to the assumption that the two PPARγ-

reactive bands in nuclear co-IP extracts from NHU cells were equivalent to the 

two bands observed in the NHU whole cell lysates (Appendix Figure 7.1.1).  

Observations made in the current study demonstrated variable presence of the 52 

kDa band in undifferentiated NHU cells and the solubilisation of the 58 kDa band 

in whole cell lysates prepared in SDS. It therefore seems plausible that the two 

PPARγ-reactive bands in NHU whole cell lysates as observed by Fleming were in 

fact the 50 and 58 kDa isoforms, and not the 50 and 52 kDa isoforms (Appendix 

Figure 7.1.2). Following this line of evidence would lead to the conclusion that the 

58 kDa isoform in NHU cells is equivalent to the PPARγ2 in 3T3-L1 adipocytes. 

This conclusion was supported by the observation that the PPARγ at 58 kDa was 

reactive with an antibody targeting PPARγ2, although this antibody reacted with 

other isoforms. Based on this line of reasoning and the evidence presented in this 

study, this leads to the conclusion that PPARγ2 (58 kDa) is constitutively present 

in NHU cells, yet the vast majority is associated with the a nuclear sub-

compartment which is resistant to extraction by salt and detergent (2 M NaCl, 0.1 

% Triton-X100), as well as salt and detergent (0.5 M NaCl, 0.1 % Triton-X100) 

extraction after digestion of DNA.   

In the current study, PPARγ2 siRNA was more effective than PPARγ1/2 at 

attenuating the upregulation of all PPARγ isoforms in both differentiation induced 

and control NHU cells, but did not significantly reduce the presence of any of the 

abundant PPARγ isoforms. PPARγ has been demonstrated to drive its own 

expression in adipogenesis (102). As such, knockdown of PPARγ protein is likely 

to affect expression of all isoforms through a general downregulation of PPARγ. 

PPARγ2 siRNA treatment of NHU cells also hampered upregulation of 

differentiation markers CK13 and CLDN4. That the PPARγ2 siRNA did not affect 

the basal expression of the PPARγ2 but did prevent its upregulation may be 

indicative that the protein is rapidly and stably sequestered to the non-extractable 
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nuclear compartment once it is translated. The presence of PPARγ2 and the 

attenuation of expression of differentiation markers by siRNA targeting PPARγ2 

in NHU cells seems to contradict the conclusions of Strand et al (46), who 

suggested that PPARγ2 drives urogenital-derived cells towards a prostatic 

phenotype. From the results in this study it appears that PPARγ2 has a role to play 

in urothelial differentiation, but that the activity of the protein is tightly 

controlled.  

 

3.4.2 Localisation of PPARγ During in vitro Differentiation of NHU 

Cells 

PPARγ has been reported in the literature to be mainly nuclear, but can be 

cytoplasmic in mitogenically-stimulated cells as a result of binding with ERK1/2, 

with which it is co-exported from the nucleus (reviewed in (100)). Due to the 

evidence in the literature that activation of PPARγ and inhibition of ERK1/2 are 

essential for NHU differentiation (2, 34, 56), and observations of cytoplasmic to 

nuclear translocation upon EGFR inhibition (26), it was anticipated that such a 

ligand-inducible development of resistance to extraction would be observed 

during differentiation of NHU cells in vitro.  

The evidence presented in this study demonstrated that PPARγ was present in the 

nucleus and cytoplasm of both non-differentiated and differentiated NHU cells, as 

shown by immunofluorescence of whole non-extracted cells. Cell fractionation 

studies using the nuclear co-IP kit showed only minor amounts of PPARγ in the 

presumed cytoplasmic fraction. As a large fraction of the pool of PPARγ in the 

cytoplasm was associated with the region around the nucleus and was not affected 

by 0.5 M NaCl extraction, it is likely that the nuclear co-IP kit, which utilises low 

salt (0.075 M NaCl) extraction to maintain protein-protein interactions, was not 

extracting this portion of the PPARγ. This observation explains why relatively low 

amounts of PPARγ were seen in the cytoplasmic fraction of nuclear co-IP kit by 

western blot, but was present in the immunofluorescence after extraction with 0.5 

M NaCl.  

The previous study which reported EGFR inhibition-dependent nuclear 

translocation of PPARγ in NHU cells made the observation after treating cells with 

PD153035 for 4 h after cells attached post-seeding (26). Other studies which have 

reported a mixed nuclear and cytoplasmic localisation of PPARγ (56, 95, 121, 133) 
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all used undifferentiated NHU cells which were cultured to 70% or near-

confluence before fixation. This suggests that the translocation of PPARγ after the 

induction of differentiation may be due to processes affected by the confluence of 

the cells influencing the nuclear localisation of PPARγ, and treatment of 

proliferative cells with PD153035may help to speed the re-localisation to the 

nucleus at early time-points. This observation could help to explain why NHU 

cells respond variably to TZ alone, and why PD153035 is able to increase the 

efficiency of induction of differentiation.  

 

3.4.3 Extraction-Resistant Isoforms of PPARγ 

In this study, the difficulties in solubilising the PPARγ isoforms associated with 

the non-extractable fraction were observed when using SDS rather than CSK 

buffer. The main difference between the two methods was that the CSK method 

did not require chilled centrifugation to remove SDS and enable Coomassie 

assays. Thus, when using the SDS buffer, the variability in efficiency of 

solubilisation before chilled centrifugation may explain the differential 

observations of the 58 and 42 kDa PPARγ in the literature as well as those in this 

study. 

Many nuclear receptors are partitioned between the CSK-NaCl labile fraction and 

the NaCl and DNaseI resistant nuclear matrix, and become more extensively 

associated with the nuclear matrix upon ligand binding (62, 134, 140, 146). This 

was not observed for PPARγ in NHU cells, although novel observations about the 

extraction-resistance and distribution of several isoforms were made. The PPARγ 

at 50 and 52 kDa remained mostly labile and extractable by salt with and without 

nuclease digestion. The 42 and 58 kDa isoforms appeared to be most associated 

with the insoluble fraction of CSK extractions, which is considered to be the 

fraction of protein associated with the structural portion of the nucleus, the 

nuclear matrix.  

Henikoff et al (147) used similar salt-extraction and nuclease digestion 

approaches followed by next-generation sequencing of extracted DNA and 

assessment of genome-wide transcription  and found that both salt-labile and 

resistant fractions were enriched in similar transcriptionally active regions of the 

genome.  Their observations suggest that transcribed regions of the genome 

undergo dynamic processes, which leaves them either susceptible or resistant to 
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extraction depending on which complexes they are bound to. Combined with the 

observations that active and repressed ERα can exist in the DNase insoluble 

fraction (140), this suggests that no assertions can be made about the potential for 

transcriptional activity of PPARγ based solely on observations of resistance to 

extraction.  

 

3.4.4 SUMOylation of PPARγ 

Treatment of undifferentiated NHU cells with 10 μM anacardic acid slightly 

reduced the abundance of the isoform of PPARγ at 58 kDa, and concurrently 

marginally increased the relative abundance of the 50 kDa isoform.  

Anacardic acid was chosen as it is an inhibitor of SUMOylation, which has been 

observed to be associated with PPARγ in various cell types; inhibition is achieved 

through inhibiting formation of the E1-SUMO intermediate, an essential 

precursor in the SUMOylation pathway (143). However, anacardic acid also 

inhibits histone acetyltransferase activity (145). As such, some effects of anacardic 

acid could be produced through changes to gene expression. 

The most striking observation of this experiment was PPARγ2 reactivity with both 

the 58 kDa isoform of PPARγ and the reactivity with other proteins at 80 and 35 

kDa. PPARγ-reactive bands at 80 kDa have been reported in the literature as 

SUMOylated PPARγ (132) and have also been observed in NHU cells (Appendix 

Figure 7.1.4.1). However, with this in mind, the only isoform of PPARγ which 

reduced in abundance in a dose-dependent manner in the same way as H3K4Ac 

was the 80 kDa isoform, suggesting that SUMOylated PPARγ is present in NHU 

cells in small amounts. 

  

3.4.5 Potential Transcript Variants of NHU cells 

The smaller isoforms of PPARγ which were observed in nuclear fractionations and 

CSK-extractions are potentially novel splice variants of PPARγ, breakdown or 

cleavage products, or a mixture. PCR targeting full-length PPARγ1 mRNA (exons 

1-6) showed a general trend for increasing levels of PPARγ mRNA over time, with 

greater relative amounts of amplicon in differentiation-induced cell extracts. In 

addition to this, multiple smaller, and one larger, PCR products were visible under 

the expected amplicon. PPARγ2 was barely detectable by RT-PCR, yet there was 
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an isoform present at the expected size for PPARγ2 (58 kDa). This suggests that 

either the PCR was not efficient due to restrictions on primer design targeting a 

small exon (~84 bp) or that the protein is expressed at low levels and is a long-

lived protein due to its sequestration on the nuclear matrix.   

 PPARγ exons 2-5 are 170, 139, 200 and 451 bp respectively. Splicing of either 

single exons or combinations of these exons could account for the three most 

abundant potential splice variants observed which were around 200, 300 and 450 

bp smaller than the expected amplicon. In terms of molecular weight of the 

peptides they code for: exons 2-5 are 6.1, 5.6, 7.9 and 17.9 kDa respectively. Loss 

of some of these exons could account for some of the isoforms of PPARγ <50 kDa 

which remained immunoreactive with both C-terminal (E8 clone) and N-terminal 

(PPARγ2) antibodies, although further work would have to be done to confirm 

this.  

Alternative explanations exist as to the identity of the smaller isoforms, although 

none of the evidence in this study can be used to assess these. Non-apoptotically 

induced caspase-cleaved isoforms of PPARγ have been reported in adipocytes at 

44 kDa, where PPARγ is cleaved in the N-terminal AF1 domain (148, 149) in 

response to treatment with tumor necrosis factor. This isoform is then targeted to 

the proteasome for degradation, as assessed through its accumulation when 

proteasome activity was blocked (148). If this cleavage mechanism were active in 

NHU cells and the 42 kDa isoform is the result of this cleavage, then it would 

require that the association with the insoluble nuclear fraction reduces the rate at 

which it is degraded. C-terminally truncated isoforms of PPARγ1 have also been 

reported in the literature to be expressed in tumour-derived cell lines (115, 116, 

150). However, the C-terminal truncations are missing the target domain of the 

antibody used for western blotting, and so would not have been detected. One 

intriguing possibility for the ~42 kDa isoform is a splicing of exon 5 (17.9 kDa) 

from the full length 58 kDa protein. This would result in a PPARγ protein lacking 

a ligand-binding domain which could act as a dominant negative repressor of 

PPARγ activity, perhaps dampening basal transcriptional activity of full length 

proteins in the absence of strong agonist PPARγ ligands. 

The observed PPARγ isoforms <30 kDa would likely only contain the C-terminal 

ligand-binding domain. Little is known about the possible function of such 

fragments, other than a potential for suppression, or “squelching”, of full-length 

receptor activity by binding to ligand and co-factor proteins. Such squelching has 
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been reported for C-terminally truncated non-DNA binding disease variants of 

PPARγ (117), but no known N-terminal truncations or cleaved PPARγ <40 kDa are 

reported in the literature. These smaller isoforms may also be non-functional 

splice variants or breakdown products resulting from proteasomal degradation.  
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3.5 Conclusions and Future Work 

This study revealed a complex series of PPARγ-reactive proteins were observed 

across a series of extracts in NHU cells (summarised in Figure 3.5.1). PPARγ at 58 

kDa was at the expected molecular weight for PPARγ2 and reacted with an anti-

PPARγ2 antibody with greater affinity than other isoforms. PPARγ1 at 52 kDa and 

the isoform at 50 kDa previously observed in adipocytes were also present at 

relatively high abundance. A 42 kDa isoform was also observed which was 

abundant in non-extracted fractions. All isoforms measured upregulated with 

differentiation, and the presence of 52 kDa PPARγ was variable in 

undifferentiated cells. Evidence from PCR supported the likely presence of 

multiple splice variants which would explain the large number of antibody-

reactive bands. The only two isoforms of PPARγ observed by western blot which 

reacted to the PPARγ-E8 and not the PPARγ2 antibody were the 50 and 16 kDa 

isoforms.   

 



 

 
 

 

Figure 3.5.1. Summary of potential PPARγ isoforms observed in NHU cells. Green = reactivity with PPARγ2 antibody, red = reactivity 

with PPARγ-E8 antibody. Observations of qualitative relative abundance (-/+/++/+++/++++) in lysates, extracts, 

immunoprecipitations and pellets across all western blots depicted. PPARγX and PPARγY denote possible transcript variants.  
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The potential < 50 kDa isoforms of PPARγ observed by western blot represent 

potential splice variants missing some of exons 2-5 as they are immunoreactive to 

both the N and C-terminal portions PPARγ2 antibodies. Further work will be 

needed to determine this, and the role, if any, they play in differentiation. 

 As many isoforms were observed by western blot which were reactive with 

PPARγ2 and PPARγ-E8 antibodies, further work to establish the identity of 

these isoforms could use with 3’  rapid amplification of cDNA ends (RACE) 

from the terminal exon of PPARγ and 5’ RACE from the 5’ untranslated region 

of PPARγ2 to comprehensively amplify all PPARγ transcripts for amplification.  

 Alternately, PCR approaches using primers tiled across exons of PPARγ could 

be used to detect if any exons are consistently spliced out of the PPARγ gene in 

NHU cells. PCR targeting exons 1-3, 2-4, 3-5 and 4-6 should all produce single 

amplicons if no splice variants of the canonical exons 1-6 are present. If 

unexpected amplicons were present, these could be sequenced to identify the 

skipped exon(s).  

 If the presence of splice variants is demonstrated, they could be specifically 

knocked down by siRNAs which span the exon-exon boundaries. Effects of this 

knockdown on differentiation will determine if they play a role in the 

development of the differentiated phenotype. 

This study has shown that PPARγ isoforms are constitutively present in the 

nucleus of near-confluent NHU cells independent of the induction of 

differentiation. As no significant changes in PPARγ localisation were observed 

between time-points during differentiation which correlated ERK-activation or TZ 

treatment, further research into the mechanisms of PPARγ activation in NHU 

cells is required. Blocking either ERK1/2 or AKT aids TZD-driven differentiation 

of NHU cells, and PPARγ phosphorylation has been observed to be altered after 

inhibition of EGFR signalling in NHU cells (26).   

 As the evidence presented in this study shows that some PPARγ is present in 

the nucleus and the salt-resistant fraction at all time-points, use of antibodies 

specific to the phosphorylated serine at position 112 of PPARγ2 could be 

informative with respect to the extent to which PPARγ is phosphorylated in 

NHU cells throughout the six day time-course of differentiation. If a significant 

proportion of PPARγ remains unphosphorylated in undifferentiated NHU 

cells, it is likely that PPARγ transcriptional activity is repressed in NHU cells 

other than phosphorylation by ERK1/2. In this case, other PPARγ repressive 
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mechanisms such as phosphorylation by cyclin-dependent kinase 5 (CDK5) 

have been reported which may warrant further investigation in NHU cells 

(151). 

  The nuclear re-localisation of PPARγ in untreated NHU cells could be studied 

by observing actively proliferating cells over time as they reach confluence to 

assess the effects of confluence on PPARγ localisation. 

The study also demonstrated that upregulation of PPARγ isoforms and 

differentiation markers were significantly attenuated by the presence of PPARγ2 

siRNA without significant effect on basal levels of PPARγ at 50 and 58 kDa. 52 

kDa PPARγ was variably present in non-differentiated control cells, but its 

upregulation was significantly attenuated by the presence of PPARγ2 siRNA. 

 Future studies could extend this work by over-expressing PPARγ2 in NHU 

cells, and monitoring the cells for urothelial and prostatic markers of 

differentiation. This will assess whether urothelial cells can transdifferentiate 

into prostate cells via PPARγ2, or if they remain as differentiated urothelium.   

The 80 kDa isoform of PPARγ was shown to reduce in abundance in the presence 

of the SUMOylation and histone acetyltransferase inhibitor anacardic acid. This 

PPARγ is therefore a potential SUMOylated isoforms of PPARγ, although further 

work will be needed to demonstrate this and to decipher if  any transrepression of 

NF-κB bound genes occurs in NHU cells (119). 

 Although the evidence is not unequivocal it would be interesting to investigate 

if the presence of this band alters in response to inflammatory signalling (e.g. 

IFNγ, as it could be that a SUMOylated PPARγ functions to resolve 

inflammation after an immune response as it does in macrophages. This would 

be interesting to study in urothelial cells from of interstitial cystitis patients, 

who have chronic inflammation of the bladder (121). 
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 Label-Free Mass Spectrometric 4

Investigation of Changes in Chromatin-

Associated Proteins in in vitro 

Differentiated NHU Cells 

4.1 Introduction 

4.1.1 Mass Spectrometry-Based Shotgun Proteomics 

Mass spectrometry-based shotgun proteomics utilises a liquid chromatography 

(LC) column to separate complex peptide mixtures generated by enzymatic 

digestion of proteins. A system such as an electrospray ionisation needle is then 

used to exchange and ionise the peptides eluting from the LC column into the gas 

phase, and subsequently inject them into the inlet of the mass spectrometer. The 

mass spectrometer is able to simultaneously measure the mass-to charge (m/z) 

ratios of all the injected eluting peptides (within the duty cycle and working m/z 

range of the mass spectrometer used). As unique peptides can have identical 

elemental composition, and therefore m/z, this makes it impossible to assign 

confident identification from this single m/z value. To improve confidence of 

identification, possible peptides are isolated based on their m/z and induced to 

fragment within the mass spectrometer, allowing the m/z of the fragments to be 

determined. The masses of the parent ion and its fragments calculated from their 

m/z can be matched to a database of expected fragment masses for all possible 

peptides from a given proteome. The probability of the observed fragments 

matching to a known peptide within the proteome database is then determined 

using parameters such as the accuracy of m/z measurements, the number of 

fragment ions matched to the potential parent peptide which fall within the m/z 

error tolerance, and correction for probability of false discovery.    

 

4.1.2 Label-Free Quantitative Mass Spectrometry 

Label-free (LF) relative quantitation utilises data obtained at the detector in the 

mass spectrometer (MS) during shotgun-based proteomics experiments to 

estimate changes in protein abundance between samples, without chemically 

tagging (or labelling) peptides specifically for quantitation. Two approaches to 
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have been developed for LF-MS: spectral counting and area under the curve or 

intensity-based. 

Spectral counting does not use peptide properties such as intensity of ions at the 

detector to measure abundance, instead using the empirical observation that 

numbers of acquired spectra in automated liquid chromatography (LC)-MS/MS 

experiments and peptides identified per protein increase with protein abundance. 

The simplest form of spectral counting is expressed in the protein abundance 

index (PAI), which uses the ratio of measured peptides to peptides theoretically 

observable in the experimental setup, which depends on factors such as the 

enzyme used to digest the proteins and the m/z acquisition range of the mass 

spectrometer (152).  

Using the PAI as the exponent in the calculation 10PAI -1 Ishihama et al (153) 

showed the exponentially modified PAI (emPAI) value  calculated for a protein 

was approximately proportional to the known relative abundances of peptides 

spiked into complex whole cell lysates. This emPAI value created a linear scale in 

which the relative abundance of proteins within a complex sample could be 

estimated as molar fractions. 

One major limitation of approaches such as PAI is associated with how the peptide 

data are acquired. Standard automated approaches use data dependent 

acquisition (DDA), whereby the most abundant ions eluting from the LC column 

and passing into the mass spectrometer at any one time are selected for 

fragmentation. Once fragmentation spectra are acquired, the mass spectrometer 

returns to scanning parent ions with the m/z window that was just analysed 

excluded for a period of time, the length of which depend on the experimental 

setup. Because this approach targets the most abundant ions, this inherently 

introduces bias towards identifications of proteins that are more abundant. 

The issue of estimating peptide abundance is a particular problem for complex 

samples. Cultured human cell lines are estimated to contain 8,000-10,000 

different proteins, which are present at relative abundances spanning many orders 

of magnitude (154). Detecting lower abundance proteins such as transcription 

factors among highly abundant structural proteins poses a serious challenge to the 

dynamic ranges of mass spectrometers. The dynamic range of a mass 

spectrometer is the range of ion intensities over which the ion signal is linear with 

analyte concentration. In practice, this means that reliable detection and 
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quantification of analytes is dependent on the intensity of each analyte relative to 

those which are most abundant. Useful spectra are generally obtained within 3 

orders of magnitude of intensity below the most intense peptide (155, 156).  

Signal intensity-based differential label-free approaches use integrated peptide 

ion peak intensities to estimate relative protein abundances between samples. 

Highly reproducible chromatography is required in order to enable reliable 

comparisons of signal intensities of analyte peaks between samples. High 

resolution mass spectrometry is advantageous in identifying co-eluting peptides 

with similar masses that would otherwise be deemed to contribute to the same 

peak. Signal intensities of ion peaks can be acquired in the same experiment or 

separately from fragmentation spectra. Acquiring technical replicate MS-only runs 

to obtain averaged values for the peak intensities devotes more time to accurate 

measurement of peak heights. Peaks which are determined to vary between 

samples can then be targeted for MS/MS identification in later injections, based 

on retention time and m/z value. Combining MS and MS/MS identification in the 

same run reduces the time available for acquiring MS data, and so reduces the 

accuracy of peak measurements compared to performing replicate MS-only 

analyses (157, 158), and may still require sample reinjection if particular signals 

are found to vary between samples and were not automatically selected for 

fragmentation.  

 

4.1.3 Proteomic Studies of Chromatin 

Many groups have circumvented the problems associated with sample complexity 

and made detailed catalogues of nuclear proteins by either repeat injections of 

whole cell samples or injection of highly pre-fractionated samples into the mass 

spectrometer. Beck et al made a “complete” proteome of a human cell line using 

directed analysis of multiple injections of the same sample and actively excluding 

compounds which had already been identified in previous runs (154). Once 

further injections provided no extra identifications, they declared the proteome 

complete. Takada et al stripped chromatin from human nuclei using salt and 

nuclease extractions in order to catalogue the proteins in the insoluble nuclear 

fractions. To achieve this, samples were separated on 1D SDS-PAGE and lanes cut 

into 54 pieces which were all prepared separately for mass spectrometric analysis 

(159).  



 

139 
 

Chapter 4 

Dutta et al prepared chromatin extracts by ultracentrifugation of rat liver 

homogenates (160). The chromatin was then treated with the nucleases 

deoxyribonuclease (DNase) or micrococcal nuclease (MNase), to assess which 

chromatin-associated proteins were released after DNA digestion. Each nuclease 

cuts DNA where it adopts a specific conformation: DNase when it is “open” or in a 

transcriptionally permissive state, and MNase indiscriminately at the exposed 

DNA strands in-between the histone-DNA complexes known as nucleosomes. 

DNase digestion should therefore release proteins associated with transcription 

when the DNA template they bind to is digested, and the MNase should release 

proteins such as transcription factors which bind to the sequences in-between 

nucleosomes. Each supernatant from the chromatin digests, and the chromatin 

remaining in the pellet, was separated by SDS-PAGE and lanes split into five slices 

for in-gel digestion before LC-separation with direct injection into a mass 

spectrometer and data collection by DDA. Using the emPAI spectral counting 

method to analyse data from DDA of single injections of triplicate biological 

samples, across all samples they identified the nuclease extraction sensitivity of 

160 known chromatin proteins, ranging from histones to polymerases and 

transcription factors.  

Spectral counting was also used  by Mosley et al  (161) for analysis of changes in 

members of Saccharomyces cerevisiae chromatin complexes. Nuclei were 

subjected to high-salt conditions and extracted proteins further separated using 

sucrose density-gradient centrifugation. Identification of chromatin complex 

members in equivalent sucrose fractions was used as an indicator of whether the 

proteins were in complexes at the time of isolation.  

Zhu et al. (162) performed label-free ion peak intensity-based comparisons of 

MCF-7 breast cancer cell lines after activation of the transcriptional regulator 

ERα. Whole cell extracts were separated by SDS-PAGE and proteins digested in-

gel in 16 separate slices. Peptides from each slice were analysed separately by 

label-free evaluation of MS intensity and MS/MS spectral counting for MS and 

MS/MS acquired in the same injection. 2000 proteins were detected over all 

fractions from all samples, of which 60 (28 with >2 peptides) were found to vary 

in abundance by ≥1.6 fold in relative intensity. The large dynamic range of peptide 

intensities in proteins from whole cell extracts means that the identification of 

lower-abundance proteins such as chromatin-binding proteins, by MS/MS would 
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likely not have been possible without the extensive pre-fractionation performed by 

Zhu et al.  

Partly due to the challenges encountered by such groups in obtaining 

identifications of such low abundance proteins, few studies so far have attempted 

label-free proteomic quantitation of chromatin proteins without first using 

extensive pre-fractionation. This requires the analysis of many samples, which 

necessitates the use of large amounts of instrument time. The pre-fractionation 

step is included, as the chromatin proteins have wide ranges of abundance; the 

complexity of the samples dictates that if DDA is used to obtain MS/MS, only the 

most abundant ions in that region of the chromatogram will be selected for 

fragmentation. The reliance on DDA can be circumvented by the use of MS-only 

analysis followed by targeted identification of peaks which are demonstrated to 

vary in intensity between samples.   

Intensity-based label-free MS comparisons have become the analysis method of 

choice for large scale clinical studies, as multiple patient samples such as serum, 

can be analysed in an automated manner (157). Replicate MS-only injections of 

the same sample can be replaced by replicate biological samples and candidate 

biomarker peptides identified from targeted identification of peaks found to 

consistently vary between samples (163, 164). No studies currently available in the 

literature have attempted to use chromatin extracts in label-free intensity-based 

proteomic studies.  
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4.2 Experimental Aims and Approach 

4.2.1 Cytoskeletal Extractions and Label-Free Mass Spectrometry 

It was the aim of the work presented in this chapter to utilise label-free intensity-

based mass spectrometric quantitation approaches (outlined in Figure 4.2.1) to 

identify chromatin-associated proteins which may be involved in influencing 

differentiation of NHU cells in vitro.    

It was hypothesised that cytoskeletal CSK cell preparations as described in chapter 

three could be optimised to enrich for extractable chromatin proteins, and LF-MS 

used to detect changes in abundance of chromatin proteins in the extracted 

fractions when comparing differentiated and control cells (Figure 4.2.2). 

In working towards LF-MS analysis of transcription proteins, the following were 

performed: 

 CSK extracts obtained using 2 M NaCl after pre-extraction with 0.1 M NaCl 

(0.1-2 M NaCl fraction) were digested with trypsin and subjected to LC-

MS/MS analysis using DDA and the relative content of the nuclear 

proteins in the ID list was investigated using emPAI spectral counting. 

 LF-MS was performed on biological replicates (same donor line) of 0.1-2 M 

NaCl CSK extract digests to identify if variations inherent in the extraction 

procedure would give false positive identifications of changes in proteins.  

 CSK extractions were combined with nuclease digestion of DNA to release 

DNA-bound proteins. The content of these extracts was investigated by 

DDA before subjecting them to LF-MS workflows (Figure 4.2.1).  

 Two software-based approaches for handling LF-MS data from CSK-DNase 

were investigated: LF-Quant (Bruker GmbH, Germany) and Progenesis 

(Non-linear Dynamics, UK). 
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Figure 4.2.1. LF-MS approach outline. 1. DDA analyses were first run to check 

sample quality and assess protein content by emPAI quantitation. 2. 

Triplicate MS-only runs were obtained for each sample. 3. MS-only data were 

aligned for all samples to allow comparison of intensity of ions in each 

sample. MS-only was also aligned with MS/MS obtained from DDA samples 

to obtain preliminary identifications and allow already-identified peptides to 

be omitted from SPLs. 4. SPL were generated targeting ions which changed 

reproducibly between samples and MS/MS obtained by targeting said ions. 5. 

MS/MS from SPL aligned with the MS-only and DDA data to obtain 

identification of changing peptides.  

 

 

1 

•DDA Analysis (MS/MS) 
•Protein IDs / emPAI 

2 
•Triplicate MS-only (Each Sample) 

3 

•Align MS-only data 
•Identify MS-events which alter reproducibly using software  

4 

•Align MS-only with MS/MS from DDA 
•Identify events in DDA which align with MS-only data and quantitate 
changes 

5 

•Generate scheduled precursor list (SPL) of m/z and elution times to 
target specific ions, obtain MS/MS of targets by re-injection of 
sample 

6 

•Align MS/MS obtained with SPL with MS-only and MS/MS from 
DDA 



 

 
 

 

Figure 4.2.2. Experiments outline for LF-MS of CSK extractions from NHU cells. Left panel: Undifferentiated NHU 

cells were pre-extracted with 0.1 M NaCl, and then extracted with 2 M NaCl (thus containing all proteins extracted 

between 0.1-2M NaCl). Analysis of protein content by DDA and reproducibility of extractions by LF-MS were 

performed using the 0.1-2 M fraction. Right panel: subsequent experiments were aimed at using LF-MS to compare 

proteins released from NHU cells after DNase digestion of DNA. Differentiated (NHUd) and control (NHUc) NHU 

cells were both subjected to 0.5 M NaCl CSK extraction, then either DNase treatment or an identical enzyme free to 

control for proteins not specifically released by DNase. Supernatants collected after a second 0.5 M NaCl extraction 

were subjected to LF-MS.  
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4.3 Results 

4.3.1 Protein Identifications in 0.1 M – 2 M NaCl CSK Fractions   

The purpose of this experiment was to determine the similarity of the protein 

identifications across three biological replicate CSK extracts, obtained by LC-

MS/MS using DDA. Biological replicates exposed to the same extraction 

procedure in parallel should give similar protein identifications, and few peptides 

which vary in intensity as assessed by LF-MS. Large numbers of proteins altering 

between extracts from replicate dishes would indicate that CSK extractions, or 

replicate dishes of cells, were not sufficiently reproducible to allow such samples 

to be used for LF-MS analysis.  

Replicate dishes of undifferentiated NHU cells were cultured to 70% confluence 

and subjected to CSK extraction with 2 M NaCl, after a 0.1 M NaCl pre-extraction 

(full methods in Materials and Methods 2.6.1). The resulting 0.1-2 M NaCl 

fractions and the pellets remaining after extraction were visually compared 

extracts using Coomassie stained 1D electrophoresis gel and western blotting. 1D 

gels showed similar protein profiles for all replicate 0.1-2 M extracts and pellets. 

Western blots of the same extracts showed that the transcription factor PPARγ 

was qualitatively similar in intensity in all the 0.1-2 M NaCl fractions.  
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Separate aliquots of the triplicate 0.1-2 M NaCl fractions were digested using the 

filter aided sample preparation (FASP) method (Materials and Methods 2.8.1). 

The resulting tryptic peptide mixtures were separated by liquid chromatography 

and injected into a Bruker maXis instrument; MS/MS data were acquired in DDA 

mode (Materials and Methods 2.8.3). 

Product ion spectra were submitted to the Mascot server (version 2.3.02, Matrix 

Science) which was directed to search the human proteome (IPI_human) for 

peptide identifications. 623-725 accepted protein matches were found per dish, 

with 522 common to all three dishes (Supplementary Materials 2.1.1). Extracts 

from dish 1 and dish 3 had similar numbers of protein identifications, with dish 2 

having 15% fewer identifications than dish 1 (Figure 4.3.2).  

 

 

Figure 4.3.1. 1D gel and PPARγ-blot of CSK extracts from triplicate dishes of 

NHU cell line Y1104. Comparison of pooled non-fractionated whole cell 

extracts (WCE) and 0.1 M NaCl CSK extracts (0.1 M) with 0.1 - 2M NaCl (0.1 – 

2 M) CSK extractions and remaining pellet from triplicate dishes of NHU 

cells. Lanes of 0.1-2 M NaCl CSK extracts in 1D gels were qualitatively similar 

between replicates, as was the intensity of labelling of PPARγ across 

triplicates in western blots.  
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Figure 4.3.2. Proteins Identified in 0.1 – 2 M NaCl CSK Extracts by Data 

Dependent Acquisition. Venn diagram shows overlap of protein 

identifications between the three samples. Dishes 1 (blue), 2 (yellow) and 3 

(green) gave 725, 623 and 711 individual protein matches respectively. 522 

proteins (72 - 83%) were common across the replicate dishes. Each dish gave 

5-10% unique protein matches. 

 

Gene ontology (GO) analysis was used to determine which proteins in extracts 

were potentially associated with DNA transcription. MS/MS data from all three 

dishes was combined into a single file and a separate Mascot search performed. 

872 international protein index (IPI) numbers from identified proteins were 

converted to Swissprot identifiers using the GeneProfiler g:convert tool 

(http://biit.cs.ut.ee/gprofiler/gconvert.cgi). The protein identifiers were then 

submitted to the AmiGO gene ontology enrichment tool 

(http://amigo.geneontology.org/cgi-bin/amigo/term_enrichment). The AmiGO 

database collates gene ontology terms associated with proteins, and identifies 

terms which occur with greater frequency than background in the submitted list. 

Lists were submitted with default settings of p≤0.01 for enrichment and minimum 

2 counts (AmiGO version 1.8).  

Proteins annotated with the gene ontology term “Transcription, DNA Dependent” 

(GO:0006351) or “Nucleus” (GO:0005634) were chosen as the measure for 

proteins potentially associated with chromatin. Gene ontology terms encompass 

several “children” terms. There is significant overlap between the chosen terms, as 

most genes associated with transcription are also nuclear. It was reasoned that 

most proteins influencing gene expression would be associated with the DNA 

transcription term, but that this may be too narrow a search term if, for example, 
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the function of the protein was unknown, but it had annotation of nuclear 

localisation. For this reason, when interpreting the results, proteins were marked 

with all of their GO terms and those with an annotation of nuclear were only 

marked as such if they did not also come under the DNA dependent transcription. 

As such, DNA dependent transcription was the primary term and nucleus the 

secondary term.  

In the CSK extracts, 109 of 872 protein Identifications were linked with the gene 

ontology term DNA-dependent transcription (Supplementary Materials 2.1.5). Of 

the remaining protein Identifications, 214 were linked with the ontology term of 

nucleus and 13 were histone isoforms. The remaining proteins consisted of 

cytoskeleton (128), endomembrane (165) and mitochondrial (165) proteins which 

were grouped together as “other” as they were unlikely to contain any proteins 

involved directly in transcription.  

Of the 109 proteins with a GO annotation of DNA dependent transcription, 21 

were described as having known transcription factor or co-factor activity (Table 

4.3.1). Some of these proteins represented potential targets that would warrant 

further investigation if it could be shown that they varied in abundance between 

differentiated and control NHU cells. For instance, beta catenin (CTNNB1) is 

known to be expressed in NHU cells, but has not been investigated for a role in 

differentiation, and has been shown elsewhere to have the potential to interact 

with PPARγ (91). Gene expression of the heterodimerisation partners proto-

oncogene c-Fos (FOS) and transcription factor AP-1 (JUN) are known to be 

reduced in NHU cells upon differentiation (34), and the protein APEX1 identified 

in these extracts has the potential to modulate their activity (165). Fetal urogenital 

tissue has the potential to become either urothelium or prostate lineages, and 

androgen receptor expression is important for regulating differentiation into 

prostate. Also identified in these extracts was DDX5, which is an androgen 

receptor co-activator. Negative regulation of DDX5 activity could suppress 

differentiation of urothelial cells towards the prostate lineage. DDX5 also interacts 

with Runx2, which is known to influence PPARγ transcriptional activity (96). 
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APEX1 

141 (4) 

ENO1, 

692 (9) 

PDLIM1, 

618 (7) 

BASP1. 

556 (8) 

HMGA1, 

136 (1) 

RAN, 

50 (2) 

C1QBP, 

612 (4) 

JUP, 

784 (10) 

RFXAP, 

21 (1) 

CSDA, 

97 (3) 

MTDH, 

29 (1) 

SND1, 

1309 (21) 

CTNNB1, 

34 (1) 

NACA, 

275 (7) 

SRSF2, 

202 (6) 

DDX1, 

103 (1) 

NPM1, 

1373 (8) 

TRIM28, 

673 (8) 

DDX5, 

671 (11) 

PBXIP1, 

62 (1) 

YWHAB, 

282 (8) 

Table 4.3.1. Proteins in CSK extracts with known transcription factor or co-

factor activity. Proteins in CSK 0.1 – 2 M NaCl fraction with GO annotations 

of transcription factor or co-factor activity are listed (full description of 

proteins in Appendix Table 7.3.3.1). Statements about protein function 

concerning transcriptional activity and associated publications were taken 

from the UniProt.org database. 

 

4.3.2 emPAI Analysis of Protein Identifications in CSK 0.1-2 M NaCl 

DDAs 

The emPAI is a spectral counting score that uses the linear relationship between 

the fraction of peptides matched out of the potentially observable peptides from a 

protein and the mass of the protein, to provide an estimate of the relative 

percentage of that protein in a sample (153). This measure is included with the 

Mascot search outputs. emPAI was, therefore, used as a guide to estimate the 

relative abundance of transcription-associated and nuclear proteins within CSK 

extracts. To achieve this, proteins with ontology terms DNA dependent 

transcription and Nuclear from amiGO analyses were converted back to IPI 

numbers using the g:convert tool. The resulting IPI numbers were then linked 

those in the emPAI data output from Mascot.  

12% of total emPAI score was attributed to histone proteins and 11% to DNA-

dependent transcription associated proteins. Other nuclear proteins comprised 

30% of the total emPAI and the final 47% was defined as “other” (Figure 4.3.3).  
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To assess the distribution of relative abundances of detected proteins associated 

with transcription, emPAI scores expressed as a percentage contribution of each 

protein to the overall emPAI score, were ranked from high to low emPAI 

percentage contribution, and proteins marked when they were associated with the 

gene ontology term “DNA dependent transcription” and “transcription factor”. 

The emPAI percentage contributions for proteins involved in gene expression 

ranged across four orders of magnitude (Figure 4.3.4). No distribution bias could 

be detected, with target proteins being equally distributed across the top and 

bottom halves of the detected proteins. This suggests that nuclear proteins were 

present at a range of relative abundances within the samples.   

 

 

 

Figure 4.3.3 emPAI of transcriptional proteins and other nuclear 

proteins. 27% of emPAI score was attributed to genes associated with 

transcription. This was achieved by linking proteins with the gene 

ontology annotation “gene expression” via IPI numbers and emPAI scores 

in Mascot search results. Remaining proteins with annotations for histone 

or nucleus were also marked.  

12% 

11% 

30% 

47% 

emPAI Contribution of Target Proteins 

Histones

Transcription

Other Nuclear

Other
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Figure 4.3.4 Distribution of emPAI percentage contributions for proteins 

with Gene Ontology annotations relating to regulation of transcription. The 

109 proteins associated with GO terms ‘DNA dependent transcription’ or 

‘transcription factor’ were distributed across the entire spectrum of emPAI 

scores. emPAI scores for all proteins from merged MS/MS of all 0.1-2 M NaCl 

extracts were plotted as a percentage of total emPAI (right axis). Proteins 

associated with DNA dependent transcription are marked in red.   

 

4.3.3 Intensity-Based LF-MS of CSK 0.1-2 M NaCl Extracts 

Biological replicate samples subjected to the same extraction procedure should 

display little variability in their protein content. Variability can be introduced 

when extra sample handling steps are introduced, such as the pre-extraction step 

in the CSK procedure. If two CSK 0.1-2 M NaCl extracts compared using LF-MS 

protocols had a significant number of proteins detected as varying then it may not 

have been fruitful to pursue the use of such extractions for LF-MS studies.   

To test compatibility of CSK extracts with LF-MS protocols, triplicate injections of 

peptides from dishes 1 and 3 of 0.1-2 M NaCl CSK extracts were subjected to MS-

only data acquisition. Dishes 1 and 3 had the greatest number of identifications in 

the DDA experiment, and were chosen as they were likely to give the highest 

number of features for comparison. Peaks were extracted from MS-data using a 

“find molecular features” (FMF) script and then MS-profiles time-aligned using 

the Bruker ProfileAnalysis LF-Quant workflow (Figure  4.3.5). 
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Figure 4.3.5. Find Molecular Features. The FMF script uses the tight time and 

m/z correlation of peaks, as well as the expected distribution of 2+ and 3+ 

ions to designate features within the MS data. After time-alignment to 

correct for minor differences in elution times, these features can then be 

compared between runs of the same sample and between samples. 

 

Potential peptides are assigned feature regions in the chromatogram, which are 

designated as “buckets”. Buckets are then aligned between samples in the time-

dimension to account for slight changes in retention times between runs. All six 

runs (three MS-only replicates of peptides from each dish) were aligned with one 

another. Buckets designated as containing aligned features were compared 

between the two sample groups by student’s t-test within the Bruker software. The 

test applied was a two sample, unequal variance, two-tailed t-test with ion 

intensity from MS-only injections as the input values. Using this approach, a low 

p-value is obtained when the variance within the groups on both sides of the t-test 

are low, thus increasing the confidence is gained when intensity values have a 

narrow distribution within each triplicate MS dataset. To increase stringency, p-

values were only calculated when peak values were obtained for the same aligned 

data point in each run for at least two of the three replicate MS-only datasets in 

each group.  

To obtain protein quantitation without further injections of samples, MS-only 

data were aligned with the DDA injections for each replicate dish which was 

merged into a single MS/MS file. The total number of peptides (p≤0.05) accepted 

for quantitation was 465 from a total of 5239 in the merged MS/MS file. 98% of 

peptides which were accepted for quantitation had an intensity value of 10,000 at 

the detector (Appendix Figure 7.3.1). Of the 874 proteins identified in the Mascot 

search of the merged MS/MS file, 243 proteins had peptides with peaks which 

aligned with the MS-only data to enable relative quantitation. Peptides were 
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rejected from quantitation if they were common between proteins or their p-value 

was >0.05. 140 of them accepted peptides were the only single matches to a 

protein, with the other 325 peptides divided over 101 proteins.  

46 of the 465 peptides accepted for quantitation (9.5%) had ≥2-fold difference in 

intensity between the dishes. After each peptide was assigned to its parent protein, 

13 of 243 proteins (5.3%) had peptides with median fold change ≥2 (Figure 4.3.6). 

58% of all protein fold-change calculations were based on single peptides (Figure 

4.3.7), including 10 of the 13 proteins (76.9%) which had a median ≥2-fold change. 

Within proteins quantitated by single peptide identifications, there was a similar 

distribution of Mascot scores as compared to the overall Mascot scores from all 

protein (Appendix Figure 7.3.2). Both these lines of evidence suggest there was no 

bias for single peptides to be poor quality alignments or outlier measurements, 

although that can never be ruled out when dealing with single peptides.  

 

 

Figure 4.3.6 Fold change of proteins based on median fold-change 

intensity of constituent peptides. Each protein with peptides matched 

in the LF-MS data from the DDA runs, was ranked by median fold-

change of associated peptides. Out of a total of 243 proteins, 230 and 

150 proteins had a median fold change of <2 and <1.5 fold respectively.  
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Figure 4.3.7 Number of peptides per protein for quantitation for CSK 0.1-2 M 

NaCl. The majority of the 239 protein fold-change estimates were based on 

only 1 peptide (58%).  

 

 

 

Figure 4.3.8. Distribution of emPAI scores of proteins identified as changing 

≥2-fold in CSK 0.1-2 M NaCl. Proteins ranked in descending order of 

percentage contribution to emPAI score (L-R). Proteins which were detected 

as changing ≥ 2-fold were all clustered in the top 40 most abundant proteins 

in the sample and are marked with red lines. Most proteins had only one 

peptide accepted for quantitation. 
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Protein Name 

Peptides for ID 

in DDA 

Peptides 

Accepted for 

Quantitation 

Median Fold-

Change 

(Dish1/Dish3) 

24 kDa protein 7 1 2.21 

ACTB 34 2 0.35 

ARL6IP5 3 1 2.82 

CFL1 6 1 2.05 

DYNLL1 2 1 0.5 

ELAVL1 4 1 0.49 

HNRNPC 10 1 0.5 

KRT2 3 1 2.83 

KRT5 6 1 2.83 

RPL27 4 1 0.43 

RPS13 7 1 0.48 

SLC25A6 12 3 0.45 

VDAC1 8 2 0.43 

Table 4.3.2. Proteins detected as changing ≥2-fold by intensity within 

replicate 0.1-2 M NaCl CSK fractions. Most of the ≥2-fold changes were 

based on calculations from single peptides.   

 

The proteins that were detected as changing ≥2-fold were all in the top 40 most 

abundant detected proteins in the sample, as measured by emPAI (Figure 4.3.9). 

The detection of only high abundance proteins as changing may have been due to 

the phenomena of intensity of high abundance peptides at the detector not being 

linear with protein abundance. Peptide ion intensity measured in the mass 

spectrometer showed that the peptides which had been accepted for quantitation 

and which had changed ≥2-fold, were spread out over the range of peptide 

intensities detected (Figure 4.3.8). However, 75% of peptides detected as changing 

≥2-fold in intensity were present in the top 50% most intense peptides, consistent 

with high abundance peptides having a non-linear relationship with intensity at 

the detector (153) (Figure 4.3.10).  
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Figure 4.3.9. Intensity of all peptides in CSK 0.1-2 M NaCl versus detected 

fold change. Peptides were ranked from high to low (left-right on x-axis) in 

average intensity at the detector (blue line, left hand y-axis) and plotted 

against and log2 of fold change of peptides accepted by the Bruker software 

for use in quantitation plotted (red crosses, plotted right hand y-axis). No 

discernible pattern in changes in detected fold-change across peptide 

intensity was visible.  

 

 

Figure 4.3.10. Intensity of peptides changing ≥2-fold versus detected fold 

change in CSK 0.1-2 M NaCl. Peptides were ranked from high to low (left-

right on x-axis) in average intensity at the detector (blue dots, left hand y-

axis) and plotted against and log2 of fold change of peptides accepted by the 

Bruker software for use in quantitation plotted (red crosses, plotted right 

hand y-axis). 75% of peptides detected as changing ≥2-fold occurred in the 

top 50% range of intensity. 
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4.3.4  emPAI of CSK 0.1 – 2 M Fraction 

Although only one DDA injection of each sample was performed, emPAI results 

were compared to intensity based results to ascertain if similar proteins were 

detected as changing in abundance as to those in LF-MS. For proteins to be 

comparable between samples by emPAI, only proteins identified in both samples 

being compared can be considered, or the fold change is considered infinite. When 

taking all 624 protein identifications common to both dish 1 and dish 3 of the 0.1-

2 M NaCl CSK extracts into account, 104 (16 %) had a percentage emPAI 

contribution which changed ≥2-fold. Proteins with the large fold-changes in 

percentage emPAI between dish 1 and dish 3 were proteins which had either one 

peptide identification in one or both dishes. Removing single peptide hits reduced 

the number of comparable proteins to 388, of which 47 (12 %) had a ≥ 2-fold 

change in emPAI contribution (Figure 4.3.11). 

 

 

Figure 4.3.11. Fold change of proteins by emPAI between replicate biological 

extracts CSK 0.1-2M NaCl. The emPAI scores of proteins in dish 1 were 

divided by corresponding scores in dish 3, and then ranked from high to low 

in fold-change. Proteins with <2 peptides were omitted from the graph. As 

emPAI scores can be identical and are only calculated to 2 decimal places, 

many proteins have an exact 1:1 ratio.  

 

The only protein detected as changing ≥2-fold by both emPAI and intensity-based 

LF-MS was RPS13 (Table 4.3.3), although it was only quantitated by one peptide 

in intensity-based MS.  Proteins changing ≥2-fold in percentage emPAI 

contributions were observed throughout the range of relative abundances (Figure 

4.3.12).  
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Figure 4.3.12 Abundance of proteins with >1 peptide in both dish 1 and dish 3 

of CSK 0.1-2 M NaCl detected as changing ≥2-fold by emPAI. Proteins in dish 

1 (red) plotted in descending (L-R) order of emPAI as % total, and emPAI of 

corresponding protein from dish 3 plotted in the same order (L-R). 

Differences between the protein emPAI abundances show a bias of those 

changing ≥2-fold towards low abundance proteins (marked green), with 14 of 

the 47 changing ≥2-fold being in the bottom 50 % of emPAI scores.  
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Protein Name Fold Change (Dish1:3) Protein Name Fold Change (Dish1:3) 

HNRNPM 4.46 AP2B1 0.46 

THBS1 2.25 VAT1 0.45 

PSAP 2.22 RPS3A 0.45 

EIF2S3 2.15 TOR1AIP1 0.45 

S100A16 2.66 S100A14 0.44 

LAMB3 2.61 DSP 0.44 

HNRNPA3 2.34 CORO1C 0.44 

SLC25A3 2.17 RPS4X 0.44 

YWHAB 2.12 PRDX5 0.42 

P4HA2 2.09 RPS13 0.41 

RPL18 2.04 RPS10 0.41 

HADHB 2.03 GLG1 0.41 

FN1 2 ARL8B 0.41 

EIF3A 0.5 KRT5 0.37 

KPNB1 0.5 PTPRF 0.37 

PYGB 0.5 RHOA 0.36 

RPS17 0.47 RPL9 0.31 

TRIM25 0.47 

 

 

Table 4.3.3. Proteins detected as changing ≥2-fold by emPAI in CSK 0.1-2 

M NaCl. Protein names in bold signify where emPAI calculations were 

based on >1 peptide in both ID lists. RPS13was (highlighted yellow) was 

the only protein to be detected as changing ≥2-fold by LF-MS and emPAI. 
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4.3.5 DNase Extractions  

Although 0.1 M – 2 M NaCl CSK extracts resulted in a significant number of 

proteins associated with transcription being present in extracts, because the pre-

extraction step used relatively low salt (0.1 M NaCl), this type of extraction was 

not selective for proteins bound to the nuclear fraction with high affinity such as 

transcriptionally active proteins. CSK extractions can be combined with nuclease 

digestion as a way to release nuclease-sensitive DNA-protein complexes. This 

option was explored for use with for LF-MS analysis. 

In CSK-DNase extractions, cells are pre-extracted with one designated NaCl 

concentration, and are then incubated in DNaseI buffer with or without the 

addition of DNaseI enzyme before re-extraction in CSK with NaCl matching or 

higher than that of the original extraction (Materials and Methods 2.6.2). Parallel 

control extractions performed without nuclease digestion are performed to allow 

investigation of whether the release of any detected protein is specific to the 

DNase treatment.  

The aim for pre-extraction is to remove unbound soluble proteins without 

disrupting the nuclei. 0.5 M NaCl was chosen for extractions, based on western 

blots of sequential salt extracts in Materials and Methods 3.3.3 which showed 

removal of the marker of lysosomes and the Golgi, lysosomal-associated 

membrane protein 1 (LAMP1), and retention of histone proteins at this molarity 

(Figure 4.3.13). Blots of DNase extractions showed that histones and other 

proteins were released into the supernatant in greater abundance after DNase 

treatment (Figure 4.3.14). Transcription factors, such as PPARγ, were also shown 

to be present in CSK-DNase extracts (Figure 4.3.15). 

Figure 4.3.13. Western blots of LAMP1 and Histone H3 from sequential salt 

extracts compared with 20 μg whole cell extract (WCE).  Lysosomal and Golgi 

marker LAMP1 was mostly removed by 0.5 M NaCl. The majority of histones 

were retained until addition of 1 M NaCl.  

 



 

 
 

 

 

Figure 4.3.14. Histone release after DNase. Western blots show release of histones and the DNA binding cell cycle 

protein Minichromosome maintenance 2 (MCM2) after CSK-DNase control and DNase extractions. Control extracts 

released more MCM2 from control (-) as compared to differentiation-induced (+) cells. Cells incubated with DNase 

released MCM2 and histone H3 into the supernatant in both differentiated and control cells. 
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Figure 4.3.15. PPARγ localisation in CSK-DNase extracts of NHU cells. 

NHU cells were treated for 24 h with differentiation (+) or control (-) 

agents. NHU cell whole cell extracts taken in CSK buffer show similar 

intensity of all PPARγ-reactive bands in all lanes. Much of the PPARγ at 

50 and 52 kDa is extracted by the initial extraction of 0.5 M NaCl, 

although some remains in the pellet. Cells which were re-extracted with 

0.5 M NaCl after DNase extraction show that the majority of PPARγ at 50 

kDa is released by DNase treatment, but that the bands at 42 kDa and 57 

kDa remain in the pellet. 
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4.3.6 DDA Analysis of CSK-DNase Extracts 

NHU cells cultured for 144 h with (NHUd) and without (NHUc) differentiation 

were extracted using the CSK-DNase protocol, both with (DNase) and without 

(control) DNaseI enzyme (Figure 4.2.2).  

Supernatants were prepared for mass spectrometry by in-gel digestion, after 

running the protein mixture only a very short way into an SDS-PAGE gel 

(Materials and Methods 2.8.2), as a source of PEG contamination was detected in 

initial DDA runs from samples prepared by FASP. DDAs of extracts and Mascot 

searches of MS/MS data were performed as for 0.1-2 M NaCl CSK extracts.  

DNase extracts from NHUc and NHUd cells gave 162 and 193 protein 

identifications respectively. Control extracts from NHUc and NHUd cells gave 96 

and 126 Identifications respectively, suggesting DNase extracts were more 

complex than control extracts, as would be expected. Histone proteins were 

detected in NHUc and NHUd extracts only if treated with DNase, with similar 

numbers of peptides identified in the control and differentiated samples.  

Proteins identified in all CSK-DNase samples were compared for unique 

Identifications, bearing in mind that protein ID lists obtained by DDA from 

complex samples are not exhaustive and absence of ID does not necessarily mean 

absence of protein in a sample. Venn diagrams of protein Identifications showed 

that most proteins in the control extractions were also present in the DNase 

extractions, as would be expected (Figure 4.3.16). DNase extractions for NHUc 

and NHUd cells gave 78 and 42 unique Identifications respectively.  
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Figure 4.3.16. Venn diagram of Protein Identifications in CSK-DNase DDAs. 

144D Control (Blue), 144D DNase (Yellow), 144T no enzyme control (Green), 

144T DNase (Red). 63 proteins were common to all samples.  

 

Of the proteins common to all extracts, 24 had GO annotations of DNA dependent 

transcription (Table 4.3.4). Additionally, 9 and 22 DNA-transcription related 

proteins were detected that are unique to DNase extracts from undifferentiated 

and differentiated cells respectively. The range of proteins included wnt-signalling 

proteins (CTNNB1, CTNNA1, CTNND1, JUP, ZNF326) and sub-nuclear organelle 

proteins from ribonucleoproteins (ILF2, ILF3, HNRNP and SNRNP proteins), 

PML bodies (PML), structural proteins (FLNA, LMNA and SAFB), spliceosomes 

(SRSF), and enhancers of transcription and polymerases (POLR2A/B, SMARCC2, 

SMARCA4, YBX1).  
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Common between all extracts 

from Control or DNase treatment 

of NHUc or NHUd 

Unique 

to 

NHUc 

DNase 

Unique 

to NHUd DNase 

CTNNA1 

DDX5 

EEF1A1 

EIF4A3 

FLNA 

HNRNPA2B1 

HNRNPF 

HNRNPH1 

 

HNRNPK 

HSPA8 

HSPD1 

ILF2 

JUP 

LMNA 

PHB2 

PML 

 

PTRF 

RBMX 

RPS27A 

SP100 

TARDBP 

TPR 

TRIM28 

ZNF326 

AGRN 

PHB 

RAD21 

RPS3 

SAFB2 

SHOX 

SNRPB 

SRSF7 

YBX1 

CTNNB1 

CTNND1 

DHX9 

FAF2 

HNRNPAB 

HNRNPD 

HNRPDL 

ILF3 

 

POLR2A 

POLR2B 

PSMC5 

PSMD2 

RBM14 

SAFB 

SF3B2 

SF3B3 

 

SMARCC2 

SMARCA4 

SMC1A 

SRSF6 

TMPO 

XRCC5 

Table 4.3.4. DNA-dependent transcription proteins in CSK-DNase extracts. 

DNA-dependent transcription proteins common to all control and DNase 

extracts are listed. These included structural elements such as filamin 

proteins (FLNA, FLNB) and lamina proteins (LMNA). Some 

ribonucleoprotein proteins are common to all extracts, but others were 

detected in different extracts, with some being uniquely identified in DNase 

extracts of differentiated cells. DNA polymerases and members of the 

switch/sucrose non fermentable (SWI/SNF) transcriptional control complex 

(SMARCC2, SMARCA4) were also uniquely identified in DNase extracts of 

differentiated cells. Only two transcription proteins were common to DNase 

extracts from differentiated and control cells; PHB2 and RBMX. 

 

4.3.7 Comparison of CSK 0.1-2 M and CSK-DNase Fractions  

Extracts from CSK 0.1-2 M NaCl and CSK-DNase were compared to determine 

differences in the types of protein complexes observed. 306 protein identifications 

were obtained over all CSK-DNase and control CSK-DNase extracts compared to 

872 from all CSK 0.1-2M NaCl extracts. The lower number of protein 

identifications in CSK-DNase extracts was likely due to the more stringent (0.5 M 

NaCl compared with 0.1 M NaCl) pre-extraction step reducing the complexity of 

the extracts. Although there were fewer total protein identifications in the CSK-

DNase extracts with respect to the CSK 0.1-2 M NaCl extracts, 61% of total protein 

identifications from all CSK-DNase extracts were also found in CSK 0.1-2 M NaCl 

extracts (Figure 4.3.17).This suggests a similar sub-cellular fraction was being 

targeted. 
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25 proteins associated with transcription were identified in both CSK-DNase and 

0.1-2 M NaCl CSK extracts, many of which were ribonucleoprotein complex 

members (HNRNP, DDX, ILF, RPS3) or ubiquitin subtypes (RPS27A) 

(Supplementary Materials 2.2.2.1). Also common to both extractions were α, γ 

(JUP) and β catenin, as well as the transcriptional regulators DDX5, TRIM28 and 

YBX1.  The 60 transcription-associated proteins unique to 0.1-2 M NaCl CSK 

fractions consisted of multiple variants of similar proteins common to both 

extracts, such as the ribonucleoproteins (HNRNP, SNRNP, RBMX), ubiquitins 

(U2AF and spliceosome proteins (SRSF, EIF, U2AF).  

 

Some of the proteins unique to the CSK-DNase extracts included the polymerases 

DNA-directed RNA polymerase II subunit RPB1 (POLR2A) and POL2RB, the 

switch/sucrose non fermentable transcription modifier complex members 

transcription activator BRG1 (SMARCA4) and SWI/SNF complex subunit 

SMARCC2 (SMARCC2). The presence of polymerases suggests that CSK-DNase 

extracts had indeed specifically released transcription associated proteins (Table 

4.3.5), as seen in a related study using nuclease digestion of isolated chromatin 

(160).  

 

 

 

Figure 4.3.17. Venn Diagram comparing summed identifications from 

CSK-DNase extracts and CSK 0.1 – 2 M NaCl extracts.  CSK 0.1 – 2 M 

NaCl fractions had significantly more overall identifications with 872 

identifications compared with 306 from CSK-DNase extracts. 189 

proteins were common to both extraction procedures.  



 

166 
 

Chapter 4 

CSK DNase Only Common to CSK DNase and 0.1-2 M NaCl CSK 

AGRN 

EIF4A3 

ITGA6 

MET 

PML 

POLR2A 

POLR2B 

PSMC5 

RAD21 

RBM14 

SAFB 

SHOX 

SMARCC2 

SMARCA4 

SNRPB 

SP100 

SRSF6 

TPR 

TRIM29 

ZNF326 

CTNNB1 

CTNND1 

DDX5 

EEF1A1 

FLNA 

HNRNPAB 

HNRNPD 

HNRNPK 

HNRPDL 

HSPA8 

ILF2 

ILF3 

JUP 

LMNA 

PHB PHB2 

PTRF 

RBMX 

RPS27A 

RPS3 

TMPO 

TRIM28 

XRCC5 

YBX1 

0.1-2 M NaCl CSK Only 

ANP32A 

APEX1 

ASCC3 

BASP1 

BCLAF1 

BLM 

C1QBP 

CA9 

CALR 

CAND1 

CBX3 

CDC5L 

CDK9 

CHD4 

CHP1 

CSDA 

CSNK2A1 

CSTF3 

CTNNA1 

DDX1 

DDX3X 

DEK 

DRG1 

DYNLL1 

EEF1D 

ENO1 

FUBP1 

HMGA1 

HMGA2 

HNRNPUL1 

KHDRBS1 

KIAA1967 

LRPPRC 

MTDH 

MYBBP1A 

NACA 

NONO 

NPM1 

NUDT21 

PA2G4 

PABPN1 

PBXIP1 

PDLIM1 

PRDX5 

PRKDC 

PUF60 

RAN 

RBBP4 

RBM39 

PARP14 

RFXAP 

RHOA 

RNPS1 

RPS14 

SET 

SFPQ 

SND1 

SNRPD3 

SNRPE 

SRRT 

SRSF1 

SRSF11 

SRSF2 

SRSF3 

SRSF4 

SUPT16H 

TRIM25 

TROVE2 

TXNIP 

U2AF1 

U2AF2 

UFL1 

USP7 

XRCC6 

XRN2 

YWHAB 

Table 4.3.5. Comparison of identifications of transcription-associated 

proteins in CSK-DNase and CSK 0.1-2 M NaCl extracts. Common 

transcription associated proteins identified in all extracts included members 

of mRNP complexes, transcription regulators and transcription factors. 

Many of the proteins unique to the CSK 0.1-2 M NaCl fraction were multiple 

members of protein families, or similar to those common to or unique to 

CSK-DNase extracts. DNA polymerases and the transcriptional control 

proteins SMARCC2 and SMARCA4 were unique to the CSK-DNase extracts, 

suggesting possible enrichment for chromatin-bound transcriptional 

machinery. 
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4.3.8 emPAI Contribution of Proteins in CSK-DNase extractions 

emPAI contribution of proteins was calculated for CSK-DNase extracts as for 0.1-2 

M NaCl extracts. Histone proteins were detected in nuclease treated cells and not 

in control extractions (Figure 4.3.18), in agreement with western blot results 

which demonstrated their increased abundance in DNase treated cells (Figure 

4.3.14). Histone contribution to emPAI was similar to that seen for the CSK 0.1-2 

M NaCl extracts, but transcription-associated proteins were lower in CSK-DNase 

extracts, at 6-9% as opposed to 11%. emPAI representation of proteins associated 

with gene expression was down from 21% in CSK 0.1-2 M NaCl extracts to 9-16%. 

Both of these reductions could be accounted for by the removal of proteins by the 

increased stringency in the pre-extraction step and the use of 0.5 M NaCl for 

extraction after DNase or control extraction rather than the 2 M used for the CSK 

extracts.  

Although the overall percentage contribution to emPAI score of proteins with 

ontology of DNA-transcription was the same for NHUc cells subjected to control 

and DNase extractions, there were more individual transcription-related proteins 

in DNase extracts which were spread across a wide distribution of emPAI values. 

This increase was more pronounced in NHUd cells, which also showed an increase 

in emPAI of transcription-related proteins from 6 to 11% between control and 

DNase extractions (Figure 4.3.19).  
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Figure 4.3.18. emPAI contribution of genes with nuclear or transcription 

related gene ontology annotation in CSK-DNase extracts. IPI numbers 

from all four protein ID lists were submitted as one to the AmiGo tool. 

Proteins with GO annotation “DNA dependent transcription” were noted 

and the remaining proteins with annotations of “nucleus” or “histone” 

were marked and emPAI summed for each annotation. Control extracts 

gave no protein identifications for histone proteins, 6-9% of emPAI from 

genes annotated as “DNA dependent transcription” and 13-15% from other 

nuclear proteins. emPAI from transcription related proteins stayed the 

same for DNase extracted non-differentiated cells and increased to 11% for 

differentiated cells. Nuclear proteins decreased slightly for control extracts 

and increased for differentiated cells. Nuclease treatment resulted in the 

same emPAI contribution for both differentiated and control cells.  
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Figure 4.3.19. emPAI distribution of genes annotated as “DNA dependent 

Transcription” in DNase and control extracts. Protein emPAI scores as a % of 

total (blue, y-axis) were ranked high to low (L-R, x-axis). Proteins with 

ontology annotation “DNA dependent transcription” were marked on the 

graph with red lines. More transcription related proteins were observed in 

DNase extracted cells.  
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4.3.9 emPAI Quantitation of CSK-DNase Fractions 

emPAI quantitation of the proteins in DNase-treated extractions of NHUc and 

NHUd cells was performed. When considering all identified proteins, 50 of 117 

identifications (42%) common to both samples changed ≥2-fold between the 

samples. When protein identifications with only 1 peptide were not included this 

changed to 32 of 82 (39%) proteins (Figure 4.3.20).  

 

Figure 4.3.20. emPAI distribution of proteins detected as changing ≥2-fold by 

emPAI in CSK-DNase extracts from DNase extracted control and 

differentiated cells. Proteins were ranked by emPAI percentage contribution 

of proteins. 144D DNase extracts (blue) and emPAI contribution of the same 

proteins from 144T DNase extracts mapped onto the axis. Proteins detected 

as having emPAI contribution of ≥2-fold are marked with green lines, which 

shows a uniform distribution throughout emPAI contribution.  

 

The proteins detected as differing between the DNase treated extract samples of 

NHUc and NHUd cells were spread out across the range of emPAI scores without 

bias towards high or low abundance proteins. Similar distribution of relative 

abundance of proteins found to be changing ≥2-fold were obtained when 

comparing CSK-DNase control extractions from NHUc and NHUd cells to one 

another, although the number of proteins changing was lower due to fewer 

identifications and the restriction that, to make comparisons, peptides had to be 

positively identified in both samples being compared (Supplementary materials 

2.2.2.2).  

33 proteins were calculated as upregulated in DNase extracts from NHUd cells 

compared to DNase extracts from NHUc cells, with 22 having >1 peptide in both 

samples for fold-change calculations (Table 4.3.6). 17 proteins were identified as 
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upregulated in DNase extracts of NHUc cells as compared to NHUd cells, with 9 

proteins having >1 peptide. In control extracts, 14 proteins were detected as 

upregulated in undifferentiated cells (11 with >1 peptide), and all 8 proteins 

upregulated in differentiated cells had only one peptide in either sample. 

 

CSK-DNase emPAI 

Control vs Control DNase vs DNase 

Upregulated in 

NHUc Control 

Upregulated in 

NHUd Control 

Upregulated in 

NHUc DNase 

Upregulated in 

NHUd DNase 

ATP2A2 

HNRNPK 

HSPA8 

LAMA3 

LAMB3 

LAMC2 

MATR3 

RPN1 

RPN2 

SDHA 

SLC25A24 

TGFBI 

UBC 
 

ATP1A1 

CLTC 

DSP 

MYH9 

SPTBN1 

TPR 

UQCRC1 

UQCRC2 
 

ANXA2 

ATAD3A 

BSG 

DSP 

HIST1H2BL 

KRT10 

LAMA3 

LAMB3 

LAMC2 

PHB2 

PLEC1 

PTRF 

STOML2 

TGFBI 

VDAC1 

VDAC2 

VIM 
 

ACTN4 MAOA 

ACTR3 NDUFS1 

ATP1A1 NDUFS2 

ATP5A1 NNT 

CTNNA1 RBMX 

DDX5 RPL6 

FLNA RPSAP15 

FLNB SLC25A24 

HIST1H2AL SPTAN1 

HNRNPA3 SPTBN1 

HNRNPF TACSTD2 

HNRNPH1 TARDBP 

HNRNPK TOMM70A 

HNRNPU UQCRC1 

ILF2 UQCRC2 

ITGB4 VCP 

KRT17 

 

 

Table 4.3.6. Proteins identified as upregulated using emPAI in undifferentiated 

(NHUc) or differentiated (NHUd) cells when comparing control or DNase 

extracts. Fold change of emPAI contribution (%) was used as a measure to 

determine which proteins were more relatively abundant in control or DNase 

extracts. Proteins in bold had >1 peptide meeting the quantitation criteria. 

Highlighted proteins were observed as changing ≥2-fold in >1 comparison, for 

example HNRNPK was more abundant in NHUc than NHUd control extracts , but 

more abundant in NHUd DNase extracts, suggesting it was released to a greater 

extent NHUd cells in the presence of DNase.  
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Proteins observed by emPAI to change ≥2-fold in abundance when comparing 

control extractions of NHUc cells with control extractions of NHUd cells (control 

vs control), and DNase extractions from NHUc cells and DNase extractions 

(DNase vs DNase) from NHUd cells were either ribonucleoproteins, structural 

proteins or metabolic proteins. Comparisons by emPAI of control extractions from 

NHUc or NHUd cells to their respective DNase extractions produced lists of 

proteins as changing between both NHUc and NHUd cells (Supplementary 

Materials 2.2.2.3), but to a much smaller extent smaller extent than the 

comparison of DNase extracts from NHUc and NHUd cells. This was due to many 

of the proteins identifications present in DNase extracts being absent in the 

corresponding control extract; hence an estimate of change in relative abundance 

could not be made. 

Heterogeneous ribonucleoprotein K (HNRNPK) is a ubiquitously expressed 

ribonucleoprotein which induces cell cycle arrest as part of the p53 response 

pathway (166). HNRNPK was more abundant in control extractions from NHUc 

cells than those of NHUd cells, but, conversely, more abundant in DNase 

extractions from NHUd cells compared to NHUc cells. Proteins which have such 

an extraction pattern are potentially associated to a greater extent with the 

nuclease-sensitive fraction in NHUd cells. Protein Atlas showed expression of 

HNRNPK in all layers of the urothelium and the underlying stroma, with a 

qualitative increase in labelling in superficial compared to basal urothelial cells.  

Desmoplakin (DSP) is an obligate constituent of hemidesmosome cell junction 

proteins (167). Protein atlas shows DSP as being expressed weakly but specifically 

at cell junctions in intermediate layers of the urothelium. DSP was detected by 

mass spectrometry as upregulated in control extracts from NHUd cells (1 peptide), 

and DNase extracts from NHUc cells.  

SLC25A24 is a mitochondrial carrier protein reported in Protein Atlas to be 

expressed by all layers of the urothelium, with stronger labelling in superficial 

layers. SLC25A24 was upregulated in NHUc control extractions (1 peptide), and in 

DNase extractions of NHUd cells.  

Three other mitochondrial proteins, ATP1A1, UQCRC1 and UQCRC2, were 

upregulated in control extracts from NHUc cells (one peptide each), and also 

upregulated in DNase extractions from NHUd cells. ATP1A1 is reported in Protein 

Atlas to be moderately expressed by all layers of the urothelium, with strong 
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labelling in the junctions underlying the superficial layer. UQCRC1 and UQCRC2 

are labelled in Protein Atlas as being present throughout the urothelium, with 

particularly strong labelling at the superficial surface.  

4.3.10 Intensity-Based LF-MS of CSK-DNase Extracts using DDAs 

Control and DNase extracts from NHUd and NHUc cells were subjected to 

triplicate injection in the mass spectrometer and MS-only data collected as for 

CSK 0.1 -2 M NaCl extracts. To prevent saturation of the detector by high-

intensity peptides affecting quantitation, one third the amount of sample used for 

DDA was injected. MS peak data were extracted using the FMF script, and then 

MS-profiles time-aligned using the Bruker ProfileAnalysis workflow (Materials 

and Methods 1.8.5). 

Data were imported into LF-Quant, and intensities of aligned peaks compared. 

Comparisons were performed between DNase extracts from NHUc and NHUd 

cells. To improve stringency of comparisons between groups of triplicates (six 

samples total), only aligned buckets with intensity counts in at least five of six 

buckets were considered. 

MS-only spectra were aligned with merged MS/MS data from all CSK-DNase DDA 

runs using Bruker ProfileAnalysis, as was done for the LF-MS analysis of 0.1-2 M 

CSK extractions. Samples gave good separation by principle component analysis 

(Figure 4.3.21).  

 

 

Figure 4.3.21. Principle Component Analysis (Unit Variance) of variables 

from LC-MS-only runs from DNase Extracts from NHUc and NHUd. PC1 (y-

axis) vs PC2 (x-axis) showed separation of NHUc (circled in purple), and 

NHUd (circled in red). PCA executed in ProfileAnalysis (Bruker).   

 

When comparing DNase extracted samples, 463 of 3078 peptides (15%) identified 

in the DDA data were successfully aligned with the MS-only data. 133 aligned 

peptides were detected with ≥2-fold difference between the samples. 31 proteins 
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had peptides with median fold change in peptide intensity of ≥2. Very few 

peptides with intensity of <10,000 (arbitrary units) were accepted for quantitation 

(Figure 4.3.22), which is in line with expectations that quantitation is generally 

reported to be possible within 2 orders of magnitude of the most intense peptide 

(149129 arbitrary intensity units). 

 

 

Figure 4.3.22 LF-MS intensity based quantitation of CSK-DNase extracts 

using peptides aligned by ProfileAnalysis between merged DDA and MS-only 

data. Peptides were ranked from high to low intensity and fold change of 

peptides accepted for quantitation plotted on a second y-axis. Peptides 

p≤0.05 and ≥2-fold change were spread across the top two orders of 

magnitude of peptide intensity. 

 

When the peptides were mapped to their parent proteins, 30 proteins were 

identified that contained peptides changing with a median intensity of ≥2-fold 

between DNase extracts from NHUc and NHUd cells (Figure 4.3.23). When 

comparing control extracts of NHUc or NHUd to their respective DNase extracts, 

fewer peptides were successfully aligned than between DNase extracts of NHUc 

and NHUd cells (Figure 4.3.24 A, B). Comparisons of the control extracts from 

NHUc and NHUd cells showed similarly low numbers of aligned peptides (Figure 

4.3.24 C). 

In the comparison of DNase extracts, 19 proteins were upregulated in 

differentiated cells and 11 upregulated in undifferentiated cells. Proteins detected 

as upregulated in DNase extracts from NHUd cells as compared to NHUc cells 

were structural proteins KRT7, SPTBN1 and FLNB, the membrane protein 

ATP1A1, the mitochondrial membrane protein UQCRC1, the ribonucleoproteins 
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DDX5, HNRNPAB, HNRNPK, and HNRNPA2B1, histone sub-types H2AFY and 

H2AFY2, and the dual function ribosomal protein and transcription co-factor 

EEF1A1. The differential presence of structural proteins in these extracts is 

difficult to interpret; as they are not the target of extraction it may be that they 

may be more abundant in the NHUc cells or just more prone to extraction. 

Looking back at the DDA data, some of the structural and membrane proteins had 

significantly more peptide identifications in NHUc DNase than NHU DNase 

extracts, but this appears to be confined to a select few proteins and not all 

structural proteins, suggesting there was no inherent bias in the extraction 

procedure (Supplementary Material 2.2.2.1).   

Heterogeneous ribonucleoproteins (HNRNPs) are involved with the splicing, 

storage, transport and degradation of RNA within the cell. Some HNRNPs have 

been shown to bind to DNA and possess transcription factor activity, specifically 

towards the c-MYC oncogene in the case of HNRNPK (168). Histone sub-types 

H2AFY and H2AFY2 are known to preferentially replace the canonical H2A 

histone in the nucleosome in transcriptionally repressed genomic regions (169). 

Proteins detected as upregulated in NHUc DNase extracts as compared to NHUd 

DNase were the mitochondrial protein SLC25A6, the secreted extracellular matrix 

proteins FN1, LAMA3, LAMB3 and LAMC2 and the collagen associated TGFBI. 

The proteins which had a ≥2-fold detected change in abundance between the two 

samples were a mixture of proteins from the previously mentioned cell fractions, 

as well as transcription related factors such as CTNNB1 and several types of 

ribonucleoproteins.  

13 of the 30 changing proteins were the same as those seen to change by emPAI 

(Table 4.3.7). This suggests that the software is successfully aligning high 

abundance peptides between samples and giving similar estimations of relative 

abundance as to that which can be obtained by emPAI.  

 



 

 
 

Figure 4.3.23. Calculated fold-change of proteins between DNase extracts from NHUc and NHUd using DDA runs aligned in Bruker 

ProfileAnalysis. Proteins with ≥2 unique peptides with positive identifications aligned between runs are shown. Most proteins have 

<2 fold-change between the samples. Coefficient of variance between peptide intensities within groups is represented as a percentage 

(%CV). 
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Figure 4.3.24 A, B. Calculated fold-change of proteins between control and DNase extracts of (A) differentiated (NHUd) and 

(B) undifferentiated (NHUc) NHU cells using MS intensity measurements and MS/MS identification data from DDA runs 

aligned in Bruker ProfileAnalysis. Proteins with higher median peptide intensity in the DNase extracts above control extracts 

suggest protein release after DNase digest, whereas the opposite suggests non-specific release. FN1, PLEC1, HNRNPC, ATP5B 

and ATP5A1 were ≥2-fold more intense in NHUc DNase extracts as compared to control NHUc extracts. RBMX, ATP5A1 and 

ATP5B had median peptide abundance≥2-fold higher in NHUd DNase extracts as compared to control extracts. Coefficient of 

variance between peptide intensities within groups is represented as a percentage (%CV). 



 

 
 

.                                                                                                                                                                                                                                                          . 

 

.                                                                                                                                                                                                                                                                                                                 

.Figure 4.3.24 C.  Calculated fold-change of proteins between control extracts of undifferentiated (NHUc) and differentiated 

(NHUd) NHU cells using MS and MS/MS data from DDA runs aligned in Bruker ProfileAnalysis. Comparison of the two 

control extractions showed LAMA3 was ≥2-fold more abundant in extracts from NHUc cells and HNRNPC was more 

abundant in NHUd extracts. Coefficient of variance between peptide intensities within groups is represented as a percentage 

(%CV). 
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Upregulated in NHUd vs NHUc DNase Extracts by LF-MS 

using DDA MS/MS for Identifications 

# Peptides 

for 

Quantitation 

Peptides 

in DDA CV [%] Name 

Fold 

Change 

4 41 21.28 KRT7 3.23 

4 35 21.28 KRT7 3.23 

3 13 17.02 ATP1A1 2.86 

3 7 12.26 H2AFY2 2.86 

2 4 5.42 DDX5 2.78 

2 3 18.44 HNRNPAB 2.70 

2 7 28.36 HNRNPK 2.63 

3 17 23.27 H2AFY 2.13 

2 8 5.18 UQCRC1 2.13 

6 8 25.41 HNRNPA2B1 2.08 

2 12 1.88 SPTBN1 2.08 

2 7 10.12 EEF1A1 2.04 

13 50 21.95 FLNB 2.04 

 

Upregulated in NHUc vs NHUd DNase Extracts 

# Peptides 

for 

Quantitation 

Peptides 

in DDA CV [%] Name 

Fold 

Change 

3 47 2.32 LAMC2 5.98 

4 57 13.47 LAMB3 5.65 

8 67 59.49 LAMA3 4.05 

3 12 21.31 TGFBI 2.34 

9 46 13.23 FN1 2.28 

9 45 13.23 FN1 2.28 

3 9 14.89 SLC25A6 2.04 

Table 4.3.7. Proteins differing by intensity-based LF-MS 

using merged DDA for comparison of DNase extracts from 

NHUc and NHUd cells at 144 h. 19 proteins were detected as 

upregulated in NHUd and 11 in NHUc cells. The number of 

peptides use for quantitation did not always reflect the 

number of peptides seen in the DDA. Coefficient of variance 

represented as % intensity. Proteins in bold were also 

detected as changing in corresponding emPAI comparison. 
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4.3.11 Targeting of Ions Changing by LF-MS not identified by DDAs 

As would be expected, not all peaks detected in the MS-only data had 

corresponding MS/MS data in the DDA file.  

257 peaks that were exported from LF-Quant had a p-value of ≤0.05 when 

comparing NHUc and NHUd DNase extracts. These were split into two SPLs 

depending on which sample the target ion was the most intense in, to maximise 

the peak intensity and so maximise the chances of recording useful MS/MS data. 

Samples were re-injected using the same amount of peptides, as quantified by 

measurement of absorbance at 280 nm, as used for the original DDA. 2 minute 

tolerance windows around the retention times of each target m/z were used, to 

account for possible changes in retention time of ions.  

Using these SPLs, 43 and 24 peptides were detected in DNase extracts from 

undifferentiated and differentiated cells respectively (Supplementary Materials 

2.2.2.7 and 2.2.2.8). No proteins absent from the DDAs were detected in the 

NHUd DNase extracts, and 8 previously unidentified proteins were additionally 

identified in the NHUc DNase extracts. The types of proteins identified were 

similar to those identified previously from the DDA data, with a mixture of 

structural and ribonucleoproteins, but a lack of transcription-related proteins.  

It was later confirmed that there had been significant retention time drift of peaks 

in the LC system (Figure 4.3.25). Such retention time drift can occur upon routine 

replacement of the LC column, which took place between the MS-only acquisition 

and the SPL being run (a period of several months had elapsed). This meant that 

the target ions mostly fell outside the target window, which makes it likely that the 

identifications obtained from the SPLs were unlikely to be the same compounds 

which had eluted at that time in the original run. These identifications were not 

pursued further as they were not likely to be useful in giving further 

identifications.  
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Figure 4.3.25. Elution times of ions between CSK-DNase DDA and SPL. 

Extracted ion chromatogram (EIC) of intensity (y-axis) of measurement 

at m/z  723.893750 (+/- 0.05) from 92.5 to 115 min using MS-data from 

DDA of NHUc and NHUd DNase compared with MS-data from SPL 

generated using the same two samples. The major peak at this m/z was 

observed at an elution time of 106.5 min in both DDA samples, and 113.5 

min in both SPL samples. As elution times which SPL lists were set to for 

this particular target was 106.5 min +/- 2 min, no MS/MS data were 

acquired for this m/z in SPL. 

 

 

4.3.12  Nonlinear Dynamics Progenesis LC-MS Software 

Progenesis LC-MS (Nonlinear Dynamics) is a software package that, like 

ProfileAnalysis (Bruker), can align MS-only and MS/MS datasets for the purposes 

of label-free quantitation. Use of this software to compare the CSK-DNase extracts 

from NHUc and NHUd cells provided a similar number of compounds identified 

as changing as were calculated using all buckets generated by the Bruker software 

(including the infinite fold changes for which p-values were calculated separately) 

(Supplementary materials). Progenesis LC-MS software does not suffer from one 

of the major drawbacks of the Bruker software, which is that if a feature is totally 

absent, rather than just reduced in intensity, in one of the datasets, the Bruker 

software returns an N/A value; in contrast, the Progenesis software records a 

value of infinity. This allows generation of SPL lists even if an ion is absent in one 

LC-MS run. As many features in the list from ProfileAnalysis were absent from 

one of the two datasets of the DNase extracts from NHUc and NHUd cells, it was 
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decided that future targeted MS/MS of CSK-DNase samples should be restricted 

to SPL lists generated using the Progenesis LC-MS software.  

Retention times of target ions in the previous SPL were observed to be 

consistently shifted +5 minutes across the run. SPL target times generated in 

Progenesis were therefore adjusted by +5 minutes, to account for the shift in LC 

retention times. The resulting SPLs generated 636 peptide identifications from 

136 proteins, of which 215 peptides and 28 proteins were not in the original DDA 

data (Figure 4.3.26).  

 

Figure 4.3.26. Venn diagram showing overlap in peptide and protein 

identifications from combined DDA data from all control and DNase 

extracts, and those identified in the SPL.  

 

Of the 138 proteins identified in the SPL, 50 were potential nuclear proteins, 

including transcription factor CTNNB1, chromosomal protein CHD2, 

transcriptional co-factor SMARCA1, tumour suppressor RUVBL1, RNA-binding 

proteins RBMXL1 and BAT1, and DNA replication factor MCM2 (Appendix Table 

7.4.3.1).  

The identification of these proteins was indicative that some of the chromatin 

proteome was potentially detectable. As the peptides targeted in the SPL were 

potentially low intensity and unlikely to give good MS/MS based on the 

observation that in the DDA an intensity of 7000 was the minimum which gave 

positive peptide identifications in Mascot, ten times more sample (1 μg total) was 

injected for SPL runs than was injected for MS-only (0.1 μg). To approximate the 

intensity of the observed peptides with positive identification in the SPL to the 

approximate intensity in the DDA, the observed intensity in the SPL was divided 

by ten (Figure 4.3.27). This showed that 506 of the 676 peptides would likely have 

been intensity 1000-10,000 in the DDA, thus features which would have been 

below the threshold for MS/MS in the DDA would have constituted many targets. 
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Figure 4.3.27. Intensity of peptides in SPL extrapolated back to likely 

intensity in DDA by dividing observed intensity by ten.  

 

Alignment of these identifications with the MS-only and DDA data was 

unsuccessful, making assignment of MS/MS to MS peaks (and therefore 

quantitation) impossible. Further work on this is in progress as part of an ongoing 

Progenesis software development project (not reported in this thesis).  
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4.4 Discussion 

It was the aim of this work to identify proteins which differed in relative 

abundance on the chromatin between differentiation-induced and control NHU 

cells. Analyses with 0.1-2 M NaCl extracts showed that nuclear proteins could be 

identified using CSK extractions. The relative label-free quantitation of replicates 

of the 0.1-2 M extracts showed low numbers of proteins differing in intensity 

between replicates, suggesting that the experimental setup used did not introduce 

variation that would mask genuine changes in relative protein amounts when 

detected using LF-MS. This evidence was considered sufficient to justify the use of 

LF-MS analysis of extracts in order to obtain relative quantitation. 

The CSK-DNase protocol was used to generate samples for LF-MS comparisons to 

increase the recovery of DNA-bound proteins not soluble in salt. Pre-extraction of 

the soluble fraction of the cells using 0.5 M NaCl was used to remove weakly 

chromatin-bound proteins and reduce the abundance of cytoplasmic factors such 

as lysosomes in the extracts. A second extraction of 0.5 M NaCl after DNA 

digestion was performed to extract proteins which were bound to DNA. 2 M NaCl 

was not used at this stage as it was anticipated that the abundance of histones 

recovered would have been interfered with identification of lower abundance 

proteins. CSK-DNase extracts contained histones which demonstrated that the 

DNase digestion had been successful, and also contained transcription factors and 

transcription-related proteins. Control extractions which did not utilise DNase 

were introduced to allow the specificity of the extraction to be tested.  

The proteins released by DNase treatment after pre-extracting the cells with 0.5 M 

NaCl consisted of many ribonucleoproteins and other transcription-related 

proteins which are important to the control of gene expression. Although 

structural proteins were present in CSK-DNase extracts, if histone proteins are 

excluded, nuclear and transcription-related proteins accounted for 20-23% of the 

162-193 protein identifications by number and 21-23% by emPAI in DNase 

extracts from NHUc and NHUd cells. This is in line with other studies which have 

used more extensive purification. Dutta et al (160) used sucrose-gradient 

centrifugation to purify chromatin from homogenised rat liver cells, and over five 

separate injections into the mass spectrometer managed to identify 160 

chromatin-associated proteins from a total of 694 (23%) proteins present in 

nuclease digestions of the isolated chromatin.  
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One expected advantage of this type of extraction was that highly abundant 

structural and cytoplasmic proteins would be reduced in quantity compared to 

their presence in whole cell extracts, without having to resort to lengthy nuclear 

fractionations. This was true for some proteins such as keratins, which had 

reduced Mascot protein identification scores in the DDA analyses of CSK-NaCl 

and CSK- extracts compared to those of keratins identified in DDA analyses that 

were run using the pellet of material remaining behind after CSK-NaCl extractions 

(Supplementary Materials 2.2.2.2.4 and 2.2.2.2.7). 

The presence of ribonucleoproteins in the DNase-treated extracts suggested that a 

specific sub-nuclear proteome was being extracted, with some elements which 

were similar to those observed by Dhutta et al upon DNase digestion of purified 

chromatin (160). Dhutta et al detected proteins from the SMARC and 

ribonucleoprotein families, as were also observed in the DDAs in the current 

study. By aligning the MS-only data and performing MS/MS analysis on signals 

not previously submitted to MS/MS in DDA mode, it was anticipated that deeper 

penetration into the proteome could be achieved and compounds identified that 

would not have been chosen for MS/MS by standard DDA protocols.  

Peptide identification by Mascot is based on computational interpretation of 

masses observed in the mass spectrometer after peptide fragmentation. This 

information allows the Mascot algorithm to search a nominated protein database 

for amino acid sequence which codes for a peptide with matching mass within the 

chosen error tolerance which could theoretically produce the same fragmentation 

patterns.  As fragmentation spectra are so complex that they will always contain 

peaks which are the result of chemical noise or unexpected peptide modifications 

which could generate random matches for de novo sequencing, the use of 

databases greatly decreases the number of potential matches. As the search will 

always identify a "best" match, the critical function of the Mascot program is to 

provide a probability based score which denotes how likely it is that best match 

occurred by chance (170). 

The Mascot score for a MS/MS match which is significant depends on the number 

of peptides in the database which match the mass of the precursor and the chosen 

significance threshold. If 1500 peptides in the queried database match the 

precursor mass within the accuracy to which the mass was measured, to pass a 

significance threshold of p≤0.05 the Mascot probability (P) score will need to be 
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45 -10*Log(P) or greater, known as the identity threshold (37). However, even 

when the score of the best match does not reach threshold, if its score is high 

relative to the other potential matches then it still has the potential to be a correct 

match. A second, lower, threshold can be produced by comparing the submitted 

peak lists with a randomised database which contains amino acid motifs not found 

in nature, thus assessing the false positive match rate for the peak list. If the peak 

list does not generate false positive matches, this increases the likelihood that the 

match is genuine. This second threshold is known as the homology threshold.  

Peptides with low ion scores can still contribute to protein identification if 

multiple matches are achieved, but for it is especially important in large datasets 

that the peptide matches must pass one or both threshold scores to contribute to 

overall protein scores in order to reduce the contribution of random matches to 

protein identification. If a protein is identified by a single low scoring (<30) 

peptide in a dataset with a large number of searches, there is a risk that the 

peptide may be a false positive match.  

The issue of single peptide identifications is pertinent in the case of some of the 

proteins associated with transcription which were identified in CSK extracts from 

NHU cells. If the proteins with single peptide identifications are potential 

candidates for further work and they have marginal Mascot scores then the data 

used to generate the match can be further investigated using the existing data in 

order to better assess the likelihood the match was genuine. If a fragment spectra 

was matched to more than one sequence, then if there is a large difference 

between the best and “next-best” score (a delta of ≥10 (171)), then there is a lower 

probability that the match was due to chance. Repeated searching of the peak lists 

could be performed using different algorithms, with the rationale that if different 

scoring algorithms such as MaxQuant (172) or SEQUEST (173) produce the same 

identifications, the match could be considered more robust. The spectra 

themselves could be inspected manually and assessed for markers of quality such 

as high mass accuracy, high signal to noise ratio, high intensity y-ion series below 

the precursor ion, and several other criteria as summarised by Steen and Mann 

(174). Other possible approaches include comparing the spectra of the identified 

peptide sequence directly with those of matching sequence from other 

experiments which have been deposited on databases such as the global proteome 

machine (175). 
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When MS-only replicates were aligned using ProfileAnalysis, PCA showed good 

grouping of triplicates in all pairwise comparisons. Once the features identified by 

ProfileAnalysis were aligned with their MS/MS spectra from the merged data from 

all of the DDA runs, it was possible to use the MS-only ion intensities to estimate 

the change in relative abundance of proteins which had previously been identified 

by MS/MS. The scope of this comparison was limited, as proteins had to have a 

minimum of two different peptides that were present in both samples successfully 

aligned and identified as belonging to the same protein by the software. Due to 

these constraints, fewer peptides could be compared between control and DNase 

extractions than were probably differing, as proteins released by the DNase 

extraction may not have been present in the control extracts. Although it is not 

advisable to judge a protein as absent when using only DDA data, which may lack 

MS/MS for lower abundance peptides, this is a major shortcoming of the Bruker 

software, because after the MS data were aligned, it should be possible to assess 

the differential intensities between two samples even if a protein is totally absent 

from one sample.  

The samples which had the greatest number of features designated in the MS-data 

and which were successfully aligned with the DDA data, were the DNase 

extractions from NHUc and NHUd cells. These two samples had 463 peptides 

successfully aligned and 79 of the 116 proteins common between them had ≥2 

aligned peptides. Based on the median fold change of the intensity of matched 

peptides, 50 of 79 aligned proteins did not alter in abundance between the two 

samples. The proteins which were observed to change in abundance were a 

mixture of structural proteins and ribonucleoproteins.  

No ribonucleoproteins were detected as being upregulated ≥2-fold in NHUc 

DNase extracts, although 10 were detected as being upregulated ≥ 2-fold in NHUd 

DNase extracts. This observation could have been attributable to a greater 

abundance of extracted material in DNase extracted NHUd cells. However, core 

histone H3 was demonstrated by western blotting to be extracted to a similar 

degree by DNase treatment in both the 144 h time-point NHUc and NHUd cells 

used for LF-MS. Peptides from core histone variants H2A and H4, which were 

aligned in the data from DNase extracts of NHUc and NHUd cells, showed no 

change, arguing that variability in protein extraction levels is not the explanation. 
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However, the quantitations of these two proteins were each made based on only 

one peptide (Supplementary Materials 2.2.2.2). To be able to confidently use the 

core histones as indicators of equivalent extractions between the cells, more 

aligned peptides would be needed. Histone variants H2AFY and H2AFY2 were 

detected as just above and below 2-fold upregulated, respectively, in DNase 

extracts from NHUd cells above DNase extracts from NHUc cells. These histone 

variants are not uniformly expressed in human tissues, and cannot be used as an 

indicator of overall differences of core histones. H2AFY and H2AFY2 are, 

however, involved in repressing gene expression at genomic sites targeted by 

SMARC family proteins (169), and could therefore be regulated during 

differentiation of NHU cells.   

LF-MS quantitations showed an abundance of laminin proteins in extracts from 

NHUc cells above those from NHUd cells. As peptides from all types of lamins 

detected were consistently more abundant in the extracts from NHUc cells, it 

seems likely that the lamins were either more effectively extracted in NHUc than 

NHUd cells or simply more abundant in non-differentiated cultures. Laminins 

function as part of a trimer of alpha, beta and gamma subtypes which combine 

together to make a single functional unit, which in the case of LAMA3, LAMB3 

and LAMC2 is Lamin 5B (or 3B32) (176). Laminin proteins are components of 

epithelial basement membranes and form part of the extracellular matrix. Lamin 

5B is known expressed at the basement membrane of urothelium in humans, a 

localisation that is aberrant in urothelial carcinoma (177). Laminin proteins have 

influence on gene expression through their interaction with integrins, which 

modulate cell signalling pathways upstream of NF-κB, ERK, AKT and JUN (178). 

Laminins have also been reported to form part of the nucleoskeleton (179), and 

are involved in the functional organisation in the nucleus through specific 

interactions of regions of chromatin marked with particular epigenetic marks and 

specific laminin variants (180).  The detection of laminins in both NHUc and 

NHUd cultures is likely due to decreased deposition of laminin 5 by cells induced 

to differentiate. This is backed up by the increased abundance of fibronectin (FN1) 

in NHUc cells above NHUd cells, which associates with laminins in the 

extracellular matrix (181). 

The proteins identified in the DNase extracts associated with transcription were 

dominated by members of the ribonucleoprotein family, which are involved in the 

processing of mRNA transcripts and also exhibit transcription factor-like activity. 
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HNRNPK, HNRNPAB, H2AFY, DDX5 and EEF1A1 were all detected as increased 

in abundance in DNase extracts from NHUd cells when compared to DNase 

extracts from NHUc cells. These proteins all play a part in post-translational 

control of mRNA and miRNA translation (182, 183). The biology of these 

ribonucleoproteins is complicated by their diverse functions. For instance DDX5 is 

involved in mRNA splicing, but can influence gene expression via its interaction 

with cAMP response element binding protein binding protein (CREBBP) and 

SMAD3 (184) or RUNX2 (185).  

Further identification and quantitation of proteins in the CSK-DNase extractions 

were pursued. It was proposed that use of SPL lists based on MS-only data should 

be able to identify some of the compounds which changed in intensity between the 

two samples which had not been identified using the DDAs. ProfileAnalysis uses 

the generated p-values and fold-changes to allow the user to filter the full feature 

list to compile an SPL based on only features which appear to be changing 

reproducibly between samples. Once the identifications are obtained using the 

MS/MS data of the ions targeted by the SPL, the MS/MS data is re-aligned with 

the MS-only data to enable ProfileAnalysis to discern which ions from the SPL 

should be matched up to which MS feature.  

The inability of the software to produce p-values for compounds which were 

present in one sample and not in the other was problematic, as many compounds 

were observed to be unique to one condition when the data were filtered less 

stringently to allow groups of triplicates with zero values through (e.g. 10000, 

10120, 10210 vs. 0, 0, 0). It was possible to manually generate p-values for the 

compounds in these features by exporting the intensity data from the buckets 

(Supplementary Materials 2.2.2.1), but only outside of the ProfileAnalysis software 

package. Just from the comparison of DNase extracts from NHUc and NHUd 

cells, 380 compounds with a manually calculated p-value of ≤0.05 were left out of 

the SPLs due to this software problem.  

Because of the need for features within ProfileAnalysis to be filtered based on p-

value or fold-change during automated SPL generation, features for which 

ProfileAnalysis had not assigned p-values but p-values could be generated 

manually could not be isolated from the full list of features within the 

ProfileAnalysis software. Thus, if ProfileAnalysis has generated a p-value for a 

feature, the SPL can be generated with ease. However, if there is no p-value 
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associated with the desired feature, for example one which is present in one 

sample group and absent in another, then it is impossible to filter the list based on 

any attribute which will include it in a generated SPL other than to export all 

features. It would theoretically have been possible to use the full feature list as the 

SPL but this is generally impractical as the number of targets within a given time 

period exceeds the speed at which the mass spectrometer can acquire sufficient 

ions to obtain good quality MS/MS (also known as the duty cycle). Multiple 

injections could have been used to circumvent this, but this would have required 

excessive amounts of samples and instrument time. One potential work around to 

this problem was to calculate p-values outside of the Bruker software for buckets 

with intensities which were present / absent between two samples. This was 

performed successfully (Supplementary Materials 2.2.2.1). However, although the 

calculated precursor mass (Daltons) was exported along with the intensity values 

for the buckets, the charge state of the ion originally observed in the MS-only run 

was not included in the data exported from the Bruker software. This made it 

impossible to know what m/z was observed in the MS-only data, thus hampering 

generation of SPLs. One work around for this was to calculate the m/zs of the 

most commonly observed 2+ and 3+ charge states of the precursor ions using the 

precursor ion mass and to use these two m/zs for each precursor ion as the basis 

of an SPL. The resulting fragmentation data obtained in these SPL and m/z 

windows would then be aligned with to the MS-only data, as for any other SPL, by 

ProfileAnalysis. Thus, after importing the MS/MS data from the SPL, 

ProfileAnalysis could filter the identifications based on whether the m/z matched 

what was observed in the original MS-data.  

Both standard SPLs based on p-value filters from ProfileAnalysis and manual 

generation of 2+ and 3+ ions of features with manually generated p-values was 

attempted (Appendix 2.2.2.4 – 2.2.2.6). However, both results suffered from the 

same problem of retention time drift, which could have been avoided by 

performing the SPL before the column was changed. The risk of shifts in retention 

times occurring between MS-only acquisition and running samples for SPL is a 

well known issue, whereby chromatography is highly reproducible over several 

runs, but if elements of the system are changed, there is likely to be an impact on 

reproducibility.  

Better results were obtained when elution times in SPLs generated from 

Progenesis LC-MS were adjusted by +5 minutes to account for the drift in 
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retention times. Using the peptide identifications from the MS/MS obtained using 

these SPLs, 28 proteins not previously observed in DDA were observed. Some of 

these were well known chromatin remodelling proteins such as the SMARC family 

proteins and the multifunctional transcription influencing ribonucleoproteins, as 

well as transcription machinery such as the polymerase proteins POL2RA and 

POL2RB.  
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4.5 Conclusions and Future Work 

Although the proteome identified in the DDA of CSK-DNase extracted cells in the 

current study was smaller than the one that Dutta et al (160) obtained from DDA 

analyses of isolated chromatin, the nuclear proteins which were identified 

appeared to be from a similar sub-nuclear proteome.  Some of these proteins were 

detected to be differentially expressed between the samples when using emPAI 

analysis of the DDA identifications obtained from DNase extracts. Laminin 

proteins were much more abundant in control and DNase extracts from NHUc 

cells, likely because of decreased laminin 5 deposition in the more basal-like 

NHUc cultures, or increased breakdown as cells were induced to differentiate. The 

DNase extracts contained many ribonucleoproteins which are known to influence 

gene expression in a variety of different cell types. Some were identified as 

upregulated in DNase extracts from NHUd cells as compared to NHUc cells, and 

others still were identified in the MS/MS from the SPL generated using the 

Progenesis software.  

The identifications of above differentially expressed proteins were all obtained 

using MS/MS from the DDA runs of samples. When MS-only data was used to 

identify ions differing in abundance between the two samples, both the 

ProfileAnalysis and Progenesis LC-MS software indicated that there were ~1000 

features which changed reproducibly between the DNase extracts of NHUc and 

NHUd cells. The number of features differing between the control and DNase 

extracts of NHUc or NHUd cells was greater than was observed between the 

comparison of control extracts from NHUc and NHUd. Most of the differences 

between control and DNase extracts were proteins which were more abundant in 

the DNase extracted samples. Both these observations are consistent with the 

expectation that the control extractions from NHUc and NHUd should have 

contained similar proteins to one another, and that the DNase extractions from 

NHUc and NHUd cells should have contained proteins not present in the control 

samples due to the release of proteins by DNase. The potential for identification of 

these features was at first hampered by the length of time between the MS-only 

data collection and the generation of the SPL which resulted in a drift in ion 

retention times that rendered the retention times targeted in the SPL outside of 

the elution time of the target ions. SPL were then generated using Progenesis LC-

MS software and elution times amended to account for the shift in retention 

times. These SPL lists identified some proteins which were not identified in the 
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original DDA, indicating a modest increase in the proteome which was targeted. 

However the shift in retention times, re-aligning the MS/MS data from the SPL 

did not prove successful. The problems with the alignment could have arisen from 

the need to inject more sample amount to improve the MS/MS on lower 

abundance peptides. This may have altered the intensity of the sample to such a 

degree that the software could no longer successfully time-align the samples. Only 

when the SPL can be aligned with the MS data will quantitation be possible, and 

the goal of assigning fold-changes to more of the proteins associated with 

differentiated or control cells be realised. 

Failing further quantitation, proteins already identified as upregulating in DNase 

extracts from NHUd cells as compared to DNase extracts from NHUc cells 

warrant follow-up work to assess their function in NHU cells. DDX5, as a known 

CREBBP/SMAD3 coactivator is particularly intriguing. 

Future studies using LF-MS to investigate nuclear complexes may consider: 

 Isolating nuclei prior to extraction of nuclear proteins.  

 Preparing chromatin as for chromatin immunoprecipitation (ChIP) for 

analysis by LF-MS.  

Such studies should also show whether the purification achieved would be 

compatible with label free mass spectrometric workflows and whether 

quantification of low abundance proteins is achievable with these techniques. 

 



 
  

194 
 

Chapter 5 

 Epigenetics and Chromatin Dynamics 5

During in vitro Differentiation of Normal 

Human Urothelial Cells 

5.1 Introduction 

5.1.1 Chromatin Binding Proteins and Next-Generation Sequencing 

Binding of transcription factors to DNA during cellular differentiation has been 

extensively studied, as exemplified by the role of PPARγ in adipogenesis (39, 88, 

104, 112, 136). Chromatin immunoprecipitation (ChIP-seq) involves 

immunoprecipitation of formaldehyde fixed chromatin-DNA complexes followed 

by high-throughput sequencing of the isolated DNA (Figure 5.1.1).  

ChIP-seq has allowed the binding sites of transcription factors such as PPARγ to 

be mapped in a genome-wide fashion, and the changes in binding sites over time 

to be tracked (39, 104). Similar to other transcription factors (186-189), ChIP-seq 

studies of PPARγ have revealed that the model whereby activated PPARγ binds to 

DNA and expression of surrounding genes increases, is too simplistic, highlighting 

that interactions between multiple transcription factors are required to bring 

about large-scale changes. Siersbæk et al (104) showed that the transcription 

factor CCAAT/enhancer-binding protein beta C/EBPβ binds to closed chromatin 

in pre-adipocytes around genes known to be upregulated during adipogenesis, and 

within 4 hours of induction of adipogenesis, the chromatin in these regions 

becomes DNaseI sensitive. The newly opened chromatin is bound by a variety of 

factors, including RXRα, GR and Stat5a. These factors maintain the open status of 

the chromatin, allowing PPARγ/RXRα heterodimers to bind. Even PPARγ/RXRα 

binding is not sufficient to drive gene expression immediately, suggesting still 

other factors may be involved in upregulation.  This type of co-operative 

behaviour of transcription factors has been demonstrated, such as in the interplay 

between ERα, RARα and FOXA1 in driving ERα-induced gene expression in MCF-

7 cells (187-189).  

Recent large-scale studies of binding sites of transcription factors in multiple cell 

types, such as the one undertaken by the ENCODE consortium, has highlighted 

that multiple transcription factors bind the genome in site-specific and cell-type 
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specific combinations (38, 190-193). Multiple groups have used these results to 

research networking of transcription factors, and infer the influence of the 

interactions of individual proteins or complexes on gene expression. The key 

finding of Gerstein et al  (38) was that transcription factors bind in a 

“combinatorial and context-specific fashion”. The resulting “hierarchy” of 

transcription factors extracted from the data showed that some factors always 

appear to have more influence on gene expression than others, and that most bind 

in complexes consisting of preferred yet dynamic members. The complexity of 

these networks underscores the difficulty of making interpretations of the effects 

of transcription factor binding on gene expression, based on knowledge about the 

binding patterns of only a small number of sequence-specific transcription factors.  

 



 
  

 
 

 

Figure 5.1.1 Chromatin immunoprecipitation workflow. Cross-linked cell samples are subjected to hypotonic lysis and sonication to 

fragment DNA. DNA-histone complexes are incubated with antibodies raised against specific histone modifications before capture 

of antibody-chromatin complexes with anti-IgG Dynabeads. DNA captured by antibodies can then be used for PCR (ChIP-PCR) or 

sequencing (ChIP-seq). 
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Upon binding to DNA, most transcription factors displace the nucleosomes which 

package the DNA (194). In addition, DNA-transcription factor interactions are 

transient, often leaving DNA that is both free of nucleosome and protein around 

the transcription factor binding site. This so called “nucleosome-depleted” DNA 

can be separated from nucleosomal DNA by sonication of formaldehyde-fixed 

cells. The protein-free nucleosome-depleted DNA can then be isolated by removal 

of protein-bound DNA via phenol purification. This method is known as 

formaldehyde-assisted isolation of regulatory elements (FAIRE) (195) (Figure 

5.1.2).  

 



 
  

 
 

 

Figure 5.1.2. Formaldehyde-assisted isolation of regulatory elements (FAIRE) workflow. DNA in close proximity to protein at the 

time of fixation, such as that in nucleosomes, has many sites of interaction for potential cross-linking. Transcription factors have 

fewer contact points with DNA, and thus less chance for cross-linking. The DNA from nucleosome-depleted regions preferentially 

fragments from the nucleosomes in response to sonication, enabling it to be purified in the aqueous phase of a phenol: chloroform 

extraction. Sequencing of the isolated fragments allows identification of regions of the genome with enriched transcription factor 

binding. 
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FAIRE-extracted DNA can then be sequenced, and known transcription sequence 

motifs can be identified in the isolated DNA (195, 196). As DNaseI preferentially 

cleaves open chromatin or exposed DNA (194), treatment of nuclei with DNaseI 

also releases nucleosome-depleted regions of DNA. Short fragments where 

transcription factors were bound can then be isolated on sucrose gradients and 

sequenced (DNase-seq), allowing the genome-wide identification of regulatory 

elements in a similar fashion to FAIRE (197, 198).  

FAIRE and DNase-seq have been compared in the same study by Song et al (40). 

A total of seven primary and carcinoma human cell lines were compared, with 30-

40% of regulatory sites identified being common to each technique. DNaseI sites 

were found to be enriched within 2 kb of transcription start sites and 5’ exons and 

introns, whilst FAIRE sites were found within genes and non-promoter intergenic 

regions. Differences between the two techniques are likely a result of complexes 

which affect the ability of DNaseI to access DNA, or where tightly DNA-bound 

factors cross-link to DNA as efficiently as histones. Despite these differences, 

>90% of high-confidence transcription factor motifs identified in other ChIP-seq 

studies using the same cell types were captured by both FAIRE and DNase-seq. 

Some specific differences in identification of transcription factor binding sites 

were seen, in that FAIRE fared better at identifying binding sites of FOXA1, 

FOXA3 and GATA3, whereas DNase-seq had greater success with ZNF263 sites. 

One of the major findings of this study was that most transcription start sites 

(TSS) in all cell types had open chromatin, and that the open chromatin regions 

which differed between cell types were mostly observed in intergenic regions 

around genes expressed specifically in each cell type. The authors proposed that 

transcription factor combinations which bind these open chromatin regions in 

specific cell types could be key to maintenance of cell identity, echoing the studies 

in adipocytes discussed previously. As such, understanding the combinations of 

factors which bind at open chromatin sites unique to specific cell types could help 

further understanding of the development and maintenance of cellular 

phenotypes.  

Analysis of potential transcription-factor interactions in silico from ChIP-seq 

datasets has been investigated by Giannopoulo et al, using co-occurrence of 

binding in multiple datasets from ENCODE (199). The inferred complexes were 

composed of known interactors, with some complexes gaining members. Inferred 

complexes occurred in genomic regions with specific histone marks and were 
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placed at loci which matched the known functions of some member proteins, such 

as EP300 histone acetyltransferase enhancer complexes in regions distal to genes.  

These studies highlight the potential with large-scale datasets to uncover detailed 

descriptions of chromatin composition at specific sites throughout the genome. 

Both FAIRE-seq and DNase-seq can be performed as part of existing next-

generation sequencing workflows. Data from such experiments can be compared 

to existing datasets from the ENCODE project in order to identify unique 

chromatin features in the cell type studied. This brings the use of such approaches 

within the reach of the wider scientific community, although utilising either 

approach requires significant computing power and bioinformatics knowledge or 

support. One early example of FAIRE utilisation outside the ENCODE project was 

its application to studying adipogenesis, which allowed Waki et al to elucidate, de 

novo,  the role of the transcription factor NFIA in development of adipocytes (93).  

Combining the ability of FAIRE to identify multiple transcription factor binding 

sites from a single dataset with the approaches of Giannopoulo et al to infer 

binding complexes would represent a step-change in the understanding of how 

chromatin-bound complexes maintain cell-specific gene expression patterns.  

 

5.1.2 Chromosome Conformation Capture  

Chromatin in eukaryotic cells exists within the tightly packed space of the nucleus, 

yet this mass of proteins and DNA is not disorganised. Spatial organisation of 

DNA in the nucleus has been shown to be non-random, whereby chromosomes 

occupy distinct regions of the nucleus, dubbed “chromosome territories” (200-

202). Within chromosomes, regions with similar transcriptional activity 

preferentially localise either with one another, or with specific structures such as 

the nuclear envelope (180). Actively transcribed and repressed regions within 

chromosomes co-localise respectively with active RNA polymerase transcription 

foci outside the territory of the specific chromosome studied (32), or the nuclear 

lamina (203). The drive to understand how genomes are organised has resulted in 

experimental approaches which have since been applied to wider areas of genome 

biology. 

An approach to probing the physical interactions between genomically separated 

regions of DNA in the nucleus was initially developed for analysis of small 
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numbers of loci, using a technique called chromosome conformation capture (3C). 

3C was developed by Dekker et al in order to investigate changes in DNA 

conformation around a bacterial gene after induction of gene expression (69). 3C 

isolates interacting genomic regions by cross-linking DNA using formaldehyde. 

DNA is then enzymatically cleaved using a site-specific restriction enzyme, leaving 

cross-linked protein-DNA and DNA-DNA complexes intact. Subsequent proximity 

ligation anneals cut-ends of DNA within the same cross-linked complex, allowing 

sequences which may have originated from differing genomic regions to form a 

contiguous sequence (Figure 5.1.3). Polymerase chain reaction (PCR) primers, 

designed to only give products where successful ligation of genomically separated 

regions has occurred, are then used to infer interactions.  
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Figure 5.1.3. Outline of 3C procedure. DNA strands from distant genomic 

regions (red, blue) are brought together via their binding with two 

interacting proteins. These interactions are preserved during fixation, after 

which the unbound DNA is cut by nucleases. Re-ligation of the cut DNA ends 

allows the two strands of DNA to be made into one contiguous sequence. The 

specific interactions of regions around sites targeted by the nucleases can 

then be targeted by PCR (black arrows on DNA strands). 

 

Developments of the 3C method have adapted the technique for use with DNA 

microarrays and next-generation sequencing technologies, allowing genome-wide 

analysis of interaction profiles of specific loci with the rest of the genome (33), 

analysis of regions which interact when bound to specific transcription factors 

(204) or interaction of any two ligated sequences (71).  

Genome-wide binding maps of transcription factors show that they only bind the 

chromatin at a small percentage of their potential binding sites(94). Correlating 

binding sites with RNA expression can help to identify target genes, but it is not 

always the case that factors upregulate the gene to which they bind to most 

proximally (188). Transcription factors are able to interact with distant genomic 

regions thanks to the compact 3-dimensional nature of the nucleus. In order to 

investigate the changes in genome organisation imparted by estrogen-receptor 

alpha (ERα) activation, Fullwood et al developed a 3C based technique termed 

chromosome interaction analysis by paired-end tagging (ChIA-PET)(205). In 

ChIA-PET, DNA is fragmented and immunoprecipitated as for ChIP. ERα-bound 

DNA fragments, still in their complexes, are ligated with sequencing adapters 

before the ends are ligated together (Figure 5.4). These sequencing adapters 

contain target sites for a nuclease which cuts proximal enough to the site to allow 

sequencing of some bases of the two original DNA strands that were ligated 

together.  
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Figure 5.1.4. Outline of ChIA-PET procedure. Chromatin complexes 

containing DNA from genomically separate regions (blue/green proteins and 

blue/red/green DNA strands) are captured by chromatin 

immunoprecipitation (ChIP). Broken DNA ends are ligated with adapters, 

which are then ligated together. The adapters and some of the flanking 

sequence are cut by nucleases, making the strands amenable to sequencing 

with short-read next-generation sequencers.   

 

The interaction between DNA from distant genomic regions mediated by ERα was 

then inferred by deep-sequencing of the resulting DNA fragments. These data 

were compared with known binding sites of other transcription factors thought to 

impact ERα driven expression, such as FOXA1. The analysis from the Fullwood et 

al (205) study indicated that ERα proteins interact chiefly with one another in 

clusters within chromosomes, and that interactions are greatly enriched between 

regions where FOXA1 binds within 10 kb of ERα. Modelling of the ERα binding 

sites and the upregulation of surrounding genes suggested that interacting ERα 

binding sites may serve as anchors around which to form large DNA loops, with 

genes in the periphery of the loops (away from the anchor) being less upregulated 

than those closer to the anchor. It is thought that the ERα proteins may interact 

with each other at sites where they also interact with the basal transcriptional 

machinery (206). The ChIA-PET approach is beneficial when studying a single 

transcription factor and its genomic targets, but provides little information about 

the portion of the genome not affected by the chosen factor.  

High-throughput chromosome conformation capture (HiC) adopts a global 

approach to analysis of interacting DNA, as opposed to isolating only those in 

complex with a chosen transcription factor (71). HiC is based on 3C, but instead of 

direct re-ligation of digested DNA, biotinylated nucleotides are introduced into 

overhangs prior to ligation (Figure 1.5). Biotinylation facilitates purification of re-
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ligated DNA junctions, greatly increasing the number of sequenced fragments 

which arise from ligated DNA (70). Genome-wide maps of interaction frequencies 

can be produced from HiC data, showing regions with enriched and depleted 

interactions. The HiC approach was successfully used by Rickman et al  to identify 

the regions of the genome which altered conformation in response to over-

expression of the oncogene ERG in the normal benign human prostate cell line 

RWPE1 (207). ERG binding sites, as detected by ChIP-seq, were significantly 

enriched within regions which altered their HiC interaction profiles. In addition to 

this, 65% of the 1,266 genes differentially regulated in cells over-expressing ERG 

were in regions which interacted with one another. Within this gene set were the 

HOXA, HOXB and HOXC gene clusters, which are important in urogenital 

development and known to be downregulated in prostate carcinoma cells under 

the influence of the polycomb protein EZH2 (208). Conversely, some genes 

interacted less in ERG-transfected cells, yet had increased expression, indicating a 

possible release from repression complexes. HiC data allowed Lin et al to observe 

the shift in interaction profiles of genes associated with B-cell development during 

lineage progression (209). Genes known to be involved in orchestrating B-cell fate 

were observed to change genomic position, inferred from a shift in interaction 

partners, early in the differentiation process. Lin et al also observed collaborative 

binding of transcription factors which appeared to bind in distinct patterns that 

changed during differentiation. 



 
  

 
 

 

Figure 5.1.5. Construction and quality control of HiC libraries. HindIII digestion allows interacting DNA regions captured by fixation 

to be excised. The DNA overhangs left by the digestion can then be filled in, with the inclusion of biotinylated cytosine. Subsequent 

ligation allows DNA within complexes to be ligated together. PCR amplification of ligated junctions and NheI digestion of PCR 

products serves as quality control for incorporation of nucleotides at the original HindIII digest site. HiC libraries can then be 

fragmented and biotinylated ligation junctions streptavidin purified prior to ligating next-generation sequencing primers and library 

amplification. As a final quality control, an aliquot of the amplified library can be digested using NheI restriction enzyme which 

recognises the sequence present at ligation junctions which were successfully filled in. 
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One disadvantage of genome-wide 3C is that the data represents an average of the 

whole population of cells studied. The 3C derived “enhanced 4C” (e4C) technique 

was developed by Schoenfelder et al (33) to probe interactions of a specific locus 

during transcription. e4C entails pre-enriching for actively-transcribed genes 

using ChIP with an RNA polymerase II antibody before digestion and ligation of 

DNA ends. A specific locus is then targeted by using a primer extension step with a 

biotinylated primer to allow recovery of the target DNA before amplification and 

hybridisation to microarray. e4C showed that the interactions between genes in 

the mouse globin locus had preferred interactors, but the sheer number of 

interactors observed for a single locus suggested a large plasticity in the 

conformation of the genome across the cell population. Alone, high-throughput 3C 

technologies such as HiC may be limited to describing interactions of DNA 

without any functional inferences beyond changes to transcriptional activity. 

However, combined with maps of chromatin-binding proteins it can provide 

significant insight into the key regions of the genome which change their activity 

in response to physiological stimuli.  

 

5.1.3 Epigenetic Studies in Urothelium 

Most work carried out so far regarding epigenetics in urothelium concerns 

carcinogenesis, in which there is evidence for disruption of both histone 

modifications and DNA methylation. Nishiyama et al carried out DNA 

methylation studies comparing urothelia obtained from normal urothelium, non-

cancerous urothelium from patients with urothelial carcinoma (UC) and samples 

of urothelial carcinoma (210). DNA was enriched for methylated sequences by 

digesting non-methylated DNA using methylation-sensitive nuclease SmaI prior 

to hybridisation to microarrays. Most non-cancerous urothelia from patients with 

UC had methylated regions of chromosomes similar to UC samples, but distinct 

from normal samples. Methylation patterns within UC samples clustered into two 

groups, corresponding to higher and lower invasive potential. The low resolution 

of the arrays only allowed identification of regions spanning whole chromosomal 

bands as being differentially methylated. As such, although the arrays were able to 

predict the presence of cancer and determine the invasive potential, little about 

the specific genes that were methylated could be inferred. 
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Radvanyi et al used RNA microarrays to profile gene expression in bladder 

cancers with a range of stages and grades (211). Following previous studies which 

showed contiguous regions of chromosomes with aberrant gene expression in 

cancers (212, 213), Radvanyi et al sought to identify chromosomal regions which 

contained neighbouring co-regulated genes expressed differentially in carcinoma 

samples compared to normal samples. Clustering resulted in identification of 

seven regions consistently silenced in 46% of tumours. This sub-group of tumours 

was identified as having “multiple regions of epigenetic silencing” (MRES), and 

represented 100% of the original cohort which had the previously defined 

carcinoma in situ (CIS) gene expression phenotype associated with muscle 

invasive disease (214). In a cell line derived from one of the MRES tumours, the 

DNA demethylating agent 5-aza-deoxycytidine had no effect on expression of 

genes in the silenced regions, whereas the histone deacetylase (HDAC) inhibitor 

trichostatin-A (TSA) increased their expression. Repressive histone methylation 

marks (trimethylation of histone H3 on lysines 9 and 27) were found to decrease 

in MRES regions upon TSA treatment of cell lines. The increase in acetylation and 

decrease in methylation after TSA treatment indicated that inhibition of HDAC 

proteins allowed histone demethylase and histone acetylase proteins to associate 

with the chromatin in these regions. 

Several groups have described differential methylation of promoters of genes 

known to be altered in expression in CIS such as p53 (215, 216), and linked this to 

the altered expression of the DNA methyltransferase 1 protein (DNMT1) identified 

by Nakagawa et al (217).  Dudziec et al , having previously associated DNA 

methylation with carcinogenesis (218), sought to identify a relationship between 

DNA methylation, histone methylation and gene expression (219). This was 

achieved by profiling gene expression and DNA methylation in cultured normal 

urothelial cells and two malignant urothelial cell lines using microarray 

approaches. Expression of genes was compared with genome-wide profiles of 

histone H3 trimethylated at lysine 9 (H3K9me3) or at lysine 27 (H3K27me3). 

H3K27me3 was found to occur around genes with low expression in all cells, 

whereas H3K9me3 was only weakly associated with repression in a subset of 

genes with DNA methylation. DNA methylation itself was only weakly associated 

with repression of expression in malignant cell lines.  

The above studies in urothelial carcinomas focus on DNA methylation, histone 

modifications or both. However, no two groups were studying the same sets of 
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genes or chromosomal regions, or were comparing similar samples. There is, 

however, some correlation in their evidence, which shows the separate influences 

of histone modification at H3K27me3 and DNA methylation on gene expression in 

carcinoma. Although Dhawan et al and Nishiyama et al showed that DNA 

methylation may be predictive of carcinoma in apparently normal tissue (218), 

Dudziec et al showed that repressed genes in urothelial carcinoma have 

hypomethylated promoters, as corroborated by Radvanyi et al. The lack of DNA 

methylation at genes in MRES regions seen by Radvanyi et al was corroborated by 

Nishiyama et al who observed hypomethylation in carcinoma samples at two of 

the three MRES chromosomal regions they also identified as differing between 

normal and carcinoma samples (17q21 and 14q11.2). Major oncogenes found by 

Dhawan et al to have hypermethylated DNA in promoters in CIS samples (p53, E 

cadherin) are not associated with MRES silenced regions. Interestingly, Rassf1a, 

which was found by Dhawan et al to be hypomethylated in CIS patients, lies 

within 3p21.31, adjacent to an MRES region (218).  

One missing aspect from all of these studies is the genome-wide study of 

epigenetics in differentiated normal tissues. Proliferating and confluent cells, as 

used by Dudziec et al (219) and Dhawan et al (218), will likely have different gene 

expression profiles from differentiated NHU cells. It would therefore be 

informative to understand the change in gene expression, and associated 

epigenetic changes, undertaken by urothelial cells during differentiation. The 

difficulty of performing such studies in the past has in part been due to the 

difficulty of obtaining sufficient DNA for sequencing, as ChIP-seq isolates 

relatively small percentages of the genome and typically requires a minimum 

starting quantity of 2 X 107 cells per experimental condition to obtain a yield 

sufficient to allow sequencing. This is prohibitive if the target cells are rare, or the 

cell line is finite, as is the case with NHU cells. However, building on protocols 

developed for the unbiased amplification of total genomic DNA (220), ChIP-seq 

performed on DNA recovered from as few as 10,000 cells can recapitulate the data 

obtained from standard ChIP-seq (221, 222).  

Combining ChIP-seq with FAIRE, HiC and genome-wide RNA expression studies 

(RNA-seq) will provide new insight into the epigenetic and chromatin binding 

events occurring during differentiation of NHU cells. This will require using 

similar approaches undertaken by Rickman et al and Lin et al when correlating 

HiC data with ChIP-seq and gene expression data. To infer the influence of 
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changes in regulatory regions identified by FAIRE on chromosome conformation, 

the FAIRE peaks unique to differentiating cells will have to be identified. 

Integrating all of this with an understanding of the effects of specific gene 

complexes, as done by Giannopoulo et al (199), will help to pinpoint which protein 

complexes target specific regions of the genome intrinsically important to 

urothelial cell identity. 
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5.2 Experimental Aims and Approach 

5.2.1 Aims  

The switch between proliferation and differentiation in cultured normal human 

urothelial (NHU) cells provides an experimental model for understanding what 

epigenetic mechanisms are involved in altering the transcriptional repertoire 

during in vitro differentiation. 

It was hypothesised that the repressive histone methylation marks in control NHU 

cells at 24 h would mirror that in MRES regions of carcinoma samples, and that 

this methylation would change during differentiation.  

It was the aim of the work described in this chapter to utilise next-generation 

sequencing technologies to discover what changes in histone modifications, gene 

expression, chromatin binding proteins and chromosomal conformation occur 

during the in vitro differentiation of normal human urothelial cells. This data was 

then to be used to infer changes in chromatin binding complexes at different 

genomic loci, and the influence of such complexes on histone modifications, gene 

expression and chromosomal interactions.  

 

5.2.2 Experimental Approach 

 TGAC Collaboration 5.2.2.1

Collaboration was set up with The Genome Analysis Centre (TGAC, Norwich, UK) 

under round five of the BBSRC Capacity and Capability Challenge (CCC). The 

project outline was for TGAC to provide histone modification ChIP-seq, HiC, 

FAIRE and RNA-seq data from samples prepared from in vitro differentiating 

normal human urothelial cells. RNA from differentiation-induced and control 

NHU cells at two time points, 24 h and 144 h, were to be sequenced by RNA-seq 

from triplicate donor NHU cell lines. ChIP-seq, FAIRE and HiC were performed in 

differentiation-induced and control cells at 24 h and 144 h on a single donor line 

which was one of the samples submitted to RNA-seq (Table 5.2.1).  
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 NHU Donor 1 NHU Donor 2 NHU Donor 3 

Time-

Point 

24 h 144 h 24 h 144 h 24 h 144 h 

Status Ctrl Diff Ctrl Diff Ctrl Diff Ctrl Diff Ctrl Diff Ctrl Diff 

RNA-seq X X X X X X X X X X X X 

FAIRE X X X X         

ChIP-seq X X X X         

HiC X X X X         

Table 5.2.1. Next generation sequencing schedule. Three NHU cell lines from 

independent donors were cultured for 24 h and 144 h under differentiation 

inducing (TZ&PD) or control (0.1% DMSO) conditions. Diff= differentiating, 

Ctrl  = control. Material from one cell line was subjected to RNA-seq, FAIRE, 

HiC and ChIP-seq targeting two histone modifications. Two other cell lines 

were subjected to RNA-seq to allow confident identification of genes which 

change in expression over time during differentiation.  

 

RNA-seq of three independent donor cell lines was performed to allow genes 

which are upregulated during differentiation across donors to be ascertained. 

These transcription patterns were then intended be used to provide a baseline of 

expression changes which occur around features including transcription factor 

binding, histone modifications and chromosome interaction profiles identified in 

FAIRE, ChIP-seq and HiC datasets respectively.  

All cell culture and HiC, FAIRE and ChIP-seq DNA library construction was 

carried out at the University of York. DNA libraries were, by necessity, sequenced 

at TGAC. Quality control carried out by TGAC is included where possible. 

Bioinformatics assessment was carried out in full collaboration with TGAC.  

 

 Cell Culture 5.2.2.2

NHU cells from three donors (Y967, Y1192 and Y1214) were cultured in 10 cm 

dishes with KSFMc medium until 70% confluent. Cells were then treated with 

differentiation-inducing or control agents for 24 or 144 h as described in Materials 

and Methods 2.3.4. 

To obtain samples for HiC, FAIRE and ChIP-seq, differentiated and control cells 

were fixed at 24 h and 144 h by drop-wise addition of 37% formaldehyde to growth 

medium to a final concentration of 1%. Formaldehyde was added to dishes whilst 

on an orbital shaker and left for 10 min, before being quenched by addition of a 
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1.25 M glycine solution to a final concentration of 125 mM. Parallel cultures were 

harvested in 2% (w/v) SDS for western blotting or TrizolTM (Life Sciences) for 

protein and RNA-seq respectively (Materials and Methods 2.4 and 2.7.5 

respectively).  

Successful induction of differentiation was demonstrated by western blot analysis 

of reduction in phosphorylated pERK1/2 knockdown at 24 h and upregulation of 

claudin 5 and FOXA1 relative to control at both time points. Cells from each donor 

were cultured and harvested in parallel to reduce introduction of sample 

variability.  

 

 RNA-seq 5.2.2.3

RNA was prepared for sequencing by adapter primer ligation and subjected to 25 

bp single reads. Reads were mapped to the genome using maq 

(maq.sourceforge.net/ ). Reads were assigned to ensemble transcript ID (ENST) 

and differential expression calculated at TGAC using the DEseq method and “per-

condition” dispersion values (223).  

 

 ChIP-Seq 5.2.2.4

Sonicated chromatin from 1 X 10 cm dish of formaldehyde fixed cells (4 x 106 cells) 

was diluted as required in RIPA buffer and subjected to ChIP using antibodies 

targeting either histone H3 trimethylated at lysine 4 (H3K4me3), histone H3 

trimethylated at lysine 27 (H3K27me3), total histone H3 (positive control) or anti-

rabbit IgG (negative control) (Materials and Methods 1.7.7.2).  

Constitutively repressed or active genes have histone modifications H3K27me3 or 

H3K4me3, respectively, in regions proximal to their promoters in multiple human 

cell types (as reviewed in (224)). Thus, the ChIP-seq results would provide 

evidence for regions undergoing epigenetic changes related to transcription 

during differentiation.  

All anti-histone modification antibodies were rabbit monoclonal ChIP grade 

antibodies (Cell Signaling) recommended to be used at a 1:50 dilution. Control 

anti-rabbit IgG (Santa Cruz) was used at 2 µg per control ChIP. 
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To confirm the success of ChIP using the Dynabeads system to active mark 

H3K4me3 and repressive mark H3K27me3, PCR was performed using 1 μL of 20 

μL column eluate after isolation of DNA using a Qiagen PCR purification kit. PCR 

targets were regions 500 bp upstream from genes known to be constitutively 

silenced or expressed in human urothelium.  

As ChIP to epigenetic marks which are relatively rare across the genome is 

unlikely to yield sufficient DNA for sequencing when using 1-2 X 106 cells starting 

material, the libraries were amplified using the SEQX kit as described in  

 

 High Throughput Chromosome Conformation Capture 5.2.2.5

Protocols for construction of HiC libraries published by Belton et al  (70) were 

adapted for use with NHU cells (Materials and Methods 2.7.6). 25 X 106 fixed cells 

were homogenised by passing 10 times through a 21-gauge needle. Cells were then 

nuclease digested with HindIII enzyme, which leaves four-base 5’ sticky end 

overhangs. The overhangs were filled in using endonuclease activity of Klenow 

polymerase fragment in the presence of adenine, guanine, thymine and 

biotinylated cytosine. The newly created DNA blunt ends were re-ligated under 

dilute conditions to promote ligation to DNA strands proximal in space to one 

another, such as those formaldehyde fixed in the same DNA-protein complex. 

Once ligation occurs, contiguous sequences are created from DNA strands that 

were interacting at the time of fixation, yet may have originated from distant 

genomic regions.  

Successful digestion and ligation was demonstrated using PCR which would only 

be successful if distant HindIII sites had been brought together to form ligation 

junctions. The extent of biotinylation at ligated junctions directly affects the 

quality of HiC data, and was therefore estimated by digesting the PCR product 

with the NheI enzyme which specifically digests the newly formed sequence at 

fully filled in blunt-end ligation junctions.  

HiC DNA libraries which demonstrated biotin incorporation were then treated 

with exonuclease to digest biotin from unligated fragments before shearing and 

streptavidin purification. Streptavidin-purified DNA was then adapted with 

sequencing primers and amplified. As a final quality control, amplified libraries 
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were subjected to digestion with NheI, as successful digestion is predictive of 

quality of HiC data (70). Libraries were subjected to 50 bp paired-end reads.  

 

 Formaldehyde Assisted Isolation of Regulatory Elements 5.2.2.6

(FAIRE) 

NHU cells were sonicated as for ChIP-seq and nucleosome-depleted regulatory 

elements were isolated from supernatants by phenol: chloroform extraction, as in 

Giresi et al (195).  

DNA was size-selected to 250 bp using XP beads (Beckman Coulter). DNA was 

then subjected to a standard ChIP-seq workflow of end repair and adapter primer 

ligation before sequencing. 
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5.3 Results 

5.3.1 Differentiation of Cell Lines 

Protein samples harvested from the three cultured NHU cell lines showed that 

induction of differentiation using TZ and PD was associated with increases in 

differentiation markers claudin 5 and FOXA1 at both 24 h and 144 h relative to 

control cells (Figure 5.3.1).  

 

 

 

Figure 5.3.1. Upregulation of urothelial protein differentiation markers in 

NHU cell lines used for sequencing. Claudin 5 and FOXA1 expression was 

more abundant after treatment with differentiation-inducing agents (TZ&PD 

+) at both time points in all donor lines as compared to 0.1% DMSO control 

cells (TZ&PD -). pERK expression was not detected in differentiated cells at 

24 h, but was variable at 144 h. Variable pERK expression did not affect 

upregulation of claudin 5 or FOXA1. Beta-actin shows comparable loading 

between lanes, blue colour of bands in Claudin 5 (e.g. 144 h TZ&PD +) 

indicates saturation of the detector. LDR = protein marker ladder. 
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5.3.2 RNA Quality Control - Bioanalyzer 

RNA integrity is an important factor in obtaining reliable results from next-

generation sequencing, and therefore was assessed before submitting samples for 

sequencing. Microfluidic separation of RNA in a Bioanalyzer RNA chip (Agilent) 

allows quantitation by measuring RNA fluorescence after laser excitation, and 

size-measurement by comparison to known size nucleotides. 18S and 28S 

ribosomal RNA are the most abundant RNA species in mammalian cells. For RNA 

to be good quality, peaks from both of these species should present and separated 

by a region of low noise. The algorithm contained within the Bioanalyzer software 

interprets the appearance and ratio of these peaks, and returns an RNA integrity 

number (RIN) of 0-10, with 10 being highest quality (68).   

All RNA samples isolated from NHU cells were of very good quality, returning 

RIN values of 9.7-10 (Figure 5.3.2). RIN numbers are not predictive of quality of 

experimental results, but can be used as quality control.  

 



 
  

 
 

 

Figure 5.3.2. Bioanalyzer traces of RNA isolated from NHU cells for RNA-seq. Donor line Y967 (A-D), Y1192 (E-H) and 

Y1214 (I-L) treated with control or differentiation-inducing agents for 24 or 144 h respectively. Trace K shows the 

electropherogram of the standard size-ladder (increasing size L-R).   
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5.3.3 Optimisation of formaldehyde fixation  

Formaldehyde fixation of NHU cells was tested by observing the appearance on 

western blots of cross-linked histone complexes after fixation for 0, 5, 10 or 30 

min in 1% formaldehyde. Extra H3 reactive bands not present in non-fixed 

extracts were visible in cell extracts which had been fixed for 10 min (Figure 

5.3.3). After 30 min, no further new bands appeared by comparison with the 10 

minute treatment. Therefore, cross-linking was judged to be complete by 10 min 

and this time was used for all cross-linking experiments. 

 

Figure 5.3.3. Formaldehyde fixation of NHU Cells. Appearance of additional 

histone H3 reactive bands relative to non-cross-linked samples was apparent 

after 10 min fixation in formaldehyde. After 30 min, no additional bands 

were seen. Cells were harvested in 2% SDS and 20 μg subjected to western 

blot as described in Materials and Methods 2.4, with the exception that 

samples were not heated to 70oC during preparation for SDS-PAGE in order 

to preserve cross-links.   

 

5.3.4 Sonication of DNA for ChIP-Seq and FAIRE 

Fragmentation of DNA is required allow efficient capture of DNA-protein 

complexes in ChIP. Sonication to mononucleosomal size (100-300 bp) is 

recommended for ChIP-seq targeting histone modifications (225). This increases 

the accuracy of mapping, by breaking target nucleosomes apart from chromatin 

from distal genomic regions with which they may have been interacting at the 

time of fixation.  
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To optimise the sonication process, NHU cells were subjected to sonication for 

increasing lengths of time in a Bioruptor (Diagenode) and samples taken to assess 

the DNA size profile (Figure 5.3.4). Sonication for 45 min showed near complete 

fragmentation to mononucleosomal size. 45 min sonication was thus performed 

on all subsequent samples, and size profiles of DNA checked visually on gels. If 

evidence of high molecular weight DNA was observed, samples were rejected 

(Figure 5.3.5). 

 

 

Figure 5.3.4. Optimisation of DNA sonication. For sonication, 1 X 10 cm dish 

of fixed NHU cells was prepared as in Materials and Methods 2.7.7.1. For 

optimisation, aliquots were taken after every 5 minutes sonication. DNA 

from aliquots was purified and electrophoretically separated in a 0.75% 

agarose gel. Pseudocoloured gel image shows DNA fragmented to 100-300 bp 

after 45 minutes sonication. 
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Figure 5.3.5. Sonication of NHU cells for ChIP-seq and FAIRE. Samples were 

sonicated for 45 min as in Figure 5.3.4 and aliquots taken after final round of 

sonication. If DNA did not show mononucleosomal size distribution of 100-

300 bp, they were rejected (samples marked with *, upper image) and fresh 

samples prepared (lower image).  

 

5.3.5 ChIP-seq Sample Preparation 

ChIP-isolated DNA was subjected to PCR (ChIP-PCR) to demonstrate successful 

isolation of H3K27me3 and H3K4me3-associated regions. H3K27me should be 

associated with regions upstream of repressed genes, and H3K4me3 should be 

associated with regions around active transcription start sites (224).  

Claudin 6 is not expressed in urothelial cells at any stage of in vitro differentiation 

(2) and GAPDH is constitutively expressed in all human cell types, although to 

varying degrees (72). Thus, for H3K27me ChIP-PCR in NHU cells, no PCR 

products should be observed with PCR targeting actively transcribed genes such as 

GAPDH, but products should be observed when targeting repressed genes such as 

claudin 6. The opposite would be expected for H3K4me3 ChIP-PCR. This was 

borne out in the results of the ChIP-PCR, which showed the expected results and 

was consistent for ChIP material from differentiated and control cells (Figure 

5.3.6).  
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Figure 5.3.6. ChIP-PCR for H3K4me3 or H3K27me3. Histone H3 ChIP-PCR 

showed amplification of both CLDN6 and GAPDH, confirming that at least 

some of the DNA at these regions is associated with nucleosomes. Claudin 6 

PCR resulted in relatively more product in H3K27me ChIP than H3K4me3 

ChIP, as would be expected for a repressed gene. GAPDH PCR was successful 

in H3K4me3 ChIP and failed in H3K27me3, as would be expected from a 

ubiquitously expressed gene.  PCR performed using eluates from anti-rabbit 

IgG were negative in all samples other than a trace amount of product in the 

CLDN6 144 h control ChIP. Input DNA from ChIP was used as a positive 

control and nuclease free H2O as a no template control (NTC). Chromatin 

from 1 X 10 cm dish of 144 h differentiated and control samples from cell line 

Y1214 was sonicated, diluted in RIPA buffer into 4 X 600 μL aliquots and 1 X 

50 μL aliquot as input sample. CLDN6 PCR was performed for 34 cycles and 

GAPDH PCR for 36 cycles.  

 

ChIP was repeated for H3K4me3 and H3K27me3 for cell line Y1192 with 2 x 106 

cells per IP and isolated DNA was subjected to amplification using the SEQX kit 

(Sigma) as per the manufacturer’s instructions.  

Two generic fragmented DNA libraries, donated by TGAC, were diluted to 100 pg 

and 1 ng total DNA and used as test subjects for amplification; these 

concentrations represent the extremes of the designated working range of DNA for 

amplification using the SEQX kit. 1 ng and 100 pg test libraries showed 

amplification curves which entered a linear phase at cycles 14 and 16 respectively 

(data not shown). NHU Chip-seq samples were then subjected to the SEQX 

workflow. Libraries amplified at similar time-points to the test libraries, indicating 

successful amplification (Figure 5.3.7). 
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Figure 5.3.7. SEQX Amplification of ChIP samples. Screenshot of 

fluorescence (y-axis) against PCR cycles (x-axis) showing amplification of 

Y1192 ChIP samples. Samples are 24 h control, 24 h differentiated, 144 h 

control and 144 h differentiated ChIP samples of H3K4me3 (1-4) and 

H3k27me3 (5-8). Amplification was to be stopped 2-3 cycles into the plateau 

phase of PCR. Samples 1-4 (all H3K27me3) reached the end of plateau just as 

samples 5-8 were entering the plateau phase. As such, samples 1-4 were 

removed and submitted to the final extension step, and samples 5-8 were 

subjected to a further 3 rounds of amplification before extension in a 

separate machine. PCR was set up using components in the SEQX kit and 

amplification detected by fluorescence emission of SYBR Green, included at 1 

in 75,000 dilution of SYBR Green in the PCR reaction. SYBR Green 

fluoresces when it intercalates with double-stranded DNA, thus the amount 

of fluorescence increases with the quantity of DNA.  

 

DNA was purified using PCR purification kit (Qiagen), and then primers were 

enzymatically cleaved from the DNA using SEQX components before a second 

PCR purification. The size of libraries was checked by separation of 1 ng on a 

Bioanalyzer (Agilent) microfluidic electrophoresis instrument (Figure 5.3.8). 

Libraries were then subjected to ChIP-seq workflow as detailed in Materials and 

Methods 1.7.8.3.  
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Figure 5.3.8. Bioanalyzer traces of amplified ChIP-seq libraries. All libraries 

show uniform size distribution around the expected 100-300 bp. This 

indicates that amplification resulted in no high molecular weight artefacts, 

and that cleaved primers were successfully cleaved from the amplicons. 

Primers give rise to the peaks just above the 35 bp size marker. Primers were 

removed from the samples in a subsequent XP bead cleanup step (data not 

shown). 

 

 

5.3.6 ChIP-seq Sequencing  

After ChIP-seq samples were sequenced,, the reads were mapped to the genome 

using maq and peaks where sequences were significantly enriched were called 

using model-based analysis for ChIP-seq (MACS) (76, 77, 226). The similarity of 

peak positions between samples was estimated using the Jaccard similarity index 

within the ChIPseeqer tool (227). H3K4me3 samples showed similarities to one 

another, as did H3K27me3 samples (Figure 5.3.9). Little similarity was seen 

between the two groups of samples. This is to be expected, as H3K4me3 and 
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H3K27me3 are rarely observed in the same positions, and patterns of individual 

marks across the genome would not be expected to change drastically.  

 
Figure 5.3.9. Jaccard similarity index for ChIP-seq. Cross-similarity of peak 

positions within ChIP-seq datasets shows internal consistency within ChIP 

datasets from each histone mark (darker blues show Jaccard scores 

approaching the highest similarity score of 1). All samples are from cell line 

Y1192. K4 = H3K4me3 ChIP library, K27 = H3K27me3 ChIP library. 24D 

/144D = 24/144 h DMSO control, 24T/144T = 24/144 h TZ&PD differentiated. 

Credit for undertaking Bioinformatics workflow for ChIPseeqer to Janet 

Higgins, TGAC.  

 

5.3.7 FAIRE Sample Preparation 

Material from 24 h and 144 h differentiated and control cells of NHU donor line 

Y1192 was sonicated as for ChIP-seq. Nucleosome-depleted DNA was isolated 

from sonication supernatants by mixing 1:1 with a 1:1 mix of phenol: chloroform 

before RNA digestion and clean-up by sodium acetate precipitation. The size 

distribution of isolated DNA was expected to be 100-300 bp, and this was 

demonstrated using a Bioanalyzer (Figure 5.3.10). Due to fragmentation to 

mononucleosomal size, small fragments were present at 40 bp; this was likely 

some inter-nucleosome DNA, which has an average length of 40 bp in human 

chromatin (147).  
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Figure 5.3.10. FAIRE DNA Bioanalyzer results post phenol: chloroform purification. Purified DNA showed expected distribution of 

fragment sizes from 75-300 bp (x-axis), but with additional peak at 40 bp. FU (y-axis) = fluorescence units. 
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Linker DNA was removed by size-selection, which is part of the standard FAIRE 

protocol (228). Size selection is performed by recovery of DNA from an agarose 

gel with an opening which allows recovery DNA eluting into the space to be 

captured as the fragments of the desired length pass through (EZ Gel Size Select, 

Life Technologies, Cat # G661002).  

Length of size-selected DNA was measured using a LabChip GX system 

(PerkinElmer) (Figure 5.3.11). The library from 144 h differentiated cells did not 

show good recovery. Elution was continued for one minute extra and size of DNA 

recovered re-checked on a Bioanalyzer (Figure 5.3.12), which showed good 

recovery of target DNA. The samples were then prepared for sequencing in the 

same way as the ChIP-seq samples (Materials and Methods 1.7.8.3).  

 



 
  

 
 

 

Figure 5.3.11. Size-selection of FAIRE samples. FAIRE DNA was electrophoretically separated using an EZ-Gel Size Select (Life 

Technologies) system. Once the ladder reached 250 bp, DNA was retrieved from the wells. DNA length of size-selected libraries 

was checked on a LabChip GX to ensure selection was successful. All libraries other than that from the 144 h differentiated sample 

showed good recovery at 250 bp; DNA from the 144 h differentiated sample was recovered after further elution (Figure 5.3.12).  
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Figure 5.3.12. Bioanalyzer of 144 h differentiated FAIRE library after further 

elution on size-selection gel. Library was eluted for another 1 min and the 

DNA in the well was retrieved. The library was electrophoretically separated 

using a Bioanalyzer system, which showed a peak centred at around 250 bp 

(x-axis). FU (y-axis) = fluorescence units. 

 

5.3.8 FAIRE Sequencing 

FAIRE DNA libraries were submitted for sequencing and returned peaks 22-40 x 

106 aligned peaks after removal of duplication of reads (Appendix 7.2.1), a data 

range which resembles previous FAIRE publications (40, 93, 196). Peaks within 

data were picked as for ChIP-seq for preliminary analysis of distribution of peaks. 

Distribution of peaks was cross-correlated using the Jaccard similarity index in 

ChIPseeqer to test samples for internal consistency. Only a minority of peaks in 

previous published datasets have been seen to change between cell types and / or 

treatments, so some correlation was expected, and was observed (Figure 5.3.13). 
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Figure 5.3.13. Jaccard cross-similarity of FAIRE-seq. Peak positions 

within FAIRE dataset from cell line Y1192 shows internal consistency 

within datasets (darker blues show Jaccard scores approaching the 

highest similarity score of 1). LIB numbers are internal library 

annotations from TGAC. 24D /144D = 24/144 h DMSO control, 24T/144T 

= 24/144 h TZ&PD differentiated. 24D is the most different from all of 

the other libraries. Credit for undertaking Bioinformatics workflow for 

ChIPseeqer to Janet Higgins, TGAC. 

 

As discussed previously, many FAIRE peaks are common across cell types. Genes 

expressed under phenotype-specific conditions would be expected to have unique 

FAIRE peaks in and around their coding region (40). The locations of FAIRE 

peaks in NHU cell data at specified areas of the genome were visualised using the 

University of California, Santa Cruz (UCSC) genome browser (genome.ucsc.edu). 

The UCSC browser interrogates peak files for density of reads at user designated 

regions, and allows comparisons to be made with public datasets. NHU data was 

compared with a FAIRE dataset from an immortalised urothelial cell line and 

three other human cell types (lymphoblastoid cell line GM12878, human 

endothelial stem cells and K562 leukaemia cell line) included in the ENCODE 

project (228). The coding region of UPK2 was chosen for inspection, as it is 

expressed most in differentiated cells at the 144 h time-point. Correlation was 

observed at one site between all NHU FAIRE samples and public datasets (Figure 

5.3.14). Flanking this site were two regions of peak density which were unique to 

NHU cells differentiated for 144 h. 
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Figure 5.3.14. Unique FAIRE signal in differentiated cells. FAIRE peak density and RNA-seq abundance tracks from NHU cells 

displayed in the UCSC genome browser. Left to right displays the region encompassing the coding region for the differentiation-

associated gene UPK2 centred around position 118,828,000 on chromosome 11. Key: 1= RNA-seq, 2= NHU FAIRE, 3 = Pre-existing 

FAIRE tracks in the UCSC browser from immortalised urothelial cells, 4 = FAIRE tracks from human GM12878, H1-hESC and K562 

cells, 5 = positions of known coding exons as annotated in UCSC and RefSeq.  NHU FAIRE tracks show some peaks common to all 

samples (dashed red arrows), and some intronic peaks unique to differentiation-induced samples at 144 h (solid red arrows). 
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This area (chromosome 11: 118,827,450 – 118,828,000) was analysed for the 

presence of all factor motifs using Consite (http://asp.ii.uib.no:8090/cgi-

bin/CONSITE/consite). This revealed that the site highlighted in Figure 5.3.14 

common to all cell types was enriched in myc proto-oncogene protein (MYC), 

upstream stimulatory factor 1 (USF) and aryl hydrocarbon receptor nuclear 

translocator (ARNT) binding sites, whereas the two peaks present in differentiated 

urothelial cells both contained (Zinc finger protein SNAI1) SNAI1 binding sites 

(data not shown). 

 

5.3.9 HiC Library Preparation 

Fixed cells were suspended in lysis buffer, homogenised and DNA digested with 

HindIII as in the HiC protocol (Materials and Methods 2.7). An aliquot of the 

resulting DNA library was taken, cross-links reversed and protein digested by 

heating at 65oC overnight in the presence of proteinase K. DNA was purified by 

phenol: chloroform extraction and sodium acetate precipitation. The size of the 

libraries was checked to determine size (expected to be 10 kb) by electrophoresis 

(Figure 5.3.15). The size of DNA fragments was approximately 10 kb with minor 

streaking, similar to that seen in literature reports for HiC samples (229). 

 

Figure 5.3.15. HiC libraries after HindIII digestion.  Fixed DNA from cell line 

Y1192 subjected to control (TZ&PD -) or differentiation-inducing (TZ&PD +) 

were homogenised and digested with HindIII (Materials and Methods 

2.7.8.1). The size-range of the libraries was determined by loading 500 ng of 

DNA onto a 0.75% agarose gel. The majority of fragments were 10 kb, with a 

similar distribution of non-fragmented and smaller fragments to that seen in 

published HiC methods papers (229).   

 

Sticky ends left by HindIII digestion of libraries were filled in, in the presence of 

biotinylated cytosine. Libraries were then subjected to ligation using T4 ligase 

under dilute conditions. Cross-links were reversed by heating at 65oC overnight 
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and protein digested by incubation with proteinase K. DNA was phenol: 

chloroform purified and phenol carry over removed using Amicon 30 kDa ultra 

centrifugal filters (Millipore) before RNase treatment.  

The success of the ligation was assessed by generation of PCR using primers which 

should only generate amplicons if HindIII sites were ligated together (Figure 

5.3.16).  

 

 

GGTGCAGCTGAGCTAGGCAGCAGCAAGCATTCCTGGGGTGGCATAGTGGGGTGGT

GAATACCATGTACAAAGCTTGTGCCCAGACTGTGGGTGGCAGTGCCCCACATGGCCGCT

TCTCCTGGAAGGGCTTCGTATGACTGGGGGTGTTGGGCAGCCCTGGAGCCTTCAGTTGC

AGCCATGCCTTAAGCCAGGCCAGCCTGGCAGGGAAGCTCAAGGGAGATAAAATTCAACC

TCTTGGGCCCTCCTGGGGGTAAGGAGATGCTGCATTCGCCCTCTTAATGGGGAGGT

GGCCTAGGGCTGCTCACATATTCTGGAGGAGCCTCCCCTCCTCATGCCTTCTTGCCTCTT

GTCTCTTAGATTTGGTCGTATTGGGCGCCTGGTCACCAGGGCTGCTTTTAACTCTGGTA

AAGTGGATATTGTTGCCATCAATGACCCCTTCATTGACCTCAACTACATGGTGAGTGCTA

CATGGTGAGCCCCAAAGCTGGTGTGGGAGGAGCCACCTGGCTGATGGGCAGCCCCTTC

ATACCCTCACGTATTCCCCCAGGTTTACATGTTCCAATATGATTCCACCCATGGCAAATT

CCATGGCACCGTCAAGGCTGAGAACGGGAAGCTTGTCATCAATGGAAATCCCATCACCA

TCTTCCAGGAGTGA 

Figure 5.3.16. Design of PCR primers for HiC ligation quality control. 

Primers locations (green text) were designed targeting the forward strand at 

sites upstream of two potential HindIII digestion (red text) sites located close 

to one another near the GAPDH gene. As both primers target the forward 

strand, no PCR product should result from these primers using human 

genomic DNA. Human genomic DNA correctly manipulated by HiC 

potentially results in ligation of the two HindIII target sites, allowing PCR 

reaction to proceed.  

 

The success of fill-in and biotinylation of ligation junctions was assessed by 

digestion of the PCR products, which should respond to NheI and not HindIII 
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when the HindIII sticky ends were filled in and ligated (Figure 5.3.17). 50-60% of 

PCR products were digested with NheI, as achieved in the HiC method paper (70), 

indicating that the libraries should be of sufficient quality for sequencing. 

 

 

Figure 5.3.17 Digestion of HiC library PCR products. PCR products spanning 

two potential HindIII cut sites (Figure 5.3.16) were amplified from HiC 

libraries as described in Materials and Methods 2.7.6.4. PCR products were 

digested using HindIII (H), NheI (N) or both enzymes (++). Directly 

comparing the mean intensity of the uncut to cut portion of bands, NheI 

digestion resulted in 50-60% cutting in all products, as in the HiC method 

paper (71). All PCR products in this assay were shortened by 48 bp after 

nuclease treatment, rather than cleaved in two as in the original method. 

These calculations of cut percentages are therefore likely to be slight 

underestimates as 11% of the nucleotides from the cut band are not 

contributing to its fluorescence.  

 

24 h 144 h 

Control Differentiated Control Differentiated 

HindIII NheI HindIII NheI HindIII NheI HindIII NheI 

Uncut (%) 55.2 45.3 57.3 47.1 65.7 37.1 60.1 40.8 

Cut (%) 44.8 54.7 42.7 52.9 34.3 62.9 39.9 59.2 

 

Libraries were exonuclease treated to remove biotin from unligated HindIII cuts 

sites using T4 DNA polymerase, preventing them from being captured in 

downstream affinity purification. Libraries were subsequently sonicated to 100 - 

300 bp on a Covaris S2 (Covaris) instrument, and size checked by gel 

electrophoresis (Figure 5.3.18).  
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Figure 5.3.18. Sonication of HiC Libraries. Y1192 HiC libraries were 

fragmented to 100-300 bp using a Covaris S2 instrument. DNA was separated 

by gel electrophoresis. Most visible fluorescence from DNA was observed 

with mobilities within the range of those of the 50 bp and 350 bp markers, 

indicating successful fragmentation.  

 

After determining the size of libraries, DNA <100 bp and >300 bp was removed by 

XP bead size-selection (Materials and Methods 2.7.6.7). The size of the purified 

libraries was determined to be centred at 200 bp on the Bioanalyzer (Figure 

5.3.19).  

 

 

Figure 5.3.19. Bioanalyzer analysis of fragmented HiC library. Size 

distribution of libraries after sonication and XP bead purification. All 

libraries had size profiles centred at around 200 bp as expected. FU (y-axis) 

= fluorescence units. 
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Libraries were end-repaired and A-tailed to fix DNA ends broken by sonication 

and allow adapters for sequencing to be ligated. Next, streptavidin purification 

was performed to isolate DNA containing target ligation junctions that are labelled 

with biotin-C. Purified DNA was ligated to sequencing primers and an aliquot 

amplified for 12 or 18 cycles using a thermal cycler (Materials and Methods 

2.7.6.10). Over-amplification of libraries results in PCR artefacts which cause 

biases in analysis of DNA libraries. To avoid generating these and maintain 

enough amplification to obtain sufficient material to sequence, amplification was 

tested for 12 and 18 cycles on 144 h control and differentiated libraries. When 

separated on a Bioanalyzer, 12 cycles of amplification showed the same library 

peak shape as before streptavidin purification, whereas 18 cycles showed the 

generation of high molecular weight material (Figure 5.3.20).  

 

Figure 5.3.20. Bioanalyzer plot of streptavidin purified HiC libraries 

amplified for 12 and 18 cycles. Ideal peaks around (314 bp) were observed for 

samples after 12 cycles. Peak observed at 125 bp was dimers of sequencing 

adapters. FU (y-axis) = fluorescence units. 

 

As a quality control to test if the NheI sequence from ligated sequences was 

present in amplified libraries, samples subjected to 12 rounds of amplification 

were incubated with NheI enzyme. Both libraries showed disruption of peak 

shape, with the production of smaller length products indicative of cleavage of the 

libraries (Figure 5.3.21).  
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Figure 5.3.21. Digestion of amplified HiC libraries. Biotinylated sequences at 

ligation junctions in HiC libraries should contain NheI recognition sites. 

Digestion of aliquots of amplified libraries was used by Belton et al (70) as a 

measure of library quality. After incubation with NheI, both libraries showed 

reduction in peak height relative to the sequencing adapter dimer, and 

significant production of smaller length products as compared to those seen 

in 1.2.17). FU (y-axis) = fluorescence units. 

 

After demonstrating digestion of two of the amplifications, fresh aliquots of all 

four HiC libraries were amplified for 12 cycles, and sequencing adapters removed 

by cleanup with XP beads before checking size-distribution on the Bioanalyzer 

(Figure 5.3.22). All libraries had expected peak shape, with no high molecular 

weight artefacts. Libraries were then submitted to the sequencing workflow.  

 

 

Figure 5.3.22. Amplified HiC libraries for cell line Y1192. Libraries all 

showed expected peak shapes and low abundance of high molecular weight 

DNA and sequencing adapters, thus passing quality control criteria to 

continue with sequencing. Libraries amplified for 12 cycles using 1.5 μL of 20 

μL template DNA, and then the low molecular weight DNA was removed 

using an XP bead clean-up.  FU (y-axis) = fluorescence units. 
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5.3.10 HiC Sequencing 

HiC libraries were submitted for sequencing and resulting sequences mapped to 

the genome, and displayed as dot-plots (Figure 5.3.23). Plots bore sufficient 

qualitative resemblance to other HiC maps to be confident that further processing 

would be fruitful.  

 

Figure 5.3.23. Non-normalised chromosome 1 interaction dot plots for HiC 

dataset from cell line Y1192. Individual dots in the plot represent a sequence 

read which arose from two separate sites. For example, a dot at position 2 on 

the x-axis and 10 on the y-axis is from a sequence which was a ligation event 

between two interacting DNA strands at 2 x 108 and 10 x 108. X-axis and Y-

axis are positions on the chromosome plotted in 50 MB (5 x 108 bases) 

increments. The plaid pattern is reminiscent of patterns seen in other HiC 

publications, and looks similar in each of the samples apart from the 

difference in intensity at some sites which is brought about in this 

representation because of a lack of normalisation of the differences in 

overall read numbers.  
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5.3.11 RNA-seq Results  

RNA isolated from three NHU cells lines under differentiation or control 

conditions at 24 h or 144 h was subjected to massively parallel sequencing and 

sequences mapped to the Ensembl GRCh37 and UCSC hg19 annotations of the 

human genome using tophat2 (Materials and Methods 2.7.9.1).  It was the 

intention of this experiment to use RNA from different donors to assess which 

transcripts were consistently altered during urothelial differentiation. 

In order to normalise for overall transcript abundance and allow for comparisons 

of numbers of sequences arising from particular genes, the “per-condition” DE-

seq method (223) was used to generate Benjamini-Hochberg adjusted p-values (p-

adj)  for differentially expressed ensembl (www.ensembl.org) transcripts between 

libraries from all three NHU donors at 24 and 144 h of control or differentiation 

treatment.  

Using this approach, 1038 and 888 ensemble transcripts (ENST) were identified 

as being consistently differentially expressed ≥2-fold with adjusted p-values of 

p≤0.05 across donors between differentiation-induced and control cells at 24 h 

and 144 h respectively (Supplementary Materials 3.1.1.1).  

577 transcripts were upregulated and 461 downregulated in differentiation-

induced cells relative to controls at 24 h. 572 transcripts were upregulated and 315 

downregulated in differentiation-induced cells relative to control at 144 h.   

Transcripts upregulated ≥2-fold at 24 h with p-adj ≤0.05 included the previously 

identified urothelial differentiation markers, KRT13 (49), claudin 4 (2)and IRF1 

(34) (Figure 5.3.21). Transcripts from UPK2, the terminal differentiation marker 

of human urothelial cells (25, 230), was detected as upregulated ≥2-fold with p-

adj ≤0.05 at 144 h, as again were KRT13 and claudin 4. MAPK1 expression, which 

is not known to be affected by induction of differentiation, showed no significant 

alteration in mean expression levels throughout the experiment. 

KRT14, which is downregulated upon differentiation, was reduced in abundance 

≥2 fold at 144 h, but did not attain a p-adj value ≤0.05. Similar to this, expression 

of some PPARγ transcripts was increased as expected at 144 h, although not to a 

statistically significant extent (p-adj ≥0.05). As with previous observations, small 

amounts of PPARG2 transcript (ENST00000287820) were detected in cells after 

144 h, although this time only in differentiated cells.  
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The observation that genes with high expression had consistent fold-changes, but 

have p-adj values ≥0.05 was suspected to be due to the variation between donor 

samples. The raw normalised counts for transcripts in each library were inspected 

(Supplementary Materials 3.1.1.2) and the read counts for specific transcripts 

from genes with known activity in urothelial differentiation were interrogated 

(Figure 5.3.24). The cell line Y1214 had much higher expression of the squamous 

cell marker KRT14 and although all the differentiation markers AQP3, FABP4, 

KRT13, CLDN3, CLDN4 and IRF1 upregulated in the expected manner, the 

number of transcripts from each was much lower than from the other two cell 

lines. This variance affected the p-values due to the increase in the standard 

deviation. Despite such issues with variance, one advantage to pooling data from 

donors is that genes which change expression levels robustly across donors will be 

highlighted, as exemplified by KRT13, UPK2 and CLDN4.  
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Figure 5.3.24. RNA-seq counts transcripts from differentiation-associated 

genes. Genes marked with * or ** have mean 2-fold change between control 

and differentiated extracts at each time-point with p≤0.05 or Bonferroni-

adjusted p-value p≤0.05 respectively, as calculated using the DEseq method 

(223). KRT14 was expected to be downregulated with differentiation, and 

MAPK1 was not expected to change. All other genes were expected to 

upregulate with differentiation. All genes changed in the expected direction 

in all cell lines, but not all were statistically significant (p ≤ 0.05) when 

averaged across the three cell lines. The reason for this appeared to be the 

Y1214 cell line, which had consistently weaker induction of differentiation 

marker genes compared to the other two cell lines. All counts were 

normalised to the total number of reads for each line.  
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Analysis of genes by assessing if groups participate in known pathways, have 

similar functions, or have similar transcription factor binding sites can help to 

extract information about the control and function of groups of genes in large lists. 

To this end, transcription factor binding site enrichment analysis was performed 

on the promoters of genes up and down-regulated at each time-point. Promoter 

analysis of the -950 to +50 region of upregulated genes using the PSCAN tool 

(http://159.149.160.51/pscan/) did not reveal any of the upregulated DNA binding 

proteins to have enriched binding sites around the proximal promoter region of 

upregulated genes. This was consistent with the theory that the genes upregulated 

at early time-points are involved in upregulation of genes at later time points. 

PPARγ:RXR was 13th in the list of transcription factors with binding sites in genes 

upregulated at 24 h, and moved up to 2nd at 144 h (Table 5.3.2). PPARγ:RXRα was 

the only transcription factor motif unique to upregulated genes across both time 

points, consistent with the likelihood that it has a role to play in differentiation. 

The transcription factors SP1, KLF4, INSM1 binding sites were common across all 

lists.  
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PSCAN Promoter Analysis of Genes Changing ≥2-fold 

TF Associated with 

Genes Down at 24 h 

 

TF Associated with 

Genes Up at 24h 

 

TF Associated with 

Genes Down at 144h 

 

TF Associated with 

Genes Up at 144h 

 Gene Name P-value Gene Name P-value Gene Name P-value Gene Name P-value 

SP1 3.67E-16 Klf4  4.25E-08 TFAP2A  5.16E-07 Klf4  0.00051

2 TFAP2A  2.58E-11 SP1 2.48E-07 NFKB1  2.07E-05 PPARG::RXR

A  

0.00104

4 Egr1  6.62E-10 CTCF  1.47E-06 Tcfcp2l1  0.00024

9 

TFAP2A  0.00150

2 Klf4  5.39E-08 TFAP2A  1.86E-05 Klf4  0.00029

2 

SP1 0.002211 

NFKB1  2.85E-07 MZF1_5-13  6.62E-05 GABPA  0.00035

7 

Zfp423  0.00277

3 GABPA  1.11E-06 INSM1  0.000117 PLAG1  0.00038

1 

FEV  0.00438

1 HIF1A::ARN

T  

1.88E-06 Pax5  0.000161 HIF1A::ARN

T  

0.001171 PLAG1  0.00581 

Pax5  6.63E-05 PLAG1  0.000173 Egr1  0.001223 INSM1  0.00687

3 Zfx 6.92E-05 Tcfcp2l1  0.00029

2 

Zfx 0.001953 Tcfcp2l1  0.00735

9 E2F1  0.00028 Zfx 0.000331 E2F1  0.004215 ESR1 0.00789

2 Arnt::Ahr  0.00037

6 

Egr1  0.00050

9 

INSM1  0.00479

2 

RREB1  0.00831

6 MZF1_5-13  0.00064 znf143  0.00060

7 

SP1 0.006011 
  MIZF  0.00069

8 

PPARG::RXR

A  

0.00104

8 

Pax5  0.00627

3 
  INSM1  0.00079

6 

NHLH1  0.001616 NF-kappaB  0.007103 
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      Myc  0.00805 
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       Table 5.3.1. PSCAN promoter analysis of -950 to +50 region of differentially 

regulated genes using JASPAR database motifs. Transcripts upregulated or 

downregulated ≥2-fold with an adjusted p-value of ≤0.05 were submitted, 

and all factors with p≤0.01 are shown. Red highlighted rows show factors 

common between up and downregulated genes at 24 h, and green shows 

common factors between up and downregulated genes at 144 h. 

PPARG:RXRA was uniquely present in upregulated at both 24 h and 144 h. 

NFKB1 and GABPA were uniquely present in promoters of downregulated 

genes at both time points.  
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http://159.149.160.51/pscan/mat_view.php?matrix=MA0147.1&organism=Homo_sapiens&matdb=Jaspar&counter=2&region=-950+%2B50&avg=0.866399&bgavg=0.861501&sstdev=0.0440954&ssize=469&pvalue=0.00805006&tfnum=130
http://159.149.160.51/pscan/mat_view.php?matrix=MA0073.1&organism=Homo_sapiens&matdb=Jaspar&counter=2&region=-950+%2B50&avg=0.823957&bgavg=0.81909&sstdev=0.0422062&ssize=469&pvalue=0.00815168&tfnum=130


 
  

243 
 

Chapter 5 

The Gene Ontology (www.geneontology.org) aims to assign attributes to genes 

and proteins in model organisms, including humans allowing rapid comparison of 

large gene lists for common functions. Genes upregulated or downregulated 

across all three donor lines by ≥2-fold at 24 h and 144 h were split into separate 

lists and submitted to the GSEA tool (http://www.broadinstitute.org/gsea). The 

tool was used to match the gene lists for enrichment of gene function using the 

Gene Ontology “molecular function” tab. 

The top three functions enriched in genes upregulated after 24 h differentiation 

were: 23 genes associated with “oxidoreductase activity” (GO:0016491), 25 genes 

associated with “DNA binding” (GO:0003677) and 5 genes associated with “aldo-

keto reductase activity” (GO:0004033) (full lists for all gene ontology in 

Supplementary Materials 3.1.2.5). Genes associated with oxidoreductase activity 

included cytochrome P450 proteins, which are associated with the oxidative 

metabolism of numerous compounds, including xenobiotics and endogenous 

lipid. The upregulated genes associated with aldo-keto reductase activity are 

involved in lipid processing. Two of these genes process steroid and hormone 

signalling molecules, and are specifically involved in inactivation of progesterone 

(AKR1C1) or conversion of androstenedione to testosterone (AKR1C3). This 

upregulation of lipid metabolic enzymes indicates that PPARγ shares some 

common target genes with those upregulated during adipogenesis. Indeed 

AKR1C3 is known to be part of the prostaglandin processing pathway in 

adipocytes (231). At 24 h the 25 upregulated genes coding DNA binding proteins 

included the proteins with transcription factor activity, including: histone 

deacetylase 1 (HDAC1), transcriptional-regulating factor 1 (TRERF1), hypoxia-

inducible factor 1-alpha (HIF1A),  transcription elongation factor SPT4 

(SUPT4H1), TAR DNA-binding protein 43 (TARDBP), signal transducer and 

activator of transcription 1-alpha/beta (STAT1), FOS-like antigen 2 (FOSL2),  

trans-acting T-cell-specific transcription factor GATA-3 (GATA3), nuclear factor 

erythroid 2-related factor 2 (NFE2L2), putative homeodomain transcription factor 

1 (PHTF1), tripartite motif-containing protein 29 (TRIM29) and TSC22 domain 

family protein 3 (TSC22D3). None of which has any previously described role in 

differentiation of human urothelial cells, although FOSL2 is necessary for 

adipogenesis (232). 

In genes upregulated at 144 h, the three most enriched molecular functions were: 

“actin binding” (GO:0003779), “hydrolase activity acting on ester bonds (GO: 
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0016788)”, and “cytoskeletal binding” (GO:0008092). This enrichment for 

cytoskeletal proteins suggests that at 144h, the genes associated with the 

structural changes dominate the differences between the differentiated and 

control cells.  

When subjecting the same lists to “canonical pathway” analysis in GSEA, which 

searches for members of known pathways in gene lists, 37 and 32 genes at 24 h 

and 144 h respectively were involved in immune system function.  A sub-set of 

immune-related genes were associated with interferon signalling and / or antigen 

processing and presentation. This could represent the establishment of the 

urothelial programme for innate immune signalling, a pathway which could be 

influenced by the transcription factor IRF1 which has previously been identified as 

being associated with urothelial differentiation (34).   

Genes upregulated at both early and late time-points in differentiation may be key 

to maintenance of cell identity. Analysis of transcripts which were upregulated at 

both time-points across all three donors using the DEseq results revealed 50 

transcripts common to both comparisons (Table 5.3.2). Some of these were from 

known differentiation-associated genes such as KRT13, AQP3, IRF1 and CLDN4. 

The remaining genes contained several transcription factors such as ETS-related 

transcription factor (ELF3), retinoic acid receptor responder protein 1 

(RARRES1), T-box transcription factor TBX3 (TBX3), and protein L-Myc-1 

(MYCL1). GO analysis of the transcripts using GSEA revealed that centrobin 

(CNTROB), 15-hydroxyprostaglandin dehydrogenase [NAD(+)] (HPGD), tumour 

protein D52-like 1 (TPD52L1), promyelocytic leukemia (PML), and TBX3 are all 

associated with cell cycle control, likely for maintenance of quiescence after 

differentiation.   
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Gene Transcript 

Ctrl 

Count

s 

Diff 

Count

s 

Fold  

Ctrl 

Count

s 

Diff 

Count

s 

Fold  

KRT13  ENST00000246635  713.75 7368.

79 

10.32 1127.1

4 

10629

.38 

9.43 
AQP3 ENST00000297991  1183.6

1 

6805.

32 

5.75 3003.

08 

9073.

41 

3.02 
ELF3  ENST00000367283  236.2

7 

3830.

22 

16.21 944.9

0 

5252.

58 

5.56 
TBX3  ENST00000349155  1238.

20 

3407.1

8 

2.75 1701.1

6 

4334.

80 

2.55 
IGFBP3  ENST00000275521  110.95 1747.6

3 

15.75 808.2

2 

4880.

22 

6.04 
CLDN4  ENST00000340958  545.8

7 

1754.7

8 

3.21 1040.

40 

4099.

60 

3.94 
MYCL  ENST00000397332  281.3

4 

1855.5

0 

6.60 679.4

0 

2435.

74 

3.59 
SPTSSB ENST00000359175  40.47 296.4

4 

7.32 163.39 2358.

26 

14.43 
ACER2  ENST00000340967  178.11 557.0

4 

3.13 226.8

2 

1972.3

8 

8.70 
PPP1R12B  ENST00000391959  146.61 971.15 6.62 291.15 1439.

67 

4.94 
PSMB10  ENST00000358514  275.9

6 

1039.

04 

3.77 317.33 1250.

92 

3.94 
TBX3  ENST00000257566  434.9

3 

1164.6

1 

2.68 327.8

4 

854.3

3 

2.61 
HPGD  ENST00000422112  16.18 114.11 7.05 55.49 1853.

60 

33.41 
TMPRSS2  ENST00000332149  43.29 294.3

9 

6.80 74.17 1661.4

5 

22.40 
RARRES1  ENST00000237696  24.44 194.6

8 

7.96 88.36 1691.9

4 

19.15 
HMGCS2  ENST00000544913  11.62 119.80 10.31 94.92 1481.0

6 

15.60 
FAM174B ENST00000327355  60.52 402.2

8 

6.65 125.6

8 

1110.3

7 

8.83 
ACSL5  ENST00000354273  124.9

0 

362.0

8 

2.90 129.2

9 

1146.9

2 

8.87 
ACSL5  ENST00000356116  124.9

0 

362.0

8 

2.90 129.2

9 

1146.9

2 

8.87 
TMEM184

A  

ENST00000449955  84.98 348.4

1 

4.10 320.0

9 

1144.2

6 

3.57 
HID1  ENST00000425042  60.31 412.0

3 

6.83 94.69 870.8

4 

9.20 
PTGR1  ENST00000238248  190.9

5 

584.0

4 

3.06 138.35 683.2

0 

4.94 
KRT13  ENST00000468313  39.49 491.6

9 

12.45 106.73 749.18 7.02 
BCAS1  ENST00000395961  8.28 115.96 14.01 38.83 1034.

80 

26.65 
PLEKHA7  ENST00000448080  78.33 380.2

9 

4.85 198.9

4 

735.79 3.70 
GPR160  ENST00000355897  23.90 93.31 3.90 43.19 738.7

0 

17.11 
CCDC64B  ENST00000572240  42.62 180.6

6 

4.24 169.8

4 

615.39 3.62 
PRSS27  ENST00000302641  27.11 115.92 4.28 153.17 659.4

7 

4.31 
PSCA  ENST00000513264  14.98 86.04 5.74 62.34 674.2

6 

10.82 
KRT13  ENST00000464634  14.82 215.44 14.54 42.91 313.47 7.31 
MUC20  ENST00000320736  13.82 161.04 11.65 63.18 326.7

2 

5.17 
RNF213  ENST00000560083  25.52 302.1

6 

11.84 0.00 147.76 Inf 
PSCA  ENST00000505305  7.07 73.15 10.34 30.10 371.44 12.34 
IRF1  ENST00000472045  29.56 228.3

0 

7.72 36.06 160.3

8 

4.45 
CYP4F12  ENST00000550627  5.56 55.66 10.01 60.25 331.3

0 

5.50 
APOL3  ENST00000397293  0.00 119.72 Inf 0.00 206.2

3 

Inf 
RASSF2 ENST00000379400  0.00 28.01 Inf 0.00 255.0

4 

Inf 
COQ2  ENST00000311469  0.38 70.32 184.5

3 

0.00 153.4

8 

Inf 
PML ENST00000268059  0.37 70.32 189.3

4 

0.55 123.41 225.0

1 
NBEAL2  ENST00000292309  0.00 86.45 Inf 0.00 62.65 Inf 
TMCO4  ENST00000375122  0.00 43.98 Inf 0.19 103.6

0 

532.7

2 
ENPP4  ENST00000321037  0.00 42.87 Inf 0.00 84.66 Inf 
HPGD  ENST00000506910  0.00 27.61 Inf 2.73 90.51 33.12 
NFKBIB  ENST00000509705  0.00 88.87 Inf 0.00 27.35 Inf 
PBXIP1  ENST00000368465  0.00 25.64 Inf 0.00 76.81 Inf 
MUC1  ENST00000368395  0.00 40.95 Inf 0.29 58.38 199.19 
ADAM15  ENST00000526491  0.00 75.82 Inf 0.00 14.66 Inf 
CNTROB  ENST00000380255  0.00 49.28 Inf 0.00 29.45 Inf 
TPD52L1  ENST00000392482  0.00 50.22 Inf 0.00 24.69 Inf 
FAM193B  ENST00000506955  0.00 33.50 Inf 0.00 40.34 Inf 

Table 5.3.2. Transcripts upregulated in differentiated samples at both 24 and 

144 h as calculated using the DEseq method. Transcripts ranked by average 

combined expression in differentiation-induced samples. Some genes are 

represented by multiple transcripts.  
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5.4  Discussion 

5.4.1 RNA-seq 

NHU donor cell lines showed upregulation of the differentiation markers FOXA1 

and claudin 5 at the protein level, and RNA-seq results confirmed the 

upregulation of known differentiation-associated genes. One cell line (Y1214) 

responded with less robust upregulation of differentiation marker genes relative to 

the other two cell lines, and maintained some expression of undifferentiated 

makers such as KRT14. Although the transcripts from these urothelial 

differentiation marker genes all changed expression as expected, this variation 

within the donors affected the significance of p-values for some genes. Of the 

transcripts from differentiation-associated genes discussed in the chapter above, 

those which did not fall below p(adj)≤0.05, such as CLDN3, often had low 

transcript count numbers, which is known to affect the power of statistical 

analysis of sequencing data due to high variability of reproducibility in sampling 

of low abundance transcripts, which occurs even within technical replicates(223).   

This biological variation within groups with lower numbers of replicates is known 

to cause statistical tests such as the Poisson distribution to make false rejections of 

differential expression. DEseq extends the efforts of previous methods such as 

edgeR, which were specifically designed to circumvent the problems of calculating 

differential expression between biological replicates which have high natural 

variation and often have smaller numbers of replicates, thus preventing true mean 

and variance from being calculated.  However, the authors of DEseq did note that 

transcripts with low counts will require very high fold changes to be considered 

significant. Thus, although one donor line caused some issues DEseq was 

successful at calling differential expression (p<0.05) in the genes analysed in all 

but the most extreme cases where expression was low (<100 counts) or fold-

change for one sample was significantly lower. The adjustment of the p-values by 

the Benjamini-Hochberg (233)  method to reduce the false discovery rate (FDR) 

did however remove some of the known differentiation genes which attained a 

p≤0.05 and had an appreciable fold-change , including FOXA1 and PPARγ .  

One drawback from assigning RNA-seq data to individual transcripts is that there 

may be multiple transcripts for genes, and all of them may not change their 

expression levels. If only one of the transcripts changes significantly, then it may 

be the case that the gene is being transcribed from a different promoter or that a 
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new transcript or splice variant is being expressed.  It may also be that the 

transcript which alters is much less abundant than the other transcripts, thus 

highlighting a change which may have little overall effect on the relative levels of 

the gene. In this case the analysis may benefit from the data being re-mapped so 

that all reads are assigned to a single gene rather than individual transcripts. 

Having individual values for each gene would provide a clearer picture of genes 

which change their overall expression, and alternative differential expression 

approaches such as CuffLinks (234) could be used in parallel to ascertain which 

genes change their promoter usage or change their isoform expression pattern.  

The presence of lipid and hormone processing pathways in the analysis presented 

here suggests that urothelial cells either actively produce or metabolise hormones. 

AKR1C1 inactivates progesterone, which is present in the urine in both males and 

females. As progesterone is a known mitotic stimulant (235), urothelial cells in 

vivo which encounter progesterone in the urine may need to counter this stimulus 

to maintain quiescence.  

The association of innate immune-system genes with induction of differentiation 

in the RNA-seq likely reflects the role the differentiated urothelium has in 

repelling infections, as do other epithelia. The innate immune response at 

epithelial surfaces is mediated by secreted immunoglobulin A (IgA). Human 

bladder urothelium has been reported to have expression of secretory IgA at the 

luminal surface (236), and IgA is detectable in the urine of healthy donors (237). 

IgA is transported across the epithelia by the polymeric immunoglobulin receptor 

(PIGR), which was not associated with the gene ontology analysis but had 

significantly upregulated transcripts in urothelium differentiated at 144 h. PIGR 

contributes to mucosal epithelial innate immunity by transporting 

immunoglobulins produced in the lamina propria across the cell layers for 

secretion into the lumen (238). PIGR expression has been reported in human 

urothelium, but only at the superficial surface(239). If PIGR functions in 

urothelium as it does in other epithelia, it might be expected to be present in all 

the cell layers. As this is not the case in normal quiescent tissue, the route of IgA 

transport is unclear. 

Of the transcription factor genes upregulated at 24 h, GATA3, STAT1, HIF1A and 

NFE2L2 have sequence-specific binding motifs in the database used by PSCAN to 

assess for enrichment of potential transcription factor binding sites in the 
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promoters of chosen genes. Only HIF1A, as part of the DNA-binding dimer 

HIF1A:ARNT, had enriched binding sites present in promoters of differentially 

regulated genes. HIF1A:ARNT binding sites were enriched in both up and 

downregulated genes at 24 h, and downregulated genes at 144 h, suggesting that if 

HIF1A has a role to play it may be inhibitory to some cellular processes.  

The PSCAN promoter analysis tool has a maximum target range of 1000 bp 

upstream from designated transcription start sites, and also only returns 

significance values based on the enrichment over the entire list. Whilst this is 

useful for overall enrichment, it can overlook more subtle aspects of gene 

regulation such as if small subsets of genes within the list have promoter regions 

enriched for specific factors not present in others.  Transcription factor analysis 

tools such as the promoter analysis and interaction network (PAINT) (240) can 

scan up to 5000 bp and assign the most enriched binding within sub-sets of 

scanned regions, excluding genes for which no enrichment of known factors is 

seen. Using PAINT to analyse the 2000 bp region upstream of genes upregulated 

at 24 and 144 h returned a smaller subset of factors enriched in a sub-set of genes 

with enriched factors which bore little resemblance to the factors highlighted by 

PSCAN (Supplementary Materials 3.1.2.1 and 3.1.2.2). Rather than PPARγ:RXRα 

being common to genes upregulated at both time points, ETS1 and ELK1 were 

common factors present only in a sub-set of genes. The user-directed nature of 

analysing transcription factor binding site enrichment and the differences 

between such algorithms make the data obtained from this type of analysis 

variable, and is one reason why the data on actual binding occurrences obtained 

from approaches such as FAIRE-seq are favoured.  

 

5.4.2 ChIP-Seq, FAIRE and HiC 

Histone modifications subjected to ChIP showed the expected pattern at 

promoters of expressed and non-expressed genes. Results were not fully processed 

at the time of writing, but initial mapping of peaks showed there was similarity 

between the peaks from each target histone modification. This provides evidence 

that the samples are internally consistent, and that the DNA captured by ChIP to 

each histone modification was different to the other. Clustering analysis of peaks 

was complete at the time of writing for one sample (24 h control cells). The peaks 

in the H3K4me3 sequencing clustered around promoters of highly expressed 
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genes, and peaks for H3K27me3 clustered around non-expressed and low-level 

expression genes (Appendix Figure 7.2.2.1).This sequencing approach should 

therefore yield novel insights into the distribution of the two histone marks in in 

vitro differentiating NHU cells.  

FAIRE samples also showed internal consistency in the sequences present in the 

DNA. This consistency was expected as FAIRE peaks have been found to be 

similar between cells and tissues. Within cell types FAIRE peaks which change are 

generally observed around genes which change expression. Such peaks were 

observed in the UCSC density tracks of FAIRE data from NHU cells.  

The preliminary results from the HiC sequencing data have produced some 

chromosome dot plots which look remarkably similar to each other, as do those in 

previous publications (71, 241). This is indicative that the samples will yield good 

quality data. At the time of writing data analysis was ongoing.  
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5.5 Conclusions and Future Work 

At the time of writing, work on data processing all aspects of these sequencing 

projects was ongoing. Results thus far are encouraging that the data will be of 

good quality and provide a rich resource to further the understanding of the 

biology of urothelial differentiation.  

The RNA-seq data was the most complete of these datasets at the time of writing, 

and one analysis was performed which highlighted known differentiation-

associated genes, and revealed genes from other aspects of urothelial cell biology 

that are intertwined with the development of differentiation. Understanding if 

each of these parts of the differentiated urothelial phenotype (lipid processing, 

innate immune system, cytoskeletal components) is under the influence of the 

same or different transcription factor networks will aid understanding of the 

differentiated urothelial phenotype. It is possible to perform such transcription 

factor network analyses using predictions of transcription factor binding sites, but 

it is much more beneficial to have additional information about actual protein-

DNA binding events which occur around upregulated genes, such as will be 

provided by the FAIRE data once data processing is completed.   

Single time-point ChIP-seq maps have been made of histone modifications in 

primary cultured human urothelial cells(219), but the cells were undifferentiated. 

If the results from the ChIP-seq performed are of good quality after final 

processing, then these would be the first the first histone maps to identify active 

and repressive chromatin marks unique to differentiated urothelial cells. The use 

of H3K4me3 and H3K27me3 as ChIP targets will allow genes which are repressed, 

expressed and rare genes which are poised for expression (promoters contain both 

marks) to be elucidated (242). 

The expanding number of publications in the fields related of chromosome 

organisation has revealed that there is a similar organisation to the human 

genome across multiple human cell types at the 0.1-1 MB scale. Regions of co-

regulated genomic features are arranged in topologically-associated domains 

(TAD), which are separated by insulating genomic and protein factors that contain 

the spread of histone and DNA-associated modifications (243). This allows 

regions of the genome to be co-regulated by a change in factors which bind the 

local chromatin environment, but for this regulation to be contained within the 

target region. Although the majority of the architecture will be similar across all 
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the time-points tested, other groups have identified specific regions associated 

with a change in cell phenotype (207, 209).  

No other publications could be found in the literature where HiC and FAIRE 

datasets had been combined. This dataset therefore has the potential to provide 

novel insight into the relationship between chromatin composition and 

architecture. 

Many possibilities exist for analysis and validation of this dataset, but some 

pertinent experiments which could be done are: 

 FAIRE data can be used to build up a genome-wide picture of motifs with 

bound protein using the approach of Giannopoulo et al (199) 

 This chromatin composition identified by FAIRE can be correlated with 

ChIP-seq maps and RNA-seq to determine which chromatin complexes are 

targeting which genes by assessing which complexes affect the 

transcriptional status of the surrounding genes within the transcriptional 

domains identified by HiC.  

 Any motifs which are found in FAIRE data which correspond to unknown 

factors could be further investigated by targeting the motif for 

immunoprecipitation with biotinylated bait DNA. The captured DNA-

protein complexes could be subjected to proteomic analysis, and the likely 

binding protein(s) elucidated by comparing protein identifications to those 

from parallel non-related immunoprecipitations (232).  

 Chromatin-binding sites in the FAIRE data could be validated by ChIP-PCR 

to one or more factors, such as PPARγ.  

 Genes marked with the “poised for transcription” histone marks (both 

H3K4me3 and H3K27me3) which are not actively transcribed in 

differentiated cells could be those which are important in reversing the 

differentiated phenotype. Expression of these genes and / or their protein 

products could be tested under a situation where differentiated cells are 

stimulated to divide, such as wound-healing. 
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 Thesis Overview and Conclusions 6

PPARγ expression was very complex in NHU cells, but overall localisation of was 

relatively unaffected by differentiation. Several PPARγ isoforms were extraction 

resistant in NHU cells independent of the induction of differentiation, and in the 

presence of ERK1/2 signalling at early time points (6 h) as evidenced in this study 

by western blot.  

The isoform which was nuclear under these conditions was not the 50 kDa PPARγ 

isoform investigated previously by Varley et al (26), but a larger 58 kDa isoform 

which has been detected in other studies of NHU cells (122) but not investigated 

as it was not recognised as the 58 kDa isoform.  

PPARγ2 siRNA did not reduce abundance of PPARγ isoforms, but was more 

effective than PPARγ1/2 siRNA at preventing the upregulation of PPARγ isoforms, 

CK13 and CLDN4. As the PPARγ2 siRNA was more efficient, and PPARγ2 mRNA 

was much lower in abundance as compared to PPARγ1 mRNA as detected by both 

PCR and RNA-seq, this could indicate that whichever isoform is PPARγ2 is only 

transcriptionally active between the time when it is translated and when it is 

sequestered or broken down. 

The PPARγ at 58 kDa was reactive with an anti-PPARγ2 antibody and was 

constitutively present in NHU cells, but its near total sequestration in the 

extraction-resistant fraction indicates that its transcriptional potential is tightly 

controlled. This resistance to extraction suggests that PPARγ isoforms may be 

permanently associated with the nucleoskeleton due to either endogenous ligands 

initiating binding to the DNA but not initiating transcription, or via association 

with proteins such as SAFB1 which were detected in by mass spectrometry in 

NHU extracts.  

As NHU cells must form a heterogeneous population of cells when they re-

differentiate, it may be necessary for some to actively inhibit the differentiation 

process to maintain their basal or intermediate identity. This heterogeneity, as 

observed by uneven AQP3 distribution in fully differentiated cultures may 

underlie the complexities of PPARγ isoform expression, with some cells 

possessing the full-length isoforms and others having smaller isoforms.  
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Such complex splicing is controlled at the post-translational level by the splicing 

machinery and heterogeneous ribonucleoproteins. Ribonucleoproteins and 

SMARC family proteins were as identified as differentially regulated between in 

control and differentiating NHU cells in both transcriptomics and mass 

spectrometric data. Further investigation of a selection of those observed to be 

changing such as SMARCC2, SMARCB1, SMARCE1, SMARCA2, HNRNPK, 

HNRNPAB, HNRNPC and DDX5 would be required to reveal of these 

mechanisms have a pivotal role to play in urothelial differentiation.  If any of these 

proteins could be identified by mass spectrometry as preferentially co-

precipitating with PPARγ from nuclear co-IP extracts of differentiated or control 

cells, then they may warrant further investigation as potential co-activators or 

repressors.  

Mass spectrometric datasets identified a rich sub-nuclear proteome. Laminins, 

lamins and fibronectins dominated DNase extracts in NHU cells, and were more 

abundant in extracts from non-differentiated cells than differentiated ones. The 

laminins are well known to influence cell identity. As they are more prone to 

extraction after nucleases, this suggests that their structure is intertwined with 

that of the DNA. In this way they may be serving to maintain urothelial cells in a 

non-differentiated phenotype. Suppression of expression of one or more of the 

subunits of laminin 5 would be able to answer this question.   

Post-translational modification of PPARγ is a well known to be involved in 

transrepression of inflammation-associated immune system genes whose 

expression is promoted by NF-κB (119, 128-132). As many genes associated with 

the innate immune system were observed to have increased expression in 

differentiating NHU cells, if patients with interstitial cystitis have altered levels of 

this potentially modified PPARγ, they may be less able to recover from 

inflammation. This potentially modified version of PPARγ has been observed to be 

absent in a range of tumour cell lines (Appendix Figure 1.2.2). In addition, NF-κB 

sequence-specific motifs were found to be enriched in the promoters of some 

genes with altered expression levels in differentiated NHU cells.   

The next-generation sequencing datasets created in this study hold the potential 

to answer many potential questions. Use of single values for genes will more 

clearly reveal the genes that change their overall abundance of transcript, rather 

than just single transcripts. Combining approaches such as CuffDiff to isolate 
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differential splice variants of genes with FAIRE data could help to precisely 

identify the chromatin-binding factors which influence single genes, providing 

that the binding motif of the protein is known, or can be identified captured using 

affinity bait DNA.  

Building up a genome-wide picture of the binding motifs present in the FAIRE 

holds great promise for isolating regulatory elements unique to differentiating 

urothelial cells. The single region which was investigated to UPK2 yielded peaks 

unique to differentiated cells enriched in SNAI1, which is known to influence gene 

expression in several other differentiation systems (176, 244). 

Both the proteomic and genomic datasets in this thesis contain computational 

inferences of the presence and differential abundance of proteins and genes. These 

data were used to generate statistical estimates about differences in the expression 

of RNA, or protein abundance in sub-cellular fractions, in control and 

differentiation-induced urothelium. Since the observations are based on statistical 

methods, they are subject to false-positive and false-negative errors inherent to 

such calculations. As such, the observations are in need of further validation in the 

context of both the estimated abundance of proteins and genes, as well as in 

relation to any potential biological role in urothelial differentiation of 

differentially abundant candidates.  

The proteomic identifications in this study are based on the analysis of MS/MS 

data generated from samples taken from a single donor line, and as such can only 

be considered discovery-stage data. To validate observations in the study, 

replicate extracts could be prepared and candidate differentially present proteins 

could be quantitated using measured peptide intensity after selected reaction 

monitoring of proteotypic peptides, with the aim of increasing the number of 

peptides in the target proteins with quantitation. A sub-set of the identified 

proteins could then optionally be further validated by western blot if suitable 

antibodies are available. Relative quantitation of any candidate differentially 

present proteins using either of the aforementioned approaches should be 

normalised to core histone variants, which should be present in similar amounts 

in all extracts.  

To ascertain whether these proteins confirmed as having differential abundance 

between the chosen extracts are reproducibly differentially present across donor 

lines will require repetition of the experiments. Replicate numbers required for 
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any study depend on the variation inherent in the biological and technical systems 

being interrogated. Previous studies using 2D gel-based studies aiming to identify 

required numbers of replicates needed to demonstrate differential expression 

across donors have shown that based on the observed biological variation in 

measured intensity, in order to achieve 80% statistical power at a two-fold change 

in protein abundance required a minimum of 7 replicates, increasing to 10 

replicates to show a 1.5-fold change (15). Modelling of the effects of total combined 

biological and variation on the number of replicates needed to demonstrate a 

chosen effect size for a particular protein have shown that combined variation 

needs to be as low as 20% to allow four biological replicates to achieve a power of  

80% and a p-value ≤0.05 for2-fold changes in relative protein abundance (29). In 

order to make a power calculation to estimate the number of replicate donors 

needed to obtain enough measurements to control the false discovery rate of 

differential abundance, the variation between intensity measurements in technical 

replicates in the current study could be used as a guide as to the extent of technical 

likely variation, but in order to accurately estimate biological variation further 

pilot studies using new donor samples are needed (11). 

At the time of writing, the RNA-seq data represents the most complete genomics 

dataset produced in this study. The statistical assessment of the RNA-seq showed 

that many transcripts from known differentiation-associated genes were robustly 

differentially regulated across the donor lines. Further validation of a selection the 

known differentially-expressed genes in the RNA-seq using quantitative PCR on 

cDNA libraries produced from the same RNA samples used for sequencing would 

validate the statistical assessment of the RNA-seq, and justify further validation of 

potentially novel differentiation-associated transcripts.  

RNA-seq data can be used to infer modulation of signalling pathway activity via 

expression or repression of key members of the pathways themselves, or their 

known targets. This can be performed using software such as Ingenuity 

(http://www.ingenuity.com), or through gene ontology analysis tools such as 

GSEA by searching for members of canonical pathways in the Kyoto encyclopaedia 

of genes and genomes (KEGG). Alternately, known interactions between 

differentially regulated genes could be sought through database searching engines 

such as STRING (http://string-db.org). If any interaction networks or canonical 

pathways are found which are potentially associated with the development of the 

differentiated phenotype, then the role of these candidate pathways in 



 
  

256 
 

Chapter 6 

differentiation could be elucidated by targeting important proteins within the 

networks with pharmacological modulation, or by upregulating their expression 

using viral transfection, or downregulating its expression with siRNA or shRNA.  
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 Appendix 7

7.1  PPARγ in Differentiation of Human Urothelium in vitro 

7.1.1 PPARγ in Previous Studies of NHU Cells 

Previous observations of PPARγ in undifferentiated NHU cells, NHU cells induced 

to differentiate for 24 h with TZ and PD, and differentiation-induced 3T3-L1 pre-

adipocytes (Figure 7.1.1.1). 

 



 
  

 
 

 

Figure 7.1.1.1. PPARγ in NHU cells and pre-adipocytes. ‡ = whole cell lysate of undifferentiated NHU cells, * = whole cell lysate of 

NHU cells treated for 24 h with TZ and PD, † = nuclear co-IP extracts of NHU cells treated for 24 h with TZ and PD.  Left blot: 

Georgopoulos et al showed the upregulation of the presumed 52 kDa PPARγ isoform in NHU (HU-neo) cells, a response which was 

absent in immortalised NHU cells (HU-h TERT and HU-E6P). Centre blot: Fleming (122) compared the molecular weights of PPARγ 

present in whole cell lysates (Y874 NHU) of undifferentiated NHU cells with those present in nuclear co-IP extracts and subsequent 

immunoprecipitations from proliferating (P) and differentiating. The largest isoform of PPARγ in NHU cells appears equivalent to 

the PPARγ from 3T3-L1 cells. The smallest isoform of PPARγ in NHU lysates in this blot appears smaller than the PPARγ1 in 3T3-L1 

cells.  Right blot: Fleming (122) also compared PPARγ from whole cell lysates of differentiated NHU cells (SDS) with nuclear extracts 

of NHU (nuclear) and immunoprecipitations from nuclear extracts of NHU and RT112 cells.  The two closely migrating PPARγ 

isoforms resemble the ones observed in nuclear extracts from NHU cells the current study and those observed by Georgopoulos et al 

(left blot). The inconsistent presence of the largest PPARγ isoforms in the two whole cell lysates known to be prepared using SDS 

(centre and right blots above) correlates with the variable solubility of the same band observed in the current study. This suggests 

that the 50 kDa isoform of PPARγ is a distinct isoform not present in 3T3-L1 cells, the 52 kDa isoform is equivalent in molecular 

weight to the PPARγ1 in 3T3-L1 cells, and the largest observed isoform in NHU cells is equivalent to the PPARγ2 in NHU cells.  
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7.1.2 Nuclear co-IP Extractions and Differentiation of NHU Cells 

 

 

Figure 7.1.2.1. Active Motif Nuclear co-IP Extractions cell line Y967. NHU Cell 

line Y967 was treated with 0.1% DMSO vehicle control (-) or induced to 

differentiate with 1 μM troglitazone and 1 μM PD153035 (+) for 24 h before 

subjecting to fractionation using the Active Motif Nuclear Co-IP kit. 20 μg of 

whole cell extracts (WCE) cultured in parallel, 20 μL hypotonic lysis fraction 

(cytoplasmic), 20 μL nuclease-extracted (nuclear) and 20 μL non-solubilised 

(pellet) fractions were separated by western blot and membranes labelled for 

PPARγ. PPARγ distribution was similar for both control and differentiated 

cells.  
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A 

 

 

B 

 

Figure 7.1.2.2 A, B. Induction of Expression of Urothelial Differentiation 

Markers Claudin 5 (A) and Cytokeratin 13 (CK13) (B) in NHU Cell Line Y967.  

Cells were treated with 0.1% DMSO vehicle control (-) or induced to 

differentiate with 1 μM TZ and 1 μM PD (+) for 24, 72 and 144 h. WCE were 

taken and 20 μg separated by western blot and membranes labelled for 

Claudin 5 and then CK13. Both CK13 and Claudin 5 labelling became more 

intense in cells treated with TZ and PD over the time course. 
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Figure 7.1.2.3. Active Motif Nuclear Extractions NHU Cell line Y1077. Cells 

were treated with 0.1% DMSO vehicle control (-) or induced to differentiate 

with 1 μM troglitazone and 1 μM PD153035 (+) for 24 h before subjecting to 

fractionation using the Active Motif Nuclear Co-IP kit. 20 μg of whole cell 

extracts (WCE) cultured in parallel, 20 μL hypotonic lysis fraction 

(cytoplasmic), 20 μL nuclease-extracted (nuclear) and 20 μL non-solubilised 

(pellet) fractions were separated by western blot and membranes labelled for 

PPARγ. PPARγ distribution was similar for both control and differentiated 

cells. 
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A 

 

B 

 

Figure 7.1.2.4 A, B. Induction of differentiation in Y1077. Expression of 

Urothelial Differentiation Markers Claudin 5 (A) and Cytokeratin 13 

(CK13) (B) in NHU Cell Line Y1077.  Cells were treated with 0.1% DMSO 

vehicle control (-) or induced to differentiate with 1 μM TZ and 1 μM PD 

(+) for 24, 72 and 144 h. WCE were taken and 20 μg separated by 

western blot and membranes labelled for Claudin 5 and then CK13. Both 

CK13 and Claudin 5 labelling became more intense in cells treated with 

TZ and PD over the time course. 
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7.1.3 Comparison of Millipore and Pierce IP Systems 

 

 

Figure 7.1.3.1 Immunoblot showing  capture of PPARγ (50 and 52 kDa) 

using two dilutions of antibody and negative controls, with comparison 

of Pierce and Millipore agarose supports in IP from Nuclear co-IP 

chromatin extracts. Comparison of 20 μg chromatin extract loading 

control (load) to eluates from agarose with varying concentrations or 

amounts of (1 μg / 1:50) of reversibly bound (Millipore) or covalently 

conjugated (Pierce) antibodies. Millipore and Pierce agarose gels both 

retain target proteins. Millipore agarose gave low-level signal for PPARγ 

in the IgG and antibody-free controls, suggesting high background levels 

of non-specific retention. 
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Figure 7.1.3.2 Coomassie stained SDS-PAGE gel of eluates from antibody 

and control immunoprecipitations performed with antibodies bound to 

Pierce or Millipore kits. 20 μL (of 75 μL) eluates from Millipore and 

Pierce comparison IP. Pierce columns show much lower retention of 

proteins than the Millipore. The pattern of bands in the lane containing 

eluate from the antibody-free (No Ab) incubation is similar to the 

staining in other lanes, suggesting the majority of bands visible are from 

non-specifically retained proteins. 



 
  

 
 

7.1.4  PPARγ in Sequential Salt CSK Extractions  

 

Figure 7.1.4.1. PPARγ localisation in sequential salt extracts at 24 hours after induction of differentiation. Control (0.1% DMSO, 

left blot) and differentiation-induced (TZ&PD, right blot) cells were sequentially extracted in CSK buffer with 0.1% Triton-X100 

and NaCl concentrations ranging from 0.1 to 2 M. Extraction profiles of PPARγ-reactive bands were not affected by induction of 

differentiation. Red asterisk denotes Beta-actin labelling which was present as a result of cross-contamination of PPARγ 

antibody aliquots for western blots. Cell line Y1152, passage 5. 

 

 



 
  

 
 

 

Figure 7.1.4.2. PPARγ localisation in sequential salt extracts at 72 hours after induction of differentiation. Control (0.1% 

DMSO, left blot) and differentiation-induced (TZ&PD, right blot) cells were sequentially extracted in CSK buffer with 0.1% 

Triton-X100 and NaCl concentrations ranging from 0.1 to 2 M. Extraction profiles of PPARγ-reactive bands were not 

affected by induction of differentiation. Red asterisk denotes Beta-actin labelling which was present as a result of cross-

contamination of PPARγ antibody aliquots for western blots. Cell line Y1152, passage 5. 
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7.1.5 Expression of PPARγ in Bladder Tumour Cell Lines 

 

Figure 7.1.5.1. PPARγ in whole cell lysates (20 μg) of bladder-derived tumour 

cell lines, and proliferative (NHUc) and differentiated (NHUd) NHU cells. 

5637* indicates cell line has been adapted to culture in medium containing 

adult bovine serum (ABS), which instigated an upregulation of 52 kDa 

PPARγ. 58 kDa is absent in all tumour cell lines with the exception of 5637. A 

68 kDa band similar to that seen in immunoprecipitations of NHU cells is 

observed at 68 kDa, with another faint band at 80 kDa visible. T24 cells are 

missing both the 58 kDa and the majority of the 42 kDa isoform. Image 

courtesy Shu Guo, Jack Birch Unit.  
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7.1.6 Densitometry Calculations for siRNA western blots 

 

Figure 7.1.6.1. Densitometry measurements for 52 kDa PPARγ from siRNA 

experiments. Calculations for normalisation in supplementary materials 

 

 

 

Figure 7.1.6.2 Densitometry measurements for 42, 50 and 58 kDa PPARγ 

from siRNA experiments. Calculations for normalisation in supplementary 

materials  

 

 



 
  

269 
 

Chapter 7 - Appendix 

 

Figure 7.1.6.3. Densitometry measurements for CK13, Beta actin and CLDN4 

from siRNA experiments. PPARγ blot from Appendix figures 7.1.6.1./7.1.6.2 

was stripped of antibodies to allow re-labelling with above antibodies and 

labelling of beta actin on the same membrane. Calculations for 

normalisation in supplementary materials.  

 

 

 

 

 

 

 

 

 



 
  

 
 

7.2 Next Generation-Sequencing 

7.2.1 Sequencing Read Numbers 

Numbers of sequenced reads obtained and mapped to the genome from RNA-seq, ChIP-seq and FAIRE libraries. HiC sequence numbers had 

not been communicated by TGAC at the time of writing.  

Library name patient / treatment 

reads/ paired reads library 
read 

length 
insert %mapped 

UCSC hg19 

%mapped 

GRCh37 

ensembl 

LIB2636 Y967_24D  23,841,618 single-end 101 391 94.67% 94.78% 

LIB2637 Y967_24T  19,383,257 single-end 101 390 94.69% 94.81% 

LIB2638_LDI2294 Y967_144D  41,270,129 single-end 51 391 97.96% 98.02% 

LIB2639_LDI2295 Y967_144T  34,000,483 single-end 51 393 97.87% 97.94% 

LIB2640 Y1192_24D  24,614,609 single-end 101 390 94.83% 94.93% 

LIB2641 Y1192_24T  28,390,829 single-end 101 391 80.92% 80.97% 

LIB2655_LDI2298 Y1192_144D  28,039,739 single-end 51 392 97.07% 97.13% 

LIB2656_LDI2299 Y1192_144T  26,050,398 single-end 51 387 97.16% 97.23% 

LIB2657 Y1214_24D  22,602,983 single-end 101 397 93.70% 93.77% 

LIB2658 Y1214_24T  17,623,866 single-end 101 385 93.67% 93.74% 

LIB2659_LDI2302 Y1214_144D  29,675,689 single-end 51 390 97.46% 97.51% 

LIB2660_LDI2303 Y1214_144T  27,423,455 single-end 51 393 97.16% 97.21% 

Table 7.2.1.1. RNA-seq read counts. For patient / treatment 24D = 24 h DMSO, 24T = 24 h TZ&PD, 24D = 144 h DMSO, 24T = 

144 h TZ&PD.  



 
  

 
 

 

FAIRE-seq   

  

%mapped UCSC hg19 

Library Name patient / treatment 
reads/ paired reads library 

read 

length 
insert 

properly 

paired 
after dedup 

LIB2804 Y1192_24D 40,398,642 paired-end 101 248 79.11 61.78 

LIB2805 Y1192_24T 46,801,388 paired-end 101 249 93.23 80.09 

LIB2806 Y1192_144D 45,618,946 paired-end 101 248 85.73 68.91 

LIB2807 Y1192_144T 36,687,886 paired-end 101 248 81.05 60.94 

LIB4142 Y967_24D 54,072,365 paired-end 101 280 96.03 80.60 

LIB4143 Y967_24T 61,126,547 paired-end 101 284 95.82 86.96 

LIB4144 Y967_144D 58,269,690 paired-end 101 289 95.90 77.94 

LIB4145 Y967_144T 58,021,821 paired-end 101 268 95.93 82.59 

LIB4146 Y1214_24D 62,602,781 paired-end 101 287 97.01 82.00 

LIB4147 Y1214_24T 57,897,996 paired-end 101 288 96.07 71.21 

LIB4148 Y1214_144D 61,587,468 paired-end 101 292 96.78 85.06 

LIB4149 Y1214_144T 55,065,049 paired-end 101 273 96.24 85.51 

Table 7.2.1.2. FAIRE-seq read counts. For patient / treatment 24D = 24 h DMSO, 24T = 24 h TZ&PD, 24D = 144 h DMSO, 24T 

= 144 h TZ&PD.  

 

 



 
  

 
 

 

ChIP-seq   

   

%mapped UCSC hg19 

 patient / treatment 

reads/ paired 

reads 
library 

read 

length 

properly 

paired 
after dedup 

LIB410

7 
Y1192_24D_ChIP_K4 

14,563,316 single-end 51 72.96% 8.14 

LIB410

8 
Y1192_24T_ChIP_K4 

15,790,225 single-end 51 83.31% 11.93 

LIB410

9 
Y1192_144D_ChIP_K4 

15,458,572 single-end 51 71.26% 10.46 

LIB411

0 
Y1192_144T_ChIP_K4 

14,476,060 single-end 51 78.95% 10.76 

LIB411

1 
Y1192_24D_ChIP_K27 

13,323,034 single-end 51 90.68% 26.70 

LIB411

2 
Y1192_24T_ChIP_K27 

15,000,451 single-end 51 88.80% 30.04 

LIB411

3 
Y1192_144D_ChIP_K27 

18,184,951 single-end 51 90.74% 29.86 

LIB411

4 
Y1192_144T_ChIP_K27 

15,750,323 single-end 51 90.72% 36.44 

Table 7.2.1.3. ChIP-seq read counts. For patient / treatment 24D = 24 h DMSO, 24T = 24 h TZ&PD, 24D = 144 h DMSO, 24T = 

144 h TZ&PD. K4 = H3K4me3 and K27 = H3K27 me3 libraries, respectively.  
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7.2.2 Expression levels at Genes and Promoters Near Peaks from 

H3K4me3 and H3K27me3 ChIP-seq  

 

Figure 7.2.2.1. Expression of genes with H3K3me3 and H3K27me3 ChIP-seq 

peaks. Expression levels of genes nearest to peaks, or expression of genes 

with peaks within -/+ 500 bp of transcription start site were assessed. Genes 

were split into zero, low, medium and high expressing categories based on 

RNA-seq results from matched sample. H3K4me3 clusters around highly 

expressed genes and promoters, whereas H3K27me3 clusters around genes 

with low expression. ChIP-seq peaks from 24 h control sample used.  
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7.3 Mass Spectrometry 

7.3.1 Peptides Accepted for Quantitation vs. Total CSK-DNase 

 

Figure 7.3.1.1. Peptides accepted for quantitation in CSK-DNase extracts. 

Total peptides in merged DDA of all CSK-DNase extracts ranked L-R (x-axis) 

in increasing intensity (blue line, left y-axis). Cumulative numbers of 

peptides accepted for quantitation (red line, right y-axis) were slightly 

skewed towards high intensity peptides, with over half having intensity of 

>28,000 in the merged DDA.  
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7.3.2 Mascot Scores and p-value of LF-MS intensity Differences 0.1-2 

M NaCl 

 

 

Figure 7.3.2.1. Mascot score of proteins with only one peptide accepted for 

LF-MS quantitation in CSK 0.1-2 M NaCl. Proteins ranked L-R (x-axis), in 

order of ascending Mascot score (blue dot, left hand y-axis) accepted for LF-

MS quantitation had p-value of ≤0.05 (red dots, right hand axis). Mascot 

score appeared to bear no relationship with significance of p-value.   
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7.3.3 Proteins in CSK 0.1-2 M NaCl Extracts Associated with 

Transcription 

Abbreviation, 

Mascot Score (# 

Peptides) 

Name Select Description (from UniProt 

KB) 

APEX1 

141 (4) 

DNA-(apurinic or apyrimidinic 

site) lyase 

Controls DNA binding affinity of 

FOS/JUN by influencing redox status of 

the transcription factors (165). 

BASP1. 

556 (8) 

Brain acid soluble protein 1 Transcriptional co-suppressor for Wilms' 

tumour suppressor protein WT1 (245). 

C1QBP, 

612 (4) 

Complement component 1, q 

subcomponent binding  

Human p32, interacts with B subunit of 

the CCAAT-binding factor, CBF/NF-Y, 

and inhibits CBF-mediated transcription 

activation in vitro (246). 

CSDA, 

97 (3) 

Cold shock domain protein A Cold shock domain proteins repress 

transcription from the GM-CSF promoter 

(247). 

CTNNB1, 

34 (1) 

Catenin (cadherin-associated 

protein), beta 1, 88kDa 

Chromatin-specific regulator of LEF-1 

transcription (248). 

DDX1, 

103 (1) 

DEAD (Asp-Glu-Ala-Asp) box 

helicase 1 

Interacts with RelA and enhances nuclear 

factor kappaB-mediated transcription 

(249). 

DDX5, 

671 (11) 

DEAD (Asp-Glu-Ala-Asp) box 

helicase 5 

p68 is a androgen receptor coactivator 

(250). Interacts with Runx2 and regulates 

osteoblast differentiation (185). 

ENO1, 

692 (9) 

Enolase 1, (alpha) cMYC binding transcriptional suppressor 

protein (251). 

HMGA1, 

136 (1) 

High mobility group AT-hook 1 Cooperates with the p16(INK4a) tumour 

suppressor to promote proliferative arrest 

and stabilize senescence by contributing 

to the repression of proliferation-

associated genes 

JUP, 

784 (10) 

Junction plakoglobin Plakoglobin (gamma-catenin) has 

TCF/LEF family-dependent 

transcriptional activity (252). 

MTDH, 

29 (1) 

metadherin Activates NFκB (253). 

NACA, 

275 (7) 

Nascent polypeptide-

associated complex alpha 

subunit 

Electronically inferred through sequence 

similarity to have a role in RNA 

transcription. Has antiproliferative effects 

in human CD8+ T-cells (254).  
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NPM1, 

1373 (8) 

Nucleophosmin  NFκB coactivator (255).  

PBXIP1, 

62 (1) 

Pre-B-cell leukaemia 

homeobox interacting protein 

1 

Inhibits the binding of PBX1-HOX 

complex to DNA and blocks the 

transcriptional activity of E2A-PBX1. 

Tethers estrogen receptor-alpha (ESR1) to 

microtubules (256, 257).   

PDLIM1, 

618 (7) 

PDZ and LIM domain 1 Protein with both cytoskeletal interacting 

and transcription factor zinc finger 

domains, considered to act as scaffold to 

assemble cellular signal-controlling 

molecules at certain subcellular sites 

(258). 

RAN, 

50 (2) 

RAN, member RAS oncogene 

family 

Negative regulator of androgen receptor 

(259). 

RFXAP, 

21 (1) 

Regulatory factor X-associated 

protein 

Forms cooperative DNA binding 

complexes with X2BP and CBF/NF-Y. 

Associates with CIITA to form an active 

transcriptional complex (260). 

SND1, 

1309 (21) 

Staphylococcal nuclease and 

tudor domain containing 1 

Functions as a bridging factor between 

STAT6 and the basal transcription factor 

(261). Plays a role in PIM1 regulation of 

MYB activity (262). Functions as a 

transcriptional coactivator for the 

Epstein-Barr virus nuclear antigen 2 

(EBNA2) (263). 

SRSF2, 

202 (6) 

Serine/arginine-rich splicing 

factor 2 

Corepressor of CBF1, binds to PAP-1 and 

effects alternative splicing. 

TRIM28, 

673 (8) 

Tripartite motif containing 28 Represses transcription factors with 

KRAB  domains (264). Recruits histone 

deacetylases and methylases.  

YWHAB, 

282 (8) 

Tyrosine 3-

monooxygenase/tryptophan 5-

monooxygenase activation 

protein 

Adapter protein which modulates 

signalling activity of tyrosine kinases. 

Stimulates osteogenesis (265). 

Table 7.3.3.1 Proteins in CSK extracts with known transcription factor or co-factor 

activity. Proteins in CSK 0.1 – 2 M NaCl fraction with GO annotations of 

transcription factor or co-factor activity are listed. Statements about protein 

function concerning transcriptional activity and associated publications were taken 

from the UniProt.org database.  
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7.3.4 Transcription Related Proteins in CSK-DNase Extracts 

Description of transcription-related proteins detected in CSK-DNase extracts. 

Proteins from all control and DNase extractions are included. 

Abbreviation, 

Mascot Score 

(# Peptides) 

Name Select Description (from UniProt KB) 

CTNNB1,  

126 (5) 

Catenin, beta 1, 

88kDa 

Chromatin-specific regulator of LEF-1 

transcription (248). Involved in wnt signalling. 

CTNND1, 

55 (3) 

Catenin delta-1 p120 catenin. Binds to and inhibits the 

transcriptional repressor ZBTB33, which may lead 

to activation of target genes of the Wnt signaling 

pathway. Implicated both in cell transformation 

by SRC and in ligand-induced receptor signaling 

through the EGF, PDGF, CSF-1 and ERBB2 

receptors. 

DDX5, 

671 (11) 

DEAD (Asp-Glu-

Ala-Asp) box 

helicase 5 

p68 is a androgen receptor coactivator (250). 

Interacts with Runx2 and regulates osteoblast 

differentiation (185). 

EEF1A1, 

442 (7) 

Elongation factor 

1-alpha 1 

With PARP1 and TXK, forms a complex that acts 

as a T helper 1 (Th1) cell-specific transcription 

factor and binds the promoter of IFN-gamma to 

directly regulate its transcription. 

EIF4A3, 

93.5 (6) 

Eukaryotic 

initiation factor 

4A-III 

Core component of the exon junction complex 

which mediates RNA splicing.  

FLNA, 

1598.5 (30) 

Filamin-A Actin binding protein which sequesters 

transcription factors such as FOXC1 (266). 

HNRNPAB, 

51.3 (3) 

Heterogeneous 

nuclear 

ribonucleoprotein 

A/B 

Part of mRNP granule complex (267).  
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Abbreviation, 

Mascot Score 

(# Peptides) 

Name Select Description (from UniProt KB) 

HNRNPD, 

75.1 (2) 

Heterogeneous 

nuclear 

ribonucleoprotein 

D 

Binds to double- and single-stranded DNA 

sequences in a specific manner and functions a 

transcription factor (268). 

HNRNPK, 

898.5 (7) 

Heterogeneous 

nuclear 

ribonucleoprotein 

K 

When SUMOylated, acts as a transcriptional 

coactivator of p53/TP53, playing a role in 

p21/CDKN1A and 14-3-3 sigma/SFN induction. 

As far as transcription repression is concerned, 

acts by interacting with long intergenic RNA p21 

(lincRNA-p21), a non-coding RNA induced by 

p53/TP53. 

HNRPDL, 

34.1 (2) 

Heterogeneous 

nuclear 

ribonucleoprotein 

L 

Binds to DNA and acts as a repressor of the COX5 

gene by binding to the CATR sequence (269).  

HNRNPUL1, 

32.6 (1) 

Heterogeneous 

nuclear 

ribonucleoprotein 

U-like protein 1 

Initiates transcription from glucocorticoid 

promoters in the absence of ligand when 

complexed with BRD7 (270).  

HSPA8, 2738 

(16) 

 

HSPA8 Acts as a repressor of transcriptional activation. 

Inhibits the transcriptional coactivator activity of 

CITED1 on SMAD mediated transcription (271). 

ILF2, 165.9 (3) 

 

Interleukin 

enhancer-binding 

factor 2 

Complexes with ILF3. Functions as both a positive 

and negative regulator of gene expression in 

mammalian cells (272) 

ILF3, 110.9 (4) Interleukin 

enhancer-binding 

factor 3 

Complexes with ILF2. Functions as both a positive 

and negative regulator of gene expression in 

mammalian cells (272) 
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Abbreviation, 

Mascot Score 

(# Peptides) 

Name Select Description (from UniProt KB) 

JUP, 985.1 (11) 

 

Junction 

plakoglobin 

Plakoglobin (gamma-catenin) has TCF/LEF 

family-dependent transcriptional activity (252). 

LMNA, 5491.2 

(35) 

Prelamin-A/C Plays an important role in nuclear assembly, 

chromatin organization, nuclear membrane and 

telomere dynamics (273). 

PHB, 79.4 (4) Prohibitin.  Inhibits DNA synthesis. Has a role in regulating 

proliferation (274). 

PHB2, 236.3 

(5) 

Prohibitin 2. Acts as a mediator of transcriptional repression by 

nuclear hormone receptors via recruitment of 

histone deacetylases. Interacts with PHB, ESR1, 

HDAC1 and HDAC5 (275).  

PML, 1481 (20) Protein PML Regulates transcription activity of ELF4 (276). 

Regulates PTEN compartmentalization through 

the inhibition of USP7-mediated 

deubiquitination.(277).  

POLR2A, 110 

(5) 

DNA-directed 

RNA polymerase 

II subunit RPB1 

DNA-dependent RNA polymerase subunit. 

POLR2B, 75.4 

(3) 

DNA-directed 

RNA polymerase 

II subunit RPB2 

DNA-dependent RNA polymerase subunit. 

PSMC5, 35.1 (1) 26S protease 

regulatory subunit 

8 

Interacts with the thyroid hormone receptor, 

retinoid X receptor (RXR), NDC80, PAAF1 and 

TRIM5 (278). 

PTRF, 207.4 

(3) 

Polymerase I and 

transcript release 

factor 

PTRF is required for dissociation of the ternary 

transcription complex 



 
  

281 
 

Chapter 7 - Appendix 
 

Abbreviation, 

Mascot Score 

(# Peptides) 

Name Select Description (from UniProt KB) 

RAD21, 34.6 

(3) 

Double-strand-

break repair 

protein rad21 

homolog 

Chromatin protein involved in chromosome 

cohesion during cell cycle, in DNA repair, and in 

apoptosis.  

RBM14, 28.4 

(1) 

RNA-binding 

protein 14 

Isoform 1 and 2 function as a nuclear receptor 

coactivator and repressor via interactions with 

coactivators such as NCOA6 and CITED. 

RBMX, 638.9 

(8) 

RNA-binding 

motif protein, X 

chromosome 

Interacts with SAFB/SAFB1.  Forms a complex 

with ILF2, ILF3, YLPM1, KHDRBS1, NCOA5 and 

PPP1CA. 

RPS27A, 423.9 

(2) 

Ubiquitin-40S 

ribosomal protein 

S27a 

Ubiquitin. Ligation of ubiquitin subunits to 

proteins leads to their degradation by the 

proteasome. Degradation plays an important part 

in receptor recycling.  

RPS3, 118.4 (4) 40S ribosomal 

protein S3 

Negative regulation of NFκB transcription.  

SAFB, 52.5 (4) Scaffold 

attachment factor 

B1 

When associated with RBMX, binds to and 

stimulates transcription from the SREBF1 

promoter. Can function as an estrogen receptor 

corepressor and can also bind to the HSP27 

promoter and decrease its transcription. 

SHOX, 27.2 (1) Short stature 

homeobox protein 

Transcription factor highly expressed in 

osteoblasts (279).  

SMARCA4, 

40.3 (2) 

Transcription 

activator BRG1 

Transcriptional coactivator cooperating with 

nuclear hormone receptors to potentiate 

transcriptional activation. 

SMARCC2, 

54.9 (2) 

SWI/SNF complex 

subunit SMARCC2 

Component of 6 multiprotein chromatin-

remodeling complexes: Swi/Snf-A (BAF), 

Swi/Snf-B (PBAF), Brm, Brg1(I), WINAC and 

Brg1(II) 
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Abbreviation, 

Mascot Score 

(# Peptides) 

Name Select Description (from UniProt KB) 

SNRPB, 30.5 

(1) 

Small nuclear 

ribonucleoprotein-

associated 

proteins B and B' 

May have a functional role in the pre-mRNA 

splicing or in snRNP structure. Binds to the 

downstream cleavage product (DCP) of histone 

pre-mRNA in a U7 snRNP dependent manner 

SP100, 200.1 

(5) 

Nuclear 

autoantigen Sp-

100 

PML body member and co-repressor of ETS 

family transcription factors.  

SRSF6, 35.6 (1) Serine/arginine-

rich splicing factor 

6 

Plays a role in constitutive splicing and can 

modulate the selection of alternative splice sites. 

Represses the splicing of MAPT/Tau exon 

10.(280) 

SRSF7, 32.7 (1) Serine/arginine-

rich splicing factor 

7 

Plays a role in constitutive splicing and can 

modulate the selection of alternative splice sites. 

Represses the splicing of MAPT/Tau exon 

10.(280) 

TARDBP, 337 

(4) 

TAR DNA-binding 

protein 43 

DNA and RNA-binding protein which regulates 

transcription and splicing. Defects in TARDBP are 

the cause of amyotrophic lateral sclerosis type 10 

(ALS10). Expression is high in pancreas, placenta, 

lung, genital tract and spleen 

TMPO, 27.6 (1) Lamina-associated 

polypeptide 2, 

isoforms 

beta/gamma 

May be involved in the control of initiation of 

DNA replication through its interaction with 

NAKAP95. Possible receptor for attachment of 

lamin filaments to the inner nuclear membrane. 

TPR, 119.5 (6) Nucleoprotein 

TPR 

Component of the cytoplasmic fibrils of the 

nuclear pore complex implicated in nuclear 

protein import. Its N-terminus is involved in 

activation of oncogenic kinases. Plays a role in the 

mitotic spindle checkpoint. 
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Abbreviation, 

Mascot Score 

(# Peptides) 

Name Select Description (from UniProt KB) 

TRIM28, 

673 (8) 

Tripartite motif 

containing 28 

Represses transcription factors with KRAB  

domains (264). Recruits histone deacetylases and 

methylases.  

XRCC5, 34.3 

(2) 

X-ray repair cross-

complementing 

protein 5 

Plays a key role in non-homologous end joining. 

The XRCC5/6 dimer together with APEX1 acts as 

a negative regulator of transcription in response 

to extracellular calcium (281). 

YBX1, 117.2 (2) Nuclease-sensitive 

element-binding 

protein 1 

Regulates the transcription of numerous genes. Its 

transcriptional activity on the multidrug 

resistance gene MDR1 is enhanced in presence of 

the APEX1 acetylated form (282). 

ZNF326, 91.1 

(1) 

DBIRD complex 

subunit ZNF326 

Core component of the DBIRD complex, a 

multiprotein complex that acts at the interface 

between core mRNP particles and RNA 

polymerase II (RNAPII) and integrates transcript 

elongation with the regulation of alternative 

splicing. May play a role in neuronal 

differentiation and is able to bind DNA and 

activate expression in vitro (283). 

Table 7.3.4.1 Proteins associated with DNA dependent transcription in CSK-

DNase extracts.  
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7.3.5 Proteins Identified in SPL Generated Using Progenesis LC-MS 

Protein Peptides Scores 

LAMA3 laminin alpha 3 subunit isoform 2 21 691.1 

FLNB Isoform 1 of Filamin-B 18 553 

FLNA Uncharacterized protein 10 310.9 

SPTAN1 Isoform 1 of Spectrin alpha chain, brain 8 259.1 

BAT1 Isoform 2 of Spliceosome RNA helicase BAT1 6 293.8 

EVPL Envoplakin 4 69.6 

RBMXL1 RNA binding motif protein, X-linked-like 1 4 90.5 

ABCD3 Uncharacterized protein 2 45.2 

ATAD3A ATPase family AAA domain-containing protein 3A 

isoform 3 
2 39.6 

HIST2H3D;HIST2H3C;HIST2H3A Histone H3.2 2 66.3 

MAVS Isoform 1 of Mitochondrial antiviral-signaling 

protein 
2 45.3 

MCM2 DNA replication licensing factor MCM2 2 55.7 

SAFB2 Scaffold attachment factor B2 2 54 

SMARCA1 SWI/SNF related, matrix associated, actin 

dependent regulator of chromatin, subfamily a, member 1, 

isoform CRA_d 

2 35 

SYNCRIP Isoform 1 of Heterogeneous nuclear 

ribonucleoprotein Q 
2 34.6 

TOR1AIP1 Isoform 2 of Torsin-1A-interacting protein 1 2 48.7 

CHD2 Isoform 2 of Chromodomain-helicase-DNA-binding 

protein 2 
1 38 

EEF1A1 EEF1A protein (Fragment) 1 47.3 

EFTUD2 116 kDa U5 small nuclear ribonucleoprotein 

component 
1 48.2 

FUS Isoform Short of RNA-binding protein FUS 1 47.5 

LCP1 Plastin-2 1 43.3 

PKM2 Isoform M1 of Pyruvate kinase isozymes M1/M2 1 46.3 

POR cDNA FLJ59656, highly similar to NADPH--

cytochrome P450 reductase 
1 34.6 

PSMD3 26S proteasome non-ATPase regulatory subunit 3 1 36.1 

RUVBL1 Isoform 1 of RuvB-like 1 1 73.5 

SLC9A1 Isoform 1 of Sodium/hydrogen exchanger 1 1 53.1 

SVIL Isoform 2 of Supervillin 1 41.7 

TEX10 Testis-expressed sequence 10 protein 1 35.9 
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H2AFY H2A histone family, member Y isoform 2 9 441.2 

H2AFY2 Core histone macro-H2A.2 5 155.2 

HNRNPM Isoform 1 of Heterogeneous nuclear ribonucleoprotein M 5 219.5 

PML Isoform PML-1 of Probable transcription factor PML 5 95.6 

CTNNA1 Isoform 1 of Catenin alpha-1 4 90.8 

HIST2H4B;HIST1H4K;HIST1H4H;HIST1H4A;HIST1H4L;HIST1H4

B;HIST1H4I;HIST1H4D;HIST1H4E;HIST4H4;HIST1H4F;HIST1H4

C;HIST1H4J;HIST2H4A Histone H4 

4 154.1 

HNRNPUL2 Heterogeneous nuclear ribonucleoprotein U-like 

protein 2 
4 109.8 

ILF3 Isoform 5 of Interleukin enhancer-binding factor 3 4 135 

DDX21 Isoform 1 of Nucleolar RNA helicase 2 3 34.6 

HNRNPF Heterogeneous nuclear ribonucleoprotein F 3 126.5 

HNRNPH1 Heterogeneous nuclear ribonucleoprotein H 3 132.4 

NUP205 Nuclear pore complex protein Nup205 3 57.9 

POLR2B DNA-directed RNA polymerase II subunit RPB2 3 59.7 

TRIM28 Isoform 1 of Transcription intermediary factor 1-beta 3 45.8 

CTNNB1 Isoform 1 of Catenin beta-1 2 95.8 

CTNND1 Isoform 1AB of Catenin delta-1 2 41.8 

HIST1H2AL;HIST1H2AM;HIST1H2AJ;HIST1H2AI;HIST1H2AG;HI

ST1H2AK;HIST1H2AE;HIST1H2AB;HIST1H2AD Histone H2A type 

1-B/E 

2 216.1 

HIST2H2BE Histone H2B type 2-E 2 37.4 

HNRNPAB Isoform 2 of Heterogeneous nuclear ribonucleoprotein 

A/B 
2 64.8 

HNRNPL Heterogeneous nuclear ribonucleoprotein L 2 42.5 

HNRNPU Isoform Short of Heterogeneous nuclear 

ribonucleoprotein U 
2 117.5 

ILF2 Interleukin enhancer-binding factor 2 2 56 

NOP56 Nucleolar protein 56 2 92.2 

PHB2 Prohibitin-2 2 40.9 

PTBP1 Isoform 1 of Polypyrimidine tract-binding protein 1 2 37.4 

SAFB Scaffold attachment factor B1 2 52.1 

TPR Nucleoprotein TPR 2 41.3 

UBC;UBB;RPS27A ubiquitin and ribosomal protein S27a precursor 2 128.6 

AIFM1 Isoform 1 of Apoptosis-inducing factor 1, mitochondrial 1 47.9 

EIF4A3 Eukaryotic initiation factor 4A-III 1 41 

FBL rRNA 2'-O-methyltransferase fibrillarin 1 40.4 
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HNRNPA2B1 Isoform B1 of Heterogeneous nuclear 

ribonucleoproteins A2/B1 
1 43.6 

HNRNPC Isoform C1 of Heterogeneous nuclear ribonucleoproteins 

C1/C2 
1 39.7 

HNRNPK Isoform 1 of Heterogeneous nuclear ribonucleoprotein K 1 54.2 

POLR2A DNA-directed RNA polymerase II subunit RPB1 1 36 

PTRF Isoform 1 of Polymerase I and transcript release factor 1 47.7 

RAD21 Double-strand-break repair protein rad21 homolog 1 35.4 

SF3B1 Splicing factor 3B subunit 1 1 37.5 

SF3B3 Isoform 1 of Splicing factor 3B subunit 3 1 35.9 

SP100 Isoform Sp100-HMG of Nuclear autoantigen Sp-100 1 51.3 

TARDBP TDP43 1 34.9 

PLEC1 Isoform 3 of Plectin-1 56 1425.1  

DSP Isoform DPI of Desmoplakin 21 247.9 

LAMC2 Isoform Long of Laminin subunit gamma-2 21 541.1 

LAMB3 Laminin subunit beta-3 17 719 

FN1 Isoform 1 of Fibronectin 16 324 

ACTB Actin, cytoplasmic 1 14 828.4 

SPTBN1 Isoform Long of Spectrin beta chain, brain 1 14 282.9 

ATP5A1 ATP synthase subunit alpha, mitochondrial 13 630.4 

ACTN1 Alpha-actinin-1 12 315.9 

ATP5B ATP synthase subunit beta, mitochondrial 11 623.2 

ACTN4 Alpha-actinin-4 10 572.6 

LMNA Isoform A of Lamin-A/C 9 287.6 

ACTA1 Actin, alpha skeletal muscle 8 289.7 

ATP1A1 Isoform Long of Sodium/potassium-transporting ATPase 

subunit alpha-1 
8 318.6 

ATP2A2 Isoform SERCA2A of Sarcoplasmic/endoplasmic reticulum 

calcium ATPase 2 
7 441.6 

CKAP4 Isoform 1 of Cytoskeleton-associated protein 4 7 252 

HSPA8 Isoform 1 of Heat shock cognate 71 kDa protein 7 181.8 

KTN1 Isoform 1 of Kinectin 6 120.6 

VCP Transitional endoplasmic reticulum ATPase 6 164.8 

HSPA5 78 kDa glucose-regulated protein 5 91.8 

JUP Junction plakoglobin 4 143.4 

NDUFS1 NADH-ubiquinone oxidoreductase 75 kDa subunit 4 184.6 

SLC25A5 ADP/ATP translocase 2 4 102.2 

ABCD3 Isoform 1 of ATP-binding cassette sub-family D member 3 3 40.8 
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HSPA1A;HSPA1B Heat shock 70 kDa protein 1 3 66.6 

HSPD1 60 kDa heat shock protein, mitochondrial 3 63.9 

ITGB4 Isoform Beta-4C of Integrin beta-4 3 43.2 

JUP Uncharacterized protein 3 67.3 

KRT10 Keratin, type I cytoskeletal 10 3 53.9 

KRT19 Keratin, type I cytoskeletal 19 3 41.1 

KRT7 Keratin, type II cytoskeletal 7 3 153.6 

LIMA1 Isoform Beta of LIM domain and actin-binding protein 1 3 108.4 

MATR3 Matrin-3 3 57.2 

RPN1 Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 1 precursor 
3 158.9 

RPN2 Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit 2 
3 81.5 

THBS1 Thrombospondin-1 3 74.8 

ATP1B1 Isoform 1 of Sodium/potassium-transporting ATPase 

subunit beta-1 
2 113.5 

CLTC Isoform 1 of Clathrin heavy chain 1 2 56.2 

FLOT1 Flotillin-1 2 51.8 

HADHA Trifunctional enzyme subunit alpha, mitochondrial 2 45.3 

HSP90AA1 Isoform 2 of Heat shock protein HSP 90-alpha 2 55.9 

IMMT Isoform 1 of Mitochondrial inner membrane protein 2 39.1 

KRT18 Keratin, type I cytoskeletal 18 2 38.5 

KRT2 Keratin, type II cytoskeletal 2 epidermal 2 87.3 

KRT77 keratin 77 2 67.4 

LEMD2 LEM domain-containing protein 2 2 33.4 

NDUFV1 Isoform 1 of NADH dehydrogenase [ubiquinone] 

flavoprotein 1, mitochondrial 
2 69.1 

NNT NAD(P) transhydrogenase, mitochondrial 2 78.6 

SLC1A5 Neutral amino acid transporter B(0) 2 90.5 

SLC25A24 Isoform 1 of Calcium-binding mitochondrial carrier 

protein SCaMC-1 
2 81.8 

SNRNP200 Isoform 1 of U5 small nuclear ribonucleoprotein 200 

kDa helicase 
2 83.6 

STT3A Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase subunit STT3A 
2 50 

UQCRC2 Cytochrome b-c1 complex subunit 2, mitochondrial 2 34 

VIM Vimentin 2 42.4 

CD44 Isoform 12 of CD44 antigen 1 73.4 
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DDOST Dolichyl-diphosphooligosaccharide--protein 

glycosyltransferase 48 kDa subunit 
1 32.1 

DKC1 H/ACA ribonucleoprotein complex subunit 4 1 55.4 

DLD Dihydrolipoyl dehydrogenase, mitochondrial 1 67.1 

EEF1G;TUT1 cDNA FLJ56389, highly similar to Elongation factor 1-

gamma 
1 38.2 

HSP90B1 Endoplasmin 1 69.4 

KRT9 Keratin, type I cytoskeletal 9 1 90.9 

LAMP2 Isoform LAMP-2A of Lysosome-associated membrane 

glycoprotein 2 
1 35.4 

LGALS3BP Galectin-3-binding protein 1 64.5 

NUP155 Isoform 1 of Nuclear pore complex protein Nup155 1 53.3 

PKP3 Plakophilin 3b (Fragment) 1 44.8 

UQCRC1 Cytochrome b-c1 complex subunit 1, mitochondrial 1 51.1 

Table 7.3.5 Proteins identified in SPL lists generated by Progenesis LC-MS. 

Proteins which were in the SPL data that had not been observed in DDA data 

are highlighted in bold. All potential nuclear proteins are in italics.  
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7.3.6 Proteins Identified by SPL from Bruker Software 

NHUc DNase SPL NHUd DNase SPL 

Protein Peptides Scores Protein Peptides Scores 

ACTB 6 437.2 ACTB 1 76.6 

ATP5A1 4 724.2 ACTN1 1 42.9 

ATP5B 6 714.1 ATP2A2 1 33.2 

BAT1 5 1530.3 ATP5A1 4 1130.4 

DLST 1 33.3 ATP5B 4 402.3 

FN1 1 28 DDX5 1 30.1 

H2AFY 1 56.4 FLNB 2 64.8 

HNRNPA2B1 1 188.5 H2AFY 2 666.7 

HNRNPCL1 1 33.4 H2AFY2 2 274 

HSPA8 1 29.8 HNRNPF 2 77 

LAMA3 6 223.9 HNRNPH1 2 62.8 

LAMB2 4 330.9 HNRNPL 1 28.7 

RBMXL1 2 339.8 HNRNPM 2 164.6 

SDHA 1 30.4 JUP 1 51.3 

SLC25A24 3 120.2 NDUFS1 1 27.6 

SNRNP70 1 25.6 RBMX 1 31.9 

STOML2 1 38.7 

 

THBS1 1 290.2 

Table 7.3.6.1. Proteins identified in SPLs generated from Bruker software. 

Proteins not previously identified in DDAs are displayed in bold text. 

 

 

 

 

 

 

 

 

 

 



 
  

290 
 

Chapter 7 - Appendix 
 

7.4 Buffer Recipes 

2% SDS Western Blot Buffer 

2% SDS western blot solution: 20% (v/v) glycerol, 2% (w/v) SDS, 125 mM Tris-

HCl (pH 6.8), 200 mM NaF, 0.1 mM Na3PO4, 33 mM Na3PO4,  with freshly added 

13 mM DTT and 1:100 dilution of protease inhibitor cocktail (Sigma Aldrich, Cat # 

P8340).  

 

Tris Buffered Saline 

10 mM Tris (adjusted to pH 7.4 with HCl) and 140 mM NaCl in H2O 

 

CSK 

Stock cytoskeletal (CSK) buffer was made with 10 mM PIPES-KOH (pH 6.8), 300 

mM Sucrose, 1 mM EGTA and 1 mM MgCl2. Aliquots were made with 0.1 M NaCl 

added, or 0.1% Triton-X100 and 0.1, 0.2 0.4, 0.5, 1 or 2 M NaCl.  

Transfer Buffer 

20 % (v/v) methanol and 80 % (v/v) H2O with final concentrations of 12 mM Tris 

and 96 mM glycine. 

 

Pierce Direct IP Wash Buffer 

25 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 1% (v/v) NP-40 substitute 

(Sigma Aldrich, Cat # 74385) and 5% (v/v) glycerol 

 

TBS for IF 

50mM Tris-HCl (pH 7.6), 150mM NaCl, 0.1% (w/v) NaN3 and 0.1% (w/v) BSA. 

 

Antifade for IF 

5% N-propyl gallate (w/v) in 95% glycerol and 5% PBS) 
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HiC Lysis Buffer 

10 mM Tris-HCl (pH 8.0), 10 mM NaCl, 0.2% NP-40 substitute (Sigma Aldrich, 

Cat # 74385) 

 

NEBuffer 2 

10 mM Tris-HCl (pH 7.9), 50 mM NaCl, 10 mM MgCl2, 1 mM DTT 

 

Ligation Buffer 

50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 10 mM DTT 

 

TE Buffer 

10 mM Tris (pH 8.0), 1 mM EDTA 

 

Tween Wash Buffer 

5 mM Tris-HCl (pH8.0), 0.5 mM EDTA, 1 M NaCl and 0.05% Tween-20 

ChIP Swelling Buffer  

5mM PIPES (pH8) with 85 mM KCl in H2O 

ChIP Modified TE Buffer 

2 mM EDTA, 20 mM Tris-HCl pH 8, 150 mM NaCl, 1% w/v SDS and 1% v/v 

Triton-X100 

Radioimmunoprecipitation assay (RIPA) Buffer 

150 mM NaCl, 1.0 % v/v NP-40 substitute, 0.5 % w/v sodium deoxycholate, 0.1% 

w/v SDS, and 50 mM Tris, pH 8.0 
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 List of Abbreviations 8

3'/5' RACE  - 3 prime / 5 prime rapid amplification of cDNA ends 

3C  - Chromosome conformation capture 

BHPrE - Benign human prostate epithelial cells 

cDNA - Complementary DNA 

ChIP-seq - Chromatin immunoprecipitation sequencing 

CIS  - Carcinoma in situ 

Co-IP  - Co-Immunoprecipitation 

CSK - Cytoskeletal  

DDA - Data directed analysis 

DEPC - Diethylpyrocarbonate 

DNA - Deoxyribonucleic acid 

DNase - Deoxyribonuclease 

DNTP - Deoxyribonucleotide 

EGF - Epidermal growth factor 

EGFR - Epidermal growth factor receptor 

emPAI - Exponentially modified protein abundance index 

ENCODE - Encyclopedia of DNA elements  

FAIRE - Formaldehyde assisted isolation of regulatory elements 

FASP - Filter aided sample preparation 

FMF - Find molecular features 

GO - Gene ontology 

H3K27me3 - Histone H3 trimethylated at lysine 27 

H3K4me3 - Histone H3 trimethylated at lysine 4 

HiC - High throughput chromosome conformation capture 

IgG - Immunoglobulin G 

KSFM - Keratinocyte serum free medium 

KSM - Keratinising squamous metaplasia 

LC-MS - Liquid chromatography-mass spectrometry 

LDS - Lithium dodecyl sulfate 

LF-MS - Label free mass spectrometry 

MNase  - Micrococcal nuclease 

MRES - Multiple regions of epigenetic silencing 

mRNA - Messenger ribonucleic acid 

MS - Mass spectrometry 
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MS/MS - Tandem mass spectrometry 

NCBI - The National Center for Biotechnology Information 

NHU - Normal Human Urothelial 

NHUc  - Normal human urothelial - control 

NHUd  - Normal human urothelial - differentiation 

NM - Nuclear Matrix 

NR - Nuclear receptor 

PBS - Phosphate buffered saline 

PCR - Polymerase chain reaction 

PD - PD153035  

RIPA - Radioimmunoprecipitation 

RNA - Ribonucleic acid 

RNase - Ribonuclease 

RT-PCR  - Reverse transcriptase polymerase chain reaction 

SDS - Sodium dodecyl sulfate 

SDS-PAGE - Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

shRNA - Short hairpin RNA 

siRNA  - Small interfering RNA 

SPL  - Scheduled precursor list 

TBS - Tris buffered saline 

TLE - Tris low EDTA buffer 

TWB - Tween wash buffer 

TZ  - Troglitazone 
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