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Abstract 

Conventional methods of modelling financial data using Generalised AutoRegressive 

Conditional Heteroskedastic (GARCH) models make many assumptions involving the 

distribution of the data and the structures of the underlying mean and variance models. 

This research intends to develop a unified framework for estimating GARCH models 

using Non-Linear AutoRegressive Moving Average with eXogenous inputs (NARMAX) 

methodology without making many assumptions about the structures of the mean and 

variance models. 

This thesis starts with a review of financial volatility and the different models that have 

been used to model financial volatility. These models are collectively termed as GARCH-

class models. All GARCH-class models attempt to model financial volatility of a given 

return series by fitting a mean model, obtaining the residuals, and then fitting a variance 

model using the obtained residuals. Whilst a great deal of research has been done to 

develop different types of linear and non-linear variance model, researchers have ignored 

the possibility of the mean model being non-linear in nature, and most GARCH models 

use a very simple constant mean model to describe the means process. 

In 2010, Zhao developed a NARMAX based Weighted Orthogonal Forward Regression 

method to identify non-linear mean models whilst assuming that the structure of the 

variance model is known. In this thesis, this method is extended to accommodate the case 

where the variance is unobservable. The working of this method is demonstrated with a 

simulated example. The method is also used to select and estimate the mean models of 

two real financial data sets and to demonstrate that a constant mean model is often 

inadequate and can result in inaccurate variance estimates. 

A new Weighted Least Squares approach for the estimation of the variance model is also 

developed. Since the true variance is unobservable and unknown, a linear ARCH estimate 

of the variance is used as a proxy for the true variance. The results of simulations to 

demonstrate the working of the new method are also shown. Identification of a non-linear 

variance model is not possible using this method, since a linear estimate of the variance is 

used. 

The thesis goes on to generate a non-linear estimate of the variance without making 

strong assumptions about the structure of the variance model making use of Radial Basis 

Function models. These have been used to create a generalised representation of linear 
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and non-linear multivariate functions in other fields. In order to create a generalised non-

linear variance estimate, a generalised RBF representation of a linear ARCH variance 

estimate is first created. The parameters of the obtained RBF model are optimised using 

Maximum Likelihood to generate a variance estimate that is much more accurate. The 

proposed method is tested and demonstrated in three simulations and succeeds in creating 

a non-linear variance estimate that is more accurate than a linear ARCH variance estimate 

in all the demonstrated simulations. 

The methods introduced in this thesis build upon the newly developed application of 

NARMAX methodology to modelling financial volatility using GARCH models and 

provides a fresh new perspective to estimating financial volatility using GARCH-class 

models without making many assumptions about the structures of the underlying mean 

and variance processes.   
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Chapter 1 

 

Introduction 

1.1 Background and Motivation 

Financial economists have long sought to forecast the prices and the financial asset 

returns. Forecasting such variables has proven to be immensely difficult, however, and 

over the last 30 years the focus has shifted to forecasting financial volatilities, that is to 

say, forecasting the variance of financial returns.  

A key stylised fact of financial volatilities is that they vary over time, a property known 

as heteroskedasticity. The AutoRegressive Conditional Heteroskedastic (ARCH) model 

(Engle, 1982) was introduced to model this volatility. Robert Engle was awarded the 

Noble Prize for Economics in 2003 for this innovation which has laid the groundwork for 

a plethora of later variance models. One of the earliest and most popular such model is 

the Generalised AutoRegressive Conditional Heteroskedastic (GARCH) model 

introduced by Bollerslev (1986). Other models include, among others, the Integrated 

GARCH model (Bollerslev, 1986), the Exponential GARCH (Nelson, 1991), the 

Quadratic GARCH (Engle and Ng, 1993), the Non-Linear Asymmetric GARCH (Engle 

and Ng, 1993) and GJR-GARCH (Glosten et al., 1993). Each of these sought to model 

and forecast financial volatility more accurately than its predecessors. 

The different types of GARCH models aim to capture some or all of the behaviour 

exhibited by financial time series and effectively model their volatility. One feature of 

most of these models is that they consist of 2 major equations to describe the behaviour of 

a financial return series. The first equation, termed as the mean model, describes the 

evolution of the mean of the returns. The second equation, termed as the variance model, 

describes the evolution of the variance of the returns. For the different models listed 

above, a simple constant mean model is usually used to describe the assumed mean 

process, while the variance models differ. Indeed, almost all the effort in this research 

field has gone into modelling the variance process, and very little effort has been made to 

improve the mean model.  
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The procedure used by financial economists to fit models to explain the mean and 

variance processes of a financial asset is different from the approach used by systems 

engineers and researchers to model physical systems. Economists perform initial tests on 

given financial data, fit models to the given data, validate the fitted model, and repeat the 

process until satisfactory results are achieved. After performing initial tests on the given 

data, systems engineers perform an exercise known as term selection whereby a large 

candidate model consisting of a variety of linear and non-linear terms is fitted to the given 

data. The terms that best describe the given data are selected to be included in the model, 

and the fitted model is then validated.  

The leading model in the control engineering field is the Non-Linear AutoRegressive 

Moving Average with eXogenous inputs (NARMAX) model proposed by Leontaritis and 

Billings (1985a and 1985b). This model provides a unified framework for the 

identification and modelling of non-linear systems.  

However, the simple Orthogonal Forward Regression (OFR) procedures of the 

NARMAX model can be ineffective in accurately selecting the terms of the underlying 

mean model of empirical return series due to their heteroskedastic nature. To address this 

problem, Zhao (2010) modified the simple OFR approach by using Weighted Least 

Squares (WLS) to deal with the underlying heteroskedasticity in the return series. He then 

used this Weighted OFR (or WOFR) approach to accurately select the terms and model 

the mean process of a given return series whilst assuming that the true variance process is 

known. 

Zhao went on to examine the effects of under-fitting the mean model and demonstrated 

that under-fitting the mean model leads to the predictable elements of the mean process 

being discarded into the residuals. Since the residuals are used to estimate the variance, 

under-fitting the mean model leads to over-estimating the variance. 

In the real world, however, the true variance of financial return series is unobservable, 

and hence, unknown. Zhao’s WOFR method of accurately fitting a mean model therefore 

needs to be extended to the case where the structure of the variance model is unknown. 

Also, since it is common practice to fit a noise model in addition to fitting a process 

model to any time series, the WOFR method needs to be extended to handle such noise 

processes as well. There is, in addition, a need for more robust methods of model 

validation. 
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The standard approach to fitting a variance model to a given financial return series 

involves testing the returns for non-linearity, fitting a type of linear or non-linear variance 

model depending on the results of the previous test using maximum likelihood, 

performing model validation tests and selecting a different variance model if the 

validation tests fail (Engle, 2001). As in the case of the conventional approach to 

modelling the mean process, no framework for term selection of the variance model 

exists. Hence, a suitable method for term selection of the variance model when the 

variance is known and unknown (as is always the case with real financial data) needs to 

be developed as well. 

Like the mean model, the variance model can also be non-linear in nature. There already 

exist a variety of non-linear variance models like the EGARCH (Nelson, 1991), 

QGARCH (Engle and Ng, 1993), NA-GARCH (Engle and Ng, 1993), GJR-GARCH 

(Glosten et al., 1993) models, to list a few, that can be used to describe a non-linear 

variance process. However, there exists no way of predetermining which non-linear 

variance model is required to be fitted to a given return series. There is, thus, a need for 

the development of a generalised approach to modelling a non-linear variance process 

that does not require strong assumptions about the true variance process. 

A possible solution is to use Radial Basis Function (RBF) models. RBFs (Broomhead and 

Lowe, 1988) have been used to generalise and approximate linear and non-linear 

multivariate functions. RBF models are different from NARMAX models in the sense 

that a direct representation of the output using the inputs cannot be obtained by using 

RBF models. Instead, the output can be described as a combination of basis functions 

derived from a combination of the inputs. This generalised representation could be used 

to model the variance process of a given return series whilst using Maximum Likelihood 

to estimate the parameters of the RBF model.  

1.2 Objectives 

The main objectives of this thesis are: 

(i) To review the most common GARCH-class volatility models in the literature and 

investigate the effects of incorrectly fitting the mean model on variance 

estimation. 

    The innovation of the ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) 

volatility models has laid down a solid framework to model the mean and 
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variance of a financial return series. But the vanilla ARCH and GARCH models 

fail to capture a number of different behaviours exhibited by empirical financial 

volatility. To capture these behaviours, there exist at least 100 variations of 

GARCH models (Bollerslev, 2008), collectively termed as GARCH-class 

volatility models. The method of fitting these models remains the same. A mean 

model is first fitted to the returns. The one-step-ahead modelling error, known as 

the residuals, are obtained and then used to estimate the variance using a selected 

variance model. Since the mean model plays a pivotal role in variance estimation, 

the effects of fitting incorrect mean models on the accuracy of variance estimates 

are to be investigated. 

(ii) To develop structure selection and parameter estimation methods for modelling 

the mean of the heteroskedastic processes when the structure of the variance 

model is unknown. 

    A vast amount of research has been done in this literature to improve the way 

the variance is modelled, but not much has been done to improve the way the 

means process is modelled. An exception is Zhao (2010) who introduced the 

NARMAX based WOFR method for the term selection and parameter estimation 

of the mean model in the case where the true structure of the variance is known. 

But for real financial data sets, the underlying variance is unobservable. Hence, 

the NARMAX based WOFR method needs to be extended to incorporate this real 

world scenario. 

(iii) To develop structure selection and parameter estimation methods for modelling 

the variance of heteroskedastic processes. 

    The conventional method for fitting a variance model does not include term 

selection. Preliminary tests are carried out to determine whether a linear or a non-

linear variance model is required to be fitted, after which a variance model of that 

type is fitted. The structure of the variance model is arbitrarily selected, and 

validated using model validation tests. There is a clear need for developing a 

technique for term selection for the variance model to simplify the modellers task 

and let the variance model be extracted from the given data. 

(iv) To develop a general methodology for modelling both, the mean and the 

variance, of a heteroskedastic process without making any prior assumptions 

about the structure of these models. 
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    Instead of testing the return series for non-linearity, fitting a variance model 

based upon the outcome of the test, validating the fitted model and re-fitting a 

different model if validation fails, it would make sense to have a general method 

for selecting the best variance model without making any prior assumptions about 

the structure and nature (linear or non-linear) of the variance. 

(v) To demonstrate the applicability of the proposed methods through numerical 

simulation studies and by benchmarking these methods using real financial data 

sets. 

    The performances of the proposed methods need to be demonstrated through 

numerical simulation studies. Returns data will be simulated from known mean 

and variance models. The proposed methods will then be applied to the simulated 

returns data whilst assuming that nothing is known about the true mean and 

variance model and that the true variance is also unknown. The mean and 

variance models selected by the proposed methods will be compared to the true 

mean and variance models to demonstrate the accuracy of the proposed methods. 

Finally, the proposed methods will be applied to real financial data sets to 

investigate the nature (linear or non-linear) of the underlying mean and variance 

processes. 

1.3 Layout of Thesis 

This thesis is organised into 8 chapters as follows: 

Chapter 2 provides an introduction to the fundamental basics of financial time series. The 

stylised facts about financial time series are explained and the various GARCH class of 

volatility models found commonly in the literature are reviewed. 

Chapter 3 introduces the financial mean (return) model and reviews the different mean 

models found in the ARCH literature. The NARMAX based WOFR methodology for 

identifying and fitting linear and non-linear models (Zhao, 2010) is explained in detail. 

The WOFR method for identifying the mean model of a given return series when the 

structure of the variance model is known is also reviewed. The results of simulations 

demonstrating the impact of incorrectly fitting the mean model on variance estimation 

and the results of implementing the WOFR method on a simulated data set are shown. 
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Chapter 4 introduces structure selection and parameter estimation methods for modelling 

the mean of the returns process when the structure of the underlying variance process is 

unknown. The method is then modified to include a linear noise model in addition to the 

mean process model. New tests for model validation are introduced. The results of 

implementing the extended WOFR method on a simulated data set while assuming that 

the variance is unobservable are shown. The effects of under-fitting the mean model on 

mean and variance estimation are also investigated. 

Chapter 5 demonstrates the applicability of the method proposed in Chapter 4 and 

showcases the results of the implementation of the extended WOFR method on two real 

financial data sets. The best mean models for the real data sets are obtained and the 

effects of under-fitting the mean model on mean and variance estimation for the given 

data sets are investigated. 

Chapter 6 reviews the most commonly used method for the estimation of the variance 

model. A new NARMAX based approach using WLS to model the underlying variance 

of a given return series is introduced. The results of simulations demonstrating the effect 

of using a NARMAX based approach to model the variance without using WLS are 

shown. The results of simulations demonstrating the new WLS approach to model the 

variance in various scenarios are also shown. 

Chapter 7 reviews RBF models, the different basis functions, and the method used to 

estimate (train) an RBF model. A method to generate a non-linear estimate of the 

variance using RBFs is then introduced. The results of three different simulations 

demonstrating the implementation of the new method to obtain a non-linear estimate of 

the variance from a known residual series are showcased. The accuracy of the generated 

non-linear variance estimates are compared to that of a linear variance estimate generated 

using the same residuals. 

Chapter 8 lists the main contributions of this thesis, sets out some limitations of the work 

and suggests further areas that can be investigated. 
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Chapter 2 

 

Modelling Financial Volatility 

2.1 Introduction 

The price series of an asset is a collection of the actual price of an asset over a period of 

time. Asset returns, on the other hand, denote the difference in the price of the asset over 

a period of time. The measure of the variation of the price of a financial asset over a 

period of time is termed as its volatility. Typically, the financial time-series data is a 

chronological collection of the returns of a certain option or derivative. The frequency of 

these returns can be hourly, daily, weekly, monthly or yearly, depending on the type of 

predictions required. The variance of the returns describes the magnitude of the volatility 

(commonly known as the risk) of the asset at that particular instant in time. This risk is 

not constant and varies with time. The financial return series is hence said to have time 

varying variance or in financial terms, it is known to be heteroskedastic. If the variance 

does not vary with time, it is termed as homoskedastic. 

Volatility modelling of asset returns is an important aspect for many financial 

applications, especially option or derivative pricing and risk management. Market risk is 

an explosive new development in finance, which is driven by the statutory requirement 

for companies to monitor market exposure on a daily basis, and with the introduction of 

new derivatives on mortality and other financial products. A class of models known as 

GARCH (Generalised Auto Regressive Conditional Heteroskedasticity) models are 

usually used to model the volatility processes of financial time-series.  

Volatility is dependent on several external factors. For example, bad news about a 

company can cause a decline in its stock prices or similarly, a rise in anticipation of its 

half-yearly financial results. This behaviour is known as volatility clustering. Financial 

systems also exhibit behaviour termed as the leverage effect. The volatility response to a 

large negative return is far greater than it is to a large positive return of the same 

magnitude. 
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The different types of GARCH models aim to capture some or all of this behaviour of 

financial time-series and effectively model their volatility. They consist of 2 major 

equations that help describe the return series data. The first equation describes the 

evolution of the mean of the returns (known as the mean model) and the second one 

describes the evolution of the variance of the returns (known as the variance model). 

GARCH models have come a long way since their introduction (Bollerslev, 1986) and are 

used routinely by economists for risk analysis which is an important part of option 

pricing, asset pricing, risk management and portfolio optimisation (Engle, 2001). Despite 

their huge popularity, existing volatility models still have many shortcomings.  

Various types of GARCH models have been developed in an attempt to capture the 

different types of behaviour of financial systems. As a result, a particular type of model is 

suitable to describe only certain trends/effects adequately. For example, a generic 

GARCH model is not capable of capturing and describing the asymmetric behaviour of 

the variance exhibited by the leverage effect. For this purpose, several different types of 

GARCH models have been developed. These models are said to belong to the GARCH 

class of models since they have been developed from GARCH models with similar 

implementation. 

2.2 Financial Time-series 

The two most commonly used and freely available financial time series are the price 

series and the return series. A majority of financial studies deal with data comprising of 

asset returns rather than asset prices. This is due to the simple fact that return series have 

several desirable properties over price series. For starters, return series appear to have a 

stable mean whilst this is not the case with price series. 

Let  ( ) represent the price of an asset at any instant in time,  . The price series is 

represented as { ( )}  { ( )  ( )    ( )} where   is the total number of samples of 

the price available. The returns series is represented as { ( )}  { ( )  ( )    (  

 )}. 
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Figure 2.1 Price Series 

 

Figure 2.2 Return Series 

A price series can be converted into a return series in two ways: 

 Simple Periodic Compounding:      ( )  
 (   )  ( )

 ( )
 

 (   )

 ( )
        (2.1) 

 Continuous Compounding:  ( )     (
 (   )

 ( )
)       (   )      ( ) (2.2) 

Continuous compounding is the preferable choice for most financial studies. 
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The return series of an asset is assumed to be driven by a white noise series. A white 

noise series is a collection of independent and identically distributed (i.i.d) random 

variables. For an ideal white noise series, the autocorrelation function is zero. In practice, 

if the autocorrelation function is within predefined confidence bounds (95% or 98%) the 

series is considered to be a white noise series. 

The probability distribution of an asset return is assumed to be Gaussian and is defined by 

two factors: mean and variance. The variance of this probability distribution describes the 

volatility of the asset. The higher the variance of the return at that instant in time, the 

greater the risk. For any financial return series, the variance is time-varying i.e. the 

returns are heteroskedastic. 

Asset returns tend to exhibit certain behaviour that is specific to financial time-series and 

exist mainly due to the way in which financial markets work. 

 Leverage Effect: The volatility response to a large negative return is greater than 

it is to a large positive return of the same magnitude. In other words, it is 

observed that after a large negative return, the volatility of an asset increases 

immediately by a larger magnitude than that observed after a large positive 

return. This is caused partially due to the fact that after a negative return, the debt 

increases thereby increasing the volatility of the asset. 

 Volatility Clustering: The volatility of an asset increases right before an 

anticipated announcement or right after an unanticipated announcement. It is 

often noticed that stock prices of a certain company rise before the announcement 

of their quarterly, half-yearly and annual financial results especially when good 

results are expected. In a similar way, it is often noticed that the stock prices of a 

company fall immediately after the release of news that negatively impacts the 

company or the sector it belongs to. 

 Mean Reversion: On observation of any asset return series, it is noticed that the 

returns always tend to converge to a mean after a period of disturbance. This 

phenomenon is described as mean reversion. This phenomenon is not specific 

only to asset returns but is also noticed in asset prices and interest rates. The asset 

prices tend to revert to a historical average value. However, the likelihood of 

mean reversion of any of these factors is not 100%. It is less likely to occur if the 
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outlook of the company changes due to a change in management or other 

unforeseen circumstances. 

2.3 Modelling Financial Time-series 

As mentioned earlier, dynamic modelling of asset returns and their volatilities is largely 

based on GARCH-type models. A lot of work has been done in this field and numerous 

types of models have been developed that attempt to model financial time-series 

accurately while also trying to accurately capture the various common effects described 

earlier. 

The following section aims to summarise the progress in this field whilst providing a 

brief description about the different types of models developed, their use, advantages and 

disadvantages. 

2.3.1 Historical Average or Moving Average (MA) Model 

The Moving Average model is one of the simplest variance model used in the field of 

Econometrics. The model uses a simple concept to estimate the variance. The variance at 

time,  , is calculated by averaging the past   values of the squared returns. The value of   

is user-defined. 

 ̂( )  
 

 
∑   (   ) 

       (2.3) 

where  ̂( ) is the estimate of the variance at time,   and  ( ) is the return at time,  . 

This historical variance calculated using the past   values of the squared returns is often 

used as a measure of the risk of a portfolio. If   is selected to be fairly large, and 

unusually large shock in the returns would decrease the accuracy of the variance estimate. 

In order to overcome this problem,   is selected to be reasonably small. Another 

advantage of selecting a reasonably small value of   is that the effect of volatility 

clustering can be effectively captured. The dynamics of the variance is still not effectively 

captured due to the fact that the squared returns are weighted equally irrespective of the 

order of their occurrence. In order to overcome this problem, the Exponentially Weighted 

Moving Average Model was introduced. 
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2.3.2 Exponentially Weighted Moving Average (EWMA) Model 

Exponentially Weighted Moving Average (EWMA) models (Harrison, 1967) attempt to 

model the volatility of a return series by using past values of the volatility and the squared 

returns. The past values of volatility are weighted such that the most recent value of 

volatility has a higher weight than that of a term much further in the past. This implies 

that the most recent value of volatility has a higher influence on the current volatility. 

This ensures that shocks in the market impact the volatility to a larger extent i.e. the 

volatility of an asset will be high after a market shock. 

The EWMA model comprises of 2 main parameters – the smoothing constant, λ, and 

time,  . Let  ( ) be the return at any instant in time,  .  ̂( ) is the estimated variance of 

the return and λ is the smoothing constant. In general, the EWMA model is given by: 

 ̂( )  (   )∑       (   ) 
      (2.4) 

In equation (2.4), λ is the most significant control parameter and an optimum value must 

be selected for the development of an accurate model. Another parameter to be 

considered is the number of effective observations to be used to generate the model 

(denoted by  ). 

Recursively, equation (2.4) can be written as 

 ̂( )  (   )  (   )    ̂(   )   (2.5) 

The first term, (   )  (   ), is known as the reaction parameter. A low value of   

implies that the estimate of the variance at time,  , is largely dependent on the past values 

of squared returns and will react to large shocks to the returns. 

The second term,   ̂(   ), is known as the persistence parameter. A high value of   

implies that the estimate of the variance at time,  , is largely dependent on the past values 

of the estimated variance. This implies that large shocks to the returns will not affect the 

current volatility much, thereby making the volatility persistent. 

In order to ensure that recent values of squared returns are weighted more than the older 

values,   is chosen to be between 0 and 1. Since both the above mentioned parameters are 

controlled by one parameter,  , the volatility can be modelled either to make it persistent 

(high value of  ) or more reactive to shocks in the returns (low value of  ). This 
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limitation is exploited to model the volatility in the foreign exchange market using the 

EWMA model (Alexander, 2001). 

2.3.3 Auto Regressive Conditional Heteroskedastic (ARCH) Model 

The Auto Regressive Conditional Heteroskedastic (ARCH) model is considered to be the 

foundation of volatility modelling and was developed by Engle in 1982 (Engle, 1982). It 

is based on the concept that the variance is dependent on the past values of the residuals 

of the returns. The returns are modelled as: 

 ( )   ( (   )  (   )    (   )          )   ( )       (2.6) 

Here,  ( (   )  (   )    (   )          ) is a function of   past returns 

and           are the parameters of the past return terms.  ( ) is the residual and is 

considered to be serially uncorrelated and has zero mean. The residual is also written as 

 ( )√ ( ) where { ( )} is a sequence of independent and identically distributed (i.i.d) 

random variables with a zero mean and unit variance and √ ( ) represents the standard 

deviation of the return at time,  . The series, { ( )}, is collectively known as the 

standardised residuals. The variance equation is thus written as follows: 

 ( )        
 (   )     

 (   )        (   )        (2.7) 

Equations (2.6) and (2.7) bundled together represent the ARCH( ) model, where   is 

the number of lagged returns used. Large shocks in the return series imply a high value of 

 (   ) and hence imply a high value of  ( ). This means that large shocks to the 

returns cause an increase in the volatility but it still fails to capture the leverage effect 

discussed in Section 2.2. This is because squared values of the past residuals are used 

which fail to differentiate between negative and positive shocks. 

2.3.4 Generalised Auto Regressive Conditional Heteroskedastic (GARCH) 

Model 

The advantages of the simple ARCH model are outweighed by the disadvantages. For 

example, a financial time-series often requires an ARCH( ) model where the value of   

is quite high which leads to the problem of estimating a high number of parameters 

thereby decreasing the overall accuracy of the model. It is for this very reason that 

Generalised Auto Regressive Conditional Heteroskedastic (GARCH) models were 

developed (Bollerslev, 1986). 
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GARCH models are able to capture most of the effects exhibited by financial time-series 

and are effective in modelling and forecasting the variances of asset returns. A financial 

return series can be described accurately using 2 parameters: mean and variance. GARCH 

models attempt to replicate a return series by providing models for the mean and the 

variance. Let  ( ) be the return at any instant in time,  .  ( ) is the variance of the return 

and  ( ) is the residual and is also known as innovation of the returns process.         

and    are constants. The GARCH(p,q) model is written as: 

Mean Model:     ( )      ( )                                                              (   ) 

Variance Model:   ( )    ∑    (   )
 
    ∑    

 (   )
 
                      (   )  

        

                 

             

∑      

    (   )

   

   

In the final condition, it is implied that      for     and      for    . If    , 

the model loses the lagged variance term to become an ARCH( ) model. For a 

GARCH(p,q) model, the initial condition,  ( ) is calculated as 

 ( )  
 

  (∑      
       
     

)
                                           (    ) 

The GARCH(1,1) model is the most basic and commonly used variation of the above 

given model and is also known as the vanilla GARCH model. The residual,  ( ), is 

represented as a product of the standard deviation of the return, √ ( ), and a random 

independent and identically distributed (i.i.d) term,  ( ), that has zero mean and a 

variance of 1. The series { ( )} is collectively known as the standardised residuals. 

Equation (2.14) just represents an alternative way of describing the mean model using 

 ( ). 

 ( )      ( )         (2.11) 

 ( )      (   )     (   )  (2.12) 

 ( )    ( )√ ( )     (2.13) 
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or 

 ( )      (   )    (   )  (   )  (2.14) 

From equation (2.8) it can be noted that the mean model is a constant. This is a common 

occurrence in quite a lot of variations of the GARCH model. A few important ones are 

detailed in sections 2.3.5 to 2.3.11.  

2.3.5 Integrated GARCH (IGARCH) Model 

The GARCH model effectively models volatility that exhibits the phenomenon of mean 

reversion. But quite a few financial instruments like currencies and commodities do not 

tend to exhibit mean reversion. In such cases, the Integrated GARCH (IGARCH) model 

is helpful (Bollerslev, 1986). The IGARCH model looks exactly like the GARCH model 

apart from the fact that the coefficients of the lagged variance and error terms must add 

up to 1.  

Generally, the mean model is an ARMA(m,n) model which is written as 

             ( )     ∑    (   ) 
    ∑    (   ) 

     ( )  (2.15) 

where  ( ) represents the returns at time,   and  ( ) represents the residual or 

innovations at time,  . In most cases, the mean model is simply a constant mean model 

where m and n are both zero. 

Let the variance of the return be represented as  ( ). An IGARCH(p,q) model can be 

written as follows: 

Mean Model:                  ( )      ( )                               (2.16) 

Variance Model:        ( )    ∑    (   ) 
    ∑    

 (   ) 
                    (2.17) 

and     ∑   
 
    ∑   

 
                                    (2.18) 

In the IGARCH model, the variance equation has a unit root and a shock to the variance 

has a permanent effect on all the future predictions of the variance. 

2.3.6 Exponential GARCH (EGARCH) Model 

The vanilla GARCH model is the most commonly used model to model financial time-

series. One of its major disadvantages is that it fails to capture the leverage effect 

(explained in Section 2.2). Since the past values of the square of the residuals are used in 
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the model, a positive shock to the returns will have the same impact on the volatility as a 

negative shock of the same magnitude. This is not quite desirable and hence, in 1991, 

Nelson proposed the EGARCH model that effectively captures and describes the leverage 

effect.  

Let  ( ) be the variance of the return,  ( ) be the residual of the returns process.  ( ) is a 

random independently and identically distributed (i.i.d) term that has zero mean and a 

variance of 1. The residuals can also be written as  ( )    ( )√ ( ) . The 

EGARCH(p,q) model is written as: 

   ( ( ))     ∑     ( (   )

 

   

)   

                   (  ∑    
  

   )(  ∑    
  

   )
  

(  (   )   [
| (   )|  

 | (   )|
])         (2.19) 

Here,      ,        are all unknown parameters.   is the backshift operator (also known 

as the lag operator) such that   ( )   (   ). Assume, 

 ( ( ))  (  ( )   [| ( )|   | ( )|])  (2.20) 

This can also be rewritten as 

 ( ( ))  {
(   ) ( )    | ( )|         ( )    
(   ) ( )    | ( )|         ( )    

  (2.21) 

This clearly shows us that for a shock of positive value ( ( )   ), the volatility response 

will be lesser compared to a negative shock of equal magnitude, thereby incorporating the 

leverage effect effectively in the model. Another advantage of the EGARCH model is 

that no inequality constraints are required for the parameters since the volatility will 

always be positive due to the presence of the logarithmic operator. 

2.3.7 Quadratic GARCH (QGARCH) Model 

The inability of the traditional GARCH model to capture the leverage effect gave rise to a 

number of models that had a similar framework. These models are collectively termed as 

asymmetric GARCH models. One such model is the Quadratic GARCH (QGARCH) 

model (Engle and Ng, 1993). The variance equation of the QGARCH model is as 

follows: 

 ( )        (   )    ( (   )   )       (2.22) 
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where  ( ) is the variance of the return,  ( ) is the residual of the returns process and 

     ,   and   are the unknown parameters.   is known as the leverage parameter. 

Equation (2.22) can be expanded and rewritten as: 

 ( )        (   )     
 (   )            (   )        (2.23) 

Since         and    are all currently unknown, the coefficients can be congregated and 

written as one for each term. Equation (2.23) can be rewritten as: 

 ( )        (   )     
 (   )    (   )                 (2.24) 

Here,   is a positive unknown constant. As we can see, a negative shock to the return 

series will make the final term in equation (2.24) positive thereby increasing the future 

volatility while a positive shock of the same magnitude will decrease the volatility 

thereby resulting in a GARCH model that effectively captures the leverage effect. 

2.3.8 Non-Linear Asymmetric GARCH (NA-GARCH) Model 

The NA-GARCH model (Engle and Ng, 1993) is one of the first attempts at capturing the 

non-linear effects of heteroskedastic volatility while also capturing the Leverage Effect. 

The variance equation of the NA-GARCH model is as follows: 

 ( )        (   )    ( (   )   √ (   ))
 

              (2.25) 

where  ( ) is the variance of the return,  ( ) is the residual of the returns process and 

     ,   and   are the unknown parameters.   is known as the leverage parameter. 

Equation (2.25) can be expanded and rewritten as: 

 ( )        (   )     
 (   )       (   )       (   )√ (   )   (2.26) 

Since         and    are all currently unknown, the coefficients can be congregated and 

written as one for each term. Equation (2.26) can be rewritten as: 

 ( )        (   )     
 (   )       (   )√ (   )       (2.27) 

This looks very similar to the QGARCH model but upon expansion of the model, it can 

be noted that the additional term includes a product of the past residual and the past 

standard deviation of the asset. A positive value of  , the leverage operator, implies that 

the leverage effect is effectively captured as well.  
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2.3.9 Square-Root GARCH (SQR-GARCH) Model 

The SQR-GARCH model (Heston and Nandi, 2000) has a structure similar to that of the 

QGARCH model. The variance equation of the SQR-GARCH model is written as: 

 ( )        (   )    (
 (   )

√ (   )
  √ (   ))

 

    (2.28) 

where  ( ) is the variance of the return,  ( ) is the residual of the returns process and 

     ,   and   are the unknown parameters.   is known as the leverage parameter. 

Equation (2.28) can be expanded and rewritten as: 

 ( )        (   )    
  (   )

 (   )
      (   )       (   )   (2.29) 

A positive value of  , the leverage operator, implies that the leverage effect is effectively 

captured. A negative shock to the returns will make the last term of equation (2.29) 

positive and add to the variance, whilst a positive shock to the returns of the same 

magnitude will make that term negative and reduce the variance. 

2.3.10 GJR-GARCH Model 

Another famous asymmetric GARCH model variant that has the ability to capture the 

leverage effect is the GJR-GARCH model (Glosten et al., 1993). This is done by the 

addition of an identification term to the normal GARCH model. The variance equation of 

the GJR-GARCH(   ) model is as follows: 

 ( )     ∑   (   )

 

   

 ∑   
 (   )

 

   

    (   ) (   )           (    ) 

where  ( ) is the variance of the return,  ( ) is the residual of the returns process and 

                   and   are the unknown parameters.   is known as the leverage 

parameter. The identification term is the last term i.e. (    (   )  (   )).  

 ( )  {
      ( )   

      ( )   
           (2.31) 

Hence, for a negative shock to the returns, the coefficient of the   (   ) term will be 

(    ) whilst for a positive shock of the same magnitude, the coefficient will be    

thereby resulting in a GARCH model that effectively captures the leverage effect. 
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2.3.11 GARCH in Mean (GARCH-M) Model 

The return of an asset may depend on its volatility. It is for this very reason that the 

GARCH-M model (Engle et al., 1987) was developed. This model is different from all 

the models specified in sections 2.3.1 to 2.3.10 in the fact that it uses a simple GARCH 

variance model but a modified mean model. The GARCH-M model is as follows: 

Mean Model:                                 ( )        ( )   ( )                                    (2.32) 

Variance Model:               ( )    ∑    (   ) 
    ∑    

 (   ) 
                  (2.33) 

where  ( ) represents the returns at time,  ,  ( ) is the variance of the return,  ( ) is the 

residual of the returns process and                        are the unknown 

parameters.  

In some cases, the standard deviation of the return ( ( )  √ ( )) is used in place of the 

variance ( ( )) in the mean model. A positive value of    implies that the return of an 

asset is positively related to its volatility. The existence of the variance term in the mean 

model also implies that the returns are serially correlated. 

2.4 Conclusions 

Many variants of the GARCH model have been developed in the recent years. The 

variance model is the main feature that differentiates different types of models, as often, 

the mean model includes just a single constant term. Very little research has been carried 

out on the estimation of non-linear GARCH models when the structure of the mean and 

variance models is unknown. In particular, the importance of fitting an accurate mean 

model has been largely overlooked both by theoreticians and practitioners. In this respect, 

this thesis advocates the use of rigorous model selection, parameter estimation and model 

validation approaches to estimate linear or non-linear mean and variance models. It is 

demonstrated through numerical simulations that fitting an incorrect mean model results 

in the contamination of the residuals,  ( ), and leads to an incorrect estimate of the 

variance model. 
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Chapter 3 

 

The Financial Mean Model 

3.1 Introduction 

The mean model is an important part of the GARCH class of models since the modelling 

residuals (prediction error) from the mean model drives the variance. Hence, a 

misspecified mean process has the potential to lead to a misspecified variance process 

even when the form of the variance process is assumed to be known. 

Yet, it is striking how little attention the GARCH literature actually pays to the mean 

process. In most cases, the mean is assumed to be a constant. Only in a small number of 

cases (to be examined below) does the literature consider more general mean processes. 

Even then, these are typically linear.  

Linear models may provide reasonable approximations in some instances, but most real 

life processes are non-linear in nature, and linear models often fail to provide good 

approximations of such processes (Willey, 1992). Different financial returns series have 

been tested for non-linearity by various researchers (Hinich and Patterson, 1985) (Terui 

and Kariya, 1997) (Lima, 1998) (Urrutia et al., 2002) and strong evidence of non-linearity 

and non-Gaussianity has been found. This evidence suggests the need for a suitable non-

linear mean process, and yet there are very few of these in the GARCH literature. A 

notable exception is Meitz and Saikkonen (2008) who proposed a non-linear 

autoregressive model to model the mean of the returns and developed an asymptotic 

estimation theory for non-linear AR-GARCH models. There is, thus, a major gap in the 

literature to be filled. 

NARMAX models (Leontaritis and Billings, 1985a and 1985b) provide a natural solution 

to this problem. These have commonly been used by systems engineers to model non-

linear systems found in the real world. NARMAX models describe the system as a set of 

non-linear difference equations that relate the input(s) to the output(s) whilst taking into 

account the measurement noise, modelling errors and unmeasured noise, all combined 

into one variable.  
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The NARMAX methodology works on the assumption that the input and output data are 

homoskedastic. Since financial returns are heteroskedastic in nature, traditional methods 

of identifying and estimating financial models using the NARMAX methodology are 

likely to yield erroneous (and especially biased) results. A solution for this problem is to 

use a Weighted Orthogonal Forward Regression (WOFR) algorithm for the estimation of 

GARCH mean models (Zhao, 2010). Thus, the WOFR algorithm provides a way to select 

the terms in a non-linear mean model and then estimate the respective coefficients in a 

context in which the noise process is heteroskedastic. 

The purpose of this chapter is to showcase the different types of linear and non-linear 

mean models used in the financial returns literature and to demonstrate the effectiveness 

of using NARMAX methods to model the mean of financial returns. 

Section 3.2 gives a brief overview of the most commonly used mean models. 

Section 3.3 explains NARMAX models and the methods used to identify and estimate 

them. It also explains the WOFR algorithm in a NARMAX model that can be used to 

accurately model the mean returns process. 

Section 3.4 showcases the impact of incorrectly modelling a non-linear mean process as a 

linear model and also demonstrates how the WOFR algorithm can be used to correctly 

identify a non-linear mean model. 

Section 3.5 concludes the chapter. 

3.2 Financial Mean Models 

3.2.1 Linear Mean Models 

Over the past 30 years, ARCH and GARCH models have paved the way to new and 

improved methods to model financial volatility. Much work has been done in order to 

capture the various effects exhibited by financial returns series and to model the variance 

of these returns with new types of GARCH models but not much importance has been 

given to the mean model that is used to model the conditional mean of the returns. As 

noted earlier, the literature focuses on modelling the variance and the assumed mean 

processes are typically very simplistic and usually just a simple constant. 

When Engle introduced the ARCH model (Engle, 1982), a linear mean model was used 

which was only introduced along with the simulations. The model used was 
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  ( )         (   )      (   )      (   )                            

                                    ( (   )   (   ))                                                    (   ) 

where   ( ) is the first difference of the log of the quarterly consumer price index,   is 

the log of the quarterly index of manual wage rates and             and    are the 

coefficients to be estimated. Since,   ( )   ( )   (   ), equation (3.1) can be 

rewritten as 

 ( )   (   )    ( (   )   (   ))    ( (   )   (   )) 

                                       ( (   )   (   ))     (   )     (   )     

 ( )  (       ) (   )     (   )     (   )  (     ) (   ) 

                                         (   )     (   )                                                            (   ) 

Equation (3.2) depicts a linear ARX (AutoRegressive with eXogenous inputs) model of 

 ( ) with 

 Five autoregressive (AR) terms,  (   )  (   )  (   )  (   ) and 

 (   ) and 

 One lagged exogenous input term,  (   ). 

In 1986, Bollerslev introduced a more generalised version of the ARCH model 

(Bollerslev, 1986), aptly termed as the GARCH model. The mean model used along with 

the new variance model was 

 ( )     (   )     (   )     (   )     (   )      ( )      (   ) 

where  ( )         (
  ( )

  (   )
),   ( ) is the implicit price deflator for Gross National 

Product,  ( ) is the modelling residual and             and    are the coefficients to be 

estimated. Equation (3.3) depicts a linear AR model with 4 autoregressive terms, 

 (   )  (   )  (   ) and  (   ). 

In 1991, Nelson introduced one of the first non-linear versions of the GARCH model, 

known as the Exponential GARCH (EGARCH) model (Nelson, 1991). The mean model 

used along with this new non-linear variance model was 

 ( )        (   )     ( )   ( )                                    (   ) 
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where  ( ) is the excess return,  ( ) is the variance,  ( ) is the modelling residual and 

      and    are the coefficients to be estimated. Equation (3.4) depicts a linear AR 

variance in mean model with 1 autoregressive term,  (   ). Whilst Scholes and 

Williams (1977) suggested an MA(1) model to model the returns, Lo and MacKinlay (Lo 

and MacKinlay, 1988) suggested an AR(1) model for the same whilst stating that such 

simple models are not adequate enough to explain the short-term autocorrelation 

behaviour of market indices (Nelson, 1991). 

In 1993, Glosten, Jagannathan and Runkle introduced the GJR-GARCH model 

specifically designed to capture the leverage effect exhibited by financial data (Glosten et 

al., 1993). The model was a modified version of a simple GARCH-M model in which the 

mean model used was 

 ( )        (   )   ( )                                        (   ) 

where  ( ) is the excess return,  ( ) is the variance,  ( ) is the modelling residual and    

and    are the coefficients to be estimated. Equation (3.5) depicts a simple variance in 

mean model with only a constant term. 

Whilst linear mean models such as the ones given above have been used in the literature, 

most economists and researchers use the most basic mean model 

 ( )     ( )                                                         (   ) 

where   is a constant term. This model has been used to do a comparative study of the 

performance of the GARCH(1,1) model, the QGARCH model and the GJR-GARCH 

model to model weekly stock market volatility (Franses et al., 1996). 

3.2.2 Non-Linear Mean Models 

Not much work has been done in the implementation of non-linear mean models. 

Campbell, Lo, and MacKinlay mention the use of a simple non-linear MA model 

(Campbell et al., 1997) 

 ( )     
 (   )   ( )                                               (   ) 

where  ( ) is the excess return and  ( ) is the modelling residual. 

In 1992, LeBaron proposed an exponential AR model to model the returns (LeBaron, 

1992) as 
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 ( )     (        ( 
 ( )

  
)) (   )   ( )                    (   ) 

where  ( ) is the excess return,  ( ) is the modelling residual and          and    are 

the coefficients to be estimated. 

A similar model was adopted to model the US stock market index (Bollerslev et al., 

1994). The excess returns are modelled as 

 ( )     (        ( 
 ( )

  
)) (   )     ( )   ( )           (   ) 

where  ( ) is the excess return,  ( ) is the modelling residual,  ( ) is the variance and 

            and    are the coefficients to be estimated. The model in equation (3.9) 

differs from equation (3.8) by an additional term,    ( ). 

In 1992, Cao and Tsay used a Threshold AR model to model the returns (Cao and Tsay, 

1992). The model is a piecewise linear model 

 ( )  {
      (   )     (   )     (   )   ( )        ( )   

      (   )     (   )     (   )   ( )       ( )   
    (    ) 

where  ( ) is the excess return,  ( ) is the modelling residual,   is a threshold value and 

                     and    are the coefficients to be estimated. The model described 

in equation (3.10) can be combined together and represented as one using the logistic 

Smooth Transition Auto Regressive (STAR) function 

   
 

     (  ( ( )   ))
                                             (    ) 

The model can be rewritten as 

 ( )        (   )     (   )     (   )  
 (     )

     (  ( ( )   ))

 
 (     )

     (  ( ( )   ))
 (   )  

 (     )

     (  ( ( )   ))
 (   )

 
 (     )

     (  ( ( )   ))
 (   )   ( )                                          (    ) 

Hence, the piecewise linear model in equation (3.10) is actually a model of non-linear 

nature represented in equation (3.12). 
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Another non-linear AR( )-GARCH(1,1) model was introduced (Meitz and Saikkonen, 

2008) where the mean model is a non-linear AR( ) model of the form 

 ( )        ( (   )   )  ∑(      ( (   )   ))

 

   

 (   )   ( )   (    ) 

where  ( ) is the excess return,  ( ) is the modelling residual, and 

                      are the coefficients to be estimated.   is a user selected integer 

and   is fixed known integer between 1 and  .   is a non-linear function depending on 

 (   ) and takes values in [0, 1]. 

Meitz and Saikkonen emphasise the need of non-linear mean models and identified a 

major gap in the research, i.e. the absence of a good mean process.  

This is where NARMAX models come in. 

3.3 NARMAX Models 

3.3.1 Non-Linear System Identification  

System identification is the process of applying a set of known input signals to an 

unknown (real) system, recording the output signals and using this input-output data set 

to estimate a mathematical description of the underlying dynamic behaviour of the 

system. 

The modelling process involves a number of stages. The first is model selection, the 

second is parameter estimation. Next, the estimated model is validated to ensure that 

system output can be predicted and the model can accurately generate a desired output 

when supplied with a known input. Finally, if the model is adequate, the behaviour of the 

system can be analysed and predicted. 

System identification methods are routinely applied to develop financial models that are 

used for forecasting and process optimisation. As most systems in the real world are non-

linear, linear system identification methods are complemented by powerful non-linear 

approaches such as the NARMAX method, which over the past few decades has been 

used as a de facto standard approach in non-linear system identification. The following 

section provides a brief overview of this methodology. 
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3.3.2 The NARMAX Methodology 

NARMAX (Non-Linear AutoRegressive Moving Average with eXogenous inputs) 

models are one of the most well-known and effective methods for the identification and 

modelling of non-linear systems (Leontaritis and Billings, 1985a and 1985b). The 

NARMAX representation is a non-linear mapping which relates the output to past values 

of input(s), output(s) and noise. 

Let 

  ( ) represent the output,  ( ) represent the value of the input and  ( ) represent 

the noise, all at an instant in time,  . 

       and    represent the maximum time lags of the output, input and errors 

respectively. 

   represents the time delay of the input. 

The generalised representation of the NARMAX model is as follows: 

 ( )   ( (   )    (    )  (   )    (    )  (   )    (    ))

  ( )                                                                                                             (    ) 

where  ( ) is an unknown non-linear mapping and is often implemented as a 

multivariable polynomial.  

NARMAX models can be represented using non-linear mappings other than polynomial 

functions, like output-affine and rational models (Chen and Billings, 1989). However, this 

study considers only the polynomial representation. 

The first step in NARMAX modelling is the concept of model structure selection, also 

known as term selection. This is important because a model that is more complex than 

required will over-fit the data rather than describe the underlying dynamics.  

The next step is parameter estimation, which involves estimating the coefficients of the 

terms selected in the model in the previous step. Once the model has been estimated, the 

third step is to validate it effectively to ensure that it replicates the system and can 

accurately generate a desired output when supplied with a known input.  

There are a number of simplified versions of the NARMAX model that are commonly 

used in practice. 
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 Non-Linear Autoregressive (NAR) – depends only on lagged values of output. 

 ( )   ( (   )    (    ))   ( ) 

 Non-Linear Autoregressive Moving Average (NARMA) – depends on lagged 

values of output and prediction error. 

 ( )   ( (   )    (    )  (   )    (    ))   ( ) 

 Non-Linear Autoregressive with exogenous inputs (NARX) – depends on lagged 

values of output and input. 

 ( )   ( (   )    (    )  (   )    (    ))   ( ) 

Assuming that  ( ) is a polynomial, a NAR model can be specified in terms of the 

polynomial order and the maximum output lag. For example, a NAR(2,3) model implies 

that   ( ) is  a second order polynomial and the maximum output lag in the model,   , is 

3. 

The conventional methods of term selection, parameter estimation and model validation 

have been developed under the assumption that the additive noise is homoskedastic but 

this is not the case when dealing with financial time-series data. However, recent studies 

have revealed that standard model selection algorithms fail to correctly identify the 

correct model structure when the noise is heteroskedastic (Zhao, 2010). Fortunately, we 

can remedy this problem using by replacing the OFR algorithm with the WOFR 

algorithm developed by Zhao (2010).  

3.3.3 Structure Determination and Parameter Estimation using the 

Orthogonal Forward Regression Algorithm 

The Weighted Orthogonal Forward Regression (WOFR) algorithm and the weighted ERR 

approach used later in the simulations in this thesis are based on the Orthogonal Forward 

Regression algorithm (Korenberg et al., 1988).  

Polynomial NARMAX models are linear-in-the-parameter models that can be written as 

 ( )  ∑    ( ( ))

 

   

  ( )                                             (    ) 

where  

   is the data length, 
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    are the unknown parameters to be estimated, 

   (.) are the selected polynomial model terms, 

  ( ) is a vector of  lagged input, output and error variables, and 

  ( ) is the modelling error. 

The above model can be written in matrix form as: 

                                                                 (    ) 

where  

   [ ( )  ( )    ( )]  

   [          ] 

   is the number of terms in the model. 

    [  ( ( ))   ( ( ))     ( ( ))]  

   [          ] 

   [ ( )  ( )    ( )]  

Since the correlation matrix     is symmetric and positive definite, using the matrix 

decomposition theorem (Fox, 1964),  

                                                                   (    ) 

where   is a   x   unit upper triangular matrix and   is a diagonal matrix all of whose 

elements are positive. Equation (3.16) can be rewritten as 

   (    )                                                   (    ) 

where  

                                                               (    ) 

  is an   x   matrix with orthogonal columns           .  

     (    ) (    )  (   ) (   )    (  )                    (    ) 
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  [

  ( )   ( )    ( )

  ( )   ( )    ( )
    

  ( )   ( )    ( )

]                                    (    ) 

Hence 

  

[
 
 
 
 
 
 
 
 
 
∑  

 ( )

 

   

   

 ∑  
 ( )

 

   

  

    

   ∑  
 ( )

 

   ]
 
 
 
 
 
 
 
 
 

                          (    ) 

and            
 

∑   
 ( ) 

   
           

                                                                (    ) 

Pre-multiplying by    gives 

                                                             (    ) 

  (   )                                                  (    ) 

Using the matrix definitions of           from equations (3.22), (3.21) and (3.16) 

respectively,  

  

[
 
 
 
 
 
∑   ( )  ( )

 
   

∑   
 ( ) 

   

∑   ( )  ( )
 
   

∑   
 ( ) 

   

 
∑   ( )  ( ) 

   

∑   
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∑   ( )  ( )

 
   

∑   
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∑   ( )  ( )
 
   

∑   
 ( ) 

   

 
∑   ( )  ( ) 

   

∑   
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               [

          

          

    
          

]                                                  (    ) 

  is unit upper triangular and its terms are defined as follows: 
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{
 
 

 
                                                    
                                                   

∑   ( )  ( )
 
   

∑   
 ( ) 

   

                      

                                 (    ) 

giving 

  

[
 
 
 
 
           

         

     
     
     ]

 
 
 
 

                                        (    ) 

The elements of   can be determined by 

     

            (   )                                  (    ) 

[

  ( )   ( )    ( )

  ( )   ( )    ( )
    

  ( )   ( )    ( )

]  [

  ( )   ( )    ( )

  ( )   ( )    ( )
    

  ( )   ( )    ( )

] 

 [

  ( )   ( )    ( )

  ( )   ( )    ( )
    

  ( )   ( )    ( )

]  

[
 
 
 
 
           

         

     
     
     ]

 
 
 
 

   (    ) 

  [          ]  is an auxiliary parameter vector and the estimate of   can be 

calculated using 

 ̂  (   )                                                    (    ) 

or 

 ̂  
〈    〉

〈     〉
                                                                 (    ) 

where 〈   〉 denotes the inner product of 2 vectors and 〈    〉   ∑   ( ) ( )
 
    

 ̂    ̂ 

 ̂      ̂                                                            (    ) 

The prediction errors are not known beforehand and are calculated using 
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 ̂( )   ( )  ∑ ̂ 

 

   

  ( )                                              (    ) 

If  ( ) is uncorrelated with the past outputs, the output variance can be written as 

 

 
    

 

 
∑  

 

 

   

  
    

 

 
                                         (    ) 

Here, 
 

 
∑   

  
     

    represents the desired output and 
 

 
    represents the unexplained 

variance. Hence, 
 

 
∑   

  
     

   is the increment to the explained desired output variance 

brought by    which leads to the definition of the      as 

     
  

 〈     〉

〈   〉
       

〈    〉
 

〈   〉〈     〉
                              (    ) 

The Error Reduction Ratio (ERR) is often used in structure determination algorithms to 

determine which term should be included in the NARMAX model. The higher the ERR, 

the more likely it is that the term should be included in the model. There is often a cut-off 

value which specifies that if a term has an ERR value lower than that of the cut-off, the 

term should not be included in the model.  

The OFR algorithm can be summarised in the following steps (Korenberg et al., 1988): 

1. Select the values for      ,    and   in (3.14). Set  ( )           . Select 

the threshold values for the ERR. 

2. Estimate all the parameters of the terms which do not include any  ( ) terms by 

computing the elements of matrices   in equation (3.21),   in equation (3.26) 

and  ̂ in equation (3.31). 

3. If  ̂( )            go to step 4 else use  ̂( ) to estimate the parameters 

associated with the prediction error terms by computing W, A and  ̂. 

4. Calculate      in equation (3.36), check against the thresholds and remove the 

insignificant terms. 

5. Estimate the prediction errors using equation (3.34). 
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6. If any process model terms were deleted in step 4 then go to step 2 otherwise go 

to step 3 and repeat until convergence. 

7. Estimate the NARMAX model coefficients by calculating  ̂ from equation 

(3.33). 

The procedure of orthogonal decomposition can be carried out using several algorithms 

such as Gram-Schmidt, modified Gram-Schmidt and the Householder transformation. 

Although the ERR value indicates the terms to be included in the model, there can be 

instances when terms that are insignificant according to their ERR value will introduce 

bias if excluded from the final model. Simulations (Korenberg et al., 1988) show that this 

usually occurs only with the noise model or prediction error terms. A majority of the 

prediction error terms have a very low ERR value, which if deleted can cause the 

sequence  ( ) to become autocorrelated rather than white, thereby inducing possible bias 

in the model parameters. 

3.3.4 Weighted Orthogonal Forward Regression (WOFR) Method 

This section describes the algorithm of the WOFR procedure (Zhao, 2010) used in the 

simulations in this chapter. 

Algorithm: 

1. A non-linear candidate model is built which consists of all the terms that might 

possibly be a part of the original model. The OFR algorithm is then applied to the 

candidate model to calculate the parameter estimates of each term. Once this is 

done, one-step-ahead predictions of the returns are calculated which in turn are 

used to calculate the residuals by subtracting the one-step-ahead estimates from 

the actual return at that instant in time. 

 ( )   ( )   ̂( )                                                 (    ) 

2. Once the residuals are calculated, an estimate of the variance is derived by 

inputting the residuals into a GARCH estimation algorithm. This algorithm 

estimates the GARCH parameters and the variance. 

3. Each term in the candidate model is weighed by the square root of the estimated 

variance at each instant in time. The original model is 
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 ( )  ∑      ( )√ ( )

 

   

                                   (    ) 

After weighing each term, the model becomes: 

 ( )

√ ( )
 ∑

    

√ ( )
  ( )

 

   

                                   (    ) 

4. The OFR algorithm is again applied to the weighted model and the ERR of each 

term is calculated. Note that this ERR will be the weighted ERR. A cut-off value 

is set and all the terms with an ERR above the cut-off value are selected. Thus 

ends the term selection phase. 

5. The candidate model now consists only of the terms selected in the previous step. 

The OFR algorithm is applied to this model to obtain the correct parameter 

estimates. 

6. Once the parameter estimates are obtained, the residuals are calculated and fed 

into the GARCH estimation algorithm which in turn calculates the new variance 

and new GARCH parameter estimates. The new variance is then used to weight 

the candidate model in step 4 and recalculate the parameter estimates of the mean 

model, the variance and eventually the parameter estimates of the variance model 

as well. 

7. This procedure is then repeated until the parameter estimates of the mean and 

variance model converge to a fixed value. This occurs after about 10 iterations. 

3.4 Simulations 

A majority of the research papers which introduce and implement various GARCH-class 

models use a constant or a linear model to model the returns. 

The following simulations demonstrate the impact of incorrectly fitting a linear mean 

model to a non-linear return series on variance estimation and also demonstrate the 

WOFR method described in the previous sections to correctly identify linear and non-

linear mean models in the presence of heteroskedastic noise. 

3.4.1 Impact of Incorrectly Fitting the Mean Model on Variance Estimation 

Consider the following GARCH(1,1) model with a non-linear mean 
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 ( )        (   )     
 (   )   ( )                          (    ) 

 ( )      (   )     (   )                                 (    ) 

where  ( ) is the excess return,  ( ) is the modelling residual and  ( ) is the variance, all 

at an instant in time,  .       and    are the parameters of the mean model and     and 

  are the parameters of the variance model. The values are listed in Table 3.1. 

Table 3.1 Parameters of the Simulated GARCH(1,1) Model 

Parameter of the 

Mean Model 
Value 

Parameter of the 

Variance Model 
Value 

   5E-04   3E-07 

   0.1   0.924 

   -6   0.075 

 

This model is assumed to be the ‘true’ model, i.e., that from which the data is generated. 

5000 data points were generated and the first 1000 were discarded to avoid initial 

condition errors. The simulated returns and variance are shown in Figure 3.1. When 

simulating the returns and the variance from equations (3.40) and (3.41), the residuals 

 ( ) are modelled as  ( )    ( )√ ( ), where  ( ) is a random independent and 

identically distributed (i.i.d) sequence that has zero mean and a variance of 1. 

 

Figure 3.1 Simulated Returns and Variance of GARCH(1,1) Model 
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It is assumed that the modeller does not know that equation (3.40) is the true mean 

process, but instead incorrectly assumes that the mean process is the commonly used 

AR(1) model 

 ( )        (   )   ( )                                  (    ) 

It is also assumed that the modeller does however correctly believe that equation (3.41) is 

the variance process. The parameter estimates of the mean model are obtained and shown 

in Table 3.2. The one-step-ahead estimates of the returns are calculated and used to obtain 

the residuals,  ( ). Assuming that the structure of the variance model is known, a 

GARCH(1,1) model was fitted to these residuals to obtain an estimate of the variance 

(shown in Figure 3.2) and to obtain the parameter estimates of the GARCH variance 

model (shown in Table 3.2). 

 

Figure 3.2 Estimated Variance after fitting Incorrect AR(1) Model to the Returns 
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Table 3.2 Parameter Estimates of the Estimated GARCH Model vs. True GARCH 

Model when the Incorrect Mean Model is fitted 

Parameter of the Mean Model Estimated Value True Value 

   -3.069E-04 5E-04 

   0.1495 0.1 

   N/A -6 

Parameter of the Variance Model Estimated Value True Value 

  3.0948E-07 3E-07 

  0.9277 0.924 

  0.0711 0.075 

 

The obtained parameter estimates in Table 3.2,    and   , are clearly inaccurate. 

In the second case, the mean model is correctly selected as 

 ( )        (   )     
 (   )   ( )                           (    ) 

The parameter estimates of the mean model are obtained and shown in Table 3.3. The 

one-step-ahead estimates of the returns are calculated and used to obtain the residuals, 

 ( ). Assuming that the structure of the variance model is known, a GARCH(1,1) model 

was fitted to these residuals to obtain an estimate of the variance (shown in Figure 3.3) 

and to obtain the parameter estimates of the GARCH variance model (shown in Table 

3.3). 

 

Figure 3.3 Estimated Variance after fitting the True Model to the Returns 
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Table 3.3 Parameter Estimates of the Estimated GARCH Model vs. True GARCH 

Model when the Correct Mean Model is fitted 

Parameter of the Mean Model Estimated Value True Value 

   5.4157E-04 5E-04 

   0.0962 0.1 

   -5.7626 -6 

Parameter of the Variance Model Estimated Value True Value 

  2.8604E-07 3E-07 

  0.9285 0.924 

  0.0705 0.075 

 

The obtained parameter estimates in Table 3.3 are accurate and close to the true values. 

The variance estimated from the residuals of the non-linear mean model (Figure 3.3) is 

noticeably closer to the simulated (true) variance than the variance estimated from the 

residuals of the linear mean model (Figure 3.2). To provide a better visualisation of this 

point, the absolute errors between the estimated GARCH(1,1) variance and the simulated 

(true) GARCH(1,1) variance for both the cases are shown in Figure 3.4. 

  

Figure 3.4 Absolute Differences between True GARCH(1,1) Variance and estimated 

GARCH(1,1) Variance from Residuals of (a) Linear and (b) Non-Linear Mean 

Model 
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The impact of selecting an incorrect mean model on the estimation of the variance model 

is evident from Figure 3.4 (a). Misspecification of the mean model can lead to inaccurate 

estimates of the variance, especially at the peaks (high volatility events) – as the spike in 

the upper sub-figure demonstrates. Figure 3.4 (b) shows that the magnitude of the 

absolute error is very small when the correct mean model is fitted. 

In summary, if the modeller correctly assumes both the mean and the variance process, 

then the NARMAX OFR approach gives accurate results, but if the modeller is mistaken 

about the mean process, then the estimated variance process can be misspecified, even if 

the modeller is correct about the variance process itself. 

This is where the WOFR method comes into play. Instead of making a guess about the 

mean process – which may or may not be correct – it is now assumed that the modeller 

proposes a very general candidate mean process and then applies the WOFR method. 

3.4.2 Term Selection and Parameter Estimation of the Mean Model using 

WOFR 

Consider the same GARCH(1,1) model with a non-linear mean as used in Section 3.4.1 

(See equations (3.40) and (3.41), and Table 3.1). 

The procedure followed is the same as that described in Section 3.3.4. First, a non-linear 

candidate model is chosen which consists of all the terms that could possibly be in the 

final mean model. A NAR(2,5) model is chosen as the candidate model. 

 ( )     (   )     (   )     (   )     (   )     (   ) 

                 
 (   )     

 (   )     
 (   )     

 (   ) 

                  
 (   )      (   ) (   )      (   ) (   ) 

                  (   ) (   )      (   ) (   )      (   ) (   ) 

                  (   ) (   )      (   ) (   )      (   ) (   ) 

                  (   ) (   )      (   ) (   )                                             (    ) 

Next, simple OFR is applied to the candidate model and the results are shown in the left-

hand side of Table 3.4. This shows the terms selected in decreasing order of ERR. The 

one-step-ahead residuals of the mean model are calculated. The structure of the variance 

model was assumed to be known and a GARCH(1,1) model was fitted to these residuals 

to obtain an estimate of the GARCH variance. 
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The square root of the estimated GARCH variance is used to weight each term in the 

candidate mean model on the left and the right hand side of equation (3.44). Once again, 

simple OFR was applied to the weighted candidate mean model, the results of which are 

shown in the right-hand side of Table 3.4. This shows the terms selected in decreasing 

order of ERR. 

Table 3.4 Ranking of Terms of the Candidate Mean Model when using OFR and 

WOFR 

Rank 
Standard OFR Weighted OFR 

Term ERR (%) Term ERR (%) 

1   (   ) 55.2096   (   ) 10.0976 

2  (   ) 9.0819  (   ) 6.4782 

3  (   ) (   ) 3.2117 1 4.3895 

4   (   ) 1.4619  (   ) 0.8200 

5   (   ) 1.8652  (   ) (   ) 0.4903 

6 1 1.3808   (   ) 0.4280 

7   (   ) 1.2395  (   ) 0.2619 

8  (   ) 1.0791  (   ) (   ) 0.2273 

9  (   ) (   ) 0.5381  (   ) 0.1376 

10  (   ) (   ) 0.7534  (   ) (   ) 0.1296 

11  (   ) 0.4844  (   ) (   ) 0.1543 

12  (   ) (   ) 0.5886   (   ) 0.1069 

13  (   ) (   ) 0.3771   (   ) 0.0784 

14  (   ) (   ) 0.4395  (   ) (   ) 0.0561 

15   (   ) 0.2590  (   ) (   ) 0.0411 

16  (   ) (   ) 0.3221  (   ) (   ) 0.0324 

17  (   ) 0.1537  (   ) 0.0156 

18  (   ) (   ) 7.5016E-03  (   ) (   ) 0.0092 

19  (   ) (   ) 3.4853E-03  (   ) (   ) 0.0016 

20  (   ) 4.8341E-04  (   ) (   ) 1.2196E-04 

21  (   ) (   ) 1.3478E-04   (   ) 3.9431E-05 

 

The OFR algorithm ranks the constant term 6th, and ranks 3 terms (   (   ),   (   ) 

and  (   ) (   )) above the constant term that are not present in the original 

GARCH mean model (equation (3.40)). After weighting, the terms that are present in the 

original GARCH mean model are correctly selected. The ERR values of the top 3 ranked 

terms are significantly higher than the other terms in the candidate mean model. Hence 

these terms can be selected by setting the cut-off value to 2% (Wei and Billings, 2004). In 

short, OFR selects the wrong terms, and WOFR selects the right ones. 
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The parameters of the selected terms in the candidate mean model and the GARCH(1,1) 

variance model are re-estimated iteratively until convergence. The parameter estimates of 

the mean and the variance model converge after 10 iterations and the associated values 

are listed in Table 3.5. 

Table 3.5 Parameter Estimates of Selected Mean Model and GARCH(1,1) Variance 

Model after 10 iterations of WOFR 

Term of the Mean Model Parameter Estimate True Coefficient 

Constant 5.2414E-04 5E-04 

 (   ) 0.0957 0.1 

  (   ) -5.2413 -6 

Parameter of Variance Model Parameter Estimate True Coefficient 

  2.7957E-07 3E-07 

  0.9282 0.924 

  0.0707 0.075 

 

Thus, the WOFR algorithm correctly identifies and accurately estimates the true mean 

model even when the modeller was not assumed to know what the correct mean model 

actually was. To validate the performance of the WOFR algorithm, the estimated 

GARCH(1,1) variance obtained after 10 iterations is plotted against the simulated 

GARCH(1,1) variance along with the absolute difference between them. These are shown 

in Figure 3.5. 

Figure 3.5 shows that the estimated GARCH(1,1) variance is extremely close to the 

simulated GARCH(1,1) variance and the absolute difference between the two is minimal. 

If a GARCH model has been adequately fitted, the estimated standardised residuals, 

 ̂( )   
 ̂( )

√ ̂( )
 , are independent and identically distributed (i.i.d), where  ̂( ) are the 

estimated residuals from the GARCH mean model and  ̂( ) is the estimated GARCH 

variance. This implies that the autocorrelation of the squared estimated standardised 

residuals,  ̂ ( ), should lie below the 95% significance boundary. The autocorrelation 

function for 50 lags is shown in Figure 3.6. It can be seen that the sample autocorrelations 

for all lags lie on or below the 95% significance level implying that the GARCH model 

has been adequately fitted. Thus, the estimated standardised residuals obtained from the 

WOFR algorithm pass validation tests for i.i.d behaviour.  
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Figure 3.5 Simulated GARCH(1,1) Variance vs. Estimated GARCH(1,1) Variance 

from WOFR vs. Absolute Difference 
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Figure 3.6 Sample Autocorrelation Function (ACF) of Squared Estimated 

Standardised Residuals for 50 Lags 

3.5 Conclusions 

This chapter introduces the financial mean model and the different types of linear and 

non-linear mean models used in the literature. It also introduces NARMAX models and 

the WOFR method of selecting the terms and estimating the parameters in a GARCH 

model. The simulations demonstrate the effect that fitting an incorrect linear model to 

returns that are actually described by a non-linear model has on variance estimation and 

also how the WOFR algorithm is used to correctly select the terms and estimate the 

parameters of a non-linear mean model. However, these results are predicated on the 

assumption that the variance model is known. How this latter assumption might be 

relaxed is examined next. 
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Chapter 4 

 

Extended Weighted Orthogonal Forward 

Regression for the Estimation of the Mean Model 

4.1 Introduction 

In this chapter, a framework to model the mean of the returns is introduced, which does 

not require the modeller to know the terms present in the true mean model.  

The framework aims to select the best type of mean model (constant, linear or non-linear) 

for a given return series without making any assumptions about the modeller knowing the 

true structure of the variance model. The framework will first be tested on a return series 

simulated from a known mean and variance model. Using the framework, the best mean 

model for the simulated return series will be selected, which will be compared to the true 

mean model of the series to demonstrate that the framework actually works. 

Four different types of mean models are fitted to the returns: - a constant mean model, a 

linear mean model, a second order non-linear mean model and a third order non-linear 

mean model. The WOFR algorithm introduced in Chapter 3 is used to perform model 

term selection and parameter estimation. The ARCH Test is used in addition to standard 

higher order residual analysis tests to evaluate the model adequacy. The effects of 

inaccurate mean model estimation on variance estimation are also examined. 

This chapter is organised as follows: 

Section 4.2 reviews the correlation tests used in this chapter for model selection and 

model validation. 

Section 4.3 reviews Engle’s ARCH Test and explains how model validation and model 

selection is carried out using the ARCH Test. 

Section 4.4 reviews the Akaike Information Criterion (AIC) and explains how the term 

selection of the mean model is carried out using the AIC. 
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Section 4.5 explains in detail the method to fit several mean models to a given return 

series, and to select the best model. 

Section 4.6 showcases the results of applying the method introduced in Section 4.5 on a 

simulated data set. The true mean model of the simulated data is known, and hence the 

results of mean model selection using the new method are verified by checking whether 

the true mean model is selected. 

Section 4.7 concludes the chapter. 

4.2 Correlation Tests 

Linear autocorrelation plots of the standardised residuals,  ( ), the squared standardised 

residuals,   ( ), and squared residuals,   ( ), obtained after fitting a mean model have 

long been used to validate the fitted mean model. The sample autocorrelation of both, 

 ( ) and   ( ), should ideally lie within the 95% confidence bands, indicating that the 

respective  ( ) series is white. The sample autocorrelation of   ( ) should ideally lie 

outside the 95% confidence bands indicating the need to fit a variance model to the given 

return series. In financial literature, the autocorrelation of the residuals,  ( ), is ignored, 

but this is a key test used to check the adequacy of the fitted model in systems 

engineering. Hence, to examine the adequacy of the fitted mean model, the 

autocorrelation of the residuals will be plotted as well. 

In addition to linear correlation tests, the correlation based non-linear model validation 

tests introduced by Billings and Zhu (Billings and Zhu, 1994) can also be used to validate 

a candidate mean model by calculating higher order autocorrelations for   ( ) and   ( ). 

Also, the non-linear correlations from the tests introduced by Billings and Zhu (Billings 

and Zhu, 1994) and quantified by Friederich (Friederich, 2011) can be used to compare 

the higher order autocorrelations of   ( ) and   ( ) obtained by fitting different mean 

models. 

To understand these non-linear correlation tests, consider a system with outputs,  ( ), 

and residuals,  ( ). The non-linear correlation test for lag,  , can be represented as 

(Billings and Zhu, 1994) 

 
(  ) (  )

 ( )    ( )                                                           (   ) 

where 
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 ( )  describes the element-wise products of the mean removed series within the 

brackets.  

 (  )  represents the element-wise product of mean removed  ( ) and mean 

removed  ( ), for        . 

 (  )  represents the element-wise product of mean removed  ( ) and mean 

removed  ( ), for        . 

   is a constant such that      , and  ( ) is the Kronecker Delta (Weisstein, 

2010). 

From equation (3.15), a generalised representation of the mean of the returns can be given 

as: 

 ( )  ∑    ( ( ))

 

   

  ( )                                             (   ) 

 ( )   ( )√ ( ) 

where  

  ( ) is the return,  

  ( ) is the residual of the mean of the returns,  

  ( ) is a random, independent and identically distributed (i.i.d) sequence that has 

zero mean and a variance of 1, also denoted as the standardised residuals, 

  ( ) is the variance, 

    are the unknown parameters to be estimated, 

   (.) are the selected polynomial model terms, and 

  ( ) is a vector of  lagged output and error variables. 

While performing WOFR, all the terms in the mean model are divided by √ ( ). 

Equation (4.2) becomes 
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 ( )

√ ( )
 

 

√ ( )
∑    ( ( ))

 

   

  ( )                                         (   ) 

where  ( ) is the standardised residual of the mean of the returns. 

Let: 

 the collection of  ( ) for         be denoted as the vector  , 

 the collection of  ( ) for         be denoted as the vector  , and 

 the collection of  ( ) for         be denoted as the vector  . 

To validate and test the adequacy of a selected mean model, the higher order correlation 

functions,  
(  ) (  )

 ( )  
(  )

 
(  )

 ( ) and  
(  )

 
(  )

 ( ), are calculated and plotted. 

The various normalised cross-correlation functions for   lags are calculated as (Billings 

and Voon, 1986) 

 
(  ) (  )

 ( )  
∑ (  ( )    ̅̅ ̅)(  (   )    ̅̅ ̅)   

   

√(∑ (  ( )    ̅̅ ̅)    
   ) (∑ (  ( )    ̅̅ ̅)

    
   )

                           (   ) 

 
(  )

 
(  )

 ( )  
∑ (  ( )    ̅̅ ̅)(  (   )    ̅̅ ̅)   

   

√(∑ (  ( )    ̅̅ ̅)
    

   ) (∑ (  ( )    ̅̅ ̅)
    

   )

                           (   ) 

 
(  )

 
(  )

 ( )  
∑ (  ( )    ̅̅ ̅)(  (   )    ̅̅ ̅)   

   

√(∑ (  ( )    ̅̅ ̅)
    

   ) (∑ (  ( )    ̅̅ ̅)
    

   )

                           (   ) 

If the outputs,  ( ), have been correctly modelled, the values of  
(  ) (  )

 ( ) and 

 
(  )

 
(  )

 ( ) lie within a 95% confidence band that is calculated as  
    

√ 
 (Billings and 

Zhu, 1994). Small violations of the confidence band for larger values of   are acceptable, 

but significant violations at small lags indicate an inadequate model. 

The higher order correlation violation statistics,  
(  ) (  )

   
(  )

 
(  )

 , and  
(  )

 
(  )

 , are 

also calculated. The following objective functions quantify the magnitude of violation of 

the correlation functions (Friederich, 2011) 
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(  ) (  )

  {
∑[   ( (| 

(  ) (  )
 |  

    

√ 
))  ]          ⁄  

    

√ 
 

 

                                                                                           

        (   ) 

 
(  )

 
(  )

  {
∑[   ( (| 

(  )
 
(  )

 |  
    

√ 
))  ]          ⁄  

    

√ 
 

 

                                                                                           

        (   ) 

 
(  )

 
(  )

  {
∑[   ( (| 

(  )
 
(  )

 |  
    

√ 
))  ]          ⁄  

    

√ 
 

 

                                                                                           

        (   ) 

where     is a user-defined constant that punishes larger confidence violations 

exponentially (Friederich, 2011). After much testing, the value of     is found to work 

the best in most cases of interest. For an adequately fit model,  
(  ) (  )

    and 

 
(  )

 
(  )

   , implying that there exist no violations of the confidence band. 

4.3 Engle’s ARCH Test 

Engle’s ARCH Test (Engle, 1982) is a Lagrange Multiplier test used to detect the 

presence of ARCH effects in a given time series.  

Consider the ARCH model with  ( )   (   ) where   is a linear differentiable 

function,    (    (   )     (   )),  ( ) is the residual of the mean of the 

returns and   (          ) are constants. 

Under the null hypothesis,              and  ( ) is a constant denoted as   . 

Writing 
  ( )

  
     

  where    is the scalar derivative of  , the score and information can 

be written as 

  

  
|
 
 

  

   
∑  

 (
  ( )

  
  )

 

 
  

   
      

   
  

 

 
(
   

  
)

 

      

and, hence, the LM test statistic can be estimated by 

   
 

 
    (   )                                                   (    )  
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where    (         ) and    is the column vector of (
  ( )

    ). 

The ARCH test yields a test statistic and a critical value for a given dimension,    . If 

the test statistic is greater than the critical value, the presence of ARCH effects in the 

given series is confirmed, and an ARCH( ) model, where    , is required to describe 

the variance of the given series (Engle, 1982). 

In this chapter, the ARCH Test is used for model comparison, and is performed on the 

estimated residuals,  ̂( ), obtained after fitting different candidate mean models to the 

given returns series. The more adequately the mean of the returns has been modelled, the 

lower the amount of heteroskedasticity present in the estimated residuals, and hence, the 

lower the ARCH Test statistic of  ̂( ). Hence, from this perspective, the best fit is the one 

with the lowest ARCH Test statistic of  ̂( ). 

4.4 The Akaike Information Criteria (AIC) 

The Akaike Information Criterion (AIC) is often used for model validation, and 

enumerates the quality of a model fitted to a given data set (Akaike, 1974). In this 

chapter, AIC is used to aid in term selection of the mean model. 

The terms of the candidate mean model are reordered in decreasing order of the Error 

Reduction Ratio (ERR) values after performing WOFR. Starting with the term with the 

highest ERR value, the mean model is selectively updated, adding one term at a time. For 

each mean model, the one-step-ahead (OSA) residuals are calculated. 

Since the true structure of the variance is unknown, a linear estimate of the variance is to 

be generated from the obtained residuals. ARCH(p) models provide a basic linear 

estimate of the variance using just the lagged squared residuals. Since a good 

approximation of the variance is required, the lag, p, needs to be large. Various 

simulations with p ranging from 10 to 100 were performed, and p is chosen to be a 

sufficient value of 25, since it provides a good linear variance estimate whilst keeping 

computational time to generate the variance estimate low. p is not required to be exactly 

25. Any value close to or above 25 may also be used. 

Hence, an ARCH(25) variance model is then fitted to the OSA residuals, and the AIC of 

the fitted ARCH(25) model is calculated as 

    (      )  (   )                                            (    ) 



 
 

Chapter 4: Extended WOFR for the Estimation of the Mean Model 

49 

where     is the Log-Likelihood Function and can be calculated using equations (6.5) 

and (6.6), and   is the total number of parameters of the fitted variance model (25, in this 

case). When used for model comparison, the model that yields the lowest AIC value is 

selected. 

4.5 Overview of the Method 

The method used is as follows: 

1. Consider a total of   samples of returns, denoted as  . 

          [ ( )  ( )    ( )]                                (    ) 

 

2. The complete data set is split into three sets – Estimation, Validation and Testing 

Set.      denotes the number of samples used in the Estimation set,      denotes 

the number of samples used in the Validation set, and       denotes the number of 

samples in the Testing set. 

                  

Of the last (          ) samples of  , the first      samples are used for term 

selection and model validation, and the last       samples are used to demonstrate 

out-of-sample performance of the fitted model.  

 

3. Consider a candidate mean model consisting of all possible non-linear and/or linear 

combinations of lagged returns.      samples of returns are used to estimate the 

mean model. The returns are split into three data sets: an Estimation subset of      

samples, a Validation set of      samples, and a Testing set of       samples. 

       [ ( )  ( )    (    )]                                  (    ) 

     [ (      )  (      )    (       )]                 (    ) 

      [ (         )  (         )    ( )]           (    ) 

 

4. The coefficients of the terms in the candidate model are estimated, and the one-

step-ahead (OSA) estimates of the returns over the estimation, validation, and 

testing data sets (denoted as  ̂       ̂    and  ̂    ) are calculated. The initial 

residuals, denoted as  ̂       ̂    and  ̂    , are also calculated: 

 ̂              ̂                                                           

 ̂          ̂                                                              

 ̂            ̂                                                (    ) 
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5. Since the true structure of the variance model is assumed to be unknown to the 

modeller, an ARCH(25) model is fitted to the residuals,  ̂     .  The coefficients 

of the ARCH(25) variance model (denoted as              ) are estimated, and 

the OSA estimates of variance over the estimation, validation and testing sets 

(denoted as  ̂       ̂    and  ̂    ) are obtained. 

 ̂     ( )    ∑    ̂     
 (   )

  

   

                                        

 ̂   ( )    ∑   ̂   
 (   )

  

   

                                               

 ̂    ( )    ∑   ̂    
 (   )

  

   

                               (    ) 

where               are estimated via Maximum Likelihood. 

 

6. WOFR is performed on the candidate mean model. The terms are re-ordered in 

decreasing order of ERR values due to weighting by √ ̂     . 

 

7. If there are 100+ terms in the candidate mean model, a reasonably small ERR cut-

off value like 0.01% is selected to reduce computational time. Else, the ERR cut-

off value is selected to be 0%. All the terms in the candidate mean model that have 

an ERR less than the ERR cut-off are discarded. Starting with only the term with 

the highest ERR value, the terms are iteratively added to constitute the mean model 

being tested. 

In each iteration, the term with the next highest ERR in the candidate mean model 

is added to the mean model to be tested. A noise model is also fitted to the terms in 

the mean model being tested.  

 

8. The one-step-ahead (OSA) estimates of the returns, and hence the OSA residuals 

over the Estimation, Validation and Testing Sets are calculated.  

An ARCH(25) variance model is fitted to the OSA residuals in the Estimation Set, 

and the AIC is calculated using equation (4.11). The AIC decreases as terms are 

iteratively added to the mean model. The percentage change in AIC in that iteration 

relative to the previous iteration is calculated as 
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    ( )      (
   ( )

   (   )
  )                               (    ) 

 

where    ( ) represents the AIC of the fitted ARCH(25) model, and     ( ) 

represents the percentage change in AIC, both in iteration,  . 

 

9. Once the correct terms in the mean model have been selected,      becomes 

minimal. Hence, only those terms are selected in the mean model that yield a 

significant value of     . If there exists an element of doubt, ERR is used for 

verification. If a term has a significant value of ERR (that is to say, an ERR greater 

than 0.1%), it is selected. 

10. Steps 3 to 8 are carried out for the different candidate mean models that are fitted 

to the returns. For the purpose of this chapter, four different types of candidate 

mean models are fit to the returns – a constant mean model, a linear mean model, a 

second order polynomial non-linear mean model, and finally, a third order 

polynomial non-linear mean model. The ARCH Test statistics of the different 

obtained  ̂( ) series for the Validation Set, and  
(  ) (  )

  of the complete data set 

are calculated and compared for all the different types of selected mean models in 

order to determine the best mean model for the given return series. 

4.6 Simulated Data 

The method is first demonstrated using a numerical simulation example. An assumed 

known heteroskedastic volatility model is used to generate synthetic data where the mean 

process is described by a non-linear autoregressive model and the variance process by a 

GARCH(1,1) model. We consider the situation faced by a modeller who does not know 

the true mean and variance models and has only the data themselves to work with. The 

proposed estimation method is used to identify the mean model from the simulated 

returns. 

4.6.1 The Model 

A return series is simulated using the second order non-linear mean model and a simple 

GARCH(1,1) variance model given in equations (4.19) and (4.20). 

Mean Model:    ( )        (   )     (   )     (   ) (   ) 
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    (   ) (   )     (   ) (   )   ( )        (    ) 

Variance Model:                   ( )      (   )     (   )                                 (    ) 

where 

  ( ) is the return, 

  ( ) is the modelling residual and  

  ( ) is the variance, all at an instant in time,  . 

                and    are the parameters of the mean model and     and   are 

the parameters of the variance model. 

When simulating the returns and the variance, a random i.i.d sequence,  ( ), is generated. 

 ( ) is simulated as  ( )   ( )√ ( ). The true values of the parameters are listed in 

Table 4.1. For a GARCH(p,q) model, the initial condition,  ( ) is calculated as shown in 

equation (2.10). 

Table 4.1 Model Parameters of the Simulated Data 

Parameter of the 

Mean Model 
Value 

Parameter of the 

Variance Model 
Value 

   0.001   3E-07 

   0.2   0.924 

   0.15   0.075 

   -10 

   8 

   -5 

 

5000 data points are generated and the first 1000 are discarded to avoid initial condition 

errors. The simulated returns and simulated variance are shown in Figure 4.1. 
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Figure 4.1 Simulated Returns and Simulated Variance 

All the simulated data series are split into three sets – Estimation, Validation and Testing 

Sets. The number of samples in each of these sets are listed in Table 4.2. 

Table 4.2 Number of Samples in Estimation, Validation and Testing Sets 

No. of Samples in Estimation Set (    ) 3300 

No. of Samples in Validation Set (    ) 500 

No. of Samples in Testing Set (     ) 200 

 

To capture the non-linearity present in the simulated data set, a large Estimation Set is 

required to enable accurate term selection and parameter estimation. Hence, a large 

Estimation Set comprising of 3300 samples is selected. For model validation results to be 

accurate and consistent, the Validation Set is chosen to have 500 samples. Out of sample 

model performance is tested with a Testing Set consisting of 200 samples. 
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4.6.2 Autocorrelation Plots of Returns and Squared Returns 

4.6.2.1 Linear Autocorrelation 

The linear sample autocorrelation of the returns and the squared returns for 20 lags are 

shown in Figure 4.2. 

 

Figure 4.2 Sample Autocorrelation Plots of Returns and Squared Returns 

The sample autocorrelation of the returns for lags 1, 3 and 5 lie significantly outside the 

95% confidence bands, indicating the possibility of the presence of the terms,  (   ), 

 (   ) and  (   ), in the mean model. Note that the presence of non-linear terms 

cannot be indicated by linear autocorrelation plots. 

The sample autocorrelation of the squared returns are significantly outside the 95% 

confidence bands for all the lags, indicating the need to fit a variance model to the 

returns, in addition to a mean model. 

4.6.2.2 Higher Order Autocorrelation 

The higher order autocorrelation of the returns and the squared returns for the Estimation, 

Validation, Testing and Complete Data Set are also calculated and plotted in Figure 4.3 

and Figure 4.4 respectively. 
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Figure 4.3  ( ) ( )  for (a) Estimation, (b) Validation, (c) Testing, and (d) Complete 

Data Set 

Figure 4.3 (d) shows that  ( ) ( )  for lags 1, 3 and 5 is well outside the 95% confidence 

bands, suggesting the presence of linear and non-linear terms with these lags. 

The corresponding higher order correlation violation statistic,  ( ) ( ) , for the Estimation 

Set, Validation Set, Testing Set, and the Complete Set are listed in Table 4.3. 

Table 4.3  ( ) ( )  for Estimation, Validation, Testing, and Complete Data Sets 

 ( ) ( )  

(Estimation Set) 

 ( ) ( )  

(Validation Set) 

 ( ) ( )  

(Testing Set) 

 ( ) ( )  

(Complete Data Set) 

6.0135E-06 1.6851E-05 6.3830E-07 5.8302E-06 
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Figure 4.4  
(  )

 
(  )

  for (a) Estimation, (b) Validation, (c) Testing, and (d) 

Complete Set 

Figure 4.4 (d) shows that  
(  )

 
(  )

  is significantly outside the 95% confidence bands 

for all the lags. This indicates the need to fit a variance model to the returns, in addition to 

fitting a mean model.  

The corresponding non-linear correlation violation statistic,  
(  )

 
(  )

 , for the Estimation 

Set, Validation Set, Testing Set, and the Complete Set are listed in Table 4.4. 

Table 4.4  
(  )

 
(  )

  for Estimation, Validation, Testing, and Complete Data Sets 

 
(  )

 
(  )

  

(Estimation Set) 

 
(  )

 
(  )

  

(Validation Set) 

 
(  )

 
(  )

  

(Testing Set) 

 
(  )

 
(  )

  

(Complete Data Set) 

2.8329E-04 7.7942E-05 9.2299E-06 2.8023E-04 

 

The presence of non-linear auto-regressive nature of the returns has been indicated by the 

correlation plots. The presence of heteroskedasticity in the returns has also been 

confirmed. The next step is to fit a variety of candidate mean models to the returns. 

-20 -10 0 10 20
-0.5

0

0.5

1


(y

2
)'(y

2
)'
 for the Estimation Set

(a)




(y

2
)'
(y

2
)'

-20 -10 0 10 20
-0.5

0

0.5

1


(y

2
)'(y

2
)'
 for the Validation Set

(b)




(y

2
)'
(y

2
)'

-20 -10 0 10 20
-0.5

0

0.5

1


(y

2
)'(y

2
)'
 for the Testing Set

(c)




(y

2
)'
(y

2
)'

-20 -10 0 10 20
-0.5

0

0.5

1


(y

2
)'(y

2
)'
 for the Complete Data Set

(d)




(y

2
)'
(y

2
)'



 
 

Chapter 4: Extended WOFR for the Estimation of the Mean Model 

57 

4.6.3 Candidate Mean Models 

Four different candidate mean models are considered. 

4.6.3.1 Constant Mean Model 

The first is a constant mean model,  ( )    , where    is to be estimated. 

4.6.3.2 Linear Candidate Mean Model  

The second is a linear candidate mean model. The number of lagged linear terms to be 

included in the linear candidate mean model is denoted as   . As explained earlier, from 

Figure 4.2, the sample autocorrelation of the returns for lags 1,3 and 5 lie significantly 

outside the 95% confidence bands, indicating the presence of the terms  (   )  (  

 ) and  (   ) in the mean model. Hence,    is selected to be 5. The linear candidate 

model is an AR(5) model with a linear noise model consisting of 10 lagged noise terms 

written as 

 ( )     ∑   (   )

 

   

 ∑   (   )

  

   

                             (    ) 

where   ,   , and    are coefficients to be estimated. 

Since the true mean model (equation (4.19)) includes an additive noise term,  ( ), to 

improve parameter estimation, a linear noise model is also fitted to the candidate mean 

model once term selection has been carried out. The maximum lag of the error terms to be 

included in the linear mean model is carefully selected to be      . It must be noted 

that a linear mean model with a large enough noise model can give residuals that are 

white. 

4.6.3.3 Second Order Non-Linear Candidate Mean Model  

The third candidate mean model is a second-order non-linear mean model. For the 

reasons explained in Section 4.6.4.2,    is selected to be 5. The number of terms in the 

candidate mean model increases exponentially with the maximum lag of the non-linear 

terms to be included in the candidate mean model. Hence, to keep the size of the 

candidate mean model and computational time reasonable, the maximum lag of the 

second order non-linear terms to be included in the non-linear candidate mean model is 

selected to be 5 as well. The second order non-linear mean model is written as 
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where   ,   , and    are coefficients to be estimated. 

A linear noise model is also fitted to the candidate mean model once term selection has 

been carried out. The maximum lag of the error terms to be included in the non-linear 

mean model is selected to be      . 

4.6.3.4 Third Order Non-Linear Candidate Mean Model  

The final candidate model is a third-order non-linear mean model. For the reasons 

explained in Section 4.6.3.2,    is selected to be 5. The maximum lag of the second and 

third order non-linear terms to be included in the non-linear candidate mean model is also 

selected to be 5. A linear noise model is also fitted to the candidate mean model once 

term selection has been carried out. The maximum lag of the error terms to be included in 

the non-linear mean model is selected to be      . The third order non-linear mean 

model is written as 

        ( )     ∑   (   )

 

   

 ∑    (   ) (   )

            

           

 

 ∑    (   ) (   ) (   )

                

                

 ∑   (   )

  

   

         (    ) 

where   ,   , and    are coefficients to be estimated. 

4.6.4 Estimation of Constant Mean Model 

First, a constant mean model with no noise model is fitted to the simulated returns. The 

values of the hyper-parameters used when fitting a constant mean model are given in 

Table 4.5. 
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Table 4.5 Hyper-parameters for fitting Constant Mean Model 

Hyper-parameter Value 

No. of Samples in Estimation Set (    ) 3300 

No. of Samples in Estimation Set (    ) 500 

No. of Samples in Estimation Set (     ) 200 

No. of Lagged Linear Noise Terms in Mean Model (  ) 0 

No. of Lags for non-linear Correlation Tests (     ) 20 

 

The constant term fitted is 0.0021 and has an ERR of 7.8113. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the constant mean model are plotted in Figure 4.5. 

 

Figure 4.5 Autocorrelation Plots of Residuals for the Selected Constant Mean Model 

In Figure 4.5 (d), note that there exists significant autocorrelation of the residuals at lags 

1,2,3,5 and 6 implying that the fitted constant mean model is inadequate. 

To validate the fitted mean and variance models, the higher order correlation of the 

squared residuals and squared standardised residuals obtained after fitting the selected 

constant mean model are plotted in Figure 4.6. 
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Figure 4.6 Higher Order Correlation Plots for the Selected Constant Mean Model 

From Figure 4.6 (d), (e) and (f), the squared estimated standardised residuals,  ̂ ( ), 

obtained from fitting a constant mean model, do not indicate any higher order 

autocorrelation; these results suggest that the mean and variance of the returns are 

adequately fit. 

4.6.4.1  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation, Validation and Testing 

Sets 

The higher order correlation plots in Figure 4.6 are quantified by calculating the 

confidence violation statistics using equations (4.4), (4.5) and (4.6). 

Table 4.6 shows  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  for 20 lags for the Estimation, 

Validation and Testing Sets for the constant mean model. 
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Table 4.6  
(  )

 
(  )

 ,  
(  )

 
(  )

  and  
(  ) (  )

  for Estimation, Validation and Testing 

Sets in Constant Mean Model 

 Estimation Set Validation Set Testing Set 

 
(  )

 
(  )

  2.7641E-04 1.2152E-04 8.0410E-06 

 
(  )

 
(  )

  0 0 0 

 
(  ) (  )

  2.7867E-04 1.1056E-04 8.2072E-06 

 

From Figure 4.6 (a), (b), (c), (g), (h) and (i), the squared estimated residuals,  ̂ ( ), 

obtained from fitting a constant mean model, indicate higher order correlation and 

autocorrelation. The corresponding confidence violation statistics,  
(  )

 
(  )

  and 

 
(  ) (  )

 , for the Estimation and Validation Sets in Table 4.6 are of the order of 1E-04 

which is considerably high in this context. These results suggest that a variance model is 

required to be fitted to the given return series.  

For an adequately fit mean model, the value of  
(  )

 
(  )

  is required to be zero, thereby 

confirming the absence of any higher order correlation in the estimated standardised 

residuals. The magnitude of the value of  
(  )

 
(  )

  for the Validation Set is zero, which 

is acceptable. These results suggest that the fitted mean and variance models are 

adequate. 

4.6.5 Estimation of Linear Mean Model using WOFR 

The next type of mean model to be fitted to the simulated returns is the linear candidate 

mean model listed in Section 4.6.3.2. WOFR is performed on the linear candidate mean 

model, and the terms are re-ordered in decreasing order of their ERR values. Term 

selection is then carried out to select the linear mean model that best describes the mean 

of the simulated returns. 

The values of the hyper-parameters used when fitting a linear mean model are the same as 

in the case of fitting a constant mean model, and are given in Table 4.5. The only 

difference is that a linear noise model is to be fitted as well, hence    is selected to be 10. 

The results of the WOFR analysis are given in Table 4.7. The terms shaded in blue 

represent the linear terms that are present in the true non-linear mean model (equation 

(4.19)) that was used to generate the simulated return series. Note that lags 2,4 and 5 

appear as non-linear terms in equation (4.19). 
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Table 4.7 Terms in Linear Candidate Mean Model reordered after weighting 

No. Term Parameter Estimate ERR 

1   0.0013 7.6504 

2  (   ) 0.1583 2.3217 

3  (   ) 0.1636 1.9363 

4  (   ) 0.0803 0.4191 

5  (   ) -0.0454 0.1649 

6  (   ) -0.0053 0.0022 

 

Using the hyper-parameters in Table 4.5, and      , steps 7 to 10 of the method 

described in Section 4.5 are now carried out on the re-ordered terms of the linear 

candidate mean model. 

4.6.5.1 Progression of AIC for the Estimation Set 

As explained in Section 4.5, each term from Table 4.7 is added to the mean model 

iteratively, starting with the first term. A linear noise model is fitted in addition to the 

terms in the mean model, and the OSA residuals,  ̂( ), are calculated. An ARCH(25) 

variance model is fitted to  ̂( ), and the AIC of the fitted variance model is calculated 

using equation (4.11). Starting from the second iteration,      is also calculated using 

equation (4.18). 

Figure 4.7 shows AIC and      as a function of the number of terms selected in the 

linear mean model. 

 

Figure 4.7 AIC and      as a function of Number of terms selected in the Linear 

Mean Model 

From Figure 4.7, AIC is the least (-2.1884E+04) when 4 terms from the top of Table 4.7 

are included in the linear mean model. Also,      increases progressively until 4 terms 
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from the top of Table 4.7 are included. Upon addition of the fifth term, the AIC increases, 

and      decreases. Hence, 4 terms from the top of Table 4.7 are selected to be included 

in the linear mean model. 

Note that for all the linear terms present in the actual mean model to be selected, the first 

3 terms from the top of Table 4.7 need to be selected. Since the actual mean model is 

non-linear in nature, it is acceptable for 1 or 2 extra linear terms get selected as well. 

Hence, 4 terms being selected in the linear mean model is acceptable, as long as all the 

linear terms present in the actual mean model are selected. 

4.6.5.2  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation and Validation Sets 

The higher order correlation confidence violation statistics,  
(  )

 
(  )

   
(  ) (  )

  and 

 
(  )

 
(  )

 , are calculated for all the linear mean models using equations (4.4), (4.5) and 

(4.6). Figure 4.8 shows  
(  )

 
(  )

 , Figure 4.9 shows  
(  )

 
(  )

 , and Figure 4.10 shows 

 
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the number 

of terms selected. The number of terms that yield the least  
(  )

 
(  )

   
(  )

 
(  )

  and 

 
(  ) (  )

 for the Validation Set are denoted by a red dashed line in each figure. 

For the linear mean model comprising of the 4 terms from the top of Table 4.7,  
(  )

 
(  )

  

for the Validation Set is the least with a value of 1.1609E-05. This confirms the term 

selection result arrived upon in Section 4.6.6.1 using AIC. 
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Figure 4.8  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 

 

Figure 4.9  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 
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For the linear mean model comprising of all the 6 terms from Table 4.7,  
(  )

 
(  )

  for the 

Validation Set is the least with a value of 3.6255E-08. In this case, 4 terms from the top 

of Table 4.7 are selected to be included in the linear mean model which yields a value of 

5.7049E-08 for  
(  )

 
(  )

  for the Validation Set, which is of significantly less magnitude 

and very close to the minimum value of 3.6255E-08. These results suggest that the mean 

and the variance of the returns have been adequately modelled. 

 

Figure 4.10  
(  ) (  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 

For the linear mean model comprising of the 4 terms from the top of Table 4.7,  
(  ) (  )

  

for the Validation Set is the least with a value of 1.6469E-05. This confirms the term 

selection result arrived upon in Section 4.6.6.1 using AIC. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected linear mean model are plotted in Figure 4.11. 
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Figure 4.11 Autocorrelation Plots of Residuals for the Selected Linear Mean Model 

In Figure 4.11 (d), note that there exists significant autocorrelation of the residuals at lags 

4 and 5 implying that the fitted linear mean model is inadequate. The magnitude of 

autocorrelation is lesser than that in the residuals obtained after fitting the constant mean 

model (Figure 4.5 (d)) which indicates that the selected linear mean model captures the 

predictable elements of the mean of the returns much better than the selected constant 

mean model. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected linear mean model (with 4 process terms) are 

shown in Figure 4.12. 
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Figure 4.12 Higher Order Correlation Plots for the Selected Linear Mean Model 

The violation of the 95% confidence bands in the higher order autocorrelation,  
(  )

 
(  )

  

and  
(  ) (  )

 , indicate the need to fit a variance model to the mean of the returns. For 

the fitted variance model to be adequate, no violations of the 95% confidence bands in the 

higher order autocorrelation,  
(  )

 
(  )

 , should exist. In Figure 4.12 (d), there exist no 

violations of the 95% confidence bands. In Figure 4.12 (e), note that the violations of the 

95% confidence bands in the higher order autocorrelation,  
(  )

 
(  )

 , are negligible, 

once again indicating that the mean of the returns has been adequately modelled. 

The terms selected in the linear mean model along with the coefficient estimates and ERR 

values are listed in Table 4.8. The coefficient estimates of the 10 noise terms are also 

included. 
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Table 4.8 Linear Mean Model 

No. Term 
Parameter 

Estimate 

True 

Coefficient 
ERR 

1   0.0008 0.001 7.6499 

2  (   ) -0.4279 0.15 0.0759 

3  (   ) 0.7326 0.2 2.3046 

4  (   ) 0.3206 N/A 0.4337 

5  (   ) -0.5603 N/A 0.0342 

6  (   ) -0.1050 N/A 0.0062 

7  (   ) 0.5725 N/A 1.9520 

8  (   ) -0.0351 N/A 0.0287 

9  (   ) -0.2511 N/A 0.0214 

10  (   ) -0.0141 N/A 0.0024 

11  (   ) -0.0089 N/A 0.0048 

12  (   ) 0.0123 N/A 0.0721 

13  (   ) -0.0390 N/A 0.0421 

14  (    ) 0.0396 N/A 0.1474 

 

So far, the constant and the linear mean models seem to pass standard financial model 

validation tests and suggest that the mean and the variance of the returns have been 

adequately modelled in both cases. 

4.6.6 Estimation of Second Order Non-Linear Mean Model using WOFR 

The next type of candidate mean model to be fitted to the simulated returns is the second 

order non-linear candidate mean model listed in Section 4.6.3.3. As in the case of the 

linear candidate mean model, WOFR is performed on the second order non-linear 

candidate mean model, and the terms are re-ordered in decreasing order of their ERR 

values. Term selection is then carried out to select a second order non-linear mean model 

that best describes the mean of the simulated returns. 

The values of the hyper-parameters used when fitting a second order non-linear mean 

model are the same as in the case of fitting a constant mean model, and are given in Table 

4.5. The only difference is that a linear noise model is to be fitted as well, hence    is 

selected to be 10. 

The WOFR analysis results are shown in Table 4.9. The terms shaded in blue represent 

the terms that are present in the true non-linear mean model used to generate the 

simulated return series. 
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Table 4.9 Terms in Second Order Non-Linear Candidate Mean Model reordered 

after weighting 

No. Term Parameter Estimate ERR 

1   0.0012 7.4602 

2  (   ) (   ) 7.8869 3.3629 

3  (   ) 0.1521 2.1289 

4  (   ) 0.1931 1.7372 

5  (   ) (   ) -9.8374 2.0654 

6  (   ) (   ) -3.7392 0.5453 

7  (   ) (   ) -2.5696 0.0904 

8  (   ) (   ) -1.2752 0.1070 

9  (   ) -0.0352 0.0569 

10  (   ) (   ) 1.4093 0.0412 

11  (   ) (   ) 1.6808 0.0405 

12  (   ) 0.0185 0.0259 

13  (   ) (   ) -0.7980 0.0155 

14  (   ) (   ) -0.8652 0.0151 

15  (   ) (   ) -0.8417 0.0115 

16  (   ) 0.0113 0.0093 

17  (   ) (   ) -0.3226 0.0047 

18  (   ) (   ) -0.3221 0.0011 

19  (   ) (   ) 0.2424 0.0016 

20  (   ) (   ) 0.1721 0.0005 

21  (   ) (   ) -0.1687 0.0005 

 

Note that the terms that are present in the actual mean model are all at the top of Table 

4.9. Using the hyper-parameters in Table 4.5, and      , steps 7 to 10 of the method 

described in Section 4.5 are carried out on the re-ordered terms of the second order non-

linear candidate mean model. 

4.6.6.1 Progression of AIC for the Estimation Set 

As explained in Section 4.5, each term from Table 4.9 is added to the mean model 

iteratively, starting with the first term. A linear noise model is fitted in addition to the 

terms in the mean model, and the OSA residuals,  ̂( ), are calculated. An ARCH(25) 

variance model is fitted to  ̂( ), and the AIC of the fitted variance model is calculated 

using equation (4.11). Starting from the second iteration,      is also calculated using 

equation (4.18). 

Figure 4.13 shows AIC and      as a function of the number of terms selected in the 

second order non-linear mean model. 



 
 

Chapter 4: Extended WOFR for the Estimation of the Mean Model 

70 

 

Figure 4.13 AIC and      as a function of Number of terms selected in the Second 

Order Non-Linear Mean Model 

From Figure 4.13, the AIC decreases drastically to a value of -2.2058E+04 till 6 terms 

from the top of Table 4.9 are selected to be included in the second order non-linear mean 

model. Also,      for each iteration is significant until 6 terms from the top of Table 4.9 

are included in the mean model. The addition of further terms to the mean model does not 

decrease the value of AIC drastically. 

Term selection could be stopped at 5 terms, since      in the 6
th
 iteration is not very 

significant, but from Table 4.9, the ERR of the 6
th
 term is 0.5453%, which is greater than 

0.1% and hence suggestive that the 6
th
 term should be included as well (Wei and 

Billings, 2004). 

Note that for all the terms present in the actual mean model to be selected, the first 6 

terms from the top of Table 4.9 need to be selected, which is the case.  

4.6.6.2  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation and Validation Sets 

The higher order correlation confidence violation statistics,  
(  )

 
(  )

   
(  ) (  )

  and 

 
(  )

 
(  )

 , are calculated for all the linear mean models using equations (4.7), (4.8) and 

(4.9). Figure 4.14 shows  
(  )

 
(  )

 , Figure 4.15 shows  
(  )

 
(  )

 , and Figure 4.16 shows 

 
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the number 

of terms selected in the second order non-linear mean model. The number of terms that 

yield the least  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  for the Validation Set are denoted by a 

red dashed line in each figure. 
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Figure 4.14  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Second Order Non-Linear Mean Model 

 
(  )

 
(  )

  for the Validation Set is the least (3.7365E-06) when 11 terms from the top of 

Table 4.9 are selected to be included in the mean model. This does not coincide with term 

selection using AIC (6 terms). But note that  
(  )

 
(  )

  for the Validation Set drops 

drastically when 5 terms from the top of Table 4.9 are selected to be included in the mean 

model, and remains at this minimum level as more terms are included in the mean model. 

 

Figure 4.15  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Second Order Non-Linear Mean Model 
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(  )

 
(  )

  for the Validation Set is the least (4.5356E-09) when 5 terms from the top of 

Table 4.9 are selected to be included in the mean model.  In this case, 6 terms from the 

top of Table 4.9 are selected to be included in the second order non-linear mean model 

which yields a value of 6.3454E-09 for  
(  )

 
(  )

  for the Validation Set, which is of 

considerably less magnitude and very close to the minimum value of 4.5356E-09, 

implying that the mean and the variance of the returns have been adequately modelled. 

 

Figure 4.16  
(  ) (  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Second Order Non-Linear Mean Model 

 
(  ) (  )

  for the Validation Set is the least (4.2156E-06) when 14 terms from the top of 

Table 4.9 are included in the mean model. This does not coincide with term selection 

using AIC (6 terms). But note that like  
(  )

 
(  )

   
(  ) (  )

  for the Validation Set also 

drops drastically when 5 terms from the top of Table 4.9 are included in the mean model, 

and remains at this minimum level as more terms are included in the mean model. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected second order non-linear mean model are plotted in Figure 4.17. 
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Figure 4.17 Autocorrelation Plots of Residuals for the Selected Second Order Non-

Linear Mean Model (6 Process Terms) 

In Figure 4.17 (d), note that there exists no significant autocorrelation of the residuals 

implying that the fitted second order non-linear mean model is adequate. The magnitude 

of autocorrelation is lesser than that in the residuals obtained after fitting the constant 

mean model (Figure 4.5 (d)) and the residuals obtained after fitting the selected linear 

mean model (Figure 4.11 (d)) which indicates that the selected second order non-linear 

mean model captures the predictable elements of the mean of the returns much better than 

the selected constant and linear mean models. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected second order non-linear mean model (with 6 

process terms) are shown in Figure 4.18. 
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Figure 4.18 Higher Order Correlation Plots for the Selected Second Order Non-

Linear Mean Model (6 Process Terms) 

The violation of the 95% confidence bands in the higher order autocorrelation,  
(  )

 
(  )

  

and  
(  ) (  )

 , indicate the need to fit a variance model to the mean of the returns. In 

Figure 4.18 (e), note that the violations of the 95% confidence bands in the higher order 

autocorrelation,  
(  )

 
(  )

 , are negligible, indicating that the mean and the variance of 

the returns have been adequately modelled. 

The selected terms along with the parameter estimates and ERR values are listed in Table 

4.10. The coefficient estimates of the 10 noise terms are also included. Note that the 

terms selected in the second order non-linear mean model are all present in the true mean 

model. 
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Table 4.10 Second Order Non-Linear Mean Model 

No. Term 
Parameter 

Estimate 

True 

Coefficient 
ERR 

1   0.0012 0.001 7.5171 

2  (   ) (   ) 7.2544 8 3.1913 

3  (   ) -0.0104 0.15 0.0006 

4  (   ) 0.3375 0.2 1.9056 

5  (   ) (   ) -10.6898 -10 2.2140 

6  (   ) (   ) -3.4399 -5 0.3714 

7  (   ) -0.1492 N/A 0.0565 

8  (   ) -0.0081 N/A 0.0034 

9  (   ) 0.1653 N/A 2.1272 

10  (   ) -0.0325 N/A 0.0461 

11  (   ) 0.0124 N/A 0.0106 

12  (   ) -0.0112 N/A 0.0103 

13  (   ) 0.0117 N/A 0.0115 

14  (   ) 0.0306 N/A 0.0712 

15  (   ) -0.0254 N/A 0.0469 

16  (    ) 0.0458 N/A 0.1329 

 

So far, the constant, the linear and the second order non-linear mean models seem to pass 

standard financial model validation tests and suggest that the mean and the variance of 

the returns have been adequately modelled in all the 3 cases. 

4.6.7 Estimation of Third Order Non-Linear Mean Model using WOFR 

The last type of candidate mean model to be fitted to the simulated returns is the third 

order non-linear candidate mean model listed in Section 4.6.3.4. As in the case of the 

previous candidate mean models, WOFR is performed on the third order non-linear 

candidate mean model, and the terms are re-ordered in decreasing order of their ERR 

values. Term selection is then carried out to select a third order non-linear mean model 

that best describes the mean of the simulated returns. 

The values of the hyper-parameters used when fitting a third order non-linear mean model 

are the same as in the case of fitting a constant mean model, and are given in Table 4.5. 

The only difference is that a linear noise model is to be fitted as well, hence    is selected 

to be 10. 
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The WOFR analysis results are shown in Table 4.11. The terms shaded in blue represent 

the terms that are present in the true non-linear mean model used to generate the 

simulated return series. 

Table 4.11 Terms in Third Order Non-Linear Candidate Mean Model reordered 

after weighting 

No. Term Parameter Estimate ERR 

1  (   ) (   ) 9.0225 7.6816 

2   0.0013 4.3588 

3  (   ) 0.1606 2.1920 

4  (   ) 0.1780 1.4907 

5  (   ) (   ) -11.9361 2.4490 

6  (   ) (   ) -2.6153 0.8945 

7  (   ) (   ) (   ) -73.2853 0.2585 

8  (   ) (   ) -3.8379 0.0995 

9  (   ) (   ) (   ) 50.2891 0.1171 

10  (   ) -0.0351 0.1391 

11  (   ) (   ) (   ) 109.5623 0.0892 

12  (   ) (   ) -3.9871 0.0660 

13  (   ) (   ) (   ) -65.2268 0.1184 

14  (   ) (   ) 1.8861 0.0791 

15  (   ) (   ) (   ) 51.1969 0.1002 

16  (   ) (   ) 3.8161 0.0480 

17  (   ) (   ) (   ) -0.6808 0.0673 

18  (   ) (   ) (   ) 25.8487 0.0618 

19  (   ) (   ) (   ) -55.4806 0.0618 

20  (   ) (   ) -1.0299 0.0453 

21  (   ) (   ) (   ) -48.5025 0.0386 

22  (   ) 0.0219 0.0365 

23  (   ) (   ) (   ) -58.7921 0.0274 

24  (   ) (   ) (   ) -56.0390 0.0426 

25  (   ) (   ) (   ) 115.6252 0.0253 

26  (   ) (   ) (   ) 47.5560 0.0474 

27  (   ) (   ) -1.9805 0.0262 

28  (   ) (   ) (   ) 41.9477 0.0262 

29  (   ) (   ) (   ) 31.2245 0.0230 

30  (   ) (   ) -1.2913 0.0303 

31  (   ) (   ) (   ) -40.8939 0.0243 

32  (   ) (   ) (   ) 16.7382 0.0144 

33  (   ) (   ) (   ) -40.8867 0.0137 

34  (   ) (   ) (   ) 34.5182 0.0178 
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35  (   ) (   ) 0.9191 0.0115 

36  (   ) (   ) (   ) -41.8216 0.0111 

37  (   ) (   ) (   ) -39.2105 0.0158 

38  (   ) (   ) 1.5876 0.0120 

39  (   ) (   ) (   ) -12.6208 0.0115 

40  (   ) 0.0138 0.0105 

41  (   ) (   ) (   ) -32.8960 0.0084 

42  (   ) (   ) (   ) 22.2874 0.0087 

43  (   ) (   ) (   ) -29.0874 0.0114 

44  (   ) (   ) (   ) -26.7274 0.0083 

45  (   ) (   ) (   ) -7.3906 0.0043 

46  (   ) (   ) (   ) -10.4421 0.0026 

47  (   ) (   ) (   ) -11.4072 0.0017 

48  (   ) (   ) -0.4703 9.7492E-04 

49  (   ) (   ) (   ) -4.0594 7.8821E-04 

50  (   ) (   ) 0.2454 7.6123E-04 

51  (   ) (   ) (   ) 4.2755 5.9736E-04 

52  (   ) (   ) (   ) -3.7607 2.8501E-04 

53  (   ) (   ) 0.0960 1.3231E-04 

54  (   ) (   ) (   ) 2.4271 1.0838E-04 

55  (   ) (   ) (   ) -1.3464 1.8784E-05 

56  (   ) (   ) (   ) 0.4518 3.7099E-06 

 

Note that all the terms present in the actual mean model are at the top of Table 4.11. 

Using the hyper-parameters in Table 4.5, and      , steps 7 to 10 of the method 

described in Section 4.5 are carried out on the re-ordered terms of the candidate model. 

4.6.7.1 Progression of AIC for the Estimation Set 

As explained in Section 4.5, each term from Table 4.11 is added to the mean model 

iteratively, starting with the first term. A linear noise model is fitted in addition to the 

terms in the mean model, and the OSA residuals,  ̂( ), are calculated. An ARCH(25) 

variance model is fitted to  ̂( ), and the AIC of the fitted variance model is calculated 

using equation (4.11). Starting from the second iteration,      is also calculated using 

equation (4.18). 

Figure 4.19 shows AIC and      as a function of the number of terms selected in the 

second order non-linear mean model. 
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Figure 4.19 AIC and      as a function of Number of terms selected in the Third 

Order Non-Linear Mean Model 

From Figure 4.19, the AIC decreases drastically to a value of -2.2065E+04 till 7 terms 

from the top of Table 4.9 are selected to be included in the second order non-linear mean 

model. Also,      for each iteration is significant until 7 terms from the top of Table 

4.11 are included in the mean model. The addition of further terms to the mean model 

does not decrease the value of AIC drastically. 

Knowing the true structure of the mean model, there does not exists any third order 

polynomial term in the actual mean model. The 7
th
 term that is selected is not actually 

present in the actual mean model. But, from Table 4.11, the ERR of the 7
th
 term is 

0.2585%, which is greater than 0.1% and hence suggestive that the 7
th
 term should be 

selected (Wei and Billings, 2004). 

Note that for all the terms present in the actual mean model to be selected, the first 6 

terms from the top of Table 4.11 need to be selected, which is the case.  

4.6.7.2  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation and Validation Sets 

The higher order correlation confidence violation statistics,  
(  )

 
(  )

   
(  ) (  )

  and 

 
(  )

 
(  )

 , are calculated for all the linear mean models using equations (4.7), (4.8) and 

(4.9). Figure 4.20 shows  
(  )

 
(  )

 , Figure 4.21 shows  
(  )

 
(  )

 , and Figure 4.22 shows 

 
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the number 

of terms selected in the third order non-linear mean model. The number of terms that 

yield the least  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

 for the Validation Set are denoted by a 

red dashed line in each figure. 
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Figure 4.20  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 

 
(  )

 
(  )

  for the Validation Set is the least (3.5650E-06) when 13 terms from the top of 

Table 4.11 are selected to be included in the mean model. Note that  
(  )

 
(  )

  for the 

Validation Set drops drastically when 5 terms from the top of Table 4.11 are selected to 

be included in the mean model, and remains at this minimum level as more terms are 

included in the mean model. 

 

Figure 4.21  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 
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(  )

 
(  )

  for the Validation Set is the least (4.0902E-09) when only the first term from 

Table 4.11 is selected to be included in the mean model.  

In this case, 7 terms from the top of Table 4.11 are selected to be included in the second 

order non-linear mean model which yields a value of 6.3352E-09 for  
(  )

 
(  )

  for the 

Validation Set, which is of significantly less magnitude and very close to the minimum 

value of 4.0902E-09. These results indicate that the mean and the variance of the returns 

have been adequately modelled. 

 

Figure 4.22  
(  ) (  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 

 
(  ) (  )

  for the Validation Set is the least (3.6153E-06) when 11 terms from the top of 

Table 4.11 are included in the mean model. Note that  
(  ) (  )

  for the Validation Set 

drops drastically when 5 terms from the top of Table 4.11 are selected to be included in 

the mean model, and remains at this minimum level as more terms are included in the 

mean model. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected second order non-linear mean model are plotted in Figure 4.23. 
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Figure 4.23 Autocorrelation Plots of Residuals for the Selected Third Order Non-

Linear Mean Model 

In Figure 4.23 (d), note that there exists no significant autocorrelation of the residuals 

implying that the fitted second order non-linear mean model is adequate. The magnitude 

of autocorrelation is lesser than that in the residuals obtained after fitting the constant 

mean model (Figure 4.5 (d)) and the residuals obtained after fitting the selected linear 

mean model (Figure 4.11 (d)) which indicates that the selected second order non-linear 

mean model captures the predictable elements of the mean of the returns much better than 

the selected constant and linear mean models. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected second order non-linear mean model (with 7 

process terms) are shown in Figure 4.24. 
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Figure 4.24 Higher Order Correlation Plots for the Selected Third Order Non-

Linear Mean Model 

The violation of the 95% confidence bands in the higher order autocorrelation,  
(  )

 
(  )

  

and  
(  ) (  )

 , indicate the need to fit a variance model to the mean of the returns. For 

the fitted variance model to be adequate, no violations of the 95% confidence bands in the 

higher order autocorrelation,  
(  )

 
(  )

 , should exist. In Figure 4.24 (d), there exist no 

violations of the 95% confidence bands. In Figure 4.24 (e), note that the violations of the 

95% confidence bands in the higher order autocorrelation,  
(  )

 
(  )

 , are negligible, 

indicating that the mean and the variance of the returns have been adequately modelled. 

The selected terms along with the coefficient estimates and ERR values are listed in 

Table 4.12. The coefficient estimates of the 10 noise terms are also included. 
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Table 4.12 Third Order Non-Linear Mean Model 

No. Term 
Parameter 

Estimate 

True 

Coefficient 
ERR 

1  (   ) (   ) 7.4958 8 3.3562 

2   0.0011 0.001 7.5139 

3  (   ) 0.0211 0.15 0.0025 

4  (   ) 0.3607 0.2 1.8986 

5  (   ) (   ) -11.4529 -10 2.2406 

6  (   ) (   ) -3.0877 -5 0.4075 

7  (   ) (   ) (   ) -49.4778 N/A 0.0745 

8  (   ) -0.1679 N/A 0.0853 

9  (   ) -0.0101 N/A 0.0063 

10  (   ) 0.1416 N/A 2.1519 

11  (   ) -0.0417 N/A 0.0647 

12  (   ) 0.0109 N/A 0.0086 

13  (   ) -0.0140 N/A 0.0071 

14  (   ) 0.0114 N/A 0.0114 

15  (   ) 0.0287 N/A 0.0698 

16  (   ) -0.0255 N/A 0.0456 

17  (    ) 0.0459 N/A 0.1412 

 

So far, all the mean models seem to pass standard financial model validation tests and 

suggest that the mean and the variance of the returns have been adequately modelled in 

all the 4 cases. 

4.6.8 Comparison of ARCH Test Statistics and Non-Linear Correlation 

Statistics of All Mean Models 

Note that higher order correlation tests and the ARCH Test statistics of  ̂( ) do not work 

for the purpose of comparison of the performance of the different mean models. This is 

because the mean model can be underfitted, and the variance model can be overfitted, 

thereby yielding a  ̂( ) series that passes all the mentioned model validation tests. Hence, 

to compare the fitted mean models, the ARCH Test statistics and the higher order 

correlation statistics of  ̂( ) need to be used. 

The ARCH Test statistics of  ̂( ) of the Validation Set and  
(  ) (  )

  of the Complete 

data set of all the selected mean models are listed in Table 4.13. The minimum values are 

shaded in blue. 
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Table 4.13 ARCH Test statistic of  ̂( ) of Validation Set and  
(  ) (  )

  of Complete 

data set for all Mean Models 

Type of Mean Model 
ARCH Test Statistic of  ̂( ) 

(Validation Set) 

 
(  ) (  )

  

(Complete Set) 

Constant 129.1306 2.7469E-04 

Linear 23.3885 1.8930E-04 

Second Order Non-Linear 2.0435 4.1168E-05 

Third Order Non-Linear 2.1966 4.2576E-05 

 

The second order non-linear mean model (terms and parameter estimates listed in Table 

4.10) has the lowest ARCH Test Statistic of  ̂( ) for the Validation Set. This implies that 

the mean of the returns have been modelled better by the second order non-linear mean 

model than the third order non-linear, linear or constant mean model, and hence is the 

appropriate choice. Thus, the proposed procedure correctly identifies the true mean 

model. 

Note that: 

 The constant mean model has the highest value of ARCH test statistic of  ̂( ) for 

the Validation Set and  
(  ) (  )

  of the Complete data set amongst all the mean 

models. 

 The linear mean model has the second highest value of ARCH test statistic of 

 ̂( ) for the Validation Set and  
(  ) (  )

  of the Complete data set amongst all 

the mean models. 

 Lastly, the selected second order non-linear mean model, which is in fact the true 

mean model of the simulated data, has the lowest value of ARCH test statistic of 

 ̂( ) for the Validation Set and  
(  ) (  )

  of the Complete data set amongst all 

the mean models. 

This decreasing trend in the values of the ARCH test statistic of  ̂( ) for the Validation 

Set and  
(  ) (  )

  of the Complete data set reinforces the idea that these statistics are a 

good indicator of how adequately the mean of the returns has been modelled. 
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Model selection using the ARCH test statistic of  ̂( ) for the Validation Set and 

 
(  ) (  )

  of the Complete data set seems to detect over-fitting as well. 

4.6.9 Comparison of Variance Estimates of All Mean Models 

In the case of the simulated example, the true (also termed as simulated) variance is 

known. The different ARCH(25) variance estimates obtained after fitting the different 

kinds of mean models to the simulated returns are compared to the simulated variance. 

The ARCH(25) variance estimates obtained using the constant mean model, the linear 

mean model, the second order non-linear mean model, and the third order non-linear 

mean model are plotted in Figure 4.25, Figure 4.26 and Figure 4.27. The Normalised 

Root Mean Squared Error (NRMSE) between the simulated variance and the ARCH(25) 

variance estimates are calculated for all the models and listed in Table 4.14. The 

minimum value is shaded in blue. 

Table 4.14 NRMSE of ARCH(25) Variance Estimates of all Mean Models 

Type of Mean Model NRMSE (%) 

Constant 117.96 

Linear 91.77 

Second Order Non-Linear 17.36 

Third Order Non-Linear 19.41 

 

The ARCH(25) variance estimate from the second order non-linear mean model has the 

lowest NRMSE (17.36%). The variance estimates from the constant and linear mean 

models perform badly compared to second order and third order non-linear mean model 

variance estimates. 

The ARCH(25) variance estimate from the constant mean model has the highest NRMSE 

of 117.96%. This, along with the results of the ARCH Test statistics of  ̂( ) of the 

Validation Set and  
(  ) (  )

  of the Complete data set of the constant mean model can be 

safely used to conclude that a constant mean model is not adequate to estimate the mean 

of the given returns series, even if the higher order correlation model validation tests 

suggest that the mean and the variance of the returns have been adequately modelled. At 

the very least, a linear mean model with a noise model should be used to model the mean 

of the returns in order to allow for more accurate estimation of the variance. 
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Figure 4.25 Simulated Variance vs. ARCH(25) Variance Estimates generated using 

different Mean Models 

 

Figure 4.26 Simulated Variance vs. ARCH(25) Variance Estimates generated using 

different Mean Models (Samples 1950 to 2100) 
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Figure 4.27 Simulated Variance vs. ARCH(25) Variance Estimates generated using 

different Mean Models (Samples 1300 to 1440) 

Figure 4.26 and Figure 4.27 show that fitting a Constant or a Linear mean model to the 

simulated non-linear return series leads to noticeably large overestimation of the variance 

of the returns at the peaks. The variance estimates are much closer to the true variance if a 

second or third order non-linear mean model is fitted. It can be argued that this may be 

due to the usage of an ARCH(25) variance estimate due to the structure of the variance 

model being unknown. Hence, this was studied next. 

The term selection and parameter estimation of all the models was carried out again, but 

this time it was assumed that the structure of the variance model was known 

(GARCH(1,1)). The Normalised Root Mean Squared Error (NRMSE) between the 

simulated variance and the GARCH(1,1) variance estimates are calculated for all the 

models and listed in Table 4.15. The minimum value is shaded in blue. 

Table 4.15 NRMSE of GARCH(1,1) Variance Estimates of all Mean Models 

Type of Mean Model NRMSE (%) 

Constant 120.09 

Linear 92.56 

Second Order Non-Linear 7.64 

Third Order Non-Linear 12.07 
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The NRMSE of the GARCH(1,1) variance estimate from the second order non-linear 

mean model is the least (7.64%). From Table 4.14 and Table 4.15, note that the 

magnitude of NRMSE values of all the GARCH(1,1) variance estimates for the second 

and third order non-linear mean models are 7% to 10% lesser than that of the ARCH(25) 

variance estimates for the respective mean models. This demonstrates the importance of 

knowing the structure of the variance model. 

But knowing the true structure of the mean model is more important. If the mean model 

was wrongly fitted whilst the variance model was correctly fitted, the NRMSE of the 

GARCH(1,1) variance estimate compared to the true variance would still be between 

90% to 120%. 

The ARCH Test statistics of  ̂( ) of the Validation Set and  
(  ) (  )

  of the Complete 

data set of all the selected mean models select and fitted using a GARCH(1,1) variance 

model are listed in Table 4.16. The minimum values are shaded in blue. 

Table 4.16 ARCH Test statistic of  ̂( ) of Validation Set and  
(  ) (  )

  of Complete 

data set for all Mean Models when GARCH(1,1) Variance Model is used 

Type of Mean Model 
ARCH Test Statistic of  ̂( ) 

(Validation Set) 

 
(  ) (  )

  

(Complete Set) 

Constant 129.4422 2.7453E-04 

Linear 24.0756 1.8907E-04 

Second Order Non-Linear 2.1353 4.1644E-05 

Third Order Non-Linear 2.2874 4.3569E-05 

 

Note that the second order non-linear mean model has the least ARCH Test statistics of 

 ̂( ) of the Validation Set and  
(  ) (  )

  of the Complete data compared to the other 

mean models. Also, the constant mean model, which almost all modellers currently 

employ, has the worst performance statistics amongst all the mean models. Even when 

the structure of the variance model is known, the constant mean model fails the model 

selection test and yields a variance estimate that performs badly compared to the variance 

estimates obtained using other types of mean models. 

Knowing the true structure of the variance model is important, but knowing the true 

structure of the mean model is much more important. Under-fitting the mean of the 

returns leads to a lot of the predictable elements being left in the residuals,  ̂( ), thereby 



 
 

Chapter 4: Extended WOFR for the Estimation of the Mean Model 

89 

increasing their magnitude. When a variance model is fitted to these ‘larger’ residuals, the 

estimated variance is of bigger magnitude compared to the true variance. Model 

validation tests may suggest that the mean and the variance of the given return series have 

been adequately modelled, but that does not necessarily imply that the variance can be 

accurately estimated. There is a high possibility of the mean being under-fitted and the 

variance being over-fitted.  

4.6.10 Comparison of Selected Mean Model to Vanilla GARCH Model 

A vanilla GARCH model (constant mean model with a GARCH(1,1) variance model) is 

fitted to the simulated return series. The ARCH Test statistics of  ̂( ) of the Validation 

Set and  
(  ) (  )

  of the Complete data set of the fitted vanilla GARCH model have been 

listed and compared to all the fitted mean models in Table 4.17. The minimum values are 

shaded in blue. 

Table 4.17 ARCH Test statistic of  ̂( ) of Validation Set and  
(  ) (  )

  of Complete 

data set for all Vanilla GARCH and Selected Mean Model fitted to Simulated 

Return Series 

Type of Model 
ARCH Test Statistic of 

 ̂( ) (Validation Set) 

 
(  ) (  )

  

(Complete Set) 

Vanilla GARCH 129.4422 2.7453E-04 

Selected Second Order Non-

Linear Mean Model with 

ARCH(25) Variance Model 

2.0435 4.1168E-05 

 

The selected second order non-linear mean model with an ARCH(25) variance model 

performs much better than a vanilla GARCH model. The ARCH Test statistics of  ̂( ) of 

the Validation Set and  
(  ) (  )

  of the Complete data set of the selected model are lower 

than those of the vanilla GARCH model. 

Figure 4.28 and Figure 4.29 show the one-step-ahead (OSA) return estimates generated 

using the vanilla GARCH model and the selected second order non-linear mean model. 
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Figure 4.28 OSA Return Estimates generated using Vanilla GARCH Model and 

Third Order Non-Linear Mean Model for the Simulated Return Series 

 

Figure 4.29 OSA Return Estimates generated using Vanilla GARCH Model and 

Second Order Non-Linear Mean Model for the Simulated Return Series (Samples 

3300 to 4000) 
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From Figure 4.28 and Figure 4.29, it can be noted that using the second order non-linear 

mean model certainly captures the predictable elements of the mean of the returns, rather 

than just using a constant mean model and passing off the predictable elements to be 

included in the residuals. The standard deviation of the various return series are listed in 

Table 4.18. 

Table 4.18 Standard Deviation of various return series for Simulated Data 

Series Standard Deviation 

OSA Return Estimate of Constant Mean Model 0 

OSA Return Estimate of Second Order NL Mean Model 0.0069 

True Return Series 0.0129 

 

Comparing the magnitudes of the Validation and Testing Sets of the OSA return 

estimates generated using the second order non-linear mean model to those of the true 

return series, 443 samples of 700 samples have the same magnitude. Hence, the 

magnitude of the returns is predicted right 63.2857% of the time. 

4.7 Conclusions 

1. The WOFR algorithm (Zhao, 2010) to model the mean of the returns was a major 

step forward towards fitting a non-linear mean model to the returns. One drawback 

was that no provision was made for the variance model of the returns being 

unknown, which is usually the case with real financial data. Also, there lacked a 

method to select the appropriate ERR cut-off value for term selection. Until now, 

there was no method to compare and determine which type of mean model (constant, 

linear or non-linear) is to be fitted to a given return series whose true mean and 

variance model is unknown. 

2. In this Chapter, a new framework to model the mean of the returns based upon 

WOFR (Zhao, 2010), when the structure of the true variance model is unknown, is 

introduced. A method for term selection based upon the Akaike Information 

Criterion is introduced. This framework also helps select the best mean model from a 

selection of models.  

3. The best mean model for a given return series is one that yields the least ARCH Test 

statistic of  ̂( ) for the Validation Set and the least  
(  ) (  )

  for the Complete data 

set. 
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4. Non-Linear correlation plots and test statistics (Friederich, 2011) and the ARCH 

Test statistic of  ̂( ) for the Validation Set are used for model validation. The 

autocorrelation of the estimated residuals after fitting a mean model help validate the 

fitted mean model accurately. 

5. The framework correctly identifies the mean model of a simulated return series with 

a non-linear mean model. All the fitted mean models pass standard financial model 

validation tests, but only one mean model is correct. 

6. The effects of fitting different types of mean models on variance estimation are also 

examined. Fitting an inadequate mean model leads to inaccurate variance estimation, 

especially at the peaks. This is due to a lot of the predictable elements being left in 

the residuals, thereby increasing their magnitude. When a variance model is fitted to 

these ‘larger’ residuals, the estimated variance is of bigger magnitude compared to 

the true variance. Model validation tests may suggest that the mean and the variance 

of the given return series have been adequately modelled, but that does not 

necessarily imply that the variance has been accurately estimated. 

7. The effects of not knowing the true structure of the variance model, and using an 

ARCH model to estimate the variance are also examined. Misspecifying the mean 

model leads to a more inaccurate variance estimate than that obtained by 

misspecifying the variance model. 

The framework introduced in this chapter is applied to 2 real financial data sets in the 

next chapter. 
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Chapter 5 

 

Application of the Extended WOFR approach to 

Financial Data 

5.1 Introduction 

The aim of this chapter is to demonstrate the applicability and benefits of the model 

selection and estimation approach introduced in Chapter 4, for estimating non-linear 

dynamic conditional mean models of a heteroskedastic time series, using FTSE100 and 

NASDAQ data sets.  

The advantage of the proposed approach is demonstrated by comparing the resulting 

variance estimates obtained with the variance estimates generated by a ‘vanilla’ GARCH 

model (constant mean model with a GARCH(1,1) variance model).  

This chapter is organised as follows. Section 5.2 presents the modelling and validation 

results for the FTSE100 index whilst Section 5.3 describes the modelling and validation 

results for the NASDAQ index. The conclusions are summarized in Section 5.4. 

5.2 Application to the FTSE100 

This section presents an analysis of a FTSE100 share index time series, which aims to 

identify the best conditional, linear or non-linear, mean model for this data set. 

5.2.1 The Data 

4001 samples of the price of the FTSE100 index, dating from 23
rd

 September 1997 to 29
th

 

July 2013 are considered. The data is obtained from Yahoo! Finance (2013a). The price 

series is converted to a return series comprising of 4000 samples via continuous 

compounding (see equation (2.2)). The true structure of the mean and variance model of 

the obtained return series are of course unknown. The price and returns of the FTSE100 

index are plotted in Figure 5.1. 
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Figure 5.1 Price and Returns of the FTSE100 index 

As in the case of the simulated example, the return series is split into three sets – 

Estimation, Validation and Testing Sets. The number of samples in each of these sets is 

the same as in the case of the simulated data example, and are listed in Table 4.2. 

5.2.2 Autocorrelation Plots of Returns and Squared Returns 

5.2.2.1 Linear Autocorrelation 

The linear sample autocorrelation of the returns and the squared returns for 20 lags are 

shown in Figure 5.2. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
3000

4000

5000

6000

7000
Price of FTSE 100

Sample

U
S

D

0 500 1000 1500 2000 2500 3000 3500
-10

-5

0

5

10
Returns of FTSE 100

Sample

R
e
tu

rn
s
 (

%
)



 
 

Chapter 5: Application of Extended WOFR approach to Financial Data 

95 

 

Figure 5.2 Sample Autocorrelation Plots of Returns and Squared Returns of the 

FTSE100 

The sample autocorrelation of the returns for lags 3 and 4 lie outside the 95% confidence 

bands, indicating the possibility of the presence of the terms,  (   ) and  (   ), in 

the mean model.  

The sample autocorrelation of the squared returns are outside the 95% confidence bands 

for all the lags, indicating the need to fit a variance model to the returns, in addition to a 

mean model. 

5.2.2.2 Higher Order Autocorrelation 

The higher order autocorrelation of the returns and the squared returns for the Estimation, 

Validation, Testing and Complete Data Set are also calculated and plotted in Figure 5.3 

and Figure 5.4 respectively. 
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Figure 5.3  ( ) ( )  for (a) Estimation, (b) Validation, (c) Testing, and (d) Complete 

Data Set 

Figure 5.3 (d) shows that  ( ) ( )  for lags 2, 3, 4, 5, 6 and 8 are just outside the 95% 

confidence bands, indicating the possibility of the presence of linear and non-linear terms 

with these lags. 

The higher order correlation violation statistic,  ( ) ( ) , for the Estimation Set, 

Validation Set, Testing Set, and the Complete Set that enumerate the plots shown in 

Figure 5.3 are calculated and listed in Table 5.1. 

Table 5.1  ( ) ( )  for Estimation, Validation, Testing, and Complete Data Sets 
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Figure 5.4  
(  )

 
(  )

  for (a) Estimation, (b) Validation, (c) Testing, and (d) 

Complete Set 

Figure 5.4 (d) shows that  
(  )

 
(  )

  is significantly outside the 95% confidence bands 

for all the lags. This indicates the need to fit a variance model to the returns, in addition to 

fitting a mean model. The non-linear correlation violation statistic,  
(  )

 
(  )

 , for the 

Estimation Set, Validation Set, Testing Set, and the Complete Set that enumerate the plots 

shown in Figure 5.4 are calculated and listed in Table 5.2. 
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5.2.3 Candidate Mean Models 

Four different candidate mean models are fitted to the returns of the FTSE100 index. 
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5.2.3.1 Constant Mean Model 

The first is a constant mean model,  ( )    , where    is to be estimated. 

5.2.3.2 Linear Candidate Mean Model  

The second is a linear candidate mean model. This is an AR(10) model with a linear noise 

model consisting of 5 lagged noise terms  

 ( )     ∑   (   )

  

   

 ∑   (   )

 

   

                            (   ) 

where   ,   , and    are coefficients to be estimated. 

The number of lagged linear terms to be included in the linear candidate mean model is 

denoted as   . As explained in Section 5.2.2.2, from Figure 5.3 (d),  ( ) ( )  for lags 2, 3, 

4, 5, 6 and 8 are just outside the 95% confidence bands, indicating the possibility of the 

presence of linear and non-linear terms with these lags. Hence,    is selected to be a 

round figure of 10. 

In order to improve parameter estimation, a linear noise model is also fitted to the 

candidate mean model once term selection has been carried out. The maximum lag of the 

error terms to be included in the linear mean model is selected to be     . It must be 

noted that a linear mean model with a very large noise model can make the model 

unstable and give unstable one-step-ahead estimates or the returns. 

5.2.3.3 Second Order Non-Linear Candidate Mean Model  

The third candidate mean model is a second-order non-linear mean model. This is 

                     ( )     ∑   (   )

  

   

 

 ∑    (   ) (   )

            

            

 ∑   (   )

 

   

                     (   ) 

where   ,   , and    are coefficients to be estimated. 

As explained in Section 5.2.2.2, from Figure 5.3 (d),  ( ) ( )  for lags 2, 3, 4, 5, 6 and 8 

are just outside the 95% confidence bands, indicating the possibility of the presence of 

linear and non-linear terms with these lags. Hence,    is selected to be 10. 
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The number of terms in the candidate mean model increases exponentially as the 

maximum lag of the non-linear terms to be included in the candidate mean model is 

increased. Hence, to keep the size of the candidate mean model reasonable, so as not to 

have extremely high computational time, the maximum lag of the second order non-linear 

terms to be included in the non-linear candidate mean model is selected to be 5. 

A linear noise model is also fitted to the candidate mean model once term selection has 

been carried out. The maximum lag of the error terms to be included in the non-linear 

mean model is selected to be     . 

5.2.3.4 Third Order Non-Linear Candidate Mean Model  

The final candidate model is a third-order non-linear mean model. This is 

       ( )     ∑   (   )

  

   

 ∑    (   ) (   )

            

            

 

 ∑    (   ) (   ) (   )

                

                

 ∑   (   )

 

   

            (   ) 

where   ,   , and    are coefficients to be estimated.    is selected to be 10 for the same 

reasons specified for the second order non-linear candidate mean model in Section 

5.2.3.3. The maximum lag of the second order non-linear terms to be included in the non-

linear candidate mean model is selected to be 5. A linear noise model is also fitted to the 

candidate mean model once term selection has been carried out. The maximum lag of the 

error terms to be included in the non-linear mean model is selected to be     . 

5.2.4 Estimation of Constant Mean Model 

The values of the hyper-parameters used when fitting a constant mean model are given in 

Table 5.3. 

Table 5.3 Hyper-parameters for fitting Constant Mean Model 

Hyper-parameter Value 

No. of Samples in Estimation Set (    ) 3300 

No. of Samples in Estimation Set (    ) 500 

No. of Samples in Estimation Set (     ) 200 

No. of Lagged Linear Noise Terms in Mean Model (  ) 0 

No. of Lags for non-linear Correlation Tests (     ) 20 
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The constant term fitted is 1.1900E-04, and has an ERR of 0.0167. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the constant mean model are plotted in Figure 5.5. 

 

Figure 5.5 Autocorrelation Plots of Residuals for the Selected Constant Mean Model 

In Figure 5.5 (d), note that there exists significant autocorrelation of the residuals at lags 

2, 3, 4 and 5 implying that the fitted constant mean model is inadequate. 

To validate the fitted mean and variance models, the higher order correlation of the 

squared residuals and squared standardised residuals obtained after fitting the selected 

constant mean model are plotted in Figure 5.6. 

-20 -10 0 10 20
-0.5

0

0.5

1


(E)(E)

 for the Estimation Set

(a)




(E

)(
E

)

-20 -10 0 10 20
-0.5

0

0.5

1


(E)(E)

 for the Validation Set

(b)




(E
)(

E
)

-20 -10 0 10 20
-0.5

0

0.5

1


(E)(E)

 for the Testing Set

(c)




(E

)(
E

)

-20 -10 0 10 20
-0.5

0

0.5

1


(E)(E)

 for the Complete Set

(d)




(E

)(
E

)



 
 

Chapter 5: Application of Extended WOFR approach to Financial Data 

101 

 

Figure 5.6 Higher Order Correlation Plots for the Selected Constant Mean Model 

From Figure 5.6 (d) and (f), the squared estimated standardised residuals,  ̂ ( ), obtained 

from fitting a constant mean model, do not indicate any higher order autocorrelation. In 

Figure 5.6 (e),  
(  )

 
(  )

  lies on or just outside the 95% confidence band for a few lags. 

The confidence violations are not considerably large, and the ARCH Test Statistic of  ̂( ) 

for the Validation Set is calculated to be 0.0457, which is lesser than the critical value of 

3.8415. Hence, the mean and the variance of the returns can be considered to be 

adequately fitted. 

5.2.4.1  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation, Validation and Testing 

Sets 

The higher order correlation plots in Figure 5.6 are quantified by calculating the 

confidence violation statistics using equations (4.7), (4.8) and (4.9). Table 5.4 shows 

 
(  )

 
(  )
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(  )

  and  
(  ) (  )

  for 20 lags for the Estimation, Validation and Testing 

Sets for the constant mean model. 
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Table 5.4  
(  )

 
(  )

 ,  
(  )

 
(  )

  and  
(  ) (  )

  for Estimation, Validation and Testing 

Sets in Constant Mean Model 

 Estimation Set Validation Set Testing Set 

 
(  )

 
(  )

  6.7520E-05 9.8071E-06 4.1489E-06 

 
(  )

 
(  )

  0 8.2247E-08 0 

 
(  ) (  )

  6.7434E-05 9.8074E-06 4.0716E-06 

ARCH Test Statistic of  ̂( ) 0.2156 0.0457 0.0168 

 

From Figure 5.6 (a), (b), (c), (g), (h) and (i), the squared estimated residuals,  ̂ ( ), 

obtained from fitting a constant mean model, indicate higher order correlation and 

autocorrelation. The corresponding confidence violation statistics,  
(  )

 
(  )

  and 

 
(  ) (  )

 , for the Estimation and Validation Sets in Table 5.4 are of the order of 1E-04 

which is considerably high in this context. These results suggest that a variance model is 

required to be fitted to the given return series. 

For an adequately fit mean and variance model, the value of  
(  )

 
(  )

  is required to be 

zero and the value of the ARCH Test Statistic of  ̂( ) is required to be lesser than the 

critical value of 3.8415, thereby confirming the absence of any higher order correlation in 

the estimated standardised residuals. The magnitude of the value of  
(  )

 
(  )

  for the 

Validation Set is extremely small, and close to zero, which is acceptable. Also, the values 

of ARCH Test Statistic of  ̂( ) for all the data sets are less than 3.8415. These results 

imply that no heteroskedastic effects are present in  ̂( ) suggesting that the mean and the 

variance of the returns have been adequately modelled. 

5.2.5 Estimation of Linear Mean Model using WOFR 

The next type of mean model to be fitted to the returns of the FTSE100 index is the linear 

candidate mean model listed in Section 5.2.3.2. WOFR is performed on the linear 

candidate mean model, and the terms are re-ordered in decreasing order of their ERR 

values. Term selection is then carried out to select the best linear mean model that best 

describes the mean of the returns of FTSE100. 

The values of the hyper-parameters used when fitting a linear mean model are the same as 

in the case of fitting a constant mean model, and are given in Table 5.3. The only 

difference is that a linear noise model is to be fitted as well, hence    is selected to be 5. 
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The results of the WOFR analysis are given in Table 5.5. 

Table 5.5 Terms in Linear Candidate Mean Model reordered after weighting 

No. Term Parameter Estimate ERR 

1  (   ) -0.0367 0.1102 

2  (   ) -0.0376 0.1056 

3  (   ) -0.0261 0.0578 

4  (   ) -0.0215 0.0413 

5  (    ) 0.0195 0.0347 

6   1.2241E-04 0.0215 

7  (   ) 0.0142 0.0175 

8  (   ) 0.0113 0.0106 

9  (   ) 0.0052 0.0026 

10  (   ) -0.0042 0.0015 

11  (   ) 4.9791E-04 2.4340E-05 

 

Using the hyper-parameters in Table 5.3, and     , steps 7 to 10 of the method 

described in Section 4.5 are now carried out on the re-ordered terms of the linear 

candidate mean model. 

5.2.5.1 Progression of AIC for the Estimation Set 

As explained in Section 4.5, each term from Table 5.5 is added to the mean model 

iteratively, starting with the first term. A linear noise model is fitted in addition to the 

terms in the mean model, and the OSA residuals,  ̂( ), are calculated. An ARCH(25) 

variance model is fitted to  ̂( ), and the AIC of the fitted variance model is calculated 

using equation (4.11). Starting from the second iteration,      is also calculated using 

equation (4.18). Figure 5.7 shows AIC and      as a function of the number of terms 

selected in the linear mean model. 

 

Figure 5.7 AIC and      as a function of Number of terms selected in the Linear 

Mean Model 
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From Figure 5.7,      is the highest (0.0201%) when 6 terms from the top of Table 5.5 

are included. Also, the AIC is -2.0458E+04 which is very close to the minimum value of 

2.0460E+04. Hence, 6 terms from the top of Table 5.5 are selected to be included in the 

linear mean model. 

5.2.5.2  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation and Validation Sets 

The higher order correlation confidence violation statistics,  
(  )

 
(  )

   
(  ) (  )

  and 

 
(  )

 
(  )

 , are calculated for all the linear mean models using equations (4.7), (4.8) and 

(4.9). Figure 5.8 shows  
(  )

 
(  )

 , Figure 5.9 shows  
(  )

 
(  )

 , and Figure 5.10 shows 

 
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the number 

of terms selected. The number of terms that yield the least  
(  )

 
(  )

   
(  )

 
(  )

  and 

 
(  ) (  )

 for the Validation Set are denoted by a red dashed line in each figure. 

 

Figure 5.8  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 

For the linear mean model comprising of all the terms from the top of Table 5.5, 
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mean model comprising of 6 terms from the top of Table 5.5,  
(  )

 
(  )

  for the 

Validation Set is 1.1086E-05 which is very close to the minimum value. 

 

Figure 5.9  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 

For the linear mean model comprising of all the 11 terms from Table 5.5,  
(  )

 
(  )

  for 

the Validation Set is the least with a value of 4.0589E-08. In this case, 6 terms from the 

top of Table 5.5 are selected to be included in the linear mean model which yields a value 

of 1.2288E-07 for  
(  )

 
(  )

  for the Validation Set, which is of significantly less 

magnitude and very close to the minimum value of 4.0589E-08. These results suggest that 

the mean and the variance of the returns have been adequately modelled. 
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Figure 5.10  
(  ) (  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 

For the linear mean model comprising of all the terms from the top of Table 5.5, 

 
(  ) (  )

  for the Validation Set is the least with a value of 9.9211E-06. For the linear 

mean model comprising of 6 terms from the top of Table 5.5,  
(  ) (  )

  for the 

Validation Set is 1.0637E-05 which is very close to the minimum value. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected linear mean model are plotted in Figure 5.11. 
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Figure 5.11 Autocorrelation Plots of Residuals for the Selected Linear Mean Model 

In Figure 5.11 (d), note that there exists significant autocorrelation of the residuals at lags 

2 and 3 implying that the fitted linear mean model is inadequate. The magnitude of 

autocorrelation is lesser than that in the residuals obtained after fitting the constant mean 

model (Figure 5.5 (d)) which indicates that the selected linear mean model captures the 

predictable elements of the mean of the returns much better than the selected constant 

mean model. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected linear mean model (with 4 process terms) are 

shown in Figure 5.12. 
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Figure 5.12 Higher Order Correlation Plots for the Selected Linear Mean Model 

The violation of the 95% confidence bands in the higher order autocorrelation,  
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(  )
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 , indicate the need to fit a variance model to the mean of the returns. For 

the fitted variance model to be adequate, no violations of the 95% confidence bands in the 

higher order autocorrelation,  
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(  )

 , should exist. In Figure 5.12 (d) and (f), there 

exist no violations of the 95% confidence bands. In Figure 5.12 (e),  
(  )

 
(  )

  lies on or 

just outside the 95% confidence band for a few lags. The confidence violations are not 

considerably large, and the ARCH Test Statistic of  ̂( ) for the Validation Set is 

calculated to be 0.0628, which is smaller than the critical value of 3.8415. This suggests 

that the mean and the variance of the returns have been modelled adequately. 

The terms selected in the linear mean model along with the coefficient estimates and ERR 

values are listed in Table 5.6. The coefficient estimates of the 5 noise terms are also 

included. 
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Table 5.6 Linear Mean Model fitted to FTSE100 

No. Term 
Parameter 

Estimate 
ERR 

1  (   ) -0.2096 0.1048 

2  (   ) -0.1994 0.1029 

3  (   ) 0.0035 2.2423E-06 

4  (   ) 0.5263 0.0273 

5  (    ) 0.0107 0.0390 

6   9.7124E-05 0.0185 

7  (   ) -0.5484 0.0438 

8  (   ) -0.0172 0.0563 

9  (   ) 0.1771 0.0057 

10  (   ) 0.0273 0.0125 

11  (   ) 0.1637 0.0186 

 

So far, the constant and the linear mean models seem to pass standard financial model 

validation tests and suggest that the mean and the variance of the returns have been 

adequately modelled in both cases. 

5.2.6 Estimation of Second Order Non-Linear Mean Model using WOFR 

The next type of mean model to be fitted to the returns of the FTSE100 index is the 

second order non-linear candidate mean model listed in Section 5.2.3.3. As in the case of 

the linear candidate mean model, WOFR is performed on the second order non-linear 

candidate mean model, and the terms are re-ordered in decreasing order of their ERR 

values. Term selection is then carried out to select a second order non-linear mean model 

that best describes the mean of the returns of FTSE100. 

The values of the hyper-parameters used when fitting a second order non-linear mean 

model are the same as in the case of fitting a constant mean model, and are given in Table 

5.3. A linear noise model is also fitted. The maximum noise lag,   , is selected to be 5. 

The results of the WOFR analysis are given in Table 5.7. 
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Table 5.7 Terms in Second Order Non-Linear Candidate Mean Model reordered 

after weighting 

No. Term Parameter Estimate ERR 

1  (   ) (   ) 2.5447 0.1246 

2  (   ) -0.0382 0.1167 

3  (   ) -0.0380 0.1127 

4  (   ) -0.0242 0.0622 

5  (    ) 0.0188 0.0415 

6  (   ) (   ) 1.7582 0.0318 

7  (   ) (   ) 1.8644 0.0350 

8  (   ) (   ) 1.4161 0.0307 

9   2.0147E-04 0.0281 

10  (   ) (   ) -1.0810 0.0256 

11  (   ) (   ) -1.5215 0.0305 

12  (   ) -0.0146 0.0225 

13  (   ) (   ) 1.1186 0.0196 

14  (   ) 0.0140 0.0162 

15  (   ) (   ) -0.9456 0.0115 

16  (   ) (   ) 0.7326 0.0085 

17  (   ) 0.0104 0.0079 

18  (   ) (   ) 0.5437 0.0087 

19  (   ) (   ) -0.4512 0.0056 

20  (   ) 0.0049 0.0024 

21  (   ) -0.0049 0.0021 

22  (   ) -0.0036 0.0013 

23  (   ) (   ) 0.1424 9.7772E-04 

24  (   ) (   ) -0.1316 3.1291E-04 

25  (   ) (   ) 0.1026 2.8300E-04 

26  (   ) (   ) 0.0645 6.3475E-05 

 

Using the hyper-parameters in Table 5.3, and     , steps 7 to 10 of the method 

described in Section 4.5 are carried out on the re-ordered terms of the second order non-

linear candidate mean model. 

5.2.6.1 Progression of AIC for the Estimation Set 

As explained in Section 4.5, each term from Table 5.7 is added to the mean model 

iteratively, starting with the first term. A linear noise model is fitted in addition to the 

terms in the mean model, and the OSA residuals,  ̂( ), are calculated. An ARCH(25) 

variance model is fitted to  ̂( ), and the AIC of the fitted variance model is calculated 
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using equation (4.11). Starting from the second iteration,      is also calculated using 

equation (4.18). 

Figure 5.13 shows AIC and      as a function of the number of terms selected in the 

second order non-linear mean model. 

 

Figure 5.13 AIC and      as a function of Number of terms selected in the Second 

Order Non-Linear Mean Model 

From Figure 5.13, the AIC drastically decreases to a value of -2.0463E+04 till 9 terms 

from the top of Table 5.7 are selected to be included in the second order non-linear mean 

model. Also,      for the 9
th
 iteration is the highest (0.0247%). The addition of further 

terms to the mean model decreases the value of AIC gradually to a minimum value of -

2.0466E+04. 
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(  )
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(  )
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  and  
(  ) (  )

  of the Estimation and Validation Sets 

The higher order correlation confidence violation statistics,  
(  )

 
(  )

   
(  ) (  )

  and 

 
(  )

 
(  )

 , are calculated for all the non-linear mean models using equations (4.7), (4.8) 

and (4.9). Figure 5.14 shows  
(  )

 
(  )

 , Figure 5.15 shows  
(  )

 
(  )

 , and Figure 5.16 

shows  
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the 

number of terms selected. The number of terms that yield the least  
(  )

 
(  )

   
(  )

 
(  )

  

and  
(  ) (  )

  for the Validation Set are denoted by a red dashed line in each figure. 

For the non-linear mean model comprising of only the first term from Table 5.7, 

 
(  )

 
(  )

  for the Validation Set is the least with a value of 1.0678E-05. For the non-

linear mean model comprising of 9 terms from the top of Table 5.7,  
(  )

 
(  )

  for the 

Validation Set is 1.2065E-05 which is very close to the minimum value. 
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Figure 5.14  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Second Order Non-Linear Mean Model 

 

Figure 5.15  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Second Order Non-Linear Mean Model 
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For the non-linear mean model comprising of 4 terms from Table 5.7,  
(  )

 
(  )

  for the 

Validation Set is the least with a value of 1.2006E-07. In this case, 9 terms from the top 

of Table 5.7 are selected to be included in the non-linear mean model which yields a 

value of 1.6548E-07 for  
(  )

 
(  )

  for the Validation Set, which is of significantly less 

magnitude and very close to the minimum value. These results suggest that the mean and 

the variance of the returns have been adequately modelled. 

 

Figure 5.16  
(  ) (  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Second Order Non-Linear Mean Model 

For the non-linear mean model comprising of the first term from Table 5.7,  
(  ) (  )

  for 

the Validation Set is the least with a value of 1.0353E-05. For the non-linear mean model 

comprising of 9 terms from the top of Table 5.7,  
(  ) (  )

  for the Validation Set is 

1.1221E-05 which is very close to the minimum value. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected second order non-linear mean model are plotted in Figure 5.17. 
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Figure 5.17 Autocorrelation Plots of Residuals for the Selected Second Order Non-

Linear Mean Model 

In Figure 5.17 (d), note that there exists slight autocorrelation of the residuals at lags 2, 3 

and 4 implying that the fitted second order non-linear mean model may be inadequate. 

The magnitude of autocorrelation is lesser than that in the residuals obtained after fitting 

the constant mean model (Figure 5.5 (d)) and the residuals obtained after fitting the 

selected linear mean model (Figure 5.11 (d)) which indicates that the selected second 

order non-linear mean model captures the predictable elements of the mean of the returns 

much better than the selected constant and linear mean models. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected second order non-linear mean model are shown 

in Figure 5.18. 
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Figure 5.18 Higher Order Correlation Plots for the Selected Second Order Non-

Linear Mean Model 

The violation of the 95% confidence bands in the higher order autocorrelation,  
(  )

 
(  )

  

and  
(  ) (  )

 , indicate the need to fit a variance model to the mean of the returns. For 

the fitted variance model to be adequate, no violations of the 95% confidence bands in the 

higher order autocorrelation,  
(  )

 
(  )

 , should exist. In Figure 5.18 (d) and (f), there 

exist no violations of the 95% confidence bands. In Figure 5.18 (e),  
(  )

 
(  )

  lies on or 

just outside the 95% confidence band for a few lags. The confidence violations are not 

considerably large, and the ARCH Test Statistic of  ̂( ) for the Validation Set is 

calculated to be 0.4220, which is smaller than the critical value of 3.8415 suggesting that 

the mean and the variance of the returns have been fitted adequately. 

The selected terms along with the parameter estimates and ERR values are listed in Table 

5.8. The coefficient estimates of the 5 noise terms are also included.  
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Table 5.8 Second Order Non-Linear Mean Model fitted to FTSE100 

No. Term 
Parameter 

Estimate 
ERR 

1  (   ) (   ) 2.9097 0.1506 

2  (   ) -0.1873 0.1091 

3  (   ) -0.0097 0.1115 

4  (   ) 0.1064 0.0027 

5  (    ) 0.0135 0.0411 

6  (   ) (   ) 1.4767 0.0312 

7  (   ) (   ) 1.7885 0.0304 

8  (   ) (   ) 1.3905 0.0268 

9   1.4516E-04 0.0261 

10  (   ) -0.0176 0.0318 

11  (   ) -0.1330 0.0668 

12  (   ) -0.0245 2.1716E-04 

13  (   ) 0.0146 0.0104 

14  (   ) 0.1545 0.0091 

 

So far, the constant, the linear and the second order non-linear mean models seem to pass 

standard financial model validation tests and suggest that the mean and the variance of 

the returns have been adequately modelled in all the 3 cases. 

5.2.7 Estimation of Third Order Non-Linear Mean Model using WOFR 

The last mean model to be fitted to the returns of the FTSE100 index is the third order 

non-linear candidate mean model listed in Section 5.2.3.4. As in the case of the previous 

candidate mean models, WOFR is performed on the third order non-linear candidate 

mean model, and the terms are re-ordered in decreasing order of their ERR values. Term 

selection is then carried out to select a third order non-linear mean model that best 

describes the mean of the returns of FTSE100. 

The values of the hyper-parameters used when fitting a third order non-linear mean model 

are the same as in the case of fitting a constant mean model, and are given in Table 5.3. 

The only difference is that a linear noise model is to be fitted as well, hence    is selected 

to be 5. 

The results of the WOFR analysis are shown in Table 5.9.  
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Table 5.9 Terms in Third Order Non-Linear Candidate Mean Model reordered 

after weighting 

No. Term 
Parameter 

Estimate 
ERR 

1  (   ) (   ) (   ) 33.5657 0.4170 

2  (   ) (   ) (   ) -66.2826 0.3457 

3  (   ) (   ) (   ) -61.1157 0.3030 

4  (   ) (   ) (   ) -100.8959 0.1674 

5  (   ) -0.0315 0.0986 

6  (   ) -0.0298 0.0950 

7  (   ) (   ) (   ) -65.7263 0.0834 

8  (   ) (   ) 2.6237 0.0715 

9  (    ) 2.0103E-02 0.0631 

10  (   ) (   ) (   ) 118.6700 0.0532 

11  (   ) (   ) (   ) 73.7220 0.0489 

12  (   ) (   ) (   ) 37.1373 0.0483 

13  (   ) (   ) (   ) 113.6097 0.0487 

14  (   ) (   ) (   ) 81.5845 0.0455 

15  (   ) (   ) 2.3277 0.0422 

16  (   ) (   ) (   ) -65.5028 0.0348 

17  (   ) (   ) (   ) -22.6070 0.0427 

18  (   ) (   ) (   ) -80.8411 0.0549 

19  (   ) (   ) 0.9579 0.0381 

20  (   ) -0.0143 0.0300 

21  (   ) (   ) 2.0816 0.0330 

22  (   ) (   ) (   ) -56.9164 0.0318 

23   0.0003 0.0269 

24  (   ) (   ) -1.1067 0.0284 

25  (   ) (   ) (   ) -41.0855 0.0294 

26  (   ) (   ) (   ) -59.0133 0.0299 

27  (   ) (   ) 0.8629 0.0225 

28  (   ) (   ) 1.7678 0.0224 

29  (   ) (   ) (   ) -75.3693 0.0170 

30  (   ) (   ) (   ) -41.6680 0.0261 

31  (   ) (   ) -0.6487 0.0144 

32  (   ) (   ) (   ) -24.7767 0.0158 

33  (   ) 0.0112 0.0127 

34  (   ) (   ) (   ) 58.2569 0.0111 

35  (   ) (   ) (   ) 57.1653 0.0181 

36  (   ) -0.0169 0.0120 

37  (   ) (   ) (   ) 55.6623 0.0110 

38  (   ) -0.0098 0.0087 
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39  (   ) 0.0083 0.0063 

40  (   ) (   ) (   ) -30.5734 0.0063 

41  (   ) (   ) -0.8589 0.0069 

42  (   ) (   ) (   ) 13.7276 0.0059 

43  (   ) -0.0088 0.0043 

44  (   ) (   ) -0.5514 0.0035 

45  (   ) (   ) 0.4365 0.0033 

46  (   ) (   ) 0.5647 0.0031 

47  (   ) (   ) (   ) -14.9617 0.0022 

48  (   ) (   ) (   ) 17.1400 0.0019 

49  (   ) (   ) (   ) 19.3294 0.0023 

50  (   ) (   ) (   ) 19.3956 0.0019 

51  (   ) (   ) (   ) -18.0446 0.0027 

52  (   ) (   ) -0.2825 0.0018 

53  (   ) (   ) (   ) 12.5042 0.0016 

54  (   ) (   ) 0.2763 0.0011 

55  (   ) (   ) (   ) 9.8964 0.0012 

56  (   ) -0.0038 0.0011 

57  (   ) (   ) (   ) -13.5193 8.5656E-04 

58  (   ) (   ) -0.1047 3.9998E-04 

59  (   ) (   ) (   ) -7.5895 3.4938E-04 

60  (   ) (   ) (   ) 1.7408 9.9794E-05 

61  (   ) (   ) (   ) -0.4417 8.5290E-07 

 

Using the hyper-parameters in Table 5.3, and     , steps 7 to 10 of the method 

described in Section 4.5 are carried out on the re-ordered terms of the third order non-

linear candidate mean model. 

5.2.7.1 Progression of AIC for the Estimation Set 

As explained in Section 4.5, each term from Table 5.9 is added to the mean model 

iteratively, starting with the first term. A linear noise model is fitted in addition to the 

terms in the mean model, and the OSA residuals,  ̂( ), are calculated. An ARCH(25) 

variance model is fitted to  ̂( ), and the AIC of the fitted variance model is calculated 

using equation (4.11). Starting from the second iteration,      is also calculated using 

equation (4.18). 

Figure 5.19 shows AIC and      as a function of the number of terms selected in the 

third order non-linear mean model. 
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Figure 5.19 AIC and      as a function of Number of terms selected in the Third 

Order Non-Linear Mean Model 

From Figure 5.19, the AIC drastically decreases to a value of -2.0505E+04 till 23 terms 

from the top of Table 5.9 are selected to be included in the third order non-linear mean 

model. Also,      for the 23
rd

 iteration is the third highest (0.0243%). The addition of 

further terms to the mean model decreases the value of AIC gradually to a minimum 

value of -2.0516E+04. 

5.2.7.2  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation and Validation Sets 

The higher order correlation confidence violation statistics,  
(  )

 
(  )

   
(  ) (  )

  and 

 
(  )

 
(  )

 , are calculated for all the non-linear mean models using equations (4.7), (4.8) 

and (4.9). Figure 5.20 shows  
(  )

 
(  )

 , Figure 5.21 shows  
(  )

 
(  )

 , and Figure 5.22 

shows  
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the 

number of terms selected. The number of terms that yield the least  
(  )

 
(  )

   
(  )

 
(  )

  

and  
(  ) (  )

  for the Validation Set are denoted by a red dashed line in each figure. 

For the non-linear mean model comprising of all the 61 terms from Table 5.9,  
(  )

 
(  )

  

for the Validation Set is the least with a value of 8.1624E-06. For the non-linear mean 

model comprising of 23 terms from the top of Table 5.9,  
(  )

 
(  )

  for the Validation Set 

is 1.0088E-05 which is very close to the minimum value. 
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Figure 5.20  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 

 

Figure 5.21  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 
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For the non-linear mean model comprising of 3 terms from Table 5.9,  
(  )

 
(  )

  for the 

Validation Set is the least with a value of 1.0329E-07. In this case, based on the AIC 

criterion, 23 terms from the top of Table 5.9 are selected to be included in the non-linear 

mean model. The model yields a value of 1.5785E-07 for  
(  )

 
(  )

  for the Validation 

Set, which is close to the minimum value. These results suggest that the mean and the 

variance of the returns have been adequately modelled. 

 

Figure 5.22  
(  ) (  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 

For the non-linear mean model comprising of all the 61 terms from Table 5.9,  
(  ) (  )

  

for the Validation Set is the least with a value of 7.6625E-06. For the non-linear mean 

model comprising of 23 terms from the top of Table 5.9,  
(  ) (  )

  for the Validation Set 

is 9.3438E-06 which is very close to the minimum value. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected second order non-linear mean model are plotted in Figure 5.23. 
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Figure 5.23 Autocorrelation Plots of Residuals for the Selected Third Order Non-

Linear Mean Model 

In Figure 5.23 (d), note that there exists very small autocorrelation of the residuals at lag 

3 implying that the fitted third order non-linear mean model is adequate. The magnitude 

of autocorrelation is lesser than that in the residuals obtained after fitting the constant 

mean model (Figure 5.5 (d)), the residuals obtained after fitting the selected linear mean 

model (Figure 5.11 (d)) and the residuals obtained after fitting the selected second order 

non-linear mean model (Figure 5.17 (d)) which indicates that the selected third order non-

linear mean model captures the predictable elements of the mean of the returns much 

better than the selected constant, linear and second order non-linear mean models. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected third order non-linear mean model are shown in 

Figure 5.24. 
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Figure 5.24 Higher Order Correlation Plots for the Selected Third Order Non-

Linear Mean Model 

The violation of the 95% confidence bands in the higher order autocorrelation,  
(  )

 
(  )

  

and  
(  ) (  )

 , indicate the need to fit a variance model to the mean of the returns. For 

the fitted variance model to be adequate, no violations of the 95% confidence bands in the 

higher order autocorrelation,  
(  )

 
(  )

 , should exist. In Figure 5.24 (d) and (f), there 

exist no violations of the 95% confidence bands. In Figure 5.24 (e),  
(  )

 
(  )

  lies on or 

just outside the 95% confidence band for a few lags. The confidence violations are not 

large, and the ARCH Test Statistic of  ̂( ) for the Validation Set is calculated to be 

0.3188, which is smaller than the critical value of 3.8415 suggesting that the mean and 

the variance of the returns have been fitted adequately. 

The selected terms along with the coefficient estimates and ERR values are listed in 

Table 5.10. The coefficient estimates of the 5 noise terms are also included. 
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Table 5.10 Third Order Non-Linear Mean Model fitted to FTSE100 

No. Term 
Parameter 

Estimate 
ERR 

1  (   ) (   ) (   ) 32.6956 0.2849 

2  (   ) (   ) (   ) -103.9749 0.2883 

3  (   ) (   ) (   ) -54.4378 0.2239 

4  (   ) (   ) (   ) -78.8744 0.1364 

5  (   ) -0.3832 0.0878 

6  (   ) 0.2420 0.0984 

7  (   ) (   ) (   ) -62.4940 0.0361 

8  (   ) (   ) 1.9704 0.0377 

9  (    ) 0.0054 0.0025 

10  (   ) (   ) (   ) 130.2594 0.1343 

11  (   ) (   ) (   ) 79.3634 0.0489 

12  (   ) (   ) (   ) 53.3504 0.0489 

13  (   ) (   ) (   ) 109.7360 0.0475 

14  (   ) (   ) (   ) 97.2760 0.0465 

15  (   ) (   ) 2.2638 0.0427 

16  (   ) (   ) (   ) -80.1125 0.0571 

17  (   ) (   ) (   ) -15.9892 0.0134 

18  (   ) (   ) (   ) -45.5746 0.0407 

19  (   ) (   ) 2.1186 0.0795 

20  (   ) -0.1560 0.0188 

21  (   ) (   ) 1.2857 0.0228 

22  (   ) (   ) (   ) -78.0188 0.0566 

23   1.6779E-04 0.0260 

24  (   ) -0.0204 0.0256 

25  (   ) -0.0132 0.0116 

26  (   ) -0.2651 0.1141 

27  (   ) 0.1379 0.0332 

28  (   ) 0.3501 0.1553 

 

So far, all the mean models seem to pass standard financial model validation tests and 

suggest that the mean and the variance of the returns have been adequately modelled in 

all the 4 cases. 

5.2.8 Comparison of ARCH Test Statistics and Non-Linear Correlation 

Statistics of All Mean Models 

Note that higher order correlation tests and the ARCH Test statistics of  ̂( ) do not work 

for the purpose of comparison of the performance of the different mean models. This is 
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because the mean model can be underfitted, and the variance model can be overfitted, 

thereby yielding a  ̂( ) series that passes all the mentioned model validation tests. Hence, 

to compare the fitted mean models, the ARCH Test statistics and the higher order 

correlation statistics of  ̂( ) need to be used. 

The ARCH Test statistics of  ̂( ) of the Validation Set and  
(  ) (  )

  of the Complete 

data set of all the selected mean models are listed in Table 5.11. The minimum values are 

shaded in blue. 

Table 5.11 ARCH Test statistic of  ̂( ) of Validation Set and  
(  ) (  )

  of Complete 

data set for all Mean Models 

Type of Mean Model 
ARCH Test Statistic of 

 ̂( ) (Validation Set) 

 
(  ) (  )

  

(Complete Set) 

Constant 14.0218 6.6068E-05 

Linear 13.5820 6.2440E-05 

Second Order Non-Linear 13.2098 6.2705E-05 

Third Order Non-Linear 11.5644 1.8281E-05 

 

The third order non-linear mean model (terms and parameter estimates listed in Table 

5.10) has the lowest ARCH Test Statistic of  ̂( ) for the Validation Set. This implies that 

the mean of the returns have been modelled better by the third order non-linear mean 

model than the second order non-linear, linear or constant mean model, and hence is the 

appropriate choice. 

5.2.9 Comparison of Selected Mean Model to Vanilla GARCH Model 

A vanilla GARCH model (constant mean model with a GARCH(1,1) variance model) is 

fitted to the given FTSE100 return series. The ARCH Test statistics of  ̂( ) of the 

Validation Set and  
(  ) (  )

  of the Complete data set of the fitted vanilla GARCH model 

are listed and compared to the selected third order non-linear mean model in Table 5.12. 

The minimum values are shaded in blue. 
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Table 5.12 ARCH Test statistic of  ̂( ) of Validation Set and  
(  ) (  )

  of Complete 

data set for all Vanilla GARCH and Selected Mean Model fitted to FTSE100 

Type of Model 
ARCH Test Statistic of 

 ̂( ) (Validation Set) 

 
(  ) (  )

  

(Complete Set) 

Vanilla GARCH 13.9934 6.5966E-05 

Selected Third Order Non-

Linear Mean Model with 

ARCH(25) Variance Model 

11.5644 1.8281E-05 

 

The selected third order non-linear mean model with an ARCH(25) variance model 

performs much better than a vanilla GARCH model. The ARCH Test statistics of  ̂( ) of 

the Validation Set and  
(  ) (  )

  of the Complete data set of the selected model are lower 

than those of the vanilla GARCH model. 

Figure 5.25 and Figure 5.26 show the one-step-ahead (OSA) return estimates generated 

using the vanilla GARCH model and the selected third order non-linear mean model. 

 

Figure 5.25 OSA Return Estimates generated using Vanilla GARCH Model and 

Third Order Non-Linear Mean Model for the FTSE100 
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Figure 5.26 OSA Return Estimates generated using Vanilla GARCH Model and 

Third Order Non-Linear Mean Model for the FTSE100 (Samples 3400 to 4000) 

From Figure 5.25 and Figure 5.26, it can be noted that using the third order non-linear 

mean model certainly captures the predictable elements of the mean of the returns, rather 

than just using a constant mean model and passing off the predictable elements to be 

included in the residuals. The standard deviation of the various return series are listed in 

Table 5.13. 

Table 5.13 Standard Deviation of various return series for FTSE100 

Series Standard Deviation 

OSA Return Estimate of Constant Mean Model 0 

OSA Return Estimate of Third Order NL Mean Model 0.0037 

True Return Series 0.0127 

 

Comparing the magnitudes of the Validation and Testing Sets of the OSA return 

estimates generated using the third order non-linear mean model to those of the true 

return series, 359 samples of 700 samples have the same magnitude. Hence, the 

magnitude of the returns is predicted right 51.2857% of the time. 

Figure 5.27 and Figure 5.28 show the variance estimates generated using the vanilla 

GARCH model and the selected third order non-linear mean model. 
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Figure 5.27 Variance Estimates generated using Vanilla GARCH Model and Third 

Order Non-Linear Mean Model for the FTSE100 

 

Figure 5.28 Variance Estimates generated using Vanilla GARCH Model and Third 

Order Non-Linear Mean Model for the FTSE100 (Samples 2450 to 2950) 
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Note that the variance estimates are similar during periods of low volatility, but different 

during periods of high volatility. This suggests that a constant mean model does not 

capture all the predictable elements in the mean of the returns and adds them to the 

residuals, thereby increasing the magnitude of the variance estimate (obtained using a 

constant mean model) at the peaks. 

To summarise, constant, linear, second order non-linear and third order non-linear 

candidate mean models were fitted to the given returns of FTSE100. After carrying out 

term selection, the ARCH Test statistics of  ̂( ) of the Validation Set and  
(  ) (  )

  of 

the Complete data set of all the models were compared to evaluate how well each model 

described the mean of the given return series. As in the case of the simulated example, all 

the fitted mean models passed standard model validation tests, but the third order non-

linear mean model was found to have the lowest values for the ARCH Test statistic of 

 ̂( ) of the Validation Set and  
(  ) (  )

  of the Complete data set, implying that the mean 

of the returns have been modelled best by the third order non-linear mean model. 

5.3 Application to NASDAQ 

The framework introduced in this chapter is used on the returns of the NASDAQ index. 

The procedure remains the same as in the case of the returns of the FTSE100 index, and a 

summary of the results, rather than a detailed description of the approach, will be given. 

5.3.1 The Data 

4001 samples of the price of the NASDAQ index, dating from 23
rd

 September 1997 to 

29
th
 July 2013 are considered. The data is obtained from Yahoo! Finance (2013b). The 

price series is converted to a return series comprising of 4000 samples via continuous 

compounding (see equation (2.2)). The price and returns of the NASDAQ index are 

plotted in Figure 5.29. 
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Figure 5.29 Price and Returns of NASDAQ 

The number of samples in the Estimation, Validation and Testing Sets is the same as in 

the case of the simulated data example, and are listed in Table 4.2. 
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Figure 5.30 Sample Autocorrelation Plots of Returns and Squared Returns of 

NASDAQ 

5.3.2.2 Higher Order Autocorrelation 

The higher order autocorrelation of the returns and the squared returns for the Estimation, 

Validation, Testing and Complete Data Set are also calculated and plotted in Figure 5.31 
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Figure 5.31  ( ) ( )  for (a) Estimation, (b) Validation, (c) Testing, and (d) Complete 

Data Set 

Figure 5.31 (d) shows that  ( ) ( )  for lags 2, 12 and 13 are just outside the 95% 

confidence bands, indicating the possibility of the presence of linear and non-linear terms 

with these lags. 

The higher order correlation violation statistic,  ( ) ( ) , for the Estimation Set, 

Validation Set, Testing Set, and the Complete Set that enumerate the plots shown in 

Figure 5.31 are calculated and listed in Table 5.14. 

Table 5.14  ( ) ( )  for Estimation, Validation, Testing, and Complete Data Sets 

 ( ) ( )  

(Estimation Set) 

 ( ) ( )  

(Validation Set) 

 ( ) ( )  

(Testing Set) 

 ( ) ( )  

(Complete Data Set) 

2.2521E-08 3.0694E-07 0 1.5368E-08 
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Figure 5.32  
(  )

 
(  )

  for (a) Estimation, (b) Validation, (c) Testing, and (d) 

Complete Set 

Figure 5.32 (d) shows that  
(  )

 
(  )

  is significantly outside the 95% confidence bands 

for all the lags. This indicates the need to fit a variance model to the returns, in addition to 

fitting a mean model. The non-linear correlation violation statistic,  
(  )

 
(  )

 , for the 

Estimation Set, Validation Set, Testing Set, and the Complete Set that enumerate the plots 

shown in Figure 5.32 are calculated and listed in Table 5.15. 

Table 5.15  
(  )

 
(  )

  for Estimation, Validation, Testing, and Complete Data Sets 

 
(  )

 
(  )

  

(Estimation Set) 

 
(  )

 
(  )

  

(Validation Set) 

 
(  )

 
(  )

  

(Testing Set) 

 
(  )

 
(  )

  

(Complete Data Set) 

3.8219E-05 4.3321E-05 5.0229E-08 4.3612E-05 

 

5.3.3 Candidate Mean Models 

Four different candidate mean models are fitted to the returns of the NASDAQ index. 

5.3.3.1 Constant Mean Model 

The first is a constant mean model,  ( )    , where    is to be estimated. 
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5.3.3.2 Linear Candidate Mean Model  

The second is a linear candidate mean model. This is an AR(13) model with a linear noise 

model consisting of 5 lagged noise terms  

 ( )     ∑   (   )

  

   

 ∑   (   )

 

   

                             (   ) 

where   ,   , and    are coefficients to be estimated. 

From Figure 5.31 (d),  ( ) ( )  for lags 2, 12 and 13 are just outside the 95% confidence 

bands, indicating the possibility of the presence of linear and non-linear terms with these 

lags. Hence,    is selected to be 13. 

The maximum lag of the error terms to be included in the linear mean model is selected to 

be     . 

5.3.3.3 Second Order Non-Linear Candidate Mean Model  

The third candidate mean model is a second-order non-linear mean model. This is 

                    ( )     ∑   (   )

  

   

 

 ∑    (   ) (   )

            

            

 ∑   (   )

 

   

                     (   ) 

where   ,   , and    are coefficients to be estimated. 

From Figure 5.31 (d),  ( ) ( )  for lags 2, 12 and 13 are just outside the 95% confidence 

bands, indicating the possibility of the presence of linear and non-linear terms with these 

lags. Hence,    is selected to be 13. 

The maximum lag of the second order non-linear terms to be included in the non-linear 

candidate mean model is selected to be 5. A linear noise model is also fitted to the 

candidate mean model once term selection has been carried out. The maximum lag of the 

error terms to be included in the non-linear mean model is selected to be     . 

5.3.3.4 Third Order Non-Linear Candidate Mean Model  

The final candidate model is a third-order non-linear mean model. This is 
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          ( )     ∑   (   )

  

   

 ∑    (   ) (   )

            

            

 

 ∑    (   ) (   ) (   )

                

                

 ∑   (   )

 

   

          (   ) 

where   ,   , and    are coefficients to be estimated.    is selected to be 13. The 

maximum lag of the second order non-linear terms to be included in the non-linear 

candidate mean model is selected to be 5. The maximum lag of the error terms to be 

included in the non-linear mean model is selected to be     . 

5.3.4 Estimation of Constant Mean Model 

The values of the hyper-parameters used when fitting a constant mean model are the same 

as in the case of the FTSE100 and are given in Table 5.3. 

The constant term fitted is 3.1437E-04, and has an ERR of 0.0602. To validate the fitted 

mean model, the linear autocorrelation of the residuals obtained after fitting the constant 

mean model are plotted in Figure 5.34. 

 

Figure 5.33 Autocorrelation Plots of Residuals for the Selected Constant Mean 
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In Figure 5.34 (d), note that there exists slight autocorrelation of the residuals at lag 2 

implying that the fitted constant mean model may be inadequate. 

To validate the fitted mean and variance models, the higher order correlation of the 

squared residuals and squared standardised residuals obtained after fitting the selected 

constant mean model are plotted in Figure 5.34. 

 

Figure 5.34 Higher Order Correlation Plots for the Selected Constant Mean Model 
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5.3.4.1  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation, Validation and Testing 

Sets 

The higher order correlation plots in Figure 5.34 are quantified by calculating the 

confidence violation statistics using equations (4.7), (4.8) and (4.9). Table 5.16 shows 

 
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  for 20 lags for the Estimation, Validation and Testing 

Sets for the constant mean model. 

Table 5.16  
(  )

 
(  )

 ,  
(  )

 
(  )

  and  
(  ) (  )

  for Estimation, Validation and 

Testing Sets in Constant Mean Model 

 Estimation Set Validation Set Testing Set 

 
(  )

 
(  )

  3.8999E-05 4.3892E-05 8.4453E-08 

 
(  )

 
(  )

  0 5.3441E-08 1.3511E-07 

 
(  ) (  )

  3.8807E-05 4.3740E-05 8.5185E-08 

ARCH Test Statistic of  ̂( ) 0.2415 0.9775 5.0025 

 

From Figure 5.34 (a), (b), (c), (g), (h) and (i), the squared estimated residuals,  ̂ ( ), 

obtained from fitting a constant mean model, indicate higher order correlation and 

autocorrelation. The corresponding confidence violation statistics,  
(  )

 
(  )

  and 

 
(  ) (  )

 , for the Estimation and Validation Sets in Table 5.16 are of the order of 1E-05 

which is considerably high in this context. These results suggest that a variance model is 

required to be fitted to the given return series. 

The magnitude of the value of  
(  )

 
(  )

  for the Validation Set is extremely small, and 

close to zero, which is acceptable. The ARCH Test Statistic of  ̂( ) for the Validation Set 

is lesser than the critical value of 3.8415. Hence, the mean and the variance of the returns 

can be considered to be adequately fitted. 

5.3.5 Estimation of Linear Mean Model using WOFR 

The next type of mean model to be fitted to the returns of the NASDAQ index is the 

linear candidate mean model listed in Section 5.3.3.2. The results of the WOFR analysis 

are given in Table 5.17. 
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Table 5.17 Terms in Linear Candidate Mean Model reordered after weighting 

No. Term Parameter Estimate ERR 

1  (    ) 0.0502 0.2427 

2  (    ) 0.0307 0.0939 

3  (    ) 0.0226 0.0537 

4  (   ) -0.0240 0.0427 

5  (   ) -0.0194 0.0281 

6   0.0002 0.0289 

7  (   ) -0.0152 0.0226 

8  (   ) -0.0123 0.0148 

9  (   ) 0.0100 0.0093 

10  (   ) -0.0098 0.0086 

11  (    ) 0.0070 0.0045 

12  (   ) -0.0062 0.0035 

13  (   ) -0.0043 0.0015 

14  (   ) 0.0039 0.0013 

 

Using the hyper-parameters in Table 5.3, and     , steps 7 to 10 of the method 

described in Section 4.5 are now carried out on the re-ordered terms of the linear 

candidate mean model. 

5.3.5.1 Progression of AIC for the Estimation Set 

Figure 5.35 shows AIC and      as a function of the number of terms selected in the 

linear mean model. 

 

Figure 5.35 AIC and      as a function of Number of terms selected in the Linear 

Mean Model 

From Figure 5.35,      is the highest (0.0329%) when 6 terms from the top of Table 
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terms are added. Hence, 6 terms from the top of Table 5.17 are selected to be included in 

the linear mean model. 

5.3.5.2  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation and Validation Sets 

Figure 5.36 shows  
(  )

 
(  )

 , Figure 5.37 shows  
(  )

 
(  )

 , and Figure 5.38 shows 

 
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the number 

of terms selected. The number of terms that yield the least  
(  )

 
(  )

   
(  )

 
(  )

  and 

 
(  ) (  )

 for the Validation Set are denoted by a red dashed line in each figure. 

 

Figure 5.36  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 

For the linear mean model comprising of 2 terms from the top of Table 5.17,  
(  )

 
(  )

  

for the Validation Set is the least with a value of 4.6048E-05. For the linear mean model 

comprising of 6 terms from the top of Table 5.17,  
(  )

 
(  )

  for the Validation Set is 

5.0195E-05 which is very close to the minimum value. 
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Figure 5.37  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 

 

Figure 5.38  
(  ) (  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Linear Mean Model 
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For the linear mean model comprising of 8 terms from Table 5.17,  
(  )

 
(  )

  for the 

Validation Set is the least with a value of 9.5345E-08. In this case, 6 terms from the top 

of Table 5.17 are selected to be included in the linear mean model which yields a value of 

1.0244E-07 for  
(  )

 
(  )

  for the Validation Set, which is of significantly less magnitude 

and very close to the minimum value of 9.5345E-08. These results suggest that the mean 

and the variance of the returns have been adequately modelled. 

For the linear mean model comprising of 2 terms from the top of Table 5.17,  
(  ) (  )

  

for the Validation Set is the least with a value of 4.5356E-05. For the linear mean model 

comprising of 6 terms from the top of Table 5.17,  
(  ) (  )

  for the Validation Set is 

4.8358E-05 which is very close to the minimum value. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected linear mean model are plotted in Figure 5.39. 

 

Figure 5.39 Autocorrelation Plots of Residuals for the Selected Linear Mean Model 

In Figure 5.39 (d), note that there exists no autocorrelation of the residuals implying that 
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which indicates that the selected linear mean model captures the predictable elements of 

the mean of the returns much better than the selected constant mean model. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected linear mean model are shown in Figure 5.40. 

 

Figure 5.40 Higher Order Correlation Plots for the Selected Linear Mean Model 
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is calculated to be 1.0300, which is smaller than the critical value of 3.8415 suggesting 

that the mean and the variance of the returns have been fitted adequately. 

The terms selected in the linear mean model along with the coefficient estimates and ERR 

values are listed in Table 5.18. The coefficient estimates of the 5 noise terms are also 

included. 

Table 5.18 Linear Mean Model fitted to NASDAQ 

No. Term 
Parameter 

Estimate 
ERR 

1  (    ) 0.0539 0.2467 

2  (    ) 0.0298 0.0953 

3  (    ) 0.0243 0.0563 

4  (   ) -0.1941 0.0399 

5  (   ) -0.0204 0.0293 

6   0.0003 0.0322 

7  (   ) -0.0153 0.0223 

8  (   ) 0.1720 0.0114 

9  (   ) 0.0080 0.0052 

10  (   ) -0.0097 0.0084 

11  (   ) -0.0039 0.0013 

 

So far, the constant and the linear mean models seem to pass standard financial model 

validation tests and suggest that the mean and the variance of the returns have been 

adequately modelled in both cases. 

5.3.6 Estimation of Second Order Non-Linear Mean Model using WOFR 

The next type of mean model to be fitted to the returns of the NASDAQ index is the 

second order non-linear candidate mean model listed in Section 5.3.3.3. The results of the 

WOFR analysis are given in Table 5.19. 

Table 5.19 Terms in Second Order Non-Linear Candidate Mean Model reordered 

after weighting 

No. Term Parameter Estimate ERR 

1  (   ) (   ) 3.0414 0.2707 

2  (    ) 0.0509 0.2503 

3  (   ) (   ) -2.0058 0.1390 

4  (   ) (   ) 2.0189 0.1431 

5  (    ) 0.0357 0.1055 

6  (   ) (   ) 0.8178 0.1059 
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7  (   ) (   ) -1.2547 0.0603 

8  (   ) (   ) 0.8572 0.0634 

9  (    ) 0.0228 0.0494 

10  (   ) (   ) 1.1415 0.0436 

11  (   ) -0.0179 0.0277 

12  (   ) -0.0176 0.0223 

13  (   ) (   ) 0.6013 0.0241 

14  (   ) (   ) 0.8240 0.0169 

15  (   ) -0.0137 0.0155 

16  (   ) (   ) 0.7902 0.0118 

17  (   ) (   ) 0.7158 0.0130 

18  (   ) (   ) 0.5906 0.0103 

19  (    ) 0.0089 0.0082 

20  (   ) 0.0078 0.0062 

21  (   ) (   ) 0.4789 0.0053 

22  (   ) -0.0080 0.0049 

23  (   ) -0.0063 0.0027 

24  (   ) (   ) -0.2193 0.0020 

25   0.0001 0.0025 

26  (   ) 0.0037 0.0012 

 

Using the hyper-parameters in Table 5.3, and     , steps 7 to 10 of the method 

described in Section 4.5 are carried out on the re-ordered terms of the second order non-

linear candidate mean model. 

5.3.6.1 Progression of AIC for the Estimation Set 

Figure 5.41 shows AIC and      as a function of the number of terms selected in the 

second order non-linear mean model. 

 

Figure 5.41 AIC and      as a function of Number of terms selected in the Second 

Order Non-Linear Mean Model 
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From Figure 5.41, the AIC drastically decreases to a value of -1.8196E+04 till 6 terms 

from the top of Table 5.19 are selected to be included in the second order non-linear mean 

model. Also,      for the 6
th
 iteration is the highest (0.0477%). The addition of further 

terms to the mean model decreases the value of AIC gradually to a minimum value of -

1.8209E+04. 

5.3.6.2  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation and Validation Sets 

Figure 5.42 shows  
(  )

 
(  )

 , Figure 5.43 shows  
(  )

 
(  )

 , and Figure 5.44 shows 

 
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the number 

of terms selected. The number of terms that yield the least  
(  )

 
(  )

   
(  )

 
(  )

  and 

 
(  ) (  )

  for the Validation Set are denoted by a red dashed line in each figure. 

 

Figure 5.42  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Second Order Non-Linear Mean Model 

For the non-linear mean model comprising of all the 29 terms from Table 5.19,  
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model comprising of 6 terms from the top of Table 5.19,  
(  )

 
(  )

  for the Validation Set 

is 5.3708E-05 and is the highest. 

 

Figure 5.43  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Second Order Non-Linear Mean Model 

 

Figure 5.44  
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  for Estimation and Validation Sets as a function of Number of 
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For the non-linear mean model comprising of 1 term from Table 5.19,  
(  )

 
(  )

  for the 

Validation Set is the least with a value of 9.2401E-08. In this case, according to the AIC 

criterion, 6 terms from the top of Table 5.19 are selected to be included in the non-linear 

mean model which yields a value of 2.3247E-07 for  
(  )

 
(  )

  for the Validation Set, 

which is of significantly less magnitude. 

For the non-linear mean model comprising of all the 29 terms from Table 5.19,  
(  ) (  )

  

for the Validation Set is the least with a value of 3.6395E-05. For the non-linear mean 

model comprising of 6 terms from the top of Table 5.19,  
(  ) (  )

  for the Validation Set 

is 4.6856E-05 which is close to the minimum value. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected second order non-linear mean model are plotted in Figure 5.46. 

 

Figure 5.45 Autocorrelation Plots of Residuals for the Selected Second Order Non-

Linear Mean Model 
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model (Figure 5.33 (d)) which indicates that the selected second order non-linear mean 

model captures the predictable elements of the mean of the returns much better than the 

selected constant mean model. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected non-linear mean model are shown in Figure 5.46. 

 

Figure 5.46 Higher Order Correlation Plots for the Selected Second Order Non-

Linear Mean Model 
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the 95% confidence band for lag = 2. In Figure 5.46 (f),  
(  )

 
(  )

  lies just outside the 

95% confidence band for lag = 1. The ARCH Test Statistic of  ̂( ) for the Validation Set 

is calculated to be 1.0475, which is lesser than the critical value of 3.8415. Hence, the 

mean and the variance of the returns can be considered to be adequately fitted. 

The selected terms along with the parameter estimates and ERR values are listed in Table 

5.20. The coefficient estimates of the 5 noise terms are also included.  

Table 5.20 Second Order Non-Linear Mean Model fitted to NASDAQ 

No. Term 
Parameter 

Estimate 
ERR 

1  (   ) (   ) 3.1289 0.2965 

2  (    ) 0.0518 0.2630 

3  (   ) (   ) -2.3644 0.1446 

4  (   ) (   ) 2.1340 0.1438 

5  (    ) 0.0339 0.1121 

6  (   ) (   ) 1.0174 0.1122 

7  (   ) -0.0038 0.0014 

8  (   ) -0.0132 0.0134 

9  (   ) 0.0114 0.0111 

10  (   ) -0.0020 0.0003 

11  (   ) -0.0046 0.0018 

 

So far, the constant, the linear and the second order non-linear mean models seem to pass 

standard financial model validation tests and suggest that the mean and the variance of 

the returns have been adequately modelled in all the 3 cases. 

5.3.7 Estimation of Third Order Non-Linear Mean Model using WOFR 

The last mean model to be fitted to the returns of the NASDAQ index is the third order 

non-linear candidate mean model listed in Section 5.3.3.4. The results of the WOFR 

analysis are shown in Table 5.21.  

Table 5.21 Terms in Third Order Non-Linear Candidate Mean Model reordered 

after weighting 

No. Term 
Parameter 

Estimate 
ERR 

1  (   ) (   ) (   ) -31.5330 0.3196 

2  (   ) (   ) (   ) -64.9987 0.3305 

3  (    ) 0.0516 0.2390 
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4  (   ) (   ) 1.5830 0.1247 

5  (   ) (   ) -1.6931 0.1323 

6  (    ) 0.0363 0.1236 

7  (   ) (   ) 1.7179 0.1125 

8  (   ) (   ) (   ) 22.4857 0.1036 

9  (   ) (   ) (   ) 29.0255 0.0577 

10  (   ) (   ) (   ) -59.8278 0.0895 

11  (   ) (   ) (   ) -31.4166 0.0694 

12  (   ) (   ) (   ) -34.4527 0.0654 

13  (   ) (   ) (   ) -52.7194 0.0719 

14  (   ) (   ) -1.9478 0.0592 

15  (   ) (   ) 1.0544 0.0973 

16  (    ) 0.0200 0.0497 

17  (   ) (   ) (   ) -43.1814 0.0344 

18  (   ) (   ) (   ) 47.9860 0.0651 

19  (   ) (   ) (   ) -36.5570 0.0589 

20  (   ) (   ) (   ) -8.9310 0.0408 

21  (   ) -0.0198 0.0294 

22   0.0002 0.0315 

23  (   ) (   ) (   ) 23.3448 0.0209 

24  (   ) (   ) (   ) 36.5415 0.0312 

25  (   ) (   ) (   ) 19.3295 0.0196 

26  (   ) (   ) 0.9461 0.0181 

27  (   ) -0.0132 0.0179 

28  (   ) (   ) (   ) 27.6813 0.0182 

29  (   ) (   ) (   ) -40.0591 0.0190 

30  (   ) (   ) (   ) -42.8410 0.0145 

31  (   ) (   ) (   ) -40.2467 0.0150 

32  (   ) (   ) (   ) -28.4840 0.0132 

33  (   ) (   ) (   ) 13.4714 0.0126 

34  (   ) (   ) (   ) -32.1786 0.0178 

35  (   ) (   ) (   ) -12.1889 0.0174 

36  (   ) (   ) (   ) 27.2226 0.0161 

37  (   ) (   ) 0.8930 0.0167 

38  (   ) (   ) 0.4863 0.0109 

39  (   ) (   ) 0.6713 0.0118 

40  (   ) (   ) 0.4744 0.0090 

41  (   ) (   ) (   ) -26.8202 0.0085 

42  (   ) (   ) (   ) -30.1561 0.0107 

43  (   ) (   ) -0.3924 0.0100 

44  (   ) (   ) (   ) -16.1998 0.0079 

45  (   ) (   ) -0.6487 0.0078 

46  (   ) (   ) (   ) 11.6571 0.0082 
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47  (    ) 0.0083 0.0060 

48  (   ) -0.0079 0.0058 

49  (   ) (   ) (   ) -22.4254 0.0046 

50  (   ) (   ) (   ) 11.1024 0.0058 

51  (   ) (   ) (   ) -16.3538 0.0026 

52  (   ) (   ) (   ) -9.6988 0.0028 

53  (   ) (   ) -0.3272 0.0031 

54  (   ) 0.0048 0.0020 

55  (   ) (   ) (   ) -5.7301 0.0015 

56  (   ) (   ) 0.2656 0.0014 

57  (   ) (   ) (   ) -4.8777 0.0010 

58  (   ) -0.0037 6.0922E-04 

59  (   ) -0.0036 6.5641E-04 

60  (   ) (   ) (   ) 3.2473 5.3158E-04 

61  (   ) -0.0026 3.6045E-04 

62  (   ) 0.0019 2.6246E-04 

63  (   ) (   ) 0.0705 2.7812E-04 

64  (   ) 0.0008 2.8878E-05 

 

Using the hyper-parameters in Table 5.3, and     , steps 7 to 10 of the method 

described in Section 4.5 are carried out on the re-ordered terms of the third order non-

linear candidate mean model. 

5.3.7.1 Progression of AIC for the Estimation Set 

Figure 5.47 shows AIC and      as a function of the number of terms selected in the 

third order non-linear mean model. 

 

Figure 5.47 AIC and      as a function of Number of terms selected in the Third 

Order Non-Linear Mean Model 

From Figure 5.47, the AIC drastically decreases to a value of -1.8232E+04 till 22 terms 

from the top of Table 5.21 are selected to be included in the third order non-linear mean 
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model. Also,      for the 22
nd

 iteration is the third highest (0.0244%). The addition of 

further terms to the mean model decreases the value of AIC gradually to a minimum 

value of -1.8252E+04. Hence, 22 terms from the top of Table 5.21 are selected to be 

included in the third order non-linear mean model. 

5.3.7.2  
(  )

 
(  )

   
(  )

 
(  )

  and  
(  ) (  )

  of the Estimation and Validation Sets 

Figure 5.48 shows  
(  )

 
(  )

 , Figure 5.49 shows  
(  )

 
(  )

 , and Figure 5.50 shows 

 
(  ) (  )

  for 20 lags for the Estimation and Validation Sets as a function of the number 

of terms selected. The number of terms that yield the least  
(  )

 
(  )

   
(  )

 
(  )

  and 

 
(  ) (  )

  for the Validation Set are denoted by a red dashed line in each figure. 

 

Figure 5.48  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 

For the non-linear mean model comprising of the first term from Table 5.21,  
(  )

 
(  )

  

for the Validation Set is the least with a value of 4.1532E-05. For the non-linear mean 

model comprising of 22 terms from the top of Table 5.21,  
(  )

 
(  )

  for the Validation 

Set is 8.4167E-05. 
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Figure 5.49  
(  )

 
(  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 

 

Figure 5.50  
(  ) (  )

  for Estimation and Validation Sets as a function of Number of 

terms selected in Third Order Non-Linear Mean Model 
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For the non-linear mean model comprising of the first from Table 5.21,  
(  )

 
(  )

  for the 

Validation Set is the least with a value of 6.8680E-08. In this case, according to the AIC 

criterion, 22 terms from the top of Table 5.21 are selected to be included in the non-linear 

mean model which yields a value of 2.5262E-07 for  
(  )

 
(  )

  for the Validation Set, 

which is of significantly less magnitude. 

For the non-linear mean model comprising of the first term from Table 5.21,  
(  ) (  )

  

for the Validation Set is the least with a value of 4.2056E-05. 

To validate the fitted mean model, the linear autocorrelation of the residuals obtained 

after fitting the selected second order non-linear mean model are plotted in Figure 5.51. 

 

Figure 5.51 Autocorrelation Plots of Residuals for the Selected Third Order Non-

Linear Mean Model 

In Figure 5.51 (d), note that there exists no autocorrelation of the residuals implying that 

the fitted third order non-linear mean model is adequate. The magnitude of 

autocorrelation is lesser than that in the residuals obtained after fitting the constant mean 

model (Figure 5.33 (d)) which indicates that the selected third order non-linear mean 
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model captures the predictable elements of the mean of the returns much better than the 

selected constant mean model. 

To validate the fitted mean and variance models, the higher order correlation plots of the 

squared estimated residuals,  ̂ ( ), and the squared estimated standardised residuals, 

 ̂ ( ), obtained after fitting the selected non-linear mean model are shown in Figure 5.52. 

 

Figure 5.52 Higher Order Correlation Plots for the Selected Third Order Non-

Linear Mean Model 
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the ARCH Test Statistic of  ̂( ) for the Validation Set is calculated to be 1.1221, which is 

lesser than the critical value of 3.8415. Hence, the mean and the variance of the returns 

can be considered to be adequately fitted. 

The selected terms along with the coefficient estimates and ERR values are listed in 

Table 5.22. The coefficient estimates of the 5 noise terms are also included. 

Table 5.22 Third Order Non-Linear Mean Model fitted to NASDAQ 

No. Term 
Parameter 

Estimate 
ERR 

1  (   ) (   ) (   ) -32.3482 0.3636 

2  (   ) (   ) (   ) -65.6457 0.3008 

3  (    ) 0.0521 0.2416 

4  (   ) (   ) 1.5498 0.1493 

5  (   ) (   ) -1.5961 0.1466 

6  (    ) 0.0341 0.1161 

7  (   ) (   ) 1.5201 0.1067 

8  (   ) (   ) (   ) 41.3240 0.1311 

9  (   ) (   ) (   ) 29.8598 0.0645 

10  (   ) (   ) (   ) -58.7972 0.0849 

11  (   ) (   ) (   ) -24.7672 0.0499 

12  (   ) (   ) (   ) -62.1985 0.0598 

13  (   ) (   ) (   ) -42.5019 0.0723 

14  (   ) (   ) -2.0335 0.0854 

15  (   ) (   ) 0.9609 0.0721 

16  (    ) 0.0215 0.0505 

17  (   ) (   ) (   ) -44.8129 0.0334 

18  (   ) (   ) (   ) 45.7599 0.0584 

19  (   ) (   ) (   ) -32.1252 0.0483 

20  (   ) (   ) (   ) -24.7960 0.0406 

21  (   ) -0.0219 0.0333 

22   0.0003 0.0354 

23  (   ) 0.0115 0.0089 

24  (   ) 0.0111 0.0077 

25  (   ) -0.0038 0.0009 

26  (   ) -0.0120 0.0091 

27  (   ) 0.0062 0.0026 

 

So far, all the mean models seem to pass standard financial model validation tests and 

suggest that the mean and the variance of the returns have been adequately modelled in 

all the 4 cases. 
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5.3.8 Comparison of ARCH Test Statistics and Non-Linear Correlation 

Statistics of All Mean Models 

The ARCH Test statistics of  ̂( ) of the Validation Set and  
(  ) (  )

  of the Complete 

data set of all the selected mean models are listed in Table 5.23. The minimum values are 

shaded in blue. 

Table 5.23 ARCH Test statistic of  ̂( ) of Validation Set and  
(  ) (  )

  of Complete 

data set for all Mean Models 

Type of Mean Model 
ARCH Test Statistic of  ̂( ) 

(Validation Set) 

 
(  ) (  )

  

(Complete Set) 

Constant 30.2857 4.4260E-05 

Linear 28.1956 3.9677E-05 

Second Order Non-Linear 12.3207 4.2073E-05 

Third Order Non-Linear 7.3515 2.8984E-05 

 

The third order non-linear mean model (terms and parameter estimates listed in Table 

5.22) has the lowest ARCH Test Statistic of  ̂( ) for the Validation Set. This implies that 

the mean of the returns have been modelled better by the third order non-linear mean 

model than the second order non-linear, linear or constant mean model, and hence is the 

appropriate choice. 

5.3.9 Comparison of Selected Mean Model to Vanilla GARCH Model 

A vanilla GARCH model (constant mean model with a GARCH(1,1) variance model) is 

fitted to the given NASDAQ return series. The ARCH Test statistics of  ̂( ) of the 

Validation Set and  
(  ) (  )

  of the Complete data set of the fitted vanilla GARCH model 

are listed and compared to the selected third order non-linear mean model in Table 5.24. 

The minimum values are shaded in blue. 

Table 5.24 ARCH Test statistic of  ̂( ) of Validation Set and  
(  ) (  )

  of Complete 

data set for all Vanilla GARCH and Selected Mean Model fitted to NASDAQ 

Type of Model 
ARCH Test Statistic of  ̂( ) 

(Validation Set) 

 
(  ) (  )

  

(Complete Set) 

Vanilla GARCH 30.3239 4.3598E-05 

Selected Third Order Non-

Linear Mean Model with 

ARCH(25) Variance Model 

7.3515 2.8984E-05 
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The selected third order non-linear mean model with an ARCH(25) variance model 

performs much better than a vanilla GARCH model. The ARCH Test statistics of  ̂( ) of 

the Validation Set and  
(  ) (  )

  of the Complete data set of the selected model are lower 

than those of the vanilla GARCH model. 

Figure 5.53 and Figure 5.54 show the one-step-ahead (OSA) return estimates generated 

using the vanilla GARCH model and the selected third order non-linear mean model. 

 

Figure 5.53 OSA Return Estimates generated using Vanilla GARCH Model and 

Third Order Non-Linear Mean Model for NASDAQ 

From Figure 5.53 and Figure 5.54, it can be noted that using the third order non-linear 

mean model certainly captures the predictable elements of the mean of the returns, rather 

than just using a constant mean model and passing off the predictable elements to be 

included in the residuals. The standard deviation of the various return series are listed in 

Table 5.25. 
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Figure 5.54 OSA Return Estimates generated using Vanilla GARCH Model and 

Third Order Non-Linear Mean Model for NASDAQ (Samples 3400 to 3985) 

 

Table 5.25 Standard Deviation of various return series for NASDAQ 

Series Standard Deviation 

OSA Return Estimate of Constant Mean Model 0 

OSA Return Estimate of Third Order NL Mean Model 0.0031 

True Return Series 0.0176 

 

Comparing the magnitudes of the Validation and Testing Sets of the OSA return 

estimates generated using the third order non-linear mean model to those of the true 

return series, 354 samples of 700 samples have the same magnitude. Hence, the 

magnitude of the returns is predicted right 50.5714% of the time. 

Figure 5.55 and Figure 5.56 show the variance estimates generated using the vanilla 

GARCH model and the selected third order non-linear mean model. 
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Figure 5.55 Variance Estimates generated using Vanilla GARCH Model and Third 

Order Non-Linear Mean Model for NASDAQ 

 

Figure 5.56 Variance Estimates generated using Vanilla GARCH Model and Third 

Order Non-Linear Mean Model for NASDAQ (Samples 550 to 1050) 
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Note that the variance estimates are similar during periods of low volatility, but a little 

different during periods of high volatility. The difference is not as pronounced as in the 

case of the FTSE100, but it still exists. 

To summarise, constant, linear, second order non-linear and third order non-linear 

candidate mean models were fitted to the given returns of NASDAQ. After carrying out 

term selection, the ARCH Test statistics of  ̂( ) of the Validation Set and  
(  ) (  )

  of 

the Complete data set of all the models were compared to evaluate how well each model 

described the mean of the given return series. As in the case of the simulated example, all 

the fitted mean models passed standard model validation tests, but the third order non-

linear mean model was found to have the lowest values for the ARCH Test statistic of 

 ̂( ) of the Validation Set and  
(  ) (  )

  of the Complete data set, implying that the mean 

of the returns have been modelled best by the third order non-linear mean model. 

5.4 Conclusions 

The framework is used to identify the best mean model for 2 real financial return series. 

For each real data set, the best mean model amongst a plethora of mean models is 

selected. For both the data sets, a constant mean model performs the worst in terms of the 

ARCH Test statistic of  ̂( ) of the Validation Set and  
(  ) (  )

  of the Complete data set. 

A third order non-linear mean model is preferred over a constant or a linear mean model, 

even though all the fitted mean models pass standard model validation tests. 

Fitting vanilla GARCH models to the real financial data sets yield worse performance 

statistics (ARCH Test Statistics and Non-Linear Correlation Statistics) than those 

obtained from fitting linear and non-linear mean models to these data sets. 

For the FTSE100 data set, the difference between the variance estimates obtained using 

the vanilla GARCH model and the selected third order non-linear mean model (Figure 

5.27 and Figure 5.28) is much more pronounced at the peaks, than in the case of the 

NASDAQ data set(Figure 5.55 and Figure 5.56). For the FTSE100 data set, this suggests 

that a constant mean model does not capture all the predictable elements in the mean of 

the returns and adds them to the residuals, thereby increasing the magnitude of the 

variance estimate at the peaks. The fitted third order non-linear mean model yields a 

variance estimate that is much lower in magnitude during periods of high volatility. 
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For the case of the NASDAQ data set, this indicates that fitting a third order non-linear 

mean model does not impact variance estimation much as compared to fitting a constant 

mean model. Hence, correctly selecting and fitting a non-linear mean model to the returns 

is recommended in order to obtain more accurate variance estimates and to obtain 

standardised residuals that are more ‘white’ in nature. 
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Chapter 6 

 

Weighted Least Squares Estimation of the 

Variance Model 

6.1 Introduction 

Of the two parts of a GARCH model, the variance model has been given much more 

importance by researchers and a truly vast number of GARCH variance models have been 

developed over the years. 

The standard approach to fitting a variance model to a given financial return series 

involves testing the returns for non-linearity, choosing a type of linear or non-linear 

variance model to fit depending on the results of the previous test, estimating the model 

using some Maximum Likelihood (ML) method, performing model validation tests to 

check whether the selected variance model can adequately describe the given data set and 

selecting a different variance model if the validation tests fail (Engle, 2001). 

As noted, the standard paradigm involves estimating the model by ML. There are two 

problems with this, however. First, there is no term selection. The structure of the 

variance model cannot be determined and has to be selected – that is to say, assumed - 

beforehand. There exists no simple method of predetermining the exact type of variance 

model to fit the data accurately. The second, related, problem is that there is no definite 

method to select the best model. It is therefore possible for two different models to give 

plausible fits without being able to determine which is best.  

The NARMAX methodology for system identification avoids both these problems. Term 

selection and parameter estimation can be carried out easily using Orthogonal Forward 

Regression (OFR) (Billings et al., 1988, 1989; Korenberg et al., 1988, Chen et al., 1989, 

Billings and Zhu, 1994) or WOFR (Zhao, 2010). As in the case of the GARCH mean 

model, fitting the variance model using OFR does not give accurate results due to the 

presence of heteroskedasticity in the financial return series data (Bjorck, 1996), but this 

problem can be overcome using WOFR, as it was with the mean model considered in the 

previous chapter.  
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System identification techniques require the inputs and outputs of the system to be 

observable and measurable (Billings and Coca, 2001). This is a major drawback of using 

NARMAX methods to model the GARCH variance model since the variance of the 

returns at any instant in time is not observable. To work around this limitation, an 

estimate of the GARCH variance needs to be used. The quality of the estimated variance 

then determines the accuracy of term selection and parameter estimation. To anticipate 

the conclusions of this chapter, if the underlying true GARCH variance is linear, this 

estimate works well, but if the underlying true GARCH variance is non-linear, then the 

estimate does not work well and a better estimate of the GARCH variance is required to 

capture the underlying non-linearity. 

The purposes of this chapter are to introduce the financial variance model, the current 

methods used for the estimation of a GARCH variance model and to suggest a new 

method to successfully select the terms and estimate the coefficients of a GARCH 

variance model using NARMAX methodology.  

This chapter is laid out as follows. Section 4.2 gives a brief overview of the financial 

variance model. Section 4.3 showcases the maximum likelihood estimation method used 

to estimate the GARCH variance model. Section 4.4 describes the NARMAX 

methodology and introduces a new method to select and estimate the terms in a GARCH 

variance model using NARMAX methods. Simulations are included to demonstrate the 

performance of the method introduced in this section. Section 4.5 concludes the chapter. 

6.2 The GARCH Financial Variance Model 

In a GARCH(   ) model, the variance is modelled as 

 ( )    ∑    (   )

 

   

 ∑    
 (   )

 

   

                                 (   ) 
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where  ( ) is the variance of the return and  ( ) is the residual and is also known as 

innovation of the returns process.      and    are constants. In the final condition, it is 

implied that      for     and      for    .  

It can be seen that the GARCH(   ) variance model is a linear AutoRegressive Moving 

Average model with eXogenous inputs (ARMAX). Here, the squared residual,   ( ), is 

the exogenous input. 

There exist several non-linear variance models as well such as the EGARCH model 

(Section 2.3.6), the QGARCH model (Section 2.3.7), the NA-GARCH model (Section 

2.3.8), the SQR-GARCH model (Section 2.3.9) and the GJR-GARCH model (Section 

2.3.10). Most of the variance models, linear and non-linear, are driven by lagged variance 

( (   )), lagged squared residual (  (   )), and in some cases, lagged residual 

( (   )) terms and possibly a combination of these. 

6.3 Maximum Likelihood Estimation of the GARCH Variance 

Model 

6.3.1 Probability Density Function 

Let the vector   [          ] represent the data to be modelled where   represents 

the total number of observations of the sample data. From a statistical point of view,   is 

a random sample from an unknown population and is generated by a model. Every 

population has a unique probability distribution (also known as probability density 

function or PDF) that is generated by a predefined set of model parameters. A change in 

the model parameters changes the probability distribution. 

Let  ( | ) denote the probability distribution function of   depending on the model 

parameters   [          ] in the parameter space Θ, where   represents the total 

number of parameters. The PDF of the data series,  , can be expressed as a product of the 

PDFs of the individual variance observations 

 ( | )    (  | )  (  | )   (  | )                                 (   ) 

6.3.2 Likelihood Function 

Given that the data,  , and the probability density function of the data,  ( | ), are 

assumed known, the set of model parameters,  , that correspond to the known PDF need 

to be found. This is done by defining a likelihood function  
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 ( | )   ( | )                                                         (   ) 

The values of   within the parameter space Θ that maximise the likelihood function 

 ( | ) are then the ideal or likelihood-maximising set of parameters. 

6.3.3 Maximum Likelihood Estimation Method 

For the GARCH class of variance models, the variance,  ( ), the random i.i.d sequence, 

 ( ), and the residuals,  ( )   ( )√ ( ) are assumed to have a Gaussian probability 

distribution function. 

 ( | )  
 

√   ( )
   ( 

  ( )

  ( )
)                                         (   ) 

Let the average log-likelihood be denoted by   and the log-likelihood of the     

observation be denoted by  ( ). For   samples, 
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Since,  
 

 
   (  ) is a constant, it can be ignored while performing maximisation. The 

modified log-likelihood function to use for maximisation for the     observation becomes 

  ( )   
 

 
  ( ( ))  

  ( )

  ( )
                                              (   ) 

For a general GARCH(   ) model, the mean is usually modelled as,  ( )      ( ), 

and the variance is modelled as shown in equation (6.1). The parameter constraints of the 

variance model are also as shown in equation (6.1).  

Within this constrained parameter space, the values of                   are found 

such that the average log-likelihood function    is maximised. 
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Several minimisation routines can be implemented via MATLAB. Minimising the 

negative of the average log-likelihood function is the same as maximising the average 

log-likelihood function. Hence, the cost function supplied to the minimisation routine in 

MATLAB is the negative of the average log-likelihood function. Throughout this chapter, 

all negative log-likelihood minimisation routines were performed using ‘fmincon’. 

6.4 The NARMAX Approach for the Identification and 

Estimation of the GARCH Variance Model 

6.4.1 Introduction 

The NARMAX methodology can be used to identify and represent any system whose 

inputs and outputs are measurable. All that is required for the methods to be applied are 

the data series of the input(s) and output(s) of the system to be modelled. For a 

GARCH(   ) variance model, the variance,  ( ) is the output and the lagged variance, 

 (   ), and lagged squared residuals,   (   ), are the inputs. 

For any real financial asset, only the price and hence, the returns are observable. The 

variance of the returns of an asset is not observable. Hence, the time series data of the true 

variance of the returns of an asset is never available. This highlights a major setback to 

using the NARMAX approach for modelling the GARCH variance. To be able to use the 

NARMAX approach to model the GARCH variance, an estimate of the variance must be 

generated from the residuals of the GARCH mean model. The closer the estimate is to the 

true GARCH variance, the better the performance of the NARMAX approach. 

Another problem with using the NARMAX approach to identify GARCH variance 

models is the underlying heteroskedastic nature of the GARCH variance. The standard 

NARMAX methodology works accurately only if the system being modelled is 

homoskedastic in nature. Modelling a heteroskedastic system using NARMAX methods 

usually produces biased results (Bjorck, 1996).  

This is not a problem when the true GARCH variance is used to model the GARCH 

variance model using the standard NARMAX approach. The problem arises when an 

estimate of the GARCH variance is used. The difference between the true GARCH 

variance and the estimated GARCH variance can be considered as additional noise in the 

true output (here, the true variance). This noise is heteroskedastic in nature and hence 
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produces biased results whilst using the simple NARMAX approach (Bjorck, 1996; 

Zhao, 2010). 

A WOFR algorithm was developed to counteract this problem of the presence of 

heteroskedasticity in the GARCH mean model (Zhao, 2010). Weighted Least Squares has 

been used to counteract the problem of biased parameter estimation of the GARCH 

variance model using simple Least Squares due to the presence of heteroskedasticity in 

the GARCH variance model (Tofallis, 2009). A similar approach can be used to 

implement the NARMAX methodology to accurately select the terms and estimate the 

respective coefficients in a GARCH variance model when the true GARCH variance is 

unavailable and an estimate of the GARCH variance is generated from the residuals of 

the GARCH mean model. 

6.4.2 Weighted Orthogonal Forward Regression for the GARCH Variance 

Model 

The Orthogonal Forward Regression (OFR) procedure forms the basis of this algorithm 

and has been explained in Section 3.3.3. The algorithm for the accurate identification and 

estimation of the GARCH variance model when an estimate of the GARCH variance is 

used is as follows: 

1. The GARCH mean model is estimated and the one-step-ahead estimates of the 

returns,  ̂( ), are calculated. The modelling residuals of the GARCH mean 

model,  ( ), are then calculated by subtracting the estimated returns,  ̂( ), from 

the true returns,  ( ). 

 ( )   ( )   ̂( )                                               (   ) 

2. The squared residuals,   ( ), are then used to fit an ARCH(25) model to the 

GARCH variance estimate which yields an estimate of the true GARCH 

variance,  ̂( ). 

3. The ARCH(25) estimate of the variance,  ̂( ), is defined as the output. The 

lagged squared residuals,   (   ), and the lagged values of the estimated 

variance,  ̂(   ), are set as the inputs. A GARCH(5,5) model is selected as the 

candidate model. 

 ̂( )    ∑   ̂(   )

 

   

 ∑   
 (   )

 

   

                        (   ) 

If   represents the total number of data samples, the set of equations describing 

the candidate model can be written in matrix form as 
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4. In an attempt to eliminate the bias caused due to the presence of 

heteroskedasticity, both sides of equation (6.8) are divided by the term  ̂( ) 

(Tofallis, 2009). Equation (6.8) now becomes 
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Equation (6.9) becomes 
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5. OFR is now applied to the weighted candidate model. The terms are listed in 

decreasing order of    . 

6. A suitable cut-off value is selected for the     and the terms that have a greater 

    value are selected. The unwanted terms are removed from the candidate 

model and steps 3 to 5 are repeated in order to obtain the parameter estimates of 

the selected terms. 

6.4.3 Simulations 

The following simulations introduce a new approach to modelling the variance model of 

any GARCH-class model. The approach is based on NARMAX methods and offers the 

ability to select the terms that are actually present in the variance model from a broader 

candidate model. 

6.4.3.1 Using OFR for the Identification of the Variance Model when the True 

Variance and Residuals are Both Known 

Consider the following GARCH(3,2) variance model 

 ( )    ∑   (   )

 

   

 ∑   
 (   )

 

   

                        (    ) 
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where  ( ) is the variance and   ( ) is the squared residual, both at an instant in time,  . 

              and    are the parameters of the variance model. The values of the 

parameters of the simulated variance model are listed in Table 6.1. 

Table 6.1 Parameters of the Simulated GARCH(3,2) Variance Model 

Parameter of the Variance Model Value 

  1.4E-05 

   0 

   0.3648 

   0.3520 

   0.0543 

   0.1870 

 

5000 data points are generated and the first 1000 are discarded to avoid initial condition 

errors. The simulated variance and squared residuals are shown in Figure 6.1. When 

simulating the variance from equation (6.12), the residuals  ( ) are modelled as  ( )  

  ( )√ ( ), where  ( ) is a random independent and identically distributed (i.i.d) term 

that has zero mean and a variance of 1. For a GARCH(p,q) model, the initial condition, 

 ( ) is calculated as shown in equation (2.10). 

 

Figure 6.1 Simulated Variance and Squared Residuals for GARCH(3,2) Model 
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A GARCH(5,5) model is selected as the candidate variance model. The simulated 

variance,  ( ), is defined as the output. The lagged square of the residuals,   (   ), and 

the lagged values of the simulated variance,  (   ), are set as the inputs. OFR is applied 

to the candidate model. Table 6.2 shows the terms selected in decreasing order of ERR. 

Table 6.2 Ranking of Terms of Candidate Variance Model selected by OFR 

Rank 
Standard OFR 

Term ERR (%) 

1  (   ) 92.9966 

2   (   ) 5.3308 

3  (   ) 1.1595 

4   (   ) 0.4572 

5 1 0.0558 

6  (   ) 1.3504E-26 

7   (   ) 4.1104E-27 

8  (   ) 3.3389E-27 

9   (   ) 0.8256 

10   (   ) 0.4965 

11  (   ) 0.2886 

 

The highlighted terms represent the terms present in the original model. It can be seen 

that all the terms present in the original model have been selected. The ERR cut-off value 

is set as 0.05% and the parameter estimates of the selected terms are obtained and listed 

in Table 6.3. The modelling residuals obtained after parameter estimation are shown in 

Figure 6.2. 

Table 6.3 Parameter Estimates of Selected GARCH(3,2) Variance Model using OFR 

Parameter of the variance model Parameter Estimate True Coefficient 

  1.4E-05 1.4E-05 

   0 0 

   0.3648 0.3648 

   0.3520 0.3520 

   0.0543 0.0543 

   0.1870 0.1870 
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Figure 6.2 Residuals of GARCH(3,2) Variance Model after Parameter Estimation 

using OFR 

From Table 6.3, it can be seen that the parameter estimates of the selected GARCH(3,2)  

variance model are identical to the true values of the coefficients of the simulated 

GARCH(3,2) variance model. If the true variance and the true squared residuals are 

known, OFR works very well to accurately select the terms in a GARCH variance model 

and estimate their coefficients. Furthermore, Figure 6.2 reveals that the modelling 

residuals of the GARCH variance model are of very small magnitude (order of E-18) – 

although they also appear to be heteroskedastic in nature. 

In short, the approach proposed appears to work well when the candidate variance model 

encompasses the true variance model even if the true model is unknown to the modeller, 

provided the true variance and residuals are known. 

Cases where the true variance and/or residuals are unknown are now examined. 

6.4.3.2 Using Weighted OFR for the Identification of the GARCH Variance Model 

when the True Variance is Unknown and the True Residuals are Known 

The data used for the following simulation is generated from the model used in the 

previous simulation (Section 6.4.3.1, see equation (6.12)). It is assumed that the residuals, 

 ( ), are known and that the true GARCH(3,2) variance is unknown. 

0 500 1000 1500 2000 2500 3000 3500 4000
-8

-6

-4

-2

0

2

4

6

8

10

12
x 10

-18 Residuals of variance model after parameter estimation using OLS

Time Sample

A
m

p
lit

u
d
e



 
 

Chapter 6: WLS Estimation of Variance 

173 

Since the true variance is now unknown, an estimate of the variance is required. An 

estimate is obtained by fitting an ARCH(25) model to the residuals using ML. This 

estimated variance,  ̂( ), will be used in place of the unknown true GARCH variance. 

 ̂( )     ∑   
   (   )

  

   

                                          (    ) 

where    and   
  for            are coefficients of the ARCH(25) model.  

A GARCH(5,5) model is selected as the candidate variance model. The estimated 

ARCH(25) variance,  ̂( ), is defined as the output. The lagged square of the residuals, 

  (   ), and the lagged values of the estimated variance,  ̂(   ), are set as the inputs. 

OFR is applied to the candidate model. The left-hand side of Table 6.4 shows the terms 

selected in decreasing order of ERR. 

The highlighted terms represent the terms present in the original model. It can be seen 

that most of the terms present in the original model except the constant term have been 

selected. The modelling residuals obtained are shown in Figure 6.2. The modelling 

residuals appear to be heteroskedastic in nature – they are spikey over a period of time in 

bursts. As explained earlier in Section 6.2.2, the inverse of the estimated variance, 
 

 ̂( )
, is 

selected as the weight and weighted OFR is applied to the candidate model. The right-

hand side of Table 6.4 shows the terms selected in decreasing order of ERR. 

Table 6.4 Ranking of Terms of Candidate Variance Model selected by OFR and 

Weighted OFR 

Rank 
Standard OFR Weighted OFR 

Term ERR (%) Term ERR (%) 

1  ̂(   ) 90.2449  ̂(   ) 91.9727 

2   (   ) 6.3338   (   ) 4.0756 

3  ̂(   ) 1.6278  ̂(   ) 1.7373 

4   (   ) 0.7204   (   ) 0.7167 

5   (   ) 0.0875 1 0.1996 

6 1 0.0367  ̂(   ) 0.0324 

7   (   ) 0.0258   (   ) 0.0353 

8  ̂(   ) 0.0166  ̂(   ) 0.0575 

9   (   ) 0.0107   (   ) 0.0073 

10  ̂(   ) 0.0127   (   ) 0.0011 

11  ̂(   ) 0.0091  ̂(   ) 0.0046 
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Compared to the term selection results of OFR, the results of WOFR are better since the 

priority of the constant term has increased.  

Moving ahead with WOFR, the ERR cut-off value is set as 0.15% and parameter 

estimation is carried out only with the selected terms included in the candidate variance 

model. The parameter estimates of the selected terms are obtained and listed in Table 6.5. 

The modelling residuals obtained after parameter estimation using WOFR are shown in 

Figure 6.3. The effect weighting had on the modelling residuals can be seen – the 

heteroskedasticity has reduced a lot. 

 

Figure 6.3 Modelling Residuals of the GARCH Variance Model after Parameter 

Estimation using Standard and Weighted OFR 

In an attempt to improve the accuracy of the parameter estimates of the selected GARCH 

variance model, a noise model with fifteen lagged noise terms is fitted in addition to the 

terms selected in the variance model. These lagged noise terms can be regarded as proxies 

for the errors in our variance estimator. WOFR is applied, the noise terms are then 

recalculated and updated in the candidate model. WOFR is applied again to the updated 

model, and so forth. This procedure is repeated 50 times (or as long as it takes for the 

parameter estimates to converge). The parameter estimates of just the selected terms 

(noise terms not included) are listed in Table 6.5. 
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Table 6.5 Parameter estimates of selected terms in the variance model using WOFR 

before and after fitting a noise model 

Parameter of 

the Variance 

Model 

Parameter Estimate 

without fitting Noise 

Model 

Parameter Estimate 

after fitting Noise 

Model 

True 

Coefficient 

  1.4705E-05 1.4593E-05 1.4E-05 

   0.3218 0.3400 0.3648 

   0.3281 0.3190 0.3520 

   0.0686 0.0680 0.0543 

   0.2059 0.2045 0.1870 

NRMSE 11.4676% 10.7321%  

 

The Normalised Root Mean Squared Error (NRMSE) between the one-step-ahead 

variance estimate obtained via WOFR after fitting a noise model to the selected GARCH 

variance model and the true GARCH(3,2) variance is calculated to be 10.7321%. This is a 

small improvement over the one-step-ahead variance estimate obtained via WOFR 

without fitting a noise model to the selected GARCH variance model (NRMSE = 

11.4676%). 

6.4.3.3 Using Weighted OFR for the Identification of the GARCH Mean and 

Variance Model when the True Variance and Residuals are Both Unknown – 

GARCH(3,2) Variance Model 

This simulation is the first of three which examine the effectiveness of using WOFR for 

the identification of the variance model when the true variance and the true residuals of a 

GARCH model are both unknown. 

In this first case, the GARCH mean model is estimated from the given returns using the 

WOFR method described in Section 3.3.4. Once the GARCH mean model is estimated, 

the modelling residuals of the GARCH mean model (simply known as the residuals of the 

GARCH model) are used to generate an ARCH(25) variance estimate. The estimated 

residuals and the ARCH(25) variance estimate are in turn used to estimate the GARCH 

variance model using Weighted OFR. 

Consider the following GARCH(3,2) model with a non-linear mean 

 ( )        (   )     (   ) (   )     (   )   ( )       (    ) 
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 ( )    ∑   (   )

 

   

 ∑   
 (   )

 

   

                        (    ) 

where  ( ) is the excess return,  ( ) is the modelling residual and  ( ) is the variance, all 

at an instant in time,  .          and    are the parameters of the mean model and 

              and    are the parameters of the variance model.  The true values of the 

parameters are listed in Table 6.6. 

Table 6.6 Parameters of the Simulated GARCH(3,2) Model 

Parameter of 

the Mean Model 
Value 

Parameter of the 

Variance Model 
Value 

   0.001   1.4E-05 

   0.2    0 

   -4    0.3648 

   0.1    0.3520 

 
   0.0543 

   0.1870 

 

5000 data points are generated and the first 1000 are discarded to avoid initial condition 

errors. The simulated returns and GARCH(3,2) variance are shown in Figure 6.4. When 

simulating the returns and the variance from equations (6.14) and (6.15), the residuals, 

 ( ), are modelled as  ( )    ( )√ ( ), where  ( ) is a random independent and 

identically distributed (i.i.d) term that has zero mean and a variance of 1. For a 

GARCH(p,q) model, the initial condition,  ( ) is calculated as shown in equation (2.10). 

A NAR(2,5) model is chosen as the candidate mean model. 
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Figure 6.4 Simulated Returns and Variance for GARCH(3,2) Model 

WOFR is carried out to select the terms in the GARCH mean model and to calculate the 

estimates of the respective coefficients. The terms selected, coefficient estimates and true 

values of the coefficients are listed in Table 6.7. 

Table 6.7 Parameter Estimates of Selected Mean Model after 10 Iterations of WOFR 

Term of the Mean Model Coefficient Estimate True Coefficient 

1 9.3712E-04 0.001 

 (   ) 0.1981 0.2 

 (   ) (   ) -4.2947 -4 

 (   ) 0.0788 0.1 

 

The modelling residuals of the estimated GARCH mean model,  ̂( ), are calculated. 

Using maximum likelihood, an ARCH(25) model is fit to the estimated residuals and an 

estimate of the GARCH variance,  ̂( ), is obtained. 

A GARCH(5,5) model is selected as the candidate variance model. The ARCH(25) 

variance estimate,  ̂( ), is defined as the output. The lagged estimated squares residuals, 

 ̂ (   ), and the lagged values of the estimated variance,  ̂(   ), are set as the inputs.  
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OFR is applied to the candidate variance model. The left-hand side of Table 6.8 shows 

the terms selected in decreasing order of ERR. The highlighted terms represent the terms 

present in the original GARCH(3,2) variance model. It can be seen that most of the terms 

present in the original model except the constant term have been selected. 

Next, the inverse of the ARCH(25) variance estimate, 
 

 ̂( )
, is selected as the weight and 

weighted OFR is applied to the candidate variance model. The right-hand side of Table 

6.8 shows the terms of the candidate variance model selected in decreasing order of ERR. 

Table 6.8 Ranking of Terms of Candidate Variance Model selected by Standard and 

Weighted OFR 

Rank 
Standard OFR Weighted OFR 

Term ERR (%) Term ERR (%) 

1  ̂(   ) 90.2256  ̂(   ) 91.9489 

2   (   ) 6.3679   (   ) 4.1074 

3  ̂(   ) 1.6216  ̂(   ) 1.7460 

4   (   ) 0.7334   (   ) 0.7288 

5   (   ) 0.0949 1 0.2007 

6 1 0.0356   (   ) 0.0363 

7   (   ) 0.0267   (   ) 0.0214 

8  ̂(   ) 0.0102  ̂(   ) 0.0127 

9   (   ) 0.0085   (   ) 0.0292 

10  ̂(   ) 0.0130  ̂(   ) 0.0292 

11  ̂(   ) 0.0046  ̂(   ) 0.0022 

 

The highlighted terms represent the terms present in the original GARCH(3,2) model. 

Once again, WOFR has improved term selection. The ERR cut-off value is set as 0.15% 

and parameter estimation is carried out only with the selected terms included in the 

candidate variance model. The parameter estimates of the selected terms are obtained and 

listed in Table 6.9. 

In an attempt to improve the accuracy of the parameter estimates of the variance model, a 

noise model with fifteen lagged noise terms is then fitted in addition to the terms selected 

from the candidate GARCH variance model. The parameter estimates of just the selected 

terms are listed in Table 6.9. 
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Table 6.9 Parameter Estimates of Selected Terms in the Variance Model using 

WOFR before and after Fitting a Noise Model – GARCH(3,2) Model 

Parameter of 

the Variance 

Model 

Parameter Estimate 

before Fitting a 

Noise Model 

Parameter Estimate 

after Fitting a Noise 

Model 

True 

Coefficient 

  1.2791E-05 1.2456E-05 1.4E-05 

   0.3210 0.3405 0.3648 

   0.3276 0.3173 0.3520 

   0.0694 0.0687 0.0543 

   0.2073 0.2059 0.1870 

NRMSE 11.6934% 10.9902%  

 

The Normalised Root Mean Squared Error (NRMSE) between the one-step-ahead 

variance estimate obtained via WOFR after fitting a noise model to the selected GARCH 

variance model and the true GARCH(3,2) variance is calculated to be 10.9902%. This is 

an improvement over the one-step-ahead variance estimate obtained via WOFR without 

fitting a noise model to the selected GARCH variance model (NRMSE = 11.6934%). 

The proposed method works well in identifying and estimating all the correct terms in the 

linear GARCH(3,2) variance model and fitting a noise model improves the accuracy of 

the variance estimate. 

6.4.3.4 Using Weighted OFR for the Identification of the GARCH Mean and 

Variance Model when the Variance and Residuals are Both Unknown – 

GARCH(1,5) Variance Model 

Now consider the following GARCH(1,5) model with a non-linear mean 

 ( )        (   )     (   ) (   )     (   )   ( )         (    ) 

 ( )       (   )  ∑   
 (   )

 

   

                             (    ) 

where  ( ) is the excess return,  ( ) is the modelling residual and  ( ) is the variance, all 

at an instant in time,  .          and    are the parameters of the mean model and 

                 and    are the parameters of the variance model.  The true values of 

the parameters are listed in Table 6.10. 
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Table 6.10 Parameters of the Simulated GARCH(1,5) Model 

Parameter of the 

Mean Model 
Value 

Parameter of the 

Variance Model 
Value 

   0.001   4.25E-06 

   0.2    0.6388 

   -4    0.0431 

   0.1    0.0401 

 

   0.1025 

   0.0955 

   0.0631 

 

5000 data points are generated and the first 1000 are discarded to avoid initial condition 

errors. The simulated returns and GARCH(1,5) variance are shown in Figure 6.5. For a 

GARCH(p,q) model, the initial condition,  ( ) is calculated as shown in equation (2.10). 

 

Figure 6.5 Simulated Returns and Variance for GARCH(1,5) Model 

A NAR(2,5) model is chosen as the candidate model (See equation (6.16)). 

WOFR is carried out to select the terms in the GARCH mean model and to calculate the 

estimates of the respective coefficients. The terms selected, coefficient estimates and true 

values of the coefficients are listed in Table 6.11. 
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Table 6.11 Parameter Estimates of Selected Mean Model after 10 Iterations of 

WOFR 

Term of the Mean Model Coefficient Estimate True Coefficient 

1 9.8352E-04 1E-03 

 (   ) 0.2001 0.2 

 (   ) (   ) -4.3674 -4 

 (   ) 0.0810 0.1 

 

The modelling residuals of the estimated GARCH mean model,  ̂( ), are calculated. 

Using maximum likelihood, an ARCH(25) model is fit to the estimated residuals and an 

estimate of the GARCH variance,  ̂( ), is obtained. A GARCH(5,5) model is selected as 

the candidate variance model. The ARCH(25) variance estimate,  ̂( ), is defined as the 

output. The lagged estimated squared residuals,  ̂ (   ), and the lagged values of the 

estimated variance,  ̂(   ), are set as the inputs.  

OFR is applied to the candidate variance model. The left-hand side of Table 6.12 shows 

the terms selected in decreasing order of ERR. The highlighted terms represent the terms 

present in the original GARCH(1,5) variance model. It can be seen that most of the terms 

present in the original variance model except the constant term have been selected. Next, 

 

 ̂( )
, is selected as the weight and WOFR is applied to the candidate variance model. The 

right-hand side of Table 6.12 shows the terms selected in decreasing order of ERR. 

Table 6.12 Ranking of terms of candidate variance model selected by Standard and 

Weighted OFR 

Rank 
Standard OFR Weighted OFR 

Term ERR (%) Term ERR (%) 

1  ̂(   ) 97.6930  ̂(   ) 97.3557 

2  ̂ (   ) 0.5916  ̂ (   ) 0.4207 

3  ̂ (   ) 0.5144  ̂ (   ) 0.4600 

4  ̂ (   ) 0.3478  ̂ (   ) 0.3520 

5  ̂ (   ) 0.2177  ̂ (   ) 0.2725 

6  ̂ (   ) 0.0303 1 0.1686 

7  ̂(   ) 0.0377  ̂ (   ) 0.0867 

8  ̂(   ) 0.0459  ̂(   ) 0.0874 

9  ̂(   ) 0.0585  ̂(   ) 0.0508 

10 1 0.0198  ̂(   ) 0.0318 

11  ̂(   ) 0.0030  ̂(   ) 0.0208 
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The highlighted terms represent the terms present in the original GARCH(1,5) variance 

model. Once again, WOFR has improved term selection. The ERR cut-off value is set as 

0.08% and parameter estimation is carried out only with the selected terms included in the 

candidate variance model. The parameter estimates of the selected terms are obtained and 

listed in Table 6.13. 

In an attempt to improve the accuracy of the parameter estimates of the variance model, a 

noise model with fifteen lagged noise terms is fit in addition to the terms selected from 

the candidate GARCH variance model. The parameter estimates of the just the selected 

terms are listed in Table 6.13. 

Table 6.13 Parameter Estimates of Selected Terms in the Variance Model using 

WOFR before and after Fitting a Noise Model – GARCH(1,5) Model 

Parameter of 

the Variance 

Model 

Parameter Estimate 

before Fitting a 

Noise Model 

Parameter Estimate 

after Fitting a Noise 

Model 

True 

Coefficient 

  3.3969E-06 3.1735E-06 4.25E-06 

   0.6399 0.6643 0.6388 

   0.0492 0.0495 0.0431 

   0.0545 0.0517 0.0401 

   0.0830 0.0785 0.1025 

   0.1010 0.0958 0.0955 

   0.0363 0.0292 0.0631 

NRMSE 8.9028% 8.6772%  

 

The Normalised Root Mean Squared Error (NRMSE) between the one-step-ahead 

variance estimate obtained via WOFR after fitting a noise model to the selected GARCH 

variance model and the true GARCH(1,5) variance is calculated to be 8.6772%. This is an 

improvement over the one-step-ahead variance estimate obtained via WOFR without 

fitting a noise model to the selected GARCH variance model (NRMSE = 8.9028%). 

The proposed method works well in identifying and estimating all the correct terms in the 

linear GARCH(1,5) variance model and fitting a noise model improves the accuracy of 

the variance estimate. 
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6.4.3.5 Using Weighted OFR for the Identification of the Variance Model when the 

Variance and Residuals are Both Unknown – Non-Linear GARCH Variance Model 

Finally, consider the following non-linear GARCH model with a non-linear mean 

 ( )        (   )     (   ) (   )     (   )   ( )       (    ) 

 ( )       (   )     
 (   )     (   )  (   )                              

    
 (   )     

 (   )                                                                  (    ) 

where  ( ) is the excess return,  ( ) is the modelling residual and  ( ) is the variance, all 

at an instant in time,  .          and    are the parameters of the mean model and 

              and    are the parameters of the variance model.  The true values of the 

parameters are listed in Table 6.14. 

Table 6.14 Parameters of the Simulated Non-Linear GARCH Model 

Parameter of the 

Mean Model 
Value 

Parameter of the 

Variance Model 
Value 

   0.001   1E-05 

   0.2    0.92 

   -4    0.05 

   0.1    2 

 
   2 

   5 

 

5000 data points are generated and the first 1000 are discarded to avoid initial condition 

errors. For a GARCH(p,q) model, the initial condition,  ( ) is calculated as shown in 

equation (2.10). The simulated returns and Non-Linear GARCH variance are shown in 

Figure 6.6. 

A NAR(2,5) model is chosen as the candidate model (See equation (6.16)). 

WOFR is carried out to select the terms in the GARCH mean model and to calculate the 

estimates of the respective coefficients. The terms selected, coefficient estimates and true 

values of the coefficients are listed in Table 6.15. 

 



 
 

Chapter 6: WLS Estimation of Variance 

184 

 

Figure 6.6 Simulated Returns and Variance for Non-Linear GARCH Model 

 

Table 6.15 Parameter Estimates of Selected Mean Model after 10 Iterations of 

WOFR 

Term of the Mean Model Coefficient Estimate True Coefficient 

1 Not Selected 0.001 

 (   ) 0.2004 0.2 

 (   ) (   ) -3.8266 -4 

 (   ) 0.0838 0.1 

 

The modelling residuals of the estimated GARCH mean model,  ̂( ), are calculated. 

Using maximum likelihood, an ARCH(25) model is fit to the estimated residuals and an 

estimate of the GARCH variance,  ̂( ), is obtained. 

A GARCH(5,5) model with the non-linear terms present in the original model is selected 

as the candidate variance model. The ARCH(25) variance estimate,  ̂( ), is defined as the 

output. The lagged estimated squares residuals,  ̂ (   ), and the lagged values of the 

estimated variance,  ̂(   ), are set as the inputs. 
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OFR is applied to the candidate variance model. Table 6.16 shows the terms selected in 

decreasing order of ERR. The highlighted terms represent the terms present in the 

original Non-Linear GARCH variance model. It can be seen that most of the terms 

present in the original variance model haven’t been selected. 

Next, inverse of the estimated variance, 
 

 ̂( )
, is selected as the weight and weighted OFR 

is applied to the candidate model. Table 6.16 shows the terms selected in decreasing order 

of ERR. 

Table 6.16 Ranking of terms of Candidate Variance Model Selected by Standard 

and Weighted OFR 

Rank 
Standard OFR Weighted OFR 

Term ERR (%) Term ERR (%) 

1  ̂(   ) 96.3476  ̂(   ) 96.6015 

2  ̂ (   ) 0.8773  ̂ (   ) 0.7576 

3  ̂(   ) 0.7072  ̂(   ) 0.6056 

4  ̂ (   ) 0.2371  ̂ (   ) 0.2154 

5  ̂(   ) 0.3274  ̂(   ) 0.2534 

6  ̂ (   ) 0.0768 1 0.0784 

7 1 0.0212  ̂ (   ) 0.0395 

8  ̂ (   ) 0.0265  ̂ (   ) 0.0315 

9  ̂(   ) 0.0411  ̂(   ) 0.0367 

10  ̂ (   ) 0.0336  ̂ (   ) 0.0480 

11  ̂(   ) 0.0108  ̂(   ) 0.0053 

12  ̂(   ) ̂ (   ) 5.9741E-04  ̂(   ) ̂ (   ) 1.1438E-04 

13  ̂ (   ) 1.5531E-04  ̂ (   ) 8.2449E-06 

14  ̂ (   ) 7.3592E-06  ̂ (   ) 1.1066E-07 

 

The highlighted terms represent the terms present in the original Non-Linear GARCH 

variance model. WOFR does not seem to have improved term selection. This can be 

attributed to the fact that the ARCH(25) estimate of the variance is linear and not accurate 

enough to capture the non-linearity present in the true GARCH variance. This, in turn, 

suggests that the suggested approach does not work nearly so well when the true GARCH 

variance process is unknown. 

To fully demonstrate the accuracy of the GARCH variance estimate obtained if the 

algorithm introduced in this chapter is applied to the given non-linear GARCH variance 

model, the ERR cut-off value for the selection of the terms from the candidate GARCH 
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variance model is set as 0.05% and parameter estimation is carried out only with the 

selected terms included in the candidate GARCH variance model.  

In an attempt to improve the accuracy of the parameter estimates of the variance model, a 

noise model with fifteen lagged noise terms is fit in addition to the terms selected from 

the candidate GARCH variance model. The Normalised Root Mean Squared Error 

(NRMSE) between the one-step-ahead variance estimate obtained via WOFR after fitting 

a noise model to the selected GARCH variance model and the true Non-Linear GARCH 

variance is calculated to be 20.1294%. This is an improvement over the one-step-ahead 

variance estimate obtained via WOFR without fitting a noise model to the selected 

GARCH variance model (NRMSE = 22.0539%) but is still not accurate enough. 

6.5 Conclusions 

This chapter introduces the financial variance model and the current methods of the 

estimation of the GARCH variance model, namely, maximum likelihood. The problems 

involving maximum likelihood are highlighted and the NARMAX methodology for 

system identification is introduced as a viable solution. Term selection and parameter 

estimation of a GARCH variance model is easily carried out with the use of Weighted 

OFR. Since the true variance of the returns of an asset is unobservable, an estimate of the 

true GARCH variance is derived from the squared residuals. This estimate of the 

GARCH variance is then used with WOFR to select the terms and estimate the 

parameters of the GARCH variance model. 

The simulations demonstrate how the presence of heteroskedasticity affects term 

selection and parameter estimation whilst estimating the variance model using OFR and 

how WOFR is used to achieve accurate results when some or all of the properties of the 

true GARCH model are known and when some or all of the properties of the true 

GARCH model are unknown (estimates are used). The simulations also suggest the 

following important conclusion: the estimate of the true GARCH variance is linear and 

works well if the true GARCH variance is linear, but is unsatisfactory when the true 

GARCH variance is non-linear. This in turn indicates the need to derive a more accurate 

estimate of the true GARCH variance that contains some or all of the non-linearity 

present in the true GARCH variance. This is explored in the next chapter. 
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Chapter 7 

 

Maximum Likelihood Estimation of Non-Linear 

Variance in GARCH Models using Radial Basis 

Functions 

7.1 Introduction 

Using the Weighted Orthogonal Forward Regression (WOFR) method (as explained in 

Section 6.4.2) of system identification to model the variance of a GARCH model requires 

the input(s) and output(s) of the GARCH model to be observable. This is a major setback 

of the method, which is why maximum likelihood has always been used to model the 

variance in a GARCH model (Bollerslev, 1986). In order to work around this problem 

and to use WOLS for the identification of the variance in a GARCH model, a linear 

estimate of the variance is used in place of the true variance of the GARCH model, and 

term selection and parameter estimation can be successfully carried out, as shown in 

Chapter 6. 

A linear estimate of the variance of a GARCH model is insufficient for accurate term 

selection and parameter estimation when the underlying true variance of the GARCH 

model is non-linear in nature (as shown in Chapter 6, Section 6.4.3.5). This creates the 

need for an accurate non-linear variance estimate that can capture the non-linearity 

present in the true variance of the GARCH model, and should result in accurate term 

selection and parameter estimation when used to predict the GARCH variance model 

using WOLS. 

Since their introduction, Radial Basis Functions (Broomhead and Lowe, 1988), have been 

used to approximate linear and non-linear multivariate functions. The GARCH system 

will be modelled as a non-linear mapping of the inputs to the outputs with the help of 

non-linear basis functions.  

Fitting an RBF model requires the inputs and outputs of the system to be modelled to be 

observable and measurable (Orr, 1996). Since the output of a GARCH variance model 
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(i.e. the true variance) is unobservable (Bollerslev, 1986), an RBF model cannot be used 

to estimate a GARCH variance model. Instead, an RBF model is used as a means to 

obtain a non-linear estimate of the variance of a GARCH model that is more accurate 

than a linear estimate of the variance of the GARCH model. This non-linear variance 

estimate may then be used to identify the GARCH variance model using WOLS. 

The idea is to fit a Radial Basis Function (RBF) model to a linear estimate of the variance 

of a GARCH model that needs to be identified. The coefficients of the obtained RBF 

model are then further optimised to maximise the log-likelihood of the one-step-ahead 

estimate of the RBF model in an attempt to obtain a non-linear estimate of the GARCH 

variance that is more accurate than a linear ARCH estimate of the GARCH variance.  

Broadly classified, two methods of maximisation of the likelihood are tested – 

constrained and unconstrained maximisation. Unconstrained maximisation implies that 

the coefficients of the RBF model (fitted to the linear ARCH estimate of the GARCH 

variance) are optimised around their initial starting values in an attempt to find the 

maximum of the log-likelihood of the variance estimate. This log-likelihood value is 

more likely a local maximum than a global maximum. 

Constrained maximisation implies that the coefficients of the RBF model (fitted to the 

linear ARCH estimate of the GARCH variance) are optimised within user-specified 

constraints in an attempt to find the global maximum of the log-likelihood of the variance 

estimate. Several starting points are uniformly selected within the given constraints and 

the coefficients of the RBF model are optimised around the starting points whilst staying 

within the specified parameter constraints. A shortcoming of this method is that the 

parameter constraints within which the coefficients of the obtained RBF model need to be 

optimised are not known. Since the terms of the model are non-linear in nature and are 

complex non-linear functions of the inputs, the parameter bounds cannot be calculated as 

well. Hence, for the purpose of this chapter, very tight constraints are set within which an 

attempt to find the global maximum of the log-likelihood may or may not be fruitful. 

This method of creating a non-linear estimate of the variance is theoretically 

advantageous compared to fitting one of the non-linear variance models, like an 

EGARCH or an NGARCH model (explained in Chapter 2), since no assumption about 

the structure of the variance model needs to be made. The proposed algorithm is tested on 

three different non-linear GARCH models, and for each example, four different non-

linear estimates of the GARCH variance are generated. The accuracy of an estimate of the 
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GARCH variance (linear or non-linear) is determined by calculating the Normalised Root 

Mean Square Error (NRMSE) between the true/simulated GARCH variance and the 

estimate of the GARCH variance. The accuracy of all the non-linear estimates of the 

GARCH variance is compared to each other and to a linear ARCH estimate of the same 

GARCH variance to assess the performance of the RBF approach. 

The purpose of this chapter is to introduce Radial Basis Functions and to introduce and 

test the new algorithm that uses RBF models to create a non-linear estimate of the 

GARCH variance from the squared residuals and a linear ARCH estimate of the GARCH 

variance. 

Section 7.2 introduces Radial Basis Functions and describes how RBFs are used to 

approximate and estimate non-linear multivariate functions. Section 7.3 explains in detail 

the type of basis function used in this Chapter. Section 7.4 explains in detail the algorithm 

used to train an RBF model. Section 7.5 introduces and explains in detail an algorithm to 

create a non-linear estimate of a GARCH variance by using maximum likelihood to 

optimise the coefficients of an RBF model fit to a linear ARCH estimate of the GARCH 

variance. Section 7.6 puts the proposed algorithm to test on three different simulated non-

linear GARCH variance models and compares the results of the simulations. Section 7.7 

concludes the chapter. 

7.2 Introduction to Radial Basis Functions 

Radial basis functions (RBFs) were first developed to interpolate a set of data points in a 

multidimensional space (Powell, 1987). Since then, several advancements have been 

made and numerous methods have been developed that enable the use of radial basis 

functions to approximate non-linear multivariate functions using only the observed 

input(s) and output(s) of the system (Orr, 1996). 

Consider a system with inputs,  

  [

          

          

    
          

]                                             (   ) 

where each row represents a different input,   is the total number of inputs and   is the 

total number of samples. 
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The output is represented as   [

  

  

 
  

]. For any integers   and  , 

   [

   

   

 
   

]         [

   

   

 
   

]                          (   ) 

A function  ( ) must be found that maps each input to the output such that 

    (  )                                                 (   ) 

According to Powell (1987), an exact mapping can be achieved by using   basis 

functions of the form  (‖     ‖), where  ( ) is some non-linear function termed as the 

basis function,    is the input data coordinate,    is the coordinate representing the centre 

of the basis function, and || || denotes the Euclidean distance between    and   .  

The Euclidean distance, between    and    is calculated as 

‖     ‖  √(       )
 
 (       )

 
   (       )

 
          (   ) 

Hence, in equation (7.2),  (  ) can be represented as a linear combination of these basis 

functions as 

    (  )     ∑  

 

   

   (‖     ‖)                                    (   ) 

where    denotes the weights of the respective basis functions and    is a constant term. 

In matrix form, equation (7.5) can be written as 

                                                                  (   ) 

        [

  

  

 
  

]        [

           

           

     
           

]         

[
 
 
 
 
  

  

  

 
  ]

 
 
 
 

                    

For a number of different types of functions, the matrix   is non-singular if the data 

samples are distinct. This implies that a least squares estimate of   in equation (7.6) can 

be calculated. 
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 ̂  (   )                                                         (   ) 

Figure 7.1 shows a diagrammatic representation of the Radial Basis Function network 

with   input samples,   basis functions, one input layer, one hidden layer and one output 

layer. 

 

Figure 7.1 Architecture of a Radial Basis Function Network 

In reality, training an RBF model to the whole data set is not ideal since this implies that 

the model would predict poorly due to any underlying noise in the data being modelled as 

well. To avoid this, several modifications are made to the modelling/training procedure. 

1. The data set to be modelled is split into 2 parts – the training set and the 

validation set. The training set is used to generate the RBF model and the 

validation set is used to test the predictive ability of the generated model. The 

Normalised Root Mean Square Error (NRMSE) of the model predicted output vs. 

the true output is calculated for both data sets. The model that yields the least 

NRMSE for the validation set is selected.  

 

2. The number of basis functions,  , is lesser than the number of data points,  . 

 

3. A bias term is included in the linear sum in equation (7.7) whilst calculating the 

weights (coefficients) of the RBF model. This is done to penalise large weights.  
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where   is the regularisation parameter used to control the trade-off between 

fitting the data and penalising large weights. 

7.3 Gaussian Radial Basis Function 

There exist many different types of basis functions such as Gaussian, Thin Plate Spline, 

Multiquadric, Inverse Quadratic and Inverse Multiquadric. For the purpose of this 

chapter, the choice of the basis function was not that important because upon comparison, 

they all worked well. In this chapter, the Gaussian basis function has been used to 

generate RBF models and is explained in detail.  

The Gaussian basis function is one of the most commonly used basis functions. 

   (‖     ‖)     (
 ‖     ‖

 

   
)                                   (   ) 

where 

    is the input data coordinate,    is the coordinate representing the centre of the 

basis function, 

   is the width of the basis function that controls the smoothness properties of the 

model, and  

For improved training performance, multiple widths can be used, one for each input. 

   (‖     ‖)     (
 (       )

 

    
 

   
(       )

 

    
 

)            (    ) 

where the inputs,   ,   , …,   , are as defined in equations (7.1) and (7.3), and    ,    , 

… ,     are the widths of the gaussian basis functions for the respective inputs. 
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Figure 7.2 Gaussian Basis Function with Centre at (0,0) for 2 Inputs 

7.4 Training a Radial Basis Function Network/Model 

For the purpose of this chapter, a simple, single layer Radial Basis Function Network is 

used to map two inputs to one output. While training the network, three sets of parameters 

need to be optimised if using the Gaussian basis function, namely, the centres of the basis 

functions, the widths of the basis functions and the regularisation parameter. 

7.4.1 Initialisation 

Consider the original data set to have   samples. The data set (input(s) and output(s)) is 

split into two halves – training set and validation set. The training set consists of   

samples and the validation set consists of (   ) samples. 

  represents the input matrix, consisting of 2 different input series,    and   , and   

represents the output matrix, consisting of 1 output. 
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The input matrix can also be written as 

  [     ]                 [
   

   
]                

Initialise the regularisation parameter,  , to a reasonable value, say, 1E-08. This value is 

carefully selected after testing a range of different values using various simulations. 

If using Gaussian basis functions, initialise the widths for each set of inputs,     and     

to 

    
           

√   
     

           

√   
                            (    ) 

where       and       are the maximum and minimum values, respectively, of the 

input,   , amongst the given   samples in the training set.       and       are the 

maximum and minimum values, respectively, of the input,   , amongst the given   

samples in the training set.  

7.4.2 Selection of Centres 

Step 1. The RBF model is trained using the training set,       . The number of basis 

functions is initialised to be the same as the number of data samples,  . All the 

data samples of the input,  , are set as the centres,   , of the basis functions. 

   [
   

   
]                                                             (    ) 

                                                                  (    ) 

                 [

           

           

     
           

]    

[
 
 
 
 
  

  

  

 
  ]

 
 
 
 

  

   is the input data coordinate,    is the coordinate representing the centre of the 

basis function, and   is the weight sequence.     is calculated as shown in 

equation (7.10). 

Step 2. Orthogonal Forward Regression with ERR (Chen et al., 1989) (explained in 

Section 3.3.3) is used on equation (7.13) to determine the key centres of the basis 

functions since each column in the matrix,       , represents the value of a basis 

function at a particular centre. 
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Step 3. The ERR cut-off value is set to the upper limit of a user-specified range, and the 

number of centres, and hence, number of basis functions is reduced to  . 

Equation (7.13) becomes 

[

  

  

 
  

]  [

           

           

     
           

]

[
 
 
 
 
  

 

  
 

  
 

 
  

 ]
 
 
 
 

                            (    ) 

             
                                                      (    ) 

Step 4. The optimal weight matrix,     is calculated using 

    [(      
 )       

    ]        
                          (    ) 

where   is the regularisation parameter. 

Step 5. Next, the performance of the above obtained RBF model is tested on the 

validation set. With the centres as selected in step 3, the one-step ahead estimates 

of the output for the validation set are calculated as follows: 
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Step 6. The Normalised Root Mean Square Error (NRMSE) between the actual output, 

    , and the predicted output,      
 
, is calculated. 
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Step 7. The ERR cut-off value is gradually lowered to the lower limit of the user-

specified range, in increments. As the ERR cut-off value is reduced, the number 

of centres being included in the model,  , increases. Steps 3 to 6 are carried out 

for each iteration. The NRMSE of the validation set is calculated for each 

iteration and the number of centres,  , yielding the least NRMSE is selected. 

7.4.3 Selection of Width(s) of the Gaussian Basis Functions 

Step 8. The widths of the Gaussian basis functions,     and    , are to be optimised to 

values that yield the least NRMSE for the validation set. The widths are 

optimised within a user-specified range, one at a time. First, initialise     to the 

lower limit of the user-specified range. The value of     kept constant (as 

calculated in equation (7.11)). 

 

Step 9. Once the centres of the basis functions have been selected, the number of basis 

functions is  . The RBF model can be written as 
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    is calculated as shown in equation (7.10). 

 

Step 10.  The optimal weight matrix,     is calculated using 
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where   is the regularisation parameter. 

 

Step 11.  Next, the performance of the above obtained RBF model is tested on the 

validation set. The one-step ahead estimates of the output for the validation set 

are calculated as follows: 
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Step 12.  The Normalised Root Mean Square Error (NRMSE) between the one-step-

ahead estimate of the output,      
 
, and the actual output,     , is calculated 

using equation (7.19). 

 

Step 13. The value of     is gradually increased to the upper limit of the user-specified 

range, in increments. Steps 9 to 12 are carried out for each iteration. The 

NRMSE of the validation set is calculated for each iteration and the width,    
 , 

yielding the least NRMSE is selected. 

 

Step 14. Keeping     constant as the calculated optimal value,    
 , steps 9 to 12 are 

carried out for     for a user-specified range. The NRMSE of the output vs. the 

one-step-ahead estimate of the RBF model for the validation set is calculated 

for each iteration and the width,    
 , yielding the least NRMSE is selected. 

7.4.4 Selection of Regularisation Parameter  

Step 15. The centres have been selected and the widths have been optimised to    
  and 

   
 . Using these optimised values, steps 9 to 12 are carried out for   for a user-

specified range of regularisation parameters. The NRMSE of the output vs. the 

one-step-ahead estimate of the RBF model for the validation set is calculated 

for each iteration and the regularisation parameter,   , yielding the least 

NRMSE is selected. 

7.5 Generating a Non-Linear Estimate of the Variance in a 

GARCH Model Using RBFs 

An ARCH estimate of the variance of a GARCH model, when the true variance is 

unknown, works well as a linear estimate of the variance of a GARCH model. But if the 

true variance is non-linear, an ARCH estimate is unable to capture the underlying non-

linearity of the true variance of the GARCH model (Franses and Van Dijk, 1996). Since 

the true variance and the true residuals of a GARCH model are unobservable, an RBF 

model is used as a means to obtain a non-linear estimate of the variance of a GARCH 

model that is more accurate than a linear estimate of the variance of the GARCH model. 

The residuals in a GARCH model can be estimated using Weighted Orthogonal Forward 

Regression (Zhao, 2010) described in Section 3.3.4. These residuals can then be used to 

generate an initial linear ARCH estimate of the variance. An RBF model is then fitted to 
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the ARCH variance estimate using the past squared residuals and the past values of the 

ARCH variance estimate. Finally, the coefficients of the obtained RBF model fitted to the 

ARCH variance estimate are further optimised using maximum likelihood. 

7.5.1 Algorithm 

Consider a simulated non-linear GARCH variance model where  ( ) is the simulated 

(true) variance (unknown and unavailable in the real world) and   ( ) is the squared 

residual, both at an instant in time,  . It is assumed that the true residuals,  ( ), and the 

true squared residuals,   ( ), are available. 

(      ) data points are generated and the first 1000 are discarded to avoid initial 

condition errors. When simulating the variance, the residuals  ( ) are modelled as 

 ( )    ( )√ ( ) (Engle, 2001), where  ( ) is a random independent and identically 

distributed (i.i.d) term that has zero mean and a variance of 1. 

Step 1. An ARCH( ) estimate of the variance is obtained from the simulated residuals, 

 ( ), using maximum likelihood. 

 ̂( )        
 (   )     

 (   )       
 (   )      (    ) 

where  ̂( ) is the ARCH estimate of the variance,   (   ) is the lagged squared 

residual,   is the total number of coefficients to be optimised and            

are the coefficients to be optimised using maximum likelihood (See Section 6.3). 

 

Step 2. Divide all the available data series into 2 sets - training set and validation set. The 

training set consists of   samples and the validation set consists of (   ) 

samples. 

 

Step 3.  ̂     ( ) is set as the output series for the training set.  ̂   ( ) is set as the output 

series for the validation set. The inputs can be set as one or more of the 

following:  ̂     (   )       
 (   )           (   ), where           are 

integers ≥ 1. The respective inputs for the validation set are formulated using 

 ̂   (   )     
 (   )         (   ). Consider        . The input and 

output matrices are constructed as 
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Using the inputs,        and     , and outputs,   ̂      and  ̂   , in the training 

and validation set, a suitable RBF model is obtained using the training algorithm 

described in Section 7.4. This RBF model is referred to as Model 1. 

 

Step 4. The number of centres (or basis functions) in the obtained RBF model (Model 1) 

is represented by  . The centres are represented as 

   [

 ̂ 

  
 

  

]                                                    (    ) 

The obtained RBF model is represented as follows 
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For Gaussian basis functions, 

       (
 ( ̂   ̂ )
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)           (    ) 

   is the input data coordinate,    is the coordinate representing the centre of the 

basis function, and   is the weight sequence.   ̂      and    are the widths of the 

basis functions corresponding to the three respective inputs. 

 

Step 5. The optimal weight matrix,   is calculated using 

  [(      )
          ]         ̂                           (    ) 
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where   is the regularisation parameter. 

 

Step 6. As explained in section 6.3.3, for the GARCH class of variance models, the 

variance,  ̂( ), the random i.i.d sequence,  ( ) and the residuals,  ( )  

 ( )√ ̂( ) are assumed to have a Gaussian probability distribution function as 

shown in equation (6.4). The average log-likelihood is calculated as shown in 

equation (6.5). Due to the use of the regularisation parameter,  , in the 

calculation of  , the average log-likelihood is now calculated as 

  ∑( 
 

 
  ( ̂( ))  

  ( )

  ̂( )
)

 

   

  | |                         (    ) 

where   denotes the number of samples, and | | denotes the   -norm of the 

weight matrix,  , and is calculated as 

| |  √∑  
 

 

   

                                                  (    ) 

Step 7. The next step is to optimise the weights,  , of Model 1 such that the log-

likelihood function,  , is maximised. Four approaches of optimisation are tested 

and the final results are compared. 

Approach 1. Unconstrained Maximisation of the Log-Likelihood of the 

Variance for the Validation Set: Unconstrained optimisation of   is 

carried out while maximising the log-likelihood of the one-step-ahead 

variance estimate of Model 1 for the validation set. The ‘fminunc’ 

routine in MATLAB is used to perform unconstrained minimisation of 

the negative log-likelihood function. 

 

Approach 2. Unconstrained Maximisation of the Log-Likelihood of the 

Variance for the Training and Validation Set: Unconstrained 

optimisation of   is carried out while maximising the sum of the log-

likelihood values of the one-step-ahead variance estimate of Model 1 for 

both, the training and validation sets. The ‘fminunc’ routine in MATLAB 

is used to perform unconstrained minimisation of the negative log-

likelihood function. 
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Approach 3. Constrained Maximisation of the Log-Likelihood of the Variance 

for the Validation Set: Constrained optimisation of   is carried out while 

maximising the log-likelihood values of the one-step-ahead variance 

estimate of Model 1 for the validation set. Of all the local maximums 

obtained, the parameters that yield the maximum sum of log-likelihood 

of the one-step-ahead variance estimate for the training and validation 

sets is selected. The ‘MultiStart’ routine in MATLAB is used to perform 

constrained minimisation of the negative log-likelihood function. 

 

Approach 4. Constrained Maximisation of the Log-Likelihood of the Variance 

for the Training and Validation Set: Constrained optimisation of   is 

carried out while maximising the sum of the log-likelihood of the one-

step-ahead variance estimate of Model 1 for the training and validation 

sets. The ‘MultiStart’ routine in MATLAB is used to perform constrained 

minimisation of the negative log-likelihood function. 

Constrained maximisation of the likelihood poses a problem – the parameter bounds for 

the optimisation of the weights,  , of Model 1, are unknown and cannot be determined. 

For this reason, to determine suitable target weights to be achieved via optimisation of  , 

Model 1 is fitted to the true/simulated variance,  ( ). The weights that estimate the true 

variance using the structure of Model 1 are obtained. 

Step 8. Consider the model obtained in Step 4. The true variance,  ( ), is split into 2 sets 

– the training set and the validation set. The training set consists of   samples and 

the validation set consists of (   ) samples. 

       [

  

  

 
  

]         [

    

    

 
  

]  

Using        from equation (7.28), the weights,      , that best estimate the true 

variance are calculated. 

      [(      )
          ]                                (    ) 

Ideally, optimisation of the weights,  , using maximum likelihood (described in 

Steps 6 and 7), should result in a final weight matrix that is equivalent to      . 
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Step 9. The parameter bounds required in Steps 6 and 7 for constrained optimisation of 

the weights using maximum likelihood are calculated using the starting weights, 

 , and the target weights,       , obtained in Step 8. Let    be the     element 

in  , and     be the     element in      . The upper bounds and lower bounds 

for every possible combination of    and     are listed in Table 7.1. 

Table 7.1 Calculation of Upper and Lower Bounds for Constrained Maximum 

Likelihood 

Condition Lower Bound Upper Bound 

         

                          

                          

                        

                       

         

                          

                          

                        

                       

 

Step 10. Let    represent the final optimised weights obtained after optimisation. The 

final one-step-ahead variance estimates for the training and validation set are 

calculated as 

 ̂     
 
                                                      (    ) 

 ̂   
 
                                                       (    ) 

where        and      are as calculated in step 4. 

 

Step 11. The accuracy of the estimates is obtained by calculating 

NRMSE(        ̂     
 
) and NRMSE(      ̂   

 
) as shown in equation (7.19). 

If these values are lesser than NRMSE(        ̂     ) and NRMSE(      ̂   ), 

where  ̂      and  ̂    are ARCH estimates of the true GARCH variance, the 

obtained non-linear variance estimates,  ̂     
 
 and  ̂   

 
, are better than the 

linear ARCH estimates,  ̂      and  ̂   . 

7.6 Simulations 

7.6.1 Simulation 1: SQR-GARCH Model 

Consider the following SQR-GARCH variance model 
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 ( )       (   )     
 (   )     (   )                     (    ) 

where  ( ) is the simulated/true variance,  ( ) is the residual, and   ( ) is the squared 

residual, all at an instant in time,  .         and    are the parameters of the variance 

model. When simulating the variance from equation (7.38), the residuals  ( ) are 

modelled as  ( )    ( )√ ( ), where  ( ) is a random independent and identically 

distributed (i.i.d) term that has zero mean and a variance of 1. The values of the 

parameters of the SQR-GARCH model are listed in Table 7.2. 

Table 7.2 Parameters of the simulated SQR-GARCH variance model 

Parameter of the Variance Model Value 

  1.0E-05 

   0.8 

   1E-04 

   1E-03 

 

 

Figure 7.3 Simulated SQR-GARCH Variance, Estimated ARCH(25) Variance and 

Prediction Error 

5000 data points are generated and the first 1000 are discarded to avoid initial condition 

errors. Hence, the total number of samples,  , is 4000. For a GARCH(p,q) model, the 
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initial condition,  ( ) is calculated as shown in equation (2.10). For the same reasons 

given in Section 4.4, an ARCH(25) variance estimate,  ̂ ( ), is generated using the true 

squared residuals,   ( ). The simulated variance, the ARCH(25) variance estimate and 

the prediction error between the two are shown in Figure 7.3. The NRMSE between the 

simulated variance and the ARCH(25) variance estimate is calculated to be 60.7380%. 

All the available data series are split into 2 sets – training set and validation set. The 

training set consists of the first 2000 samples and the validation set consists of the 

remaining 2000 samples (      ). 

An RBF model is to be fitted to the ARCH(25) variance estimate,  ̂ ( ).  ̂ (   ) 

 (   ) and   (   ) are used as inputs. The hyper-parameters of the Gaussian basis 

functions are initialised as explained in Section 7.4.1. 

Selection of Centres: The ERR cut-off values are reduced from 1% to 0.1% in increments 

of 0.1%, and 0.09% to 0.05% in increments of 0.01%. The significant centres are selected 

via OFR and the NRMSE between the RBF model one-step-ahead estimate and the 

ARCH(25) variance estimate for the training and validation sets are calculated for each 

iteration. The progression of the NRMSE between the RBF model one-step-ahead 

estimate and the ARCH(25) variance estimate for the training and validation sets while 

selecting the centres is shown in Figure 7.4. 

 

Figure 7.4 Progression of NRMSE for Training and Validation Sets for Selection of 

Centres of Gaussian Basis Functions for Example 1 
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The NRMSE between the RBF model one-step-ahead estimate and the ARCH(25) 

variance estimate for the training and validation sets are least in the final iteration. The 

number of centres selected,  , is 123. Figure 7.5 shows the selected centres in red circles 

for all the 3 inputs. 

 

Figure 7.5 Selected Centres (Red Circles) for all Inputs for Example 1 

Selection of Hyper-parameters of Basis Functions: The widths of the basis functions, 

  ̂      and   , and the regularisation parameter,  , are all optimised.   ̂      and    are 

the widths of the basis functions corresponding to the three respective inputs. The initial 

values, range of optimisation, and optimised values of the hyper-parameters are listed in 

Table 7.3. 

Table 7.3 Optimised Values of Hyper-parameters of the Gaussian Basis Functions 

for Example 1 

Hyper-parameters of 

Gaussian Basis Function 

Initial 

Value 

Range of 

Optimisation 

Optimised 

Value 

  ̂ 1E-05 1E-05 to 1E-01 0.0016 

    1E-05 1E-05 to 1E-01 0.0056 

   0.03 2.9E-02 to 5 0.031 

  1E-08 4E-09 to 1E-01 6.3E-04 
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The progression of the NRMSE between the RBF model one-step-ahead estimate and the 

ARCH(25) variance estimate for the training and validation sets for the selection of the 

regularisation parameter is shown in Figure 7.6, and the same for the selection of the 

widths is shown in Figure 7.7. 

 

Figure 7.6 Progression of NRMSE for Training and Validation Sets for Selection of 

Regularisation Parameter for Example 1 

This obtained RBF Model with optimised hyper-parameters, fitted to the ARCH(25) 

variance estimate is referred to as Model 1. Figure 7.8 shows the plots of the ARCH(25) 
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between them, all for the training and validation set.  
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Figure 7.7 Progression of NRMSE for Training and Validation Sets for Selection of 

Widths of Gaussian Basis Functions for Example 1 
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Figure 7.8 Outputs (ARCH(25) Variance Estimate) vs. RBF Model Estimate vs. 

Prediction Error for Training and Validation Set for Example 1 
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Table 7.4 shows the values of the NRMSE between the true variance,  ( ), and all the 

model estimates,  ̂ ( ),  ̂  ( ) and  ̂  ( ), for the training set and the validation set. 

Table 7.4 NRMSEs between True Variance and All Model Estimates for Example 1 

 
      

( ( )  ̂ ( )) 

      

( ( )  ̂  ( )) 

      

( ( )  ̂  ( )) 

Training Set 57.3505% 55.6473% 20.9679% 

Validation Set 63.7313% 60.5615% 23.5443% 

Average 60.5409% 58.1044% 22.2561% 

 

     ( ( )  ̂ ( )) is the NRMSE between the true variance and the ARCH(25) 

variance estimate.      ( ( )  ̂  ( )) is the NRMSE between the true variance and 

the one-step-ahead estimate of Model 1. It represents the initial NRMSE before the 

parameters of Model 1 are optimised via maximum likelihood.      ( ( )  ̂  ( )) is 

the NRMSE between the true variance and the one-step-ahead estimate of Model 2. It 

represents the desired NRMSE after optimisation of Model 1 parameters via maximum 

likelihood. 

The final step is the optimisation of the parameters of Model 1 using maximum 

likelihood. As explained in Step 7 of Section 7.5.1, four approaches of optimisation are 

tested and the final results are compared.  ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ) are the 

one-step-ahead variance estimates generated after optimisation via Approach 1, 2, 3 and 4 

respectively. Table 7.5 shows the log-likelihood values of all the model estimates, 

 ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ), for the training set and the validation set.  

Table 7.6 shows the values of the NRMSE between the true variance,  ( ), and all the 

model estimates,  ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ), for the training set and the 

validation set. 

Table 7.5 Log-Likelihood Values of All ML-Optimised RBF Model One-Step-Ahead 

Estimates for Example 1 

  ( ̂   ( ))  ( ̂   ( ))  ( ̂   ( ))  ( ̂   ( )) 

Training Set 4626.20 4631.20 4629.50 4636.80 

Validation Set 4688.80 4688.80 4695.20 4692.30 

Average 4657.50 4660.00 4662.35 4664.55 
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Table 7.6 NRMSEs between True Variance and All ML-Optimised RBF Model One-

Step-Ahead Estimates for Example 1 

 
      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

Training Set 41.4969% 41.9827% 46.4295% 38.0683% 

Validation Set 39.8547% 43.1538% 60.2026% 47.3739% 

Average 40.6578% 42.5682% 53.3161% 42.7211% 

 

Of all the four approaches, Approach 4 yields a one-step-ahead variance estimate that has 

the highest log-likelihood and Approach 1 yields a one-step-ahead variance estimate that 

has the least NRMSE with the true variance. A variance estimate that has much better 

accuracy than a linear ARCH(25) estimate is obtained. 

7.6.2 Simulation 2: NL-GARCH Model 

Consider the following NL-GARCH variance model 

 ( )       (   )     (   )     (   )     (   )  (   )

    
 (   )     

 (   )     (   )  (   )                      (    ) 

where all the terms have the same definition as in the previous example (Section 7.6.1, 

equation (7.38)). The values of the parameters of the NL-GARCH model are listed in 

Table 7.7. 

Table 7.7 Parameters of the simulated NL-GARCH variance model 

Parameter of the Variance Model Value 

  1E-05 

   0.92 

   -0.06 

  0.05 

   8 

   8 

   30 

   0.1 

 

5000 data points are generated and the first 1000 are discarded to avoid initial condition 

errors. Hence, the total number of samples,  , is 4000. For a GARCH(p,q) model, the 

initial condition,  ( ) is calculated as shown in equation (2.10). An ARCH(25) variance 
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estimate,  ̂ ( ), is generated using the true squared residuals,   ( ). The simulated 

variance, the ARCH(25) variance estimate and the prediction error between the two are 

shown in Figure 7.9. The NRMSE between the simulated variance and the ARCH(25) 

variance estimate is calculated to be 35.7650%. 

 

Figure 7.9 Simulated NL-GARCH Variance, Estimated ARCH(25) Variance and 

Prediction Error 

All the available data series are split into 2 sets – training set and validation set. The 

training set consists of the first 2000 samples and the validation set consists of the 

remaining 2000 samples (      ). 

An RBF model is to be fitted to the ARCH(25) variance estimate,  ̂ ( ).  ̂ (   )  (  

 ) and   (   ) are used as inputs. The hyper-parameters of the Gaussian basis 

functions are initialised as explained in Section 7.4.1. 

Selection of Centres: The ERR cut-off values are reduced from 1% to 0.1% in increments 

of 0.1%, and 0.09% to 0.07% in increments of 0.01%. The significant centres are selected 

via OFR and the NRMSE between the RBF model one-step-ahead estimate and the 

ARCH(25) variance estimate for the training and validation sets are calculated for each 
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iteration. The progression of the NRMSE between the RBF model one-step-ahead 

estimate and the ARCH(25) variance estimate for the training and validation sets while 

selecting the centres is shown in Figure 7.10. 

 

Figure 7.10 Progression of NRMSE for Training and Validation Sets for Selection of 

Centres of Gaussian Basis Functions for Example 2 

The NRMSE between the RBF model one-step-ahead estimate and the ARCH(25) 

variance estimate for the training and validation sets are least in the final iteration. The 

number of centres selected,  , is 48. Figure 7.11 shows the selected centres in red circles 

for all the 3 inputs. 

Selection of Hyper-parameters of Basis Functions: The widths of the basis functions, 

  ̂      and   , and the regularisation parameter,  , are all optimised. The initial values, 

range of optimisation, and optimised values of the hyper-parameters are listed in Table 

7.8. 
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Figure 7.11 Selected Centres (Red Circles) for all Inputs for Example 2 

 

Table 7.8 Optimised Values of Hyper-parameters of the Gaussian Basis Functions 

for Example 2 

Hyper-parameters of 

Gaussian Basis Function 

Initial 

Value 

Range of 

Optimisation 

Optimised 

Value 

  ̂ 1E-05 1E-06 to 1E-01 0.0146 

    1E-05 1E-06 to 1E-01 0.0006 

   0.03 1.6E-02 to 1 0.0280 

  1E-08 5E-11 to 1E-01 1E-08 

 

The progression of the NRMSE between the RBF model one-step-ahead estimate and the 

ARCH(25) variance estimate for the training and validation sets for the selection of the 

regularisation parameter is shown in Figure 7.12, and the same for the selection of the 

widths is shown in Figure 7.13. 
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Figure 7.12 Progression of NRMSE for Training and Validation Sets for Selection of 

Regularisation Parameter for Example 2 

This obtained RBF Model with optimised hyper-parameters, fitted to the ARCH(25) 

variance estimate is referred to as Model 1. 

Obtaining RBF Model Parameter Estimates for the Simulated/True Variance: The 

parameter estimates of Model 1 when fitted to the true variance are obtained, as explained 

in Step 9 of Section 7.5.1. This model is referred to as Model 2. The one-step-ahead 

estimate of Model 2,  ̂  ( ), is generated.  

Table 7.9 NRMSEs between True Variance and All Model Estimates for Example 2 

 
      

( ( )  ̂ ( )) 

      

( ( )  ̂  ( )) 

      

( ( )  ̂  ( )) 

Training Set 36.0663% 36.9880% 27.4546% 

Validation Set 35.8235% 33.3562% 36.1114% 

Average 35.9449% 35.1721% 31.7830% 

 

Table 7.9 shows the values of the NRMSE between the true variance,  ( ), and all the 

model estimates,  ̂ ( ),  ̂  ( ) and  ̂  ( ), for the training set and the validation set. 
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     ( ( )  ̂ ( )),      ( ( )  ̂  ( )) and      ( ( )  ̂  ( )) have the 

same definitions as in the previous simulation (Section 7.6.1). 

 

Figure 7.13 Progression of NRMSE for Training and Validation Sets for Selection of 

Widths of Gaussian Basis Functions for Example 2 
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The final step is the optimisation of the parameters of Model 1 using maximum 

likelihood. As explained in Step 7 of Section 7.5.1, four approaches of optimisation are 

tested and the final results are compared.  ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ) have 

the same definitions as in the previous simulation (Section 7.6.1). 

Table 7.10 shows the log-likelihood values of all the one-step-ahead model estimates, 

 ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ), for the training set and the validation set.  

Table 7.11 shows the values of the NRMSE between the true variance,  ( ), and all the 

one-step-ahead estimates,  ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ), for the training set 

and the validation set. 

Table 7.10 Log-Likelihood Values of All ML-Optimised RBF Model One-Step-

Ahead Estimates for Example 2 

  ( ̂   ( ))  ( ̂   ( ))  ( ̂   ( ))  ( ̂   ( )) 

Training Set 6065.20 6067.00 6065.30 6067.60 

Validation Set 6167.20 6166.60 6167.90 6166.00 

Average 6116.20 6116.80 6116.60 6116.80 

 

Table 7.11 NRMSEs between True Variance and All ML-Optimised RBF Model 

One-Step-Ahead Estimates for Example 2 

 
      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

Training Set 35.7383% 34.9004% 42.9073% 39.9970% 

Validation Set 36.3289% 32.6695% 40.2260% 36.9785% 

Average 36.0336% 33.7849% 41.5667% 38.4877% 

 

Of all the four approaches, Approaches 2 and 4 yield one-step-ahead variance estimates 

that have the highest log-likelihood and Approach 2 yields a one-step-ahead variance 

estimate that has the least NRMSE with the true variance. A variance estimate that has 

slightly better accuracy than a linear ARCH(25) estimate is obtained. 

7.6.3 Simulation 3: NA-GARCH Model 

Consider the following NL-GARCH variance model 

 ( )      (   )   ( (   )   √ (   ))
 
              (    ) 
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where all the terms have the same definition as in the first example (Section 7.6.1, 

equation (7.38)). The values of the parameters of the NL-GARCH model are listed in 

Table 7.12. 

Table 7.12 Parameters of the simulated NA-GARCH variance model 

Parameter of the Variance Model Value 

  1E-05 

  0.8322 

  0.1074 

  -0.3072 

 

5000 data points are generated and the first 1000 are discarded to avoid initial condition 

errors. Hence, the total number of samples,  , is 4000. For a GARCH(p,q) model, the 

initial condition,  ( ) is calculated as shown in equation (2.10). An ARCH(25) variance 

estimate,  ̂ ( ), is generated using the true squared residuals,   ( ). The simulated 

variance, the ARCH(25) variance estimate and the prediction error between the two are 

shown in Figure 7.14. The NRMSE between the simulated variance and the ARCH(25) 

variance estimate is calculated to be 32.3715%. 

 

Figure 7.14 Simulated NA-GARCH Variance, Estimated ARCH(25) Variance and 

Prediction Error 
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All the available data series are split into 2 sets – training set and validation set. The 

training set consists of the first 2000 samples and the validation set consists of the 

remaining 2000 samples (      ). 

An RBF model is to be fitted to the ARCH(25) variance estimate,  ̂ ( ).  ̂ (   )  (  

 ) and   (   ) are used as inputs. The hyper-parameters of the Gaussian basis 

functions are initialised as explained in Section 7.4.1. 

Selection of Centres: The ERR cut-off values are reduced from 1% to 0.1% in increments 

of 0.1% and 0.09% to 0.07% in increments of 0.01%. The significant centres are selected 

via OFR and the NRMSE between the RBF model one-step-ahead estimate and the 

ARCH(25) variance estimate for the training and validation sets are calculated for each 

iteration. The progression of the NRMSE between the RBF model one-step-ahead 

estimate and the ARCH(25) variance estimate for the training and validation sets while 

selecting the centres is shown in Figure 7.15. 

 

Figure 7.15 Progression of NRMSE for Training and Validation Sets for Selection of 

Centres of Gaussian Basis Functions for Example 3 

The NRMSE between the RBF model one-step-ahead estimate and the ARCH(25) 

variance estimate for the training and validation sets are least in the final iteration. The 

number of centres selected,  , is 92. Figure 7.16 shows the selected centres in red circles 

for all the 3 inputs. 
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Figure 7.16 Selected Centres (Red Circles) for all Inputs for Example 3 

Selection of Hyper-parameters of Basis Functions: The widths of the basis functions, 

  ̂      and   , and the regularisation parameter,  , are all optimised. The initial values, 

range of optimisation, and optimised values of the hyper-parameters are listed in Table 

7.13.  

Table 7.13 Optimised Values of Hyper-parameters of the Gaussian Basis Functions 

for Example 3 

Hyper-parameters of 

Gaussian Basis Function 

Initial 

Value 

Range of 

Optimisation 

Optimised 

Value 

  ̂ 1E-05 1E-06 to 1E-01 0.0061 

    1E-05 1E-06 to 1E-01 0.0031 

   0.03 1.3E-02 to 1 0.21 

  1E-03 2E-10 to 1E-01 1.0E-03 

 

The progression of the NRMSE between the RBF model one-step-ahead estimate and the 

ARCH(25) variance estimate for the training and validation sets for the selection of the 

regularisation parameter is shown in Figure 7.17, and the same for the selection of the 

widths is shown in Figure 7.18. 
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Figure 7.17 Progression of NRMSE for Training and Validation Sets for Selection of 

Regularisation Parameter for Example 3 

This obtained RBF Model with optimised hyper-parameters, fitted to the ARCH(25) 

variance estimate is referred to as Model 1. 

Obtaining RBF Model Parameter Estimates for the Simulated/True Variance: The 

parameter estimates of Model 1 when fitted to the true variance are obtained, as explained 

in Step 9 of Section 7.5.1. This model is referred to as Model 2. The one-step-ahead 

estimate of Model 2,  ̂  ( ), is generated. Table 7.14 shows the values of the NRMSE 

between the true variance,  ( ), and all the model estimates,  ̂ ( ),  ̂  ( ) and  ̂  ( ), 

for the training set and the validation set.      ( ( )  ̂ ( )),      ( ( )  ̂  ( )) 

and      ( ( )  ̂  ( )) have the same definitions as in the first simulation (Section 

7.6.1). 

Table 7.14 NRMSEs between True Variance and All Model Estimates for Example 3 

 
      

( ( )  ̂ ( )) 

      

( ( )  ̂  ( )) 

      

( ( )  ̂  ( )) 

Training Set 30.1543% 28.8163% 27.9729% 

Validation Set 37.6921% 36.3301% 36.1646% 

Average 33.9232% 32.5732% 32.0687% 
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Figure 7.18 Progression of NRMSE for Training and Validation Sets for Selection of 

Widths of Gaussian Basis Functions for Example 3 

The final step is the optimisation of the parameters of Model 1 using Maximum 

Likelihood. As explained in Step 7 of Section 7.5.1, four approaches of optimisation are 

tested and the final results are compared.  ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ) have 

the same definitions as in the first simulation (Section 7.6.1). 
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Table 7.15 shows the log-likelihood values of all the one-step-ahead model estimates, 

 ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ), for the training set and the validation set.  

Table 7.16 shows the values of the NRMSE between the true variance,  ( ), and all the 

one-step-ahead estimates,  ̂   ( ) ,  ̂   ( ),  ̂   ( )  and  ̂   ( ), for the training set 

and the validation set. 

Table 7.15 Log-Likelihood Values of All ML-Optimised RBF Model One-Step-

Ahead Estimates 

  ( ̂   ( ))  ( ̂   ( ))  ( ̂   ( ))  ( ̂   ( )) 

Training Set 5714.70 5715.00 5715.10 5715.00 

Validation Set 5856.80 5856.70 5856.60 5856.70 

Average 5785.75 5785.85 5785.85 5785.85 

 

Table 7.16 NRMSEs between True Variance and All ML-Optimised RBF Model 

One-Step-Ahead Estimates for Example 3 

 
      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

      

( ( )  ̂   ( )) 

Training Set 29.0727% 28.8463% 28.8163% 28.9237% 

Validation Set 36.3739% 36.3133% 36.3301% 36.2886% 

Average 32.7233% 32.5798% 32.5732% 32.6061% 

 

Of all the four approaches, Approaches 2, 3 and 4 yield one-step-ahead variance estimates 

that have the highest log-likelihood and Approach 3 yields a one-step-ahead variance 

estimate that has the least NRMSE with the true variance. A variance estimate that has 

slightly better accuracy than a linear ARCH(25) estimate is obtained. 

7.6.4 Comparison of Simulation Results 

A major disadvantage of constrained optimisation of the parameters of Model 1 (RBF 

model fit to an ARCH estimate of the true GARCH variance) is that the actual constraints 

within which the parameters are to be optimised are unknown and cannot be determined. 

Hence, for the purpose of this chapter, very tight constraints are set within which an 

attempt to find the global maximum of the log-likelihood of the one-step-ahead variance 

estimate of Model 1 is made and it is unknown whether or not the global maximum of the 

log-likelihood is found. 
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The performance of all the four approaches of optimisation of the parameters of Model 1 

is compared for the three examples. Table 7.17 lists the values of the average NRMSE 

between the true variance and all the one-step-ahead model estimates of all the 

approaches, and the average NRMSE between the true variance and the ARCH(25) 

estimate, for all the three examples. 

Table 7.17 Average NRMSEs between True Variance and All ML-Optimised RBF 

Model One-Step-Ahead Estimates for All Examples 

Example 

Avg. 

NRMSE 

( ( )  ̂ ( )) 

Avg. 

NRMSE 

( ( )  ̂   ( )) 

Avg. 

NRMSE 

( ( )  ̂   ( )) 

Avg. 

NRMSE 

( ( )  ̂   ( )) 

Avg. 

NRMSE 

( ( )  ̂   ( )) 

1 60.5409% 40.6578% 42.5682% 53.3161% 42.7211% 

2 35.9449% 36.0336% 33.7849% 41.5667% 38.4877% 

3 33.9232% 32.7233% 32.5798% 32.5732% 32.6061% 

 

For each variance model, the approach that yields a non-linear variance estimate with the 

least NRMSE (calculated vs. the true variance) highlighted. Looking at Table 7.17, the 

following observations are made: 

 Estimates that are more accurate than the linear ARCH(25) estimates are achieved 

for all the examples. 

 For all the examples, Approach 2 is the only method of optimisation of the 

parameters of Model 1 that yields a non-linear variance estimate that has a lesser 

NRMSE (calculated vs. the true variance) than a linear ARCH(25) variance estimate. 

 For highly non-linear GARCH variance models (like Example 1) where a linear 

ARCH(25) is highly inaccurate, the algorithm seems to provide an estimate of the 

GARCH variance with much better accuracy. 

There does not seem to be a definite link between an approach that yields an estimate 

with the highest log-likelihood and an approach that yields an estimate with the least 

NRMSE (calculated vs. the true variance). 

7.7 Conclusions 

This chapter explains in detail the concept of Radial Basis Functions and how RBF 

models are used to approximate linear and non-linear multivariate functions. The 
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procedure used to train an RBF model that maps the given input(s) of the system to be 

modelled to the output(s) of the system is also explained. The training procedure involves 

the optimisation of the position of the centres and the hyper-parameters of the RBF 

model, namely, the width(s) of the basis functions and the regularisation parameter. 

An algorithm to create a non-linear variance estimate using four different approaches of 

maximum likelihood to optimise the coefficients of an RBF model fit to a linear ARCH 

estimate of the variance of a non-linear GARCH model is introduced. The accuracies of 

the four non-linear variance estimates generated as a result of the four different maximum 

likelihood approaches are compared to each other and also to a linear ARCH estimate of 

the true GARCH variance. 

To test whether the algorithm can yield non-linear estimates of a GARCH variance with 

better accuracy than a linear ARCH estimate of the same variance, the algorithm is 

implemented on three different simulated non-linear variance models. Four variations of 

the maximisation of the log-likelihood of the one-step-ahead variance estimate (of an 

RBF model fit to an ARCH estimate of the true GARCH variance) are tested of which 

unconstrained maximisation of the log-likelihood of the one-step-ahead variance estimate 

for the validation set (Approach 1), unconstrained maximisation of the log-likelihood of 

the one-step-ahead variance estimate for the training and validation set (Approach 2) and 

constrained maximisation of the log-likelihood of the one-step-ahead variance estimate 

for the validation set (Approach 3) seem to yield estimates that are more accurate than a 

linear ARCH estimate. Of all the four approaches, only Approach 2 yields a non-linear 

variance estimate that has a lesser NRMSE (calculated vs. the true GARCH variance) 

than a linear ARCH(25) variance estimate for all the examples. 

In reality, since the true variance is unavailable, the NRMSE between the true GARCH 

variance and the variance estimates generated by the four approaches of optimisation 

cannot be calculated. Hence, a method to select the most accurate non-linear variance 

estimate out of the four generated, that does not use the NRMSE (calculated vs. the true 

variance), must be devised. Or, since Approach 2 seems to provide more accurate non-

linear variance estimates, it can be further tested on different non-linear GARCH models. 

Since there is no definite link between an approach that yields an estimate with the 

highest log-likelihood and an approach that yields an estimate with the least NRMSE 

(calculated vs. the true variance), the idea of selecting the approach that yields a non-

linear variance estimate with the highest log-likelihood value is dismissed. 
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Chapter 8  

 

Conclusions and Future Work 

 

Modelling financial volatility is an important topic which has given rise to an enormous 

literature in applied financial economics. Many GARCH-class volatility/variance models 

have been used to model the volatility of financial return series across many markets. But 

compared to the vast effort that has gone into modelling the variance process, the means 

process is modelled in a very primitive way. The mean model is often ignored or a basic 

constant model is fitted to the mean. At the very best, a linear mean model is fitted. The 

possibility of the mean model being non-linear has only recently been explored in detail 

by Zhao (2010). 

A powerful NARMAX based framework to model the means process accurately was 

developed (Zhao, 2010). Accurate term selection and parameter estimation was achieved 

when the underlying means process was non-linear in nature and the structure of the 

variance model was assumed to be known. This thesis extended Zhao’s WOFR 

framework to incorporate the fact that the empirical variance is unknown, and suggested 

new methods for model validation. The impact of under-fitting the mean model on the 

accuracy of the variance estimate was also studied in detail. 

The extended WOFR framework was used to analyse the means process of 2 real 

financial data sets. The results concluded that non-linear models were preferred over 

linear and constant models to describe the means process. The effects of under-fitting the 

mean model on the 2 data sets were also studied. 

The conventional method to fit a variance model also did not involve term selection. The 

structure of the model is arbitrarily chosen based on preliminary tests on the data set, and 

the fitted variance model is then validated. If the model fails validation, a different model 

is selected. The need for a NARMAX based term selection framework for fitting a 

variance model was evident. A NARMAX based WLS approach was developed for 

fitting a variance model as well.  
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The WLS approach for fitting a variance model identifies the true variance model 

correctly only when the underlying variance is linear in nature. The method fails to 

accurately select the non-linear terms present in the true variance model. This is due to 

the fact that the true variance is unobservable, and to model the variance using the WLS 

approach when the true variance is unavailable, a linear estimate of the variance is used. 

Hence, the need for generating a non-linear estimate of the variance without making any 

assumptions about the structure of the variance model is identified. An RBF based 

method to generate a non-linear variance estimate is then introduced to address this 

problem. 

8.1 Main Contributions 

The main contributions of this thesis can be summarised as follows: 

(i) In this thesis, the various GARCH-class volatility models used in the GARCH 

literature and the methods of estimation used have been summarised. The NARMAX 

based WOFR method for the term selection and parameter estimation of the mean 

model when the true variance is known is summarised. The effects of incorrectly 

fitting a linear mean model when the underlying means process is non-linear in 

nature are also studied. The variance estimates are found to be largely inaccurate, 

especially during periods of high volatility, when the mean model is under-fitted. 

(ii) Zhao’s WOFR method of fitting a mean model is extended to include fitting a linear 

noise model and to work when the structure of the variance model is unknown as 

well. Several tests including the ARCH Test and higher order non-linear correlation 

tests are also used to make term selection and model validation more robust. The 

working of the extended framework is first demonstrated on a simulated data set, the 

mean and variance model of which are known. The effects of under-fitting the mean 

model on the accuracy of variance estimates when the true structure of the variance 

model is unknown are also examined. The variance estimates are found to be largely 

inaccurate, especially during periods of high volatility, when the mean model is 

under-fitted. 

(iii) The extended framework is then used to analyse 2 real financial data sets – the 

FTSE100 and the NASDAQ.  The models that best describe the underlying mean 

process of both data sets are derived. The effects of fitting a simple constant mean 

model to these data sets on mean and variance estimation are also examined. The 
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magnitude of the variance estimate generated after fitting a constant mean model is 

found to be larger than the variance estimate generated after fitting the mean model 

selected using the extended WOFR approach. This difference is especially prominent 

during high periods of volatility. This supports the notion that under-fitting the mean 

model causes the predictable elements of the means process to be added on to the 

residuals, which when used to generate a variance estimate, yields a largely 

inaccurate estimate of the variance, especially during periods of high volatility. 

(iv) A WLS approach similar to the one used to accurately select the terms in the mean 

model (Zhao, 2010) is introduced to facilitate term selection for the variance model. 

The performance of the approach in various cases is analysed, and the results listed. 

The approach is found to work well in correctly selecting and estimating the terms of 

a linear variance model, when both, the true residuals and the true variance are 

unknown. However, the approach failed to correctly select the non-linear terms when 

the underlying variance was non-linear in nature. This failure is chalked up to the 

fact that a linear estimate of the variance is used in place of the true variance due to 

the unobservable nature of the true variance.  

(v) An RBF based method for the generation of a non-linear estimate of the variance 

without making any assumptions about the true structure of the variance model was 

developed. The method involved fitting an RBF model to a linear estimate of the 

variance. The parameters of the RBF model were then re-estimated using maximum 

likelihood in order to yield a more accurate estimate of the variance. The method 

was tested on three different data sets. For each data set, the test involved comparing 

the accuracy of a linear variance estimate and the accuracy of a non-linear variance 

estimate. Typically, a residual series was first used to generate a non-linear variance 

series (referred to as the true variance). The same residual series was then used to 

generate a linear estimate of the variance. The newly developed RBF method was 

then used to generate a non-linear estimate of the variance from the residuals. The 

accuracy of the linear variance estimate was compared to that of the non-linear 

variance estimate. For all the three cases that this test was run on, the RBF based 

method yielded more accurate variance estimates. 
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8.2 Limitations 

Some limitations of the work in this thesis are: 

(i) The non-availability of the true variance process. 

(ii) In Chapter 5, a non-linear model is proven to be better than a constant model to 

describe the mean process of a return series, but the constant mean model passes 

standard model validation tests, deeming it to be acceptable, even when the true 

mean process is non-linear in nature. 

(iii) In Chapter 6, a linear estimate of the variance is used in place of the true variance. 

However, non-linear variance models cannot be identified using the WLS approach 

for the selection of the variance model introduced in Chapter 6 due to the fact that a 

linear estimate of the variance is used as a proxy for the true variance. 

(iv) In Chapter 7, four approaches to obtain a non-linear RBF estimate of the variance are 

investigated. The NRMSE of the variance estimates generated using the four 

methods are calculated against the true variance to select the estimate that is the 

closest to the true variance. As mentioned before, however, because the true variance 

is unavailable, the log-likelihood function values of the variance estimates cannot be 

used to select the best variance estimate, since results show that the best variance 

estimate does not necessarily have the highest log-likelihood function value. 

8.3 Suggestions for Future Research 

The suggestions for future research are: 

(i) Alternative proxies for the true variance, like implied volatility and realised 

volatility, can be looked into. However, there are a few obstacles to overcome. The 

implied volatility series is model dependent and many different implied volatility 

series can be derived for a given data set. To extract a legitimate and usable implied 

volatility series, the given options pricing data needs to be cleaned a lot and can only 

be obtained from a data set that has been obtained during a well traded market (high 

trade volumes). This is very time consuming. In this thesis, the frequency of price 

and returns data used is daily. A realised volatility series is obtained from high 

frequency data (1 minute, 5 minute or 15 minute intervals). The basic realised 

volatility of a day is calculated by summing up the high frequency returns for the 

entire day. More advanced formulae exist too. 
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(ii) The framework developed in Chapter 4 is implemented on daily returns of stocks in 

Chapter 5, but can be extended to high frequency (5 minute, 15 minute etc.) returns. 

High frequency data exhibits completely different behaviour than that described in 

this thesis and the returns data are highly heteroskedastic, and hence, the models 

used to model the returns and the variance will be different. 

(iii) The method developed and showcased in Chapters 4 and 5 for one period ahead 

forecasting can be extended to multi-period forecasting and density forecasting. This 

can be achieved by using data of lower frequency (weekly or monthly data). The 

magnitude of underlying variance in lower frequency returns data is much less than 

that observed in daily returns data. Hence, the returns data is less heteroskedastic and 

the mean and variance modelling techniques introduced in this thesis will work 

better. 

(iv) This latter extension in turn suggests the need to look into back-testing (or forecast 

evaluation) methods appropriate to multi-period models. Forecast performance will 

need to be evaluated in order to determine the accuracy of models fitted on different 

data sets, which in turn will indicate how well the model selection and estimation 

method works. 

(v) A non-linear variance estimate generated using the RBF method introduced in 

Chapter 7 can be combined with the WLS approach to fit a variance model 

introduced in Chapter 6. Accuracy of term selection using this non-linear variance 

estimate when the underlying true variance is non-linear in nature can then be 

investigated. Ideally, the non-linear terms in the variance model need to be selected 

when a non-linear variance estimate using the method described in Chapter 7 is used 

as a proxy for the true variance. 
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