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 Abstract 

Head and neck cancers are a heterogeneous group of cancers with 90% of them 

originating from the squamous epithelium. Only 50% of patients survive on being 

diagnosed with this cancer after five years and this statistic has not improved over the 

last few decades. The main risk factors for head and neck squamous cell carcinoma 

(HNSCC) are smoking and alcohol consumption. In recent years, there has been more 

interest in understanding the function of elements involved in gene expression such as 

transcription factors and non-coding RNA’s and their role in oncogenesis. 

HOX genes are transcription factors involved in oncogenesis and embryogenesis. In 

total, there are 39 HOX genes distributed in four clusters across the human genome. 

HOX genes have been observed to be aberrantly expressed in several cancers. 

MicroRNAs are non-coding short RNA transcripts which are approximately 21 

nucleotides in length and lead to down-regulation of their target genes by acting on their 

3’UTR. miR-196a is found in HOX gene cluster upstream of HOX9 paralogous group. 

Even miR-196a has been found to be aberrantly expressed in different cancers. 

The expression pattern of 39 HOX genes in cancer cell lines showed that HOXB9 was 

highly over-expressed compared to normal cells, which was further confirmed by qPCR 

in wider cell panel consisting of four normal, four oral pre-malignant and five HNSCC 

cell lines (p<0.05). miR-196a was also found to be over-expressed in cancer cell lines 

compared to normal cells when similar sets of cell lines were used (p<0.05). This data 

was also found to be replicated in tissue samples and it was observed that HOXB9 and 

miR-196a were significantly over-expressed in cancer tissue samples compared to 

normal tissue samples (p<0.05). HOXB9 siRNA transfection into HNSCC cells showed 

significant decrease in invasion, migration and proliferation, whereas anti-miR-196a 
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 transfection in HNSCC cells showed significant decrease in invasion, migration and 

adhesion compared to negative control transfected HNSCC cells (p<0.05). 

HOXB9 and miR-196a-1 are spatially closely related to each other on chromosome 17. 

To check if these two are co-transcribed on same primary transcript, nested PCR was 

performed with appropriate controls consisting of RNaseA treated RNA and no reverse 

transcriptase control, which suggested that novel primary transcript for HOXB9 and 

miR-196a-1 co-expression might exist in HNSCC cells which was confirmed by DNA 

sequencing. Expression microarray analysis was performed using anti-miR-196a in oral 

pre-malignant and HNSCC cells and pre-miR-196a in immortalized normal cells to 

assess if there were any novel direct targets of miR-196a in HNSCC. Based on qPCR 

(p<0.05), dual luciferase reporter assay (p<0.001) and site-directed mutagenesis, 

MAMDC2 was found to be a direct target of miR-196a in HNSCC. 

This is the first study in HNSCC looking at expression patterns of both miR-196a and 

HOXB9 and needs further work to validate them into biomarkers for early detection of 

HNSCC. miR-196a and HOXB9 could also be developed into potential therapeutic 

targets in HNSCC, particularly the novel primary transcript could be a novel therapeutic 

target. Further characterization of MAMDC2 is required but could turn into exciting 

therapeutic target as it is expressed as transmembrane receptor. 
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Chapter 1: Statistics and Pathology of Head and Neck 

Squamous Cell Carcinoma (HNSCC) 

Head and neck cancers mostly arise in squamous epithelium and are thus called 

squamous cell carcinoma. Head and neck cancer affects a number of subsites, including 

oral cavity, pharynx, larynx, paranasal sinuses and salivary glands. Oral cavity cancers 

are the most common type of head and neck cancer found. More than 90% of oral cavity 

cancer cases diagnosed are oral squamous cell carcinoma. Hence, this study 

concentrated on squamous cell carcinoma (Thakker and Hunter, 2011) (National Cancer 

Institute, 2013). 

1.1 Statistics and Pathology 

In 2008, the World Health Organisation (WHO) assessed that worldwide 12.7 million 

new cases of cancer and 7.6 million deaths due to cancer occurred (Johnson et al., 

2011). 

1.1.1 Incidence and mortality rates 

Oral and pharyngeal cancer is ninth most common cancer worldwide, in men and 

women together. In 2008, eighth most frequent neoplasm was in oral and pharyngeal 

sites in the European Union (Johnson et al., 2011). In developing countries, cancer of 

oral cavity and pharynx is the sixth most frequent site in men and eighth in women. 

There were 399,642 new cases of oral and pharyngeal cancer worldwide according to 

GLOBOCAN 2008 (Ferlay J, GLOBOCAN 2008). 

 

 



 
A. 
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Figure 1.1. Age-standardized rates (ASR) for oral and p

incidence per 100,000 worldwide for A. m

(Ferlay J, GLOBOCAN 2008

standardized rates (ASR) for oral and p

per 100,000 worldwide for A. men and B. Women. Modified from 

Ferlay J, GLOBOCAN 2008). 
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The highest oral cancer incidence in the world has been noted in Melanesia, Sri Lanka, 

France, Hungary and Croatia (Figure 1.1). Melanesia is a region with relatively small 

population, the oral cancer incidence rates are very high in this area which can be 

attributed to smoking and betel nut consumption (Johnson et al., 2011). In countries like 

India, Sri Lanka, Pakistan and Bangladesh approximately one-third of the total cancer 

diagnosed were oral cavity cancers (Sankaranarayanan, 1990), though it had been 

observed that the overall rates in India for tongue and mouth cancer in females and 

tongue cancer in males were decreasing (Satyanarayana and Asthana, 2008). In the 

USA, about 3% of all cancers accounted to head and neck cancer and close to twice the 

number of men were diagnosed with this cancer compared to women. In 2012, it was 

estimated by the researchers that nearly 52,000 men and women would be diagnosed 

with this cancer in the USA (National Cancer Institute, 2013). In Australia, for both 

sexes an upward trend was seen in terms of incidence (Moore et al., 2001). In Europe, 

the maximum incidence and mortality due to oral and pharyngeal cancer was seen in 

Hungary. In Italian and French men, it was observed that the mortality rate was highest 

in 1980s and decreased since then, though it has been noticed that there was continuous 

increase in incidence in Denmark, Belgium, Portugal, Greece and Scotland (Johnson et 

al., 2011). 

In the UK, oral cancer ranked fifteenth in terms of its incidence in cancers and 

accounted for 2% of all new cancer cases in 2009. Oral cancer accounted for 6236 new 

cases in 2009 with 66% of them in men and rest of 34% in women. Based on the 

European ASR, the incidence rate in the Scotland was higher than Wales, England and 

Northern Ireland (Cancer Research UK, 2013). The major risk factors for the incidence 

of oral cancer in the UK are smoking and consumption of alcohol (Jerjes et al., 2012). 

The incidence of oral cancer is strongly related to the age of an individual, but it differs 

based on the gender. The incidence rate increases acutely from the age of 45 in men and 
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peaks between the age of 60-69, whereas in women the increase is gradual from 45 and 

peaks only at the age over 80 (Cancer Research UK, 2013). 

Since mid-1970, the incidence of oral cancer has increased in the UK. Most growth in 

the incidence of oral cancer has been noted after late 1980s for both men and women 

(Figure 1.2). There has been increase in European ASR by 25% and 28% in men and 

women respectively over a period from 1998-2009 (Cancer Research UK, 2013). 
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Figure 1.2. Graph showing European ASR per 100,000 population based on the 

gender over a period of 1975-2009 in the UK. Modified from (Cancer Research 

UK, 2013). 
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It was observed that Melanasia had the highest mortality rate in the world due to oral 

cancer (Figure 1.3). In the Western Europe, it was noted that there was steady growth in 

the oral cancer mortality from 1950s to late 1980s, but this rate has been in decline 

since. Oral cancer mortality had reached the highest rate in 1990s in central and Eastern 

European countries like Russia, Hungary, Slovenia and Slovakia. These rates are now 

showing decline as well, though the mortality rate in women was seen to be in upward 

trend in Hungary, Denmark, Belgium and Slovakia (Johnson et al., 2011). In the USA, 

it was noticed that between 2006-2010, the median age of death by oral and pharyngeal 

cancer was 67. The ASR for mortality between 2006-2010 was seen to be 2.5 per 

100,000 men and women per year in the USA (National Institute of Health, 2013). A 

study carried out in Mumbai, India showed decline in the oral cancer mortality rate 

during the period of 1986-2000 (Sunny et al., 2004). There were 1822 deaths due to oral 

cancer in the UK in 2008. The mortality rate was seen to be highest in Scotland which is 

consistent with the high incidence rate. The ASR for mortality has been fairly stable 

with 3.3 and 1.4 per 100,000 male and female respectively, between 1971-2008 (Cancer 

Research UK, 2013). 

1.1.2 Risk Factors 

The pre-eminent causes have been long known for oral cancer and the most important 

risk factors are tobacco smoking or chewing and alcohol consumption, both of which 

can be curbed. These two factors put together account for about 75% of the cases of oral 

cancer and diet lacking in nutrition leads to another 10-15% oral cancer cases across 

Europe (La Vecchia et al., 1997). 

1.1.2.1 Tobacco 

The main forms of tobacco intake in UK are by pipe, cigarette and cigar smoking which 

can lead to oral cancer (Warnakulasuriya et al., 2005). It has been shown that a current 
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smoker has three times the risk of getting oral cancer than a non-smoker (Gandini et al., 

2008). Dose and duration of smoking are both linked to development of oral cancer 

whereas stopping smoking can reduce the risk (Rodriguez et al., 2004). In one of the 

studies done in Cuba, it was observed that smoking 30 cigarettes or more in a day are 

comparable to smoking 4 cigars or more (Cancer Research UK, 2013). It has also been 

noted that smoking bidi (tobacco hand-rolled in a tendu leaf) raises the risk of oral 

cancer (Rahman et al., 2003). There is also evidence that passive smoking can also lead 

to oral cancer, with 63% raise in the risk for non-smokers who are exposed to passive 

smoking at work or at home (Lee et al., 2009). 

An analysis carried out recently showed that the use of smokeless tobacco (chewing 

tobacco, plug or snuff) had more than double the risk of causing oral cancer in the USA, 

around five times more risk in India and Asian countries and seven times more risk in 

Sudan when compared to non-smokers (Boffetta et al., 2008). It has been seen that the 

high incidence rate of oral cancer in the Asian sub-continental countries is due to the 

extensive use of betel quid and also the use of areca nut in those leaves (Bedi, 1996). 

Areca nut is a carcinogenic substance and the risk is increased by chewing betel quid 

with tobacco, though it is less when taken without tobacco (Vanwyk et al., 1993). 

1.1.2.2 Alcohol 

One of the major risk factors for oral cancer is alcohol consumption. Based on a study, 

14 grams/day intake of alcohol could double the risk of oral cancer (Castellsague et al., 

2004). Drinking alcohol and smoking together has much higher risk than drinking 

alcohol or smoking alone (Ferreira Antunes et al., 2013). 

The result in the non-smokers but drinkers differs by the site of the effect, it has been 

noted from a study that there is no rise in the risk of oral cavity cancer but could lead to 

cancer of the hypopharynx or oropharynx (Hashibe et al., 2007). The risk of oral cancer 
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depends on the amount of ethanol taken rather than the type of the beverage (Altieri et 

al., 2004). The rising number of cases diagnosed with oral cancer in Europe is being 

attributed to the increase in the alcohol consumption throughout Europe (Hindle et al., 

2000). In the UK, the alcohol consumption has increased by double since middle of the 

19th century and risen from 3.9 litres to 8.6 litres of pure alcohol/year/head. The 

percentage of the people who surpass the recommended weekly level of 14 units for 

women and 21 units for men has decreased, with 26% of men and 18% of women 

exceeding recommended limit in 2009. Presently, the drinking level (8.6 

litres/year/head) in the UK is lower than what is seen in most European countries like 

Portugal (11 litres/ year), France (10.7 litres/ year), Germany (10.6 litres/ year) and 

Spain (9.9 litres/ year), but the level of alcohol consumption is rising sharply in the UK 

and could reach nearly the top of the table in next ten years (Cancer Research UK, 

2013). 

1.1.2.3 Sun Exposure 

Exposure to radiation can lead to lip cancer. It has been seen that lip cancer is three 

folds more common in men than women, which could be due to smoking, sun exposure 

and occupation (Lopez et al., 2003). 

1.1.2.4 Nutrition and Diet 

It was shown in an analysis that there is 50% reduction of risk of oral cancer if the 

intake of vegetable and fruit is increased (Pavia et al., 2006). In another case-control 

study, it was seen that the status of smoking, higher intake of vegetable and fruits 

reduced the risk of oral cancer in alcohol consumers and smokers, whereas it did not 

make any difference in non-drinkers or smokers (Kreimer et al., 2006). It has also been 

observed that risk reduces with higher Body Mass Index (BMI) (Nieto et al., 2003). 
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1.1.2.5 Human Papillomavirus (HPV) 

HNSCC caused by HPV is considered a different clinical entity with HPV 16 being the 

most common subtype in HNSCC. It is also observed that the prognosis of HPV-

associated HNSCC is better than the HNSCC associated with alcohol and smoking. E6 

and E7 protein from the HPV target p53 and Rb, respectively, which leads to 

carcinogenesis in head and neck. HPV positive HNSCC have been found to have wild 

type p53, which goes with the fact that E6 inactivates it. E6 and E7 protein have been 

observed to interact with other proteins like hTERT, c-myc, p21, p27 and others 

(Rautava et al., 2012, Leemans et al., 2011). Based on International Agency for 

Research on Cancer (IARC) data it is suggested that HPV 16 has role in causing oral 

and pharyngeal cancer. It was also shown that 14% of oropharyngeal cancers and 8% 

oral cancers are HPV related (Parkin, 2011). The risk of oropharyngeal cancer also 

increases with the number of sex and oral sex partners indicating involvement of 

sexually transmitted HPV (Heck et al., 2010). It has also been noted in general that the 

risk of head and neck cancer increases in people exposed to HPV (Gillison, 2007). 

1.1.2.6 Potentially Malignant Oral Lesions 

Erythroplakia and leukoplakia are the two most common oral lesions which might lead 

to oral cancer. Other conditions include oral submucous fibrosis, sideropenic dysphagia, 

lichen planus and syphilitic glossitis. Generally, leukoplakia is less likely to turn into a 

cancerous lesion when compared to erythroplakia (Rodrigues et al., 1998). It has been 

assessed that the rate at which transformation of leukoplakia into oral cancer takes place 

is around 1% every year (Scheifele and Reichart, 2003). These lesions will be discussed 

later in detail. 
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1.1.3 Symptoms, Diagnosis and Treatment 

Oral cancer might show following symptoms: an ulcer that does not heal, persistent pain 

in the mouth, red and/or white patches in the mouth, weight loss, problem swallowing 

food and lump in the neck. It is not always necessary that these symptoms always lead 

to diagnosis of cancer but could be related to some other disease process. In terms of 

diagnosis, the current methods involve collecting a tissue biopsy from the patient and 

sometimes fine needle aspiration to collect cells from neck lumps (Cancer Research 

UK, 2013). The future of diagnosis might involve using molecular biomarkers and 

brush biopsy cytology samples for early detection which could lead to higher specificity 

of diagnosis of HNSCC and reduced number of unwanted referrals (Brocklehurst et al., 

2010). The treatment options available for head and neck cancer can range from 

surgery, radiotherapy, chemotherapy and targeted therapy depending on the stage of 

cancer and position of the cancer. Surgery depends on the size and position of the 

cancer and is mainly used when cancer is detected early (Nixon et al., 2013). 

Radiotherapy maybe used alone when the cancer has not spread too much, but it might 

also be used with chemotherapy if the cancer has spread locally. Radiotherapy is also 

used after surgery to kill off any cancer cells left. Chemotherapy is used in instances 

when the cancer has spread locally or after remission when the cancer recurs after 

surgery and radiotherapy (Denaro et al., 2013). In terms of targeted therapy, cetuximab 

(anti-EGFR-mAb) is the only targeted therapy drug which has been approved to be used 

in head and neck cancer treatment. Cetuximab can be used with chemotherapy or 

radiotherapy and has shown to improve overall survival rate (Bonner et al., 2006). Other 

targeted drugs such as panitumumab, zalutumumab and lapatinib are in clinical trials to 

assess their efficacy in head and neck cancer (Bonner et al., 2006, Markovic and Chung, 

2012, Vermorken et al., 2008). Recently, there have been proteins identified which 

target tumour cells and led to their death or apoptosis. These proteins have been isolated 
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from human or viruses such as melanoma differentiation associated-7 (MDA-7) or 

apoptin (VP3) respectively (Argiris et al., 2011). 

1.1.4 Clinical Pathology 

1.1.4.1 Normal Oral Mucosa: 

The oral mucosa is a lining mucous membrane which covers the entire oral cavity and 

also contains several sensory receptors which include the taste buds in the tongue. 

Stratified squamous type epithelium is seen in the oral mucosa which is likely to be 

keratinised in places which are subjected to friction, like palate and the dorsum of the 

tongue (Figure 1.4). Lamina propria is the dense collagenous tissue which sustains the 

oral epithelium (Wheater et al., 2000). 
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Figure 1.4. Non-keratinised normal oral mucosa (Courtesy of Dr. Keith Hunter). 
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Sub-mucosal supporting tissue attaches the lamina propria to the underlying muscle in 

highly mobile places like floor of the mouth and soft palate. Dense fibrous sub-mucosa 

firmly binds the lamina propria to the periosteum in the places where the bone is 

underneath the oral mucosa like the tooth-bearing ridges and hard palate. In the sub-

mucosa, a number of accessory salivary glands of both mucous and serous types are 

present (Wheater et al., 2000). 

1.1.4.2 Leukoplakia and Erythroplakia: 

Leukoplakia is a white lesion on the mucous membrane of the oral cavity that cannot be 

defined as any other characterised lesion (Axell et al., 1996). Even though leukoplakia 

has no defined histological behaviour or change, it is possible that few of them present 

as invasive carcinoma or potentially malignant lesion but most are benign 

hyperkeratoses. It has been observed that the incidence of leukoplakia around the world 

varies from being less than 1% to over 10% (Soames and Southam, 2005). 
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Figure 1.5. Homogenous and Non-Homogenous Leukoplakia (Courtesy of Dr. 

Keith Hunter). 
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Leukoplakia could present as homogenous or non-homogenous surface (Figure 1.5). 

Homogenous Leukoplakia is defined as a white lesion which appears thin and flat and 

may show shallow cracks and has a wrinkled, corrugated or smooth surface with 

constant texture all over. Non-Homogenous Leukoplakia can be defined as a white/ 

white-red lesion that may be unequally nodular, exophytic or flat. Slightly rounded, 

raised, white and/or red outgrowth are seen in the nodular lesions, whereas sharp 

protrusion or uneven bluntness might be seen in exophytic lesions (Axell et al., 1996). 

Prognosis for Non-Homogenous Leukoplakia is noted to be worse than Homogenous 

Leukoplakia as they are more known to show epithelial dysplasia (Napier and Speight, 

2008).  
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Figure 1.6. Erythroplakia (Courtesy of Dr. Keith Hunter/ Dr. Anne Hegarty). 
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A lesion which cannot be characterised pathologically or clinically as being any other 

condition and which is red in colour and presents as a velvety plaque on the oral mucosa 

can be defined as Erythroplakia (Figure 1.6). Erythroplakia may present itself as 

invasive carcinoma or carcinoma in-situ, hence its appearance in the previously white 

lesion could be alarming histologically. Induration, fixation, lymphadenopathy and 

ulceration are other signs which might be of concern (Soames and Southam, 2005). 

1.1.4.3 Potentially Malignant Oral Lesions 

Potentially malignant oral lesions are defined as mucosal lesions which have high risk 

of developing into squamous cell carcinoma compared to normal oral mucosa. This 

terminology is more preferred by the WHO. Mucosal lesions considered as potentially 

malignant includes leukoplakia, erythroplakia, oral lichen planus, oral submucous 

fibrosis and proliferative verrucous leukoplakia (Diajil et al., 2013).  

1.1.4.4 Epithelial Dysplasia 

Epithelial Dysplasia is defined as the sum of architectural and cytological changes seen 

histopathologically in the oral mucosa. It may present itself in normal oral mucosa as 

erythroplakia, leukoplakia or leukoerythroplakia clinically (Lumerman et al., 1995). The 

maturation, differentiation and proliferation of epithelial cells undergoes changes in the 

dysplastic epithelium (Soames and Southam, 2005). The histopathological changes 

which might be observed in epithelial dysplasia could range from basal cell hyperplasia, 

abnormal polarization and cell adhesion, abnormal mitosis, loss of normal cell 

keratinisation, enlargement of nucleus and hyperchromaticity, cell anaplasia, loss of 

epithelial stratification, rete ridges which are drop-shaped, surface pattern change and 

the epithelium thickness involved in dysplasia. All of these features are not noticed in 

one single case of epithelial dysplasia but most of them are seen (Lumerman et al., 

1995). Dysplasia is graded as mild, moderate or severe. It has been noticed that severe 
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dysplasia has higher chance of transforming into cancer with age, sex, pre-cancerous 

conditions and diagnosis as other limiting factors (Warnakulasuriya et al., 2011). Non-

homogenous leukoplakia and erythroplakia have a higher rate of epithelial dysplasia or 

also invasive carcinoma when compared to homogenous leukoplakia even though it is 

difficult to predict clinically its severity or presence (Mashberg, 1977). Through several 

studies it has been observed that homogenous leukoplakia shows dysplasia only in 10% 

cases while non-homogenous leukoplakia shows dysplasia in 50% of the cases (Soames 

and Southam, 2005). A very high incidence is seen in speckled leukoplakia for causing 

dysplasia especially when it clinically starts showing characteristics of erythroplakia 

(Mehta et al., 1981). 

1.1.4.5 Squamous Cell Carcinoma 

Of all the malignant neoplasms in the oral mucosa, 90% are squamous cell carcinoma. 

There are huge variations seen in the incidence of cancer throughout the world. In the 

UK and USA the rates are seen to be 4% of all types of tumours whereas it rises to 

almost 40% of all tumours in the south-east Asian countries (Soames and Southam, 

2005). 

There are many clinical forms in which squamous cell carcinoma can present. The key 

is to diagnose it early as this is a major factor influencing the clinical outcome of the 

patient and hence suspicion and vigilance are considered the key factors in the detection 

of cancer (Graveland et al., 2013). There are generally no symptoms seen for early 

lesions, though they might present themselves as a small exophytic growth with no 

erythema or ulceration, white patch, erythroplakia or a small ulcer (Neville, 2009). 

Clinically, features like induration, ulceration and tissue fixation to structures should 

stimulate the suspicion of an early carcinoma. A late stage lesion mostly presents itself 

as wide based outgrowth with a nodular, rough, haemorrhagic, warty or necrotic surface 
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or it can also be present as crater-like ulcer with rolled, raised everted edges which is 

destructive (Soames and Southam, 2005). 

Oral squamous cell carcinoma shows various forms in its histology (Figure 1.7). 

Though, all the forms show destruction of tissue and invasion. The grading of squamous 

cell carcinoma is done on the basis of the histopathology of the carcinoma into well, 

moderately or poorly differentiated categories (Neville, 2009). Often, there is 

infiltration of the plasma cells and lymphocytic cells in the stroma which is supporting 

the invading epithelium. Some carcinomas invade with the broad front whereas others 

consist of small islands or even single invasive cells. The carcinoma with wide invasive 

front is referred to as cohesive whereas when small islands or single cells invade it is 

called non-cohesive. It has been noticed that non-cohesive form of invasion has worse 

prognosis. Vascular, neural and bone invasion can also take place (Jerjes et al., 2010). 

Metastatic spread of the carcinoma in the regional lymph nodes can be divided into two 

classes: Intracapsular spread, which is when the spread is confined to the capsule of the 

node and Extracapsular spread, which is when carcinoma spreads to the adjacent tissue 

close to the capsule. The prognosis of the carcinoma is worse when it has extracapsular 

spread (Okuyemi et al., 2013). 
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Figure 1.7. Oral Squamous Cell Carcinoma (Courtesy of Dr. Keith Hunter). 
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1.1.5 Molecular Pathology 

It is a well-known fact that normal cells undergo dramatic changes genetically and 

epigenetically to transform into cancer cells. It is also known that there are cytogenetic 

changes as well in the cells, where there is either loss or gain of DNA segments or 

whole chromosomes in few cases (Delbaldo et al., 2008). Genomic instability arises due 

to large cytogenetic changes in the cells which could be either loss or gain of genomic 

DNA or chromosomes, like tetraploidy or aneuploidy (Ai et al., 2001). Many genetic 

alterations have been described not only in specific genes but also at specific 

chromosomal loci especially at gain of 3q and loss of 9p loci leading to loss of 

heterozygosity in HNSCC (Partridge et al., 1999, Graveland et al., 2011, Ha et al., 2009, 

Walter et al., 2013). In cancer, genes can also be rendered inactive by DNA methylation 

of the promoter region of the gene which is involved in gene expression leading to 

transcriptional silencing of the genes. DNA methylation generally occurs in the CpG 

islands (cytosine-guanine) (Ha and Califano, 2006). Recently it has been noted that 

there is widespread demethylation of the DNA as well in the cancer cells but its impact 

has still not been assessed completely (De Smet and Loriot, 2010). 

1.1.5.1 Oncogenes 

Generally, cell division begins and maintains itself based on cellular stimuli. These 

stimuli can either be autocrine or paracrine in nature which are mediated from receptors 

to the cell nucleus via complex signalling pathways. When these pathways are 

aberrantly activated it leads to cancer and these genes are then called ‘oncogenes’. In 

tumours, the most oncogenic changes are found in the receptors and their growth 

factors. They may produce surplus of growth factor which could act in autocrine or 

paracrine manner on the cancer cells (Myoken et al., 1994), they could also over-

express or contain a mutation which increases the expression of growth factor receptors 

(Cheng et al., 2002) or increase the transduction of signal in the cell (Downward, 2003). 
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Epidermal Growth Factor Receptor was first isolated in 1980 and it is a receptor 

tyrosine kinase situated on the plasma membrane. EGFR is overexpressed in several 

cancers and can lead to tumour growth, survival and progression. EGFR exerts its effect 

in cancers either by cytoplasmic or nuclear mode. In cytoplasmic mode, EGFR is 

activated when it binds to its ligand which leads to recruitment, phosphorylisation and 

activation of several pathways such as Ras-Raf, PI-3K-Akt, PLC-γ and Jak-Stat 

pathway leading to proliferation, tumourigenesis, resistance and progression (Han and 

Lo, 2012). The nuclear mode is activated when EGFR binds its ligand in presence of 

vitamin D, hydrogen peroxide, cisplatin, heat or radiation. On translocation to nucleus, 

EGFR interacts with transcription factors such as STAT3 and E2F1 and activates 

expression of iNOS and B-Myb. It is also involved in increased expression of cyclin D1 

and can promote G1/S progression, proliferation, metastasis or radioresistance (Lo and 

Hung, 2006). Cetuximab is the only approved targeted therapy in HNSCC against 

EGFR (Markovic and Chung, 2012). EGFR over-expression, based on meta-analysis of 

37 studies in HNSCC, was found to have negative effect on overall survival in patients 

and was shown to reduce disease free survival rate only in oropharyngeal cancers 

(Keren et al., 2013). EGFR is over-expressed in >95% of HNSCC cases and also is an 

independent poor prognostic factor in HNSCC. A mutant version of EGFR, EGFRvIII 

is found in 42% of HNSCC cases alongside EGFR and can lead to treatment failure 

with targeted therapy (Sok et al., 2006). 

Phosphatidylinositol-3-kinase (PI-3K) is activated in several cancers including HNSCC 

based on different molecular alterations. PI-3K is primarily activated by receptor 

tyrosine kinases in cancers. p85, regulatory subunit, is useful in binding to the tyrosine 

residues whereas p110 catalytic subunit is involved in phosphorylation of PIP2 to 

generate PIP3. PTEN, tumour suppressor gene, is involved in reverse reaction of de-

phosphorylating PIP3 to PIP2. PIP3 binds 3-phopshoinositide dependent protein kinase 
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(PDK1) which helps in phosphorylation of protein kinase B (PKB or Akt). PI-3K is 

involved in tumourigenesis, metastasis, recurrence and progression (Du et al., 2012). 

PIK3CA, p110α subunit of PI-3K, is found to be mutated in 11% HNSCC cases (Qiu et 

al., 2006). PIK3CA has also been found to be associated with lymph node metastasis in 

HNSCC (Fenic et al., 2007). It was also seen that PIK3CA is involved in progression of 

dysplasia to invasive HNSCC (Woenckhaus et al., 2002). It has also been observed that 

PTEN expression is reduced in 30% HNSCC cases (Squarize et al., 2013).  

Many oncogenes exert their effect by modulating the cell cycle. The cell cycle consists 

of four stages namely G1, S, G2 and M by which a cell undergoes cell division which 

involves DNA duplication which is followed by division of cytoplasm to give rise to 

two daughter cells (Loyer et al., 1996). Cyclin D1 is a protein which is engaged in the 

G1/S phase transition of the cell (Schuuring, 1995). It has been observed that cyclin D1 

is deregulated or amplified in 30-50% of the HNSCC cases and many cell lines as well 

(Okami et al., 1999). Though, cyclin D1 is amplified in many cases it is not the only 

cause for development of HNSCC, there are other proteins which inhibit the cell cycle 

at different check points and could work in suppressing the tumour, hence these are 

called Tumour Suppressor Genes. 

1.1.5.2 Tumour Suppressor Genes  

Retinoblastoma protein in its unphosphorylated form allows G1/S phase transition in 

cell cycle (Adams, 2001). This protein can be deregulated either due to mutation or 

interaction with E7 protein of HPV. This protein is not commonly mutated in HNSCC 

(Ambrosch et al., 2001). Other class of proteins which inhibit cell cycle are called 

Cyclin-dependent Kinase (CDK) Inhibitors which consist of mainly two types, ink4 and 

Cip/Kip. CDK4 and 6 both are inhibited specifically by p16ink4a (Serrano et al., 1993). 

This protein has been observed to be deregulated in many cancers including HNSCC 
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(Cairns et al., 1995) and it is seen that its function can be silenced due to deletion, 

mutation or epigenetic silencing (McGregor et al., 2002). In HNSCC, it is present in 60-

80% of the cases and silencing is generally due to epigenetic or genetic factors (Reed et 

al., 1996). Cip/kip family proteins inhibit wider range of CDK and only p27 has been 

shown to be involved in the development of HNSCC (Slingerland and Pagano, 2000). In 

HNSCC, loss of expression of p27 has been linked to poor prognosis of the disease and 

p27 expression might be lost in dysplastic epithelium (Jordan et al., 1998).  

An important role of response by the cell to DNA damage is carried out by the 

transcription factor p53 (Tumour Protein p53). MDM2 is an E3 ubiquitin ligase and 

works as negative regulator of p53 in normal conditions. On DNA damage, there is 

activation of Ataxia telangiectasia mutated (ATM) and Ataxia telangiectasia related 

(ATR) leading to activation of CHK1 and CHK2. p53 is then phosphorylated by CHK1 

and CHK2 which prevents MDM2 from degrading p53 (England et al., 2013).This acts 

to either arrest the cell cycle or initiate apoptosis. p53 has a short half-life and its 

activity is regulated at post-translational level. p53 phosphorylation leads to its 

activation and stabilisation which is carried out by signal transduction pathways (Hirao 

et al., 2000). Loss of p53 function can be due to mutation in the gene but also can be 

due to action of E6 protein from HPV (Shay et al., 1993). It has been observed that 75% 

of HNSCC cases carry p53 mutation (Balz et al., 2003).  

1.1.5.3 Lifespan Control 

The ends of the chromosomes consist of repetitive sequences of DNA which are called 

Telomeres. When a cell undergoes division a few of the repeats are lost (Levy et al., 

1992) and hence it could be considered to be a mechanism by which to count the 

number of cell divisions (Allsopp et al., 1995). Telomerase enzyme consists of two 

components, TERT (reverse transcriptase part) and TERC (template of RNA) (Kim et 
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al., 1994). It has been observed that expression of hTERT can lead to immortality due to 

addition of telomere sequence. Its activity is repressed by p53, hence it leads to 

immortality in the p53 mutants (McGregor et al., 2002). It has been observed that TERC 

and TERT both are deregulated in the HNSCC with an increase in their expression 

which leads to immortalisation (Downey et al., 2001).  

The development of HNSCC is not only due to the deregulation of cell cycle regulatory 

genes but also could be attributed to different transcription factors and more recently to 

micro-RNA. 

1.1.5.4 Transcription Factors (TF) 

Transcription factors as the name suggests are proteins that are involved in the control 

of transcription of their target genes. In terms of cancer, transcription factors can either 

be oncogenes or tumour suppressor genes. Hanahan and Weinberg in their review 

explained six hallmarks of cancer as proliferation, evading apoptosis, angiogenesis, 

immortality, invasion and migration and evading growth suppressors. In this review 

they also explained two emerging hallmarks as avoiding immune destruction and energy 

metabolism reprogramming and two enabling characteristics as genome instability and 

mutation and tumour-promoting inflammation. All of these hallmarks are largely 

governed by the transcription factors which are activated due to signal transduction and 

target genes they transcribe (Hanahan and Weinberg, 2011) (Figure 1.8). 
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Figure 1.8. Transcription factors promoting different hallmarks of cancer. 
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NF-κB (Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells) is a 

transcription factor which is not only involved in development of adaptive and innate 

immune system but also plays central role in cell survival and proliferation (Karin and 

Greten, 2005, Bhave et al., 2011). NF-κB consists of five subunits as follows: p52, p50, 

c-Rel, p65 and RelB (Karin, 2006). p65 is the DNA binding subunit of NF-κB 

(Wilhelmsen et al., 1984). NF-κB is upregulated in HNSCC which could lead to 

development of invasive cancer from premalignant lesions (Ondrey et al., 1999). 

Deregulated expression of NF-κB can also lead to angiogenesis and metastasis in cancer 

(Nakanishi and Toi, 2005). Signal Transducer and Activator of Transcription (STAT) 

genes are involved in the transcription of the genes related to immune responses, cell 

fate decision and growth. In total, the STAT family consists of seven genes called 

STAT1, 2, 3, 4, 5a, 5b and 6 (Darnell, 2002). It has been noted that the level of 

phosphorylated STAT3 is very high in HNSCC when EGFR is activated (Grandis et al., 

1998) which may contribute to cell survival and proliferation (Leeman et al., 2006). It is 

also understood that STAT3 deregulation might be an early event in HNSCC (Grandis 

et al., 2000) and this elevation can also lead to poor prognosis and lymph node 

metastasis (Grandis et al., 1998).  

SNAILs are transcription factors that are involved in promoting EMT (Epithelial-

mesenchymal transition) by increasing expression of mesenchymal markers and 

decreasing epithelial markers (Scanlon et al., 2013). SNAIL has been implicated in 

promoting regional metastasis and lymphovascular invasion and is predictive of poorly 

differentiated HNSCC (Mendelsohn et al., 2012). TWIST (basic helix-loop-helix 

transcription factor) changes expression of its target genes based on E-box responsive 

elements (Scanlon et al., 2013). TWIST is activated during EMT and its expression is 

higher in cancers which metastasize (Zeisberg and Neilson, 2009). Lymph node 

metastasis is directly correlated with TWIST up-regulation and E-cadherin expression is 
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down-regulated by BMI1 and TWIST which leads to poor prognosis (Ou et al., 2008, 

Scanlon et al., 2013). LEF (Lymphoid Enhancer Factor) facilitates Wnt signalling with 

TCF (T-cell factor) as a co-transcriptional activator. LEF/TCF promotes EMT in oral 

squamous cell carcinoma (OSCC) and up-regulate MMP-7 expression when β-catenin is 

mutated (Iwai et al., 2010). NOTCH1 consists of intracellular and extracellular region 

and when this receptor is activated due to ligand binding, it leads to cleavage of 

NOTCH1 intracellular domain (NICD) and it translocates to nucleus and leads to 

transcriptional activation by forming transcription factor complex with Recombination 

Signal Binding Protein for Immunoglobulin Kappa J Region (CBF1) and coactivator 

Mastermind-like family (MAML). In leukemias, NOTCH1 has been found to have 

oncogenic mutations but in HNSCC it has also been observed that NOTCH1 mutation 

might have tumour suppressor functions which can be due to mutation in EGF-like 

region or NICD and hence in HNSCC, NOTCH1 can also act as tumour suppressor 

gene (Loyo et al., 2013, Agrawal et al., 2011). NOTCH1 mutations are found in 10 to 

15% of HNSCC cases and it was observed that there is copy number increase for JAG1 

which is NOTCH1 ligand or activation of HES1/HEY1 which are downstream effectors 

of NOTCH pathway. Hence, NOTCH1 can have oncogenic or tumour suppressor 

effects in HNSCC (Sun et al., 2014). NOTCH1 overexpression is also involved in 

cisplatin resistance in HNSCC (Gu et al., 2010). 

Table 1.1 Other Transcription factors (TF) deregulated in HNSCC 

TF Effects Reference 

Runt-related transcription 

factor-3 (RUNX3) 

Promotes cell growth and 

prevents apoptosis 

(Kudo et al., 2011) 

Avian myelocytomatosis 

viral oncogene homolog 

Induces growth and avoids 

apoptosis 

(Khan and Bisen, 2013) 
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(C-Myc) 

Forkhead box O3a 

(FOXO3a) 

Growth inhibition (Fang et al., 2011) 

Activator protein-1 (AP-1) Promotes expression of 

pro-inflammatory and pro-

angiogenic cytokines 

(Ondrey et al., 1999) 

 

Another group of important TF’s are HOX transcription factors, a family comprising of 

39 HOX genes which are present on four different chromosomes. These transcription 

factors are involved in the embryogenesis and organogenesis in vertebrates. It has been 

observed that several HOX genes in different cancers are deregulated and these are 

involved in cell proliferation, apoptosis, metastasis and differentiation (Shah and 

Sukumar, 2010). HOXA1, A2, A3, B3, B7, B9, C8, D10 were noted to be up-regulated 

in OSCC when compared to normal tissue. HOXC6 expression was seen to be higher in 

lymph node metastatic cancer compared to primary cancer in this cancer type (Hassan et 

al., 2006). 

1.1.5.5 Micro-RNA 

Lin-4 and let-7 were the first two microRNA to be discovered in 1993 and 2000, 

respectively, in Caenorhabditis elegans (Lee et al., 1993, Reinhart et al., 2000). 

MicroRNA’s are non-coding RNA transcripts which are generally approximately 22 

nucleotides in length and function in post-transcriptional gene regulation (Popovic et al., 

2009). RNA polymerase II generally transcribes most of the miRNAs, either from the 

intronic region or from the polycistronic region forming the primary RNA transcript 

(pri-miRNA) (van Rooij and Olson, 2007). This pri-miRNA transcript is cleaved by 

Drosha to give a 60-70 nucleotides pre-miRNA hairpin transcript (Lee et al., 2003). 
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This pre-miRNA transcript is transported to cytoplasm with the help of Exportin5 (Yi et 

al., 2003). Once in cytoplasm, pre-miRNA transcript is further cleaved to give duplex of 

~22 nucleotide in length by Dicer (Zhang et al., 2002). This duplex binds with 

Argonaute protein and here single stranded miRNA carries out its function of either 

mRNA degradation or translational repression (Hammond et al., 2001) (Figure 1.9).  

Around 30% of the genes which code for different proteins are targeted by the miRNA 

which have been discovered to date in humans (Filipowicz et al., 2008). miRNA are 

redundant in terms of binding to target genes which means they can bind to more than 

one mRNA transcripts (Chen et al., 2011a). miRNAs can also produce multiple miRNA 

isoforms (Isomirs) which can be generated due to trimming of 5’ or 3’end, change in 

internal miRNA sequence due to incorporation of wrong base in sequence or tailing 

where additional non-templated nucleotide are added to miRNA can produce Isomirs 

(Ameres and Zamore, 2013). Recently, another form of miRNA biogenesis has been 

described. Mirtrons are splicing dependent short pre-miRNA, which give rise to active 

mature miRNA which show physiological effects in vertebrates. Mirtrons are produced 

from the splicing of the intron and are drosha independent (Sibley et al., 2012). 
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Figure 1.9. Basic depiction of miRNA biogenesis. 
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It has been shown that micro-RNA can have two classes: one which works as oncomir 

(oncogene) and others which act as tumour suppressor genes. Oncomir generally 

supports the development of cancer whereas tumour suppressor micro-RNAs act to 

inhibit oncogenesis (Lotterman et al., 2008). In different types of cancer, different 

micro-RNAs are deregulated. For HNSCC, it was noted that the level of miR-10a and 

miR-375 was reduced whereas miR-21, miR-106b, miR-423, miR-20a and miR-16 were 

over-expressed. In same study it was observed that knockdown of miR-106b led to 

arrest in G1 phase of cell cycle (Hui et al., 2010). miR-106b has also been shown to 

directly target p21 gene which reflects its phenotypic effects (Ivanovska et al., 2008). 

miR-21 was shown to directly target PTEN gene which is a tumour suppressor gene and 

was also shown to increase cell proliferation, migration and invasion in hepatocellular 

carcinoma. PTEN acts as inhibitor of Akt/mTOR pathway (Meng et al., 2007). miR-21 

was shown to be one of the early deregulated microRNA in progression of leukoplakia 

to OSCC (Cervigne et al., 2009). It could mean that miR-21 shows its phenotypic 

effects by targeting tumour suppressor genes which leads to oncogenesis in HNSCC. 

miR-363 was shown to be down-regulated in HNSCC with lymph node metastasis and 

was shown to target podoplanin (PDPN). It was shown that increased PDPN expression 

due to down-regulation of miR-363 led to increased migration and invasion in HNSCC 

(Sun et al., 2013). Podoplanin is a platelet aggregation factor and is present as type I 

transmembrane glycoprotein. Podoplanin is also believed to be involved in 

lymphangiogenesis (Seki et al., 2013). miR-200a expression in OSCC was down-

regulated and it was shown that miR-200 directly targets ZEB1 and ZEB2 which are 

transcriptional repressors of E-cadherin in murine mammary epithelial cells (Park et al., 

2009, Korpal et al., 2008). 
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Table 1.2 List of aberrantly expressed miRNA in different cancers. 

Cancer type Aberrantly expressed miRNA References 

HNSCC miR-10a, miR-375, miR-21, miR-

106b, miR-423, miR-20a, miR-16, 

miR-196a 

(Hui et al., 2010, Liu et 

al., 2012a) 

Lung let-7, miR-21, miR-34 (Takamizawa et al., 2004, 

Nana-Sinkam and Croce, 

2013) 

Breast miR-145, miR-125b, miR-155, 

miR-21 

(Iorio et al., 2005) 

Colorectal miR-143, miR-145 (Michael et al., 2003) 

Pancreatic miR-21, miR-196a, miR-190, miR-

186, miR-221, miR-210, miR-222, 

miR-200b 

(Bhat et al., 2012) 

  

Early detection of cancer leads to better prognosis for the patients and hence there is 

need for more specific and sensitive biomarkers. In a study it was identified that miR-

21, miR-181b and miR-345 could be potential biomarkers for progression of 

leukoplakia to oral squamous cell carcinoma (OSCC) (Cervigne et al., 2009). In another 

study it was observed that low expression of miR-205 and let-7d in HNSCC was 

indicative of poor prognosis for the patient (Childs et al., 2009). It has also been 

reported that expression of miR-125a and miR-200a was noted to be down-regulated in 

saliva of OSCC patients compared to healthy individuals (Park et al., 2009).  

Another interesting micro-RNA is miR-196, which was found to be present in HOX 

gene clusters and has recently been seen to be deregulated in multiple cancers like 
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oesophageal adenocarcinoma, malignant melanoma, pancreatic cancer, leukaemia and 

breast cancer (Chen et al., 2011a). Recently, it was also observed miR-196a was highly 

expressed in oral carcinoma and was also increased in plasma of cancer patients 

compared to healthy individuals (Liu et al., 2012a). For this project, there was particular 

interest in the genomic location of miR-196a in HOXB cluster. 
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Chapter 2: HOXB9 and miR-196a 

2.1 HOX genes: 

The discovery of the homeotic genes, which are involved in organogenesis and 

embryogenesis, was possible due to observation of two major mutations in the 

Drosophila melanogaster. It was seen in Drosophila, that when there was mutation in 

the bithorax complex it led to change of haltere into wings and in the other one, it was 

seen that mutation in the antennapedia complex led to change of antenna into legs 

(Garciabellido, 1977). Later, it was discovered that the bithorax mutant seen in 1915 

was actually part of a cluster called bithorax complex which consisted of Abd-B, Abd-A 

and Ubx whereas, antennapedia contains Antp, Scr, Dfd, Pb and Lab (Grier et al., 

2005). This whole cluster was named HOM-C complex which were drosophila’s 

homeotic genes. The counterpart of this complex in almost every vertebrate and in 

human was discovered in 1980’s by sequence similarity and was called Homeobox 

genes (Abate-Shen, 2002) (Figure 2.1). Homeobox genes are present in two classes: 

Clustered and Non-clustered Homeobox genes. In total there are 200 Homeobox genes, 

out of which 39 HOX genes come under clustered Homeobox genes (Nagel et al., 

2007). Most homeobox genes which are not present in HOX cluster do not play part in 

homeotic transformations. Most of these homeobox genes have been assigned to 

different families based on their sequence similarity for homeodomain and other 

domains present in protein form (Tupler et al., 2001). 
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Figure 2.1. Drosophila HOMC genes and Mammlian HOX genes homology. 

Modified from (Eklund, 2011). 
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In humans, there are four clusters of HOX genes which have formed due to divergence 

and duplication from primitive HOX genes. These four clusters in human are found as 

follows, HOX A at chromosome 7p15, HOX B at 17p21, HOX C at 12q13 and HOX D 

at 2q31. In total, there are 39 HOX genes between these four clusters, divided into 13 

paralogous groups with each cluster consisting of 9-11 genes (Duboule, 1992). HOX 

genes consist of two exons and one intron and homeodomain is situated in the exon 2 

(Figure 2.2). Homeodomain is made up of 61 amino acids and has a helix-loop-helix 

structure which facilitates binding of HOX Transcription factor to DNA (Grier et al., 

2005). There is presence of hexapeptide motif towards N-terminal side of 

Homeodomain which facilitates the binding of co-factor, PBX, to HOX protein and they 

also facilitate the binding site selection. MEIS is also an important co-factor for HOX 

proteins, but the motif involved in its interaction with HOX protein is not well 

understood (Eklund, 2011). The HOX-PBX heterodimer binds to bipartite sequence 5’ 

ATGATTNATNN 3’ which consists of two halves, with PBX binding the 5’ ATGAT 3’ 

sequence and HOX protein binding more variable 5’ TNATNN 3’ sequence. The 

preference for binding sequence differed from HOXB1 through to HOXB9 for HOX 

half of the HOX-PBX binding sequence (TTAT to TGAT) (Chang et al., 1996). Abd-B 

homolog HOX proteins interacted with Meis1 as co-factor, with Meis1 using 5’ 

TGACAG 3’ sequence as its binding site (Shen et al., 1997).   
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Figure 2.2. Structure of HOX genes. Modified from (Abate-Shen, 2002). 
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2.1.1 Relation to Development: 

At the time of embryogenesis, structures like organs and limbs are formed when set of 

cells become committed for their formation. With time it has become apparent that 

group of HOX genes might be involved in the development of these structures along the 

AP axis in the body (Kmita and Duboule, 2003). Gap genes are the first to be expressed 

in the zygote along the AP axis and consist of genes like Kruppel, Hunchback and 

knirps (Hulskamp and Tautz, 1991). Depending on the concentration gradient of Gap 

genes, Pair rule genes are expressed in bands to form 14 parasegments along the AP 

axis. Hence, each parasegment has a different concentration of the gap and pair genes 

expression which defines the expression pattern of the HOM-C genes (Small and 

Levine, 1991, Grier et al., 2005). Initiation of the HOM-C complex may be due to the 

presence of gap and pair genes but there are other modifying genes which also might be 

involved in its expression, like genes which encode for chromatin-associated proteins 

such as Polycomb group and trithorax group (Hanson et al., 1999). 

Histone methyltransferase proteins consist of polycomb (PcG) and trithorax (TrgX) 

proteins which contain histone-lysine methyltransferases and histone-arginine 

methyltransferases respectively. Transcriptionally active or repressed condition of HOX 

genes is maintained by opposite action of TrgX or PcG respectively (Barber and 

Rastegar, 2010). Repression of HOX genes, in part, is due to PcG protein activity which 

was first identified in drosophila (Zink and Paro, 1989). PcG proteins impart their effect 

of silencing on their targets by two protein complexes: PRC1 (Polycomb group 

repressive complex 1) and PRC2. During development, it was observed that these two 

complexes were involved in silencing of several developmental genes in human 

embryonic stem cells (Lee et al., 2006). PRC1 contains several protein subunits such as 

B Lymphoma Mo-MLV Insertion Region 1 (BMI1), Really Interesting New Gene 1 

(Ring1), Ring2 and Early Development Regulator 2 (HPH2) (Wang et al., 2004) 
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whereas PRC2 contains Suppressor of Zeste 12 Homolog (SUZ12), embryonic 

ectoderm development (Eed) and enhancer of zeste homolog 2 (Ezh2) (Barber and 

Rastegar, 2010). BMI1 has been shown to repress expression of HOXA9 in leukemic 

stem cells (Smith et al., 2011a). SUZ12 and H3K27me3 marks were detected in normal 

cells for HOXB7, HOXC10, HOXC13 and HOXD8 genes and in OSCC, SUZ12 and 

H3K27me3 marks were not detected which led to higher expression of these genes 

(Marcinkiewicz and Gudas, 2013). Utx is TrgX group regulator and in drosophila it 

keeps the HOX genes, which are repressed by PcG action, in active state where it is 

required (Copur and Muller, 2013).  

At the time of embryogenesis, HOX genes are expressed from 3’ to 5’ end along the 

antero-posterior axis. The function of HOX genes is to give positional identity along 

anterior-posterior axis. The HOX genes towards 3’ end are expressed earlier and also 

more anteriorly when compared to 5’ end genes which are expressed late and more 

posteriorly, this pattern of expression is called spatial collinearity (Lewis, 1978) (Figure 

2.3). Retinoic acid (RA) has been observed to regulate the timing of HOX genes 

expression in the vertebrates. RA signalling is effected by heterodimerization of nuclear 

receptors, retinoic X receptors (RXRs) and retinoic acid receptors (RARs), which in 

turn bind to retinoic acid response elements (RARE) which are specific DNA sequences 

(Soshnikova, 2013). On stimulus by RA, 3’ HOXB genes respond earlier based on their 

looping out from chromosome which is dependent on the higher-order chromatin 

structure based on the histone modifications (Chambeyron and Bickmore, 2004). 

 

 

 



42 
 
 

 

 

 

Figure 2.3. Positioning of HOX gene cluster at different chromosomes in human 

and showing spatial collinearity in expression of HOX genes. Modified from (Grier 

et al., 2005). 
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The HOM-C genes in drosophila and HOX genes in the vertebrates are responsible for 

patterning the development of the body. Ed Lewis in 1978 concluded that position of 

HOX genes within the cluster determined the effect, gain of function and loss of 

function, the two kinds of homeotic mutations. Formation of structures which are 

generally found more anteriorly are due to loss of function mutation, whereas 

development of structures which are formed posteriorly but are formed in anterior 

segments are due to gain of function mutation, and this consequence is called ‘posterior 

prevalence’. It has been observed that the function of 3’ end genes is inhibited by 5’ end 

genes which leads to ‘posterior prevalence’ (Lewis, 1978). It has also been noted that 

there are no severe changes in morphogenesis if there is mutation in single HOX gene. 

This could be due to the fact that HOX gene clusters were formed due to duplication 

and divergence and hence there is presence of redundancy in paralogous group members 

or its possible there are more effector genes in vertebrates which respond to quantitative 

effect of HOX protein (Suemori and Noguchi, 2000). Another pattern seen in 

expression of HOX gene is called ‘Temporal collinearity’ in which during embryonic 

development there is spatial expression of HOX gene, which is the expression of 3’ end 

genes first and as embryo develops, expression of 5’ genes progressively (Grier et al., 

2005). In a study, mouse HOXD cluster was split into two clusters with HOXD11-

HOXD13 isolated from rest of the HOXD cluster by 3 Mb insertion. This study showed 

that H3K27me3 pre-marked the transcription sites in the HOXD cluster but was not 

enough when remote enhancer sequences were absent for appropriate HOX gene 

activation, which showed that HOX clustering is important for HOX gene temporal 

activation (Soshnikova and Duboule, 2009). 

2.1.2. HOX Cluster and Oncogenesis: 

It has been observed that the expression pattern of the HOX genes in cancerous tissue 

seems to be dysregulated when compared to normal tissue. The expression pattern can 
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be contributed to the following three groups. The first group consist of the re-expression 

of the HOX genes in the oncogenic tissue which normally would only be expressed 

during development. Second contain the category of HOX genes which are expressed in 

tumour cells but are not expressed at all normally during development. Third is the 

group in which HOX gene expression is down-regulated when compared to normal 

expression in the completely differentiated cell (Abate-Shen, 2002). The deregulation of 

the HOX genes could be due to epigenetic deregulation, gene dominance or 

temporospatial deregulation (Shah and Sukumar, 2010). 

One of the most important mechanisms of maintaining expression of any gene is 

epigenetic control which is true for HOX genes. Methylation is commonly seen in the 

CpG islands of the promoter of HOX genes which are silenced (Hershko et al., 2003). 

Polycomb and Trithorax group proteins have been seen to be involved with histone 

trimethylation. The methylation and demethylation in the CpG islands is carried out due 

to the changes caused in the chromatin structure by these proteins (Shah and Sukumar, 

2010). For example in Mixed lineage leukemia (MLL) translocation containing 

lymphoblastic leukaemias, with MLL being a trithorax homologue, there is 

overexpression seen of HOX genes such as HOXA9 and HOXA10 which leads to poor 

prognosis (Golub et al., 1999, Ferrando et al., 2003).  

Micro-RNAs like miR-196 and miR-10 are expressed within the HOX gene clusters. 

Through computational analysis and experimental results it has been seen that these 

microRNAs target different HOX genes. It has also been noted that in colon carcinoma 

cell line, at least 10% of all micro-RNA are methylated. This leads us to believe that 

promoter methylation of micro-RNAs involved in HOX gene expression, might be 

another mechanism of control in cancers (Han et al., 2007). It has also been noted that 

large intervening non-coding RNA (lincRNA) such as HOX transcript antisense RNA 
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(HOTAIR) are also involved in the expression of the HOX genes, which adds another 

mechanism of control of expression of HOX genes (Sessa et al., 2007, Rinn et al., 

2007). 

For normal organogenesis, it is important that the HOX gene follow their normal spatial 

and temporal regulation. Perturbed organogenesis has been associated with the 

oncogenesis and hence deregulation of temporospatial collinearity has been thought to 

be another reason for oncogenesis. It was seen in oesophageal carcinoma that when 

compared to normal expression of HOX gene, there were more 5’ end HOX genes 

expressed at a higher level unlike normal oesophagus where more 3’ HOX genes were 

expressed at higher levels (Takahashi et al., 2007). The other reason seen for 

oncogenesis is dominance of HOX genes expression. It has been seen that HOX genes 

have dose-dependent effect, where if one dose is important for normal development 

another could lead to cancer development (Lawrence et al., 1997). For example, it was 

seen that HOXA9 was overexpressed in the Acute Myeloid Leukaemia (AML) 

(Ghannam et al., 2004). When HOXA9 was knocked out in the cell culture models it 

was seen it not only limited oncogenesis but also hindered normal haematopoiesis 

whereas model with only one allele knocked out showed normal haematopoiesis 

(Lawrence et al., 1997). 

Table 2.1 HOX genes aberrantly expressed in different cancers. 

Cancer type HOX genes deregulated References 

Oral cancer HOXA1, HOXA2, HOXD10, 

HOXB3, HOXA3, HOXC8, 

HOXB9, HOXB7, HOXC6 

(Hassan et al., 2006) 

Breast cancer HOXA6, HOXA13, HOXB2, 

HOXB4, HOXB5, HOXB6, 

(Hur et al., 2013) 
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HOXB7, HOXB8, HOXB9, 

HOXC5, HOXC9, HOXC13, 

HOXD1, HOXD8 

Acute myeloid 

leukemia 

HOXB3, HOXB4, HOXA9, 

HOXA10, HOXA11 

(Shah et al., 2012) 

Colorectal cancer HOXA9, HOXB3, HOXB8, 

HOXB9, HOXB2, HOXB13, 

HOXD1, HOXD3, HOXD4, 

HOXD8, HOXD12 

(Kanai et al., 2010) 

Hepatocellular 

cancer 

HOXA3, HOXA5, HOXA6, 

HOXA7, HOXA9, HOXA10, 

HOXA11, HOXA13, HOXB1, 

HOXB6, HOXB7, HOXB8, 

HOXB9, HOXB13, HOXC5, 

HOXC6, HOXC8, HOXC9, 

HOXC10, HOXC11, HOXC12, 

HOXC13, HOXD1, HOXD3, 

HOXD4, HOXD8, HOXD9, 

HOXD10 

(Kanai et al., 2010) 

Non-small cell lung 

cancer 

HOXA3, HOXA5, HOXC4, 

HOXC8, HOXC9, HOXC13, 

HOXD8, HOXD10 

(Plowright et al., 2009) 

Small cell lung 

cancer 

HOXD13, HOXD11, HOXD10, 

HOXC10, HOXC8, HOXB9, 

HOXB8, HOXA11, HOXA10 

(Tiberio et al., 1994) 
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2.2 HOXB9 

HOXB9 is the ninth gene in HOXB cluster present on chromosome 17 in humans. It is 

also part of HOX9 paralogous group (Figure 2.2). Like other HOX genes, HOXB9 

contains homeodomain which has a helix-loop-helix structure and facilitates DNA 

binding. Expression of HOXB9 was increased relatively in bovine and mouse embryos 

between oocyte and morula stage of development (Paul et al., 2011). HOXB9 has been 

implicated in the development of the forelimb, as HOX9 paralogous group mutant mice 

had severely deformed forelimbs. Early forelimb field anteroposterior polarisation 

required function of HOX9 paralogs. This was seen due to requirement of HOX9 

paralogs in the posterior forelimb for expression of Heart and neural crest derivatives 

expressed 2 (HAND2), repression of Gli family zinc protein 3 (Gli3), Sonic hedgehog 

(Shh) expression and collinear expression of HOXA/D 10-13. In the same study, HOX9 

mutants had no phenotypic effects in hindlimb development raising the possibility of 

differences in patterning (Xu and Wellik, 2011). In another study, HOXB9 homozygous 

mutant mice showed irregular attachment of the rib to sternum, intercostal segments 

showed irregular growth and sternum showed decrease in the number of intercostal 

segments. This revealed that HOXB9 played important role in thoracic skeletal 

development. Synergistic effects were observed in the mice which carried homozygous 

mutation for HOXA9 and HOXB9 genes and showed further defects of the rib and 

sternum (Chen and Capecchi, 1997).  

Xcad3, a Xenopus caudal family member (Cdx), was the early target of fibroblast 

growth factor (FGF) signalling pathway and was important to posterior development of 

embryo. Xcad3 led to activation of different HOX genes in posterior development 

among which was HOXB9 (Isaacs et al., 1998) (Figure 2.4). FGF, retinoic acid 

receptors (RARs) and HOX genes interaction was studied in anteroposterior patterning 

for neurogenesis. It was observed that on blockage of FGF pathway it led to reduced 
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expression of members of RAR pathway such as RARα. Over-expression of RARα2 led 

to rescue of expression of Xcad3 and HOXB9 which meant that RARα2 was required to 

mediate the effects of FGF signalling for posterior development through expression of 

Xcad3 and HOXB9 (Shiotsugu et al., 2004) (Figure 2.4). In another study, it was seen 

that Deleted in azoospermia associated protein 2 (DAZAP2) was downstream target of 

FGF signalling and was involved in posterior development of neural plate. It was also 

studied that DAZAP2 led to induction of HOXB9 in FGF-dependent posterior 

patterning. Induction of HOXB9 by DAZAP2 was independent of Cdx activity and was 

thought to work in parallel or downstream of DAZAP2 (Roche et al., 2009) (Figure 

2.4). 

Neural stem cells from mice showed expression of HOXB4 and HOXB9 in the neural 

stem cells derived from spinal cord which helped these cells maintain their distinct 

positional identity and was also seen to be dependent on developmental stage (Onorati 

et al., 2011). Most work on HOXB9 has been done in terms of its involvement in 

development but it was also shown that HOXB9 plays a significant role post pregnancy 

in the differentiation of epithelial ductal system of mammary tissue in adult mice. 

During pregnancy and post child birth, triple mutant (HOXA9, HOXB9 and HOXD9) 

female mice showed hypoplasia of mammary gland and also these females failed to 

produce milk for their offspring (Chen and Capecchi, 1999). 

Polycomb and trithorax group of proteins control the activity of different HOX genes in 

drosophila and vertebrates. Ring1B (Component of PRC1) was associated in the 

pathogenesis of Angelman syndrome and directly regulated the activity of HOXB9 in 

mice (Zaaroor-Regev et al., 2010) (Figure 2.4). BMI1, also a component of PRC1, 

regulated the activity of HOXB9 in Hodgkin lymphoma. It was studied here that 

constitutively active Extracellular signal-related kinase 5 (ERK5) pathway led to 
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repression of BMI1 in these cells and over-expression of HOXB9. FGF2 might also be 

one of the several growth factors involved in the activation of MAPK ERK5 pathway 

which leads to repression of BMI1 in these cells (Nagel et al., 2007) (Figure 2.4). F-Box 

and Leucine-Rich Repeat Protein 10 (FBXL10) was observed to regulate the binding of 

Ring1b to its target genes in mouse embryonic stem cells (Wu et al., 2013). HOXB9 

promoter activity was affected by the secondary structure of DNA in the promoter 

region. HOXB9 promoter activity was linked to FBXL10 protein and silencing of this 

protein led to increased expression of HOXB9 promoter construct (Yamagishi et al., 

2008) (Figure 2.4). HOXB9 also interacts with B-cell translocation gene 1 (BTG1) and 

BTG2 as its transcriptional co-factors and its binding to DNA is facilitated by this 

interaction (Prevot et al., 2000). 
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Figure 2.4. Different pathway and proteins involved in activation and regulation of 

HOXB9. 
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2.2.1 HOXB9 and Cancer 

HOXB9 has been noted to be over-expressed in breast cancer (Seki et al., 2012, 

Hayashida et al., 2010). It has also been observed to regulate the expression of 

angiogenic factors such as Vascular endothelial growth factor (VEGF), Interleukin-8 

(IL-8), Angiopoietin-like 2 (ANGPTL-2) and FGF2 in breast cancer. Erythroblastic 

leukemia viral oncogene (ErbB) ligands such as neuregulin-1 and 2, epiregulin and 

amphiregulin and Transforming growth factor- β (TGF-β) were also induced by 

HOXB9 which leads to increased cell motility and gain of mesenchymal features by the 

cells. It was seen that epiregulin and amphiregulin were transcriptional targets of 

HOXB9 as based on ChIP assay putative binding sites of HOXB9 were observed in 

promoter of these genes. It was also shown that HOXB9 promoted metastasis to the 

lung in the mouse (Hayashida et al., 2010). In another study HOXB9 promoted cell 

proliferation and angiogenesis in breast cancer and also was an important prognostic 

factor in the outcome of breast cancer (Seki et al., 2012). HOXB9 also confers radio-

resistance in breast cancer cells by inducing the DNA damage response. HOXB9 led to 

increased baseline level of ataxia telangiectasia (ATM) in non-irradiated cells and upon 

radiating these cells it led to hyperactivation of ATM which in-turn increases DNA 

repair. It was also shown that TGF-β was a direct target of HOXB9 and induced 

epithelial-mesenchymal transition (EMT) in breast cancer cells. The HOXB9-TGF- β-

ATM axis has an impact on DNA repair in breast cancer cells (Chiba et al., 2012). 

HOXB9 was also noted to be expressed as fusion protein of Breast carcinoma amplified 

sequence 3 (BCAS3)-HOXB9 in the breast cancer cell line (Schulte et al., 2012). 

HOXB9 expression was seen to be regulated by estrogen. There was presence of 

estrogen-responsive elements (ERE) in the promoter of HOXB9 and estrogen receptors 

α and β were seen to be important for HOXB9 activation. These receptors bind to ERE 

and so do Mixed-lineage leukemia 1 and 3 (histone methylase) which were observed to 
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be significant for estrogen-mediated HOXB9 activation (Ansari et al., 2011) (Figure 

2.4). 

HOXB9 was over-expressed at RNA and protein level in lung cancer cell lines and 

tumour samples (Calvo et al., 2000), with a suggested role in metastasis of lung 

adenocarcinoma to bone and brain. In this context, HOXB9 expression was regulated by 

Wnt/TCF pathway in lung adenocarcinoma cells. On treating cells with Wnt3a, TCF4 

(T-cell factor 4) regulated expression of HOXB9 which led to enhanced metastasis of 

lung adenocarcinoma to bone and brain (Nguyen et al., 2009) (Figure 2.4). HOXB9 is 

also over-expressed in hepatocellular carcinoma, leukemia and colorectal carcinoma 

(Kanai et al., 2010, Ohnishi et al., 1998). HOXB9 expression was down-regulated in 

gastric cancer and was related to being a biomarker of poor prognostic outcome in 

patients (Sha et al., 2013). HOXB9 has also been shown to be over-expressed in oral 

cancer tissue compared to normal tissue (Hassan et al., 2006) but there is no research 

done to observe if over-expression of HOXB9 mRNA translates into over-expression of 

HOXB9 protein in cell lines and tissue samples in HNSCC. Also, there is no literature 

on what effects HOXB9 over-expression has on HNSCC cells. 

2.3 miR-196a 

Silencing and activation of HOX genes needs conservation of its original order in each 

of the clusters, miR-10 and miR-196 have similar evolutionary order as HOX genes. 

There are three miR-196 loci found on three different chromosomes in humans. miR-

196a-1 is found to be present on chromosome 17 between HOXB9 and HOXB13, miR-

196a-2 is located between HOXC9 and HOXC10 on chromosome 12 whereas miR-

196b is present on chromosome 7 in the region flanked by HOXA9 and HOXA10 

(Popovic et al., 2009, Tanzer et al., 2005). Though present on different chromosomes, 

miR-196a-1 and miR-196a-2 produce same mature miRNA sequence on processing, 
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whereas miR-196b produces a mature sequence which has one base pair different than 

miR-196a (Figure 2.5). miRNA carry a lot of evolutionary information with them even 

though they are small, and miR-196 homologues can be identified in many vertebrates 

(Tanzer et al., 2005). 

The putative targets for miRNA are identified on the basis of bioinformatics analysis. 

This analysis depends on looking for complementarity regions in 3’ UTR of the genes. 

Generally, it is based on whether 2 to 8 base pairs from the 5’ end of the miRNA (which 

is called the seed region) match with the 3’ UTR of the putative target gene. Putative 

target genes could show good match, but it can also depend on other factors such as 

whether there is high complementarity in 3’ end of miRNA and mRNA of the gene then 

it can act to stabilise the binding even if seed region is not a perfect match (Filipowicz 

et al., 2008). Based on in-silico analysis, miR-196a could target HOXB8, HOXC8, 

HOXD8 and HOXA7.  

Based on published literature, miR-196a did target multiple HOX genes. miR-196a was 

over-expressed in NSCLC and increased cell proliferation, invasion and migration in 

this cancer. It also targeted HOXA5 and this partially led to effects observed in NSCLC 

cells (Liu et al., 2012d). miR-196a was down-regulated in both breast cancer and 

melanoma. miR-196a was found to target HOXC8 in both the cancers. Ectopic over-

expression of miR-196a in melanoma cells led to direct down-regulation of HOXC8 

expression and it was shown to regulate progression of malignant melanoma and cell 

transformation (Mueller and Bosserhoff, 2011). In breast cancer, ectopic over-

expression of miR-196a also led to direct targeting of HOXC8. It was also shown that 

miR-196a is a potent metastasis inhibitor in breast cancer and ratio of miR-196a to 

HOXC8 mRNA was an indicator of metastatic potential of these cells (Li et al., 2010). 

miR-196a was also observed to target HOXB8 in mouse embryos and play role in 
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development of vertebrates (Yekta et al., 2004). HOXB8 was also targeted by miR-196a 

in neural tube and affected motor neuron genesis. miR-196a targeting helped in 

restricting HOXB8 expression to thoracic-lumbar overlap (Asli and Kessel, 2010). miR-

196 also targeted HOXB8 in hindlimb development of mouse (Hornstein et al., 2005). 

miR-196a targeted HOXB7 in malignant melanoma. It was also observed that down-

regulation of miR-196a expression in melanoma leads to over-expression of HOXB7, 

which in-turn leads to induction of BMP4 in malignant melanoma and acts as major 

factor in migration of melanoma (Braig et al., 2010). 
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Figure 2.5. Position and mature miRNA sequence for all three miR-196. 
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Table 2.2 Some Other targets of miR-196a. 

Condition or Disease Target gene References 

Oesophageal cancer AnnexinA1 (ANXA1), 

S100 calcium binding protein 

A9 (S100A9), Keratin5 

(KRT5) and small proline-

rich protein 2C (SPRR2C) 

(Luthra et al., 2008, Maru 

et al., 2009a) 

Gastric cancer cyclin-dependent kinase 

inhibitor 1B (p27(kip1)) 

(Sun et al., 2012) 

Keloid fibroblast collagen type 1 A1 (COL1A1) 

and collagen type 3 A1 

(COL3A1) 

(Kashiyama et al., 2012) 

Spinal and bulbar muscular 

atrophy 

CUGBP, Elav-like family 

member 2 (CELF2) 

(Miyazaki et al., 2012) 

 

miR-196a was over-expressed in oesophageal cancer and led to increase in cell 

proliferation, reduced apoptosis and promoted anchorage-dependent growth (Luthra et 

al., 2008). miR-196a was over-expressed in gastric cancer compared to normal tissue. 

miR-196a promoted cell proliferation and was increased in the serum of gastric cancer 

patients and also this increase in expression could be used to predict recurrence of the 

cancer in the patients (Tsai et al., 2012, Sun et al., 2012). miR-196a over-expression in 

pancreatic cancer was associated with abnormal apoptosis, increased invasion and 

proliferation (Liu et al., 2013). miR-196a expression in serum of pancreatic cancer 

patients in combination with miR-16 and CA19-9 could be used for early diagnosis of 

pancreatic cancer (Liu et al., 2012b). 
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miR-196a was also noted to be over-expressed in oral squamous cell carcinoma. It was 

also observed to be associated with metastasis, recurrence and mortality. miR-196a 

expression was also detected in the plasma of the patients and could be used to 

distinguish from healthy individuals (Liu et al., 2012a). Based on unpublished data from 

miRNA microarray study, it was observed that miR-196a was over-expressed in 

HNSCC cell lines when compared to normal cell line (Lambert, Murdoch and Hunter, 

2010, unpublished). Also, there are no known published targets of miR-196a in 

HNSCC. 

2.4 Aims and Objectives 

The hypothesis of the project was HOXB9 and miR-196a are highly expressed in 

HNSCC and contribute to the pro-tumourigenic phenotype. To test this hypothesis, 

following aims were outlined. 

The aims and objectives of the project were: 

1. To assess the expression of miR-196a in cell lines and tissue samples and assess the 

functional effects of miR-196a in HNSCC cells. 

2. To evaluate the expression of HOXB9 gene in cell lines and tissue samples and 

assess the functional effects of HOXB9 in HNSCC cells. 

3. To assess whether HOXB9 and miR-196a-1 were co-transcribed on the same primary 

transcript. 

4. To search for novel direct target of miR-196a in HNSCC. 
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Chapter 3: Materials and Methods 

3.1 Chemicals and Reagents: 

List of all the suppliers and their location is available in appendix 9.1. 

Unless stated otherwise, all the chemicals or reagents used were purchased from Sigma 

Aldrich. 

For reverse-transcription and qPCR, unless stated otherwise, all the reagents were 

purchased from Applied Biosystems. 

3.2 Cell lines Used: 

The cell lines for the project were kindly provided by Dr. Keith Hunter and Dr. Craig 

Murdoch. Many cell lines listed below are well characterised HNSCC cell lines 

(McGregor et al., 2002, Stanton et al., 1994). All the cell lines tested HPV negative at 

the time of origin. 

Table 3.1. The names, type and origin of all the cell lines used. 

Cell line Type Site of Origin 

OK21 Normal Oral Keratinocytes (NOK) (Primary) Buccal Mucosa 

OK102 NOK (Primary) Buccal Mucosa 

NOK2 NOK (Primary) Buccal Mucosa 

NOK319 NOK (Primary) Buccal Mucosa 

NOK320 NOK (Primary) Buccal Mucosa 

NOK329 NOK (Primary) Buccal Mucosa 

DEN8 NOK (Primary) Buccal Mucosa 

OK334 NOK (Primary) Buccal Mucosa 

OKF4-tert Immortal Normal Oral Keratinocytes (iNOK) 
Floor of Mouth 

(Dickson et al., 2000) 

FNB6-tert iNOK Buccal Mucosa 
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OKF6-tert iNOK Floor of Mouth 

(Dickson et al., 2000) 
D4 Oral Pre-Malignant (OPM) Floor of Mouth 

D19 OPM Buccal Mucosa 

D20 OPM Tongue 

D35 OPM Floor of Mouth 

B16 Primary head and neck squamous cell 

carcinoma (HNSCC) 

Tongue 

H357 Primary HNSCC Tongue (Yeudall et al., 

1993) 

B56 Primary HNSCC Tongue 

T4 Primary HNSCC Tongue 

B22 Metastatic Cancer Neck lymph node 

 

3.3 Cell culture 

The NOKs, iNOKs, OPM and HNSCC cell lines (Table 3.1) were maintained in KGM 

(Keratinocyte Growth Media) media. KGM media contained the following components: 

Table 3.2. Components of KGM media. 

Component Volume or Final concentration 

DMEM Depends on final volume to be prepared 

Ham’s F-12 23% (v/v) 

FCS (Foetal Calf Serum) 10% (v/v) 

L-glutamine 2mM 

Adenine 1.8 X 10-4 M 

Hydrocortisone 0.5 µg/ml 
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Insulin 5 µg/ml 

EGF (Epidermal Growth Factor) 10 ng/ml 

 

The KGM media (Table 3.2) was removed and cells were washed with PBS (Phosphate 

Buffered Saline) and then incubated with trypsin (1mg/ml) - EDTA (0.4mg/ml) until the 

cells were detached from the flask. The trypsin was then neutralised by adding KGM 

media and centrifuged at 1000 rpm for 5 min. The cells were then re-suspended in the 

KGM media and counted on a Neubauer haemocytometer using trypan blue (Invitrogen) 

exclusion method (10 µl cell suspension in 10 µl trypan blue) by counting number of 

cells in four chambers around the central grid and then averaging the number and 

multiplying it by 106. The cells were then seeded into a new flask. The general seeding 

density used was 1:5 or 1:4 of the re-suspended cells depending on the cell count and 

doubling time of the cells. The cells were then incubated at 370C and 5% (v/v) CO2. The 

cells were tested every two months for potential mycoplasma infection by performing 

PCR using EZ-PCR mycoplasma test kit (Geneflow). 

3.3.1 Freezing and Thawing of the cells 

The cells were initially adjusted to a million cells/ml in KGM. 10% (v/v) DMSO was 

added and cells were transferred into cryo-vials (Grenier Bio-one). The cells were then 

frozen down at a controlled rate of 10C/h in -800C freezer in a cryo-freezing container 

(Nalgene) before transferring it to liquid nitrogen for permanent storage. 

When the cells were to be cultured from the frozen stock, the cryo-vial from the 

appropriate position was removed and thawed at 370C. The cells from vial were then 

transferred to a 25 ml universal tube (Sarstedt) to which fresh KGM was added and 

centrifuged at 1000 rpm for 5 min. The supernatant was discarded to remove any 
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dimethyl sulfoxide (DMSO). The cells were re-suspended in 5 ml of KGM and put in a 

T25 flask (Grenier Bio-one) and incubated at 370C with 5% (v/v) CO2. 

3.4 RNA isolation and PCR 

The cells were washed with PBS, centrifuged to form a pellet and excess PBS was 

discarded. RNeasy mini kit (Qiagen) was used to extract the total RNA from the cell 

pellet. RNA was quantified using a Nanodrop spectrophotometer (Thermo Scientific) 

and quality was checked by noting the A260/280 ratio. Generally, RNA is considered of 

good quality if the ratio is >= 1.8. cDNA was synthesized from total RNA by using 

High capacity RNA-to-cDNA kit. The miRNA cDNA synthesis used 10ng of total RNA 

and miRNA specific reverse transcription primers. Following is the PCR cycle utilised: 

160C for 30 min, 420C for 30 min and 850C for 5 min. The total cDNA synthesis used 

200ng of total RNA and random primers (RP). Following is the PCR cycle utilised: 

250C for 10 min, 370C for 2 h and 850C for 5 min. The other components for reverse 

transcription-Polymerase Chain Reaction (rt-PCR) such as reverse transcription buffer 

(10X), dNTP (100 mM), multiscribe and distilled water were used in the amounts 

specified by the manufacturer. The cDNA was then used to perform SYBR-green or 

Taqman quantitative PCR (qPCR) and SYBR-green Mastermix (MM) or Taqman MM 

was used respectively for the reaction. The other components such as forward and 

reverse primers for SYBR-green MM and Taqman primers for Taqman MM and 

distilled water were added based on the manufacturer’s protocol. RNU48 for miRNA 

cDNA and U6 for total cDNA were used as the internal control for qPCR. Separate 

wells in a 96-well plate (Starlab) were used for target gene and internal control. SYBR-

green qPCR detection of all 39 HOX genes was carried out in University of Surrey with 

the help of Dr. Richard Morgan on the Stratagene platform MX3005p, initially, and the 

internal control used was β-actin. β-actin was used as the internal control as it was part 

of pre-made grid for the experiment in Dr. Morgan’s lab. The expression detection for 
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all the other qPCR was carried out on ABI 7900HT platform and the raw data was 

analysed using RQ manager 1.2.1 (Applied Biosystems). The absolute expression level 

for a gene was quantified by normalising the expression of the gene to the internal 

control gene expression level. 

3.5 Laser Capture Microdissection (LCM) 

Formalin-fixed paraffin embedded (FFPE) cancer and normal tissue sections (4 µm) 

were cut and placed onto twinfrost microscope slides (CellPath). In total, 16 cancer and 

normal tissue sections were used. These were dewaxed in xylene (Fisher) and graded 

ethanol (100% (v/v) and 70% (v/v)) (Fisher), stained with harris haematoxylin 

(CellPath) and dehydrated through 100% (v/v) ethanol and xylene with care taken to 

ensure complete dehydration. Pixcell II LCM system (Arcturus) was used to carry out 

LCM. The tissue section was viewed in the microscope and LCM cap (Applied 

Biosystems) adjusted to fit the tissue area to be collected. The normal and tumour cells 

were collected on the LCM caps (Figure 3.1) gathering as much material as possible on 

the cap. Extraction of RNA from LCM cap was carried out by using RNAqueous micro 

kit (Ambion) based on step-by-step protocol provided by the manufacturer. 
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A.                                          B.                                         C. 

         

Figure 3.1.A. Photomicrograph of a normal tissue section as viewed under 

microscope before LCM was performed. B. The normal tissue as viewed under 

microscope after LCM was performed. C. The normal tissue cells collected on the 

LCM cap as viewed under microscope. The magnification used was 100X. 
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3.6 Primer Design 

Homo sapiens referenced sequence of the appropriate target was retrieved from the 

NCBI website (http://www.ncbi.nlm.nih.gov/) (National Center for Biotechnology 

Information, 2011). The first and last nucleotide number of the coding sequence (CDS) 

was checked from the information on the page. The forward primer consisted of the first 

21-27 nucleotides of the CDS and then 21-27 nucleotides were selected, 150-200 bp 

downstream of forward primer and run through programme called ‘Reverse 

Complement’ to give the reverse primer (Table 3.3) 

(http://www.bioinformatics.org/sms/rev_comp.html). Forward and reverse primers were 

checked using Primer Blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) to assess 

their specificity, % GC content and melting temperature. It was considered best if the 

primer only detected the desired target sequence. The primers designed for the 

appropriate genes were ordered from Sigma Aldrich, whereas others were bought from 

Applied Biosystems. 

Table 3.3. List of primers used, product length (bp) and primer sequence or ID. F: 

Forward primer; R: Reverse primer; ID: Applied Bios ystems Taqman ID. 

Primers Used 

Product 

Length 

(bp) 

Sequence or ID 

hsa-miR-196a - 241070 

RNU48 - 001006 

hsa-miR-196a-1 - Hs03302792-pri 

hsa-miR-196a-2 - Hs03302912-pri 
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U6 94 

F: 5’ CTCGCTTCGGCAGCACA 

R: 5’ AACGCTTCACGAATTTGCGT 

KRT5 228 

F: 5’ TCTCGCCAGTCAAGTGTGTCCTTC 

R: 5’ GCTGATGGATATCCTCTTGGAGCC 

ANXA1 323 

F: 5’ ATGGCAATGGTATCAGAATTCCTCAAG 

R: 5’ ACAACCTCCTCAAGGTGACCTGTAAGG 

S100A9 202 

F: 5’ ATGACTTGCAAAATGTCGCAGCTGG 

R: 5’ TGTCCAGGTCCTCCATGATGTGTTC  

PSEN1 160 

F: 5’ ATGACAGAGTTACCTGCACCGTTG 

R: 5’ GTCCATTAGATAATGGCTCAGGGT 

LOXL4 133 

F: 5’ ATGGCGTGGTCCCCACCAGCCACC 

R: 5’ GGCCCTCCTCTGGCTTGCTCTCTG 

HOXC8 181 

F: 5’ ATGAGCTCCTACTTCGTCAACCCC 

R: 5’ GGAAGAAGTCTTGAACGTGGTGCG 

MAMDC2 187 

F: 5’ ATGCTGTTAAGGGGCGTCCTCCTG 

R: 5’ CCTGCTTGCCAAAGGAGGTATCCA 

 

The primer sequences for all the 39 HOX genes and β-actin were kindly provided by 

Dr. Richard Morgan (University of Surrey) (Appendix 9.2). 
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3.7 Protein Expression 

3.7.1 Western Blotting 

RIPA buffer (70-100 µL) (Sigma Aldrich) containing protease and phosphatase 

inhibitors (Roche) was added to the cell pellet. The cell pellet was then kept on ice for 

20 min and centrifuged at 13,000 rpm for 5 min at 40C. The supernatant was transferred 

to a fresh eppendorf and protein quantification was done using BCA (Bicinchoninic 

acid) method (Thermo Scientific) (Smith et al., 1985) as per manufacturer’s protocol. 

To the supernatant was added equal volume of 2X loading dye (0.5 M Tris-HCl (pH 

6.8), 1 M Dithiothreitol (DTT), 20% (w/v) Sodium dodecyl sulphate (SDS), Glycerol, 

0.02% (w/v) bromophenol blue, PI inhibitor tablet (Roche), water) and then heated for 5 

min at 950C. SDS-PAGE (SDS-Polyacrylamide gel electrophoresis) (12%) was loaded 

with 40 µg of total protein. Following components were used for preparation of the gel 

(Table 3.4): 

Table 3.4. Components and volume for resolving and stacking gel for SDS-PAGE 

gel. 

Components Resolving Gel Stacking Gel (4%) 

40% Acrylamide (Fisher) 2.4 ml 0.75 ml 

1.5M Tris pH 8.8 2 - 

0.5M Tris pH 6.8 - 1.25 

10% APS 80 µl 50 µl  

10% SDS 80 µl 50 µl 

TEMED 8 µl 5 µl 
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Distilled water 3.4 ml 2.9 ml 

 

To prepare the gel, 1mm gel cassette was used and placed on the clamps. Initially, the 

resolving gel was prepared and loaded in the gel cassette and water was added to make 

it even and allowed to set. Later, stacking gel was prepared and loaded on top of 

resolving gel and 10-well comb was inserted before the gel solidified. Then, the gel was 

placed into Mini-PROTEAN tetra system (Bio-Rad). The comb was removed after 

adding Running buffer (12g Tris base, 4g SDS, 57.5 glycine to 1L water) to the gel 

chamber and samples were loaded into the gel. It was then electrophoresed until the EZ-

protein marker (Fisher) approached the bottom of the gel at 100 V supplied from 

PowerPac Basic (Bio-Rad). XCell SureLock system (Bio-Rad) was used for the wet 

transfer method which requires wet transfer buffer (24 mM Tris base, 192 mM glycine, 

20% (v/v) methanol in distilled water). The filter pad, filter paper and nitrocellulose 

membrane (GE healthcare) were soaked in wet transfer buffer. The protein from the gel 

was transferred onto nitrocellulose membrane by electrotransfer for 1h at 30 V. The 

membrane was incubated for 1h in blocking buffer (TBST (Tris buffered saline tween-

20) (10 mM Tris-Cl (pH 8.0), 150 mM NaCl, 0.05% (v/v) tween-20 in distilled water) 

with 5% (w/v) dried milk and 3% (w/v) BSA (Bovine Serum Albumin)) at room 

temperature on a shaker. The membrane was then washed with 0.1% TBST thrice with 

15 min incubation. The membrane was then incubated overnight at 40C with anti-

HOXB9 rabbit monoclonal primary antibody (1:500 in blocking buffer) (Abcam) or 

anti-β-actin mouse monoclonal primary antibody (1:10,000 in blocking buffer) (Sigma 

Aldrich). Following morning, the membrane was washed with TBST thrice to remove 

any excess antibody. The membrane was then incubated for 1 h at room temperature 

with horseradish peroxidase conjugated anti-rabbit IgG or anti-mouse IgG secondary 
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antibody (1:3000 in blocking buffer) (Sigma Aldrich). The membrane was washed with 

TBST thrice to remove any excess antibody. It was then treated with SuperSignal® west 

pico chemiluminescent substrate for a min (Thermo Scientific). The membrane was then 

put into Kodak cassette with CL-Xposure™ Film (Thermo Scientific) in the dark room 

and left for 15 min. The film was then developed using Compact X4 (Xograph). The 

membrane was stripped using Restore stripping buffer (Thermo Scientific) by 

incubating the membrane in the buffer between 5-15 min at room temperature. The 

membrane was then washed with TBST and primary antibody for β-actin was applied. 

3.7.2 Immunohistochemistry (IHC) 

Tissue microarray (TMA) sections for HNSCC were kindly provided by Mrs. Ibtisam 

Zargoun and few normal oral tissue sections were kindly provided by Dr. Abigail 

Pinnock. In total, 25 cancer tissue sections on TMA and 10 normal oral tissue sections 

were used for the study. The normal and cancer tissue sections were cut to 4µm 

thickness, de-waxed with 2 X 5 min wash of xylene (Fisher) and then dehydrated with 2 

X 5 min wash of 100% ethanol (Fisher). The sections were then incubated for 20 min in 

methanol (Fisher) containing 30% (v/v) hydrogen peroxide (Fisher) to block the activity 

of endogenous peroxide. The antigen retrieval was carried out using pressure cooker 

method (Neves et al., 2005) and the sections were incubated for 20 min in 10 mM 

sodium citrate buffer (w/v) (pH 6) (Fisher). Antigen retrieval is performed so that any 

crosslinks formed between wax and protein and protein-protein can be broken so 

protein is more exposed on tissue section. The sections were washed with PBS twice for 

5 min. The sections were blocked with 100% Normal Goat Serum (NGS) for 30 min. 

NGS was used as the blocking solution because the secondary antibody was raised in 

goat. The blocking serum was removed and sections were then incubated overnight at 

40C with anti-HOXB9 rabbit polyclonal primary antibody (1:400) (Sigma Aldrich). 

Subsequently, the sections were washed with PBS twice for 5 min each next morning. 
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Anti-rabbit IgG secondary antibody from Vectastain Elite ABC rabbit IgG kit (Vector 

Laboratories Inc.) was applied to the sections and incubated for 30 min at room 

temperature. Excess antibody was removed by washing slides with PBS twice for 5 min 

each. Then, 2 drops of bottle A and 2 drops of bottle B were added in 5 ml PBS and  left 

at room temperature for 30 min and later applied onto the slides. It is left at room 

temperature so that there is complex formation of avidin with biotinylated horseradish 

peroxidase enzyme. The sections were washed with PBS twice for 5 min each. The 

sections were then treated with DAB reagent (Vector Laboratories Inc.) for colour 

development and its reaction was neutralised by submerging slides into water. The 

slides were counter-stained with harris haematoxylin (CellPath) before covering the 

slide with cover slip (CellPath). The slides were viewed under Olympus light 

microscope at 200X magnification and photomicrograph were taken using Cell^D 

imaging software (Olympus). 

3.8 Transfection of cells 

Cells (B16, D19 and OKF4) were seeded in KGM media at a confluency of 50-70% and 

incubated at 370C and 5% (v/v) CO2 overnight in 6-well plate (Corning Inc). These cells 

were transfected by using Oligofectamine reagent (Invitrogen) with anti-miR-196a or 

pre-miR-196a (Applied Biosystems) or HOXB9 siRNA (Sigma Aldrich) and negative 

control (random sequence) (Applied Biosystems) (50nM) in 500 µl Opti-mem media 

(Gibco). This transfection mix was incubated at room temperature for 30 min so that 

liposomes and oligonucleotides could form complexes. The cells were washed twice 

with opti-mem media before transfection mix was pipetted onto the wells. The cells 

were then incubated for 3-4 hours at 370C and 5% (v/v) CO2. Next, 500 µl DMEM 

supplemented with 20% (v/v) FCS and containing 2 mM glutamine was added to the 

cells and incubated for 48 hours. qPCR was performed to assess the change in 

expression and later cells were used to perform functional assays. 



70 
 
3.9 Proliferation Assay 

The transfected cells were trypsinised and re-suspended in DMEM with 10% (v/v) FCS 

and the cell number determined as described in section 3.3. In a 96-well plate, 5000 

cells/well were seeded in 100 µl DMEM with 10% (v/v) FCS. The time points used for 

analysis were 0, 24, 48, 72 and 96h. Each sample was plated in triplicate for each time 

point. Media was pipetted in triplicate to be used as background when analysing. 20µl 

MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymetHOXyphenyl)-2-(4-sulfophenyl)-

2H-tetrazolium) (Promega) solution was added to each well for appropriate time point 

and then incubated for 1 h at 370C and 5% (v/v) CO2. MTS is reduced in the 

mitochondria by dehydrogenase enzyme to form formazan product which is soluble in 

media. Dehydrogenase enzyme is present in metabolically active cells and is a measure 

of metabolism of cells. The formazan product has absorbance at 490nm. The absorbance 

was calculated at 490 nm using Tecan infinite M200 and Magellan software (Tecan). 

3.10 Adhesion Assay 

The 96-well plate was coated with 0.1% (v/w) fibronectin (Sigma Aldrich) in PBS 

(1:100) and incubated at 40C overnight. The wells were then washed with PBS to 

remove any unbound fibronectin. Then, 100 µl of DMEM supplemented with 1% (v/w) 

BSA was added to the wells and kept in incubator at 370C and 5% (v/v) CO2 for 1h. The 

transfected cells were counted and 30,000 cells/well were seeded in serum free medium 

(DMEM). These cells were then incubated for 1h at 370C and 5% (v/v) CO2. The plate 

was washed with PBS to remove any cells which did not adhere and 100 µl of serum 

free DMEM was added to the wells before 20 µl of MTS. The plate was incubated for 1 

h at 370C and 5% (v/v) CO2. Then the plate was read at 490 nm with Tecan Infinite 

M200 using Magellan software. 
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3.11 Migration Assay 

The transfected cells were trypsinised and re-suspended in DMEM supplemented with 

0.1% (v/w) BSA medium after being washed with PBS and counted. The cells were 

seeded in transwell inserts (BD Biosciences) with membrane pore size of 8 µm and each 

sample was seeded in duplicate. DMEM supplemented with 2% (v/v) FCS or DMEM 

supplemented with 0.002% (v/v) fibronectin (0.1%) was added to the bottom of the 

wells. The cells were then incubated at 370C and 5% (v/v) CO2 overnight. The 

following day, the medium was removed and the insert and well were washed with 

PBS. The membrane was cleaned with cotton swab to remove any remaining non-

migrated cells to ensure that these cells were not counted. The cells in the insert were 

then fixed by adding 100% methanol (Fisher). The insert and well were again washed 

with PBS. The migrated cells were then stained with PBS with 0.1% (v/w) crystal 

violet. Then the count of the cells which migrated was taken in four different fields for 

each insert under Olympus light microscope at a magnification of 400X and the cell 

number for each field was averaged for an insert (Figure 3.2). 
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A.                                                                

 

B. 

 

Figure 3.2. Photograph of a field in the insert showing cells that have migrated. A. 

D19 cells transfected with negative control. B. D19 cells transfected with anti-miR-

196a. 
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3.12 Invasion Assay 

Transwell inserts (BD Biosciences) were coated with 100µl growth factor reduced 

matrigel (BD Biosciences) in DMEM (1:45) and incubated overnight at 370C and 5% 

(v/v) CO2. The transfected cells were trypsinised, washed with PBS and re-suspended in 

DMEM supplemented with 0.1% (v/w) BSA and counted. The bottom of the well was 

filled with DMEM supplemented with 2% (v/v) FCS and then cells were seeded in 

DMEM supplemented with 0.1% (v/w) BSA in the insert already coated with growth 

factor reduced matrigel. The plate was then incubated for 48 h. After 48 h, the insert and 

the well were washed with PBS. The membrane was cleaned with cotton swab to 

remove any remaining non-invading cells to ensure that these cells were not counted. 

The cells were fixed with 100% methanol (Fisher). The insert and the well were washed 

with PBS. Then the cells were stained in PBS with 0.1% (v/w) crystal violet. Invading 

cells were counted in four different fields for each insert under Olympus light 

microscope at a magnification of 400X and the cell number for each field was averaged 

for an insert. 

 3.13 Primary transcript HOXB9-miR-196a-1 

The primer sequence for miR-196a-1 and HOXB9 primary transcript was as follows: 

PT forward: 5’ AAT TAG GTA GTT TCA TGT TGT TGG GCC 3’ and PT reverse: 5’ 

ATA ATA GCT GCT AAG CGT CCC AGA AAT 3’. B16 RNA was extracted with 

DNase step in the protocol. Initially, cDNA synthesis for primary transcript was carried 

out with B16 RNA using M-MLV RT (reverse transcriptase) (Promega) with RP or PT 

primers (Primary transcript primers) as per manufacturer’s protocol. The first PCR with 

cDNA was performed using Phusion (Thermo Scientific), Taq (Thermo Scientific) or 

Q5 (NEB) DNA polymerase with PT primers. The components and PCR cycles were 

set-up according to manufacturer’s protocol. Nested primers were designed within this 
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transcript to give a product of 295 bp, nested forward: 5’ AAA GTC AGG GCA GGA 

GAG GGA AGG GGA A 3’ and nested reverse: 5’ CAA TTT GCC AGC CCT ATG 

AAG TCT GCT 3’. Nested primers are primers which bind internally to an amplified 

transcript from first PCR reaction and generates PCR product of shorter length. As they 

bind internally in an amplified transcript it reduces chances of contamination, as there is 

little chance that a transcript other than the one to be amplified will consist of same two 

binding sites for first primers and nested primers. The nested PCR was run with Q5 

DNA polymerase PCR product from the first round of PCR. Taq DNA polymerase was 

used for nested PCR with nested primers. The components were added and PCR cycle 

was set-up as per manufacturer’s protocol. For this reaction, two controls were used: 

RNase A and no-RT. For RNase A control, the RNA was treated with RNase A 

(100µg/ml) (Promega) for 1 h at 370C before start of rt-PCR step. For no-RT control, 

the rt-PCR step was carried out without addition of RT. 

The 2% agarose gel was prepared by adding 1 g agarose to 50 ml of 1X TAE buffer (40 

mM Tris, 20 mM acetic acid, 1 mM EDTA in 1 L distilled water) and after solubilising 

agarose in buffer by heating 1 µl of ethidium bromide was added. The PCR product and 

100 bp ladder (NEB) was run on 2% (v/w) agarose gel at 80 V for 1 h and viewed under 

UV transilluminator. The PCR product was isolated from the gel by using Isolate 

PCR/Gel kit (Bioline). The PCR product was then cloned into pCR®2.1-TOPO® cloning 

vector (Invitrogen) by adding 2 µl of PCR product with 1 µl of vector, 1 µl of salt 

solution provided and made to 6 µl by addition of distilled water and incubated for 5 

min at room temperature. The cloned vector was transformed into E.coli DH5α (NEB) 

by heat shock method following manufacturer’s protocol and then streaked on 

ampicillin (100 µg/ml) (Fisher) containing LB agar plate coated with 40 µl X-gal (5-

bromo-4-chloro-3-indolyl-β-D-galactopyranoside) (Sigma Aldrich) in DMSO (20 

mg/ml) solution. The positive colonies were selected based on blue/white screening the 
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following morning as the PCR product was cloned into lacZα gene in the pCR®2.1-

TOPO® vector. When PCR product is cloned into lacZα then it cannot cleave X-gal 

giving white colonies. The positive colonies were added to LB broth (Fisher) to grow 

overnight at 370C. The plasmid from the broth was purified using Isolate plasmid mini-

kit (Bioline) as per manufacturer’s protocol. This vector was then sent for DNA 

sequencing. 

3.14 Microarray 

3.14.1 Microarray sample preparation 

Microarray was performed using two 8-genome Oligonucleotide Microarray (Sureprint 

G3) chips (Agilent). Biological triplicates of B16 and D19 cells were transfected with 

negative control and anti-miR-196a. Biological duplicates of OKF4 cells were 

transfected with negative control and pre-miR-196a. In total, 16 independent RNA 

extractions were performed for transfected and negative control cells. The RNA was 

quantified with nanodrop spectrophotometer. The transfection efficiency was checked 

by performing qPCR for miR-196a expression for all transfected samples. The quality 

was assessed with Agilent Bioanalyzer 2100 using Agilent nanochip (Agilent). The 

RNA was considered of good quality if 28s:18s>= 2 and if RNA integrity number (RIN) 

was 10. Next the manufacturer’s protocol was followed step-by-step for microarray 

sample preparation and hybridisation and scanning using Agilent microarray system 

(Figure 3.3). Briefly, 100ng of total RNA was used for reverse transcription with RNA 

spike In-one colour mix, T7 promoter primer mix and utilised AffinityScript cDNA 

synthesis mix and was incubated in water bath at 400C for 2hr. To each sample T7 RNA 

polymerase mix was added for formation of cRNA by incubating at 400C for 2hr in 

water bath. The cRNA was purified using Qiagen RNeasy kit. The cRNA was 

considered of good quality if yield (µg) was >= 0.825 and specific activity (pmol 
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Cy3/µg cRNA) was >= 6. The cRNA was then fragmented by using fragmentation mix. 

The hybridisation cocktail consisted of fragmented cRNA and GEx hybridisation buffer 

HI-RPM which was loaded onto Agilent SureHyb chamber base. Then, the active side 

of the array was lowered onto SureHyb chamber. The hybridisation was carried out in 

hybridisation chamber for 17 hrs at 650C. The following day the slides were washed and 

loaded into Agilent microarray scanner and raw data was later extracted.  
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Figure 3.3. Flow chart depicting steps for microarray sample preparation and 

sample hybridisation.  
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3.14.2 Microarray Data analysis 

3.14.2.1 Genespring 

The microarray raw data in the format of .txt was loaded into microarray data analysis 

software Genespring 12 (Agilent). Each cell line data for negative control and anti-miR-

196a or pre-miR-196a transfected cells was loaded as separate experiment into the 

experiment. The data was then normalised using 75th percentile shift normalization 

method and viewed in box plot. 75th percentile shift normalization is used as even the 

genes which are not expressed report intensity value, hence to get rid of these values 

higher percentile intensity values are taken and median for these are calculated. The 

data was then viewed in the three axes in principal component analysis (PCA) and the 

data which looked very different to other similar samples was eliminated from the 

analysis (one each of B16 anti-miR-196a, D19 anti-miR-196a and D19 negative control 

transfected were eliminated). These samples were then subjected to t-test statistical 

analysis with p<0.05 in which anti-miR-196a or pre-miR-196a samples were compared 

to negative control transfected samples. Each experiment was compared to each other 

for common genes being differentially expressed and common genes were selected for 

further analysis. Genes were also selected based on pathway analysis programme 

present in Genespring software. The selected genes were further subjected to qPCR for 

microarray samples to check for their expression. 

3.14.2.2 Qlucore Omics Explorer  

Dr. Paul Heath and Dr. Jonathan Cooper-Knock helped with analysis of microarray data 

with Qlucore Omics Explorer software (Qlucore). The raw data for all the samples was 

first loaded into the software and the data was subjected to normalization using 75th 

percentile shift method (The raw data files and normalised data file for all the samples 

were loaded onto public database http://www.ncbi.nlm.nih.gov/geo/ with accession no. 



79 
 
GSE52810). The samples were divided into two groups: low miR-196a expressing 

samples and high miR-196a expressing samples. Low miR-196a expressing group 

contained B16 and D19 anti-miR-196a and OKF4 negative control samples, whereas 

high miR-196a expressing group contained B16 and D19 negative control and OKF4 

pre-miR-196a transfected samples. The samples were viewed in PCA in three axes to 

see the distribution of the samples. Parameters used for data analysis was as follows: t-

test p<0.01 and cell-type eliminated. This gave in total 353 genes which were 

differentially expressed (Appendix 9.3) and then the top 100 genes which had highest 

variance were selected for further analysis. The genes which were predicted as direct 

targets of miR-196a in target prediction sites miRWalk (http://www.umm.uni-

heidelberg.de/apps/zmf/mirwalk/) and microRNA (www.microrna.org) were subjected 

to qPCR analysis using microarray samples. 

3.15 In-silico target prediction 

The target prediction for miR-196a was initially carried out by checking for published 

miR-196a targets and then cross-referencing them with target prediction database 

‘TargetScan’ (http://www.targetscan.org/) to check for their score which depends on the 

complementarity of the target gene 3’UTR and miRNA seed sequence. miRWalk is a 

database which gives option of looking at targets of particular miRNA in several 

different databases in one place. TargetScan, miRWalk and microRNA database uses 

miRNA:mRNA complementarity of the sequence, energy of binding, evolutionary 

conservation of the miRNA site and its position in homologous genes to predict its gene 

targets. 

3.16 3’UTR Vector Cloning 

The B16 cDNA was used to amplify the 3’UTR of MAMDC2. The MAMDC2 3’UTR 

amplified was called wild type (wt). The following primers were used for amplification: 



80 
 
wt forward 5’ AAA AAA AA A CGC GTA AAT GAT CTG CAT TGG ATT TAC T 

3’ and wt reverse 5’ AAA AAA AAG TTT AAA C AA GAT TTT CAA ATT ATT 

TTT ATT AGG TAA TTT TAT AAT TTC 3’. wt forward primer consisted of MluI 

restriction digestion site (Sticky end), whereas wt reverse primer consisted of PmeI 

restriction digestion site (Blunt end); these are shown here in bold and underlined. The 

amplified product (1 µg) was then cloned into pMIR REPORT (1 µg) (Ambion) vector 

using serial digestion method with MluI (NEB) and PmeI (NEB) restriction digestion 

enzymes using 10 units of each and appropriate buffer based on manufacturer’s 

protocol. The only difference from the standard protocol was that the 3’UTR and vector 

were incubated overnight instead of 1h. The digested 3’UTR and vector were ligated 

using T4 DNA ligase (NEB) by incubating them overnight at 160C. The product was 

then transformed into E.coli DH5α chemically competent cells (NEB) using heat shock 

protocol as per manufacturer’s instructions. The transformed cells were plated on LB 

agar plate supplemented with ampicillin (v/w) (100 µg/ml) and incubated overnight at 

370C. The positive colonies were selected and vector was extracted using Isolate 

Plasmid mini-kit (Bioline). The isolated vector was sent for DNA sequencing to confirm 

presence of MAMDC2 3’UTR, its exact sequence and its directionality. On 

confirmation, the remainder of transformed E.coli cells for vector sent for DNA 

sequencing were inoculated in 200 ml LB agar supplemented with ampicillin (v/w) (100 

µg/ml) and incubated overnight at 370C. Following morning, the vector was extracted 

using Isolate plasmid maxi-kit (Bioline) to give cleaner vector.  

3.16.1 Site-Directed Mutagenesis (SDM) 

Site-directed mutagenesis is used for changing the nucleotide at specific place in a DNA 

sequence by using PCR. This can be achieved by designing primers which are 

complementary for a length of sequence with mutated nucleotides in the middle of the 

primer. SDM can be used to alter the DNA sequence to change the amino acid 
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expressed at that position and can also be used to confirm whether a miRNA is 

complementary to 3’UTR of a gene or not. PCR- based SDM was used to mutate the 

miR-196a binding site in MAMDC2 3’UTR. The MAMDC2 3’UTR wt vector was used 

as the template for the PCR. The following primers were used for SDM of miR-196a 

binding site, the mutated bases are shown in bold and underlined, mutated forward: 5’ 

CCT TCT TTA TTC CCC CTT TGA GAC GCT TTT GAA GTC ACT ATG AGC 3’ 

and mutated reverse: 5’ GCT CAT AGT GAC TTC AAA AGC GTC TCA AAG GGG 

GAA TAA AGA AGG 3’ (Figure 3.4).  
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Figure 3.4. Point mutations made in miR-196a binding site in 3’UTR of MAMDC2. 
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The Tm (melting temperature) for the primers was >=780C. Phusion DNA polymerase 

(Thermo Scientific) was used for amplifying wt vector and reaction was set-up based on 

manufacturer’s protocol. The following PCR cycle was used: 950C for 30 s, 18 cycles of 

950C for 30 s, 550C for 1 min and 720C for 8 min (1 min/Kb), 720C for 10 min (final 

extension). The PCR product was then incubated for 1 h with DpnI (NEB) at 370C, to 

degrade methylated template DNA. The transformation, selection, isolation and DNA 

sequencing for mutated vector was carried out as described in section 3.16. 

3.17 Dual Luciferase Reporter Assay (DLRA) 

In Dual luciferase reporter assay, vector is used which consists of luciferase gene in 

which 3’UTR of target gene is cloned downstream of ORF of luciferase gene using 

multiple cloning sites. This vector and miRNA of interest are co-transfected, if miRNA 

binds and degrades the transcript from vector for luciferase gene, less luciferase protein 

will be produced leading to lesser luminescence compared to negative control 

transfected cells. DLRA was used to determine if miR-196a directly bound to 

MAMDC2 3’UTR or not. B16 cells were seeded in 6-well plate at a confluency of 50-

70% and incubated overnight at 370C. They were transfected with pMIR REPORT (wt 

or mutated) (500ng), pRL-TK (renilla luciferase control vector) (50ng) (Promega) and 

negative control (random sequence) or pre-miR-196a (50nM) in Opti-mem media with 

the help of Fugene HD transfection reagent (Promega) as per manufacturer’s protocol. 

The cells were incubated for 3-4 h before addition of DMEM containing 20% (v/v) FCS 

and then the cells were incubated for 48 h. On completion of 48 h, DLRA system 

(Promega) was used for the measurement of firefly (Photinus pyralis) and renilla 

(Renilla reniformis) luciferase activity as per manufacturer’s protocol. The firefly 

luminescence was measured by addition of Luciferase Assay Reagent II (LAR II) 

(Promega) and then renilla luciferase was measured by addition of stop & glo reagent 

(Promega). For this reaction Nunc F96 Microwell white plate (Nalgene) was used to 
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minimise the loss of luminescence. The measurement of luminescence and analysis was 

done using GloMax 96 Microplate Luminometer (Promega). The relative luminescence 

was calculated by calculating ratio of firefly/renilla luminescence for each well. 

3.18 Statistics 

Non-parametric Mann-Whitney U test was performed on the absolute value from qPCR 

on LCM tissue sample for miR-196a and tissue sample scoring from IHC for HOXB9. 

For all other experiments student’s t-test was used as the method of statistical analysis. 

Student’s T-test was used as it is a parametric test and can be used for normally 

distributed samples. Normal distribution was determined using Graphpad prism 

software. Bonferroni correction was not utilised while using this test. Data was 

considered significant only if p<0.05. 

3.19 Ethical Approval 

Ethical approval was obtained from The West Glasgow LREC (ref: 08/S0709/70) for 

the use of biopsy samples in the study. Ethical approval was obtained from Sheffield 

Research Ethics Committee 09/H1308/66 for NOK primary culture.     
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Chapter 4: Effects of miR-196a in HNSCC 

MicroRNAs are short non-coding RNA transcripts which lead to post-transcriptional 

changes in the expression of the genes by binding to a complementary sequence in their 

3’ UTR. The sequence does not have to be a perfect match with the 3’ UTR of the gene 

and hence miRNA can have multiple targets. Binding of miRNAs leads to silencing of 

the gene by translational repression or mRNA degradation (Braig et al., 2010, 

Schimanski et al., 2009). miR-196 is present within the HOX gene clusters in 

vertebrates and well conserved evolutionarily. There are, in total, three miR-196 

sequences distributed in HOXA, HOXB and HOXC clusters. miR-196a-1 and miR-

196a-2 have been observed to be present upstream of HOXB9 and HOXC9 (Tanzer et 

al., 2005), whereas, miR-196b is seen to be present upstream of HOXA9 (Popovic et al., 

2009) (Figure 2.3). There is only a single nucleotide difference between miR-196a and 

miR-196b and there is no difference in the mature sequence of miR-196a-1 and miR-

196a-2 (Tanzer et al., 2005). 

The aim of this chapter was to look at the expression of miR-196a in HNSCC cell lines 

and tissue samples compared to normal cell lines and tissue samples and effects of miR-

196a in HNSCC. For this, qPCR technique was utilised with taqman primers for miR-

196a detection in cell lines and LCM tissue based RNA extracted. iNOK cells were 

transfected with pre-miR-196a and OPM and HNSCC cells were transfected with anti-

miR-196a to increase or decrease the expression of miR-196a in respective cells and to 

utilise these transfected cells for functional assays. Functional assays such as MTS 

proliferation, adhesion to fibronectin, migration and invasion were performed to look at 

the functional effects of miR-196a in iNOK, OPM and HNSCC cells. MTS reagent was 

used for both proliferation and adhesion absorbance calculation whereas transwell 

membrane was used for migration and invasion with matrigel.  
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4.1 Expression of miR-196a in HNSCC 

Prior to commencement of the project, a miRNA affymetrix microarray was performed 

which indicated that the expression of miR-196a was higher in HNSCC cell lines when 

compared to normal cells (Lambert, Murdoch and Hunter, Unpublished data). This was 

intriguing as it had been reported earlier that miR-196a levels are increased in a number 

of other cancers (Tsai et al., 2012, Maru et al., 2009b) and also subsequently in oral 

cancer (Liu et al., 2012a). Hence, to assess the levels of miR-196a more closely qPCR 

was performed in the NOKs, iNOKs, OPM and HNSCC cell lines. qPCR was also 

performed to check expression of pri-miR-196a-1 and pri-miR-196a-2 in these cell lines 

as these are two loci which produce miR-196a mature sequence. It was observed that 

miR-196a expression was significantly higher in OPM and HNSCC cell lines compared 

to NOKs (Figure 4.1). Both pri-miR-196a-1 and pri-miR-196a-2 showed significant 

increase in expression in OPM and HNSCC cell lines compared to NOKs (Figure 4.2). 

LCM was performed on the cancer and normal FFPE tissue samples to determine the 

expression level of miR-196a in normal and cancer tissues. It was observed that quality 

of RNA from LCM was acceptable for length of miRNAs (Figure 4.3) and miR-196a 

was significantly over-expressed in cancer tissue compared to normal tissue (Figure 

4.4). As miR-196a expression was seen to be significantly higher in OPM and HNSCC 

cells next functional effects of miR-196a in HNSCC were checked. 

 

 

 

 

 



 
 

 

 

 

Figure 4.1. miR-196a was highly expressed in HNSCC and OPM cells compared to 

normal. miR-196a expression was assessed 

iNOK, OPM and HNSCC cells. 

cells (D19) compared to cancer cells (B16). 

control RNU48. The experiment was performed in triplicate. Error bars are 

representative of SEM.

OK21. *, p<0.05; **, p<0.01.
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4.1.2 Expression of miR-196a in HNSCC tissue based on LCM (Laser Capture 

Microdissection) 

Agilent RNA pico-chip was used to analyse the quality of RNA that was extracted by 

LCM from tissue samples on Agilent Bioanalyser 2100. Even though the RIN and 

28s/18s ratio is not detected, there is good detection of RNA of ~25 nucleotides which 

approximately is the length of miRNA (Figure 4.3). The overall poor quality of the 

RNA can be attributed to the fact that these are FFPE tissue samples and RNA 

undergoes cross-linking and degradation. As miRNA are ~21-25 nucleotides in length, 

it meant that the RNA extracted was of good quality for the length of miR-196a. 
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A. 

 

B. 

 

Figure 4.3. Agilent Bioanalyser graph showing integrity of the RNA extracted from 

LCM of A. normal and B. cancer tissue. 
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Figure 4.4. miR-196a expression was significantly increased in cancer tissue 

compared to normal tissue. miR-196a expression was assessed in FFPE normal 

tissue and cancer tissue. RNU48 was used as the internal control. The experiment 

was repeated in 16 unmatched normal and cancer tissues. The data was 

normalised to internal control RNU48. The experiment was performed in 

triplicate. Non-parametric Mann-Whitney U Test was applied to calculate p-value. 

*, p<0.05.  
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4.2 Functional effects of miR-196a in HNSCC 

To assess the effect of the observed high expression of miR-196a on four basic 

characteristics of cancer cells, functional assays were performed. Based on the paper 

from Tsai et al., 2012, in gastric cancer it was seen that higher expression of miR-196a 

led to increased cell migration and invasion (Tsai et al., 2012). The oral cancer cells 

were assessed to see if they showed any of the similar effects and in addition to evaluate 

the effects on adhesion and proliferation. Performing both knockdown and over-

expression of miR-196a experiment would increase the confidence in the specificity of 

the effects seen. 

The B16 (HNSCC) and D19 (OPM) cells were transfected with anti-miR-196a or 

negative control. Down-regulation in the expression of miR-196a was confirmed by 

qPCR (Figure 4.5). These transfected cells were then used to perform different 

functional assays. There was no significant difference in proliferation (Figure 4.6) or 

migration towards fibronectin (Figure 4.9) between anti-miR-196a and negative control 

transfected cells. Only B16 anti-miR-196a transfected cells showed significant down-

regulation in adhesion to fibronectin compared to negative control cells (Figure 4.7). 

Both B16 and D19 anti-miR-196a transfected cells showed significant decrease in 

migration (Figure 4.8) and invasion (Figure 4.10) compared to negative control cells. 

The OKF4 (iNOK) cells were transfected with pre-miR-196a or negative control. Over-

expression was observed in the expression of miR-196a by qPCR (Figure 4.11). There 

was no significant difference seen between pre-miR-196a and negative control 

transfected cells for proliferation (Figure 4.12), adhesion to fibronectin (Figure 4.13) 

and invasion (Figure 4.15). Though there was a significant increase in migration (Figure 

4.14) of pre-miR-196a transfected cells compared to negative control cells.  
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4.2.1 Anti-miR-196a transfection 

 

 

 

 

Figure 4.5. miR-196a expression significantly decreased in anti-miR-196a 

transfected cells compared to negative control cells. miR-196a expression was 

assessed in B16 (HNSCC) and D19 (OPM) anti-miR-196a transfected cells 

compared to negative control transfected. The transfected cells were incubated for 

48 hr. There was 95% and 92% down-regulation observed in miR-196a expression 

in B16 and D19 anti-miR-196a transfected cells compared to negative control 

transfected cells, respectively. The data was normalised to internal control RNU48. 

The experiment was performed in triplicate. Error bars are representative of 

SEM. Student’s t-test was applied to calculate p-value. *, p<0.05. 
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4.2.2 Proliferation assay 

 

 

 

 

 

Figure 4.6. MTS proliferation assay showed no significant difference in absorbance 

for B16 and D19 anti-miR-196a and negative control transfected cells. Absorbance 

was checked at 490nm. The time points used for MTS proliferation assay were 0h, 

24h, 48h, 72h and 96h. The experiment was performed in triplicate and repeated 

thrice. Error bars are representative of SEM. Student’s t-test was applied to 

calculate p-value. 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 h 24 h 48 h 72 h 96 h 0 h 24 h 48 h 72 h 96 h

A
b

so
rb

a
n

ce
 4

9
0

n
m

Negative Anti-miR-196a

B16 D19



95 
 
4.2.3 Fibronectin Adhesion assay 

 

 

 

 

Figure 4.7. MTS adhesion assay showed significant decrease in B16 and no effect in 

D19 anti-miR-196a transfected cells compared to negative control cells. 

Absorbance was checked at 490nm after 1h incubation with MTS reagent. The 

experiment was performed in triplicate and repeated thrice. Error bars are 

representative of SEM. Student’s t-test was applied to calculate p-value. ***, 

p<0.001. 
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4.2.4 Migration towards FCS (Fetal Calf Serum) 

 

 

 

 

Figure 4.8. Transwell migration assay showed significant decrease in B16 and D19 

anti-miR-196a transfected cells which migrated towards FCS compared to 

negative control cells. The cells were allowed to migrate for 24 hr. The experiment 

was performed in duplicate and repeated thrice. Error bars are representative of 

SEM. Student’s t-test was applied to calculate p-value. ***, p<0.001. 
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4.2.5 Migration towards fibronectin 

Migration towards fibronectin was performed to check the effect of fibronectin in 

migration as we had seen reduced adhesion to fibronectin in B16 anti-miR-196a cells 

compared to negative control cells. 

 

 

 

Figure 4.9. Transwell migration assay showed no effect in B16 and D19 anti-miR-

196a cells which migrated towards fibronectin compared to negative control cells. 

The cells were allowed to migrate for 24 hr. The experiment was performed in 

duplicate and repeated thrice. Error bars are representative of SEM. Student’s t-

test was applied to calculate p-value. 
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4.2.6 Invasion assay 

 

 

 

 

Figure 4.10. Transwell invasion assay showed significant decrease in B16 and D19 

anti-miR-196a cells which invaded growth factor reduced matrigel compared to 

negative control cells. Growth factor reduced matrigel was used so that cells 

invasive potential is not over-shadowed by their affinity for other growth factors. 

The cells were allowed to invade through matrigel for 48 hr. The experiment was 

performed in duplicate and repeated thrice. Error bars are representative of SEM. 

Student’s t-test was applied to calculate p-value. ***, p<0.001. 
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4.2.7 Pre-miR-196a transfection 

 

 

 

 

Figure 4.11. miR-196a expression was significantly increased in OKF4 pre-miR-

196a cells compared to negative control cells. The transfected cells were incubated 

for 48 hr. The data was normalised to internal control RNU48. OKF4 showed 

158,189 folds over-expression for miR-196a with 50nM pre-miR-196a transfection 

compared to negative control and hence to get expression to the same level as 

HNSCC and OPM cell lines, the pre-miR-196a was serially diluted to 0.5nM, 

where it showed 1800 folds over-expression. The experiment was performed in 

triplicate. Error bars are representative of SEM. Student’s t-test was applied to 

calculate the p-value. *, p<0.05; **, p<0.01. 
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4.2.8 Proliferation assay 

 

 

 

 

Figure 4.12. MTS proliferation assay showed no significant difference in 

absorbance between OKF4 pre-miR-196a and negative control cells. Absorbance 

was checked at 490nm. The time points used for MTS proliferation assay were 0h, 

24h, 48h, 72h and 96h. The experiment was performed in triplicate and repeated 

thrice. Error bars are representative of SEM. Student’s t-test was applied to 

calculate p-value. 
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4.2.9 Fibronectin Adhesion assay 

 

 

 

 

Figure 4.13. MTS adhesion assay showed no significant difference in adhesion to 

fibronectin between OKF4 pre-miR-196a and negative control cells. Absorbance 

was checked at 490nm after 1 hr incubation with MTS reagent. The experiment 

was performed in triplicate and repeated thrice. Error bars are representative of 

SEM. Student’s t-test was applied to calculate p-value. 
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4.2.10 Migration assay 

 

 

 

 

Figure 4.14. Transwell migration assay showed significant increase in OKF4 pre-

miR-196a cells which migrated towards FCS compared to negative control cells. 

The cells were allowed to migrate for 24 hr. The experiment was performed in 

duplicate and repeated thrice. Error bars are representative of SEM. Student’s t-

test was applied to calculate p-value. **, p<0.01. 
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4.2.11 Invasion assay 

 

 

 

 

Figure 4.15. Transwell invasion assay showed no significant difference in OKF4 

pre-miR-196a cells which invaded growth factor reduced matrigel compared to 

negative control cells. The cells were allowed to invade for 48 hr. The experiment 

was performed in duplicate and repeated thrice. Error bars are representative of 

SEM. Student’s t-test was applied to calculate p-value. 
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4.3 Discussion: 

miRNA-196 is present in the HOX gene cluster across different chromosomes. miR-

196a expression was seen to be increased in OPM and HNSCC cells which correlates 

well with the data generated through affymetrix microarray (Lambert, Murdoch and 

Hunter, unpublished data) and seen by another group (Liu et al., 2012a) who also 

showed that miR-196a expression was higher in the oral squamous carcinoma cells 

compared to normal cells. miR-196a did not get detected in NOK’s and probably testing 

another known miRNA, such as miR-375 (Chen et al., 2013), which is expressed in 

NOK’s as control would have been good to show that there was no issue with cells or 

procedure. As discussed earlier, miR-196a has been observed to be up-regulated in 

several other cancers such as oesophageal, gastric and colorectal cancer (Tsai et al., 

2012, Schimanski et al., 2009, Luthra et al., 2008). High levels of miR-196a suggest 

that it might play a role in either promoting HNSCC or could even be one of the early 

changes that take place in the cell based on the observation of higher miR-196a 

expression in some OPM cell lines compared to cancer cell lines. Hence, it would be 

interesting to assess miR-196a expression in OPL (Oral Pre-malignant Lesion) tissue 

samples. miR-196a expression has also been shown to be up-regulated in the serum of 

OSCC patients pre-operative (Liu et al., 2012a), and similarly, it would be very 

interesting to assess serum miR-196a level in OPL patients. This could lead to use of 

miR-196a as early diagnostic marker for HNSCC.  

Pri-miR-196a-1 and pri-miR-196a-2 showed higher expression in OPM and HNSCC 

cells and as it might be recalled, miR-196a-1 and miR-196a-2 have identical mature 

sequence of miR-196a. Mature miR-196a expression in OPM and HNSCC compared to 

NOK was much higher than pri-miR-196a-1 or a-2. There is still much to be understood 

about miRNA biogenesis but it is suggested that SMAD protein might play a role in 

miRNA biogenesis (Davis et al., 2008). Recently, it was also observed that basic 
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pathways like Akt, ERK and TGF-β can also modulate the Drosha function and in turn 

modulate miRNA biogenesis (Blahna and Hata, 2013). Several growth factor pathways 

are dysregulated in HNSCC like Akt (Abrahao et al., 2013), ERK (Hehlgans et al., 

2012) and TGF-β (Smith et al., 2013) and these in turn could play role in modulation of 

mature miR-196a expression. It has been shown that pre-miRNA transcript can also be 

made independent of Drosha activity from the splicing event of intron and these were 

called mirtrons (Sibley et al., 2012). The higher mature miR-196a expression that is 

seen in OPM and HNSCC could be attributed to any of these factors. In terms of miR-

196a expression in the FFPE tissue samples, we observed similar results to those 

observed in-vitro.  

The level of miR-196a expression in the cancer tissue was significantly higher than 

normal tissue and this result illustrates we observe the same outcome in the cell lines 

and tissue samples. Even though the magnitude of the change seen in tissue samples is 

much smaller than cell lines this could be due to the heterogeneous cell population 

present in tissue samples while cell lines have pure epithelial cell population. Hence, it 

was thought that miR-196a might be playing the same role in-vivo as observed in-vitro. 

Transfection of anti-miR-196a and negative control into B16 (HNSCC) and D19 (OPM) 

cells led to reduced miR-196a expression. There was notable decrease in migration and 

invasion seen in HNSCC cells transfected with anti-miR-196a which sits well with the 

data published in a gastric cancer study (Tsai et al., 2012), where they found miR-196a 

promoted migration and invasion. In another study carried out in oral squamous cell 

carcinoma (OSCC) and non-small cell lung carcinoma (NSCLC) there was evidence 

that miR-196a promoted migration and invasion (Liu et al., 2012a, Liu et al., 2012d). 

Even though migration assay showed significant effect with 24 hr incubation, it could 

have been left for longer incubation to see even more migration of transfected cells. 

There was decrease in adhesion to fibronectin observed in B16 cells whereas there was 
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no significant change in adhesion in D19 cells. This result may be attributed to the fact 

that even though miR-196a expression is reduced by 92% in D19 cells, miR-196a 

expression in these cells is as high as B16 cells without transfection. It is possible that 

effect in adhesion is only noted after miR-196a expression is reduced below a critical 

level. miR-196a showed no effect on proliferation of HNSCC cells which was also 

observed in another study carried out in OSCC (Liu et al., 2012a). Migration towards 

fibronectin showed no effect in HNSCC cells even though based on in-silico analysis it 

has been observed that miR-196a targets both integrin α5 and β1. But fibronectin can 

bind multiple integrins on the cell surface and not only to its described primary integrin 

ligands integrin α5 and β1. Hence, there could be other integrins and pathways activated 

due to which no effect in migration to fibronectin was observed. 

OKF4 (Immortalised NOK) cells were then transfected with pre-miR-196a and negative 

control to assess if increasing the miR-196a level in normal cells would show the 

opposite effect to that in cancer cells. miR-196a expression increased in OKF4 cells 

when transfected with pre-miR-196a and these cells were later used for functional 

assays. There was increase in migration observed for pre-miR-196a transfected OKF4 

cells but no change in proliferation, adhesion or invasion was observed which may be 

ascribed to the fact that OKF4 cells are ‘normal’ and we are changing only one factor in 

these cells compared to dysplastic or cancer cells where there are several genetic 

changes already present. The other way of looking at it can also be that even though 

only one factor is being changed in normal cells, functional effect in terms of change in 

migratory potential of the cells is observed, thus emphasising the role miR-196a may 

play in this ability of the cells. This, like earlier, points to the direction that miR-196a 

de-regulation can be an early event in the progression of HNSCC. 

Hence, from the data presented here it can be concluded that miR-196a is over-

expressed in HNSCC cell lines and tissue samples. miR-196a also increases the 
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migratory, invasive and adhesive properties of HNSCC cells. miR-196a also increases 

the migratory property of iNOK cells. Next, the expression of all 39 HOX genes was 

checked in HNSCC and effects of HOXB9 were studied in HNSCC. This was studied as 

miR-196a is present in HOX gene cluster and has been found to target certain HOX 

genes. Based on all 39 HOX genes expression, if any HOX gene expression was down-

regulated then it could be a potential target of miR-196a.  
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Chapter 5: Effects of HOXB9 in HNSCC 

HOX genes are transcription factors which are involved in embryogenesis and 

organogenesis. HOX genes contain a 61 amino acid homeodomain. There are 39 class I 

HOX genes which are present in 13 paralogous groups and divided into four clusters 

present on different chromosomes (Sha et al., 2013, Ansari et al., 2011, Calvo et al., 

2000). The HOX paralogous groups are closely related to each other in terms of their 

functional effects (Hayashida et al., 2010, Xu and Wellik, 2011). HOXB9 is part of the 

HOX9 paralogous group (towards 3’ end) and it is part of HOXB cluster (Chen and 

Capecchi, 1999, Grier et al., 2005). HOXB9 and miR-196a-1 are present spatially 

closely to each other on chr 17. HOXB9 is over-expressed in several cancers like lung, 

breast, colorectal, hepatocellular and oral cancer (Calvo et al., 2000, Hassan et al., 2006, 

Kanai et al., 2010, Hayashida et al., 2010). Conversely, it has also been shown to be 

down-regulated in gastric cancer and this is related to poor prognosis (Sha et al., 2013). 

HOXB9 expression is regulated by several different factors and pathways in different 

cancers. In lung adenocarcinoma, HOXB9 expression is controlled by Wnt signalling 

and it is also a target of TCF4 (Nguyen et al., 2009). HOXB9 has several estrogen 

responsive elements (EREs) in its promoter and its expression has been shown to be 

regulated by estrogen in breast cancer (Ansari et al., 2011). 

In terms of previous work on HOX genes in oral cancer, HOX genes including HOXB9 

were shown to be up-regulated in oral squamous cell carcinoma compared to normal 

mucosa (Hassan et al., 2006). Hunter et al. in a previous expression microarray project, 

showed several HOX genes were up-regulated in oral squamous cell carcinoma cells 

(Hunter et al., 2006) 

(http://bioinformatics.picr.man.ac.uk/vice/PublicProjects.vice?pager.offset=15). The 

aim of this chapter was to check expression of all 39 HOX genes in HNSCC cells 

compared to normal cells. To check the expression of HOXB9 based on qPCR and 
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protein expression in HNSCC cell lines and tissue samples compared to normal cells 

and tissue samples and to check its effect in HNSCC. To assess whether HOXB9 and 

miR-196a-1 primary transcript was present in HNSCC cells or not. Thus, careful 

validation of these observations in our cell lines was necessary in addition to assessment 

of the expression of all 39 HOX genes across cell line panel consisting of NOKs, iNOK, 

OPM and HNSCC cells, to confirm which HOX genes had dysregulated expression in 

HNSCC. Based on the qPCR, HOXB9 was noted to be highly over-expressed in both 

OPM and HNSCC cells compared to normal. The protein expression levels of HOXB9 

in cell lines and tissue samples were assessed by utilising techniques like western 

blotting and Immunohistochemistry (IHC) respectively. Like miR-196a, HNSCC and 

OPM cells were transfected with HOXB9 siRNA to reduce the expression of HOXB9 

and then use these cells for functional assays. Functional assays such as MTS 

proliferation, adhesion to fibronectin, migration and invasion were performed to look at 

the functional effects of miR-196a in iNOK, OPM and HNSCC cells. MTS reagent was 

used for both proliferation and adhesion absorbance calculation whereas transwell 

membrane was used for migration and invasion with matrigel. The presence of primary 

transcript consisting of HOXB9 and miR-196a-1 was shown with the help of nested 

PCR and DNA sequencing. 
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5.1 Expression of HOX genes in HNSCC 

The expression of all 39 HOX genes was assessed by qPCR in NOK, iNOK, OPM and 

HNSCC cells. The experiment was performed in 12 different cell lines which consisted 

of normal cells (OK21, OK102, NOK2), iNOK cell lines (FNB6 and OKF6), OPM cell 

lines (D19, D20, D4 and D35) and HNSCC cell lines (B16, T4 and B22). This 

experiment was carried out in the lab of Dr. Richard Morgan in the University of 

Surrey. The expression of each HOX gene in each cell line was initially normalised to 

internal control B-actin. Then, the absolute expression of all normal cells used was 

averaged and similarly expression of all OPM and HNSCC cell lines was averaged to 

plot in the graph. Based on the data generated, none of the HOX genes were down-

regulated compared to the normal in the HNSCC. There was marked over-expression of 

HOXA4, HOXA5, HOXA9, HOXA10, HOXB9 and HOXC9 observed in OPM and 

HNSCC cells compared to normal (Figure 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7). It was 

observed that OKF6 and FNB6 showed significant expression compared to NOKs for 

certain genes. This can be attributed to them as they were immortalised normals with 

P16 knocked out and hTERT activated. HOXD10 was also noted to be over-expressed 

and its study was undertaken by my colleague, Mr. Fahad Hakami. Hence, the 

expression of all 6 HOX genes was re-assessed by qPCR. The primers for all 39 HOX 

genes and β-actin are listed in Appendix 9.2. As, HOXB9 expression was seen to be 

highly over-expressed in HNSCC cells compared to normal cells based on qPCR, it was 

decided to check the expression of HOXB9 protein by western blotting for cell lines and 

immunohistochemistry for tissue samples. 
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Figure 5.1. All 39 HOX genes expression shown for normal and cancer cells. The 

average of all normals (NOK+iNOK) and cancer (OPM+HNSCC) cell lines 

absolute expression for each HOX gene was used to represent in the graph. The 

data was normalised to internal control β-actin. The experiment was performed in 

single well for each HOX gene in each cell line. 

 

 

 



 
5.1.1 HOXA4 expression in HNSCC

 

 

 

Figure 5.2. HOXA4 was seen to be significantly over

HNSCC cells compared to normal.

U6. The experiment was performed in triplicate. Error bars are representative of 

SEM. Student’s t-test was applied to calculate p

**, p<0.01. 
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5.1.2 HOXA5 expression in HNSCC

 

 

 

Figure 5.3. HOXA5 was seen to be significantly over

HNSCC cells compared to normal.

U6. The experiment was performed in triplicate. Error bars are representative of 

SEM. Student’s t-test was appl

**, p<0.01; ***, p<0.001.
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5.1.3 HOXA9 expression in HNSCC

 

 

 

Figure 5.4. HOXA9 was seen to be significantly over

HNSCC cells compared to normal.

U6. The experiment was performed in triplicate. Error bars are representative of 

SEM. Student’s t-test was applied to calculate p

**, p<0.01; ***, p<0.001.
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5.1.4 HOXA10 expression in HNSCC

 

 

 

Figure 5.5. HOXA10

HNSCC cells compared to normal.

U6. The experiment was performed in triplicate. Error bars are representative of 

SEM. Student’s t-test was app

**, p<0.01; ***, p<0.001.
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5.1.5 HOXB9 expression in HNSCC 

It can be seen that OKF6 expresses HOXB9 at higher level compared to other normal 

(Figure 5.6.A). Expression of HOXB9 in OPM and HNSCC was similar. It can clearly 

be seen that HOXB9 is the most highly over-expressed HOX gene in HNSCC compared 

to normal cells. HOXB9 is also spatially closely related to miR-196a-1 on chromosome 

17 and hence it was decided to study the effect of HOXB9 further in HNSCC. It was 

decided to use another iNOK cell line called OKF4 instead of OKF6 and cell panel was 

widened by including H357 and B56 cells (Figure 5.6.B). Note that in figure 5.6.B, 

HOXB9 expression is represented in Log scale unlike figure 5.6.A, indicating the large 

dynamic scale of change in expression seen. It can also be noted that HOXB9 

expression in OPM and HNSCC cells is alike when compared to each other. 
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HNSCC cells compared to normal.

seen to be significantly over

normal. The data was normalised to internal control U6. The experiment was 

performed in triplicate.
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5.1.6 HOXC9 expression in HNSCC

 

 

  

Figure 5.7. HOXC9 was seen to be significantly over

HNSCC cells compared to normal.

U6. The experiment was performed in triplicate. Error bars are representative of 

SEM. Student’s t-test was applied to calculate p

**, p<0.01; ***, p<0.001.

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

H
O

X
C

9
 e

x
p

re
ss

io
n

 r
e

la
ti

v
e

 t
o

 U
6

Normal

*

C9 expression in HNSCC 

C9 was seen to be significantly over-expressed in OPM a

HNSCC cells compared to normal. The data was normalised to internal control 

U6. The experiment was performed in triplicate. Error bars are representative of 

test was applied to calculate p-value relative

***, p<0.001. 

Normal HNSCCOPM

**

*

**
****

**

**
***

118 

 

expressed in OPM and 

The data was normalised to internal control 

U6. The experiment was performed in triplicate. Error bars are representative of 

value relative to OK21. *, p<0.05; 

HNSCC

** ***
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5.2 HOXB9 protein expression agrees with RNA data in HNSCC 

The HOXB9 expression was increased in RNA level but it was needed to check if it 

translated to increase in the protein expression levels in cell lines and tissue samples. 

Anti-HOXB9 primary antibody (rabbit monoclonal) from Abcam was used to assess 

expression of HOXB9 protein in cell lines. Theoretical weight of HOXB9 was predicted 

to be 28Kd. The Abcam antibody produced a band at same molecular weight. The band 

was observed at 28Kd. β-actin was observed at 42Kd keeping with the predicted weight. 

It was observed that expression of HOXB9 protein was higher in B16, B22 and B56 

cells when compared to normal (Figure 5.8). 

The expression of HOXB9 was more extensive in the cancer tissue compared to normal 

tissue (Figure 5.10). There was faint staining in the normal tissue whereas in cancer 

tissue the intensity of staining was stronger. For normal tissue samples staining was 

seen in the nuclei of basal and some prickle cells in the epithelium (Figure 5.9.A). For 

some cancer tissue samples, the staining was not only seen in nucleus but also in the 

cytoplasm of the cells (Figure 5.9.B). The multiplicative quickscore method (semi-

quantitative) (Detre et al., 1995) was used based on the intensity (1-3) and extent (1-3) 

of staining to score the tissue samples. These results point that the increase in HOXB9 

seen in cancer cell lines and tissue samples might be having some effect in the HNSCC 

cells. As there was increase in RNA and protein level of HOXB9 in HNSCC cells, next 

it was checked what functional effects HOXB9 had in HNSCC. 
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Figure 5.8. Western blotting representing the over-expression of HOXB9 protein 

in HNSCC cell lines compared to normal. β-actin was used as the internal and 

loading control. MCF7 was used as positive control based on manufacturer’s 

specification sheet. This blot is representative of 4 repeats. 
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A. 

  

 

B. 

 

  

 

Figure 5.9. A. HOXB9 protein detection in normal tissue by IHC, as described in 

materials and methods. B. HOXB9 protein detection in cancer tissue based on 

IHC. Magnification used was 200X on Olympus light microscope. 
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Figure 5.10. Box plot representing over-expression of HOXB9 in cancer tissue 

compared to normal tissue. 25 cancer tissues on TMA and 10 normal tissues were 

used for IHC. Mann-whitney U-test was applied to the data for statistical analysis. 

***, p<0.001. 
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5.3 Functional effects of HOXB9 in HNSCC 

To assess effects of HOXB9 in HNSCC, functional assays were performed in B16 

(HNSCC) and D19 (OPM) cells. These cells were transfected with HOXB9 siRNA and 

negative control siRNA. The efficiency of silencing HOXB9 was assessed using qPCR 

and it was noted that HOXB9 siRNA significantly down-regulated the expression of 

HOXB9 compared to negative control (Figure 5.11). These transfected cells were then 

used for functional assays. It was observed that HOXB9 siRNA transfected cells 

showed significant decrease in proliferation (Figure 5.12), migration (Figure 5.14) and 

invasion (Figure 5.15) compared to negative control cells. There was no change noticed 

in adhesion to fibronectin between either cells (Figure 5.13).  
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5.3.1 HOXB9 siRNA transfection 

 

 

 

 

Figure 5.11. HOXB9 expression significantly decreased in B16 and D19 HOXB9 

siRNA cells compared to negative control cells. The transfected cells were 

incubated for 48 hr. The data was normalised to internal control U6. There was 

62% and 48% down-regulation observed in HOXB9 expression in B16 and D19 

HOXB9 siRNA transfected cells compared to negative control transfected cells, 

respectively. The experiment was performed in triplicate. Error bars are 

representative of SEM. Student’s t-test was applied to calculate p-value. *, p<0.05; 

***, p<0.001. 
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5.3.2 Proliferation Assay 

 

 

 

 

Figure 5.12. MTS proliferation assay showed significant decrease in proliferation 

of B16 and D19 HOXB9 siRNA cells compared to negative control cells. 

Absorbance was checked at 490nm. The time points used for proliferation assay 

were 0h, 24h, 48h, 72h and 96h. The experiment was performed in triplicate and 

repeated thrice. Error bars are representative of SEM. Student’s t-test was applied 

to calculate p-value. *, p<0.05; **, p<0.01; ***, p<0.001. 
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5.3.3 Fibronectin Adhesion Assay 

 

 

 

 

Figure 5.13. MTS adhesion assay showed significant increase in adhesion for B16 

HOXB9 siRNA cells compared to negative control cells whereas there was no 

change noted for D19 cells. Absorbance was checked at 490nm after 1 hr 

incubation with MTS reagent. The experiment was performed in triplicate and 

repeated thrice. Error bars are representative of SEM. Student’s t-test was applied 

to calculate p-value. *, p<0.05. 
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5.3.4 Migration towards FCS 

 

 

 

 

Figure 5.14. Transwell migration assay showed significant decrease in migration 

towards FCS of B16 and D19 HOXB9 siRNA cells compared to negative control 

cells. The cells were allowed to migrate for 24 hr. The experiment was performed 

in duplicate and repeated thrice. Error bars are representative of SEM. Student’s 

t-test was applied to calculate p-value. ***, p<0.001. 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

45

B16 D19

a
v

e
ra

g
e

 c
e

ll
s 

m
ig

ra
te

d

Negative HOXB9 siRNA

***

***



128 
 
5.3.5 Invasion Assay 

 

 

 

 

Figure 5.15. Transwell invasion assay showed significant decrease in B16 and D19 

HOXB9 siRNA cells which invaded growth factor reduced matrigel compared to 

negative control cells. Growth factor reduced matrigel was used so that cell’s 

invasive potential is not over-shadowed by their affinity for other growth factors. 

The cells were allowed to invade for 48 hr. The experiment was performed in 

duplicate and repeated thrice. Error bars are representative of SEM. Student’s t-

test was applied to calculate p-value. ***, p<0.001. 
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5.4 PCR for miR-196a-1 and HOXB9 primary transcript with different 

DNA polymerase 

miR-196a-1 and HOXB9 are present in the HOXB cluster on chromosome 17. miR-196 

is present upstream of HOX9 paralogous group (Yekta et al., 2004). Based on in-silico 

analysis, it has been suggested that HOX gene clusters produce multiple polycistronic 

mRNA transcripts (Mainguy et al., 2007). In the same paper it was also proposed that 

HOXB7, HOXB8, HOXB9 and miR-196a-1 are co-expressed on a single primary 

transcript. This proposed primary transcript has also been annotated in Ensembl 

(www.ensembl.org), spanning 32 Kb on chromosome 17 (Transcript: RP11-357H14.19-

001), although these predictions have not been experimentally verified. Based on the 

data presented here, which shows over-expression for both miR-196a and HOXB9, this 

primary transcript could exist in HNSCC cells. 

The primers for the PCR to assess for the presence of primary transcript co-expressing 

miR-196a-1 and HOXB9 were designed from precursor miR-196a-1 sequence (PT 

forward) and exon 1 of HOXB9 (PT reverse). The total length of the predicted amplicon 

using these primers was 6320 bp and the primers only amplified this particular 

transcript based on the analysis from Primer Blast 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The forward and reverse primer Tm 

(melting temperature) (PT primers) was calculated to 68.10C and 67.20C. B16 RNA was 

extracted and M-MLV reverse transcriptase was used for rt-PCR. cDNA from the 

reaction was used with Phusion and Taq DNA polymerase for PCR. Gradient PCR was 

used to assess for the presence of the transcript from 400C to 700C annealing 

temperature. Phusion DNA polymerase was used as it has got proof reading quality 

which would avoid the possibility of incorporation of wrong base, but there was no 

detection of the transcript at 6.3Kb. Hence, PCR was performed with Taq DNA 

polymerase even though it does not have exonuclease activity but has high efficiency. 
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But still there was no detection of a transcript of 6.3Kb. GAPDH was used as the 

internal control to assess for the integrity of the RNA and also to evaluate if M-MLV 

was reverse transcribing the RNA to cDNA. GAPDH was expressed in the B16 cells 

with an amplicon detected with the expected size of 240 bp. 

5.5 miR-196a-1 and HOXB9 are co-expressed on same novel primary 

transcript 

Inside the 6.3 Kb transcript the nested primers were designed to amplify an intergenic 

region and give a 295 bp transcript (nested forward, Tm 770C; nested reverse, Tm 750C) 

(Figure 5.16). The primers used for rt-PCR were changed, using random primers or PT 

primers with B16 RNA. The first PCR was done using another DNA polymerase Q5 

(NEB) which has proof-reading quality due to the failure of the PCR before, as per 

manufacturer’s protocol with PT primers at two different annealing temperature 550C 

and 600C. Then, nested PCR was run with the cDNA produced from first PCR (Table 

5.1) based on manufacturer’s protocol and used three different annealing temperatures 

550C, 600C and 650C. A 300 bp product was produced as shown by the marker for 

nested PCR run at all three temperatures only for the samples which had PT primers in 

rt-PCR (Figure 5.17.A). To confirm this expression of primary transcript the experiment 

was repeated with two controls: (-) RT (reverse transcriptase) and +RNase A (Figure 

5.17.B). As can be seen, a 300 bp product was produced as before. In control samples, 

no product was seen which suggested that there was no DNA contamination and the 

transcript was being produced from RNA. This reaction shows that there is a primary 

transcript co-expressing miR-196a-1 and HOXB9. GAPDH was used as an internal 

control for B16 RNA and RP was used for the reaction. It was expressed at 240 bp 

expected length (Figure 5.17.C).  

 



 
 

 

 

 

 

 

 

 

Figure 5.16. Schematic diagram of strategy applied to detect presence of HOXB9 

and miR-196a-1 primary transcript.

 

 

 

 

 

 

 

. Schematic diagram of strategy applied to detect presence of HOXB9 

1 primary transcript.  

131 

 

. Schematic diagram of strategy applied to detect presence of HOXB9 
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A. 

 

 

B. 

 

 

 

 

C. 

 

 

 

Figure 5.17. Co-transcription of miR-196a-1 and HOXB9 on same primary 

transcript. A. Initial Agarose gel run loaded with Marker (M) and PCR product 

showing presence of primary transcript at different conditions used in PCR (figure 

legend described in Table 5.1). The B16 RNA used was from previous experiment. 

B. Agarose gel run showing presence of primary transcript in B16 cells with newly 

extracted B16 RNA. We utilised two control conditions to show that expression 

was detected from RNA, (i) (–) RT and (ii) (+) RNase A. RT, reverse transcriptase. 

C. GAPDH was used as the internal control for newly extracted B16 RNA.  

300 bp 

 Marker         B16            (-) RT   (+)RNaseA 

M B16 

200 bp 

300 bp 
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Table 5.1. Table describing symbol from Figure 5.17.A. B16 cells were used for 

total RNA extraction. Primers and temperatures used for PCR. RP, Random 

Primers; PT primers, Primary transcript primers. 

Symbol on gel Primer 

for rt-

PCR 

Primer and 

Temperature for first 

PCR 

Primer and 

Temperature for 

second PCR 

1, 55 RP PT primers, 550C Nested primers, 550C 

2, 55 RP PT primers, 600C Nested primers, 550C 

3, 55 PT PT primers, 550C Nested primers, 550C 

4, 55 PT PT primers, 600C Nested primers, 550C 

1, 60 RP PT primers, 550C Nested primers, 600C 

2, 60 RP PT primers, 600C Nested primers, 600C 

3, 60 PT PT primers, 550C Nested primers, 600C 

4, 60 PT PT primers, 600C Nested primers, 600C 

1, 65 RP PT primers, 550C Nested primers, 650C 

2, 65 RP PT primers, 600C Nested primers, 650C 

3, 65 PT PT primers, 550C Nested primers, 650C 

4, 65 PT PT primers, 600C Nested primers, 650C 
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5.6 DNA sequencing to confirm the presence of transcript 

B16 RNA was used for rt-PCR with PT primers, cDNA synthesized was used for first 

PCR with Q5 DNA polymerase with PT primers. The nested PCR was performed with 

PCR product from first PCR with Taq DNA polymerase with nested primers. To 

confirm that the PCR product observed on the gel was the 295 bp transcript which was 

expected, DNA sequencing was performed for the product. The DNA sequencing was 

perfect match for 295 bp transcript predicted using the nested primers (Figure 5.18). 

This result suggested that there was a novel primary transcript in B16 cells which 

contains miR-196a-1 and the coding sequence of HOXB9. 
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Figure 5.18. DNA sequencing of the PCR product confirms the presence of 

primary transcript. 
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5.7 Discussion 

HOXB9 is present in the HOXB cluster on chromosome 17 and is a part of HOX9 

paralogous group (Grier et al., 2005). HOXB9 expression was seen to be most highly 

increased between all 39 HOX gene panel and individual qPCR and this result agrees 

with the other publication which suggested that HOXB9 was over-expressed in oral 

squamous cell carcinoma (Hassan et al., 2006). HOXB9 has also been shown to be up-

regulated in several other cancers as well like breast, lung, colorectal and hepatocellular 

carcinoma (Hayashida et al., 2010, Calvo et al., 2000, Kanai et al., 2010).  

HOXB9 protein was observed to be over-expressed based on western blotting for cell 

lines and IHC for tissue samples. It was shown that expression of HOXB9 in HNSCC 

cell lines was higher compared to normal through western blotting. The band for 

HOXB9 protein was observed at the predicted molecular weight of 28Kd. This result 

proved that the over-expression that was observed in terms of RNA for HNSCC cell 

lines also translated into over-expression of HOXB9 protein in these cell lines 

compared to normal cells. The result for IHC staining was calculated based on the 

quickscore method which takes into account the extent and intensity of staining and is a 

semi-quantitative method. In normal tissue, staining was observed in the basal layer of 

the epithelium and also it was noted to be faint in intensity. In cancer tissue, staining 

was observed in higher extent covering whole epithelium and at much greater intensity. 

Nuclear staining was observed for both normal and cancer tissue but cytoplasmic 

staining was also seen in cancer tissue as observed in another study in gastric carcinoma 

and adjacent non-cancerous tissues (Sha et al., 2013). 

 

B16 and D19 HOXB9 siRNA cells showed significantly decreased expression of 

HOXB9 compared to negative control cells and these cells were then used for functional 

assays. In terms of adhesion assay, we observed increase in adhesion to fibronectin in 
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B16 cells transfected with HOXB9 siRNA, but there is difference between being 

statistically significant and biologically significant. The increase seen in adhesion was 

marginal, it is not clear if this represents a significant biological effect in HNSCC. 

There was reduced migration, invasion and proliferation observed in OPM and HNSCC 

cells transfected with HOXB9 siRNA, these three characteristics are very critical for 

cancer to progress. In breast cancer, it was observed that HOXB9, as in our 

experiments, increased migration and invasion. They also observed that HOXB9 

expression lead to loss of cell-cell contact and also lead to epithelial-to-mesenchymal 

transition (EMT) (Hayashida et al., 2010). In another study carried out in breast cancer 

patient samples it was shown that HOXB9 promoted proliferation and angiogenesis 

(Seki et al., 2012). In a separate study, it was noted that expression of HOXB9 had anti-

apoptotic effect in Hodgkin lymphoma and its expression increased the cell number 

(Nagel et al., 2007). Based on our observations and other studies there is strong 

evidence that HOXB9 plays a critical role in these important cancer characteristics. 

Hence, HOXB9 could be a novel therapeutic target in HNSCC. 

The hypothesis that HOXB9 and miR-196a-1 were present on the same primary 

transcript was suggested by Mainguy et al. in 2007 based on in-silico analysis (Mainguy 

et al., 2007). Given high expression of HOXB9 and miR-196a in B16 cells, it was 

hypothesised that this transcript may be present in HNSCC cells. Initially, Phusion and 

Taq DNA polymerase were used for PCR and no product was observed at 6.3 Kb length 

in the agarose gel. There could be number of reasons why no product was seen. Firstly, 

it could be because the primary transcript was present in very low abundance and on 

single round of amplification there was not enough product to view on the gel. It could 

also be that the DNA polymerase was not able to transcribe such a long transcript.  

In order to address these concerns, PT primers or RP were used in reverse transcription, 

along with Q5 DNA polymerase for first and nested PCR which has higher fidelity than 
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Phusion. This was done to see if using specific primers for the transcript could help in 

its reverse transcription. Nested primers were designed, which were present in the 

intergenic region of the transcript with length of 295 bp. The experiment was performed 

with appropriate controls. The product for B16 sample run with same protocol as earlier 

was present at 300 bp, with no product present for control amplification. This suggested 

that there was no DNA contamination and amplification was coming from RNA 

present, which proposed that primary transcript might be present. GAPDH was used as 

an internal control to assess for the integrity of the RNA. GAPDH was present at the 

expected length suggesting that the B16 RNA was intact.  

The DNA sequencing showed us that the transcript had exact match to the sequence of 

295 bp transcript present between nested primers. This experiment confirmed that the 

novel primary transcript co-transcribing miR-196a-1 and HOXB9 was present in B16 

cells. 

It is possible not all expression of HOXB9 or miR-196a in HNSCC comes from this 

primary transcript. It was observed in zebrafish that HOXB3a splv2 and miR-10c were 

co-transcribed on the same primary transcript too and authors suggested that the 

expression of HOXB3a might be under the control of global and local enhancers 

(Woltering and Durston, 2008). The other possibility of expression is amplification of 

this locus, but it is understood that HOXB9 and miR-196a-1 locus is not amplified in 

HNSCC cells (N Thakker, K Hunter, personal communication). HOXB9 expression has 

been shown to be under the control of Wnt signalling pathway in lung cancer (Nguyen 

et al., 2009), estrogen signalling in breast cancer (Ansari et al., 2011) and PRC1 in 

angelman syndrome (Zaaroor-Regev et al., 2010). Also, miR-196a expression has been 

suggested not to be under the control of only elements near HOX genes (Mansfield et 

al., 2004). However, this transcript could prove to be important therapeutic target as it 
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could lead to down-regulation in the expression of both HOXB9 and miR-196a in 

HNSCC. 

In this chapter it was shown that HOXB9 is the most over-expressed gene in terms of 

fold change between all 39 HOX genes. The expression of HOXB9 protein was 

increased in HNSCC cell line and tissue samples. HOXB9 also increase the migratory, 

invasive and proliferative potential of HNSCC cells. As HOXB9 and miR-196a-1 are 

spatially closely related to each other, based on PCR and DNA sequencing it was 

suggested that this primary transcript exists in HNSCC cells.  

Next, the search for novel direct target of miR-196a in HNSCC was undertaken. This 

was done as miR-196a was highly overexpressed in HNSCC and showed effect on 

adhesion, migration and invasion. To study how miR-196a was mediating these effects 

in HNSCC, it was decided to look for its target in this cancer. 
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Chapter 6: Search for novel miR-196a targets in 

HNSCC 

It has been proposed that miR-196a targets several HOX genes such as HOXB8, 

HOXC8, HOXA5 and HOXB7 based on experimental and in-silico analyses (Yekta et 

al., 2004, Mueller and Bosserhoff, 2011, Braig et al., 2010, Liu et al., 2012d). However, 

miR-196a does not only target HOX genes but several other genes such as ANXA1, 

S100A9, KRT5, SPRR2C, p27 (Sun et al., 2012, Luthra et al., 2008, Maru et al., 

2009b). miR-196a, as shown earlier, is over-expressed in HNSCC (Figure 4.1). 

Transfection with anti-miR-196a leads to decreased adhesion, migration and invasion in 

HNSCC (Figure 4.7, 4.8 and 4.10), illustrating the pro-tumourigenic phenotype elicited 

by miR-196a. With these properties in mind, a search for targets of miR-196a in 

HNSCC was carried out. 

The aim of this chapter was to find a direct target for miR-196a in HNSCC. Initially, 

qPCR was utilised to check for expression of already published targets in other cancers 

in HNSCC transfected cells. Later, the technique of microarray was performed. Agilent 

microarray was used with iNOK pre-miR-196a transfected cells and OPM and HNSCC 

anti-miR-196a transfected cells. To analyse the raw data, Qlucore Omics Explorer was 

used. To confirm MAMDC2 was direct target of miR-196a in HNSCC, DLRA and 

SDM was performed. 
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6.1 Search for targets based on published miR-196a targets 

Initially, the targets already published for miR-196a in other cancers were evaluated. 

This is an appropriate starting point as these were already shown to be targets and were 

assessed in target prediction database called TargetScan (http://www.targetscan.org/). 

Hence, they were good candidates to be direct targets of miR-196a in HNSCC. There 

was no attempt made to validate any published HOX genes as miR-196a targets as in 

the screening for 39 HOX genes expression (Figure 5.1), none of them were down-

regulated compared to normal which suggested that none were being targeted by miR-

196a. Hence, other published targets such as Keratin 5 (KRT5), Annexin A1 (ANXA1) 

and S100 calcium binding protein A9 (S100A9) were pursued in cells transfected with 

anti-miR-196a to assess if any of them could be validated as possible miR-196a targets 

in HNSCC. It was observed KRT5 (Figure 6.1), ANXA1 (Figure 6.2) and S100A9 

(Figure 6.3) showed no significant difference of expression between anti-miR-196a 

transfected cells compared to negative control. Hence, to find novel miR-196a target in 

HNSCC it was decided to perform microarray in B16, D19 and OKF4 transfected cell 

lines. 
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6.1.1 Keratin 5 (KRT5) 

 

 

 

 

Figure 6.1. KRT5 expression showed no significant difference for B16 and D19 

anti-miR-196a transfected cells compared to negative control cells. The data was 

normalised to internal control U6. The experiment was performed in triplicate. 

Error bars are representative of SEM. Student’s t-test was applied to calculate p-

value. 
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6.1.2 Annexin A1 (ANXA1) 

 

 

 

 

Figure 6.2. ANXA1 expression showed no significant difference for B16 and D19 

(p=0.12) anti-miR-196a transfected cells compared to negative control cells. The 

data was normalised to internal control U6. The experiment was performed in 

triplicate. Error bars are representative of SEM. Student’s t-test was applied to 

calculate p-value. 
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6.1.3 S100 calcium binding protein A9 (S100A9) 

 

 

 

 

 Figure 6.3. S100A9 expression showed no significant difference for B16 and D19 

anti-miR-196a transfected cells compared to negative control cells. The data was 

normalised to internal control U6. The experiment was performed in triplicate. 

Error bars are representative of SEM. Student’s t-test was applied to calculate p-

value. 
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6.2 Agilent Oligonucleotide Microarray 

There were few other published targets for miR-196a but after assessing the three best 

characterised targets in other systems with no success, a better method of finding a 

target was to look at overall transcriptome changes when miR-196a expression was 

altered. This approach would also allow for possible identification of novel targets of 

miR-196a rather than a published target. Hence, a number of different approaches were 

considered to search for a target of miR-196a. In terms of recent techniques, PAR-CLIP 

(photoactivable-ribonucleoside cross-linking and immunoprecipitation) (Ascano et al., 

2012) and pSILAC (pulsed stable isotope labelling with amino acid in cell culture) 

(Selbach et al., 2008) were considered. PAR-CLIP had the advantage of assessing the 

mRNA transcript directly bound with target miRNA and pSILAC had the advantage 

that, changes at protein level caused by target miRNA could be directly observed, but 

both techniques were still in early stage of development. Even though the techniques 

have developed, the bioinformatics analytical techniques required were still lagging 

behind the technical experiment and due to this it would be difficult to differentiate 

signal from noise. Furthermore, these techniques are very expensive. Hence, the 

established technique of expression microarray was selected which would show the 

changes for whole transcriptome and also had reliable analytical software to analyse the 

raw data generated. For microarray B16, D19 and OKF4 transfected cells were used and 

raw data analysed using Qlucore Omics Explorer (Figure 6.7). Based on the data 

analysis and qPCR of microarray samples, it was observed that MAMDC2 might be a 

direct target of miR-196a in HNSCC (Figure 6.9). Next, to confirm whether MAMDC2 

is a direct target of miR-196a or not in HNSCC, DLRA and SDM were performed. 
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6.2.1 Samples for microarray 

Three different cell lines were used B16 (HNSCC), D19 (OPM) and OKF4 (iNOK) 

(Table 3.1). B16 and D19 had high expression of miR-196a compared to normal 

whereas OKF4 had expression similar to normal (Figure 4.1). B16 and D19 cells were 

transfected with anti-miR-196a and negative control in triplicates whereas OKF4 cells 

were transfected with pre-miR-196a and negative control in duplicates. This was done 

so that the opposite effect could be seen in target gene expression in B16 and D19 cells 

compared to OKF4 cells. The total RNA was then extracted from the transfected cells 

and analysed for their quality by using Agilent 2100 Bioanalyzer. The samples were 

then prepared as per the manufacturer’s protocol to be mounted and hybridised onto the 

microarray. This experiment was carried out with the help of Dr. Paul Heath. 

6.2.2 RNA quantity and quality 

The RNA quantity for all the samples was checked with Nanodrop spectrophotometer 

and recorded. qPCR was performed to assess the decrease and increase in the expression 

of miR-196a in B16, D19 and OKF4 transfected cells. The quality of the RNA was 

based on the RIN (RNA Integrity Number) which is graded from 1-10, 10 being the best 

quality RNA, and 28s:18s ratio which if higher than 2 is considered good quality RNA. 

All samples had a RIN of 10 and 28s/18s ratios of more than two (Figure 6.4). This 

confirms that the total RNA extracted from the transfected cells was of very good 

quality and hence it could be used for microarray experiment. The samples for 

microarray were prepared according to manufacturer’s protocol (Agilent), hybridised, 

scanned and raw data collected. This raw data was then loaded into software for data 

analysis. 
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A.                                                                       B. 

 

C.                                                                      D. 

           

Figure 6.4. Data output from Agilent 2100 Bioanalyzer showing high quality of 

RNA for a few of the samples based on RIN and 28s/18s ratio. A. Ladder was used 

as a reference for analysis of data. B. B16 –ve 1 showing 28s/18s > 2 and RIN of 10. 

C. D19 AM 3 showing 28s/18s > 2 and RIN of 10. D. OKF4 196 2 showing 28s/18s > 

2 and RIN of 10. –ve, negative control; AM, anti-miR-196a; 196, pre-miR-196a. 
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6.2.3 Genespring 

Genespring 12 (Agilent) was initially used for microarray raw data analysis. For every 

cell line transfected, a new experiment was created. The control and transfected sample 

raw data for each cell line was uploaded in these experiments. Then the sample raw data 

was normalised based on 75th percentile normalization method for inter-array 

normalization. Then all the samples were viewed on box plot to assess if all the array 

data was normalized around zero and to assess if any array data differed a lot from this 

value. The normalized data was viewed in principal component analysis in three-

dimensions to see their clustering. The array data which differed significantly from the 

clustering for other similar condition arrays was rejected from further analysis, as the 

data from that array would differ and could lead to obscure results. The normalized data 

was then subjected to T-test analysis with no multiple hypothesis correction when 

transfected samples (anti-miR-196a or pre-miR-196a) were compared to negative 

control samples. There were >3000 genes with significant differential expression 

(p<0.05) in each experiment between transfected and negative control samples. The 

miR-196a expression in B16 and D19 was highly over-expressed compared to normal 

cells, whereas the miR-196a expression in OKF4 cells is similar to normal cells (Figure 

4.1). Therefore, based on this knowledge search was initiated for genes which were 

differentially expressed in all three cell lines. There were only 15 genes seen to be 

differentially expressed, but all of them differed from expected orientation of their 

expression depending on the cell line (Table 6.1). Hence, only genes which were 

significantly up-regulated (p<0.05) in B16 and D19 cell lines (Table 6.2) were 

considered further. It was selected to look for genes in B16 and D19 as they are HNSCC 

and OPM cell lines and hence would have more similarity in their gene expression. 
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Table 6.1. Expression of 15 differentially expressed genes in B16, D19 and OKF4 

cell lines based on Genespring analysis. P-value and fold change shown in 

appendix 9.4. 

GeneSymbol 

B16 
Transfected 
v/s control 

D19 
Transfected 
v/s control 

OKF4 
Transfected v/s 
control 

Expected expression 
directionality up up down 
KRTAP6-2 up down up 
FBXW2 down up up 
BMP7 down up down 
AKAP9 up down up 
AIFM2 down up down 
IFITM10 down up up 
PDPN down up down 
DIRC2 up down up 
C6orf154 down up down 
UNG down up up 
ZNF470 down up down 
WDFY3 up down up 
TPM1 down up down 
FMNL3 down up down 
KCNH5 down down down 

 

Table 6.2. List of all the genes over-expressed in B16 and D19 anti-miR-196 

transfected cells compared to negative control cells based on Genespring analysis. 

Highlighted genes are illustrated as examples later in the chapter. 

Gene symbol 

B16 

transfected 

v/s control p-value 

Absolute 

fold 

change 

D19 

transfected v/s 

control p-value 

Absolute 

fold 

change 

GPER up 0.039 1.465 up 0.029 1.285 

LOXL4 up 0.042 1.311 up 0.037 1.091 

ERVMER34- up 0.009 1.259 up 0.008 1.147 
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1 

TRAPPC9 up 0.008 1.208 up 0.045 1.163 

BBS5 up 0.029 1.201 up 0.012 1.147 

SMOX up 0.034 1.193 up 0.025 1.138 

ABI3BP up 0.031 1.192 up 0.014 1.337 

HIST1H1C up 0.014 1.186 up 0.026 1.051 

ANKRD33B up 0.038 1.179 up 0.019 1.117 

MMP7 up 0.029 1.177 up 0.011 1.179 

EVI5L up 0.020 1.167 up 0.041 1.225 

NSFL1C up 0.003 1.166 up 0.011 1.146 

FBXO42 up 0.044 1.165 up 0.040 1.023 

SLCO2B1 up 0.023 1.156 up 0.028 2.414 

PSEN1 up 0.021 1.154 up 0.033 1.117 

OR7E156P up 0.008 1.124 up 0.048 1.347 

PTPRM up 0.025 1.120 up 0.044 1.156 

PAFAH1B1 up 0.019 1.116 up 0.027 1.242 

PIEZO1 up 0.044 1.099 up 0.005 1.215 

MED25 up 0.049 1.089 up 0.027 1.104 

DBP up 0.036 1.078 up 0.013 1.306 

LOXL1 up 0.040 1.067 up 0.021 1.318 

SPECC1L up 0.010 1.063 up 0.032 1.186 

CNDP2 up 0.016 1.053 up 0.027 1.111 

ZNF346 up 0.034 1.051 up 0.013 1.198 

CCDC50 up 0.036 1.045 up 0.017 1.157 

ABCF3 up 0.024 1.039 up 0.028 1.117 
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6.2.3.1 PSEN1 (Presenilin-1) 

This is an example of one of the many genes selected based on the initial parameters to 

be the putative target of miR-196a. This gene was predicted to be over-expressed in B16 

and D19 anti-miR-196a transfected samples compared to negative control samples in 

Genespring 12 analysis. Based on the pathway analysis, PSEN1 was seen to be part of 

Notch signalling pathway which was found to be one of the pathways significantly 

activated (p<0.05) when B16 and D19 gene list were compared. The raw data value in 

B16 was less for anti-miR-196a samples compared to negative control and in D19 it 

was observed to be similar (Figure 6.5.A and B). PSEN1 was down-regulated in B16 

microarray sample and not significantly up-regulated in D19 microarray sample when 

qPCR was performed on anti-miR-196a and negative control cells (Figure 6.6). Hence, 

it was decided not to pursue with PSEN1 as a target for miR-196a. 
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A. 

  

B. 

  

Figure 6.5.A. PSEN1 raw data of B16 microarray samples showing down-

regulation for anti-miR-196a samples compared to negative control. B. PSEN1 raw 

data of D19 microarray samples showing no change for anti-miR-196a samples 

compared to negative control. 
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Figure 6.6. PSEN1 expression in microarray samples. PSEN1 expression showed 

no significant difference in B16 and D19 anti-miR-196a cells compared to negative 

control cells. The data was normalised to internal control U6. The experiment was 

performed in triplicate. Error bars are representative of SEM. Student’s t-test was 

applied to calculate p-value. 
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6.2.3.2 LOXL4 (Lysyl Oxidase-like 4) 

LOXL4 is another example of a gene thought to be putative target of miR-196a based 

on the analysis. The microarray data indicated that LOXL4 was up-regulated (p<0.05) 

in B16 and D19 anti-miR-196a transfected sample compared to negative control based 

on the Genespring 12 analysis. The raw data for B16 showed that value for anti-miR-

196a was lower than negative control samples. The raw data for D19 showed similar 

value for both anti-miR-196a and negative control samples in microarray samples 

(Figure 6.7.A and B). The expression of LOXL4 was down-regulated in B16 and D19 

anti-miR-196a transfected microarray samples compared to negative control when 

qPCR was performed on them (Figure 6.8). Hence, LOXL4 was not pursued further as 

miR-196a target. Similar contradictions were seen for many other putative targets.  

The selection criterion was changed and raw data value for each putative target was 

assessed before performing qPCR. But even then it was observed for genes up-regulated 

in analysis and in value for raw data for anti-miR-196a transfected samples, when qPCR 

was performed the expression of the gene was down-regulated or had no difference in 

anti-miR-196a transfected sample compared to negative control. There was lack of 

control on the data and its manipulation was difficult due to stringency of each step in 

Genespring. Due to use of different cell lines, the effect of miR-196a was being over-

shadowed by the differences in cell types. This led to not finding right targets based on 

Genespring analysis as demonstrated. Hence, different software was decided to be used 

for data analysis. 
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A. 

   

B. 

 

Figure 6.7.A. LOXL4 raw data of B16 microarray samples showing down-

regulation for anti-miR-196a samples compared to negative control. B. LOXL4 

raw data of D19 microarray samples showing no change for anti-miR-196a 

samples compared to negative control. 
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Figure 6.8. LOXL4 expression in microarray samples. LOXL4 expression showed 

no significant difference in B16 and D19 anti-miR-196a cells compared to negative 

control cells. The data was normalised to internal control U6. The experiment was 

performed in triplicate. Error bars are representative of SEM. Student’s t-test was 

applied to calculate p-value. 
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6.2.4 Qlucore Omics Explorer 

The difficulties faced with Genespring led to meeting with Dr. Paul Heath and Dr. 

Jonathan Cooper-knock. Based on their suggestions, the data was re-analysed using 

Qlucore Omics Explorer (Qlucore, Lund, Sweden), a software for microarray data 

analysis. Dr. Jonathan Cooper-knock helped with the analysis of the data with Qlucore 

Omics Explorer. 

The raw data from all the three cell lines for negative control and transfected samples 

was loaded into the software. There were two groups made to compare the data against 

each other. B16 and D19 anti-miR-196a transfected samples and OKF4 negative control 

samples were grouped together (Group 1), whereas B16 and D19 negative control 

samples and OKF4 pre-miR-196a transfected samples were grouped together (Group 2). 

The raw data was then normalised using 75th percentile shift method. The normalised 

data for all the samples was viewed on PCA to check for the clustering of different 

samples in each group. Then to analyse this data, T-test was applied and the p-value was 

set to p<0.01. The cell-type was eliminated to mean-centre each sample over each sub-

group defined by its cell type. Based on this analysis, there were 353 genes found which 

varied significantly between the two groups (Appendix 9.3). Then top 100 genes were 

selected by setting the standard deviation to 0.44 and it contained 50 up-regulated and 

down-regulated genes (Figure 6.9). Then each gene from this list was assessed if they 

had putative miR-196a binding site in their 3’UTR and to do this we utilised online 

software called miRWalk (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/). The 

up-regulated genes from the list were first assessed and the genes which had putative 

binding site were selected to perform further qPCR based analysis on microarray 

samples. 
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6.2.4.1 Raw data analysis 

In terms of treatment, yellow boxes represent the group of B16 and D19 negative 

control samples and OKF4 pre-miR-196a samples, whereas blue boxes represents group 

of B16 and D19 anti-miR-196a samples and OKF4 negative control samples. There is 

good segregation of the gene expression signature based on the treatment they belong 

to. It can be observed that MAMDC2, HOXC8, ZFHX4 and RFC3 were not only part of 

top 20 up-regulated targets but also were predicted to be putative targets of miR-196a 

based on in-silico analysis in miRWalk software. Though, when 3’UTR of these genes 

were checked for putative miR-196a binding site in www.microrna.org it was found that 

ZFHX4 and RFC3 had no binding sites but MAMDC2 and HOXC8 had 1 and 3 

respectively (Table 6.3). Based on this analysis, qPCR was performed on microarray 

samples to check the orientation and extent of change in expression of these two genes 

in all three cell lines. It was observed that both HOXC8 (Figure 6.10) and MAMDC2 

(Figure 6.11) showed expected orientation and significant change in expression in 

transfected cells compared to negative control. 

 



 

Figure 6.9. Heat Map representing Top 10

variable genes between

 

Heat Map representing Top 100 (up-regulated and down

genes between two groups. 
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Table 6.3. List of top 20 up-regulated putative targets between two groups. It also 

represents the hits in miRWalk and number of miR-196a binding sites in the 

3’UTR of the genes based on prediction from www.microrna.org. Variance value 

for each gene shown in Appendix 9.5. 

Top 20 putative targets (up-
regulated) 

Hits in 
miRWalk 

No. of 
miR-196a 
sites 

CASC5 0 0 
S100A7 0 0 
APLN 0 0 
DDC 0 0 
MAMDC2 3 1 
IFI44 0 0 
CTRC 0 0 
SKIL 0 0 
ZFHX4 1 0 
S100A8 0 0 
C5orf23 0 0 
HSPA1L 0 0 
KIF20B 0 0 
HOXC8 5 3 
ANKRD36BP2 0 0 
SAA3P 0 0 
LOC202181 0 0 
RFC3 1 0 
ANKRD36 0 0 
AURKAPS1 0 0 
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6.2.4.2 HOXC8 (Homeobox C8)  

 

 

 

  

Figure 6.10. HOXC8 expression showed significant up-regulation in D19 anti-miR-

196a cells compared to negative control cells, with no significant effect in B16 and 

OKF4 cells. The expression observed in three cell lines was as expected to be seen. 

The data was normalised to internal control U6. The experiment was performed in 

triplicate. Error bars are representative of SEM. Student’s T-test was applied to 

calculate p-value. **, p<0.01. 
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6.2.4.3 MAMDC2 (MAM containing Domain 2)  

 

 

 

 

Figure 6.11. MAMDC2 expression showed significant up-regulation in D19 anti-

miR-196a cells and down-regulation in OKF4 pre-miR-196a transfected cells 

compared to negative control cells with no significant effect in B16 cells. The 

expression observed in three cell lines was as expected to be seen. The data was 

normalised to internal control U6. The experiment was performed in triplicate. 

Error bars are representative of SEM. Student’s T-test was applied to calculate p-

value. *, p<0.05; **, p<0.01. 

 

 

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

B16 D19 OKF4

M
A

M
D

C
2

 e
x

p
re

ss
io

n
 r

e
la

ti
v

e
 t

o
 U

6

Negative Transfected

**

*



163 
 
6.3 DLRA (Dual Luciferase Reporter Assay) 

Initially, for this experiment only MAMDC2 was pursued as HOXC8 has already been 

shown to be direct target of miR-196a in melanoma and breast cancer (Li et al., 2010, 

Mueller and Bosserhoff, 2011) and MAMDC2 was a novel putative target. Based on 

DLRA and SDM data, it was confirmed that MAMDC2 was a direct target of miR-196a 

in HNSCC (Figure 6.13). Based on the data analysis and qPCR of microarray samples, 

it was hypothesized that MAMDC2 and HOXC8 were direct targets of miR-196a in 

HNSCC. DLRA was utilised to address this hypothesis only for MAMDC2. In DLRA, a 

vector containing luciferase gene with multiple cloning sites (MCS) in its 3’UTR is 

cloned with putative target 3’UTR and this construct with mature miRNA or negative 

control is transfected into cells. If the luminescence value is significantly lower for 

mature miRNA transfected cells compared to negative control transfected cells then it 

would mean the miRNA directly degrades or represses the target gene.  
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6.3.1 Vector Construction 

pMIR REPORT vector was selected for cloning of 3’UTR of the target gene as it was a 

validated miRNA expression reporter system vector (Figure 6.12.A). It contains firefly 

luciferase gene, which is under the control of a mammalian promoter and terminator. 

Downstream of luciferase translation sequence there were multiple cloning sites (MCS) 

for insertion of target gene 3’UTR. Also, pMIR REPORT vector has been published for 

use of miRNA target validation in several papers (Liu et al., 2012c, Hunt et al., 2011, 

Chen et al., 2011b). pMIR REPORT vector also contained an ampicillin resistance 

cassette. 

The wild-type MAMDC2 3’UTR (wt) was cloned into pMIR REPORT vector as per the 

strategy (Figure 6.12.B) and cloning method described in section 3.16. The miR-196a 

binding site in the MAMDC2 3’UTR was mutated using site-directed mutagenesis to 

give mutated MAMDC2 3’UTR (mutated) and cloned into pMIR REPORT vector as 

described in section 3.16.1. Based on DLRA, it was observed that the relative 

luminescence of wt vector co-transfected with pre-miR-196a was significantly 

decreased compared to wt vector co-transfected with negative control. There was no 

significant difference in relative luminescence of mutated vector co-transfected with 

pre-miR-196a and mutated vector co-transfected with negative control (Figure 6.13). 
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A. 

 

B. 

 

Figure 6.12.A. figure representing backbone of pMIR REPORT vector 

(http://products.invitrogen.com/ivgn/product/AM5795). B. Strategy for cloning of 

MAMDC2 3’UTR in the MCS of pMIR REPORT vector. 
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6.3.2 Wild type (wt) and site-directed mutagenesis (SDM) 

 

 

 

 

Figure 6.13. Relative luminescence (firefly/renilla) showed significant decrease in 

B16 cells transfected with wt MAMDC2 3’UTR, pRL-TK (renilla luciferase 

control vector) and pre-miR-196a compared to negative control transfected 

whereas B16 cells transfected with mutated MAMDC2 3’UTR showed no effect. 

The transfected cells were incubated for 48 hr. pRL-TK was used as an internal 

control for luminescence. The experiment was performed in triplicates and 

repeated thrice. Error bars are representative of SEM. Student’s T-test was 

applied to calculate p-value. ***, p<0.001.  
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6.4 Discussion 

miR-196a is highly expressed in HNSCC when compared to NOK. In most cancers 

where miR-196a was observed to be over-expressed, a target gene was also identified. 

In, NSCLC (non-small cell lung carcinoma) high miR-196a expression leads to down-

regulation of HOXA5 (Liu et al., 2012d), in oesophageal adenocarcinoma miR-196a 

targets KRT5, S100A9 and SPRR2C (Maru et al., 2009b) and also in gastric cancer 

where miR-196a expression is increased, it targets p27(kip1) (Sun et al., 2012). Hence, 

it was thought that due to high expression of miR-196a in HNSCC that it might be 

targeting a gene or genes. The search for miR-196a targets in HNSCC was initially 

based on the published targets and for this expression of KRT5, S100A9 and ANXA1 

were assessed in anti-miR-196a and negative control samples, but it was found that in 

HNSCC, miR-196a did not target these genes as there was no consistent change in 

expression. These genes were observed to be targets of miR-196a in oesophageal 

adenocarcinoma, which is different cancer than HNSCC with different genetic changes 

happening and hence showed differential effect on these targets by miR-196a. This 

illustrates the heterogeneity between different cancers. For most of these genes in the 

paper they were suggested to be targets of miR-196a, they were assessed using qPCR. 

Hence, to be more effective in our approach, qPCR data was used to check for 

difference in expression and if there was no significant change then the gene was not 

pursued further. Though, it would have been a good positive control to use an 

esophageal cancer cell line or breast cancer cell line used in these papers (Luthra et al., 

2008, Maru et al., 2009a). Hence, it was decided that a look at whole transcriptome for 

change in gene expression signature was better way of finding targets for miR-196a 

than assessing every published target. 

Different techniques were considered for search of miR-196a target in HNSCC. Even 

though PAR-CLIP (Ascano et al., 2012) and pSILAC (Selbach et al., 2008) are up-
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coming methods of identifying the targets of microRNA, still they have drawbacks of 

being difficult to analyse, having high noise or not covering entire proteome in case of 

pSILAC. Briefly, PAR-CLIP works by incorporation of photoactivable 

thioribonucleoside and then by inducing crosslinks by using UV-365 which is then 

precipitated using immunoprecipitation. It is further purified by SDS-PAGE and finally 

analysed using next-generation sequencing (Ascano et al., 2012). It is known that 

miRNA exerts its effect either by mRNA degradation or translational repression. It is 

thought that miRNA binding site architecture relates to whether miRNA leads to mRNA 

degradation or translational repression. Hence, miRNA can regulate gene expression by 

direct effect on translation process. In pSILAC, two samples are labelled with two 

different heavy isotope of essential amino acid which leads to proteins with medium-

heavy or heavy isotope. These can then be differentiated using Mass spectrometry for 

different amount of protein present in the samples (Selbach et al., 2008). Hence, it was 

decided to use the widely accepted technique of microarray. Microarray also has 

drawback that miRNA related translation repression changes cannot be detected and 

changes in protein expression for particular target gene cannot be noted, but it has 

advantage that it covers whole transcriptome and has reliable analytical software for 

search of targets (Selcuklu et al., 2012, Gregersen et al., 2012, Chuang et al., 2012). 

Agilent oligonucleotide microarray (Sureprint G3) was utilised for identification of 

miR-196a targets. High miR-196a expressing cell lines B16 and D19 were transfected 

with anti-miR-196a and low miR-196a expressing cell line OKF4 was transfected with 

pre-miR-196a. 

The raw data generated from the microarray experiment was then loaded onto 

Genespring 12 software for data analysis. The data was normalised, statistical test 

applied and analysed. The identification of targets turned out to be more difficult based 

on this approach. PSEN1 and LOXL4 were seen to be over-expressed in B16 and D19 
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anti-miR-196a samples based on analysis but when qPCR was performed in microarray 

samples, they were observed to be down-regulated or with no change in expression. 

Based on their raw data from microarray, it was seen that they were down-regulated. 

Some other genes which were up-regulated in analysis based on Genespring, did not 

even reach threshold florescence level to be detected in terms of their raw data when 

checked (data not shown). One of the biggest setbacks with Genespring software is that 

cell type cannot be eliminated and as three different cell lines were used it influences 

the data analysis and possibility of false positive results increases. As there was no way 

of eliminating cell type, it was not possible to group different cell types together to get 

more dynamic analysis. Hence, it was decided to source different software for data 

analysis of microarray. 

Qlucore Omics Explorer was utilised next to analyse the microarray data. The 

transfected and negative control samples were separated into two groups as described 

earlier for data analysis. The data was normalised and then viewed on 3d-axis by 

principal component analysis (PCA) to check for segregation of the samples on the axis. 

T-test was used as the statistical test with p<0.01. T-test like all other statistical tests 

have drawback of generating false positive results and hence certain correction methods 

like Bonferroni correction can be used to reduce the number of false positives. 

Bonferroni corrections in the analysis was not used as it is a very stringent correction 

and after the experience with Genespring, it was decided to go without correction 

method but to validate putative targets by performing qPCR on microarray samples. 

Also instead of using p<0.05, it was decided to use p<0.01 which would also reduce the 

number of false positives. During analysis, cell-type eliminate function was used which 

was the major difference between the two analyses from Genespring and Qlucore which 

was the principal component in Genespring and hence did not give accurate data. But in 

Qlucore because cell type was eliminated, the principal component was shifted to just 
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difference in expression of genes. Cell-type eliminate function allowed the expression 

across different cell lines to be averaged and then to look at real difference in expression 

of different genes in the two groups. HOXC8 and MAMDC2 were recognised to be 

putative targets with miR-196a binding sites in their 3’UTR. Hence, qPCR was 

performed on the microarray samples to assess for expression of HOXC8 and 

MAMDC2. The orientation and significant change in expression of transfected cells 

compared to negative control cells for HOXC8 and MAMDC2 was what was expected 

to be seen, even though not all samples showed significant difference and hence it was 

thought they both could be direct targets of miR-196a in HNSCC. As HOXC8 was 

already shown to be target of miR-196a in melanoma and breast cancer (Mueller and 

Bosserhoff, 2011, Li et al., 2010), it was decided to first pursue MAMDC2. 

Dual luciferase reporter assay have the advantage of being rapid, accurate and easy to 

interpret. Their short-coming is that these are based on artificial system and transient in 

nature, hence long term effect cannot be studied (Alcaraz-Perez et al., 2008). Based on 

the DLRA experiment, MAMDC2 was shown to be a direct and novel target of miR-

196a in HNSCC. Western blots for MAMDC2 with normal, OPM and HNSCC cell 

lines was attempted but did not give any bands on the blot which can be more attributed 

to the quality of antibody. The protein from the gel had transferred onto membrane 

based on the β-actin bands being detected on the same blot (Data not shown). 

MAMDC2 is a gene which has not been studied to any extent in any disease. Based on 

the information from the family members, MDGA1 (MAMDC3) and MDGA2 

(MAMDC1), it contains MAM domain (Meprin, A5 protein, receptor protein-tyrosine 

phosphatase µ) and immunoglobulin domains which are structural features of cell 

adhesion molecules. It is well known that alterations in adhesion to extracellular matrix 

plays important role in the outcome of cancer. It was shown that increased expression of 

integrin β1 was related to increased lymph node and lung metastasis in HNSCC (Wang 
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et al., 2012). miR-124 targets Integrin β1 in OSCC which leads to reduced adherence 

and motility in OSCC cells (Hunt et al., 2011). In oral squamous cell carcinoma it was 

noted that as cancer became less differentiated the expression of collagen IV was 

reduced (Agarwal and Ballabh, 2013). MDGA1 has been implicated in decreasing the 

adhesion with extracellular matrix proteins in kidney cells (Diaz-Lopez et al., 2010). 

When anti-miR-196a was transfected into HNSCC cells, there was reduction in 

adhesion to fibronectin. Though not conclusive, miR-196a might be mirroring its effect 

of reducing adhesion through MAMDC2 regulation. MDGA1 plays role in migration of 

cortical neurons to upper cortical layer (Ishikawa et al., 2011). Even though here 

MDGA1 was involved in migration of cells, it has to be considered that it was in neural 

cells and during developmental phase. MDGA1 or MDGA2 have not been studied in 

cancer cells or in developed cells and hence it is difficult to judge what effect 

MAMDC2 will have in terms of migration. 

In this chapter, initially, search for target of miR-196a was undertaken based on 

published targets but to no avail. Hence, it was decided to search for novel target by use 

of microarray technique. Based on analysis of raw data, MAMDC2 was narrowed down 

as one of the putative targets of miR-196a. It was later confirmed by DLRA and SDM 

that MAMDC2 was a novel direct target of miR-196a in HNSCC. 

 

 

 

 



172 
 

Chapter 7: Discussion 

The aims set out for this project were: 

1. To assess the expression of miR-196a in cell lines and tissue samples and to observe 

the functional effects it had in HNSCC.  

2. To assess the expression of HOXB9 in cell lines and tissue samples and to note the 

functional effects it had in HNSCC.  

3. To show that miR-196a-1 and HOXB9 were co-transcribed on same primary 

transcript in HNSCC.  

4. To search for novel direct target of miR-196a in HNSCC. 

7.1 miR-196a is over-expressed and MAMDC2 is a novel direct target 

of miR-196a in HNSCC 

Based on the unpublished preliminary data from affymetrix miRNA microarray, it was 

observed that miR-196a was over-expressed in HNSCC cell lines compared to NOKs. It 

was noted based on qPCR data that miR-196a was over-expressed in HNSCC cell lines 

and tissue samples compared to NOKs and normal tissue samples respectively (Chapter 

4). It was also observed that miR-196a increased migration, invasion and adhesion in 

HNSCC cells with no effect in proliferation (Chapter 4). By using Agilent 

oligonucleotide microarray, it was shown that MAMDC2 was a putative target of miR-

196a in HNSCC based on raw data and in-silico analysis, which was confirmed to be 

direct target based on dual luciferase reporter assay data using wild-type and mutated 

3’UTR (Chapter 6). 



173 
 
7.2 HOXB9 is over-expressed in HNSCC 

Based on the microarray data from paper published in 2006, it was observed several 

HOX genes were over-expressed in HNSCC cell lines (Hunter et al., 2006) 

(http://bioinformatics.picr.man.ac.uk/vice/PublicProjects.vice?pager.offset=15). 

Initially, qPCR was performed for all 39 HOX genes in HNSCC cell lines and NOKs 

and it was observed that HOXB9 was most aberrantly expressed. It was noted that 

HOXB9 was over-expressed in HNSCC cell lines compared to NOKs. HOXB9 protein 

was also over-expressed in HNSCC cell lines and tissue samples compared to NOKs 

and normal tissue samples, respectively. HOXB9 was shown to increase the migration, 

invasion and proliferation of HNSCC cells. Adhesion showed statistical significance but 

was probably not biologically significant (Chapter 5). 

7.3 HOXB9 and miR-196a-1 are co-transcribed on same novel primary 

transcript 

HOXB9 and miR-196a-1 are spatially closely related to each other on chromosome 17 

and were hypothesised to be co-transcribed on same primary transcript based on in-

silico analysis in a paper published in 2007 (Mainguy et al., 2007). It was shown that 

miR-196a-1 and HOXB9 were indeed co-transcribed on same novel primary transcript 

based on nested PCR (Chapter 5). 

7.4 Implications and Future work 

miR-196a has been observed to be over-expressed in gastric, oesophageal, lung and oral 

cancer (Sun et al., 2012, Luthra et al., 2008, Liu et al., 2012d, Liu et al., 2012a) but also 

was down-regulated in melanoma (Braig et al., 2010). HOXB9 was over-expressed in 

breast, lung, colorectal, hepatocellular and oral cancer (Hayashida et al., 2010, Calvo et 

al., 2000, Kanai et al., 2010, Hassan et al., 2006) but was also down-regulated in gastric 

cancer (Sha et al., 2013). This variation in expression of miR-196a and HOXB9 in 
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different cancers shows that each cancer and its expression of a gene and miRNA can 

differ between individuals and between different cancers. Hence, when looking at a 

gene or miRNA as a therapeutic option, it can be targeted towards only specific cancer 

and may not apply to all cancers in general. For miR-196a, it was observed based on 

expression in cell lines that its expression was higher in some OPM cell lines compared 

to HNSCC cell lines. The transcriptional profiles of all the OPM and HNSCC cell lines 

used in this project have been published and it was observed that the profile of OPM 

and HNSCC cells varied from each other (Hunter et al., 2006). But as there is no set 

transcriptional profile for HNSCC cells, it would be hard to say whether OPM cells 

were more dysplastic or had already assumed HNSCC characteristics genetically. It 

would be interesting to see if this over-expression of miR-196a is true for Oral Pre-

malignant Lesions (OPL) samples, as it could mean that aberrant miR-196a expression 

in HNSCC is an early event and could mean miR-196a is involved in oncogenesis of 

HNSCC. miR-196a was also noted to be over-expressed in plasma of OSCC patients 

pre-operative (Liu et al., 2012a). It is always good to find non-invasive methods for 

diagnosis. Based on this, it will be useful to assess if miR-196a is secreted into saliva 

and whether it is over-expressed in potentially malignant oral lesions and HNSCC 

patients compared to healthy individual. Similarly it would be intriguing to note the 

expression of HOXB9 protein in OPL tissue samples even though there was not much 

difference seen in HOXB9 RNA expression between OPM and HNSCC cell lines. It 

will also be interesting to increase the cohort of patient tissue samples used for the study 

and to use matched cancer and normal tissue samples to study the expression of miR-

196a and HOXB9 in HNSCC.  

It is also important to study the clinical outcome of miR-196a and HOXB9 over-

expression in terms of overall survival rate, disease-free survival rate and lymph node 

metastasis in HNSCC. It was observed that over-expression of miR-196a was correlated 
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to worse prognosis and survival in OSCC patients (Liu et al., 2012a). In NSCLC, higher 

miR-196a expression was related to advanced pathological stage and metastasis to 

lymph node (Liu et al., 2012d). HOXB9 in breast cancer was seen to be a prognostic 

factor for overall survival rate and disease-free progression, with HOXB9 positive 

tumour having worse prognosis (Seki et al., 2012). HOXB9 was observed to be an 

independent prognostic factor in gastric cancer and lower expression of HOXB9 in 

these tumours led to worse overall survival rate (Sha et al., 2013). It will also be useful 

to assess the effect of miR-196a and HOXB9 over-expression in patients undergoing 

therapy, whether it leads to any resistance to therapy or not. Based on these parameters, 

HOXB9 and miR-196a could be validated into biomarkers for early detection of 

HNSCC and also to predict the prognosis on diagnosis. 

miR-196a when over-expressed in OSCC led to increased migration of these cells (Liu 

et al., 2012a). miR-196a was also seen to promote migration and invasion in gastric 

cancer where it was over-expressed (Tsai et al., 2012). At the same time, reduced miR-

196a expression was also related to increased migration in melanoma, due to increased 

expression of HOXB7 and BMP4 (Braig et al., 2010). HOXB9 when over-expressed in 

breast cancer led to increase in proliferation, angiogenesis, migration and invasion. 

HOXB9 was also observed to increase EMT in breast cancer cells. HOXB9 over-

expression was also shown to decrease the disease free survival in breast cancer patients 

based on multivariate analysis (Hayashida et al., 2010, Seki et al., 2012). HOXB9 was 

also noted to promote radio resistance in breast cancer cells (Chiba et al., 2012). On the 

other hand, HOXB9 down-regulation was related to decrease in overall survival in 

gastric cancer patients with reduced expression of HOXB9 linked to cancer progression 

and metastasis in gastric cancer (Sha et al., 2013). These examples of functional effects 

based on over-expression or down-regulation of miR-196a or HOXB9 re-iterate the 

point that care should be taken in administration of therapy in each cancer as each 
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cancer and patient might respond differently to the therapy, that is individualisation of 

therapy. 

Transient transfection method was used for over-expression and down-regulation of 

miR-196a and HOXB9. Transient transfection leads to only transient down or up-

regulation of miRNA or gene of interest as siRNA do not integrate into the genome. 

Also, transient transfection material can be lost due to environmental factors or cell 

doubling time (Kim and Eberwine, 2010, Dykxhoorn et al., 2003). As the transfection 

time in the experiments was 48 hr with further time depending on the assay it could be 

thought that the effect of siRNA might be lost by then. MTS proliferation assay has 

advantages such as ease in setting up and measuring and quantifying colorimetric data. 

But it has two major drawbacks such as giving false-positive result if there are any 

aspects that affect metabolic process and differentiating cell cycle inhibition or cell 

death (Smith et al., 2011b). Even though, migration and invasion both contribute 

towards metastasis in cancer, they both are separate features which may contribute to 

metastasis. Migration is defined as the cell movement along basal membrane with no 

obstruction and occurs on 2D surfaces. Invasion is defined as movement of cell through 

3D extracellular matrix which involves change in cellular morphology, migration and 

proteolysis of extracellular matrix (ECM) by matrix metalloproteases (MMPs) (Kramer 

et al., 2013). Invasion needs activation of several different pathways which leads to 

changes in cells which help it to invade such as NF-κβ pathway (Rehman and Wang, 

2008) and EGFR and MAPK pathway (Zhang et al., 2004). Similar pathways such as 

PI3K/Akt, EGFR and MAPK were also needed for induction of MMP9 in HNSCC (P et 

al., 2004). Similarly, migration needs activation of other pathways such as hedgehog 

signalling pathway and PI3K/Akt pathway (Fyffe and Falasca, 2013). Migration and 

invasion assays for anti-miR-196a and HOXB9 siRNA transfected cells were carried 

out in transwell membranes. There are several advantages to using these assays such as 
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ease of setting up these assays, short chemoattractant exposure and availability of 

different pore size membranes. However, there are disadvantages too such as the cells 

are migrating or invading without the use of adhesion or attachment which gives them 

rounded morphology, the chemoattractant and layer of ECM used are not necessarily 

distributed equally and also these assays only give 2D view, but these are most widely 

used migration and invasion assays (Kramer et al., 2013).  

As it was observed for both HOXB9 and miR-196a that they promoted invasion in-

vitro, it would have been good to look at known invasion markers such as expression of 

E-cadherin, β-catenin (Hayashida et al., 2010, Tanaka et al., 2002) and vimentin (Miao 

et al., 2014) in the tissue samples used for LCM and TMA used for HOXB9. It would 

be interesting to see when HNSCC cells are stably transfected with lentivirus expressing 

anti-miR-196a or HOXB9 siRNA, would the results be same in organotypic models 

(Jenei et al., 2011) or when xenografted onto mice as these experiments give more 

dynamic and similar results to what would happen in-vivo and may give an idea of 

metastasis too. It can also be used to analyse whether miR-196a or HOXB9 can cause 

tumourigenesis on their own. It would also be intriguing to note what would be the 

effect of adhesion on anti-miR-196a or HOXB9 siRNA transfected cells towards other 

extracellular matrix proteins. 

The presence of HOXB9 and miR-196a-1 primary transcript meant that it might be 

contributing to expression of HOXB9 and mature miR-196a in HNSCC. It will be 

useful to disrupt this primary transcript with specific siRNA and assess the expression 

of HOXB9 and miR-196a to know how much of total expression of HOXB9 and miR-

196a is contributed by this primary transcript in HNSCC. It will also be interesting to 

look at changes in functional effects such as migration, invasion, proliferation and 

adhesion when primary transcript is knocked-out using specific siRNA. It will 
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especially be intriguing to note whether knocking-out of this transcript shows similar 

functional effects as it showed when individual HOXB9 and miR-196a expression was 

knocked-out. It has already been shown that HOXB9 expression is driven by different 

promoter sequences and transcription factors such as RING1b in angelman syndrome 

(Zaaroor-Regev et al., 2010), Wnt/Tcf signalling in lung cancer (Nguyen et al., 2009), 

retinoic acid in embryonic stem cells (Chambeyron and Bickmore, 2004) and estrogen 

response elements in breast cancer (Ansari et al., 2011). But there is little known about 

promoter sequences or transcription factors involved in miRNA expression and even 

lesser in miR-196a expression. It will be interesting to study which promoter sequences 

or transcription factors might be involved in the expression of HOXB9, miR-196a and 

primary transcript in HNSCC. 

MAMDC2 has not been studied in terms of its role in humans and its effect in any 

diseases. As MAMDC2 was shown to be novel direct target of miR-196a in HNSCC, it 

would be interesting to look at its effects. It will be useful to look at protein expression 

of MAMDC2 in high miR-196a expressing cell lines and tissue samples compared to 

low miR-196a expressing cell lines and tissue samples. It will also be interesting to 

stably transfect high and low miR-196a expressing cell lines with lentivirus expressing 

MAMDC2 RNA and to observe the changes it causes in functional effects in HNSCC 

and if it shows any effects opposite to those observed with miR-196a. It will be very 

interesting to assess which pathways MAMDC2 activates in HNSCC based on the 

functional assays data. 

EGFR is over-expressed in almost all HNSCC when compared to normal but in varying 

intensity (Kearsley et al., 1990). EGFR based targeted therapy is the only approved 

personalised therapy in HNSCC (Markovic and Chung, 2012), but varying degree of 

EGFR expression poses a problem and also underlines the fact that cancers can be 
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heterogeneous in nature between different patients. Due to this varying degree 

sometimes the dose of cetuximab can be insufficient to bind all target receptor which 

leads to reduced efficacy. Also, it has been observed that mutant EGFRvIII expression 

present in 40% HNSCC cases and can lead to reduced sensitivity to cetuximab (Langer, 

2012). The other mechanisms of resistance against cetuximab could be autocrine or 

paracrine production of ligand, activation of pathway downstream of the receptor or 

cancer switching to alternative pathway (Morgillo and Lee, 2005). Hence, there is need 

for other targets for development of personalised therapy in HNSCC. Initially, it was 

thought miRNAs are fine tuners for the expression of certain genes in the genome. With 

time more was understood about miRNA biogenesis and its deregulation in cancers. 

There are several miRNAs now identified which are dysregulated in different cancers 

such as miR-146a which is thought to be tumour suppressor and is aberrantly expressed 

in cancers like papillary thyroid, breast, gastric, pancreatic and other cancers (Labbaye 

and Testa, 2012). miR-196a as explained earlier is over-expressed in several cancers 

too. Based on our microarray data, it was also observed that putative targets of miR-

196a in HNSCC were several transcription factors such as HOXC8, HOXC6, NFYB, 

GBX2, ZNF273 and others (Appendix 9.3). HOXC8 was already shown to be direct 

target of miR-196a in breast cancer and melanoma (Li et al., 2010, Mueller and 

Bosserhoff, 2011). These transcription factors in turn could lead to aberrant expression 

of several genes they transcribe. This makes miRNAs attractive therapeutic targets and 

not just to be used as biomarkers. Recently, it has been shown that extracellular vesicles 

called exosomes can carry miRNA, mRNA and proteins between cells. These exosomes 

are 30-200 nm in diameter and can lead to functional changes in recipient cells (Marcus 

and Leonard, 2013). These exosomes are being tested in clinical trials for their viability 

as therapeutic agents. Dendritic cells derived exosomes were loaded with melanoma-

associated antigens and tested for safety, efficacy and feasibility in NSCLC patients. It 
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was seen that this therapy was well tolerated in the patients and some even showed 

activation of effectors of immune response (Morse et al., 2005). Hence, this delivery 

system could be used to deliver anti-miR-196a to HNSCC cells directly which could 

prove to be therapeutic target in HNSCC, as it already was seen in this study that miR-

196a promoted migration, invasion and adhesion. 

Depending on how much expression of HOXB9 and miR-196a comes from the primary 

transcript, it could be a very good target therapeutically as it would reduce the effects of 

both HOXB9 and miR-196a in HNSCC, simultaneously. The same exosome-based 

delivery system could be utilised to deliver primary transcript specific siRNA to 

HNSCC cells.  

Due to the high expression of HOXB9 in HNSCC, it is likely, that silencing the 

expression could lead to therapeutic effects in HNSCC. It was shown that HXR9, a 

synthetic short peptide, could disrupt the dimerization of HOX/PBX in breast cancer 

and had therapeutic effects in this cancer as it led to apoptosis and its sensitivity could 

be determined based on average expression of HOXB1 through HOXB9 in each cancer 

sample, proving to be useful biomarker for HXR9 activity (Morgan et al., 2012). 

Similarly, it was also shown that HXR9 leads to apoptosis in ovarian cancer cell lines 

and tumour growth is retarded in-vivo (Morgan et al., 2010), though, it has also been 

observed that HOXB9 does not need PBX as co-factor to interact with binding sequence 

in mouse (Pan et al., 2001). Despite that example shows that interaction between 

HOXB9 and its co-factor can be disrupted with either a synthetic peptide or small 

molecule inhibitor in HNSCC. HOXB9 protein could also be directly targeted with 

small molecule inhibitors which interfere with homeodomain binding to DNA for 

example and could lead to therapeutic effects in HNSCC. HOXB9 RNA could also be 
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targeted with specific siRNA using exosomes-based therapy in HNSCC which would 

eventually lead to decreased HOXB9 protein expression. 

This study has shown that MAMDC2 is a novel direct target of miR-196a in HNSCC 

and also re-iterated that miR-196a was over-expressed and promoted migration, 

invasion and adhesion. This is the first study in HNSCC to establish that HOXB9 

protein is over-expressed and leads to increase in migration, invasion and proliferation. 

It also showed that HOXB9 and miR-196a-1 are co-transcribed on same novel primary 

transcript. Even though further work is still required based on this study, it opens the 

avenue to utilising miR-196a and HOXB9 as biomarker and therapeutic targets in 

HNSCC. 
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Chapter 9: Appendix 

Appendix 9.1 

Name of Supplier Location 

Sigma Aldrich Poole, UK 

Applied Biosystems, Life Technologies Paisley, UK 

Invitrogen, Life Technologies Paisley, UK 

Ambion, Life Technologies Paisley, UK 

Grenier Bio-one Stonehouse, UK 

Nalgene Matlock, UK 

Sarstedt Leicester, UK 

Qiagen Manchester, UK 

Thermo Scientific Hempstead, UK 

CellPath Newtown, UK 

Starlab Milton Keyes, UK 

Fisher Scientific Loughborough, UK 

GE Healthcare Hatfield, UK 

Bio-Rad Hempstead, UK 

Abcam Cambridge, UK 

Promega Southampton, UK 

BD Biosciences Oxford, UK 

New England Biolabs (NEB) Herts, UK 

Bioline London, UK 

Agilent Wokingham, UK 

Qlucore Lund, Sweden 
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Gibco, Life Technologies Paisley, UK 

Corning Corning, USA 

Olympus Southend-on-Sea, UK 

Roche Welwyn Garden City, UK 

Tecan Reading, UK 

Geneflow Lichfield, UK 
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Appendix 9.2 

HOX gene name 
Product length 

(bp) 
Primer sequence 

HOXA1 

 

153 

F: 5’ CTGGCCCTGGCTACGTATAA 3’ 

R: 5’ TCCAACTTTCCCTGTTTTGG 3’ 

HOXB1 

 

157 

F: 5’ TTCAGCAGAACTCCGGCTAT 3’ 

R: 5’ CCTCCGTCTCCTTCTGATTG 3’ 

HOXD1 

 

232 

F: 5’ TTCAGCACCAAGCAACTGAC 3’ 

R: 5’ TAGTGGGGGTTGTTCCAGAG 3’ 

HOXA2 

 

176 

F: 5’ TTCAGCAAAATGCCCTCTCT 3’ 

R: 5’ TAGGCCAGCTCCACAGTTCT 3’ 

HOXB2 

 

259 

F: 5’ CTCCCAAAATCGCTCCATTA 3’ 

R: 5’ GAAAGGAGGAGGAGGAGGAA 3’ 

HOXA3 

 

227 

F: 5’ ACCTGTGATAGTGGGCTTGG 3’ 

R: 5’ ATACAGCCATTCCAGCAACC 3’ 

HOXB3 

 

299 

F: 5’ TATGGCCTCAACCACCTTTC 3’ 

R: 5’ AAGCCTGGGTACCACCTTCT 3’ 

HOXD3 

 

176 

F: 5’ CAGCCTCCTGGTCTGAACTC 3’ 

R: 5’ ATCCAGGGGAAGATCTGCTT 3’ 
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HOXA4 

 

271 

F: 5’ CCCTGGATGAAGAAGATCCA 3’ 

R: 5’ AATTGGAGGATCGCATCTTG 3’ 

HOXB4 

 

155 

F: 5’ TCTTGGAGCTGGAGAAGGAA 3’ 

R: 5’ GTTGGGCAACTTGTGGTCTT 3’ 

HOXC4 

 

276 

F: 5’ CGCTCGAGGACAGCCTATAC 3’ 

R: 5’ GCTCTGGGAGTGGTCTTCAG 3’ 

HOXD4 

 

173 

F: 5’ TCAAATGTGCCATAGCAAGC 3’ 

R: 5’ TCCATAGGGCCCTCCTACTT 3’ 

HOXA5 

 

193 

F: 5’ CCGGAGAATGAAGTGGAAAA 3’ 

R: 5’ ACGAGAACAGGGCTTCTTCA 3’ 

HOXB5 

 

189 

F: 5’ AAGGCCTGGTCTGGGAGTAT 3’ 

R: 5’ GCATCCACTCGCTCACTACA 3’ 

HOXC5 

 

268 

F: 5’ CAGTTACACGCGCTACCAGA 3’ 

R: 5’ AGAGAGGAAAGGCGAAAAGG 3’ 

HOXA6 

 

158 

F: 5’ AAAGCACTCCATGACGAAGG 3’ 

R: 5’ TCCTTCTCCAGCTCCAGTGT 3’ 

HOXB6 

 

184 

F: 5’ ATTTCCTTCTGGCCCTCACT 3’ 

R: 5’ GGAAGGTGGAGTTCACGAAA 3’ 

HOXC6 190 F: 5’ AAGAGGAAAAGCGGGAAGAG 3’ 
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 R: 5’ GGTCCACGTTTGACTCCCTA 3’ 

HOXA7 

 

285 

F: 5’ TGGTGTAAATCTGGGGGTGT 3’ 

R: 5’ TCTGATAAAGGGGGCTGTTG 3’ 

HOXB7 

 

249 

F: 5’ CAGCCTCAAGTTCGGTTTTC 3’ 

R: 5’ CGGAGAGGTTCTGCTCAAAG 3’ 

HOXB8 

 

265 

F: 5’ GTAGGCTTCAGCTGGGACTG 3’ 

R: 5’ GGGAGCCTTTGCTTAAATCC 3’ 

HOXC8 

 

150 

F: 5’ CTCAGGCTACCAGCAGAACC 3’ 

R: 5’ TTGGCGGAGGATTTACAGTC 3’ 

HOXD8 

 

290 

F: 5’ TCAAATGTTTCCGTGGATGA 3’ 

R: 5’ GCTCTTGGGCTTCCTTTTTC 3’ 

HOXA9 

 

203 

F: 5’ AATAACCCAGCAGCCAACTG 3’ 

R: 5’ ATTTTCATCCTGCGGTTCTG 3’ 

HOXB9 

 

198 

F: 5’ TAATCAAAGACCCGGCTACG 3’ 

R: 5’ CTACGGTCCCTGGTGAGGTA 3’ 

HOXC9 

 

190 

F: 5’ AGACGCTGGAACTGGAGAAG 3’ 

R: 5’ AGGCTGGGTAGGGTTTAGGA 3’ 

HOXD9 

 

236 

F: 5’ TCCCCCATGTTTCTGAAAAG 3’ 

R: 5’ GGGCTCCTCTAAGCCTCACT 3’ 
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HOXA10 

 

159 

F: 5’ ACACTGGAGCTGGAGAAGGA 3’ 

R: 5’ GATCCGGTTTTCTCGATTCA 3’ 

HOXC10 

 

289 

F: 5’ CGCCTGGAGATTAGCAAGAC 3’ 

R: 5’ GGTCCCTTGGAAGGAGAGTC 3’ 

HOXD10 

 

154 

F: 5’ GCTCCTTCACCACCAACATT 3’ 

R: 5’ AAATATCCAGGGACGGGAAC 3’ 

HOXA11 

 

279 

F: 5’ CGCTGCCCCTATACCAAGTA 3’ 

R: 5’ GTCAAGGGCAAAATCTGCAT 3’ 

HOXC11 

 

186 

F: 5’ CGGAACAGCTACTCCTCCTG 3’ 

R: 5’ CAGGACGCTGTTCTTGTTGA 3’ 

HOXD11 

 

253 

F: 5’ GGGGCTACGCTCCCTACTAC 3’ 

R: 5’ GCTGCCTCGTAGAACTGGTC 3’ 

HOXC12 

 

180 

F: 5’ CAAGCCCTATTCGAAGTTGC 3’ 

R: 5’ GCTTGCTCCCTCAACAGAAG 3’ 

HOXD12 

 

201 

F: 5’ CGCTTCCCCCTATCTCCTAC 3’ 

R: 5’ CTTCGGGCGCATAGAACTTA 3’ 

HOXA13 

 

176 

F: 5’ GGATATCAGCCACGACGAAT 3’ 

R: 5’ ATTATCTGGGCAAAGCAACG 3’ 

HOXB13 234 F: 5’ CTTGGATGGAGCCAAGGATA 3’ 
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 R: 5’ CCGCCTCCAAAGTAACCATA 3’ 

HOXC13 

 

170 

F: 5’ GTGGAAATCCAAGGAGGACA 3’ 

R: 5’ TTGTTGAGGGACCCACTCTC 3’ 

HOXD13 

 

265 

F: 5’ GGGGATGTGGCTCTAAATCA 3’ 

R: 5’ AACCTGGACCACATCAGGAG 3’ 

β-actin 182 

F: 5’ ATGTACCCTGGCATTGCCGAC 3’ 

R: 5’ GACTCGTCATACTCCTGCTTG 3’ 
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Appendix 9.3 

List of variable genes from microarray: 

Variable genes Down-regulated in Group 2 compared to Group 
1 based on Qlucore Omics analysis 
SMOX GSK3B LPXN ASPSCR1 GJC2 
METRNL NSUN5 UNC119B CLEC11A SLC36A4 
GGTA1 BBS7 CARKD EEF1A2 FLYWCH1 
TUBB4 PDCD2L SNX11 LARP6 PANX2 
MDK CD33 TMEM222 ARFRP1 MKRN9P 
SLC26A11 DHRS3 PRH2 DNLZ 
FICD TMEM39B DRAM1 CTAGE5 
PLEKHO2 ZDHHC23 BBS1 EVI5L 
DBP PRR22 SLC1A4 DUS1L 
MANBAL ProSAPiP1 ITPKC LIMS2 
DNTTIP1 DNAJB6 IL2RB SPPL3 
FAM38A DIRAS1 STAC PSG5 
MOV10L1 TIMP3 ADAMTS14 RHBDD3 
CSN2 CLN8 PER3 FOXS1 
CTSH MON1A DHRSX CBR1 
B4GALT2 NUDT14 SAMD4A BAI1 
C16orf48 FUK FMNL1 EIF2B3 
FJX1 SLC25A42 TBC1D20 ABCC3 
VPS37B JUP LOXL4 SBNO2 
BTNL3 RFX2 CA5A SH3D20 
MUS81 ACBD6 TMEM132B FAM83G 
CBS GTF2IRD2 YDJC CCDC57 
POPDC2 BTG2 ZNF425 NUDCD3 
STX1A LOC84856 CT45A5 MGP 
OPLAH SLC38A7 DOM3Z ERCC1 
DNAH1 SIRT7 MBD6 CNTLN 
PSEN1 DOCK6 HSBP1L1 EFEMP2 
USP31 TRAPPC9 PRKAA2 TPRA1 
NSFL1C CRYM DGKQ SLC6A9 
EIF4EBP1 MAFG DFNA5 FAM43A 
STX5 MAOB C6orf170 ABI3BP 

 

Variable genes up-regulated in Group 2 compared to 
Group 1 based on Qlucore Omics analysis 
CASC5 C5orf23 FOXO3 SAA2 
S100A7 HSPA1L SDC3 MAPK11 
APLN KIF20B ZNF254 C19orf38 
ARID4A HOXC8 TM2D1 TMPO 
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RLF ANKRD53 GCNT1 E2F6 
ACP2 SPG7 EHMT1 HTA 
DDC ZNF273 DENND4C ZNF782 
C7orf34 ANKRD37 C9orf102 GBX2 
MAMDC2 IFIT5 FLJ20464 CRLS1 
IWS1 OSGEPL1 HOXC6 
CCDC21 ANKRD36BP2 AACSP1 
HP RAB12 RPGRIP1L 
CEP135 DCLRE1B TMEM144 
IFI44 SAA3P MYH16 
ZNF572 ZNF708 PLOD2 
C14orf147 CCDC132 BLOC1S3 
KDM1B ADD3 PLEKHA2 
CTRC HAUS6 PIKFYVE 
SKIL CENPF TFAP2A 
SLC35D1 SMC5 CFH 
ANKRD5 ZCCHC2 WHSC1L1 
ZAK C17orf105 FANCA 
PAPOLA RPL7 OR5A2 
DPPA2 LDHA C20orf165 
ZFHX4 RBMX IL1R1 
S100A8 AK4 BNIP3L 
ERRFI1 RFC3 RN5-8S1 
ESAM ANKRD36 TLE6 
NUP37 VSTM2B PPP1R14A 
TWF1 SLC9A5 ANKRD20A2 
NFYB AURKAPS1 CRHR1 

 

The unannotated genes have not been mentioned in these tables. 

 

 

 

 

 

 



230 
 
Appendix 9.4 

Gene 

symbol 

B16 

transfected 

v/s control p-value 

Absolute 

fold 

change 

D19 

transfected v/s 

control p-value 

Absolute 

fold 

change 

KRTAP6-2 up 0.029 1.813 down 0.006 2.497 

FBXW2 down 0.049 1.134 up 0.048 1.051 

BMP7 down 0.021 2.062 up 0.028 2.522 

AKAP9 up 0.007 1.131 down 0.013 1.108 

AIFM2 down 0.017 2.552 up 0.010 2.363 

IFITM10 down 0.042 1.158 up 0.028 1.330 

PDPN down 0.044 1.200 up 0.023 1.090 

DIRC2 up 0.021 1.110 down 0.019 1.108 

C6orf154 down 0.024 1.145 up 0.041 1.189 

UNG down 0.002 1.133 up 0.048 1.168 

ZNF470 down 0.037 2.364 up 0.016 1.534 

WDFY3 up 0.043 1.117 down 0.032 1.141 

TPM1 down 0.045 1.169 up 0.006 1.188 

FMNL3 down 0.045 1.152 up 0.043 1.093 

KCNH5 down 0.005 2.052 down 0.039 1.653 
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Gene 

symbol 

OKF4 

transfected 

v/s control p-value 

Absolute 

fold 

change 

KRTAP6-2 up 1.373 1.373 

FBXW2 up 1.126 1.126 

BMP7 down 3.155 -3.155 

AKAP9 up 1.429 1.429 

AIFM2 down 2.823 -2.823 

IFITM10 up 1.266 1.266 

PDPN down 1.123 -1.123 

DIRC2 up 1.116 1.116 

C6orf154 down 1.054 -1.054 

UNG up 1.101 1.101 

ZNF470 down 1.086 -1.086 

WDFY3 up 1.325 1.325 

TPM1 down 1.033 -1.033 

FMNL3 down 1.230 -1.230 

KCNH5 down 1.237 -1.237 
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Appendix 9.5 

Variance values for genes in Table 6.3. NC, negative control; AM, anti-miR-196a; PM, 

pre-miR-196a. 

Gene 

symbol 

B16 

NC 1 

B16 

NC 2 

B16 

NC 3 

B16 

AM 1 

B16 

AM 2 

B16 

AM 3 

D19 

NC 1 

D19 

NC 2 

CASC5 1.715 1.855 1.967 1.988 2.241 2.108 -0.593 -0.685 

S100A7 -0.277 0.022 -0.091 0.020 -0.091 0.075 -0.465 -0.546 

APLN -0.153 0.100 -0.276 0.062 0.697 0.715 -0.702 -0.807 

DDC -0.103 -0.347 -0.376 -0.108 -0.299 0.034 2.215 1.943 

MAMDC2 -3.686 -3.953 -3.943 -3.413 -2.521 -2.898 0.318 0.328 

IFI44 -2.433 -2.576 -2.577 -2.494 -2.266 -2.401 0.585 0.807 

CTRC -0.380 -0.863 0.029 -0.029 -0.106 0.149 -1.148 -1.035 

SKIL 0.631 0.573 0.531 0.773 0.721 0.677 -1.427 -1.606 

ZFHX4 -0.287 0.037 -0.052 -0.002 0.002 -0.173 1.002 1.195 

S100A8 -0.450 -0.324 -0.523 0.136 0.610 0.606 -0.861 -0.230 

C5orf23 2.163 2.235 2.227 2.417 2.480 2.363 -0.370 -0.080 

HSPA1L -1.554 -1.785 -1.782 -1.544 -1.147 -0.634 0.592 0.330 

KIF20B 1.330 1.318 1.388 1.810 1.812 1.758 -1.204 -0.865 

HOXC8 0.272 0.443 0.326 0.629 0.762 0.505 -0.200 -0.643 
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ANKRD3

6BP2 -1.369 -1.415 -1.293 -1.208 -1.254 -1.311 1.141 1.165 

SAA3P -0.569 -0.708 -0.693 0.266 -0.133 -0.130 0.025 -0.041 

LOC2021

81 0.496 1.186 1.343 1.217 0.998 1.467 -1.282 -1.452 

RFC3 1.918 1.898 1.979 2.093 2.240 2.123 -0.858 -1.046 

ANKRD3

6 -0.979 -1.153 -0.932 -1.017 -1.000 -0.920 0.997 1.040 

AURKAP

S1 1.125 1.209 1.385 1.502 1.503 1.562 -1.383 -1.125 

 

Gene 

symbol 

D19 

NC 3 

B16 

AM 1 

B16 

AM 2 

B16 

AM 3 

OKF4 

NC 1 

OKF4 

NC 2 

OKF4 

PM 1 

OKF4 

PM 2 

CASC5 -0.653 -0.589 -0.531 -0.375 -0.029 0.097 -0.027 0.027 

S100A7 -0.269 0.036 -0.050 -0.020 9.392 9.483 9.346 9.435 

APLN -0.436 -0.335 -0.062 -0.486 4.380 4.436 4.358 4.318 

DDC 2.225 2.367 2.587 2.370 -0.034 0.452 -0.209 -0.130 

MAMDC

2 0.240 0.308 0.329 0.700 0.200 0.287 -0.200 -0.353 

IFI44 0.732 0.947 0.969 0.867 -0.011 0.011 -0.068 0.025 
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CTRC -0.260 0.115 0.309 -0.144 3.023 3.007 3.002 2.497 

SKIL -1.501 -1.579 -1.365 -1.349 0.114 0.049 -0.154 -0.049 

ZFHX4 1.182 1.304 1.332 1.500 -0.954 -0.713 -1.307 -1.280 

S100A8 -0.057 -0.049 -0.089 0.049 9.617 9.753 9.623 9.592 

C5orf23 -0.060 -0.050 0.050 0.206 -2.552 -2.184 -2.484 -2.547 

HSPA1L 0.599 0.856 1.074 1.269 -0.111 0.650 -0.854 0.111 

KIF20B -0.897 -0.680 -0.856 -0.690 -0.037 0.074 -0.171 0.037 

HOXC8 -0.275 -0.097 0.097 0.180 -2.926 -2.797 -3.056 -2.979 

ANKRD3

6BP2 1.285 1.186 1.293 1.363 0.094 0.314 -0.094 -0.117 

SAA3P -0.220 0.309 -0.025 0.162 8.064 8.355 8.026 8.152 

LOC2021

81 -1.486 0.432 -0.613 -0.737 -0.078 0.078 -0.507 -0.629 

RFC3 -0.858 -0.619 -0.828 -0.586 0.039 -0.002 0.002 -0.084 

ANKRD3

6 1.163 1.226 1.278 1.357 0.157 0.161 -0.157 -0.269 

AURKAP

S1 -1.096 -0.943 -1.003 -0.970 0.052 -0.099 0.052 -0.052 

 

 


