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[bookmark: _Toc379467530]ABSTRACT
The objective of this thesis is to investigate how health economic evaluation methods could be applied to optimise clinical trial designs. The study focuses on trial design during the development of new drugs in the pharmaceutical industry. The methods developed account for many of the motivations, constraints, and uncertainties faced by a pharmaceutical company that have not been factored in to previous Expected Net Benefit of Sampling (ENBS) methods. 
The study focussed on Systemic Lupus Erythematosus (SLE) because it is a disease area with a history of failed clinical trials, attributed to poor trial design. Almost no health economic modelling studies had been published in this area. The work in this PhD made substantial contributions to developments in the economic modelling for SLE.
In chapter 2, I systematically reviewed previous clinical trials in SLE and extracted and summarised their design features. In chapter 3, I identified health economic methods that have been used to design clinical trials and which methods would be adopted. In chapter 4, I reviewed observational cohort studies for SLE to develop (i) a conceptual model of SLE (ii) identify quantitative estimates of the natural history of the disease. I found that there was insufficient data from the published literature to describe the natural history of SLE according to the conceptual model so I undertook statistical analysis of an SLE registry. The analysis produces statistical models to extrapolate disease activity, steroid dose, organ damage incidence and mortality over the short and long term. In chapters 6 and 7, I described a Bayesian Clinical Trial Simulation for a Phase III SLE trial to evaluate the value of alternative research designs and a cost-effectiveness model for SLE. In chapter 8, I compared six trial designs for an SLE Phase III RCT using an ENBS approach adapted to the pharmaceutical perspective. For each simulated trial the expected profits were calculated conditional on expected regulatory and reimbursement approval. The study found that the analysis was extremely time consuming and is currently not feasible with individual patient simulation models. However, the framework for evaluating trial designs from a pharmaceutical perspective use value-based pricing can be applied to trial designs in simple decision problems. 
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[bookmark: _Toc379467533]Chapter 1: Introduction
(1) 
The objective of this thesis is to investigate how health economic evaluation methods could be applied during the development of new drugs in the pharmaceutical industry to optimise trial design. The study has a particular focus on Systemic Lupus Erythematosus (SLE) because it is a disease area with a history of failed clinical trials, attributed to poor trial design. SLE is a disease with numerous manifestations and presented an interesting set of methodological challenges, particularly because almost no health economic modelling studies had been published in this area. 
In this introduction I cover the background of how drug development processes work globally, how decision analytic methods are used in health care resource allocation, and describe SLE. In the final section I present the research hypothesis and a summary of the work presented in the thesis.
[bookmark: _Ref355006909][bookmark: _Ref355023608][bookmark: _Ref349233417][bookmark: _Toc278533895][bookmark: _Toc278533955][bookmark: _Toc279009222][bookmark: _Toc379467534]Drug Development Processes
Before new drugs can be prescribed to a patient it is necessary to obtain a license from government agencies such as the FDA (1), or the EMA (2). Both regulators produce clear guidance for industry on what evidence is required to obtain market approval (3;4).  Under both the EMA and the FDA, the drug development process includes preclinical testing; clinical trials with phase 1, 2, and 3 testing; and a final approval procedure. 
Market approval from either the FDA or EMA does not guarantee the reimbursement of new treatments in the United States (US) or Europe. Systems of reimbursement are highly variable between national settings (5).  In the United Kingdom (UK), the National Institute for Health and Care Excellence (NICE) can mandate reimbursement of new treatments (6). NICE does not list all prescription drugs that are eligible for reimbursement, and technology appraisals are selected according to prioritisation criteria (7). Reimbursement decisions not covered by NICE, or rejected by NICE, are made by local commissioners. However, local commissioners are required to reimburse NICE approved technologies. In the US, private health insurance system reimbursement is not centrally regulated. Health insurers are free to determine the insurance formulary (8). Most insurers offer open formularies or allow co-payments for off-formulary prescriptions. However, Medicare drug coverage allows a closed formulary of generics and therapeutic substitutes. 
To aid the narrative of this PhD I propose to define a simple structure for a drug development programme. The rationale behind the regulator's intervention is dual: to guarantee and improve patient health and safety and to limit expenditures on drugs. The system of drug regulation and reimbursement was loosely based on the United Kingdom; however it does not include many of the details and intricacies of pharmaceutical market access.  From the pharmaceutical perspective a drug development programme comprises three phases prior to market approval (9). Phase I trials aim to test the safety of the treatment in a small sample of humans. Phase II trials establish if the drug is effective. Phase III trials confirm the effectiveness and safety of the treatment in a large sample of patients sufficient to demonstrate statistically significant benefits compared with alternative treatment options. After market approval phase IV trials are conducted to determine the real-life value of the treatment and collect data on long-term safety. For simplicity it is assumed that all phases of research are funded by a single pharmaceutical company who is responsible for the drug development. Market restrictions comprise two stages. Firstly, the new treatment must apply for a license for use of the drug for a particular indication. For the purposes of this thesis this body will be referred to as the license regulator. A license is granted based on evidence from all trials up to Phase III and is extremely unlikely to be approved without data from a Phase III trial. Secondly, a separate institution evaluates whether the treatment will be funded by the healthcare provider. For the purposes of this thesis this body will be referred to as the reimbursement authority. The drug is assumed to be reimbursed if the treatment is licensed and can demonstrate cost-effectiveness from a Phase IV trial or evidence for long term costs and benefits from modelling studies. 
From the perspective of the pharmaceutical company there are two outcomes from a drug development programme: success or failure. The drug is a success if it reaches the market due to a successful application for license and reimbursement. The drug is a failure if it is not granted a license or does not achieve reimbursement. 
Within the public sector, the regulation of pharmaceutical markets involves many different organisations at the local (GP consortia), national (6), and supra-national level (2). It is difficult to define a typical process or generalise the processes of drug development. However, it is useful to do so to help contextualise the problems addressed in this PhD and standardise terminology. Whilst I acknowledge that there are limitations to the structure I believe that it captures the main hurdles involved in drug development. This structure is useful because it simplifies regulatory and reimbursement decision criteria, which helps to define the outcome of a drug development programme in terms of success and failure. 
[bookmark: _Toc379467535]What are Decision Theoretic Methods?
[bookmark: _Toc278533901][bookmark: _Toc278533961][bookmark: _Toc279009228][bookmark: _Toc379467536]Bayesian Statistics
The use of Bayesian statistics in decision-making is a significant area of active research and have been applied to great effect in healthcare decision-making (10). Bayesian statistics formalises the process in which we learn from research that has been conducted previously and update our knowledge with new data. In Bayesian statistics, inference of unknown parameters can be conducted using subjective probabilities combined with new data (11). Subjective probabilities express probability statements for an event even if the event is non-repeatable. By incorporating subjective probabilities Bayesian analysis enables probability statements to be made about parameters, whereas frequentist theory does not allow this (12). With Bayesian statistics it is possible to express a probability distribution for the outcomes of a decision problem based on all available evidence. This enables the health economics analyst to express the probability that one treatment is more cost-effective than another at the willingness to pay threshold. This method is particularly useful for decision analysis in healthcare because it has been argued that decisions should be based on the expected value of the decision and it’s uncertainty (13). 
In Bayesian statistics it is necessary to express the current knowledge of unknown parameters as a prior probability distribution before observing the new data x. The prior distribution should be expressed in the form of a probability distribution of the parameters. The information from the new data x is synthesised with the prior distribution to estimate the posterior distribution of parameters, which describes our updated knowledge of new and existing information. Bayes theorem describes how to derive the posterior density function for the unknown parameters after data x have been collected.  
	
	
	(1.1) 


The prior distribution is described by, the model for the data conditional on the parameters is expressed by, which is known as the likelihood function. The denominator,, is a normalising constant to ensure that the posterior distribution integrates to 1. 
The posterior distribution is used in Bayesian statistics to draw inference (12). Therefore, the probability interval is influenced by the prior and data. The posterior distribution can be estimated in a number of ways. Firstly, if the prior probability distribution and data, x, follow a compatible pair of distributions the posterior distribution can be computed explicitly through conjugate analysis. Conjugate distributions exist when the posterior distribution is from the same family of distributions as the prior (10). If the distributions are not conjugate the estimation of the prior is more computationally expensive and is most often estimated using Markov Chain Monte Carlo (MCMC) methods (10). MCMC enables sampling from the posterior distribution even if the posterior does not have a known algebraic form (10). MCMC enables the adoption of Bayesian techniques in more complex models than would be possible with algebraic solutions (12). Complex MCMC problems require specialist software, such as WinBUGS, to sample from the posterior distributions (14). 
[bookmark: _Toc379467537]Decision-Making
The use of Bayesian analyses in decision-making is a growing field of research (10). Decision theory is concerned with identifying the value of two or more competing decision options and identifying the optimal decision. Each option is associated with some value or utility from the consequences of the decision. If the decision-maker had perfect information decision-theory recommends that the optimal decision would be that which maximised utility. However, in most practical applications the value of the decision is uncertain, and there is a risk that a sub-optimal decision will be made. In this situation the consequences of the decision must be assigned probability distributions to reflect uncertainty in future outcomes. The optimal decision is that which maximises the expected utility (15). 
Decision-maker using a health economics framework have adopted Bayesian statistics and Bayesian decision theory as an important component of health technology appraisal (11). Methods for handling of uncertainty in health technology assessment have promoted a Bayesian approach to describing uncertainty in prior parameter inputs (16). 
[bookmark: _Toc379467538]Health Economic Decision-Making
Decision theory has been applied to resource allocation in healthcare sectors (15). Healthcare policy makers are interested in observing the expected utility of resource allocation decisions under conditions of uncertainty. Decisions will be made with some uncertainty, and if a wrong decision is made there is an opportunity cost estimated at the value of the best alternative forgone (17).
Economic evaluation is a branch of health economics concerned with issues related to resource allocation within a health service. The economic perspective in resource allocation incorporates the concept of opportunity cost, which describes the value of opportunity foregone as a result of engaging resources in a particular activity. In health economic terms, the opportunity cost of investing in a given healthcare policy is measured by the health benefits that could have been achieved had the money been spent on the next best policy (17). Efficiency is a key objective of an economic approach to resource allocation and is achieved when health benefits are maximised and opportunity costs are minimised. 
The normative foundations of economic evaluation derive from welfare economics, in which social welfare is a function of individual welfare, as judged by the individual’s preferences between states of the world (18). Under welfarism individual utility is a function of the consumption goods and services from the productive economy. In practice resource allocation according to welfare economics implies a cost-benefit approach. The objective in a cost-benefit analysis is to compare healthcare interventions on two dimensions; cost and consequences, in which the costs and benefits of the policy are measured in monetary units (19). A resource allocation decision is determined through an evaluation of the expected net benefit of a given policy (20).
More recently, some health economists have preferred an “Extra-Welfarist” normative foundation to economic evaluation, which incorporates non-good characteristics into the social welfare function and is founded on the principles of Amatryr Sen (21). The rejection of traditional welfare economics in favour of non-welfarist approaches has coincided with the development of decision maker approaches and cost-effectiveness analysis (22;23). Within a cost-effectiveness analysis the benefits are measured in terms of health output, rather than in monetary units (19). In order to employ a cost-effectiveness analysis framework it is necessary to specify a threshold at which society is willing to pay for a unit of health. Policies whose incremental cost-effectiveness ratio is above the threshold are viewed as being poor value for money in contrast to the opportunity cost of alternative resource allocations (24). 
Cost-effectiveness analysis has been viewed as a deviation from traditional welfare economics and is inconsistent with welfare economic objectives (25). Nonetheless, a cost-utility framework enables the decision-maker to focus on the maximisation of health as the objective of policy decision-making. The practicalities of the approach, and the adoption of a cost per QALY method by the National Institute of Health and Care Excellence, have been instrumental in promoting cost-effectiveness methods in health economics (26). 
Economic evaluations can compare multiple intervention options which can be pharmaceuticals or programmes of care, and can include existing or new innovations in treatment. The value of each intervention can be expressed as the monetary net benefit of the treatment.
	
	
	(1.2) [bookmark: _Ref355006862]


Where e denotes the benefits of the intervention, measured in Quality Adjusted Life Years (QALYs) (the general approach taken in the United Kingdom, Canada and elsewhere), and c is the total cost of the intervention. The term  describes the societal willingness to pay threshold for health benefits. It has been reported that NICE have used a threshold range between £20,000 and £30,000 per QALY gained (24). For the purpose of this thesis I assume that  is fixed at £30,000 per QALY due to the absence of alternative effective treatments for SLE  (27). 
The costs and QALYs for each treatment can be estimated alongside the clinical trial to report a within trial analysis (28). However, this type of assessment only considers the costs and outcomes observed during trial follow-up. A longer time perspective is needed for chronic diseases such as SLE where important health implications occur after the trial follow-up (29). Cost-effectiveness (CE) modelling is frequently adopted in economic evaluation to extrapolate cost and QALY gains beyond trial follow-up (28).
Cost-effectiveness models can be used to evaluate the long term consequences of treatment and have been recommended in a number of review articles (22;24). One advantage of this approach is that the patient outcomes can be extrapolated beyond the period of trial follow-up. Decision-analytic models can be used to synthesise clinical evidence from randomised controlled trials, with epidemiology data, cost-of illness studies and utility estimates. This approach is the most appropriate for use in evaluating SLE treatments because it is a chronic disease. There are several types of modelling structures and the choice of modelling structure should relate to the role of expected values, patient heterogeneity and time (30).  
A CE model comprises a set of input parameters, , to express estimates of treatment effectiveness, disease natural history, costs and utilities. CE models synthesise data from randomised controlled trials, epidemiology data, cost-of illness studies and utility estimates, from which the CE model generates the lifetime costs and QALYs for each intervention. 
I considered a CE model comparing two treatment options to be consistent with the decision problem faced by the Pharmaceutical Company developing a new treatment for SLE. The existing intervention,  would be compared with a new intervention, . The decision whether to adopt the new treatment is made based on the incremental net benefit it provides compared with the existing technology. The CE model can be used to estimate the incremental mean effectiveness and incremental mean costs to give the mean incremental net benefit (INB).
	
	
	(1.3) 


where the expectations of e and c are functions of . Incremental net benefit describes the gains or losses, in monetary terms, of selecting treatment 2 rather than treatment 1. 
CE models account for uncertainty in the input parameters , by drawing samples from the probability distribution of the parameter (31). This approach accounts for the decision maker’s imperfect knowledge of the population parameters. Probabilistic sensitivity analysis (PSA) is used to characterise the input parameter uncertainty surrounding the costs and outcomes of the economic evaluation (13). Probability distributions are assigned to the parameter inputs of the CE model and multiple CE model outcomes are estimated using Monte Carlo (MC) Simulation (32). For each iteration of the PSA , a set of values for  are sampled and  evaluated. This generates a distribution of CE model outcomes and describes uncertainty in the INB. 
[bookmark: _Toc379467539]Value of Information
Decision theory can also be applied to the decision of whether to invest in further research to help inform our decision whether treatment 1 or treatment 2 is optimal. If we are uncertain of the optimal treatment there may be value in collecting further research to reduce the risk that we make a sub-optimal decision. The value of information expresses the amount that the decision maker would be willing to pay for information to reduce the uncertainty in their decision (33). If we have a current posterior for which , but there is uncertainty in INB, there may be some values of  for which the incremental net benefit is negative. We can calculate the value of collected further information by sampling values of  to estimate the expected benefits lost when a wrong decision is made. 
In a commercial setting the value of information must be quantified in terms of the expected profits for the company. The process of valuing information must also assess the chances of regulatory approval, reimbursement and future market competition (10). This leads to a situation where a wrong decision to invest in a trial could lead to zero benefits if the treatment is not granted regulatory approval. In pharmaceutical drug development the risk of failure is important because 19%-30% of compounds that undergo clinical testing are abandoned without obtaining marketing approval (34)
[bookmark: _Toc379467540]Summary
In Bayesian statistics, probabilities are expressions of uncertainty and have been adopted in health economics to evaluate the uncertainty for a decision-maker. Health economic models often incorporate probabilistic sensitivity analysis to evaluate the probability that treatment 2 is optimal compared with treatment 1 given some decision maker’s criteria. More recently health economists have explored the value of data collection for decision-makers if the uncertainty in the cost-effectiveness model indicates that there is a high risk of making a sub-optimal decision.
[bookmark: _Toc379467541]What is Systemic Lupus Erythematosus (SLE)?
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disorder with variable manifestations. SLE can affect almost any organ in the body and has a broad spectrum of immunological manifestations. It is characterised by periods of disease activity and remission (35). Periods of active disease are often associated with reversible impairment however; active disease can cause permanent organ damage and mortality (36). 
[bookmark: _Toc278533896][bookmark: _Toc278533956][bookmark: _Toc279009223][bookmark: _Toc379467542]Aetiology
The pathogenesis of SLE involves a complex mix of genetic (37), environmental factors and the immune system (38). Genetic polymorphisms, epigenetic modifications to DNA, influence risk and environmental triggers are believed to induce the disease. 
[bookmark: _Toc278533898][bookmark: _Toc278533958][bookmark: _Toc279009225][bookmark: _Toc379467543]Incidence and Prevalence
[bookmark: _Toc278533899][bookmark: _Toc278533959][bookmark: _Toc279009226]Studies of the prevalence of SLE in the UK estimate it to be 27.7/100,000 (95% confidence interval 24.2-31.2/100,000) in the population and 206/100,000 in Afro-Caribbean females (39). SLE has a higher prevalence among women, with estimates ranging between 80 to 90% of cases (40). SLE diagnosis can range from 2 years to 80 years. However, disease onset is most commonly observed in women of childbearing age (41). A large multicentre European cohort study of 1,000 patients from 7 European countries reported a mean age of diagnosis to be 31 years (42). It is believed that ethnicity plays an important role in the incidence of cases (43). 
[bookmark: _Toc379467544]Symptoms and Consequences
Diagnosis
Most people with SLE test positive for antinuclear antibodies following a blood test. Another antibody, anti-double-stranded DNA (anti-dsDNA) is often present in people with SLE. Various other antibodies are also associated with SLE. However, they can also occur in well people who do not have SLE. Typical symptoms combined with high levels of certain antibodies are used in diagnosis. 
Criteria for the classification and diagnosis of SLE were published by the American College of Rheumatology (ACR) in 1982 with amendments published in 1997 (44). The diagnosis of SLE is based on clinical and laboratory tests when patients meet four of the eleven criteria. The most common criteria satisfied at diagnosis were Anti-nuclear Antibody (ANA) positive (96%), other serological abnormalities (92%), arthritis (62%), and haematological abnormalities (56%), malar rash (43%) and photosensitivity (35%) (45).
Disease Activity
It is extremely difficult to describe a typical disease path for SLE patients because they experience periods of active disease of varying length, affecting one or more organ systems (45). A number of indices have been developed to monitor disease severity in observational studies. The most commonly used are the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), and the British Isles Lupus Assessment Group (BILAG) index. These indices record symptoms in the neuropsychiatric, cardiovascular, peripheral vascular, musculoskeletal, mucocutaneous, ocular, renal, respiratory, and gastrointestinal systems. 
The SLEDAI focuses on symptoms experienced in the past 10 days. Disease activity can range between 0-105 and patients with a score of >20 would be considered very severe (46). Twenty-four features that are attributed to lupus are listed in Table 1, with a weighted score given to any one that is present. 
[bookmark: _Ref376273649][bookmark: _Ref376273645]

[bookmark: _Ref379468734]Table 1: SLEDAI score attributes
	Weight
	Descriptor
	Weight
	Descriptor
	Weight
	Descriptor

	8
	Seizure
	4
	Arthritis
	2 
	New rash

	8
	Psychosis
	4
	Myositis
	2
	Alopecia

	8
	Organic Brain Syndrome
	4 
	Urinary Casts
	2
	Mucosal Ulcers

	8
	Visual Disturbance
	4
	Hematuria
	2
	Pleurisy

	8
	Cranial Nerve Disorder
	4
	Proteinuria
	2
	Pericarditis

	8
	Lupus Headache
	4
	Pyuria
	2
	Low Complement

	8
	CVA
	
	
	2
	Increased DNA binding

	8
	Vasculitis
	
	
	1
	Fever

	
	
	
	
	1
	Thrombocytopenia

	
	
	
	
	1
	Leukopenia



The more serious manifestations (such as renal, neurologic, and vasculitis) are weighted more than others (such as cutaneous manifestations). The SLEDAI records immunology results such as anti-dsDNA antibodies and complement. A limitation of the SLEDAI is that, unlike the BILAG, it does not rate the severity of symptoms. Since the publication of the original SLEDAI several modifications of the SLEDAI have been made to how items are defined such as the Safety of Estrogen in Lupus Erythematosus National Assessment (SELENA) (47) and the SLEDAI-2k (48). Each version of the SLEDAI maintains the same 24 items and weighting system so they are very similar; however the classification of events is slightly different.
The BILAG score was developed based on a physician intention-to-treat basis (49). The index assesses eight organ systems over the past month. It includes haematological and renal tests, but unlike the SLEDAI does not require immunological tests. A composite score can be generated by the BILAG, but it is more commonly used to generate organ system severity scores. The BILAG index is the only index that records whether the symptoms are new, worsening or improving, rather than present or absent (50). Details of the SLEDAI and BILAG indices can be found in Appendix 1.
Organ Damage
[bookmark: _Toc278533900][bookmark: _Toc278533960][bookmark: _Toc279009227]Organ damage can occur in nine organ systems as a result of SLE (Cardiovascular, renal, musculoskeletal, neuropsychiatric, pulmonary, peripheral vascular, gastrointestinal, ocular and skin). The SLICC/ACR Damage Index is a validated instrument developed to measure irreversible organ damage in patients with SLE (51-53). The index has 41 items. It includes items relating to the disease and complications arising from toxicity from treatments, such as cataracts due to steroids. Items are recorded on the SLICC/ACR Damage Index if they have been present for more than 6 months to distinguish between disease activity and permanent damage. The definitions and determinants of the SLICC/ACR Damage Index are based on clinical grounds or widely available investigations, such as chest X-ray, so that it can be completed in centres without access to more expensive imaging techniques (54). Details on the SLICC/ACR Damage Index can be found in Appendix 1.
[bookmark: _Ref349216141][bookmark: _Toc379467545]Treatment
SLE treatments aim to minimise symptoms, reduce inflammation, and maintain normal bodily functions. Treatment choices often depend on organ involvement, and the severity of activity. The European League Against Rheumatism (EULAR) guidelines on the management of SLE recommend non-steroidal anti-inflammatories, anti-malarials, cytotoxics/immunosuppressants and steroids (55). More recently biologic drugs, such as rituximab, have been used in patients with severe disease (56). However, there are numerous problems associated with the effectiveness, and side effects of the traditional treatment options for SLE. Infection and permanent organ damage have been attributed to steroid exposure and cytotoxic treatments (57). 
Despite the apparent need for new treatments, no license indications for SLE were granted before 2011. SLE is a complex autoimmune disease that poses considerable challenges in the development of drugs and design of clinical trials. Eisenberg (2009) identified six reasons for the lack of new treatments in SLE (58). 
1. SLE is a complex and only partially understood disease. 
2. SLE patients have extremely heterogeneous symptoms. This complicates inclusion criteria, subgroup analysis, and outcome measures. 
3. Although there are many useful mouse models for SLE, the findings of studies in murine disease do not correspond with the findings in humans.
4. There are few reliable biomarkers for SLE, and none that have been validated for use in clinical trials. 
5. SLE patients respond to new treatments differently to other patient populations. 
6. The history of failed trials in SLE discourages companies developing drugs for this disease. 
In the past decade there has been an increasing number of clinical trials conducted in SLE, which has generated much excitement in the field for the prospects of new effective therapies (59). A detailed review of clinical trials in SLE will be presented in Chapter 2.
A search of the online clinical trials database (www.clinicaltrials.gov) on the 7th April 2010 revealed that there was an abundant pipeline of at least 17 trials recruiting SLE patients (Appendix 2). Rituximab and epratzumab are B-cell depleting therapies that target B-lymphocyte surface markers CD20 and CD22 respectively. Belimumab and ataticept target the cytokines that regulate the maturation, proliferation and survival of B-cells (60). However, the success of recent clinical trials has been mixed, with many trials failing to meet their primary endpoint. Two phase III studies for rituximab and one trial for abatacept failed to meet their primary endpoint (61;62). In 2011 Belimumab reported success in two large phase III clinical trials and received a license from the FDA and EMEA.  
In summary, there is currently considerable demand for new effective treatments for SLE due to the paucity of licensed treatments. Much excitement has been expressed for the potential of biologics to provide effective treatment for SLE (59). However, after several years of research there are considerable barriers for patients to access biologic treatment, and the challenges in designing clinical trials have contributed to the restricted access to new treatments. Clinical trial design impacts on the strength of evidence for efficacy and safety required by the regulator, and the long-term effectiveness and cost-effectiveness over the patient’s lifetime.
[bookmark: _Toc379467546]Hypothesis
I hypothesize that Health Economic analyses can improve clinical trial design in the pharmaceutical industry by prioritising trial design features that optimise future profits for the pharmaceutical company. 
[bookmark: _Toc379467547]Overview of Methods Used in This Thesis
New treatments for SLE require CE models to demonstrate the incremental benefits of new treatment compared with standard care. The work in this PhD has made substantial contribution to the development of a CE model for SLE. This PhD aimed to explore whether the cost-effectiveness model could also be used early in the drug development process to improve the design of clinical trials. 
I believe that the CE model has two main uses for a Pharmaceutical company during drug development. Firstly, it is important to develop a good quality model to present the most reliable estimates of the cost-effectiveness of SLE. This can be informative throughout the stages of drug development to estimate the expected cost-effectiveness results based on current or projected information. This may help inform the pharmaceutical company on whether to proceed with the drug development and data collection process. Secondly, the decision model can be used to characterise the uncertainty in the parameter estimates, and use value of information techniques to consider if data collection is valuable. By considering the costs together with the expected value of future research it is possible to analyse the cost-effectiveness of future research. In this thesis I present a novel method for evaluating the value of alternative trial designs from a pharmaceutical perspective where profits are maximised according to the price achieved after data collection. The profits are conditional on the constraints of regulatory approval and acceptable prices implied by value-based pricing.
The review of Health Economic methods for trial design identified that Bayesian Value of Information methods were an appropriate method to value trial designs. Within this method prior parameters for a cost-effectiveness evaluation can be updated with multiple simulated datasets to evaluate the reduction in uncertainty from data collection. 
In summary, the method uses Bayes theorem to update the parameters of a CE model with new data from a simulated clinical trial. Therefore, the method draws upon health economic methods to develop CE analyses to estimate total costs and QALYs.  In this example the CE analyses will be generated from a CE model, which includes uncertain input parameters,. The clinical trial would provide additional data  on all or a subset of the CE model parameters. The complement set of CE model parameters, , may not updated with trial data. The prior joint probability density p() was updated, via Bayesian updating, to derive the posterior density  for each hypothetical data set sampled. The CE model could then be re-run with the posterior density  and to estimate the CE outcomes given the simulated trial data. 
Bayesian Clinical Trial Simulation (BCTS) can be used to simulate Phase III datasets for complex design options. Within the VOI framework multiple simulated datasets are generated for each trial design to predict many possible outcomes of the Phase III trial. The BCTS provided a flexible method for simulating a broad range of trial specifications. Clinical trial designs can be evaluated by simulating trial data and updating CE model parameters with the information gathered. For each simulated dataset the prior and likelihood of the data are synthesised to generate the posterior distribution of the parameters and evaluate the CE model outcomes. 
The simulation process used within this thesis is illustrated in Figure 1.
[bookmark: _Ref376175543]Figure 1: The four stage simulation process to evaluate alternative trial designs
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First, a population of SLE patients are generated reflecting the disease characteristics of patients in the Hopkins Lupus Cohort. Secondly, a SLE Phase III clinical trial is simulated to generate a single sample dataset. In stage three, this dataset is combined with the prior distributions of the CE model to get the posterior distributions. In the final stage, the CE model is evaluated given the posterior parameters and the results are recorded. The simulation returns to stage 2 to simulate another clinical trial dataset, and the process is repeated until sufficient trial results have been iterated to draw a conclusion about the value of chosen trial designs. The whole process is repeated for each alternative trial design of interest, thus enabling comparison of the relative value of different designs.
[bookmark: _Toc379467548]Outline of this PHD Study
I have provided a background to the main themes of this thesis. I have described a stylised description of the drug development process and pathway to regulatory and reimbursement approval. I have introduced the main principles of health economic methods and Bayesian statistics. Finally, I have summarised the signs and symptoms of SLE, and provided a background to the pipeline of new biologic treatments that are under development.
The thesis comprises four Phases of research. The Phases of research, and the impact each chapter had on subsequent research developments are illustrated in Figure 2. In Phase I reviewed current literature on clinical trials in SLE, and health economic methods for trial design. Following the outcome of the methods review I identified a need to describe the natural history of SLE to enable the simulation of patient outcomes in a Bayesian Clinical Trial Simulation and CE model. In Phase 2 I developed a conceptual model for the natural history of SLE, which informed the analysis plan for statistical analyses of a SLE registry cohort. The statistical models describing the natural history of SLE were used to develop a Bayesian Clinical Trial Simulation and cost-effectiveness model. These are described as the simulation modelling Phase of the research. The design of the Bayesian Clinical Trial Simulation incorporated data and findings from the Clinical trials review. Finally, in Phase 4 I implemented the methods identified in the methods review to develop an analysis to value six trial designs. The Bayesian Clinical Trial Simulation and CE model were combined in Chapter 8 to simulate clinical trial datasets, and evaluate cost-effectiveness outcomes for each simulated dataset. This enabled calculation of the Net Commercial benefit of a proposed trial design.
[bookmark: _Ref376186840]Figure 2: Illustration of the Phases of research
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In Chapter 2, I conducted a literature review to describe the established characteristics of SLE clinical trials, and identify what trial design features could be improved. Clinical trials can be very difficult to design particularly if disease outcomes in the population recruited into the trial are unpredictable. Previous successful clinical trials set a strong precedent for clinical trial designs. However, there are inevitably cases where more difficult choices arise, such as in SLE where very few clinical trials have been successful and outcomes are often negative. 
In Chapter 3, a review was needed to identify a suitable methodological framework for evaluating clinical trials for drug development programmes. Analytical methods for designing clinical trials may be preferable to informal decision-making or evaluation of study design through pilot studies. Analytic methods can incorporate data from multiple data sources and consider multiple research objectives. For example, many new treatments have to demonstrate the health economic consequences of the interventions in order to improve their prospects of being approved by reimbursement authorities. 
Chapter 4 and 5 focussed on the development of a natural history model for SLE. In Chapter 4, I developed a conceptual model to describe the natural history of SLE based on a literature review of observational studies in SLE. The review also established that there was insufficient data from the existing literature to inform the natural history of SLE as defined by the conceptual model. In Chapter 5, I describe a statistical analysis of the Hopkins Lupus Cohort, which generated statistical models to describe the short and long-term natural history of SLE. The development of the natural history model for SLE present a novel method for simulating individual patient outcomes across disease activity, treatment exposure, organ damage and mortality.
Based on the analysis described in Figure 1 it was necessary to develop two simulation models. In Chapter 6 a Bayesian Clinical Trial Simulation was described adopting methods identified in the methods review (63). The simulation predicted individual patient disease progression across multiple organ systems over 3 monthly cycles to estimate outcomes from future clinical trials. The simulation was based on some of the statistical analyses described in Chapter 5 and data from previous SLE trials. Unknown parameters in the simulation were elicited from Clinical experts in SLE through an elicitation study. 
Chapter 7 describes a cost-effectiveness model to evaluate new pharmaceutical products for SLE. The CE model described was developed for the purpose of this thesis. GlaxoSmithKline developed a CE model concurrently, but independently, from my work using the statistical analyses I produced. The simulation was based on the statistical analyses described in Chapter 5 and data from a cost-effectiveness model developed for belimumab. 
Chapter 8 describes the evaluation of six Phase III trial designs using a novel framework for Expected Net Benefit of Sampling from a pharmaceutical perspective. I describe an analytic method to compare SLE Phase III RCTs with variable sample size and duration of follow-up. The VOI analysis utilised the BCTS described in Chapter 6 and the CE model described in Chapter 7. The method for Bayesian Updating adopted an existing Bayesian Approximation technique. The Bayesian Approximation method had not previously been applied to an individual patient CE model. The analysis from Chapter 8 illustrates that Health Economic analyses can be incorporated into clinical trial design process. However, the methods are computationally intensive and may not be feasible for complex individual patient simulation models. 
Chapter 9 summarizes the findings of the thesis and discusses their practical application in the pharmaceutical industry. This Chapter highlights the limitations of the method and reflects on areas of further research that are needed. 


[bookmark: _Toc379467549]Chapter 2: A Review of Randomised Controlled Trials in SLE 
2. 
The purpose of this chapter is to review clinical trials in Systemic Lupus Erythematosus (SLE) and their design features.
Very few SLE clinical trials have been successful. It was important to learn from the design choices and outcomes of previous trials. I decided to conduct a literature review of previous clinical trials and clinical trial guidelines in SLE. The literature review would help to define the main characteristics of an SLE trial by observing the approximate sample size, duration of follow-up, inclusion criteria, primary endpoints, protocol for concomitant medications and adverse events in previous trials, and discussion of these features in guidelines. I hoped to identify what aspects of clinical trials in SLE could be varied to improve data collection, and could be evaluated with an analytical model.
Section ‎2.1 describes methods for literature identification and data extraction. Section ‎2.2 reports the results of the literature review, broken down into clinical trial features. The discussion in Section ‎2.3 considers what clinical trial features are most relevant to investigate in this thesis. In the conclusion, Section ‎2.4, possible analyses for the PhD were identified. 
[bookmark: _Ref332719199][bookmark: _Toc332720559][bookmark: _Toc379467550]Method
[bookmark: _Toc332720560][bookmark: _Ref376257669][bookmark: _Toc379467551]Search Strategy
A literature search was performed using Medline, an online database of clinical articles, to identify randomised controlled trial (RCTs) in SLE. Professor David Isenberg, from University College London, United Kingdom specialising in SLE, was consulted (December 2009) before and after the literature search to assist with the design of the search strategy and check that important SLE trials had been identified. Embase, and other online databases, were not searched in this review because the coverage of the search in Medline identified the most recent large multi-centre trials.
Search terms included a combination of free-text and MeSH terms. Details of the search strategies are reported in Appendix 3. Only studies that were published from January 1995 to January 2010 were included in the search. Professor Isenberg (December 2009) did not think that excluding studies prior to 1995 would exclude any good quality RCTs in SLE that would contribute additional information that had not already been incorporated into the guidelines for trial design. The search was repeated on the 21st February 2012 to update the literature review with more recent RCTs. All references were exported to Reference Manager 11.0 for application of the inclusion/exclusion criteria. 
Identification of citations was based on title and abstract review according to the pre-defined selection criteria. The final inclusion criteria for the studies were as follows.
· Study design. Randomised controlled trials
· Patients. An American College of Rheumatology (ACR) diagnosis of SLE, adults. 
· Interventions. Pharmacological interventions for SLE. 
· Outcome measures. Outcomes of interest were disease activity indices (i.e. SLEDAI, BILAG), SLICC/ACR Damage Index, Physicians Global Assessment, Response, remission, flare, Anti-DNA, anti-dsDNA, serum creatinine, proteinuria. Other autoantibodies, genetic, and immunological outcomes were excluded from the review. 
· Language. Full-published reports in English were considered.
Studies of autoantibodies, genetics, and immunological outcomes were excluded for pragmatic reasons due to the breadth of outcomes that have been associated with SLE without clear causation (59). Therefore, it was not feasible to include all of these physiological processes into the study.
Full text reports were obtained for the abstracts that met the inclusion criteria. I decided to exclude articles that described clinical trials in Lupus Nephritis or Cutaneous Lupus patients. It was clear from the full text reports that the design of these trials was different to an SLE population because the primary endpoints observe response criteria within individual organ systems. In contrast, an SLE trial aims to observe treatment effect across multiple organ systems. 
A separate search was conducted to identify guidelines for clinical trials in SLE. Guidelines published by national and international agencies were included in the review. A free text search in Medline using the search terms ((“recommendation” OR “Endpoints” OR “guidelines” OR “EULAR” OR “ACR” OR “OMERACT”) AND “Clinical trials” AND “Systemic Lupus Erythematosus”) was conducted to identify guidelines. Additional grey literature searches were conducted by searching the United States Food and Drugs Administration (FDA), the European Medicines Agency (EMA), and the American College of Rheumatology (ACR) websites. 
[bookmark: _Toc332720561][bookmark: _Toc379467552]Data Extraction
For each published clinical trial, trial inclusion criteria, sample size and power calculations, interventions, primary endpoints, length of follow-up, and results were extracted and recorded onto a data extraction form. Serious adverse events, infections and discontinuation data were extracted.
A description of SLE sample size, duration of follow-up, inclusion criteria, concomitant medications, endpoints, and adverse events was extracted based on findings from the RCT search and guidelines. 
[bookmark: _Toc332720562][bookmark: _Ref332720587][bookmark: _Toc379467553]Clinical Trials in SLE Results
In the initial search a total of ninety-nine records were identified in Medline. These ninety-nine records were screened and twenty-three studies reported the results of an RCT in an adult population. Ten studies were included in the review, whereas the other thirteen reported the results of RCTs in Lupus Nephritis or Cutaneous Lupus. The updated search conducted on 21 February 2012 identified a further twenty-three studies. Fourteen were found to report the results of an RCT in patients with SLE of which eight were excluded because they studied a Lupus Nephritis population. A total of sixteen articles in an SLE population were identified describing fifteen RCTs. Figure 3 details the process of identifying the literature. 
[bookmark: _Ref337129569]Figure 3: CONSORT diagram for identification of RCT trials in SLE
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The trial characteristics are summarised in Table 2. The search identified clinical trials from different stages of treatment development. Four of the studies were Phase III, one Phase II/III, and three Phase II trials. Eight were exploratory studies with small sample sizes.  

[bookmark: _Ref345089206]
[bookmark: _Ref364923716]Table 2: Summary of trial design in disease activity trials
	Author
	Date
	Funding
	Phase
	Treatments
	Inclusion criteria
	Primary endpoint
	Conmeds
	Sample size
	Duration

	Hackshaw
(64)
	1995
	Pharma
	I
	Zileuton
Placebo        
	Age ≥18, ACR diagnosis 
	SLAM
	Acetaminophen allowed
	40
(20; 20)
	2 months

	Carneiro
(65)
	1999
	Public
	N/A
	Methotrexate
Placebo
	ACR diagnosis, low dose prednisone.
	SLEDAI
	Prednisone dose stable for 1 month
	41
(20; 21)
	6 months

	Kalunian
(66)
	2002
	Pharma
	I
	IDEC 131
Placebo
	Age ≥18, ACR diagnosis
	Mean change in SELENA SLEDAI
	None stated
	85
(65; 20)
	5 months

	Petri 
(67)
	2004
	Pharma
	
	Prasterone
Placebo
	Age ≥18, ACR diagnosis
	Response (SLEDAI+ SLAM Quality of life)
	Conmed doses remained stable from baseline
	191
(127; 64)
	12 months

	Tam 
(68)
	2004
	Public
	N/A
	Leflunomide
Placebo
	ACR diagnosis, SLEDAI ≥6, low dose prednisone
	Mean change in SLEDAI
	Prednisone tapered. Antimalarials and NSAIDs allowed
	12
(6; 6)
	2.5 months

	Fortin
(69)
	2008
	Public
	N/A
	Methotrexate
Placebo
	Age ≥18, ACR diagnosis, SLAM≥8, 
	Mean change in SLAM
	None stated
	86
(41; 45)
	12 months

	Abdou
(70)
	2008
	Pharma
	I
	Fulvestrant group
Placebo
	ACR diagnosis
	Change in SLEDAI from baseline
	None stated
	20
(10; 10)
	12 months

	Uppal
(71)
	2009
	Public
	N/A
	Infliximab
Placebo
	ACR diagnosis
	None specified1
	Standard treatments allowed
	27
(9; 18)
	 Variable

	Wallace/ Furie
(72;73)
	2009
	Pharma
	II
	Belimumab (3 doses)
Placebo
	Age ≥18, ACR diagnosis, SELENA SLEDAI ≥4, history of autoantibodies, stable prednisone.
	Mean change in SELENA SLEDAI
	Changes in other therapy permitted as indicated
	449
(336; 113)
	12 months

	Merril 
(61)
	2010
	Pharma
	IIb
	Abatacept
Placebo
	Age ≥16, ACR diagnosis, ANA+,  BILAG A or 2 B score, 1 immunosuppressant.
	New BILAG A or 2 B scores
	Prednisone was given for one month then tapered
	175
(118;57)
	12 months

	Griffiths
(46)
	2010
	Public
	N/A
	Ciclosporin
Azathioprine
	ACR diagnosis, severe disease defined by 15mg  prednisone, stable dose.
	Absolute mean change in prednisone
	HCQ permitted but held stable over trial. NSAIDs avoided.
	89
(47;42)
	12 months

	Merril  
(62)
	2010
	Pharma
	IIb
	Rituximab
Placebo
	Age ≥18, ACR diagnosis, msk, skin or serositis manifestation,  BILAG A or B score
	BILAG response
	Prednisone was added for all patients then tapered
	227
(169;88)
	12 months

	Navarra
(74)
	2011
	Pharma
	III
	Belimumab 1mg
Belimumab 10mg
Placebo
	Age ≥18, ACR diagnosis, SELENA SLEDAI ≥6, ANA+, stable prednisone or immunosuppressants.
	SLE Responder Index: ≥4 decrease in SSLEDAI, no new  BILAG, no worsening in PGA
	Immunosuppressant dose increases allowed. Unrestricted steroid dose up to week 24.
	865
(288;290;287)
	12 months

	Furie
(75)
	2011
	Pharma
	III
	Belimumab 1mg
Belimumab 10mg
Placebo
	Age ≥18, ACR diagnosis, SELENA SLEDAI ≥6, ANA+, stable prednisone or immunosuppressants.
	SLE Responder Index: ≥4 decrease in SSLEDAI, no new  BILAG, no worsening in PGA
	Immunosuppressant dose increases allowed. Unrestricted steroid dose up to week 24.
	819
(275;271;273)
	18 months

	Merrill
(76)
	2011
	Pharma
	I
	Sifalimumab
Placebo
	Age ≥18, ACR diagnosis
	SLE Responder Index: ≥4 decrease in SSLEDAI, no new  BILAG, no worsening in PGA
	Other treatments were permitted if the regimen was unchanged during the 28 days before randomisation.
	50
(33:17)
	3 months

	ACR=American College of Rheumatology; SLE= Systemic Lupus Erythematosus. 1 assumed to be mean change in SLEDAI. AZA azathioprine; SLAM Systemic Lupus Activity Measure records disease activity in 11 organ systems and 8 laboratory tests in the last month. Each symptom is weighted by severity.




Eight clinical trial guidelines for SLE were identified using the search strategy described in Section ‎2.1.1. Table 3 describes the title and organisations responsible for the guidelines. The guidelines varied in scope of clinical trial design features. Most covered a broad range of design features, whereas others focussed on trial endpoints only (77-80). 
[bookmark: _Ref337130847]Table 3: Summary of SLE clinical trial guidelines
	Name of Organisation
	Date
	Title of guidelines
	Reference

	Food and Drugs Administration
	2010
	Guidance for Industry: Systemic Lupus Erythematosus - Developing Drugs for Treatment
	(81)

	The European Medicines Agency
	2009
	Concept paper on the need for a guideline on the clinical investigation of medical products intended for treatment of systemic and cutaneous lupus erythematosus.
	(82)

	The European League Against Rheumatism (EULAR)
	2008
	Clinical trials in systemic lupus erythematosus (SLE): lessons from the past as we proceed to the future--the EULAR recommendations for the management of SLE and the use of endpoints in clinical trials
	(77)

	The European League Against Rheumatism (EULAR)
	2009
	EULAR points to consider for conducting clinical trials in systemic lupus erythematosus: literature based evidence for the selection of endpoints
	(79)

	The European League Against Rheumatism (EULAR)
	2009
	EULAR points to consider for conducting clinical trials in systemic lupus erythematosus
	(83)

	Outcomes Measure in Rheumatoid Arthritis Clinical Trials
	2000
	Endpoints: consensus recommendations from OMERACT IV. Outcome Measures in Rheumatology
	(78)

	American College of Rheumatology
	2004
	The American College of Rheumatology response criteria for systemic lupus erythematosus clinical trials: measures of overall disease activity
	(80)

	American College of Rheumatology
	2006
	Endpoints: consensus recommendations from OMERACT IV. Outcome Measures in Rheumatology
	(84)


[bookmark: _Toc332720563][bookmark: _Toc379467554]Trial Duration
The FDA states that clinical trials in SLE should be at least 1 year in duration to observe sustained clinical benefit (81). The EULAR guidelines stipulate that the trial should be of sufficient duration that immunosuppressive drugs to be tapered during the study. Nine trials followed patients for at least 12 months (Table 2). The shortest trial duration was 2 months, and the longest 18 months. 


[bookmark: _Toc332720564][bookmark: _Toc379467555]Sample Size
The sample sizes from the clinical trials are reported in Table 2. Six out of fifteen of the trials could be considered very small with less than 50 patients. Six of the trials had a large sample size (greater than 100 patients in total). Six studies reported a sample size calculation based on 80% power (46;62;69;72;74;75).
[bookmark: _Toc332720565][bookmark: _Toc379467556]Concomitant Medications
The FDA guidelines recommend that patients are not denied essential treatment during an SLE clinical trial (81). It would be unethical to restrict patient access to effective treatment because SLE flares can be severe, and can cause permanent damage and even mortality. None of the guidelines make specific recommendations on how concomitant medications should be regulated in a clinical trial. 
Details of the concomitant medication protocols are reported in Table 2. Three articles did not report the protocol for concomitant medications. The concomitant medications that are listed are consistent with standard treatments for SLE described in Section ‎1.3.4 of Chapter 1. 
Four trials employed a strategy to reduce steroid dose during the study to observe the steroid sparing effects of treatment (65;68;69;85). The belimumab Phase III trials allowed steroid dose changes during the trial as clinically indicated (74;75). In the rituximab Phase II/III trials a high dose pulse methylprednisone dose was administered with every infusion of rituximab (62). This is a high dose intravenous steroid injection intended to treat acute flares in disease activity. The authors reflected that the pulse methylprednisone dose may have masked the effect of rituximab because it is believed to be an effective method of controlling disease activity.
[bookmark: _Toc332720566][bookmark: _Toc379467557]Inclusion Criteria
The FDA and EULAR guidelines recommend that patients recruited into the clinical trials match with the patients who would reasonably be considered for this treatment. However, no other recommendations are made for the inclusion criteria.
Eight studies set inclusion criteria to recruit patients with disease activity index scores above a threshold ranging from very mild to moderate activity. One study required disease activity to be present in the musculoskeletal system, skin system or serositis. Table 4 details the participant characteristics of the trials. The majority of subjects enrolled in the trials were women, which was consistent with the population demographics. The mean age of patients was between 30 and 45 years. The mean disease duration tends to be over 5 years, suggesting that the trials have not targeted a newly diagnosed patient group.
Early trial analyses have identified patient sub-groups for whom the treatment may be more effective (67;73). The Phase II trial for belimumab and Phase III trial for prasterone identified a subgroup of patients based on disease severity for which a statistically significant result was attained. As a consequence, the Phase III belimumab studies require that patients test positive for antinuclear antibodies (ANA+). The ANA+ is a test for SLE and reflects a more stringent requirement for SLE diagnosis than the ACR diagnostic criteria. A statistically significant result in the prasterone trial was observed in patients with a SLEDAI score >2 at baseline (67). These findings highlight that inclusion criteria can influence the outcomes if a sub-group of patients are more likely to respond. It suggests that patients with disease activity, at baseline were a good target population for new treatments.
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[bookmark: _Ref253490376][bookmark: _Ref259097966]
[bookmark: _Ref364923803]Table 4: Results from all organ clinical trials 
	Author
	Date
	Treatment arm
	Sample size
	Duration
	age (mean years)
	female (%)
	disease duration (mean years)
	Trial endpoint (1)
	Outcome
	p-value
	Trial endpoint (2)
	Outcome
	p-value

	Hackshaw
(64)
	1995
	zileuton
Placebo
	40
(20; 20)
	2 months
	46.6
42
	90%
85%
	
	Change in SLAM
	-2.1
-2.3
	0.048†
	
	
	

	Carneiro
(65)
	1999
	methotrexate
Placebo
	41
(20; 21)
	6 months
	32.2
30.3
	90%
100%
	7.1
6.7
	Difference in SLEDAI score at 6 months
	NR
	0.05†
	Proportion with 50% reduction in steroid dose
	72.2%
5%
	<0.0001†

	Kalunian
(66)
	2002
	IDEC 2.5
IDEC 5
IDEC 10
Placebo
	85
(65; 20)
	5 months
	43.1
45.4
43.8
41.7
	100%
100%
92%
95%
	9.22
9.53
9.49
9.78
	Change in SLEDAI from baseline
	-2.6
-2.2
-1.8
-2
	0.003‡
0.001‡
0.054‡
0.034‡
	
	
	

	Petri 
(67)
	2004
	Prasterone
Placebo
	191
(127; 64)
	12 months
	43.8
44.4
	
	
	Response in SLAM, SLEDAI and HRQOL
	51.3%
42.2%
	0.074†
	
	
	

	Tam 
(68)
	2004
	leflunomide
placebo
	12
(6; 6)
	24 weeks
	40.6
42.3
	83%
100%
	8.2
8.7
	Change in SLEDAI from baseline
	11
4.5
	0.026†
	
	
	

	Fortin
(69)
	2008
	methotrexate
Placebo
	86
(41; 45)
	12 months
	40.2
40.2
	90%
91%
	5.7
4.5
	Difference in SLAM during trial
	-0.86
	0.039
	
	
	

	Abdou
(70)
	2008
	fulvestrant
placebo
	20
(10; 10)
	12 months
	39
38
	100%
100%
	11.3
9.75
	Change in SLEDAI from baseline
	4.5
0.87
	0.006‡
0.87‡
	Difference in SLEDAI at 12 months
	3.25
7
	0.0591†

	Uppal
(71)
	2009
	infliximab
placebo
	27
(9; 18)
	 Variable
	23
22.5
	100%
60%
	7.15
4.79
	Change in SLEDAI from baseline
	-27.7
-13.3
	0.035†
	
	
	

	Wallace
(72)
	2009
	belimumab
Placebo
	449
(336; 113)
	12 months
	42.1
42.2
	94%
90%
	9
8.1
	Change in SLEDAI from baseline
	-47.80%
	NS†
	
	
	

	Merril 
(61)
	2010
	Abatacept
Placebo
	175
(118;57)
	12 months
	39.1
37.6
	88.1
96.5
	7.2
6.5
	Proportion of patients with a new flare
	79.7%
82.5%
	NS†
	
	
	

	Griffiths
(46)
	2010
	Ciclosporin
Azathioprine
	89
(47;42)
	12 months
	33
39
	96
88
	2
4
	Corticosteroid sparing effect
	-9.0
10.7
	NS†
	
	
	

	Merril  
(62)
	2010
	Rituximab
Placebo
	227
(169;88)
	12 months
	40.2
40.5
	89.9
93.2
	8.5
8.7
	Major clinical response
	12.4%
15.90%
	NS†
	Partial clinical response
	17.2%
12.5%
	NS†

	Navarra
(74)
	2011
	Belimumab 1mg
Belimumab 10mg
Placebo
	865
(288;290;287)
	12 months
	35.4
36.2
35.0
	97%
94%
94%
	5.0
5.9
5.0
	SRI Responder Index
	51%
58%
44%
	0.013†
0.0006†
	
	
	

	Furie
(75)
	2011
	Belimumab 1mg
Belimumab 10mg
Placebo
	819
(275;271;273)
	12 months
	40.0
40.5
40.0
	93.4
94.9
91.6
	7.9
7.2
7.4
	SRI Responder Index

	40.6%
43.2%
33.5%
	0.089†
0.017†
	
	
	

	Merrill
(76)
	2011
	Sifalimumab
Placebo
	50
(33:17)
	84 days
	44
48
	97
88
	4.9
7.8
	SRI Responder Index
	26%
15%
	NS†
	
	
	

	† compared with placebo; ‡ compared with baseline; NR Not Reported; SLAM Systemic Lupus Activity Measure records disease activity in11 organ systems and 8 laboratory tests  in the last month. Each symptom is weighted by severity.



[bookmark: _Toc379467558]Trial Endpoints
Guideline Recommentations ON Trial Endpoints
There has been discussion about trial endpoints in the guidelines, however very few specific recommendations are provided. The FDA report makes several suggestions for possible endpoints for SLE clinical trials, but does not impose a single criteria (81). Gordon et al. explain that they cannot make any firm recommendations due to the lack of quality randomised trials on which to base their report (83). The guidelines propose a number of alternative ways of assessing therapeutic benefit. Table 5 documents a summary of comments from the guidelines relating to general comments about endpoints, disease activity, steroid dose, health related quality of life (HRQL), and organ damage.
The major clinical outcomes in SLE are problematic to measure in a clinical trial because they include mortality, end-stage renal disease (ESRD) and other organ failures listed in the SLICC/ACR Damage Index. These are not realistic primary endpoints in clinical trials because they are rare events that would require large sample size or long duration of follow-up to power the study. The ACR report that the main problem with the SLICC/ACR Damage Index was that a clinical trial would need a long period of follow-up to detect treatment effects on organ damage. However, the actual duration of follow-up needed is not discussed. The EULAR review concluded that there was no validated intermediate outcome measure to act as a surrogate marker for the mortality, end-stage renal disease or organ failure (79). 
Disease activity indices were the predominant measure of efficacy recommended by the guidelines. The ACR express reservations about using composite disease activity scores and suggest that they should be used in conjunction with organ specific measures (80). The FDA recommends that HRQL measures are studied in all trials of SLE to ensure that improvement in disease activity was not accompanied by a worsening in quality of life. However, they also state that improvement in HRQL alone would not be sufficient for approval  (81). This sentiment was reiterated by the SLE taskforce who recommend that health status and quality of life be collected as secondary endpoints in clinical trials (77).

[bookmark: _Ref258926455]
[bookmark: _Ref364923844]Table 5: Discussion of clinical endpoints in SLE trials
	
	General
	Disease Activity
	Steroid Dose
	Quality of life
	Organ damage

	FDA (81)
	"Clinical trials in SLE generally are expected to collect information about disease activity at all sites* ,  irreversible damage due to SLE and its treatment, and valid HRQL measures"
	"In a randomized clinical trial, the SELENA SLEDAI, the SLAM, the BILAG, the ECLAM, or other established index could be used to measure disease activity"  "We recommend using methods that assess the activity of disease over the duration of the study in conjunction with methods that measure disease activity at the beginning and end."
	
	"The Agency recommends that HRQL be studied in all trials of SLE" "It is important that (trials) demonstrate no or minimal worsening in measures of HRQL"
	"The SLICC/ACR Damage Index can be used as an endpoint, but we recommend discussing this with the appropriate reviewing division before beginning trials"

	EULAR (83)
	"The efficacy of a drug can be described in a number of possible ways depending on the endpoints used. These include 1) reduction in lupus disease activity… 2) prevention of disease flare… 3) prevention of the onset of damage or the progression of damage ... 4) improvement or stabilisation of health status and quality of life ... 5) reduction in steroid dose.”
	"Although not validated for use in clinical trials, the SLE Task Force agreed that standardised disease activity indices are preferable to completely untested outcome measures for capturing disease activity" "It is anticipated that more than one measure of disease activity may be used in a trial to capture changes in the manifestations of lupus present at baseline and the development of any new features of lupus during the trial"
	"Any trial assessing disease activity as an endpoint will need to ensure that the use of immunosuppressive drugs that influence disease activity is controlled during a study."
	"At present we recommend that health status and quality of life should remain secondary endpoints in a clinical trial"
	"Accumulated multisystem chronic damage… is only definitely suitable as an endpoint in studies using newly or recently diagnosed patients without pre-existing damage and in studies with sufficient duration of follow-up for damage to occur"

	OMERACT (78)
	"The randomized controlled trials discussion group recommended that disease activity, health related quality of life, adverse events and damage be included as core outcome domains, in that order of preference"
	"Although there is no consensus as to which one is preferable, six disease activity measures have been validated compared with physician global assessment, and against change in treatment, and against each other"
	
	
	"Yearly assessment is appropriate, or at the initiation and completion of a clinical trial, and the SDI can be used to stratify patients at entry into a protocol"

	EMEA (82)
	"A successful treatment of patients with SLE may:
- improve signs and symptoms 
- prevent subsequent flares
- decrease cumulative steroid dose
- prevent long-term relapse and damage"
	"There are several validated indices in SLE… the choice of disease activity indices in SLE requires further discussion"
	
	"a choice of disease-specific or general quality of life measures should be discussed"
	"A damage index, such as SLICC/ACR might be of interest"

	ACR (80)
	“The committee recommended that controlled trials of therapy in SLE should use organ-specific measures, with response criteria that are defined a priori, and valid reliable composite instruments for calculating overall disease activity”
	“Composite indices … by their nature, mask worsening and responding organ systems”
	
	
	

	* sites refers to the different organ systems that are assessed to identify disease activity in SLE



TRial Endpoints Used In Reported CLinical Trials
All trials have used a disease activity index or steroid sparing effects to measure efficacy. There was very little consistency in the endpoints employed. The trials used the SLEDAI , BILAG or SLAM for the primary endpoint. Two trials used multiple response criteria. A response criteria using outcomes from disease activity indices and HRQOL scores was employed in a trial for prasterone (67). In the belimumab Phase III trials (74;75) a SLE Response Index (SRI) was used, 
· ≥  4 point reduction in the SELENA-SLEDAI,
· no new BILAG A or no more than 1 new BILAG B domain score[footnoteRef:1], [1:  A is very active disease, B is moderate activity] 

· no deterioration from baseline physicians global assessment by ≥  0.3 points (86).
In 2009 the SRI was developed using exploratory analysis of the Phase II trial for belimumab (73). The index is defined above and meets the specification from the FDA that an index should measure improvement in disease activity without ignoring worsening in the overall condition of the patient. However, this responder index does not include a measure of HRQL, which was recommended by the FDA, EULAR and OMERACT. The two Phase III trials for belimumab were the only trials of large sample size to achieve their primary endpoint (74;75). It is likely that the SRI will be used in future SLE trials by other companies with new biologic agents now that there is a precedent for success.
In the rituximab trial the primary endpoint was extremely strict (62). It classed patients as treatment failure if they experience 1 new BILAG B flare, which meant a mild/moderate flare in at least one organ system, in the second 6 months of the trial. Rituximab failed to meet the primary endpoint, which was unexpected given the positive outcomes that have been observed in open-label trials (56). It has been observed that rituximab had a biological effect on an important serological marker for SLE, despite not meeting the primary endpoint (62). 
The Phase II trial for abatacept observed considerable discordance between flare assessed by the BILAG and the treating physician’s opinion (61). They concluded that the primary endpoint based on the proportion of patients with new BILAG A or two BILAG B after the steroid taper was a good trial endpoint. Subsequent analysis of the trial data investigated an alternative definition of treatment failure that only included the more severe BILAG A flares, which showed better fit to the physician’s assessment of improvement in outcomes. 
[bookmark: _Toc379467559]Adverse Events
No recommendations were made in the guidelines on data collection for adverse events. The clinical trials with smaller sample size tended to have less detailed reporting of adverse events. The difference in the proportion of patients with severe adverse events between arms of the trial was small and not statistically significant, indicating a good safety profile for the drugs investigated. Infections tended to be more common in the treatment group than the control arm, with exceptions in the rituximab and sifalimumab trials (62;76). Discontinuation due to adverse events, lack of efficacy, and other causes were similar between the treatment arms. 
Table 6: Summary of adverse events and withdrawal rates from SLE clinical trials
	Author
	Date
	Treatment arm
	Sample size
	Severe AE (%)
	Infection (%)
	Discontinue AE ( %)
	Discontinue Efficacy (%)
	Discontinue Other (%)

	Hackshaw
(64)
	1995
	zileuton
Placebo
	40
(20; 20)
	0.1
0
	NA
	0.1
0
	NA
	NA

	Carneiro
(65)
	1999
	methotrexate
Placebo
	41
(20; 21)
	NA
	NA
	NA
	NA
	NA

	Kalunian
(66)
	2002
	IDEC 2.5
IDEC 5
IDEC 10
Placebo
	85
(65; 20)
	NA
	NA
	NA
	NA
	NA

	Petri 
(67)
	2004
	Prasterone
Placebo
	191
(127; 64)
	0.7
1.5
	NA
	5.3
5.0
	NA
	NA

	Tam 
(68)
	2004
	leflunomide
placebo
	12
(6; 6)
	NA
	NA
	NA
	NA
	NA

	Fortin
(69)
	2008
	methotrexate
Placebo
	86
(41; 45)
	NA
	4.9
2.2
	12.2
0
	17.1
22.2
	4.4
4.9

	Abdou
(70)
	2008
	fulvestrant
placebo
	20
(10; 10)
	NA
	NA
	NA
	NA
	NA

	Uppal
(71)
	2009
	infliximab
placebo
	27
(9; 18)
	NA
	NA
	NA
	NA
	NA

	Wallace
(72)
	2009
	belimumab
Placebo
	449
(336; 113)
	16.1
19.5
	5.1
3.5
	6.0
4.4
	0.01
0.01
	12.5
12.4

	Merril 
(61)
	2010
	Abatacept
Placebo
	175
(118;57)
	5.8
3.4
	2.5
1.7
	5.8
1.7
	17.8
21.1
	7.5
15.8

	Griffiths
(46)
	2010
	Ciclosporin
Azathioprine
	89
(47;42)
	21.3
20.9
	NA
	17.0
16.3
	4.3
11.6
	10.6
9.3

	Merril  
(62)
	2010
	Rituximab
Placebo
	227
(169;88)
	37.9
36.4
	9.5
17.0
	11.2
14.7
	NA
	17.7
12.5

	Navarra
(74)
	2011
	Belimumab 1mg
Belimumab 10mg
Placebo
	865
(288;290;
287)
	16.0
14.0
13.0
	8.0
4.0
6.0
	5.5
5.2
6.6
	4.2
4.1
5.6
	6.9
7.6
9.1

	Furie
(75)
	2011
	Belimumab 1mg
Belimumab 10mg
Placebo
	819
(275;271;
273)
	18.9
19.8
18.8
	7.0
7.3
5.3
	6.6
8.4
8.4
	4.4
6.2
7.3
	15.4
15.4
17.4

	Merrill
(76)
	2011
	Sifalimumab
Placebo
	50
(33:17)
	3.0
12.0
	39.0
41.0
	0
0
	0
1.0
	0
2.0

	NA not reported or not reported in sufficient detail


[bookmark: _Toc332720570][bookmark: _Ref332720641][bookmark: _Ref362171713][bookmark: _Toc379467560]Discussion
In this discussion I aimed to summarise the findings of the review of clinical trial designs. I reflected on the areas of SLE trial design that could be evaluated. I considered which aspects of trial design have affected past trial outcomes and which aspects of trial designs are likely to impact on cost-effectiveness outcomes. 
[bookmark: _Toc315274283][bookmark: _Toc332720571][bookmark: _Toc379467561]Duration of Follow-up
Longer follow-up collects more data about the long-term effectiveness of treatment. Longer follow-up would generate stronger evidence on the effectiveness of treatment in reducing disease activity. For example, the benefits of steroid treatment may not have expired within the 1-year time-horizon in the rituximab (62) and abatacept (61) trials. A longer follow-up might have demonstrated a longer time to flare on biologic treatment after steroid benefits have worn off in the placebo arm. Longer follow-up would provide more evidence for the durability of benefits for those receiving treatment. 
Longer follow-up trials are more likely to collect useful evidence about the effectiveness of treatment in preventing organ damage. None of the 15 RCTs described in this literature review report a reduction in the risk of organ damage. Most of the trials used at least 12 month duration in line with the FDA guidelines. Relating this back to the discussion of cost-effectiveness analysis, evidence of a reduction in organ damage events would substantially reduce uncertainty in the INB of a CE model because organ damage is associated with high costs and substantial quality of life decrements. A 12 month trial will record fewer organ damage events than longer term trials so will be less likely to observe the effect of treatment in reducing organ damage. The impact will have to be estimated indirectly through an intermediate marker by estimating the impact of disease activity levels of the probability of damage. 
There are many reasons why a longer duration of follow-up might not be adopted by pharmaceutical companies. Firstly, they would be more costly.  Secondly, a longer trial will delay the launch of the new treatment and may increase the likelihood of launch into a competitive market. Thirdly, it would be unethical to maintain patients on an ineffective treatment if the trial had identified a better treatment option in the first 18 months. Finally, it may not be possible to retain patients in the trial long enough to collect the required data. Approximately 30% of patients in the belimumab Phase III trials withdrew from follow-up before the 52 week primary endpoint of the trial (74;75). 
Although the adoption of longer trials might be fraught with difficulties, it is undoubtedly an interesting question which is also relevant for many other chronic diseases. Longer trials will collect better evidence for the effect of treatment on disease activity, but it is not known how much longer the trial would need to be. This would depend on the incidence of organ damage events and the severity of the population, which is difficult to gauge without statistical analysis of longitudinal datasets. Health Economic modelling techniques proposed in this study could be used to predict incidence and assess the benefit of a longer trial. 
[bookmark: _Toc315274285][bookmark: _Toc332720572][bookmark: _Toc379467562]Sample Size
Traditional sample size calculations do not recommend trial sample sizes that will maximise the probability of market success. They are used to ensure that trial is powered to detect the clinical trial primary endpoint. The power of a statistical test is the probability that the test will reject the null hypothesis when the null hypothesis is false. Clinical trial endpoints are very rarely designed to account for the precision of the CE outcome and the decision criteria of the reimbursement authority. The larger trials in this review used frequentist sample size calculations. Smaller trials did not report explicit methods for estimating sample sizes. The outcomes from the belimumab trials suggest that traditional sample size calculations were adequate to power the study for a statistically significant SRI endpoint. However, the treatment was not reimbursed in Canada or the United Kingdom. Alternative methods for deciding sample size with consideration of CE outcomes may be of interest to pharmaceutical companies. However, the pharmaceutical perspective is complicated by two main factors. Firstly, price is not fixed early in drug development. Secondly, drug companies often design multi-national trials which inform multiple reimbursement submissions to local authorities. Therefore, there is not a single CE outcome to target in CE based sample size calculation.  
Larger sample sizes will inevitably lead to more precise estimates for the parameters of the CE model. Sample sizes are a very important aspect of trial design, and complement the exploration of the duration of follow-up. Both features impact on the magnitude of data collected in the clinical trial. Longer follow-up may be financially viable if it were possible to trade-off the sample size against duration of follow-up to optimise the usefulness of the data collected. There may also be limits to the sample size due to problems with patient recruitment, which may mean that a balance must be struck between sample size and duration of follow-up. 

[bookmark: _Toc315274284][bookmark: _Toc332720573][bookmark: _Toc379467563]Concommitant Medications
The protocol for concomitant medications has affected trial outcomes in SLE because it is believed that steroid doses have masked the effectiveness of new treatments in previous trials (62). It is not currently an important area of research for SLE clinical trials. There is evidence that concomitant medications can impact on outcomes of SLE RCTs. The concomitant medications protocol in the rituximab trial was thought to be detrimental whereas the belimumab Phase III trial concomitant medications protocol was successful. A reduction in disease activity was observed and a lower dose of steroids was used in the belimumab treatment arms (74;75). Future trials will most likely learn from the rituximab concomitant medication protocol in favour of a more flexible approach like the belimumab trials. 
Estimating the interactions between concomitant medications and treatment effect would be challenging. Firstly, the analysis would need to account for variability of prescribing behaviours between trial centres (87). Secondly, changes to the use of concomitant medications in a trial would require consideration of the ethical implications for trial subjects. Thirdly, interactions between steroid treatment effects and new treatment effects will be complex and difficult to estimate. As a consequence, it was considered an impractical design feature to evaluate.  
[bookmark: _Toc315274281][bookmark: _Toc332720574][bookmark: _Toc379467564]Inclusion Criteria
I have identified from the systematic review that inclusion criteria can be strategically used to identify patients who are more likely to respond to treatment, to increase the likelihood of trial success. There was a tendency for trials to recruit severe patients using disease activity thresholds. Patients with higher disease activity scores have a greater capacity to benefit from treatment, and may be refractory to conventional treatment. Inclusion criteria could be used to target trials towards particular organ systems where there is a rationale for greater efficacy. For example, early trial evidence might show greater treatment effect in the renal organ systems.
Inclusion criteria may improve the probability of demonstrating treatment benefit. There may be unintended consequences for future profits if the criteria result in a restrictive treatment licence. It may be useful to compare the value of a trial in a small patient sub-group against a trial in a broader population of patients. There is a potential trade-off of a higher probability of meeting the primary endpoint with a smaller eligible population at marketing versus a lower probability of trial success but with larger eligible population. Health Economic modelling techniques proposed in this study could be used to predict future profits for sub-populations of SLE patients.
[bookmark: _Toc315274282][bookmark: _Toc332720575][bookmark: _Toc379467565]Definition of Endpoints
The review indicates that there is evidence that the trial endpoint affects the likelihood of a successful trial. Variation in the choice of disease activity index and definition of the endpoint may explain some of the variation in trial outcomes. The belimumab trials used the SLEDAI and BILAG scores to measure disease activity, and were successful. The rituximab Phase II/III trial employed a stringent response criteria based only on the BILAG score, and was not successful (62). Other unsuccessful trials, such as the abatacept trial did not meet their primary endpoint using the BILAG score, but observed positive outcomes on the physician’s assessment (61). 
Investigators planning an SLE trial will inevitably be interested in identifying suitable endpoints (73). Post-hoc analysis of the belimumab Phase II trial was used to develop a composite responder index for the Phase III trial. Mathematical modelling could be employed to assess the sensitivity of the endpoints in observing differences between the arms of the trial.
[bookmark: _Toc379467566]Adverse Events
[bookmark: _Toc332720577][bookmark: _Ref354924625]Infections and other major adverse events are monitored during trials and often lead to participants withdrawing from the trial. I decided not to consider alternative options for the design of trials in relation to adverse event protocols because there are strict guidelines on the monitoring of adverse events. The FDA require that the safety database is consistent with the recommendations made in the ICH guidance for industry (88). 
[bookmark: _Ref362171697][bookmark: _Toc379467567]Conclusions
[bookmark: _Toc278533893][bookmark: _Toc278533953][bookmark: _Toc279009220][bookmark: _Toc332984763]In conclusion, the literature review was informative in defining what characteristics are commonly found in an SLE clinical trial. The standard trial design for a large drug development included 100-800 patients with moderate/severe disease who were followed for 1-1.5 years. Efficacy is evaluated by monitoring disease activity. Concomitant medications are allowed but are likely to be regulated. I identified that sample size, duration of follow-up, definition of primary endpoint, and inclusion criteria were potential design features to vary in future SLE clinical trials. Concomitant medications and adverse events were not suitable design features to evaluate. 
Having identified trial design features that could be changed in future SLE trials it was necessary to identify a suitable method to evaluate an optimal trial design. As a consequence, I reviewed the literature to include in my analysis plan.


[bookmark: _Toc379467568]Chapter 3: Modelling Methods Literature Review
3. 
The aim of this literature review was to identify health economic methods that have been used to design clinical trials. 
The literature review would be used to inform the methodological approach to evaluating alternative trial designs for a Phase III SLE trial. Health economic analyses are more commonly used to evaluate treatments after data collection. However, there is also interest in using health economic methods to plan clinical trials. A comprehensive literature search reviewing modelling methods in clinical trial design was reported in 2003 (89). These findings were used as an introduction to trial design methods and to guide further literature searching. Chilcott et al. (2003) identified the Value of Information (VOI) approach to planning future clinical trials that uses Bayesian methods to plan and prioritise trials (89). In this chapter, I focus on the Expected Net Benefit of Sampling(ENBS), which has been used by health economists to inform the design of clinical trials. 
Section ‎3.1 describes the findings from Chilcott et al. 2003. Section ‎3.2 describes the search strategy for the updated literature review. Section ‎3.3 describes the methods adopted in the studies identified in the literature. Section ‎3.4 discusses the advantages and limitations of the methods identified and whether they can be applied in this case study. Section ‎3.5 summarises how the literature review was used to select the methods used in this thesis to evaluate the value of Phase III RCTs in SLE.
[bookmark: _Toc332984765][bookmark: _Ref337482964][bookmark: _Toc379467569]Chilcott et al. (2003)
[bookmark: _Toc279009232][bookmark: _Toc279009276]A comprehensive review of the role of modelling in prioritising and planning clinical trials was published as a Health Technology Assessment Methodology report (89). Chilcott et al. (2003) identified a number of modelling approaches for the planning and prioritising of clinical trials (89). The review concluded that these can be useful in identifying parameters for which further data collection would be beneficial. They find that methods have been developed to evaluate the benefit of alternative trial designs. In the following sections I summarise the findings from Chapters 6-8 from Chilcott et al. (2003). 

[bookmark: _Toc332984767][bookmark: _Toc379467570]Expected Value of Information 
In decision theory, the expected value of information described the monetary value that the decision-maker would be willing to pay in order to reduce the uncertainty in the decision problem. Uncertainty for the decision maker is expressed as the uncertainty in the incremental net benefit. This is a function of the uncertainty in model inputs θ. 
The distribution of the prior parameters of the CE model can be updated with new data using Bayes theorem. This will increase the precision of the CE model input parameters and in turn reduce the uncertainty in INB. Reimbursement decision-makers are adverse to uncertainty because it increases the probability that a sub-optimal treatment is chosen. For this reason it may be preferable to collect more data to support the decision, rather than make a decision based on current information.     
VOI assigns a monetary value to the uncertainty in the CE model to reflect the opportunity cost of choosing the less cost-effective treatment. The opportunity cost is estimated from the lost net benefit if the wrong decision were made. Reducing the uncertainty of the INB reduces the opportunity costs to the decision-maker because there is a lower risk of an incorrect decision. The VOI approach assumes that data collection can be predicted and valued to help decide whether to conduct the research and compare the value of alternative research designs. The VOI framework broadly calculates the expected reduction in uncertainty after the collection of new data, and thereby assigns a value to new research.
Chilcott et al. identified three types of analysis within the VOI framework. Expected Value of Perfect Information (EVPI) calculates the potential value of research if all uncertainty were eliminated from the CE model. EVPI for specific parameters in the CE model was often referred to as partial Expected Value of Perfect Information (EVPPI). This estimates the value of perfect information for an individual, or a set of parameters. 
The Expected Value of Sample Information (EVSI) values a reduction in CE model uncertainty through the collection of data from a finite sample. Given that the elimination of uncertainty is an impossible target, EVSI has a more practical application in the design of future trials. Therefore, the EVSI calculation is more useful in assessing the value of trials with realistic sample sizes. EVSI estimates the difference between the expected value of a decision made after the proposed research and the expected value of a decision made with prior knowledge.
	
	
	(3.1) 


Where D represents two or more treatment options, θ, the parameters of a CE model, and X, the new data collected. 
The EVSI simulates possible results from the data collection exercise, takes the average outcome over possible results from the proposed data collection exercise, and values the reduction in uncertainty the additional data provides. 
Collecting further information is costly, and the value of sample information must be balanced against the cost of data collection. Expected net benefit of sample information (ENBS)  is the difference between the EVSI and the expected costs of the trial. 
	
	
	(3.2) 


Therefore, the trial design with the greatest expected net benefit of sampling generates the greatest payoff to further research. EVSI has previously been applied to the medical decision making context to determine optimal sample size in randomised controlled trials (33;90).
EVSI is not limited to assessing the value of future research into the clinical data from RCTs. Other research designs, such as epidemiology, cost of illness, and quality of life studies can also be evaluated as part of this process. Different combinations of study type, endpoints, and sample size can all be compared based on the ENBS. However, the costs of collecting the data must be accounted for to avoid unbounded research design. 
[bookmark: _Toc332984766][bookmark: _Toc379467571]The ‘Payback’ of Research
Seven studies identified by Chilcott et al. (2003) use a cost-benefit framework to assess the Payback of research (89). The Payback to research approach is based on an input-output model to evaluate the return to investment in research. The approach aims to assess whether or not to commission the research by estimating the impact of research outcomes on current practise, and the benefits to society of the change in policy. 
The studies included both prospective and retrospective designs. The approach required the specification of discrete trial outcomes of a study. The number of outcomes considered varied between studies. The CE outcomes for each delta result were calculated. The methods for estimating health outcomes depended on the trial type but were broadly consistent with CE modelling used for health technology assessment. The probability of each outcome tended to be arbitrary. The benefits of the research were measured in terms of the health outcomes, future uptake of the treatment, and each study made assumptions of the impact on trial results on changes in treatment.  
[bookmark: _Toc332984768][bookmark: _Toc379467572]Conclusions 
Chilcott et al. found that the payback method was intuitive in the questions it answers, and how the method was applied. However, they discussed a few problems with how this methodology was applied. Firstly, the results were dependent on what delta values were assumed. There were no clear guidelines or consistency in how delta should be specified. Secondly, the probabilities assigned to the outcomes were arbitrary in some cases, and none used data specific to the trial being assessed. Misspecification of these probabilities was likely to lead to misleading recommendations from the analysis. Thirdly, they identify variability in the complexity of the uptake assumptions for the new technology. Fourthly, the expected lifetime of a new treatment was difficult to predict. 
Uncertainty can be addressed to some extent with sensitivity analyses on the delta result, health outcomes and future uptake inputs in the Payback approach. However, Chilcott et al. believed that specifying prior uncertainty on the model parameters was difficult within this framework and does not explicitly make use of Bayesian methods (89). Furthermore, the methods used in the case studies were of limited use in evaluating alternative designs of the future trial. Chilcott et al. suggest that stochastic sensitivity analysis should be implemented into the payback method, which essentially moves this approach towards a VOI calculation (89). 
The reviewers identify several advantages to using the VOI approach in the design of clinical trials. Firstly, the research was valued using the same metric and methods as the treatment. Secondly, the method does not require discrete trial outcomes and their probabilities, because the trial outcomes were expressed as uncertain parameters based on prior knowledge. Thirdly, it does not require a pre-specified research design. In a separate review of VOI methods Eckermann et al. (2010) conclude that EVPI and EVPPI are not sufficient conditions to inform policy because they do not consider the net gains of sampling (91). They also conclude that estimating EVSI, expected costs and expected net gain of research designs can be useful to guide research programmes. 
The main limitation of EVSI is the computation time of the analysis and that the specification of how many patients benefit from treatment in the future can be arbitrary in comparison to the methods used to predict trial outcomes. Other criticisms include that the assumptions of the impact of the research are often over-estimated (92) and the usefulness of the method is conditional on whether the model for predicting outcomes is accurate (10).
Nevertheless, I followed the recommendations from Chilcott et al and decided that a VOI approach of valuing clinical trials according to the expected reduction in uncertainty should be seriously considered (89). The method integrates prior knowledge of the treatment into the CE model and the costs of the trial to weigh up the benefits of further research. This helped to finalise the focus of the updated methods literature search and review.
[bookmark: _Toc332984769][bookmark: _Ref337482994][bookmark: _Toc279009277][bookmark: _Toc379467573]Literature Search and Review Methods
[bookmark: _Toc379467574]Inclusion Exclusion
I updated the literature review reported in Chilcott et al. (89) and modified the scope of the search to identify recent developments in health economic applications of VOI. The review focussed on EVSI methods, excluded EVPI studies, and was broadened to identify other Bayesian methods of trial design using a Net Benefit approach. EVPI studies were excluded because the methods required to estimate the value of perfect information are less burdensome than EVSI, and less likely to be adopted in this study. 
I designed a literature review to identify studies that had used Bayesian methods to design clinical trials. I knew that Bayesian methods to calculate sample size in clinical trials were an active area of research amongst clinical trial statisticians. Articles describing Bayesian methods for clinical trial design were only included in the review if they used a net benefit approach to valuing the trial or used simulation techniques to combine prior parameters for multiple outcomes to maintain the focus of the PhD on health economic methods. Studies were included if they met the following criteria:
· A comparison of two or more clinical trial design options
· Probabilistic analysis to reflect input parameter uncertainty 
· The value of trials is expressed in health economic terms (Costs, QALYs etc…)
The search excluded the following types of papers because they would not contribute to the methods used in this study for the design of a Phase III efficacy trial:
· Discussion or review papers 
· Sample size calculations for CE trials
· Pay back to research methods
· EVPI or EVPPI studies
[bookmark: _Toc379467575]Search Strategy
There are many challenges involved in using systematic searching approaches to identify methodology papers (89). Subject searches yield large number of citations of which only a small proportion were relevant, study selection criteria were difficult to define, and data extraction needs to be problem specific. As a consequence the search strategy was designed to adopt the ‘pearl growing’ methods recommended in Chilcott et al. (2003). The search started with the identification of key publications that met the inclusion criteria. A citation search was conducted using the online database Web of Knowledge to identify related articles (93). Articles were screened to meet the inclusion criteria and these were then included in a second round of literature searching. In the second round the reference lists and citation lists were searched for relevant articles. 
Three references from Chilcott et al. were selected as the starting point of the search strategy and whose reference lists and citation lists were screened to identify studies meeting the inclusion and exclusion criteria (33;94;95). The full text articles were sought. The reference and citation search was conducted in Web of Knowledge in January 2010 and updated in January 2012. 
[bookmark: _Ref333405417][bookmark: _Toc379467576]Data Extraction
The strategy for data extraction was designed to identify how Bayesian methods have been used to design clinical trials. A traditional systematic review approach to data extraction was not suitable. The methodologies were variable and required a narrative style to accommodate different reporting styles. The review aimed to identify common approaches, and group the articles accordingly. A checklist of questions was developed to characterise and categorise the methods used in the papers. Once the studies were grouped according to categories it was possible to summarise key methods within the study categories. The checklist was developed after an initial read of some of the papers identified in the search. 
1. Does the study value the trial from a societal perspective using EVSI?
2. Does the study assume that the net benefit is normally distributed?
3. Does the study use conjugate distributions to estimate the posterior?
4. Does the study use Markov Chain Monte Carlo methods to sample from the posterior?
5. Does the study sample more than one outcome from the trial?
6. Does the study estimate the probability of license or reimbursement?
7. Does the study simulate outcomes of the clinical trial?
[bookmark: _Toc332984773][bookmark: _Ref337483010][bookmark: _Toc379467577]Literature Search and Review Results
Chilcott  et al. (2003) identified three articles that described ENBS methods to predict outcomes of future trials (33;94;95). The three articles are listed in Table 7 with Karl Claxton first author on two and Simon Thompson the first author on the other. These 3 papers provided a background in the fundamental concepts of using CE models to design clinical trials, and formed the foundations for subsequent work in this area. Citation searches on these three articles identified 349 references, after duplicate articles were removed. Of these 19 met the inclusion criteria. The second round of searching in the reference lists and citations related to the 19 articles identified 461 references. The second round of searching identified 15 articles that met the inclusion criteria. A total of 37 articles were therefore included in the methods literature review. Details of the articles and the responses to the questions used for categorising the articles are reported in Table 7.
[bookmark: _Ref337798162]

[bookmark: _Ref351653698]Table 7: Full list of papers included in the review and the findings to questions 1-7 in section ‎3.2.3
	First Author
	Title
	1
	2
	3
	4
	5
	6
	7

	Halpern 2001(96)
	The sample size for a clinical trial: a bayesian-decision theoretic approach
	Y
	Y
	Y
	
	Y
	
	

	Koerkamp 2008 (97)
	Value of information analysis used to determine the necessity of additional research: MR imaging in acute knee trauma as an example
	Y
	Y
	Y
	
	Y
	
	

	Koerkamp 2010 (98)
	Value of information analyses of economic RCTs: the treatment of intermittent claudication
	Y
	Y
	Y
	
	Y
	
	

	Claxton 1996 (33)
	An economic approach to clinical trial design and research priority setting
	Y
	Y
	Y
	
	
	
	

	Claxton 1999 (94)
	The irrelevance of inference: a decision-making approach to the stochastic evaluation of health care technologies
	Y
	Y
	Y
	
	
	
	

	Claxton 2001 (99)
	A dynamic programming approach to the efficient design of clinical trials
	Y
	Y
	Y
	
	
	
	

	Willan 2005 (100)
	The value of information and optimal clinical trial design
	Y
	Y
	Y
	
	
	
	

	Willan 2007 (101)
	Clinical decision making and the expected value of information
	Y
	Y
	Y
	
	
	
	

	Willan 2008 (102)
	Determining optimal sample sizes for multi-stage randomized clinical trials using value of information methods
	Y
	Y
	Y
	
	
	
	

	Eckermann 2008(103)
	The option value of delay in health technology assessment
	Y
	Y
	Y
	
	
	
	

	Eckermann 2009(104)
	Globally optimal trial design for local decision making
	Y
	Y
	Y
	
	
	
	

	Willan 2010 (105)
	Optimal clinical trial design using value of information methods with imperfect implementation
	Y
	Y
	Y
	
	
	
	

	Eckermann 2007 (106)
	Expected value of information and decision making in HTA
	Y
	Y
	Y
	
	
	
	

	Eckermann 2008 (107)
	Time and expected value of sample information
	Y
	Y
	Y
	
	
	
	

	Ades 2004 (108)
	Expected value of sample information calculations in medical decision modelling
	Y
	
	Y
	
	Y
	
	

	Conti 2009 (109)
	Dimensions of design space: a decision-theoretic approach to optimal research design
	Y
	
	Y
	
	Y
	
	

	Stevenson 2009 (110)
	Vitamin k to prevent fractures in older women: systematic review and economic evaluation
	Y
	
	Y
	
	Y
	
	

	Stevenson 2009(111)
	The cost-effectiveness of an RCT to establish whether 5 or 10 years of bisphosphonate treatment is the better duration for women with a prior fracture
	Y
	
	Y
	
	Y
	
	

	McKenna 2011(112)
	Addressing adoption and research design decisions simultaneously: the role of value of sample information analysis
	Y
	
	Y
	
	Y
	
	

	Stevenson 2011 (113)
	The cost-effectiveness of an RCT to establish the relative efficacy of vitamin k(1) compared with alendronate
	Y
	
	Y
	
	Y
	
	

	Kharroubi 2011 (114)
	Estimating expected value of sample information for incomplete data models using bayesian approximation
	Y
	
	
	Y
	Y
	
	

	Brennan 2007 (115)
	Expected value of sample information for weibull survival data
	Y
	
	
	Y
	
	
	

	Brennan 2007 (116)
	Efficient computation of partial expected value of sample information using bayesian approximation
	Y
	
	
	Y
	
	
	

	Thompson 1981 (95)
	Decision-analytic determination of study size: the case of electronic fetal monitoring (EFM)
	Y
	
	
	
	
	
	

	Shavit 2005 (117)
	It’s time to choose the study design! Net benefit analysis of alternative study designs to acquire information for evaluation of health technologies
	Y
	
	
	
	
	
	

	Kikuchi 2009 (118)
	A bebayes method to determine the sample size of a clinical trial considering efficacy and safety
	
	Y
	Y
	
	Y
	Y
	Y

	Kikuchi 2011 (119)
	A behavioural bayesian approach to the determination of sample size for clinical trials considering efficacy and safety: imbalanced sample size in treatment groups
	
	Y
	Y
	
	Y
	Y
	Y

	Kikuchi 2010 (120)
	A bebayes approach to sample size determination in cluster RCTs
	
	Y
	Y
	
	Y
	Y
	Y

	Kikuchi 2008 (121)
	A cost-benefit approach to the amount of experimentation in clinical trials
	
	Y
	Y
	
	
	Y
	Y

	Willan 2008 (122)
	Optimal sample size determinations from an industry perspective based on the expected value of information
	
	Y
	Y
	
	
	Y
	

	Pezeshk 2002 (123)
	A fully bayesian approach to calculating sample sizes for clinical trials with binary responses
	
	Y
	Y
	
	
	Y
	

	Gittens 2000 (124)
	How large should a clinical trial be?
	
	Y
	Y
	
	
	Y
	

	Gittens  2000 (125)
	A behavioural bayes method for determining the size of a clinical trial 
	
	Y
	Y
	
	
	Y
	

	O'Hagan 2005(126)
	Assurance in clinical trial design
	
	
	Y
	
	Y
	Y
	Y

	Nixon 2009 (63)
	The rheumatoid arthritis drug development model: a case study in bayesian clinical trial simulation
	
	
	Y
	
	Y
	Y
	Y

	Girling 2007 (127)
	Sample-size calculations for trials that inform individual treatment decisions: a ‘true-choice’ approach
	
	
	Y
	
	
	
	

	Patel 2007 (128)
	A bayesian approach for incorporating economic factors in sample size design for clinical trials of individual drugs and portfolios of drugs
	
	
	
	
	
	Y
	Y


[bookmark: _Toc332984774]
[bookmark: _Toc379467578]ENBS assuming Net Benefit is Normally Distributed
Four ENBS studies assumed that the incremental net benefit was normally distributed, which enables the expected net benefit of future research to be estimated with analytic procedures (33;94;100;101). In these studies sample size is chosen to maximise the difference between the costs of a trial and the expected value of the results. If the expected Net Benefit is normally distributed then analytic solutions can be used to estimate the posterior distribution. Full details of the analytic solution are described elsewhere (100). The analytic solution is easy to compute relative to other methodologies identified in the review. As such many of the case studies have used this method to test and demonstrate other theoretical principles in decision-making. The case studies consider a decision maker choosing whether to adopt a new treatment, adopt and run a trial, or delay a decision until a trial was complete (106). The impacts of alternative assumptions about the context of the decision and the options available to the decision-maker have been evaluated using the normally distributed Net Benefit assumption. 
Eckermann and Willan extend this analysis to consider the costs of reversing a decision to adopt if further data were collected (103). They find that the cost of reversing the decision impacts on the value of an “adopt and run a trial” decision in HTA. 
Eckermann and Willan consider the effect on ENBS calculations of including patients outside of the clinical trial, who potentially receive sub-optimal treatment whilst a trial is being conducted. This increases the opportunity cost of the trial compared to a decision to adopt immediately (107). 
Willan and Eckermann relax the assumption of perfect implementation of new treatments, and suggest that the probability that a patient receives the new treatment increases linearly with time (105). They demonstrate that imperfect implementation impacts on the value of further research and the optimum sample size of a trial. The study proposes that the implementation rate be a function of the incremental benefit of the new treatment, however no recommendations on how this can be estimated were provided.
Complex decision problems including a number of different trial options have been evaluated by adopting normally distributed Net Benefit assumptions. Dynamic programming was used to evaluate clinical decision problems that have a sequence of contingent decisions (99). The analysis identified a portfolio of research, where optimal sample sizes were balanced between stages of the research. Willan and Kowgier  (2008) consider  multi-stage adaptive design trials using ENBS to evaluate a sequence of trial designs (102). They use ENBS methods to identify the optimum sample size and proportion of patients that should be recruited into two stages of the trial. They demonstrate that multi-stage adaptive design trials have substantial expected net gains over a single stage trial.
Eckermann and Willan consider the difference between local and global optimal decisions and trial designs. They show that where information was exchangeable between jurisdictions, the globally optimal trial design conveys greater benefits than individual locally optimal decisions (104). 
Koerkamp et al. (2008,2010) conduct a partial EVSI on some of the parameters of the net benefit function (97;98). They consider a clinical trial that would collect data on the parameters of interest. They disaggregate the Net Benefit into two calculations for the parameters of interest, and the parameters not of interest , with correlation . They updated the Net Benefit for the parameters of interest from sampled data, and update the net benefit for the parameters of no interest using the correlation parameter. Revised total benefit is calculated as the sum of the two Net Benefit estimates. This method could not be used to evaluate a study of QALYs only, or treatment effectiveness if each subset of the parameters does not estimate Net Benefit.
The studies assumed that the between patient variance was known. The method is most appropriate to determine sample size for cost-effectiveness trials where Net Benefit is calculated from within trial data. In this case there is a clear relationship between trial sample size and Net Benefit uncertainty. Previous trials, or pilot studies, could provide estimates of between patient variance. However, CE models are used to synthesise data from multiple data sources to extrapolate the benefits over a lifetime. The Phase III trial only collects data for a sub-section of the parameters of the CE model, such as the effectiveness of treatment in an RCT. The impact of individual CE model parameters on Net Benefit is difficult to estimate. This approach to Bayesian updating enabled other assumptions in ENBS calculations to be tested and explore more complex decision problems.
In summary, studies that assume that Net Benefit was normally distributed have made a major contribution in introducing ENBS as a method to estimate the optimum sample size. The simplifying assumptions have allowed the method to be applied in real-world examples, and more complex decision problems. However, the limitations of the approach arise if Net Benefit is not normally distributed, or if the variance in Net Benefit is not known. 
[bookmark: _Toc379467579]ENBS assuming Conjugate Priors
If Net Benefit cannot be assumed to be normally distributed it is possible to use conjugate distributions to simplify the estimation of the Bayesian posterior distribution. Ades et al. (2004) describe extensions to normally distributed Net Benefit methods to deal with model parameter uncertainty (108). It is a pivotal publication in the field of VOI for health economics and provides many useful methodological guidelines.
They assumed that net benefit for treatment D was a function of  parameters, . Future data collection obtains data for a subset of parameters, but not the complement parameters that were not updated with new information and were assumed to be independent. Firstly, they describe guidelines on how to update Net Benefit after data collection.
1. If  is linear or multi-linear in  and  then evaluate CE outcomes with the posterior mean for  and prior mean for .
2. If  is linear in , but non-linear in , carry out a nested Monte Carlo integration over  using samples from the prior distribution, and fix  at the posterior mean.
3. If  is non-linear in , but linear in , carry out a nested Monte Carlo integration over   using samples from the prior distribution, and fix  at the prior mean.
4. If  is non-linear in both, carry out Monte Carlo integration over  and  using samples from the posterior and prior distributions respectively. 
They present alternative methods to estimate the posterior distribution for non-normally distributed data with unknown variance. This includes the Beta-Binomial conjugate relationship for probabilities, Gamma-Poisson for rates, and Normal with unknown variance for other parameters. They also identify transformations of data and parameters to the normal distribution so that the posterior distribution can be estimated on the transformed scale. The article discusses situations where the decision problem includes probabilities of an event for two treatment options  and. These could be expressed as two probabilities, but are commonly described by the standard of case baseline probability  and a relative risk, or odds ratio for the new treatment from which we can estimate. Ades et al. (2004) demonstrate that the baseline risk does not have to be updated with the new trial data, providing that the relative risk is used because this can be assumed to be independent of baseline risk. 
Conti and Claxton (2009) use these methods to develop an optimisation procedure to identify a portfolio of research designs with optimum sample size. The log odds ratios were modelled via a normal approximation to binomial likelihoods. This simplifies the calculation of the net benefit function for a given set of parameters. McKenna and Claxton (2011) explore some of the issues involved with an “adopt and research decision” for institutions such as NICE (112). They demonstrate a practical example of ENBS and highlight that it was important to consider all groups of patients, whether in the trial, or out of the trial and how the data collection affects them. 
The literature review identified three practical ENBS case studies in which individual or groups of parameters would be updated in a future clinical trial using analytical methods to estimate the posterior distribution (110;111;113). In all three studies the parameters collected in the data collection were assumed to be normal or log-normal, which allowed a conjugate relationship to be used. The posterior distribution of the sampled parameters were then used in an inner-level Monte Carlo (MC) sampling of a CE model to estimate the expected net benefit after the data sampling. 
The problem with the computational burden of the inner-loop MC calculation was raised in these studies. For each probabilistic sample from the trial outcomes it is necessary to run a complete PSA analysis to evaluate whether the trial will change the reimbursement decision. PSA analyses can be time consuming, so repeating the process for many data samples will escalate the computation time. In one study the authors note that they adopt a relatively simple CE model for osteoporosis because of the computational burden of EVSI analysis (111). They claim that the simple CE model was unlikely to affect the decision recommendation compared with the more detailed model. However no comparisons between the simple and complex CE model were presented to support this assumption. In the studies of Vitamin K a meta-model based on the outputs of an individual patient model to predict costs and QALYs for the efficacy of a treatment was used to simplify the inner-loop MC process (110;113). This method had been calibrated against a more complex CE model (110).
The assumption of conjugate distributions will simplify the process of Bayesian updating but does not eliminate the computational burden of an EVSI analysis. The evaluation of the inner level Monte Carlo Sampling can still be very time consuming with complex CE models. Conjugate methods cannot be applied if there is correlation between the parameters to be updated, and the complement set of parameter not updated with trial data. Conjugate methods cannot be used if the parameters of the CE model cannot be described by conjugate distributions. 
In summary, studies that utilise conjugate distributions to update parameters of a CE model have demonstrated practical examples in which simple CE models have informed the design of clinical trials. 
[bookmark: _Toc379467580]ENBS With Non-Conjugate Priors
Not all statistical distributions used in CE models can be updated using conjugate distributions. In this situation, Bayesian updating can be undertaken using MCMC methods (10). Bayesian software, such as WinBUGS, can be used to specify the prior distribution, the model for the data, and data. WinBUGS samples values from the posterior distribution of the parameters which can then be used in the CE model. The process can be computationally expensive, because the data sampling and nested Monte Carlo are both time consuming, which restricts the use of EVSI to simple CE models. 
Brennan and Karroubi (2007) developed a method of Bayesian approximation (B&K approximation) that can be used in EVSI calculations (116). The B&K approximation formula estimates the posterior expectation of a Net Benefit function given data collected for a subset of parameters. In the article the B&K approximation formula was shown to estimate similar expected Net Benefit to the MCMC sampling method. The methods have also been demonstrated to work with Weibull survival data where the data and prior distribution were not conjugate (115). The method offers substantial efficiency gains over conventional MCMC Bayesian updating in two ways. Firstly, the Bayesian updating was faster to compute than MCMC sampling. Secondly, it avoids the need to perform a nested Monte Carlo sample of Net Benefit given the posterior estimates of the subset of parameters. The approximation method requires 2d+1 evaluations of net benefit, where d is the number of uncertain parameters in the Net Benefit function. In contrast, MCMC sampling would require substantially more evaluations of Net Benefit for the sampled posterior distributions of θ to get accurate estimates of Net Benefit. 
A recent development from Karroubi et al. (2011) has demonstrated that the method can be used to evaluate research programmes of different size. The previous B&K approximation studies assumed that the same amount of data was collected for all parameters of interest. The authors refer to this as a “balanced” case. The study design would be “unbalanced” if, for example, the samples for the efficacy parameter were larger than that of utility data. In the example, the prior distribution was updated sequentially with six sets of data of different size. This study demonstrates that the multivariate normal prior can be analysed independently within the B&K approximation method if it needs to be divided into smaller sub-groups of parameters.
In summary, the Brennan and Karroubi (B&K) approximation provides an efficient method to calculate EVSI if the data collected would not be conjugate with the prior or from imbalanced datasets. This method reduces the computational burden of conducting MCMC sampling in these situations and opens up the possibility of conducting EVSI in more complex CE models where MCMC sampling could not be completed within a reasonable time-frame.  
[bookmark: _Toc379467581]Behavioural Bayesian Approaches to Clinical Trial Design
A series of articles have considered methods to determine sample size based on the assumption that the number of subsequent patients receiving the intervention was a function of the distribution of the standardised difference between the treatments. Therefore, the greater the difference and the smaller the variance the more likely it was that patients would switch. The method is referred to in the literature as the Behavioural Bayesian (BeBay) approach to sample size determination (124). The articles present methods relevant for the public health perspective and the industry perspective. This review focuses on the method developed from the industry perspective. 
The authors utilising the BeBay approach assumed that the difference between two treatments has a mean  and variance  (124). The prior distribution for  was normally distributed . In the basic case the variance  was assumed known. The number of users of the new treatment depends on the posterior distribution of  contingent on the prior distribution and data collected. The benefit of the trial is measured in terms of the number of patients who will switch to the treatment after the data is collected multiplied by the profits from that patient. This benefit is offset by the costs of the trial. The analyses seek to maximise expected Net Benefit of the trial for varying sample sizes. The method assumes that the cost of the trial and variance in the treatment effect were known. Halpern (2001) develop a programme to identify the optimum sample size for a clinical trial with a binary outcome (96). They assume a bivariate normal distribution for the probability of success on an experimental treatment, P2 and standard treatment P1 to reduce calculation time. The authors subsequently showed the method can be used with Normal data, Binary data, Poisson data, and survival analysis assuming that the central limit theorem to justify the assumption of normality (124). 
In this framework the commercial Net Benefit of the trial depends on the number of subsequent users of the treatment. They assume that patients were more likely to adopt the new treatment if the posterior estimate for  was large and the standard deviation was small. They define two parameters A and B that represent threshold at which some patients will switch to the new treatment and all patients will switch to the new treatment respectively (Figure 4). The method allows for partial adoption of the new treatment. 
[bookmark: _Ref345766765]Figure 4: Number of subsequent users
[image: ]
Several extensions to the fundamental structure have been published. Pezeshk and Gittens (2002) introduced a method of estimating sample size for binary data when the central limit theorem does not provide an accurate approximation (123). Kikuchi and Gittens (2008) update the weight function illustrated in Figure 4 to describe the probability that patients adopt the new treatment between the thresholds A and B described by logistic weight function. The logistic regression approximates the linear gradient used in previous studies. The authors use Monte Carlo simulation to calculate sample size and relax the assumption that variance is known (121). Other extensions of the approach were to determine sample size calculations for cluster randomized controlled trials (120), and trials with imbalanced sample sizes between trial arms (119).
In recent adaptations of the method Kikuchi and Gittens (2010) have introduced the behaviour of licensing authorities on the trial size calculations. The licence regulator’s decision was based on classical theory and requires a statistically significant result in. This decision has an impact on the result if the minimum probability of success required by the regulator was greater than the lower threshold that would motivate subsequent users to switch treatments (125). The license regulator would prevent access to treatment for a proportion of patients who would otherwise have switched based on the evidence.
Recent BeBay publications have incorporated costs of the treatment to the health authority introducing a health economics framework for treatment access. This has primarily included the costs of adverse events into the methodology (118). The adverse reactions were simulated to occur at a Poisson rate, and the prior expectation for the rate was expressed by the gamma distribution to allow conjugate updating. The cost of adverse events was included in the cost of the clinical trial and the incremental cost of treating subsequent patients. Kikuchi and Gittens adopt Monte Carlo simulation in this approach to estimating the dependence of expected Net Benefit on sample size (118). The probability of subsequent users adopting the new treatment was calculated by logistic regression accounting for the magnitude of, and the difference in adverse events between the treatments. They include the costs and benefits from the perspective of the health authority, but they exclude the costs of the treatment. The authors argue that this approach allows the company to consider what treatment costs would be considered reasonable for the health authority. Although, the authors discuss the possibility of investigating the potential prices that could be charged by the company, given the expected evidence, they do not explore further. 
Willan (2008) adopts the BeBay approach to specify that the value of additional information relates to the increase in expected profit resulting from an increase in the probability of reimbursement approval (122). This article is the first explicit connection made between the Health Economics EVSI methods and the BeBay approach. The expected profit was formulated as a function of profit per patient, p, the annual incidence of treatable patients, k, the time horizon of treatment, h, market share s, and the probability of reimbursement approval as a function of the strength of evidence, .
	
	
	(3.3) 


The probability of reimbursement approval is estimated using a simple step function according to the z-statistic. They specify a lower and upper threshold for the z-statistic at which the drug would be firmly accepted or rejected. The probability between these thresholds can take a value between 0 and 1.The z-statistic was estimated from the mean and variance of the sample data combined with prior estimates using the using the algorithms for the normal distribution. In the case where the upper and lower thresholds for z were the same. This was equivalent to assuming a threshold for statistical significance. The limitations to this method are that it relies on the outcome of the trial to be normally distributed with known population variance. 
Patel et al. (2007) develop a similar method for selecting sample size to optimise the expected profit for the company (128). However, they consider the situation where the pharmaceutical company has a fixed budget to be assigned to a portfolio of drug development options. This approach would be useful for pharmaceutical companies to decide research priorities.  
In summary, a substantial number of studies have adopted a BeBay approach to trial design. The foundations of the methods are very similar to those employed in health economic studies. In recent applications the objectives of the regulators have focussed on cost-effectiveness criteria. However, the formula for estimating cost-effectiveness outcomes is not complex.
[bookmark: _Toc379467582]Probability of success Approaches to Clinical Trial Design
Assurance in trial design describes the unconditional probability that the trial ends with a desired outcome. The desired outcome can be set to any result observed in the trial, but usually concerns a statistically significant difference between treatments. The assurance is often described as the expected power of a trial, but is estimated by averaging over the prior distribution of the trial outcomes. The probability of reimbursement approval  described in Willan (2008) was a form of assurance calculated under the condition of a one-sided test where data were normally distributed with known variance, and where a conjugate normal prior distribution was assumed for the unknown treatment effect (122). 
O’Hagan et al. demonstrate that the approach can be generalised to a wide range of trial outcomes to include: two sided superiority trials; non-inferiority trial; equivalence trials; normal data with unknown variance; and binary data (126). They identify mathematical expressions for assurances for simple problems and introduce a general purpose technique for calculating assurance using simulation. They demonstrate that assurances can be calculated for normal data with unknown variance and binary data using Bayesian Clinical Trial Simulation (BCTS). This process involves the following process as described by O’Hagan et al. where θ represents the prior distributions for the outcome variables (126).
1. Define counters I for iteration and  for the assurances, and set all counters to 0.
2. Sample θ from the prior distribution
3. Sample the sufficient statistics using the model and the sampled value of θ.
4. For  increment  if the outcome  has occurred.
5. Increment. If, go to step 2. 
6. For , estimate assurance by .
A simulation approach to calculating assurance was adopted in a separate paper to evaluate a sequential series of Phase IIb and Phase III trials for a new drug for Rheumatoid Arthritis using the Rheumatoid Arthritis Drug Development Model (RADDM) (63). The RADDM model estimates the probability of license regulatory approval for different trial designs. Disease duration of the target population, sample sizes, doses of the experimental treatment, choice of comparator, duration of the Phase IIb clinical trial, the primary efficacy outcome and decision criteria for proceeding to Phase III based on the results at Phase IIa were all varied. The simulation was flexible to address many design decisions that extend beyond sample size. The study does not present the impact of the results on cost-effectiveness analyses but the authors acknowledge in their discussion that the simulation can be linked to a CE model or commercial value model. 
[bookmark: _Toc379467583]Other approaches
Shavit et al. (2005) develop a CE model to compare the costs and incremental benefits for two research designs (117). They compare a Randomised Controlled Trial (RCT) with a retrospective observational study design. They measure the benefits of the studies in terms of the expected bias in the information gained. They assessed estimates of information bias for the designs that were evaluated and assign probabilistic distributions to these. 
The study provides a framework to compare RCTs with observational studies, however many of the practicalities involved in their method are not explored in detail. The authors specified informative priors for the bias, but do not give a detailed description on how they were derived. The sample size of the designs were reported to be calculated using EVSI, however they do not explicitly state how the EVSI calculation was performed. The authors recommend that the information from the studies should be valued according to a threshold for the organization financing the research’s willingness to pay for a unit of effectiveness observed. This method could be applied from a societal perspective in terms of willingness to pay for health gain, or from an industry perspective of increased profit per unit effectiveness.
[bookmark: _Toc379467584]Subsequent Published Literature
Since my review was completed I have identified two further publications that are relevant for conducting Value of Information analyses from the pharmaceutical perspective. These were not incorporated into the review because whilst they were relevant to the review, they did not use methods that were absent from the review. From a methodological perspective these studies utilise an assumption that Net Benefit is normally distributed. However, one article considers decision-making when the pharmaceutical company and the reimbursement authority differ in their valuation of the drug (129). The second article develops on previous work in which multiple stage trial designs are considered from a pharmaceutical perspective (130). Both studies assume that the company has an option to submit for reimbursement with current evidence. The analysis of multi-stage trial designs conducts sensitivity analysis for different prices but in discrete analyses.
Willan and Eckermann (2012) investigated price setting and the trade-off between pricing and evidence when a pharmaceutical company is applying for reimbursement from a societal decision-maker of whether to approve healthcare interventions (129). They consider what actions should be taken when the pharmaceutical company controls the prospective research and the decision maker the reimbursement within a jurisdiction. For a given level of evidence, they described a maximum threshold price ‘acceptable’ to the societal decision maker. The expected net gain for conducting another trial will be positive above this price. The pharmaceutical company will act according to their expected value of research and cost of research and current evidence. For a given level of evidence, the company will have a minimum threshold price ‘acceptable’. Prices below the threshold will generate a positive expected net gain from further research.  The company should submit to the reimbursement authority if they have negative expected net gain for all sample sizes for this price, but perform another trial if there is a sample size with positive net gain
[bookmark: _Ref337483026][bookmark: _Toc379467585]Discussion
[bookmark: _Toc379467586]Literature Review Methodology
I adopted the recommended Pearl Growing approach to study identification in which references were identified from the reference list and citation list of relevant articles. The literature review was designed to efficiently identify Bayesian methodologies utilising health economic methods or mathematical modelling to inform design decisions in clinical trials. Chilcott et al. (2003) had found that traditional systematic review methods using search terms and online databases were not a suitable method for identifying health economic methodologies. Traditional systematic reviewing identified a large number of references, of which only a small yield of articles were relevant (89). 
I decided not to continue with the search beyond two rounds of searching because the subsequent yield of articles was very low and would be time consuming to complete. Two assessments were made to support this decision. Firstly, the reference lists of the 15 articles identified in the second round of the review were screened to identify papers that used methodologies not already described above or from authors not included in the review. Secondly, the reference list was compared against that of a fellow PhD student who had independently developed a literature review to identify ENBS studies. These checks did not indicate that an important body of literature had been excluded from the review. 
[bookmark: _Toc379467587]Merits of the Approaches to Valuing Clinical Trials
The three main approaches to valuing clinical trials in the literature review were ENBS, BeBay and assurance. There are many similarities between the ENBS and Bebay approaches. The assurance methodology is quite different because it generates estimates of the probability of success but does not value the outcome in monetary terms. ENBS has been more commonly used in a societal framework, whereas BeBay and assurance have a stronger focus on pharmaceutical company trials. ENBS values the reduction in uncertainty in Net Benefit, after data collection, in monetary terms. The BeBay approach links trial results to the uptake of new treatments conditional on trial sample size.  
ENBS studies have developed many useful methodologies but none that are sufficient for the requirements of this research question. The main limitation arises from the adoption of a pharmaceutical perspective. I concluded that an assumption of normally distributed Net Benefit was not applicable in this study. It would be unreasonable to assume that Net Benefit was normally distributed in the absence of a CE analyses in SLE to support this assumption. Furthermore, a CE model for SLE was likely to require inputs from multiple sources and it was more useful to focus on acquiring data on a sub-set of parameters that are used to calculate Net Benefit. I believe that the assumption of a normally distributed Net Benefit is best applied to within trial CE evaluations where Net Benefit and the variance in Net Benefit are directly measured. ENBS has been applied to within trial CE evaluation, and CE models of variable structure and complexity. As a consequence, several methodological developments have been made to improve the efficiency of calculations for more complex analyses. 
The main limitation of the ENBS approach is that it does not reflect the incentives and objectives of a pharmaceutical company. The main focus of the ENBS studies has been to assist with reimbursement decision making from a societal perspective. In very simple terms a pharmaceutical company invest in an RCT to optimise the profitability of that drug. They are not mandated to consider the health of society in this decision. However, the pharmaceutical company should not design their trials without consideration for the health economics regulations. Their expected profits would be conditional on the license regulators requirements of efficacy, safety, and reimbursement requirements for cost-effectiveness. 
I would argue that adaptations of ENBS to the pharmaceutical perspective have not addressed all of the factors that would be important during the drug development process.  Previous methods have assumed that the profit per patient treated is known by the company before they start the trial. The analysis is therefore conditional on the price that is assumed. However, the price of new treatments will not be fixed in the early stages of the drug development and the price may be dependent on the strength of evidence collected in the Phase III trial. It would be more appropriate to relax the assumption that price is fixed. 
The BeBay literature introduced a useful method for valuing trials from a pharmaceutical perspective. Many of the studies from the BeBay literature have focussed on the implications of the trial meeting a primary endpoint to determine market access. Health economics and cost-effectiveness modelling are not central to their methods. However, they have developed a useful method for specifying the value of treatment from the pharmaceutical company perspective in terms of profit per patient and market coverage. In a more recent analysis they considered factors affecting reimbursement such as costs and adverse events. However, the methods for estimating the future costs and health outcomes are simple compared with most CE models. In recent studies the BeBay approach has integrated the motivations of the pharmaceutical company to maximise profits with the requirements of license regulators and reimbursement authorities, without specifying the price of the new treatment. It will be useful to adopt their specifications of the objectives of the pharmaceutical company into the valuation of trial designs.

[bookmark: _Toc379467588]Methods for Sampling Trial Outcomes
The ENBS and BeBay studies use the prior distribution of the parameter of interest to sample a new dataset. In a drug development programme the prior distribution could be reliably estimated from the Phase II trial. However, there are several scenarios where this may not be satisfactory to address innovative trial design features. 
I have identified three situations that would present challenges to defining the prior distribution. Firstly, the inclusion criteria may not be compatible between previous and potential future trials. The impact of alternative inclusion criteria on the data collected may be difficult to predict. For example, the new trial may target a sub-group of individuals from the Phase II, or if the Phase II trial did not have a representative sample of the target population. In either case it might be beneficial to pool evidence from multiple sources of data that can describe the expected natural history of patients in the target population. Secondly, gaps in the data exist if the duration of follow-up in the Phase II trial is shorter than the new trial. Prior distributions for long-term treatment effect can be assumed but it may be more difficult to factor in the impact of other factors such as withdrawal into what treatment effects are observed. Thirdly, the trial investigators may wish to collect clinical outcomes that were not included in the Phase II trial, or change the way it is measured. In this situation sampling from Phase II trial outcomes would either limit the scope of the EVSI or rely on other means to estimate prior parameters, such as elicitation (131). It may be difficult for experts to translate outcomes from one primary endpoint to another. The outcomes will be correlated, but the response index provides very little information to estimate the mean difference.
The RADDM study illustrates the advantages of building more complex CE models to estimate the impact of multiple design decisions. This would be advantageous in the SLE study where multiple disease outcomes can be observed. Data from observational cohort studies could be used to populate the BCTS. Patient registry data would be a less subjective source of information than elicitation. Data analysis facilitates detailed description of dependencies and correlation between clinical outcomes, which would be challenging to elicit from clinical experts. Assurance calculations in the RADDM case study by Nixon et al. (2009) were useful in identifying optimal research designs across a range of design features using BCTS (63). 

[bookmark: _Toc379467589]Problems with Computational Burden
Computation burden was identified in the discussion section of some articles as a potential problem for Value of Information analyses (108;111;113;115;116). Due to the complexity of SLE this is likely to pose additional challenges because a CE model must describe multiple disease processes. Several methods have been identified to speed up analyses. There are several methods that have been proposed to deal with computational burden in evaluating clinical trial designs. The assumption of a normally distributed net benefit as the outcome of the clinical trial would be useful to reduce CE model complexity. Two alternative methods to minimise computation time were identified as potentially useful: the use of conjugate distributions and the B&K approximation of Net Benefit. However, neither method has been tested with a complex CE model developed for reimbursement submission for a new SLE treatment.
[bookmark: _Toc379467590]Using VOI in Reimbursement Decision-Making
It is noted that the health economic literature identified in this review (103;106;107;112) has sought to apply VOI methods to aid reimbursement decision-making. It has been argued that a binary “approve” versus “do not approve” decision criteria is too restrictive, particularly if the decision is irreversible. Therefore, reimbursement authorities should evaluate the option value of delaying decision-making to allow collection of further evidence (103). Although consideration of options to delay a decision and gather more evidence would provide a more consistent application of the VOI method on the side of the pharmaceutical company and the reimbursement decision-maker, I decided not to incorporate this process into the methods. It would add considerable additional complexity that was not necessary to demonstrate the feasibility of VOI in pharmaceutical drug development.
[bookmark: _Ref354924977][bookmark: _Toc379467591]Conclusion
This literature review identified thirty-seven studies that have used Bayesian and specifically VOI methods to evaluate the value of alternative trial designs. I identified methodologies from the BeBay, ENSB and assurance literature that could be used to evaluate SLE trials. 
The literature review identified some limitations in the application of EVSI methods to the pharmaceutical perspective. A study from the BeBay literature suggested that price can be treated as an outcome of the analysis rather than a fixed parameter. This approach was not fully explored in their article, and price was not reported as an outcome of their analysis. Nonetheless, I identified that this approach could be used to relax some of the problematic assumptions that have been imposed when adapting ENBS to a pharmaceutical perspective.
I planned to develop a CE model for SLE that would be suitable for submission to reimbursement authorities. The Bayesian methods for updating parameters from a CE model would be taken from the ENSB literature. In this study I will develop a BCTS to increase the flexibility of the simulation tool to compare a large selection of clinical trial designs, to allow the assessment of assurance based on multiple trial outcomes, and use longitudinal datasets to estimate trial outcomes that would not be collected in Phase II trials. BCTS has been used to generate assurance estimates for clinical trials with a broad range of design features. I decided that a BCTS would be useful to simulate flexible trial designs to evaluate a broad range of trial designs. In particular this would enable trial data to be simulated for outcomes that would not have been observed in the Phase II clinical trial. 
In Chapter 4 I describe the process of conceptualising SLE and designing a natural history model to describe the important outcomes in SLE. Health economic modelling must estimate the lifetime costs and health outcomes for two or more treatment options. Lifetime costs and health outcomes can be estimated in CE model by predicting what disease outcomes are expected for each treatment option. It is necessary to develop a simplified description of SLE that includes disease outcomes that may impact on the lifetime costs and health outcomes and includes all major costs and health outcomes that could be modified by new treatments. 


[bookmark: _Toc379467592]Chapter 4: Natural History Of SLE Literature Review
4. 
The purpose of this chapter is to develop a conceptual model of SLE and identify quantitative estimates to populate the modelling framework.
The National Institute for Health and Care Excellence (NICE) reference case requires that CE models include the costs and QALYs over a lifetime horizon (29). This is particularly important for a chronic disease such as SLE where treatments can impact on long term outcomes and mortality. All outcomes and comorbidities can potentially be included in CE models, but it is sensible to only include outcomes that will impact on decision-making to reduce CE model complexity. Defining what long term outcomes to include in the conceptual model is an important stage of CE model development. It is important to identify intermediate markers to relate clinical trial outcomes to long term outcomes and mortality. Once the conceptual map is decided it is also necessary to identify evidence to describe the relationships associations between disease outcomes. 
Section ‎4.1 provides a detailed description of the methods used in the literature search. Section ‎4.2.1 describe the results of the conceptual map of literature and how this was used to develop a conceptual model for SLE. Section ‎4.2.2 provides a detailed description of the studies describing disease activity. Section ‎4.2.3 describes the studies of mortality. Sections ‎4.2.4 and ‎4.2.5 report the results for the literature review for organ damage by composite score and organ system respectively. The discussion in Section ‎4.3 considers whether the published data is sufficient to meet the requirements of the conceptual model. The conclusion, in Section ‎4.4 outlines the data requirements from the conceptual model for further statistical analyses to be completed in this PhD.  
[bookmark: _Toc278533905][bookmark: _Toc278533965][bookmark: _Toc279009236][bookmark: _Toc332010570][bookmark: _Ref332615054][bookmark: _Toc379467593]METHOD
[bookmark: _Toc379467594]Search Strategy
Given the breadth of epidemiological research in SLE, SLE associated symptoms, and co-morbidities, it was impractical to perform an exhaustive systematic literature search. Therefore, the literature search was designed to identify a sufficient number of quality epidemiology studies of adult SLE published in major SLE related journals. The online database Medline was used to conduct the search. Other databases were not searched in this review because the breadth of coverage of the search in Medline covered the main journals for SLE research suggested by Professor David Isenberg, a clinician and researcher from University College London (December 2009). 
Search terms included a combination of free-text and MeSH terms. The review only included studies published after 1995. Only studies published after this date were reviewed because a number of important publications relating to the classification and definition of the disease were published at this time including: an update of the criteria for classification of SLE in 1997 (44); the definition of the SLICC/ACR Damage Index in 1996 (52); the definition of the SLEDAI score in 1992 (132); the definition of the BILAG score in 1993 (133). Furthermore, discussions with Professor Isenberg (December,2009) indicated that treatment practices changed at this time. Studies of patients before this period may be less representative of current SLE patients. Details of the search strategies are reported in Appendix 4.
The final inclusion criteria for the studies were as follows.
· Study design. Prospective observational cohort studies to reduce confounding and selection bias
· Patients. Patients diagnosed with SLE
· Outcome measures. Outcomes of interest were symptoms, clinical events, co-morbidities, and mortality.
· Language. Full published reports in English were considered.
The title and abstract for each citation were reviewed to determine whether they met the pre-defined selection criteria. Full text reports were obtained for the articles where the abstracts met the inclusion criteria. Only full published reports were considered, letters and abstracts were excluded. Retrospective design studies were excluded from the search because they are more likely to encounter problems with confounding and selection bias. Furthermore, disease activity and organ damage scores of interest are less likely to be available in retrospective data because they are not routinely collected in clinical practice. Nonetheless, the abstracts of all the retrospective studies identified in the search were reviewed to identify any important findings.
[bookmark: _Toc379467595]

Data Extraction
Catalogue Cohort Studies
The first part of the review aimed to identify important cohorts with multiple publications, and record the key themes explored in the studies. The full reports were reviewed and the following information was extracted. 
· Sample size
· Population description
· Cohort name
· Primary theme
The Conceptual Model
The second stage of the review aimed to build a conceptual description of the disease to understand the relationships between short term disease measures and long term consequences. The abstracts of the articles were reviewed to identify statistically significant associations between disease characteristics and co-morbidities to develop a conceptual disease map. The references were included in the map to illustrate the evidence base supporting the relationships to help prioritise disease outcomes. The conceptual disease map illustrated the strength of evidence for relationships between clinical events and disease characteristics.  The conceptual map was discussed with Professor Isenberg to determine if the main features of the disease were accounted for. 
The conceptual map includes symptoms and outcomes of the disease. For simplicity, I decided to exclude the following from the diagram and the data extraction process:-
1. Fibromyalgia as a comorbidity to SLE
2. Health Related Quality of Life outcomes
3. Psychosocial risk factors such as wealth or health perception
4. Genetic risk factors 
Some outcomes were grouped according to organ system to simplify the visual presentation of the map. For example, avascular necrosis and osteoporosis were combined into musculoskeletal damage, and seizure and stroke were included in neuropsychiatric damage. 
The conceptual map was discussed with a Prof. David Isenberg, clinical expert in SLE, to address the following questions:
1. Are there any important outcomes, symptoms or events associated with the disease that are missing?
2. Are there any important relationships missing from the disease map?
3. Are there any important studies or research that has not been identified in this map?

Quantitative Data Extraction
The outcomes of the conceptual disease model informed the third stage of the review which aimed to extract quantitative data from the epidemiological studies relating to features of the disease that would be included in the natural history model. I developed the list of items to be extracted based on prior understanding of epidemiology study outcomes.
The following data extraction criteria were used for articles exploring disease activity in SLE.
· Rate of flare/organ involvement at fixed intervals
· Disease activity scores
· Predictors of changes in disease activity or flare
The following data extraction criteria were used for articles exploring mortality in SLE.
· Survival analysis/event rates at fixed intervals
· Standardised mortality ratios
· Predictors of mortality (univariate and multivariate analysis)
Studies of organ damage either employed the SLICC/ACR Damage Index composite score or looked at individual events. The following data extraction criteria were used for articles exploring organ damage in SLE and were chosen based on what statistics were commonly reported. 
· Time to damage.
· Mean SLICC score over time.
· Organ system involvement.
· Event rates at fixed intervals
· Predictors of damage (univariate and multivariate analysis).
[bookmark: _Toc278533908][bookmark: _Toc278533968][bookmark: _Toc279009239][bookmark: _Toc332010573][bookmark: _Ref354853685][bookmark: _Toc379467596]Results
The search strategy identified 142 articles reporting the results of a prospective observational cohort study. The key details of each of these individual articles are summarised in Appendix 5. 
[bookmark: _Toc332010574][bookmark: _Ref332615088][bookmark: _Ref354830703][bookmark: _Toc379467597]Conceptual Map and Conceptual Model
The conceptual map of SLE can be found in Figure 5. The rounded shapes define important symptoms, outcomes or clinical markers identified in the review. Arrows represent associations that have been identified between clinical factors due to statistically significant test results. The boxes list the articles discussing the causal links between two clinical factors. The conceptual disease map illustrates the breadth of research that has been identified on all aspects of the disease. The map illustrates that there is a strong evidence base for a causal relationship between disease activity, organ damage and mortality. 
Prof. Isenberg did not think that any major events were missing; however he did suggest that the disease could be broken down into organ systems. He identified some well known relationships between the disease characteristics that had not been identified in the literature. These have been added to the map, indicated by a white box. The relationship between the incidence of diabetes, cardiovascular damage and renal damage were absent. He discussed the need to control for well-known risk factors for cardiovascular damage such as obesity, diet and physical activity. These were unlikely to be identified in the review because they are common risk factors in non-SLE patients rather than being particular risk factors to SLE. He expected inflammation in skin activity to lead to permanent skin damage. It is possible that this association is less likely to be studies because it has a clear causal pathway.  He noted that anti-malarials were not sufficiently represented in the map as these should have a protective effect on more outcomes. He referred to a recent systematic review of anti-malarials in SLE (134). 
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[bookmark: _Ref332011693]Figure 5: Conceptual map of SLE from the published literature [image: ]

Having reviewed the conceptual map, and supplemented it with clinical opinion, I reduced the conceptual map into higher level groups and defined a conceptual model of SLE (Figure 6). The boxes within the diagram refer to characteristics and outcomes to be included in the conceptual model and the arrows describe causal relationships between them. The conceptual model accounted for patient characteristics that impact on the risk and incidence of disease outcomes. These included demographic characteristics of gender, ethnicity and age. It also included medical characteristics such as cholesterol, hypertension, anticardiolipin syndrome, obesity, and lupus anticoagulant. The conceptual model describes the associations between disease activity, steroid dose, organ damage and mortality. Within the conceptual model higher disease activity and steroid dose increase the risk of organ damage outcomes and mortality. I decided to separate organ damage by organ system because some organ damage is caused by disease activity, steroids, or a combination of both. Furthermore, the costs and health implications of damage in different organ systems are variable. Renal damage is likely to be more costly than skin damage, and musculoskeletal damage is likely to impact more on quality of life than ocular damage, which can be reversible.  The organ systems will also have differential risk factors for mortality.
[bookmark: _Ref345769925]Figure 6: Conceptual model of SLE
[image: ]

[bookmark: _Toc278533909][bookmark: _Toc278533969][bookmark: _Toc279009240][bookmark: _Toc332010575][bookmark: _Ref332615470][bookmark: _Toc379467598]Disease Activity
The search identified ten articles that study disease activity in SLE. Some interesting observations about the patterns of disease activity have been made. 
· One study  estimated an annual flare incidence to be 3 per patient year using the BILAG index (135). 
· Flares are more commonly observed in the musculoskeletal, skin, and haematological systems. (135)
· Seventy percent of flares involved only one organ system and 30% of flares manifest in two or more body systems at a time (135). 
· Remission is uncommon in SLE, the incidence density is 0.028 cases of remission per person year. The mean duration of remission was 4.6 years (SD 3.6). The mean time to remission was 5.8 years. (35). 
· The disease remains active in many patients beyond 10 years duration (136). 
Predictors of disease activity 
[bookmark: _Ref278210059][bookmark: _Toc279009283]A few studies of disease activity used statistical techniques to identify predictors of future disease activity. The results of these studies are reported in Table 8

[bookmark: _Ref279046586]

[bookmark: _Ref379468302]Table 8: Predictors of disease activity outcomes in SLE
	Author name
	Date
	Sample
	Cohort
	Measure of disease activity
	Description of predictors
	Estimated hazard ratio

	Bujan (137)
	2003
	239
	Barcelona
	Haematological activity
	Haematological activity
	4.52 (1.27-16.7)

	Bujan (137)
	2003
	239
	Barcelona
	Cardiac activity
	Cardiac activity
	5.07 (1.23-20.9)

	Bujan (137) 
	2003
	239
	Barcelona
	Neurological activity
	Neurological activity
	4.97 (2.34-10.52)

	Bujan (137)
	2003
	239
	Barcelona
	Neurological activity
	Anticardiolipid antibodies
	3.81 (1.75-8.30)

	Bujan (137)
	2003
	239
	Barcelona
	Renal activity
	Renal activity
	7.89 (4.04-15.04)

	Allen (138)
	2006
	411
	Birmingham
	Mucocutaneous activity
	Mucocutaneous activity
	1.98 (1.35-2.90)

	Allen (138)
	2006
	411
	Birmingham
	Mucocutaneous activity
	Renal activity
	0.38 (0.19-0.75)

	Allen (138)
	2006
	411
	Birmingham
	Mucocutaneous activity
	Disease duration
	0.86 (0.81-0.91)

	Allen (138)
	2006
	411
	Birmingham
	Renal activity
	Renal activity
	9.43 (4.27-20.79)

	Allen (138)
	2006
	411
	Birmingham
	Renal activity
	Renal damage
	3.39 (2.12-5.44)

	Allen (138)
	2006
	411
	Birmingham
	Renal activity
	Musculoskeletal activity
	0.58 (0.39-0.87)

	Allen (138)
	2006
	411
	Birmingham
	Musculoskeletal activity
	Musculoskeletal activity
	3.28 (1.60-6.73)

	Allen (138)
	2006
	411
	Birmingham
	Musculoskeletal activity
	Renal activity
	0.649 (0.471-0.894)

	Allen (138)
	2006
	411
	Birmingham
	Musculoskeletal activity
	Disease duration
	0.923 (0.865-0.985)

	Bertoli (139)
	2006
	287
	LUMINA
	Low level disease activity
	Social support
	1.21 (1.06-1.38)

	Bertoli (139)
	2006
	287
	LUMINA
	Low level disease activity
	No. ACR diagnostic criteria
	0.77 (0.63-0.93)

	Bertoli (139)
	2006
	287
	LUMINA
	Low level disease activity
	SLICC/ACR DI
	0.85 (0.74-0.97)

	Nikpour (140)
	2009
	202
	Toronto
	Persistent active disease 
	SLEDAI-2K
	1.34 (1.20–1.51)

	Nikpour (140)
	2009
	202
	Toronto
	Persistent active disease 
	Cutaneous activity
	2.37 (1.17–4.81)

	ACR American College of Rheumatology; DI Damage Index



Measures of long term Disease Activity
Studies of disease activity have employed different methods of measuring the severity of disease activity in patients. The approach to describing long term burden of disease activity is of interest when observing long term outcomes that are affected by a burden of disease activity. The magnitude of burden has often been calculated as the area under the curve (AUC) of a disease activity index. However, Barr et al. (141) argue the nature of the disease activity is lost using this method. A patient with a short period of severe disease activity and a patient with long term mild disease activity will have equivalent AUC scores despite substantial differences in the nature of the disease. Consequently, Barr et al. (141) argue that the pattern of disease activity should be studied more closely. They identify three patterns of SLE disease activity: relapsing/remitting; long quiescent; persistently active disease (PAD). PAD is more common than relapsing remitting but also because periods of chronically active disease were more likely to be moderate or severe. More recently, Nikpour et al. (140) study the importance of PAD in SLE and find that PAD is more common than short periods of disease flare.  They argue against using flares as endpoints in clinical trials because it excludes the important assessment of treatment on PAD. 
Although, Barr et al. (141) and Nikpour et al. (140) presented an account of the patterns of disease activity Ibanez et al. (2003) argue that they do not provide an objective measure of disease activity that can be used routinely in studies (142). Ibanez et al. developed a method of calculating Adjusted Mean SLEDAI (AMS) as a measure of disease activity burden over time. The continuous spectrum allows comparisons to be made between patients. AMS offers a pragmatic way to relate disease activity to organ damage and mortality. Furthermore, AMS is a strong predictor of mortality, damage, and coronary artery disease (142;143). From these studies, they concluded that AMS is a reproducible measure of disease activity over time because it is a good measure of persistently active disease and can be affected by flares in the disease.
[bookmark: _Toc278533910][bookmark: _Toc278533970][bookmark: _Toc279009241][bookmark: _Toc332010576][bookmark: _Ref332615549][bookmark: _Toc379467599]Mortality
SLE can lead to premature death. A standardized mortality ratio quantifies the increase or decrease in mortality of a study cohort relative to the general population. Bernatsky et al. report a standardised mortality ratio of 2.4 (95% CI 2.3-2.5) from a large cohort of 9547 patients (144). Other estimates have reported similar results of 2.3 and 2.4 (145;146). An earlier study, published in 1995, report a SMR of 4.9 (147). The risk for SLE patients is significantly higher than that observed in the general population. The search strategy identified 27 studies that investigated mortality in a cohort of SLE patients. 
Rates of mortality
The survival rates of SLE patients are reported in Table 9
. Two studies Ward et al. (148) and Xie et al. (149) report substantially lower survival than the other studies. Differences in survival estimates across studies may be due to the time periods in which patients were recruited because survival estimates have improved in recent years (146;149;150). 
[bookmark: _Ref249261890][bookmark: _Ref252520938][bookmark: _Toc279009284]

[bookmark: _Ref379468335]Table 9: Survival estimates in SLE
	Author name
	Date
	Sample Size
	Survival (proportion)

	
	
	
	1 year
	5 year
	10 year
	15 year

	Campbell (151)
	2008
	265
	-
	0.90
	-
	-

	Doria (152)
	2006
	207
	-
	0.96
	0.93
	0.76

	Kasitanon  (153)
	2006
	1378
	-
	0.95
	0.91
	0.85

	Ruiz-Irastorza  (154)
	2004
	202
	-
	0.95
	0.91
	0.86

	Cervera (155)
	2003
	1000
	-
	 -
	0.92
	-

	Nived (156)
	2002
	80
	-
	1.00
	0.91
	 -

	Manger (145)
	2002
	338
	-
	0.97
	0.90
	-

	Kasitanon (157)
	2002
	349
	-
	0.84
	0.75
	-

	Alarcon (158)
	2001
	288
	-
	0.87
	 -
	 -

	Rahman (159)
	2001
	190 (No damage)
	-
	 -
	0.93
	-

	Rahman (159)
	2001
	73 (Early damage)
	-
	-
	0.75
	-

	Mok (160)
	2000 
	163
	-
	0.93
	 -
	-

	Cervera (161)
	1999
	1000
	-
	0.95
	 -
	 -

	Xie (149)
	1998
	566
	-
	0.79
	0.70
	-

	Abu-Shakra (147)
	1995
	665
	0.98
	0.93
	0.85
	0.79

	Ward (148)
	1995
	408
	-
	0.82
	0.71
	0.63



Predictors of mortality
Table 10 reports results from regression analyses of mortality. Eight studies included disease activity as a covariate in regression analyses and all but one found it to be a predictor of mortality. Becker-Merok et al. found that patients with a weighted average SLEDAI score of greater than 3 over time have a 242% greater risk of mortality than those with average SLEDAI less than 3 (162). Fernandez et al. found that a unit increase in SLAM-R score at baseline increases mortality risk by 10% (163). Cook et al. estimate that patients with a SLEDAI score of between 6 and 10 points increase their risk of mortality by almost 300% (164). Urowitz et al. (146) and Ibanez et al. (142) use a unit increase in the adjusted mean SLEDAI increases risk of mortality by 15%. Finally, Alarcon (2001) reports an odds ratio of 1.09 for a unit increase in the SLAM at enrolment (158). Therefore, there is strong evidence that disease activity increases the risk of mortality.
Renal involvement was found to be statistically significant in five studies (145;151;154;165;166). However, Kasitanon and Abu-Shakra found that renal disease was not a significant predictor of mortality (147;153). Pulmonary manifestations were statistically significant in Cardoso et al. (166) but with wide confidence intervals. 
Organ damage, measured by the SLICC/ACR Damage index has been found to be a statistically significant predictor of mortality. Five of the studies estimated similar risk ratios from different cohorts of patient (146;158;163;166;167). One study did not find organ damage to be predictive of mortality (162). This came from a relatively small sample of 157 patients. Cardoso et al. found that a unit increase in the SLICC/ACR Damage Index score increases the risk of mortality by 34% (166). Fernandez and Alarcon et al. looked at the relationship between organ damage at baseline and mortality from the LUMINA cohort (158;168). A unit increase in damage score increased mortality risk by 20% and 45% respectively. Chambers et al. related the last available SLICC/ACR Damage Index score to mortality and found that damage predicted a 40% increase in mortality risk (167). 
[bookmark: _Ref278284383][bookmark: _Toc279009286]
The variation in study risk associations could be due to three factors. Firstly, variation in covariate selection could lead to some confounding variables being omitted in the analyses. Secondly, geographical variations in cohorts may lead to different risk associations. Thirdly, the choice of disease activity measure and definition of risk (average or threshold0 will impact on estimates. 
[bookmark: _Ref331160389]

[bookmark: _Ref364935575]Table 10: Predictors of mortality from multivariate analysis
	Cox regression (Hazard ratio)

	Author
	Date
	Sample 
	Renal involvement
	Previous cardio-vascular events
	Disease Activity
	Organ damage
	Age
	Pulmonary damage
	Thrombotic event
	Disease duration

	Kasitanon (153)
	2006
	1378
	Not significant
	
	Not significant
	
	5.9 (2.5-14.4)
	Not significant
	
	

	Cardoso (166)
	2008
	105
	4.14 
(1.47-11.71)
	
	
	1.34 (1.14-1.58)
	
	3.38 (1.2-9.51)
	
	

	Ruiz-Irastorza (154)
	2004
	202
	4.4 (1.4-14.0)
	
	
	
	1.07 (1.03-1.1)
	
	
	

	Becker-Merok (162)
	2006
	158
	
	
	2.4 (1.19-4.42)
	Not significant
	5.57 (2.44-12.7)
	
	
	

	Fernandez (168)
	2007
	552
	
	
	1.1 (1.06-1.16)
	1.20 (1.00-1.44)
	1.03 (1.01-1.05)
	
	
	

	Mok (160)
	2000
	163
	
	
	
	
	
	
	38.2 (1.2-124)
	

	Chambers (167)
	2009
	232
	
	
	
	1.4 (1.14-1.72)
	
	
	
	

	Bernatsky (144)
	2006
	9547
	
	
	
	
	6.4 (5.5-7.5)
	
	
	7.7 (5.9-10.2)

	Cook (164)
	2000
	806
	
	
	2.98  (1.06-8.38)
	
	
	
	
	

	Urowitz (146)
	2008
	1241
	
	1.52 (1.02-2.26)
	1.15 (1.11-1.20)
	1.24 (1.14-1.35)
	
	
	
	

	Ward (165)
	1996
	408
	2.38 (1.63-3.48)
	
	
	
	
	
	
	

	Campbell (151)
	2008
	265
	2.5 (1.1-5.5)
	
	
	
	
	
	
	

	Manger (145)
	2002
	338
	1.6 (1.1-2.4)
	1.5 (1.0-2.4)
	
	
	
	
	
	

	Ibanez (142)
	2003
	575
	
	
	1.15 (1.09-1.20)
	
	1.05 (1.03-1.06)
	
	
	

	Abu-Shakra (147)
	1995
	665
	Not significant
	
	2.02 (1.34-3.04)
	
	
	1.71 (1.18-2.49)
	
	

	Logistic regression (Odds ratio at 5 years)

	Alarcon (158)
	2001
	288
	
	
	1.09 (1.01-1.17)
	1.45 (1.19-1.91)
	
	
	 
	 



[bookmark: _Ref345769089][bookmark: _Toc379467600]Organ Damage
SLICC/ACR Damage Index
Organ damage has been widely studied using the SLICC/ACR Damage Index and within individual organ systems. Details of the SLICC/ACR Damage Index are provided in Appendix 1. In these observational studies the SLICC/ACR Damage Index is recorded by the rheumatologist to monitor a patient’s accumulation of organ damage. The search identified eighteen studies investigating organ damage using the composite index. 
Mean SLICC/ACR Damage Index scores for a group of cohorts are summarised in Table 11. It has been reported that the mean SLICC/ACR Damage Index score accumulates linearly over time (169). Figure 7 illustrates how the mean organ damage score changed in time in three studies. The results illustrate a linear trend in the accumulation of organ damage (167;169;170). The rate of accumulation is faster in the Baltimore cohort (170) than the London Clinic (167), this is likely due to differences in the ethnic profile of these regions.

[bookmark: _Ref249425304][bookmark: _Ref249425299][bookmark: _Toc279009287]Table 11: Damage accrual over time
	Mean SLICC/ACR Damage Index score over time from diagnosis

	Author
	Date
	Sample size
	Year 1
	Year 5
	Year 10
	Year 15

	Chambers (167)
	2009
	232
	0.11
	0.42
	0.77
	1.01

	Gladman (169)
	2003
	73
	0.33
	0.81
	1.19
	1.9

	Ruiz-Irastorza (154)
	2004
	202
	
	
	1.00a
	2a

	Petri (170)
	1995
	407
	0.45
	0.9
	1.6
	

	Mean SLICC/ACR Damage Index score over time from enrolment

	Author
	Date
	Sample size
	Time = 0
	Time = 5 years
	
	

	Alarcon (171)
	2004
	352
	1.3
	2.4
	
	

	Stoll (172)
	2004
	141
	1.2
	1.6
	
	

	a median SLICC/ACR Damage Index


[bookmark: _Ref252368410]

[bookmark: _Ref278527625][bookmark: _Toc279009306]Figure 7: Rate of organ damage accumulation over time
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Time to Initial Damage
[bookmark: _Ref249432854][bookmark: _Toc279009288]Three studies have reported time from cohort entry to the first damage event. The results from these studies are summarised in Table 12. The summary suggests that there is substantial variation in time to initial damage between the studies reported here. Chambers and Becker-Merok report slower time to damage than Ruiz-Irastroza. Toloza et al. (173) report time to initial damage across different ethnic groups in a survival curve. After 5 years of the disease approximately 50% of Hispanic and African Americans are damage free, whereas 67% of Caucasians have not accrued damage. Ethnicity and environmental factors are important determinants of damage accrual. Ruiz-Irastroza studies a Spanish population whereas the other two studies are from mainly North European populations. Differences in the ethnicity profile of cohorts may explain some of the variation.
[bookmark: _Ref279046640]Table 12: Time to initial damage
	Author
	Year
	Sample size
	Proportions of patients damage free at the time point

	
	
	
	1 year
	5 year
	10 year

	Becker-Merok (162)
	2006
	158
	0.97
	0.58
	

	Chambers (167)
	2009
	232
	0.90
	0.67
	0.49

	Ruiz-Irastorza (154)
	2004
	202
	0.65
	0.46
	


Predictors of organ damage
Twelve studies use Cox-regression ad logistic regression analysis to identify predictors of organ damage. The results are reported in Table 13. In summary, three studies identified steroids and other treatment as predictors of organ damage (171;174-176). Thamer et al. do not find a statistically  results, but do identify a trend towards an association that is robust to sensitivity analyses (175). Four studies associated baseline disease activity with organ damage (171-173;177).  Three studies with disease activity as a covariate (162;172;176) use an average score for disease activity. 
Only three studies reported hazard ratios for the independent risks of disease activity and treatments. Ibanez et al. (176) found disease activity and steroid use to be statistically significant predictors of organ damage. A one unit increase in the SLEDAI score increased the risk of damage by 4%. The use of steroids increased the risk of damage by 80%. Mok et al. found the number of major flares and cyclophosphamide to be independent predictors of organ damage (178). Finally, Alarcon et al. found that disease activity at baseline and maximum steroid dose are significant predictors of a change in damage score (171). These findings suggested that that disease activity and steroids are independent predictors of organ damage. 

[bookmark: _Ref278284596][bookmark: _Toc279009289]

[bookmark: _Ref364925644]Table 13: Predictors of organ damage from multivariate analysis
	Predictors of organ damage from logistic regression (Odds ratio)
	

	Author name
	Date
	Sample size
	Age
	Initial disease activity
	Average disease activity
	Prior damage score
	Steroids
	APL antibodies
	Cyclophosphamide
	Myocarditis

	Alarcon (171)
	2004
	352
	1.02 (1.00-1.03)
	1.07 (1.05-1.10)
	
	1.07 (1.04-1.10)
	1.63 (1.16-2.29)
	
	
	

	Santos (174)
	2009
	221
	1.05 (1.02-1.07)
	
	
	
	6.04 (1.60-25.21)
	3.05 (1.17-7.94)
	
	

	Gilboe (177)
	2001
	93
	Not significant
	1.14 (1.00-1.28)
	
	1.52 (1.02-2.27)
	
	
	
	

	Ruiz-Irastorza (154)
	2004
	202
	
	
	
	
	
	1.94 (1.01-3.73)
	
	

	Stoll (179)
	2000
	141
	Not significant
	Not significant
	
	1.46 (1.04-2.05)
	
	
	
	

	Stoll (172)
	2004
	141
	
	
	1.62 (1.22-2.16)
	
	
	
	
	

	Mok (178)
	2003
	242
	
	
	1.63 (1.15-2.32)
	
	
	
	1.54 (1.10-2.15)
	

	Predictors of organ damage from Cox regression (Hazard ratios)
	

	Author name
	Date
	Sample size
	Age
	Initial disease activity
	Average disease activity
	Prior damage score
	Steroids
	APL antibodies
	Cyclophosphamide
	Myocarditis

	Becker-Merok (162)
	2006
	158
	3.45 (1.63-7.33)
	Not significant
	2.34 (1.13-4.81)
	
	
	
	
	

	Toloza (173)
	2004
	158
	
	1.09 (1.04-1.15)
	
	
	
	2.53 (1.15-5.55)
	
	

	Ibanez (176)
	2005
	575
	1.02 (1.01-1.03)
	Not significant
	1.04 (1.01-1.06)
	
	1.80 (1.27-2.55)
	
	
	

	Thamer (175)
	2008
	525
	
	
	
	
	Not significant
	
	
	

	Predictors of organ damage from Poisson regression (regression coefficient)
	

	Apte (180)
	2008
	636
	0.01 (0.00-0.03)
	
	0.09 (0.05-0.13)
	0.97 (0.83-1.12)
	
	
	
	0.48 (0.00-0.95)



[bookmark: _Ref350962081][bookmark: _Toc379467601]Organ Damage by Organ System
Twenty studies studied organ damage in individual organ systems. Table 14 details the prevalence of organ damage by organ system reported in eight of these studies. The proportion of patients with system organ damage is variable between cohorts. There is evidence that some organ systems are more susceptible to organ damage at different points of the disease. Two studies report the prevalence of damage by organ system over time. Figure 8 illustrates that musculoskeletal, cardiovascular and ocular damage are the most prevalent damage events. Cardiovascular and neuropsychiatric damage occur early in disease onset. Figure 9 illustrates a lower rate of damage accumulation. Neuropsychiatric, renal and musculoskeletal damage have the highest incidence. 

[bookmark: _Ref252459137][bookmark: _Toc279009307]Figure 8: Organ damage by system (169)
[bookmark: _Ref252459139][bookmark: _Toc279009308][image: ]
[bookmark: _Ref279046656]Figure 9: Organ damage by system (167)
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[bookmark: _Ref254596032][bookmark: _Toc279009290]Table 14: Prevalence of damage by organ system in cross-sectional studies at various stages of disease duration
	Author name
	Date
	Sample size
	Musculo-skeletal
	Cardio-vascular
	Neuro-psychiatric
	Peripheral vascular
	Ocular
	Renal
	Pulmonary
	GI
	Skin
	Gonad failure
	Diabetes
	Malignancy

	Becker-Merok (162)
	2006
	158
	22.2%
	17.8%
	15.2%
	11.4%
	 -
	- 
	- 
	 -
	-
	-
	-
	-

	Santos (174)
	2009
	221
	14%
	10%
	14%
	4%
	13%
	7%
	6%
	5%
	5%
	3%
	4%
	4%

	Zonana-Nacach (181)
	2000
	539
	22%
	9%
	20%
	6%
	13%
	15%
	7%
	4%
	8%
	2%
	6%
	3%

	Appenzeller (182)
	2008
	560
	16%
	11%
	20%
	5%
	16%
	8%
	8%
	5%
	16%
	4%
	4%
	4%

	Chambers (167)
	2009
	232
	12.1%
	4.7%
	14.7%
	4.7%
	1.3%
	12.9%
	3.4%
	3.4%
	5.2%
	0.4%
	0.4%
	2.2%

	Gilboe (177)
	2001
	93
	37%
	23%
	28%
	8%
	11%
	8%
	20%
	5%
	11%
	4%
	2%
	5%

	Gladman (169)
	2003
	73
	54.7%
	28.7%
	20.5%
	4.1%
	31.5%
	5.4%
	2.8%
	12.4%
	13.7%
	1.4%
	2.7%
	1.4%

	Mok (178)
	2003
	242
	26.5%
	12.4%
	18.4%
	-
	-
	15.1%
	-
	-
	-
	-
	-
	-

	Guarize (183)
	2007
	60
	8.3%
	10%
	18.3%
	16.6%
	15%
	23.3%
	8.3%
	3%
	35%
	1.7%
	-
	-



In the next sections I summarise the prevalence and risk factors for each of the organ systems included in the SLICC/ACR Damage Index. Quantitative estimates of risk factors for organ damage by organ systems were needed to refine the causal links of the conceptual model.
Ocular Organ system
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Ocular Organ System
Any cataract ever
Retinal change or optic atrophy
)
Studies have found a relatively high prevalence of ocular damage in SLE cohorts. Patients are at lower risk of ocular damage in the early stages of the disease and at higher risk as disease duration extends beyond 15 years. This may be due to cumulative doses of steroids over time. However, I identified no studies to quantify this effect.
Neuropsychiatric Organ system
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Neuropsychiatric Organ System
Cognitive Impairment
Seizures requiring therapy for 6 months
Cerebrovascular accident
Cranial or peripheral ne
u
ropathy
Transverse myelitis
)
Mikdashi et al. report that cerebrovascular damage is a common cause of damage and was observed in 27.3% of patients with neuropsychiatric damage. Polyneuropathy was observed in 25.7% of patients and psychosis in 18.2%. Other damage included seizures and transverse myelitis with 7.6% and 6.1% respectively (184). Mok et al. found a higher proportion of damage was due to seizures (20%) (185). Table 15 reports results from studies of neuropsychiatric damage to describe risk associations from Cox-regression and logistic analysis. 
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[bookmark: _Ref332022892]Table 15: Odds ratios and hazard ratios with confidence intervals estimated for risk factors for neuropsychiatric damage
	Author name
	Date
	Damage outcome
	Disease Activity
	Ethnicity
	anticardiolipids
	Organ damage
	Steroid
	Anti-malarials
	Diabetes
	Age
	Hypertension

	Mikdashi (184)
	2004
	Neuropsychiatric damage (OR)
	2.7 (1.0-6.7)
	3.0 (1.0-19.5)
	4.8 (1.0-23.0)
	
	
	
	
	
	

	Mok (185)
	2006
	Neuropsychiatric damage (HR)
	1.28 (1.29-1.31)
	
	
	1.16 (1.10-1.23)
	
	
	
	
	

	Gonzalez (186)
	2009
	Neuropsychiatric damage (HR)
	1.16 (1.12–1.21)
	1.87 (1.22–2.87)
	
	
	0.56 (0.35–0.92)
	0.58 (0.36–0.93)
	3.47 (1.44–8.38)
	
	

	Mikdashi (187)
	2005
	Seizures(OR)
	2.29  (1.01-1.12)
	
	2.23 (1.01–4.67)
	
	
	
	
	
	

	Andrade (188)
	2008
	Seizures (HR)
	1.10 (1.04- 1.15)
	2.7 (1.3–5.7)
	
	
	
	0.35 (0.15- 0.80)
	
	1.04 (1.00-1.08)
	

	Ramsey-Goldman (189)
	2008
	Seizure (HR)
	
	
	
	
	
	
	
	1.0 (0.9–1.0)
	

	Mikdashi (190)
	2007
	Stroke (HR)
	1.31 (0.40-4.31)
	
	1.11 (0.43–2.84)
	
	
	
	
	1.00 (0.98–1.03)
	2.31 (1.15–4.65)

	HR Hazard ratios, OR Odds ratios; aCL anticardiolipin antibodies





Pulmonary Organ System
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Pulmonary Organ System
Pulmonary hypertension
Pulmonary fibrosis
Shrinking lung
Pleural fibrosis
Pulmonary Infarction
)
A smaller proportion of patients are affected by damage to the pulmonary system. Bertoli et al. report a slow rate of pulmonary damage accumulation. In this study 92.4% of patients had no damage in the pulmonary system after 5 years of follow-up; after 10 years it was 88.4%. However, this is a slightly faster rate of damage accumulation than is found in Gladman et al. (169) and Chambers et al. (167).
In univariate regression reported in Bertoli et al. (2007) average disease activity was predictive of organ damage (HR 1.1 95% CI 1.04-1.17). Age, overall damage and steroids were not statistically significant. In the multivariate analysis the results were quite different; disease activity was no longer statistically significant and age became significant (HR 1.03 95% CI 1.01-1.06) (191).
Cardiovascular Organ System
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Cardiovascular Organ System
Angina or coronary artery bypass
Myocardial infarction
Cardiomyopathy
Valvular disease
Pericarditis for 6 months or pericardiectomy
)
SLE patients are known to be at higher risk of atherosclerotic heart disease, particularly myocardial infarction (192). Traditional risk factors for heart disease such as diabetes, hypertension, tobacco use and sedentary lifestyle are common in SLE patients (193). However, it is believed that these factors do not completely explain the increased risk (194). Table 16 reports the odds ratios, or hazard ratios, from logistic regression and Cox-regression for studies of cardiovascular damage and related events.

[bookmark: _Ref332025821]Table 16: Hazard ratios and odds ratios with confidence intervals estimated for risk factors for Cardiovascular damage
	First Author name
	Date
	Damage outcome
	Disease Activity
	Steroids
	Age
	Gender
	Organ damage
	Anticardiolipins
	Anti-malarials
	Immuno-suppressant
	Cholesterol
	Smoking

	Toloza (195)
	2004
	Vascular events (HR)
	
	
	
	
	
	4.72 (1.68-13.16)
	
	
	
	

	Pons-Estel (196)
	2009
	Cardiovascular damage (OR)
	
	
	1.06 (1.03-1.09)
	3.57 (1.35-9.09)
	1.28 (1.09-1.5)
	
	
	
	
	

	Becker-Merok (197)
	2009
	Antherothrombotic damage (OR)
	
	0.3 (0.12-0.75)
	3.33 (1.36-8.12)
	
	
	
	0.19 (0.08-0.47)
	0.39 (0.15-0.99)
	
	0.77 (0.70-0.85)

	Zonana-Nacach (181)
	2000
	Coronary artery disease (RR)
	
	1.7 (1.1-1.4)
	
	
	
	
	
	
	
	

	Ibanez (176)
	2005
	Coronary artery disease (HR)
	1.04 (1.01-1.06)
	1.80 (1.27-2.55)
	1.02 (1.01-1.03)
	0.81 (0.56-1.16)
	
	
	0.81 (0.64-1.01)
	2.21 (1.73-2.82)
	
	

	Rahman (159)
	2000
	Vascular event (OR)
	
	
	
	
	
	
	
	
	6.9 (2.4-24.8)
	

	HR Hazard ratios, RR Relative risk; OR Odds ratios; aCL anticardiolipin antibodies
	





Skin Organ System
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Skin Organ System
Scarring chronic alopecia
Extensive scarring or panniculum other than scalp and pulp space
Skin ulceration for more than 6 months
)
Skin involvement, such as malar rash and ulcers, are the most frequent complaints among SLE patients. However, damage relating to the skin is relatively uncommon. Guarise et al. (183) found that 35% of patients had accrued damage to the skin early in the disease. This is in sharp contrast to Gladman et al. and Chambers et al. who report rates of only 8.2% and 3.9% after 5 years of the disease. This may be due to increased sun exposure in the Brazilian population they studied.
Peripheral vascular Organ System
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Peripheral Vascular Organ System
Claudication for 6 months
Minor tissue loss
Significant tissue loss ever
Venous Thrombosis
)
Peripheral vascular damage is relatively uncommon in SLE. Gladman et al. (169) and Chambers et al. (167) report a constant rate of damage accumulation for peripheral damage over time. Table 17 reports the risk factors identified for events associated with peripheral vascular disease from Cox-regression and logistic regression. 


[bookmark: _Ref332026933]Table 17: Hazard ratios and odds ratios with confidence intervals estimated for risk factors for Peripheral vascular damage
	First Author name
	Date
	Damage outcome
	Disease Activity
	Smoking
	Lupus Anticoagulant
	Hypertension
	aCL
	Hydroxycholoriquine

	Calvo-Allen (198)
	2005
	Venous thrombosis (HR)
	2.49 (1.22-5.06)
	1.11 (1.01-1.21)
	2.29 (1.2-5.12)
	
	
	

	Toloza (195)
	2004
	Vascular events (HR)
	
	
	
	
	4.72 (1.68-13.16)
	

	Manger (145)
	2002
	Thromboembolic event (HR)
	
	
	1.6 (0.8-3.1)
	
	
	

	Becker-Merok(197)
	2009
	Venous thrombotic event (OR)
	
	
	4.8 (0.99-23.19)
	0.08 (0.02-0.38)
	
	0.26 (0.06-1.12)

	HR Hazard ratios, RR Relative risk; OR Odds ratios; aCL anticardiolipin antibodies




Gastrointestinal Organ System
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Gastrointestinal Organ System
Infarction or resection of bowel below duodenum
Mesenteric insufficiency
Chronic peritonitis
Stricture or upper gastrointestinal tract surgery ever
)
The evidence from Table 14 suggests that gastrointestinal damage occurs in a very small proportion of SLE patients. Figure 8 and Figure 9 show that gastrointestinal system damage occurs early in the disease. The rate of damage accrual after the first year of the disease is relatively low.
Musculoskeletal Organ System
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Musculsoskeletal Organ System
Muscle atrophy or weakness                                                                                                                                                    
Deforming or erosive arthritis                                                                                                                                                                       
Osteoperosis with fracture or vertebral collapse                                                                                                                             
Avascular Necrosis                                                                                                                                                                                 
Osteomyelitis
)
Table 14 illustrates that damage in the musculoskeletal system is common in SLE patients. Petri et al. (170) find that avascular necrosis (osteonecrosis) as the most common musculoskeletal complication in SLE patients affecting 14.5% of patients. 
[bookmark: _Ref332028800]Table 18 reports the odds ratios for logistic regression for musculoskeletal damage and related events.
Table 18: Odds ratios with confidence intervals estimated for risk factors for musculoskeletal damage
	First Author name
	Date
	Damage outcome
	Disease Activity
	Age
	Steroids
	Immunosuppressants
	Arthritis 

	Stoll (179)
	2001
	Musculoskeletal damage (OR)
	2.26 
(0.65–10.32)
	0.885 (0.78–1.00)
	
	
	

	Gladman (199)
	2001
	Osteonecrosis (OR)
	
	
	18.5
(3.2-359.6)
	2.7 
(1.02-8.8)
	4.2 
(1.6-13.7)

	Calvo-Allen (200)
	2006
	Osteonecrosis (OR)
	
	
	1.03 
(1.00-1.05)
	
	3.04 
(1.02 -9.04)

	OR Odds ratios




Renal Organ System
 (
The 
SLICC/ACR Damage Index 
includes the following events for the Renal Organ System
Estimated or measured glomerular filtration rate <50%
Proteinuria or End stage renal disease
)
Results from Table 14 suggest that renal damage is not common among SLE patients. Table 19 reports the survival rates for time to end-stage renal failure after 10 years of follow-up in different population of SLE patients.
[bookmark: _Ref250896712]Table 19: Renal survival over time
	Author
	Date
	Sample size
	Renal Survival 
	Overall survival

	
	
	
	10 years
	10 years

	Farschou (201)
	2006
	91
	0.83
	

	Moroni (202)
	2007
	93
	0.97
	0.83

	Chen (203)
	2008
	37
	0.94a
	0.95a

	Chen (203)
	2008
	21
	0.45b
	0.76b

	Chen (203)
	2008
	28
	0.19c
	0.41c

	Korbet (204)
	2000
	37
	0.95a
	

	Korbet (204)
	2000
	49
	0.31c
	

	a Survival of patients with complete remission; b survival of patients with partial remission; c survival of patients with no remission


.
Several studies have utilised univariate and multivariate statistical techniques to identify variables associated with end stage renal disease. The results are detailed in Table 20.
[bookmark: _Ref252544836][bookmark: _Toc279009291]Table 20: Predictors of end stage renal disease
	Author
	Year
	Outcome
	Disease Activity
	Age
	Serum creatinine
	anti-Ro antibodies
	No remission

	Alarcon (205) 
	2006
	Renal disease (HR)
	
	0.96 (0.92-0.99)
	
	
	

	Korbet (204)
	2000
	ESRD (HR)
	
	
	2 (1.4-2.9)
	3 (1.4-6.4)
	8.2 (2.6-25.6)

	Bastian (206)
	2002
	Lupus Nephritis (OR)
	1.11 (1.02-1.19)
	
	
	
	

	HR Hazard ratios; OR Odds ratios



Gonadal failure
Gonadal failure is among the least commonly reported damage type recorded by the SLICC/ACR Damage Index. Table 14 reports a prevalence of between 0.43-4%. Gonzalez et al. (207) studied the occurrence of gonadal failure in SLE. They identified age (HR 1.07 95% CI 1.00-1.41), average disease activity (HR 1.29 95% CI 1.19-1.39), and cumulative cyclophosphamide (HR 3.63 95% CI 1.81-7.27) to be statistically significant predictors of gonadal failure in univariate analysis.  In multivariate analysis age, average disease activity and cyclophosphamide were significantly associated with gonadal failure. The association between cyclophosphamide and gonadal failure is reported elsewhere in the literature (208). 
Diabetes
No studies were identified investigating diabetes comorbid to SLE. 
Malignancy
There is some contradictory evidence in the literature as to whether SLE patients have an increased risk of cancer compared with the general population. Chun (2005) compared the rates of cancer in a Korean population. The incidence of malignancy was not different between the populations. Ramsey-Goldman et al. (209) estimate a statistically significant standardised incidence ratio of 2.0 (95% CI 1.4, 2.9) for all malignancies in the United States. 
[bookmark: _Ref334366233][bookmark: _Ref334366236][bookmark: _Toc379467602]Discussion
[bookmark: _Toc379467603]The Formulation of a Conceptual Model for SLE
The conceptual model identified a number of very important associations between disease features and co-morbidities that arise with SLE. The relationship between the short term features of the disease, such as disease activity and steroids, and the long term outcomes, organ damage and mortality, are of particular interest because the short term outcomes will be measured in short clinical trials, whereas organ damage and mortality are not.  The literature shows that both disease activity and steroid dose are likely to be risk factors for organ damage and mortality. Previous analyses of individual organ damage systems suggest that the relationships will vary between different organ systems. Disease activity and steroid dose are also inevitably correlated as one is used to treat the other. It is important that the natural history model estimates the independent effects on long term outcomes to estimate the total benefit of reducing disease activity and steroid exposure. 
[bookmark: _Toc379467604]Justification for further Data Analysis
There was not sufficient evidence from the literature to build a CE model and BCTS. There are three reasons for this. Firstly, the statistical analyses that have been employed cannot be easily translated into probabilities of organ damage events for the BCTS and CE model. The Cox-regression model estimates hazard ratios for risk factors, but not the baseline hazard. Secondly, there are several gaps in the literature for certain outcomes, for example skin, gastrointestinal and ocular damage are under-represented in the literature. Most studies have used the SLICC/ACR Damage Index composite score as the outcome of interest, which may not be appropriate for use in the CE model. The severity, aetiology and rate of damage accrual for each organ system are highly variable. Furthermore, the costs and health outcomes for damage events will vary so it is appropriate to consider the organ systems separately. Finally, only a small number of studies have reported multivariate analyses that included covariates for disease activity and steroid exposure. These covariates can both be risk factors for long term outcomes so it is necessary to try and estimate the independent contribution of each in a survival model. 
[bookmark: _Toc379467605]Identification of Large Observational Cohorts
There have been many observational studies in SLE. Three cohorts have contributed a large body of research due to their size and duration of follow-up. 
The Lupus in Minority Populations: Nature vs. Nurture (LUMINA) cohort is a comprehensive database of approximately 600 patients from the University of Alabama at Birmingham, the University of Texas Health Science Centre at Houston, and the University of Texas Medical Branch at Galveston (210). 
The John Hopkins lupus cohort is a decade long prospective study based in Baltimore in which patients with SLE are seen on a quarterly basis for measurement of disease activity, laboratory tests, and assessment of morbidity and quality of life (36). The study measures disease activity using the Physicians Global Assessment and the SLEDAI, damage is measured by the SLICC/ACR Damage Index. Kasitanon et al. report analyses from the cohort with a sample size of 1378 (153). The cohort is large and a rich source of data on the natural history of lupus. 
Patients attending the University of Toronto Lupus Clinic are seen every 2 to 6 months. At each visit clinical and laboratory details are entered in a database. There are over 1000 patients registered at the clinic and data has been collected prospectively on patients since 1970. 
It was beneficial to access the data from at least one of these cohorts that represent the diverse nature of SLE and are followed at regular, frequent intervals followed over time. Soon after the literature review was completed an opportunity arose for the School of Health and Related Research (ScHARR) to collaborate with GlaxoSmithKline (GSK) in the development of their CE model for belimumab, a new treatment for SLE that had recently passed its Phase III endpoint. GSK had access to the Hopkins Lupus Cohort and were looking to run statistical analyses to use in their CE model. I was responsible for the development of a natural history model for SLE on behalf of ScHARR, and Pharmerit would execute the CE model using the natural history model for SLE.  This arrangement enabled me to access a large observational cohort and develop a new set of statistical analyses as part of this PhD programme.
[bookmark: _Ref354925126][bookmark: _Toc379467606]Conclusion
[bookmark: _Toc335043530][bookmark: _Toc278533944][bookmark: _Toc278534004][bookmark: _Toc279009281]The conceptual model developed here has identified that disease activity, steroids, organ damage and mortality were important outcomes to include in a natural history model for SLE. Disease activity and steroid dose were associated with organ damage and mortality. These associations can be used to relate treatment effects in short term studies to long-term outcomes. 
The epidemiology studies did not report sufficient data to inform a detailed natural history model for SLE. The findings of the literature review of observational studies suggested that future statistical analyses should address the following data gaps. Firstly, that the statistical analyses would predict all disease outcomes included in the conceptual model. Secondly, the confounding effects of disease activity and steroid dose should be described in the statistical models where both factors are associated with the outcome. Thirdly, the statistical models should report sufficient data to estimate the probability of organ damage in each system and mortality. The opportunity arose, through collaboration with GSK, to develop a new set of statistical analyses to estimate parameters for the BCTS and CE model with these data requirements in mind using the John Hopkins Cohort. 

[bookmark: _Ref363379228][bookmark: _Toc379467607]Chapter 5: Developing A Model for the Natural History Of SLE
5. 
This chapter describes the statistical analysis of the Hopkins Lupus Cohort to estimate SLE natural history for a BCTS and CE model.
The statistical analyses built upon the findings from the literature review described in Chapter 4. The conceptual model was used to design the statistical analysis. The conceptual model informed the choice of covariates and outcomes that were included in the analysis. The final analysis included forty independent statistical models that could be combined to predict disease outcomes in a BCTS or CE model conditional of patient characteristics.  
The Hopkins Lupus Cohort has collected data on the SLEDAI, steroid dose, SLICC/ACR Damage Index and mortality since 1987. The dataset includes a measure of the Physicians Global Assessment, but no other measures of disease activity, such as the BILAG.  
Collaboration with GlaxoSmithKline (GSK) was important to gaining access to the Hopkins Lupus Cohort. GSK wanted to use the dataset to develop a CE model for belimumab. An arrangement was made for The School of Health and Related Research, Sheffield University (ScHARR) to take responsibility for the natural history modelling, and an external consultancy company were commissioned to build a CE model. I was the main researcher on the natural history model project with advisory contributions from Professor Alan Brennan and Professor Mike Campbell from ScHARR. I was responsible for the design and implementation of the analysis plan and undertook all the analysis described in this Chapter. 
In Section ‎5.1 the methods of data analysis are described with details on how the outcomes are specified, covariates selected and what statistical methods were used. Section ‎5.2.1 describes the characteristics of the Hopkins Lupus Cohort. Section ‎5.2.2 describes the models predicting SLEDAI and steroid dose conditional on patient and clinical characteristics. Section ‎5.2.3 describes the results of the models predicting long term SLEDAI and steroid dose conditional of patient and clinical characteristics. Section ‎5.2.4 describes the results of the models predicting organ damage and mortality outcomes conditional on patient and clinical characteristics. Section ‎5.3 summarises the results of a validation of short and long term simulated outcomes. Section ‎5.4 discusses the limitations of the statistical analyses and their validity to predict SLE disease outcomes. Section ‎5.5 concluded that the statistical analyses are the best source of information to describe the natural history of SLE in the BCTS and CE models.
[bookmark: _Toc277943635][bookmark: _Toc278533917][bookmark: _Toc278533977][bookmark: _Toc279009248][bookmark: _Ref332616584][bookmark: _Toc335043531][bookmark: _Toc379467608]Methods 
[bookmark: _Toc335043532][bookmark: _Toc379467609]Patient Population
The Hopkins Lupus Cohort contains data on a large population of SLE patients from Baltimore, Maryland, USA. The Hopkins Lupus Cohort represents one of the largest SLE cohorts identified in the literature search with a substantial duration of follow-up of the patients. Patients in the Hopkins cohort visit the clinic every 3 months from cohort entry. The current analysis was based on all data extracted from the database in early 2010 for a total of 2047 patients. Patients with more than two years of follow-up were included in the final analysis to isolate the analysis to patients with sufficient duration of follow-up to contribute to all of the statistical models. All of the analyses were conducted on the same population to simplify the description of the population in submissions to reimbursement authorities.
Some data cleaning was required to get the data in the correct form for the analyses. There was a very small proportion of missing data in the cohort, approximately 0.5% for SLEDAI score items. Missing data from clinic visits was imputed using a last observation carried forward. Given the low proportion of missing data for SLEDAI score, this method is unlikely to have affected the model outcomes if compared with other imputation methods. If the precise date of an event were not recorded in the dataset, it was assumed that the event occurred on the 15th day of the month. 
[bookmark: _Toc379467610]Analysis Plan
The analysis was designed to produce two complete natural history models for the BCTS and CE model. I decided that a more complex simulation model would be required for the BCTS to describe short term changes in disease activity. In the BCTS it would be beneficial to monitor disease activity by organ system to enable simulation of interventions with differential effects across organ systems. This level of detail would not be necessary for the CE model so a different structure would be necessary to simulate patients. The CE model is required to simulate outcomes over the lifetime of a patient so disease activity was simplified to enable more efficient computation of patient outcomes. The analysis of the Hopkins Lupus Cohort can be grouped into three stages. The first examined SLEDAI score items and steroid dose at each quarterly clinic visit. The second estimated mean SLEDAI and steroid dose over annual periods. The third estimated the risk of organ damage. Figure 10 illustrates the three types of analysis that were used in the natural history models. 
[bookmark: _Ref332097724]Figure 10: Diagram illustrating the three sets of statistical models that were analysed 
[image: ]
In Figure 10, Analysis 1 predicted twenty-four SLEDAI items and steroid dose in three month intervals. These models were used to predict outcomes in a BCTS. It was important to record SLEDAI items and discrete changes in SLEDAI score to estimate trial endpoints. Analysis 1 is used to simulate disease activity and steroid dose in the BCTS model.
Analysis 2 predicted annual mean SLEDAI scores and steroid doses. The composite SLEDAI scores observed at 3 monthly visits were averaged to reflect the burden of the disease over annual periods of observation. This analysis aims to investigate how disease activity evolves over longer intervals and what information can be used to predict the long term severity of the disease. These two regression models would be used in the CE model to extrapolate average scores over the patient’s lifetime. Analysis 2 is used to simulate disease activity and steroid dose in the CE model.
[bookmark: _Toc278533919][bookmark: _Toc278533979][bookmark: _Toc279009250]Analysis 3 estimates the time to organ damage and mortality. The analysis identified risk factors for these outcomes and quantified the effect they have on the probability of the outcome occurring at any stage of the disease. Analysis 3 is used to simulate organ damage in the BCTS and CE model.
[bookmark: _Toc379467611]SPecification of the Dependent Variables
Dependent Variables for SLEDAI items and Steroid dose 
Disease activity was measured using the SLEDAI in all of the analyses. The SLEDAI was used in the simulation because it is an objective assessment of disease activity and provides a good description of organ involvement. The 24 items of the SLEDAI were the outcome measures of the first analysis. Each item is a binary variable taking the value of 1 if the symptom was present at that visit. The SLEDAI is a weighted measure of the 24 items of the SLEDAI (Table 21).
[bookmark: _Ref363214927]Table 21: SLEDAI items and weighting system
	Organ System
	SLEDAI Item
	Weight
	Organ System
	SLEDAI Item
	Weight

	Neuropsychiatric
	Seizure
	8
	Musculoskeletal
	Arthritis
	4

	
	Psychosis
	8
	
	Myositis
	4

	
	Organic Brain Syndrome
	8
	Skin
	Rash
	2

	
	Visual Disturbance
	8
	
	Alopecia
	2

	
	Cranial Nerve Disorder
	8
	
	Mucosal Ulcers
	2

	
	Lupus Headache
	8
	Serositis
	Pleurisy
	2

	
	Cerebrovascular accident
	8
	
	Pericarditis
	2

	Vascular
	Vasculitis
	8
	Immunological
	Low Complement
	2

	Renal
	Urinary Casts
	4
	
	Increased DNA binding
	2

	
	Hematuria
	4
	Haematological
	Thrombocytopenia
	1

	
	Proteinuria
	4
	
	Leukopenia
	1

	
	Pyuria
	4
	Constitution
	Fever
	1



Figure 11 reports a histogram of SLEDAI scores taken from all visits in the Hopkins Lupus Cohort. There were a large number of observations where the SLEDAI score was zero, and the scores cluster around even numbers because of the weighting system. For this reason, and to enable organ involvement to be recorded in the simulation, the analysis of individual items of the SLEDAI was favoured.
[bookmark: _Ref332101123]Figure 11: A histogram for SLEDAI scores from the Hopkins Lupus Cohort
[image: ]
Steroid dose was measured in the Hopkins Lupus Cohort in mg/day. Figure 12 reports a histogram of steroid doses (mg per day). The histogram illustrates that there were a large number of zero observations. The distribution of positive steroid doses clustered around certain doses. 
[bookmark: _Ref332101460]Figure 12: A histogram for Steroid dose from the Hopkins Lupus Cohort
[image: ]

Dependent Variables for Average SLEDAI and Steroid dose 
SLEDAI score and steroid dose were averaged over annual intervals for the second analysis. The annual mean SLEDAI and steroid dose was adjusted for time between visits using the Adjusted Mean SLEDAI (AMS) calculation (142).  
	
	
	(5.1) 


where Xi is the measure of interest,  is the time interval between visit i- 1 and i. The long term disease activity regression model estimated the change in mean SLEDAI score between annual intervals of observation. Change in average SLEDAI score appears normally distributed (Figure 13). Steroid dose (mg per day) was estimated as a total score rather than a change in dose because it was found to have a better fit to the data. A histogram for steroid dose is reported in Figure 14. 
[bookmark: _Ref332103190]Figure 13: A histogram for change in mean SLEDAI score from the Hopkins Lupus Cohort
[image: ]
[bookmark: _Ref332103794]Figure 14: A histogram for average steroid dose from the Hopkins Lupus Cohort
[image: ]
Dependent Variables for Organ Damage and Mortality 
The SLICC/ACR Damage Index was used to measure irreversible damage. The items of the SLICC/ACR Damage Index were grouped into twelve categories as follows: nine organ systems: cardiovascular, renal, musculoskeletal, pulmonary, peripheral vascular, gastrointestinal, ocular, skin and neuropsychiatric, and three co-morbidities; diabetes, gonadal failure and malignancy. Mortality and organ damage events were only included in the analysis if the patient had a clinic visit within 2 years of the event. If the gap in the data were greater than this the event would not be able to reliably contribute to the relationship between disease activity and the long term events because the most recent periods of activity or remission would not be described in the AMS.
[bookmark: _Toc278533920][bookmark: _Toc278533980][bookmark: _Toc279009251][bookmark: _Toc335043534][bookmark: _Toc379467612]Covariate Measures
Covariate Selection for SLEDAI items and Steroid dose
Demographic characteristics were included in the analyses because ethnicity and gender have previously been associated with disease severity. Disease activity declines in older patients so a covariate for log of age was included. The logged transformation was used because a non-linear relationship between age and disease outcomes was preferred so that older patients’ outcomes were not dominated by the age coefficient.  Hypertension was included in the vasculitis regression models following a discussion with an SLE clinical expert, Dr Ian Bruce from the University of Manchester. It was shown to have good statistical fit to the data.
Disease activity can be persistent, so previous disease activity will predict subsequent activity. A lagged dependent variable was included in the SLEDAI item regression models. The lagged dependent variable described whether the SLEDAI item was present at the previous clinic visit. The lagged dependent variable was not included in the cerebrovascular accident and urinary casts models where symptoms were present in fewer than 5 observations. Research from other authors suggests that there are correlations between disease activity items across organ systems (138). 
In total twenty-seven covariates were considered for inclusion in each SLEDAI item model. Relationships between lagged variables across SLEDAI items were examined using univariate logistic regressions. Statistically significant associations (p<0.05) were carried into the multiple covariate analyses.  In the multiple covariate model patient characteristics and lagged SLEDAI items were selected by backward stepwise elimination. A full model specification was estimated and the covariate with the highest p-value was eliminated until all covariates were statistically significant. Therefore, the method of model selection did not take a Bayesian approach in order that the methods were consistent with previous epidemiology studies.
The SLEDAI items were assumed to determine steroid dose. A simple description of steroid dose was used in the statistical analyses so that the estimates could be easily validated or amended by clinical experts at a later date. The use of steroid is variable between clinicians and geographical regions so the regression model would be difficult to generalise to other settings. Two-way tables were used to identify SLEDAI items that were associated with the use of steroid. The Fishers Exact test was employed to test the significance of the association. Fisher's Exact test is a statistical significance test used in the analysis of contingency tables (211).The mean steroid dose was also estimated for all visits with each SLEDAI item and without to identify a univariate statistically significant relationship. SLEDAI items were selected by backward stepwise elimination for the final regression model specification.
Covariate Selection for Average SLEDAI and Steroids
The change in average SLEDAI regression model included covariates for patient characteristics and medical history. Patient characteristics included gender, age, and African American ethnicity. Haematological, renal, neurological, skin involvement and anaemia have been associated with disease activity (137;138;140). Disease activity in each of these systems in the previous year was included in the regression model as binary variables. Increased anti-dsDNA and low complement, important antibodies in SLE, were included in the regression model to identify serologically active patients. Previous SLEDAI score was included into the regression model to reflect the observation that higher scores will have a larger magnitude of change than low scores.
An alternative model specification was tested to observe the impact of treatment on change in SLEDAI score. In these regression models, covariates for steroid dose, a binary variable for treatment with immunosuppressants, and a binary variable for treatment with anti-malarials were also included in the analysis. 
The steroid dose regression model included average SLEDAI score observed in the corresponding annual period. Demographic characteristics, such as age, gender, and African American ethnicity, were included in the regression model. 
Covariate Selection for Organ damage and Mortality
Baseline patient characteristics included gender, African American ethnicity, obesity, age at diagnosis, and whether the patient was a smoker at cohort entry or in the past. Age at diagnosis was an important covariate to include in the regression model because the organ’s affected by damage with late onset SLE has been observed to be different to the organs affected by damage in younger cohorts (212). The analyses controlled for non-lupus risk factors including, cholesterol, hypertension, smoking, and obesity. Antiphospholipid syndrome, measured by three anticardiolipin antibodies, and lupus anticoagulant, measured by the Russels Viper Venom test, are associated with SLE and may be an important cause of some damage events and mortality (172;174;176). 
Age and disease duration have important relationships with organ damage and mortality. Mortality and some damage events were associated with older age, so a covariate for age should be included to adjust for the aging effect on baseline risk. However, in some cases disease duration was a more appropriate covariate if combined with age at diagnosis. Age and disease duration were both implemented into the regression models as log-transformations. This transformation allows the regression model to estimate a non-linear relationship between the time trend and the outcome of interest. This was done for pragmatic reasons to induce a diminishing impact of time trends on the hazard of outcome. 
AMS is a measure of long term burden of the disease (142). It was calculated as the sum of the average score observed between two visits weighted by time.
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AMS was included as a time-varying measure of disease activity and was calculated using equation ‎(5.2) from cohort entry to each clinic visit. 
Binary variables to SLEDAI items in organ systems at each clinic visit were included in the regression models to identify relationships between activity in a particular system and organ damage or mortality. Neuropsychiatric involvement in disease activity was defined by seizure, psychosis, organic brain syndrome, visual disturbance, cranial nerve disorder, lupus headache, or cerebrovascular accidents reported on the SLEDAI. Renal involvement in disease activity was defined by urinary casts, haematuria, proteinuria, pyuria on the SLEDAI, or if the 24 hour urine protein or urine protein: creatinine ratio was greater than 0.5g/24 hours, or urinalysis protein greater than or equal to 3+. Skin involvement in disease activity was defined by new rash, alopecia, or mucosal ulcers on the SLEDAI. Serositis in disease activity was defined by pleurisy or pericarditis on the SLEDAI. Haematological involvement in disease activity was defined by thrombocytopenia or leukopenia on the SLEDAI. 
The variable cumulative average monthly steroid dose was calculated by dividing the cumulative steroid dose by the months of follow-up to get a monthly average score in mg/month to measure steroid exposure. History of immunosuppressive treatment and antimalarials were included as binary indicators based on whether they were prescribed at any given clinic visit. 
Previous organ damage has been shown to be a predictor of further damage. As such, the SLICC/ACR Damage Index was tested as a covariate in organ damage regression models. The twelve individual organ system scores were included in the mortality regression model to identify the specific organ systems that increase the mortality risk in SLE patients. 
Two model specifications were generated for each of the organ damage and mortality models. The first included all covariates described above that were considered eligible for inclusion in the model. The second model specification excluded the binary organ involvement parameters, and non-steroid treatment parameters from the model specification. The second model specification was intended for use in the CE model, in which organ involvement and other treatments would not be included in the natural history model to reduce model complexity and the number of parameter inputs. 
[bookmark: _Toc278533921][bookmark: _Toc278533981][bookmark: _Toc279009252][bookmark: _Toc335043535][bookmark: _Toc379467613]Statistical Models
Statistical Analysis for SLEDAI items and Steroid dose
Logistic regression is used in statistical analyses of binary outcomes to estimate the probability of an event occurring as a function of relevant risk factors (213). The logistic analyses were performed with patient specific random intercept to account for within patient correlation,. 
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with t indicating clinic visit and i the patient. The equation uses (, which were observed in the data and  were parameters estimated from the data where and were independent across patients i. The random intercept acts to capture the combined effect of patient specific time constant effects. 
For each regression model the Wald Chi-squared statistic and the interclass correlation coefficient were reported.  The Wald test assesses the overall fit of a regression model. The intraclass correlation coefficient was measured on a scale between 0 and 1 to describe the percentage of variation in the dependent variable that can be attributed to the patient specific random intercept and can be used to assess whether the random effects was necessary. 
Steroid dose was analysed as count data to impose restrictions against negative outcomes. Steroid is mainly prescribed in SLE patients when patients have a severe flare in disease activity that threatens organ function. The data included a large proportion of observations with zero steroid dose. Consequently, standard approaches to count data such as Poisson or Negative Binomial regression model did not fit well with the distribution of the data. Two part extensions to standard count data regression models can be used to model participation and count in separate stages (214). Zero inflated Poisson regression model, zero inflated Negative Binomial regression model, and Hurdle Models are all two stage models that could be applied in this setting. 
A Hurdle Model was selected because it employs a zero-truncated form of the Poisson and Negative Binomial regression models so that if participation was positive the Poisson or Negative Binomial function cannot take the value of zero. The two step process starts with a binomial process to determine whether the patient receives steroids or not. 
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The zero-truncated Poisson process has a probability mass function
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The unconditional probability mass function for Y is
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The two regression models that comprise the Hurdle model can be estimated independently. The logit function was used for the first stage of the regression model and both poisson and negative binomial regression models were tested for the second stage. 
The likelihood ratio test for over dispersion was used to choose between the Poisson and Negative Binomial models. The pseudo R2 was reported to indicate the goodness of fit of the regression models. Goodness of fit was assessed in all models with a single measure or test statistics to avoid conflicting guidance for the inclusion or exclusion of covariates. The Hosmer-Lemehsow test was not used to assess goodness of fit for the logistic models. Simulated outcomes were compared with the Hopkins Lupus Cohort data to observe the fit of the regression models to the data.
Statistical Analysis for Average SLEDAI and Steroids
The regression for change in average SLEDAI score and average steroid dose were assumed to be normally distributed and estimated as linear regression models. Ordinary Least Squares (OLS) and panel data regression techniques were considered to estimate the population average to adjust for individual patient characteristics. Random intercept regression models were adopted to allow for dependence among within patient observations in the cohort. The random effects regression model controls for repeated measures of patients and provides estimates of within–patient effects of covariates. Whereas the OLS assumes that all observations are uncorrelated.
The one-way random effects regression model can be written as
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where  is a 1xk vector of variables that vary over individual and time, and  is the  vector of coefficients on ,   are realisations of the random effects parameter, and є is the disturbance term (215). The  are uncorrelated with the regressors in xi. The combined  are often referred to as the composite-error term. As such, the individual effect was equivalent to a random draw. The random effects regression model identifies the population parameter that describes the individual level heterogeneity in disease severity. 
R2 was used to describe the goodness of fit of the regression model by expressing the variation in the outcome of the regression model that was described by the covariates in the Ordinary Least Squares (OLS) regression model. Overall R2 was reported for the random effects regression model to express the variation in outcome that was described by the covariate and random effects parameter. These statistics can be used to assess the relative merit of alternative covariate specifications. 
Statistical Analysis for Organ damage and Mortality
[bookmark: _Toc277943636][bookmark: _Toc278533922][bookmark: _Toc278533982][bookmark: _Toc279009253]Organ damage and mortality were analysed using parametric survival regression with time-dependent covariates. The exponential, Weibull, Gompertz and Loglogistic parametric regression models were considered to describe the parametric form for these analyses. The Log-Normal and Gamma were not considered for the analysis at the request of GlaxoSmithKline to avoid added complexity in simulating the events. 
The likelihood function for all of the parametric survival regression models can be written as
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 describes the survival function for the model and  is the hazard function with i the patient. The likelihood uses time in the current period  time in the previous period  covariates , and an indicator variable for censoring , which were observed in the data. The baseline hazard , log-hazard ratios, , and additional shape parameters required for some functional forms  were parameters estimated from the data. The first part of the likelihood expresses the probability of survival from  until. It should be noted that when  the likelihood corresponds to the time-constant covariate form. The last part contributes the hazard if the time span  to ends in a failure, , and one if the span was censored. Table details the forms of the hazard and survivor functions for each of the parametric models.
[bookmark: _Ref331169422]Frailty models can be employed in survival analysis to describe heterogeneity in individual’s propensity for organ damage (216). This method was tested but not included in the final model specification. Details on the results of these analyses can be found in Appendix 8.
All covariates, other than age and disease duration, are assumed to be linearly related to the risk of the event. For most outcomes this assumption was considered reasonable, although very little information was available from the literature. The linear relationship between Adjusted Mean SLEDAI and mortality fit better than a logged transformation. However, given the weights of the SLEDAI it is possible that a non-linear association exists between Adjusted Mean SLEDAI and mortality, however it was challenging to specify a clinically relevant functional form.
[bookmark: _Ref355287857]Table 22: The functional form of the parametric models (216)
	Survival curve
	Survivor function
	Hazard function
	Parameter 1
	Parameter 2

	Exponential
	
	
	
	n/a

	Weibull
	
	
	
	

	Gompertz
	
	
	
	

	LogLogistic
	
	
	
	



Two methods were used to evaluate the alternative specification of the parametric model, Akaike Information Criterion and Cos-Snell Residuals. The parametric form of each regression model was selected using the Akaike Information Criterion (AIC), which identifies the best regression model as that with the lowest value of AIC (217). The AIC is defined as,
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where  is the number of regression model covariates, c is number of regression model specific distributional parameters and L is the likelihood. The Bayesian Information Criterion was not used to avoid conflicting guidance regarding model specification during the model selection. The AIC was favoured because it applies a lower penalty to multiple parameters. The overall regression model fit was assessed using Cox-Snell residuals. The analysis was conducted in STATA 11.
[bookmark: _Toc379467614]Statistical Model Validation
Two simulation models were developed to evaluate whether the statistical models could re-produce the data from the Hopkins Lupus Cohort. These analyses were used to test the internal validity of the statistical models. In each simulation baseline characteristics from the Hopkins Lupus Cohort were sampled in the simulation model to produce a large cohort of individuals. The statistical models were used to estimate the longitudinal changes in disease outcomes over time. The aggregated statistics for the simulated cohorts were compared with the Hopkins Lupus Cohort.
I obtained limited access to summary statistics of organ damage mortality in the Toronto cohort. This enabled an evaluation of the external validity of the organ damage simulation model. 
[bookmark: _Toc335043536][bookmark: _Ref354934820][bookmark: _Toc379467615]Results
[bookmark: _Toc278533923][bookmark: _Toc278533983][bookmark: _Toc279009254][bookmark: _Ref332616775][bookmark: _Ref332616776][bookmark: _Toc335043537][bookmark: _Toc379467616]Baseline characteristics
[bookmark: _Ref271042091][bookmark: _Ref278527971][bookmark: _Toc279009292][bookmark: _Ref279046720]A total of 1354 patients were included in the analysis. The baseline characteristics of this cohort of patients are described in Table 23. The characteristics of these 639 patients that were not included in the analysis are reported in Appendix 6.
[bookmark: _Ref363308808]

[bookmark: _Ref379468393][bookmark: _Toc278533924][bookmark: _Toc278533984][bookmark: _Toc279009255]Table 23: Summary data for patients in the Hopkins cohort with >24 months follow-up and clinic visits between 1987-2010 (N=1354)
	
	Mean/
% of cohort
	Standard deviation
	Median

	Female 
	92.91%
	
	

	African American
	38.77%
	
	

	Caucasian
	52.44%
	
	

	Age at diagnosis 
	32.93 
	13.05
	30.69

	Age at cohort entry 
	37.76
	12.85
	35.90

	Disease duration at cohort entry 
	4.83 
	6.30
	2.61

	Disease duration <1 year at cohort entry
	39.88%
	
	

	SLEDAI score at first visit 
	3.71 
	4.06
	2.00

	Mean SLEDAI in first year
	3.01
	2.59
	2.48

	Mean SLEDAI in last year of follow-up
	2.15
	2.59
	1.57

	Steroid dose at first visit (mg per day)
	10.49 
	16.19
	5.00

	Patient visits with immunosuppressants prescribed
	43.23%
	
	

	Patient visits with anti-malarials prescribed
	62.06%
	
	

	Duration of follow-up in years 
	8.13 
	5.02
	6.93

	Days between clinic visits
	98.40
	164.11
	91

	Days between clinic visits greater than 93 days
	36.82%
	
	

	Days between clinic visits greater than 365 days
	2.09%
	
	

	
	% of patients with organ damage over time

	Organ damage accrual
	Cohort entry
	5 year
	10 year
	15 year

	n
	1354
	938
	459
	175

	Cardiovascular damage
	1.16
	1.71
	2.10
	2.51

	Renal damage
	6.4%
	10.5%
	13.7%
	16.0%

	Musculoskeletal damage
	7.9%
	10.2%
	10.7%
	10.3%

	CNS damage
	15.2%
	23.5%
	31.8%
	40.6%

	Pulmonary damage
	16.8%
	21.8%
	25.7%
	28.0%

	Peripheral Vascular damage
	7.5%
	11.7%
	16.6%
	17.1%

	Gastrointestinal damage
	4.3%
	5.6%
	6.5%
	7.4%

	Ocular damage
	11.4%
	15.4%
	13.5%
	12.6%

	Skin damage
	10.0%
	14.7%
	18.7%
	24.0%

	Diabetes
	6.3%
	7.4%
	9.4%
	14.9%

	Malignancy
	4.5%
	6.8%
	8.7%
	9.1%

	Gonadal failure
	4.4%
	7.0%
	8.7%
	13.7%

	Mortality
	0.0%
	2.5%
	5.0%
	6.4%


[bookmark: _Ref354829531][bookmark: _Toc379467617]Results of Analysis of SLEDAI Items and Steroid dose
In the following section each logistic regression for the twenty-four items of the SLEDAI are reported, grouped by organ system. In all tables the coefficients are reported in which a positive coefficient indicates that the covariate increases the risk of disease activity and a negative is associated with lower risk of activity.
[bookmark: _Ref295745763]The analysis of seven neuropsychiatric items of the SLEDAI is reported in Table 24. In all regression models, except cerebrovascular accident, the presence of the symptom in the previous period was significantly associated with current status of the symptom. African American ethnicity was significantly associated with seizure. Lupus headache was negatively associated with age. No covariates were included in the final cerebrovascular regression model. The regression models identified statistically significant cross-item lagged variables from renal, musculoskeletal, haematological involvement and immunological items. The Wald Chi-squared statistics were statistically significant in all analyses suggesting that the overall fit of the regression models was good. The intraclass correlation was high (>0.1) in all regression models.
[bookmark: _Ref355287894]Table 24: Coefficient estimates from random effects logistic regression for neuropsychiatric items
	
	Neuropsychiatric involvement

	
	Seizure
	Psychosis
	OBS
	Visual Disturbance
	Cranial nerve disorder
	Lupus Headache
	CVA 

	African American ethnicity
	0.9866 (0.4917)
	
	
	
	
	
	

	Log of age
	
	
	
	
	
	-1.7834 (0.5030)
	

	Seizure in last period
	1.8503 (0.4870)
	
	
	
	
	
	

	Psychosis in last period
	
	5.1913 (0.9328)
	
	
	
	
	

	OBS in last period
	
	2.0323 (0.8917)
	1.8502 (0.3341)
	
	
	
	

	Visual disturbance
	
	
	
	3.0167 (0.3618)
	
	
	

	Cranial nerve disorder
	
	
	
	
	1.1543 (0.3786)
	
	

	Lupus Headache
	
	2.2125 (0.9146)
	
	
	
	2.4789 (0.3307)
	

	Proteinuria
	
	
	
	
	
	1.0859 (0.3136)
	

	Hematuria
	
	
	
	0.9151 (0.3737)
	
	
	

	Myositis
	
	
	1.4969 (0.7632)
	
	
	
	

	Low complement
	1.3484 (0.3881)
	
	
	
	
	
	

	Increased DNA binding
	
	
	
	0.7687 (0.2521)
	
	
	

	Leukopenia
	
	
	
	
	
	0.6346 (0.3450)
	

	Constant
	-9.6643 (0.8062)
	-7.7533 (0.6156)
	-7.9324 (0.4741)
	-7.3223 (0.3588)
	-6.6201 (0.2485)
	-0.5371 (1.7155)
	-8.1021 (0.9598)

	Sigma
	2.2579 (0.3531)
	1.0351 (0.5509)
	2.3633 (0.2703)
	1.5614 (0.2294)
	1.5511 (0.1708)
	1.9511 (0.2402)
	1.6053 (1.6053)

	Intraclass correlation
	0.608
	0.25
	0.63
	0.43
	0.42
	0.54
	0.44

	Wald Chi2
	45.57
	77.52
	47.64
	90.22
	9.30
	152.5
	5.67

	OBS Organic Brain Syndrome; CVA cerebrovascular accident; ( ) standard error



The results of the analysis of vasculitis, renal and musculoskeletal items are reported in Table 25. The lagged dependent variables were statistically significant in all regression models. All regression models except vasculitis and myositis were negatively associated with age. Males have a lower risk of developing Pyuria and arthritis. Renal and musculoskeletal involvement was associated with African American ethnicity. Low complement and/or increased DNA binding increased the risk of vasculitis, some renal items and arthritis. There were strong associations between the four renal items. Hypertension was statistically significant in the vasculitis regression model. The Wald Chi-squared statistics were statistically significant in all analyses suggesting that the overall fit of the regression models were good. The intraclass correlation was high in all regression models.
[bookmark: _Ref310339806]Table 25: Coefficient estimates from random effects logistic regression for vasculitis, renal and musculoskeletal items
	
	Vascular
	Renal Involvement
	Musculoskeletal 

	
	Vasculitis
	Urinary casts
	Hematuria
	Proteinuria
	Pyuria
	Arthritis
	Myositis

	log of age
	
	-3.8345 (1.2023)
	-0.8761 (0.1888)
	-1.2822 (0.2251)
	-0.5705 (0.1850)
	-0.5538 (0.1762)
	

	Male gender
	
	
	
	
	-0.9511 (0.2790)
	-0.5446 (0.2401)
	

	African American ethnicity
	
	
	0.4786 (0.1182)
	1.1880 (0.1463)
	0.3593 (0.1141)
	0.6110 (0.1201)
	1.4161 (0.3015)

	Hypertension
	0.3714 (0.1706)
	
	
	
	
	
	

	OBS
	
	
	
	
	
	
	1.9362 (0.7501)

	Vasculitis in last period
	2.3860 (0.1833)
	
	
	0.6443 (0.2620)
	
	
	

	Hematuria
	
	
	1.4368 (0.1032)
	0.4256 (0.1172)
	0.5652 (0.1365)
	-0.4111 (0.1647)
	

	Proteinuria
	
	
	0.7178 (0.1095)
	1.6980 (0.0891)
	0.7220 (0.1308)
	
	

	Pyuria
	
	
	0.6817 (0.1361)
	0.4206 (0.1487)
	1.7547 (0.1255)
	
	

	Arthritis
	
	
	
	
	
	1.5619 (0.0701)
	

	Myositis
	
	
	
	
	
	
	3.0996 (0.3656)

	Rash 
	0.4948 (0.1796)
	
	
	
	
	
	

	Mucosal ulcers
	0.6046 (0.2502)
	
	
	
	
	
	

	Pleurisy
	
	
	
	
	0.5578 (0.1986)
	
	

	Low complement
	0.7225 (0.1676)
	
	0.4442 (0.0935)
	0.3212 (0.0933)
	0.3680 (0.0989)
	
	

	Increased DNA binding
	0.3795 (0.1772)
	
	0.4201 (0.0983)
	0.2813 (0.0952)
	
	0.2533 (0.0827)
	

	Constant
	-6.7457 (0.2743)
	2.9133 (4.0053)
	-1.3595 (0.6772)
	0.0779 (0.7979)
	-2.6291 (0.6702)
	-1.7828 (0.6421)
	-7.7148 (0.4217)

	Sigma
	1.7860 (0.1594)
	2.4996 (0.6041)
	1.1637 (0.0754)
	1.6332 (0.0957)
	0.9441 (0.0828)
	1.4882 (0.0750)
	1.6066 (0.2485)

	Intraclass correlation
	0.49
	0.66
	0.29
	0.45
	0.21
	0.40
	0.44

	Wald Chi2
	252.5
	10.17
	609.17
	975.84
	488.19
	620.43
	121.75

	OBS Organic Brain Syndrome; () Standard error



The results of the analysis for skin, serositis and immunological items are reported in Table 26. The lagged dependent variables were statistically significant in all regression models. All regression models except Mucosal Ulcers and Alopecia were negatively associated with age. Alopecia, mucosal ulcers and increased DNA binding were associated with African American ethnicity. Males have a lower risk of developing alopecia, mucosal ulcers and pleurisy. There were several associations between different items of the SLEDAI identified in the analysis of skin, serositis and immunological items. The Wald Chi-squared statistics were statistically significant in all analyses suggesting that the overall fit of the regression models were good. The intraclass correlation was high in all regression models.
[bookmark: _Ref310341333]Table 26: Coefficient estimates from random effects logistic regression for skin, serologic and immunology
	
	Skin Involvement
	Serositis
	Immunology

	
	Rash
	Alopecia
	Mucosal ulcers
	Pleurisy
	Pericarditis
	Low complement
	Increased DNA binding

	Log of age
	-0.3967 (0.1545)
	0.4423 (0.2101)
	
	-0.9881 (0.2178)
	-1.3246 (0.3818)
	-1.4403 (0.2025)
	-1.0218 (0.2220)

	African American ethnicity
	
	1.6742 (0.1314)
	-0.8985 (0.1195)
	
	
	
	0.5394 (0.1455)

	Male gender
	
	-2.0594 (0.3505)
	-0.8893 (0.2487)
	-0.9720 (0.2834)
	
	
	

	Vasculitis in last period
	0.4151 (0.1800)
	
	0.5606 (0.2321)
	1.0966 (0.2834)
	
	
	

	Hematuria
	
	
	-0.4657 (0.2115)
	
	
	
	0.3866 (0.1149)

	Rash 
	1.5691 (0.0679)
	
	0.3868 (0.1083)
	
	
	0.2628 (0.0845)
	0.3663 (0.0905)

	Alopecia
	0.2171 (0.0989)
	1.9743 (0.0726)
	0.5381 (0.1182)
	
	
	
	

	Mucosal ulcers
	0.5527 (0.1182)
	
	1.1187 (0.1000)
	
	
	
	

	Pleurisy
	
	
	
	1.6638 (0.1392)
	1.1127 (0.2745)
	
	

	Pericarditis
	
	
	
	0.5985 (0.2340)
	1.7390 (0.2938)
	
	0.5782 (0.2863)

	Low complement
	
	0.1715 (0.0865)
	
	
	
	2.0155 (0.0530)
	0.4953 (0.0671)

	Increased DNA binding
	0.2991 (0.0749)
	
	
	0.7016 (0.1215)
	0.8106 (0.2158)
	0.4732 (0.0651)
	2.2122 (0.0574)

	Thrombocytopenia
	
	
	
	
	
	0.2322 (0.1393)
	

	Leukopenia
	
	
	
	
	
	0.3096 (0.1026)
	0.3501 (0.1126)

	Constant
	-2.0789 (0.5762)
	-6.6136 (0.7784)
	-3.6001 (0.0816)
	-1.3521 (0.8021)
	-2.0823 (1.3909)
	2.7720 (0.7240)
	0.6760 (0.7999)

	Sigma
	1.3707 (0.0649)
	1.4942 (0.0777)
	1.1404 (0.0678)
	1.3585 (0.1044)
	1.6273 (0.1846)
	1.9255 (0.0772)
	2.1041 (0.0896)

	Intraclass correlation
	0.36
	0.40
	0.28
	0.36
	0.45
	0.53
	0.57

	Wald Chi2
	641.45
	1439.49
	271.63
	276.86
	120.38
	2048.62
	1979.80

	() Standard error



The results of the analysis for haematological items, fever and infection are reported in Table 27. Haematological involvement in the previous period was a statistically significant predictor of future haematological involvement. The risk of haematological involvement and fever declines with age. Males were more likely to develop infection and African American patients are more likely to develop leukopenia and fever.  The Wald Chi-squared statistics were statistically significant in all analyses suggesting that the overall fit of the regression models were good. The intraclass correlation was high in all regression models.
[bookmark: _Ref310342500]Table 27: Coefficient estimates from random effects logistic regression for haematological items and fever
	
	Thrombocytopenia
	Leukopenia
	Fever
	Infection

	Log of age
	
	-0.8898 (0.2996)
	-1.8866 (0.3798)
	-0.2604 (0.1156)

	African American ethnicity
	
	1.1418 (0.1953)
	0.5150 (0.2339)
	

	Male gender
	
	
	
	-0.3217 (0.1502)

	Steroid dose
	
	
	
	0.0235 (0.1156)

	Low complement
	
	0.3725 (0.1025)
	
	

	Increased DNA binding
	0.4243 (0.1445)
	0.2522 (0.1057)
	
	

	Thrombocytopenia
	2.6837 (0.1305)
	0.5988 (0.1795)
	
	

	Leukopenia
	0.4472 (0.1851)
	1.5806 (0.0873)
	
	

	Constant
	-6.4382 (0.2739)
	-2.1578 (1.0729)
	0.5940 (1.3047)
	-2.2568 (0.4319)

	Sigma
	2.3409 (0.1854)
	2.1958 (0.1243)
	1.4468 (0.1670)
	0.7949 (0.0451)

	Intraclass correlation
	0.62
	0.59
	0.39
	0.16

	Wald Chi2
	445.83
	658.16
	60.01
	75.51

	LH Lupus Headache ; () Standard error



Table 28 reports the results of the steroid dose regression models. Patients were more likely to receive steroid if they were of African American ethnicity or male, and less likely to receive steroid if they were older. Seizure, psychosis and urinary casts were important predictors of steroid prescription. Many of the SLEDAI items increase the likelihood of receiving steroid. 
The log-likelihood for the zero-truncated negative binomial regression model was larger than the zero-truncated Poisson indicating the superiority of this approach. The outcomes of the likelihood ratio test for alpha=0 was statistically significant which indicates that there was over-dispersion in the data. Therefore, the zero-truncated negative Binomial has better fit to the data. 
[bookmark: _Ref310343527]The coefficients in Table 28 describe the coefficients of the analyses in which values greater that zero indicate a greater likelihood of steroid or greater dosage. In the steroid dose regression model, log-transformed age was negatively associated with steroid dose. African American patients were more likely to receive higher doses of steroid than Caucasian patients. Neuropsychiatric items, vasculitis, thrombocytopenia, renal items and myositis were significant predictors of higher steroid doses with larger coefficients. The pseudo R2 was low in all regression models suggesting that the profile of disease activity is not a good predictor of steroid use and dosage.
[bookmark: _Ref355287931]

[bookmark: _Ref379468426]Table 28: Estimated coefficients for the incidence of prescribing steroid and the dose 
	
	Logit Model
	Truncated Poisson
	Truncated Negative Binomial

	
	p(Y=1)
	Y>0
	Y>0

	African American
	0.7621 (0.0258)
	0.1504 (0.0053)
	0.1520 (0.0112)

	Male
	0.4582 (0.0468)
	-0.0289 (0.0094)
	

	Log of age
	-0.3188 (0.0422)
	-0.3736 (0.0088)
	-0.3841 (0.0190)

	Seizure
	1.8275 (0.5394)
	0.3119 (0.0370)
	0.3846 (0.0969)

	Psychosis
	0.9608 (0.4608)
	0.3931 (0.0472)
	0.4189 (0.1230)

	OBS 
	2.1515 (0.3569)
	0.4918 (0.0256)
	0.5302 (0.0689)

	Visual Disturbance
	0.6709 (0.2370)
	0.3966 (0.0301)
	0.4384 (0.0762)

	Lupus Headache
	1.4146 (0.2402)
	0.3456 (0.0216)
	0.3701 (0.0556)

	CVA 
	
	0.6783 (0.0735)
	0.6579 (0.2427)

	Vasculitis 
	0.7990 (0.1400)
	0.4896 (0.0154)
	0.5238 (0.0410)

	Urinary casts 
	
	0.2870 (0.0735)
	

	Hematuria
	0.5233 (0.0778)
	0.2555 (0.0099)
	0.2536 (0.0244)

	Proteinuria
	1.1074 (0.0713)
	0.2872 (0.0080)
	0.3030 (0.0195)

	Pyuria
	0.2421 (0.0880)
	0.1414 (0.0123)
	0.1625 (0.0297)

	Arthritis
	0.8485 (0.0502)
	
	

	Myositis
	0.4942 (0.2171)
	0.4208 (0.0253)
	0.4739 (0.0673)

	Rash 
	0.2243 (0.0459)
	0.1530 (0.0079)
	0.1625 (0.0181)

	Pleurisy
	0.6791 (0.0756)
	0.1811 (0.0128)
	0.2025 (0.0300)

	Pericarditis
	0.5821 (0.0548)
	
	

	Low complement
	0.5731 (0.0309)
	0.0741 (0.0057)
	0.0770 (0.0124)

	Increase DNA binding
	0.4657 (0.0318)
	0.0435 (0.0058)
	0.0424 (0.0127)

	Thrombocytopenia
	0.5378 (0.0955)
	0.3337 (0.0108)
	0.3507 (0.0262)

	Leukopenia
	-0.3042 (0.0548)
	
	

	Fever
	0.5298 (0.2370)
	0.0660 (0.0276)
	

	Constant
	0.5818 (0.1596)
	3.4150 (0.0323)
	3.428 (0.0704)

	Pseudo R2
	0.0901
	0.0889
	0.0258

	Log likelihood
	
	-66375.75
	-48937.03

	Alpha
	
	
	0.3582 (0.0057)

	CND Cranial Nerve Disorder; OBS Organic Brain Syndrome; Y steroid dose; () Standard error


	
[bookmark: _Ref354930145][bookmark: _Toc379467618]Results of Average SLEDAI and Average Steroid dose
[bookmark: _Ref271101451]Six different statistical models were developed to estimate changes in SLEDAI score over time as a function of previously observed disease outcomes and patient characteristics (Table 29). Table 29 reports the coefficient estimates for six model specifications for average SLEDAI. The table also reports the variance in the between patient random effects parameter , and the proportion of between-patient and within-patient variance that is explained by the model. The intra-class correlation statistic describes the proportion of the variance which is due to differences across panels. Models 1, 2 and 3 report the ordinary least squares analysis and 4, 5 and 6 the random effects regression models. In all regression models the negative relationship between previous SLEDAI and change in SLEDAI suggests a tendency for disease activity to subside over time. Ethnicity has a significant impact in this regression model and suggests that African American patients have a tendency to larger increases in disease activity. Model 2 reports that immunosuppressants and anti-malarials were not statistically significant predictors of a change in average SLEDAI score. The coefficient for steroid dose was positive suggesting that higher average dose this year will increase SLEDAI score in the next year. This relationship does not indicate that aggressive treatment reduces SLEDAI score over time, but these causal relationships may not be observed over an annual period. Model 3 describes a reduced form of the regression model where treatments and disease features were removed. The R2 of the regression model was slightly reduced in model 3. 
The random effects regression models reported in models 4, 5 and 6 demonstrate that the coefficient estimates were very similar to the ordinary least squares form of the regression models and the intraclass correlation was very low, which indicates that the random effects regression models were not required to estimate change in average SLEDAI over annual intervals. 
The R2 statistics across all models indicate that the covariates explain a very small proportion of the variance in average SLEDAI. This is not surprising given the heterogeneous and unpredictable nature of the disease. However, it does highlight that the model is a poor fit to the data.
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[bookmark: _Ref275249390][bookmark: _Ref275761454][bookmark: _Toc279009294][bookmark: _Ref363294243]

[bookmark: _Ref364924033][bookmark: _Ref377482874]Table 29: Coefficient results for the regression model predicting change in SLEDAI
	
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5
	Model 6

	
	Expanded model
	Expanded model with treatments
	Reduced model without lagged covariates
	Expanded model with Random effects
	Expanded model with treatments with Random effects
	Reduced model without lagged covariates, with random effects

	
	Coefficient
	SE
	Coefficient
	SE
	Coefficient
	SE
	Coefficient
	SE
	Coefficient
	SE
	Coefficient
	SE

	SLEDAI score in previous period
	-0.4020
	0.0172
	-0.4110
	0.0175
	-0.3344
	0.0120
	-0.4594
	0.0148
	-0.4163
	0.0150
	-0.4071
	0.0083

	African American ethnicity
	0.3173
	0.0369
	0.2899
	0.0394
	0.2691
	0.0364
	0.3839
	0.0464
	0.2959
	0.0424
	0.3494
	0.0445

	Lagged Increase DNA binding
	0.2793
	0.0493
	0.2676
	0.0508
	
	
	0.2745
	0.0515
	0.2675
	0.0512
	
	

	Lagged low complement
	0.4903
	0.0480
	0.4850
	0.0494
	
	
	0.4834
	0.4834
	0.4853
	0.0487
	
	

	Log of age
	-0.1528
	0.0594
	-0.1145
	0.0604
	-0.2583
	0.0601
	-0.2428
	0.0721
	-0.1207
	0.0657
	-0.3708
	0.0705

	Lagged Haematological involvement
	0.0978
	0.0568
	0.0881
	0.0573
	
	
	0.1031
	0.0606
	0.0882
	0.0558
	
	

	Lagged anaemia 
	0.1656
	0.0468
	0.1625
	0.0482
	
	
	0.1553
	0.0481
	0.1620
	0.1620
	
	

	Lagged renal involvement
	-0.3044
	0.0542
	-0.3468
	0.0573
	
	
	-0.3033
	0.0524
	-0.3473
	0.0525
	
	

	Lagged mean steroid dose 
	
	
	0.0144
	0.0042
	
	
	
	
	0.0146
	0.0373
	
	

	Lagged treatment with anti-malarials 
	
	
	-0.0101
	0.0373
	
	
	
	
	-0.0138
	0.0393
	
	

	Lagged treatment with immunosuppressants
	
	
	-0.0065
	0.0432
	
	
	
	
	-0.0081
	0.0453
	
	

	Constant
	1.0189
	0.2285
	0.8414
	0.2339
	1.5348
	0.2321
	1.4889
	0.2787
	0.8777
	0.2551
	2.1102
	0.2685

	Sigma ui
	
	
	
	
	
	
	0.3858
	
	0.0983
	
	0.4043
	

	Within R2
	
	
	
	
	
	
	0.3525
	
	0.3512
	
	0.3610
	

	Overall R2
	0.1963
	
	0.2019
	
	0.1699
	
	0.1957
	
	0.2019
	
	0.1699
	

	Intraclass correlation
	
	
	
	
	
	
	0.0609
	
	0.004
	
	0.0662
	

	log = Natural logarithm; SE Standard error



[bookmark: _Toc278533925][bookmark: _Toc278533985][bookmark: _Toc279009256]Mean Annual Steroid dose model
Table 30 details the results of three regression models that have developed to estimate steroid dose. Average annual SLEDAI score increases the average annual steroid dose in the same year. Gender and African American ethnicity increase steroid dose. Most of the individual items of the SLEDAI were statistically significant predictors of steroid dose independent of the composite SLEDAI scores in Model 1. Model 3 reports the results of a reduced regression model where only the composite SLEDAI score was included. The R2 values are very low for all models, suggesting that the covariates only explain a small proportion of the variation in steroid dose.
[bookmark: _Ref271616867][bookmark: _Toc279009295]Table 30: Results of the steroid dose regression models
	
	Model 1 Random effects organ involvement
	Model 2 Random effects reduced model
	Model 3 Random effects reduced model with demographics

	
	Coefficient
	SE
	Coefficient
	SE
	Coefficient
	SE

	Average SLEDAI score
	0.3792
	0.0743
	0.7769
	0.0546
	.6980
	.0550

	CNS involvement
	2.0839
	0.4281
	
	
	
	

	Vasculitis
	2.7900
	.6037
	
	
	
	

	Renal involvement
	2.3081
	0.2178
	
	
	
	

	Musculoskeletal involvement
	0.5491
	0.2033
	
	
	
	

	Increased DNA binding
	0.9744
	0.2046
	
	
	
	

	Low complement
	
	
	
	
	
	

	Skin involvement
	0.0041
	0.1518
	
	
	
	

	Serositis
	1.0848
	0.2776
	
	
	
	

	Hematology
	
	
	
	
	
	

	African American Ethnicity
	
	
	
	
	2.1032
	0.3108

	Male
	
	
	
	
	1.1249
	0.6537

	Log age
	
	
	
	
	-4.4497
	0.5366

	Constant
	3.2854
	0.1751
	3.4753
	0.1783
	19.2511
	2.0197

	R2
	0.1702
	
	0.1389
	
	0.1532
	

	SE standard error
	
	
	
	
	
	



[bookmark: _Ref354930159][bookmark: _Toc379467619]Results of Mortality and Organ Damage
[bookmark: _Ref354831951]Mortality
Individual univariate analyses were conducted for each of the covariates described in the Methods section. The univariate analysis was run using an exponential survival curve. The results of the univariate regressions can be found in column 1 of Table 31. Most of the variables found to be statistically significant in the univariate analysis were included in the multivariate stepwise covariate selection process. Log-transformed age was not included in favour of age at diagnosis and log of disease duration. The results of the multivariate survival model with an exponential distribution can be found in Table 31 in column 2. The choice of parametric survival distribution affects the underlying hazard rate and can introduce time dependency into the survival model. The parametric distribution was selected based on AIC goodness of fit criteria. The Weibull distribution was found to have the lowest AIC according to this criterion. The results of the Weibull survival model are reported in column 3. 
Analysis of the African American ethnicity and age at diagnosis were found to be independent predictors of mortality in the Weibull survival model. Adjusted mean SLEDAI has a relative large and statistically significant impact on mortality. Each increase in the adjusted mean SLEDAI score increases the risk of mortality by 24.6%, suggesting a strong relationship between disease activity and mortality. Haematological involvement has an independent impact on the risk of mortality in addition to the increase in risk found with the SLEDAI, such that the presence of haematological involvement increases the risk of mortality by 234%. 
A number of variables were included in the survival model to account for the effects of organ damage on risk of mortality. Cardiovascular damage was only statistically significant in the exponential survival model so was excluded from the analysis. However, renal damage, musculoskeletal damage, gastrointestinal, and peripheral vascular damage all increase the risk of mortality. Diabetes and malignancy were also associated with mortality. Finally, infection events were known to be a cause of mortality in SLE patients and the covariate suggests that infection increases the risk of mortality by 279%.
The covariate for disease duration was not statistically significant; however the size of the parametric distribution parameter indicates that the baseline hazard increases over time. In column 4 haematological involvement and anti-malarials were removed from the survival model. Model 4 can be used in a less complex simulation in which the natural history of haematological involvement and anti-malarials were not included. 

[bookmark: _Ref274837223][bookmark: _Ref275761515][bookmark: _Toc279009296]Table 31: Results of the Mortality analysis with log baseline hazard, hazard ratios, distribution parameters, and standard errors in brackets
	
	1
	2
	3
	4

	
	Univariate analysis 
	Covariate selection
	Distribution selected
	Reduced analysis for CE model

	
	Exponential
	Exponential
	Weibull
	Weibull

	
	Hazard ratio
	Hazard ratio
	Hazard ratio
	Hazard ratio

	Male
	1.736*
	
	
	

	African American ethnicity
	2.243***
	2.4386 (0.6093)
	2.1041 (0.5281)
	2.2889 (0.5761)

	Age at diagnosis
	1.029***
	1.0370 (0.0095)
	1.0344 (0.0090)
	1.0347 (0.0091)

	Past smoker at baseline
	1.802***
	
	
	

	Cholesterol at last visit
	1.005***
	1.0037 (0.0015)
	1.0041 (0.0015)
	1.0048 (0.0014)

	Hypertension at last visit
	3.148***
	
	
	

	Obese at baseline
	1.126
	
	
	

	Anticardiolipid antibody positive at last visit
	0.000
	
	
	

	Lupus Anticoagulant positive at last visit
	1.696*
	
	
	

	Log of age
	9.827***
	
	
	

	Log of disease duration
	1.933***
	1.5391 (0.2537)
	
	

	Adjusted Mean SLEDAI at last visit
	1.216***
	1.1898 (0.0545)
	1.2462 (0.0678)
	1.3064 (0.0671)

	Cumulative average steroid dose at last visit
	1.001***
	
	
	

	Cytotoxic treatment at last visit
	1.904***
	
	
	

	Anti-malarials treatment at last visit
	0.592**
	0.6142 (0.1414)
	0.5721 (0.1321)
	

	Neuropsychiatric involvement at last visit
	2.140
	
	
	

	Musculoskeletal involvement at last visit
	0.956
	
	
	

	Renal involvement at last visit
	2.628***
	
	1.7534 (0.4991)
	

	Skin involvement at last visit
	0.831
	
	
	

	Vasculitis at last visit
	1.872
	
	
	

	Haematological involvement at last visit
	2.410***
	2.1904 (0.6544)
	2.3247 (0.6979)
	

	Serositis involvement at last visit
	1.344
	
	
	

	DNA binding at last visit
	1.348
	
	
	

	Low complement at last visit
	1.383
	
	
	

	SLICC/ACR DI score at last visit
	1.465***
	
	
	

	Cardiovascular damage score at last visit
	2.432***
	1.4003 (0.2200)
	1.4020 (0.2234)
	1.5275 (0.2399)

	Renal damage score at last visit
	2.758***
	2.0529 (0.4931)
	1.7408 (0.4240)
	2.0039 (0.4672)

	Neuropsychiatric damage score at last visit
	1.743***
	
	
	

	Musculoskeletal damage score at last visit
	2.167***
	1.3991 (0.1824)
	1.3801 (0.1767)
	1.2860 (0.1672)

	Ocular damage score at last visit
	2.421***
	
	
	

	Pulmonary damage score at last visit
	1.536**
	
	
	

	Peripheral vascular damage at last visit
	3.134***
	2.5151 (0.5945)
	2.4659 (0.5676)
	2.1982 (0.5024)

	Gastrointestinal damage score at last visit
	2.191***
	1.7632 (0.4066)
	1.9663 (0.4425)
	1.8861 (0.4238)

	Skin damage score at last visit
	1.938***
	
	
	

	Diabetes score at last visit
	3.753***
	
	
	

	Gonadal failure score at last visit
	1.045
	
	
	

	Malignancy score
	2.940***
	3.0724 (0.8095)
	2.7104 (0.7117)
	2.9774 (0.7751)

	Any infection at last visit
	2.916***
	2.7215 (0.9647)
	2.7912 (0.9900)
	2.6101 (0.9247)

	Log baseline hazard
	
	-9.3321 (0.7101)
	-10.4149 (0.7379)
	-10.6985 (0.7252)

	Parametric distribution parameter
	
	
	1.8143 (0.1620)
	1.7507 (0.0907)

	Chi-squared 
	
	154.93***
	150.8***
	132.87***

	AIC
	
	490.40
	487.24
	499.21

	* p<0.1, **p<0.05, *** p<0.01
	
	
	
	


[bookmark: _Ref354830113]Organ Damage Analyses
Univariate analyses were run to identify covariates that were associated with the 12 organ systems from the SLICC/ACR Damage Index. The results of the univariate analyses are reported in Appendix 6. The statistically significant variables in the univariate analysis were implemented into a process of backward induction to derive a suitable multivariate survival model. The AIC statistics were compared to find an appropriate parametric distribution for the survival model. The results of the multivariate analyses with individual organ systems variable, such as skin involvement or renal involvement, cytotoxic treatment and treatment with anti-malarials as covariates are reported in Table 32. These survival models can be used in a BCTS where data on the organs involved were simulated in the SLEDAI. 
The functional forms of the survival model vary between organ systems. The exponential survival model is used to describe peripheral vascular, gastrointestinal, diabetes, malignancy and gonadal failure. The Weibull distribution was selected for musculoskeletal, neuropsychiatric and ocular damage. The Gompertz was only selected for cardiovascular damage. The Loglogistic form was selected for pulmonary, skin and renal damage because the AIC indicated that the loglogistic form fit the data better than exponential, Weibull or Gompertz.   
The statistical analyses identified several risk factors for organ damage. In these analyses traditional risk factors for cardiovascular events such as age at diagnosis, log of disease duration, hypertension, and cholesterol were found to be significant risk factors in the SLE population. AMS and serositis involvement were strong, statistically significant predictors of cardiovascular damage. A weak relationship was identified for average steroid dose increasing cardiovascular damage. 
AMS and renal involvement had a significant effect in increasing the risk of renal damage. For musculoskeletal damage significant increased hazard was associated with average steroid dose, a history of immunosupressive treatment, log of age, and previous damage. Neuropsychiatric involvement on the SLEDAI, cholesterol, hypertension, log of age and average prednisone dose were associated with neuropsychiatric damage. The analyses for pulmonary damage found that serositis, increased DNA binding and renal involvement were all significant risk factors. Average steroid dose and anticardiolipin were also associated with a higher risk of damage in the pulmonary system. Smoking, cholesterol and lupus anticoagulant were found to be significantly related to peripheral vascular damage. Average prednisone dose and vasculitis were associated with gastrointestinal damage. Log of age was a strong and significant predictor of ocular damage. Average corticosteroid dose and neuropsychiatric involvement were also retained in the ocular survival model. The analysis found that African American ethnicity, smoking, and skin involvement was associated with shorter time to skin damage, whereas anti-malarials increases time to skin damage. Log of age, African American ethnicity, prednisone dose and renal involvement were associated with diabetes. High cholesterol, log of disease duration, age at diagnosis, history of cytotoxic treatment, and previous damage were predictors of malignancy. Cholesterol, steroid and cytotoxic treatment predicted gonadal failure.
Similar results were identified in the less complex risk models reported in Table 33. However, skin damage and pulmonary damage include a covariate for adjusted mean SLEDAI.
In summary, the statistical analyses generated 14 detailed statistical models from which time-varying probabilities of organ damage and mortality can be generated. I also report 14 statistical models which did not include disease activity organ system as covariates for use in a CE model where organ involvement for disease activity and non-steroid treatment were not simulated.
[bookmark: _Ref332119802]Table 32: Results of the multiple covariate analyses for time to occurrence of organ damage with organ involvement disease activity covariates
	
	Cardio.
	Renal
	MSK
	Neuro.
	Pulmonary
	P. Vascular
	Gastro.
	Ocular
	Skin
	Diabetes
	Malignancy
	Gonadal 

	
	Gompertz
	Loglogistic
	Weibull
	Weibull
	Loglogistic
	Exponential
	Exponential
	Weibull
	Loglogistic
	Exponential
	Exponential
	Exponential

	African American ethnicity
	
	
	
	
	
	
	
	
	0.0874 (0.0671)
	2.0703 (0.5885)
	
	

	Age at diagnosis
	1.0479 (0.0080)
	
	
	
	
	
	
	
	
	
	1.0259 (0.0077)
	

	Past smoker at baseline
	
	
	
	
	
	1.9814 (0.5732)
	
	
	0.1584 (0.1058)
	
	
	

	Cholesterol at last visit
	1.0027 (0.0013)
	0.9922 (0.0037)
	
	1.0034 (0.0012)
	
	1.0049 (0.0014)
	
	
	
	
	0.9906 (0.0024)
	1.0044 (0.0017)

	Hypertension at last visit
	2.2692 (0.5408)
	
	
	1.8038 (0.2974)
	
	2.2216 (0.7229)
	
	1.4793 (0.2597)
	
	
	
	

	Anticardiolipid antibody positive at last visit
	
	
	
	
	0.2918 (0.1249)
	
	
	
	
	
	
	

	Lupus Anticoagulant positive at last visit
	
	
	
	
	
	2.2758 (0.7800)
	
	
	
	
	
	

	Log of age
	
	
	2.6446 (0.5583)
	2.4353 (0.6385)
	0.1824 (0.0743)
	
	
	9.7554 (2.8792)
	
	9.8192 (4.9752)
	
	

	Log of disease duration
	1.8532 (0.2646)
	
	
	
	
	
	
	
	
	
	1.3486 (0.1867)
	

	Adjusted Mean SLEDAI at last visit
	1.1585 (0.0454)
	0.8190 (0.0658)
	
	
	
	
	
	
	
	
	
	

	Cumulative average steroid dose at last visit
	1.0012 (0.0004)
	
	1.0012 (0.0002)
	1.0004 (0.0026)
	
	
	1.0008 (0.0004)
	1.0013 (0.0002)
	
	1.0012 (0.0004)
	
	1.0017 (0.0004)

	Cytotoxic treatment at last visit
	
	
	1.2955 (0.1624)
	
	
	
	
	
	
	
	
	2.3074 (0.9870)

	Anti-malarials treatment at last visit
	
	
	
	
	
	
	
	
	4.4640 (2.6656)
	
	
	0.3896 (0.1604)

	Neuropsychiatric involvement at last visit
	
	
	
	7.9842 (1.7761)
	
	
	
	2.1807 (0.8494)
	
	
	
	

	Renal involvement at last visit
	
	0.0257 (0.0226)
	
	
	0.4234 (0.1178)
	
	
	
	
	2.4083 (0.0812)
	
	

	Skin involvement at last visit
	
	
	
	
	
	
	
	
	0.0866 (0.0595)
	
	
	

	Vasculitis at last visit
	
	
	
	
	
	
	5.2815 (2.7295)
	
	
	
	
	

	Serositis involvement at last visit
	3.0638 (1.2134)
	
	
	
	0.1062 (0.0431)
	
	
	
	
	
	
	

	DNA binding at last visit
	
	
	
	
	0.6176 (0.1410)
	
	
	
	
	
	
	

	SLICC/ACR DI score at last visit
	
	
	1.1084 (0.0308)
	
	0.8542 (0.0477)
	
	
	
	
	
	1.2014 (1.2014)
	

	Baseline hazard
	-8.8971 (0.5605)
	10.2576 (1.6567)
	-7.4545 (0.8019)
	-8.0924 (0.9883)
	11.5193 (1.6366)
	-7.3112 (0.4140)
	-5.0532 (0.1526)
	-12.814 (1.1373)
	9.1549 (1.8185)
	-14.672 (2.0155)
	-4.8090 (0.6016)
	-7.2658 (0.5077)

	Parametric distribution parameter
	-0.04446 (0.0253)
	1.4942 (0.2951)
	0.8544 (0.0483)
	0.8254 (0.0546)
	1.1486 (0.0845)
	
	
	0.8027 (0.0566)
	1.4128 (0.3422)
	
	
	

	Chi-squared 
	117.62
	101.06
	101.32
	110.17
	86.79
	27.95
	10.83
	108.27
	35.15
	39.86
	58.34
	43.80


[bookmark: _Ref332119844]Table 33: Results of the multivariate analyses for each time to occurrence of organ damage with AMS forced into the survival models and anti-malarials and cytotoxic treatments removed
	
	Cardio.
	Renal
	MSK
	Neuro.
	Pulmonary
	P. Vascular
	Gastro.
	Ocular
	Skin
	Diabetes
	Malignancy
	Gonadal 

	
	Gompertz
	Loglogistic
	Weibull
	Weibull
	Loglogistic
	Exponential
	Exponential
	Weibull
	Loglogistic
	Exponential
	Exponential
	Exponential

	African American ethnicity
	
	
	
	
	
	
	
	
	0.2224 (0.1687)
	2.1836 (0.6173)
	
	

	Age at diagnosis
	1.0468 (0.0080)
	
	
	
	
	
	
	
	
	
	1.0259 (0.0077)
	

	Past smoker at baseline
	
	
	
	
	
	1.9814 (0.5732)
	
	
	0.1959 (0.1473)
	
	
	

	Cholesterol at last visit
	1.0026 (0.0013)
	0.9842 (0.0062)
	
	1.0034 (0.0012)
	
	1.0049 (0.0014)
	
	
	
	
	0.9906 (0.0024)
	1.0053 (0.0017)

	Hypertension at last visit
	2.2594 (0.5382)
	
	
	1.7831 (0.2936)
	
	2.2216 (0.7229)
	
	1.4783 (0.2594)
	
	
	
	

	Anticardiolipid antibody positive at last visit
	
	
	
	
	0.248 (0.1148)
	
	
	
	
	
	
	

	Lupus Anticoagulant positive at last visit
	
	
	
	
	
	2.2758 (0.7800)
	
	
	
	
	
	

	Log of age
	
	
	2.5906 (0.5476)
	2.4556 (0.6379)
	0.2313 (0.0992)
	
	
	9.7085 (2.8599)
	
	9.0274 (4.5989)
	
	

	Log of disease duration
	1.8157 (0.2587)
	
	
	
	
	
	
	
	
	
	1.3486 (0.1867)
	

	Adjusted Mean SLEDAI at last visit
	1.1688 (0.0458)
	0.6361 (0.0701)
	
	
	0.8906 (0.0404)
	
	
	
	0.8115 (0.0805)
	
	
	

	Cumulative average steroid dose at last visit
	1.0011 (0.0004)
	
	1.0013 (0.0002)
	1.0006 (0.0003)
	
	
	1.00084 (0.0004)
	1.0013 (0.0002)
	
	1.0015 (0.0004)
	
	1.0020 (0.0004)

	SLICC/ACR DI score at last visit
	
	
	1.1158 (0.0307)
	
	0.8564 (0.0509)
	
	
	
	
	
	
	

	Diabetes score at last visit
	
	
	
	
	
	
	
	
	
	
	1.2014 (0.0481)
	

	Baseline hazard
	-8.7642 (0.5548)
	12.228 (2.5711)
	-7.3413 (0.8012)
	-8.0130 (0.9809)
	10.4723 (1.7603)
	-7.3111 (0.4140)
	-5.0300 (0.1512)
	-12.778 (1.1349)
	9.7465 (1.9013)
	-14.296 (2.0218)
	-4.8090 (0.6016)
	-7.4845 (0.3877)

	Parametric distribution parameter
	-0.04475 (0.0254)
	1.7293 (0.2385)
	0.8758 (0.0474)
	0.8134 (0.0541)
	1.1136 (0.1092)
	
	
	0.8006 (0.0566)
	1.4414 (0.3533)
	
	
	

	Chi-squared 
	115.35
	54.1
	97.03
	55.73
	47.62
	27.95
	4.17
	105.06
	22.25
	33.82
	58.34
	34.27




[bookmark: _Toc335043541][bookmark: _Ref354930177][bookmark: _Toc379467620]Simulation Validation Exercises
[bookmark: _Toc379467621]Validation of Longitudinal SLEDAI Scores Against Hopkins Lupus COhort
The simulation replicates most of the outcomes from the Hopkins Lupus Cohort with good accuracy. The proportion of patients with each SLEDAI item was recorded at every visit for five years and compared with those observed in the first five years of the Hopkins lupus Cohort. Graphical plots indicated that the simulated outcomes were close to the Hopkins data and that most of the Hopkins observations fell within the 95% percentile plots to indicate the upper and lower limits of the simulation (results not reported here). The simulation demonstrated that the proportion of patients with any of the SLEDAI items declined over time. This trend was observed in the Hopkins cohort. Table 34 reports summary results for statistical tests on the difference between the simulated proportion at each time point and the observed Hopkins data. In eighteen of the items of the SLEDAI the proportion of simulated outcomes that were statistically significantly different from the Hopkins data was less than 5%. Two items of the SLEDAI had more than 10% of simulated outcomes that were statistically significantly different. 
[bookmark: _Ref363303773]Table 34:  Simulation results for the SLEDAI items and proportion of simulated outcomes within the 95% confidence interval of Hopkins results up to 5 years
	SLEDAI Item
	Proportion of events in Hopkins Lupus Cohort across all observations 
	Average simulated proportions of events across all observations 
	Proportion of simulated observations significantly different from Cohort

	Seizure 
	0.002
	0.003
	0.017

	Psychosis
	0.001
	0.002
	0.014

	Organic Brain Syndrome
	0.004
	0.006
	0.030

	Visual Disturbance
	0.004
	0.004
	0.017

	Cranial Nerve Disorder
	0.005
	0.004
	0.005

	Lupus Headache
	0.009
	0.010
	0.029

	CVA
	0.001
	0.009
	0.029

	Vasculitis
	0.013
	0.015
	0.026

	Arthritis
	0.098
	0.079
	0.217*

	Myositis
	0.006
	0.006
	0.040

	Urinary Casts
	0.001
	0.001
	0.005

	Hematuria
	0.048
	0.049
	0.034

	Proteinuria
	0.076
	0.087
	0.084*

	Pyuria
	0.029
	0.027
	0.019

	New rash
	0.089
	0.089
	0.023

	Alopecia
	0.072
	0.060
	0.051*

	Mucosal Ulcers
	0.043
	0.041
	0.018

	Pleurisy
	0.029
	0.024
	0.071*

	Pericarditis
	0.008
	0.008
	0.012

	Low Complement
	0.298
	0.281
	0.027

	Increased DNA binding
	0.283
	0.266
	0.044

	Fever
	0.036
	0.022
	0.016

	Thrombocytopenia
	0.067
	0.054
	0.212*

	Leukopenia
	0.006
	0.008
	0.079*

	* Proportion of simulation runs statistically significantly different (5% significant level)



Figure 15 illustrates a histogram of SLEDAI scores generated in the simulation and compares this with a histogram of observed SLEDAI score from the Hopkins cohort. The diagram shows that the simulation produces a very similar distribution of SLEDAI score to those observed in the Hopkins Lupus Cohort. 
[bookmark: _Ref325117353][bookmark: _Ref325117338]Figure 15: A histogram of SLEDAI scores from the Simulation and Hopkins cohort
[image: ]
Figure 16 illustrates a histogram of steroid doses generated in the simulation and compares this with a histogram of observed steroid dose in the Hopkins cohort. The simulation accurately simulates the proportion of patients with zero steroid dose. The distribution of positive steroid doses in the simulation is much smoother than those observed in the Hopkins Cohort. The real-life observations cluster around certain values is difficult to replicate in a simulation. 
[bookmark: _Ref325277173]Figure 16: A histogram of steroid (prednisone) dose from the Simulation and Hopkins cohort
[image: ]
[bookmark: _Toc379467622]Validation of Organ Damage Accrual Against Hopkins Lupus Cohort and the Toronto Lupus Cohort
I presented a conference paper at the 2012 Operational Research Society Simulation Workshop 2012, describing the internal and external validity of the natural history model. The paper is provided in Appendix 9 for reference. Figure 17 illustrates the incidence of organ damage by organ system for the Hopkins Lupus cohort, and the simulated outcomes. Figure 18 illustrates the incidence of organ damage by organ system for the Toronto Lupus cohort, and the simulated outcomes. The simulation fits better to the Hopkins cohort data, than the Toronto data. Skin damage and pulmonary damage are the most inaccurate outcomes from the simulation compared with the Toronto data.
[bookmark: _Ref363304310]Figure 17: Simulated organ damage accrual compared with the Hopkins Lupus Cohort
[image: ]
[bookmark: _Ref363304366]Figure 18: Simulated organ damage accrual compared with the Toronto Lupus Cohort
[image: ]
[bookmark: _Ref363308559][bookmark: _Toc379467623]Discussion
[bookmark: _Toc379467624]Summary of the Key Findings of the SLEDAI Item and Steroid Model, Annual Disease Activity and Steroid Models and Organ damage and Mortality Models
In this chapter I reported the results of statistical models to predict quarterly incidence of 24 SLEDAI items, and used a hurdle model to estimate steroid dose at quarterly intervals. Analyses found that age, gender and ethnicity impact on the probability of disease activity. The findings of the statistical models predicting SLEDAI items are consistent with other analyses in the literature  (139). A previous study that found that previous renal involvement predicted renal involvement, and previous musculoskeletal involvement predicted musculoskeletal involvement (138). This study also identified that individuals with a history of renal involvement were less likely to develop musculoskeletal or skin involvement. The results were consistent with the findings of this analysis which identified that if a SLEDAI item was present in the previous period it was a strong predictor of future involvement. Although, I did not find that previous renal involvement was negatively associated with musculoskeletal involvement, there was a negative association between haematuria and Mucosal ulcers. 
Higher adjusted mean SLEDAI and cumulative average SLEDAI predicted a shorter time to mortality and organ damage events. As previously discussed in Chapter 5, many epidemiology studies in SLE have identified that average SLEDAI score and steroid dose are associated with organ damage and mortality (142;153;162;175;175;176;176;191). In these analyses we have also estimated the independent effects of adjusted mean SLEDAI and disease activity within an organ system on the time to organ damage and mortality.
[bookmark: _Ref355203864][bookmark: _Toc379467625]Describing Disease Activity With the SLEDAI
Two methods for predicting SLEDAI scores were developed in this chapter. A detailed method to generate SLEDAI scores was developed for the BCTS and a longer term average SLEDAI score was estimated for the CE model. The BCTS needed statistical models to predict short-term changes in disease activity, whilst retaining information about which organ system was involved. Whereas this detail was not necessary in the CE model and would have increased computation time. Therefore, an alternative modelling approach was taken to generate average SLEDAI scores over the long term.
The SLEDAI score was estimated using 24 independent statistical models to enable an accurate and detailed description of the disease. It was challenging to find a distribution to fit the pattern of the SLEDAI score because it is a weighted measure of the 24 SLEDAI items. Figure 11 reports a histogram of SLEDAI scores taken from all visits in the Hopkins Lupus Cohort. There were a large number of observations where the SLEDAI score was zero, and the scores cluster around even numbers because of the weighting system. For this reason, and to enable organ involvement to be recorded in the simulation, the more comprehensive analysis of individual items of the SLEDAI was favoured. The CE model has a longer time horizon, which was incompatible with a detailed simulation of the disease.
[bookmark: _Toc379467626]The Validity of the Natural History Model
The validity of the combined statistical models in predicting short and long-term patient outcomes have been assessed. The first validation simulation combined the statistical models to predict SLEDAI items and steroid dose. The second validation simulation combined the statistical models to predict long term disease, steroid dose, mortality, and damage systems as described in the SLICC/ACR Damage Index. The simulation was used to validate the accuracy of the statistical models in predicting long-term outcomes, when all the independencies within the individuals were incorporated.  The simulation reproduced organ damage events with reasonable accuracy. The fit of the simulation to an external dataset was reasonable, but highlighted important differences in the predicted incidence of skin and pulmonary outcomes. I decided not to make any adjustments to the predictive models for pulmonary and skin damage because it was not necessary given the research objectives of this project. However, future applications of the natural history models should consider adjustments to reflect local incidence rates of organ damage.
[bookmark: _Toc379467627]Limitations of the Statistical Methods
Designing statistical analyses of longitudinal disease processes was challenging because the data was susceptible to correlation and confounding that were known to cause problems with traditional regression techniques. I have tested and selected a series of appropriate methods to deal with these problems. Random effects regression models have been employed where repeated measures caused correlation between observations. Frailty survival models were assessed for the organ damage and mortality survival models, but were not adopted in the final analysis because within patient effects were small, and had an almost negligible effect on the coefficients (Appendix 8).  
There are several limitations to the work undertaken here. Time-varying confounding was not fully adjusted for in these analyses. Time-varying covariates are used in the organ damage and mortality survival models but do not adjust for the causal relationships between covariates. A confounding variable is one that is associated with both the exposure of interest and the response, and if it were ignored could result in biased estimates. An intermediate variable is on the causal pathway from the exposure of interest to outcome. The challenge in analysing longitudinal studies arises because variables can be both a confounders and intermediate variables. In this context steroids can be conceived as both a confounder and intermediate variable for the relationship between disease activity and long term outcomes. The problem may lead to bias in the estimates for the disease activity coefficient. 
One potential approach to deal with this is marginal structural models (218). However, this method would be difficult to apply in this setting because I was also interested in estimating the causal affects of cytotoxic drugs and steroid on organ damage, which were confounded by disease activity. Exploratory analyses indicated several problems with the distribution of the stabilised probability weights required for marginal structural models. It was decided that the methods should not be adopted at this time, because the complexity of the bi-directional confounding variables would require advanced application of marginal structural methods. Further, research into the use of marginal structural models in longitudinal studies of SLE would be a good idea. 
Secondly, the regression models were analysed independently, which may underestimate correlation between outcomes of the disease. Joint modelling techniques have been used in other contexts to account for a single repeated measure predicting a single event outcome (219). The CE model requires repeated measures for SLEDAI and steroids which predict thirteen possible event outcomes, which would require considerable programming to implement in a single analysis.  
[bookmark: _Ref354930345][bookmark: _Toc379467628]Conclusion
[bookmark: _Toc332726910]I have presented forty statistical models to predict individual SLEDAI items at three monthly clinic visits and steroid doses at three monthly visits. A separate set of analyses developed regression models to predict average SLEDAI scores and steroid doses over annual intervals. Survival models for organ damage and mortality have been reported. Two sets of organ damage and mortality are presented with different choices of covariates to be compatible with a BCTS and CE model. The BCTS model includes covariates for organ involvement, whereas the CE model does not. Despite some limitations the statistical analyses provide a complete set of parameters to enable prediction of individual patient outcomes in a BCTS or for a CE model.  
In the next chapter I describe in detail how the twenty-four SLEDAI item models, steroid hurdle model and the detailed organ damage and mortality models are incorporated into the BCTS. I will describe how these are used to simulate data collection for clinical trials. In Chapter 7, I describe how the long-term average SLEDAI, average steroid dose, and less complex organ damage and mortality models are used in the CE model.

[bookmark: _Toc335051107][bookmark: _Toc341366935][bookmark: _Toc379467629]Chapter 6: The development of A Bayesian Clinical Trial Simulation for SLE Phase III trials
6. 
In this chapter I describe a Bayesian Clinical Trial Simulation (BCTS) for a Phase III SLE trial to evaluate the value of alternative research designs.  
The BCTS was developed to generate clinical trial datasets for a range of clinical trial designs. The BCTS was designed to simulate clinical trials for a hypothetical new biologic treatment for SLE, with no similar comparator on the market. Phase II trial data from belimumab was used to describe the effectiveness of the new treatment, therefore the hypothetical drug is assumed to have a similar profile to belimumab. An individual patient simulation model was used to reflect the substantial heterogeneity in outcomes observed in SLE trials. Individual patient outcomes in the trials were predicted from the natural history model described in Chapter 5. Additional published literature was sought to estimate treatment withdrawal from the trial and efficacy data. The long term efficacy of biologic treatment in SLE is unknown and so an elicitation was used to quantify uncertain prior distributions for the long-term effectiveness of treatment. 
The BCTS was developed independently from the GSK collaboration and I undertook all of the work described in this Chapter.
The BCTS structure is described in Section ‎6.1 and a detailed description of the simulation process is given in Section ‎6.2. Section ‎6.3 describes the efficacy assumptions assumed for the hypothetical treatment including an elicitation exercise. A discussion of the outcomes of the simulation is provided in Section ‎6.4. The discussion in Section ‎6.5 reflects on the strengths and weakness of the BCTS. 
[bookmark: _Ref334701429][bookmark: _Toc335051108][bookmark: _Toc341366936][bookmark: _Toc379467630]Model Structure
An individual patient simulation was built to model patient outcomes over the duration of follow-up of an SLE clinical trial. The patient population entering the BCTS were randomly allocated between two treatment arms in the trial. The clinical trial compared a new hypothetical biologic treatment with Standard of Care (SoC). The BCTS estimated patient’s disease course in three monthly cycles to reflect regular clinic visits scheduled in an RCT. At every three monthly visit the patient’s disease status is updated for a number of trial outcomes to include: visit attendance; SLEDAI items; steroid dose; organ damage; mortality. The BCTS accounts for uncertainty in trial outcomes by simulating one thousand possible realisations of the trial, each of which has a different trial result.
[bookmark: _Toc335051109][bookmark: _Toc341366937][bookmark: _Ref341367618][bookmark: _Toc379467631]Simulation Process
[bookmark: _Toc379467632]Overview of the Simulation
The BCTS relies on two simulation processes developed in R software (220). A summary of the two simulation processes is described in Figure 19. The first generates a SLE population with sufficient information about the patients’ characteristics and disease profile to enable modelling of their future disease outcomes. The patients vary in disease severity and organ damage involvement to reflect the heterogeneity of the disease. 
In the second process the outcomes of the clinical trial are generated. The recruitment process selected patients if they met the inclusion criteria until the sample size for the clinical trial was reached. The eligible patients were randomised between the two treatment arms of the trial using a simple randomisation process. The BCTS monitors patients over time to estimate their outcomes during the clinical trial follow-up. At the end of the clinical trial follow-up the endpoints were estimated and recorded. The natural history described in the BCTS is based on the conceptual model for SLE described in Section ‎4.2.1 of Chapter 4.
The BCTS is repeated many times to estimate a range of possible trial outcomes with different sampled parameter inputs. The parameters of the Generate SLE Population were not varied between BCTS runs. However, the parameters for the regression models for disease activity, steroid dose, organ damage, mortality, and withdrawal were all sampled from their probability distributions. Each BCTS run uses a different set of input values that are sampled from parametric distributions. This Bayesian approach captures the uncertainty of the parameters inputs to estimate the uncertainty in trial outcomes. The BCTS was run 1000 times with sampled input parameters. 
[bookmark: _Ref335648304]Figure 19: Summary of the simulation process used in the BCTS
[image: ]
[bookmark: _Toc332726914][bookmark: _Toc335051093][bookmark: _Ref335652277][bookmark: _Toc341366938][bookmark: _Toc335051110]The simulation generated detailed disease status information for each simulated patient at every 3 monthly clinic visit in the trial. The model had the flexibility to report a range of trial outcomes relating the SLEDAI score, steroid dose, organ damage, mortality, and withdrawal. 
[bookmark: _Toc379467633]Generate Population Process
Patient characTeristics
The patient characteristics were randomly drawn from statistical distributions to generate an individual patient profile for each person in the SLE population. All statistical distributions were estimated from the Hopkins Lupus Cohort to reproduce the baseline characteristics of this population in an SLE population matrix. Sampling characteristics from probability distributions, rather the raw data, were used to broaden the combinations of characteristics that could be sampled in the simulation.
Table 35 details summary statistics for the characteristics of patients in the hypothetical SLE population, previously described in 

Table 23, and the statistical distributions used to simulate patient characteristics. Column D of this table details the statistical distribution used to represent variations in each characteristic. All patient characteristics, except disease activity, were sampled independently. An alternative approach would have been to bootstrap individuals from the Hopkins Lupus Cohort. This method would have ensured correlation between baseline characteristics of patients was maintained. However, Bootstrapping was not used. The simulation needed to be flexible to simulate patients with mild, moderate or severe SLE or by specific organ type. Therefore sampling characteristics from distributions was preferred to increase the possible combinations of patients included in the simulation that may not be represented in the Hopkins Lupus Cohort. Disease activity score generation is described in more detail in section ‎6.2.2.2. Multinomial distributions were used to draw a person’s age at diagnosis and disease duration. The probabilities of a patient entering the cohort with a particular age and disease duration are reported in the Appendix 10. Organ damage score at baseline was drawn from a multinomial distribution using probabilities outlined in Table 35. 
[bookmark: _Ref355006536]Table 35: Baseline characteristics of patients in the simulated trial based on Hopkins cohort at baseline (n=1354)
	
	A
	B
	C
	D
	E
	F

	Patient Characteristics
	Mean/
% of cohort
	Standard deviation
	Median
	Distribution
	Parameter A
	Parameter B

	Male
	8.0%
	
	
	BERNOULLI
	0.08
	

	Black
	43.0%
	
	
	BERNOULLI
	0.20
	

	Smoker
	43.0%
	
	
	BERNOULLI
	0.50
	

	Hypertension
	53.0%
	
	
	BERNOULLI
	0.50
	

	Anticardiolipin antibody positive
	4.0%
	
	
	BERNOULLI
	0.20
	

	Lupus Anticoagulant
	13.0%
	
	
	BERNOULLI
	0.10
	

	Cholesterol
	187
	44
	
	LOGNORMAL
	187
	44

	Age at diagnosis 
	32.9 
	13.05
	30.69
	MULTINOMIAL
	NA
	

	Plaquenil
	62.1%
	
	
	BERNOULLI
	
	

	Immunosuppressants
	43.2%
	
	
	BERNOULLI
	
	

	Disease duration at cohort entry 
	4.83 
	6.3
	2.61
	MULTINOMIAL
	NA
	

	SLICC damage item
	Score 0
	Score 1
	Score 2
	Score 3
	Score 4
	Distribution

	Cardiovascular
	94.6%
	4.8%
	0.5%
	0.1%
	0.0%
	MULTINOMIAL

	Diabetes
	97.1%
	2.9%
	0.0%
	0.0%
	0.0%
	MULTINOMIAL

	Gastrointestinal
	95.4%
	4.5%
	0.1%
	0.0%
	0.0%
	MULTINOMIAL

	Malignancy
	99.3%
	0.7%
	0.0%
	0.0%
	0.0%
	MULTINOMIAL

	Musculoskeletal
	85.6%
	10.0%
	3.6%
	0.6%
	0.2%
	MULTINOMIAL

	Neuropsychiatric
	87.9%
	9.5%
	2.3%
	0.3%
	0.0%
	MULTINOMIAL

	Ocular
	93.3%
	6.6%
	0.1%
	0.0%
	0.0%
	MULTINOMIAL

	Peripheral vascular
	95.7%
	3.7%
	0.3%
	0.3%
	0.0%
	MULTINOMIAL

	Premature gonadal failure
	98.1%
	1.9%
	0.0%
	0.0%
	0.0%
	MULTINOMIAL

	Pulmonary
	97.3%
	2.4%
	0.3%
	0.0%
	0.0%
	MULTINOMIAL

	Renal
	97.8%
	2.2%
	0.0%
	0.0%
	0.0%
	MULTINOMIAL

	Skin
	92.8%
	6.7%
	0.4%
	0.2%
	0.0%
	MULTINOMIAL


 

[bookmark: _Ref363309091]Baseline SLEDAI score
Patient SLEDAI scores are assigned using the SLEDAI regression models described in Section ‎5.2.2 of Chapter 5. Each item of the SLEDAI is estimated to describe the severity and organ involvement of disease activity. The regression models estimate the patient’s probability of SLEDAI involvement at each three monthly clinic visit based on demographic characteristics and previously observed SLEDAI items. These statistical models were used to predict the probability that a symptom is present at a clinical visit. Logit models were used to predict dichotomous responses on the SLEDAI. 
	
	
	(6.1) [bookmark: logit_6]


where  is a patient identifier, and  indicates the period of observation. A binary indicator for each of the 24 items of the SLEDAI is described by y, x contains a vector of k covariate details for the patients at each time period, and  is a k dimensional vector of coefficients, and  are time constant latent risk parameter for each patient and varies for each SLEDAI item. The mean estimates for  for each SLEDAI item are reported in Section ‎5.2.2 of Chapter 5. The variance-covariance matrices were extracted for each statistical model so that parameter estimates could be drawn from the joint distribution for each PSA run of the BCTS. The variance-covariance matrices are reported in the Appendix 11.
The inclusion of a time constant latent risk parameter,  is useful to ensure that unobserved heterogeneity between patients is incorporated in the estimation of the SLEDAI. Excluding the latent risk parameters would underestimate patient heterogeneity because all probabilities would be based on the population mean risk, conditional on a few patient characteristics. The latent risk parameters allows correlation in a simulated patient’s latent risk of SLEDAI involvement across items. In practical terms this means that patients with a propensity for musculoskeletal involvement are more likely to have a propensity for skin involvement. The latent risk parameter is assumed to be multivariate normally distributed. Where   is a vector of latent risk parameters  for the items of the SLEDAI, is a vector of zeros to express the mean latent risk, and  describes the covariance matrix of latent risk.  Realisations of the latent risk parameter were assigned to each patient in the Generate Population process to reflect the unobserved heterogeneity of the SLE population. 
The covariance matrix could not be directly estimated from the data because the regression models were estimated independently. However, data from the Hopkins cohort were used to approximate covariance between latent risks for items of the SLEDAI. A correlation matrix was generated from the Hopkins Lupus Cohort to express the associations between items if they were observed in a patient at any time during follow-up (Appendix 12). This shows that most of the items of the SLEDAI are positively correlated with the other items and that there are stronger correlations within organ systems. The standard deviation of latent risk parameters were estimated from the regression and were reported in section ‎5.2.2 of Chapter 5. The correlation matrix was multiplied by the standard deviations for the latent risk parameters for each item of the SLEDAI to approximate a covariance matrix for latent risk parameters. 
Determining baseline SLEDAI required an iterative burn-in process. The twenty-four binary indicator variables for the SLEDAI were simultaneously determined based on the probability generated by equation ‎(6.1) and a random number draw. The probability of SLEDAI involvement is conditional on the profile of SLEDAI items present in the previous period. Therefore, the process of estimating SLEDAI score for all twenty-four items was repeated three times to allow patient’s disease status to stabilise conditional on the previous SLEDAI score.
[bookmark: _Ref354832133]Baseline STeroid Dose
Baseline steroid dose is assigned to patients conditional on their baseline SLEDAI score. Baseline steroid dose was calculated using a two stage hurdle model described in section ‎5.2.2 of Chapter 5. The first stage of the statistical model estimates the probability that a patient was prescribed steroid, given their profile of SLEDAI items, using the same statistical model described in equation ‎(6.1). The probability was used in a Bernoulli trial to determine if a simulated patient receives steroids. If a patient was prescribed steroid, the second stage of the Hurdle model estimated what dose of steroid would be prescribed from the truncated Negative Binomial model. The coefficients of the zero-truncated Negative Binomial model described in Chapter 5, were used to estimate the first parameter of the zero-truncated Negative Binomial distribution. 
	
	
	(6.2) [bookmark: mu_6]


The dispersion parameter of the Negative Binomial distribution  is sampled from a gamma distribution with mean 1 and variance  based on estimates reported in section ‎5.2.2 of Chapter 5. The dose was estimated from the Poisson function. 
	
	
	(6.3) [bookmark: negbin_6]



[bookmark: _Toc341366939][bookmark: _Toc379467634]The Bayesian Clinical Trial Simulation Process
Inclusion Criteria
The BCTS randomly samples patients from the simulated SLE population. A screening process was used to identify eligible patients who meet the inclusion/exclusion criteria of the trial. The inclusion criteria are modifiable to observe the effects of different patient profiles on the trial outcomes. The screening process shuffled the order of patients in the SLE population matrix to capture variation in the profile of SLE patients recruited for different BCTS runs.
Patients were recruited into the trial if they meet the following criteria:
1. SLEDAI score ≥ 4
2. ≥ 18 years old
3. No neuropsychiatric involvement
4. No severe renal involvement
5. Immunologically positive test for either increased anti-dsDNA or low complement
These inclusion criteria were developed in consultation with Dr M. Akil, a clinical expert in SLE based in Sheffield (October 2011). 
Quarterly Disease Activity Score Simulated During Follow-up
The SLEDAI score was updated every 3 months in the BCTS to monitor changes in disease severity during the trial. The logit regression model described in equation ‎(6.1) was adapted to estimate the risk of SLEDAI items being present during the clinical trial. The equation is amended by the inclusion of a treatment effect coefficient here denoted .
	
	
	(6.4) [bookmark: logittrt_6]


where y represents each of the 24 items of the SLEDAI, x contains the profile of characteristics for each patient including activity in last period, and  are the coefficients of the regression models, and  are the time constant underlying risk parameter for each patient. An additional coefficient,  is appended to the logit model, to modify the risk of the symptom being present in patients who are treated with the new treatment (=1). The patient specific random intercept  are time-constant and independent across patients. 
[bookmark: _Toc335051112][bookmark: _Toc341366941]Organ damage accrual 
The probability that organ damage occurred between each 3 monthly visits was estimated using the parametric survival models described in section ‎5.2.4.2 of Chapter 5. The parametric survival models were used to generate estimates of the cumulative hazard in the current and previous period. From which the probability of organ damage being diagnosed was estimated. 
	
	
	(6.5) [bookmark: probability_6]


The functional form for the organ damage survival models included exponential, Weibull, Gompertz, and LogLogistic and cumulative hazard functions for each distribution are outlined in Table 36.
[bookmark: _Ref335652130]Table 36: Cumulative Hazard function for exponential, Weibull, Gompertz and Loglogistic functions
	Survival curve
	Cumulative Hazard
	Parameter 1
	Parameter 2

	Exponential
	
	
	n/a

	Weibull
	
	
	

	Gompertz
	
	
	

	LogLogistic
	
	
	




Parameter 1 is estimated from the baseline hazard  and the covariate effects for the organ damage survival model described in the natural history model. An additional coefficient for treatment was appended onto each of the organ damage survival models to modify the risk of organ damage in treated patients (D=1). The shape parameter (parameter 2 in Table 36) of the organ damage survival models was assumed to be unchanged by treatment.
Table 32 of Chapter 5 reported the estimates for the organ damage survival model parameters   used in the BCTS. The variance-covariance matrix for the organ damage survival models can be found in the Appendix 11. These organ damage risk regressions were chosen because they included organ involvement covariates, such as skin involvement to increase the risk of developing skin damage. 
The propensity of organ damage was assumed to be independent across organ systems. In contrast to SLEDAI items I did not impose a correlated latent risk to reflect unobserved propensity for organ damage. Frailty survival models tested as part of the statistical analysis described in Chapter 5 found that latent factors were not important in the organ damage survival models, and their inclusion would have increased the complexity of the BCTS (Appendix 8). Furthermore, disease activity and other patient characteristics will induce some correlation in the risk of organ damage.
A constraint was imposed in the BCTS to avoid over-estimation of organ damage. The simulation allows patients to accrue multiple damage events in those organ systems where more than one damage type is listed in the SLICC/ACR Damage Index. However, if patients reach the maximum number of events in that organ system the patients did not record any further damage in the simulation. For example, there are only two types of ocular damage; if a patient has a SLICC/ACR Damage Index score of 2 for ocular damage additional ocular damage events are not recorded in the simulation.
[bookmark: _Toc335051113][bookmark: _Toc341366942]Mortality 
Mortality is a rare event during a clinical trial of SLE, but must be simulated to give a complete description of the natural history of the disease. A Weibull survival distribution was used to assess the probability of death. The probability of a patient dying in each period of the BCTS was estimated using the same method described in equation ‎(6.5) for organ damage. The proportional hazards Weibull model assumed that the covariates were multiplicatively related to the hazard. The cumulative hazard for the Weibull distribution can be expressed as a two parameter survival model.
	
	
	(6.6) 

	
	
	(6.7) [bookmark: mortlambda_6]


where  describes the scale of the distribution and  is the shape parameter of the survival model. The scale of the distribution is estimated from the baseline hazard  and eleven covariate effects described in Table 31 in Chapter 5 . An additional coefficient for treatment can be appended onto the mortality survival model to modify the risk of mortality in treated patients (D=1). The shape parameter of the Weibull survival model is assumed to be unchanged by treatment and the impact of treatment is made on the scale parameter through the proportional hazards assumption.
Section ‎5.2.4.1 of Chapter 5 reports the estimates for mortality survival model parameters   used in the BCTS. The survival models with haematological organ involvement, and plaquenil covariates were used to predict organ damage and mortality events in the BCTS. This was possible because the BCTS simulates a detailed description of the SLEDAI score. The variance-covariance matrix for the mortality survival models can be found in the Appendix 11. At every 3 month cycle of the simulation a probability for mortality is calculated and events were sampled from the Bernoulli distribution.
[bookmark: _Toc335051114][bookmark: _Toc341366943]Concommitant Medications
The list of concomitant medications permitted in an SLE clinical trial is extensive because of the breadth of organ systems involved in the SLE and the high prevalence of co-morbid conditions. Treatment regimens vary between geographical locations due to paucity of licensed treatments and evidenced based recommendations from large scale clinical trials. Consequently, it is not feasible to simulate a comprehensive list of concomitant medications for SLE patients. Discussion with Professor Michelle Petri from the Hopkins Lupus Cohort identified three classes of drugs that affect the risk of long term outcomes in SLE; corticosteroids, immunosuppressants, and anti-malarials (March 2010). Broadly speaking corticosteroids and immunosuppressants increase the risk of organ damage and anti-malarials are protective against organ damage. These are simulated in the BCTS to describe concomitant medications.
The regression model to predict steroid dose is the same as that described in Section ‎6.2.2.3. The Hurdle models estimate steroid in two stages, the first regression model determines the probability that the patient is prescribed steroid (equation ‎(6.2)). The second stage estimates steroid dose from the Negative Binomial distribution (equation ‎(6.3)). 
Treatment with immunosuppressants and anti-malarials are indicated with binary indicators. Patients are assumed to remain on these treatments during the clinical trials. Patients’ immunosuppressant and anti-malarial status is determined at baseline, based on the characteristics of the Hopkins Lupus Cohort described in Chapter 5. The simulation assumes a strict concomitant medications protocol in which no patients can initiate new treatments, other than steroids.
[bookmark: _Toc335051115][bookmark: _Toc341366944]Adverse events
Adverse events are recorded during a trial to understand the safety profile of a new treatment. It can be justifiable to exclude them from a CE model if there is no difference observed between the treatment arms. In this situation the adverse events would not impact on the economic evaluation outcomes. Evidence from previous clinical trials suggests that the differences between the proportions of adverse events between the treatment arms in previous studies were very small and not statistically significant (74;75). The focus of this research is to investigate how CE analyses can help to design future trial design. Simulating adverse events would add to the complexity of the BCTS and it was decided that they could be excluded from this BCTS if it was assumed that the hypothetical new treatment did not cause more adverse events than standard care. 
[bookmark: _Toc335051116][bookmark: _Toc341366945][bookmark: _Ref377895408]Patient Withdrawal from the Trial
In the BCTS, patients could withdraw from the trial at any clinic visit for both treatment arms. The risk of withdrawal from the clinical trial was modelled using the exponential distribution and a coefficient for treatment arm was included. The hazard rate for the exponential distribution can be estimated as a function of the log-baseline hazard rate plus the log hazard ratio for treatment. 
	
	
	(6.8) 


where  describes the hazard,  is the log-baseline hazard,  is the log hazard ratio for treatment and  indicates whether the patient was randomised to receive treatment. These beta parameters were assumed to be normally distributed and independent. The estimated hazard rate was converted into a probability using the following conversion:
	
	
	(6.9) 


[bookmark: _Ref332722251]In a real-life scenario it is likely that the rate of withdrawal would be based on data from a Phase II clinical trial for the new treatment. In this hypothetical case there is an absence of data from a Phase II trial to provide this data. Withdrawal rates are estimated from previous clinical trials in SLE (Trials identified in Chapter 2). The rates of withdrawal in placebo controlled arms and activity treatment arms were extracted from data from previous clinical trials. Table 37 reports the proportion of patients withdrawn from the clinical trials for the placebo and new treatment arms. A weighted average withdrawal rate and variance was calculated for the placebo arm based on trial sample size. The differences between the placebo and treatment arms were used to estimate the log hazard ratio for treatment effect using the same weights. 
[bookmark: _Ref364078517][bookmark: _Ref379468515]Table 37: Withdrawal rates for simulation calculated from published clinical trials in SLE patients
	Author
	Year
	Sample size
	New treatment
	Proportion of patients withdrawn from the trial after 12 months

	
	
	
	
	Placebo
	Treatment
	Difference

	Fortin
	2008
	86
	Methotrexate
	0.2667
	0.3415
	-0.0748

	Wallace
	2009
	449
	Belimumab
	0.1786
	0.1935
	-0.0149

	Merril
	2010
	175
	Abatacept
	0.2456
	0.3136
	-0.068

	Merril
	2010
	227
	Rituximab
	0.2727
	0.2899
	-0.0172

	Navarra
	2011
	865
	Belimumab
	0.2125
	0.1678
	0.0447

	Furie
	2011
	819
	Belimumab
	0.3260
	0.2821
	0.0439

	Weighted Mean 
	0.2514
	0.2339
	0.0178

	Log hazard parameter mean
	-1.4061
	
	-0.079

	Log hazard parameter standard error
	0.0206
	
	0.0106



[bookmark: _Toc335051122][bookmark: _Toc341366946][bookmark: _Toc379467635]Treatment Efficacy 
Efficacy at 12 months
Estimating treatment effect for the first 12 months was complicated by the absence of a Phase II trial. In a real-life case study statistical analysis of the Phase II data would be used to estimate the treatment effect parameters. However, in this study the new treatment was a hypothetical new biologic drug. The distribution of the log odds ratio for treatment   in reducing the odds of SLEDAI items was estimated from summary trial rather than estimated individual patient data. As such, data from two articles describing a Phase II trial for a new biologic was sought (72;73). This Phase II trial reported the efficacy of belimumab after 12 months of treatment. 
The odds ratio for response was divided between the 24 items of the SLEDAI, weighted by the prevalence of each item. The published data showed that there was evidence that the treatment effect varied between organ systems and the simulation was adjusted to reflect the data reported the article (73). The method of distributing the odds ratio between the SLEDAI items is crude due to the absence of Phase II trial outcomes that are compatible with the natural history model. In a future ‘real world’ application one would utilise phase II trial evidence for the new product of interest rather than going back to previously published trials of other products.

Efficacy beyond 12 months
The Phase II data is an useful source of evidence for the existing uncertainty in the efficacy of treatment in reducing disease activity scores up to 12 months follow-up. However, the Phase II trial cannot be used to estimate efficacy beyond 12 months, or estimate the treatment effect in reducing organ damage and mortality. There is therefore an evidence gap when considering how uncertain we might be about efficacy beyond 12 months. Consultation with clinical experts can be used to elicit the scale of uncertainty for such data gaps. 
[bookmark: _Ref334701618][bookmark: _Toc335051123][bookmark: _Toc341366947][bookmark: _Toc379467636]Elicitation of Uncertainty in Long-term treatment effects on disease Activity, Organ Damage and Mortality
[bookmark: _Toc379467637]Elicitation Introduction
Elicitation is the appropriate method by which to formulate judgements from people (221). Estimation of efficacy parameters for the BCTS required the estimation of the frequency of an event for a treated population. The elicitation also needs to quantify the expert’s uncertainty using a probability distribution. This enables the uncertainty of the experts to be incorporated into probabilistic sensitivity analysis. Elicitation of a probability density function  from a non-statistician raises several challenges. 
Tversky and Kahneman (1974) identified three well known types of heuristics: availability; representiveness; and anchoring and adjusting. These are often adopted to help people solve problems, make decisions, or form judgements. Heuristics can lead to biases in people’s judgements of probabilities. Availability describes the impact of recent or personal experience of the clinician that may affect the expert’s perceptions. For example, if the expert saw a patient in their clinic before the interview, this patient may have a disproportionate impact on their estimates. Representativeness relates to the judgement of similarities and differences between two groups to estimate the probability. This can mean that if two groups have similar characteristics on attribute A the expert assumes that they will have similar attributes on the elicited attribute B. Anchoring and Adjusting suggests that people use an anchor value and then adjust upwards or downwards. This can lead to bias if the respondent has a tendency to stay close to the anchor. These potential sources of bias must be considered when designing the elicitation exercise to minimise their impact. 
As a consequence, the design of the elicitation exercise was informed by a detailed consultation of the literature on eliciting probability density functions. O’Hagan et al. (2006) provided a broad introduction to elicitation and supplied useful guidelines to the process that take account of the problems of heuristics. This was supplemented with a review of elicitation studies in CE models. These findings of this review are summarised in the Appendix 13. 
[bookmark: _Toc335051124][bookmark: _Toc341366948][bookmark: _Toc379467638]Elicitation Methods
Defining the Aims
The aims of this elicitation were to inform the parameters of a BCTS that cannot be estimated from other data sources. Elicitation is only required to estimate the difference in the long-term outcomes with the new treatment compared with the Hopkins regression model predictions.
A clear specification of what parameters were needed was important to ensure that the data was compatible with the BCTS and CE model (221). Consequently, the elicitation was planned after the simulation was developed. The following quantities for the BCTS are unknown and will need to be informed by elicitation:
A. The probability of SLEDAI items being present whilst receiving treatment after 12 months.
B. The risk of mortality for patients receiving treatment independent of the effects of SLEDAI.
C. The risk of organ damage for patients receiving treatment independent of the reduction in average SLEDAI score and other treatment effects.
The probability of SLEDAI items (A)
The effectiveness of treatment in reducing SLEDAI involvement beyond the 12 months needed to be elicited from clinical experts. The elicitation needed to identify parameter distributions for 22   log-odds coefficients to be used in the models estimating the probability of 22 items of the SLEDAI. Vasculitis and fever were not included in the elicitation; these are very rare events that could not be grouped with other items of the SLEDAI.
The risk of long term outcomes (B and C)
The new treatment may modify the rate of damage accumulation and the risk of mortality. Treatment has an indirect effect on these outcomes through Adjusted Mean SLEDAI and cumulative average prednisone dose. The elicitation aimed to estimate clinical experts’ beliefs and uncertainty about the direct effect, i.e. the effect over and above that mediated by adjusted mean SLEDAI and steroid dose, of biologic treatment on long-term outcomes. A treatment coefficient was added to the survival models as described in Table 36 for each of the twelve organ damage models and equation ‎(6.7) for mortality. Therefore, the elicitation needed to identify distributions for 13   coefficients.
Defining the Object to Elicit
It would have been difficult for the clinical experts to express distributions for the quantities, or their corresponding odds ratios, hazard ratios, and time ratios. These are non-observable quantities and experts would be likely to draw on heuristics to aid their estimates (221). As such the questions were rephrased to elicit observable quantities from the clinical experts, which were transformed to reveal the parameters of interest. 
O’Hagan et al. (2006) recommend framing questions to clinical experts in terms of the proportion of a cohort of patients (221). Respondents can conceptualise a cohort of patients and estimate difference in the number of the cohort who experience an event. These proportions can be interpreted as an expression of the probability of an event. Therefore, in each elicitation questions the experts were presented with the number of individuals out of a cohort of 1,000 patients who had an event at time t in the baseline scenario. They were asked to estimate how many fewer, or more, patients they would expect to experience an event whilst on treatment compared with the baseline estimate. 
It was recommended to elicit independent parameters, rather than conditional parameters, because it is challenging to elicit correlations or associations between parameters (221). The proportion of patients in the treatment arm with a particular SLE symptom is not an independent parameter. The elicited proportions were conditional on whatever baseline value for standard of care that the expert considered at the time. The difference between the two arms expresses the treatment effect and can be assumed to be independent of the baseline value. 
The experts were asked to consider the treatment effect of a hypothetical biologic treatment with efficacy and safety characteristics from a Phase II trial similar to those observed from belimumab. They were presented with hypothetical data to describe the effectiveness of the treatment from a Phase II trial. The experts were asked to elicit clinically plausible treatment effects in reducing the number of clinical events. This may have been challenging given that they did not have personal experience with the treatment. However, their experience of treating patients with other drugs would allow them to consider what magnitude of benefits or harm would be possible.
The experts were asked to describe, the distribution for the difference in the proportion of individuals with a characteristic receiving SoC and treatment at a single point in time. 
	
	
	(6.10) 


The proportion of the patients receiving the new treatment that demonstrate this disease feature, , is a function of the proportion of the cohort that demonstrate this disease feature in SoC plus an adjustment parameter . The difference between SoC and treatment was assumed to be independent of the SoC risk. The distribution for  is assumed to be normal Δ~N(μ,σ2) allowing improvements and worsening in outcomes for the new treatment.
SImplifying the Interview
The elicitation needed to estimate 35 parameters for the BCTS. To simplify the elicitation task and reduce the workload for the clinicians the coefficients were grouped into ten categories. Discussion with Dr Akil in the pilot elicitation helped to develop a grouping system (March 2011). Items of the SLEDAI were grouped according to organ system, organ damage outcomes were grouped according to the main risk factors identified in the natural history model. Low complement and increased DNA binding were elicited individually because they have a high incidence in the Hopkins Cohort. Grouping the outcomes reduced the burden of the elicitation interview to 13 questions. For the purposes of notation I will refer to the 13 elicitation estimates as , where v indicates the 13 elicitation questions, and  describe the difference in proportion assigned to the 35 individual outcomes w.


Table 38: Details of how model outcomes were grouped in the elicitation questions
	Elicitation Questions (v)
	Disease Outcomes Covered (w)

	Neuropsychiatric SLEDAI
	Seizure
	Psychosis
	Organic Brain Syndrome

	
	Visual Disturbance
	Cranial Nerve Disorder
	Lupus Headache

	
	Cerebrovascular event
	
	

	Renal SLEDAI
	Urinary Casts
	Hematuria
	Proteinuria

	
	Pyuria
	
	

	Musculoskeletal SLEDAI
	Arthritis
	Myositis
	

	Skin SLEDAI
	Rash
	Alopecia
	Mucosal Ulcers

	Serositis SLEDAI
	Pleurisy
	Pericarditis
	

	Haematological SLEDAI
	Thrombocytopenia
	Leukopenia
	

	Low Complement
	Low Complement
	
	

	Increased DNA Binding
	Increased DNA Binding
	
	

	Disease Activity induced damage
	Renal damage
	Skin damage
	Peripheral Vasculitis

	
	Pulmonary damage
	
	

	Steroid induced damage
	Musculoskeletal damage
	Ocular damage
	Diabetes

	Disease Activity and steroid induced damage
	Cardiovascular damage
	Neuropsychiatric damage
	Gastrointestinal damage

	Other damage
	Malignancy
	Gonadal Failure
	

	Mortality
	Mortality
	
	




Statistical Transformation From Elicited Values to Regression model Coefficients
The elicited quantities were transformed into coefficient parameters through a two stage transformation process. The first stage estimates the difference in proportions for the individual outcomes from the elicited quantities. The transformation from into coefficient estimates for 35 outcomes required additional assumptions to be made about the distribution of treatment effect within the groups. It is reasonable to assume that the treatment effect is distributed between the outcomes More common outcomes should be allocated a larger proportion of the difference. Incidence rates for each of the outcomes were used to estimate weights for the outcomes according to their occurrence, . The weights  were estimated from the incidence of SLEDAI items observed in the Hopkins Cohort. The  estimates were segmented into.
	
	
	(6.11) 


For example, a normal distribution was fitted to the renal involvement elicitation responses to give the mean and standard deviation for the distribution . This estimate was distributed between the four renal items according to the prevalence of each, as reported from the Hopkins Lupus Cohort data.
Table 39: Exemplar distribution of elicited quantities between renal items
	
	Weight
	Delta mean
	Delta Standard deviation

	Urinary casts
	0.0039
	-0.0421
	0.0253

	Hematuria
	0.3174
	-3.4084
	2.0439

	Proteinuria
	0.4671
	-5.0161
	3.0080

	Pyuria
	0.2115
	-2.2715
	1.3621



The second stage of the transformation estimated individual coefficient parameters for the statistical models based on the elicited differences. The transformations of  into coefficients for the statistical models differed according to the differing functional forms of the statistical model. For the logit models the coefficient is the difference between the log odds of disease activity with delta minus the log odds of disease activity without delta. Mean estimates of the SoC risk of SLEDAI involvement were used to estimate .
	
	
	(6.12) 



The elicitation method for survival parameters was based on a PhD thesis completed at the time of designing this elicitation (222).The elicitation presented respondents with the proportion of patients with an attribute at a given time. The survival estimates for an exponential survival function can be used to generate, the baseline hazard. 
	
	
	(6.13) [bookmark: _Ref355006930]


The elicited quantity can be incorporated into the baseline hazard for treatment to calculate the coefficient,
	
	
	(6.14) [bookmark: _Ref355006802]


The Weibull, Gompertz and Loglogistic parametric survival models have two parameters. For these survival models it is assumed that parameter 2, as detailed in Table 36, is held constant so that the treatment does not affect parameter 2. Using this assumption, the coefficient can be estimated using the same method described above for the exponential distribution. The calculation for the Weibull distribution was used to estimate mortality, musculoskeletal damage, neuropsychiatric damage, and ocular damage. The estimation of the Weibull parameter is described in equation ‎(6.15), 
	
	
	(6.15) [bookmark: weibull_6]


The Gompertz distribution was used to estimate cardiovascular damage and the calculation for the Gompertz distribution is described in equation ‎(6.16),
	
	
	(6.16) [bookmark: gompertz_6]


The loglogistic distribution was used to estimate renal, pulmonary, and skin damage. The calculation for the loglogistic distribution is described in equation ‎(6.17).
	
	
	(6.17) [bookmark: loglog_6]


[bookmark: _Toc335051126][bookmark: _Toc341366950]Elicitation Technique
Many techniques can be used to describe the distribution of uncertain parameters in an elicitation. The histogram elicitation technique was used in three of the elicitation studies identified in the literature search (112;131;223). The technique is easy to use and it provides the expert with an immediate visual representation of their estimate. The clinical experts were allowed 21 x’s to assign in a 21x21 grid in which the x-axis described fixed intervals for possible responses (223). Two examples of the grid and possible responses are illustrated below. The limits of the grid were pre-specified, but the expert could change the axis if needed. 
They were advised to assign more x’s to those estimates which they believed to be more likely. A normal distribution was fitted to their histogram using mean and variance estimated from the histogram. The fitted normal distribution and other summary statistics were immediately fed back to the clinical experts so that they could scrutinise the implications of their estimates. If the clinical expert was unhappy with the fitted distribution they could return to the grid to amend their estimate. Although a flat beta prior would fit responses illustrated in example 2 better than a normal flat prior, a normal distribution was used to enable pooling between responses.
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[bookmark: _Toc335051127][bookmark: _Toc341366951]Computer Software
An elicitation programme was designed for this study using Microsoft Excel 2010. The software was programmed to give immediate feedback to the clinical experts on the implications of their responses. The software was designed so that their responses to early questions were integrated into the predicted baseline risk estimate presented to the same clinical experts later in the interview. For example, the elicited long term treatment effect on disease activity was used in the estimate of the impact of AMS on organ damage later in the elicitation. The software was designed to be user friendly and operable without assistance from the interviewer so that the exercise could be completed after the meeting, if the interview overran.
[bookmark: _Toc335051128][bookmark: _Toc341366952]Training 
It is important that clinical experts should receive training in preparation for the interview (221). In this study the training constituted background reading, an oral presentation and practice exercises to complete before the elicitation. A background document was emailed prior to the interview and the clinical experts were asked to read this before the face-to-face meeting. This document included the following information and an example copy can be found in the Appendix 14.
· A concise definition of elicitation
· An explanation of the purpose of the interview
· An explanation of proportions and  probabilities
· An illustration of a probability density function and how this describes uncertainty
· A description of the hypothetical Phase II trial
· A list of questions asked in the elicitation and how the answer would be used in the BCTS.
At the face-to-face meeting I gave a short presentation, to reiterate the information provided in the background reading. The details of the presentation were planned before the elicitation to reduce the risk that the information provided to the experts would bias their responses. The clinical experts were encouraged to ask questions about the elicitation exercise. Two example elicitation questions were presented to the clinicians before commencing the elicitation to demonstrate how to use the software. 
[bookmark: _Toc335051129][bookmark: _Toc341366953]Pilot study
The elicitation exercise was piloted with Dr Akil, a Rheumatologist at Sheffield Hallamshire Hospital (March 2011). A number of suggestions for improvements to the elicitation programme were made and incorporated into the final version.
· The inclusion criteria for patients into the hypothetical cohort were changed to better reflect a clinical trial population. Patients were required to be either anti-dsDNA positive or positive for low complement on entry to the simulation. All patients with neuropsychiatric involvement, proteinuria and haematuria at baseline were excluded from the cohort because these patients would be considered too severe to enter a clinical trial.
· The training exercise was improved to more closely reflect the wording and structure of the elicitation questions. A second training exercise was developed for the elicitation of the organ damage and mortality survival models. 
· The elicitation quantities were grouped to reduce the interview time. 
[bookmark: _Toc303345478][bookmark: _Toc335051130][bookmark: _Toc341366954]Synthesis of evidence
The elicitation interviews were conducted with four individual clinical experts rather than a panel discussion. A panel discussion would have been preferable to individual estimates, as specified in the guidance (221). Initial discussions with the experts highlighted difficulties in identifying times to meet with the clinicians. In two cases it was necessary to schedule the meeting more than two months in advance to identify a two hour interval in their diary. Consequently, it is necessary to mathematically synthesise the results of the individual interviews. A simple mathematical approach to synthesising the results of the elicitation exercises is by linear opinion pooling. An alternative would have been to use logarithmic opinion pooling, in which the consensus distribution is obtained by taking a weighted geometric mean. These two methods are likely to produce different results. O’Hagan et al. recommend that logarithmic pooling should be used if both experts are good judges based on the information available to them, but they have different sources of information (221). Linear pooling is more representative of the full range of values reported by the experts. In this study linear pooling was considered more appropriate because the experts were all presented with the same data about the hypothetical new treatment and none of the experts had practical experience with the treatment so it was preferable to reflect the full range of their responses.  
Weighting experts’ responses can be challenging and requires appropriate methods to identify the quality of an expert’s response. Previous studies suggest that adopting weighted estimates can impact on the parameter estimates (131). However, the methodology for generating weights requires further development (223). In this example, none of the clinical experts had experience with the hypothetical drug described to them. As a consequence, it was challenging to formulate an appropriate test question to evaluate the reliability of clinical experts’ responses to questions about a hypothetical treatment. Therefore, the experts’ responses were weighted equally. 
[bookmark: _Toc335051131][bookmark: _Toc341366955]  Selection of Experts
The elicitation guidance states that the expert must have knowledge of the uncertain quantity of interest (221). This condition posed challenges for the objectives of the elicitation to estimate long-term treatment effects for a new drug whose long term benefits have not been established. Therefore, it was important that the experts had experience with treating the long-term outcomes of SLE but also experience with biologic treatments such as belimumab and rituximab. SLE can affect multiple organs therefore patients can be treated by physicians in various different departments. However, the most common primary physician would be based in Rheumatology. It was anticipated that these clinicians might also be able to draw from experiences of biologics in other rheumatic diseases. The natural history model was based on SLE specific indices such as the SLEDAI and SLICC/ACR Damage Index. These scoring systems are not often used in routine clinical practice; therefore the experts needed to have experience in observational cohort studies or RCTs where the indices are used.
The interviews were designed to be conducted face-to-face. Therefore, SLE specialists based in the UK were the primary target of the elicitation. I attended the American College of Rheumatology 2011 conference in Chicago, which presented an opportunity to conduct interviews with SLE specialists from the US and Canada who had collaborated in the development of the natural history models. Dr Petri, Dr Gladman, and Dr Urowitz were invited to participate in the interviews during this conference, but all declined due to busy schedules. 
There are several SLE specialists in the UK who are part of a research collaboration called the BILAG group. The BILAG group includes experienced SLE specialists with an interest in clinical research. Following the Pilot study with Dr Akil, he agreed to introduce my elicitation study at a BILAG meeting and encourage its members to participate. Following this meeting six members communicated an interest in the study, however only three were available to complete the interview. Together with Dr Akil (November 2011), Dr Bruce (December 2011), Dr Griffiths (February 2012) and Professor Isenberg (May 2012) were recruited into the study. 
[bookmark: _Toc335051132][bookmark: _Toc341366956][bookmark: _Toc379467639]Results
The results of the elicitation are reported in Table 40. Graphical representations of the aggregated distributions elicited from the experts are presented in column 2. A brief summary of the individual experts beliefs are reported in column 3. Expert 4 consistently expressed a high degree of uncertainty in his responses to almost all of the questions. He strongly believed that it was impossible to predict the effectiveness of treatment beyond the period for which data had been collected. Experts 1, 2 and 3 were generally in agreement for the disease activity questions, but reported very different distributions for the organ damage questions. All experts stated that they were fairly certain that treatment was unlikely to modify malignancy and gonadal failure rates in SLE patients. 
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[bookmark: _Ref334538472]Table 40: Graphical illustrations of the clinical expert’s responses in dotted lines and the pooled estimate in a bold solid line
	
	Elicitation question
	Histograms of aggregated replies and fitted distribution
	Comments


	1
	After 24 months of follow-up what difference do you think there could be in the number of patients with neuropsychiatric involvement on the SLEDAI score between standard of care and the new drug?
	[image: ]
	Experts 1, 2 and 3 believed that the benefits of treatment in reducing neuropsychiatric involvement would be sustained over the long term. Expert 4 was very uncertain about the long term effects of treatment on neuropsychiatric involvement.

	2
	After 24 months of follow-up what difference do you think there could be in the number of patients with renal involvement on the SLEDAI score between standard of care and the new drug?
	[image: ]
	Experts 1, 2 and 3 believed that the benefits of treatment in reducing renal involvement would be sustained over the long term. Expert 4 was very uncertain about the long term effects of treatment on renal involvement.

	3
	After 24 months of follow-up what difference do you think there could be in the number of patients with musculoskeletal involvement on the SLEDAI score between standard of care and the new drug?
	[image: ]
	Experts 1, 2 and 3 believed that the benefits of treatment in reducing musculoskeletal involvement would be sustained over the long term. Expert 4 was very uncertain about the long term effects of treatment on musculoskeletal involvement.

	4
	After 24 months of follow-up what difference do you think there could be in the number of patients with skin involvement on the SLEDAI score between standard of care and the new drug?
	[image: ]
	Experts 1, 2 and 3 believed that the benefits of treatment in reducing skin involvement would be sustained over the long term. Expert 4 was very uncertain about the long term effects of treatment on skin involvement.

	5
	After 24 months of follow-up what difference do you think there could be in the number of patients with increased DNA binding between standard of care and the new drug?
	[image: ]
	All experts believed that the benefits of treatment in reducing low complement would be sustained in the long term. The uncertainties in these estimates were less than for other SLEDAI items.

	
6
	
After 24 months of follow-up what difference do you think there could be in the number of patients with low complement between standard of care and the new drug?
	
[image: ]
	
All experts believed that the benefits of treatment in reducing low complement would be sustained in the long term. The uncertainties in these estimates were quite low.

	7
	After 24 months of follow-up what difference do you think there could be in the number of patients with serositis on the SLEDAI between standard of care and the new drug?
	[image: ]
	Experts 1, 2 and 3 believed that the benefits of treatment would be sustained with a small risk of no different from standard of care. Expert 4 was very uncertain of the long term outcomes for patients receiving treatment.

	8
	After 24 months of follow-up what difference do you think there could be in the number of patients with haematological involvement on the SLEDAI between standard of care and the new drug?
	[image: ]
	Experts 1, 2 and 3 believed that the benefits of treatment would be sustained. Expert 4 was very uncertain of the long term outcomes for patients receiving treatment. Expert 4 was very uncertain of the long term outcomes for patients receiving treatment.

	9
	What difference do you think there could be in the number of patients who have cardiovascular, neuropsychiatric, or gastrointestinal damage after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in damage risk due to lower disease activity scores and steroid dose have been adjusted for.
	[image: ]
	Expert 1 did not believe that additional benefit to damage would be observed. Expert 2 was uncertain about the effect of treatment.  Expert 3 expected large reductions in organ damage, but expressed uncertainty in the magnitude. Expert 4 was very uncertain of the long term outcomes for patients receiving treatment.

	10
	What difference do you think there could be in the number of patients who have renal, pulmonary or vascular damage after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in damage risk due to lower disease activity scores and steroid dose have been adjusted for.
	[image: ]
	Expert 1 did not believe that additional benefit to damage would be observed. Expert 2 believed that fewer patients would develop disease activity related damage. Expert 3 expected improvements in disease activity related organ damage. Expert 4 was uncertain of the effect of treatment on damage.

	11
	What difference do you think there could be in the number of patients who have musculoskeletal damage, ocular damage or diabetes after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in damage risk due to lower steroid dose have been adjusted for.
	[image: ]
	Expert 1 believed that additional benefit to damage caused by steroids would be observed. Expert 2 believed that treatment was less likely to improve outcomes than the predictions. Expert 3 was very uncertain of the effects of treatment on steroid related damage. Expert 4 was uncertain of the effect of treatment on damage.

	
12
	
What difference do you think there could be in the number of patients who have gonadal failure or malignancy after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in damage risk due to lower steroid dose have been adjusted for.
	
[image: ]
	
Expert 1 was confident that additional benefit would not be observed. Expert 2 did not expect treatment to improve these outcomes but was uncertain. Expert 3 was confident that treatment would not modify these outcomes. Expert 4 was confident of no additional benefit for these outcomes.

	13
	What difference do you think there could be in the number of patients who have died after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in mortality risk due to lower disease activity scores have been adjusted for.	
	[image: ]
	Expert 1 was confident that additional benefit would not be observed. Expert 2 believed that there was a higher probability of improvements in mortality. Expert 3 expected additional improvements in mortality rates. Expert 4 was uncertain of the effect of treatment on mortality.



[bookmark: _Ref335065298]The distributions for the coefficients of the SLEDAI logit models, organ damage survival models and mortality survival models are summarised in Table 41.
[bookmark: _Ref335652973]Table 41: Coefficient estimates for treatment effect estimated from the elicitation
	
	Mean
	Standard Deviation
	
	Mean 
	Standard deviation

	Treatment effect coefficients for disease activity

	1. Seizure
	-0.2223
	1.6937
	12. Arthritis
	-0.2090
	0.3614

	2. Psychosis
	-0.1743
	1.4697
	13. Myositis
	-0.1051
	0.2406

	3. Organic Brain Syndrome
	-0.0148
	0.1595
	14. Rash
	-0.0658
	0.1475

	4. Visual Disturbance
	-0.0243
	0.1901
	15. Alopecia
	-0.2140
	0.3953

	5. Cranial Nerve Disorder
	-0.0200
	0.2058
	16. Mucosal Ulcers
	-0.1204
	0.2547

	6. Lupus Headache
	-0.0602
	0.3025
	17. Pleurisy
	-0.1977
	0.4631

	7. Cerebrovascular event
	-0.0043
	0.0556
	18. Pericarditis
	-0.0864
	0.2817

	8. Urinary Casts
	-0.0023
	0.0212
	19. Thrombocytopenia
	-0.1297
	0.3057

	9. Hematuria
	-0.2738
	0.4354
	20. Leukopenia
	-0.0389
	0.1255

	10. Proteinuria
	-0.1255
	0.2516
	21. Increased DNA Binding
	-0.1056
	0.0363

	11. Pyuria
	-0.3009
	0.4983
	22. Low Complement
	-0.1074
	0.0343

	Treatment effect coefficients for Disease Activity induced damage

	1. Renal damage
	0.0105
	0.0300
	3. Skin damage
	0.0127
	0.0414

	2. Peripheral Vasculitis
	-0.0854
	0.3049
	4. Pulmonary damage
	0.0204
	0.0565

	Treatment effect coefficients for Steroid induced damage

	5. Musculoskeletal damage
	-0.0469
	0.0727
	7. Ocular damage
	-0.0461
	0.0663

	6. Diabetes
	-0.0454
	0.0721
	
	
	

	Treatment effect coefficients for Disease Activity and Steroid induced damage

	8. Cardiovascular damage
	-0.0435
	0.0665
	10. Neuropsychiatric damage
	-0.0440
	0.0666

	9. Gastrointestinal damage
	-0.0432
	0.0663
	
	
	

	Treatment effect coefficient for mortality

	11. Mortality
	-0.3854
	1.3754
	
	
	



[bookmark: _Toc335051133][bookmark: _Toc341366957][bookmark: _Toc379467640]Summary
The elicitation successfully estimated prior parameters for the uncertainty in the long term effectiveness of a new treatment. Four clinical experts were recruited into the study. The study would have been strengthened from a larger sample of clinical experts. However the experts that were recruited into the study were all senior SLE specialists, with research experience. It would have been useful to have recruited specialists from other countries, but this was found to be very difficult to organise. 
The interviews were all conducted within 2 hours. In order to meet this short time-scale the elicitation interview was adapted to reduce the number of questions asked. Only two out of four of the experts had read the pre-reading before the interview, which increased the time spent in the training exercise. However, the experts were not rushed to complete the questions within the allocated time.
All of the experts responded well to the training exercise and reported that they were comfortable using the software. Three out of four of the experts actively engaged with the feedback page in the software to review their responses at some point. However, the use of this page tended to decline during the course of the interview, particularly towards the end of the interview when response fatigue may have distracted the experts. 
The elicitation concerned a hypothetical new treatment. It is understandable that the experts would find it difficult to complete the elicitation. Nonetheless, the experts were advised that the new treatment was similar to belimumab, and although the experts did not have experience with the hypothetical treatment, they were presented with Phase II trial data. The elicitation would have been difficult and may not have elicited accurate estimates of treatment effect. However, the experts all had extensive experience that they could draw upon to consider what treatment effects would be clinically plausible. In the absence of observed data I believe that the clinician’s estimates are valuable. 
Only one of the experts found the purpose of the exercise particularly challenging and was reluctant to propose answers for many of the questions. He did not believe that it was appropriate to predict treatment effects that had not been observed in follow-up trials or observational studies. After a long discussion he decided to respond by allocating the x values in a flat line across all outcomes. I considered whether to exclude his responses from the study because it is possible that his responses are not a true representation of his judgement about new treatments. However, I decided that it was more appropriate to include his survey to represent his statement that the effectiveness of new treatments is uncertain until data have been collected.  
A more detailed discussion about the treatment effect on malignancy and gonadal failure with Dr Akil and Dr Bruce revealed that the clinical mechanisms through which these outcomes occur are not related to the factors that a new treatment would modify. Malignancy and gonadal failure are known co morbidities for SLE, and cytotoxic treatments for SLE are known to increase the incidence of these events in SLE patients. However, the physiological mechanism of a new biologic drug for SLE is unlikely to impact on the incidence of malignancy and gonadal failure. Dr Bruce and Dr Akil suggested that the treatment parameter was unnecessary. It was necessary to decide whether to use the elicited values to reflect the clinicians perspective that there is unlikely to be a treatment effect or to exclude the treatment effect parameter completely because it was not clinically plausible. I decided that the elicited values should not be used to modify the risk of malignancy and gonadal failure for treated patients. 

[bookmark: _Ref354930526][bookmark: _Toc379467641]BCTS Outcomes
[bookmark: _Ref377813880][bookmark: _Toc379467642]BCTS Validation of Predicted Outcomes
Outcomes from the BCTS were generated to observe whether the simulation results were compatible with those observed in real data. Full details of the validation exercise are reported in the Appendix 15. The validation exercise compared simulation outcome with data from the Hopkins Lupus Cohort, and three published RCTs for belimumab (72;74;75). Figure 20 illustrates the simulation output as a histogram compared with the distributions reported in two Phase III trials for belimumab (74;75).
[bookmark: _Ref324934586]Figure 20: Distribution of proportion of patients with a ≥  4 unit reduction in SLEDAI for simulated trials (red bars) and estimate distribution of Phase III results (Blue line) for placebo and treatment arm
[image: ]
The simulation generates clinical trial endpoints that are similar to those that have been observed in large SLE clinical trials. Overall the validation process has illustrated that the simulation outcomes are not substantially different from real-life patient outcomes observed in clinical trials and the Hopkins Lupus Cohort. Therefore, the simulation can be useful in predicting outcomes from clinical trial endpoints.
The simulated trial indicates that 40% of those in the placebo arm were expected to meet the response criteria. Whereas 45% of individuals receiving treatment were expected to meet the response criteria. These proportions can vary from approximately 30% to 60% in the treatment arm. The trial was expected to demonstrate an odds ratio of treatment benefit greater than 1. The average change in SLEDAI score at 12 months between the two arms was -0.363 (standard error 0.4296). However, there was a 15% chance that the odds ratio will be less than 1 showing that the new treatment is less effective than standard care. Therefore, there was considerable uncertainty prior to the Phase III trial about the treatment effectiveness at 12 months.
[bookmark: _Toc379467643]Computation Time
Computation time is an important consideration in the BCTS because the simulation process must be repeated multiple times to reflect uncertainty in clinical trial outcomes. The BCTS is relatively complex compared with the Rheumatoid Arthritis Drug Development Model (63) because multiple patient outcomes are generated at every visit. A single iteration of a trial with 1000 patients for 12 months took 4.4 seconds to complete. The BCTS was run for 1000 iterations, which took 74 minutes to compute on a desktop PC. 
[bookmark: _Toc341366962][bookmark: _Ref354930714][bookmark: _Toc379467644]Discussion
[bookmark: _Toc379467645]Generating an SLE population
The process of simulating baseline characteristics was chosen to represent a broad range of baseline characteristics. The baseline characteristics were sampled independently of one another in the Generate Population process. It is likely that correlation exists between baseline characteristics, however, due to the number of baseline characteristics, and the different distributions used to generate them, it was considered too complex to add correlation in the baseline characteristics. An alternative method of bootstrapping from the Hopkins Lupus Cohort was considered but was believed to be too restrictive. Firstly, the simulation would be limited to patients with the combinations of disease attributes that are observed in the cohort. Even though it is a large sample it is unlikely to include an exhaustive mix of age, gender, ethnicity and the 24 items of the SLEDAI. Secondly, the current approach has the advantage that it is relatively simple and flexible for the user to specify alternative population profiles. This is advantageous if the user wishes to consider trials in a particular population that has attributes not well represented in the Hopkins Lupus Cohort. For example, a trial of patients with musculoskeletal involvement in a predominantly white population would need to bootstrap from a small sample of 336 patients from the Hopkins Lupus Cohort. This would require duplication of patient characteristics within the trial and may underestimate the variability in trial outcomes based on heterogeneous sampled populations. 
[bookmark: _Toc379467646]Flexibility to Simulate Multiple Design Specifications
It was important that the BCTS was flexible to simulate many different trial design specifications. The BCTS is flexible to estimate any trial outcome relating to responses to the SLEDAI, steroid dose, organ damage, mortality or withdrawal from the trial. The use of longitudinal cohort data and elicitation enables the simulation of trial outcomes that have not been observed in the Phase II trial. For example, it would be possible to predict the difference in organ damage events between new treatment and standard of care after two, or more, years of follow-up. 
As an individual patient simulation it is very easy to specify alternative inclusion criteria to modify the profile of patients recruited into the trial. The adjusted mean SLEDAI and organ damage incidence are automatically updated in the BCTS for alternative patient populations. 
[bookmark: _Toc379467647]Simulating Disease Activity with One Disease Activity Index
The SLEDAI is not an exhaustive measure of disease activity, and it is believed that two or more disease activity indices could be employed in clinical trials to more sensitively capture variations in the disease (73). Furie et al. (2009) used data from the Phase II trial to develop an appropriate composite endpoint for the belimumab Phase III trials that defined responders by an improvement in the SLEDAI and no worsening in the BILAG or PGA (73). This is a strict requirement for response because the other indices are sensitive to symptoms not captured in the SLEDAI. The inclusion of only one disease activity measure is a limitation of the simulation, and consequently the simulations were not able to test combined primary endpoint definitions. 
There were three main reasons why I did not include more than one disease activity measure in the BCTS. Firstly, the Hopkins Lupus Cohort use the SLEDAI to measure disease activity so another data source would be required to implement multiple disease activity measurements. Secondly, there would be strong correlation between the SLEDAI and other disease activity scores both at the aggregate and organ level. This correlation would have to be accurately represented in the BCTS. This poses considerable methodological challenges in both the analysis of the data and development of the simulation. Thirdly, the analysis natural history model for SLE only includes SLEDAI as a measure of disease activity. There is currently no evidence to relate the BILAG to long-term outcomes independent of the SLEDAI effect. Consequently, the clinical trial endpoint was defined only using the SLEDAI. Further research to incorporate multiple disease scores within the framework would be interesting.  
[bookmark: _Toc379467648]The Exclusion of Adverse Events
The absence of adverse events in the BCTS is a simplifying assumption that may need to be amended in future applications. The expected trial outcomes, positive or negative, would be affected by the risk that the new treatment causes more severe adverse events than SoC. By excluding adverse events from the BCTS the uncertainty in trial outcomes could be underestimated. However, if the Phase II trial was reasonably large, as was the case with belimumab, the risk of the Phase III trial failing due to safety concerns will be low. The inclusion of adverse events into the BCTS could be integrated in future versions of the simulation with relative ease. However, they would increase the computational burden of the BCTS and CE model, and consequently the time it would take to generate outcomes. 
[bookmark: _Toc379467649]Conclusions
The BCTS produced detailed descriptions of patient disease outcomes over a time horizon suitable for a clinical trial. The natural history model describes some of the inter-dependencies between disease outcomes observed in the Hopkins Lupus Cohort. These, together with the elicitation of clinical experts, and a literature review of withdrawal rates, were used in the BCTS to predict numerous outcomes from a clinical trial relating to disease activity in specific organ systems, organ damage, and mortality. This Chapter demonstrated that patient registry data can be used to simulate clinical trial outcomes for patients with SLE with reasonable accuracy when compared with observed trials. The BCTS described here is able to simulate trial outcomes across multiple disease outcomes and incorporated correlations in treatment effects across these outcomes. The validation exercise demonstrates that the uncertainty in trial outcomes has been incorporated into the simulation and the simulation produces a range of final trial outcomes. 
The BCTS model described in this chapter is flexible to evaluate a broad range of clinical trial designs. The choice of an individual patient simulation enables the analyst to select a large number of different inclusion criteria and clinical trial endpoints.  Multiple decision criteria for a license regulator can be applied to these outcomes to determine whether the treatment would be granted a license given the trial data. SLEDAI score, steroid dose, organ damage and mortality are all simulated in the BCTS and could be used to determine the effectiveness of the new treatment. The BCTS can be used to estimate the assurance for alternative trial designs and license regulators decision criteria. Some analyses of alternative trial designs are undertaken in Chapter 8.However, the BCTS on its own cannot predict whether the treatment would be approved by a reimbursement authority. The simulated trial data must be input into a CE model to evaluate the long-term costs and QALYs. The development of a long-term CE model to assess the probability of reimbursement given proposed trial designs and their possible results is the topic of Chapter 7.


[bookmark: _Toc335051090][bookmark: _Toc337139002][bookmark: _Toc379467650]Chapter 7: Cost-effectiveness analysis
7. 
The aim of this chapter is to describe a cost-effectiveness (CE) model for Systemic Lupus Erythematosus (SLE) and demonstrate how the analyses can be used in early stage drug development by a pharmaceutical company. 
The CE model was developed to evaluate the lifetime costs and health outcomes for SLE patients in an individual patient simulation. The CE model combined data from the natural history model, described in section ‎5.2 of Chapter 5, with costs, QALYS, hypothetical treatment data to develop a CE model for SLE. The structure, inputs and assumptions used in the CE model are described in this chapter. The outcomes from the CE model include an assessment of the value-based price of treatment given society’s willingness to pay for a QALY. 
The CE model described in this Chapter was developed independently from the GSK collaboration and I undertook all of the work described in this Chapter. At the same time Pharmerit, a GSK contractor, adopted my statistical models to develop a CE model for belimumab. The Pharmerit model was used in GSK manufacturer’s submission to NICE (224).
This chapter is structured to describe and report outcomes from the CE model. Section ‎7.1 introduces the structure of the CE model. Section ‎7.2 describes the simulation process, and how each disease outcome is calculated. Section ‎7.3 describe how the outcomes of the CE model were generated. Section ‎7.4 presents the results of the CE model. Finally, Section ‎7.5 reflects on the important issues raised in this chapter and summarises the differences between the CE model and the GSK manufacturer submission model.
[bookmark: _Ref332369915][bookmark: _Toc335051091][bookmark: _Toc337139003][bookmark: _Toc379467651]CE Model Structure
The model was designed to evaluate the cost-effectiveness of a new hypothetical drug for SLE in order for the Pharmaceutical Company to demonstrate the benefits of the new treatment to institutions like NICE. SLE is a heterogeneous and complex disease and it has been necessary to develop a relatively detailed CE model. The previous chapters identified disease activity, steroid exposure, organ damage and mortality to be key characteristics of SLE. The CE model estimates each patient’s disease course in annual cycles and records their disease activity, steroid exposure, and organ damage progression until their death. A microsimulation CE model was built to reflect a detailed account of the costs and health implications of individual SLE patient’s lifetime according to the organ systems that are affected.
The CE model is designed to compare two treatment options for SLE. Due to the absence of approved treatments for SLE it is not possible to identify a single comparator. Belimumab has recently received a licence but was rejected by NICE (225). The CE model is designed to compare a new hypothetical biologic treatment with standard of care (SoC). As such the new treatment is assumed to be added on to SoC therapies and the treatment costs for SoC are not considered in the CE model. If the new treatment increases life expectancy the overall SoC costs will be greater in the new treatment arm. However, given that SoC treatments for SLE are cheap and generic the cost impact was assumed to be very small compared with the overall treatment costs of the new biologic.
The structure of the natural history model is detailed in Figure 21. The relationships between patient disease profiles and the long term consequences of the disease quantified using the statistical analyses described in Chapter 5. Fifteen-thousand patients in the simulation have individual characteristics at baseline described in the box in the top left-hand corner in Figure 21. These characteristics impact on the estimation of a patient’s natural history. Disease activity score determines current steroid dose. Patient characteristics, disease activity score and steroid dose influence the probability of organ damage. Organ damage events have been grouped according to organ system. Patient characteristics, disease activity and organ damage influence the risk of mortality.
Probabilistic sensitivity analysis, in which costs, utilities, regression parameters and treatment withdrawal rates are sampled at random from parametric distributions, is used to generate the results based on 10,000 iterations of input parameters in order to describe uncertainty in the CE model outcomes.
[bookmark: _Ref313262864]Figure 21: Diagram for the annual cycles for the CE natural history model structure
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[bookmark: _Ref332370056][bookmark: _Toc335051092][bookmark: _Toc337139004][bookmark: _Toc279746620][bookmark: _Toc280007179][bookmark: _Toc280014827][bookmark: _Toc280881221][bookmark: _Toc280882289][bookmark: _Toc287362506][bookmark: _Toc379467652]Simulation Process and Parameter Inputs
The CE model relies on two simulation processes. The first generates an SLE population with variable characteristics and disease severity. The second process selects a sample of SLE patients from the population to populate the CE model and simulates their disease. A summary of the two simulation processes is described in Figure 22. The simulation was developed using R software (220). 
[bookmark: _Ref330987774]Figure 22: Summary of simulation process
[image: ]
[bookmark: _Toc337139005][bookmark: _Toc379467653]Generate Population
The Generate SLE population process described in section 6.2.1 of Chapter 6 is also used in the CE model to sample a large population of SLE patients that are representative of the characteristics observed in the Hopkins Lupus Cohort. The input parameters for the Generate SLE population simulation process are described in section 6.2.1 of Chapter 6.
[bookmark: _Toc335051094][bookmark: _Toc337139006][bookmark: _Toc379467654]The Cost-Effectiveness Model
At the start of the PSA a sample of patients were selected from the SLE population until the sample size for the CE model of fifteen thousand patients had been reached. The recruited patients were cloned to generate an identical sample in the treatment and SoC arm to reduce random error in the results of the analysis. The CE analysis was repeated 5,000 times to estimate a range of possible CE outcomes for the PSA. At the start of every iteration the CE model input parameters are sampled from their probability distributions. During the simulation the CE model monitors patients in annual intervals to record disease severity, treatment burden, and important events such as organ damage and mortality. Each annual interval generates an estimate of the cost of their disease and the QALY gained in that year. For each PSA iteration the expected direct healthcare costs, expected QALYs, and expected years on new treatment were recorded.


[bookmark: _Toc279746624][bookmark: _Toc280007186][bookmark: _Toc280014834][bookmark: _Toc280881228][bookmark: _Toc280882296][bookmark: _Ref283889543][bookmark: _Toc287362514]Average Change in SLEDAI score
A regression model to predict annual changes in mean SLEDAI was used to update the average SLEDAI score for each annual interval. The composite SLEDAI score was used to avoid having to simulate disease activity organ involvement which would add substantial complexity to the CE model and was not considered necessary because the CE model must simulation outcomes over the patient’s lifetime. Simulated changes in SLEDAI were given by,
	
	
	(7.1) 


where i indexes the patients observed, j indicates the annual time period of the observation. Change in SLEDAI is calculated as a linear function of covariates, where L.SLEDAI represents SLEDAI observed in the previous period, indicates whether patient i was receiving treatment at time period j, and  indicates the patient’s latent propensity for disease activity. The coefficients of the regression model were taken from Model 3 of Table 29 in Chapter 5. The  coefficients and the covariance matrix for the regression are reported in Appendix 16. 
Three modifications were made in implementing the regression in the simulation. Firstly the intercept was increased because clinical trial populations are likely to have higher SLEDAI scores over time than the Hopkins Lupus Cohort because they would be recruited into the trial to represent a moderate/severe population. In the CE model the intercept term for the change in SLEDAI regression was modified to adjust for differences between the Hopkins Lupus cohort and patient group that would be eligible for more intensive treatment. Without an adjustment the average SLEDAI regression model would underestimate long-term SLEDAI scores. This adjustment was implemented and validated by GSK’s contractors in their submission to NICE using long-term SLEDAI scores observed from the follow-up of Phase II patients. In the GSK submission the mean intercept was adjusted from 1.53 to 3 (224). The same assumption was applied in this CE model. The mean intercept was increased, but the uncertainty in the parameter was maintained.
Secondly, a coefficient for the treatment effect was added to the equation. This covariate is appended on to the original average SLEDAI regression model specification to accommodate the effect of treatment on SLEDAI score in the CE model. The coefficient for treated patients  was assumed to be -0.363 (standard error 0.4296). The treatment effect parameter was generated from simulations of the BCTS, described in Section ‎6.4.1 of Chapter 6. In a real-life case study   would be most likely estimated from the Phase II trial for the treatment.
Thirdly, a latent propensity parameter for disease activity is included in the simulation to ensure patient heterogeneity is described. Disease heterogeneity is simulated in the CE model by assigning each patient a disease activity propensity parameter at baseline. The propensity parameter is generated in the Generate SLE population process. Heterogeneity in disease outcomes is an important characteristic in SLE. Without a latent propensity parameter the average SLEDAI regression model would induce SLEDAI scores to converge over time to mean estimates, and the CE model would not reflect unobservable heterogeneity between patients over the long term. It has been shown that if there is a non-linear relationship between a patient characteristic, such as SLEDAI score, and the CE model output, it is necessary to account for variability (226). The relationship between SLEDAI score and Net Benefit is a complex function of the relationships between steroid, mortality, and organ damage and is unlikely to be linearly related to Net Benefit. 
[bookmark: _Toc279746625][bookmark: _Toc280007187][bookmark: _Toc280014835][bookmark: _Toc280881230][bookmark: _Toc280882298][bookmark: _Ref283804909][bookmark: _Ref283804927][bookmark: _Toc287362516]Steroid Use
The random effects regression analysis to predict average steroid dose as a function of average SLEDAI score in the corresponding year is used to estimate the expected steroid dose in the CE model. This relatively simple statistical model describes the expected average steroid dose for given average SLEDAI. In the CE model average steroid dose is estimated as,
	
	
	(7.2) 


where i indexes the patients observed, j indicates the time period of the observation. The coefficients of the regression model are described by, which were estimated in Model 2 of Table 30 of Section 5. The estimates of the mean and covariance matrix are reported in Appendix 16. 
[bookmark: _Toc279746627][bookmark: _Toc280007189][bookmark: _Toc280014837][bookmark: _Ref280083878][bookmark: _Toc280881232][bookmark: _Toc280882300][bookmark: _Toc287362518]Organ Damage development
The natural history model was used to estimate the probability of organ damage for each simulated year. This approach to modelling separate organ systems allows the CE model to record differential costs and utility implications of organ damage in different organ systems. The hazards for each organ system were estimated independently in the CE model. However, some correlation in the risk of events across organ systems would be captured by the covariate adjustment in the statistical models. For example, a high disease activity score increase the probability of organ damage in multiple organ systems.
At every year of the simulation a probability of damage for each organ system is calculated for the individual patients, which was used in a Bernoulli trial to determine whether damage occurred for that patient in that period. The probabilities of a patient developing organ damage in each period of the CE model were estimated as the difference between the cumulative hazards in the current period minus the cumulative hazards in the previous period. This is converted into a probability with the following formula. 
	
	
	(7.3) [bookmark: probability_7]


where i indexes the patients observed, j indicates the time period of the observation. 
[bookmark: _Ref331064810]The functional form for the parametric survival models on time to damage event included Exponential, Weibull, Gompertz, and LogLogistic. The cumulative hazard functions for each distribution are described in used to estimate annual probabilities are outlined in Table 42.
[bookmark: _Ref363380557]Table 42: Cumulative Hazard function for exponential, Weibull, Gompertz and Loglogistic functions
	Survival curve
	Cumulative Hazard
	Parameter 1
	Parameter 2

	Exponential
	
	
	n/a

	Weibull
	
	
	

	Gompertz
	
	
	

	LogLogistic
	
	
	




The parameters labelled Parameter 1 in Table 42  were estimated from the baseline hazard  and the covariate effects for the organ damage survival model described in the natural history model. 
	
	
	(7.4) 


where i indexes the patients observed, j indicates the time period of the observation, k indicates the number of covariates in the survival model. The parameter estimates for the organ damage survival models are based on the analyses described in Table 33 of Chapter 5 and the mean and their covariance matrices are reported in Appendix 16. An additional coefficient for treatment  was appended onto each of the organ damage survival models to modify the risk of organ damage in treated patients (D=1). They are included in this survival model to reflect clinicians’ beliefs that new biologic treatments will modify organ damage accumulation rates. The coefficients were estimated from the elicitation exercise described in Chapter 6.  
The simulation allowed patients to accrue multiple damage events in those organ systems where more than one damage type is listed in the SLICC/ACR Damage Index. However, if a patient reached the maximum number of events in that organ system the patients did not record any further damage in the simulation. For example, there are two types of ocular damage; if a patient has a SLICC/ACR Damage Index score of 2 for ocular damage they not experience additional ocular damage events. 
[bookmark: _Toc280881233][bookmark: _Toc280882301][bookmark: _Toc287362519]Treatment discontinuation 
In the CE model it is assumed that patients withdraw from treatment at a constant rate. The exponential distribution is used to estimate the rate of withdrawal
	
	
	(7.5) 


where i indexes the patients observed, j indicates the time period of the observation. The parameter  describes the scale parameter for individual i at time j. 
	
	
	(7.6) 


Therefore, the baseline risk of withdrawal is estimated from  with an additional coefficient for treatment , according to patient’s treatment status at time j. The estimates of the intercept and treatment coefficient are estimated from previous clinical trials reported in Section 6.2 of Chapter 6. Clinical trial withdrawal was assumed to be an appropriate estimate of real-world discontinuation given an absence of real-world data on biologic treatment withdrawal in SLE patients. The probability of withdrawal is derived from cumulative hazard for current and previous cycle as specified in equation ‎(7.3). Alternative time-dependent distributions for withdrawal could be fitted to Phase II trial data to account for greater rates of withdrawal in the early stages of the trial.

When patients discontinue from treatment their natural history continues to be monitored in the simulation and their costs and health outcomes recorded. The effect of treatment in the change in mean SLEDAI score is removed immediately, i.e. no tapering in the treatment effect assumed. 
[bookmark: _Toc279746626][bookmark: _Toc280007188][bookmark: _Toc280014836][bookmark: _Ref280083876][bookmark: _Toc280881231][bookmark: _Toc280882299][bookmark: _Toc287362517]Mortality 
The Weibull survival distribution was used to model the probability of death. The probability of a patient dying in each period of the CE model from the cumulative hazard as described in equation ‎(7.3). The Cumulative Hazard for the Weibull distribution can be expressed as a two parameter survival model.
	
	
	(7.7) 


where i indexes the patients observed, j indicates the time period of the observation. The parameter  describes the scale parameter for individual i at time j, and  is the shape parameter of the Weibull survival model. The scale of the distribution is estimated from the baseline hazard  and eleven covariate effects described in the natural history model . An additional coefficient for treatment can be appended onto the mortality survival model to modify the risk of mortality in treated patients (D=1). 
	
	
	(7.8) 


where i indexes the patients observed, j indicates the time period of the observation, k indicates the number of covariates in the survival model. The mean parameter estimates for the mortality survival model are reported in Table 31 of Chapter 5. At every year of the simulation a probability for mortality is calculated and an event is sampled from the Bernoulli distribution. 
Applying the mortality survival model to estimate the probability of death was found to underestimate the risk of mortality in the elderly. The mean age at entry into the Hopkins cohort is 38 years and a maximum follow-up of 22 years. Only 27 patients in the cohort were followed to an age 75 or older. As a consequence, the increased rate of mortality in elderly patients would not have been captured in the mortality survival model. In order to avoid an underestimation of mortality in the CE model a correction was required to increase mortality risk at older ages using mortality estimates for the general population. 
[bookmark: _Ref334448552]Life tables for the UK were obtained to express age related mortality for the general population (227). The general population mortality rate is reported in column 2 of Table 43. The general population mortality rate would underestimate the mortality risk for SLE patients with active disease. It is necessary to inflate the general population risk with an SLE risk ratio. For that reason, risk estimates were generated for SLE patients with zero AMS score and no organ damage for all ages using the mortality survival model (Column 3 of Table 43). The risk ratio for SLE patients compared with the general population was calculated for all ages (Column 4 of Table 43). The analysis showed that the predicted mortality risk for an SLE patient with no disease symptoms is higher than the general population up to the age of 62. For ages greater than 62 the general population has a higher risk, so an adjustment is made to ensure that the simulated mortality risk increases in line with the general population in old age (Column 5 of Table 43). The risk adjusted mortality rate for SLE patients and the subsequent probability are reported in Columns 6 and 7. The risk ratio was not subject to PSA.
[bookmark: _Ref355363094]Table 43: Mortality adjustment for older SLE patients
	1
	2
	3
	4
	5
	6
	7

	Age
	General population mortality risk
	Estimated remission mortality rate
	Risk ratio estimate
	Risk ratio applied
	Risk adjusted mortality
	Annual probability

	50
	0.00260
	0.00527
	0.49476
	1.00000
	0.00527
	0.00527

	51
	0.00285
	0.00546
	0.52312
	1.00000
	0.00546
	0.00546

	52
	0.00311
	0.00565
	0.55254
	1.00000
	0.00565
	0.00565

	53
	0.00340
	0.00585
	0.58357
	1.00000
	0.00585
	0.00585

	54
	0.00372
	0.00605
	0.61681
	1.00000
	0.00605
	0.00605

	55
	0.00407
	0.00625
	0.65237
	1.00000
	0.00625
	0.00625

	56
	0.00445
	0.00646
	0.69071
	1.00000
	0.00646
	0.00646

	57
	0.00487
	0.00667
	0.73304
	1.00000
	0.00667
	0.00667

	58
	0.00535
	0.00688
	0.77973
	1.00000
	0.00688
	0.00688

	59
	0.00587
	0.00710
	0.83039
	1.00000
	0.00710
	0.00710

	60
	0.00645
	0.00731
	0.88522
	1.00000
	0.00731
	0.00731

	61
	0.00709
	0.00754
	0.94458
	1.00000
	0.00754
	0.00754

	62
	0.00780
	0.00776
	1.00885
	1.00885
	0.00783
	0.00780

	63
	0.00858
	0.00799
	1.07846
	1.07846
	0.00861
	0.00858

	64
	0.00945
	0.00822
	1.15451
	1.15451
	0.00949
	0.00944

	65
	0.01042
	0.00845
	1.23827
	1.23827
	0.01046
	0.01041

	66
	0.01151
	0.00868
	1.33125
	1.33125
	0.01156
	0.01149

	67
	0.01275
	0.00892
	1.43582
	1.43582
	0.01281
	0.01273

	68
	0.01418
	0.00916
	1.55407
	1.55407
	0.01424
	0.01414

	69
	0.01581
	0.00941
	1.68789
	1.68789
	0.01588
	0.01576

	70
	0.01768
	0.00966
	1.83963
	1.83963
	0.01776
	0.01761

	71
	0.01983
	0.00991
	2.01188
	2.01188
	0.01993
	0.01973

	72
	0.02230
	0.01016
	2.20660
	2.20660
	0.02242
	0.02217

	73
	0.02507
	0.01041
	2.41977
	2.41977
	0.02520
	0.02489

	74
	0.02809
	0.01067
	2.64627
	2.64627
	0.02824
	0.02785

	75
	0.03138
	0.01093
	2.88568
	2.88568
	0.03155
	0.03106

	76
	0.03494
	0.01120
	3.13788
	3.13788
	0.03514
	0.03453

	77
	0.03879
	0.01147
	3.40206
	3.40206
	0.03901
	0.03826

	78
	0.04292
	0.01174
	3.67899
	3.67899
	0.04318
	0.04226

	79
	0.04754
	0.01201
	3.98299
	3.98299
	0.04783
	0.04670

	80
	0.05287
	0.01228
	4.33026
	4.33026
	0.05319
	0.05180



Health Related QUality of LIfe 
A literature review of quality of life studies in SLE was conducted to identify appropriate utility values for the health states of the CE model. The full detail of the utility literature search is described in the Appendix 17. An initial review using the exclusion criteria found only six articles that were related to health utilities (163;228-232). Unfortunately, none of these provided sufficient data for utilities in SLE to populate the CE model.
More recently the results of the belimumab Phase III trials have been published and as part of the belimumab NICE submission analysis of the EQ-5D scores collected in the trials (224). A linear regression was fitted by GSK contractors to explore the relation between utility values and SLEDAI score, organ damage items and patient characteristics (224). The results are presented in Table 44.
[bookmark: _Ref280875701][bookmark: _Toc287297348]Table 44 Linear regression explaining utility value based on BLISS trial data
	Parameter
	Coefficient
	p-value

	Constant
	1.275
	0.0000

	Log-transformed age
	-0.140
	0.0000

	Black Ethnicity
	-0.036
	0.0418

	SELENA-SLEDAI score
	-0.009
	0.0000

	Ocular Damage
	0.062
	0.0011

	NP Damage
	-0.071
	0.0000

	MSK Damage
	-0.047
	0.0005

	Diabetes
	-0.065
	0.0187



On average, a person’s utility value decreases by 0.009 per unit SLEDAI score. In addition, age, ethnicity, ocular damage, NP damage, MSK damage and Diabetes had a significant relation with quality of life. Ocular damage has a positive association with quality of life which is an unusual finding and unlikely to be externally valid. The prevalence of organ damage was low in the BLISS trials, which makes it more difficult to infer the effects of organ damage on EQ-5D from this data. Not all organ damage items were found to be associated with poorer quality of life. However, the patients in the BLISS trials tended to have low organ damage scores at baseline and are not representative of patients at all stages of the disease. 
In the CE model the regression analysis from Table 45 was used to determine a patient’s baseline utility without considering their organ damage:
	
	
	(7.9) 


where i indexes the patients observed, j indicates the time period of the observation. The utility score of patient i at time period j is predicted by age, ethnicity and SLEDAI score, S. The linear regression does not predict utility values greater than 0.9 so does not exceed the upper bound for utilities of 1. 
Organ damage coefficients reported in Table 44 were not used to describe the utility impact of organ damage in the CE model. Organ damage disutilities were applied to the baseline utility as a multiplicative factor, rather than an absolute reduction as recommended in recent guidelines from the NICE Decision Support Unit (233). The values for the disutility factors were taken from a review of damage event disutilities reported in the GSK NICE submission (224). The disutilities for organ systems were estimated as weighted averages from the multiple types of events within each organ system. The disutility multipliers used for the first and subsequent year with damage to an organ system are detailed in Table 45. 
[bookmark: _Ref281826489][bookmark: _Toc287297349]Table 45 Disutility multipliers for damage to a specific organ system.
	
	Year 1
	Year 2 onwards

	Cardiovascular
	0.72
	0.76

	Diabetes
	0.91
	0.91

	Gastrointestinal
	0.79
	0.91

	Malignancy
	0.92
	0.92

	Musculoskeletal
	0.67
	0.74

	Neuropsychiatric
	0.68
	0.71

	Ocular
	0.97
	0.99

	Peripheral vascular
	0.86
	0.92

	Premature gonadal failure
	1.00
	1.00

	Pulmonary
	0.69
	0.69

	Renal
	0.89
	0.89

	Skin
	0.94
	0.94



The baseline utility was multiplied with the greatest disutility from the organ damage systems a patient had developed. When patients developed more than one damage event within an organ system the two year onwards disutility was raised to the power of the number of events. 
The utility decrements are assumed to be independent parameters in the CE model following the Beta distribution. The parameters of the Beta distribution  were approximated from the estimates for mean, , and variance, , identified in the literature review using the method of moments approach (22).
	
	
	(7.10) 

	
	
	(7.11) 

	
	
	(7.12) 


In most cases the standard errors were not reported in which case it was assumed to be 10% of the mean. 
[bookmark: _Toc279746629][bookmark: _Toc280007191][bookmark: _Toc280014839][bookmark: _Toc280881235][bookmark: _Toc280882303][bookmark: _Toc287362524]Cost inputs
The model was designed to evaluate the cost-effectiveness of a new hypothetical drug for SLE in order for the Pharmaceutical Company to demonstrate the benefits of the new treatment to institutions like NICE. As such the analysis is evaluated from the NHS/PSS Cost perspective in line with the NICE reference case (29). 
The CE model included parameters to describe the annual costs associated with disease activity, organ damage mainly identified from Health Technology Appraisals related to each event. Indirect were not included in the CE model and the cost of the new technology was not pre-fixed. The costs of disease activity included a fixed and variable cost, where incremental increases in the average SLEDAI score increase the cost of the patient. This method of relating disease activity to costs may not produce reliable estimates of total costs because organ damage and other co morbid conditions were not incorporated into the analysis. Furthermore, SLEDAI score may not be a reliable estimate of costs because the types of clinical events included in the SLEDAI will be extremely variable in terms of their costs. Nevertheless, no alternative sources of evidence for SLE patients according to disease activity were found. Organ damage costs included a cost associated with the event in the first year of its incidence, and subsequent annual costs of treating patients with a history of the event. 
Costs were assumed to follow the Gamma distribution and the parameters of the Gamma distribution  were approximated from the estimates for mean, , and variance, , identified in the literature review using the method of moments approach (22).
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In most cases the standard deviations were not reported in which case it was assumed to be 10% of the mean. 
The costs associated with disease activity were based on the GSK manufacturer’s submission in which the baseline yearly cost of SLE is £1,152 (224). This increases with higher SLEDAI scores assuming a linear relationship of £55.6 per SLEDAI score.
Organ damage has a substantial effect on the cost of managing SLE patients. The impact is variable across organ systems. In the GSK submission a literature review identified the costs associated with organ damage events, and averaged within organ systems (224). Each organ system estimates the cost for the first year of the event and subsequent years. The costs associated with each organ system are reported in Table 46.
[bookmark: _Ref281826555][bookmark: _Toc287297351][bookmark: _Ref313281743]Table 46 Costs for organ damage in the first and subsequent year
	Year
	1
	2

	Cardiovascular
	£3,402
	£500

	Diabetes
	£2,313
	£2,313

	Gastrointestinal
	£2,678
	£0

	Malignancy
	£6,056
	£0

	Musculoskeletal
	£5,372
	£1,882

	Neuropsychiatric
	£3,659
	£1,144

	Ocular
	£1,518
	£17

	Peripheral vascular
	£2,955
	£591

	Premature gonadal failure
	£0
	£0

	Pulmonary
	£9,678
	£9,603

	Renal
	£1,746
	£2,426

	Skin
	£0
	£0



TREATMENT COSTS
The costs of the new treatment were not explicitly modelled in the simulation. The price of treatment is assumed to be an exogenous variable in the CE model so it does not impact on the other parameters of the CE model. It is possible to vary the price of treatment after the PSA has run with little computational expense. The total cost of treatment is a function of price and the number of courses of treatment administered. The discounted duration of treatment is recorded in the CE model so to enable a post hoc analysis of price after the simulation has run. 
[bookmark: _Toc379467655]Discounting
The costs and QALY were discounted in the CE model at a rate of 3.5% (29).

[bookmark: _Toc379467656]Reducing Simulation Error
Simulation error can cause estimates from individual patient simulation models to produce different outcomes depending on the random numbers used in the simulation. Simulation error describes the variation in estimated CE model outcomes conditional on the same parameter inputs because the CE model outcomes were subject to random variation. Increasing the number of patients simulated in the CE model is an effective way to reduce simulation error. However, this can substantially increase the time it takes to compute the analysis if the sample size required is large. The simulation error was more than 5% of incremental Net Benefit in the CE model so the following modifications to the simulation were made to reduce simulation error.
1. The patients included in the CE model were cloned across the two treatment arms so that the patients had identical baseline characteristics.
2. The same patients were selected from the Generate Population process so that the baseline characteristics were identical between iterations of the CE model.
3. All patients were assigned a vector of random numbers for each organ damage, mortality, and withdrawal outcome so that the same random numbers would be used at each time point of the CE model. 
[bookmark: _Ref332371653][bookmark: _Toc335051098][bookmark: _Toc337139007][bookmark: _Toc379467657]CE Model Outcomes
[bookmark: _Toc335051099][bookmark: _Toc337139008][bookmark: _Toc379467658]Health Outcomes and Costs
The outcomes of CE models are usually presented as either incremental cost-effectiveness ratios (ICER) or incremental net benefit (INB). Both measures are derived from the total costs, and QALYs associated with the SoC and new treatments. Net benefit also requires that a willingness to pay for a QALY is specified. The ICER summarises the cost of an additional QALY with the new treatment. INB expresses the additional gains, in monetary terms, of switching to the new treatment. The overall cost-effectiveness of a new treatment will be influenced by the acquisition costs of the new treatment and other administration costs associated with it. At an early stage of drug development these costs may be unknown or uncertain. For this reason, I assumed that pharmaceutical companies would be less interested in a single ICER or INB statistic based on a single price. 
The value-based price represents the maximum price for the treatment given a pre-specified willingness to pay per QALY threshold (234). In all of the analyses the willingness to pay threshold is assumed to be £30,000 (29). I believe that pharmaceutical companies will be interested in observing this statistic and its uncertainty at an early development stage to observe the potential profitability of the treatment and the probability distribution of value-based price. This measure will illustrate the level of risk involved in pursing the treatment into a Phase III trial.
	
	
	(7.15) 



where  indicates the treatment option, discounted Costs and QALYs are indicated by C and Q respectively,  indicates the willingness to pay for a QALY threshold and T indicates the average discounted treatment years of the new biologic treatment. The value-based price will be estimated for all iterations of the PSA so that it is possible to estimate the expected value-based price and the distribution of simulated value-based Price arising out of the PSA. 
[bookmark: _Toc335051101][bookmark: _Toc337139010][bookmark: _Toc379467659]Parameter Sensitivity Analysis
Traditional Expected Value of Perfect Parameter Information was not conducted because it requires that a fixed treatment cost is assumed. This is incompatible with the objectives of our analysis to investigate the impact of parameters on the uncertainty in value-based price. 
Parameter sensitivity analyses are conducted to identify which parameters contribute most to the overall uncertainty in CE model outcomes. This analysis can be used to identify CE model parameters that should be prioritised in future data collection exercises. The parameter sensitivity analysis was conducted using analysis of covariance methods (ANCOVA) to summarise the proportion of the variance in the value-based price that is explained by the variation in the input parameters. The first ANCOVA used value-based price as the output parameter, so that price did not have to be specified. 
[bookmark: _Ref332371677][bookmark: _Toc335051102][bookmark: _Toc337139011][bookmark: _Toc379467660]RESULTS
In this section I report the results of a CE analysis comparison of the hypothetical new treatment versus standard of care (SoC) under the assumptions about the effectiveness of the new treatment based on the prior distributions obtained from the phase II belimumab trial (72) elicitation exercise described in Chapter 6. 
[bookmark: _Toc335051103][bookmark: _Toc337139012][bookmark: _Toc379467661]CE Model Outcomes
The expected age at death was higher in the new treatment arm than the SoC arm and there was more life years gained. The undiscounted and discounted QALYs accumulated in the new treatment arms are higher than the SoC arm. In the simulation patients receiving the new treatment live longer by 0.57 life years and are therefore at risk of incurring organ damage for a longer time. 
Table 47: Summary of mean CE model outcomes (standard deviation)
	
	Standard of care
	New treatment
	Difference

	Age at Death
	70.56 (2.568)
	71.13 (3.050)
	0.57 (1.711)

	Life Years
	29.26 (2.566)
	29.86 (3.048)
	0.57 (1.711)

	QALYS (undiscounted)
	13.380 (2.532)
	13.700 (2.671)
	0.318 (0.759)

	QALYS (discounted)
	8.208 (1.433)
	8.349 (1.493)
	0.141 (0.389)



Table 48 reports the proportion of patients who experienced organ damage up to the time of death for the SoC and treatment arms. A lower proportion of patients receiving the new treatment had accumulated organ damage in the cardiovascular, renal, ocular, and skin organ systems. More patients with the new treatment died with damage in the neuropsychiatric system, peripheral vascular system, malignancy, and diabetes. Overall there were very small differences in the accumulation of damage between the two treatment arms. However, patients receiving treatment live longer, so have a longer time at risk of damage accumulation.  
[bookmark: _Ref313283166]
[bookmark: _Ref364922298]Table 48: Mean proportion of patients with organ damage at death (standard deviation)
	
	Standard of care
	New treatment
	Difference

	Cardiovascular
	0.434 (0.075)
	0.420 (0.077)
	-0.014 (0.022)

	Renal
	0.154 (0.049)
	0.146 (0.048)
	-0.007 (0.011)

	Musculoskeletal
	0.636(0.044)
	0.637(0.051)
	0.001 (0.027)

	Neuropsychiatric
	0.476(0.040)
	0.477(0.044)
	0.001 (0.018)

	Pulmonary
	0.399(0.047)
	0.397(0.050)
	-0.002 (0.021)

	Peripheral Vascular
	0.158(0.018)
	0.159(0.021)
	0.001 (0.011)

	Gastrointestinal
	0.243(0.025)
	0.243(0.028)
	0.0003 (0.011)

	Ocular
	0.484(0.050)
	0.487(0.054)
	0.002 (0.024)

	Skin
	0.154(0.044)
	0.151 (0.043)
	-0.003 (0.007)

	Malignancy
	0.396 (0.059)
	0.401(0.059)
	0.005 (0.023)

	Diabetes
	0.252(0.043)
	0.255(0.046)
	0.003 (0.016)

	Gonadal Failure
	0.089(0.014)
	0.089(0.015)
	0.001 (0.004)



The mean discounted costs incurred by patients in the simulation are reported in Table 49. Overall the new treatment has a marginal reduction in the costs associated with SLE. However, many costs are increased, which is most likely because patients live longer and spend longer at risk of organ damage. Organ systems that reported lower incidence of damage, also were found to incur lower costs in the simulation. Overall the cost differences between the two arms are small relative to the overall cost and suggest that there are almost no cost-savings from the new treatment.
[bookmark: _Ref313285389][bookmark: _Ref336332318]Table 49: Summary of mean discounted costs broken down by cause (standard deviation)
	
	Standard of care
	New Treatment
	Difference

	Disease activity related costs
	£19,950 (1006)
	£20,280 (1340)
	£330

	Organ damage cost
	
	
	

	Cardiovascular
	£3,164 (627)
	£3069 (639)
	-£95

	Renal
	£3,136 (1003)
	£3,070 (994)
	-£66

	Musculoskeletal
	£20880 (2,487)
	£21,040 (2,752)
	£160

	Neuropsychiatric
	£7,742 (823)
	£7,822 (969)
	£80

	Pulmonary
	£39,820 (6,486)
	£39,840 (6,761)
	£20

	Peripheral vascular
	£1,036 (142)
	£1,094 (185)
	£58

	Gastrointestinal
	£346 (46)
	£343 (49)
	-£3

	Ocular
	£607 (84)
	£607 (90)
	£0

	Skin
	£0
	£0
	£0

	Malignancy
	£615 (102)
	£622 (109)
	£7

	Diabetes
	£821(165)
	£822 (174)
	£1

	Gonadal Failure
	£0
	£0
	

	Sum of organ damage costs
	£78,187
	£78,329
	£142

	Total costs
	£98,137
	£98,609
	£472



The uncertainty in the CE model is illustrated in Figure 23 assuming that the cost of the new treatment is zero. This demonstrates the extent of uncertainty in the CE model. 
[bookmark: _Ref363388909]Figure 23: A cost-effectiveness plane for the PSA outcomes assuming price is zero
[image: ]
[bookmark: _Toc335051104][bookmark: _Toc337139013][bookmark: _Toc379467662]Drug Price Analysis
A fixed price is not assumed in these analyses to allow the pharmaceutical company to observe how price affects the cost-effectiveness of the treatment and the probability of reimbursement. Figure 24 illustrates how incremental net benefit decreases with price on the left-hand axis. The graph illustrates that with current evidence a price of more than £900 per year yields a marginal positive Net Benefit. In other words, any price below £900 per year would result in an incremental CE ratio below £30,000 per QALY gained. 
[bookmark: _Ref336257716]Figure 24: Drug Price Analysis. Impact on Incremental Net Benefit and Probability Cost-Effective
[image: ]
Figure 25 illustrates a histogram of the distribution of value-based price estimate for all iterations of the PSA. The graph demonstrates that model simulations estimate value-based price between -£5000 and £5000. The most probable outcomes would be a price in the range of 0-£1000. A proportion of iterations generate a negative value-based price indicating how often the treatment is less beneficial than SoC at a threshold of £30,000 per QALY. The distribution of value-based price is not symmetric with some model iterations producing very favourable outcomes where QALY gains were greater than 1.
[bookmark: _Ref334456125]Figure 25: Variation in Expected Value-Based Price from Probabilistic Sensitivity Analysis
[image: ]   
[bookmark: _Toc335051105][bookmark: _Toc337139014][bookmark: _Ref355270960][bookmark: _Ref355270964][bookmark: _Toc379467663]Parameter Sensitivity
An ANCOVA sensitivity analysis was used to identify important parameters in the CE model. The disadvantage of using the ANCOVA method was that it imposes an assumption that all parameters are linearly associated with value-based price. The large residual identified in this analysis indicates that this condition does not hold for a large proportion of the variables included in the analysis. However, the ANOVA method is relatively simple to use and does not require advanced training in statistics. Therefore, the method is accessible to many analysts and can easily be incorporated into analyses during drug development. Figure 26 illustrates how the variation in other CE model parameters impacts on the variation in value-based price. Variability in the statistical models for mean change in SLEDAI, musculoskeletal damage, mortality, neuropsychiatric damage and pulmonary damage explain the greatest variation in value-based price in the CE model. The costs associated with organ damage and utility did not contribute much to the variance of value-based price. The residual demonstrates the proportion of variance in value-base price not explained by the inputs.
[bookmark: _Ref336336086]Figure 26: ANCOVA results for % variability in Value-Based Price explained by model inputs
[image: ]

[bookmark: _Toc337139015][bookmark: _Toc379467664]Computation Burden
The CE model was developed to be an individual patient simulation of 15,000 duplicated patients whose disease status is updated every year until death. A single iteration of the CE model takes approximately 41 seconds to complete the analysis, and 12 hours to generate 1000 iterations of the PSA. Figure 27 illustrates how the expected value-based price converges to a stable estimate for increasing PSA iterations. After 5,000 iterations the CE outcome is relatively stable. The CE model is unlikely to generate reliable results for runs of fewer than 3,000 iterations. Consequently, the computation time to generate PSA results from the CE model is 36 hours at a minimum.

[bookmark: _Ref337110949]Figure 27: The Expected Value-Based Price for increasing PSA iterations
[image: ] 
[bookmark: _Ref332371690][bookmark: _Toc335051106][bookmark: _Toc337139016]

[bookmark: _Ref363379374][bookmark: _Ref363379386][bookmark: _Toc379467665]Discussion
[bookmark: _Toc379467666]The Cost-Effectiveness of New Treatments in SLE
The CE model developed in this chapter estimates modest long term health benefits and cost savings from the hypothetical new biologic treatments given the elicited uncertainty in its additional effect over and above standard care. The CE model demonstrated how a new treatment that modifies disease activity has the potential to increase life expectancy. The differences in the proportion of patients developing organ damage were less notable. However, this is at least in part due to greater damage accrual in patients living longer on the new treatment. The reduction in healthcare costs for the new treatment was marginal. 
This chapter has developed a CE model for SLE and demonstrates the challenges involved in demonstrating cost-effectiveness from 12 month RCT evidence. The analysis of drug price indicates that a new treatment with efficacy evidence similar to that described above will not be able to charge high prices if the reimbursement authority imposes a willingness to pay threshold of £30,000. In this chapter I examined the expected value-based price for the treatment based on prior information about the CE model inputs. This data was implicitly information that might be available after a Phase II trial. The incremental Net Benefit was low at all prices and negligible at £5,000.  This means that in the absence of stronger evidence companies would have to choose between limited access to health care markets at a high price, and broader access at lower prices. However, if a Phase III trial were undertaken and if the results showed superior effectiveness to the prior means the prospects for reimbursement would be more favourable.
A recent example from the belimumab Phase III trials illustrates the limitations of trial design. The drug was assessed in two Phase III clinical trials each of sample size of approximately 800. The follow-up of the clinical trials were 12 and 18 months. The drug was approved by the FDA and EMEA, however the drug has not been approved by NICE or CADTH based on CE evidence. This suggests that more evidence is needed to ensure comprehensive market access for new treatments in SLE.
[bookmark: _Toc379467667]How can CE models be used in Drug Development?
Preliminary analyses early in drug development could be used to aid a pharmaceutical company’s decision to continue data collection for the new treatment. The CE analysis could be used to decide whether to proceed with the drug development programme. If the expected CE outcomes suggest that the value-based price is substantially lower than the pharmaceutical company’s expectations it may not be worth investing in further trials. Multi-way parameter sensitivity analyses could be employed to evaluate what combination of parameter estimates would be necessary to achieve higher prices and whether these parameter estimates are realistic. 
Parameter sensitivity analysis can be helpful in identifying which parameters contribute to the variance in value-based price and treatment Net Benefit. It may be beneficial to target data collection towards those parameters whose variability contributes the most to the variance in CE model outcomes. 
From a societal perspective EVPPI can be used to value a complete reduction in the uncertainty for individual parameters of the model. EVPPI was not employed in this analysis because it is conditional on a fixed price for the treatment, which I am assuming has not been set by the pharmaceutical company. The ANCOVA analysis did not require price to be fixed, but is more limited than EVPPI because does not value a reduction in CE model outcome uncertainty. The ANCOVA method is sufficient as a guide to the pharmaceutical company on which parameters are more important and is quick and easy to generate.  
[bookmark: _Toc379467668]Computation Burden
The computation burden of the CE model is considerable. The main reason for this is because every annual cycle the model evaluates if the individual has experienced fourteen different organ damage and mortality events. The model is an individual patient simulation so the outcomes must be updated for every individual. It could have been beneficial to make simplifications to the CE model to reduce the time taken to generate analyses. I considered two methods to simplify the CE model. 
Firstly, I investigated whether a Markov cohort CE model could be employed to simulate SLE. However, a Markov cohort CE model was considered incompatible with a structure that included interactions between disease activity, steroid exposure, organ damage development and mortality. Recording the many combinations of disease feature would require a large number of tunnel states in a Markov CE model, and the Markov framework would become large and inefficient.  
Secondly, I considered modifying the structure of the CE model to combine or exclude organ damage outcomes with less impact, such as diabetes, gonadal failure and malignancy. However, simplifications would weaken the CE model in terms of its robustness and flexibility. Organ damage impacts on the risk of future events like mortality, pulmonary damage and musculoskeletal damage, which have been identified as important inputs in the CE model in the ANCOVA analysis. Modelling a subset of organ damage events would underestimate the burden of organ damage. The more detailed CE model can accommodate more patient population sub-group analyses if the pharmaceutical company were interested in analysing possible different inclusion criteria. Simplifications would reduce the generalisability of the CE model to different treatments for SLE. Simplifications could be potentially more appropriately made in a real-life setting where more information was available about the new treatment to inform the decisions. However, for the reasons of robustness and flexibility I decided not to make simplifications to the CE model. 
[bookmark: _Toc379467669]Conclusions
In this chapter I have described a CE model to evaluate long-term costs and QALYs for SLE. The CE model can be used to generate useful analyses of the CE outcomes during the early stages of drug development. Probabilistic sensitivity analysis and parameter sensitivity analysis can be used to describe the uncertainty in the CE model outcomes and indicate where more precise parameter estimates are needed. However, in order to evaluate the value of data collection the CE model and BCTS must be combined to predict possible trial outcomes and how they would impact on the expected price of the new treatment.
In Chapter 8 of the thesis I move on to combine the BCTS and CE model in a single simulation to evaluate the value of alternative SLE trial designs. 


[bookmark: _Toc345584683][bookmark: _Toc379467670]Chapter 8: Value of Trials Analysis
8. 
In this chapter I compare trial designs for an SLE Phase III RCT using a modified version of the Health Economic VOI methods to consider the pharmaceutical perspective. 
[bookmark: _Toc345584684]I describe an analytic method to compare SLE Phase III RCTs with variable sample size and duration of follow-up. The VOI analysis utilised the BCTS described in Chapter 6 and the CE model described in Chapter 7. The BCTS was used to simulate trial datasets given a particular design specification. The trial data were combined with prior parameters of the CE model to estimate posterior densities for the CE model inputs and update the outcomes of the CE model. Initially Bayesian updating was completed using a traditional calculation using Markov Chain Monte Carlo Simulation (MCMC) in WinBUGS. However, this method would take years to generate results. An approximation method was used to speed up analysis time. In the results section I present the outcomes of the analysis from 1,600 BCTS iterations.
In Chapter 3, I discussed the limitations of using the ENBS method from the pharmaceutical perspective. In this chapter I present an alternative method to value drug development trials based on the uncertainty in value-based price that aligns with the priorities and information constraints of a pharmaceutical company. As such, this chapter describes a novel method for evaluating the value of trials from a pharmaceutical perspective and illustrates the limitations of adopting value of information methods alongside a CE model for a complex disease.
Section ‎8.1 describes an overview of the process of Bayesian updating of prior data. Sections 8.2, 8.4, and 8.5 describe the methods used in the analysis. Section ‎8.2 specifies the prior parameters of the CE model to be updated. Section ‎8.3 describes the trial design specifications for the BCTS. The process of Bayesian updating is described in detail in Section ‎8.4. Section ‎8.5 introduces a novel method for valuing alternative trial designs from the pharmaceutical perspective. The results of the analysis are presented in Section ‎8.6 with a discussion of the method in Section ‎8.7.
[bookmark: _Toc345584686][bookmark: _Ref355361802][bookmark: _Toc379467671]Bayesian Statistical Methods in Planning SLE Clinical Trials
The CE model described in Chapter 7 defined a model to estimate total costs and QALYs conditional on uncertain input parameters,. The Phase III trial would provide additional data  on a subset of the CE model parameters. The complement set of CE model parameters, , were not updated with trial data. The prior joint probability density p() was updated, via Bayesian updating, to derive the posterior density  for each hypothetical data set sampled. The CE model was re-run with the posterior density  and to estimate the CE outcomes given the simulated trial data. 
The BCTS described in Chapter 6 can be used to simulate Phase III data generated from alternative trial designs. Multiple simulated datasets are generated for each trial design to predict many possible outcomes of the Phase III trial. Alternative clinical trial designs can be evaluated by simulating trial data and updating CE model parameters with the information gathered. For each simulated dataset the prior and likelihood of the data are synthesised to generate the posterior distribution of the parameters and evaluate the CE model outcomes. The CE model parameters described in Chapter 7 are analogous to the pharmaceutical company’s prior belief of the CE model inputs before they collect Phase III data. 
The simulation process is illustrated in Figure 28.
[bookmark: _Ref335313891]Figure 28: The four stage simulation process to evaluate alternative trial designs
[image: ]
In the first stage, a population of SLE patients are generated reflecting the disease characteristics of patients in the Hopkins Lupus Cohort. Secondly, a chosen trial design a SLE Phase III clinical trial is simulated to generate a single sample dataset. In stage three, this dataset is combined with the prior distributions of the CE model to get the posterior distributions. In the final stage, the CE model is evaluated given the posterior parameters and the results are recorded. The simulation returns to stage 2 to simulate another clinical trial dataset, and the process is repeated until sufficient trial results have been iterated to draw a conclusion about the value of chosen trial designs. The whole process is repeated for each alternative trial design of interest, thus enabling comparison of the relative value of different designs.
[bookmark: _Toc345584687][bookmark: _Ref354932054][bookmark: _Toc379467672]The Prior Parameter Distributions
The prior distributions of the CE model were introduced and discussed in more detail in Chapter 7. The full list of the prior distributions of all the CE model parameters can be found in Appendix 16. In this example, the natural history data was taken from a longitudinal cohort study, the treatment specific data from a Phase II trials, costs and QALYs from published literature, and unknown data from elicitation of experts.
[bookmark: _Toc345584688][bookmark: _Ref354932096][bookmark: _Toc379467673]Data Simulation
The BCTS described in Chapter 6 was used to simulate data collected in future Phase III SLE trials. The simulation describes a comprehensive set of disease outcomes, but only records those outcomes that will be used to update parameters of the CE model. Phase III trials are most commonly used to estimate treatment effect and treatment withdrawal, and these data were collected in the BCTS. Costs, utilities, prednisone dose, malignancy and gonadal failure were not recorded in the simulation. The parameter sensitivity analysis, described in Chapter 7, indicated that the health economic outcomes were not sensitive to these parameters. For this reason they were excluded from Bayesian Updating. In a real life setting steroid dose, malignancy and gonadal failure events could be monitored in a Phase III trial. It was important to balance the inclusion of parameters in the Bayesian Updating against the time burden of the subsequent analysis.
In Chapter 2 I identified four trial design features that might be modified in a Phase III trial for SLE including sample size, duration of follow-up, inclusion criteria, and trial endpoint. I decided to focus the analysis on sample size and duration of follow-up.
Sample size and trial duration were identified as the two design features that should be investigated further. Larger sample sizes and duration of follow-up would increase the precision of CE model parameters, particularly those relating to treatment effect. Duration of follow-up was of particular interest because longer trials will collect more evidence for the effect of treatment on organ damage and mortality. The prior parameters for the organ damage and mortality survival models were found to have an important impact on the variance of value-based price. Longer follow-up in the Phase III trials should collect more precise estimates for the treatment effect on organ damage because it takes time to confirm a diagnosis of organ damage. In addition the sample size may improve the probability of observing a statistically significant difference in organ damage. However, both designs would increase the cost of the RCT. I therefore decided to focus my research on investigating whether longer follow-up of patients or larger sample sizes increase the prospects of reimbursement sufficiently to justify the additional costs in SLE trials. 
I decided not to evaluate inclusion criteria in this hypothetical analysis because in the absence of a real case study the specification of sub-groups of patients for whom the treatment may be more effective was arbitrary and unlikely to produce generalisable results. Furthermore, the analysis would require accurate market forecasting to consider uptake of treatment in different sub-groups. This data was not readily available. I decided not to focus on multiple disease activity measures. The main reason being that it was not possible to simulate multiple disease activity indices in the BCTS because the statistical analysis only included SLEDAI to describe disease activity. The definition of primary endpoint was not investigated due to data limitations describing the impact of the BILAG index on long term outcomes. The definition of primary endpoint can impact on the probability of regulatory approval, but given the SLEDAI based structure of the CE model would not impact on the quality of data collected for CE analysis.
[bookmark: _Toc345584690][bookmark: _Toc379467674]Clinical Trial Characteristics
Inclusion Criteria
The specifications for inclusion criteria were fixed to reflect a realistic design decision based on the available information on SLE clinical trials. The review of clinical trials highlighted that age and SLE diagnosis are the most common inclusion criteria in SLE trials. Disease severity and organ involvement have been used to define clinical trial populations. Recent successful trials have used disease activity scores at baseline as inclusion criteria, and this approach is adopted in the BCTS. A meeting with Dr Akil, a clinical expert in SLE from the Hallamshire Hospital Sheffield, (March 2011) highlighted the importance of excluding patients with severe renal involvement and neuropsychiatric involvement. It may be unsafe to recruit patients with neuropsychiatric or severe renal involvement into a clinical trial if their symptoms are life threatening.  Furthermore, he suggested that the inclusion criteria would include the identification of immunological indicators for disease activity such as anti-dsDNA or low complement on entry into the trial. 
In this BCTS the inclusion criteria specified that patients were,
(aged 18-70) AND (SLEDAI>4) AND (DNA binding OR Low complement).
Patients were excluded if they had proteinuria, haematuria or neuropsychiatric involvement at baseline.
Concomitant medications
The BCTS included variables to monitor patient’s history of immunosuppressant treatment, plaquenil prescribed at any time and steroid dose. It was assumed that patient’s history of immunosuppressants did not change during the trial, which is consistent with a concomitant medication restriction that new immunosuppressants cannot be initiated during the trial. Patients receiving plaquenil on entry into the trial continue to receive this treatment, however it was assumed that patients did not initiate plaquenil during the trial. Steroid treatment was allowed to vary over the course of the clinical trial according to the Hurdle model described in Chapter 5.
Treatment Comparators
The BCTS was simulated with two treatment arms. The first treatment arm reflected current Standard of Care (SoC) given to SLE patients. The second treatment arm included SoC combined with a new hypothetical biologic treatment. The patients were randomised to either biologic treatment or SoC only with equal weights to generate an even distribution of patients across each treatment arm. 
Trial Endpoints
The simulations will collect data for three clinical trial endpoints. These endpoints reflect three methods of describing the effectiveness of a new treatment. 
The first endpoint aimed to demonstrate efficacy. This approach is similar to that taken in the belimumab trials to observe a statistically significant difference in the proportion of patients who respond to treatment. Treatment efficacy was determined using a responder analysis. The patient was classified as having responded to treatment if the SLEDAI score declined period by more than 4 SLEDAI points after 52-week. This trial endpoint was described as the Efficacy Trial Endpoint from herein. 
The second endpoint was based on the SLEDAI score measure and focused on the scale of the effect of treatment in reducing disease activity. The measure of effectiveness will be based on the reduction in average SLEDAI scores over the entire period of follow-up. This statistic will be applied to the long-term disease activity regression model to estimate the reduction in long term SLEDAI with treatment. This endpoint is more relevant for the CE analysis because it assesses if the reduction in SLEDAI score is sustained over time. This endpoint will be referred to as the Disease Activity Trial Endpoint.
The third endpoint observed the reduction in organ damage accrual measured by the SLICC/ACR damage index over the entire period of follow-up. Organ damage events are relatively rare events and a small proportion of patients were expected to record an event during the BCTS. However, organ damage is a key component of the CE model because it is costly and impacts on quality of life. This endpoint will be referred to as the Organ Damage Trial Endpoint.
[bookmark: _Toc345584691][bookmark: _Toc379467675]Modified Clinical Trial Settings
Sample size Selection
Three sample sizes will be considered representing small, moderate and large sample sizes. The sample sizes were determined using frequentist sample size calculations according to the three endpoints of the trial. The endpoints were chosen to reflect different trial objectives. The sample size calculations assumed that the duration of follow-up in the trial is 12 months. In the analysis the duration of follow-up will vary, but the sample sizes calculations were not changed for the alternative durations. 
The first sample size was determined with an aim to demonstrate short term efficacy. Response is defined as a reduction in disease activity scores according to the efficacy trial endpoint. The middle sample size was powered to observe a statistically significant reduction in average SLEDAI scores. This sample size will be calculated based on a statistically significant reduction in the disease activity trial endpoint. The large sample size was powered to observe a statistically significant reduction in organ damage accrual. Organ damage events are relatively rare events and a small proportion of patients will be expected to record an event over the 12 months of the clinical trial. Therefore, the sample size is likely to be very large. The sample size was calculated to observe a significant reduction in the Organ Damage trial endpoint.
Frequentist sample size calculations are a more widely used method to determine sample size and have been adopted in previous trials for SLE. It may be counter-intuitive to adopt a frequentist sample size calculation alongside a Bayesian analysis of trial designs. However, the computation time of the analysis was too long to evaluate small incremental increases in sample size. I adopted a pragmatic method to adopt in order to quickly generate three sample size calculations for three trial endpoints. All sample size calculations were estimated in STATA 11 (235).
Sample size estimation for the efficacy trial endpoint
The Efficacy Trial endpoint measures the proportion of responders to treatments in each arm of the trial (π1, π2). The proportions are estimated from the counts of binary data from participants defined as either responders or non-responders at the end of the trial. The hypotheses for the test are

The general formula for calculating the sample size for binary data is expressed by,
	
	
	(8.1) 


where α is the probability of a false positive error and β is the probability of a false negative error (236). A single simulation of the BCTS provided estimates p1, p2 to approximate the response rates for the two arms of the trial. The new treatment arm is expected to have a response rate 0.54, and the standard of care arm 0.4. The α and β are set to 5% and 20% respectively so that the trial has an 80% power to detect a clinically meaningful difference. The estimated sample size is 426, which should be inflated to account for an estimated 24% withdrawal rate, to give a final sample size of 529 patients. 
Sample size estimation for the disease activity trial endpoint
The Disease Activity Trial Endpoint measures the change in average SLEDAI score over a year (µ1, µ2). In a one year trial it is not possible to collect data on the average SLEDAI score for the year before entry into the trial, therefore the SLEDAI score at baseline will act as a proxy for the previous year. The primary endpoint of the trial aims to observe a statistically significant difference in the change in SLEDAI score between the two arms of the trial. The hypotheses for the test are

The general formula for calculating the sample size for continuous data is expressed by,
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where α is the probability of a false positive error and β is the probability of a false negative error (236). A single simulation of the BCTS provided estimates 1, 2 to approximate the difference between the two arms of the trial, and an estimate of the variance . The average change in SLEDAI for standard of care was 1.525. The change in SLEDAI for treatment was estimated to be 1.8832. These estimates were derived from the BCTS described in Chapter 6. The respective standard deviations were 2.44 and 2.43. The α and β are set to 5% and 20% respectively so that the trial has an 80% power to detect a clinically meaningful difference. The estimated sample size is 1,946, which should be inflated to account for an estimated 24% withdrawal rate, to give a final sample size of 2413 patients. The withdrawal rate was estimated from previous SLE trials as described in Section ‎6.2.3.7 of Chapter 6.
Sample size estimation for the organ damage trial endpoint
The organ damage trial endpoint measures the reduction in the accumulation of organ damage.  The primary endpoint of the trial observes the difference in the rate of organ damage accrual on the SLICC/ACR Damage Index between by comparing the hazard rates in the two arms of the trial to get the log of the hazard ratio for treatment. The hypotheses for the test are

To estimate the sample size for the difference between two hazard rates we must assume an exponential survivor function for the control group. This assumption gives more flexible study designs and accounts for the duration of follow-up and how these impacts on the number of events observed given the baseline hazard rate. The method also accounts for an exponential hazard for loss of follow-up of patients. The method assumes that the rate of organ damage follows an exponential survival distribution with hazard rates in the control and treatment arms  and  respectively (216). The natural history model for organ damage included exponential, Weibull, Gompertz and loglogistic functional forms. Whereas, for the sample size calculation a single function form was needed and the exponential was chosen for simplicity, 
I used the Hopkins Lupus Cohort to estimate the baseline hazard,, of composite SLICC/ACR Damage Index progression to be 0.1225. The elicitation exercise estimated hazard ratios for treatment effect on groups of organ systems of the index. These were pooled by weighted average, according to the prevalence of organ damage, to give a mean hazard ratio of 0.8043. The estimated sample size, accounting for withdrawal of patients is 6350. 
Duration of follow-up selection
The BCTS compared alternative duration of follow-ups. The baseline specification followed patients for 12 months, because this design specification had been adopted in previous clinical trials and is required by the FDA (81). I hypothesised that longer duration of follow-up would be beneficial to the pharmaceutical companies because it would collect data on the long term benefits of treatment. Therefore, duration of 2 years and 5 years was simulated. The 5 year trial is considered to be an extreme value to illustrate the maximum possible follow-up that could be considered. 
Final Specification of the trial Designs
To consider the trade-off between sample size and follow-up I specified six trial design scenarios. The trial designs considered in these analyses will include 3 sample sizes and 3 duration of follow-up. The combinations of possible trial design settings are illustrated in Figure 29. Three other trial designs with large sample size and long duration of follow-up were not included in the analysis. This was primarily to reduce computation time in the simulation. The largest trial design specifications were excluded because these were less likely to be feasible for a pharmaceutical company. The excluded trials would be more costly to conduct that the trial designs that have been selected, but they would collect more information on the effectiveness of the new treatments. However, the trial specifications described below is sufficient to consider the trade-off between sample size and follow-up. 
[bookmark: _Ref327468176]Figure 29: Trial design options to be simulated
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The six clinical trial design choices reflect a wide range of clinical trial designs. Whilst Trial A may be sufficient to meet the requirements of a license regulator, the design does not aim to collect data that will demonstrate that the drug is cost-effective. 
Trials B through to F reflect changes to the trial design to increase the amount of data collected in the clinical trial. The designs reflect several options to increase data. The analysis is designed to observe the value of increasing the sample size, duration of follow-up or a combination of both. 
[bookmark: _Toc345584692][bookmark: _Ref354932124][bookmark: _Toc379467676]Bayesian Updating of Probability Density
The log-likelihood for each model was specified so that the prior could be updated with the data from the simulated trial. The log likelihood for the change in average SLEDAI score model can be written as, 

where n is the number of time-points observed,  is the variance, y is the change in SLEDAI,  the coefficients and X the patient characteristics. The natural history model included 12 statistical models, which were updated simultaneously. The 12 models were assumed to be independent, but the parameters within a model were multivariate normal. The likelihood for the parametric survival models can be written as,

 describes the survival function for the model and  is the hazard function. A detailed list of the log-likelihood functions for the regression models is provided in Appendix 18.
[bookmark: _Toc345584693][bookmark: _Toc379467677]Markov Chain Monte Carlo (MCMC) Methods
Many of the EVSI studies identified in the Methodology literature review in Chapter 3 used conjugate distributions to update the prior distributions with data. The risk of withdrawal, organ damage and mortality models use parametric survival analysis. The prior distribution  is characterised by a multivariate normal distribution. However, the distribution of the trial data, , are not conjugate with the prior, because their form is generated by the exponential, Weibull, Gompertz or loglogistic forms that were used to generate them. If the prior and simulated data are not conjugate then the standard approach is to estimate the posterior using Markov Chain Monte Carlo (MCMC) methods (92). 
MCMC techniques are based on the construction of a Markov chain that eventually “converges” to the target distribution which describes the posterior density. Simulated samples from the posterior probability distribution can be obtained using WinBUGS (Windows Bayesian Inference Using Gibbs Sampling) software (14). In WinBUGS a Gibbs sampling algorithm is an iterative procedure where every step generates instances from the distribution of each variable conditional on the current values of the other variables. 
MCMC Bayesian updating of the regression model parameters was implemented in WinBUGS. The MCMC method was developed to sample parameter values from the posterior density of  in the CE model. Two WinBUGs processes were set up to analyse firstly the survival models, including organ damage mortality and withdrawal rates, and secondly the average change in SLEDAI regression. Details of the specification of the WinBUGS model and illustrative results from the mortality survival model are reported in Appendix 19. The MCMC successfully sampled parameter values from the posterior distribution. However, this method could not be used in the final analysis because it was prohibitively time-consuming.

COmputation Time Issues for Implementing MCMC
The computation time of MCMC raised considerable methodological challenges. In order to achieve convergence it was necessary to specify a burn-in of 15,000 and a large degree of thinning (1 in 100) to deal with considerable autocorrelation. As a consequence it was necessary to generate a very large number of posterior iterations which, in turn, generate the set of results after thinning. 
The full analysis process was completed for all regression parameters with a small simulated dataset of 529 patients followed for 1 year. The analysis took 69,443 seconds, approximately 19 hours, to generate 1000 parameters samples for the CE model. The larger trial designs would require even longer analysis time because of the increased size of the data. In Chapter 7, I concluded that the CE model required a minimum of 3,000 PSA iterations to generate stable CE results. This would increase the computation of the posterior distribution for a single trial dataset to 57 hours. In addition to the WinBUGS analysis time it is necessary to evaluate the posterior samples in the CE model, which added an additional 12 hours to estimate the nested inner-loop CE outcomes. This process would need to be repeated many times to reflect uncertainty in trial outcomes for each trial design. For example, a BCTS of 6 trial designs each with 1,000 simulated trial results and fed through the MCMC and CE model PSA process would take 6*1000*(12+57)=414,000 hours=17,250 days=47 years computation time. 
I explored the possibility of using a High Performance Computer (HPC) cluster to generate the analysis to moderate the impact of the substantial computation time of the analysis. The University of Sheffield Linux based HPC, known as Iceberg, has the facility to run the MCMC Bayesian updating described above using R linked to OpenBUGS (237). The HPC allows several simulations to be run in parallel on separate nodes increasing the number of analyses that can be generated within a fixed time-frame. However, the analysis was too time consuming because the HPC imposes a maximum simulation time of 129 hours for each iteration of the prior parameters. I would not be able to evaluate more than 2 trial datasets in that time. In summary, I concluded that implementation of an MCMC updating process nested with the BCTS and alongside running the patient level CE model with PSA was not feasible in terms of computation time. 
[bookmark: _Toc345584694][bookmark: _Toc379467678]Brennan and Karroubi Bayesian Approximation
Brennan and Karroubi (2007) developed a set of formulae for generating posterior expectations for EVSI analysis (115), building on work from Sweeting and Karroubi (2003), whose methods introduced the approximation of a number of Bayesian quantities (238). Sweeting and Karroubi’s method was adapted to incorporate the prior into the likelihood functions to allow the posterior net benefit to be estimated. The method was found to be more efficient in EVSI calculations because it avoided the MCMC updating process to generate a posterior probability distribution. It also reduces computation time because it does not require PSA inner loop evaluations of CE outcomes for each simulated dataset. Their case study using the Weibull distribution would have taken 36.5 days to complete the analysis using MCMC in WinBUGS, whereas the B&K approximation could produce the same result in 3.1 days (115). Based on this estimate I anticipated that the B&K approximation could facilitate the evaluation of multiple trial designs.
B&K Approximation Notation
The approximation is comprised of a series of calculations described below, for which the following notation will be used. 
  A dataset of trial data with  independent and identically distributed observations, 
  vector of  parameters (,
 a function or CE model with parameter inputs ,
 the probability of  given the vector of  parameters ( or likelihood,
 the prior probability density describes the prior expectations of parameters,
 the posterior density of  given   
 the log-posterior density, 
  the first partial derivatives of the log-posterior density function
 the matrix of second order derivative of the log-posterior density function,
 the matrix for second order derivatives for the maximum likelihood estimate .
The approximation includes a number of calculations on partitions of the parameters. 
 a vector of the first  components of ,
 a vectors of the remaining components of  from  to .
The approximation method includes a step that defines the maximum likelihood estimators for a partition of the parameters  conditional on a fixed set of remaining parameter. Such that, 
  the maximum likelihood estimate of  conditional on the first parameters .
For any function , when  we use the short-hand  to denote  which describe the function at the parameter values  from 1 to i and  for values (i+1) to d. 
Brennan and Karroubi Method
Brennan and Karroubi (2007) introduce their method based on the asymptotic theory of signed-root log-density ratio transformation described in Sweeting and Karroubi (2003) (238).
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Brennan and Karroubi (2007) modify the method to incorporate the prior into the likelihood function to create the probability density. The method maximises the probability density in order to calculate the posterior expectation of a function.
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The first term of the equation  expresses the CE model outcome estimated at the posterior mode,. The second term describes a correction term based on d summations, each of which evaluates the function  with 2d+1 specifications of the CE model parameter inputs , , where and are weighted by  and .
A maximum likelihood procedure is used to identify the posterior mode, or the values of  that maximise the posterior density function given the data X. Brennan and Karroubi (2007) use the Newton-Raphson technique to estimate the minimum of  the negative log posterior density function, which is performed as an algorithm in a package from R (220).
 and  are (x) matrices with each row of the matrix containing a vector  or  with values for each of the parameters of the CE model. The matrix   follows the structure illustrated below, and the matrix  follows an identical structure with a different specification for the diagonal. 
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The off diagonal elements to the left and below the diagonal are the posterior mode for the first  parameters of vector. The diagonal elements for  are estimated by 
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where  is derived from the submatrix of  at , . 
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Where the sub-matrix  is inverted, and  is the first element of the inverted matrix .
Finally, the weights  and  are calculated from partial derivative of the log-likelihood density , and the function .

The weights  and  are estimated from 


Brennan and Karroubi (2007) estimate the partial derivative analytically.  was obtained using the hessian  matrix, and obtaining the sub-matrix , when  
Brennan and Karroubi (2007) introduce a Health Economics case study to evaluate Net Benefit and let  so that the Net Benefit of treatment D can be evaluated given parameters θ. They demonstrated that the inner expectation of the net benefit for data X can be approximated by
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If the net benefit function is linear, the CE model parameters are independent and the probability distributions are symmetric then the first term of the equation will be accurate. However, if these conditions cannot be assumed then the second correction term will be required. Each approximation requires the net benefit to be estimated  times, because  each required d evaluations of net benefit and a single evaluation is required for . This can be included in the EVSI formula.
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Brennan and Karroubi test the feasibility and accuracy of the approach has been demonstrated with two case studies. The case studies illustrate that the method can be used with a conjugate multivariate normal distribution and a non-conjugate Weibull distribution for survival data.
Application of the B&K Method to the SLE study
I adopted the second-order B&K method to approximate posterior CE model outcomes for SLE clinical trials to reduce the computational burden of the MCMC method. The SLE VOI analysis provided a case study to evaluate and help to progress methods for future applications of B&K in ENBS studies. The SLE case study is very complex and applies the B&K method in an individual patient simulation with a large number of input parameters. The method would be faster and more straightforward if applied to a cohort model with fewer parameters. The CE model includes 144 parameters, of which 82 would be updated with trial information. The CE model includes exponential, Gompertz, Log-logistic and linear regression which have not previously been used in the B&K method. The log-likelihoods can be found in Appendix 18. The SLE VOI analysis raised several challenges to implement the process. As a consequence, adaptations to the original R code used in the B&K Weibull case study were made (115). In the following sections I describe four critical issues that were raised with the SLE case study and what measures were taken to overcome them.
Excluding CE model parameters
I decided to include a subset of the CE model parameters in the B&K approximation. This differs from the previous B&K approaches in which all CE model parameters were included whether they were updated or not. The SLE CE model included three linear regression models, four Weibull survival models, five exponential survival models, two Gompertz survival models, three log-logistic survival models, and forty eight single parameters for costs and utilities. The CE model parameters can be combined into a single multivariate normal prior distribution. However, only a sub-set of these parameters will be updated with data from the clinical trial. The speed of the approximation is conditional on the number of parameters in the prior , because this determines the number of  and  that are calculated to make the second-order approximation. There were substantial efficiency benefits to be gained from excluding those parameters for which data would not be collected in the clinical trial. In the final specification of the B&K approximation it was estimated that each parameter contributed approximately 68 seconds to the process. Therefore, including the 63 parameters of the CE model that were not updated with trial data would add at least an hour to the calculation time of each B&K approximation.  
The mean values for the prior distributions of the excluded parameters were used to calculate the posterior health economic outcomes from the CE model. This was equivalent to assuming that they are uncorrelated with other parameters and have symmetrical distribution. Whilst this may not be a true reflection of the prior information on parameters it is justifiable if the parameters have a linear relationship with the health economic outcomes of the CE model. The ANCOVA investigation of the CE model described in section ‎7.4.3 showed that the parameters contribute a small amount to the variation in value-based price and Net Benefit. 
After the 63 parameters were excluded from the approximation the remaining prior consisted of a multivariate normal distribution with  dimensions, mean  and variance matrix. 
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Bayesian Updating Regression Models Independently
The log-likelihood for the data is very complex because it is the sum of individual likelihood functions for the regression models of the natural history model. The maximisation process on the log-posterior density was problematic using R optim function from the standard stats package. The function required more than 100,000 iterations to complete the process correctly, with very small values for the step and gradient tolerance (0.00001).  The process was run for 20 minutes and had not achieved convergence. Appendix 20 reports results of the optim maximisation with only five regression models. When the process is repeated with eight regression models the function does not identify a suitable solution within the number of iterations permitted (max iterations=10000). It was impractical to increase the number of iterations further to allow maximisation to occur, as a consequence an alternative method was sought. 
The alternative method developed took advantage of the considerable computational efficiencies gained from segmenting the maximisation processes by regression model. The 14 statistical models were assumed to be independent in the natural history model. This assumption is carried forward in the B&K approximation. Each group of parameters is part of a single statistical model, and does not appear in the likelihood function for any other statistical model. Consequently, the analytical specification of the log-posterior density, its partial derivatives and second order derivatives, could be broken down into component parts because parameters from one regression model are independent of other regression models. The tests are reported in Appendix 20 and illustrate that the assumption of independence between the natural history statistical models does not impact on the estimation of the B&K approximation.
In summary, the maximisation of the log-posterior density function was simplified to enable maximisation of a large log-likelihood function and reduce computation time. It has been demonstrated that there are considerable difficulties in maximising a large log-posterior density function using optim in R. However, segmenting the calculation into individual maximisation process for each statistical model using optim is efficient and reliable in producing estimates.

Computational estimation of Partial Differentiation
A modification of the B&K method aimed to make the method more accessible to non-mathematicians. In the estimation of  and  it is necessary to calculate the partial differential and second order differential. Brennan and Karroubi (2007) use analytical methods to estimate the partial differential and numerical methods to estimate the second-order differentiation. Analytical methods are quicker to compute than the numerical methods; however they require the analyst to be confident and competent in partial differentiation. In the SLE case study we use the Gompertz and Log-logistic functions, which were more challenging to differentiate. I do not have a strong background in mathematics and it was time consuming to complete. Many checks needed to be made on the calculations because there was a risk that small errors could have be made. It was felt that this approach was onerous and that the method would be more accessible to non-statisticians if it were possible to use numerical methods to estimate both the first order and second order differentials. This would mean that the modeller would only need to specify an equation for the log-posterior density. 
The numDeriv package in R was identified, with methods to numerically estimate the first derivative and second derivative for a given function (239). The function grad was used to calculate a numerical approximation of the first derivative of the log-posterior density for each row of   and. The calculation is done using a simple epsilon difference. The function hessian was used to calculate a numerical approximation of the dxd matrix of second derivatives of the log-posterior density. The utilisation of these functions has simplified the method and made it more accessible to health economists.
Selection of Number of Patients to Run Through the Individual Level Simulation for CE model
Simulation error describes the random variation in the results from individual level simulation type CE models, and is analogous to sampling error in statistics. Each time the individual level CE model is run, patient outcomes vary slightly, which creates “noise” in the Monte Carlo estimate of the true mean. Increasing the number of patients in the individual patient simulation reduces the simulation error and increases the accuracy of the outcomes estimated. 
The B&K method evaluates the health economic outcomes of the SLE CE model at the posterior mode of the input parameters, i.e. the patient level simulation is run with . The second order estimate evaluates the health economic outcomes of the SLE CE model at values of each of the parameters above and below the posterior mode, i.e. the patient level simulation is run with  and  . The precision of each evaluation of the CE model is critical in determining the overall accuracy of the B&K approximation. Analysis has shown that in this case study the method was very sensitive to the effects of simulation error. The B&K method identifies the posterior mode for the density of , and the upper and lower estimate , . The value-based price is evaluated at these three values for  and these estimates are used to estimate the posterior treatment value-based price using the equation below. 
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Figure 30 illustrates how the B&K method estimates posterior health economic outcomes in a simple one parameter CE model. The dotted line represents the posterior density of , and the linear line describes the relationship between  and treatment value-based price, .The simulation error is depicted in the graph as error bars around the three estimated value-based price. If the simulation error is large the posterior value-based price which is a weighted average of the three simulation model runs could be inaccurate. This will impact on the second order correction term. This is most likely to occur in the SLE CE model for parameters that have very little impact on the Health Economic outcomes because the gradient of the slope depicted in Figure 30 will be shallow, and those with very precise estimates. It turns out in practice that both of these characteristics are observed for many of the CE model prior parameters for this case study. 
[bookmark: _Ref340846965]Figure 30: An illustration of the B&K method to estimate Health Economic outcomes in a simple one parameter model
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Simulation error can be reduced by increasing the number of patients included in the simulation. Figure 31 illustrates how simulation error in expected QALYs for treatment vary with sample size. 
[bookmark: _Ref342049618]Figure 31: An illustration of simulation error at increasing individual patient sizes
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This shows that there is only a small reduction in simulation error between sample sizes of 10,000 and 20,000. The analysis where n=10,000 took 81 minutes to run, whereas n=20,000 takes 198 minutes. There are clear diminishing returns from larger sample sizes. The MC error where n=10,000 was 0.057 and n=20,000 was 0.039. In order to ensure that the MC error was less than 0.05 QALYs in the final analysis the sample was fixed at 15,000 patients. A similar finding was observed for other model outcomes such as the Incremental Net Benefit. Greater accuracy in B&K estimates from large CE model samples sizes would come at a substantial computational cost.  
Computation Time for B&K Method
Although considerable efforts were made to reduce the computation time of the B&K analysis, VOI analysis of the SLE CE model remains a very time consuming process. Each stage of the simulation is detailed in Table 50. The most time-consuming stage of the process occurs when the weights for and  are calculated. The simulation process in which expected CE outcomes were generated for all six trial designs took 5 days to calculate. 

[bookmark: _Ref350093020]
[bookmark: _Ref364922489]Table 50: Simulation processes and estimated computation times
	Simulation process
	Computation time (minutes)

	Simulate trial data
	0.444

	
	Small sample (529)
	Large sample (6350)

	Estimate 
	1.00 minute
	2.5 minutes

	Estimate  and 
	2.88 minutes
	38.22 minutes

	Estimate and 
	76.99 minutes
	934.8 minutes

	Evaluate 
	130.00 minutes
	135.2 minutes

	Total 
	3.5 hours
	18.5 hours



[bookmark: _Toc345584695][bookmark: _Ref354932193][bookmark: _Toc379467679]Valuation of Clinical Trials In Industry
The EVSI for each trial design would be estimated as the difference between the expected value of a decision from the trial and the current expected value of the decision.
	
	
	(8.12) 


where  is the complement set of parameters of θ that are not collected in the clinical trial.
However, traditional EVSI methods are not compatible with the decision problem facing pharmaceutical companies designing their Phase III trials for three reasons:
1. The pharmaceutical company do not directly seek to maximise the health benefits of the population subject to resource constraints.
2. The pharmaceutical company are very unlikely to get regulatory approval based on their Phase II data so the expected value to the company of current information is zero. 
3. The pharmaceutical company do not have a fixed price for the new treatment.
In the following sections I describe an alternative method that I have adapted from considering how Commercial Net Benefit and value-based pricing can be used to compare and value clinical trials from a pharmaceutical perspective. I have applied this new method to the SLE case study to demonstrate how a pharmaceutical company might use the analysis to maximise expected profits conditional on trial design.
[bookmark: _Toc345584696][bookmark: _Toc379467680]Assurance Based Valuation of Trials
Willan (2008) formulated a function for Expected Profit for a pharmaceutical company’s product. This is renamed in this thesis to be the Profit Forecast (PF). 
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where π is the profit per treated patient, k is the annual disease incidence in SLE, h is the time horizon of sales for the new treatment. The market share of the new treatment is given by s and the probability of reimbursement approval conditional on the strength of evidence from the trial z. The estimate for  is analogous to an assurance calculation. I generated assurance calculations for multiple endpoints of a trial to describe different strengths of evidence. 
Firstly, the BCTS reported the assurance calculations for the Efficacy Trial endpoint,  the Disease Activity Trial endpoint, and Organ Damage Trial endpoint. 
The assurance calculation for a successful CE model outcome, with a positive incremental net benefit is more challenging to estimate. CE model success can only be estimated if the price of the new treatment were known. Within this framework it would be necessary to assume a target price for the treatment and calculate the Profit Forecast. It may be useful to evaluate Profit Forecasts for a range of prices to observe the trade-off between increasing profit per patient treated as price increasing and decreasing the probability that the treatment will be approved. However, the pharmaceutical company will not have to make a decision about the price at this stage in the drug development and the final decision for price will be conditional on trial results. Price scenario analyses may be difficult to interpret for decision-making for trial designs. I considered how the method proposed by Willan (2008) could be adapted to account for an evaluation of trial designs with variable price.
[bookmark: _Toc345584697][bookmark: _Toc379467681]Value Based Pricing Valuation of Trials
I proposed that Willan’s formula should be revised so that the probability of reimbursement approval was removed from the equation and the profit per patient was variable and conditional on the CE outcomes after data collection. Equation ‎(8.13) has been modified to account for the variable profit per patient, 
	
	
	(8.14) 

	
	


where c is the cost of production, k is the annual disease incidence in SLE, h is the time horizon of sales for the new treatment. The profit per patient can be estimated from the CE outcomes assuming that the drug company are willing to set their price according to the willingness to pay threshold of the reimbursement authority. The value-based price of the new treatment can be expressed as an outcome of the CE model. It describes the maximum price that the drug company can charge given the decision criteria of the reimbursement authority. A simple example would be the willingness to pay per QALY threshold. Prior to the Phase III trial, the expected value-based price for the treatment conditional on new data will be uncertain due to the variability in possible data outcomes from the trial. In designing the Phase III trial pharmaceutical companies will want to maximise the expected value-based price and reduce the risk that the treatment fails to reach the market. Different trial designs will have a differential effect on the expected value-based price and trial assurance. 
I specified an alternative formula for determining profit per patient. In Section ‎1.1 of Chapter 1 I proposed that drug success is defined by two factors: a successful licence application and a successful reimbursement application. These two conditions are required in order to achieve profits for the new treatment. The treatment license is granted if the primary endpoint of the trial is statistically significant. The primary endpoint of the trial is expressed by Δ and the significance test . Reimbursement is granted if the annual price of treatment is less than or equal to the value-based price. It assumed that the pharmaceutical company have a minimum price  at which they would agree to market the treatment, this may be related to the cost of producing the drug , but may be influenced by other factors. For example, price expectations may vary if the pharmaceutical company knows of, or anticipate, other drug indications. In the formulation of expected profits, patients are assumed to receive treatment for  years, which can be estimated from the mean treatment years across all BCTS evaluations.
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If the new treatment has generated a value-based price less than the minimum,  or, if the efficacy of the treatment is not statistically significant then the profit per patient is zero. However, if the value-based price is greater than the pharmaceutical companies minimum price , and efficacy is statistically significant, the pharmaceutical company will adopt the value-based price and profit per patient will equal value-based price minus the cost of treatment production. 
[bookmark: _Toc345584698][bookmark: _Toc379467682]Expected Commercial Net Benefit of Sampling (ECNBS)
The Expected Profit for each trial design was estimated from the expectation over all iterations of the Profit Forecasts. A profit forecast was made for each simulated dataset. With some trial results having zero profit implication and others achieving regulatory approval, reimbursement at the value-based price, the expected profit forecast is simply the average of all these.  
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The decision criteria for selecting the optimal trial design required the specification of the maximum Expected Commercial Net Benefit of Sampling (ECNBS). ECNBS expressed the difference in the total value of the trial design and the cost of the trial design. 
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The costs of the clinical trial depend on the specification of the trial design because increased sample size, n, and duration of follow-up, d, will increase the cost of the trial. Consequently, the ECNBS will weigh up whether the increased benefit of a longer trial is justified by the increased cost of data collection. 
The literature view of previous Bayesian analyses of trial design identified that most studies used a fixed and variable cost of the clinical trials in their evaluations. In most cases the estimation of trial cost was crude and very few studies conducted a detailed analysis of clinical trial costs to justify their choice. Since this case study concerns a hypothetical new drug, and in the absence of a detailed specification of the clinical research a similar approach to estimate the costs of the clinical trial was adopted. A fixed cost of £1,000,000 is assumed with a variable cost of £1,000 per patient in the first year of observation and £500 for subsequent years. The additional costs of monitoring patients in subsequent years are incurred, even if they have withdrawn from the study. This is a simplifying assumption and may over-estimate the cost of longer trials, but this may be justified by the costs of chasing up patients who are lost to follow-up. The cost of producing the drug was assumed to be £200 per patient treated. No costing studies for SLE trials were identified in the literature. 
[bookmark: _Toc345584699][bookmark: _Toc379467683]Number of Patients Who Will Benefit From Treatment
Estimation of the Profit Forecast relies on an estimation of the number of patients who will receive treatment. The estimate is determined by the annual incidence of SLE k, the current time horizon of the treatment h, and the market share of the new treatment s. These three parameters can be challenging to estimate, particularly for a hypothetical new treatment. Given the complexity of the Bayesian updating it was necessary to adopted relatively simple assumptions regarding these parameters. However, in a real-life case study it would be necessary to refine these estimates or to conduct sensitivity analyses to test the impact of the assumptions. 
I used published literature to generate an estimate of the incidence of SLE over an annual period from Birmingham, UK to reflect a population with a broad ethnic mix. The study reports a point estimate of the incidence to be 3.8/100,000/year (39). The analysis described above has been presented using a simple description of UK regulation and reimbursement. However, the value of the Phase III trial is not restricted to the projected sales in the UK market. Therefore, the incidence rate was applied to the current population statistics for the OECD countries. The most recent population statistics were from 2009 and reported a total population of 1,221,410,000. In line with the methods used in the Birmingham study children aged less than 18 were excluded from the population base. The OECD reported a population of 309,388,240 who were less than 19 years of age (240). This estimate was considered sufficient to exclude juveniles from the population base despite the small discrepancy between the use of 18 and 19 years of age. This gave a final population base of 912,021,760, and an annual incidence of 34,657 diagnoses of SLE per year. By estimating an incidence for the OECD countries it is implicitly assumed that the £30,000 cost-effectiveness threshold is used to set prices across all multiple national markets. Whilst this is not a realistic assumption the threshold can be used to approximate prices in other jurisdictions and is sufficient to demonstrate the method and meet the objectives of this study. Further adaptations of the method to incorporate multiple market settings are explored further in Chapter 9.
The time horizon of the treatment was assumed to be 10 years. This describes the time until the treatment would be replaced by more effective alternatives. The value is relatively arbitrary but is consistent with estimates from other ENBS studies (111).
It has been stated earlier in the thesis that there are very few licensed treatments available for SLE, which would indicate a potential for a large market share to be exploited. However, given the heterogeneous nature of the disease it is likely that a percentage of patients with an SLE diagnosis would not require a new biologic treatment because their symptoms can be managed with cheaper and less intensive treatments. The market share parameter in this analysis was used to moderate the proportion of SLE patients who would be considered eligible to receive a new treatment. It is assumed that the market share for a new treatment is 43.2% of SLE patients, which was estimated from the proportion of patients in the Hopkins Lupus Cohort who had a history of immunosuppressant treatment, in Table 23 of Chapter 6. Initiation of immunosuppressants is indicative of a severe flare in the disease.



[bookmark: _Ref354932271][bookmark: _Toc379467684]Results
[bookmark: _Toc379467685]Assurance
The analysis identified that sample size and duration of follow-up impact on the assurance for the three endpoints of the trials. Table 51 reports the proportion of simulation runs in which the simulated trial results produced a statistically significant difference between the treatment arms for each of the three trial endpoints. The efficacy endpoint describes the responder index, the disease activity endpoint describes the difference in average SLEDAI score, and the organ damage endpoint described the difference in SLICC/ACR Damage Index. Larger datasets increased the likelihood that the effect size will be significant because the standard errors for the difference between arms are decreased. 
The efficacy endpoint reports the highest probabilities for a successful trial. Probabilities fall in the range 0.74-0.92 for all trial designs. This indicates that there is a strong likelihood of achieving this endpoint for all trial designs. The assurance can be used to represent the power of a trial. RCT power calculations are often based on estimates of between 80-90%. In this respect the simulated trials have reasonable power, with slight under-powering observed in the small sample size trial. Increasing the duration of follow-up does not impact on the responder index because it records the difference in the proportion of responders after 52 weeks of treatment.
Table 51 demonstrates that sample size improves the likelihood of success on the efficacy endpoint. However, modest gains in the probability of success are achieved for relatively large increases in sample size. It is also shown that the gains are diminishing with larger sample sizes. An increase in sample size of approximately 1800 subjects, from 529 subjects, increased the probability by a factor of 14%. Whereas increasing the sample size by 3937, to 6350, subjects increased the probability by a factor of only 8%. 
The assurance for the disease activity endpoint is lower than the responder index efficacy endpoint. The disease activity endpoint reports the largest variation in probabilities across the trial designs. A small trial with short follow-up has a less than 50% probability of meeting the primary endpoint. Whereas, increasing the sample size or duration of follow-up will tip the likelihood over this threshold. The greatest gains in the probability of meeting the disease activity endpoint were for sample size increases, rather than duration of follow-up. However, a combined increase in both produces favourable results.
The organ damage endpoint has the lowest probability of success of the three endpoints. None of the trials exceeded a probability of success greater than 50%. Increasing the sample size of a 1 year trial has a very modest impact on the probability of success. Increasing the duration of follow-up to 2 years is a much more effective strategy to increase the likelihood that the endpoint is met. On the other hand, increasing the duration of follow-up to 5 years has almost no effect on the probability of success. This is most likely due to the high rates of withdrawal from the trials (approximately 25% in the first year), which substantially reduces the amount of data collected in the later stages of the trial. 
[bookmark: _Ref363486660]Table 51: Probability that the clinical trials will demonstrate a statistically significant effect size
	
	Efficacy endpoint (SLEDAI)
	Disease Activity (SLEDAI)
	Organ damage (SLICC/ACR DI)

	
	1 year
	2 years
	5 years
	1 year
	2 years
	5 years
	1 year
	2 years
	5 years

	n= 529
	0.743
	0.743
	0.743
	0.431
	0.596
	0.695
	0.069
	0.138
	0.135

	n=2413
	0.884
	0.884
	
	0.777
	0.809
	
	0.070
	0.201
	

	n=6350 
	0.921
	
	
	0.882
	
	
	0.081
	
	

	SLEDAI = SLE Disease Activity Index; SLICC/ACR DI = SLICC/ACR Damage Index



[bookmark: _Toc379467686]Expected Value-Based Price and Expected Commercial Net Benefit of Sampling Results
Figure 32 illustrates the proportion of simulated trials for each trial design that met the reimbursement criteria. In some trial designs the most likely reason for not achieving reimbursement was due to the low proportion of trials meeting the primary endpoint, as observed for the trials with lower sample size. Whereas the larger sample size trials tended not to achieve reimbursement because the value-based price was lower than the minimum price.
[bookmark: _Ref363560398]Figure 32: Proportion of simulated trials with meeting the criteria for success from 1,600 simulations for six trial designs
[image: ]
Table 52 reports the expected financial outcomes of the trial after regulatory approval and reimbursement for each of the simulated trial designs. The results are based on 1,600 simulated datasets for each trial design generated from the BCTS. Each simulated dataset was used to update the CE model parameters to estimate value-based price, and averaged over all simulations to estimated expected Commercial Net Benefit of Sampling. 
[bookmark: _Ref346892150][bookmark: _Ref354317720]Table 52: Probability of reimbursement, expected value-based price, expected sales volume, expected costs and expected Net profits from sampling
	
	Probability of reimbursement
	Expected revenue per patient year for trials meeting reimbursement criteria
	Expected Profit per Patient
	Expected Sales Volume 
	Expected sales value
(million £)
	Trial Cost (million £)
	Expected Commercial Net Benefit of Sampling (million £)

	n= 529
1 year
	0.692
	£2132
(891)
	£9774.8 (7354.2)
	103,586 (69149)
	£1463 (1101)
	£2.06
	£1440 (108.8)

	n= 529
2 years
	0.646
	£1715 (968)
	£7920.9
(6516.7)
	96,661 (71636)
	£1186 (976)
	£2.85
	£1164 (96.3)

	n= 529
5 years
	0.669
	£821.2 (2618)
	£8543.5
(6679.4)
	100,217 (70455)
	£1279 (1000)
	£5.23
	£1254 (98.7)

	n= 2413
1 year
	0.700
	£1371 (1005)
	£7520.4 (5549.3)
	104,803 (68631)
	£1126 (831)
	£5.83
	£1099 (81.9)

	n=2413
2 years
	0.471
	£1860 (903)
	£4868.4 (13286.2)
	70,461 (74753)
	£729 (1989)
	£9.45
	£705 (198.3)

	n= 6350
1 year
	0.486
	£731 (1979)
	£4820.1 (8103.0)
	72,800 (74854)
	£722 (1213)
	£13.70
	£693 (120.4)

	Reimbursement criteria = probability of a significant reduction on SLEDAI AND estimated VBP VBP>Pmin (minimum price acceptable to company); () standard deviation



In the first column of Table 52 the probability of reimbursement is reported for each trial design conditional on a statistically significant difference in the efficacy endpoint (> 4 point reduction in SLEDAI at 52 weeks) and a value-based price greater than £900. Those trial simulations which achieved the reimbursement criteria used the value-based price generated from the CE model to estimate profit forecast.
In the second column I report the expected value-based price for trial designs with that meet the reimbursement criteria. The expected value-based price for trials achieving the reimbursement criteria were variable across the trial designs. 
Column three contains the expected profit per patient estimated from all trials. As described in equation ‎(8.15), trial simulations that did not meet the reimbursement criteria were assigned a profit forecast of zero. Those that did meet the criteria were expected to achieve a profit equal to the expected value-based price multiplied by the treatment duration, minus the costs of production.
In the fourth column the sales volume described the expected number of sales of the treatment given the reimbursement status, SLE incidence, market share and the time horizon of the treatment. As such the sales volumes are higher in trial designs that report a higher probability of reimbursement. 
Column five shows the trial costs based on the sample size and duration of follow-up of the trial.
In the sixth column, the overall commercial net benefit of sampling is reported. The expected profit per patient (column 3) was multiplied by the sales volume to estimate the expected total profits. Expected total profits minus the trial costs gave the expected commercial net benefit.
The results reported in Table 52 imply that the trial design with small sample size and short follow-up has the greatest commercial net profits owing to the good probability of reimbursement, high expected value-based price and low trial costs. However, there are strong indications from the data that these estimates are influenced by simulation error due to only 1,600 BCTS trial datasets being sampled. 
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The patterns in the standard deviations for reimbursement value-based prices, in column 2, have a tendency to increase with larger sample size and duration of follow-up. This pattern is consistent with the principles of Bayesian updating. As the datasets increase in size there will be greater variation in the expected value-based price because the data dominates the prior in the estimation of the posterior density. Smaller datasets will tend to produce estimates closer to the prior mean, and will subsequently report less variability.  The implication is that larger sample sizes are more likely to generate large profits when the treatment effect is sampled to be large. The prior distribution will be stronger for small sample sizes so it is less likely that the new data will yield prices greater than the price at the prior mean. 
Figure 33 illustrates the differences in the expected Commercial Net Benefit for each trial design. Commercial Net Benefit describes the difference between the expected profit forecast and the total costs of the trial. The trial design with the highest commercial net benefit is considered the most efficient design because it is expected to yield the highest revenue after accounting for the costs of the trial. The current estimated mean for 1,600 simulations suggest that a small trial design is optimal, and the additional costs of larger trial designs are not justified. 
[bookmark: _Ref354764424]Figure 33: The expected Commercial Net Benefit of six trial designs from a sample of 1,600 simulations
[image: ]
[bookmark: _Toc379467687]VOI Analysis Convergence
There is strong evidence from the results that there is insufficient stability in the model outcomes from 1600 trial simulations to draw firm conclusion regarding the Commercial Net Benefit of treatments. Value-based price estimates are highly variable across trial design specifications. The differences have a substantial impact on Net Benefit and it is not possible to correct for the bias in the results without running additional simulations. 
Two patterns in the expected value-based price were anticipated in the results. Firstly, the mean of the expected value-based price should be equal across trial designs of equal duration because they are derived from the same prior distribution. Secondly, the standard deviation should increase for larger datasets because the data will dominate the prior distribution. Equal mean expected value-based price have not been observed, which poses considerable problems. Since the appropriate pattern in standard deviations is present it is most likely that the differences in mean expected value-based price are due to insufficient simulation runs. Each simulation run represents a random draw from the distribution of expected value-based price. Figure 34 illustrates a boxplot diagram for the expected value-based price across the six trial designs. At convergence we would expect to see considerably greater alignment in the median reported in Figure 34. Increasing the number of simulation runs will minimise the impact of extreme samples and the results will converge to a common mean estimate. 

[bookmark: _Ref354768320]Figure 34: A Boxplot demonstrating the variability in value-based price across six trial designs
[image: ]
The analysis produced large variations in the expected value-based prices for each trial design. Investigation of the posterior estimates for the CE model parameters indicated that the analysis had not converged to a stable estimate with 1,600 trial simulations. The variability in mean estimates for CE model parameters indicates that many more trial simulations were needed. However, given that these 1,600 trial simulations took two months to generate using a High Performance Computing Cluster it was not feasible to continue the analysis due to computation time. 


[bookmark: _Toc345584700][bookmark: _Ref354932286][bookmark: _Toc379467688] Discussion
In this chapter I have described how the SLE BCTS and CE model were combined to evaluate alternative trial designs for SLE. I have presented a method for valuing the trials from the pharmaceutical perspective by evaluating the value-based price from the CE models assuming a threshold of £30,000. The computation time of the analyses was considerable and several interesting findings emerged from the process of reducing computation time. The analysis time could potentially extend to 12 months using the High Performance Computer. I decided that there was only a small advantage to pursuing further simulations given the overall objectives of the PhD. Further research to test, develop and implement further computation time saving methods would be useful and would be needed to draw a firm conclusion on the optimal trial design in this case study. 
In the discussion chapter I reflect on some of the issues raised in this study around the potential for value-based pricing, the problems of computation time, and the balance between the number of trial datasets simulated and the accuracy of the CE model in optimising computation time.  
[bookmark: _Toc345584701][bookmark: _Toc379467689]Value-Based Pricing and the Threshold
Value-based pricing assumes that a threshold has been set to determine the maximum price that society is willing to pay for the benefits of the new treatment. In this study the threshold reflected the money that society is willing to pay for a QALY gain. In the UK it is often cited that the standard QALY threshold used by NICE is between £20,000-30,000 per QALY (241). For this reason the value-based price in this study was determined assuming a threshold of £30,000 per QALY. 
In reality the value-based price for new treatments is more difficult to specify. Determining the value of a QALY has been an active area of research in Health Economics (242). There are ongoing debates whether there should be a single QALY value, or whether the QALY should be weighted according to the characteristics of who is gaining them (243). Furthermore, research has shown that decisions at NICE are influenced by the burden of disease and uncertainty in INB (244). As a consequence, the £30,000 threshold to determine the value-based price in this analysis may not incorporate other important factors that may influence reimbursement authority’s decisions. If these other factors are truly used in the reimbursement decision process it will affect the accuracy by which the analysis that I have presented here predicts the expected value-based price of the new treatment. Explicit decision criteria for these multiple factors are not currently specified for the UK and other national reimbursement authorities. In order to apply this method to a real-life case study it would be necessary to make assumptions for the threshold QALY and other decision criteria. The reliability of the VOI method will depend on the validity of the value-based pricing decision criteria assumptions. 
The threshold used here has the advantage that it is recognisable as a well defined threshold in health economics decision-making. It is extensively discussed in the literature and used in practice, which means that it is not an arbitrary figure. However, it is not currently used in the UK to determine prices. Future changes to UK pricing policy will clarify the mechanisms for how prices will be set using value-based pricing. These should be incorporated into the function within the CE model to calculate the value-based price. 
[bookmark: _Toc345584702][bookmark: _Toc379467690]Computation Burden
The PhD study has identified several improvements in efficient computation of posterior CE outcomes within the context of a complex individual level simulation model. However, even with those efficiency improvements the computational burden remains substantial and prohibitive. Computation time has driven many of the decisions that were made when implementing the analysis. The complexity of the CE model is the most important contributing factor to computation time in this analysis. The complexity of the CE model impacts on the time it takes to evaluate the impact of a simulated dataset and the number of parameters impacts on the B&K process. The B&K method was applied to reduce the computation time and was substantially quicker than MCMC updating. Within the B&K method I excluded CE model parameters not updated with trial data and assumed that the regression models describing the natural history of the disease were independent. Testing of the posterior density maximum likelihood indicated that this was unlikely to impact on outcomes. 
Despite efficiency gains from the approximation methods used, the analysis could not generate useful results within a reasonable time-frame for a pharmaceutical drug development programme. The final analysis took over a month to compute using a High Performance Computer (HPC), and a much longer period to develop the BCTS and CE model. There are many contexts in which a HPC facility would not be available and it might not be feasible within the timelines of a pharmaceutical company drug development programme. A considerable proportion of time was spent on the development and modifications of the simulation structure. Once the simulation is built a large proportion of the investment of time would not have to be repeated, apart from small modifications to design specifications. However, it is unlikely that the process could be repeated in a real world setting for a disease of comparable complexity.
[bookmark: _Toc345584703][bookmark: _Toc379467691]CE model Accuracy versus number of BCTS iterations
In this analysis there are two sources of random error in the reported results. The first arises from the estimation of CE model outcomes in the B&K approximation. An important consequence of an individual patient simulation is that one must accept that the results include some degree of simulation error. Simulation error must be reduced by increasing number of individuals simulated in the CE model, but larger numbers will increase the computation time of the analysis. In the final analysis the CE model sampled 15,000 patients. The modeller must make a judgement about what level of error can be tolerated. The second source of random error arises from the sampling of BCTS trial data. It will take time for the outcomes of the simulation to converge to the true posterior mean, as each sample represents a single draw from the distribution. Both sources of error can be resolved by larger samples. However, larger samples will increase the computation time, so a trade-off must be made.
An analogous problem arises when sampling multiple CE model runs in a PSA using an individual patient simulation. Time constraints often mean that precision in an individual CE model run must be sacrificed to allow more PSA runs to be completed. Analytic methods using analysis of variance techniques to balance the number of individuals in the sample and the number of PSA runs have been described (245). The method investigates the variance in individual outcomes and the variance between PSA outcomes to optimise the specification of the two sample sizes. By adopting the B&K approximation it was not necessary to run PSA on the CE model, further research would be useful to develop these kinds of methods to balance individuals in a CE model against trial simulations.
A similar analysis of variance method to optimise the number of individuals and the number of runs could theoretically have been applied to this decision problem. However, the large number of input parameters included in both the BCTS and CE model was prohibitive in adopting this approach. As a consequence, it was necessary to use normative judgements to decide the two numbers. The sample sizes were selected by investigating the accuracy of CE model outcomes rather than arbitrarily selection. I decided to adopt a two step process of investigating the number of individuals required to obtain reliable CE model outcomes, and allow the number of BCTS trial simulations to vary. This meant that the accuracy of the overall analysis would have to be evaluated after the analysis was completed. 
The number of patients included in the CE model was fixed for two reasons. Firstly, it was much quicker to evaluate the accuracy of the CE estimates in the B&K approximation. Secondly, it would be possible to increase the number of BCTS samples after the analysis was completed, whereas the whole analysis would need to be repeated if the CE model sample size was not sufficient. 
Analysis of the accuracy of CE model outcomes in a B&K approximation identified that there were modest gains in simulation accuracy when moving from a sample of 10,000 patients in the CE model to 20,000 patients. In contrast, the time to complete the analysis is more than doubled. The final sample size was selected so that the MC simulation error in expected QALYs was less than 0.05. I settled on a sample size of 15,000 for the individual level simulation CE model. 
[bookmark: _Ref377903188][bookmark: _Toc379467692]Generalisability of Computation Problems
Although the analysis of trials in SLE was not feasible within this study the problem of computational burden would be unlikely to arise in all future applications of the method. The computational burden identified in this example arises due to three features of the model. 
Firstly, the model describes here is an individual patient simulation. Cohort simulation models require substantially less computation time than individual patient simulations. Therefore, a simple cohort model might have generated results within a shorter time-frame. Secondly, the SLE CE model included fourteen regression models to describe the treatment effect of the new treatment, and therefore 88 parameters of the CE model needed to be updated with trial information. In contrast, other CE models may only need to update one or two CE model parameters, which would substantially reduce computation time. 
The method for evaluating trial designs for a pharmaceutical company can be generalisable to other decision problems. However, the SLE case study has highlighted that the method cannot be universally applied to all models, and complex CE models are more likely to pose computational challenges.
[bookmark: _Toc345584704][bookmark: _Toc379467693]Conclusions
The CE model for SLE is complex and requires an individual level simulation with a substantial computation burden. I have developed a BCTS in order to simulate trial results for a Phase III trial for a hypothetical drug. I have used the BCTS to investigate assurance in terms of regulatory approval and have linked the trial outcomes to the CE model to estimate the assurance of reimbursement approval. Prior to a Phase III trial the price of the treatment has not been decided. I have developed a framework to use the ideas of value-based pricing to quantify the expected commercial Net Benefit of Sampling. This enables comparison between alternative trial design specifications.
Substantial computation time problems were faced when using traditional methods for Bayesian Updating in this model. I have developed and adapted the Brennan and Karroubi (2007) approximation method and show that it is possible to compare the expected value-based price and expected commercial Net Benefit of sampling between trial designs. Whilst demonstrating that this analysis is possible in principle, the substantial computational burden means that there remain some issues with the interpretation of the results. Running more simulations would be needed to improve the accuracy of the hypothetical results presented, but are not necessary to demonstrate the theory or principles of the PhD.  The framework has been tested and developed using a very challenging and complex disease. The principles and methods should be able to be utilised in much simpler disease contexts where the computational burden is less challenging. 


[bookmark: _Toc353377784][bookmark: _Toc379467694]Chapter 9: Discussion
[bookmark: _Toc353377785][bookmark: _Toc379467695]The results of the valuation of SLE Phase III trials
I hypothesize that Health Economic analyses can improve clinical trial design in the pharmaceutical industry by prioritising trial design features that optimise future profits for the pharmaceutical company. 
In this thesis I have demonstrated how value of information (VOI) analyses could be used to prioritise SLE clinical trials during pharmaceutical drug development programmes. I have developed a conceptual model to describe the health implications of SLE and used it to develop a natural history model for SLE. The natural history model was implemented in a BCTS and CE model to describe the effectiveness and cost-effectiveness of new treatments for SLE. I have integrated the CE model and BCTS to sample clinical trial data, and evaluate clinical trials using VOI methods. I have demonstrated that there are some limitations to applying the methods in complex diseases; therefore the method will only improve clinical trial design if the analyses can be completed within a reasonable time-frame.
I was motivated to investigate whether alternative designs could be evaluated using health economic techniques. I identified several new biologic treatments for SLE in drug development approaching Phase III assessment so information about the optimal trial designs would have practical value. Very few large trials in SLE have been successful, which leaves many questions about the optimal trial design unanswered. SLE provided an interesting case study because CE studies in SLE were very rare at the start of this project and there would be considerable challenges in developing a conceptual model. VOI has the potential to improve clinical trial design in a case study like SLE, because there is a paucity of existing data and testing alternative trial designs with real patients can be very expensive and inefficient. I selected SLE as a case study following a series of unsuccessful clinical trials, and reimbursement applications for new treatments.
The BCTS and CE models were complex because they were individual patient simulation models with multiple disease outcomes. The CE model developed here could be used in a reimbursement submission because the conceptual model and statistical analysis were developed with GlaxoSmithKline and were subsequently submitted to NICE. Therefore, the statistical analysis underpinning the CE model has been confirmed to meet the requirements of a pharmaceutical company and the NICE Evidence Review Group was happy with the statistical analyses of the Hopkins Lupus Cohort. I decided to adopt a complex CE model in the VOI analysis because it was more relevant to the decision problem of the pharmaceutical company to use the CE model that they would use for reimbursement. A simpler CE model would have reduced the computation time, but would only approximate the impact of the trial on the more complex CE model. 
An elicitation study was designed to estimate log odds ratios and survival analysis parameters for the long term efficacy of treatment. This study was undertaken because some data would not be estimated from Phase I and Phase II studies. The elicitation exercise was relatively complex because it elicited multiple unobservable quantities for logistic and survival models. The elicitation was designed within a month, each interview took 2 hours to complete, and the analysis of the results took approximately one week to generate and present in an acceptable form. I believe that this time frame could be reasonably accommodated within a pharmaceutical companies drug development programme. 
I developed a VOI analysis to investigate whether longer follow-up or large sample size would improve the expected value-based price of the treatment. All strategies would increase the amount of data available for the new treatment and increase precision in the CE outcomes. However, the VOI analysis could determine whether more investment in the trial was a cost-effective design strategy. I have adapted the traditional method of EVSI to reflect the uncertainties and motivations of a pharmaceutical company when planning a Phase III trial. Importantly I allowed price to vary according to the outcomes of the CE model, which can be used to estimate the value-based price at a willingness to pay threshold of £30,000 (29).  Each trial design was simulated 1,600 times to estimate their impact on the expected value-base price that would be imposed by the reimbursement authority. 
The VOI analysis did not produce conclusive results for the SLE clinical trial design. Unfortunately, one thousand BCTS iterations were not sufficient for the VOI analysis to produce stable results from which it is reasonable to compare between trial designs. There remains considerable simulation error that masks the true benefits of the alternative treatments. I decided that it was not practical to increase the number of BCTS iterations above one thousand. The analysis is time consuming to run because the CE model is complex and includes non-conjugate distributions.  However, the main driver of computation time comes from the number of CE model parameters that needed to be updated. 
[bookmark: _Toc353377786][bookmark: _Toc379467696]What is new about this research
This PhD undertook new research in three main topics. Firstly, this study has contributed to the development of cost-effectiveness modelling in SLE to enable future economic evaluations. This required the development of conceptual and statistical modelling of SLE outcomes for a BCTS and CE model. Secondly, since SLE is a complex disease, a complex simulation process was undertaken to generate VOI outcomes. Thirdly, modifications of the traditional EVSI approach were studied to enable the uncertainties and motivations of the pharmaceutical company to be integrated into the process. 
[bookmark: _Toc353377787][bookmark: _Toc379467697]Systemic Lupus Erythematosus
[bookmark: _GoBack]The analysis presented in this thesis has contributed original research to the field of SLE with substantial practical value. The analysis of the Hopkins Lupus Cohort presents a set of statistical models from a single, large cohort of patients that describe a broad range of outcomes of SLE. The statistical models can be used as a natural history model for SLE to describe the disease outcomes for SLE patients that match to the characteristics of the Hopkins Lupus Cohort. The natural history model is structured to allow the interdependencies between the disease outcomes to be emulated in a simulation.
There were several limitation and data gaps identified from the published literature. The review of SLE epidemiology studies identified a large number of analyses that had investigated risk factors associated with mortality, organ damage and disease activity described in Section ‎4.2. These studies predominantly used Cox-regression methods, and logistic regression. These methods are commonly used in epidemiology studies, and are useful in identifying risk factors for disease outcomes. These statistical models enable an understanding of which covariates such as age, sex, disease activity, affect the risk of damage or mortality. For example, Ibanez et al. developed the Adjusted Mean SLEDAI measure and have demonstrated that high AMS is associated with organ damage and mortality (142;176). Cox-regression models estimate the relative effects of risk factors on survival without making assumptions regarding the shape of the survival curves and the time to an event. However, to predict organ damage and mortality in a simulation it is necessary to model the shape of the survival curve. Parametric survival models overcome these limitations and can be used to predict the time and probability of events.
Previous epidemiological analyses of SLE have focussed their research questions on specific aspects of the disease. Studies have investigated mortality (150), organ damage (171), treatment (181) and disease activity (176) separately. Organ damage has been modelled in various ways ranging from grouping events according to the SLICC/ACR Damage Index (162) to modelling individual events such as seizures (187). As such, there were some organ damage events that had not been studied. Other data gaps arose for organ systems in which disease activity and steroid exposure contribute to damage accumulation, whereas only one risk factor was included in the statistical model. I have developed statistical models for gastrointestinal, ocular, and skin damage. This approach found that vasculitis and prednisone predicted gastrointestinal damage, prednisone predicted ocular damage, and skin involvement predicted skin damage. 
The magnitudes of the risk factors for mortality and organ damage are broadly consistent with previous studies. Comparisons with analyses of the Toronto cohort are most relevant because they are estimated from a similar size cohort, and collected over a similar time-horizon with Adjusted Mean SLEDAI as the measure of disease activity. Analysis of the Toronto Lupus Cohort identified that a unit increase in the Adjusted Mean SLEDAI increased the risk of mortality by 20% (142), and the results from the Hopkins cohort were 23%. Analysis from the Toronto group investigated the relationship between AMS and composite organ damage and reported a hazard ratio of 1.09 (176). In the Hopkins analysis the SLICC/ACR Damage Index was split by organ system, and we identify larger risk ratios but only in three organ systems, across all organ systems the average would be much closer to 1.09. 
Complex natural history models have been adopted in other disease areas such as Diabetes, in which analyses of the UKPDS trial cohort were used to generate the UKPDS Outcomes model (246). The UKPDS Outcomes model is a simulation model for Type 2 diabetes that can be used to estimate the likely occurrence of major diabetes-related complications over a lifetime. The UKPDS Outcomes model comprises seven Weibull survival models for key complications, three mortality survival models with logistic and gompertz functional forms, and four linear regression models to describe the long term trajectories of important risk factors. The UKPDS model has been used in Health Technology Assessment for Diabetes interventions (247). The SLE natural history model developed here is similar in that it includes statistical models to describe linear process over time and survival analysis to predict future events. Covariates within the statistical models ensure that inter-dependencies between disease outcomes are described in the simulation.
My analysis of the Hopkins Lupus Cohort has made two main contributions to the literature. Firstly, it has provided a detailed description of the longitudinal outcomes of SLE for multiple disease outcomes from a single observational cohort. Previous studies have focussed on mortality or individual organ damage outcomes, such as cardiovascular events. Therefore, we have identified risk relationships for organ damage outcomes that have not been extensively studied, such as skin, ocular and gastrointestinal damage. Secondly, I have used statistical methods that can be easily implemented in a simulation model because they assume a distribution for the survivor function.  
[bookmark: _Toc353377788][bookmark: _Toc379467698]Value of Information Analysis
The BCTS and CE model developed for VOI analysis are relatively complex compared with other EVSI studies. Many studies had assumed that Net Benefit was normally distributed, and calculated EVSI analytically (33;94;100;101;106;129). Even when existing CE models have been used VOI analyses have evaluated future trial designs whose outcomes can be sampled from a single probability distribution (111;113). This approach could not be taken because the SLE trial would update multiple CE model parameters and the correlation between these parameters was unknown. It was not possible to update the treatment effect parameters independent from the organ damage and mortality survival models because the parameter is nested within the regression models. Adjusted Mean SLEDAI and cumulative average steroid dose describe some of the difference in treatment effect.  The correlation between these coefficients and the treatment coefficient was unknown.
Assuming conjugate distributions for CE model parameters is an efficient method to update the prior with new data. However, many of the prior distributions of the CE model were non-conjugate. The survival models to describe the risk of organ damage and mortality have Weibull, log-logistic and Gompertz survival functions. These distributions do not have conjugate priors. 
In order to increase the efficiency of the EVSI I adopted the Brennan and Kharroubi (B&K) Bayesian approximation technique (115;116). The B&K Approximation was introduced in 2007 with two case study examples. Since then the method has been adapted to evaluate unbalanced datasets if multiple studies are planned (114). I applied the method to a complex reimbursement individual patient simulation model with 144 parameters, of which 82 were updated with trial data. The SLE CE model I have developed was more complex than the previous applications of B&K, and has more parameters to update than most CE models. As such, it can be viewed as an extreme test of the method. Brennan and Kharroubi (2007) stated that the method can be extended to more complex CE models where the greatest efficiency gains can be made (116). In this thesis I tested this claim and applied the method to a CE model with 144 parameters, which includes fourteen independent regression models and many costs and utility estimates. I found that the method can be extended to more complex CE model and has considerable efficiency savings compared with MCMC methods. 
Several modifications were made to the original B&K code accompanying the Weibull example (115), written in the programme package R, to adapt the method to this case study, make the method more accessible to health economists, and decrease the calculation time. The modifications were necessary to enable me to reduce computation time compared with MCMC methods. As a consequence, it was possible to generate posterior expected value-based prices for six clinical trial designs using the University of Sheffield High Performance Computer (237). However, despite many efforts to reduce computation time the method was still very time consuming to run and would require longer analysis time, or faster computers to generate in a real-world setting. 
The B&K method successfully reduced computation time because it substituted the MCMC sampling with a quicker algorithm, and substituted the nested PSA to evaluate CE outcomes by approximating the expected CE outcomes. The B&K approximation requires fewer evaluations of the CE model than a PSA (165 vs. ≈5,000). As a consequence, I had not anticipated that additional simplifications would be required. Two EVSI studies with large CE models adopted simplifying assumptions when using conjugate distributions to reduce the computation burden of the nested inner PSA evaluation (111;113). One study used meta-modelling to approximate the CE outcomes (113). The second developed an alternative simple CE model of fewer than 20 parameters to evaluate the cost-effectiveness results (111). These approaches could be utilised to speed up the computation time of the SLE CE model. This would enable evaluations of Phase III trial designs to be completed within a reasonable time-frame and would generate sufficient BCTS iterations to generate stable results to help guide decision-making. Future extensions to this work, or real life application of the method would likely consider adapting the CE model and extensive analysis would be required to ensure that the simple CE model accurately predicted the results of the larger reimbursement CE model. 
[bookmark: _Toc353377789][bookmark: _Toc379467699]The Pharmaceutical Perspective
EVSI literature has focussed on decision problems within the public sector, which does not reflect the balance of investment made into clinical trials in the private sector. Drug development trials are almost exclusively designed and funded within the pharmaceutical industry, and as such the VOI must be modified to reflect their interests. I have applied VOI analyses to the design of a Phase III trial from the perspective of a pharmaceutical company. There are obvious differences between how trials are planned and designed between the public and private sector. Most importantly, the drug company is not expected to design the trial to maximise societal health, so the way that the trial information is valued must reflect a commercial setting. However, other differences must be considered such as information available from early trials, the choice of comparator, and the choice of inclusion criteria.
The only published attempts of applying EVSI to private sector trials have been described in two main publications (122;129). Willan (2008) introduced a formula for evaluating the benefits of trial information in terms of the probability of reimbursement approval, duration of license, market share, disease incidence and profit per patient (122). I adopted many of the principles recommended in that article for evaluating the benefits of a pharmaceutical company clinical trial, but believed that the assumption that there was a fixed profit per patient known at the time of planning a clinical trial was unrealistic. Before a Phase III trial the final price may not have been determined and is more likely to be conditional on the outcomes of the Phase III trial. The optimal trial design may vary according to the price chosen, creating a more complex decision-problem than that described by Willan (2008).
A more recent paper investigated optimal pricing behaviour of pharmaceutical companies when faced with a reimbursement threshold (100). They describe the maximum threshold that the societal decision maker will accept the new treatment given current evidence. They also assume that the pharmaceutical company have a minimum threshold at which it will be worth entering the market. If the two thresholds are incompatible, the pharmaceutical company may consider it worth investing in more research if the expected net gains from the research are positive. The article provides a useful framework to formalise decision making for a pharmaceutical company at the stage of reimbursement and I adopted the assumption that the pharmaceutical company has a minimum threshold for price. However, these papers assumed that the pharmaceutical company has sufficient evidence to apply for licensing. The majority of trials in pharmaceutical companies are conducted before this stage. 
I concluded that Willan (2008) had not fully adapted the method to the requirements of a pharmaceutical company (122). The BeBay methodology was more aligned with the pharmaceutical perspective and the authors had considered a simple case where the costs and benefits to the reimbursement authority were accounted for in the decision criteria (118). The methods of calculating costs and benefits were not as complex as those in most CE models. However, they identified that if the costs and benefits from the societal perspective could be estimated it would be possible to estimate what price the reimbursement authority would be willing to pay.  In Health Economics this calculation is often referred to as the value-based price, given a willingness to pay for a QALY. 
Value-based pricing is implicitly stated if a reimbursement authority report a willingness to pay threshold or in the case of NICE a threshold range. In the UK from January 2014 value based pricing is expected to be explicitly incorporated into price-setting in the NHS. At the time of writing details of how value-based pricing will be used have not been specified. However, the Department of Health have stated that it will include a wide assessment of benefit which entails: the improvement in health measured in QALYs; the burden of illness and unmet need; and wider societal benefits (248). 
A recent taxonomy of the approaches to value-based pricing identified five dimensions for implementing value-based price. First, what is identified as being of value? Second, how are the elements measured? Third, how are the elements valued? Fourth, how are the elements aggregated? Fifth, how to  determine the price? (234). In contrast to the issues raised in the taxonomy the method used estimate the value-based price in this thesis is relatively crude. Only QALYs are values and are measured using standard preference based measures of utility such as the EQ-5D. Since I only considered QALYs there were no problems with aggregating the elements and price is estimated from a single threshold value. However, given the DoH objectives to incorporate wider benefits this approach is too simplistic and would need to be adapted. The taxonomy emphasises the challenges involved in using value-based pricing. The SLE analysis described here could be modified to incorporate more complex criteria, such as weighted QALYs or MCDA, to determine the price. It will be important that the methods are transparent to avoid controversy in price setting. An explicit process is needed to ensure that prices are fair, consistent and benefit the pharmaceutical companies in estimating expected prices. The adaptation of VOI through value-based prices will be more relevant once this policy is implemented. 
In the SLE VOI analysis, uncertainty in the posterior expected incremental net benefit was not factored into the price setting criteria. It is considered that NICE currently consider uncertainty as part of the deliberation process and are less willing to accept treatments with very uncertain outcomes (27). Reimbursement decision-making based on point estimates for net benefit have been criticised because they do not account for the uncertainty in the decision (112). A treatment may fall below the reimbursement authority’s threshold, but with a large probability of error. Even in the absence of value-based pricing it is recommended that the reimbursement authority should consider whether it is worth collecting more evidence to reduce the decision uncertainty (112). However, these considerations could be more important within a value-based pricing system because the price is more likely to be set close to, or actually at, the threshold. Consequently, it is recommended that uncertainty is factored into value-based price criteria. Furthermore, it has been argued in a recent report, that reimbursement decisions should maintain “only in research” and “approval with research” conditions, to ensure that irrecoverable costs of pricing and reimbursement decisions are not burdensome (249).  Greater flexibility in the nature and timing of the value-based pricing decision will add complexity to the analysis described here.
It is worth noting that the B&K approximation demonstrated here approximated the expected value-based price and did not estimate the variance of that quantity. The B&K algorithm can be used to estimate the posterior expectation of the CE model outcomes, but does not report the uncertainty in the results. It could not be used in its current form to estimate value-based price conditional on uncertainty in the costs and QALY estimates. If greater uncertainty was penalised with lower value-based price setting it would impact on which trial design was believed to be optimal. The value of larger trials is likely to be underestimated with the current point estimate method. Therefore, alternative methods would be required to correct for this bias.  Other methods of Bayesian updating such as conjugate distributions and MCMC simulation would not share these problems because CE model outcomes would be evaluated with a nested PSA. The B&K is much more computationally efficient than alternative methods, because it is not necessary to run PSA for every simulated trial. If uncertainty were a criterion for setting value-based prices, this would exacerbate the need for simple CE models for trial design evaluation, because efficient computation methods could not be used. 
[bookmark: _Toc353377790][bookmark: _Toc379467700]Limitations 
There are several limitations with the BCTS, CE models and the VOI analysis. The most important relates the computation time taken to generate the analyses reported here. The analysis took 8 weeks to generate using a High Performance Cluster. It was not possible to draw a conclusion over which trial design is optimum with the 1600 BCTS iterations that were generated. This suggests that the analysis is not feasible even with superior computing facilities. Even if the pharmaceutical company had an additional 12 weeks to run analyses, it is not reasonable to assume that analysts would have access to a suitable computer facility. My overall conclusion is that the analyses cannot currently be performed in a real-world setting. Computer processing continues to improve and it is not implausible to look ahead to a time when these analyses will be workable within a trial development programme.
Six designs of clinical trials in SLE were simulated with varying sample size and duration of follow-up. The six trials represent a selection of trial designs that could be tested using the BCTS described in Chapter 6. It would be advantageous if the analysis could produce a more granular evaluation of sample size, and duration of follow- up increments. There may be sample sizes between 500-2000 that are optimum, or the duration of follow-up of 2.5 years would be sufficient to gather data on organ damage. The analysis of six trials does not provide an exhaustive answer to the question “How SLE Phase III trials should be designed?” The BCTS has the capacity to consider inclusion criteria, health economic outcomes data collection, and could simulate adaptive trial designs with some small modifications. The computation time of the analysis was an important limitation to the number of questions that can be asked about trial design. The implications are that the principle investigator would need to prioritise the most informative trial specifications before starting the simulation.
The simulation includes the SLEDAI as a measure of disease activity, which precluded the evaluation of alternative disease activity indices. The definition of clinical trial endpoints have been challenging and have been attributed to the failure of at least one major drug development trial. The BILAG and PGA indices have not been associated with organ damage and mortality in multivariate analyses alongside the SLEDAI, and are not included in the natural history model for SLE because the data were not available. In these analyses, the BCTS is more focused on sampling data collected in a trial to update the CE model. In the future it may be possible to structure CE models in SLE based on multiple disease activity indices. It should be noted that this would add substantial complexity to the CE model and was impractical given the computation time of the analysis. 
The analysis of SLE trials was conducted for a hypothetical new biologic treatment. Consequently, the simulations were developed based on hypothetical treatment effects that may not reflect the true effectiveness of biologic treatment for SLE. Where possible treatment effectiveness has been calibrated against trial results for belimumab. This project would have benefited from a Phase II clinical trial dataset. In a real-life setting this would provide most of the information needed to develop the BCTS and the prior distributions for the parameters of the CE model. In the absence of this information the BCTS was developed using longitudinal data from the Hopkins Lupus Cohort. This approach was sufficient for the purposes of this research, but the main disadvantage is that it reflects a less severe population from clinical practice.
[bookmark: _Toc353377791][bookmark: _Toc379467701]Further Research and Development
Simplicity will lend advantage in the simulation of SLE to evaluate clinical trial designs. Further research should consider methods to reduce the computation burden of sensitivity analyses on the CE model. I have identified two possible means to reducing the computation burden. Firstly, to re-structure the CE model to reduce the number of parameters. Secondly, to develop a meta-model to approximate the outcomes of the CE model. 
A CE model with fewer parameters would be beneficial if the simplifications do not impact on the decisions taken. Model simplifications could be validated against the more complex CE model and should remove parameters that have the least impact on the CE outcomes. It is likely that some organ damage systems have a greater impact on the CE model outcomes than others. These could be combined or removed without impacting on the decision whether to reimburse a new treatment. Similarly, the natural history model includes parameters such as ethnicity, hypertension and cholesterol that describe the effect of patient characteristics on the long term outcomes Adjusting for confounders was necessary to reduce the bias in the estimates of the effect of disease activity, steroid and damage on long term outcomes. However, alternative use of these parameters in the CE model could simplify the model structure. The natural history model was developed to be flexible to evaluate treatment effects for different subgroups of patients and with differential treatment effects across organ systems. An advantage of the complex CE model is that it captures many disease outcomes and can accommodate treatment effects in a wide range of organ systems. Simplifying the CE model may reduce this flexibility. I would recommend that simplifications in the future are undertaken and tailored for specific treatments when more data is available about the attributes of the treatment.
Meta-modelling involves the use of statistical regression to describe the model input-output relationship (111). Meta-models can be used to facilitate extensive and repeated sensitivity analyses alongside computationally expensive CE models. This could take the form of a simple emulator; in which the cost and QALY results of the individual patient model are predicted using multivariate linear regression. The disadvantage of this approach is that it requires assumptions to be made about the relationships between the inputs and outputs of the model. Alternatively Gaussian Process Modelling is a non-parametric technique (250). The Gaussian technique described enabled an accurate approximation of the CE output from an individual patient model to be generated almost instantaneously. Gaussian process modelling techniques have been demonstrated to accurately approximate the outcomes of an individual patient CE model (250)
The natural history model for SLE and the CE model are the first attempts to model the disease with a view to collect cost and health outcomes data for alternative treatments. The models could be refined and developed in a number of ways. The statistical analyses used in the natural history model extrapolate the long term pathway of disease activity and the incidence of important events such as organ damage and mortality. The statistical methods used here enabled the development of the BCTS and CE models. With this in mind, there are many challenges involved in analysing longitudinal data, particularly when trying to describe complex associations between disease characteristics within patients. There are potential sources of bias in the model estimates. In this study it was necessary to analyse multiple disease processes, which are likely to be correlated and include many time-varying confounders. Advanced statistical modelling methods, such as joint modelling (219) and marginal structural modelling (251), might be adopted to develop a more sophisticated natural history model for SLE. These methods could not be easily applied to the SLE data because of the multiple outcomes included in the conceptual model. It was not possible to pursue the statistical analyses further without compromising the time available to develop the simulation models needed for the VOI analyses.  
The final analysis assumes that the total profits of the new treatment can be predicted by a reimbursement decision rule for estimating value-based price. In this analysis, the UK willingness to pay threshold was used, but this is not representative of decision making in other jurisdictions. Nonetheless the analysis may be useful because although the UK market is small it is known to be influential in other markets (252). Furthermore, decisions between national payers are likely to be correlated; selecting a single decision criterion is likely to act as a proxy for most budget constrained healthcare markets.  An alternative approach would be to adapt the value-based price criteria to different jurisdiction settings.  Once the overall architecture of the BCTS, CE model and Bayesian updating are in place other changes will be relatively straightforward.  A more complex algorithm could be integrated into the analysis, with relatively little computational burden to reflect a more diverse range of reimbursement decision. The formulation in equation ‎(8.15) assumes a very simplistic market in which the reimbursement authority has universal control over access to treatment. In reality the pharmaceutical company may only have partial access to the market at their minimum price. In this analysis it is assumed that the reimbursement decision is universal so that either all eligible patients or no patients have access to the treatment. The function can be adapted to incorporate partial access to the market through a proportion of patients receiving treatment conditional on treatment effectiveness,.
	
	
	(9)


The probability that patients, and local commissioners will be willing to pay for the treatment will depend on the strength of evidence for the treatment, and how close the cost-effective threshold the treatment was. In this scenario the methods developed by Kikuchi, Pezeshk, and Gittens (2008) to estimate the proportion of patients who would adopt the treatment could be applied (121). The profit per patient would be calculated from the proportion of patients receiving the treatment and minimum acceptable price to the pharmaceutical company. Elsewhere in the health economic literature analyses have incorporated changes in the price of treatments after the initial stage of the products lifecycle to reflect uncertainty for the reimbursement authority on future costs (253). More complex simulation of uncertain changes in price after the value-based price has been approved could be incorporated into the method.
[bookmark: _Toc353377792][bookmark: _Toc379467702]Implications of Research
The contributions made in this PhD are of interest to a wide range of researchers. SLE clinicians and epidemiologists will be interested in the relationships between disease activity, steroids, organ damage and mortality that were identified in the Hopkins cohort. I have demonstrated that composite disease activity scores increase the risk of mortality, cardiovascular disease, renal disease and pulmonary disease. Disease activity in certain organ systems increases the risk of most organ damage outcomes with the exception of musculoskeletal damage, diabetes, malignancy and gonadal failure. Cumulative steroid exposure increases the risk of musculoskeletal, neuropsychiatric, ocular, skin and gastrointestinal damage. All of these identified relationships can be used to estimate the indirect effect of new treatments on the important outcomes of SLE. If new treatments can demonstrate a reduction in the disease activity or cumulative steroids it will be possible to estimate the long term implications of treatment. In this respect the analyses are flexible to accommodate several types of trial outcomes and can be generalised to treatments that focus on particular organ systems.
The statistical analyses are useful methods for predicting disease outcomes for a SLE population like the Hopkins Lupus cohort. The natural history model is likely to predict accurate disease projects for very different patient populations. SLE is a heterogeneous disease and it is known to be affected by ethnic, social and geographical factors. Generalising the statistical models to a clinical trial population recruited based on high disease activity scores, may produce biased estimates if the relationships between disease activity and organ damage are more or less pronounced in this population. Generalising the relationships to other national settings is also challenging, particularly since the underlying rate of mortality and organ damage is highly variable between the studies identified in the literature (Chapter 4). There are currently no alternative disease registries with comparable follow-up to the Hopkins cohort that would resolve this problem. A multi-national SLE inception cohort was initiated and currently has approximately 10 years of follow-up. Further research should focus on this cohort to estimate between site variations in the rate of events. 
The research presented in this thesis has several practical applications for health economists based within the pharmaceutical industry with an interest in SLE. The natural history model for SLE has been used in reimbursement submissions for a new biologic therapy in the UK and Canada. The analyses are likely to be adopted by other pharmaceutical companies as more treatments complete their drug development programmes. I have developed a generic CE model for SLE treatments that could easily be adapted for use by a pharmaceutical company in their submission. The elicitation of UK clinical experts has added additional data to previous CE models to describe the expected additional long-term benefits of biologics in addition to indirect effects through disease activity. The experts reported favourable estimates for biologics that may add to reimbursement arguments for new treatments. 
At a more general level the methods developed to run a BCTS and VOI analysis to design clinical trials would be of interest to health economists in the pharmaceutical industry working in other disease areas. I have demonstrated that health economics methods can be used to design clinical trials using value-based pricing to estimate the expected profits. As described in Section ‎8.7.4 of Chapter 8, the computation burden problems identified in this study are not generalisable to all future applications. This case study highlights that computation burden can prohibit the evaluation of trial designs if the CE model is an individual patient simulation and need to update many model parameters. However, trials could be evaluated within a reasonable time-frame if the CE model is less complex. Therefore, analysts in the future should consider the complexity of their CE model before embarking on this type of analysis.
[bookmark: _Toc353377793][bookmark: _Toc379467703]Conclusions
This thesis has developed a method to evaluate the trial designs for SLE Phase III trials from the pharmaceutical perspective. Complex CE models present considerable computation challenges that were not completely resolved even after applying the B&K approximation method. While it was not currently feasible to complete a comprehensive analysis of multiple design specifications using a CE model of the level of complexity of the SLE model described in Chapter 7, the work of this thesis developed practical tools to assist future drug development and reimbursement applications for SLE. VOI analyses can be applied to smaller CE models and the use of value-based pricing to reflect variable pricing based on Phase III evidence provides a useful development in the VOI methods designed for the pharmaceutical industry.
Application of these methods during drug development trial design should be considered in the future particularly with advances in the capabilities of computers and software. There remain obstacles to overcome. Firstly, I have found that the method was limited by the number of parameters and non-conjugate distributions. Secondly, training and familiarisation of the knowledge and skills amongst the health economists in the industry would be required and would enhance its application. Thirdly, communication of the value and utility of the methods to non health economists within the pharmaceutical industry is needed to encourage adoption in real trial design decision-making. This is most likely to be demonstrated through a real life case study with a less complex decision-model.
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Table 53: The SLEDAI index
	Weight
	Descriptor
	Definition

	8
	Seizure
	Recent onset. Exclude metabolic, infectious or drug cause.

	8
	Psychosis
	Altered ability to function in normal activity due to severe disturbance in the perception of reality. Include hallucinations, incoherence, marked loose associations, impoverished thought content, marked illogical thinking bizarre, disorganised, or catatonic behaviour. Excluded uraemia and drug causes.

	8
	Organic Brain Syndrome
	Altered mental function with impaired orientation memory or other intelligent function, with rapid onset fluctuating clinical features. Include clouding of consciousness with reduced capacity to focus, and inability to sustain attention to environment, plus at least two of the following: perceptual disturbance, incoherent speech, insomnia, or daytime drowsiness, or increased or decreased psychomotor activity. Exclude metabolic, infectious or drug causes. 

	8
	Visual Disturbance
	Retinal changes of SLE. Include cytoid bodies, retinal haemorrhages, serious exodate or haemorrhages in the choroids, or optic neuritis. Exclude hypertension, infection or drug causes.

	8
	Cranial Nerve Disorder
	New onset of sensory or motor neuropathy involving cranial nerves.

	8
	Lupus Headache
	Severe persistent headache: may be migrainous, but must be non-responsive to narcotic analgesia.

	8
	CVA
	New onset cerebrovascular accident(s). Exclude arteriosclerosis.

	8
	Vasculitis
	Ulcerating, gangrene, tender finger nodules, periungual, infarction, splinter haemorrhages, or biopsy or angiogram proof of vasculitis.

	4
	Arthritis
	More than 2 joints with pain and signs of inflammation (i.e. tenderness, swelling, or effusion)

	4
	Myositis
	Proximal muscle aching/weakness associated with elevated creatinine phosphokinase/adolase or electromyogram changes or a biopsy showing myositis. 

	4 
	Urinary Casts
	Heme-granular or red blood cell casts.

	4
	Hematuria
	>5 red blood cells/high power field. Exclude stone, infection or other cause.

	4
	Proteinuria
	>0.5gm/24 hours. New onset or recent increase of more than 0.5gm/24 hours.

	4
	Pyuria
	>5 white blood cells/high power field. Exclude stone, infection or other cause.

	2 
	New rash
	New onset or recurrence of inflammatory type rash.

	2
	Alopecia
	New onset or recurrence of abnormal, patchy or diffuse loss of hair.

	2
	Mucosal Ulcers
	New onset or recurrence or oral or nasal ulcerations. 

	2
	Pleurisy
	Pleuritic chest pain with pleural rub or effusion, or pleural thickening.

	2
	Pericarditis
	Pericardinal pain with at least 1 of the following: rub, effusion, or, electrocardiogram confirmation.

	2
	Low Complement
	Decrease in CH50, C3 or C4 below the lower limit of normal for testing laboratory.

	2
	Increased DNA binding
	>25% binding by Far assay or above normal range for testing laboratory

	1
	Fever
	>38 C. Exclude infectious cause

	1
	Thrombocytopenia
	<100,000 platelets/mm3

	1
	Leukopenia
	<3,000 White blood cell/mm3. Exclude drug causes. 


[bookmark: _Ref261508181][bookmark: _Ref258335625][bookmark: _Toc279009305]


Table 54: The BILAG Index
	General (Answer 1) Improving 2) Same 3) Worse 4) New)
	44. Arthralgia

	1. Pyrexia (documented)
	45. Myalgia

	2. Weight loss – unintentional >5%
	46. Tendon contractures and fixed deformity

	3. Lymphadenopathy/splenomeagaly
	47. Aseptic necrosis

	4. Fatigue/malaise/lethargy
	Cardio and Resp (Answer 1) Improving 2) Same 3) Worse 4) New)

	5. Anorexia/nausea/vomiting
	48. Pleuropericardial pain

	Mucocutaneous (Answer 1) Improving 2) Same 3) Worse 4) New)
	49. Dyspnoea

	6. Maculopapular rash – severe, active 
	50. Cardiac failure

	7. Maculopapular eruption – mild
	51. Friction rub

	8. Active discoid lesions – generalised extensive
	52. Effusion (pericardial or pleural)

	9. Active discoid lesions – local inc. lupus profundus
	53. Mild or intermittent chest pain

	10. Alopecia – severe, active
	54. Progressive CXR changes – lungs

	11. Alopeica – mild
	55. Progressive CXR changes – heart

	12. Severe panniculitis
	56. ECG evidence or pericarditis or myocarditis

	13. Abgio-oedema
	57. Cardiac arrhythmias including tachycardia

	14. Extensive mucosal ulceration
	58. Pulmonary function fall by >20%

	15. Small muscocal ulcers
	59. Cyto-histological evidence of inflammatory lung disease

	16. Malar erythema
	Vascilitis (Answer 1) Improving 2) Same 3) Worse 4) New)

	17. Subcutaneous nodules
	60. Major cutaneous vascilitis including ulcers

	18. Perniotic skin lesions
	61. Major abdominal crisis due to vasculitis

	19. Peri-ungual erythema
	62. Recurrent thromboembolism

	20. Swollen fingers
	63. Raynaud’s

	21. Sclerodactyly
	64. Livedo reticularis

	22. Calcinosis
	65. Superficial phlebitis

	23. Telengiectasia
	66. Minor cutaneous vasculitis 

	Neurological (Answer 1) Improving 2) Same 3) Worse 4) New)
	67. Thromboembolism

	24. Deteriorating level of consciousness
	Renal (Answer with number value or Y/N)

	25. Acutepsychosis or delirium or confusional state
	68. Systolic BP mmHg

	26. Seizures
	69. Diastolic BP (5th phase)

	27. Stroke or stroke syndrome
	70. Accelerated hypertension

	28. Aseptic meningitis
	71. Dipstick (-=1,++=2,+++=3)

	29. Mononeuritis multiplex
	72. 24 h urine protein (g)

	30. Ascending or transverse myelitis
	73. Newly documented proteinuria of >1 g/24 h

	31. Peripheral or cranial neuropathy
	74. Nephrotic syndrome

	32. Disc swelling/cytoid bodies
	75. Creatinine (plasma/serum)

	33. Chorea
	76. Creatinine clearance/GFR (ml/min)

	34. Cerebellar ataxia
	77. Active urinary sediment

	35. Headaches – severe unremitting
	78. Histological evidence of active nephritis

	36. Organic depressive illness
	Hematology (Answer with number (value) or Y/N)

	37. Organic brain syndrome inc. pseudotumour cerebri
	79. Haemoglobin (g/dl)

	38. Episodic migrainous headaches
	80. Total white cell count x109/l

	Musculoskeletal (Answer 1) Improving 2) Same 3) Worse 4) New)
	81. Neutrophils x109/l

	39. Definite myositis 
	82. Lymphocytes x 109/l

	40. Severe polyarthritis – with loss of function
	83. Platelets x 109/l

	41. Arthritis
	84. Evidence of active haemolysis

	42. Tendonitis
	85. Coombs test positive

	43. Mild chronic myositis
	86. Evidence of circulating anticoagulant



Table 55: The SLICC/ACR Damage Index
	Ocular
	

	Any cataract ever
	1

	Retinal change or optic atrophy
	1

	Neuropsychiatric
	

	Cognitive impairment (e.g. memory deficit, difficulty with calculation, poor concentration, difficulty in spoken or written language, impaired performance levels) or major psychosis
	1

	Seizures requiring therapy for 6 months
	1

	Cerebrovascular accident ever (score 2>1)
	1 (2)

	Cranial or peripheral neuropathy (excluding optic)
	1

	Transverse myelitis
	1

	Renal
	

	Estimated or measured glomerular filtration <50%
	1

	Proteinuria ≥3.5 gm/24hours
	1

	OR End stage renal disease (regardless of dialysis or transplantation)
	3

	Pulmonary
	

	Pulmonary hypertension (right ventricular prominence or loud P2)
	1

	Pulmonary fibrosis (physical and radiograph)
	1

	Shrinking lung (radiograph)
	1

	Pleural fibrosis (radiograph)
	1

	Pulmonary infarction (radiograph)
	1

	Cardiovascular
	

	Angina or coronary artery bypass 
	1

	Myocardial infarction ever (score 2 if >1)
	1 (2)

	Cardiomyopathy (ventricular dysfunction)
	1

	Valvular disease (diastolic murmur, or systolic murmur >3/6)
	1

	Peripheral Vascular
	

	Claudication for 6 months
	1

	Minor tissue loss (pulp space)
	1

	Significant tissue loss ever (e.g. loss of digit or limb (score 2 if >1 site)
	1 (2)

	Venous thrombosis with swelling, ulceration, or venous stasis
	1

	Gastrointestinal
	

	Infarction or resection of bowel below duodenum spleen, liver, or gall bladder ever, for cause an (score 2 if >1 site)
	1 (2)

	Mesenteric insufficiency
	1

	Chronic peritonitis
	1

	Stricture of upper gastrointestinal tract surgery
	1

	Musculoskeletal
	

	Muscle atrophy or weakness
	1

	Deforming or erosive arthritis (including reducible deformities)
	1

	Osteoporosis with fracture or vertebral collapse (excluding avascular necrosis)
	1

	Avascular necrosis (score 2 if >1)
	1 (2)

	Osteomyelitis
	1

	Skin
	

	Scarring chronic alopecia
	1

	Extensive scarring or panniculum other than scalp and pulp space
	1

	Skin ulceration (sxcluding thrombosis) for >6 months
	1

	Premature gonadal failure
	1

	Diabetes (regardless of treatment)
	1

	Malignancy (exclude dysplasia) (score 2 if >1 site)
	1 (2)






[bookmark: _Toc379467706]Appendix 2: Randomised Controlled Trial Pipeline Search
A search was conducted on the website www.clinicaltrials.gov to identify ongoing trials in SLE. 
The search was conducted on 7th April 2010 using the search terms Systemic Lupus Erythematosus. The search was restricted to studies registered in the last 2 years. 
Studies were included in the review if they met the following inclusion criteria:
· ACR SLE diagnosis used in the inclusion criteria
· Prospective studies of an pharmacological intervention
The exclusion criteria were as follows:
· Studies in animals
· Terminated studies
· Nutritional supplements
· Continuation studies
The search identified 69 studies. Of these studies 18 met the inclusion criteria and are summarised below. 
	Interventions
	Comparators
	Duration
	Sample
	Phase
	Status
	Expected completion date

	AMG 557
	placebo
	not stated
	32
	Phase I
	Recruiting
	Jan 2011

	AMG 811
	placebo
	5 months
	48
	Phase I
	Recruiting
	May 2011

	NNC 0152-0000-0001
	placebo
	not stated
	56
	Phase I
	Recruiting
	Feb 2011

	SBI-087
	none
	12 months
	24
	Phase I
	Recruiting
	Sept 2010

	CDP7657
	placebo
	4 months
	44
	Phase I
	Recruiting
	Mar 2012

	N-acetylcysteine
	placebo
	4 months
	80
	Phase I/II
	Recruiting
	Dec 2012

	IFN-K
	placebo
	3 months
	28
	Phase I/II
	Recruiting soon
	Jan 2011

	CC-10004
	none
	3 months
	10
	Phase I/II
	Recruiting
	Jun 2009

	paquinimod
	none
	1 month
	20
	Phase II
	Recruiting
	Dec 2010

	MEDI-545
	none
	12 months
	20
	Phase II
	Recruiting
	Jan2011

	rontalizumab
	none
	6 months
	210
	Phase II
	Recruiting
	Sep 2012

	belimumab
	placebo
	12 months
	449
	Phase II 
	Not recruiting
	Aug 2012

	Sifalimumab
	none
	36 months
	260
	Phase II
	Recruiting soon
	Jan 2014

	Epratuzumab
	placebo
	3 months
	175
	Phase II
	Recruiting
	Jan 2014

	Rapamycin
	placebo
	12 months
	80
	Phase II
	Recruiting
	Oct 2012

	MEDI-545
	placebo
	6 months
	80
	Phase II
	Not recruiting
	Jun 2010

	abatacept
	placebo
	6 months
	100
	Phase II
	Recruiting
	Oct 2014

	etanercept
	none
	5 months
	20
	Phase II
	Recruiting
	Oct 2009


[bookmark: _Toc379467707]Appendix 3: RCT Search Strategies
The RCT search strategy and citation results of the search conducted in 2010 and updated in 2012 are reported in Table 56 and Table 57.
[bookmark: _Ref346106654]Table 56: Medline search conducted on 31st March 2010
	#1
	Systemic Lupus Erythematosus [MESH]
	40154

	#2
	Disease Activity Index
	17545

	#3
	SLEDAI
	745

	#4
	British Isles lupus assessment group
	91

	#5
	BILAG
	113

	#6
	Lupus Activity Measure
	519

	#7
	SLAM
	1351

	#8
	ECLAM
	98

	#9
	Damage Index
	11654

	#10
	SLICC/ACR
	120

	#11
	Physicians Global Assessment
	640

	#12
	PGA
	2340

	#13
	Response
	1396283

	#14
	Remission
	90482

	#15
	Flare
	5567

	#16
	anti-dsDNA
	1994

	#17
	Serum Creatinine
	34192

	#18
	Proteinuria
	39716

	#19
	#2 OR …OR #21
	1557944

	#20
	#1 AND #22
	7585

	#21
	Limits RCT, English, Human, >1995
	99

	Free text unless otherwise stated


[bookmark: _Ref346106694]Table 57 Medline search conducted on 21st February 2012
	#1
	Systemic Lupus Erythematosus [MESH]
	2435

	#2
	Disease Activity Index
	3639

	#3
	SLEDAI
	219

	#4
	British Isles lupus assessment group
	29

	#5
	BILAG
	31

	#6
	Lupus Activity Measure
	64

	#7
	SLAM
	145

	#8
	ECLAM
	10

	#9
	Damage Index
	1965

	#10
	SLICC/ACR
	12

	#11
	Physicians Global Assessment
	130

	#12
	PGA
	374

	#13
	Response
	156713

	#14
	Remission
	8814

	#15
	Flare
	766

	#16
	anti-dsDNA
	234

	#17
	Serum Creatinine
	4430

	#18
	Proteinuria
	3711

	#19
	#2 OR …OR #21
	175269

	#20
	#1 AND #22
	799

	#21
	Limits RCT, English, Human, >1995
	23

	Free text unless otherwise stated





[bookmark: _Toc379467708]Appendix 4: Observation Studies Search Strategies
The observational studies search strategy and citation results are reported in Table 58.
[bookmark: _Ref355276414]Table 58: Medline search conducted on 12th January 2010
	#1
	Systemic Lupus Erythematosus (MeSH)
	39759

	#2
	Disease activity
	193927

	#3
	Flare
	5453

	#4
	Remission
	89277

	#5
	Damage
	286943

	#6
	Mortality
	624995

	#7
	Survival
	952202

	#8
	Steroid
	689452

	#9
	Corticosteroid
	310116

	#10
	prednisone
	39388

	#11
	Infection
	965838

	#12
	Disease outcome
	224863

	#13
	Cardiovascular
	1118072

	#14
	#2 OR … #10
	3962665

	#15
	Cohort studies
	649584

	#17
	Observational
	39886

	#18
	Longitudinal
	121618

	#19
	Survival analysis
	229159

	#20
	#12 OR … #21
	1002955

	#21
	#1 AND #14 AND #19
	2199

	#22
	Limits (Humans, english, last 15 years)
	1421

	Free text unless otherwise stated





[bookmark: _Toc379467709]Appendix 5: Observation Studies Results
	First Author
	Date
	Sample
	Population description
	Study name/ Location
	Key theme

	Bujan
	2003
	239
	Systemic Lupus Erythematosus
	Barcelona
	Disease activity

	Font
	2004
	533
	Systemic Lupus Erythematosus
	Barcelona
	Disease features

	Font
	2001
	431
	Lupus Nephritis
	Barcelona
	System damage

	Yee
	2009
	347
	Systemic Lupus Erythematosus
	BILAG 2004
	Disease activity

	Allen
	2006
	440
	Systemic Lupus Erythematosus
	Birmingham cohort
	Disease activity

	Ruiz-Irastorza
	2004
	202
	Systemic Lupus Erythematosus
	Bizkaia
	Damage

	Erhenstein
	1995
	114
	Systemic Lupus Erythematosus
	Bloomsbury Rheumatology Unit
	Disease activity

	Cardoso
	2008
	105
	Systemic Lupus Erythematosus
	Brazil
	Mortality

	Tayer
	2001
	81
	Systemic Lupus Erythematosus
	California
	Fatigue

	Campbell
	2008
	265
	Systemic Lupus Erythematosus
	Carolina Lupus Study
	Mortality

	Kasitanon
	2002
	91
	Neuropsychiatric SLE
	Chiang Mai University
	NP events

	Kasitanon
	2002
	349
	Systemic Lupus Erythematosus
	Chiang Mai University
	Mortality

	Ramsey-Goldman
	1998
	616
	Systemic Lupus Erythematosus
	Chicago Lupus Cohort
	Malignancy

	Korbet
	2000
	86
	Lupus Nephritis
	Clinical trial extension
	System damage

	Chen
	2008
	86
	Lupus Nephritis
	Collaborative Study Group
	System damage

	Faurschou 
	2006
	91
	Lupus Nephritis
	Copenhagen
	System damage

	Erdozain
	2006
	232
	Systemic Lupus Erythematosus
	De Cruces
	Infection

	Gilboe
	2001
	93
	Systemic Lupus Erythematosus
	Diakondjemmet Hospital
	Damage

	Al-Saleh
	2008
	151
	Systemic Lupus Erythematosus
	Dubai
	Prevalence

	Ward
	1996
	408
	Systemic Lupus Erythematosus
	Duke University
	Mortality

	Ward
	1995
	408
	Systemic Lupus Erythematosus
	Duke University
	Mortality

	Ward
	1995
	408
	Systemic Lupus Erythematosus
	Duke University
	Mortality

	Manger
	2002
	338
	Systemic Lupus Erythematosus
	Erlangen
	Mortality

	Nossent
	2007
	2500
	Systemic Lupus Erythematosus
	EULAR
	Mortality

	Cervera
	2003
	1000
	Systemic Lupus Erythematosus
	Euro-Lupus cohort
	Mortality

	Cervera
	1999
	1000
	Systemic Lupus Erythematosus
	Euro-Lupus cohort
	Mortality

	Swaak
	2001
	187
	Systemic Lupus Erythematosus
	Multicentre Europe
	Disease activity

	Garcia
	2005
	1214
	Systemic Lupus Erythematosus
	GLADEL cohort
	Gender

	Bono
	1999
	110
	Lupus Nephritis
	Guys Hospital
	System damage

	Hanly
	2009
	209
	Systemic Lupus Erythematosus
	Halifax, Canada
	NP events

	Chun
	2005
	466
	Systemic Lupus Erythematosus
	Hangyang 
	Malignancy

	Mok
	2009
	155
	Systemic Lupus Erythematosus
	Hong Kong
	Quality of Life

	Mok
	2008
	442
	Systemic Lupus Erythematosus
	Hong Kong
	Mortality

	Mok
	2005
	285
	Systemic Lupus Erythematosus
	Hong Kong
	Late onset

	Mok
	2006
	282
	Systemic Lupus Erythematosus
	Hong Kong
	System damage

	Mok
	2003
	242
	Systemic Lupus Erythematosus
	Hong Kong
	Damage

	Mok
	2000
	163
	Systemic Lupus Erythematosus
	Hong Kong
	Mortality

	Barr
	1999
	204
	Systemic Lupus Erythematosus
	Hopkins Lupus Cohort
	Disease activity

	Petri
	2000
	800
	Systemic Lupus Erythematosus
	Hopkins Lupus Cohort
	Review

	Petri
	1996
	407
	Systemic Lupus Erythematosus
	Hopkins Lupus Cohort
	System damage

	Petri
	1995
	407
	Systemic Lupus Erythematosus
	Hopkins Lupus Cohort
	System damage

	Thamer
	2009
	525
	Systemic Lupus Erythematosus
	Hopkins Lupus Cohort
	Damage

	Zonana-Nacach
	2000
	539
	Systemic Lupus Erythematosus
	Hopkins Lupus Cohort
	Damage 

	Kasitanon
	2006
	1378
	Systemic Lupus Erythematosus
	Hopkins Lupus Cohort
	Mortality

	Petri
	2008
	190
	Recently diagnosed SLE
	Hopkins Lupus Cohort
	NP events

	Xie
	1998
	566
	Systemic Lupus Erythematosus
	Huashan Hospital
	Mortality

	Santos
	2009
	221
	Systemic Lupus Erythematosus
	Lisbon
	Damage

	Stoll
	2004
	141
	Systemic Lupus Erythematosus
	London
	Damage

	Stoll
	2000
	141
	Systemic Lupus Erythematosus
	London
	Damage

	Alarcon
	2006
	229
	Lupus Nephritis
	LUMINA
	System damage

	Alarcon
	2004
	202
	Systemic Lupus Erythematosus
	LUMINA
	Wealth

	Alarcon
	2004
	352
	Systemic Lupus Erythematosus
	LUMINA
	Damage

	Alarcon
	2001
	288
	Systemic Lupus Erythematosus
	LUMINA
	Mortality

	Alarcon 
	2001
	258
	Systemic Lupus Erythematosus
	LUMINA
	Ethnicity

	Andrade
	2008
	600
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Andrade 
	2007
	63
	Systemic Lupus Erythematosus
	LUMINA
	Gender

	Apte
	2008
	496
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Bastian
	2002
	353
	Lupus Nephritis
	LUMINA
	System damage

	Bertoli
	2007
	613
	Systemic Lupus Erythematosus
	LUMINA
	Haematology

	Bertoli
	2007
	632
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Bertoli
	2006
	217
	Systemic Lupus Erythematosus
	LUMINA
	Late onset

	Bertoli
	2006
	287
	Systemic Lupus Erythematosus
	LUMINA
	Disease activity

	Burgos
	2009
	515
	Systemic Lupus Erythematosus
	LUMINA
	Fatigue

	Calvo alen
	2006
	571
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Calvo alen
	2005
	570
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Chaiamnuay
	2007
	379
	Systemic Lupus Erythematosus
	LUMINA
	Hypertension

	Duran
	2008
	628
	Systemic Lupus Erythematosus
	LUMINA
	Haematology

	Fernandez
	2007
	72
	Postmenopausal SLE
	LUMINA
	System damage

	Fernandez
	2007
	552
	Systemic Lupus Erythematosus
	LUMINA
	Damage

	Fernandez
	2007
	617
	Systemic Lupus Erythematosus
	LUMINA
	Ethnicity

	Fernandez
	2007
	616
	Systemic Lupus Erythematosus
	LUMINA
	Haematology

	Fernandez
	2005
	518
	Systemic Lupus Erythematosus
	LUMINA
	Menopause

	Friedman
	2003
	363
	Systemic Lupus Erythematosus
	LUMINA
	Fibromyalgia

	Gonzalez
	2009
	632
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Gonzalez
	2008
	316
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Pons-Estel
	2009
	637
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Sanchez 
	2009
	588
	Systemic Lupus Erythematosus
	LUMINA
	Quality of life

	Toloza
	2004
	546
	Systemic Lupus Erythematosus
	LUMINA
	System damage

	Toloza
	2004
	158
	Systemic Lupus Erythematosus
	LUMINA
	Damage

	Zonana-Nacach
	2000
	223
	Systemic Lupus Erythematosus
	LUMINA
	Fatigue

	Nived
	2002
	80
	Systemic Lupus Erythematosus
	Lund
	Mortality

	Jonsen 
	2002
	117
	Systemic Lupus Erythematosus
	Lund-Orup
	NP events

	Chang
	2006
	426
	Systemic Lupus Erythematosus
	McGill University
	System damage

	Drenkard
	1996
	667
	Systemic Lupus Erythematosus
	Mexico
	Remission

	Zonana-Nacach
	2001
	200
	Systemic Lupus Erythematosus
	Mexico
	Infection

	Gonzalez-Duarte
	2008
	1200
	Systemic Lupus Erythematosus
	Mexico 
	System damage

	Vergara-Fernandez
	2009
	73
	Systemic Lupus Erythematosus
	Mexico  
	Abdominal pain

	Moroni
	2007
	93
	Lupus Nephritis
	Milan
	System damage

	Fortin
	1998
	96
	Systemic Lupus Erythematosus
	Montreal general hospital
	Quality of life

	Pineau
	2006
	151
	Systemic Lupus Erythematosus
	Montreal general hospital
	Damage

	Bernatsky
	2006
	2688
	Systemic Lupus Erythematosus
	Multicentre Canadian Cohort
	Mortality

	Peschken
	2009
	1000
	Systemic Lupus Erythematosus
	Multicentre Canadian Cohort
	Ethnicity

	Bernatsky
	2005
	9547
	Systemic Lupus Erythematosus
	Multicentre International
	Malignancy

	Bernatsky
	2006
	9547
	Systemic Lupus Erythematosus
	Multicentre International
	Mortality

	Gladman
	2000
	1297
	Systemic Lupus Erythematosus
	Multicentre International
	Damage

	Ghosh
	2009
	70
	Systemic Lupus Erythematosus
	Mumbai
	Infection

	Chen
	2003
	152
	Lupus Nephritis
	Nanjing University School of Medicine
	System damage

	Rovin
	2005
	92
	Systemic Lupus Erythematosus
	Ohio SLE
	Fever

	Doria
	2006
	207
	Systemic Lupus Erythematosus
	Padua
	Mortality

	Bertoli
	2009
	1333
	Systemic Lupus Erythematosus
	PROFILE
	System damage

	Ramsey-Goldman
	2008
	1295
	Systemic Lupus Erythematosus
	PROFILE
	System damage

	McLaurin
	2005
	123
	Systemic Lupus Erythematosus
	SALUD
	System damage

	Jeong
	2009
	110
	Systemic Lupus Erythematosus
	Seoul
	Infection

	Hanly
	2008
	890
	Systemic Lupus Erythematosus
	SLICC inception cohort
	Neuropsychiatric

	Hanly
	2007
	572
	Systemic Lupus Erythematosus
	SLICC inception cohort
	Neuropsychiatric

	Urrowitz
	2008
	278
	Systemic Lupus Erythematosus
	SLICC inception cohort
	System damage

	Bosch
	2006
	100
	Systemic Lupus Erythematosus
	Spain
	Infection

	Calvo alen
	2003
	80
	Systemic Lupus Erythematosus
	Spain/LUMINA
	Ethnicity

	Appenzeller
	2008
	560
	Systemic Lupus Erythematosus
	State University of Campinas
	Damage

	Appenzeller
	2004
	519
	Systemic Lupus Erythematosus
	State University of Campinas
	System damage

	Guarize
	2007
	60
	Systemic Lupus Erythematosus
	State University of Campinas
	Damage

	Bjornadal
	2004
	4737
	Systemic Lupus Erythematosus
	Swedish register
	System damage

	Bessant
	2004
	64
	Systemic Lupus Erythematosus
	University College London
	System damage

	Chambers
	2009
	232
	Systemic Lupus Erythematosus
	University College London
	Damage

	Padovan
	2007
	255
	Caucasian SLE
	University of Ferrara
	Late onset

	Jump
	2005
	127
	Systemic Lupus Erythematosus
	University of Florida
	Fatigue

	Mikdashi
	2007
	238
	Systemic Lupus Erythematosus
	University of Maryland Lupus cohort
	System damage

	Mikdashi
	2005
	195
	Systemic Lupus Erythematosus
	University of Maryland Lupus cohort
	System damage

	Mikdashi
	2004
	130
	Systemic Lupus Erythematosus
	University of Maryland Lupus cohort
	System damage

	Abu-Shakra
	1995
	665
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Mortality

	Abu-Shakra
	1995
	665
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Mortality

	Bruce
	1999
	81
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Fatigue

	Cook
	2000
	806
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Mortality

	Gladman
	2003
	73
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Damage

	Gladman
	2002
	960
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Disease activity

	Gladman
	2002
	363
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Infection

	Gladman
	2001
	744
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	System damage

	Gladman
	2001
	140
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	System damage

	Ibanez
	2007
	575
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Disease activity

	Ibanez
	2005
	575
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Damage

	Ibanez
	2003
	575
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Disease activity

	Johnson 
	2006
	1017
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Ethnicity

	Nikpour
	2009
	417
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Disease activity

	Prasad
	2007
	570
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	System damage

	Rahman 
	2001
	263
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Mortality

	Rahman 
	2000
	150
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Hypertension

	Urrowitz
	2008
	1241
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Mortality

	Urrowitz
	1997
	720
	Systemic Lupus Erythematosus
	University of Toronto Lupus Clinic
	Mortality

	Becker-Merok
	2009
	158
	Systemic Lupus Erythematosus
	Tromso cohort
	System damage

	Becker-Merok
	2006
	158
	Systemic Lupus Erythematosus
	Tromso cohort
	Damage

	Amit
	1999
	148
	Systemic Lupus Erythematosus
	Zerifin
	Headache
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[bookmark: _Toc335043542][bookmark: _Toc379467710]Appendix  6: Characteristics of Patients excluded from analysis
[bookmark: _Ref334176034]Table 59: Characteristics of patients excluded from the analysis n=639
	
	Mean/
% of cohort
	Standard deviation
	Median

	Female 
	92.56%
	
	

	African American
	31.16%
	
	

	Caucasian
	49.51%
	
	

	Age at diagnosis 
	31.84 
	12.50
	29.02

	Age at cohort entry 
	36.95
	12.76
	34.98

	Disease duration at cohort entry 
	5.10 
	6.48
	2.61

	Disease duration <1 year at cohort entry
	36.96%
	
	

	SLEDAI score at first visit 
	3.22 
	4.06
	2.00

	Steroid dose at first visit (mg per day)
	10.44 
	15.95
	4.00

	Patient visits with immunosuppressants prescribed
	30.26%
	
	

	Patient visits with anti-malarials prescribed
	58.02%
	
	

	Duration of follow-up in years 
	1.02 
	0.56
	1.07






[bookmark: _Ref278121452][bookmark: _Ref278121447][bookmark: _Toc279009297]
[bookmark: _Toc379467711]Appendix 7: Results of Univariate statistical analysis of Organ damage
Table 60: Results of the univariate analyses for each organ system
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	
	Cardio.
	Renal
	MSK
	Neuro.
	Pulmonary
	Peripheral vascular
	Gastro.
	Ocular
	Skin
	Diabetes
	Malignancy
	Gonadal Failure

	Male
	1.4326
	1.9380*
	1.0091
	1.1554
	0.7193
	0.7693
	0.7993
	0.7874
	0.3419
	0.6593
	1.9177**
	0.0000

	African American ethnicity
	1.2880
	1.9139**
	1.1299
	1.2030
	1.0741
	1.4891
	0.8477
	0.9407
	4.7997***
	2.2263***
	0.9733
	1.0302

	Age at diagnosis
	1.0287***
	0.9833
	1.0137***
	1.0213***
	1.0298***
	1.0149
	1.0058
	1.0415***
	0.9997
	1.0340***
	1.0237***
	0.9621**

	Past smoker at baseline
	1.6302***
	1.0175 
	1.0812
	1.2071
	0.9877
	2.1376***
	1.2516
	1.2773*
	3.2611***
	1.0339***
	1.0523
	1.7742

	Cholesterol at last visit
	1.0055***
	1.0072***
	1.0033***
	1.3344***
	1.0005
	1.0058***
	1.0005
	1.0035***
	0.9990
	1.0060***
	1.5200**
	1.0070***

	Hypertension at last visit
	3.1118***
	2.6810***
	1.4597***
	2.2090***
	1.3240*
	2.7058***
	1.2424
	2.2105***
	0.7864
	1.9494**
	0.9928***
	1.7679

	Obese at baseline
	1.4366**
	1.2686
	1.32340**
	0.8760**
	1.3032
	0.8896
	1.1593
	1.2956*
	1.2042
	1.7280*
	1.2796
	1.0560

	Anticardiolipid antibody positive at last visit
	0.8497
	0.4553
	0.5487
	1.1161
	2.5759***
	1.8554
	0.7403
	0.9901
	0.0000
	1.0399
	0.2698
	0.0000

	Lupus Anticoagulant positive at last visit
	1.3139
	0.5555
	0.8301
	1.0048
	1.2072
	2.3753**
	0.8059
	1.0021
	0.2400
	0.6278
	1.1443
	0.2787

	Log of age
	4.9119***
	0.3670**
	2.1580***
	2.6685***
	3.4128***
	3.1271**
	1.0895
	7.7358***
	0.7558
	5.0099***
	5.2973***
	0.2024***

	Log of disease duration
	1.1397***
	0.7687**
	1.0369
	.8943
	0.9486
	1.3013
	0.9364
	0.9602
	0.9699
	0.9281
	1.3883***
	0.8279

	Adjusted Mean SLEDAI at last visit
	1.1976***
	1.4106***
	1.1005***
	1.0835**
	1.0788**
	1.1301*
	1.0093
	1.0690*
	1.2438***
	1.0045
	1.0911**
	

	Cumulative average steroid dose at last visit
	1.0011***
	1.0021***
	1.0013***
	1.0008***
	1.0003
	1.0010**
	1.0008**
	1.0011***
	1.0012**
	1.0011***
	1.0003
	1.0023***

	Cytotoxic treatment at last visit
	1.164
	2.516**
	1.645***
	1.1273
	1.3550*
	0.8635
	1.7985**
	1.4431**
	1.5746
	1.0543
	1.5755**
	3.4201***

	Anti-malarials treatment at last visit
	0.701**
	0.2979***
	0.9244
	.9845
	1.3410*
	0.6562
	0.8709
	1.1290
	0.4655**
	0.6156*
	1.0811
	0.3576***

	Neuropsychiatric involvement at last visit
	1.4326
	0.000
	2.4116***
	8.7535***
	0.8364
	0.0000
	0.8323
	2.6596**
	5.9423***
	1.1592
	0.6118
	4.4676***

	Musculoskeletal involvement at last visit
	1.9818***
	0.3823
	1.5936***
	1.1510
	1.3335
	0.5006
	0.7978
	1.3353
	2.8457**
	0.6573
	0.5782
	1.2664

	Renal involvement at last visit
	1.8721***
	14.795***
	1.0064
	1.3576
	1.9120***
	1.8173
	0.6693
	0.9250 
	1.9791
	2.6379***
	1.3311
	5.0869***

	Skin involvement at last visit
	0.6892
	0.5362
	0.7950
	.6970*
	1.1519
	1.2477
	1.1000
	0.9630
	3.8781***
	1.0397
	0.8812
	0.3026

	Vasculitis at last visit
	0.6194
	1.3958
	0.8090
	1.2792
	2.8064**
	3.5777*
	4.5541***
	1.4694
	2.4628
	0.0000
	1.6237
	0.0000

	Haematological involvement at last visit
	0.8162
	1.0031
	1.1800
	1.0087
	1.0613
	0.7647
	0.4652
	1.0176
	1.9141
	0.8915
	1.3410
	4.7953***

	Serositis involvement at last visit
	2.8107***
	1.3089
	1.4566
	.4037
	4.8941***
	0.0000
	1.0475
	0.9360
	0.0000
	1.4685
	0.0000
	1.3550

	DNA binding at last visit
	1.8484***
	2.4724***
	1.0812
	1.2097
	1.4028**
	0.9744
	1.1651
	0.9702
	1.0187
	0.7276
	1.1231
	2.1690**

	Low complement at last visit
	1.1596
	1.4037
	1.0725
	1.2340
	1.1416
	1.0654
	0.7924
	0.8362
	1.5247
	0.8762
	1.0943
	1.1023

	SLICC/ACR score at last visit
	1.2506***
	0.9718
	1.0725***
	1.1340***
	1.1493***
	1.1183*
	1.0718
	1.1449***
	1.0059
	1.0531
	1.2547***
	1.0498

	Renal damage score at last visit
	1.6088**
	
	
	
	
	
	
	
	
	
	
	

	Diabetes score at last visit
	2.9019***
	1.4486
	
	
	
	
	
	1.8774***
	
	
	
	

	*** statistically significant at p<0.001; ** statistically significant at p<0.05; * statistically significant at P<0.1; AIC Akaike Information Criterion




[bookmark: _Toc335043543]
[bookmark: _Toc379467712]Appendix 8: Organ Damage Frailty Survival Analysis
Table 61: Regression results for organ damage risk models with frailty (Clinical trial analysis)
	
	Cardio.
	Renal
	MSK
	Neuro.
	Pulmonary
	P. Vascular
	Gastro.
	Ocular
	Skin
	Diabetes
	Malignancy
	Gonadal 

	
	Gompertz
	Loglogistic
	Weibull
	Weibull
	Loglogistic
	Exponential
	Exponential
	Weibull
	Loglogistic
	Exponential
	Exponential
	Exponential

	African American ethnicity
	
	
	
	
	
	
	
	
	0.0829 (0.0663)
	2.0703 (0.5885)
	
	

	Age at diagnosis
	1.0481 (0.0081)
	
	
	
	
	
	
	
	
	
	1.0259 (0.0077)
	

	Past smoker at baseline
	
	
	
	
	
	2.0054 (0.6155)
	
	
	0.1553 (0.1098)
	
	
	

	Cholesterol at last visit
	1.0027 (0.0013)
	0.9922 (0.0037)
	
	1.0035 (0.0012)
	
	1.0058 (0.0020)
	
	
	
	
	0.9906 (0.0024)
	1.0044 (0.0017)

	Hypertension at last visit
	2.2665 (0.5414)
	
	
	1.8043 (0.2990)
	
	2.2430 (0.7481)
	
	
	
	
	
	

	Anticardiolipid antibody positive at last visit
	
	
	
	
	0.3133 (0.1387)
	
	
	
	
	
	
	

	Lupus Anticoagulant positive at last visit
	
	
	
	
	
	2.2758 (0.7800)
	
	
	
	
	
	

	Log of age
	
	
	2.6446 (0.5583)
	2.4330 (0.6504)
	0.1723 (0.0738)
	
	
	
	
	9.8192 (4.9752)
	
	

	Log of disease duration
	1.8593 (0.2675)
	
	
	
	
	
	
	
	
	
	1.3486 (0.1867)
	

	Adjusted Mean SLEDAI at last visit
	1.1597 (0.0463)
	0.8190 (0.0658)
	
	
	
	
	
	
	
	
	
	

	Cumulative average steroid dose at last visit
	1.0012 (0.0004)
	
	1.0012 (0.0002)
	1.0004 (0.0027)
	
	
	1.0008 (0.0004)
	
	
	1.0012 (0.0004)
	
	1.0017 (0.0004)

	Cytotoxic treatment at last visit
	
	
	1.2955 (0.1624)
	
	
	
	
	
	
	
	
	2.3074 (0.9870)

	Plaquenil treatment at last visit
	
	
	
	
	
	
	
	
	5.0263 (3.2089)
	
	
	0.3896 (0.1604)

	Neuropsychiatric involvement at last visit
	
	
	
	8.0571 (1.8171)
	
	
	
	
	
	
	
	

	Renal involvement at last visit
	
	0.0257 (0.0226)
	
	
	0.4120 (0.1173)
	
	
	
	
	2.4083 (0.0812)
	
	

	Skin involvement at last visit
	
	
	
	
	
	
	
	
	0.0851  (0.0608)
	
	
	

	Vasculitis at last visit
	
	
	
	
	
	
	5.2827 (2.7295)
	
	
	
	
	

	Serositis involvement at last visit
	3.0610 (1.2160)
	
	
	
	0.1194 (0.0495)
	
	
	
	
	
	
	

	DNA binding at last visit
	
	
	
	
	0.6129 (0.1444)
	
	
	
	
	
	
	

	SLICC/ACR score at last visit
	
	
	1.1084 (0.0308)
	
	0.8776 (0.0526)
	
	
	
	
	
	1.2014 (1.2014)
	

	Baseline hazard
	-8.9072 (0.5679)
	10.2551 (1.6553)
	-7.4545 (0.8019)
	-8.1285 (1.0017)
	11.5193 (1.6366)
	-7.5132 (0.5073)
	-5.0532 (0.1526)
	
	10.3180 (1.5288)
	-14.672 (2.0155)
	-4.8090 (0.6016)
	-7.2659 (0.5077)

	Parametric distribution parameter
	-0.04446 (0.0253)
	1.4937 (0.2949)
	0.8544 (0.0483)
	0.8254 (0.0546)
	1.1402 (0.0845)
	
	
	
	1.6042 (0.2449)
	
	
	

	Frailty Parameter (theta)
	0.0820 (0.2705)
	0.0000 (0.0007)
	0.0000 (0.0002)
	0.1171 (0.2286)
	0.8849 (0.4080)
	2.2502 (1.6640)
	0.0000 (0.0027)
	
	2.6719 (1.8938)
	0.0000 (0.0006)
	0.2068 (0.4335)
	0.0000 (0.0027)

	Chi-squared 
	112.10
	101.06
	99.72
	110.17
	72.65
	27.39
	10.83
	
	35.15
	39.86
	58.34
	43.80






Table 62: Regression results for organ damage risk models with frailty (CE model analysis)
	
	Cardio.
	Renal
	MSK
	Neuro.
	Pulmonary
	P. Vascular
	Gastro.
	Ocular
	Skin
	Diabetes
	Malignancy
	Gonadal 

	
	Gompertz
	Loglogistic
	Weibull
	Weibull
	Loglogistic
	Exponential
	Exponential
	Weibull
	Loglogistic
	Exponential
	Exponential
	Exponential

	African American ethnicity
	
	
	
	
	
	
	
	
	0.1953 (0.1728)
	2.1837 (0.6174)
	
	

	Age at diagnosis
	1.0469 (0.0081)
	
	
	
	
	
	
	
	
	
	1.0264 (0.0077)
	

	Past smoker at baseline
	
	
	
	
	
	2.0054 (0.6155)
	
	
	0.1836 (0.1605)
	
	
	

	Cholesterol at last visit
	1.0025 (0.0013)
	0.9842 (0.0062)
	
	1.0034 (0.0012)
	
	1.0058 (0.0020)
	
	
	
	
	0.9905 (0.0024)
	1.0053 (0.0017)

	Hypertension at last visit
	2.2563 (0.5389)
	
	
	1.7816 (0.2951)
	
	2.2430 (0.7481)
	
	
	
	
	
	

	Anticardiolipid antibody positive at last visit
	
	
	
	
	0.2674 (0.1268)
	
	
	
	
	
	
	

	Lupus Anticoagulant positive at last visit
	
	
	
	
	
	2.3511 (0.8452)
	
	
	
	
	
	

	Log of age
	
	
	2.5907 (0.5476)
	2.4621 (0.6469)
	0.2275 (0.1011)
	
	
	
	
	9.0296 (4.5999)
	
	

	Log of disease duration
	1.8234 (0.2621)
	
	
	
	
	
	
	
	
	
	1.3578 (0.1906)
	

	Adjusted Mean SLEDAI at last visit
	1.1703 (0.0468)
	0.6361 (0.0701)
	
	
	0.8883 (0.0421)
	
	
	
	0.8305 (0.0975)
	
	
	

	Cumulative average steroid dose at last visit
	1.0011 (0.0004)
	
	1.0014 (0.0002)
	1.0006 (0.0003)
	
	
	1.00084 (0.0004)
	
	
	1.0015 (0.0004)
	
	1.0020 (0.0004)

	SLICC/ACR score at last visit
	
	
	1.1157 (0.0307)
	
	0.8685 (0.0545)
	
	
	
	
	
	
	

	Diabetes score at last visit
	
	
	
	
	
	
	
	
	
	
	1.1995 (0.0491)
	

	Baseline hazard
	-8.7768 (0.5635)
	12.229 (2.5710)
	-7.3413 (0.8012)
	-8.0321 (0.9938)
	10.4957 (1.8234)
	-7.5132 (0.5073)
	-5.0300 (0.1512)
	
	10.2414 (2.1835)
	-14.2973 (2.0218)
	-4.8219 (0.6068)
	-7.4850 (0.3877)

	Parametric distribution parameter
	-0.04437 (0.0254)
	1.7293 (0.2385)
	0.8758 (0.0474)
	0.8114 (0.0541)
	1.1059 (0.1108)
	
	
	
	1.5666 (0.3533)
	
	
	

	Frailty Parameter (theta)
	0.0942 (0.27422)
	0.0000 (0.0052)
	0.0000 (0.0001)
	0.1489 (0.2412)
	0.6898 (0.4097)
	2.2502 (1.6640)
	0.0000 (0.0025)
	
	5.2215 (3.5448)
	0.0000 (0.0006)
	0.2068 (0.4335)
	0.0000 (0.0027)

	Chi-squared 
	106.18
	54.1
	95.43
	54.15
	38.66
	27.95
	4.17
	
	15.64
	33.82
	56.75
	34.27



[bookmark: _Toc335043544][bookmark: _Toc379467713]Appendix 9: VALIDATION OF AN INDIVIDUAL PATIENT LEVEL SIMULATION OF THE NATURAL HISTORY OF SYSTEMIC LUPUS ERYTHEMATOSUS AGAINST AN ALTERNATIVE LONGITUDINAL COHORT
[bookmark: _Toc278533928][bookmark: _Toc278533988][bookmark: _Toc279009259] METHODS
Model description
An individual patient simulation with Markov structure was used to model the natural history of the cohort of patients in Simul8®. A hypothetical cohort of 100,000 patients is modelled in the simulation and each patient’s disease status is monitored in annual cycles. 
When patients enter the simulation they are allocated a profile of demographic characteristics and a profile of their disease status. Demographic details include sex, ethnicity, and smoking status. Their health status is described by their age of diagnosis, disease duration, cholesterol, whether they have hypertension, antiphospholipid syndrome, or an infection. Their SLE Disease Activity Index (SLEDAI) score and prednisone dose are set and binary variables indicate which organ systems are currently active. Patients may enter the simulation with permanent organ damage to each organ system listed in the Systemic Lupus International Collaborating Centres/American College of Rheumatology Damage Index (SLICC/ACR DI). Independent sampling of the baseline characteristics was used but may not account for correlations between patient characteristics. Due to the number of characteristics and distribution types it was too complex to incorporate correlation and bootstrapping the Hopkins cohort would not be useful in validating the models against other cohorts with different baseline characteristics. 
The pathway of disease progression for each individual in the simulation is determined by a set of statistical models, which are used to estimate SLEDAI score, mean prednisone dose, organ damage and mortality. The statistical models were analysed independently and are applied in the simulation as independent calculations (254). 
Figure 35 illustrates the interdependencies present in the statistical models and illustrates how disease activity and prednisone dose affect the risk of organ damage and mortality. 
[image: ]
[bookmark: _Ref306609032]Figure 35: Diagram of the interdependencies in the simulation
There are a number of disease specific indices that have been developed to measure disease activity and organ damage in SLE. The Selena SLE Disease Activity Index (SSLEDAI) is a modified version of the SLEDAI and was used to measure disease activity in the Hopkins cohort (47). It measures a range of symptoms and immunology results experienced by patients. Ibanez et al. developed the Adjusted Mean SLEDAI (AMS) to measure disease severity over time using responses on the SLEDAI. AMS is calculated as the area under the curve of disease activity measurements, divided by the duration of follow-up. The Systemic Lupus International Collaborating Centres/American College of Rheumatology Damage Index (SLICC/ACR DI) measures irreversible organ damage across 12 organ systems. Evidence of damage must be present for at least 6 months to distinguish permanent from reversible organ damage. In the statistical analyses the SLICC/ACR DI was split into individual organ systems and each was modelled separately. 
In each cycle of the model the patient’s disease status is re-estimated. Average SSLEDAI score is calculated using the change in SSLEDAI score equation. Average prednisone dose is calculated using an algorithm which describes the relationship between disease activity and prednisone dose. Details of which organs were active in each annual period were generated at random using the Bernoulli distribution and are calculated independently of medical history or other characteristics. In order to simplify the simulation disease characteristics such as cholesterol, hypertension, anticardiolipin antibodies, and lupus anti-coagulant were held constant from the baseline values in the model.
At each annual interval of the model the cumulative hazard of mortality, cardiovascular damage, renal damage, musculoskeletal damage, neuropsychiatric damage, pulmonary damage, peripheral vascular damage, gastrointestinal damage, ocular damage and skin damage are calculated independently for each individual patient using the exponential, Weibull, gompertz and loglogistic distributions. The probability that the event occurred over the previous year are estimated as, 
)
A set of random numbers are sampled from a uniform distribution and compared with the probabilities of the events to determine the outcomes for that period. Many of the SLICC/ACR DI organ systems include more than one damage event that may occur. Therefore, the patients remain at risk of further damage to each organ system after they have accrued damage to that organ system. However, if a patient dies they are withdrawn from the model permanently.
[bookmark: _Ref306357666]In order to reproduce the different duration of follow-up in two cohorts it is necessary to simulate censoring. The time to censoring is assigned to all patients in the simulation at baseline and the patients withdraw from the model when time exceeds their follow-up.
Patient population
[bookmark: _Ref306357703]The Hopkins Lupus Cohort collects demographic details about the patients and their past medical history before cohort entry. Patients in the Hopkins Lupus cohort visit the clinic at least every 3 months. Data from the Hopkins Lupus Cohort collected between 1987 and 2010 were used in the statistical analysis. The data on these patients are used to generate baseline characteristics and withdrawal rates in the Hopkins simulation.
[bookmark: _Ref308792791]Table 63: Summary data for patients in the longitudinal cohorts with >24 months follow-up
	
	Hopkins Cohort (N=1354)
	Toronto Cohort (N=911)

	
	Simulation inputs (mean ±SD)

	Male
	7.1%
	12.0%

	Black
	38.8%
	10.2%

	Age at diagnosis
	32.93
	± 13.05
	30.35
	± 13.05

	Disease duration at cohort entry
	4.83
	± 6.3
	5.53
	± 5.23

	SLEDAI score at first visit
	3.71
	± 4.06
	9.09
	± 7.54

	Prednisone dose at first visit
	10.5
	± 16.19
	8.16
	± 15.5

	Duration of follow-up in cohort
	8.13
	± 5.02
	13.24
	± 8.89



External validation cohort
The Toronto Lupus Cohort is a longitudinal study of SLE patients attending the Toronto Lupus Clinic. The cohort consists of 911 patients followed between 1980 and 2010 who have more than 24 months of follow-up in the cohort. Disease activity is measured using the SLEDAI-2k revision of the SLEDAI score (48). Collaboration with the Toronto Lupus Cohort facilitated statistical analyses of the dataset.  
Summary data for the Toronto cohort is reported in Table 63. There is a higher proportion of black patients in the Hopkins Cohort and a lower proportion of males. The age at diagnosis is slightly lower in the Toronto cohort and the disease duration at cohort entry is higher in the Hopkins cohort. The SLEDAI score on entry into the Toronto cohort is higher and the average prednisone dose is lower than the Hopkins cohort. 
In the validation of the natural history model it is necessary to generate a population of patients similar to the Toronto cohort to see how well the models predict the long term outcomes of a different cohort using the statistical analyses from the Hopkins cohort. Firstly, the summary statistics for the Toronto cohort detailed in Table 63 were used to generate an alternative set of parameters. Secondly, the duration of follow-up in the Toronto cohort is longer than the Hopkins cohort so it was necessary to alter the time to withdrawal parameters.  Thirdly, the distributions of damage scores at baseline were updated. 
RESULTS
[bookmark: _Ref277174072]Baseline summary statistics generated from the simulation of the Hopkins cohort and Toronto cohort are reported in Table 64. The results show that the simulation generates similar baseline scores to the respective cohorts.  However, prednisone dose at first visit differs slightly between the Toronto cohort and simulation.
[bookmark: _Ref306115122]Table 64: Results of the simulations
	
	Hopkins
Simulated cohort (N=100,000)
	Toronto Simulated cohort (N=100,000)

	
	Simulation Output (mean ±SD)

	Male
	7.3%
	12.6%

	Black
	38.2%
	10.1%

	Age at diagnosis
	32.71
	± 12.98
	30.36
	± 13.46

	Disease duration at cohort entry
	4.89
	± 6.59
	3.59
	± 5.35

	SLEDAI score at first visit
	3.03
	± 2.59
	9.03
	± 7.52

	Prednisone dose at first visit
	10.45
	± 16.20
	9.98
	± 15.34

	Duration of follow-up in cohort
	8.61
	±4.53
	13.46
	±4.53


[bookmark: _Ref306191429][bookmark: _Ref306609222][bookmark: _Ref306191425][bookmark: _Ref306609212]

Table 65: Incidence of organ damage per patient year of observation
	
	Hopkins Cohort
	Toronto Cohort

	
	Simulation
	Data
	Simulation
	Data

	Patient years
	862294
	11018
	1118394
	12065

	Mortality
	0.008
	0.009
	0.014
	0.009

	Cardiovascular
	0.015
	0.013
	0.017
	0.011

	Renal
	0.005
	0.006
	0.008
	0.008

	Musculoskeletal
	0.031
	0.030
	0.029
	0.030

	Neuropsychiatric
	0.023
	0.019
	0.020
	0.013

	Pulmonary
	0.013
	0.015
	0.012
	0.003

	Peripheral Vascular
	0.003
	0.005
	0.004
	0.005

	Gastrointestinal
	0.009
	0.007
	0.009
	0.004

	Ocular
	0.015
	0.017
	0.014
	0.018

	Skin
	0.002
	0.003
	0.001
	0.007

	Diabetes
	0.007
	0.005
	0.006
	0.004

	Malignancy
	0.011
	0.010
	0.012
	0.004

	Gonadal Failure
	0.003
	0.003
	0.003
	0.002




Table 65 reports the rate of organ damage accrual during the observational period for the Hopkins cohort and Toronto cohort with their respective simulations results. Visual appraisal of the data suggests that the overall fit is good for the Hopkins cohort. There is more variation between the Toronto cohort and simulation data. 
[bookmark: _Toc341366964]

[bookmark: _Toc379467714]Appendix 10: Age and Disease Duration parameter distributions
Multinomial distribution for Age at diagnosis and Disease Duration are reported in Table 66.
[bookmark: _Ref355276271]Table 66: Multinomial parameters used to sample Age at Diagnosis and Disease Duration
	Sampled value
	Age at diagnosis
	Disease Duration
	
	
	

	0
	0
	0.270777
	52
	0.010761
	0

	1
	0
	0.173143
	53
	0.009608
	0

	2
	0
	0.112501
	54
	0.008537
	0

	3
	0
	0.083025
	55
	0.00755
	0

	4
	0
	0.064551
	56
	0.006649
	0

	5
	0
	0.051642
	57
	0.005831
	0

	6
	0
	0.042068
	58
	0.005096
	0

	7
	0
	0.034699
	59
	0.00444
	0

	8
	0
	0.028883
	60
	0.003859
	0

	9
	0
	0.02421
	61
	0.003348
	0

	10
	0
	0.020406
	62
	0.002902
	0

	11
	0.007803
	0.017275
	63
	0.002516
	0

	12
	0.008812
	0.014679
	64
	0.002185
	0

	13
	0.009905
	0.012511
	65
	0.001901
	0

	14
	0.011078
	0.010692
	66
	0.001661
	0

	15
	0.012327
	0.009158
	67
	0.001459
	0

	16
	0.013644
	0.007859
	68
	0.00129
	0

	17
	0.01502
	0.006757
	69
	0.00115
	0

	18
	0.016444
	0.005817
	70
	0.001034
	0

	19
	0.017901
	0.005016
	71
	0.00094
	0

	20
	0.019377
	0.00433
	72
	0.000863
	0

	21
	0.020855
	0
	73
	0.000801
	0

	22
	0.022315
	0
	74
	0.000751
	0

	23
	0.023738
	0
	75
	0.000711
	0

	24
	0.025104
	0
	76
	0.00068
	0

	25
	0.026392
	0
	77
	0.000655
	0

	26
	0.027582
	0
	78
	0.000636
	0

	27
	0.028655
	0
	79
	0.000621
	0

	28
	0.029592
	0
	80
	0.000609
	0

	29
	0.030378
	0
	81
	0
	0

	30
	0.030998
	0
	82
	0
	0

	31
	0.031442
	0
	83
	0
	0

	32
	0.031701
	0
	84
	0
	0

	33
	0.031771
	0
	85
	0
	0

	34
	0.031651
	0
	86
	0
	0

	35
	0.031342
	0
	87
	0
	0

	36
	0.030851
	0
	88
	0
	0

	37
	0.030186
	0
	89
	0
	0

	38
	0.029359
	0
	90
	0
	0

	39
	0.028384
	0
	91
	0
	0

	40
	0.027279
	0
	92
	0
	0

	41
	0.026061
	0
	93
	0
	0

	42
	0.02475
	0
	94
	0
	0

	43
	0.023367
	0
	95
	0
	0

	44
	0.021932
	0
	96
	0
	0

	45
	0.020466
	0
	97
	0
	0

	46
	0.018987
	0
	98
	0
	0

	47
	0.017514
	0
	99
	0
	0

	48
	0.016064
	0
	100
	0
	0

	49
	0.014652
	0
	
	
	

	50
	0.01329
	0
	
	
	

	51
	0.01199
	0
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Table 67: Seizure model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	African American coefficient
	0.9866
	0.2418
	
	
	
	Multivariate Normal

	Lag Seizure coefficient
	1.8503
	-0.0205
	0.2371
	
	
	Multivariate Normal

	Lag Low Complement coefficient
	1.3484
	0.0023
	-0.0160
	0.1506
	
	Multivariate Normal

	Intercept
	-9.6643
	-0.2030
	0.0879
	-0.1039
	0.6499
	Multivariate Normal



Table 68: Psychosis model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Lag Psychosis coefficient
	5.1913
	0.8702
	
	
	
	Multivariate Normal

	Lag OBS coefficient
	2.0323
	-0.4546
	0.7952
	
	
	Multivariate Normal

	Lag Lupus Headache coefficient
	2.2125
	0.0123
	-0.0223
	0.8364
	
	Multivariate Normal

	Intercept
	-7.7534
	0.3881
	-0.2563
	-0.0668
	0.3790
	Multivariate Normal

	OBS Organic Brain Syndrome



Table 69: Organic Brain Syndrome model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Lag OBS  coefficient
	1.8502
	0.111611
	
	
	Multivariate Normal

	Lag Myositis coefficient
	1.4969
	0.001876
	0.582429
	
	Multivariate Normal

	Intercept
	-7.9324
	0.034591
	-0.02099
	0.22473855
	Multivariate Normal

	OBS Organic Brain Syndrome



Table 70: Visual Disturbance model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Lag visual disturbance coefficient
	3.0167
	0.130866
	
	
	
	Multivariate Normal

	Lag Haematuria coefficient
	0.9151
	3.44E-06
	0.139665
	
	
	Multivariate Normal

	Lag Increase DNA coefficient
	0.7687
	-0.00478
	-0.0119
	0.063534
	
	Multivariate Normal

	Intercept
	-7.3223
	0.045662
	-0.02129
	-0.03117
	0.12872
	Multivariate Normal



Table 71: Cranial Nerve Disorder model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Lag cranial nerve disorder coefficient
	1.1543
	1.43E-01
	
	Multivariate Normal

	Intercept
	-6.6201
	0.020961
	0.061768
	Multivariate Normal



Table 72: Lupus Headache model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	log transformed age coefficient
	-1.7834
	0.25302
	
	
	
	
	Multivariate Normal

	Lag Lupus Headache coefficient
	2.4789
	0.025441
	0.109346
	
	
	
	Multivariate Normal

	Lag Proteinuria coefficient
	1.0859
	0.00605
	-0.00596
	0.098322
	
	
	Multivariate Normal

	Lag Leukopenia coefficient
	0.6346
	0.007633
	0.006188
	-0.00508
	0.119032
	
	Multivariate Normal

	Intercept
	-0.5371
	-0.84103
	-0.04795
	-0.05538
	-0.03683
	2.942823
	Multivariate Normal



Table 73: Cerebrovascular event model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Intercept
	-8.1021
	0.92113082
	Normal



Table 74: Vasculitis model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Hypertension coefficient
	0.3714
	0.0291
	
	
	
	
	
	
	Multivariate Normal

	Lag vasculitis coefficient
	2.3860
	-0.0028
	0.03359
	
	
	
	
	
	Multivariate Normal

	Lag New rash coefficient
	0.4948
	0.00059
	-0.0002
	0.03226
	
	
	
	
	Multivariate Normal

	Lag Mucosal ulcers
	0.6046
	-0.0003
	-0.0031
	-0.0036
	0.06259
	
	
	
	Multivariate Normal

	Lag Low complement coefficient
	0.7225
	0.00069
	-0.0009
	-0.0023
	-0.0006
	0.02809
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.3795
	-0.0011
	-0.0013
	-0.0021
	0.00079
	-0.0079
	0.03141
	
	Multivariate Normal

	Intercept
	-6.7457
	-0.0175
	0.01268
	0.00167
	-0.0034
	-0.0112
	-0.0099
	0.07526
	Multivariate Normal



Table 75: Urinary Casts model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-3.8345
	1.445433
	
	Multivariate Normal

	Intercept
	2.9133
	-4.61044
	16.04229
	Multivariate Normal




Table 76: Haematuria model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-0.8761
	0.0356
	
	
	
	
	
	
	
	Multivariate Normal

	African America coefficient
	0.4786
	0.0002
	0.0140
	
	
	
	
	
	
	Multivariate Normal

	Lag haematuria coefficient
	1.4368
	0.0015
	-0.001
	0.0106
	
	
	
	
	
	Multivariate Normal

	Lag Proteinuria coefficient
	0.7178
	0.001
	-0.001
	-0.002
	0.012
	
	
	
	
	Multivariate Normal

	Lag  Pyuria coefficient
	0.6817
	0.0005
	-0.0002
	-0.0027
	-0.0012
	0.01853
	
	
	
	Multivariate Normal

	Lag low complement coefficient
	0.4442
	0.00126
	0.00014
	-0.0005
	-0.0005
	-2.5e-05
	0.00874
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.4201
	0.0013
	-0.0005
	-0.0005
	-0.0004
	-0.0005
	-0.0027
	0.00967
	
	Multivariate Normal

	Intercept
	-1.3595
	-0.1257
	-0.0077
	-0.0038
	-0.0039
	-0.0021
	-0.0075
	-0.0073
	0.45861
	Multivariate Normal



Table 77: Proteinuria model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-1.2822
	0.0507
	
	
	
	
	
	
	
	
	Multivariate Normal

	African America coefficient
	1.1880
	-0.002
	0.0214
	
	
	
	
	
	
	
	Multivariate Normal

	Lag vasculitis coefficient
	0.6421
	-0.0003
	0.0006
	0.06864
	
	
	
	
	
	
	Multivariate Normal

	Lag haematuria coefficient
	0.4226
	0.00081
	-8e-05
	0.00075
	0.01373
	
	
	
	
	
	Multivariate Normal

	Lag Proteinuria coefficient
	1.6980
	0.00131
	-0.0017
	-0.0007
	-0.0016
	0.00793
	
	
	
	
	Multivariate Normal

	Lag  Pyuria coefficient
	0.4206
	0.00056
	-9.7e-05
	-0.0002
	-0.0034
	-0.0008
	0.02212
	
	
	
	Multivariate Normal

	Lag low complement coefficient
	0.3212
	0.00172
	2.5e-05
	-0.00133
	-0.0006
	-4e-05
	-0.0001
	0.00870
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.2813
	0.00087
	-0.0004
	-0.0002
	-0.0007
	-0.0002
	-0.0007
	-0.0022
	0.00907
	
	Multivariate Normal

	Intercept
	0.0779
	-0.1768
	-0.0051
	-0.0015
	-0.0031
	-0.0032
	-0.0024
	-0.0085
	-0.0053
	0.63659
	Multivariate Normal


Table 78: Pyuria model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-0.5705
	0.03428
	
	
	
	
	
	
	
	
	Multivariate Normal

	Male coefficient
	-0.9511
	-0.0006
	0.07781
	
	
	
	
	
	
	
	Multivariate Normal

	African America coefficient
	0.3593
	0.00069
	0.00029
	0.01302
	
	
	
	
	
	
	Multivariate Normal

	Lag haematuria coefficient
	0.5652
	0.00123
	-0.0002
	-0.0004
	0.01864
	
	
	
	
	
	Multivariate Normal

	Lag Proteinuria coefficient
	0.7220
	0.00109
	-0.0012
	-0.0012
	-0.0037
	0.01712
	
	
	
	
	Multivariate Normal

	Lag  Pyuria coefficient
	1.7547
	0.0015
	0.00175
	-0.0009
	-0.0036
	-0.0013
	0.01574
	
	
	
	Multivariate Normal

	Lag Pleurisy coefficient
	0.5578
	0.00169
	0.00067
	-0.0004
	0.00019
	-0.0004
	-0.0001
	0.03943
	
	
	Multivariate Normal

	Lag low complement coefficient
	0.3680
	0.00233
	0.00012
	0.00012
	-0.0011
	-0.0012
	-0.002
	-0.0003
	0.00978
	
	Multivariate Normal

	Intercept
	-2.6291
	-0.1217
	1.8e-05
	-0.0090
	-0.0045
	-0.0059
	-0.0031
	-0.0077
	-0.0122
	0.44923
	Multivariate Normal



Table 79: Arthritis model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-0.5538
	0.0310
	
	
	
	
	
	
	Multivariate Normal

	Male coefficient
	-0.5446
	-0.0006
	0.0577
	
	
	
	
	
	Multivariate Normal

	African America coefficient
	0.6110
	-0.0010
	0.0007
	0.0144
	
	
	
	
	Multivariate Normal

	Lag haematuria coefficient
	-0.4111
	0.0008
	-0.0002
	-0.0004
	0.0271
	
	
	
	Multivariate Normal

	Lag arthritis coefficient
	1.5619
	0.0020
	0.0002
	-0.0006
	-0.0004
	0.0049
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.2533
	0.0016
	-0.0002
	-0.0004
	-0.0007
	-0.0002
	0.0068
	
	Multivariate Normal

	Intercept
	-1.7828
	-0.1118
	-0.0015
	-0.0033
	-0.0037
	-0.0070
	-0.0077
	0.4123
	Multivariate Normal



Table 80: Myositis model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	African America coefficient
	1.4161
	0.090905
	
	
	
	Multivariate Normal

	Lag OBS
	1.9362
	0.004198
	0.562678
	
	
	Multivariate Normal

	Lag myositis coefficient
	3.0996
	-0.02311
	4.42E-05
	0.133655
	
	Multivariate Normal

	Intercept
	-7.7148
	-0.0831
	-0.02067
	0.071568
	0.177861
	Multivariate Normal

	OBS Organic Brain Syndrome



 Table 81: New rash model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-0.3967
	0.02388
	
	
	
	
	
	
	Multivariate Normal

	Lag vasculitis coefficient
	0.4151
	0.000219
	0.03240
	
	
	
	
	
	Multivariate Normal

	Lag New rash coefficient
	1.5691
	-3.85e-06
	-0.0003
	0.00461
	
	
	
	
	Multivariate Normal

	Lag Alopecia coefficient
	0.2171
	-0.00088
	-0.0006
	-0.0005
	0.00978
	
	
	
	Multivariate Normal

	Lag Mucosal ulcers coefficient
	0.5527
	-0.00029
	-0.0011
	-0.0004
	-0.0009
	0.01398
	
	
	Multivariate Normal

	Lag low complement coefficient
	0.2991
	0.001909
	-0.0006
	-0.0003
	-0.0001
	-3 e-05
	0.00560
	
	Multivariate Normal

	Intercept
	-2.0789
	-0.08834
	-0.0008
	0.00011
	0.00248
	0.00028
	-0.0088
	0.33198
	Multivariate Normal





Table 82: Alopecia model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	0.4423
	0.044155
	
	
	
	
	
	Multivariate Normal

	Male coefficient
	-2.0594
	0.000359
	0.122862
	
	
	
	
	Multivariate Normal

	African America coefficient
	1.6742
	0.002028
	-0.0013
	0.017269
	
	
	
	Multivariate Normal

	Lag Alopecia coefficient
	1.9743
	-0.00029
	0.001506
	-0.00143
	0.005268
	
	
	Multivariate Normal

	Lag low complement coefficient
	0.1715
	0.002112
	-0.00053
	0.000386
	-0.00038
	0.007485
	
	Multivariate Normal

	Intercept
	-6.6136
	-0.00023
	-4.6e-05
	9.90e-06
	-3.9e-05
	2.05e-05
	6.38e-06
	Multivariate Normal



Table 83: Mucosal Ulcers model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Male coefficient
	-0.8893
	0.061848
	
	
	
	
	
	
	
	Multivariate Normal

	African American coefficient
	-0.8985
	0.000803
	0.014272
	
	
	
	
	
	
	Multivariate Normal

	Lag vasculitis coefficient
	0.5606
	-0.00025
	-0.00056
	0.053881
	
	
	
	
	
	Multivariate Normal

	Lag Haematuria coefficient
	-0.4957
	-0.00067
	-0.00064
	-8.4e-05
	0.044718
	
	
	
	
	Multivariate Normal

	Lag new rash coefficient
	0.3868
	1.01E-05
	0.000314
	-0.00245
	-0.00044
	0.011732
	
	
	
	Multivariate Normal

	Lag alopecia coefficient
	0.5381
	0.001223
	-0.00254
	-0.00044
	-0.00081
	-0.00094
	0.013954
	
	
	Multivariate Normal

	Lag mucosal ulcers coefficient
	1.1187
	0.000542
	0.000959
	-0.0014
	6.52e-05
	-0.00087
	-0.00091
	0.009996
	
	Multivariate Normal

	Intercept
	-3.6001
	-0.00343
	-0.00376
	-0.00068
	-0.00095
	-0.00143
	-0.00054
	0.000246
	0.006666
	Multivariate Normal



Table 84: Pleurisy model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-0.9881
	0.047419
	
	
	
	
	
	
	Multivariate Normal

	Male coefficient
	-0.9720
	-0.00141
	0.119924
	
	
	
	
	
	Multivariate Normal

	Lag vasculitis coefficient
	1.0966
	-1.6E-05
	-0.00053
	0.080291
	
	
	
	
	Multivariate Normal

	Lag pleurisy coefficient
	1.6638
	0.001438
	0.00234
	-0.00119
	0.019384
	
	
	
	Multivariate Normal

	Lag pericarditis coefficient
	0.5985
	0.001379
	-0.00047
	-0.0013
	-0.00711
	0.064501
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.7016
	0.003798
	-0.0012
	-0.00107
	-0.00033
	-0.00127
	0.01476
	
	Multivariate Normal

	Intercept
	-1.3521
	-0.17249
	0.002391
	-0.00352
	-0.0024
	-0.00388
	-0.01939
	0.643315
	Multivariate Normal





Table 85: Pericarditis model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	log transformed age coefficient
	-1.3246
	0.145772
	
	
	
	
	Multivariate Normal

	Lag Pleurisy coefficient
	1.1127
	0.004071
	0.07535
	
	
	
	Multivariate Normal

	Lag Pericarditis coefficient
	1.7390
	0.006683
	-0.02539
	0.086328
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.8106
	0.01133
	-0.00374
	-0.00383
	0.04659
	
	Multivariate Normal

	Intercept
	-2.0822
	-0.51971
	-0.01428
	-0.00143
	-0.06483
	1.934583
	Multivariate Normal



Table 86: Thrombocytopenia model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Lag thrombocytopenia coefficient
	2.6837
	0.017036
	
	
	
	Multivariate Normal

	Lag Leukopenia coefficient
	0.4472
	-0.00182
	0.034244
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.4243
	0.000272
	-0.00035
	0.020893
	
	Multivariate Normal

	Intercept
	-6.4382
	0.009644
	-0.00313
	-0.00809
	0.075015
	Multivariate Normal



Table 87: Leukopenia model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed coefficient
	-0.8898
	0.089755
	
	
	
	
	
	
	Multivariate Normal

	African America coefficient
	1.1418
	-0.00013
	0.038149
	
	
	
	
	
	Multivariate Normal

	Lag thrombocytopenia coefficient
	0.5988
	-2.9E-05
	0.00019
	0.032204
	
	
	
	
	Multivariate Normal

	Lag Leukopenia coefficient
	1.5806
	0.000493
	-0.00161
	-0.00078
	0.007618
	
	
	
	Multivariate Normal

	Lag low complement coefficient
	0.3725
	0.002367
	-4.6E-05
	-0.00054
	-0.00034
	0.010509
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.2522
	0.001409
	-0.0002
	0.000213
	-0.00021
	-0.002
	0.011167
	
	Multivariate Normal

	Intercept
	-2.1578
	-0.31586
	-0.02283
	-0.00073
	0.000628
	-0.01105
	-0.00851
	1.151025
	Multivariate Normal






Table 88: Low Complement model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed coefficient
	-1.4403
	0.04100
	
	
	
	
	
	
	Multivariate Normal

	Lag New rash coefficient
	0.2628
	0.00011
	0.00714
	
	
	
	
	
	Multivariate Normal

	Lag thrombocytopenia coefficient
	0.2322
	0.00027
	-0.00043
	0.01941
	
	
	
	
	Multivariate Normal

	Lag Leukopenia coefficient
	0.3096
	0.00017
	0.00014
	-0.00087
	0.01053
	
	
	
	Multivariate Normal

	Lag low complement coefficient
	2.0156
	0.00070
	-0.00024
	-0.00019
	-0.00017
	0.00281
	
	
	Multivariate Normal

	Lag Increased DNA coefficient
	0.4732
	0.00072
	-0.00019
	-0.00001
	0.00000
	-0.00038
	0.00424
	
	Multivariate Normal

	Intercept
	2.7720
	-0.14574
	-0.00101
	-0.00133
	-0.00137
	-0.00307
	-0.00365
	0.524126
	Multivariate Normal



Table 89: Increased DNA binding model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-1.0218
	0.0493
	
	
	
	
	
	
	
	
	Multivariate Normal

	Male coefficient
	0.5394
	0.0005
	0.0212
	
	
	
	
	
	
	
	Multivariate Normal

	Lag haematuria coefficient
	0.3866
	0.0009
	-0.0003
	0.0132
	
	
	
	
	
	
	Multivariate Normal

	Lag arthritis coefficient
	0.3663
	0.0002
	0.0003
	-0.0002
	0.0082
	
	
	
	
	
	Multivariate Normal

	Lag pericarditis coefficient
	0.5782
	0.0009
	-0.0003
	-0.0003
	0.0000
	0.0820
	
	
	
	
	Multivariate Normal

	Lag  leukopenia coefficient
	0.3501
	0.0001
	-0.0007
	0.0002
	0.0002
	-0.0001
	0.0127
	
	
	
	Multivariate Normal

	Lag low complement coefficient
	0.4953
	0.0010
	0.0000
	-0.0004
	-0.0004
	-0.0002
	-0.0004
	0.0045
	
	
	Multivariate Normal

	Lag increased DNA coefficient
	2.2122
	0.0003
	-0.0003
	-0.0002
	-0.0001
	0.0000
	0.0000
	-0.0004
	0.0033
	
	Multivariate Normal

	Intercept
	0.6760
	-0.176
	-0.0107
	-0.0038
	-0.0014
	-0.0039
	-0.0012
	-0.0047
	-0.0015
	0.6399
	Multivariate Normal



Table 90: Fever model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	-1.8866
	0.144231
	
	
	Multivariate Normal

	African American coefficient
	0.5150
	-0.00157
	0.05473
	
	Multivariate Normal

	Intercept
	0.5940
	-0.48382
	-2.47E-02
	1.702157
	Multivariate Normal





Table 91: Infection model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Steroid dose coefficient
	0.0235
	9.36E-06
	
	
	
	Multivariate Normal

	Lag male coefficient
	-0.3217
	-2.20E-06
	0.02257
	
	
	Multivariate Normal

	Log transformed age coefficient
	-0.2604
	5.32E-05
	-0.00054
	0.013368
	
	Multivariate Normal

	Intercept
	-2.2568
	-0.00026
	0.000566
	-0.04962
	0.186536
	Multivariate Normal
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Table 92: Probability of steroid prescription model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	A. American coefficient
	0.7621
	0.00067
	
	
	
	
	
	
	
	            
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Male coefficient
	0.4582
	8.43e-05
	0.00219
	
	
	
	
	
	
	            
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Log transformed age coefficient
	-0.3189
	-2e-05
	-4.8e-05
	1.78e-03
	
	
	
	
	
	            
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag seizure coefficient
	1.8275
	-2.1e-05
	-2e-05
	2.87e-05
	2.91e-01
	
	
	
	
	            
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag psychosis coefficient
	0.9608
	-0.00017
	5.32e-05
	8.33e-05
	0.00021
	0.21937
	
	
	
	            
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag OBS coefficient
	2.1515
	8.53e-05
	0.00011
	-0.0001
	-0.00093
	-0.00636
	0.12739
	
	
	            
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Lag VD coefficient
	0.6709
	-4.4e-05
	-3.98e-07
	-6.9e-05
	0.00016
	0.00021
	-0.00037
	5.62e-02
	
	            
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag LH coefficient
	1.4146
	2. 7e-05
	0.00014
	0.00035
	0.00017
	-0.00058
	-0.00049
	-0.00012
	0.05769
	            
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag vasculitis coefficient
	0.7990
	4.95e-06
	7.22e-05
	-1.1E-05
	5.32e-05
	0.00014
	-0.00012
	8.29e-05
	-0.00018
	1.96e-02
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag arthritis coefficient
	0.8485
	-4.3E-05
	0.00011
	-0.00013
	3.98e-05
	-0.00017
	4.18e-05
	8.94e-06
	-0.00016
	-4.9e-06
	0.00252
	
	
	
	
	
	
	
	            
	
	
	
	
	
	Multivariate Normal

	Lag myositis coefficient
	0.4942
	-0.0002
	-0.00016
	3.40e-06
	0.00016
	0.00016
	-0.00021
	0.00017
	3.24e-05
	-1.3e-05
	5.02e-06
	0.04713
	
	
	
	
	
	
	            
	
	
	
	
	
	Multivariate Normal

	Lag Haematuria coefficient
	0.5233
	-2.8e-05
	-5.9e-05
	0.00011
	0.00015
	0.00011
	7.03e-05
	2.6e-05
	0.00017
	3.4e-05
	5.16e-05
	6.34e-05
	0.00604
	
	
	
	
	
	            
	
	
	
	
	
	Multivariate Normal

	Lag proteinuria coefficient
	1.1074
	-0.00011
	-2.5e-05
	0.0002
	-1.9e-05
	7.54e-05
	1.05e-05
	9.04e-06
	-0.00017
	-3.8e-05
	4.38e-05
	-7.9E-05
	-0.00057
	0.00508
	
	
	
	
	            
	
	
	
	
	
	Multivariate Normal

	Lag pyuria coefficient
	0.2421
	-3.9e-05
	0.00012
	3.71e-05
	-6e-05
	-0.00023
	4.61e-05
	-0.00015
	-0.00011
	-7.1e-05
	-1.9e-05
	0.00013
	-0.0012
	-0.00019
	0.00774
	
	
	
	            
	
	
	
	
	
	Multivariate Normal

	Lag new rash coefficient
	0.2243
	2.e8e-05
	-6.0e-06
	7.7e-05
	-2e-05
	0.00016
	-0.00017
	8.43e-05
	-3.9e-06
	-0.00048
	-3.7e-05
	-0.0001
	-1.5E-05
	3.81e-05
	-6.1e-06
	0.00210
	
	
	            
	
	
	
	
	
	Multivariate Normal

	Lag thrombocytopenia coefficient
	0.5379
	5.24e-05
	-0.00012
	-1.3e-05
	0.00010
	0.00011
	2.79e-05
	0.00014
	-0.00024
	3.58e-06
	7.54e-05
	-0.00015
	-3.3e-05
	-3.7e-05
	-2.8e-05
	-5.9e-06
	0.00572
	
	            
	
	
	
	
	
	Multivariate Normal

	Lag leukopenia coefficient
	-0.3042
	-0.00014
	-5e-05
	8.41e-05
	7.09e06
	0.00016
	3.29e-06
	-4.6e-05
	-9.6e-05
	4.96e-05
	-6.6e-06
	5.65e-05
	6.02e-05
	-0.0001
	5.6E-05
	-8.8e-06
	-0.00039
	0.00300
	            
	
	
	
	
	
	Multivariate Normal

	Lag pleurisy coefficient
	0.6791
	2.32e-05
	9.56e-05
	0.00015
	-6.1e-05
	0.00017
	2.67e-05
	6.59e-05
	1.78e-05
	-2e-05
	-7.3e-05
	-3.8e-05
	4.85e-05
	4.41e-05
	-0.00012
	-2.5E-05
	8.19e-05
	1.64e-05
	0.00913
	
	
	
	
	
	Multivariate Normal

	Lag pericarditis coefficient
	0.5821
	2.04e-05
	5.39e-05
	0.00011
	0.00014
	0.00011
	0.00010
	0.00014
	-8e-05
	3.39e-05
	-5.7e-05
	-0.00012
	-1.7e-05
	-2.9e-05
	1.25e-05
	1.12e-05
	-6.2e-05
	-1.3e-05
	-0.00282
	0.03636
	
	
	
	            
	Multivariate Normal

	Lag low complement coefficient
	0.5731
	5.58e-05
	3.91e-05
	0.00011
	-0.00023
	-1.1e-06
	1.61e-05
	5.91e-06
	-2.3e-06
	-0.00012
	3.01e-05
	8.00e-06
	-3.3e-05
	-2.5e-05
	-2.1e-05
	-6.4e-05
	-0.00012
	-0.0002
	2.52e-05
	-1.6e-05
	0.00096
	
	
	            
	Multivariate Normal

	Lag increased DNA coefficient
	0.4657
	-1.1e-05
	-2.2e-06
	9.41e-05
	0.00011
	0.00010
	0.00011
	-8e-05
	3.31e-05
	-1.2e-05
	-3e-05
	5.61e-07
	-7.2e-05
	-4.1e-05
	-4.9e-05
	-9.e-06
	-3.9e-06
	-2.7e-05
	-8.2e-05
	-3.7e-05
	-0.00029
	0.00101
	
	            
	Multivariate Normal

	Lag constitutional coefficient
	0.5298
	-1.8e-05
	7.5e-05
	0.00028
	-2.5e-05
	-0.00169
	0.00022
	-0.00047
	-0.00148
	-0.00025
	-0.00027
	-0.00067
	-2.8e-06
	4.95e-05
	-2.5E-05
	-0.00025
	2.37e-05
	-0.00027
	-0.00041
	-9.6e-05
	-8.2e-05
	3.17e-05
	0.05616
	            
	

	Intercept
	0.5818
	-0.0002
	-3.9e-05
	-0.00668
	-0.00023
	-0.00043
	0.00016
	0.00013
	-0.00147
	-5.3e-05
	0.00032
	-6.9E-05
	-0.00049
	-0.00082
	-0.00024
	-0.00044
	-7.7e-05
	-0.00036
	-0.00072
	-0.0005
	-0.00061
	-0.00049
	-0.00112
	0.02546
	

	OBS Organic Brain Syndrome; VD Visual Disturbance; LH Lupus Headache






Table 93: Negtaive Binomial steroid prescription model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	
	Distribution

	A. American coefficient
	0.1520
	0.000125
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Log transformed age coefficient
	-0.3841
	7.26E-06
	0.00036
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag seizure coefficient
	0.3846
	-2E-05
	9.93E-06
	0.009393
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag psychosis coefficient
	0.4189
	-3E-05
	-2.56E-05
	5.47E-05
	0.015118
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag OBS coefficient
	0.5302
	2.45E-06
	-2.2E-05
	-1.40E-04
	-8.12E-04
	0.004751
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag VD coefficient
	0.4384
	-1.7E-05
	-7.19E-06
	3.63E-05
	4.73E-05
	-5.9E-05
	5.81E-03
	
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag LH coefficient
	0.3701
	1.08E-05
	5.51E-05
	3.95E-05
	-5.7E-05
	-9.3E-05
	-5.5E-05
	0.003091
	
	
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag Cerebro. coefficient
	0.6579
	-3.8E-05
	-1.17E-05
	9.22E-05
	0.00044
	-0.00231
	6.37E-05
	8.50E-05
	5.89E-02
	            
	
	
	
	
	
	
	
	
	
	
	

	Lag vasculitis coefficient
	0.5239
	-4.88E-06
	-1.5E-05
	1.87E-05
	3.36E-05
	-1.7E-05
	1.02E-05
	-4.4E-05
	-0.00018
	0.001678
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Lag myositis coefficient
	0.4739
	-4.42E-05
	-9.92E-06
	4.21E-05
	-6.9E-05
	-5.5E-05
	3.77E-05
	-1.1E-05
	7.89E-05
	-2.00E-05
	0.004535
	
	
	
	
	
	
	
	            
	
	Multivariate Normal

	Lag Haematuria coefficient
	0.2536
	-1.39E-06
	2.7E-05
	2.68E-05
	-1.4E-05
	8.14E-06
	-7.59E-07
	2.25E-05
	-2.4E-05
	2.13E-05
	1.65E-05
	0.000597
	
	
	
	
	
	
	            
	
	Multivariate Normal

	Lag proteinuria coefficient
	0.3030
	-2.1E-05
	2.39E-05
	-7.68E-06
	-2.27E-07
	8.60E-06
	4.50E-06
	-9.82E-06
	-4.4E-05
	3.41E-06
	-1.6E-05
	-9E-05
	0.000378
	
	
	
	
	
	            
	
	Multivariate Normal

	Lag pyuria coefficient
	0.1625
	-8.89E-07
	1.84E-05
	-3.7E-05
	3.18E-05
	-1E-05
	-1.7E-05
	-1.8E-05
	3.69E-05
	-1.7E-05
	2.05E-05
	-0.00013
	-3.6E-05
	0.00088
	
	
	
	
	            
	
	Multivariate Normal

	Lag new rash coefficient
	0.1710
	6.37E-06
	2.16E-05
	1.74E-05
	1.38E-05
	-2.7E-05
	1.32E-05
	1.35E-05
	1.79E-05
	-6.9E-05
	-2E-05
	-1.63E-06
	6.59E-06
	5.41E-07
	0.000327
	
	
	
	            
	
	Multivariate Normal

	Lag thrombocytopenia coefficient
	0.3507
	2.56E-06
	-5.62E-06
	-2.4E-05
	3.13E-05
	7.67E-06
	2.56E-05
	-6E-05
	1.6E-05
	1.72E-05
	1.89E-05
	-1.1E-05
	-5.47E-06
	9.01E-06
	-5.77E-06
	0.000688
	
	
	            
	
	Multivariate Normal

	Lag pleurisy coefficient
	0.2025
	-3.49E-06
	3.31E-05
	-1.2E-05
	2.39E-05
	1.56E-05
	1.11E-05
	-4.47E-06
	1.46E-05
	-8.03E-06
	1.08E-05
	1.41E-05
	1.18E-05
	-3.2E-05
	-5.33E-06
	1.72E-05
	0.000903
	
	            
	
	Multivariate Normal

	Lag low complement coefficient
	0.0770
	3.09E-06
	2.2E-05
	-4.6E-05
	-4.85E-06
	4.56E-07
	-1.60E-06
	8.91E-06
	2.56E-05
	-1.95E-05
	-9.00E-06
	-1.2E-05
	-7.31E-06
	-7.56E-06
	-1.5E-05
	-3.1E-05
	9.83E-06
	0.000154
	            
	
	Multivariate Normal

	Lag increased DNA coefficient
	0.0424
	-9.26E-06
	1.77E-05
	3.24E-06
	9.30E-06
	1.39E-05
	-3.90E-06
	1.59E-05
	3.62E-05
	-6.78E-06
	5.29E-06
	-1.8E-05
	-8.38E-06
	-1.5E-05
	1.56E-08
	-2.34E-06
	-3.1E-05
	-5.1E-05
	0.000162
	
	Multivariate Normal

	Intercept
	3.4285
	-7.9E-05
	-0.00132
	-5.2E-05
	7.35E-05
	3.44E-05
	-9.05E-07
	-0.00026
	1.26E-05
	3.68E-05
	1.84E-05
	-0.00011
	-0.00012
	-7.5E-05
	-0.0001
	6.07E-06
	-0.00015
	-0.00012
	-9.8E-05
	0.0005
	Multivariate Normal

	OBS Organic Brain Syndrome; VD Visual Disturbance; LH Lupus Headache





Table 94: Mortality model for BCTS parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	A. American coefficient
	0.7439
	0.062994
	
	
	
	
	
	            
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Age at diagnosis coefficient
	0.0339
	0.000248
	7.64e-05
	
	
	
	
	            
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Cholesterol coefficient
	0.0041
	-1.4e-05
	-2.8e-07
	2.15e-06
	
	
	
	            
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	AMS coefficient
	0.2201
	-0.00055
	0.000114
	-1e-05
	0.002954
	
	
	            
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Plaquenil coefficient
	-0.5584
	0.001796
	-4.2e-05
	4.89e-05
	0.000345
	0.053345
	
	            
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Renal involvement coefficient
	0.5616
	-0.00778
	-9.4e-05
	-5.9e-05
	-0.0045
	0.001896
	0.081009
	            
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Haematology involvement coefficient
	0.8436
	-0.00131
	-1.7e-05
	6.03e-05
	-0.00154
	0.00785
	0.000285
	0.09012
	
	
	
	
	
	
	
	
	
	
	Multivariate Normal

	Cardio. damage coefficient
	0.3379
	-0.00277
	-0.00036
	-1.5e-06
	-0.00034
	0.002466
	0.000389
	-0.00758
	0.025392
	
	
	
	
	
	            
	
	
	
	Multivariate Normal

	Renal damage coefficient
	0.5543
	0.010524
	5.21e-05
	-4.3e-06
	0.000298
	0.004583
	-0.015
	2.63E-05
	-0.00052
	0.059317
	
	
	
	
	            
	
	
	
	Multivariate Normal

	MSK damage coefficient
	0.3221
	-0.00096
	8.16e-06
	1.92e-06
	-0.00118
	-0.00183
	0.002388
	0.003523
	-0.004
	0.000316
	0.016401
	
	
	
	            
	
	
	
	Multivariate Normal

	P.vascular damage coefficient
	0.9025
	0.005532
	2.04e-05
	1.38e-05
	-0.00149
	-0.00184
	0.001616
	0.009895
	-0.00454
	0.004615
	0.00013
	0.052979
	
	
	            
	
	
	
	Multivariate Normal

	GI damage coefficient
	0.6762
	0.010126
	-0.00019
	1.42e-05
	-0.00082
	-0.00066
	0.001948
	0.003848
	0.000476
	-0.00308
	-0.00514
	0.00232
	0.050647
	
	            
	
	
	
	Multivariate Normal

	Malignancy coefficient
	0.9971
	0.015873
	-0.0003
	1.73e-05
	0.000782
	0.004116
	-0.00228
	-0.00235
	-0.0064
	0.000765
	0.002143
	0.000277
	0.004341
	0.068949
	            
	
	
	
	Multivariate Normal

	Infection coefficient
	1.0265
	-0.00203
	0.000146
	1.37e-05
	-0.00038
	-0.00234
	0.002299
	0.003036
	-0.00141
	0.001902
	0.001342
	6.73E-05
	-0.00118
	0.001448
	0.125797
	
	
	
	Multivariate Normal

	Intercept
	-10.4149
	-0.03556
	-0.00371
	-0.00046
	-0.0176
	-0.03077
	0.011064
	-0.0323
	0.014284
	-0.01487
	0.002676
	-0.00443
	-0.01556
	-0.01229
	-0.02106
	0.5445
	            
	
	Multivariate Normal

	Gamma
	0.5957
	-0.00341
	0.00014
	9.40e-06
	0.00157
	-0.00159
	0.00153
	0.001251
	-0.00082
	-0.00145
	-0.0018
	-0.00218
	0.000922
	-0.0023
	0.000239
	-0.0429
	0.0080
	
	Multivariate Normal

	Treatment coefficient
	-0.1935
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	1.1426
	Multivariate Normal

	Cardio. Cardiovascular; MSK Musculoskeletal; P. vascular Peripheral Vascular; GI Gastrointestinal






Table 95: Cardiovascular  model for BCTS parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Age at diagnosis coefficient
	0.0468
	5.89E-05
	
	
	
	
	
	            
	
	
	
	Multivariate Normal

	Cholesterol coefficient
	0.0027
	-9.01E-07
	1.59E-06
	
	
	
	
	            
	
	
	
	Multivariate Normal

	Hypertension coefficient
	0.8194
	-0.00046
	-1.5E-05
	0.056786
	
	
	
	            
	
	
	
	Multivariate Normal

	Log transformed disease duration coefficient
	0.6169
	0.000442
	-2.4E-05
	-0.00565
	0.020379
	
	
	            
	
	
	
	Multivariate Normal

	AMS coefficient
	0.1471
	4.34E-05
	-7.55E-06
	-0.00043
	-0.00025
	0.001537
	
	            
	
	
	
	Multivariate Normal

	Steroid coefficient
	0.0012
	8.51E-07
	-1.01E-07
	-1E-05
	1.32E-05
	-5.39E-06
	1.41E-07
	            
	
	
	
	Multivariate Normal

	Serositis coefficient
	1.1197
	0.000233
	2.85E-05
	0.000963
	0.004441
	-0.00192
	7.36E-06
	0.156853
	
	
	
	Multivariate Normal

	Intercept
	-8.8971
	-0.00307
	-0.0002
	-0.00661
	-0.0471
	-0.00421
	-5.5E-05
	-0.02954
	0.314196
	            
	
	Multivariate Normal

	Gamma
	-0.0445
	-4.25E-06
	3.82E-06
	-0.00023
	-0.00155
	0.000166
	3.73E-07
	6.72E-05
	-0.00109
	0.000641
	
	Multivariate Normal

	Treatment coefficient
	-0.0483
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.1479
	Multivariate Normal

	OBS Organic Brain Syndrome; VD Visual Disturbance; LH Lupus Headache





Table 96: Renal model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Cholesterol coefficient
	-0.0078
	1.37E-05
	
	
	
	            
	
	Multivariate Normal

	AMS coefficient
	-0.1997
	-1.5E-05
	0.006455
	
	
	            
	
	Multivariate Normal

	Renal involvement coefficient
	-3.6604
	7.19E-04
	-7.70E-03
	0.774814
	
	            
	
	Multivariate Normal

	Intercept
	10.2576
	-0.00429
	-0.03418
	-1.04132
	2.744691
	            
	
	Multivariate Normal

	Gamma
	0.4016
	-0.00029
	-0.0028
	-0.1361
	0.288369
	0.039009
	
	Multivariate Normal

	Treatment coefficient
	0.0009
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0355
	Multivariate Normal



Table 97: Musculoskeletal model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	0.9725
	0.044565
	
	
	
	
	            
	
	Multivariate Normal

	Average steroid coefficient
	0.0012
	9.32E-06
	3.74E-08
	
	
	
	            
	
	Multivariate Normal

	Immunosuppressant coefficient
	0.2589
	1.18E-03
	-7.47e-06
	0.015713
	
	
	            
	
	Multivariate Normal

	SLICC/ACR coefficient
	0.1029
	-0.00197
	-8.50e-07
	-0.0004
	0.000773
	
	            
	
	Multivariate Normal

	Intercept
	-7.4545
	-0.16643
	-4.9E-05
	-0.00703
	0.006717
	0.643058
	            
	
	Multivariate Normal

	Gamma
	-0.1573
	-0.00061
	4.47E-06
	-0.00152
	-0.00032
	-0.00348
	3.19E-03
	
	Multivariate Normal

	Treatment coefficient
	-0.0532
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.1622
	Multivariate Normal



Table 98: Neuropsychiatric model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Cholesterol coefficient
	0.0034
	1.4e-06
	
	
	
	
	
	            
	
	Multivariate Normal

	Hypertension coefficient
	0.5899
	-1.7e-05
	0.02718
	
	
	
	
	            
	
	Multivariate Normal

	Log transformed age coefficient
	0.8901
	-3e-05
	-1.2e-02
	0.06875
	
	
	
	            
	
	Multivariate Normal

	Average steroid coefficient
	0.0004
	-8e-08
	-6.6e-06
	1.8e-05
	7e-08
	
	
	            
	
	Multivariate Normal

	CNS involvement coefficient
	2.0775
	3.6-06
	5.7e-04
	-0.0002
	-1e-05
	0.04948
	
	            
	
	Multivariate Normal

	Intercept
	-8.0923
	-0.0002
	0.03339
	-0.2478
	-0.0001
	-0.005
	9.8e-01
	            
	
	Multivariate Normal

	Gamma
	-0.1919
	6.7e-06
	-0.001
	-0.0018
	3.5e-06
	0.00073
	-0.0025
	0.00437
	
	Multivariate Normal

	Treatment coefficient
	-0.0488
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.1484
	Multivariate Normal





Table 99: Pulmonary model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Anti-cardiolipin  coefficient
	-1.2317
	1.83e-01
	
	
	
	
	
	            
	
	
	Multivariate Normal

	Log transformed age coefficient
	-1.7013
	0.00743
	0.16576
	
	
	
	
	            
	
	
	Multivariate Normal

	Renal involvement coefficient
	-0.8595
	8.85e-03
	2.38e-02
	0.07746
	
	
	
	            
	
	
	Multivariate Normal

	Serositis coefficient
	-2.2426
	1.33e-02
	3.59e-02
	0.00477
	1.65e-01
	
	
	            
	
	
	Multivariate Normal

	Increased DNA coefficient
	-0.4820
	-2.7e-03
	1.80e-02
	-0.0030
	-3.8e-04
	0.05212
	
	            
	
	
	Multivariate Normal

	SLICC/ACR coefficient
	-0.1576
	0.00211
	-0.0031
	-0.0004
	0.00360
	0.0008
	3.12e-03
	            
	
	
	

	Intercept
	11.5193
	-5.9e-02
	-0.6574
	-0.1084
	-1.8e-01
	-0.0885
	0.00211
	2.67855
	
	
	Multivariate Normal

	Gamma
	0.1385
	-0.0066
	-0.0110
	-0.0029
	-0.0095
	-0.0018
	-0.0014
	0.05780
	0.00541
	
	Multivariate Normal

	Treatment coefficient
	0.0216
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.000
	0.0721
	Multivariate Normal



Table 100: Peripheral vascular model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Smoking coefficient
	0.6838
	8.37E-02
	
	
	
	            
	
	Multivariate Normal

	Cholesterol coefficient
	0.0048
	-3.1E-05
	2.02E-06
	
	
	            
	
	Multivariate Normal

	Hypertension coefficient
	0.7982
	-7.49E-03
	-4.84E-05
	0.105866
	
	            
	
	Multivariate Normal

	Lupus anticoagulant coefficient
	0.8223
	7.11E-03
	-2.45E-05
	-0.00878
	1.17E-01
	            
	
	Multivariate Normal

	Intercept
	-7.3112
	-4.03E-02
	-3.65E-04
	-0.06221
	-1.79E-02
	0.171403
	
	Multivariate Normal

	Treatment coefficient
	-0.0724
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.3384
	Multivariate Normal



Table 101: Gastrointestinal model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Average steroid coefficient
	0.0008
	1.48E-07
	
	            
	
	Multivariate Normal

	Vasculitis coefficient
	1.6642
	-2.3E-05
	2.67E-01
	            
	
	Multivariate Normal

	Intercept
	-5.0533
	-3.80E-05
	-7.60E-03
	0.023291
	
	Multivariate Normal

	Treatment coefficient
	-0.048
	0.0000
	0.0000
	0.0000
	0.1474
	Multivariate Normal



Table 102: Ocular model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Hypertension coefficient
	0.3916
	3.08E-02
	
	
	
	
	            
	
	Multivariate Normal

	Log transformed age
	2.2778
	-0.01535
	8.71E-02
	
	
	
	            
	
	Multivariate Normal

	Average steroid coefficient
	0.0013
	-6.47E-06
	1.57E-05
	5.54E-08
	
	
	            
	
	Multivariate Normal

	CNS coefficient
	0.7796
	1.79E-04
	1.35E-03
	-9.83E-06
	1.52E-01
	
	            
	
	Multivariate Normal

	Intercept
	-12.8137
	4.16E-02
	-3.30E-01
	-8.3E-05
	-9.91E-03
	1.293529
	            
	
	Multivariate Normal

	\Gamma
	-0.2197
	-0.00116
	-0.0009
	6.12E-06
	0.000771
	-0.00619
	0.004978
	
	Multivariate Normal

	Treatment coefficient
	-0.0524
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.1613
	



Table 103: Skin model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	African American coefficient
	-2.4375
	0.589015
	
	
	
	
	
	
	Multivariate Normal

	Smoking coefficient
	-1.8429
	0.115711
	0.446497
	
	
	
	
	
	Multivariate Normal

	Plaquenil coefficient
	1.4960
	-0.07469
	-0.06114
	0.356567
	
	
	
	
	Multivariate Normal

	Skin involvement coefficient
	-2.4463
	0.159855
	0.132284
	-0.13111
	0.472578
	
	
	
	Multivariate Normal

	Intercept
	10.2613
	-0.84749
	-0.63616
	0.122218
	-0.62516
	2.27986
	
	
	Multivariate Normal

	Gamma
	0.4647
	-0.06173
	-0.04659
	0.02514
	-0.05834
	0.199223
	0.023273
	
	Multivariate Normal

	Treatment coefficient
	0.0105
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0481
	Multivariate Normal



Table 104: Diabetes model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	African American coefficient
	0.7277
	0.080798
	
	
	
	            
	
	Multivariate Normal

	Log transformed coefficient
	2.2843
	0.004441
	0.256724
	
	
	            
	
	Multivariate Normal

	Average steroid coefficient
	0.0012
	-1.2E-05
	5.51E-05
	2.01E-07
	
	            
	
	Multivariate Normal

	Renal involvement coefficient
	0.8789
	-0.00882
	0.012947
	-3.5E-05
	0.110694
	            
	
	Multivariate Normal

	Intercept
	-14.6725
	-0.0631
	-1.01357
	-0.00026
	-0.06031
	4.062102
	
	Multivariate Normal

	Treatment coefficient
	-0.0518
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.1605
	Multivariate Normal



Table 105: Malignancy model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Age at diagnosis coefficient
	0.0256
	5.66E-05
	
	
	
	            
	Multivariate Normal

	Cholesterol coefficient
	-0.0094
	-1.81E-06
	5.94E-06
	
	
	            
	Multivariate Normal

	Log transformed disease duration coefficient
	0.2991
	4.11E-04
	-1.13E-05
	1.92E-02
	
	            
	Multivariate Normal

	SLICC coefficient
	0.1835
	-1.00E-04
	-3.29E-06
	-0.00207
	1.60E-03
	            
	Multivariate Normal

	Intercept
	-4.8090
	-0.00239
	-0.00093
	-5.09E-02
	0.004454
	0.36187
	Multivariate Normal



Table 106: Gonadal failure model parameter details
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Cholesterol coefficient
	0.0044
	2.87E-06
	
	
	
	            
	Multivariate Normal

	Average steroid coefficient
	0.0017
	-2.54E-07
	1.68E-07
	
	
	            
	Multivariate Normal

	Immunosupressant coefficient
	0.8361
	-5.4E-05
	-3.5E-05
	0.18296
	
	            
	Multivariate Normal

	Plaquenil coefficient
	-0.9426
	8.39E-05
	2.66E-05
	-0.00397
	0.169468
	            
	Multivariate Normal

	Interecept
	-7.2658
	-0.00052
	-9.48E-06
	-0.10216
	-0.08109
	0.25771
	Multivariate Normal






[bookmark: _Toc341366965]
[bookmark: _Toc379467716]Appendix 12 : SLEDAI Random Effects Correlation Matrix
	
	cns1
	cns2
	cns3
	cns4
	cns5
	cns6
	cns7
	vasc1
	ms1
	ms2
	renal1
	renal2
	renal3
	renal4
	skin1
	skin2
	skin3
	heme1
	heme2
	sero1
	sero2
	imm1
	imm2
	cons1

	cns1
	1
	0.0599
	0.1592
	0.0826
	0.0254
	0.0609
	0.0392
	0.0255
	0.0421
	0.0241
	-0.0135
	0.0181
	0.047
	0.0193
	0.0225
	-0.0234
	0.0237
	0.0379
	0.0544
	0.0771
	0.0912
	0.0119
	0.0438
	0.0297

	cns2
	0.0599
	1
	0.2413
	0.0196
	0.0477
	0.0381
	0.0462
	0.0392
	0.0287
	0.0108
	0.0546
	-0.0016
	0.0163
	0.0222
	-0.0149
	0.031
	0.0131
	-0.0235
	-0.0229
	-0.0091
	0.038
	0.028
	0.0175
	0.0418

	cns3
	0.1592
	0.2413
	1
	0.0035
	0.0877
	0.0871
	0.1007
	0.0813
	0.0808
	0.0728
	-0.0185
	0.0277
	0.0658
	0.0194
	0.0648
	0.046
	0.0331
	0.039
	0.0244
	0.0227
	0.1466
	0.0543
	0.0217
	0.0781

	cns4
	0.0826
	0.0196
	0.0035
	1
	0.0332
	0.0679
	-0.0064
	0.038
	0.0807
	0.0476
	0.018
	0.0718
	0.0745
	0.1347
	0.0316
	0.0459
	0.0785
	0.0484
	0.0326
	0.0622
	0.0407
	0.0665
	0.0331
	0.0374

	cns5
	0.0254
	0.0477
	0.0877
	0.0332
	1
	0.0694
	0.0298
	-0.0072
	0.0186
	0.0445
	-0.0263
	-0.0543
	-0.084
	-0.0162
	0.0366
	0.0577
	0.0706
	0.0418
	0.0537
	0.0289
	0.0643
	0.0271
	-0.0353
	0.0444

	cns6
	0.0609
	0.0381
	0.0871
	0.0679
	0.0694
	1
	0.1393
	0.0676
	0.1391
	0.0746
	-0.0047
	0.0177
	0.1147
	0.0604
	0.1471
	0.0084
	0.0259
	0.0937
	0.0478
	0.0888
	0.1466
	0.105
	0.063
	0.2563

	cns7
	0.0392
	0.0462
	0.1007
	-0.0064
	0.0298
	0.1393
	1
	0.0356
	0.0434
	-0.0268
	-0.009
	0.0182
	-0.0117
	0.0268
	0.0536
	0.0458
	0.0189
	0.0166
	-0.0042
	0.0348
	0.0298
	0.0416
	0.0104
	-0.0026

	vasc1
	0.0255
	0.0392
	0.0813
	0.038
	-0.0072
	0.0676
	0.0356
	1
	0.1111
	0.0155
	-0.0063
	0.1124
	0.1412
	0.0602
	0.2128
	0.104
	0.0788
	0.1425
	0.1022
	0.0406
	0.0899
	0.142
	0.1434
	0.111

	ms1
	0.0421
	0.0287
	0.0808
	0.0807
	0.0186
	0.1391
	0.0434
	0.1111
	1
	0.041
	-0.0185
	0.0864
	0.0743
	0.1295
	0.1344
	0.1638
	0.1144
	0.2001
	0.1406
	0.0202
	0.0918
	0.1068
	0.1533
	0.147

	ms2
	0.0241
	0.0108
	0.0728
	0.0476
	0.0445
	0.0746
	-0.0268
	0.0155
	0.041
	1
	0.0654
	0.0773
	0.0786
	0.0842
	0.0412
	0.0879
	0.034
	0.1065
	0.1451
	0.0479
	0.1029
	0.0751
	0.0756
	0.0519

	renal1
	-0.0135
	0.0546
	-0.0185
	0.018
	-0.0263
	-0.0047
	-0.009
	-0.0063
	-0.0185
	0.0654
	1
	0.0836
	0.0786
	0.0836
	0.0031
	0.0086
	-0.0069
	0.0107
	0.0643
	-0.0135
	0.057
	0.039
	0.0474
	0.0832

	renal2
	0.0181
	-0.0016
	0.0277
	0.0718
	-0.0543
	0.0177
	0.0182
	0.1124
	0.0864
	0.0773
	0.0836
	1
	0.4255
	0.4362
	0.093
	0.1428
	0.0116
	0.0919
	0.1035
	0.1346
	0.1022
	0.2107
	0.2594
	0.092

	renal3
	0.047
	0.0163
	0.0658
	0.0745
	-0.084
	0.1147
	-0.0117
	0.1412
	0.0743
	0.0786
	0.0786
	0.4255
	1
	0.3215
	0.0545
	0.0801
	-0.0714
	0.0628
	0.0851
	0.1319
	0.1592
	0.2476
	0.2937
	0.0813

	renal4
	0.0193
	0.0222
	0.0194
	0.1347
	-0.0162
	0.0604
	0.0268
	0.0602
	0.1295
	0.0842
	0.0836
	0.4362
	0.3215
	1
	0.0607
	0.1657
	0.073
	0.1392
	0.147
	0.0856
	0.1176
	0.1596
	0.1869
	0.0834

	skin1
	0.0225
	-0.0149
	0.0648
	0.0316
	0.0366
	0.1471
	0.0536
	0.2128
	0.1344
	0.0412
	0.0031
	0.093
	0.0545
	0.0607
	1
	0.1378
	0.1935
	0.0801
	0.0919
	0.092
	0.1157
	0.1196
	0.0653
	0.1544

	skin2
	-0.0234
	0.031
	0.046
	0.0459
	0.0577
	0.0084
	0.0458
	0.104
	0.1638
	0.0879
	0.0086
	0.1428
	0.0801
	0.1657
	0.1378
	1
	0.0921
	0.0885
	0.0747
	0.0179
	0.1041
	0.0486
	0.0356
	0.0665

	skin3
	0.0237
	0.0131
	0.0331
	0.0785
	0.0706
	0.0259
	0.0189
	0.0788
	0.1144
	0.034
	-0.0069
	0.0116
	-0.0714
	0.073
	0.1935
	0.0921
	1
	0.1663
	0.1043
	0.0025
	0.0059
	-0.0119
	-0.0622
	0.0279

	heme1
	0.0379
	-0.0235
	0.039
	0.0484
	0.0418
	0.0937
	0.0166
	0.1425
	0.2001
	0.1065
	0.0107
	0.0919
	0.0628
	0.1392
	0.0801
	0.0885
	0.1663
	1
	0.376
	0.0186
	0.0628
	0.0994
	0.1106
	0.1312

	heme2
	0.0544
	-0.0229
	0.0244
	0.0326
	0.0537
	0.0478
	-0.0042
	0.1022
	0.1406
	0.1451
	0.0643
	0.1035
	0.0851
	0.147
	0.0919
	0.0747
	0.1043
	0.376
	1
	0.0235
	0.0987
	0.0983
	0.0902
	0.1349

	sero1
	0.0771
	-0.0091
	0.0227
	0.0622
	0.0289
	0.0888
	0.0348
	0.0406
	0.0202
	0.0479
	-0.0135
	0.1346
	0.1319
	0.0856
	0.092
	0.0179
	0.0025
	0.0186
	0.0235
	1
	0.2599
	0.1529
	0.1224
	0.148

	sero2
	0.0912
	0.038
	0.1466
	0.0407
	0.0643
	0.1466
	0.0298
	0.0899
	0.0918
	0.1029
	0.057
	0.1022
	0.1592
	0.1176
	0.1157
	0.1041
	0.0059
	0.0628
	0.0987
	0.2599
	1
	0.2644
	0.1573
	0.2129

	imm1
	0.0119
	0.028
	0.0543
	0.0665
	0.0271
	0.105
	0.0416
	0.142
	0.1068
	0.0751
	0.039
	0.2107
	0.2476
	0.1596
	0.1196
	0.0486
	-0.0119
	0.0994
	0.0983
	0.1529
	0.2644
	1
	0.4039
	0.1554

	imm2
	0.0438
	0.0175
	0.0217
	0.0331
	-0.0353
	0.063
	0.0104
	0.1434
	0.1533
	0.0756
	0.0474
	0.2594
	0.2937
	0.1869
	0.0653
	0.0356
	-0.0622
	0.1106
	0.0902
	0.1224
	0.1573
	0.4039
	1
	0.084

	cons1
	0.0297
	0.0418
	0.0781
	0.0374
	0.0444
	0.2563
	-0.0026
	0.111
	0.147
	0.0519
	0.0832
	0.092
	0.0813
	0.0834
	0.1544
	0.0665
	0.0279
	0.1312
	0.1349
	0.148
	0.2129
	0.1554
	0.084
	1





[bookmark: _Toc341366966][bookmark: _Toc379467717]Appendix 13: Elicitation Literature Search
Articles describing elicitation in health economic models were identified using search terms for Elicitation AND [health economic OR cost effectiveness OR decision analytic OR cost utility OR economic evaluation]. The search was conducted on 26th August 2011 and identified 146 articles. Of these articles seven were found to describe an elicitation study for a health economic model. The titles and references for these articles are reported in the table below.
	First Author (year)
	Title
	reference

	Lau (1999)
	PROBES: a framework for probability elicitation from experts
	(255)

	Bojke (2010)
	Eliciting distributions to populate decision analytic models
	(131)

	McKenna (2011)
	Addressing Adoption and Research Design Decisions Simultaneously: The Role of Value of Sample Information Analysis
	(112)

	Garthwaite (2008)
	Use of expert knowledge in evaluating costs and benefits of alternative service provisions: a case study
	(256)

	Leal (2007)
	Eliciting expert opinion for economic models: an applied example
	(257)

	Harmanec (1999)
	Decision analytic approach to severe head injury management
	(258)

	Soares2011)
	Methods to elicit experts' beliefs over uncertain quantities: application to a cost effectiveness transition model of negative pressure wound therapy for severe pressure ulceration
	(223)
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[bookmark: _Ref302571965]Table 107: Summary of elicitation methods used 
	Study
	Selection of participants
	Number of participants
	Survey or face to face
	Pre-elicitation training of participants
	Elicitation technique
	Synthesis

	Soares (2010)
	Nurses with knowledge and experience of patient management
	23
	Group face to face
	A talk on the concepts and questions covered in the exercise and example exercises.
	Histogram with discrete numerical scale. Respondents used 21 crosses to express distribution.
	Linear pooling with equal weights.

	Harmanec (1999) 
	Doctors
	Not reported
	Not reported
	Not reported
	Doctors reported point estimate probabilities
	Not reported

	Garthwaite (2008)
	Medical experts with experience in a range of issues in the decision model
	4
	Face to face
	An outline of the questions to be asked, and consultation on what covariates to include.
	Median and quartile selection with covariates.
	The model uses one response from an expert and uncertainty in increased if other experts have different responses.

	Leal (2007)
	Genetic experts and cardiologists. Experts were selected from different geographic locations in the UK
	7
	Questionnaire and face to face
	An email explaining the goal of the questionnaire. 
	Four complimentary intervals.
	Linear pooling with equal weights.

	McKenna (2010)
	Experience and clinical knowledge in the UK.
	5
	Questionnaire
	Not reported
	Frequency chart. Respondents used 20 crosses to express distribution.
	Linear pool with equal weights. 

	Boike (2009)
	Senior rheumatologist with experience of disease activity index used in the model.
	5
	Questionnaire
	Not reported
	Histogram with a discrete numerical scale. Respondents used 20 crosses to express distribution.
	Linear pool with weights derived calibration questions and random effects meta-analysis.

	Lau (1999)
	Physicians.
	2
	Face to face
	Document outlining the objectives, description of cognitive heuristics and biases and other relevant issues was read by expert.
	Techniques include sample distribution, the betting and the likelihood method. 
	Not reported




[bookmark: _Toc379467718]ApPendix 14: Elicitation Pre-Reading
Clinical Experts Briefing Document
What is Elicitation?
Elicitation is the appropriate method by which to formulate judgements from people. The purpose of elicitation is to construct a quantitative judgement that represents the experts’ knowledge and uncertainty of an unknown quantity. This exercise is particularly challenging because the questions relate to clinical outcomes which have not been observed by the experts or anyone else. However, the experts can draw on their knowledge and experiences to characterise their uncertainty and judge the probability of different outcomes occurring.
What I want to elicit and why
I have developed a computer simulation that predicts individual patients’ disease pathway and how it develops and evolves over their lifetime. The simulation is based on a set of statistical equations which predict the probability of each of the SLEDAI items being present, prednisone dose, organ damage, and mortality every 3 months. These models can be used to simulate future clinical trials and estimate the probability that the trial will be successful. I want to compare a 12 month trial with a trial with 3 to 5 years of follow-up to assess the value of longer trials in SLE for drug reimbursement decision makers. 
I am therefore interested in testing this method in a hypothetical scenario where a new treatment for SLE has just finished its 12 month long Phase II trial with positive results. I am proposing to use my simulation in the planning stages for the Phase III trial to decide what duration of follow-up should be used. However, we do not have all the data necessary to populate the simulation. 
There are two stages to the questioning. The first set of questions relates to the reduction in disease activity from the new treatment. The second asks about the impact of the new drug on organ damage and mortality. Full details of the questions are detailed on the other side of the page.
Probability and proportions
In this exercise I will ask questions about several disease outcomes in SLE, such as whether patients have renal involvement, a cardiovascular event, or die before their next clinic visit. In my simulation I need estimates for the probability that events will happen. If I had a large set of data I could use the proportion of patients who experience the event to estimate the proportion. In the elicitation I use the hypothetical future sample method to ask the proportion of patients who they would expect to experience the event out of a sample of 1000 patients. By estimating the proportion of a sample that experiences an event I can extrapolate the probability of the event. 
Expressing uncertainty
Many of the questions in this exercise relate to the treatment effect of a new hypothetical drug for SLE. We need to ask clinical experts because we have no data. Consequently, the questions may be difficult to answer and it is reasonable to assume that they may be uncertain about their answers. Furthermore, it is very important that the elicitation captures experts’ uncertainty because this will be very important in the simulation because greater uncertainty about the new treatment indicates that there are greater risks in conducting the Phase III trial.
[bookmark: _Ref305745010]Figure 36: probability mass function for X
[image: ]In the elicitation uncertainty can be expressed as a probability distribution function in a histogram illustrated in Figure 36. The X axis represents the quantity that is being estimated. The probability of observing that quantity is expressed by the height of the bar. 



Hypothetical Phase II
New therapies in SLE are more targeted due to the improved understanding of the immunogenesis of the disease. The treatments have been developed to target selective components of the immune system. The clinical trial simulation is designed to be a non treatment specific tool that can be applied to different new treatments in SLE. Therefore, in this study the treatment will be a hypothetical new biologic drug for SLE.
The study will focus of the design of a phase III trial. It is therefore necessary to assume that the drug has completed a hypothetical Phase II trial to indicate that the treatment is effective. In recent years several Phase II trials for new lupus treatments have been unsuccessful; however the phase II trial for belimumab found a sub-group of antinuclear antibody positive patients in whom the treatment was effective. Therefore, the hypothetical Phase II trial is based on the outcomes of the Phase II belimumab trial as this represents reasonable outcomes of a biologic treatment using the SELENA SLEDAI. The sample size, duration of follow-up and SELENA SLEDAI outcomes of the hypothetical trial are taken from the belimumab trial and are detailed below. 
	
	Standard of care
	Treatment

	n
	86
	235

	number of patients with a ≥4 improvement in the SELENA SLEDAI
	34
	116

	% patients with a ≥4 improvement in the SELENA SLEDAI
	39.6%
	49.4%

	Relative risk of response to treatment after 12 months*
	
	1.25

	* Response to treatment ≥4 improvement in the SELENA SLEDAI after 12 months



Phase III simulation
I have developed a computer simulation which generates a cohort of SLE patients and can predict SELENA SLEDAI scores and the incidence of organ damage and mortality over time. The estimates are based on statistical analyses of the Hopkins Lupus Cohort. The predicted outcomes from the Hopkins natural history model will be used to estimate the outcomes for standard of care patients.
The effectiveness of the new treatment in reducing SELENA SLEDAI scores after 12 months is taken from the hypothetical phase II trial. However, the simulation will consider the value of running a Phase III trial for longer than 12 months therefore we need a plausible estimate of treatment effect after 12 months. The longer trial may also capture treatment effects on the reduction of long term outcomes of organ damage and mortality. 
In this situation the designers of the Phase III trial would not have data available to estimate the effectiveness of treatment on SELENA SLEDAI, organ damage or mortality. However, we need plausible estimates for the simulation to reflect the most likely estimates for the effect and the uncertainty in those estimates. We have developed a formal elicitation exercise to help clinical experts to express their best estimates for the treatment effect and their uncertainty about how effective the treatment may be.
The elicitation will ask you to consider a sample of 2000 patients who meet the criteria detailed below:
	
	Inclusion/Exclusion criteria

	1.
	Diagnosis of SLE

	2.
	SELENA SLEDAI score ≥4 at baseline

	3. 
	No neuropsychiatric involvement at baseline

	4. 
	No proteinuria or haematuria at baseline



The questions will present data extracted from the simulation to indicate the proportion of the cohort who have the attribute in question, such as
“After 24 months of standard of care 21 patients have an infection”
The elicitation will ask whether you believe that the treatment arm of the cohort will have a different number of patients with infection and estimate the magnitude of the difference. We will ask you to reflect your uncertainty in your estimate by identifying 1 or more estimates and weighting the likelihood of the estimates with the size of the bars.
The table below details the list of questions we would like to address in the elicitation.

	Section A: Disease Activity Questions

	
	Question asked
	Role in Clinical trial Simulation

	1.
	After 24 months of follow-up what difference do you think there could be in the number of patients with neuropsychiatric involvement on the SLEDAI score between standard of care and the new drug?
	Informs the relative risk of neuropsychiatric involvement beyond 12 months. 

	2.
	After 24 months of follow-up what difference do you think there could be in the number of patients with renal involvement on the SLEDAI score between standard of care and the new drug?
	Informs the relative risk of renal involvement beyond 12 months.

	3.
	After 24 months of follow-up what difference do you think there could be in the number of patients with musculoskeletal involvement on the SLEDAI score between standard of care and the new drug?
	Informs the relative risk of ms involvement beyond 12 months.

	4.
	After 24 months of follow-up what difference do you think there could be in the number of patients with skin involvement on the SLEDAI score between standard of care and the new drug?
	Informs the relative risk of skin involvement beyond 12 months.

	5.
	After 24 months of follow-up what difference do you think there could be in the number of patients with increased DNA binding between standard of care and the new drug?
	Informs the relative risk of increased DNA binding beyond 12 months.

	6.
	After 24 months of follow-up what difference do you think there could be in the number of patients with low complement between standard of care and the new drug?
	Informs the relative risk of low complement beyond 12 months.

	7.
	After 24 months of follow-up what difference do you think there could be in the number of patients with serositis on the SLEDAI between standard of care and the new drug?
	Informs the relative risk of serositis beyond 12 months.

	8.
	After 24 months of follow-up what difference do you think there could be in the number of patients with haematological involvement on the SLEDAI between standard of care and the new drug?
	Informs the relative risk of haematological involvement beyond 12 months.

	Section B: Organ Damage and Mortality Questions

	8.
	What difference do you think there could be in the number of patients who have cardiovascular, neuropsychiatric, or gastrointestinal damage after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in damage risk due to lower disease activity scores and prednisone dose have been adjusted for.
	Informs the relative risk of cardiovascular, neuropsychiatric, or gastrointestinal damage for patients receiving the new treatment.

	9.
	What difference do you think there could be in the number of patients who have either renal, skin, peripheral vascular, or pulmonary  damage after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in damage risk due to lower disease activity scores have been adjusted for.
	Informs the relative risk of renal, skin, peripheral vascular and pulmonary damage for patients receiving the new treatment.

	10.
	What difference do you think there could be in the number of patients who have musculoskeletal damage, ocular damage or diabetes after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in damage risk due to lower prednisone dose have been adjusted for.
	Informs the relative risk of musculoskeletal or ocular damage for patients receiving the new treatment.

	11.
	What difference do you think there could be in the number of patients who have gonadal failure or malignancy after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in damage risk due to lower prednisone dose have been adjusted for.
	Informs the relative risk of gonadal failure or malignancy for patients receiving the new treatment.

	12.
	What difference do you think there could be in the number of patients who have died after 5 years of biologic treatment compared with the natural history predictions. 
In this question reductions in mortality risk due to lower disease activity scores have been adjusted for.
	Informs the relative risk of mortality for patients receiving the new treatment.





[bookmark: _Ref334701643][bookmark: _Toc335051134][bookmark: _Toc341366958][bookmark: _Toc379467719]Appendix 15: Clinical Trial Validation
[bookmark: _Toc335051135][bookmark: _Toc341366959]METHOD
A validation of the SLE BCTS was performed to evaluate whether the simulation predicts realistic SLE outcomes. The validity of the simulation can be assessed by comparing the outcomes of the simulation against real life observations from observational data and clinical trials. The simulation output was compared against the Hopkins Lupus cohort, and three successful clinical trials reporting outcomes using a SLEDAI index.
The validation exercise aimed to observe whether the BCTS meets the following assessments, which were used to indicate how well the simulation fits to reality.  
1. The proportion of simulated observations where the proportion of patients were outside the 95% Confidence Interval of the respective time point in the Hopkins Lupus Cohort data.
2. The distribution of simulated SLEDAI scores and steroid doses should have a similar distribution to the Hopkins data.
3. Observed clinical trial endpoints should fall within the distribution of simulated trial endpoints. 
The criteria were assessed with the following analyses from three simulation runs, each of 1000 iterations. The accumulation of organ damage and mortality events was not tested in this analysis. 
Simulation 1- The Hopkins Lupus Cohort
The simulation was run to reproduce outcomes from the Hopkins Lupus cohort for the first 5 years of individual’s follow-up. The SLE population used in this simulation was based on the baseline characteristics of the Hopkins SLE population. Summary statistics for the baseline profile of patients are reported in Table 108. The analysis was only conducted on placebo patients to compare the natural history outcomes for patients without treatment. Statistical tests at each observation period were performed and the proportion of observation more extreme than the observed data was evaluated. 
Simulation 2 – The Phase II Clinical Trial
The simulation was set up to run a 1 year clinical trial of 321 patients. The baseline characteristics of the patients were designed to match with the demographic profile of the belimumab Phase II trial (73). Treatment efficacy was estimated from summary statistics reported in Furie et al. (2009). Summary statistics for the baseline profile of patients is reported in Table 108. The mean percentage change in SELENA SLEDAI score from baseline to week 52, and the percentage of patients who experienced a change in SELENA SLEDAI score of 4 units or more in each treatment arms, were reported for each simulation run. The odds ratio for treatment effect was estimated. The simulated outcomes are compared with the published trial outcomes from Wallace and Furie et al (72;73). 
Simulation 3 – The Phase III Clinical Trial
The simulation was set up to run a 1 year clinical trial of 800 patients. The baseline characteristics of the patients were designed to match with the demographic profiles of the belimumab Phase III trials (74;75). Prior estimates for treatment efficacy were estimated from summary statistics reported the Phase II trial (72;73). The percentage of patients who experienced a change in SELENA SLEDAI score of 4 units or more in the treatment and placebo arms were reported for each simulation run. The odds ratio for treatment effect was calculated. Summary statistics for the baseline profile of patients is reported in Table 108.
[bookmark: _Ref324840892]Table 108: Baseline characteristic of patients for each simulation
	
	Hopkins Simulation
	Phase II Simulation
	Phase III simulation

	Number of patients
	1354
	321
	842

	Age mean (sd)
	37.8 (13.05)
	40.6 (11.0)
	37.8 (11.8)

	Disease duration mean (sd)
	4.83 (6.3)
	8.98 (8.1)
	6.37 (6.2)

	Women %
	92.9
	95.2
	94.0

	Black %
	38.8
	26.2
	9.0



[bookmark: _Toc335051136][bookmark: _Toc341366960]RESULTS
The Hopkins Lupus Cohort
The simulation replicates most of the outcomes from the Hopkins Lupus Cohort with good accuracy. The proportion of patients with each SLEDAI item was recorded at every visit for five years and compared with those observed in the first five years of the Hopkins lupus Cohort. Graphical plots indicated that the simulated outcomes were close to the Hopkins data and that most of the Hopkins observations fell within the 95% percentile plots to indicate the upper and lower limits of the simulation (results not reported here). Table 109 reports summary results for statistical tests on the difference between the simulated proportion at each time point and the observed Hopkins data. In eighteen of the items of the SLEDAI the proportion of simulated outcomes that were statistically significantly different from the Hopkins data was less than 5%. Two items of the SLEDAI had more than 10% of simulated outcomes that were statistically significantly different. 
[bookmark: _Ref325450609]Table 109: Simulation results for the SLEDAI items and proportion of simulated outcomes within the 95% confidence interval of Hopkins results
	SLEDAI Item
	Proportion of events in Hopkins Lupus Cohort across all observations up to 5 years 
	Average simulated proportions of events across all observations up to 5 years
	Proportion of simulated observations significantly different from Cohort

	Seizure 
	0.002
	0.003
	0.017

	Psychosis
	0.001
	0.002
	0.014

	Organic Brain Syndrome
	0.004
	0.006
	0.030

	Visual Disturbance
	0.004
	0.004
	0.017

	Cranial Nerve Disorder
	0.005
	0.004
	0.005

	Lupus Headache
	0.009
	0.010
	0.029

	CVA
	0.001
	0.009
	0.029

	Vasculitis
	0.013
	0.015
	0.026

	Arthritis
	0.098
	0.079
	0.217*

	Myositis
	0.006
	0.006
	0.040

	Urinary Casts
	0.001
	0.001
	0.005

	Hematuria
	0.048
	0.049
	0.034

	Proteinuria
	0.076
	0.087
	0.084*

	Pyuria
	0.029
	0.027
	0.019

	New rash
	0.089
	0.089
	0.023

	Alopecia
	0.072
	0.060
	0.051*

	Mucosal Ulcers
	0.043
	0.041
	0.018

	Pleurisy
	0.029
	0.024
	0.071*

	Pericarditis
	0.008
	0.008
	0.012

	Low Complement
	0.298
	0.281
	0.027

	Increased DNA binding
	0.283
	0.266
	0.044

	Fever
	0.036
	0.022
	0.016

	Thrombocytopenia
	0.067
	0.054
	0.212*

	Leukopenia
	0.006
	0.008
	0.079*

	* Proportion of simulation runs considered extreme (statistically significantly different 5% significant level) in comparison with Hopkins Cohort



Figure 15 illustrates a histogram of SLEDAI scores generated in the simulation and compared this with a histogram of observed SLEDAI score from the Hopkins cohort. The diagram shows that the simulation produces a very similar distribution of SLEDAI score to those observed in the Hopkins Lupus Cohort. 
Figure 37: A histogram of SLEDAI scores from the Simulation and Hopkins cohort
[image: ]
Figure 16 illustrates a histogram of Steroid doses generated in the simulation and compares this with a histogram of observed Steroid dose in the Hopkins cohort. The simulation accurately simulated the proportion of patients with zero Steroid dose. The distribution of positive steroid doses in the simulation is much smoother than those observed in the Hopkins Cohort. The real-life observations cluster around certain values, which is difficult to replicate in a simulation. Steroid dose in the first year of the simulation is significantly lower than that observed in the Hopkins cohort (results not reported here). This is due to the aggressive treatment of patient’s when they are referred to doctors at the Hopkins cohort. 
Figure 38: A histogram of Steroid dose from the Simulation and Hopkins cohort
[image: ]
Phase II trial results
Figure 39 reports the percentage change in SLEDAI score from baseline to week 52 reported in the belimumab Phase II trial and the Phase II simulation model. The thin line depicts a normal distribution fitted to summary statistics reported in Wallace et al. (2009) (72). The bars indicate the distribution of 1000 simulated trial results. The two graphs describe the outcomes for placebo and treatment. In both diagrams the simulation tends to produce lower percentage change in SLEDAI scores than those observed in the Phase II trial. However, the Phase II results are within the simulated range of possible trial outcomes. 
[bookmark: _Ref324933527]Figure 39: Distribution of percentage change in SLEDAI for simulated trials (red bars) and estimate distribution of Phase II results (Blue line) for placebo and treatment arm
[image: ]
Figure 40 reports the proportion of patients who achieve a 4 unit reduction in the SLEDAI score in the Phase II trial. The mean difference in the proportion of responders and the odds ratio of response are also illustrated. The thin line represents a normal distribution fitted to the summary statistics of responders reported in Furie et al. (2009) (73) and the bars represents the distribution of simulated outcomes. The graphs show that the simulation tends to predict greater proportions of responders than those observed in the Phase II trial. However, the difference between placebo and treatment and odds ratio have the same distribution as that fitted to the Phase II trial summary statistics. 
[bookmark: _Ref325279969]Figure 40: Distribution of proportion of patients with a ≥4 unit reduction in SLEDAI for simulated trials (red bars) and estimate distribution of Phase II results (Blue line) for placebo and treatment arm
[image: ]
Phase III belimumab trial
The Phase III belimumab trial and simulation results are illustrated below. The thin line represents a normal distribution fitted to relevant summary statistics from two Phase III trials (74;75). The bars represent the distribution of simulated observations. The simulation output fits well with the summary statistics for the Phase III trial. The simulation tends to predict slightly lower proportions of responding patients than that observed in the Phase III trial. 
Figure 41: Distribution of proportion of patients with a ≥4 unit reduction in SLEDAI for simulated trials (red bars) and estimate distribution of Phase III results (Blue line) for placebo and treatment arm
[image: ]


[bookmark: _Toc337139018][bookmark: _Toc379467720]Appendix 16: CE model Parameter distributions
Table 110: Parameter distributions for costs
	Parameter name
	Mean
	Standard Deviation
	Alpha
	Beta
	Distribution

	SLEDAI score fixed cost
	1152.44
	115.24
	100
	11.52
	Gamma

	SLEDAI score variable cost
	55.4
	5.4
	100
	0.54
	Gamma

	Cardiovascular y1
	3440
	344
	100
	34.4
	Gamma

	Cardiovascular y>1
	505
	50.5
	100
	5.05
	Gamma

	Renal y1
	1765
	176.5
	100
	17.65
	Gamma

	Renal y>1
	2453
	245.3
	100
	24.53
	Gamma

	Musculoskeletal y1
	5431
	543.1
	100
	54.31
	Gamma

	Musculoskeletal y>1
	1903
	190.3
	100
	19.03
	Gamma

	Neuropsychiatric y1
	3660
	366
	100
	36.6
	Gamma

	Neuropsychiatric y>1
	1144
	114.4
	100
	11.44
	Gamma

	Pulmonary y1
	9679
	967.9
	100
	96.79
	Gamma

	Pulmonary y>1
	9603
	960.3
	100
	96.03
	Gamma

	Peripheral vascular y1
	2988
	298.8
	100
	29.88
	Gamma

	Peripheral vascular y>1
	598
	59.8
	100
	5.98
	Gamma

	Gastrointestinal y1
	2708
	270.8
	100
	27.08
	Gamma

	Ocular y1
	1535
	153.5
	100
	15.35
	Gamma

	Ocular y>1
	17
	1.7
	100
	0.17
	Gamma

	Diabetes y1
	2338
	233.8
	100
	23.38
	Gamma

	Diabetes y>1
	2338
	233.8
	100
	23.38
	Gamma

	Malignancy y1
	6123
	612.3
	100
	61.23
	Gamma



Table 111: Parameter distribution for baseline utility regression
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	African American coefficient
	-0.036
	0.0004
	
	
	
	Multivariate Normal

	Log transformed age
	-0.14
	-1.01e05
	0.0004
	
	
	Multivariate Normal

	SLEDAI coefficient
	-0.0009
	1.27e-09
	4.06e07
	3.87e-07
	
	Multivariate Normal

	Intercept
	1.275
	-2.69e-06
	-0.0014
	-4.17e-06
	0.0052
	Multivariate Normal



Table 112: Parameter distribution for organ damage disutilities
	Parameter name
	Mean
	Standard Deviation
	Alpha
	Beta
	Distribution

	Cardiovascular y1
	0.72
	0.072
	2799.28
	1088.61
	Beta

	Cardiovascular y>1
	0.76
	0.076
	1299.13
	194.12
	Beta

	Renal y1
	0.87
	0.087
	3299.33
	1625.04
	Beta

	Renal y>1
	0.87
	0.087
	3199.32
	1505.56
	Beta

	Musculoskeletal y1
	0.67
	0.067
	3099.31
	1392.44
	Beta

	Musculoskeletal y>1
	0.74
	0.074
	1399.14
	227.77
	Beta

	Neuropsychiatric y1
	0.68
	0.068
	2099.21
	558.02
	Beta

	Neuropsychiatric y>1
	0.71
	0.071
	299.03
	9.25
	Beta

	Pulmonary y1
	0.69
	0.069
	599.06
	38.24
	Beta

	Pulmonary y>1
	0.69
	0.069
	899.09
	88.92
	Beta

	Peripheral vascular y1
	0.86
	0.086
	799.08
	69.49
	Beta

	Peripheral vascular y>1
	0.92
	0.092
	2399.24
	757.65
	Beta

	Gastrointestinal y1
	0.79
	0.079
	1299.13
	194.12
	Beta

	Gastrointestinal y>1
	0.91
	0.091
	2599.26
	913.25
	Beta

	Ocular y1
	0.97
	0.097
	2899.29
	1184.22
	Beta

	Ocular y>1
	0.99
	0.099
	3099.31
	1392.44
	Beta

	Skin y1
	0.94
	0.094
	799.08
	69.49
	Beta

	Skin y>1
	0.94
	0.094
	899.09
	88.92
	Beta

	Diabetes y1
	0.92
	0.092
	9999.01
	101.00
	Beta

	Diabetes y>1
	0.92
	0.092
	599.06
	38.24
	Beta

	Malignancy y1
	0.91
	0.091
	899.09
	88.92
	Beta

	Malignancy y>1
	0.91
	0.091
	799.08
	69.49
	Beta



Table 113: Parameter distribution for Steroid dose model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	SLEDAI coefficient
	0.777
	0.0030
	
	Multivariate Normal

	Intercept
	3.475
	-0.0058
	0.0318
	Multivariate Normal



Table 114: Parameter distribution for Change in average SLEDAI regression
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Lagged SLEDAI Score coefficient
	-0.3344
	0.0001
	
	
	
	
	Multivariate Normal

	African American coefficient
	0.2691
	-0.0001
	0.0013
	
	
	
	Multivariate Normal

	log-transformed age
	-0.2583
	0.0001
	-0.0001
	0.0036
	
	
	Multivariate Normal

	Treatment coefficient
	-0.3737
	0.0000
	0.0000
	0.0000
	0.1845
	
	Multivariate Normal

	Intercept
	3.0000
	-0.0007
	-0.0002
	-0.0139
	0.0000
	0.0539
	Multivariate Normal



Table 115: Parameter distribution for Malignancy risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Age at diagnosis coefficient
	0.0256
	5.66e-05
	
	
	
	
	Multivariate Normal

	Cholesterol coefficient
	-0.0094
	-1.81e-06
	5.94e-06
	
	
	
	Multivariate Normal

	Log transformed disease duration
	0.2991
	0.0004
	-1.13e-05
	0.0192
	
	
	Multivariate Normal

	SLICC/ACR DI coefficient
	0.1835
	-0.0001
	-3.29e-06
	-0.0021
	0.0016
	
	Multivariate Normal

	Intercept
	-4.8090
	-0.0024
	-0.0009
	-0.0509
	0.0045
	0.3619
	Multivariate Normal



Table 116: Parameter distribution for Gonadal Failure risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Cholesterol coefficient
	0.0053
	2.70e-06
	
	
	Multivariate Normal

	Prednisone coefficient
	0.0020
	-2.73e-07
	1.40e-07
	
	Multivariate Normal

	Intercept
	-7.4845
	-0.0005
	-8.85e-06
	0.1503
	Multivariate Normal




Table 117: Parameter distribution details for Mortality risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	African American coefficient
	0.8281
	0.0633
	
	
	
	
	
	            
	
	
	
	
	
	
	
	Multivariate Normal

	Age at diagnosis coefficient
	0.0342
	2.46e-04
	7.79e-05
	
	
	
	
	            
	
	
	
	
	
	
	
	Multivariate Normal

	Cholesterol coefficient
	0.0047
	-1.28e-05
	-3.23e-07
	2.09e-06
	
	
	
	            
	
	
	
	
	
	
	
	Multivariate Normal

	AMS coefficient
	0.2673
	-0.0012
	1.16e-04
	-1.5e-05
	2.64e-03
	
	
	            
	
	
	
	
	
	
	
	Multivariate Normal

	Cardio. damage coefficient
	0.4236
	-0.0023
	-3.43e-04
	-3.42e-06
	8.96e-06
	0.0247
	
	            
	
	
	
	
	
	
	
	Multivariate Normal

	Renal damage coefficient
	0.6951
	0.01003
	8.06e-05
	-1.9e-05
	-0.00062
	0.0002
	0.0544
	            
	
	
	
	
	
	
	
	Multivariate Normal

	MSK.damage coefficient
	0.2515
	-7e-05
	-5.7e-05
	4.01e-06
	-0.00102
	-0.0041
	-0.0002
	0.0173
	
	
	
	
	
	
	
	Multivariate Normal

	Vascular damage coefficient
	0.7877
	0.00553
	-2e-05
	1.46e-05
	-0.0013
	-0.0054
	0.0044
	-0.0003
	0.0522
	
	
	
	
	            
	
	Multivariate Normal

	Gastro. damage coefficient
	0.6345
	0.01253
	-0.0001
	1.92e-05
	-0.0010
	-0.0002
	-0.0039
	-0.0052
	0.0029
	0.0505
	
	
	
	            
	
	Multivariate Normal

	Malignancy coefficient
	1.0910
	0.01593
	-0.0002
	4.44e-06
	0.0008
	-0.0056
	0.0024
	0.0020
	0.0014
	0.0050
	0.0678
	
	
	            
	
	Multivariate Normal

	Infection
	0.9594
	-0.00183
	0.0002
	1.1e-05
	-0.0003
	-0.0018
	0.0017
	0.0011
	-0.0010
	-0.0022
	0.0004
	0.1255
	
	            
	
	Multivariate Normal

	Intercept
	-10.6985
	-0.03573
	-0.0039
	-0.00042
	-0.0167
	0.0104
	-0.0096
	0.0062
	-0.0026
	-0.0159
	-0.0156
	-0.0192
	0.5259
	            
	
	Multivariate Normal

	Log(Gamma)
	0.5600
	-0.0037
	0.0002
	1.4e-05
	0.0017
	-0.0003
	-0.0015
	-0.0025
	-0.0021
	0.0004
	-0.0019
	-9.8e-05
	-0.0450
	0.0082
	
	Multivariate Normal

	Treatment coefficient
	-0.1935
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	1.3055
	Multivariate Normal





Table 118: Parameter distribution details for Cardiovascular risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Age at diagnosis coefficient
	0.0457
	5.87e-05
	
	
	
	
	
	
	
	
	Multivariate Normal

	Cholesterol coefficient
	0.0026
	-9.45e-07
	1.59e-06
	
	
	
	
	
	
	
	Multivariate Normal

	Hypertension coefficient
	0.8151
	-4.62e-04
	-1.53e-05
	5.67e-02
	
	
	
	
	
	
	Multivariate Normal

	Log transformed disease duration coefficient
	0.5965
	0.0004
	-2.42e-05
	-0.0056
	2.03e-02
	
	
	
	
	
	Multivariate Normal

	AMS coefficient
	0.1560
	4.57e-05
	-7.44e-06
	-4.11e-04
	-2.53e-04
	0.0015
	
	
	
	
	Multivariate Normal

	Steroid exposure coefficient
	0.0011
	8.35e-07
	-1.02e-07
	-1e-05
	1.3e-05
	-5.47e-06
	1.41e-07
	
	
	
	Multivariate Normal

	Intercept
	-8.7642
	-0.0030
	-0.0002
	-6.62e-03
	-0.0461
	-0.0044
	-5.3e-05
	0.3078
	
	
	Multivariate Normal

	Gamma
	-0.0448
	-4.96e-06
	3.91e-06
	-2.34e-04
	-0.0016
	0.0002
	3.55e-07
	-0.0011
	0.0006
	
	Multivariate Normal

	Treatment coefficient
	-0.0483
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0219
	Multivariate Normal



Table 119: Parameter distribution details for Renal risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Cholesterol coefficient
	-0.0160
	3.98e-05
	
	
	            
	
	Multivariate Normal

	AMS coefficient
	-0.4524
	0.0003
	0.0121
	
	            
	
	Multivariate Normal

	Intercept
	12.2281
	-0.0145
	-0.2036
	6.6107
	            
	
	Multivariate Normal

	Log(Gamma) 
	0.5477
	-0.0011
	-0.0189
	0.5631
	5.69e-02
	
	Multivariate Normal

	Treatment coefficient
	0.0093
	0.0000
	0.0000
	0.0000
	0.0000
	0.0013
	Multivariate Normal



Table 120: Parameter distribution details for Musculoskeletal risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Log transformed age coefficient
	0.9519
	0.0447
	
	
	
	
	
	Multivariate Normal

	Steroid exposure coefficient
	0.0014
	9.83e-06
	3.28e-08
	
	
	
	
	Multivariate Normal

	SLICC/ACR DI coefficient
	0.1095
	-0.0020
	-1.03e-06
	0.0008
	
	
	
	Multivariate Normal

	Intercept
	-7.3412
	-0.1666
	-5.2e-05
	0.0067
	0.6420
	
	
	Multivariate Normal

	Log(Gamma)
	-0.1326
	-0.0005
	3.73e-06
	-0.0004
	-0.0041
	0.0029
	
	Multivariate Normal

	Treatment coefficient
	-0.0532
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0263
	Multivariate Normal



Table 121: Parameter distribution details for Neuropsychiatric risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Cholesterol coefficient
	0.0034
	1.3e-06
	
	
	
	
	            
	
	Multivariate Normal

	Hypertension coefficient
	0.5784
	-1.6e-05
	0.0271
	
	
	
	            
	
	Multivariate Normal

	Log transformed age coefficient
	0.8984
	-2.4e-05
	-0.0118
	0.06748
	
	
	            
	
	Multivariate Normal

	Steroid exposure coefficient
	0.0006
	-7.27e-08
	-6.33e-06
	1.75e-05
	6.55e-08
	
	            
	
	

	Intercept
	-8.0130
	-0.00015
	0.03253
	-0.2441
	-7e-05
	0.96226
	            
	
	Multivariate Normal

	Log(Gamma)
	-0.2064
	6.89e-06
	-0.00099
	-0.00188
	3e9e-06
	-0.0024
	0.00442
	
	Multivariate Normal

	Treatment coefficient
	-0.0488
	0
	0
	0
	0
	0
	0
	0.02203
	Multivariate Normal



Table 122: Parameter distribution details for Pulmonary risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Anticardiolipin antibodies coefficient
	-1.3923
	0.2134
	
	
	
	
	
	
	Multivariate Normal

	Log transformed age coefficient
	-1.4642
	0.0214
	0.1841
	
	
	
	
	
	Multivariate Normal

	AMS coefficient
	-0.1159
	0.0002
	0.0052
	0.0021
	
	
	
	
	

	SLICC/ACR DI coefficient
	-0.1550
	0.0034
	-0.0024
	-0.0001
	0.0035
	
	
	
	Multivariate Normal

	Intercept
	10.4723
	-0.1272
	-0.7436
	-0.0266
	-0.0026
	3.0987
	
	
	Multivariate Normal

	Log(Gamma)
	0.10762
	-0.0135
	-0.0172
	-0.0003
	-0.0025
	0.0902
	0.0096
	
	Multivariate Normal

	Treatment coefficient
	0.02162
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0052
	Multivariate Normal



Table 123: Parameter distribution details for Peripheral Vascular risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Smoking coefficient
	0.6838
	8.37e-02
	
	
	
	
	
	Multivariate Normal

	Cholesterol coefficient
	0.0048
	-3.1e-05
	2.02e-06
	
	
	
	
	Multivariate Normal

	Hypertension coefficient
	0.7982
	-7.49e-03
	-4.84e-05
	0.1059
	
	
	
	Multivariate Normal

	Lupus anticoagulant coefficient
	0.8223
	7.11e-03
	-2.45e-05
	-0.0088
	1.17e-01
	
	
	Multivariate Normal

	Intercept
	-7.3112
	-4.03e-02
	-3.65e-04
	-0.0622
	-1.79e-02
	0.1714
	
	Multivariate Normal

	Treatment coefficient
	-0.0724
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.1145
	Multivariate Normal



Table 124: Parameter distribution details for Gastrointestinal risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Steroid exposure coefficient
	0.0008
	1.43e-07
	
	
	Multivariate Normal

	Intercept
	-5.0299
	-3.8e-05
	0.0229
	
	Multivariate Normal

	Treatment coefficient
	-0.0480
	0.0000
	0.0000
	0.0217
	Multivariate Normal



Table 125: Parameter distribution details for Ocular risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Hypertension coefficient
	0.3909
	0.0357
	
	
	
	
	
	Multivariate Normal

	Log-transformed age coefficient
	2.2730
	-0.0190
	0.1050
	
	
	
	
	Multivariate Normal

	Steroid exposure coefficient
	0.0013
	-6.06e-06
	2.11e-05
	9.78e-08
	
	
	
	Multivariate Normal

	Intercept
	-12.7782
	-4.84e-04
	0.002
	-5.56e-06
	0.0017
	
	
	Multivariate Normal

	Log(Gamma)
	-0.2226
	0.0510
	-0.4062
	-8.71e-05
	-0.0111
	1.6062
	
	Multivariate Normal

	Treatment coefficient
	-0.0524
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0260
	Multivariate Normal



Table 126: Parameter distribution details for Skin risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Hypertension coefficient
	-1.5034
	0.5753
	
	
	
	
	
	Multivariate Normal

	Log-transformed age coefficient
	-1.6300
	0.1624
	0.5656
	
	
	
	
	Multivariate Normal

	Steroid exposure coefficient
	-0.2088
	0.0007
	0.0062
	0.0099
	
	
	
	Multivariate Normal

	Intercept
	9.7465
	-0.9870
	-0.9973
	-0.0654
	3.6148
	
	
	Multivariate Normal

	Log(Gamma)
	0.3656
	-1.07e-01
	-0.1057
	-0.0047
	0.4303
	0.0601
	
	Multivariate Normal

	Treatment coefficient
	0.0105
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0023
	Multivariate Normal



Table 127: Parameter distribution details for Diabetes risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	African American coefficient
	0.7810
	0.0799
	
	
	
	
	Multivariate Normal

	Steroid exposure coefficient
	0.0015
	-1.4e-05
	1.84e-07
	
	
	
	Multivariate Normal

	Log transformed age coefficient
	2.2003
	0.0047
	5.83e-05
	0.2595
	
	
	Multivariate Normal

	Intercept 
	-14.2964
	-0.0650
	-0.0003
	-1.0224
	4.0876
	
	Multivariate Normal

	Treatment coefficient
	-0.0518
	0.0000
	0.0000
	0.0000
	0.0000
	0.0257
	Multivariate Normal



Table 128: Parameter distribution details for Withdrawal risk model
	Parameter name
	Mean Estimate
	Covariance Matrix
	Distribution

	Intercept
	-1.4061
	0.0505
	
	Multivariate Normal

	Treatment coefficient
	-0.0798
	0.0000
	0.0260
	Multivariate Normal





[bookmark: _Toc379467721]Appendix 17: HEALTH STATE UTILITY SEARCH
A systematic literature search was performed to identify studies of utility in SLE. The online database PubMed (Medline) was searched. Search terms included a combination of free-text and MeSH terms. Only studies that were published from 1995 to 26th March 2010 were considered. All references were exported to Reference Manager 11.0 for application of the inclusion/exclusion criteria. The selection of citations from the databases was based on title and abstract review according to the pre defined selection criteria. The final inclusion criteria for the studies were as follows.
· Patients. An American College of Rheumatology diagnosis systemic lupus erythematosus, adults.
· Outcome measures. Outcomes of interest were utility measures (EQ-5D, SF-6D, HUI-2, HUI-3, Time-trade Off, standard gamble), 
· Language. Full-published reports in English were considered.
Only full-published reports were considered in the initial search. Full text reports were obtained for the abstracts that met the inclusion criteria. 
[bookmark: _Toc261513124]DATA EXTRACTION
For each included study, summary statistics relating health utility to disease status were extracted. A descriptive summary of the results is presented. 
[bookmark: _Toc261513125]RESULTS
The results of the search strategy are reported in Table 129.
[bookmark: _Ref344711120]Table 129: Search strategy and results
	#1
	Systemic Lupus Erythematosus [MeSH]
	40072

	#2
	Utility
	78211

	#3
	Utilities
	2688

	#4
	QALY
	5958

	#5
	Quality Adjusted Life Years
	6466

	#6
	EQ-5D
	1269

	#7
	Euroqol
	1162

	#8
	SF-6D
	171

	#9
	Short form
	30477

	#10
	HUI-3
	33

	#11
	HUI-III
	7

	#12
	TTO
	400

	#13
	Time Trade Off
	1729

	#14
	Standard Gamble
	776

	#15
	#2 OR …#14
	117353

	#16
	#1 AND #15
	271

	#17
	Limits: Humans and English
	249


The search identified 249 articles. Process of exclusion is illustrated in Figure 42.
[bookmark: _Ref344709880]Figure 42: Article identification
[image: ]
An initial review using the exclusion criteria found only seven articles that were related to health utilities. Of the excluded articles 30 were related to health related quality of life but did not use validated utility instruments. 
Summary data on each study can be found in Table 130. The studies have used a number of different measurement instruments for utility. 
[bookmark: _Ref261524442]Table 130: Summary of selected articles
	Author
	Objective
	Sample size
	Utility instrument
	Study design

	Wang (2001) (231)
	Evaluate relationship between QOL and disease activity, damage, impairment, disability and handicap.
	54
	EQ-5D
	Cross sectional

	Moore (1999) (232)
	To assess the validity and reliability of 4 utility indices
	25
	VAS; Standard gamble, TTO, HUI-2
	Repeated interviews

	Ariza-Ariza (2005) (229)
	Test the EuroQol as an instrument for quality of life
	35
	EQ-5D
	Cross sectional

	Fernandez (2007) (163)
	Assess whether SF-6D is associated with damage and mortality
	552
	SF-6D
	Longitudinal

	Sanchez (2009) (230)
	Measure health related quality of life using the SF-6D
	588
	SF-6D
	Longitudinal

	Aggarwal (2009) (228)
	Evaluate the psychometric properties of HRQOL measures
	167
	EQ-5D; SF-6D
	Longitudinal

	VAS-Visual Analogue Scale; SG-Standard Gamble; TTO-Time trade Off; HUI-Health Utilities Index



Only a few studies have assessed and reported utility scores in a population of SLE patients. To date no new treatments for SLE have been granted a licence. Consequently, there has been very little interest in the measurement of utilities for SLE for market access applications. Most of the studies identified in this search have investigated the use of utility instruments to measure quality of life in SLE. The studies suggest that patients with SLE have low health related quality of life with a mean score of between 0.65-0.81. The large variation in reported outcomes is likely due to the different instruments used. 
The studies suggest that there is considerable variability in patient’s utility with SLE. Disease activity is consistently found to be a significant predictor of utility in cross-sectional studies. However, in longitudinal studies utility is insensitive to changes in disease activity scores. Whilst the studies have assessed the relationship between disease activity, damage and utility only one has reported the impact of disease severity on utility. In this study a significant difference in utility between disease activity states measured with both the SF-6D and EQ-5D was observed. A trend to significance in utility between organ damage states was found with the EQ-5D, and a statistically significant difference with the SF-6D. 
Difficulties with usual activities, pain and anxiety/depression were the most commonly reported problems reported in the EQ-5D in SLE patients.


[bookmark: _Toc379467722]Appendix 18: LOG-LIKELIHOOD FUNCTIONS FOR TRIAL DATA
[bookmark: _Ref342925896]Table 131: The log-likelihood functions for the individual regression models
	
	Parameters
	Log-likelihood

	SLEDAI 
	 
 
	

	Mortality
	 
 
	

	Cardiovascular
	  
 
	

	Renal
	  
 
	

	Musculoskeletal
	  
 
	

	Neuropsychiatric
	  
 
	

	Pulmonary
	  
 
	

	P. Vascular
	  

	

	Gastrointestinal
	 

	

	Ocular
	  
 
	

	Skin
	  
 
	

	Diabetes
	 

	

	Withdrawal
	 

	





[bookmark: _Toc379467723]Appendix 19: WINBUGS SPECIFICATIONS
The parametric survival models were programmed into WinBUGs using the ones trick to specify a sampling distribution not included in the WinBUGS list of standard distributions. The ones trick supposes that the data is a set of 1’s assumed to be result of Bernoulli trials with probabilities p[i]. Each p[i] is estimated to be proportional to the Likelihood L[i] via a scaling constant C. An example of the code used for the mortality model with the ones trick is reported below.
	C <- 10000000						
	for (i in 1:N) {
		mones[i] <- 1
		mp[i] <- mL[i] / C
		mones[i] ~ dbern(mp[i])
		}

THE DATA
The simulated data was input into WinBUGS as a matrix which contained each period of observation for the patients within the trial as a separate row of data. The matrix included patient characteristics that were used as covariate adjustments in the regression models as well as data indicating when an event occurred and the time of the event. 
INITIAL VALUES
The mean estimates from the prior distributions were used for the initial values for the posterior parameters. To test burn in a second list of initial values were used in which all parameters were set to zero. 
BURN-IN 
The initial iterations of the MCMC were discarded in order that remaining samples are drawn from the posterior distribution. The size of burn in for the MCMC was evaluated using the Gelman-Rubin Statistic (14). Winbugs automatically generates graphical representation of the statistic if multiple chains starting at over-dispersed initial values are specified. The MCMC process is said to be converged when the ratio of within- and between-chain variability, R, is stable at 1. The graph also illustrates the within and between chain variability, and these should be stable at the point of convergence.
The two sets of initial values described above were used for this assessment. Using the model, simulated data, and initial values described above 30,000 iterations were conducted to evaluate convergence. Example graphics to represent convergence using two parameters from the analysis are reported below. The risk model analysis included a total of 77 parameters and it is not necessary to present them all here. The Baseline hazard and shape parameter of the mortality model are given below as illustrations. In both graphs the upper line in the graph represents the ratio R, and the lower lines depict the within and between variability.
Figure 43: The Gelman Rubin statistic of 30,000 burn-in for Mortality Baseline Hazard
[image: ]
Figure 44: The Gelman Rubin statistic of 30,000 burn-in for Mortality Shape parameter 
[image: ]
The graphs illustrate that the upper line is reasonably stable at 1 after 6,000 iterations and there is less instability in the lower lines of the graph. However, the lines continue to make small fluctuations beyond 6000 iterations. A similar pattern of convergence was observed for all of the risk models assessed. A burn-in of 15,000 iterations was used in the final analysis.
EVALUATION OF AUTOCORRELATION
Using the prior point estimates for the initial values and 15,000 iterations for the burn-in it was possible to assess autocorrelation in the results. Autocorrelation was assessed by reviewing the graphical plots provided by WinBUGs. High autocorrelation was identified in many of the parameters indicated by the shallow decline in the bars of the plots. A graphical illustration of the mortality baseline hazard parameter and shape parameter are given below. The summary data for the mortality parameters are reported in Table 132.
Figure 45: The autocorrelation plot for Mortality Baseline hazard
[image: ]
Figure 46: The autocorrelation plot for Mortality Shape parameter


[bookmark: _Ref342831120]Table 132: Mortality model posterior density estimates without thinning
	Node	
	Mean	 
	SD	
	MC error	
	2.5%	
	Median	
	97.5%	
	Start
	Sample

	African American 
	0.7928
	0.2429
	0.0105
	0.3186
	0.7859
	1.281
	15001
	10000

	Age at Diagnosis
	0.0302
	0.0091
	0.0007
	0.0124
	0.0301
	0.0469
	15001
	10000

	Cholesterol
	0.0042
	0.0015
	0.0001
	0.0014
	0.0043
	0.0071
	15001
	10000

	AMS
	0.2907
	0.0508
	0.0033
	0.1939
	0.2913
	0.3916
	15001
	10000

	Cardio damage
	0.471
	0.1594
	0.0051
	0.1507
	0.475
	0.7802
	15001
	10000

	Renal damage
	0.6729
	0.2291
	0.0071
	0.2194
	0.6767
	1.124
	15001
	10000

	MSK damage
	0.245
	0.1334
	0.0043
	-0.0143
	0.2434
	0.5117
	15001
	10000

	P. Vascular damage
	0.7538
	0.2343
	0.0059
	0.2921
	0.7577
	1.209
	15001
	10000

	GI damage
	0.5796
	0.2221
	0.0064
	0.1453
	0.5819
	1.014
	15001
	10000

	Malignancy
	1.077
	0.259
	0.0074
	0.5592
	1.08
	1.589
	15001
	10000

	Infection
	0.8932
	0.3485
	0.0083
	0.2213
	0.8833
	1.608
	15001
	10000

	Intercept
	-9.999
	0.733
	0.0652
	-11.46
	-10.06
	-8.62
	15001
	10000

	Gamma
	0.4493
	0.0773
	0.0056
	0.2976
	0.4514
	0.5952
	15001
	10000

	Treatment
	-0.9588
	1.095
	0.0308
	-3.257
	-0.8971
	0.9143
	15001
	10000



WinBUGs includes an option to thin the sample such that every kth iteration will be stored in the sampled output. Thinning the data would not have removed autocorrelation from the analysis but should have reduced the risk that the sampled data are not representative of the posterior density. This is particularly important when only a small sample of parameter iterations will be implemented in the CE model. The sample of parameter estimates must be representative of the posterior distribution. The final analysis would have required a minimum of 3000 iterations from the posterior density to use in the PSA. Therefore, 3000 parameter iterations were generated and due to the high level of autocorrelation in some parameters, k was set to 100. The autocorrelation plots are reported in Figure 47 and Figure 48.
[bookmark: _Ref335920725]Figure 47: Final autocorrelation plot for Mortality Baseline hazard
[image: ]
[bookmark: _Ref335920728]Figure 48: The autocorrelation plot for Mortality Shape parameter
[image: ]
The thinning technique substantially reduced the problem of autocorrelation in the sampled values of the parameters. 
Table 133: Mortality model posterior density estimates with thinning
	Node	
	Mean	 
	SD	
	MC error	
	2.5%	
	Median	
	97.5%	
	Start
	Sample

	African American 
	0.7934
	0.2539
	0.0081
	0.3063
	0.783
	1.304
	15001
	3000

	Age at Diagnosis
	0.032
	0.0087
	0.0003
	0.0134
	0.032
	0.0487
	15001
	3000

	Cholesterol
	0.0043
	0.0015
	0.0004
	0.0014
	0.0044
	0.0072
	15001
	3000

	AMS
	0.302
	0.0487
	0.0019
	0.2071
	0.3045
	0.3995
	15001
	3000

	Cardio damage
	0.4703
	0.1586
	0.0051
	0.1472
	0.4754
	0.7738
	15001
	3000

	Renal damage
	0.6701
	0.227
	0.0051
	0.2227
	0.6793
	1.123
	15001
	3000

	MSK damage
	0.2435
	0.1351
	0.0042
	-0.0273
	0.2407
	0.514
	15001
	3000

	P. Vascular damage
	0.7337
	0.234
	0.0073
	0.2711
	0.7402
	1.193
	15001
	3000

	GI damage
	0.5671
	0.2229
	0.0073
	0.1856
	0.5714
	1.004
	15001
	3000

	Malignancy
	1.077
	0.2717
	0.0092
	0.5212
	1.085
	1.611
	15001
	3000

	Infection
	0.8937
	0.3557
	0.0094
	0.1856
	0.8908
	1.586
	15001
	3000

	Intercept
	-10.18
	0.6795
	0.0324
	-11.52
	-10.2
	-8.818
	15001
	3000

	Gamma
	0.4643
	0.0759
	0.0035
	0.3107
	0.4645
	0.6182
	15001
	3000

	Treatment
	-0.9391
	1.049
	0.0297
	-3.196
	-0.8539
	0.902
	15001
	3000





[bookmark: _Toc379467724]Appendix 20: TESTING MAXIMUM LIKELIHOOD WITH INDEPENDENT REGRESSION MODELS
The Problem with the full log-likelihood function
I observed that the full log-likelihood function was not deviating from the prior despite using a large number of iterations in the optim procedure and small gradient tolerance. Table 134 reports the prior parameter means in the first column to indicate how the analysis updates the estimates from the starting values. The time it takes to compute the analysis, the number of iterations reported by the optim function, and the log-likelihood estimate are reported at the bottom of the table. 
Column A reports the posterior mode for a combined log-posterior model with 6 of the models included in the log-likelihood function. The estimates are different from the starting values, the minimum estimate is 1535, and the estimate takes 159 minutes. The maximum likelihood procedure is completely successfully and the estimates for thetahat are slightly different from the prior. Column A reports the correct posterior mode for the parameters included in the six regression models. 
Column B reports the maximum likelihood output is all eight models are included in the log-likelihood function. Column B reports the posterior mode for a combined log-posterior model with eight of the models included. The table illustrates several problems with the estimate. The posterior model estimates are very close to the starting values, this is reflected by the relative short processing time. The minimum log-likelihood estimate is large suggesting that the process has not identified the minimum value. Investigations were conducted to identify what caused the iterations to stop prematurely, but no errors could be identified. Changes to the tolerance of the optim function did not affect the outcome. It was concluded that the log-likelihood function with eight regression models was too complex to be maximised using the optim procedure. 
Investigations into alternative methods of maximum likelihood would have been very time consuming. An alternative strategy to maximise the regression models independently was preferred because it is shown in column C that independent maximum likelihood does not change the estimate of thetahat and was found to be more efficient than a combined log-likelihood function. Column C reports the posterior model for the segmented maximum likelihood procedure. The estimates for the first seven models are very close to the estimates in Column A. The sum of the mimimum log likelihood for each individual estimate, is slightly higher than Column A due to the additional estimates for peripheral vascular, but indicates that the appropriate minimum log-posterior density has been identified.
The independent maximisation method assumes that the second derivatives in the sparse area of the Hessian matrix are zero. This assumption was compared with the sparse area of the matrix when a small number of models were combined. It confirmed that the estimates in the sparse area of the matrix were mostly zero or very small values (<0.0001). These were randomly allocated across the matrix, inconsistent between evaluations and as were likely to be due to calculation error.
[bookmark: _Ref331668116]

[bookmark: _Ref355108435]Table 134: Example Maximum Likelihood estimates for combined log-posterior density and segmented log-posterior density
	
	Prior
	A
	B
	C

	SLEDAI
	Previous SLEDAI
	-0.3344
	-0.3404
	-0.3340
	-0.3404

	Black
	0.2691
	0.2763
	0.2690
	0.2763

	Log of Age
	-0.2583
	-0.2700
	-0.2580
	-0.2701

	Constant
	-0.3737
	-0.5623
	-0.3740
	-0.5623

	Treatment
	1.5348
	1.5846
	1.5300
	1.5848

	Sigma
	1.6751
	7.5654
	1.6800
	7.5654

	Mortality
	Black
	0.8281
	0.8280
	0.8280
	0.8280

	Age at diagnosis
	0.0342
	0.0340
	0.0342
	0.0340

	Cholesterol
	0.0047
	0.0049
	0.0048
	0.0049

	AMS
	0.2673
	0.2601
	0.2670
	0.2601

	CVD damage
	0.4236
	0.4279
	0.4240
	0.4279

	Renal damage
	0.6951
	0.6988
	0.6950
	0.6989

	MSK damage
	0.2515
	0.2530
	0.2520
	0.2530

	P. Vasc damage
	0.7877
	0.7906
	0.7880
	0.7905

	GI damage
	0.6345
	0.6482
	0.6350
	0.6482

	Malignancy
	1.0910
	1.0895
	1.0900
	1.0894

	Infection
	0.9594
	0.9549
	0.9590
	0.9549

	Constant
	-10.6985
	-10.8000
	-10.7000
	-10.8000

	Gamma
	0.5600
	0.5806
	0.5600
	0.5806

	Treatment
	-0.3728
	-0.8130
	-0.3728
	-0.8130

	Cardiovascular
	Age at diagnosis
	0.0457
	0.0467
	0.0457
	0.0467

	Cholesterol
	0.0026
	0.0026
	0.0026
	0.0026

	Hypertension
	0.8151
	0.8362
	0.8151
	0.8362

	Log of disease duration
	0.5965
	0.6473
	0.5965
	0.6473

	AMS
	0.1560
	0.1542
	0.1560
	0.1542

	Average prednisone
	0.0011
	0.0012
	0.0011
	0.0012

	Constant
	-8.7642
	-8.9519
	-8.7642
	-8.9519

	Gamma
	-0.0448
	-0.0458
	-0.0448
	-0.0458

	Treatment
	-0.2882
	-0.6832
	-0.2882
	-0.6832

	Renal
	Cholesterol
	-0.0160
	-0.0146
	-0.0160
	-0.0146

	AMS
	-0.4524
	-0.4113
	-0.4524
	-0.4113

	Constant
	12.2281
	11.0039
	12.2281
	11.0036

	Gamma
	0.5477
	0.3889
	0.5477
	0.3888

	Treatment
	0.0060
	0.0060
	0.0060
	0.0060

	Musculoskeletal
	Log of age
	-1.1090
	-1.0713
	-1.1090
	-1.1004

	Average prednisone
	-0.0015
	-0.0015
	-0.0015
	-0.0015

	SLICC/ACR DI
	-0.1677
	-0.1706
	-0.1677
	-0.1695

	Constant
	8.2164
	8.0828
	8.2164
	8.1947

	Gamma
	0.0400
	0.0371
	0.0400
	0.0365

	Treatment
	-0.3705
	0.0049
	-0.3705
	0.0046

	Neuropsychiatric
	Cholesterol
	0.0034
	0.0031
	0.0034
	0.0031

	Hypertension
	0.5784
	0.5689
	0.5784
	0.5689

	Log of age
	0.8984
	0.9443
	0.8984
	0.9443

	Average prednisone
	0.0006
	0.0005
	0.0006
	0.0005

	Constant
	-8.0130
	-8.0980
	-8.0130
	-8.0980

	Gamma
	-0.2064
	-0.2076
	-0.2060
	-0.2076

	Treatment
	-0.3186
	-0.9658
	-0.3186
	-0.9658

	Pulmonary
	ACL
	-1.3923
	
	-1.3923
	-1.6978

	Log of Age
	-1.4642
	
	-1.4642
	-1.3290

	AMS
	-0.1159
	
	-0.1159
	-0.1076

	SLICC/ACR DI
	-0.1550
	
	-0.1550
	-0.1554

	Constant
	10.4723
	
	10.4723
	9.9444

	Gamma
	0.1076
	
	0.1076
	0.1192

	Treatment
	0.0140
	
	0.0140
	0.0140

	P.Vascular
	Smoking
	0.9429
	
	-14.9657
	0.9686

	Cholesterol
	0.0022
	
	-0.0446
	0.0022

	Hypertension
	1.0101
	
	1.0101
	1.0368

	Lupus anticoagulant
	1.2496
	
	1.2496
	1.2081

	Gamma
	-7.6111
	
	-7.6579
	-7.6420

	Treatment
	-0.0374
	
	-0.0842
	-0.0373

	Log-likelihood minimum
	
	1535.76
	16893.07
	1542.26

	Time in minutes
	
	159.17
	4.38
	0.91



I also checked independent maximisation of the regression models would not affect the conditional maximisation of parameters. The investigations found that the maximum likelihood estimates would not be affected, and an example with three of the statistical models is illustrated in Table 135. Table 135 illustrates the conditional maximisation of a combined log-likelihood function in column A, holding the first 3 parameters constant. The conditional maximisation of independent regression models is reported in column B. The two columns report the same estimates. 
[bookmark: _Ref331697041]Table 135: Example conditional Maximum Likelihood estimates for combined log-posterior density and segmented log-posterior density 
	
	Thetahat
	A
	B

	SLEDAI
	Previous SLEDAI
	-0.3408
	-0.3408
	-0.3408

	Black
	0.2764
	0.2764
	0.2764

	Log of Age
	-0.2704
	-0.3288
	-0.3288

	Constant
	-0.5631
	-0.5702
	-0.5702

	Treatment
	1.5896
	1.8100
	1.8100

	Sigma
	7.5645
	7.5619
	7.5619

	Mortality
	Black
	0.8281
	0.8281
	0.8281

	Age at diagnosis
	0.0340
	0.0340
	0.0340

	Cholesterol
	0.0049
	0.0049
	0.0049

	AMS
	0.2603
	0.2603
	0.2603

	CVD damage
	0.4275
	0.4275
	0.4275

	Renal damage
	0.6989
	0.6989
	0.6989

	MSK damage
	0.2525
	0.2525
	0.2525

	P. Vasc damage
	0.7902
	0.7902
	0.7902

	GI damage
	0.6478
	0.6478
	0.6478

	Malignancy
	1.0905
	1.0905
	1.0905

	Infection
	0.9553
	0.9553
	0.9553

	Constant
	-10.7986
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