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Abstract

Model-Driven Engineering (MDE) and Search-Based Software En-
gineering (SBSE) are development approaches that focus on au-
tomation to increase productivity and throughput. MDE focuses
on high-level domain models and the automatic management of
models to perform development processes, such as model valida-
tion or code generation. SBSE on the other hand, treats software
engineering problems as optimisation problems, and aims to auto-
matically discover solutions rather than systematically construct
them. SBSE techniques have been shown to be beneficial at all
stages in the software development life-cycle. There has, how-
ever, been few attempts at applying SBSE techniques to the MDE
domain and all are problem-specific. In this thesis we present a
method of encoding MDE models that enables many robust SBSE
techniques to be applied to a wide-range of MDE problems. We
use the model representation to address three in-scope MDE prob-
lems: discovering an optimal domain model; extracting a model
of runtime system behaviour; and applying sensitivity analysis
to model management operations in order to analyse the uncer-
tainty present in models. We perform an empirical analysis of
two important properties of the representation, locality and redun-
dancy, which have both been shown to affect the ability of SBSE
techniques to discover solutions, and we propose a detailed plan
for further analysis of the representation, or other representations
of its kind.
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Introduction

1.1  Motivation

IT was OVER 25 YEARS ago that Frederick P. Brooks, Jr. pro-
claimed that there will never be one ideal approach to software
engineering — no silver bullet [17]. To this day he has not been
disproven — there has not been a new development that has made
software engineering an inexpensive or uncomplicated task. As
time has progressed, however, the evolution of the tools, tech-
niques, and theories that we use to build software have enabled
us to produce software that is increasing in size and complexity.

Since the beginnings of software engineering, we have tried to
address size and complexity, whilst improving productivity and
expanding the kinds of systems being built, through the use of
abstraction. We have progressed from writing software in terms
of low-level hardware functionality to writing software in a way
in which humans think. From machine code, via structured lan-
guages, to functional languages, object-oriented languages, and
domain-specific languages: software is arguably becoming easier
to produce by raising the level of abstraction at which we de-
velop software from opcodes and operands to concepts from the
domain that the software targets.

As well as advancing the languages with which we can de-
velop software, new techniques and methodologies have been
proposed to aid the development process. Like other engineer-
ing disciplines, today’s software engineers will commonly make
models of the systems that they develop. These models are abstrac-
tions of the system being developed and the domain being mod-
elled; they allow developers to not only better devise their system,
but also reason about various aspects of the system. It is widely
argued that spending time developing a model can enable infor-
mation to be discovered about a system without suffering the cost
of actually implementing it [102, 162, 163]. Models can broadly
be classified into five categories related to their purpose: docu-
mentation — used to describe the problem; instructions — prescrip-
tive information about some activity; explorative — used to test the
consequences of actions without harming the real system; educa-
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tional — interactive replacements to real objects/systems for prac-
tical or ethical reasons; and formal — mathematical descriptions of
the problem [102]. Many notations are used for software models,
from notebook sketches to mathematical descriptions to graphical
notations such as the Unified Modeling Language (UML). Histor-
ically, however, models have played a secondary role in software
development [162] and are often discarded once development be-
gins whilst becoming out-dated as requirements change or new
understanding about the system is gained.

1.1.1 Model-Driven Engineering

Model-Driven Engineering (MDE) is an engineering approach that
treats models as first-class development artefacts. Models are no
longer (just) simple sketches on paper or forgotten designs. In-
stead, models are the driving force in the software or system de-
velopment process. Models are tangible, interactive artefacts that
are manipulated by model management operations. Through a se-
ries of automatic transformations [164, 31], high-level models can
be used to generate the final production system. Focusing devel-
opment on models allows them to remain useful and up-to-date,
but also allow engineers to develop systems at the level of the ap-
plication domain. This potentially moves the development task
from programmer to domain expert and arguably increases pro-
ductivity, whilst reducing time-to-market [162, 164, 163]. Recent
studies have supported these claims. Hutchinson and Whittle
recently performed an in-depth analysis on the usage of MDE
in industry and discovered that the perceived benefits of using
MBDE in practice were the ability to quickly respond to changing
requirements, improving communication with stakeholders, and
increasing productivity, maintainability, and portability [77, 76].

1.1.2 Search-Based Software Engineering

Search-Based Software Engineering (SBSE) is an engineering appro-
ach that focuses on reformulating software engineering problems
as optimisation problems and applying metaheuristic optimisa-
tion techniques to discovering (near) optimal solutions to the prob-
lem [65, 28]. The interest in SBSE has been growing in recent years
[67], with it being successfully applied to all aspects of the soft-
ware development life-cycle [65, 62, 67]. To reformulate a software
engineering problem as an optimisation one needs to perform two
actions. Firstly, define a representation of the problem’s solution
space that can be used within the metaheuristic technique; and
secondly, devise a fitness function to measure the quality of each
candidate solution [28]. Commonly, complex solution spaces are
encoded in simplified forms that are more amenable to optimi-
sation techniques. These simplified forms are translated into the
pure representation of the solution to be evaluated by the fitness



function. The output of the fitness function is used to guide the
metaheuristic technique towards optimal solutions.

1.1.3 Combining MDE and SBSE

In recent years, as MDE has matured, researchers in the MDE
community have started to make use of SBSE techniques. Notable
research comes from Betty H.C. Cheng whose work (summarised
in [23]), focusing on the fields of dynamically adaptive systems
and uncertainty, has included evolving target system models at
runtime [136], evolving behavioural models of systems [59, 58],
and evolving goal models with relaxed constraints so as to ac-
commodate uncertainty [137]. In contrast, Marouane Kessentini
has addressed the challenge of searching for model management
operations, using example mappings between models to discover
model transformation rules [85, 87, 86, 43, 44, 10, 114], and merg-
ing sets of models whilst reducing conflicts [88]. These two re-
searchers (and their colleagues) are the earliest known attempts
at applying SBSE techniques to discovering or optimising both
models and model management operations, and interest in this
area is growing [68]. Currently there exist no standard practices
to adapting SBSE techniques to MDE problems, and there are few
common case studies or examples with which to experiment or
compare approaches. The early work in this area, however, shows
promise that SBSE can benefit MDE as it has traditional software
engineering.

1.2 Research Hypothesis

The research hypothesis addressed in this thesis is as follows:

A generic, search-amenable representation of models would en-
able the wealth of existing research into SBSE to be applied to a
broad range of problems found in the MDE domain.

Model-Driven Engineering has been shown to be increase pro-
ductivity in software development projects [77, 76, 113], and is
seen by advocates as the next evolutionary stage in software de-
velopment. Search-Based Software Engineering have been suc-
cessfully applied to optimising all aspects of the software engi-
neering life-cycle. However, there currently exists no standard
way to apply SBSE techniques to MDE problems. A represen-
tation that can express any model, and is amenable to many
well-defined SBSE techniques, would enable MDE practitioners
to benefit from the wealth of knowledge being produced by the
SBSE community and more easily apply SBSE techniques to their
MDE-related problems. Models are at the heart of MDE; the abil-
ity to automatically discover, optimise, and evaluate models and
the operations that manipulate them, would greatly improve the
MDE practitioners toolbox.



The objectives of this thesis, therefore, are:

¢ To identify existing research that combines SBSE and mod-
elling, and propose extensions where their synergy would be
fruitful.

* To design and implement an encoding that can represent any
(and all) model(s) that conforms to a given metamodel, and
that is applicable to existing SBSE techniques.

¢ To design and implement a model-driven SBSE framework that
uses this encoding and provides standard SBSE algorithms.

* To use the model representation to address a set of known
challenges in the MDE domain.

* To evaluate properties of the representation that have been
shown to be important for evolutionary search, and use the
knowledge gained from the evaluation to provide guidance to
users of the representation and to propose improvements to
the representation.

1.3 Thesis Contributions

The primary contributions made in this thesis are summarised
below.

¢ The definition of a novel generic representation of models that
is amenable to a wide range of existing metaheuristic optimi-
sation techniques.

* The demonstration of the feasibility of using the representation
to solve in-scope problems:

- Discovering optimal behaviour models;

- Extracting a model of runtime system behaviour for use in
self-adaptive systems;

- Applying sensitivity analysis to model management opera-
tions to analyse the uncertainty present in models.

e A large-scale analysis of the structure of metamodels, provid-
ing detailed insight into the ways in which practitioners com-
monly build their metamodels.

* The identification of a set of representative metamodels, taken
from the corpus, that act as benchmarks for evaluating repre-
sentations of models.

* The empirical analysis of two important properties of the rep-
resentation.

The secondary contributions made in this thesis are summa-
rised below.



* A prototype Grammatical Evolution-based prototype represen-
tation of models that demonstrated the feasibility of combin-
ing modelling and search and inspired the development of the
generic model representation.

¢ The implementation of the model representation using MDE
technologies.

¢ The implementation of a metaheuristic search framework, built
using state-of-the-art MDE technologies, where all aspects of
the framework are expressed as models, and the core algo-
rithms are defined as model management operations.

* Aninteractive, web-based visualisation of the search algorithm,
made possible through the use of MDE technologies and by
capturing the progress of the search algorithm in a model.

¢ A model-driven approach to runtime adaptation which utilises
metaheuristic search for decision making.

¢ The identification of three areas where uncertainty arises in
MDE.

¢ A framework and methodology for the application of sensitiv-
ity analysis to models.

* A detailed plan for future empirical analysis of the representa-
tion, or any similar representation of models.

1.4 Thesis Structure

Chapter 2 presents a review of the related literature. Firstly, we
provide the necessary background information related to both
MDE and SBSE that is necessary to understand the thesis. We
then present a review of the existing work that applies SBSE to
MDE problems, examining how each of the addressed MDE prob-
lems has been adapted for use with SBSE techniques. In particu-
lar, we group the existing literature into two categories: those that
discover or optimise models, and those that discover or optimise
model management operations. Furthermore, we enumerate the
case studies that have been used in the literature as a new field
needs common examples with which they can compare and con-
trast their work.

Chapter 3 describes our prototype search-amenable represen-
tation for MDE models. The prototype focuses on represent-
ing textual models, and utilises a grammar-based metaheuristic
search technique known as Grammatical Evolution [151, 127]. We
use the representation to discover optimal models of characters
in a video game, demonstrating the efficacy of the approach and



of the ability to define a generic representation of models. Limi-
tations of the prototype representation are discussed and empiri-
cally analysed.

Chapter 4 introduces our generic, search-amenable represen-
tation of models. We describe the key components of the repre-
sentation, and present Crepe — an implementation of the repre-
sentation that targets a well-known and widely-used modelling
platform. We also describe MBMS — a model-based metaheuris-
tic search framework, built using state-of-the-art MDE technolo-
gies, that utilises Crepe as its representation. MBMS and Crepe
provide a platform that lowers the entry barrier for MDE prac-
titioners to applying SBSE techniques to their problems. Crepe
and MBMS are illustrated using an simple MDE implementation
of the Travelling Salesment Problem, and limitations of the repre-
sentation are discussed.

Chapter 5 utilises the representation to discover optimal mod-
els. We apply Crepe to the video game problem addressed by
our prototype representation, demonstrating its efficacy whilst
also illustrating an issue with the representation. We then use
Crepe to tackle the challenge of discovering a model of system
behaviour based on sensory information, and present a model-
and search-based approach to runtime system adaptation. We
perform a principled experiment to analyse the adaptation ap-
proach on the video game problem.

Chapter 6 addresses the inherent uncertainty that is found in
models. Uncertainty in models can lead to unexpected behaviour,
and slow down the development process. We describe three areas
where uncertainty can arise in MDE and discuss the effects that
these uncertainties can have. We define a framework for applying
sensitivity analysis to models and show how this can be used to
qualify the output of model management operations and thus
improve both the confidence in, and understanding of, models.
This chapter also highlights the fact that the representation can
be used for tasks that don’t require search.

Chapter 7 presents an evaluation of the representation. In par-
ticular, we analyse two important properties of search-based rep-
resentations which have been shown to influence the performance
of evolutionary search: locality and redundancy. To enable this
analysis, we perform a systematic examination of a large corpus
of metamodels, and propose a set of benchmark metamodels that
can be used to evaluate representations similar in nature to ours.
Furthermore, we propose a detailed plan for future analysis of
the representation, or other representations of its kind.

Chapter 8 summarises the contributions made in this thesis
and discusses potential avenues of research that build atop of the
work presented here.



Literature Review

THIS THESIS DESCRIBES a novel encoding of Model-Driven Engi-
neering (MDE) models that is designed to be amenable to many
standard Search-Based Software Engineering (SBSE) techniques.
In this chapter, we provide overviews of MDE and SBSE that are
necessary to understand this thesis, and present a critical review
of existing research in the area of combining MDE and SBSE.

Chapter Structure Section 2.1 presents background informa-
tion on MDE. In particular, we describe the key principles of MDE
— models, modelling languages, and automated model manage-
ment — and the key practices of MDE — the modelling and model
management technologies used. Section 2.2 presents background
information on SBSE. We overview two popular metaheuristic
search-based optimisation techniques, discuss the considerations
needed when defining a search-amenable representation for a
problem, and describe the process of reformulating a software
engineering problem as an optimisation problem. Section 2.3 re-
views existing work that utilises metaheuristic search-based opti-
misation techniques for addressing MDE problems, highlighting
the ways in which the MDE problems were represented for use
with search. We also present work that proposes opportunities
where MDE and SBSE can be combined, and enumerate the case
studies that were used in the literature to enable a set of bench-
mark examples to be devised for the field.

2.1 Model-Driven Engineering

Models have been used in other engineering disciplines for years.
They allow engineers to understand and reason about the arte-
fact being constructed, and provide an effective means of com-
munication with stakeholders [163, 162]. In software engineering,
however, models have historically played a secondary role, even
though the benefits of using models in software engineering are
potentially greater than in any other engineering discipline [162].
Modelling complex software engineering problems at a higher
level of abstraction — i.e. using domain concepts rather than im-
plementation concepts — makes the modelling process easier as
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the modeller need not be concerned with implementation detail
[162]. Moreover, the process is more maintainable: as requirements
change, the domain model can easily be updated, which has the
added benefit of enabling a domain expert to become the devel-
oper of the system [162, 16]. From these domain-level models
systems can be automatically generated, thus increasing produc-
tivity and reliability [162]. Thus, the two key principles behind
MDE are the primary use of models, and the automated manage-
ment of models.

In this section we present the background on MDE that is re-
quired to understand this thesis. Section 2.1.1 overviews the key
principles of MDE: models and automated management of mod-
els; and section 2.1.2 describes the key practices of MDE: introduc-
ing the technologies used for modelling, and for model manage-
ment. Finally, section 2.1.3 discusses some of the promised (and
realised) benefits of MDE as well as some of its shortcomings.

2.1.1 Key Principles of MDE

Models Models in MDE are required to have a formal defini-
tion of their structure. Unstructured models, such as sketches
and natural language, are useful for communication but cannot
(easily) be used with automated processes due to their ill-defined
semantics and syntax [91]. Most commonly in MDE, a model’s
structure is defined by a metamodel — another model that specifies
the language, concepts, and constraints available to a model — but
this need not be the case. As Paige and Rose [131] point out:

“MDE [...] require(s) the construction, manipulation and manage-
ment of well-defined and structured models - but you don’t have to
make use of OMG standards, or a particular style of development
to do it.”

For example, a model’s structure could be defined using an
abstract syntax tree or some form of schema. The key point is
that there is some formal notion of structure. In this thesis, we
will only address models that use metamodels to define their
structure. A model that uses only the concepts defined by a meta-
model and doesn’t break any of its constraints, is said to conform
to that metamodel [130]. Metamodels can be also referred to as
modelling languages.

The Object Management Group® (OMG) have defined a stan-
dard for a metamodelling architecture, called the Meta-Object Fa-
cility (MOF) [120]. The architecture is composed of four layers —
illustrated in figure 2.1. The top layer, M3, provides a metamod-
elling language (i.e. a meta-metamodel) for specifying metamod-
els in the second layer, M2. The Unified Modeling Language (UML)
[122], the de facto modelling language, is an example of an M2
metamodel. The third layer, M1, contains models that conform
to metamodels in M2, for example UML class diagrams. Finally,
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Mo is the object layer - i.e. the real-world problem being mod-
elled. MOF is unable to express all constraints that are commonly
needed when defining a metamodel - it focuses on simple struc-
tural constraints only. To define more complex constraints, such
as invariants on all instances of a particular meta-class, another
language is needed. Commonly, this is the Object Constraint Lan-
guage (OCL) [61]. A metamodelling architecture, such as MOF,
enables interoperability between MDE tools. The OMG defines
an XML-based persistence format for models, XML Metadata In-
terchange (XMI), which allows MOF-compliant tools to interact
with any model or metamodel specified in this format.

Zoo

’

* | cages
Cage
spaceAvailable : Integer
S—

* animals

Animal *

name : String
spaceRequired : Integer
quantity : Integer

animals

*
eats

For illustration purposes, figure 2.2 shows a metamodel, de-
fined in MOF, that specifies a simple modelling language for de-
signing the layout of a zoo. Each box is a meta-class and the
lines represent references between meta-classes. References and
attributes of a meta-class are collectively known as meta-features.
In figure 2.2, a Zoo references Cages and Animals. The black dia-
monds on the relations represent composition, meaning that cages
and animals can only exist if they are contained by a zoo. If the

Figure 2.1: Illustration of
the MOF metamodelling ar-
chitecture.  Adapted from
[16] and [120].

Figure 2.2: A metamodel
for a simple language which
allows zookeepers to assign
animals to cages.
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Figure 2.3: A example
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metamodel in figure 2.2.
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:Zoo

animals cages

:Animal :Cage
name = "Tiger" spaceAvailable = 8
spaceRequired = 5

quantity = 2
eats
:Animal :Cage
name = "Pig" spaceAvailable = 25
spaceRequired = 3 |
quantity = 3 animals

z0o object is deleted all cages and animals that it is composed of
are also deleted. The asterisks on a reference specifies the mul-
tiplicity of the reference. In this case, a zoo can be composed of
many (*) cages and animals. Alternatively, explicit values (e.g. 5)
or ranges (e.g. 2..5) can be specified. If a multiplicity value isn’t
given, the default value is 1. Figure 2.3 demonstrates an instance
of a model that conforms to the zoo metamodel. The model is
expressed using object diagram syntax [122]. Each box is an object:
the colons specify that the object is an instance of a particular
meta-class. The reference names relate to those defined in the
metamodel. It is worth saying that although we use object dia-
gram syntax here, we do so only because it is a familiar syntax.
Commonly, developers will define one or more explicit concrete
syntaxes for their modelling languages. For the zoo example, we
could perhaps define a textual syntax or even define a graphical
syntax that phyically looks like a zoo and allows users to drag
and drop cages and animals. The tools which enable the devel-
opment of concrete syntaxes, and much more, are discussed in
section 2.1.2.

Automated Management of Models Historically, models in
software engineering have commonly been used only for design
or documentation and often become outdated as requirements
change and the development progresses. In MDE, however, the
formally-defined structure of models enables models to be pro-
cessed by programs known as model management operations (MMO).
These operations are what automatically converts a model from
being only a piece of documentation into a being the artefact driv-
ing the development of a system. We briefly summarise the most
common MMOs.

Model transformation A model transformation is an operation that
translates a model, or set of models, into a new representa-
tion. Cznarnecki and Helsen [31] list a number of applications
for model transformations, which include: generating lower



level models from high level models, generating code, refactor-
ing models, and reverse engineering models from existing sys-
tems. There are two main categories of model transformation:
model-to-model transformations, and model-to-text transfor-
mations. Model-to-model transformations operate on two (sets
of) models: the source model(s) — i.e. the model(s) to which
transformation will be applied, and the target model(s) - i.e.
the resulting model(s). Model-to-model transformations have
a number of properties: a direction — horizontal or vertical, re-
lating to the levels of abstraction of the source and target model
[108]; a type — endogenous or exogenous, relating to whether
the source and target model conform to the same metamodel or
not [31]; a multiplicity — relating to the number of input models
and the number of output models (e.g. a one-to-many trans-
formation might transform a platform-independent model into
many different platform-specific models [108]). Mens and Van
Gorp [108] have constructed a taxonomy of model transforma-
tion with the aim to aid the decision of which model transfor-
mation approach to use for a particular kind of problem.

Model-to-text transformations are commonly used to generate
code from a (set of) models(s), but can also be used to generate
other textual artefacts, such as documentation (e.g. [143]), for-
mal specifications for verification purposes (e.g. [183, 3, 35]),
or to serialize a model into a format for interchange (e.g. XMI)
or storage (e.g. in a database) [131]. Additionally, there are
transformations that parse a textual notation into a model (e.g.
Xtext? [37], EMFText3 [70]. This illustrates a commonly mis-
understood point: models in MDE need not be of a graphical
nature.

Model transformation was once see as the heart and soul of
model-driven development [164], though it is now realised that
transformation is not the only important operation that can
be applied to models, and in fact the heart and soul is the
automated aspect of interacting with models [131].

Model validation Models often need to satisfy certain constraints.

Problems can arise when models are incomplete (missing in-
formation) or inconsistent [99, 91]. Models can be inconsistent
with respect to their syntax — i.e. they do not conform to their
metamodel — or their semantics — i.e. they do not satisfy se-
mantic constraints [38]. Syntactic and semantic consistency re-
late to intra-model consistency, i.e. they are properties of a sin-
gle model [38]. Inter-model consistency relates to cases where
different models (perhaps different views of the same system)
capture the same information in conflicting ways [38]. Due to
the vital role that models play in MDE, inconsistency needs
to be discovered and addressed otherwise it can propagate
through a chain of transformations and arise in the deployed
system.

2www.eclipse.org/Xtext
3www.emftext.org
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Model comparison Comparing two or more models is an essential
prerequisite for a number of model-related tasks. These in-
clude: calculating the differences between models, merging a
set of models, and testing that the output of a model trans-
formation was as expected. Comparing models is challenging
due to their structure. It is not possible to compare models
based on their underlying XMI representation as two XMI rep-
resentations of the same model can have many differences (e.g.
different element identifiers, or different orderings of elements)
[173]. Existing comparison methods include: signature-based
techniques (e.g. [51]) where element identities are computed
at comparison time; graph-based approaches (e.g. [173, 191])
where models are treated as typed attribute graphs; or using a
task-specific language for precisely defining the matching rules
between elements (e.g. [90, 180]).

We now look at some of the technologies that have been devel-
oped to support the principles described above.

2.1.2 Key Technologies of MDE

This section describes some of the existing technologies that en-
able MDE practices. Specifically, we focus on the technologies
that are used throughout this thesis, namely the Eclipse Modeling
Framework and Epsilon.

Modelling Technologies The Eclipse Foundation* have imple-
mented their own metamodelling architecture that aligns with
MOF’s four-layer architecture (see previous section). The Eclipse
Modeling Framework> (EMF) [170] has a MOF-equivalent meta-
modelling language called Ecore and provides stable and well-
maintained tool support for modelling activities, such as a graph-
ical editor for defining metamodels and tools for automatically
generating model editors from a metamodel. EMF is presently
the de facto modelling framework and has a very active commu-
nity that build on top of the core framework to provide a suite
of interoperable tools that aid model development. For example,
both the Graphical Modeling Framework® (GMF) and Graphiti? pro-
vide tool support for generating and customising graphical edi-
tors for models, Xtext and EMFText enable users to define textual
modelling languages, and Emfatic® provides a textual language
(built using Xtext) for developing Ecore metamodels. For illustra-
tion, the metamodel from figure 2.2 is expressed using Emfatic in
listing 2.1.

package zoo;

class Zoo |
val Animal[#] animals;
val Cage[*] cages

}
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class Cage{
attr int spaceAvailable;
ref Animal[+] animals;

}

class Animal {
attr String name;
attr int spaceRequired;
attr int quantity;
ref Animal[+] eats;

}

Listing 2.1: The zoo metamodel expressed in the Emfatic language.
The val keyword represents a composition reference and ref represents a
standard reference.

Model Management Technologies Transformations were orig-
inally written in general purpose languages; modelling tools, such
as Rational RoseY, provided APIs to manipulate models [164].
General purpose programming languages, however, are not suited
to writing transformations because they don’t capture the neces-
sary level of abstraction meaning that specialised languages are
required [164, 94]. More recently, a number of languages have
been developed for the sole purpose of specifying transforma-
tions. These include the Atlas Transformation Language (ATL)
[79], the OMG’s QVT [121], and the Epsilon Transformation Lan-
guage (ETL) [94].

ETL is part of the family of model management languages pro-
vided by Epsilon'® [97, 91] — a platform for model management.
Other languages provided by Epsilon to support model manage-
ment include: the Epsilon Generation Language (EGL) [143] -
a model-to-text transformation language; the Epsilon Validation
Language (EVL) [93] — an OCL-inspired language for model val-
idation; the Epsilon Comparison Language (ECL) [90, 180] — a
rule-based language for precise model comparison; the Epsilon
Merging Language (EML) [95] — a rule based language for merg-
ing multiple models; and the Epsilon Pattern Language (EPL) — a
rule-based language to detect patterns in models. Moreover, Ep-
silon provides tool support for unit testing MMOs [53], rapidly
prototyping GMF-based graphical editors [96], and monitoring
inter-model references in EMF models [142].

All of the Epsilon languages build atop and reuse a common
general purpose model management language — the Epsilon Ob-
ject Language (EOL) [92]. EOL is an imperative language that
reuses familiar syntax and expressions from OCL but addresses
many of OCL’s flaws [92]. We briefly describe EOL with a sim-
ple example, as it is used throughout this thesis. Furthermore, in
understanding EOL, one will be able to gain an understanding of
the other Epsilon languages.

Listing 2.2 illustrates many features of EOL using the Zoo ex-
ample. The operation transfers animals from an existing zoo to
a newly created zoo. A novel feature of EOL is that it can man-

Shttp://www-03.ibm.com/
software/products/us/en/
ratirosefami/

" www.eclipse.org/epsilon
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age multiple models simultaneously. In our example we have one
input model and one output model. The input model is an exist-
ing zoo model, and we output a new zoo model. To distinguish
between objects in different models, we use a prefix before the
meta-class name: in this case YRK represents the new zoo being
created, and LDN represents the existing zoo from which animals
will be transferred. EOL allows you to create model elements:
lines 2—4 create new objects inside the YRK model. Line 3 and the
addAnimal operation illustrates how one can define operations for
given meta-classes. Any Zoo instance can invoke the addAnimal op-
eration. The self keyword (lines 18 and 30) represents the object
that the operation has been invoked upon. Features (attributes
and references) are accessed using the dot notation. References
are treated as collections, and so the add operation is used to add
an object to a reference (e.g. line 30).

// Create the new zoo and add some animals and a cage
var zoo : Zoo = new YRK!Zoo;

var zebras = zoo.addAnimal("Zebra", 5, 2, Sequence{});
var lions = zoo.addAnimal("Lion", 6, 1, Sequence{zebra});
var cage = zoo.addCage(30, Sequence{zebras, lions});

// Now transfer some animals from LDN

s| var 1dnZoo : IDN!Zoo = IDN!Zoo. all. first ();

var tigers = ldnZoo.animals.selectOne(animal | animal.name
== "Tiger");

zoo.animals.add(tigers);

cage.animals.add(tigers);

operation YRK!Zoo addCage(spaceAvailable : Integer, animals
Sequence) : Cage {
var cage : YRK!Cage = new YRK!Cage;
cage.spaceAvailable = spaceAvailable;
cage.animals.addAll(animals) ;

self.cages.add(cage);

return cage;

}

operation YRK!Zoo addAnimal(name: String , spaceRequired
Integer , quantity : Integer, eats: Sequence) : Animal {
var animal : YRK!Animal = new YRK!Animal;
animal .name = name;
animal.spaceRequired = spaceRequired;
animal . quantity = quantity;
animal . eats.addAll(eats);

self.animals.add(animal);

return animal;

}

Listing 2.2: A simple EOL program to transfer animals to a new zoo.

Line 8 creates a variable that represents the Zoo object in the
LDN model. There is no way to identify the existing zoo object
without referring to its meta-class. The all operation returns the
collection of all instances of the specified meta-class. In this case
there is only one zoo object in the LDN model, and so we select
it from the resulting collection using the first operation. EOL sup-




ports first-order logic operations such as select, collect, exists, and
forAll. On line g9, we use the selectOne operation to return the first
animal object whose name is “Tiger”. We then add this object into
the YRK zoo object’s animals collection. Due to the rules of object
containment and the fact that the animals reference is a composi-
tion, by adding the tiger to the YRK model, it removes it from the
LDN model.

The most powerful aspect of the Epsilon platform is that it is
agnostic to metamodelling technologies. Epsilon provides lots
of integration with the Eclipse platform, but can be used totally
independently. It provides a connectivity layer which allows dif-
ferent metamodelling technologies to easily integrate with Ep-
silon. Furthermore, models from different technologies can be
used within the same model management operation. At the time
of writing, Epsilon supports EMF models, XML files (with a sche-
ma), XML files (without a schema) [98], CSV files, Bibtex files,
MetaEdit models, spreadsheets [50], and Z specifications.

2.1.3 Benefits and Shortcomings of MDE

In 2006, Schmidt noted that it was difficult to find literature that
assesses the benefits of MDE in practice [159]. Since then a num-
ber of studies of the benefits and shortcomings of MDE have
been undertaken. One example of an experience report written
by industrial practitioners is by Weigert and Weil [177]. They
published their experiences of using MDE for fifteen years at
Motorola for developing trustworthy computing systems. They
found that using MDE increased the quality and reliability of
their software, whilst also increasing the productivity of their en-
gineers. Code generators were the main reason for success here —
much effort was placed on developing robust generators, which
allowed the design models to become more abstract and therefore
easier to produce and analyse. Furthermore, they found that us-
ing MDE enabled them to develop efficient working team struc-
tures, as different concerns were separated between the design
models and the code generators [177].

In 2008, Mohagheghi et al. [113] performed a systematic re-
view of papers published between the years 2000 and 2007 that
relate to experiences with using MDE in industry. They found
that MDE had been applied in a wide range of domains, includ-
ing telecommunications, financial organisations, defence organi-
sations, and web applications. The reasons stated for using MDE
were the often cited benefits of MDE: e.g. increasing productivity
by automating labour intensive or error prone tasks, improving
quality of software, and increasing maintainability of software.
In practice, however, Mohagheghi et al. found that the view was
divided on productivity, with a number of people experiencing
a reduction in productivity. This reduction was largely due to
the immaturity of supporting MDE tools and the high cost of
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adoption. The general consensus, however, was that there was an
increase in the quality of the produced software.

Hutchinson et al. [77] performed an in-depth empirical study
into the use of MDE in industry. Using questionnaires, inter-
views, and on-site observations, they aimed to discover how MDE
is being used and what the perceived benefits or drawbacks are.
They found that, overall, MDE was seen to increase productivity
and maintainability, showing in particular a time reduction in re-
sponding to requirements changes. Code generation was seen as
a key activity for improving productivity, and that the increase
in productivity outweighed the cost of incorporating generated
code into existing systems. The need for significant training was
seen as a drawback, and many organisational factors affect the
success or failure of adopting MDE. The role of organisational
factors is further addressed in [76], which focuses on the expe-
riences of three commercial organisations adopting MDE. They
found that a wide range of organisational, managerial and social
factors affect the success of adopting MDE. These include: the
way in which MDE is introduced into the company; the commit-
ment of the organisation to make MDE work, integrate it with
their development processes and motivate their employees to use
it; and the way MDE is positioned with respect to the business’s
focus [76].

Despite the empirical evidence produced by Hutchinson et al.
[77, 76] and Mohagheghi et al. [113], the adoption of MDE in in-
dustry has been slow [163]. Petre [133] focused specifically on the
use of UML in industry by interviewing 50 software engineers in
50 companies to see how (or if) UML is being used. Petre identi-
fied five patterns of usage: not at all, retrofit to satisfy customer-
s/stakeholders, automate code generation, informally for as long
as useful, and wholeheartedly. The majority of respondents fit
into the first category — not using UML at all. Only 3 out of the 50
respondents used UML for code generation. In support of this,
Hutchinson et al.’s study found that the majority of practitioners
used domain-specific modelling languages rather than the UML
(771

France and Rumpe [49] laid out a research roadmap that lists
three categories of challenges faced in MDE:

Modelling language challenges: MDE researchers need to provide
robust support for developing, utilising, and analysing models.
In particular, we need to address the challenges of abstraction
- i.e. aiding the development of problem-level models — and
formality —i.e. specifying the semantics of modelling languages

[49].

Separation of concerns challenges: Multiple models can be used to
specify different views on a system, particularly for large and
complex systems. MDE needs to support multiple, potentially
heterogenous, models [49].



Model manipulation and management challenges: Rigorous support
for model composition and decomposition, synchronisation to
maintain relationships among models, analysing transforma-
tions, and utilising models at runtime is required [49].

Selic [163] groups France and Rumpe’s challenges into cate-
gories that tackle the industrial adoption of MDE: capability chal-
lenges, scalability challenges, and usability challenges. Regarding
capability challenges, Selic argues that we need advances in: un-
derstanding modelling language design and specification; sup-
porting synchronisation and validation of multiple models; pro-
viding semantic theory for model transformations; and develop-
ing static and dynamic methods for validating that models are
correct [163]. To address scalability issues we need to support
incremental modelling and facilitate efficient operations on large
or fragmented models [163]. Finally, usability challenges relate to
the tool support for MDE processes: currently they are too com-
plex [163].

2.2 Search-Based Software
Engineering

Search-Based Software Engineering (SBSE) [65, 28, 62] is a soft-
ware engineering approach that treats software engineering prob-
lems as optimisation problems. SBSE is based on the observation
that it is often easier to check that a candidate solution solves a
problem than it is to construct a solution to that problem. Indeed,
solutions to some software engineering problems may be theorec-
tically impossible or practically infeasible; SBSE techniques can
help discover acceptable solutions to these problems [65]. Ap-
plications of SBSE have been growing in scope and sophistica-
tion over the last 10 years, with researchers demonstrating suc-
cess in applying search-based optimisation techniques to a vari-
ety of problems that span the breadth of software engineering
[62]. Since Harman and Jones coined the term in 2001 [65], hun-
dreds of papers have been published on applying SBSE to soft-
ware engineering problems, so much so that numerous survey pa-
pers have been published including: search-based software test-
ing [106, 107, 2], search-based software maintenance [132], soft-
ware architecture optimisation [1], software design optimisation
[135], as well as reviews of the entire field [28, 62, 67].

In this section we describe the key concepts of SBSE, briefly
introducing metaheuristic search, and focusing on the key areas
of relevance for this thesis: representing and reformulating prob-
lems for search. Section 2.2.1 overviews metaheuristic search-based
optimisation — the tool with which SBSE tackles software engineer-
ing problems. Section 2.2.2 discusses how problems can be repre-
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sented effectively for use with metaheuristic search-based optimi-
sation algorithms. Finally, section 2.2.3 discusses how to formu-
late a software engineering problem as an optimisation problem.

2.2.1 Metaheuristic Search

Metaheuristic search algorithms are optimisation algorithms that it-
eratively improve upon a solution to discover a (near) optimal
solution to a problem [11]. They aim to efficiently explore the so-
lution space of a problem —i.e. the (possibly infinite) set of all pos-
sible solutions to a problem. Metaheuristic search techniques can
be applied to a broad range of problems — as opposed to heuristic
techniques which are designed to address specific problems. Each
candidate solution examined by a metaheuristic search algorithm
is evaluated to assess how “close” they are to solving the prob-
lem. Some candidate solutions will be “closer” than others: this
information is used to guide the search over the solution space
toward an optimal solution.

Metaheuristic search algorithms optimise either a single solu-
tion or a set of solutions, known as a population. Each candidate
solution is evaluated to calculate its fitness — a measure of how
close that solution comes to solving the problem. Algorithm-
specific operators are applied to the solution(s) in an attempt to
improve the fitness. This process repeats until either a satisfac-
tory solution has been found, or until a pre-defined amount of
time passes.

We briefly overview two categories of metaheuristic optimi-
sation techniques: local search algorithms and population-based
algorithms.

Local Search Local search, or single-state, techniques operate
upon a single candidate solution, attempting to improve its qual-
ity until an optimal solution has been found, or a maximum num-
ber of iterations has been reached. The operator commonly used
in local search techniques is the neighbourhood function. This func-
tion returns a set of candidate solutions that are structurally sim-
ilar to the current solution. At each iteration of the local search
technique, one of the neighbouring solutions is selected to be-
come the current solution, and the process repeats. The most well
known example of a local search technique is hill-climbing.

Arguably one of the simplest metaheuristic technique, hill-
climbing is the process of examining neighbouring solutions for a
fitter candidate, and once found the the fitter candidate becomes
the current solution [103, 28]. The algorithm “climbs” towards a
peak in the fitness landscape. Figure 2.4 illustrates this process
on a simple fitness landscape.

Hill-climbing works well when the fitness landscape is simple,
but it is unable escape from a local optimum in the case of a more
rugged fitness landscape because it always moves to fitter solu-
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tions and won’t accept a weakening move. This means that the
fittest solution found may not be the global optimum, as can be
seen in figure 2.4.

The starting point (initialisation procedure [103]) of the hill-climb-
ing algorithm can either be selected at random, or by using some
pre-existing knowledge of the solution space. To overcome the
issue of local optima, variants of the hill-climbing algorithm have
been devised. For example, hill-climbing with random restarts runs
the hill climbing algorithm n times from different starting points
and returns the best solution found [103]. An alternative ap-
proach is taken by the simulated annealing technique which allows
less fit solutions to be selected based on some gradually reducing
probability [28, 103]. This means that initially, worsening moves
are accepted but as time increases it becomes less likely to select
a worsening move. This process enables the algorithm to escape
local optima.

Population-Based Search An alternative to single-state algo-
rithms, are techniques that optimise a population of solutions.
Commonly population-based algorithms take inspiration from
evolution in nature. These algorithms iterate through generations:
the members of the current generation’s population are used to
produce the population in the subsequent generation.

The most widely known population-based algorithm is the ge-
netic algorithm (GA) [56, 57]. GAs select the best individuals from
the population to be combined and mutated to develop the pop-
ulation of the next generation. A typical GA takes the following
steps:

1. Initialise the population.
2. Ewvaluate the fitness of the population
3. Repeat until termination criteria is met:

(a) Select the fittest individuals from the population.

(b) Breed the fittest individuals to produce a new population.

Figure 2.4: A simple illus-
tration of hill-climbing on a
rugged landscape. In this
example, only a local opti-
mum will be reached.
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(c) Evaluate the fitness of the new population.

There are numerous approaches to selecting individuals from
the population. The most simple would be to simply select the
fittest n solutions. This can cause the population to converge
quickly, and so other, stochastic, techniques have been proposed.
In Roulette wheel selection, individuals with higher fitness have
a greater probability of being selected. In tournament selection,
an individual is chosen at random from the population and “pit’
against another random opponent. The individual with the high-
est fitness is determined the ‘winner’. A fixed number of ‘fights’
take place, with the winner being kept after each round. The
individual remaining at the end of the tournament is kept. The
tournament is run n times to select the population for reproduc-
tion.

For genetic algorithms, the breeding phase commonly consists
of the application of two genetic operators. The crossover opera-
tor takes two parents from the population and combines them to
produce two children. The most common crossover operators
are single-point crossover and two-point crossover, illustrated in fig-
ure 2.5. The mutation operator is then applied to the set of chil-
dren produced through crossover. It stochastically makes slight
changes to the children in order to maintain diversity in the pop-
ulation, so that the population doesn’t converge on a single area
of the solution space. Depending on the particular encoding that
the search algorithm is being applied to, different mutation op-
erators are defined. As its goal is to create variants of an indi-
vidual, the mutation operator in combination with selection can
be viewed as evoking continual improvement to the population’s
fitness — it is a form of hill-climbing [57]. Selection combined
with crossover, however, can be seen as inducing innovation, as
good solutions are combined into (potentially) better solutions
[57]. Goldberg [57] treats selection as a genetic operator. Here,
we refer to mutation and crossover as adaptation operators and all
three as genetic operators. The goal of selection is to pick the best
of a generation. Without applying any of the adaptation opera-
tors we would instantly reach a local optimum; the goal of the
adaption operators is to help discover new (and possibly better)
individuals [57]. Often the fittest solutions in a population, the
elite, are kept unaltered in the new population. This encourages
the elites to become parents and therefore attempt to improve the
fitness of the children, though this can cause the population to
prematurely converge on a sub-optimal solution [103]. There are
a variety of possible termination conditions: the GA may run for
a set number of generations, or until a desired fitness is attained,
or until solutions converge and no further improvement in fitness
is detected.



2.2.2 Representations for Search

Each metaheuristic search-based optimisation algorithm is de-
fined with respect to an encoding of the problem domain. For
instance, genetic algorithms are often applied to binary or integer
vectors. This encoding is then translated into the native format
of the solution to be evaluated by the fitness function. Particu-
lar translations have been defined for specific tasks. For exam-
ple, grammatical evolution [151, 127] uses the binary or integer
vectors to instantiate programs from a grammar: each bit/inte-
ger is used to select rules to unfold, or terminal values to print,
from a given grammar. Cartesian Genetic Programming [112, 110]
transforms vectors of integers into directed graphs representing
program functions and their inputs and outputs.

With respect to evolutionary algorithms, the search-amenable
encoding is referred to as the genotype, and the phenotype is the
translated form used for fitness evaluation [147]. An individual
is an instance of the genotype and is translated into its pheno-
typic form using a genotype-to-phenotype mapping. Constituents of
an individual (e.g. bits) are called genes and the value assigned
to a gene is known as an allele. A representation consists of the
genotype, the genotype-to-phenotype mapping, and the genetic
operators (e.g. mutation and crossover) that are applied to the
genotype [147]. Figure 2.6 illustrates the terminology of repre-
sentations that we will be using throughout this thesis.

Genotype
=8 Phenotype % R Figure 2.6: An abstract il-
lustration of the terminology

T T of representations and evolu-
Gene Allele

tionary algorithms.
Mappmg Funct\on

Fitness Score

Genotype-to-Phenotype l Fitness

Application of
Genetic Operators

Population Population
(Generation n) (Generation n+1)

Other techniques do not use an encoding and the search oper-
ators act directly upon the phenotype. Genetic Programming [134],
for instance, uses tree structures to evolve programs. The muta-
tion and crossover operators are defined with respect to the tree
structures, e.g. for crossover, entire branches of the program are
swapped.

Rothlauf [147] is the seminal work on representations for evo-
lutionary algorithms. The choice of representation for a prob-
lem can have significant impact on the efficiency of the search

23



24

algorithm [147]. Designing a representation badly can result in
making simple problems more difficult to solve, and designing a
representation well, can make a challenging problem more man-
ageable [147]. We describe two important properties of represen-
tations that can affect the efficacy of metaheuristic search algo-
rithms: locality and redundancy.

Locality The term locality refers to the effects that small chan-
ges to a genotype have on the phenotype. Rothlauf uses the term
high-locality to mean that neighbouring genotypes correspond to
neighbouring phenotypes, and low-locality relates to the opposite
— where neighbouring genotypes do not correspond to neighbour-
ing phenotypes [147]. Galvan-Lépez et al. [52] prefer the terms
locality and non-locality; a representation is said to ‘have locality’
when the phenotypic divergence is low, and a representation ‘has
non-locality” when the divergence is high. In this thesis we will
use Galvan-Lopez et al’s terminology. Locality is particularly im-
portant for evolutionary algorithms that make use of a mutation
operator for continual improvement, as the search algorithm can
be guided smoothly towards the solution through small genotypic
mutations. Non-locality can result in effectively randomising the
search algorithm, making it challenging to discover the solution.
Rothlauf [147] defines the locality d,, of a representation as:

dm = Z ‘dz,y - dﬁlin|

d$ y=ds

min

where:
d‘;y: the distance between genotypes x” and y”
dfz,y: the distance between phenotypes x” and y”

p . .. . .
d,;,; the minimum possible distance between genotypes

g . . . .
i, the minimum possible distance between phenotypes.

dy is calculated by summing the resulting phenotypic distance of
8
min
typic neighbours that result in a phenotypic distance of zero —i.e.

all neighbours (d¢ . ) of every genotype. Incidentally, any geno-
the same phenotype — are punished with the minimal phenotypic
distance. When d,;, = 0, a representation is said to have perfect
locality.

Galvan-Lopez et al. observe that a locality score by itself is
meaningless [52]. The score only gains meaning when it is com-
pared against other representations of the same problem. Further-
more, the score is closely related to the size of the search space
[161] — the more neighbours each genotype has, the higher the
score is likely to be.

Figure 2.7 illustrates two representations, one with locality and
one without. The grid represents the genotypic search space, or-
ganised by genotypic distance. Each adjacent cell has the mini-
mum genotypic distance. The shading of the cell represents the



phenotypic distance to the adjacent cells: the greater the change
in intensity, the greater the phenotypic distance.

The common belief, supported by empirical studies [150, 149],
is that locality is necessary for efficient evolutionary search. How-
ever, more recently, Seaton et al. [161] have demonstrated that, for
certain classes of problems, non-locality can be beneficial, posit-
ing that one reason for this might be that high locality might re-
strict the diversity of the search landscape. Rothlauf also demon-
strates that the difficultly of searching over deceptive fitness land-
scapes — where the fitness increases moving away from the global
optimum - can be reduced with non-locality (as the search be-
comes more random) [147].

Redundancy Rothlauf defines redundant representations as en-
codings that require a larger number of genes than is necessary
to encode the phenotype, and therefore result in a larger geno-
typic space than phenotypic space [147]. Redundancy can in-
crease the connectivity of fitness landscapes, as neutral mutations
to the genotype — those that have no effect on the resulting pheno-
type — enabling the search to explore new areas of the landscape
[147, 190]. The opinion on whether neutrality is good or bad,
however, is divided [147].

Rothlauf distinguishes between two types of redundancy: syn-
onymous and non-synonymous redundancy [147]. A representation
is synonymously redundant if the individuals that map to the
same phenotype are similar to one another, and a representation
is non-synonymously redundant if they are distinct. We illus-
trate these in figure 2.8: the grid represents the genotypic space,
each square is an individual and its shading illustrates its pheno-
typic form. Note the similarity between the illustrations of syn-
onymous redundancy (figure 2.8) and locality (figure 2.7). Syn-
onymous redundancy does not guarantee locality — phenotypes
may be grouped at the genotype level, but adjacent phenotypes
may be dissimilar. E.g. the phenotypes O ana B, although
genotypically adjacent, may be distinct. Non-synonymously re-
dundant representations can reduce the difficulty of a problem as
fit solutions may be distributed about the landscape. However,
applying adaptation operators can result in completely distinct
phenotypes, therefore resulting in random search [147].

2.2.3 Reformulating Software Engineering Problems

In the previous section, we have introduced metaheuristic search-
based optimisation algorithms, and touched upon the ways to
encode problems for search by defining genetic representations
and described some properties of problem representations that
affect the performance of metaheuristic search. In order to refor-
mulate a software engineering problem as a search problem, one
needs to define two artefacts [65, 28]: a suitable representation

Locality

Non-locality

Figure 2.7: An illustra-
tion of locality and non-
locality. Each adjacent cell
has the minimum genotypic
distance. The colour inten-
sity of each cell illustrates
the phenotypic distance to
its genotypic neighbours.
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Figure 2.8: An illustra-
tion of the two types of re-
dundancy. Each square is
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of the problem and a fitness function to evaluate candidate so-
lutions. Clark et al. [28] specify four characteristics of software
engineering problems that make them suitable for being address
using SBSE techniques:

1. The problem has a large solution space.
2. There are no known solutions that are efficient to compute.

3. It is reasonably easy to determine the quality of a candidate
solution.

4. Generating candidate solutions is cheap.

We discussed representations in the previous section — the defi-
nition of both a genotype-to-phenotype mapping, and a set of ge-
netic operators are required. Harman and Clark [64] propose that
for many software engineering problems there exist metrics that
can be used as the fitness function. In the general case, however,
defining a fitness function is challenging and it is important to
define it well [148]. A well-defined fitness function is able to dis-
tinguish between subtly different solutions in such a way that it
substantially increases the chance of guiding the search algorithm
through the search space to some optimal solution. In addition to
techniques that use formally defined functions, there exist interac-
tive evolutionary algorithms which utilise the user’s expertise to
assign fitness to candidate solution [167, 166].

2.3 Combining MDE and SBSE

The observation that premises SBSE is inherent in MDE. Devel-
oping an optimal model of a domain can be extremely difficult,
however it can be quite straightforward to determine whether a
model accurately captures the domain. It is unrealistic to think
that search could solve all problems associated with modelling,
however the solutions to many of the challenges and tasks faced
in MDE take the form of models or model management opera-
tions, indicating that utilising SBSE methods could prove fruitful.
In particular, Clark et al’s criteria for the successful application
of SBSE is largely met by MDE: solution spaces are large, solu-
tions are difficult to come by, and it is possible to determine the
quality of a candidate solution. Furthermore, it seems reasonable
to believe that we can cheaply generate candidate solutions: there
has been much work on evolving programs, which can be applied
to discovering MMOs, and there is existing work that optimises
class diagrams (e.g. [135]), so lessons can be learnt there.

In this section we present a detailed survey of existing work
that has addressed the idea of combining MDE and SBSE. We
focus in particular, on the ways in which MDE problems have



been encoded for use with SBSE techniques. We divide the liter-
ature into three categories and address each in turn. Section 2.3.1
deals with discovering or optimising models. Section 2.3.2 presents
literature on discovering or optimising model management operations.
Section 2.3.3 outlines work that highlights research opportunities
for the two fields. Finally, in section 2.3.4, we list the case studies
that have been used in the literature. For a new field to progress,
it needs common examples for practitioners to compare and con-
trast their work, and to provide a common lexicon with which to
discuss the field.

2.3.1 Discovering or Optimising Models

Models are the core development artefact in MDE. They are the
design, the implementation, the testing, and the documentation of
a system. Different kinds of models need to meet different stan-
dards. For example, implementation-related models should be
optimal with respect to the implementation platform, documenta-
tion models need to be legible and promote understanding, whilst
models used for validating model transformations need to satisfy
testing-related criteria (e.g. test coverage). SBSE has had great
success in optimising programs [67], increasing program compre-
hension [63], and in generating test data for programs [106, 107].
Furthermore, Rédihd presents a detailed survey of the literature of
search-based software design [135], dividing the field into four
sub-fields: architecture design, clustering (high-level re-design),
refactoring (low-level re-design), and software quality (analysis).
Much of the literature surveyed by Réihi [135] focuses on utilis-
ing object-oriented metrics to optimise existing designs. For in-
stance, O’Keeffe and O Cinnédie [124] automatically restructure
class diagrams using simulated annealing. They analyse candi-
date refactorings using a weighted sum of object-oriented met-
rics. Similarly, Harman and Tratt [69] automatically extract UML-
like models of large Java programs and attempt to discover an
sequence of refactorings that decreases coupling. As weighted
fitness functions, such as that used in [124], can affect the qual-
ity of a fitness function, Harman and Tratt’s approach produces
a set of Pareto optimal refactorings that shows the trade offs be-
tween different metrics, allowing the user to decide on the most
appropriate refactoring.

Much of the search-based software design literature surveyed
by Réihd in [135] focuses on class diagrams as opposed to domain-
specific models, and use object-oriented metrics to guide the meta-
heuristic. These metrics are applicable to metamodels, however
they may not be applicable to all domain-specific models. For
instance, in our zoo example in figure 2.3, metrics related to cou-
pling and cohesion are irrelevant. Moreover, the discovered/op-
timal software designs from the literature are rarely used in a
MDE context. In this section we describe the literature that fo-
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cuses specifically on discovering or optimising models for MDE.
Papers that use search to discover models are listed in table A.1
in Appendix A.1. These approaches are divided into two kinds:
discovering models that satisfy some properties (e.g. for testing a
model transformation), or optimising existing models. We focus
here on discovering or optimising models in an MDE context.

Discovering Models 1In 2004, Fleurey et al. [46] proposed, but
didn’t implement, an evolutionary-inspired approach to discover
and optimise the set of models used to test a model transforma-
tion. They utilised a bacteriological algorithm [9] — an adaptation
of a genetic algorithm specifically designed for mutation testing
- to mutate, rank, and select models from an existing test set
based on the model’s coverage of metamodel constructs. They de-
fine metamodel partitions — equivalence classes for primitive-typed
properties in the metamodel. Partitions are defined using model
fragments — textual specifications of the possible values in the par-
tition for a particular feature. The proposed fitness function eval-
uates a model based on its coverage of the partitions, and pro-
motes coverage of previously uncovered partitions. They suggest
a mutation operator which randomly selects an element in the
model and replaces its value from a different partition.

More recently, Cadavid et al. [21] demonstrate a user-driven
approach to validating the boundaries (constraints on relation-
ships and multiplicities) of a metamodel to ensure that a meta-
model is neither under-constrained (allows invalid models) or
over-constrained (disallows valid models) with respect to the do-
main. Fleurey et al.’s model fragments are used to define the
model space, and Alloy [78] is used to generate the models within
this space. The fitness function encourages the test set of models
to be dissimilar whilst covering the set of model fragments. Do-
main experts are then able to examine the set of models to detect
any faults in the specification of the metamodel.

Rose and Poulding [145] present a search-based approach to
discovering sets of test models that provide coverage of model
transformations. They translate a metamodel into an input pro-
file, a stochastic context-free grammar that, when sampled, emits
models. They apply a hill climbing algorithm over the probabili-
ties used by the input profile to discover a combination of prob-
abilities that produces a test set that maximises coverage of the
transformation under test. Neto et al. [117] also demonstrate how
a stochastic model generator can be incorporated into a search-
driven framework for testing model-based technologies.

Burton et al. [18, 129] combine MDE with SBSE to address
the challenge of acquisition problems. In large organisations, it
is seen as beneficial to manage acquisition-related projects, not in
terms of specific resources, but in terms of the capabilities they wish
the be exhibited by the resources procured. Typically, acquisition
problems are extremely expensive and it may not be obvious as



to which set of resources would be the most appropriate to invest
in. Furthermore, the desired capabilities may be competing, as
different stakeholders may have different requirements. Burton
et al. address this issue by defining domain-specific modelling
languages for expressing desired system capabilities and for mod-
elling the set of components that can (partially or fully) satisfy the
capabilities. They then use a multi-objective optimisation algo-
rithm to determine a set of solutions which can be examined by
the user. A solution is a combination of components that satisfy
the desired capabilities, each with an associated cost. No single
solution is better than another in all objectives, and so it allows in-
vestors to understand the trade-offs between different solutions.
They encode solutions using an intermediary modelling language
that captures correspondences between components and capabil-
ities. A model-to-model transformation translates these into so-
lution models.

Goldsby and Cheng [59] use a digital organism-based evolution-
ary approach to discover behaviour models of autonomous sys-
tems. Building on top of the Avida platform — a search frame-
work for performing computational evolutionary biology [123] —
they evolve interacting state machines that capture the behaviour
of a system. Users provide a class diagram of the state of the
autonomous system and any pre-existing state machines for the
classes, and their tool, Avida-MDE, produces a state machine for
each class. Class operations define the transitions and composi-
tions of properties are used for transition guards. Individuals in
the search are encoded as instructions that select elements from a
specified state machine, construct transitions in a state machine,
and replicate the entire state machine. Replicated models are ran-
domly mutated to introduce diversity into the population. The
fitness function considers three qualities of a candidate solution.
Firstly, the model is syntax checked before being transformed
into Promela [74] for checking temporal properties using the SPIN
model checker [74]. Secondly, solutions with fewer transitions
and those that exhibit determinism (one outgoing transition per
state) are rewarded. Most importantly, however, each candidate
solution is compared against a set of user-specified scenarios. So-
lutions are rewarded based on the percentage of the scenario exe-
cution path that they satisfy. Any solutions that satisfy the scenar-
ios (regardless of the other two aspects) are known as compliant
behavioural models. The set of compliant behavioural models found
at the end of the execution can then be examined by the developer
to see how each fairs in different environmental conditions, or be
used to produce the implementation code of the system. In [58]
the authors automatically cluster the population into groups that
address different environment conditions using utility functions
defined by the user.

Cheng further progresses this work to address the uncertainty
found in self-adaptive systems [23]. Ramirez et al. [136, 138, 105]
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use a genetic algorithm to discover optimal target system models
at runtime. A model of the current system and information from
system monitors are used to guide the search, along with a set
of domain-independent evaluation functions. The target system
models are encoded as graphs of system components and their
interconnections; mutation and crossover operators are defined
over these graphs. Additionally, Ramirez et al. [137] use a ge-
netic algorithm to evolve goal models with relaxed constraints in
order to accommodate uncertainty. An executable specification of
the runtime system, a KAOS [32] goal model, and a set of utility
functions are input into the search algorithm which produces a
set of goal models that still satisfy the functional requirements
but have relaxed constraints.

Optimising Existing Models Since Réihd’s survey [135], Si-
mons et al. [167] have presented an interactive evolutionary al-
gorithm to improve the coupling and cohesion of class diagrams.
Bowman et al. [13] utilise class coupling and cohesion metrics to
discover the optimal assignment of operations and attributes to
classes in a domain model. They represent the problem using a
linear genotype where each gene represents a different feature in
the class diagram and each allele defines which class that feature
should belong to. Using a multi-objective genetic algorithm, they
output a set of optimal assignments for the developer to inspect.
Ghannem et al. [54] use Genetic Programming to evolve rules that
detect refactoring opportunities in models. They encode a set of
“IF-THEN" rules that state that if a compound condition applies,
then a particular design defect is evident in the model.

Etemaadi et al. [39] argue that architecture optimisation should
be performed directly on the architecture model (i.e. without a
genotype-phenotype mapping) and propose software architecture-
specific search operators with which to perform optimisation.

Optimising product line architectures (PLA) has recently re-
ceived some attention. Colanzi et al. [30] focus on defining a
search-amenable representation for PLAs. They argue that the
existing approaches that address evolving software architectures
are not suitable for searching for optimal PLAs as they are un-
able to adequately represent variability and product features. A
metamodel-based, search-amenable representation of PLAs is pro-
posed, along with bespoke mutation and crossover operators. The
fitness of candidate solutions would be calculated using PLA-
related metrics. Karimpour et al. [141] use a multi-objective
optimisation algorithm to determine how best to integrate new
feature requests into an existing product line — balancing over-
all product value with product line integrity. The product line
is represented as a binary vector where a 1 represents a product
is enabled and a o means it is disabled. Currently this approach
only addressed the addition of new features and not their dele-
tion or structural changes to the product line tree. Sanchez et al.



[156] present an approach to search for optimal system configu-
rations from feature models that can be executed both offline or
online, meaning that it can be used in both at the design stage
and at run time. They used a direct encoding (feature model), us-
ing mutation to enable or disable features, and evaluate candidate
solutions using quality attributes. Sayyad et al. [158] encode fea-
ture models as binary strings, where each bit represents a feature
and its value defined whether it is enabled or not. They illustrate
the value of visualising the evolution of each fitness objective in a
multi-objective optimisation algorithm, and measure the effect of
mutation and crossover rates on a case study.

Summary In this section we have provided an overview of the
literature that attempts to used SBSE techniques to discover mod-
els. Excluding product line architectures, there is little overlap be-
tween the problems being addressed by these techniques, making
comparison between approaches difficult. Regarding the choice
of representation, there was no stand out approach. Whereas
the most common problem representation used in the software
design literature, surveyed in [135], is an integer encoding, the
research presented in this section favours problem-specific en-
codings. Four papers use an integer string encoding, four use
a bespoke encoding, four use a direct encoding, one uses a graph
representation, one uses a grammar, and two use external tools
to generate the model space. Two of the three papers related to
product line architectures use binary encoding, whereas the third
opts for a direct encoding. Most commonly, evolutionary algo-
rithms were used to tackle single-objective problems, and NSGA-
II used for multi-objective problems, with other techniques in-
cluding simulated annealing, genetic programming, and particle-
swarm optimisation.

2.3.2 Discovering or Optimising Model Management
Operations

Model management operations (MMO) are arguably the heart of
MDE: the power gained from a model becomes manifest when
it is utilised in some way, and this is commonly done using an
MMO. Section 2.1.1 overviews a number of MMOs. SBSE tech-
niques could prove a powerful tool in aiding in the development
of MMOs. For example, one of the challenges found in MDE is
that of metamodel evolution [71]. When a metamodel is updated
to a new version (e.g. on the introduction of new requirements),
existing models may no longer conform to the metamodel - these
models need to be migrated. For example, we may make the Animal
class in Figure 2.2 abstract, and define two concrete subclasses,
Mammal and Reptile. The model in Figure 2.3 would no longer con-
form to the metamodel due to the fact that abstract classes can-
not be instantiated. We migrate models using specialised model
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transformations, called a migration strategies, but it may not al-
ways be obvious what the best migration strategy is. One solution
would be to simply delete the Animal objects — this would result
in a model that conforms to the new version of the metamodel,
but the model has lost information. A better solution would be to
convert the two Animal objects into instances of the Mammal class.
There may exist numerous valid, semantic-preserving, migration
strategies, some of which may be more efficient than others with
respect to non-functional properties. Discovering optimal migra-
tion strategies, or model transformations in general, is a key area
where SBSE could benefit MDE and one where the bulk of exist-
ing research has focused.

Existing Approaches Table A.2 in Appendix A.2 lists the pa-
pers in this area. The first known attempt at using SBSE tech-
niques to discover model transformations was by Kessentini et al.
[85] in 2008. Their approach uses examples of mappings between
source and target models to guide a particle swarm optimisation
(PSO) algorithm. The example source and target models, and
the mappings between them, are translated into predicates. The
genotype is an integer vector where each gene location represents
a construct in the source model under test, and each allele ref-
erences one of the example mapping blocks. That is, the allele
selects a mapping block to use as guidance for how to transform
the associated source model construct into a target model con-
struct. The predicate representing the source construct is com-
pared for similarity against the left hand side of the predicates in
the associated mapping block. The fitness function rewards solu-
tions with the highest similarity score. Similarity matching allows
the discovery of mappings for models containing data-related dif-
ferences (e.g. the value of a string). The result of applying the
search algorithm to a source model is a set of predicates that de-
fine how to transform that model into its target. This approach
relies heavily on the user-defined mapping blocks. The mapping
blocks need to cover all constructs defined in the source meta-
model, which may be impractical or infeasible. Furthermore, it
is unclear why search is needed here. Mutating the value of a
gene will select a different mapping block for the associated con-
struct. However, there is no relationship between mapping blocks
and so it is unclear how the search algorithm can be guided to-
wards better solutions: it appears that the representation suffers
from non-locality. Considering the likelihood that the number of
mapping blocks would be fairly small, it may be more practical
to exhaustively compare each source model construct predicate
against each of the predicates in the example mapping blocks.
This work was extended in [86] to address the issue of requir-
ing an oracle to validate model transformations. The aim here is
to utilise the mappings between example source and target mod-
els as an oracle function that states whether the transformation is



correct. Instead of an integer vector-based genotype that is used
to select predicates from the examples, as in [85], in this paper the
genotype is composed of predicates directly, with crossover and
mutation operations defined over these predicates. The fitness
function is couched in terms of risk: a statement of the probability
that the transformation contains errors, calculated by performing
a similarity test with the example mapping corpus.

Faunes et al. [43, 44] further extend this work to overcome
the issue of defining example transformation mappings. Exam-
ple source and target models are still required, however it is not
required that there are mappings defined between them. They
utilise Genetic Programming to generate transformation rules ex-
pressed in JESS [72], a fact-based rule language. The transfor-
mation is discovered by attempting to find a set of rules that
is able to transform all source models into their relevant target
models. The fitness of a candidate solution (a set of JESS rules) is
calculated by performing a ‘quick and efficient” match of the de-
sired target model and the actual target model produced by the
candidate transformation rules. This matching algorithm sacri-
fices precision with efficiency [84] and performs string similarity
matching on the predicate-based representation of the models.

The problem of merging models is addressed using search in
[88]. In traditional software development, code is worked on in
parallel and the changes made by different programmers may
need merging and any conflicts that arise need resolving. This
is equally true for modelling. Kessentini et al. [88] utilise exist-
ing tools to detect the change operations that have been applied
in each model to be merged by performing comparisons between
the original model and the changed model(s). Applying these
operations sequentially to the original model results in a merged
model. However, conflicts can arise if an operation invalidates
the preconditions of a subsequent operation. The goal of [88]
therefore, is to discover the optimal ordering of operation appli-
cation that minimises conflicts, whilst maximising the total num-
ber of operations that are applied. They represent the problem as
a fixed length integer vector where the length is defined by the
number of calculated operations (excluding duplicates). The eval-
uation of the work is weak. The set of models that they attempt to
merge are incremental releases of the same model, meaning that
the number of conflicts would be relatively small. To address this
they asked five graduate students to edit the models to introduce
conflicts [88]. It is unclear whether the introduced conflicts would
be representative of real situations of parallel merging. To reduce
the computational cost of the fitness function, the candidate se-
quence of operations is not applied to the source model. Instead,
each operation is compared pairwise against all subsequent oper-
ations to determine if the operations would cause a conflict. This
approach, albeit efficient and has shown to achieve good results
on a single case study, ignores the possibility of sequences of op-

33



34

erations introducing conflict. The paper does not mention the
amount of time that each evaluation costs, however one might
prefer to suffer the cost of performance to increase the quality of
the solutions. Additionally, the fitness function aims to maximise
the number of operations that are applied to the final model and
does not consider the human in the loop. Providing guidance for
the user would be a better approach as commonly decisions of
this nature are made by a lead developer or domain expert. Even
when a change is non-conflicting, it may not be appropriate for
the merge to occur due to it breaking some domain constraints.
An interactive search algorithm could be used to allow the user
guide the search towards appropriate merges, or perhaps return a
set of potential merge strategies (with diversity between solutions
encouraged) and allow the user to select the most appropriate
solution.

ben Fadhel et al. [10] enumerate an exhaustive list of pos-
sible model refactorings and use simulated annealing to detect
changes between two versions of a model. The fitness is based
on a similarity score between the original target model and the
model that results from applying the refactorings to the original
source model. As with [88], they use predicates to represent the
models and the refactorings are represented as a vector of string
parameters.

MKkaouer et al. [114] use a multi-objective algorithm for discov-
ering transformation rules. The aim to maximise the correctness
of the transformation, whilst minimising the complexity of the
transformation rules being produced, and maximising the quality
of the target model that results from applying the transformation.
They encode the transformation as a sequence of binary trees,
where each tree represents a single transformation rule. The bi-
nary tree representation used only allows for simple, declarative
transformations to be produced.

Summary One potential criticism of the approaches presented
in this section is that they use a non-standard representation of
the models, metamodels, and transformation mappings. In [85,
86], models and the mappings between them are transformed into
predicates, and in [43], the metamodels and models are defined
as JESS fact templates and fact sets. It is unclear whether these en-
codings are able to represent all possible metamodels and models.
To date these approaches have all focused on a standard example
transformation (class diagrams to relational database schemas —
see section 2.3.4). The metamodels used in this transformation
may not use all possible metamodelling concepts, and so more
examples are required to show the generality of using predicates
or facts. Furthermore, given the abundance of model transforma-
tion languages (e.g. ETL [94], ATL [79], QVT [121], VIATRA [8]),
it seems surprising that the authors did not attempt to discover
rules from one or more of those languages.



2.3.3 Position Statements

In [181] we highlight two areas where SBSE can benefit MDE.
These areas align with the previous two sections: discovering
and validating models, and discovering and validating MMOs.
Simons [166] argues that interactive approaches to modelling us-
ing SBSE will become increasingly important. Mkaouer et al.
[114] argue that most modelling problems are multi-objective and
that modelling programs can benefit from preference-based multi-
objective search algorithms. In particular, they claim that model
refactoring, model evolution, and model testing are three prob-
lems that would benefit from these algorithms. Neto et al. [117]
define a two-dimensional view of evaluating model-based soft-
ware using search-based model generation. They highlight the
trade off between model realism and the type of search being
employed: random search on toy problems is the cheapest, and
utilising industrial models to guide online search-based model
generators is the most expensive.

McKinley et al. [105] propose that evolutionary algorithms can
be used to mitigate uncertainty in adaptive systems. In particular,
SBSE can provide both run-time and development-time support
for adaptive software. For instance, they propose that it can aid in
the discovery of novel adaptation algorithms, discovering optimal
reconfigurations, and finding adaptation paths [105]. The works
by Ramirez et al. [136, 137, 23] discussed earlier go some way to
validating these claims.

Kessentini et al. [84] discuss lessons learnt from their attempts
at using SBSE techniques to address MDE problems. The com-
mon approach they took was to encode the MDE artefacts of
interest into a representation that could be used with existing
SBSE techniques, but found it challenging to select an appropri-
ate search algorithm. They argue that the availability of well-
understood case studies is of great importance. Furthermore, they
found that it was often necessary to trade precision with efficiency
when defining the fitness function(s) for a given problem. To ad-
dress these issues, they propose a framework that can be used
to encode MDE problems for search. They posit the use of an
intermediate language — an encoding metamodel — that is designed
for use with genetic algorithms. Users define a transformation
between their problem metamodel and the encoding metamodel
for use with the framework. Standard genetic operators are de-
fined with the framework, but users are able to define their own.
Fitness functions are defined either with respect to the encod-
ing metamodel, or through the instantiation of a fitness evaluator
which requires a user-defined transformation back to the problem
domain. This approach requires a large amount of effort on be-
half of the user. Furthermore, the encoding metamodel may not
elegantly capture all aspects of the problem domain and may not
provide a suitable search-amenable representation of all possible
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domains. Rothlauf [147] argues that the choice of representation
is vital and has the ability to increase or decrease the difficulty of
a search problem. Users of the encoding metamodel may need to
go through numerous iterations to discover the optimal transfor-
mation from their domain.

Burton and Poulding [19] suggest three examples of the syn-
ergies between MDE and SBSE. Firstly, they argue that domain-
specific modelling languages (DSML) can be used to represent
problems. A DSML can capture the problem concisely and be
more expressive than standard encodings [19]. Additionally, MDE
tools provide generation of useful artefacts such as editors/view-
ers for the solution space. Secondly, they posit that SBSE can
be used to instantiate models for testing purposes. Thirdly, they
propose that SBSE can be used to discover model transformations.
Furthermore, they postulate that MDE can assist SBSE with the
choice of representation for the problem and solution, whilst en-
abling both interaction and visualisation of solutions. Moreover,
defining a representation at a higher level of abstraction would
enable the same representation to be used for many problems in
the same domain.

2.3.4 Literature Case Studies

Kessentini et al. [84] assert that well-defined case studies are
required so that different SBSE techniques can be compared on
common problems, to guide users when determining how to best
formulate their problem for search and offer insight into which
SBSE technique to apply. Table 2.1 lists the case studies that have
been used in the literature surveyed in this chapter. In this thesis,
we do not aim to provide a set of benchmark problems. The case
studies in table 2.1, however, could be adapted and formalised to
provide the basis for such a set of case studies.

The most commonly occurring case study is the class to rela-
tional database transformation. This has been used for both in the
discovery of models and the discovery of model transformations.
This is also a common example found in the model transforma-
tion literature. The model transformation literature could pro-
vide a useful portfolio of case studies that could be adopted by
the search-based model-driven community. Furthermore, online
tranformation repositories, such as the ATL transformation zoo*
and the AtlanMod Zoo (*?), could provide useful benchmarks re-
lated both to models and MMOs.

2.4 Summary

This chapter has introduced Model-Driven Engineering (MDE),
a start-of-the-art approach to engineering software, and Search-
Based Software Engineering (SBSE), a state-of-the-art approach to
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Paper Kind of study Case study

[69] Model refactoring Three large Java programs (JHotDraw, Maven,
XOM)
[10] Model refactoring Graphical Modelling Framework (Graph, Gen, Map
metamodels)
[54] Model defect detection Class diagrams extracted from two real world
projects
[59] Model discovery (autonomous sys-  Robot navigation system
tems)
[58] Model discovery (autonomous sys-  Adaptive flood warning system
tems)
[138] Model discovery (runtime architec- Remote data mirrors
ture)
[156] Model discovery (product line) Video surveillance processing software
[158] Model discovery (product line) e-Shop feature model
[141] Model discovery (product line) e-Shop feature model
[18] Model discovery (acquisition prob-  Next release problem, stock control system
lems)
[20] Model discovery (to test transfor-  Statecharts metamodel, feature diagrams meta-
mations) model
[145]  Model discovery (to test transfor- Robot navigation system
mations)
[46] Model discovery (to test transfor- Class diagram to relational database schema
mations)
[85] Model transformation rule discov- Class diagram to relational database schema
ery
[44] Model transformation rule discov- Class diagram to relational database schema; Basic
ery sequence diagram to state diagram; Advanced se-
quence diagram to state diagram
[86] Model transformation oracle dis- Class diagram to relational database schema
covery

optimising software engineering problems. Both MDE and SBSE
advocate automation as an enabler of development, and are well
suited to work together to further improve software development
practices. We have presented the literature that has combined
MDE and SBSE, and grouped them into two categories: the dis-
covery and optimisation of models, and the discovery and opti-
misation of model management operations. Although many of
the problems being addressed in the literature aim to discover
models, there is no standard way of applying SBSE techniques to
MDE problems and so there is much diversity in the representa-
tions being used for search. A standardised representation, that
is amenable to a wide range of SBSE techniques would lower the
entry point to using SBSE to tackle MDE problems, and enable
an exploration of which SBSE techniques work well for different
classes of MDE problems. In the remainder of this thesis, we de-
velop such a representation, apply it to a set of MDE problems
and evaluate its search-related properties.

Table 2.1: Case
used in the literature.

studies
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Proof of Concept
Representation for Models

THE ORIGINAL PROTOTYPE of a search-amenable representation
of MDE models arose out of work undertaken as part of set
of a weekly lab meetings in November 2010. A new cohort of
PhD students had recently joined the Enterprise Systems (ES) re-
search group — a group whose focus often relates in some way to
MDE. In order to familiarise the new starters with the technolo-
gies and tools commonly used in the ES group, we set up a team-
based modelling challenge. A further motivation behind this chal-
lenge was to produce something that could be demonstrated to
prospective students at university open days. The group was split
into two teams, each lead by an experienced MDE practitioner,
and were given the goal of producing a domain-specific language
(DSL) for describing the behaviour of characters in a fighting-style
computer game. One constraint was that the language needed to
be usable by people with no programming experience (i.e. stu-
dents and parents on university open days). The game, Super
Awesome Fighter 4oo0" (SAF), was built over the course of two
evenings for this task. The two teams both produced similar
looking metamodels for their DSLs, but selected different ways
of integrating them with SAF. One team created a graphical mod-
elling language and used a model-to-text transformation to gen-
erate executable Java code to be included in the game. The other
team implemented a textual modelling language and some Java
utility classes that parsed and executed the model without gen-
erating any code. Due to not requiring any code generation, the
textual DSL was deemed a more elegant solution and crowned
the winner.

Discussions with Simon Poulding (then a lecturer in the ES
group) lead to the idea of attempting to automatically discover
fighters with certain characteristics or of differing skill levels, and
from this came the first iteration of a search-amenable represen-
tation for models. This representation focuses on encoding tex-
tual models, utilising the language’s grammar to produce models
from a string of integers.
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3.1 Super Awesome Fighter . .
3.2 SAF as a Search Problem .

3.3 FDL Search:

Grammatical Evolution . . .

3.4 Analysis of GE-Based

Representation . . . . . .
35 Summary . ... ... ..

42
45

46

"Now hosted as a Google Code
project at http://code.google.
com/p/super-awesome- fighter
and playable at http:

//super-awesome- fighter.
appspot.com.
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Chapter Contributions The contributions of this chapter are
summarised below.

¢ A search-amenable representation for textual MDE models, and
its implementation using Grammatical Evolution [151, 127].

* An empirical analysis of the locality of Grammatical Evolution
with respect to the prototype representation.

Chapter Structure This chapter describes how we made it pos-
sible to search for fighters with desirable characteristics, and there-
fore how we devised the first generic search-amenable represen-
tation of MDE models. Section 3.1 presents SAF in more detail,
focusing on the textual DSL used to describe fighters. Section 3.2
describes the search goals related to SAF and includes the defini-
tion of the fitness metric with which to evaluate candidate fight-
ers. Section 3.3 presents our Grammatical Evolution-based solution
for searching for fighters with desirable characteristics. Finally,
section 3.4 provides a critique of the approach, highlighting flaws
in both the representation and the search algorithm used.

Note: The work described in this chapter is based on joint work with Simon
Poulding (then a lecturer in this department), Louis Rose (then a research as-
sociate in this department), and other members of the Enterprise Systems (ES)
research group, and has been published in [186]. Rose and other members of
the ES group were responsible for defining FDL using EMFText [70], and cre-
ating the supporting Java classes that integrate FDL with SAF. Poulding im-
plemented the metaheuristic search framework used in the experimentation,
and aided in configuring and running the experiments. Section 3.3.1 draws
extensively from [186] and was largely written by Poulding; it is included for
completeness. My contributions are: the design and implementation of SAF,
the GE mapping, and the fitness functions used to evaluate candidate fighters.

3.1 Super Awesome Fighter

Super Awesome Fighter 4000 (SAF) is a fighting game written in
Java to demonstrate MDE concepts at university open days. SAF
was specifically designed to develop a DSL that describes its char-
acters’ behaviours. The core game does not use any MDE tech-
niques or components; in fact, very little care went into the en-
gineering of the game. The development goal was to create an
artefact that resembles a real legacy application that developers
wish to extend using MDE techniques?.

A fight in SAF takes place between two opponents, in the style
of classic fighting games such as Street Fighter3 or Mortal Kombat*.
Players can be defined using a textual DSL (created by Rose), the
Fighter Description Language (FDL), or can be implemented in Java.
SAF is a time-step based game; at each time step the game engine
asks the two players for an action to perform based on the cur-
rent state of the game. Players can perform two actions simultane-
ously: one movement action (e.g. run towards the opponent), and
one fighting action (e.g. punch high). Some actions take longer
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than one time step; if the player selects such an action, they are
blocked from performing another action until the previous action
has completed. Players also have a set of customisable charac-
teristics, such as strength and reach. These customisable charac-
teristics are used to derive other characteristics, such as weight
and speed; a powerful, long reaching player will be heavy and
therefore slow, where as a less powerful player will be lighter and
therefore faster.

3.1.1 Fighter Description Language

The Fighter Description Language (FDL) is a DSL, implemented us-
ing EMFText> [yo], for specifying fighters in SAF. EMFText is a
language and tool for defining textual DSLs. The EMFText library
parses a FDL character (represented as a string) into a model in
memory which is then used by SAFE. Figure 3.1 shows the meta-
model for FDL. A fighter (Bot) has two features: a Personality and
a Behaviour. A fighter’s personality is defined by a set of Character-
istics — defining the power and reach of the fighter (values range
between o and 10). If one of the characteristics is not specified
by the user, its value defaults to 5. The behaviour of a fighter is
made up of a set of BehaviourRules. These rules specify how the
fighter should behave in certain Conditions. A rule is composed of
a Condition, a MoveAction and a FightAction. FDL offers the ability
to specify a choice of move and fight actions using the keyword
choose. For example, a rule can define that it wants to either
block high or block low, and the game will pick one of these at
random. FDL provides a special condition, always, which is ex-
ecuted if no other condition is applicable. Listing 3.1 shows an
example fighter in FDL and illustrates the choice mechanism.

JackieChan {
kickPower = 7
punchPower = 5
kickReach = 3
punchReach = 9
far [run_towards punch_high]
near [choose (stand crouch walk_towards) kick_high]
much_stronger[walk_towards punch_low]
weaker [run_away choose(block_high block_low) ]
always[walk_towards block_high]

Listing 3.1: An example character defined using FDL.

EMFText was chosen for the implementation was due the fact
that the ES team who developed FDL were familiar with it. The
approach can be implemented for any equivalent grammar defi-
nition language that has a metamodel, such as Xtext® [37].

Summary

This section has presented an overview of the SAF game and de-
scribed the DSL used to specify the rules that define the behaviour

Swww.emftext.org

Swww.eclipse.org/Xtext
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of players in SAF. The next section sets out the search goals related
to SAF.

3.2 SAF as a Search Problem

When defining a character in Rose’s FDL, it is not always appar-
ent how good that character is until it has fought a number of
matches. Games such as Street Fighter and Mortal Kombat pit the
human player against fighters of increasing difficulty so that the
challenge of the game increases the further a player progresses.
Instead of manually iterating the definition of a fighter to develop
a fighter with certain characteristics, we can use search. We set
out to answer two experimental questions:

EX1 Is it possible to specify unbeatable fighters? If a fighter can
be unbeatable, it may be necessary to either amend the game
play or restrict the Fighter Description Language to limit the
possibility of a human player specifying such a fighter.

EX> Is it possible to derive a fighter that wins 80% of its fights
against a range of other fighters? Such a fighter could be used
as the pre-defined non-player opponent since it would provide
an interesting, but not impossible, challenge for human play-
ers. The figure of 80% is an arbitrary choice that we believe rep-
resents a reasonably challenging opponent for human players.
It acts as an illustration of discovering a fighter of a specified

quality.

3.2.1 Fitness Metric

In order to assess the properties of “unbeatable” (EX1) and “wins
80% of its fights” (EX2), a set of opponents needs to be defined.
It is not practical to test how each candidate fighter performs
against all possible opponents, and so we created a ‘panel’ of
representative opponents by asking members of the ES research
group to specify what they believed would be winning fighters,
illustrated in figure 3.2. (Note that our colleagues are acting sim-
ply as examples of typical human game players: they are not at-
tempting to perform manually the equivalent of our proposed
automated search-based approach in exploring the capabilities of
the FDL.) The fitness of a candidate fighter is assessed by having
it play the SAF game against each opponent in the panel. The
game play is stochastic owing to the choose construct in the DSL
(see figure 3.3), and so each candidate fighter fights each oppo-
nent a number of times so that a more accurate fitness can be
estimated.
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Figure 3.2: The experimen-
tal process to address the two
SAF experimental goals.

near
walk_towards

choose ( kick_high punch_high )

1

time n

time n+/
(p=05)

or

time n+/
(p=05)

Figure 3.3: Illustration of
the choose operator.
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The fitness of a candidate fighter (f) is based on the difference
between the number of fights won by the candidate fighter against
the panel, and a target number of winning fights (e.g. 80%). It is
calculated as:

Nopps Mfights

f= 0 Nopps Nfights — 2 2 Wo,i
o=1 i=1

(3.1)

where nopps is the number of opponents in the panel; nggns the
number of fights with each opponent; p the proportion of fights
that the fighter should win, and w,; an indicator variable set to
1 if the fighter wins the i fight against the o' opponent, and
o otherwise. The proportion of fights to win, p, is set to 1 for
experiments on EX1, indicating an optimal fighter must win all
fights against all opponents in the panel, and is set to 0.8 for
experiments on EX2. Fighters with lower fitnesses are therefore
better since they are closer to winning the desired proportion of
fights.

Summary

This section has laid out the search goals that we wish to inves-
tigate. The next section describes our first attempt at applying
search to FDL models using grammatical evolution and answering
the experimental questions.

3.3 FDL Search: Grammatical
Evolution

FDL is a textual DSL. Grammatical Evolution [151, 127] is a meta-
heuristic technique designed for searching over grammars and
is thus used to address our experimental goals. The genotype
(strings of integers captured in a model) are mapped to the phe-
notype (FDL models) by a model-to-model transformation that
takes into consideration the grammar of FDL. Section 3.3.1 gives
an overview of grammatical evolution. Sections 3.3.2 and 3.3.3 de-
scribe the genotype and the process of mapping it to the pheno-
type. Section 3.3.4 then applies the approach to the experimental
goals laid out in section 3.2.



3.3.1 Background

Note: This section is based closely on [186] and draws extensively on
Poulding’s contribution to the background for the paper. It is included
for completeness.

The technique of Grammatical Evolution (GE) was first de-
scribed by Ryan and O’Neill [151, 127] as a mechanism for auto-
matically deriving ‘programs’ in languages defined by a context-
free grammar where the definition is expressed using Backus-
Naur form (BNF). Applications of GE include symbolic regres-
sion [151], deriving rules for foreign exchange trading [15], and
the interactive composition of music [165].

The central process in GE is the mapping from a linear geno-
type, such as a bit or integer string, to a phenotype that is an
instance of a valid program in the language according to the BNF
definition. Figure 3.4 illustrates the process using a simple gram-
mar for naming pubs (bars).

BNF Definition
<pub-name> ::="the" <noun-phrase> | "the" <noun>"and" <noun>
v
<noun-phrase> ::= <noun>'| <adjective> <noun-phrase>
4. «

<noun> ::="lion" | "anﬁhor" 1 "oak" | "slipper" | "horse"
. 4

<adjective> ::=" recf; 1" royal"/ 1"golden" /
s L A ’

<pub-name>

el o]z |=]

"the" <noun-phrase>

/' "the" <adjective> <noun-phrase>

:

"the" "golden" <noun-phrase>
” "the" "golden" <noun>

"the" "golden" "slipper"

The pub naming grammar is defined in BNF at the top of
figure 3.4 and consists a series of production rules that specify
how non-terminal symbols (the left-hand sides of the rule, such
as <noun-phrase>) may be constructed from other non-terminals

Qi

symbols and from terminal symbols (constant values that have no
production rule, such as "red"). Vertical bars separate a series of
choices as to how to construct the non-terminal symbols.

At the left of figure is the genotype that will be mapped to the
phenotype, in this case, a pub name valid according to the naming
grammar. The mapping process starts with the first production
rule in the grammar, that for the non-terminal <pub-name>. There
are three options as to how to produce this non-terminal, and the
allele of the first gene determines which choice to use by taking
the allele modulo the number of choices. In this case the allele
is 18, there are 2 choices, 18 mod 2 = 0, and so the first choice
of the two, "the" <noun-phrase>, is used. The next construction

Figure 3.4: An example of
genotype-to-phenotype map-
ping in Grammatical Evo-
lution. Simon Poulding is
credited for this image and
example.
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Figure 3.5: The genotype:
a metamodel encoding indi-
viduals from the metaheuris-
tic search framework.
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decision is for the non-terminal <noun-phrase> and it uses the
value of the second gene. The gene has a value of 7, there are 2
choices, 7 mod 2 = 1, and so the second choice is used. Produc-
tion continues in this way until there are no more non-terminals
to produce.

Should the mapping process require more genes than are pre-
sent in the genotype, genes are re-used starting at the first gene.
This process is known as wrapping. It is possible for the mapping
process to enter an endless loop as a result of wrapping. There-
fore, a sensible upper limit is placed on the number of wrappings
that may occur, and any genotype which causes this limit to be
reached is assigned the worst possible fitness.

Ryan and O’Neill’s original work on Grammatical Evolution
used a specific genetic algorithm, with a variable length geno-
type and specialist genetic operators. More recent work makes
a distinction between the genotype-to-phenotype mapping pro-
cess, and the underlying search algorithm, using, for example,
differential evolution [125] and particle swarm optimisation [126],
in place of the genetic algorithm. We take a similar approach
in the work described in this paper by designing a genotype-to-
phenotype mapping process that is independent of the underly-
ing search algorithm.

3.3.2 Defining the Genotype: the encoding of a fighter

The first step in the process of applying Grammatical Evolution
to SAF is to turn the genotype (a string of integers) into a model
representation in order to perform the model transformation into
the phenotype — an FDL fighter. Figure 3.5 illustrates the meta-
model of our genotype. A Genotype is composed on a number of
Genes. A Gene has one attribute: its allele; and one reference: a
pointer to the next gene in the genotype.

The integer string produced by the metaheuristic search frame-
work is used to create a model that conforms to this metamodel.
A Gene object is created for each integer in the string, and its
value attribute is set to the value of the integer. Each Gene’s next
reference is set to the successive gene, with the final gene in the
genotype pointing back to the first. This creates a cycle, mean-
ing that the wrapping process that occurs in GE is handled au-
tomatically by traversing the references. An example model that
conforms to this metamodel is shown as part of figure 3.6.

3.3.3 Transliterating the Phenotype: the FDL fighter

The next step is to transform this model of the genotype into a
model of the phenotype (the Fighter Description Language). The
transformation is written in the Epsilon Object Language (EOL)
[92], a general purpose model management language that is part
of the Epsilon model management platform [g97]. Figure 3.6 is an



overview of this transformation process, a process which can be
used with any metamodel defined by an Xtext grammar [37].

______ 1
| Integer string |

142 12 45 56 2

1. Integer string is translated into a
Genotype model

Genotype Model Xtext FDL Definition

grammar saf.fdl
with org.eclipse.xtext.common.Terminals

generate fdl "saf.fdl"

Bot:
'Sample' {' \n'
personality=Personality
behaviour=Behaviour

¥

2a. Genotype model passed 2b. Xtext definition of the FDL grammar
to transformation parsed into a model using Xtext tools
and passed to transformation

4

EOL Genotype to
Phenotype Model
Transformation

3. Script outputs the fighter as a string,
ready for SAF

Sample {
kickPower=6
punchReach=4
near[stand punch_low]
stronger[run_towards block_high
always[jump kick_high

Rose’s FDL was defined using EMFText. EMFText produces a
metamodel for the DSL plus supporting tooling, such as a text-
to-model parser and text editor, from the grammar definition.
We could define our genotype-to-phenotype mapping using the
metamodel produced by EMFText, and therefore tightly coupling
the approach with FDL. However, the FDL grammar definition is
itself a model: the EMFText grammar definition language has a
metamodel and any grammars defined in the language are mod-
els that conform to this metamodel. In order to make our ap-
proach generic to any DSL defined by EMFText, we can write our
genotype to phenotype model transformation with respect the
EMFText metamodel rather than specific languages.

Unfortunately, the EMFText metamodel is verbose and writing
the transformation became non-trivial. Xtext7 [37] is another tex-
tual DSL generation framework built on top of EMF, that is sim-
ilar to EMFText; languages defined using Xtext are models that
conform to the Xtext metamodel. However, the Xtext metamodel
is cleaner and more amenable to traversing with a model trans-
formation. As such, we reimplemented the grammar of FDL in
Xtext (see appendix B.1). Note however, we only did this in order
to create an Xtext-conforming metamodel for FDL that enabled
us to easily generate FDL characters; no code was generated from

Figure 3.6: The process
of transforming the geno-
type (an integer string used
by the search framework)
into the phenotype (a specific
fighter description in FDL,
for use in SAF).

“www.eclipse.org/Xtext
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Figure 3.7: The Charac-
teristic grammar rule shown
in listing 3.2 from the FDL
Xtext grammar, represented
as an object diagram. The
diagram visualises how the
model of the grammar ex-
presses rule choice. We ex-
pand the first choice of the
grammar rule: to specify
the punchReach characteris-
tic. Leaves are terminals in
the grammar.
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the Xtext definition and the existing EMFText-based code for FDL
was untouched. The Xtext FDL model is used to produce a char-
acter as a string, which is then parsed into SAF using the EMF-
Text tooling as normal. As was the idea with EMFText, our model
transformation is applicable to any language defined in Xtext.

The Xtext metamodel contains metaclasses for all aspects of
the grammar, including production rules, choices, and terminals.
Each production rule in a grammar model is represented as an
object conforming to a class in the Xtext metamodel and con-
tains references to other objects in the model that represent its
non-terminals and terminals. This representation facilitates the
mapping process: where there is a choice in a production rule,
genes from the genotype model are used to select which of the
target objects to use and therefore which path to travel through
the model. When the path reaches a terminal string, it is added
to the output string.

Characteristic:
‘punchReach’” ’'=’ value=NUMBER '\n’ | ’punchPower’ ’'=’
value=NUMBER '\n’ |
"kickReach’ ‘=’ value=NUMBER '\n’ | ’kickPower’ ’'=’ value=
NUMBER '\n’ ;

Listing 3.2: The Xtext grammar rule defining characteristics of a
fighter. For the full specification see Appendix B.1.

| Characteristic: Rule |

|
l l l l

[ :Choice | [:Choice | [:Choice | [ :Choice |
| ! ! !
[ :Keyword | [ :Keyword | [ :TerminalRule |
[ value : "punchReach" | [value :"=" | | |
|
v v v
[ :Choice | [:Choice | [ :Choice |
:NUMBER :NUMBER :NUMBER
[value :"0" | [value:"" | [value:"9" |

To illustrate this approach, consider the rule in the fragment of
the FDL grammar shown in listing 3.2. This rule defines the char-
acteristics of a fighter, and contains four choices — each assign-
ing a value to the different fighter characteristics (punchPower,
punchReach, kickPower, kickReach). When the FDL language
specification is parsed into a model conforming to the Xtext meta-
model, the rule in listing 3.2 takes the shape shown in figure 3.7
(using object diagram syntax).

When this rule is reached during the transformation, the cur-
rent gene’s allele identifies which alternative to execute by taking
the allele modulo the number of choices. If the first alternative is
chosen, the keywords (terminals) punchReach and = will be added




to the output string, and the next gene in the genotype model will
select the NUMBER to assign to the selected characteristic. The ex-
ecution can then traverse back up the reference chain (figure 3.7)
and execute the next production rule in sequence, or terminate
if no production rules in the grammar are left to expand. If the
user-defined number of genotype wrappings is reached during
the execution, the transformation aborts and the candidate is as-
signed the worst possible fitness. Otherwise, the transformation
results in a string that conforms to the grammar of interest — in
our case, a fighter in FDL.

3.3.4 Evaluation and Results

The previous section described a generic process for mapping an
integer string genotype to a phenotype using EMF model trans-
formation technologies. To illustrate and evaluate the approach,
we apply it to SAF in order to address the experimental ques-
tions from section 3.2. The experiments use a genetic algorithm
as the search algorithm, and in addition we perform secondary
experiments using random search in order to assess whether the
problem is sufficiently trivial that solutions can be found by ran-
dom sampling of the search space. Both sets of experiments use
our GE mapping to evaluate the fitness of candidate solutions.

The objective of this evaluation is to understand the feasibility
of the proposed search-based approach in the context of the orig-
inal motivating problem: finding interesting and challenging op-
ponents in SAF. Furthermore, we wish to discover any issues with
the approach that might affect its application to other domains,
and understand where there are gaps that need addressing.

Algorithm Settings and Implementation The algorithm set-
tings, including the parameters used in the genotype-phenotype
mapping and in the fitness calculation, are listed in table 3.1.
Since the efficiency of the algorithms is not being explicitly eval-
uated in this work, no substantial effort was made to tune the
parameters to this particular problem, and the choice of some pa-
rameter settings (for example the use of integer mutation) was
made with reference to existing GE studies, such as [75].

The genetic algorithm is a bespoke implementation in Java
since this is the language used in the interface to the genotype-
and-phenotype mapping. A bespoke implementation was written
because it was initially thought to provide a more flexible basis
for proposed future work on co-evolutionary strategies. However,
other evolutionary computation libraries written in Java, such as
ECJ 8, could have been used in conjunction with our genotype-to-
phenotype mapping process.

For random search, the bespoke genetic algorithm implemen-
tation was used but with the mutation probability set to 1.0. This
has the effect of selecting a new random population at each gen-

8ECJ website: http://cs.gmu.
edu/alijeclab/projects/ecj/
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Parameter

Setting

GENOTYPE-TO-PHENOTYPE MAPPING

Number of genes 20

Gene value range 0-32767
Population size 20
Maximum number of generations 50

Initialisation method
Selection method (for reproduction)
Reproduction method
Mutation method

Random gene values
Tournament, size 2
Single point crossover
Integer mutation (random value)

Mutation probability (per gene) 0.1

Number of elite individuals 2

GRAMMATICAL EvoLUTION

Maximum wrappings (during mapping) 10

FITNESS METRIC

Number of opponents (11opps) 7
Number of fights (1fighs) 5
Table 3.1: Parameter

settings for the genetic

algorithm, genotype-to-
phenotype mapping, and

fitness metric.

Table 3.2: The proportion
of successful runs (those that
find an ‘optimal” fighter) for
the four experiments. The
ranges in parentheses are
the 95% confidence inter-
vals. Values are rounded to
2 significant figures.
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eration. The elite individuals are kept in the population to keep
track of the best solutions found to date.

Response Four experiments were performed: one for each com-
bination of question (EX1 or EX2) and algorithm (genetic algo-
rithm or random search). For each experiment, the algorithm was
run 30 times, each run with a different seed to the pseudo-random
number generator. Our chosen response metric is a measure of
the effectiveness of the approach: the proportion of runs result-
ing in an ‘optimal’ (as defined by EX1 or EX2) fighter. The fitness
metric is noisy as a result of the stochastic choose construct in the
FDL, so the condition for optimality is slightly relaxed to allow
candidate fighters with a fitness of 1.0 or less. In other words,
an optimal fighter may differ by at most one from the desired
number of winning fights, rather than requiring an exact match.
This condition also accommodates the situation where the choice
of p causes the term p nopps ffights in the fitness function to be
non-integer.

Question Search Algorithm Proportion Successful
EX1 (0 =1.0) Genetic algorithm 0.67 (0.50 — 0.83)
EX1 (o = 1.0) Random search 0 (0-0.12)

EX2 (0 =0.8) Genetic algorithm 0.97 (0.88 — 1.0)
EX2 (p =0.8) Random search 0.47 (0.31 — 0.66)

Results and Analysis Table 3.2 summarises the results of the
four experiments. The ‘proportion successful’ column is the frac-
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fighter {
punchReach=9
even|[choose(crouch walk_towards) choose(block_high
punch_low) ]
always[crouch block_low]

}

Listing 3.3: Example of an ‘unbeatable’ fighter description found by the
genetic algorithm.

tion of algorithm runs in which an ‘optimal’ fighter was found.
The 95% confidence intervals are shown in parentheses after the
observed value, and are calculated using the Clopper-Pearson
method [29] (chosen since it is typically a conservative estimate
of the interval).

For EX1, the objective was to derive unbeatable fighters. The
results show that unbeatable fighters can be derived: the genetic
algorithm found such examples in approximately 67% of the al-
gorithm runs. Listing 3.3 shows a particularly simple example
of an optimal “unbeatable’ fighter derived during one algorithm
run. The ease of derivation using a genetic algorithm is not nec-
essarily an indication of the ease with which a human player may
construct an unbeatable fighter. Nevertheless, it is plausible that a
human player could derive unbeatable fighters with descriptions
as simple as that in listing 3.3, and therefore the game play or the
FDL may need to be re-engineered to avoid such fighters.

For EX2, the objective was to derive challenging fighters that
won approximately 80% of the fights against the panel of oppo-
nents. The results show that it was easy for the genetic algorithm
and possible, but not as easy, for random search to derive descrip-
tions for such fighters, such as the example shown in listing 3.4.
This allows us to conclude that our metaheuristic technique is
effective, as random search is the lowest benchmark to compare
metaheuristic techniques against [65].

fighter {
kickReach=9
stronger[choose (jump run_away) choose(kick_low block_low) ]
far or much_weaker[choose(crouch run_towards) choose(
punch_low punch_high) ]
always[crouch kick_low ]

}

Listing 3.4: Example of an ‘challenging’ fighter description found by
the genetic algorithm.

An unintended, but very useful, outcome of these experiments
was that the search process exposed some shortcomings in the
Fighter Description Language that were not discovered by hu-
man players. These shortcomings have exposed new require-
ments for FDL. One example was that the game engine requires
that the fighter description specify a behaviour for every situation
(whether weaker or stronger than the opponent fighter, or near or
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far from it), but the language grammar does not enforce this re-
quirement. If the fighter could not return a behaviour rule for a
particular condition, the game would crash. This was resolved by
ensuring that all descriptions contained an always clause.

fighter {
punchPower=9
punchPower=7
punchPower=2
kickPower=y
punchPower=2
kickPower=2
near[crouch punch_low]
stronger or far|[choose(run_towards run_towards) kick_high]
much_weaker and weaker[walk_away block_low]
always[crouch kick_high]
}

Listing 3.5: Example of an ‘unbeatable’ fighter description that
illustrates language shortcomings.

Further examples of language shortcomings are illustrated in
the description shown in listing 3.5: characteristics of punchPower
and kickPower are specified multiple times (lines 2 to 7); the con-
dition much_weaker and weaker can never be satisfied (line 10);
and both choices in the choose clause are the same (line 9). Al-
though none of these issues prevent game play — only one of the
repeated characteristics is used; the condition is never considered;
and the choose clause is equivalent to simply run_towards — they
are not intended (and, moreover, unnecessarily increase the size
of the search space). The language might be modified to avoid
these shortcomings.

Finally, we compare the efficacy of the genetic algorithm and
random search on the two experimental questions. The results
for EX1 in table 3.2 suggest that random search cannot find an
‘unbeatable’ fighter (at least in the same upper limit on the num-
ber of fitness evaluations as the genetic algorithm), and that the
problem is non-trivial. For EX2, random search does succeed in
the easier problem of finding ‘challenging’ fighters, but with less
consistency than the genetic algorithm. The non-overlapping con-
fidence intervals indicate that the differences between random
search and the genetic algorithm are statistically significant for
both questions.

Summary

This section has presented our first attempt at searching for mod-
els with desirable characteristics. We presented an approach that
utilised a grammatical evolution-based model-to-model transfor-
mation for transforming a string of integers into a model and
applied it to the Super Awesome Fighter case study. The results
showed that we were able to discover fighters with certain charac-
teristics and, by comparison with random search, demonstrated
that metaheuristic search is possible over a space of models that




conform to a given metamodel.

The next section examines the drawbacks of this approach and
further motivates the need for a generic representation of MDE
models.

3.4 Analysis of GE-Based
Representation

The previous section describes an approach that satisfied our re-
quirements: we were able to search for models with desirable
characteristics. The approach is generic to any textual DSL de-
fined in any textual modelling language. Our implementation
was based on the Xtext metamodel. However, the approach can
be tailored to textual DSLs developed using other, similar, frame-
works. No code needed to be generated from the Xtext grammar
definition — our approach simply uses the grammar to produce
a string which can then be parsed by existing DSL tooling (e.g.
EMFText for FDL). This enables MDE practitioners to adopt the
approach with minimal initial costs. Their existing Xtext meta-
models can be used directly, only a fitness function needs to be
defined.

There are, however, a number of other issues with the ap-
proach:

Textual models only The approach is heavily tied to textual mod-
elling languages. It is unclear as to the proportion of tex-
tual modelling languages compared to graphical modelling
languages, but it is clear that a generic approach to search-
ing for models must support both textual and graphical mod-
els. One solution would be to utilise existing work that trans-
forms graphical models into textual models and vice versa, e.g.
HUTN [144], as has recently been done by Rose and Poulding

[145].

Cross-referencing not supported The FDL language used for the case
study is possibly too simple to draw conclusions that can be
generalised to all textual DSLs. The language does not have
any constructs that cross-reference another: if an FDL instance
was viewed as an object diagram it would be shaped like a con-
tainment tree as opposed to a graph. Many languages provide
support for cross-referencing objects defined elsewhere in the
program. Xtext supports defining cross-references at the gram-
mar level, by allowing names to be assigned to objects®. For
our GE-based representation to be generic, support for cross-
referencing is a necessity.

Data not supported FDL has minimal data support. It has only in-
teger values representing personality characteristics, however,

Shttp://www.eclipse.org/
Xtext/documentation.html#
DomainModelWalkThrough
http://blogs.itemis.de/
stundzig/archives/773
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as there are so few, the valid integer values are encoded into the
Xtext grammar. The original EMFText-based grammar for FDL
allows any integer value to be assigned to a characteristic and
the SAF game validates whether this value is acceptable. We
simplified the grammar when converting it to Xtext to directly
encode all possibilities as a set of terminals. This solution is
obviously impractical in the general case, and so an improved
representation would need to support primitive data types in
a generic manner.

GE = random search One criticism of GE is that the phenotypic
value that each gene represents is too dependent on those those
genes that precede it. As each gene is used to select specific
grammar rules, a change in the gene’s value may change the
selected grammar rule and each subsequent gene is used to se-
lect different grammar rules than previously. A small change
in the genotype, therefore, can result in a large change in the
phenotype, meaning that GE has low locality [150]. This means
that neighbouring genotypes do not correspond to neighbour-
ing phenotypes, and therefore applying metaheuristic search
to GE-based representations can effectively result in random
search.

To further understand how the locality of GE affects FDL, we
performed some simple experiments which are presented in the
next section. Locality is necessary for efficient evolutionary search.
Therefore, by showing that GE suffers from non-locality, we can
rule out using it as the basis for the generic representation. Solv-
ing the other issues mentioned above would by inconsequential
if the representation suffers from non-locality. We address the
issues of cross-referencing, data, and textual-only models in the
next chapter where we present our generic, search-amenable rep-
resentation of models.

3.4.1 FDL Locality

Locality has been shown to be important for efficient evolutionary
search [150, 147]. In section 2.2.2 we defined locality in terms
out the relationship between genotypic distances and associated
phenotypic distances. A representation is said to have locality if a
small change to the genotype also results in a small change to the
phenotype. In order to investigate the locality of GE with respect
to FDL, we have performed a set of experiments that apply small
mutations to the genotype and analyse the effects this has on the
phenotype.

The locality of a representation depends on the distance met-
rics defined on the genotypic and phenotypic spaces. For FDL, we
have chosen to used an existing model comparison tool to calcu-
late the phenotypic distance. We selected EMF Compare™® for this
due to it being the most robust EMF-based comparison frame-


www.eclipse.org/emf/compare/
www.eclipse.org/emf/compare/

Parameter Setting

Number of individuals analysed 100
Number of genes 20 Table 3.3: Parameter set-
Number of mutations per gene 100 tings for locality analysis of
Allele range 032767 the GE-based representation
Maximum wrappings (during mapping) 10 of FDL.
Number of repetitions 10

work at the time of writing. EMF Compare works by first match-
ing all objects in one model to the objects in the other. Matching
is performed based on the object identifiers (either an XMI iden-
tifier, an attribute, or the fragment URI). Once the matches have
been produced EMF determines the quantity and type (e.g. add,
delete, move) of differences between the matched objects. We de-
fine the phenotypic distance between two models as the number
of differences calculated by EMF Compare.

The distance metric defined on the genotypic space is that of
the mutation operator used for evolutionary search. The mutation
operator used in the previous experiments was random integer
mutation, therefore if two genotypes differ by just one gene they
have a genotypic distance measure of one — the minimum distance
between genotypes.

Algorithm Settings and Implementation The parameters se-
lected for the locality analysis are shown in table 3.3. We gen-
erated 100 different individuals with a maximum length of 20
genes (as in the earlier SAF experiments). For each individual,
each gene is then randomly mutated 100 times independently of
the others. This creates a sample set of neighbours whose geno-
typic distance is one. Each neighbour is then transformed to its
phenotype and compared with the original, unmutated pheno-
type using EMF Compare to calculate the phenotypic distance.
We averaged the number of differences between the original and
the mutant for each gene. This whole process was repeated 10
times, each with a different random seed, meaning that 2,000,000
models were evaluated.

Results and Analysis Figure 3.8 shows the results found in
this experiment. As expected, mutations to genes at the start of
the genotype resulted in a larger number of differences in the
mutant phenotype than those appearing later in the genotype.
Some gene mutations do not cause a change in the phenotype.
As mentioned in section 2.2 this is called genotypic redundancy.
In the case of locality, we are only interested in cases where the
number of differences is greater than zero. For completeness, fig-
ure 3.8 also shows the average redundancy per gene (based on
the proportion of mutations that resulted in zero phenotypical
changes). Interestingly, you can see that there is a relationship
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Locality and Redundancy Analysis of the GE Representation for SAF Models
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Figure 3.8: The results of
analysing the locality and
redundancy of GE with re-

between high redundancy and low locality. These spikes likely
spect to the FDL.

appear at the Condition and Action grammar rules (from ap-
pendix B.1). Both of these have binary choices — hence the 50%
redundancy — and selecting the alternative will result in many
phenotypical differences. The subsequent genes have lower local-
ity as they are used to select terminal values, e.g. the condition
types, and therefore result in fewer phenotypical changes.

On average, nearly 30% of genotypical neighbours are pheno-
typically identical. Furthermore, the average number of pheno-
typical differences that a random genotypic mutation will induce
is 3.8. This score is only meaningful in context. An average of 3.8
model differences per mutation may be too much to provide ef-
ficient evolutionary search. If this technique was used with more
complex grammars, it is likely to be even higher — the number of
phenotypic differences increase where the is a choice in a gram-
mar rule. More choices and more rules will result in more phe-
notypic differences. A further investigation of GE being applied
to other languages is required to draw strong conclusions here.

One problem with this experiment is that we only considered
structural differences in the analysis. For languages like FDL,
two syntactically distinct models may be semantically equivalent.
Furthermore, in the case of FDL (and possibly other languages)
there are two ways in which can define the semantics of an FDL
model. Firstly, we could define the semantics based on the results
of fights. If two syntactically distinct fighters win the same pro-
portion of fights against a common set of opponents, they might
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fighter{

even[walk_towards block_high] evenfwalk_towards block_high]

R weaker[walk_towards block_high]
} always[walk_towards block_high] always[walk_towards block_high]

fighter{

P3 fighter{ P4

weaker[walk_towards block_high]
stronger[walk_towards block_high]
near[walk_towards block_high]
far[walk_towards block_high]
much_stronger[walk_towards block_high]
much_weaker[walk_towards block_high]
even[walk_towards block_high]
always[walk_towards block_high]

fighter{

even or weaker[walk_towards
block_high]

always[walk_towards block_high]
}

e
Figure 3.9: Four syntacti-
cally different, but semanti-
cally equivalent, FDL fight-

ers.

be seen as semantically equivalent (consider the case where we

are searching for suitable opponents for a player). Secondly, the

same behaviour can be expressed in FDL in different ways. For

instance, the fighters in figure 3.9 are all semantically equivalent, p1  p2 p3 p4
but syntactically quite different — as shown in table 3.4. This may proo S5 3 26
be a side effect of the domain, but it is something we need to con- 22 2 g g 23
sider when evaluating candidate solutions in any domain: struc- pd | 26 23 27 O

tural comparison may not always be adequate. .
Table 3.4: llustration of

how semantically equivalent
Summary models may be syntactically

distinct.
This section has enumerated a number of flaws with the current

GE-based representation of (textual) models, and focused on the
issue of locality. The representation’s flaws mean that it is not cur-
rently possible to represent all possible models (as only a subset
of textual metamodels are supported) and evolutionary search is
inefficient. It is true that the locality- and redundancy-related re-
sults presented in this chapter cannot be generalised to all Xtext-
defined languages, but they do illustrate the issue with using a
GE-based mapping for representing models.

3.5 Summary

In this chapter we have presented the original case study that
lead to the development of a prototype search-amenable repre-
sentation for MDE models. We have presented a video game,
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Super Awesome Fighter, which includes a textual DSL for speci-
fying character behaviour. We demonstrated that it is possible to
use evolutionary search to discover fighters with particular qual-
ities, and provided a short analysis of the grammatical evolution-
based representation with which we used to achieve this. This
work has provided a useful platform of knowledge on which to
build a generic, search-amenable representation of MDE models.
The next chapter presents our solution.

3.5.1 Future Work for SAF

Beyond the realm of searchable representations, the SAF work
could be extended in a number of directions. Firstly, the oppo-
nents against which the fighter’s fitness metric is assessed could
be derived using co-evolutionary methods rather than a human-
derived panel. We speculate that currently the fighter properties
of ‘unbeatable’ and ‘challenging’ may not be applicable beyond
the panel of human-derived opponents, and that by co-evolving
a larger, diverse panel of opponents, fighters with more robust
properties may be derived. Secondly, non-player fighters could
be dynamically evolved during the game play: each time a hu-
man player finds a winning fighter, a more challenging non-player
opponent could be evolved, thus ensuring the human player’s
continued interest. We address the latter point in terms of self-
adaptive systems in section 5.2.
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INn CHAPTER 2 WE DESCRIBED previous research that combined = Contents
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an approach: an integer-based representation using Grammat- 44 search Properties and
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number of issues. Firstly, the approach was only applicable for 47 Discussion . . . . . . . .. 92

textual models. Recent work by Rose and Poulding [145] pro-
pose generating HUTN [144] — a human-readable textual notation
for models — which, although textual, can represent any kind of
model. Secondly, the prototype representation was incomplete
as it was unable to produce non-containment references between
two model elements. Finally, as demonstrated in [150] and em-
phasized in section 3.4, Grammatical Evolution suffers from non-
locality which can result in inefficient evolutionary search.

This chapter presents a generic representation of models that
conform to MOF [120] metamodels, which is amenable to many
well-studied metaheuristic optimisation techniques. Introduced
in section 2.1.1, MOF is a standardised language for defining
metamodels. Our representation addresses the issues related to
the prototype implementation: it is independent of the concrete
syntax of the modelling language; it can encode all features of
MOF models (e.g. containment references) and all possible mod-
els that can conform to a given metamodel; and it is applica-
ble to many metaheuristic search-based optimisation algorithms.
We present Crepe: an implementation of our representation for
the metamodelling language of the Eclipse Modeling Framework
(EMF), Ecore (see section 2.1.2). Furthermore, we introduce a
model-based metaheuristic search framework, MBMS, built us-
ing state-of-the-art MDE technologies, that uses Crepe at its core.
Figure 4.1 illustrates the core components of the representation.
We define a genotype: a description of the structure of an indi-
vidual; and a mapping from the genotype to the phenotype: a

61



Genotype

Individual

Figure 4.1: A conceptual
overview of the components
of our generic model repre-
sentation.
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model conforming to a user-provided metamodel. In order to
accomplish the mapping, the user provides some finitisation in-
formation: structural and data-related constraints that control the
models that can be encoded by the representation. Not shown in
the diagram are the genetic operators that are applied to individ-
uals using search.

information finitises

A ;

)-}]é ) Finitisation | > | Metamodel | | phenotype

Genotype-to-Phenotype
Mapping

Chapter Contributions The contributions of this chapter are
summarised below.

¢ The definition of a novel generic representation of models that
is amenable to a wide range of existing metaheuristic optimi-
sation techniques.

¢ The implementation of the model representation using MDE
technologies.

¢ The implementation of a metaheuristic search framework, built
using state-of-the-art MDE technologies, where all aspects of
the framework are expressed as models, and the core algo-
rithms are defined as model management operations.

* Aninteractive, web-based visualisation of the search algorithm,
made possible through the use of MDE technologies and by
capturing the progress of the search algorithm in a model.

Chapter Structure Section 4.1 presents metamodel finitisation:
the process of defining extra structural constraints and specifying
acceptable data values, thereby reducing the size of the search
space and enabling the representation to produce models of in-
terest. Section 4.2 briefly discusses the genotypes used in other
representations and presents the genotype that we have designed
to represent models. Section 4.3 details the mapping from our
genotype to a model conforming to a given metamodel. We
present our implementation of the representation, Crepe, and a
model-driven metaheuristic search framework, MBMS, in section
4.5. Section 4.6 illustrates the use of Crepe and MBMS on a simple
example. Finally, we discuss the limitations of the representation
in section 4.7.



4.1  Metamodel Finitisation

When designing metamodels, it is common to use unbounded
data types for attributes (e.g. integers, strings, etc.), or to assign
one-to-many multiplicities to associations instead of enforcing an
upper bound (we provide supporting evidence for this claim in
section 7.2 where we shows that nearly 50% of the references in a
large corpus of metamodels do not have an explicit upper bound).
This results in an infinitely large model space — i.e. there are an in-
finite number of models that can conform to the metamodel. In
reality it is uncommon for the domain being modelled to require
the infinite number of possibilities for every attribute. For in-
stance, it is unlikely that an integer-typed attribute in the domain
would really take any possible integer, and so can be bounded to

reduce the size the model space®. Moreover, regarding strings, " In fact, it is possibly more likely that
the attribute has a probability distri-

, . i bution of values, but we leave this as
fect on the model’s use. If the value of a string-typed attribute  fyure work.

it is likely that the value of a string-typed attribute has little ef-

is important for an associated MMO, then the developers will
have in mind a fixed set of values that the MMO is hard-coded
to use. Alternatively, a string-typed attribute could be refactored
into an enumeration class, or a new meta-class. Therefore, al-
though the existence of a string-typed attribute will result in an
infinite model space (ignoring physical limitations of hardware),
it is likely that this is artificially large and the model space can be
made finite by specifying a set of possible values.

In order to transform the genotype into the phenotype we need
to finitely describe what we would like our models to look like.
The information present in the metamodel that we want the mod-
els to conform to is not simply enough by itself to create realistic
models. More information is needed to describe the data that
can appear in instances of the metamodel. This is analogous to
the terminal set used in Genetic Programming [134] which speci-
fies the terminals (variables and constants) that can appear in the
programs. Additionally, we may wish to enforce an upper bound
on certain associations in order to limit the the search space to a
computationally reasonable size.

Incidentally, it is not the case that a metamodel has just one
finitisation. Different applications of the metamodel may require
different finitisations. Furthermore, as already alluded to, the
finitisation information provided can have a significant impact on
the effectiveness of the search algorithm: the more information
specified, the greater the size of the search space due to the com-
binatorial explosion of the possible value assignments.

We capture this extra domain information in a model called the
finitisation model. The initial idea was to annotate the metamodel
(a common practice for metamodels defined in Ecore [170]), how-
ever it is not guaranteed that users have access to the metamodel
directly in order to add the annotations (e.g. if the metamodel is
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MetamodelFinitisation
rootClass : Class
ignores : Element[*]

Finitisation

AN

DataTypeFinitisation

ScopeFinitisation FeatureFinitisation

type : DataType

element : Element

feature : Property

[ll

max : Integer parentClass : Class

AN

DataTypeListFinitisation

DataTypeRangeFinitisation

list : Object[*]

first : Double
last : Double
step : Double

FeatureRangeFinitisation

FeatureListFinitisation

first : Double
last : Double
step : Double

list : Object[*]

Figure 4.2: The meta-
model for the finitisation
model, written in MOF.

The types Object, Element,
Class, and Property refer to
MOF classes, and represent
references to the metamodel
being finitised.
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MetaElementFeaturelListFinitisation
list : Element[*]

proprietry), and as previously mentioned, the same metamodels
can be finitised differently to address different problems. Creat-
ing a model to capture finitisation information is non-intrusive
and is more powerful than annotations as it allows more com-
plex finitisations to be defined. The metamodel for the finitisation
model is shown in figure 4.2. We currently support three differ-
ent forms of finitisation: feature restriction, data type restriction,
and meta-element scoping. Additionally, we allow parts of the
metamodel to be ignored, and require the user to specify a root
object type. The metamodel is defined in a way that would allow
for new forms of finitisations to be added as they are encoun-
tered through the application of many case studies. This section
describes the finitisation metamodel and process of finitisation in
detail.

4.1.1 Data and Structural Finitisation

Both specific features and entire data types can be restricted to
a list or range of values. Numerical ranges are specified as dou-
bles, and can be cast to the appropriate numeric type based on
the particular feature to which the value is being assigned. Fea-
tureFinitisations specify the feature that is being finitised and also
allows an optional parentClass to be specified. This reference is
useful to manage different subclasses who inherited features from
the same superclass. For instance, figure 4.3 shows a very simple
metamodel for people. When creating the finitisation model for
the people metamodel, the user may wish to define the age finiti-
sation on the abstract Person class; this finitisation is inherited by
the children of the person class. The user may, however, want to
provide different finitisations for the name attribute inherited by
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Male and Female and use the parentClass feature to specify this.

Data type restriction makes the finitisation process more tract-
able; the alternative would be to define finitisations for every fea-
ture of every type. Data type finitisations do not override specific
finitisations of features of the same data type: if a particular fea-
ture has a FeatureRangeFinitisation assigned to it and that feature’s
data type also has been finitised, only the feature-specific values
will be used to populate the models being produced. However, if
a feature has multiple finitisations (e.g. both a range and a list),
the entire set of values is considered as that feature’s finitisation.

In addition to finitising the values of features and data types,
we also support scoping for both meta-classes and references. The
finitisation metamodel allows developers to specify upper limits
(a scope) on both the number of instances of a particular meta-
class that can appear in a model, and on the number of objects
that a particular reference can point to. This addresses the is-
sue of unbounded references, and reduces the size of the model
space. Whereas the finitisation of infinite data types is required,
scoping is not. Scoping, however, reduces the size of the search
space, making the problem more tractable?. Depending on the
particular application of the search, specifying a small scope for
many classes may be sufficient for a successful search. For in-
stance, if the goal of the search is to find models that expose bugs
in a model transformation, we may be able to make use of the
small-scope hypothesis [78] which states that the counterexamples
for most bugs will arise within a small scope.

To support inter-model referencing, i.e. cases where an ob-
ject in one model references an element in a different model, the
MetaElementFeatureListFinitisation class allows users to specify pos-
sible external targets for that reference. This could be used to
provide partial solutions to a problem. For example, consider the
zoo metamodel in figure 2.2. Animals can be assigned to cages
and can also eat other animals. A considerate zookeeper would
not want to put animals in cages with their predators. Therefore,
the zookeeper could search for the optimal assignment of ani-

Figure 4.3: A simple meta-
model illustrating the use
of the optional parentClass
field in the FeatureFinitisa-
tion class of our finitisation
model.

2Care is needed to ensure you
don’t make the solution model out of
scope.
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Figure 4.4: An illustration
of specifying the root meta-
class to focus the search
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mals to cages by building a model of the animals and cages and
specify them as MetaElementFeatureListFinitisations for a secondary
metamodel that manages cage assignments.

4.1.2 Ignoring Elements

Some parts of a metamodel may not be relevant to all its instances.
For example, when creating UML class diagrams, the modeller is
not interested in parts of the UML metamodel that relate to se-
quence diagrams or activity diagrams. It may also be the case that
certain features of a particular metaclass are not relevant to the
search goal and would simply increase the size of the search space
unnecessarily. The finitisation model, therefore, allows users to
specify that certain meta-elements should be ignored during the
mapping process (the ignores feature in the MetamodelFinitisation
class in figure 4.2). If a meta-class is ignored, then all of its sub-
classes are also ignored. Furthermore, if a feature in a superclass
is ignored, then that feature is ignored in all subclasses.

4.1.3 The Need for Root

The only compulsory element in the finitisation model is the root-
Class feature in the MetamodelFinitisation class (figure 4.2). This
is a reference to a particular meta-class in the metamodel whose
model space we plan to explore. For each individual analysed
during the search, this root class is instantiated and acts as the
container for the model objects creating during the mapping from
genotype to phenotype. All models naturally have a container ob-
ject. For instance, in UML a class diagram is contained by a Pack-
age object, and a Package object is contained by a Model object. It
may not, however, be possible to infer this root class directly from
the metamodel and so the user is required to explicitly specify a
root.

We previously mentioned that metamodel elements can be ex-
plicitly ignored. Specifying a root class can have the same effect.
As illustrated in figure 4.4, any meta-classes that are not directly
or indirectly contained by the root class are implicitly ignored.
For instance, to use our technique to search for a particular UML
class diagram, it would be possible to set the UML Package meta-
class as the root class, thus automatically ignoring all non-class
diagram related meta-classes.

We now describe the structure of individuals in our representa-
tion, before explaining how an individual is transformed from its
genotypical representation into a model conforming to the given
metamodel.



4.2 The Genotype

Concrete syntaxes are often defined to provide a more meaning-
ful and user-friendly representation of the model, however the
underlying elements of MOF-like models can be visualised as ob-
ject graphs. A direct genotypic representation, where the search
space is the solution space (or equivalently using GA terminol-
ogy, where the genotype is also the phenotype), would ensure
an efficient encoding: there would be no genotypic redundancy.
However, significant work would be required to define the ge-
netic operators that can be used to efficiently explore the solution
space. We have chosen to utilise a linear, integer-based genotype,
structured in a way that allows the complete expression of mod-
els. Before we introduce our genotype, we briefly describe other
existing genotypes that were discarded or gave inspiration to our
design.

4.2.1 Existing Representations

Inspiration could be taken from the Genetic Programming field
[134], which does not distinguish between the genotype and phe-
notype and uses trees to represent programs. However the step
up in complexity from trees to graphs is not trivial. GP’s mu-
tation and crossover operators are defined to act directly upon
these trees. Altering these operators to work on object graphs
is non-trivial due to the complexity of object graphs. Firstly, the
crossover operator is GP is subtree crossover. A node is selected at
random in both parents to be the crossover point. The subtree in
the first parent is then replaced by the subtree in the second, and
so care is needed to ensure that the crossover does not break any
syntactic constraints. Defining a crossover operator for graphs
is more challenging. It would not be possible to select a single
crossover point. Instead, a crossover graph would need selecting
(perhaps a heuristic could be used to select the subgraph based on
elements attached to a randomly chosen element). Figure 4.5b il-
lustrates this. Ensuring that the subgraphs are able to replace one
another (without invalidating structural constraints) is costly; se-
lecting subgraphs that are able to replace each other (analogous
to strongly-typed GP) falls under the subgraph-matching problem
which is known to be is NP-complete [168]. Whereas the ‘inter-
face’ to trees in GP is a single node, making crossover possible
(figure 4.5a), the ‘interface’ of an object graph is potentially many
nodes (figure 4.5b). Determining an appropriate solution to man-
aging the assignment of these references after crossover would
be non-trivial: many references would need to be destroyed or
recreated randomly — as found by Burton et al. in their crossover
operator for models [18]. As the goal of crossover is to exchange
key genetic information (“building blocks”) which is passed to

(a) Genetic programming: sub-
tree crossover.

(b) Object graph representation:

subgraph crossover

Figure

4.5:

Selecting

parts of the phenotype for

crossover.
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children, this may prove too destructive and therefore reduce the
algorithm to random search.

GP uses two mutation operators — subtree mutation and point
mutation [134]. Subtree mutation suffers the same issues as the
crossover operator, as it works by replacing randomly selected
subtrees with randomly generated subtrees. Point mutation is
more plausible — it mutates a single node (with certain constraints
so as to not introduce syntactic errors). Mutating a “point” in
an object graph is more difficult as points can be entire objects,
features of an object, or associations between objects. Each of
these points would need great care to ensure that mutating them
doesn’t make the model invalid. Data mutation (i.e. mutating an
object’s attribute values) would be possible, but careful consider-
ation is needed for how to resolve the mutation of the meta-class
of an object.

There are variants of GP that produce object oriented code,
which is conceptually similar to models (both can be visualised as
object graphs). These approaches however, move away from the
tree-based genotype used in GP and use instead a linear genotype
to represent programs (i.e.. an integer/bit string-based genotype
with a fixed mapping to the phenotype). Basic OOGP [178] uses
integer triples to select and combine objects from a resource pool.
Basic OOGP requires all objects to be instantiated in advance in
the resource pool. Given the size that models can reach and the
combinatorial explosion of feature assignments, this would not
be practical for models. Another variant of GP is Grammatical
Evolution (GE) [151, 127], used by our prototype representation
in section 3.3 and [186]). In GE, the phenotypical impact of every
gene is dependent on the genes that appear previous in the geno-
type, particularly if wrapping is used during instantiation (see
section 3.4.1). Therefore, if the value of a single gene is altered, it
can have dramatic effects on the phenotypical impact of the genes
that follow, making the locality of the representation very low. In
section 3.3, we showed how destructive genotypic mutation can
be. Rothlauf and Oetzel [150] also demonstrate the negative im-
pact that GE’s low locality causes on performance. Furthermore,
the representation we used in [186] is unable to express references
between objects — a crucial requirement for any representation of
MDE models.

Cartesian Genetic Programming (CGP) [110] uses a linear, integer-
based representation for building graphs of program functions
and their inputs and outputs. CGP assigns an identifier to each
function and terminal and splits the genotype into segments. The
first gene in a segment identifies the function that that segment
represents. Subsequent genes in the segment are used to define
the inputs and output(s) of the function. This idea can be mapped
to MDE models. CGP uses only point mutation during evolution.

One of the requirements of our model representation is to en-
sure the representation is generic enough to express any model



conforming to any given metamodel. Developers could poten-
tially define their own metamodel-specific evolutionary opera-
tors, enabling a direct representation. This would be costly to
define, but may overcome some of the issues outlined above. Bur-
ton et al. [18] use a direct representation within a multi-objective
genetic algorithm used to address acquisition-related problems.
They define a crossover operator to swap sets of objects between
models to produce children. This operator can result in produc-
ing invalid children and the algorithm is required to automati-
cally fix this.

A further drawback of using a direct representation for models
is that they can get very large (hundreds of megabytes). Search
techniques may become impractical due to the vast memory us-
age and computation costs needed in cases of large populations.

4.2.2 The Genotype to Represent Models

A linear representation of models has the advantage that the many
existing linear genotype-based search algorithms, such as genetic
algorithms, evolutionary strategies, simulated annealing and hill
climbing, could be used ‘out-of-the-box’. This would allow MDE
practitioners to easily determine whether different algorithms or
different combinations of genetic operators perform better for dif-
ferent problems, without defining new operators for each tech-
nique or devising new metaheuristic techniques. Additionally,
MDE practitioners can make use of the wealth of existing research
into linear genotype-based algorithms [56, 57, 103].

individual
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Figure 4.6 shows the genotype that we have defined to encode
models. As with CGP, the genotype is divided into a number of
segments, with each segment representing a single object in the
encoded model. The first gene in a segment, the class bit, iden-
tifies which metaclass in instantiated by the object being repre-
sented. Successive genes, the feature bits, define the values of fea-
tures from that metaclass. Feature bits are grouped into pairs: the
first member of the pair, the feature selector bit, identifies a partic-
ular feature of the meta-class; and the second member of the pair,

Figure 4.6: The genotype
of our representation. Seg-
ments are the building block
for representing models as
integers. (a) is the feature
selector bit, and (b) is the
feature value bit.
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the feature value bit, specifies the value that should be assigned to
the feature in the object being represented.

The next section describes how this structure, when united
with the finitisation model, can represent any MDE model con-
forming to any given metamodel. Moreover, we will show how
this mapping is reversible: i.e. existing models can be re-encoded.

4.3 Genotype to Phenotype
Mapping

The previous section presented the structure of an individual in
our generic representation of MDE models. Each of the integers
in the individual is responsible for identifying part of the model
being represented — the class bit and feature selector bit represent
structural elements to be instantiated, and the feature value bit
represents the assignment of values to a feature. To define the
mapping from genotype to phenotype, we need a way to iden-
tify not only elements in the metamodel being instantiated, but
also the data finitisations defined in the finitisation model. Once
all relevant elements have been assigned identifiers, we can start
transforming an individual into a model.

The steps taken to transform an individual into a model (the
mapping from genotype to phenotype) are as follows. Steps one
and two occur only once, before a search algorithm begins. Steps

three and four take place for every individual evaluated by the
search algorithm.

Create finitisation model

Assign identifiers

Define fitness function

Transform segments to objects

Construct references
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Metamodel
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Figure 4.7: An illustration
of the processes involved in
transforming from our geno-
type to a model conforming
to a given metamodel.
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1. Create the finitisation model for the metamodel and assign
identifiers to each of the data values assigned to features.

2. Assign identifiers to meta-classes and features defined in the
metamodel.

3. Transform each segment in the individual into a model object.
4. Assign references between the model objects.

These steps are illustrated in figure 4.7. A further prerequisite
shown in figure 4.7 is the need to define a fitness function; this,



however, is independent of the encoding process. We now de-
scribe the genotype-to-phenotype mapping in more detail, using
a simple example of instantiating a model of a zoo for illustration.
Figure 4.8 shows the metamodel for the zoo, which consists of
cages and animals. As previously described, one example usage
of this metamodel would be a language that allows zookeepers
to assign animals to cages, taking into consideration the fact that
certain animals need to be kept apart from others for food chain
related reasons.

Step 1: Finitisation In order to represent the value(s) of a fea-
ture, we first define a finitisation model for the zoo metamodel
(see figure 4.9, which is simplified to make annotation legible) as
described in section 4.1. Each of the FeatureFinitisations have iden-
tifiers assigned to each of their data values so that it is possible
to reference them during the mapping stage. Values declared as
a list finitisation are assigned an identifier based on their index
in the list; values specified as a range finitisation are assigned an
identifier based on their index in the range (based on the stated
step).

Step 2: Metamodel identifiers In order to reference meta-
elements (i.e. classes and features in the metamodel) from the
genotype representation, we automatically assign identifiers to
them (see figure 4.10). Each meta-class is given an identifier,
and each of its meta-features are also assigned identifiers, unique
to that meta-class only. Meta-elements that cannot be instanti-
ated, such as enumeration types, are not assigned a class-level
identifier, however the enumeration literals are assigned feature
identifiers. Abstract classes are not assigned a class-level identi-
fier, however the subclasses of abstract classes assign identifiers
to their inherited features. Furthermore, we label the root class as
defined in the finitisation model. In this example, the root class
is not assigned an identifier. In some cases the root class may be
assigned an identifier — for instance in UML class diagrams where
packages can contain sub-packages.

Step 3: Segment mapping A model object is created by trans-
lating a segment using the definition in figure 4.6, and the iden-
tifiers defined in figures 4.9 and 4.10. Figure 4.11 shows how we
resolve the segment’s class bit (1) to the Animal class; so we create
an Animal object. Next, we resolve each of the feature pairs. In
this example, we assign the Animal object the name “Tiger”, set its
spaceRequired feature to 5, and its quantity feature to 2. Each of
the values in the segment is interpreted modulo the number of
valid values (i.e. the number of meta-classes for a class bit, or the
number of features in a certain meta-class for a feature bit). When
the feature selector bit maps to a reference feature (i.e. not an at-
tribute), we take note of the feature pair and move on to the next.

Zoo

* | cages
Cage
spaceAvailable : Integer

* |l animals

Animal *

name : String
spaceRequired : Integer

Figure 4.8: A simple meta-
model for describing the lay-
out of zoos. (Repeated from
figure 2.2.)

Animal.name
[ "Tiger", "Pig", "Hippo" ]

Animal.spaceRequired

[5 10, 15 20]
Animal.quantity
[0, ..., 10]

Figure 4.9: Step 1: Finitisa-
tion information for the zoo

metamodel.
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Figure g4.10: Step 2: As-
signing identifiers to the zoo
metamodel.
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Figure 4.11: Step 3: Map-
ping a segment to an Animal
object.
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If we chose to assign the target of the reference at this point, we
could only select from objects that have previously been created
during the mapping process. This would bias against any objects
produced later in the mapping, and so we wait until all objects
have been instantiated before assigning references.

:Animal quantity = 2

{

1 O}j2]|3

O[O0 1
A T o

aceRequired =5

encodes

/

:Animal
name = "Tiger"
spaceRequired = 5
quantity = 2

A segment may contain multiple feature pairs that select the
same attribute. To deal with this, we could do one of three things.
Firstly, we could ignore any subsequent attempts to assign an at-
tribute value. Secondly, we could allow reassignment, keeping
the last-assigned value. Or finally, we could adjust the feature se-
lector bit so that it assigns a value to a different feature. The latter
solution might introduce more clashes with other feature pairs in
the segment, and may affect the metaheuristic algorithm by im-
plicitly mutating an individual. The choice between the first and
second solution should not cause any problems with the meta-
heuristic, providing the choice is consistent. Any feature pairs
that are ignored are said to be non-coding feature pairs (discussed
in detail in section 7.4). Our current implementation of the repre-
sentation (section 4.5) uses the second solution.

Once all segments have been translated into model objects, we
instantiate one instance of the root class to act as the container for
the other objects.

Step 4: Constructing references Once all segments (ignoring
references) have been mapped to objects, and those objects instan-
tiated, we can then assign the references. This is analogous to the
linking phase often used during code compilation. The first phase
of constructing these references is to assign all possible objects to
be direct children of the root object (see figure 4.12a). In the zoo
example we assign all animals and cages to the appropriate refer-
ences in the zoo root object. This aims to increase the likely hood
of as many objects appearing in the final model as possible. Any
objects which are not directly contained by the root at this time
will be left floating until another object takes ownership of them.

The second phase then iterates through all of the unassigned



feature pairs which were saved during step 3. To assign a refer-
ence, we select the set of instantiated objects whose type (meta-
class) is the same as the reference target’s type, and then take the
feature value modulo the size of the set to select one of those ob-
jects (see figure 4.12c). Objects can only be contained by one other
object (i.e. have one containment reference directed at them). If
object ¢ is already contained by object pl and a feature pair as-
signs c to p2, then p2 becomes the container of c (see figure 4.12d).
This allows objects to take ownership of objects that had been pre-
viously assigned to the root object in the first phase (e.g. in the
case of subpackages taking classes).

If the finitisation model finitises a reference with objects in an-
other model then we would instead select from those as we would
for attributes. If, however, the finitisation model defines some
inter-model objects and those objects also conform to the same
metamodel as the model being generated, we select the target ob-
ject for assignment from the combined set of all possible target
objects. If the reference has already reached its upper bound, we
ignore that feature pair. Once all feature pairs have been resolved,
there may be instantiated objects that remain floating, i.e. those
that were not assigned to any container references and so are not
directly or indirectly contained by the root object. These objects
are deleted, and therefore introduce redundancy in the genotype.
(This is discussed further in our evaluation of the representation
in section 7.4 and figure 7.15.)

The result at the end of this process is a model that conforms
to the input metamodel and consists only of data defined by the
user in the finitisation model. This genotype and its mapping
is capable of encoding all models that conform to a given meta-
model. To add new objects, one simply adds more segments to
an individual; to assign more features to an object, simply add
more feature pairs.

4.3.1 And Back Again

The genotype-phenotype mapping can easily be reversed in order
to transform an existing model into its genotypic representation.
This can be useful for a number of reasons. For instance, if we
wanted to optimise an existing model we could transform it to its
genotypic form and, for example, apply a hill-climbing algorithm.
Or perhaps we might like to seed the initial population of an evo-
lutionary algorithm with existing models that have high fitness in
order to kick start the search algorithm.

The phenotype-genotype mapping shares the first two steps
of the genotype-phenotype mapping, i.e. it still requires a finiti-
sation model and meta-element identification. It is crucial that
the meta-element identification process is deterministic, other-
wise mapping a model to and from its genotype may result in a

(J B

(a) Root object containment refer-
ence assignment.

(b) After constructing four refer-
ences.

FP1O |2 iReﬁ N

Targets: ][]

IDs:

(c) Selecting target objects for as-
signment.

(d) Reassigning containment from
the root.

Figure g.12: An illustra-
tion of the reference con-
struction phase.
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different phenotype. Steps three and four differ to the genotype-
phenotype mapping and are described now.

Step 3: Reverse object mapping The process of creating a
segment from an object is the inverse of the process of creating
an object from a segment. A segment is created for each object in
the model. We then iterate through the objects. The identifier of
an object’s meta-class is assigned to the class bit of the segment.
Next, each structural feature of the object is examined in turn.
The identifier of the feature becomes the feature selector bit, and
the finitisation model is queried for the feature’s value to get the
feature value bit. It is up to the implementation of this mapping
to decided how to deal with cases where the finitisation model
does not specify the value being looked up, e.g. throw an error
or ignore that feature entirely. As with the genotype-phenotype
mapping, if we encounter a reference feature, we wait until all
objects have been mapped to (partial) segments.

Step 4: Constructing references Once all objects have been
mapped to segments we can assign the references. Each unas-
signed reference is sequentially assigned by selecting the collec-
tion of segments whose equivalent model objects can legally be
assigned to that reference. The feature value bit is assigned the
value of the index of the object in that set.

In the next section, we discuss various search-related properties
of the representation and describe the set of genetic operators that
have been defined for this representation.

4.4 Search Properties and
Adaptation Operators

This section describes the search-specific characteristics of the
representation — the adaptation operators (see section 2.2.1) and
method of initialising the search algorithm (by constructing one
or more initial solutions). As mentioned earlier, because it is
based on a linear genotype, our representation can be used by
any linear genotype-based search algorithm. Each search tech-
nique would use an appropriate initialisation method (popula-
tion or single-state) and select suitable adaptation operators (e.g.
selectorecombinative GAs use only crossover, not mutation).

Section 4.4.1 describes how to initialise individuals in the rep-
resentation. Section 4.4.2 describes how the standard crossover
and mutation operators are used with the representation, and
section 4.4.3 introduces some custom, representation-specific op-
erators.



4.4.1 Initialisation

In the general case, the initial search population of a population-
based algorithm (such as a genetic algorithm) is generated by as-
signing random values to each gene. This would spread the ini-
tial population randomly about the search space, allowing a wide
area to explored. The selection of genes could be performed in a
more constructive way, so as to distribute the population evenly.
Certain applications, however, may require a different method.
For example, it may be beneficial to seed the population with vari-
ants of an existing model (using the phenotype-to-genotype trans-
formation) if the goal is to optimise a specific model. Similarly,
for a single-solution-based search algorithm, a random starting
point can be chosen or an existing model could be mapped down
to its genotype and used.

The length of an individual (|I|) plays an important role in
determining the model space that can be represented. It is defined
as follows:

HEDME] (4.1)
i=1

where |S;| is the length of the ith segment and segment length is
defined as:

S| =1+ (2x#fp) 4-2)

where #fp is the number of feature pairs in that segment.

The segment length limits the number of structural features an
object can instantiate, and the number of segments determines
the overall size of the model. To allow for a diverse population,
the number of feature pairs can be allowed to differ between seg-
ments. This reduces redundancy in the segments which represent
meta-classes with few features, potentially inhibit some features
from being assigned values in meta-classes with a large number
of features. We analyse the redundancy of the representation in
section 7.4 and find that the metamodel being represented heavily
influences the redundancy of the representation.

4.4.2 Standard Adaptation Operators, Adapted

The linear genotype described in section 4.2 permits standard ge-
netic operators, such a single-point crossover, to be used. How-
ever, the structure of the genotype in our representation means
that crossover can be particularly destructive if it is allowed to oc-
cur at any point in the individual. If crossover is too destructive,
it can be detrimental to the search as it can introduce too much
variation into the population as potentially useful genetic traits
are not carried forward to the children. To reduce the amount
of destruction, we only allow crossover to occur at the points be-
tween segments. This allows entire objects to be copied over to
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Figure g4.13: Illustration of
the crossover operator.

Figure g4.14: Illustration of
the mutation operator.

76

the child being created — only the feature pairs that represent ref-
erences will be affected. Figure 4.13 illustrates the crossover op-
erator. The animals references in the Cage objects are reassigned
to other Animal objects in the model (not shown). If there were
no Animal objects in the model, then those feature pairs would
become redundant.

The mutation operator also differs slightly from the usual mu-
tation operator used with linear genotypes. Figure 4.14 demon-
strates how mutating different types of gene causes different amo-
unts of variation in the phenotype. Mutating the class bit has the
most significant effect on the phenotype, whereas mutating either
the feature selector bit or feature value bit has a lesser effect on
the phenotype. Therefore each gene type has a different proba-
bility of being mutated (specified by the user). This is known as
positional dependence [25].

:Animal
‘ 1 '0 2 | 1 1 ’ —_— name = "Hippo"
spaceRequired = 10
:Cage
(1) ‘ 0 | 0 ‘ 211 ‘ 1 ’ —_— spaceAvailable = 15 ammais
Class bit mutation
:Animal
@ [1[1]2]1][1] —> _
spaceRequired = 10
Feature selector bit mutation
:Animal
(©)) ‘ 1 '0 ‘ 1 | 1 ‘ 1 ’ —_— name = "Pig"
spaceRequired = 10

Feature selector bit mutation

4.4.3 Custom Adaptation Operators

Initialising a population with variable-length individuals using
variable-length segments aims to produce a diverse, representa-
tive population. However, it does not guarantee that the indi-
viduals in the population will be able to represent the desired
solution. If individuals are much longer than the solutions, the
search algorithm would need to find an individual which has a



large amount of redundancy, which may be challenging or even
impossible. For example, if the user has not defined scopes for
meta-classes or references, a situation may arise where it is not
possible to make a segment redundant because it is always able
to be contained by another object. Figure 4.15 illustrates this. The
encoding of the metamodel shown cannot be redundant as all Bs
can always be contained by an A object. If the solution requires
just two B objects to be referenced by a single A object, then any
individual who has more than three segments is unable to encode
the solution. Obviously, this example here is contrived, but these
cases may arise without the awareness of the user and so care is
needed when defining the finitisation model.

Metamodel Desired Solution
A
A * B
Phenotype
B B
Genotype N/A [ BB

As a result of this phenomenon, we need to provide the ability
to increase and decrease the lengths of individuals. Therefore, we
define two new genetic operators for our representation:

Segment Creator inserts a randomly created segment into a ran-
dom position in an individual.

Segment Destroyer deletes a randomly selected segment from an
individual.

The adaptation operators presented in this section aim to be ben-
eficial to the search by not being too destructive. As such, our
crossover operator transfers entire objects between models, and
we split the mutation operator into gene-specific operators, al-
lowing the user to have fine-grained control over the operators
being applied. We have also defined some representation-specific
operators which allow the size of the models to be altered. The
selection of these operators will entirely depend on the search
algorithm being used and problem being addressed.

4.5 Crepe and MBMS:
The Realisation for Ecore

This section describes our implementation of the model represen-
tation presented in the previous sections. We target the Eclipse

Figure g4.15: An illustra-
tion of a metamodel which,
without proper finitisation,
will result in a represen-
tation with no redundancy.
An individual with more
than three segments will be
unable to encode the solu-
tion.
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Modeling Framework (EMF) due to it being the most widely used
modelling platform at present. This means that our implementa-
tion can represent any model whose metamodel is defined using
Ecore — the metamodelling language of EME. As such, our im-
plementation is called Crepe: the Canonical REPresentation for
Ecore. Furthermore, we use Crepe as the representation for a
bespoke model-based metaheuristic search framework that tar-
gets MDE problems. Every key component in the search frame-
work is expressed as a model and all operations are defined as
model management operations (MMO) written in the Epsilon Ob-
ject Language (EOL) [92]. EOL was chosen because it is a robust,
general-purpose model management language that supports the
manipulation of multiple models simultaneously.

Metamodels Model Management Operations
Algorithms Genetic eol i Climbing
Algorithm Algorithm
USe
Y X
Search Search Configuration Genetic Control
Framework Metamodel Metamodel Operations Operations
xtend us uses
Reprgsen- Genotype Finitisation Genotype-to-
tation Metamodel Metamodel phenotype
Figure 4.16: The build-

ing blocks of the model-
based metaheuristic frame-
work that uses our represen-
tation at its core.
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Figure 4.16 depicts the structure of our model-based meta-
heuristic search framework, highlighting the models and MMOs
used in each layer. Each important aspect of the framework is
decoupled, making it easy to define new algorithms and tailor
existing functionality. In this section we describe each layer of the
framework from bottom to top. Section 4.5.1 describes the imple-
mentation of the genotype metamodel and genotype-phenotype
mappings. Section 4.5.2 presents MBMS, an extensible Model-
Based Metaheuristic Search framework that uses Crepe as its rep-
resentation. Section 4.5.3 describes how metaheuristic algorithms
are implemented in MBMS and overviews the two currently im-
plements: a genetic algorithm and a hill climbing algorithm. Fi-
nally, section 4.5.4 illustrates one of the benefits of a model-based
metaheuristic search framework by presenting a tool that pro-
vides an interactive visualisation of a search space.

4.5.1 Crepe: Implementing the Representation

There are three main components of our representation: the struc-
ture of an individual, the finitisation information, and the map-



pings between genotype and phenotype. We address each in turn. Individual ,
fitness : Double
mutated : Boolean

The Genotype Metamodel Figure 4.6 in section 4.2 illustrated elite : Boolean 0.2

arents

the structure of an individual in our representation. In Crepe, we ’

have captured this structure in the metamodel shown in figure seémzefgnents

4.17. Individuals possess three search-related attributes: the fitness ClassBit : Integer

of the individual (assigned once the candidate has been evalu- ?

ated); a flag saying whether the individual has been mutated; and - - fe;‘“frepai“

a flag expressing whether or not the individual is an elite that has C—_ ;ZggiB;':rlnteger

been carried forward from a previous generation. Individuals also featureValueBit : Integer

have references to their parents — the individual(s) in the previous

generation that bred to produce them. This provides some trace-  Figure g.17: The meta-

ability through the search algorithm, allowing the user to see the  j;04¢] that defines the struc-
workings of the selection and breeding operations (e.g. for valida- e of individuals in Crepe.
tion purposes). If the representation is being used for something

other than search (see section 8.2), the three attributes and parents

reference can be ignored. Individuals are composed of Segments,

which have a single integer attribute to express the class bit. Seg-

ments contain an unbounded number of FeaturePairs, which define

the feature value and feature selector bits.

The Finitisation Metamodel To express the data and struc-
tures that can be encoded by the representation, the user must
define a finitisation model. The metamodel for such models was
shown in figure 4.2. We have implemented this metamodel in
Ecore: where figure 4.2 shows a type as Element, Class, or Prop-
erty, our implementation uses Ecore’s EObject, EClass, and EStruc-
turalFeature respectively.

Genotype-Phenotype Mappings As both the genotype and
phenotype are models, the genotype-phenotype and phenotype-
genotype mappings are implemented as model-to-model trans-
formations written in EOL. Initially, these transformations were
written in Java. Rewriting them in EOL reduced the number of
lines of code by ~90% and made the code much easier to main-
tain. This came at a cost of performance, however, as EOL is
language that is interpreted by Java. At this stage, finely tun-
ing the performance of the representation and MBMS is not crit-
ical: we are using it to demonstrate the feasibility and practical-
ity of a generic model representation. The genotype-phenotype
mappings described in section 4.3 rely heavily on the identifiers
assigned to meta-elements. Ecore does in fact automatically as-
sign identifiers to each meta-class and meta-feature. However,
Ecore assigns identifiers to non-instantiable classes, such as ab-
stract classes, enumerations and data types. To use Ecore’s iden-
tification scheme would introduce a lot of redundancy into the
representation as all segments whose class bits reference non-
instantiable classes would have to be ignored. To overcome this,
we compute the set of instantiable classes at the start of the execu-
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Figure 4.18:
model used to capture the
execution of a search algo-
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* | segments

parents

Segment
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FeaturePair

featureSelectorBit : Integer
featureValueBit : Integer

rithm.
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tion, order them by their Ecore identifier, and assign them a new
identifier for use with the mapping based on their position in the
ordered list. This also means that we don’t assign identifiers to
classes that are ignored in the finitisation model. An analogous
process occurs when selecting meta-features to instantiate — only
those that can be instantiated are assigned identifiers.

4.5.2 MBMS: Implementing the Search Framework

To use Crepe to perform metaheuristic search, we have imple-
mented MBMS, a model-based metaheuristic search framework.
As shown in figure 4.16, the core of MBMS defines two meta-
models and two MMOs. We address each of these in turn before
bringing all aspects together to describe the usage of MBMS.

The Search Metamodel The metamodel for the models that
capture a single execution of a search algorithm is shown in fig-
ure 4.18. A single Search contains a sequence of Populations, which
represent the generations of the search. A Population is made up of
a number of Individuals — as defined in the genotype metamodel.
For population-based algorithms, the Population object will con-
tain many individuals. For local search algorithms, it will just
contain one.

Configuring the Search A common practice for Java-related
projects is to define configurable parameters in properties files
(with the file extension ‘.properties’). Properties files provide a
compact way to capture key-value pairs. An example properties
file for an evolutionary algorithm might look like as follows:

The meta- -
:| population. children.size

;| population. elites .size =

population.parents.size = 8
6

2

Listing g4.1:  Example property definitions for configuring an

evolutionary algorithm.

We considered defining a metamodel to capture the properties
for configuring our search algorithms, but the overhead of this
would be too costly. In particular, the current concrete syntax of
properties files is familiar to Java users, and easy to pick up for
non-Java users. A graphical syntax for the configuration would
be too cumbersome for simply defining pairs of strings. Further-
more, Java provides a well-defined API for managing properties
files — something which we would have to implement ourselves
were we to define a custom metamodel. Instead, we decided to
use properties files directly, but treat them as models.

As presented in section 2.1.2, Epsilon is agnostic to modelling
technologies. Through its model connectivity layer (EMC), Epsilon
supports many kinds of models: e.g. EMF, XML, MDR, BibTeX,
Z, and spreadsheets. Models from different technologies can be
input into Epsilon programs and seamlessly interact. Therefore,
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Parameter Possible Values

CONTROL PARAMETERS

termination.iterationsThreshold INT
termination.fitnessThreshold DOUBLE
REPRESENTATION PARAMETERS
individuals.segments.quantity. max INT
individuals.segments.quantity.min INT
individuals.segments.featurepairs.max INT
individuals.segments.featurepairs.min INT
individuals.maxallele INT
PoruLATION-BASED ALGORITHM PARAMETERS

population.size INT
population.initialisation.type random, given, last
population.parent.size INT

population.parent.selectiontype
population.elite.size
population.elite.selectiontype

random, tournament, copy; fittest

INT

random, tournament, copy;, fittest

population.children.size INT
population.children.mutation.type uniform, weighted
population.children.mutation.uniform [0.0 ... 1.0]
population.children.mutation.weighted.cb [0.0 ... 1.0]
population.children.mutation.weighted.fsb [0.0 ... 1.0]
population.children. mutation.weighted.fvb [0.0 ... 1.0]
population.children.construct.segments.probability [0.0 ... 1.0]
population.children.destruct.segments.probability [0.0 ... 1.0]
population.selection.tournamentsize INT

we have defined an EMC driver for properties files, allowing them
to be treated like models and be input to any Epsilon module and
manipulated using EOL. This means that properties are able to
be configured at runtime and are also able to be persisted to disk.
Listing 4.2 shows a simple example of using EOL to read from a
properties files.

var parentPopulationSize = Property.all.selectOne(p |
p-key == "population.parents.size");

Listing 4.2: An illustration of reading from a properties file with EOL.

Table 4.1 lists the properties that we have defined in MBMS
to control the search algorithms (new implementations of search
algorithms can either use existing properties or define their own).
The properties are divided into three categories:

Control parameters: These parameters control the execution of the
metaheuristic search algorithm. We have defined two param-
eters that both control termination of the algorithm: when the
fitness of an individual reaches a certain threshold, and when
the maximum number of iterations of the algorithm has been
reached.

Table 4.1: The set of de-
fault parameters for use in

MBMS.

81



82

Representation parameters: These parameters configure the size of
individuals. In particular these parameters are used when cre-
ating individuals, such as during the initialisation of a search
algorithm.

Population-based algorithm parameters: These are the parameters
common to population-based search algorithms, and in partic-
ular by the genetic algorithm introduced in the next section. Of
particular note is the population.initialisation.type property which
determines how the population of the GA should be initialised.
Due to the fact that we store the search history as a model,
we're able to start an execution from an existing population, ei-
ther by providing an explicit Population (in its own input model)
or by continuing from the last population in the input search
model. Alternatively, the initial population can be generated
randomly.

Control Operations This MMO defines three important func-
tions: initialising a search algorithm, checking if the termination
criteria has been met, and delegating the fitness evaluation of an
individual. The initialisation function is defined with respect to
population-based algorithms; non-population-based algorithms
should define their own initialisation function. The function ex-
amines the specified initialisation parameter (population.initialisa-
tion.type) and acts accordingly. If the initial population is given,
then it looks for a model called ‘POP” and copies the last Pop-
ulation object into the search model. If the initialisation type is
specified as random, the representation parameters (table 4.1) are
used to generate random individuals. Otherwise the last genera-
tion in the search model is used.

The termination function reads from the configuration model
(properties file) to determine whether the termination criteria has
been met. If so, the search algorithm will cease. The evaluation
function transforms an individual into its phenotypic form (using
the genotype-to-phenotype module described above), and dele-
gates the evaluation to a user-defined function. This is described
further in section 4.5.3.

Genetic Operations This MMO defines the adaptation opera-
tions described in section 4.4: mutation, crossover, segment cre-
ation and segment destruction. Furthermore, it implements a se-
lection function that is used to pick out individuals from a set
with respect to specified criteria. For example, it is used to select
the fittest individuals from a population in order to produce the
next generation of individuals, and to select the elite individuals
from the current generation.

Using MBMS To use the MBMS framework, the user needs to
specify the metamodel of the solution space, the finitisation model
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for the solution space metamodel, the configuration model (prop-
erties file) and, optionally, and existing search model. This is il-
lustrated in figure 4.19. As a result of executing the search algo-
rithm, MBMS produces the fittest solution discovered — a model
conforming to the solution space metamodel — and optionally a
model that captures the entire history of the search algorithm.
The search model can then be visualised to gain insight into the
search space, or to perform a manual validation of the search al-
gorithm, as described in section 4.5.4.

The genetic operations, control operations, and search algo-
rithm have been implemented separately to allow users to tailor
MBMS to their needs. New search algorithms can be defined,
or existing algorithms refined, by importing these modules and
overriding one or more genetic or control operations.

4.5.3 Implementing Search Algorithms

As with the genotype-phenotype mappings, metaheuristic search
algorithms are written in EOL. Each algorithm is defined in its
own EOL module, and can import any required modules, such as
the pre-defined genetic operators. Currently, we have defined a
genetic algorithm and a hill climbing algorithm as proof of con-
cept.

To use one of the algorithms, one needs to create a custom EOL
module and import the particular search algorithm module. After
any custom set up code, the user simply invokes the commence
operation and the algorithm begins (assuming all input models
have been specified by the launch configuration). For example:

Figure 4.19: A conceptual
view of the inputs to and
outputs of MBMS. The di-
agonally shaded box repre-
sents an optional input.
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import "platform:/plugin/jw.research.crepe/mbms/algs/
geneticAlgorithm.eol";

/+ custom setup code =/

/* start the GA =/
commence () ;

Listing 4.3: Executing a genetic algorithm.

Once the current generation’s population has been produced
(either initialised or bred), the evaluate control operation is in-
voked. As mentioned earlier, this automatically transforms each
member of the population into their phenotypic form, by utilising
the genotype-to-phenotype module. Once transformed, the eval-
uation of each candidate solution’s fitness is delegated to a user
defined operation named evaluateFitness:

operation evaluateFitness(candidate :MM! EObject) : Real {
var fitness =
return fitness;

}

Listing 4.4: Defining a custom fitness function.

Defining the fitness function in EOL gives the user full access
to a powerful model management language. However, this may
not be enough to evaluate a model in every scenario. Fortunately,
EOL has the ability to invoke native Java code3, meaning that
users can also define fitness functions in Java and delegate the
evaluation. This allows users to utilise other components, such
as simulators, to calculate the fitness of candidate solutions. An
example fitness function defined in Java is shown below:

package com.example. fitness;
import org.eclipse.emf.ecore.EODbject;
public class Evaluator ({
public double evaluate (EObject candidate) {
double fitness =
return fitness;
}
}

Listing 4.5: Defining a fitness function in Java.

The evaluate method takes an EObject as its parameter (as all
EMF objects inherit from EObject) and the user would need to
cast it to the root class type. Alternatively the evaluate method’s
candidate parameter can be specified to be the type of the root
object in order to avoid this casting. Example EOL code used to
invoke this Java method is:

operation evaluateFitness(candidate :MM! EObject) : Real {
var evaluator = new Native ("com.example. fitness.Evaluator
")
return evaluator.evaluate(candidate);

}

Listing 4.6: Delegating the evaluation to a Java method.

With the metaheuristic algorithm module imported, the fitness
evaluation operation defined, and the appropriate input and out-
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put models configured, the user can then execute their EOL mod-
ule.

4.5.4 Visualising the Search

In section 4.5.2 we stated that the user could optionally provide
an existing search model from which to commence the search al-
gorithm, and optionally save the search model once the algorithm
has completed. One benefit of saving the search model is that we
have an entire trace of the search algorithm which we can inspect
in order to gain insight into the algorithm. Developers of new
search algorithms can use this to validate that their algorithm
is performing correctly, and users can inspect the search history
to understand how the search progressed through the solution
space. Due to the fact that the search history is captured as a
model, we can apply state-of-the-art MDE operations to support
its analysis.

T —————

<« C' [ pancake-search.appspot.com

wdQamf=

1. Select the appropriate files using the form
aboue

2. Click the submit button
3. Examine the search graph

4. Click on nodes to see the HUTN
representation of the phenotype

1. Select search model 2. Select fin model 3. Select ecoremodel 4. Visualise!
{ Choose File ) No file chosen [ Choose File JNo file chasen { Choose File ) No file chosen

Visualise your search!

As a starting point we have implemented a web-based search
model visualiser. Figure 4.20 shows the initial screen which the
user is presented with. The user uploads their search model,
the metamodel of the solution space, and the finitisation model.
The search model only contains genotypic information and so
the other two models are required to produce the phenotypes.
The web application inputs the search model into a model-to-
text transformation written in the Epsilon Generation Language
(EGL) [143] which produces some HTML that displays a graph-
like representation of the search — illustrated in figure 4.21. Each

Figure 4.20: The initial
screen presented to the user.
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row in the graph represents a single generation, and each node
represents an individual in that generation, annotated with their
fitness score. To highlight the breeding process, parents are con-
nected to the children they produced. Finally, the elites in each
generation are highlighted in yellow.

To inspect a candidate solution, one simply clicks on a node.
This sends a request to the server, causing the selected individual
to be transformed to its phenotypic form and is input to a second
model-to-text transformation. As we known nothing about the
concrete syntax of the model, we transform it into the Human-
Usable Textual Notation (HUTN) [144] — a generic, textual concrete
syntax capable of expressing any model conforming to a MOF
metamodel. The HUTN form of the model is the presented to the
user in a popover, illustrated in figure 4.22. An alternative would
be to present the user with a downloadable model which can
then be viewed using the appropriate editor. This would provide
instant feedback to the user and is left to be address in future
work.

Summary

This section has presented our EMF-based implementation of our
model representation, along with the implementation of an exten-
sible model-based metaheuristic search framework. Each compo-
nent in the representation and search framework is either a model
or a model management operation. The next section presents a
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Figure 4.22: An individual
transformed into its HUTN
format and presented to the

simple worked example to illustrate Crepe and MBMS further. user for inspection.

4.6  Worked Example

This section demonstrates how someone would go about mod-
elling their software engineering problem and using our repre-
sentation to search for a solution. To this end, we model a variant
of the famous Travelling Salesman problem (TSP), define a finiti-
sation model and illustrate the mapping from genotype to phe-
notype. TSP is selected as it is a well known combinatorial opti-
misation problem and so is likely familiar to be with the reader.

4.6.1  The Problem: Delivery Man

To demonstrate how one would use the representation for their
own problem, we present an MDE implementation of a variant of
the Travelling Salesman Problem. TSP is a standard combinatorial
optimisation problem in which the goal is to find the shortest path
through a set of cities in which each city is visited only once. Our
variant contextualises the problem for a delivery company. In
each city that a delivery driver visits they need to deliver some
goods, and the delivery company want to ensure that they use as
little fuel as possible (i.e. take the shortest route).
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4.6.2 Modelling the Domain

To model the delivery driver problem?, we separate concerns be-
tween the cities being visited and the route taken and therefore
define two metamodels: one that captures the map, and one that
expresses routes over that map. This separates the mapping sys-
tem from the routing system, allowing the delivery company to
produce maps independent of delivery jobs. Furthermore, this
also allows us to search for routes for any input map.

Listing 4.7 shows the metamodel for our simple mapping sys-
tem. A Map consists of a collection of Citys and definitions of
Distances between those cities. This metamodel would allow the
delivery company to create a model of the cities that they supply.
Listing 4.8 shows a metamodel for defining jobs to be allocated to
drivers. Each driver is given a Route which consists of an ordered
number of Stops at certain cities where the driver is required to
deliver some Products.

package map;

class Map {
val City[+] cities;
val Distance[*] distances;

}

class City {
attr String name;

}

class Distance {
attr int distance;
ref City cityz1;
ref City cityz;

}

Listing 4.7: The Emfatic description of the metamodel for defining
simple maps.

package route;
import "map.ecore";

class Route {
val Stop[x] stops;
val Product[+] goods;
}

class Stop {
ref map.City city;
ref Product[+] goods;
}

class Product {
attr String name;

}

Listing 4.8: The Emfatic description of the metamodel for defining
routes over map models.
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4.6.3 Making the Domain Finite

The finitisation model for the Route metamodel needs to be cre-
ated with respect to an existing map model. This is because we
want to finitise the Stop.city reference with actual city objects from
a given map model. We could, therefore, manually create our fini-
tisation model for each map model that we wish to route. How-
ever, a more generic approach is to create a simple script that will
automatically create this model for us. Listing 4.9 shows such a
script, written in EOL. The createEObjectFeatureListFinitisation util-
ity method (not shown) is used to simplify the creation of the
finitisation model objects. Similarly the getClassByName method
returns a class from the metamodel with the given name.

There are three models that are used in this script: FIN is
the finitisation model that is being created by the script; MM is
the map metamodel (listing 4.7); and MAP is the particular map
model that we wish to route. First of all, the script defines that
the Route class is the root object. Secondly, all city objects in the
MAP model are added to an EObjectFeatureListFinitisation object for
the two Stop features. Finally, as we are currently only interested
in the routes, we ignore the Product class, removing it from the
search. The delivery company could add the product informa-
tion once the routing has been performed.

/*

+ Input models:

* FIN: Finitisation model being created

* MM : The Route metamodel

* MAP: The map model that we select cities from
+/

var fin = new FIN!MetamodelFinitisation;

fin.rootClass = getClassByName ("Route") ;

"

fin.finitisations.add(createEObjectFeatureListFinitisation (
Stop", "city", MAP!City.all));

fin.ignores.add(getClassByName (" Product") ;
fin.ignores.add(getFeatureByName ("Stop", "goods");

Listing 4.9: An EOL script to automatically produce the finitisation
model for the Route metamodel.

This script can be incorporated into the route search script and
executed before starting the search meaning that we never need to
actually store the finitisation model and making it easier to search
in a map-independent manner (as in section 4.6.5).

Finitising the Map Metamodel Instead of using pre-defined
maps, one could use our representation to generate random map
models (e.g. for testing purposes). The finitisation model is fairly
simple — City.name could be finitised with a FeatureListFinisation
of random strings, and Distance.distance with a FeatureRangeFini-
tisation. Although search could be used to discover maps with
interesting features, an alternative would be to simply generate
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random individuals and transform them to map models.

4.6.4 Defining the Fitness Function

The goal is to find the shortest continuous path through all cities
that returns to the first city visited. The search algorithm will
be creating N Stop objects, each of which reference a single (not
necessarily unique) City object. These objects are assigned to the
Route.stops reference. The fitness is calculated by summing the
distances between adjacent cities, including the final city with the
first (to complete the route). In our problem specification we have
not defined any restrictions that would stop the search producing
invalid routes — i.e. those which miss some cities, or visit the
same city more than once. Therefore, the search algorithm needs
to account for these cases and assign the fitness accordingly.

operation evaluateFitness(candidate : MM! EObject) : Real {

// Punish invalid solutions
var missingCities = o;
for (city in MAP!City.all) {

if (candidate.stops.select(s |

s.city == city).size() == o) {
missingCities = missingCities + 1;

}

}

if (missingCities <> o) {
return missingCities;

}

// Now calculate the distance score for valid solutions
var distance = 0.0;
var isComplete = false;
for (i in Sequence{o..candidate.stops.size()}) {
var stop = candidate.stops.at(i).city;
var nextStop;
// Need to get back to the start
if (i + 1 >= candidate.stops.size()) {
nextStop = candidate.stops.at(o).city;
isComplete = true;
} else {
nextStop = candidate.stops.at(i+1).city;

}

distance = distance + MAP!Distance. all.selectOne(d |

(d.cityr == stop and d.city2 == nextStop) or
(d.cityr == nextStop and d.city2 == stop)).
distance;

if (isComplete) break;
}

return 1.asDouble() — (1.asDouble()/distance.asDouble());

}

Listing 4.10: The fitness function used to evaluate candidate routes.

As mentioned in the previous section, we define fitness func-
tions in EOL. We have defined the fitness function for this prob-
lem in listing 4.10.

Lines 3-12 consider invalid candidate solutions: those whose
routes do not include all cities defined in the MAP model. As we




are couching this as a minimisation problem, the fitness for in-
valid models is defined as the number of cities that do not appear
in the route (line 11). The remaining lines calculate the fitness
for valid models in the way previously described. To keep all
fitnesses for valid models between one and zero (and therefore
distinguish them from invalid ones), the fitness is calculated as:

1
~ totaldistance

f=1 (43)

4.6.5 Searching for the Optimal Route

For this example, the only genetic operator that we will use is
mutation. As the path size is proportional to the number of cities,
we need to have a fixed number of segments and so do not need
the creation or destruction operators. The simplicity of the route
metamodel also means that there will be no segment redundancy
(each segment will represent a Stop object).

As we are only using mutation, we illustrate the search with
the hill-climbing algorithm in MBMS. Appendix B.2.1 lists the
complete EOL code used to set up and define the search problem.
The set of neighbours is generated by duplicating the current so-
lution N times and mutating each gene with a given probability.

Parameter Setting

GENOTYPE TO PHENOTYPE MAPPING
number of segments 4o0rs5
number of feature pairs 1

Hirr CLIMBING ALGORITHM

maximum generations 50
number of neighbours 4
reproduction method single point crossover
mutation method integer mutation (random value)
mutation probability 0.5

4.6.6 Example: UK Cities

To briefly demonstrate the search, we have defined two simple
map models: one with four cities and one with five (see figure
4.23). Table 4.2 shows the parameters we used and figure 4.24
presents the results. The plots show the average results over ten
runs, each with a different random seed. On average the solution
converges after 40 generations for four cities, and 47 generations
for five cities. For completeness we compare the hill climbing
algorithm with random search. Random search was implemented
by defining the neighbourhood function as generating one totally
random individual (see Appendix B.2.2). Figure 4.24 shows that
random search does much worse on average. In particular, in

Table 4.2: Parameter set-

tings for the delivery man

problem.
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Figure 4.23: Visualisation

of map models.
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Summary

This section has shown step-by-step how it is possible to model
a problem, define a finitisation model and fitness function, and
apply search to discovering optimal models. The example used
is trivial, and does not utilise every aspect of the representation
presented in this chapter (such as the different genetic operators),
but the aim was to illustrate rather than explicate.

4.7 Discussion

This chapter has presented our generic, canonical, representation
for MDE models. We have defined a two-way mapping between
structured strings of integers and models that conform to a MOF
metamodel. This mapping utilises a user-defined set of data and
structural constraints, called finitisation information, which is ex-
pressed in a model. Commonly the set of models that conform
to a metamodel is huge, if not infinite, and so we limit its size
using the finitisation model, focusing search algorithms on areas
of the model space that we are interested in. Finitisation models
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are problem-specific and different finitisation models may be de-
veloped for the same metamodel. Some metamodels will define
meta-classes which aren’t relevant to all problems. Specifying dif-
ferent root classes in the finitisation model allows users to focus
on generating a subset of the elements defined by the metamodel.
Furthermore, users can explicitly ignore particular meta-classes
or meta-features.

In our representation, every model has a unique, canonical
form (with respect to its metamodel and finitisation model). How-
ever, models can actually have many genotypic equivalents: dif-
ferent genotypic individuals can map to the same model. This is
a result of the representation being redundant. We examine this
redundancy in chapter 7.

In gaining the ability to transform structured strings of integers
to models we are able to make use of the wealth of research into
SBSE practices. This means that it is now easy to utilise SBSE tech-
niques to tackle numerous problems found in the MDE domain.
As described in chapter 2, there have been some efforts in ap-

Figure 4.24: Converging on
the optimal solution for the
delivery man problem.
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plying SBSE techniques to MDE problems, but to date these have
used problem-specific representations, or very simple representa-
tions. Using our representation means that the user can focus on
developing the fitness function to evaluate candidate solutions,
and need not be concerned with any other aspects of metaheuris-
tic search.

We have developed a model-based metaheuristic search frame-
work (MBMS) which employs our Ecore-based implementation
of our representation, Crepe, at its core. The search history, con-
figuration parameters, finitisation information, and resulting so-
lution are all expressed as models in MBMS, and the search al-
gorithms and operations are defined as model management op-
erations. The MMOs have all been written in EOL — a generic
model management language. One can, however, view many of
the operations as different kinds of model transformation. For ex-
ample, the genotype-to-phenotype mapping is a model transfor-
mation where the source model conforms to the genotype meta-
model and the target model conforms to the given solution space
metamodel. Furthermore, the adaptation operations used by the
search algorithms are model transformations: crossover is a model
merge transformation, and mutation is a refactoring transforma-
tion. Each of these could have been implemented using the Ep-
silon Transformation Language (ETL) [94], a language designed
specifically for model-to-model transformation. Doing so would
have reduced the amount of code written to define these opera-
tions, arguably making them more maintainable. Unfortunately,
however, Epsilon doesn’t provide adequate support to combine
separate transformation languages together in an efficient man-
ner. Even though at this stage, we are not interested in fine-tuning
the performance of the MBMS framework, the overhead of sep-
arating each operation into ETL modules and combining them
with other EOL modules would be too great.

One benefit of a model-based metaheuristic search framework
is that the search history can be further inspected and even reused.
Using MMOs, the search space can be visualised, enabling algo-
rithm developers to validate their implementation, and allowing
users to gain insight into the landscape of their solution space.
Furthermore, the search model can be reused as a starting point
to subsequent searches.

Crepe has been implemented separately from MBMS to allow
the representation to be used for other, non-metaheuristic search-
related, tasks. In chapter 6 we used the representation to analyse
uncertainty in models using sensitivity analysis, and in section
8.2 we propose other uses of the representation.

In section 2.3 of the literature review chapter, we described a
recent proposal by Kessentini et al. for a framework to encode
MDE models for search [84]. Crepe and MBMS have a number of
advantages over the proposed framework, in particular with re-
spect to usability. One of our goals was to produce a framework



with a low entry barrier for MDE practitioners. Kessentini et al.’s
framework requires the user to define a transformation from the
metamodel of interest to a generic encoding metamodel (which is
arguably analogous to our genotype model), or define their own
problem-specific encoding metamodel (and the transformation to
it). This requires the user to have fundamental knowledge of rep-
resentations for search. Fitness functions are complex to imple-
ment in their framework as the user needs to either define them
with respect to the encoding metamodel, or define a second trans-
formation back to the problem’s native form. In our framework
the user simply needs to define a finitisation model and a fitness
function, which can be either in Java or EOL; all transformations
are managed automatically and so the user can focus their effort
on defining a quality fitness function.

We now discuss some of the limitations with our representa-
tion and its implementation.

4.7.1 Limitations

There are three main limitations of our representation and its im-
plementation. We address each in turn.

Minimum scoping The finitisation model allows users to spec-
ify the restrictions on the data values that can be encoded and also
on certain structural aspects of the models that can be encoded.
One of the structural finitisations allows a maximum scope to
be defined for particular meta-classes or features. This stops the
model growing too large, and therefore reduces the size of the
search space. We do not, however, currently support minimum
scoping. These are cases where a particular number of objects
conforming to a specific meta-class must exist in the model, or
where an association must reference at least one object.

There are three ways to address this in the current implemen-
tation. Firstly, increase the size of individuals in the search, there-
fore increasing the probability that meta-classes will be instan-
tianted multiple times. Secondly, the fitness function could heav-
ily punish those solutions who do not meet the minimim scoping
rules. Thirdly, one could resolve the issue in the fitness function.
Where objects are missing, they could be created by the fitness
function following some user-defined systematic procedure. This
would actually mean that some individuals ‘accidentally” encode
more information than expected, but as all candidate solutions
would be subjected to this procedure, it should not affect the per-
formance of the search algorithm (though this claim would need
to be thoroughly tested).

Custom datatypes Although the finitisation model supports
limiting primitive data types such as strings, integers and dou-
bles, it does not currently support custom data types. Metamod-

95



SCustom validators are cre-
ated using the EMF Vali-
dation Framework: http:

//www.eclipse.org/modeling/
emf/?project=validation

96

G W N R

els may need to define attributes that are not primitively typed
or references to objects that are not defined in the metamodel.
For example, one might wish to define a reference to a class in a
custom Java library. To support this, Ecore allows external Java
classes to be captured in the model as custom data types, which
can then be assigned as meta-class attribute’s type. As this en-
ables users to specify any Java class, our representation doesn’t
support these custom data types and any attributes referencing
them are automatically ignored. However, a potential solution to
this issue would be to allow the user to provide a resource pool
of custom data type objects and reference elements in the pool —
similar to how Basic OOGP works (see section 4.2.1).

Model validation A metamodel is only able to constrain the
structure of the model space it represents. In practice more con-
straints are required in order to properly represent the domain
being modelled. Commonly, metamodels are augmented with
constraints written in a language such as OCL [61] or EVL [93].
Such constraints include specifying invariants on meta-classes, or
defining relations between features. Take for instance, the zoo ex-
ample from section 2.1 (figures 2.2 and 2.3), we could define two
invariants on the Cage meta-class using OCL:

context Cage inv:
self .spaceAvailable >= 3 and self.spaceAvailable <= 30

context Cage inv:
self .animals—>collect(a | a.spaceRequired).sum() <= self.
spaceAvailable

Listing 4.11: Example OCL constraints for the zoo metamodel from
figure 2.2.

The first invariant provides some domain information about
the sizes of cages that can be purchase by the zoo. The second
invariants states that all animals in every cage need to have the
appropriate amount of space. Crepe does not currently consider
these extra constraints and so may generate models that would
not pass this kind of domain validation. Some constraints can
be encapsulated in the finitisation model. For instance, the first
constraint above can be defined as a feature range finitisation.
We cannot, however, capture more complex constraints, such as
the second constraint above, in the finitisation model. To address
this, we considered incorporating validation into the genotype-
to-phenotype transformation. EMF allows metamodel developers
to create a model validator>, which could be used by the trans-
formation to ensure it doesn’t take an invalid action. However,
including validation in the transformation is not a trivial process.
For instance, we would need to determine the point at which we
validate the model. Do we validate once the entire mapping pro-
cess has completed? What do we then do with models that failed
validation? Do we throw the model away, somehow punish the
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fitness of that model, or even attempt to fix the models so that
it passes validation? Rather than validating once the model has
been produced, do we instead validate every time we set a feature
or create an object? This may inhibit any interesting models from
being created as it is likely that the process would need to go
through a few “invalid” assignments to produce an instance that
is valid. The complex interconnections between model objects
make this approach impractical. Meyer’s book, Object Oriented
Software Construction [109, chapters 11.8 and 11.9], discusses this
non-trivial issue in detail for class invariants of object-oriented
programs.

Due to these problems, we leave this as future work and pro-
pose that these extra constraints be captured in the fitness func-
tion in order to provide more accurate guidance for the search
algorithm. This also side-steps the issue of tying the implemen-
tation to a specific validation framework — it is unreasonable to
ask users to implement custom EMF validators if they've already
defined their constraints in OCL or EVL.
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Applying Search to Models
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Searching for Optimal Models

THE LITERATURE SURVEYED in section 2.3 uncovered a number of
existing approaches that attempt to discover models using SBSE
techniques. The problems addressed covered test model selection
[145, 46, 21], discovering behaviour models [59, 58], finding op-
timal system models [138, 136, 105], and analysing the trade offs
between competing requirements [18]. Furthermore, there were
a selection of papers that attempted to optimise existing models
[30, 141, 156, 158].

There is much scope for applying SBSE techniques to search for
optimal models. The challenge lies in defining an adequate fitness
function to tailor MBMS to the problem. In this chapter, we use
Crepe and MBMS to address the video game problem proposed
in section 3.2, discussing how Crepe compares to the prototype
representation described in chapter 3 and [186]. Furthermore, we
utilise Crepe and MBMS to extract a model of runtime system
behaviour from a corpus of system logs. This behaviour model
can then enable other systems to adapt their own behaviour in
order to optimally fulfil their goals.

Chapter Contributions The contributions of this chapter are
summarised below.

* Anapplication of Crepe and MBMS to discover optimal models
in the context of a video game.

* A model- and search-based approach to self-adaptation at the
component level. In particular, we perform a principled analy-
sis of the efficacy of using the representation to extract a model
of system behaviour using different strategies.

Chapter Structure Section 5.1 uses Crepe and MBMS to dis-
cover optimal opponents in the Super Awesome Fighter video
game. We show that a genetic algorithm outperforms random
search, demonstrating that the problem isn’t trivial and that our
approach is effective. Section 5.2 defines a model- and search-
based approach to applying component-level self-adaptation. We
investigate the feasibility of, and different tactics for, using meta-
heuristic search to extract a model of a SAF character, based on
the log files produced from a set of fights. The model extraction
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task proves particularly challenging, and we perform an inves-
tigation into whether tuning the parameters of MBMS has any
effect. We find that the results improve only slightly and posit
why this might be the case: the difficulty of the problem. We
show that a genetic algorithm outperforms random search, and
investigate three factors that affect the results.

5.1 FDL Search: Crepe

To provide a comparison between the original Grammatical Evo-
lution-based implementation and our new generic representation
of models, we apply Crepe and MBMS to the SAF problem set
out in section 3.2. In the GE implementation, the phenotype was
a string conforming to the Fighter Description Language. As pre-
viously discussed, although textual, FDL has a metamodel and it
is this metamodel to which we can apply our search framework.

To remind the reader of the experimental questions for SAF
that we set out in section 3.2, they are listed below:

EX1 Is it possible to specify unbeatable fighters? If a fighter can
be unbeatable, it may be necessary to either amend the game
play or restrict the Fighter Description Language to limit the
possibility of a human player specifying such a fighter.

EX2 Is it possible to derive a fighter that wins 80% of its fights
against a range of other fighters? Such a fighter could be used
as the pre-defined non-player opponent since it would provide
an interesting, but not impossible, challenge for human play-
ers. The figure of 80% is an arbitrary choice that we believe rep-
resents a reasonably challenging opponent for human players.
It acts as an illustration of discovering a fighter of a specified
quality.

Our aim in repeating these experiments is to, firstly, determine
that the search framework that we have built on top of our MDE-
model representation is effective, and secondly to highlight the
the strengths of weaknesses between the original GE implemen-
tation and our new implementation. A direct comparison of the
algorithms is not possible as they are distinct implementations
of distinct algorithms, but we hope to draw some interesting in-
sights into both. As with the original GE experiments, we com-
pare a GA against random search in the expectation that the GA
outperforms the random search algorithm and thus illustrating
the evolvability of the representation.

This section shows the process of and the results of using our
search framework to address the SAF search goals. Section 5.1.1
shows how the current metamodel of FDL creates a vastly com-
plex solution space, causing our framework to struggle to find
valid solutions. Section 5.1.2 then shows how we can develop



a simplified, but equivalent, metamodel for FDL that is more
amenable to search. Section 5.1.3 discusses the results of these
experiments and finally section 5.1.4 compares them with the re-
sults from the GE experiments.

5.1.1 Searching FDL

The metamodel produced by EmfText for the FDL language is
show in figure 5.1. You can see that a Bot contains a reference
to a Personality object and a Behaviour object, each of which have
references to sets of Characteristics and Rules, respectively. Rule
Conditions are expressed using subclassing to distinguish atomic
conditions from the two composite conditions. Choice of action
is captured using arrays of action types (MoveActionType and Figh-
tActionType).
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= walk_towards much_weaker
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run_towards
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The objective of this evaluation is to provide a comparison be-
tween the GE representation of models and our generic represen-
tation of models. Therefore in order to apply our search frame-
work to the FDL metamodel and thereby repeat our earlier SAF
experiments, we need to define a finitisation model. The root
class is the Bot class, and the values of Characteristics needs to be
finitised to the range 1..10. Furthermore, we need to define a max-
imum scope of 1 for the Personality and Behaviour classes. This is
because Bot objects can only reference one of each, and if we al-
low the framework to produce many, we have to delete all but
one. This may produce a large amount of genotypic redundancy
as any Characteristics or Rules assigned to the deleted objects will
also be deleted.

When attempting to apply search over the FDL metamodel,

= type : ConditionType

parts 2

E CompositeCondition|

|‘F‘F

H AndCondition H orCondition

Figure 5.1: The Ecore meta-
model for the Fighter De-
scription Language; repeat
of figure 3.1.
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it quickly became apparent that the metamodel is not conducive
to our representation. The number of indirect references make
it very difficult to produce models that are valid with respect to
constraints that the metamodel does not express. For example,
to create a rule with an ‘and” condition, we need to produce an
AndCondition object, which references two AtomicCondition objects
and is referenced by a particular Rule object. One complete rule
requires up to six objects to be created and have their references
correctly assigned. This means that for every rule, six segments
in an individual need to be configured correctly. This proved a
challenge for the search framework, as it struggled to produce
valid rules — even trying cases where individuals consisted of 200
segments were unable to easily produce valid rules, and the time
taken to produce such large models made it impractical to per-
form a complete search. Instead, we decided to define a sim-
plified, yet equivalent, metamodel that is more amenable to the
representation and search framework, and also include some do-
main validation in the fitness function. We also defined a model
transformation from this metamodel to the original.

5.1.2 Remodelling SAF for Search

Figure 5.2 shows our ‘simplified” metamodel for FDL. Although
containing more classes than the original metamodel, it has been
defined so as to minimise redundancy and maximise the chances
of producing valid models. Firstly, the Personality explicitly cap-
tures the characteristics” values. Secondly, BehaviourRules are now
contained directly by the root class, Model. This removes the need
for any class scoping. Conditions are very similar to the origi-
nal, with a small change in the way composite conditions are
expressed. Separating the two conditions into their own features
means that the search algorithm can assign values to them di-
rectly; other abstractions (such as an array) would lead to more
complicated code. Another constraint that is not captured in the
vanilla FDL metamodel is the requirement that there is a rule
with the always condition (see section 3.3.4). We enforce this by
defining a special AlwaysRule class that is contained directly by the
Model. Both BehaviourRule and AlwaysRule are abstract and contain
four concrete implementations, each of which has a different con-
figuration of action choice. We did this because whilst attempting
to generate vanilla FDL models, we found that, due to the large
number of feature pairs and actions being represented as an array;,
the mapping rarely produced rules which didn’t contain choices.
Separating action choice the way we have in figure 5.2 gives all
four combinations equal chance of occurring in the generated rule
set.

We found in initial tests that individuals with between 30 and
50 segments were adequate to produce valid and interesting fight-
ers without impacting performance of the search algorithm.
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It may seem unreasonable for a user of our framework to pro-
duce a new metamodel for their problem, however we speculate
that we could automatically produce the search-amenable meta-
model by detecting “bad smells” in the metamodels and defining
patterns for how to deal with them. We leave this as future work.
Furthermore, it is not uncommon to resorting to solving abstrac-
tions when the cost or complexity of solving a problem is high.

5.1.3 Implementation and Results

The finitisation model for this metamodel is very straightforward.
We simply restrict each of the features in the Personality class to be
between one and ten. Although we have defined this metamodel
to reduce the number of invalid models that the search frame-
work encounters, it is still possible to produce invalid models. To
account for this, our fitness function provides a destructive vali-
dation process: if a rule is not valid, it is deleted from the model.
If the resulting model has no rules, then that model is assigned
the worst possible fitness. The rules are deleted from the pheno-
type only: the associated genotype segments become redundant,
and may be reactivated in a future generation via mutation.

E AlwaysRuleWithMoveChoice

45 moveActions : MoveActionType |_|
= fightAction : FightActionType
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operation doEvaluateFitness(candidate MM! EObject) : Real {
if (not candidate.validate()) {
return MAX_FITNESS;
}

var victories = fightTool.fight(candidate.toFdlString(),
numFightsPerOpponent, gameLimit) ;

return ((targetPercentage * numOpponents =
numFightsPerOpponent) . floor () — victories).abs();

Listing 5.1: The fitness function used to evaluate candidate fighters.

Listing 5.1 shows an excerpt from the fitness function. In order
to analyse the fitness of a candidate solution, we fight it against
the same human-defined panel of opponents as in the GE exper-
iments. To do this, we defined an Epsilon tool (fightTool in listing
5.1) which takes the candidate fighter, fights it against the panel,
and returns the number of victorious fights. To avoid performing
a model-to-model transformation to the vanilla FDL metamodel,
we defined a simple model-to-text transformation that produces
a valid FDL string. The custom Epsilon tool then uses the FDL
parser to read the string and use it with SAF. The fitness of each
candidate solution is then calculated as in equation 3.1.

Parameter Setting

GENOTYPE TO PHENOTYPE MAPPING

Number of segments 30..50

Number of feature pairs 10..20

GENETIC ALGORITHM

Maximum generations 50
Population size 20
Selection method (for reproduction) Tournament, size 2
Number of elite individuals 2
Reproduction method Single point crossover
Mutation method Integer mutation (random value)
Mutation probability 0.1 (uniform)
Segment destruction probability 0.15
Segment creation probability 0.15

FITNESS METRIC

Number of opponents (1opps) 7
Number of fights (Tlﬁghts) 5
Table 5.1: Parameter

settings for the genetic
algorithm, genotype-to-
phenotype mapping, and
fitness metric.
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In order to provide a fair comparison with the GE implemen-
tation, we kept as many algorithm settings as possible the same
— shown in table 5.1. We used uniform mutation, and selected
arbitrary values for the creation and destruction operator proba-
bilities. As with the original implementation, no substantial effort
was made to tune the parameter settings. Once again, random
search was implemented by assigning the mutation probability to




1.0 and keeping all other parameters the same.

Response As with the GE case study, we performed four ex-
periments: one for each combination of question (EX1 or EX2)
and algorithm (GA or random search). Each experiment was re-
peated 30 times, each with a different seed to the pseudo-random
number generator.

Results and Analysis The results of the four experiments are
shown in table 5.2. As you can see, the GA met its goal 100% of
the time, in both experiments. Furthermore, random search was
able to find an optimal solution in all 30 repetitions of EX1, but
struggled with EX2 — only achieving a 67% success rate. For EX2,
the GA found the optimal solution in an average of 10.9 gener-
ations. For EX1, both the GA and random search always found
an optimal solution, therefore we need to compare them further
to ensure that the GA is effective and that the problem isn’t so
simple that random search finds optimal solutions easily. The GA
took on average 5.4 generations to converge on an optimal solu-
tion for EX1, whereas random search averaged 13.2 generations.
The results of an unpaired ¢-test showed that the this result is sta-
tistically significant (p = 0.003), meaning that the GA was able to
navigate the search space effectively. As illustrated in figure 5.3,
the GA found the optimal solution in less than ten generations
80% of the time, and always in less than 15 generations. Random
search managed to find an optimal solution in ten generations
60% of the time, 70% in less than 15 generations, and 100% in at
most 43 generations.

Genetic algorithm

Random search

Experimental Question

% successful Avg gens % successful Avg gens

EX1 (p =1.0) 100 5.4
EX2 (p =0.8) 100 10.9

100 13.2
67 -

What is surprising with these results (especially when com-
pared to the original GE results) is how well random search per-
forms. This, combined with the efficiency of the GA, suggests
that the SAF problem isn’t too difficult to solve by our repre-
sentation and search framework. However, as the results show,
random search takes on average 2.4 times longer to find an op-
timal solution than the GA. One question to ask, therefore, is
whether these results extend to more complex problems: if this
relationship holds then the more difficult the problem, the more
impractical random search becomes.

5.1.4 Comparison of GE versus Crepe

Previous works that have looked at comparing metaheuristics on
the same problem, e.g. [146, 101, 26, 6], aim to keep the com-

Table 5.2: The results for
the four experiments. Where
an algorithm was 100% suc-
cessful at finding an optimal
solution, we also list the av-
erage number of generations
that it took to converge.
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Generations to converge on the optimal solution

Figure 5.3: Illustration of
how long it took each repe-
tition to converge on an op-
timal solution. The Y-axis
shows the proportion of rep-
etitions that have converged.
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parison fair by using the same representation (and therefore the
same search landscape) throughout. This is something that we
have been unable to do, due to the distinctness of the techniques.
Moreover, Rothlauf argues that the choice of representation is vi-
tal for the performance of a metaheuristic algorithm [147]. There-
fore, one might argue that it is unfair to compare algorithms on
the same representation as it may be biased towards certain algo-
rithms. As such, it is difficult to fairly compare the performance
of Crepe against the GE-based prototype implemented, however
we can address other aspects.

As previously mentioned in section 3.4, research has shown
that GE has low locality and is outperformed by GP on many
benchmark problems. The low locality of GE is one possible rea-
son for Crepe outperforming it on the SAF example. For instance,
for EX1 GE was only able to find an optimal solution approxi-
mately 67% of the time, compared to Crepe’s 100%. However,
the performance of random search suggests that the model-based
representation used in Crepe produces a search landscape with
many peaks.

We now address the disadvantages of GE that we described in
section 3.4. GE is suited to textual languages (as it was designed
for), the metamodels of which Crepe struggles with and a refac-
toring was required. Therefore, although Crepe can be applied
to textual DSLs, it may require the metamodel to be refactored
into a more amenable form. Crepe does, however, support cross-
referencing (both intra-model and inter-model) and has the ability



to specify data in a way that is decoupled from the metamodel.

5.1.5 Summary

This section has applied Crepe and MBMS to tackling the SAF
problem defined in section 3.2. We have discovered that the abil-
ity of Crepe to effectively solve a problem is closely related to the
metamodel being used to define the solution space. As a conse-
quence of this, when using Crepe, one may be required to refactor
their metamodel. This refactoring follows a specific set of rules:
flattening the meta-class hierarchy and reducing the number of
references. As such, we posit that it may be possible to automat-
ically optimise metamodels for use with Crepe. This will require
Crepe to be applied to many problems, and so we leave this as
future work.

5.2 Runtime Adaptation

Software that can adapt to changes in its environment without, or
with minimal, human intervention is a key challenge in current
software development [24]. One method of deciding upon the
most appropriate adaptation to perform is to utilise metaheuris-
tic optimisation techniques. These techniques may be used to ef-
ficiently locate (near) optimal solutions by assessing how close
candidate solutions are to solving a problem and using this in-
formation to guide the search over the the space of all possible
solutions [65, 62]. Therefore, in reformulating system adaptation
as an optimisation problem, these techniques can be applied.
The previous section demonstrated that it is possible to se-
lect interesting opponents for a given human-defined player. In
essence, the system (the SAF game) is responding to its input (the
human player(s)): for different human players, different oppo-
nents will be selected. The player then attempts to improve their
fighter at the end of each game in order to win more fights. In
a directly interactive game, where the fighter’s behaviour is de-
fined dynamically using, for example, a joystick, one can imagine
a case where the game attempts to learn patterns in the player’s
behaviour in order to select suitable opponents. An opponent’s
behaviour could be even updated during a fight as the game
learns more about the human. This kind of system response is
analogous to system adaptation at runtime. France et al. [49]
identify the utilisation of models at runtime as one of the im-
portant research areas for the coming years. In section 2.3.2 we
presented existing work that has addressed the challenge of opti-
mising models at runtime. For instance, Ramirez and Cheng [136]
use metaheuristics to discover optimal system configurations at
runtime. These configurations are represented as a graph of in-
terconnected system components. A genetic algorithm is used to
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activate and deactivate links between components in the hunt for
an optimal configuration, using sensory information from the en-
vironment to evaluate candidate configurations. Earlier work by
Goldsby and Cheng [59] uses metaheuristics to discover optimal
component behaviour models (represented as state machines).
Performance issues, related to an expensive fitness function (see
section 2.3.1) and the time taken to generate models, were cited
for this technique as only being effective at design time [136].

The focus in this section is adaptation at the component level,
providing a fine-grained level of adaptation whilst aiming to over-
come the performance issues encountered by Goldsby and Cheng
[59]. Rather than encoding static information from the environ-
ment in fitness functions (as in [136]), our approach uses meta-
heuristics to extract a model of the environment’s dynamic be-
haviour. From this environment model, we apply a second meta-
heuristic to discover a model of the optimal system/component
behaviour. To achieve this, we use our generic search-amenable
representation of models — meaning that our approach can be
applied to any problem domain where adaptable parts of the
system, and the environment’s behaviour, can be expressed as
a model. It is worth noting that, in general, modelling the be-
haviour of the environment can be very challenging and expen-
sive.

We apply our approach to adaptation in the context of SAF.
Our work in the previous section demonstrates the game adapt-
ing to the player’s behaviour by selecting appropriate opponents.
The experiment, however, was unrealistic in the sense that a real
human interacting with a game using a joystick or similar, would
not follow such a strict set of rules and would in fact behave more
inconsistently. In this section, we use a search-based approach to
extract a model of the human player’s behaviour based on a col-
lection of fight log information. The extracted model can then be
used to select opponents in the way previously presented.

We describe the background behind self-adaptive systems and
using models at runtime, as well as related work, in section 5.2.1.
In section 5.2.2, we outline our model- and search-based approach
to performing runtime adaptation. Section 5.2.3 tailors the ap-
proach to SAF and illustrates the need for a two step process
for extracting the model. In section 5.2.4, we perform a detailed,
principled experiment that investigates whether Crepe can suc-
cessfully extract FDL models from fight logs. We compare a ge-
netic algorithm to random search on 18 variations of the problem,
altering the complexity of the human, introducing noise into the
log files, and applying different seeding strategies. Furthermore,
we tune the parameters of Crepe in order to optimise the perfor-
mance of each experiment.



5.2.1 Background and Related Work

The inherent uncertainty found in software development makes
it very challenging to be able to accurately predict how a system
should behave in every situation, especially those which could
not be foreseen [23, 24, 154]. Manually reconfiguring software at
runtime is costly and so many modern systems need to be able to
autonomously adapt to dynamic operating contexts [24, 154, 118].
Whereas traditional software has been implemented as an open-
loop system, self-adaptive software is a closed-loop system where
the environment and the system itself provides the feedback in
the loop [154]. Cheng et al. [24], the output of a Dagstuhl semi-
nar, present a research roadmap on software engineering for self-
adaptive systems. With respect to the challenges laid out in [118],
they claim that:

... software systems must become more versatile, flexible, resilient,
dependable, robust, energy-efficient, recoverable, customizable, con-
figurable, and self-optimizing by adapting to changing operational
contexts, environments or system characteristics. [24]

Adding to this, Salehie and Tahvildari [154] state:

The primary reason (for needing self-adaptive software) is the in-
creasing cost of handling the complexity of software systems to
achieve their goals. Among these goals, some deal with manage-
ment complexity, robustness in handling unexpected conditions
(e.g., failure), changing priorities and policies governing the goals,
and changing conditions (e.g., in the context of mobility).

Thus, an important research topic today are systems that can
self-adapt; the common element that provides this self-adaptation
is software [24]. In 2003, IBM released the seminal paper that out-
lined the adaptivity-related properties that software should have
in order to fulfil these goals — these properties are known as self-*
properties [83]. The properties include the abilities of: adjusting
configuration properties, optimising the system to increase per-
formance, identifying and fixing issues, and protecting from at-
tack; all of which needs to be performed autonomously.

Figure 5.4 shows the autonomous process that self-adaptive
systems commonly follow. Briefly, the system monitors and col-
lects information from the environment in which is it resides, this
information is analysed and used to decide on the most appropriate
response, which the system then enacts.

Runtime Adaptation and Search Cheng et al. [24] summarise
the state-of-the-art in software engineering for self-adaptive sys-
tems. One of the research challenges of self-adaptive systems
raised in [24] is performing trade-off analysis between potentially
conflicting goals. SBSE techniques have been developed for multi-
objective problems such as this [62].

There have been a few attempts at using search techniques to
aid runtime adaptation. As mentioned, Goldsby and Cheng [59]
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Figure 5.4: The control
loop of self-adaptive systems.
Adapted from [24].
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use search to discover resilient behaviour models (state diagrams)
of autonomic systems, focusing on aiding the development of sys-
tems at design time, as opposed to adapting an existing system
at runtime. Ramirez et al. [136] use search to dynamically self-
configure systems at runtime. They evolve simple graph-based
representations of systems; the work presented in this section is
generic to finding system models conforming to any metamodel.
Our approach extracts a behaviour model of the environment
from which to discover optimal system models whereas [136] uses
sensory data to directly influence their system model search.
Search has successfully been applied to the other cases of infer-
ring information from a corpus (i.e. model extraction). Ratcliff et
al. [139] use genetic programming to infer code invariants from
a corpus of program traces. Wyard [188] demonstrates the use of
genetic algorithms to infer context-free grammars from a corpus
of strings. Kammeyer and Belew [80] apply a combination of ge-
netic algorithm and local search to a more complicated grammar
inference problem: that of stochastic context-free grammars.

Utilising Models at Runtime Using models at runtime al-
lows application-level (as opposed to code-level) reasoning about
the system, and enables design-time requirements to easily be
mapped to runtime behaviour [100, 157].

Ferry et al. [45] argue that defining metamodels for key sys-
tem components enables system behaviour and the adaptation
process to be validated at runtime. They propose a process that
uses model transformations to adapt composite services based on
given rules. Lehmann et al. [100] provide guidance for defining
metamodels for runtime models, and present a task-specific mod-
elling language for formalising runtime metamodels. Sanchez et
al. [157] define an extensible platform for utilising executable
runtime models. The platform uses extensible metamodels which



enables application-agnostic monitoring and adaptation tools to
be developed.

Runtime models have been shown to be beneficial for self-adaptive
systems, but there has only been a small number of attempts to
utilise search to aid runtime adaptation. The next section outlines
our approach to runtime adaptation that utilises both models and
SBSE.

5.2.2 A Model- and Search-Based Approach for Run-
time Adaptation

In this section, we describe our approach to self-adaptation at
runtime which utilises both models and search. The approach is
built around three key ideas:

1. The data being produced by/monitored from the environment is cap-
tured in a model.

The sensory data being emitted from the environment can be
challenging to manage or interpret, and require complex sup-
porting tools [157]. For instance, mapping runtime data to
business goals can be difficult [157]. Runtime monitoring mod-
els address this by capturing the the runtime information in
terms of the domain, enabling better runtime decision making
[157]. In our approach, this data model is used to aid in the
extraction of a behaviour model of the environment.

2. The environment’s behaviour can be modelled.

Our approach aims to transform the environment data model
into a model that describes how the environment is behaving.
This could be, for example, a set of rules or a finite state ma-
chine. By determining a model of the environment’s behaviour,
we can use metaheuristic search to discover a model of the op-
timal system/component behaviour in response to the envi-
ronment.

3. The adaptable part(s) of the system is expressed as a model (or can
be updated from a model, e.g. via a model transformation)

As demonstrated in SAF, where models of fighters are queried
in order to play the game, models can be physical components
of a system. When designing a system that needs to be able
to support self-adaptation at the component level, the design-
er/developer knows which part(s) of the system will be adapt-
ing and can develop metamodels to capture those elements at
a higher-level of abstraction [100]. Sanchez et al.’s Cumbia plat-
form [157], for instance, utilises executable runtime models for
this purpose.

Figure 5.5 shows our runtime adaptation approach that com-
bines the use of models and metaheuristic search. The first step
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Figure 5.5: The process of
extracting a model of the en-
vironment and using it to
search for optimal system be-
haviour.
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in the process is to capture the environmental monitoring data
in a model, called the data model. This model acts is the input
to a search algorithm which aims to extract a model that can ex-
press the behaviour of the environment. This behaviour model
then drives an optimisation algorithm that aims to derive the ap-
propriate system response: i.e. an updated version of the model
of the adaptable part(s) of the system.

responds
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We now overview the steps taken in our approach. They follow
the collect, analyse, decide, act control loop of self-adaptive systems

(figure 5.4).

Step 1: Capture a Model of the Environment Sensory information is
the basis for determining the appropriate adaptation. Figure
5.4 lists a number of sources that produce this data. Selecting
an appropriate way to collect this data is domain-specific. Us-
ing metamodels here can relate this information to parts of the
system, or to system requirements. Furthermore, it allows the
information to be used with model management operations,
such as model transformations, to aid in the decision making
process.

Step 2: Extracting a Model of the Environment’s Behaviour A model
can be extracted from a corpus of data in numerous ways, for
example using game theory or inference from domain knowl-
edge [24]. In our approach, we examine an extraction pro-
cess based on metaheuristic optimisation. The process assumes
the existence of two metamodels: one that meaningfully cap-
tures data coming from the environment (i.e. the data model);
and another that represents the environment’s behaviour — this
could, for example, be a state machine or a domain-specific
model. The information contained in the environment data
model is used to guide the metaheuristic algorithm to infer
the model of environment’s behaviour. In order to infer the



behaviour model, we utilise our generic, search-amenable rep-
resentation of models defined in chapter 4. For model extrac-
tion purposes, we search over the space of environment be-
haviour models (defined by the metamodel) using the envi-
ronment data model to guide the search.

Step 3: Discover the Optimal System Response The environment be-
haviour model becomes the input to a second genetic algo-
rithm which aims to discover the optimal response that the
system should perform.

Step 4: Update the System The optimal system model can then be
used to update the running application. If the adaptable com-
ponent is itself a model, then a simple model replacement
could be performance. Alternatively, a model transformation
(e.g. to generate new configuration files) could be performed,
or some other domain-specific action will be taken.

Near-Optimality In terms of implementation, the search algo-
rithms would occur in the background whilst the system main-
tains its current behaviour. Ferry et al. [45] call this the tran-
sitional state. However, resources permitting, this optimal be-
haviour search could occur continuously throughout the system’s
lifetime. The ever-updating environment data model could adjust
the fitness function on a periodic basis.

One of the benefits of using a metaheuristic approach to ex-
tracting the environment behaviour model, as opposed to a con-
structive approach, is that there is always a ‘best’ solution. If re-
sponse time is a major factor, metaheuristic search could provide
a solution that is ‘good-enough’ if not optimal. Furthermore, a
good-enough solution could be selected and the system adapted,
but the GA could continue to execute in an attempt to discover
a better solution. The system could then be updated with its op-
timal behaviour at a later time, however the good-enough model
ensured that it performed adequately until then. Each solution
can be assigned a confidence score — a function of its fitness and
the time allotted to produce it.

Potential Application Areas In the subsequent section, we
apply the above approach to extracting a model of player be-
haviour in SAF. Determining, and responding to, a player’s be-
haviour or skill level can obviously be very useful in computer
games — balancing game difficulty is a challenging and delicate
task [172, 12]. Moreover, the gamification of software-related prob-
lems is becoming an increasingly popular topic. This is where
the concepts used in computer games are applied to other situa-
tions in order to encourage user engagement or enjoyment”. The
leading conference series on the ways humans interact with com-
puters, Conference on Human Factors in Computing Systems (CHI),
has hosted a workshop on gamification since 2011, and a recent

"www.gamification.org
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search on the DBLP Computer Science Bibliography [33] (date 27
August 2013) returned 60 publications (10 journal, 50 conference
or workshop) and the ACM Digital Library [47] (date 27 August
2013) returned 276 publications for the keyword ‘gamification’.
Our approach may prove useful in these gamification applica-
tions.

Games and gamification applications are not the only areas
where our approach can be applied. Our approach targets situ-
ations where the environment exhibits tangible behaviour, as op-
posed to single-state readings. Take, for example, a popular web-
based application such as a university library search engine. The
university provides a number of web servers that are used to re-
spond to the library application requests. The number of page
requests received by the application will vary at different times of
the day. By monitoring the requests received over a day, one could
extract a model of the website traffic. This could then be used to
determine the appropriate number of web servers to deploy in or-
der to maximise throughput and minimise response time. Servers
that are not used are a cost to the university, so extracting this in-
formation would help them save money. Extracting a model of
requests (the environment behaviour model) based on the time of
day isn’t particularly challenging and would not require a meta-
heuristic search algorithm. However, a simple analysis of a single
day may miss patterns of behaviour. Website traffic will increase
not only based on the time of day, but also the day of the week,
and even the time of year. It is likely that traffic will increase in
the time running up to coursework deadlines or the exam period.
Metaheuristics could be used to detect interesting patterns in the
website traffic that would enable the library to better managed
the traffic whilst cutting costs.

With respect to the case studies used in the literature, there
are a number of scenarios in which an environment behaviour
model may be beneficial. For instance, Schneider and Becker [160]
discuss the need for runtime adaptation in Ambient Assisted Liv-
ing (AAL) systems: used primarily to aid the less able bodied.
Different individuals and living environments require different
behaviours from the AALs, and these requirements may change
over time (e.g. as the user ages) [160]. Extracting a model of the
environment (the individual and their living space) could help
this adaptation.

5.2.3 Case Study: Adaptation in SAF

In section 5.1, we demonstrated how we could select suitable op-
ponents based on a given FDL model of a fighter. In this section
we focus on describing the steps needed to extract a FDL model
from a collection of fight traces. Once this model has been ex-
tracted it can be input to the metaheuristic technique presented
in section 5.1.



In SAF’s current form, player’s specify their behaviour using a
FDL model, which may not accurately reflect human behaviour in
a more interactive, reactive game. To address this, when generat-
ing the fight logs, our experiments (section 5.2.4) create a number
of mutants of the human model as a method of introducing non-
uniform behaviour into the data to better simulate the behaviour
of a human player. Having the original FDL model of the actual
human, however, does allow us to validate the extracted model
by comparing it against the human model.
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Figure 5.6 illustrates how adaptation could occur in a game
similar to SAF. The most recent behavioural information is used
to extract an up-to-date model of the player’s behaviour. This
model is then fed in to our metaheuristic-based opponent selector
(the search algorithm described in section 5.1 and [186]) and a
(set of) suitable opponent(s) is selected. Adaptation could take
place between fights, or even during a fight (where the opponent’s
behaviour is updated in place).

We now describe how we can apply our adaptation approach
to SAF by exploring how the key aspects of the approach apply
to SAFE. In the remainder of this section, we make the assumption
that SAF is now a directly interactive game, controlled using a
joystick, but opponent behaviour is still specified in FDL. Section
5.2.4, which performs a principled experiment around applying
our adaptation approach to SAF, simulates human interaction by
mutating the original human FDL model and selecting mutants
at random for the fights used to produce the trace log.

Figure 5.6: The proposed
adaptation loop for automat-
ically selecting opponents in
SAF based on the logs of a
player’s behaviour.
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Figure 5.7: The data meta-
model defined to meaning-
fully capture the informa-
tion contained in SAF log

files.
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The Environment SAF produces a log file for each fight that
takes place, formatted as follows:

Ply, Ply, Ply, Plg; P2y, P2y, P2y, P25

where PN refers to either player one or player two; X is the
player’s position; H is the player’s health; and M and F are the
player’s movement action and fight action that they are perform-
ing. Some actions in SAF take more than one time step. In these
cases, the game logs the player as being blocked and stops the
player from performing another action. The contents of the log
files are the behaviour trace being produced by the environment.

E FightTranscript

singleConditions [ O\ conditionPairs

E singleCondition

[ ConditionPair

= condition : EString
= moveAction : EString
= fightAction : EString
= frequency : EInt

= conditionl : EString
= condition2 : EString
= moveAction : EString
= fightAction : EString

= frequency : Eint

As shown in figure 5.6, we extract the data model from the log
being produced by SAF. We have defined a data metamodel (fig-
ure 5.7) to capture the information contained in the logs in a more
useful way — frequency counts of conditions and actions. In every
game state, there are always two conditions that are applicable.
This is due to the fact that conditions come in two distinct cat-
egories: those related to health (e.g. much_weaker, stronger) and
those related to distance from the opponent (far, near). Exactly
one condition from each category will be applicable in each game
state. Therefore, our data model captures the log file informa-
tion in two ways. Firstly, it captures the frequencies of actions
against single conditions, and secondly, it captures the frequen-
cies of actions against pairs of conditions. The two conditions
applicable in each game state are calculated using the same rules
that SAF uses. For example, the condition near is applicable when
|P1x — P2x| <5.

Logging two conditions in every state makes manually infer-
ring the player’s behaviour rules very tricky. When defining be-
haviour rules in FDL, the player is not required to specify two
conditions and so a rule whose only condition is near may be exe-
cuted in any of the health-related conditions. Therefore, although
manual inference of the behaviour rules initially seemed trivial,
further inspection suggested that it is not and therefore might be
a good candidate for metaheuristic optimisation.

Partial Model Extraction The logs produced by SAF only
give information about the behaviour rules of the fighter, and



not its personality. This information cannot be extracted from the
data model* and so we propose a two stage extraction process.
Firstly, we extract the behaviour rules from the data model using
a genetic algorithm (GA), and then we use a hill climbing algorithm
to discover the personality parameters and thus complete the en-
vironment behaviour model. We use a GA to discover the rules
because the behaviour rules are complex and interrelated, mean-
ing that there are likely to be many local optima which makes
the problem unsuitable for hill climbing. To discover the person-
ality parameters, however, the search space is much smaller and
contains fewer local optima and so hill climbing is used.

To evaluate the fitness of a candidate set of behaviour rules (a
solution in the GA), we constrast them against the information
contained in the data model. Each condition pair entry in the
data model is passed to the candidate solution as if it were a game
state in which the candidate solution was participating. The first
rule in the candidate solution that is applicable with respect to
the pair of conditions is selected and ‘executed” the same number
of times that the condition pairs appear in the data model. The
rule is ‘executed” multiple times because it may contain action
choices and therefore result in different actions. The frequencies
of the resulting move and fight actions are compared against the
frequencies found in the data model. The fitness (f1) is calculated
as the sum of squares of the distance between the target frequency
(htarget) and the actual frequency (hacral):

Neps

=)

i=1

. . 2
i i
htarget - hactual (5.1)

where n¢ps is the total number of condition pairs in the data
model. We also reward partial matches (e.g. where the move
action matches, but the fight action does not).

Population Seeding For many metaheuristic optimisation al-
gorithms, the effectiveness of the algorithm can depend on where
in the solution space the algorithm commences. For population-
based metaheuristic algorithms, such as GAs, it is common to
create an initial population of diverse candidate solutions in or-
der to promote exploration of the search space.

We can, however, make use of the information contained in
the data model and attempt to create an initial population which
starts the search in an area of the solution space that is closer
to the optimal solution. This process is called seeding. The goal
here is not to perform complex inference from the data model:
the seeding process should be cheap. In order to seed the initial
population, we use the data model to produce a set of FDL mod-
els. These models are then transformed to the genotype using the
phenotype-to-genotype transformation described in section 4.3.1
and added to the initial generation in the search model. We have
implemented two different types of seeding which we analyse in

2 Thorough analysis of the log file
can actually shed some light on the
personality. For instance, by tracking
the distance moved when running,
or analysing the effects of punches
that make contact with the oppo-
nent. This, however, is out of scope
for this paper.
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section 5.2.4. Although seeding can be useful, it may bias the
search towards sub-optimal solutions. As such, when seeding we
also include some other solutions created randomly.

Random Seeding Our random seeding algorithm creates a set of
simple candidate solutions (fighters) by randomly selecting en-
tries from the data model and creating behaviour rules. Up to 4
composite condition rules are created from randomly selected
condition-pair entries in the data model, and up to 3 single
condition rules are created by randomly selecting single con-
dition entries from the data model. Once the set of rules has
been created, the fighter is mapped down to its genotypic form
and added to the initial population.

‘Intelligent” Seeding Instead of randomly selecting entries from the
data model, we can do a small amount of inference using do-
main knowledge to create the members of the initial popula-
tion. For example if we have two condition-pair entries which
have different action sets, we can create a composite condition
rule which uses FDL’s choice construct to select between the
actions. The goal is to quickly create potentially high quality
individuals that we can further improve using search. We do
not want to write a complex algorithm that aims to extract per-
fect information from the data model, as this would be costly.

Model Completion As previously mentioned, it may not al-
ways be possible to infer the entire environment behaviour model,
as is the case in SAF. In this instance, we propose using a different
metaheuristic optimisation algorithm called hill climbing. This al-
gorithm attempts to find the correct allocation of personality pa-
rameters to the partial model that resulted from the GA. As SAF
is aware of the previous opponents that the player has fought, we
can use them to evaluate candidate personality parameters. The
fittest discovered partial model is, therefore, updated with the
candidate personality and then pit against the same opponents
that produced the data in the original environment data model.
The fitness (f2) of the personality, and therefore the entire candi-
date solution, is calculated as the distance between the resulting
data model and the original data model:

fa= 8(dk° k) — g(dk<, k) (5.2)

ke {dkoUdke }
where dk° and dk¢ are the condition-action tuples (both condition
pair and single condition) in the original data model and the can-
didate data model, respectively. g(d, k) returns the frequency for
the given tuple k in the data model d. If the tuple does not appear
in the data model, zero is returned.

Implementation We have implemented the model extraction
technique(s) as a series of model management operations, illus-
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trated (with respect to the experimentation) in figure 5.8. As with
the experiments in section 5.1.2, we apply our search framework
to the simplified version of the FDL metamodel. However, we
have also defined a two-way model-to-model transformation from
our simplified metamodel to the FDL metamodel. During the
evaluation of a candidate solution, it is transformed into FDL for
use in SAF. The process builds on top of MBMS, adding extra
MMOs to perform domain-specific tasks. The MMOs and MBMS
are chained together using Epsilon’s orchestration framework [g7,
chapter 12].

We illustrate our adaptation approach by investigating whether
or not it is able to successfully extract FDL models from fight logs
produced by human models of increasing complexity. It is as-
sumed that once this model has been extracted that we can apply
the work from section 5.1 to select the suitable opponent(s), and
so we do not discuss this here.

5.2.4 Case Study

We evaluate our model extraction technique by attempting to suc-
cessfully extract the models of three input fighters. In particular,
we wish to understand the effectiveness of our model extraction
approach and analyse the effects of population seeding on the
quality of the extracted model, whilst also demonstrating the ef-
ficacy of Crepe and MBMS.

The three fighters investigated are of increasing complexity:
the simple fighter (listing 5.2) uses only atomic conditions and no
action choice; the medium fighter (listing 5.3) has some rules with
composite conditions but still no action choice; and the complex
fighter (listing 5.4) has rules with both composite conditions and
action choices.

simple {
kickReach = 5
kickPower = 5

punchPower = g9

punchReach = 4

far [ walk_towards punch_high ]
much_weaker [ stand kick_low ]
always [ jump kick_low ]

Listing 5.2: The FDL for the simple human model

Each human fighter is pit against a set of random opponents to
produce a collection of log files. These log files act as the sensory
information coming from the environment. Our goal is to firstly
transform this information into the data model and then use that
to extract a behaviour model of the environment —i.e. the goal is
to extract the original input fighter.

To make the problem more challenging and simulate the non-
uniform behaviour of a real human playing a game similar to
SAF, we automatically create new instances of each fighter with
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slight variations, called mutants. When creating the data model,
one of the mutants is selected randomly to participate in the fight.
This produces a noisier data model, which is intended to simulate
more realistic behaviour.

medium {
kickReach = 10

3 kickPower = 10

4 punchPower = 10

5 punchReach = 10

6 far [ walk_towards block_high ]

7 near and stronger [ walk_towards kick_high ]
8| near and much_weaker [ jump kick_high ]

o always [ jump kick_low ]

Listing 5.3: The FDL for the medium human model

1| complex |{

2 kickReach = 8

3 kickPower = 3

4 punchPower = 6

5/ punchReach = 3

6 far [ choose(walk_towards stand) block_high ]
7 near and stronger [ walk_towards punch_low ]
8 near and much_stronger [ stand punch_high ]

9 near [ choose(walk_away run_away) kick_low ]

| always [ run_towards punch_high ]

Listing 5.4: The FDL for the complex human model

Once the data model has been produced from the logs, it is in-
put into the GA-based (MBMS) partial model extractor. The ini-
tial population of the GA is optionally seeded based on the ex-
periment being performed. After the partial model has been ex-
tracted, we perform a hill climb on the personality (as described
in the previous section) which results in a complete model.

Environment Behaviour .
Model Extractor +

race Data

P Model

inputto | , Population '
S Seeding Alg. :

inputto |

produces . produces |

produces

\/

\/ i '
produces : e Semantic input Complete FDL E
————.” Comparison to Model :

Figure 5.8: The process of
extracting a model of the
player used for the experi-
mentation.
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Algorithm Settings and Implementation Following the pro-
cess outlined in figure 5.8, we perform 18 sub-experiments, eval-
uating six scenarios for each of the three human models. We
analyse the effects of the human complexity, the mutants, and of



the population seeding on accurately extracting the model of the
human. Table 5.3 shows the experimental design.

Identifier Human Mutants Seeding Type

Table 5.3: The 18 sub-

So1 simple no none experiments we perform to
Soz simple no random evaluate three factors that
So3 simple no intelligent affect adaptation in SAF.
Soq simple yes none

Sos simple yes random

So6 simple yes intelligent

Soy medium no none

So8 medium no random

Sog medium no intelligent

S10 medium yes none

S11 medium yes random

S12 medium yes intelligent

S13 complex no none

S14 complex no random

S15 complex no intelligent

S16 complex yes none

S1y complex yes random

S18 complex yes intelligent

For fairness, each sub-experiment, S;, is executed thirty times,
each with a different seed to the pseudo-random number genera-
tor. The environment is simulated by fighting the mutants against
50 random opponents. The resulting trace data can be viewed as
one instance of the moving window from figure 5.5.

Table 5.4 shows the parameters used in all parts of the work-
flow. The parameter values selected for a metaheuristic technique
plays a crucial role in its efficacy. At this stage, we are not con-
cerned with efficiency (although this is obviously extremely im-
portant for adaptation at runtime) and so no substantial effort
was made to tune the parameters to this problem. Our initial
goal is determine the feasibility of using this approach to adapt
components at runtime, analyse whether population seeding is a
potential method of improving the performance, and understand
the effects of human complexity on the problem difficulty.

Response In order to validate whether or not we successfully
extracted the human model, we devised a semantic fighter com-
parator. A structural comparison of the fighters would not be
enough because different combinations of rules and personalities
can result in equivalent behaviour (as shown previously in figure
3.9). Our semantic comparator, therefore, aims to see if the the
extracted model is semantically equivalent to the input model.
That is, when fighting against the same opponents, do they per-
form equally as well. In order to calculate a semantic similarity
score, the extracted model and the input model both fight against
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Parameter Setting

GENOTYPE TO PHENOTYPE MAPPING

Number of segments 30

Number of feature pairs 10..30

GENETIC ALGORITHM (BEHAVIOUR RULE SEARCH)

Maximum generations 20
Population size 10
Seed size (where used) 6 (plus 4 random)
Selection method (for reproduction) Tournament (size 6)
Number of elites 2
Reproduction method Single point crossover
Mutation method Integer mutation (random value)
Class bit mutation probability 0.15
Feature selector bit mutation probability 0.15
Feature value bit mutation probability 0.0.15
Segment destruction probability 0.15
Segment creation probability 0.15

Hirr CLIMBING ALGORITHM (PERSONALITY SEARCH)

Maximum generations 50

Table 5.4: Parameter set-
tings for the workflow.
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100 randomly generated opponents. Each opponent is fought ten
times, and the number of times that the human model (extracted
or input) wins is noted. If the human has mutants, one of the mu-
tants is selected randomly for each individual fight, as occurred
during the creation of the data model. The semantic similarity
score is then calculated as:

YO #WINE  — #WIN!

input extracted |

sim = i (53)

where #WIN! . - is the number of times out of ten that the model
beat opponent i. Scores range between o (semantically equivalent)
and 10 (semantically dissimilar).

It is worth emphasising that this semantic comparison would
likely not occur at runtime; it is used here purely as a way of val-
idating the approach. In addition to a semantic similarity score,
we log the time taken for the experiment to execute from start to
finish (i.e. follow the entire path through figure 5.8).

Results Figure 5.9 shows the results of each sub-experiment.
The increase in problem difficulty caused by adding mutants is
apparent when examining the results of the simple human and
(to some extent) the medium human. Without mutants the meta-
heuristics find near optimal solutions (when seeded), but struggle
when mutants are introduced. Unexpectedly, the addition of mu-
tants looks to improve the performance for the complex human;
the variation in the results suggests that the fitness landscape is
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Figure 5.9: The results of

The

the experimentation.

lines in the centre of the
boxes represents the median.
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Figure 5.10: The SAF adap-
tation experimental results,

grouped by factor.

8Using R’s kruskal.test func-
tion: http://stat.ethz.ch/
R-manual/R-patched/library/
stats/html/kruskal.test.
html.

“Using R’s wilcox.test func-
tion: http://stat.ethz.ch/
R-manual/R-patched/library/
stats/html/wilcox.test.html.
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(b) Mutants (c) Seeding

noisy, which could attribute towards this phenomenon. The vari-
ation in the medium human results also supports the claim that
the landscape is noisy. Furthermore, the definitions of human
complexity were based on intuition and although more language
constructs were employed in the complex fighter, it may in fact
behave more uniformly, hence why the results for the complex
human appear better than the medium.

The mutant-less simple and medium human results also high-
light the effect of seeding. The GA performs poorly without be-
ing seeded - likely due to the randomly initialised population
containing many more complex solutions than simple ones. This
randomness appears to be advantageous for the complex human
where the results suggest that it is better to omit than perform
seeding — highlighting that our seeding techniques may need re-
examining and fine-tuning. Furthermore, the random seed out-
performs the intelligent seed for a similar reason — the intelligent
seeder creates much more complex solutions using choice and
composite rule conditions which are not needed by the two sim-
pler humans.

To determine whether the effects of seeding, mutants and the
human’s complexity are statistically significant, we group the data
by factor (seeding, mutants, and humans: shown in figure 5.10)
and perform a Kruskal-Wallis rank-sum test3 on each group. The
Kruskal-Wallis test is a non-parametric test: inspecting the data
showed that it is not normally distributed, ruling out the use
of ANOVA for the analysis. The results show that, in all three
groups, at least one of the levels has an effect; see table 5.5. In or-
der to find out which levels in each group are significant, we per-
formed a pairwise Wilcoxon rank sum test* on the levels. We found
that the results of the simple human are significantly lower than
both the medium and the complex humans (p = 2.222 x 10~%
and p = 1.026 x 10715, respectively). The results of the medium
and complex humans are not significantly different (medium
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lower than complex: p = 0.7955). The results of introducing
mutants significantly increases the response score (p = 3.857 x
107%). Both random seeding and intelligent seeding are shown
to produce lower responses than not seeding the population (p =
0.0206 and p = 0.01358, respectively). No significant effect is
found between random and intelligent seeding (p = 0.4581).

Group  Chi-squared DF P-Value

Humans 63.6123 2 1537 x1071
Mutants 20.0101 1 7.703x107°
Seeding 6.0313 2 0.04901

Comparison with Random Search Even with these factors
influencing the performance, figure 5.9 shows that the extracted
fighters are not as semantically similar to the input fighter as we
would like in a runtime adaptive system. There could be a num-
ber of reasons for this: we have made no attempt to optimise
parameter selection for the GA, the population size might be too
small, the number of generations that the GA executed might
be too small, the search space may be rugged or deceptive, or
the fitness function may be badly defined. In order to validate
that, even though high quality solutions are not found, the GA
is performing and that Crepe and MBMS exhibit evolvability, we
compare the results against random search. All eighteen permu-
tations of the experiment were repeated with each of the genetic
operator probabilities set to 1.0 for the GA responsible for extract-
ing the rules, and all other parameters and stages kept the same.
This means that elites are still kept in the population, enabling
random search to keep track of the fittest solutions it encounters.
The results are shown in figure 5.11. The results exhibit a sim-
ilar trend to the GA, though random search appears to perform
worse on average and has larger variances. The results of a un-
paired Wilcoxon rank sum test for each sub-experiment show that
the differences between the results of the GA and random search
are only significant on six out of the 18 sub-experiments. Four of
these are for the simple human (S1-S4), and two for the complex
human (516, S18). Seeding the random search helps for the sim-
ple human: the initial population is likely to contain the fittest
found at the end of the run. As with the GA, the mutant-less
medium human scored either very highly or very badly, empha-
sising the noisiness of the problem. The results show that the
problems that the GA found easy were non-trivial for random
search. A Kruskal-Wallis rank sum test on the factor groups also
showed all three factors have an effect (p < 0.01).

Execution Time The experiments were performed on the Volvox
grid: a computing cluster at the University of York, managed by
the Oracle Grid Engine software. Execution times for the entire

Table 5.5: Kruskal-Wallis
rank sum test for each factor.
DF = degrees of freedom.
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extraction process in the original (GA) experiment ranged in the
region of under one minute to an hour. The variation in time, and
extended periods of some of the experiments is due to heavy load
on the grid during the execution of the experiments. Further-
more, the logged times include the opponent generation, trace
data generation, and semantic validation phases which would not
occur at runtime. As mentioned previously, no effort has been
made to tune the performance of the implementation of Crepe or
MBMS. While this approach may not be fast enough for systems
requiring near-instantaneous adaptation, a tuned implementation
may adapt sufficiently quickly for systems where the environ-
ment changes more slowly (such as the change in the ability of a
game player considered here).

Tuning the Parameters The above experiment was performed
with little care in tuning the parameters: the probability of the
GA applying any of the genetic operators was 0.15, a value se-
lected based on intuition. To address this, we tune the operator-
application probabilities in order to produce a principled set of
results. Due to the problem complexity differing between sub-
experiment, we tune each sub-experiment’s parameters indepen-
dently.

In order to discover optimal parameter configurations, we ap-
ply a Central Composite Design (CCD) [116] over the parameter
space. A CCD aims to determine the shape of the response surface
— the fitness associated with combinations of the input parame-
ters. The surface can then be used to select optimal parameter
configurations for the given problem. The surface is produced
by performing a factorial design over the parameter space. For
full details, see [116]. The design was generated using the Mat-
Lab ccdesign function> which, for our five parameters, produced
a design consisting of 36 points. The parameter values in each
design point are coded in the range of -2 to 2. This range repre-
sents the values that can be taken by each parameter, and need
to be decoded for use in an experiment. Although in reality the
probabilities of each genetic operator can range from zero to one,
for this experiment we select the range 0.01 to 0.6 as it represents
a more realistic range of values that the parameter might take.
Anything above 0.6 would tend towards random search.

For this experiment, we execute each design point ten times
to gain statistical significance. Therefore, for each of the sub-
experiments (S51-S18), we execute 360 runs: 36 parameter configu-
rations, each repeated ten times. The median value is taken from
the results of each design point, and used to fit a quadratic model
to the design. The (mathematical) model is then used to select the
optimal parameters for that sub-experiment. The optimal coded
parameters discovered for each sub-experiment are shown in ta-
ble 5.6. The majority of the extracted optimal parameter values
fall at the extremes: -2 or +2. This may indicate that the optimal

5 www.mathworks.co.uk/help/

stats/ccdesign.html
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Table 5.6: Optimal coded
parameter configuration
predicted by the central
composite design.

Table 5.7: Kruskal-Wallis
rank sum test for each fac-
tor of the tuned experimen-
tal results. DF = degrees of
freedom.

130

parameter values lie outside the selected range, i.e. less than o0.01
or greater than 0.6. The lack of correlation between the choice for
parameter values is indicative of a noisy algorithm. The optimal
parameter configuration of each sub-experiment was executed ten
times and the results are plotted in figure 5.12.

Exp. CB FSB FVB CON DES

So1 -2 -2 -2 -1.882 -2
So2 2 2 -1 2 2
So3 -2 2 2 2 -2
Soq 2 1.3931 2 2 -2
Sos 2 2 2 2 2
So6 -2 2 2 2

So7  -0.9488 -2 2 2 -1
So8 -2 2 2 -1 -2
Sog -2 -0.7356  1.7249 -2 2
S10 -2 -2 -2 2 2
S11 2 -2 2 -2 0.3933
S12 2 2 -2 2 2
S13  -1.9675 -2 -2 -2 -2
S14 2 1.0333 -2 -2

Si5 -2 -2 2 -2

S16 -2 -2 -2 -2 -2
S17 2 -2 -2 2 -2
S18 2 -2 2 0.6867 2

As with the original experiment, we performed a Kruskal-
Wallis rank sum test on the three factors. The results (table 5.7)
showed that the humans and the mutants have a significant effect
on the response, but the seeding does not. This may be due to
the fewer number of repetitions of the experiment. As previously,
a Wilcoxon rank sum test showed that the simple human out-
performs both the medium and complex humans (p = 0.002012
and p = 7.272 x 107%, respectively), and mutants increase the
difficulty (p = 4.738 x 107%). A pairwise comparison (unpaired
Wilcoxon rank sum) of each sub-experiment against the original
results found that there were statistically significant differences
(p < 0.05) between the results of Si0 and S11, only. Therefore,
the tuning had little effect on the overall performance of the al-
gorithm for the problems. This, along with the extracted optimal
parameter values indicate that the adaptation algorithm is noisy,
and finding optimal solutions is hard.

Group  Chi-squared DF P-Value

Humans 19.6428 2 5428 x107%
Mutants 19.6268 1 9414 x107%
Seeding 3.1094 2 0.2113
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running the experiment at
the optimal parameters dis-
covered using CCD.

131



132

Discussion In this section we used our model-driven, search-
based approach to perform self-adaptation in the SAF case study.
We attempted to extract an accurate FDL model from a collection
of fight logs using a complex multi-stage algorithm. We set up
a principled experiment to consider three factors that affect the
case study: the human fighter, the behavioural-noise-inducing
mutants, and population seeding. We found that the GA out-
performs random search on simple problems, and showed that
the introduction of mutants and more complex humans increases
the difficulty of the problem. Population seeding was shown to
have some effect on the algorithms ability to discover optimal so-
lutions, but further investigation is required.

Regarding threats to the validity of our experiments, the main
concern is the mutant-based representation of human behaviour.
Detailed analysis of SAF-like interactive games is required to de-
termine whether the trace logs produced by the mutants replicate
the logs of an interactive game.

5.2.5 Summary

The aim of this section was to explore the potential of utilising
Crepe and MBMS to enable efficient component-based adapta-
tion at runtime. We presented a model-driven approach to adapt-
ing systems at runtime which utilises metaheuristic optimisation
in order to, firstly, extract a model of the environment, and sec-
ondly, discover the optimal system response. Our focus was on
using metaheuristic optimisation techniques to extract a model of
the environment’s behaviour, and we performed a detailed anal-
ysis of the effects of three important factors of the SAF case study.
We showed that our representation enabled SBSE techniques to
be applied to extracting runtime models, but found the solution
space to be noisy. Further work is required to determine whether
a model- and search-based approach to system adaptation would
be practical for other scenarios. Our representation, Crepe, would
enable this strand of research to be taken further. Crepe offers
generic way to search for optimal configurations of the adaptable
parts of a system; without Crepe, practitioners would need to de-
vise their own problem representation. Crepe allows practitioners
to focus on defining good fitness functions, and explore different
SBSE techniques with which to tackle their problem.

One issue with our approach is that of performance. Search
can be expensive to perform and may not be appropriate for
systems whose adaptation time is very small. On the contrary,
search can be useful in some time-dependent scenarios, as it can
always return a ‘good-enough’ solution at any point in its ex-
ecution (as opposed to a constructive approach to model infer-
ence which is unable to return a solution until it completes). One
goal of this work was to determine whether we could overcome
the performance issues found in Goldsby and Cheng’s work [59].



No performance-related data was provided by the authors, and
so a comparison is difficult. However, we believe that an op-
timised implementation of the representation and search algo-
rithms could be successfully used for component-level adapta-
tion. Crepe provides a standard approach to generating models,
and supports domain-specific adaptation, as opposed to Goldsby
and Cheng’s state diagram-based approach, and Ramirez and
Cheng’s system-level adaptation approach [136]. Fitness func-
tions (a major cost in Goldsby and Cheng’s work) are also domain-
specific, enabling developers to choose the trade off between per-
formance and accuracy.

There is much work that we would like to investigate in the fu-
ture. We would like to perform further analyses of seeding strate-
gies and search parameters on different case studies to improve
performance, and also optimise the search algorithms using some
runtime analyses to find bottlenecks. Integrating our approach
with Sanchez et al.’s [157] extensible executable runtime model
platform may also prove fruitful. Relating to the SAF case-study,
it may be interesting to attempt to extract a model based on time:
player behaviour may change at different points in a fight, such
as the start or end. Furthermore, we may be able to co-evolve
the fighter rules and personality to reduce the number of stages
in the process. More importantly, we need to analyse the realism
that mutants introduce, and apply the techniques to other case
studies. In particular, it would be interesting to repeat the experi-
ments in this section on an interactive version of SAF. This would
help validate the results found here. Comparing the results of
metaheuristic search against other model extraction techniques is
also important.

5.3 Summary

This chapter has illustrated how Crepe and MBMS can be applied
to two important challenges in MDE: discovering optimal mod-
els of systems, and extracting a model from a corpus of system
trace information. We demonstrated that our representation is
amenable to search by showing empirically that a genetic algo-
rithm outperformed random search in section 5.1, and on the less
difficult sub-experiments in section 5.2 (and was no worse on the
other sub-experiments).

In the process of performing these case studies, we discovered
that the search space-defining metamodel has a key impact on the
searchability of the representation. To address this issue, we de-
fined a refactored, but equivalent, version of the SAF metamodel,
limiting the number of references. We postulate that this refactor-
ing may be automated, but this will require the implementation
of many case studies and so leave this for future work. In chapter
7, we further analyse how properties of the metamodel affect the
representation.
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Sensitivity Analysis in
Model-Driven Engineering

ALL SOFTWARE ENGINEERING SUFFERS from some degree of un-
certainty [192]. Any form of modelling is subject to different
levels of uncertainty, such as errors of measurement or interpre-
tation, incomplete information, and poor or partial understand-
ing of the domain [155]. When model management operations
(MMO) are applied to a model, uncertainty can lead to unex-
pected behaviour, or a small change in a model might result in a
large change in the output of the MMOs. Modelling uncertainty
can have a significant impact on artefacts that use the models or
their information.

A model may contain inaccuracies (i.e., it may not be a faithful
abstraction) or errors (i.e., the modeller may have introduced an
error). When a model is manipulated with an MMO, these inac-
curacies or errors may lead to unexpected or erroneous behaviour,
particularly if the inaccuracy or error in the model is highly in-
fluential in the MMO'’s execution. A small change in part of the
model might result in a large change in the output of its associ-
ated MMO. As all areas of software engineering suffer from some
degree of uncertainty [192], a modelling “inaccuracy” could have
a huge impact on the artefacts that utilise its information.

Sensitivity analysis provides a means to explore how changes in
an input model affect the output of an MMO. Sensitivity analysis
can provide a modeller with confidence that a model and its asso-
ciated MMO(s) resemble the domain, and can expose areas in the
domain that require a deeper understanding [155]. Furthermore,
highlighting sensitive parts of a model can provide insight into
the execution of an MMO, if the execution is influenced signifi-
cantly by sensitive parts of the model [140]. Sensitivity analysis
can also show the relationships between model elements that may
not be apparent from simply examining a model and its MMO.

In this section we introduce sensitivity analysis in MDE, and
thus demonstrate how Crepe can be utilised for tasks other than
SBSE. We present an extensible framework that enables meta-
model developers to provide sensitivity analysis tool support for
their domain. We provide a metamodel for expressing uncer-
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tainty in existing models, which is used to analyse the effect of
uncertainty on the results of manipulating the model with an
MMO. Our generic representation for models facilitates system-
atic model refactoring in order to vary the input model with re-
spect to the specified uncertainty. We then manipulate these vari-
ants with the MMO and measure the effect on the MMO's output
in order to discover how the uncertainty manifests.

To motivate and illustrate the use of sensitivity analysis, we in-
troduce CATMOS [18], an acquisition planning tool for capability
management (section 6.1). CATMOS generates a set of solution
models from a problem analysis; providing an analysis of these
solutions improves the basis for acquisition decision-making.

Chapter Contributions The contributions of this chapter are
summarised below.

* The identification of three areas where uncertainty can arise in
MDE.

* An extensible framework for enabling rapid development of
uncertainty-based tool support for models.

¢ An illustration of applying sensitivity analysis to models pro-
duced by a decision making tool, discussing the insights that
can be gained and highlighting how uncertainty can affect the
confidence one has in a model.

Chapter Structure We start in section 6.1 by presenting an ex-
ample that motivates the need for sensitivity analysis in MDE.
Section 6.2 describes uncertainty in more detail and introduces
sensitivity analysis, a technique developed in the modelling of
natural systems [155]. Section 6.3 discusses how sensitivity anal-
ysis might be applied to MDE, identifying the areas where un-
certainty arises in MDE, and highlighting the challenges of per-
forming the analysis. In section 6.4, we outline our framework
for enabling metamodel developers to provide sensitivity analy-
sis tool support for their metamodels. We show how our generic
representation of models can aid in the application of sensitivity
analysis. We develop an instance of the framework for the CAT-
MOS tool, and apply it to a set of CATMOS solution models in
section 6.5. Finally, 6.6 considers the pragmatics and challenges
of sensitivity analysis in MDE, and discusses how a generic rep-
resentation of models can aid such analyses.

6.1 Motivating Example

The Capability Acquisition Tool with Multi-Objective trade-off Support
(CATMOS) is an MDE tool that provides support for capability-
based planning, to facilitate systems of systems acquisition [18].



CATMOS is targeted at acquisition scenarios that involve signif-
icant costs. In these situations, a better understanding of uncer-
tainty can increase confidence in decisions, and thus in invest-
ments to be made in acquisition.
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(a) Simplified metamodel for defining acquisition scenarios in CATMOS (taken

from [18]).
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(b) Simplified metamodel for defining components and their capabilities in CATMOS (taken from [18]).

In CATMOS, users model their problem scenario by defining
a set of desired system capabilities and associating quantitative
measurements with capabilities. Additionally, users define a set of
available components: each component has a cost and provides a
set of capabilities, each with a measure stating the extent to which
they satisfy the capability (some capabilities need multiple com-
ponents to satisfy them). Components can also have dependen-
cies on other capabilities (e.g. a ‘cup of coffee” component would
help to satisfy the capability of ‘publish research paper’, but it de-
pends on the capability of ‘having hot water’). To illustrate these
relationships, figure 6.1 shows the simplified metamodels (taken
from [18]) for the scenario modelling language and the compo-
nent modelling language.

CATMOS generates a set of output models that represent com-
binations of components that can meet the capability require-
ments of the scenario. Every solution model has a cost and a ca-
pability score, and the solution set can be represented as a Pareto
front of capability versus cost (i.e. no solution dominates any

Figure 6.1: The two mod-
elling languages of CAT-
MOS.

137



other in all objectives), which can be used by stakeholders in de-
cision making.

6.1.1 The Airport Crisis Management Scenario

In this chapter, we apply sensitivity analysis to a CATMOS ap-
plication to airport crisis management (ACM). CATMOS is used
to inform a decision as to what set of resources should be in-
vested by an airport in order to best respond to a scenario in
which a fire breaks out at an airport gate [128]. For this scenario,
Burton, the developer of CATMOS, defined 17 capabilities, in-
cluding: arrival at fire scene, measured in time taken; fire detection,
measured in time; and treatment, measured by the number of peo-
ple treatable. There are 19 components available to the scenario,
including: ambient air analyser node, to detect fires quickly; on-site
fire truck, reducing the time to arrival; ambulances, which provide
patient transport. CATMOS uses the NSGA-II [34] metaheuris-
tic algorithm to discover combinations of components that satisfy
the scenario’s capabilities, balancing total capability measurement
score against total component cost.
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Figure 6.2: The Pareto front
and first non-dominating
rank produced by CATMOS
for the ACM problem.

138

Figure 6.2 shows a Pareto front produced by CATMOS for the
ACM case study, in which each star represents one of the solu-
tion models proposed. The circles represent models from “non-
dominating rankings”: in-effect, the next best Pareto front. The
measurements used to calculate the capability (y-axis) are features
of the problem scenario that are all subject to uncertainty; the level
of uncertainty can affect the interpretation of the results produced
by CATMOS. For example, due to traffic, it may be unknown ex-
actly how long it will take for an ambulance to reach the airport
in the event of a fire at a gate, and so estimates will be made. If
this estimate is well under the actual time taken in the real event,
the implications may be serious. Therefore, for instance, if the ca-



pability of a Pareto-optimal solution is subject to high uncertainty,
but the capability of a nearby non-dominating solution is less un-
certain, the decision makers may prefer the non-dominating solu-
tion. Sensitivity analysis allows us to explore how the uncertainty
in each of the measurements can affect the calculated capability
score of a proposed solution.

We now examine uncertainty in more detail, presenting the re-
lated work in the MDE-domain, and describing sensitivity analy-
sis in more detail.

6.2 Background

Any form of modelling is potentially subject to uncertainty that
can be introduced by numerous possible sources, such as errors of
measurement, incomplete information, or from a poor or partial
understanding of the domain [155]. Uncertainty has been studied
in the software engineering community for some time. Ziv et al.
[192] introduced the Uncertainty Principle in Software Engineer-
ing (UPSE) in 1997, declaring that “uncertainty is inherent and
inevitable in software engineering processes and products”. In
this section, we briefly review uncertainty and sensitivity analy-
sis.

6.2.1 Uncertainty

Ziv et al. [192] describe three sources of uncertainty in software
engineering: the problem domain, the solution domain and hu-
man participation. They show how Bayesian belief networks can
be used to model uncertainty in properties of software artefacts.
The framework presented in this chapter targets analysing data
uncertainty of individual components (models) in a system, but
could be used to provide belief values for those components in
the Bayesian belief network of the entire system.

Easterbrook et al. [36] use multi-valued logics to model uncer-
tainty through the creation of additional truth values, and ex-
amine uncertainty using a multi-valued symbolic model checker.
Similarly, Celikyilmaz and Turksen [22] describes how fuzzy logic
can be used to model uncertainty. Autili et al. [5] describe an ap-
proach to cope with uncertainty around the behaviour of reusable
components with respect to a given goal. The approach aims to
aid people in deciding which components to reuse in their sys-
tem by extracting behavioural information from the set of possi-
ble components and estimating how well they fit together to solve
the goal.

Uncertainty in models is often resolved hastily due to the fact
that MMOs can only be applied to fully implemented models
and developers fear delaying development [40, 42]. Famelis et al.
[40, 41] outline a research agenda for systematically and robustly
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" In this section, the term “model” is
used in the abstract sense of mod-
elling, and although this includes
MDE models, the term should be
read in the broader setting.
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managing uncertainty in MDE using partial models. Many mod-
ern MDE tools and languages do not provide a way to specify
uncertain information — many tools enforce models to be syntac-
tically correct at all times and do not enable alternative designs
to be easily modelled or compared. The partial models approach
proposed by Famelis et al. [40, 41] allows modellers to express
design alternatives on the same model. Each component in the
model is annotated with an identifier and propositional logic is
used to specify the combinations of components that make up the
design alternatives. This allows modellers to check that required
properties hold in the structural design alternatives, and thus fil-
ter out bad or infeasible designs. The process of defining partial
models in a metamodel-independent manner is shown in [153].
Furthermore, the authors define four kinds of model uncertainty,
each of which has a formally defined annotation which can be as-
signed to partial models. The four kinds of model uncertainty (or
partiality) defined in [153] relate to: 1) the existence of elements
(May partiality), 2) the uniqueness of elements (Abs partiality), 3)
the distinctness of elements (Var partiality), and 4) the complete-
ness of a model (Open World partiality). Salay et al. [152] present
an automated method to verify that a refinement transformation
reduces the uncertainty in any partial model. A valid refinement
is one that does not increase the set of valid concretisations, whilst
ensuring that at least one concretisation remains [152]. Recently,
Famelis et al. [42] present an approach to automatically adapt
model transformations that enable them to transform models that
contain May partiality.

As described in the literature chapter (section 2.3.1), Goldsby
and Cheng [58], Ramirez et al. [136, 138, 105, 137] and Cheng [23]
utilise SBSE to address uncertainty in adaptive systems.

6.2.2 Sensitivity Analysis

Sensitivity analysis aims to determine how variation in the output
of a model" can be attributed to different sources of uncertainty
in the model’s input [155]. The goal is to increase the confidence
in a model by understanding how its response (output) varies with
respect to changes in the inputs.

In [155], sensitivity analysis is proposed for the following forms
of model validation: to determine whether a model is sensitive
to the same parameters as its subject; to identify that a model
has been tuned to specific input values (and thus is inflexible
to model change); to distinguish factors that result in variabil-
ity of output and those with little influence on the output (which
could be omitted); to discover regions of the space of input values
that maximise result variation; to find optimal input values (for
model calibration); to find factors that interact (and thus need to
be treated as a group) and expose their relationships.

Sensitivity analysis approaches broadly fall into local or one-



at-a-time (OAT), and global analyses. OAT analyses address un-
certain input factors independently, revealing the extent to which
the output is determined by any one input [155]. Global analyses
perturb all input factors simultaneously, and can thus address de-
pendencies among inputs. To avoid combinatorial explosion, sen-
sitivity analysis approaches use input space sampling techniques,
such as random sampling, importance sampling, and latin hyper-
cube sampling [155]. A range of statistical correlation or regres-
sion approaches can be used to interpret the results of sensitivity
analysis.

Harman et al. [66] study the effects of data sensitivity on the
results of a metaheuristic search algorithm for solving the next
release problem [7]. Their aim is to identify which requirements
are sensitive to inaccurate cost estimation. We believe that meta-
heuristic search techniques could prove fruitful at the sampling
phase of sensitivity analysis. The search goal might be to discover
a sample of input factor configurations which produce responses
that vary dramatically from the original. The modeller would
then be able to examine these extreme cases more carefully.

In the MDE domain, the closest work relating to sensitivity
analysis that we have found is by Fleurey et al. [46] who apply
mutations to models in order to optimise a set of test models with
respect to some metamodel and data coverage criteria. Creating
these mutated models is similar to the process of creating variants
of a model for sensitivity analysis, but their work is driven by
different motivations — that of optimising test sets as opposed to
discovering and analysing data sensitivity.

The next section contexualises sensitivity analysis in MDE.

6.3 Sensitivity Analysis in MDE

Ziv et al.’s uncertainty principle [192] links well with sensitiv-
ity analysis, which aims to quantify the effects of uncertainty. In
MDE, a model in sensitivity analysis terms can be considered as
representing both the abstract model of a domain and its operat-
ing context — the set of MMOs that are applied to it. The areas of
uncertainty are then potentially both the set of variable input fac-
tors (model elements) and the parameters of MMOs. The response
is (part of) the output of the MMO(s).

The uses of sensitivity analysis relate to validation: determin-
ing whether a model faithfully represents its domain, or that a
model is faithful to a more abstract specification. Model valida-
tion in MDE is important, and is commonly addressed using task
specific languages, such as OCL [61] or EVL [93]. Sensitivity anal-
ysis provides an alternative, exploratory approach to validation.
Furthermore, it presents an opportunity to understand the effects
of modelling decisions, which can be crucial in complex or poorly
understood domains.
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The works of Famelis, Salay et al. [41, 153] on partial mod-
els addresses uncertainty from a different angle. They provide
a powerful, formal way to model uncertainty and provide proofs
that refinements reduce uncertainty or that transformations main-
tain uncertainty, and check properties of different design alterna-
tives. This allows the modeller to better visualise uncertainty and
take care in removing uncertainty whilst not slowing down devel-
opment. They do not, however, allow for the effects of uncertainty
to be explored. Sensitivity analysis offers model uncertainty to be
investigated in more detail.

In this section, we define three areas where uncertainty can
arise in MDE, and discuss the challenges of measuring the re-
sponse of an MMO in order to utilise sensitivity analysis.

6.3.1 Areas of Uncertainty

The sources of uncertainty are the same in software engineering
as in scientific modelling (errors of measurement or interpreta-
tion, incomplete information, poor or partial understanding of
the domain [155]). We identify three areas of uncertainty in MDE
and consider ways in which we might quantify their effects on
the application of MMOs.

Data Uncertainty In section 6.1, we note that the capability
measurements defined in CATMOS models is affected by uncer-
tainty. When modelling data structures, uncertainty is introduced
when deciding types and values of attributes — for instance, string
types and * multiplicities are often used because of uncertainty
about the domain. In modelling transitional systems (e.g. using
state machines), uncertainty arises in determining the values used
in transition guards. In modelling reactive systems (e.g. using
Petri nets), the firing conditions of transitions may be similarly
uncertain. Strengthening or weakening Boolean conditions may
significantly affect the behaviour of systems. Sensitivity analy-
sis can be applied to attributes, guards and firing conditions, to
validate the states and behaviours of modelled systems.

To analyse data uncertainty, we can vary the values of attributes
with respect to a range or distribution of possible values, and see
how the MMO output is affected.

Structural Uncertainty Uncertainty also arises when making
decisions about the structure of a model. One example of struc-
tural uncertainty is deciding between aggregation and composi-
tion for an association. This decision could have a huge effect on
an MMO. For example, if the MMO deletes the owner element
then the type of association determines which elements remain
available for the remainder of the MMQO's execution.

Partial models [40, 41] offer a means to explore structural un-
certainty. This analysis might alternatively be achieved through



pattern matching and replacement. A modeller could define a set
of patterns of model elements (possibly with respect to the under-
lying metamodel) where each pattern represents a set of equiva-
lent patterns. Sensitivity analysis could then be used to analyse
the effect of replacing parts of the model with different patterns,
to discover the effect on the output of the MMO. This would al-
low the modeller to optimise their models in conjunction with
the associated MMOs. Alternatively, one might perform simple,
but well-defined, mutations to a model (e.g. deleting elements)
and analysing the effects of these mutations on the output. This
would highlight the parts of the model that are important to the
execution of the MMO(s) and thus sensitive to change.

Behavioural Uncertainty Whereas the previous categories re-
late directly to models, behavioural uncertainty relates to the op-
erating context of the model —i.e. the set of MMOs that consume
it. The model and its MMO(s) may be developed by different,
independent teams, and it may not be known to the modeller
what the operation does or how it does it. Knowing the oper-
ating context of a model can help to alleviate uncertainty: for
example, a modeller may make a different design decision if the
model is to be used for code generation as opposed to illustra-
tion. Analysing behavioural uncertainty is challenging, though
has been attempted in [5] and [59].

In the rest of this chapter, we focus on analysing data uncertainty.
First, we consider the issue of measurement.

6.3.2 Measuring the Response

Sensitivity analyses in scientific modelling often address readily-
evaluable parameters. However, in MDE, the result of applying
an MMO is often another model (e.g. in the case of a model-
to-model transformation), so it can be challenging to provide a
useful measure of the effects of changing the input model. A
simple count of differences between the original output model
and each of the output models created from varying the input,
may not be a suitable measure of impact. Focusing the analysis on
the effects on a small part of the output model, however, may be
more appropriate. In the cases where a model is used to generate
code, the response might be measured by executing the generated
code and analysing, for example, the execution trace, the memory
consumption, or the program’s output.

Measurement is domain specific. Saltelli et al. [155] comment
that different measures of sensitivity directly affect the outcome
of the analysis, and declare that there is no universal recipe for
measuring the response. Any MDE framework that supports sen-
sitivity analysis needs to provide the ability to support multiple
forms of response measurement and comparison.
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6.4 A Framework for Sensitivity
Analysis in MDE

This section presents our implementation of an extensible frame-
work for applying sensitivity analysis to models in MDE. Specif-
ically, the framework is implemented on top of the Eclipse Mod-
eling Framework (EMF) [170]. The framework provides a repeat-
able way of allowing metamodel developers to create tool support
for rigorous analysis of models in their domain. Section 6.4.1
overviews the process which our framework implements. The
framework utilises Crepe to make the creation of variants of a
model straightforward. We introduce a metamodel for expressing
data uncertainty in section 6.4.2. Section 6.4.3 describes the frame-
work’s support for different sampling methods, and presents two
default methods. Section 6.4.4 shows how we provide support for
automated analysis of responses, as well as producing a sensitiv-
ity analysis report for the modeller.

6.4.1 Overview

Figure 6.3 illustrates the process of applying sensitivity analysis
to a model. First, we need an uncertainty model that expresses the
data uncertainty in the input model (explained in section 6.4.2).
These two models are fed into an input space sampler — a bespoke
model generator that uses Crepe to produce variations of a model
within the scope described by its uncertainty model. Selection is
controlled by the sampling method of sensitivity analysis being
applied. The framework currently supports two methods of sam-
pling the input space: one-at-a-time sampling and random sampling
(described in section 6.4.3).

Uncertainty \ Response
Model R

r Al

execute ~Fode| Management B
‘—* N

Each of the generated models (Model’) in the sample is exe-
cuted against the associated set of model management operations
and the output is logged. The model management operation may
be a model transformation, a simulation, or a complex workflow



of operations, as determined by the user. Once all generated mod-
els have been executed, the set of outputs is fed into a response
analyser which applies the sensitivity analysis and produces re-
ports for inspection. As mentioned previously, there is no single,
optimal way to analyse sensitivity, and the output of an MMO
can take many forms. Therefore, whilst providing a number of
default response analysers for numerical output, our framework
also allows users to develop their own (see section 6.4.4).

6.4.2 A Metamodel for Data Uncertainty

In order to apply sensitivity analysis, the modeller is required to
enumerate the uncertain parts of a model. Partial models would
be one approach to capturing this information. However, in our
framework we capture uncertainty in a separate model. This al-
lows developers to manipulate this information with MMOs and
separates the concerns of uncertainty from the model. Figure 6.4
shows the metamodel that we have defined to allow users to de-
scribe the data uncertainty in their models. The metamodel ap-
propriates the FeatureFinitisation class from the finitisation meta-
model presented in section 4.1 (figure 4.2). This allows us to
simplify the genotype-phenotype transformations, which usually
require a finitisation model to be defined. Instead, the finitisation
model is automatically computed from the uncertainty model and
the values already in the model.

ModelUncertainty

* Yuncertantes

Uncertainty

* Tfeatu rePairs

DataUncertainty
identifier : String
object : EObject

* Tﬁnitisations

Finitisation::
FeatureFinitisation
feature : EStructuralFeature

parentClass : EClass

An uncertainty model can define a set of DataUncertaintys. Each
DataUncertainty object has an identifier, used to distinguish between
the uncertain objects (input factors) during the response analysis.
Assigning the object reference of a DataUncertainty object allows a
modeller to assign the uncertainty definition to a specific object in
the model. A DataUncertainty object’s finitisations define the uncer-
tain values of a given feature, by reference to the metamodel (as
is standard finitisation practice — see section 4.1). Uncertainty val-

Figure 6.4: The metamodel

for expressing uncertainty

in models.
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Figure 6.5: An example un-
certainty model used to cap-
ture the uncertainty regard-
ing the impurity of elements
in a collection.
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ues can be defined using the ranges, lists of values, or references
to objects in other models. If the user does not assign the object
reference of DataUncertainty, then the uncertainty values defined
by the finitisations are valid for all instances of that attribute.

We illustrate this in figure 6.5. The metamodel describes a
Collection of scientific Elements. Elements have names, chemical
symbols, and impurity percentages. The example model shows
an instance with just one element in the collection: gold. The
value of gold is based on its impurity and the collector is unsure
whether his impurity measurement is accurate and so she defines
an uncertainty model, specifying the range of impurities. The
gold value calculator could be used as the response measure to
understand how the level of impurity will affect the value of the
collection. If the object reference from the DataUncertainty instance
is not defined, then all elements in the collection would have the
impurity uncertainty associated with them.

Metamodel

ElementCollection

*Telements

Element
name :String

,,,,,,,,,,, feature Uncertainty Model

:ModelUncertainty

conforms
uncertainties

Model

:DataUncertainty

ElementCollection identifier = "gold"
Y TfeaturePairs
elements :Finitisation::
:Element FeatureRangeFinitisation
name = "Gold" first = 045
symbol = "Au" object last = 0.60
impurity = 0.05 step = 0.01

The uncertainty metamodel has been designed with evolution
in mind. Currently the metamodel only supports data uncer-
tainty, but the metamodel can be extended to capture other forms
of uncertainty (by extending the Uncertainty class) whilst main-
taining backward compatibility with existing uncertainty models.

We now describe how different sensitivity analysis methods can
use the uncertainty model and Crepe to create variations of a
model for which to analyse.



6.4.3 Sampling the Input Space

The process of sampling the input space (i.e. generating vari-
ants of a model) is illustrated in figure 6.6. The variation of a
model is created by mapping the model to its genotypic form and
altering the appropriate feature value bit before transforming it
back to a model which contains the new data. We incorporated
hooks for listeners into the phenotype-to-genotype transformation
to detect when segments and feature pairs are created®. We have
defined a feature pair creation listener which detects whether the
feature pair being created represents one of the features described
in the uncertainty model. If so, we keep a reference to that feature
pair, along with the associated values described in the uncertainty
model. During the mapping, therefore, we keep track of all un-
certain feature pairs.

Uncertainty
Model

Transformation
Listener

enotype-to-
Phenotype

Phenotype-
to-Genotype

Genotype'

Genotype L

Once the phenotype-genotype transformation is complete, the
desired sampling method controls which of the uncertain feature
pairs to vary. Each variation of the segment list is mapped back
into a model for consumption by the MMO. As there is commonly
a large number of possible variations, our framework allows users
to create custom sampling methods and provides two by default.
Our one-at-a-time sampler adjusts each attribute independently,
creating samples for each possible value that each attribute can
take, whilst maintaining all other attributes in their original form.
Our random sampling method adjusts all attributes simultaneously,
selecting a value for each attribute at random from the uncer-
tainty model. The user specifies the size of the sample that they
desire.

6.4.4 Response Measures

The input space sampler produces a set of variations of a model
which are then fed through the MMO to obtain the associated
responses. The final component in our framework is the response
analyser which provides various analysis methods and a HTML

2 The work presented here was de-
veloped for the original Java imple-
mentation of Crepe. All aspects of
the processes described here are
still possible in the current EOL-
based implementation.

Figure 6.6: Ultilising our
representation of models to
create variants of a model
with respect to a set of spec-
ified uncertainties.
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report generator. Framework implementations can choose which
analyses to apply and include in the report. Furthermore users
can extend the analysis methods with custom methods, or in-
tegrate with existing statistical analysis packages, such as jHep-
Work3, R4, or MatLab5. The results are saved to disk as a comma-
separated-values (CSV) file, so users can apply further analyses
as they gain a deeper understanding of the results. (In future it-
erations of this work, we plan to develop a metamodel to capture
the results as models. Each analysis method will then be written
as a model transformation, removing the burden of using CSV
files and improving reusability.) The reporting component of the
framework utilises an open source template engine, StringTem-
plate®, and users can define their own templates to incorporate
new analyses in the reports.

Currently the framework provides scatter plot based analysis
for both OAT and global sampling methods, as well as some use-
ful statistics such as mean, median, percentiles and standard de-
viations. JFreeChart” is used to create a scatter plot for each of
the uncertain attributes, illustrating the effect that the attribute
has on the MMO's response.

Summary

This section has presented an overview of our extensible frame-
work for supporting the analysis of uncertainty in models. Meta-
model developers can extend the framework to provide sensitiv-
ity analysis support for their modelling language. Users are re-
quired to develop a model that captures the uncertainty in their
model under test. They can then make use of the pre-defined
input sampling algorithms and response measures, utilise those
provided for their domain by the metamodeller, or develop their
own. We now present an instantiation of this framework for the
CATMOS tool in order to analyse the airport crisis management
scenario described in section 6.1.1.

6.5 Case Study: CATMOS and
ACM

Section 6.1 introduced an acquisition decision tool, CATMOS [18],
and a case study to which the tool has been applied. We have de-
veloped an instance of our sensitivity analysis framework for the
CATMOS tool. This section briefly presents our implementation
and describes some interesting results, highlighting the utility of
sensitivity analysis and supporting the call for its adoption by the
MDE community.
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6.5.1 CATMOS Sensitivity Analysis

Extending the framework to support CATMOS required defin-
ing two Java classes, totalling approximately 300 LOC. Although
more would be required to provide a more sophisticated user in-
terface, extending the core components of the framework is triv-
ial. One of the two classes controls the loading of models, speci-
fies the sampling method(s) and starts the analysis, and the other
provides the response calculation, controls the types of sensitivity
analysis applied to the set of responses and generates reports. For
repeatability, we have made the models analysed and generated
reports available online.
The experimental goals that we wanted to analyse were:

G1 Determine how each factor contributes to the overall capabil-
ity score (the response) of the model;

G2 Understand how the different model factors relate to one an-
other;

G3 Provide insight into the confidence of the frontiers produced
by CATMOS.

Uncertainty values were determined in discussion with Frank
Burton, the creator of CATMOS and the ACM case study. Each
of the capability measurements provided by a component was
deemed to be uncertain. CATMOS uses these measurements to
calculate the overall capability score of the solution — varying
these factors will affect this score, and therefore the ability of the
solution to satisfy the requirements of the scenario. The response
measure, therefore, was the CATMOS function used to calculate
the capability score of a solution.

We applied OAT sampling and random sampling to create
scatter plots for each factor in the 28 solution models (the Pareto
front and first non-dominating rank) produced by CATMOS for
the ACM case study. We developed a custom response measure
which produces a plot showing the response distribution, based
on the sampling, for each of the models in the solution set. In
total, we evaluated nearly 20,000 model variants which took ap-
proximately 3 hours to execute on a 2GHz Intel Core 2 Duo Mac-
book with 2 GB of RAM.

6.5.2 Results

The results found from attempting to answer the experimental
goals described in the previous section are now presented. We do
not aim to provide a detailed analysis of the results: we aim to
illustrate the kinds of knowledge that can be extracted from using
sensitivity analysis in MDE.

G1: Response Contribution Figure 6.7 illustrates three types
of response contribution which were observed. Figure 6.7a shows

8 Results available at:

http:

//www.jamesrobertwilliams.

co.uk/modelsl2-sa
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a factor which has no effect on the calculation of the capability
provided by that solution (response of the MMO). One possible
cause of this is that the range of values analysed were not ap-
propriate, and more discussion with a domain expert would be
required. However, upon analysing the solution more closely, it
became clear that the component providing the particular capabil-
ity had an unfulfilled dependency, meaning that it actually had
no effect on the output. In this case, the offending component
should be removed from the model to avoid misleading decision
makers.

Figure 6.7b shows the effect that the “People Treatable” com-
ponent had during the random sampling method. You can see
that there is a positive correlation, highlighting the importance
of this factor as it is heavily influential in determining the ca-
pability score. Furthermore, it validates the assumptions of the
model — a solution that is able to treat more people should have
a higher capability score. Other factors also showed relationships
with the response that further validated the model. Finally, figure
6.7c illustrates a factor which exhibits an upper limit. This kind
of result proves useful in understanding the problem, allowing
stakeholders to act out ‘what-if” scenarios.

G2: Factor Relationships 28 solution models were analysed
and examining the OAT results for each model showed that some
factors affect on the response differs between solutions. This
shows a dependency on other factors in the model. Figure 6.7c,
for example, is limited by the factor defining the number of peo-
ple who can be transported to the hospital. Examining the ran-
dom sampling plots shows little to no correlation for most of the
factors. Therefore, further analysis is required to understand the
relationship between multiple factors. This is, however, out of
scope.

G3: Frontier Confidence Figure 6.8 shows the response distri-
butions, provided by random sampling, overlaid on top of part
of the original Pareto front and first non-dominating rank pro-
duced by CATMOS (figure 6.2). Two interesting observations can
be seen. Firstly, O1 in figure 6.8 highlights the case where a first
non-dominating rank solution (red circle) appears to be, on aver-
age, better than a solution in the Pareto front (blue star). Secondly,
Oz highlights a case where CATMOS has returned two solutions
in the Pareto front with the same capability and cost (this is al-
lowed by CATMOS). A decision maker, may therefore think them-
selves safe in selecting either solution. The associated box plots,
however, show that they have different interquartile ranges — sug-
gesting that one solution is more sensitive to uncertainty than the
other.

One flaw with this analysis method is that it does not take the
probability distribution of each factor into account. For example,



the random sample may have collected a large number of improb-
able combinations of factors, which then skewed the distribution.
We plan to address this in future work (see section 6.6).

6.5.3 Summary

In this section we have shown how our implementation of the
framework for the CATMOS tool has provided new insight into
the results which CATMOS produces. This has shown how sen-
sitivity analysis can provide deeper understanding of a problem,
aid in the validation of a solution, and discover areas of a solution
which need further investigation by domain experts.

6.6 Conclusion

In this section we have motivated the need for supporting sen-
sitivity analysis in MDE. Uncertainty can appear in all aspects
of MDE; we have defined three categories of uncertainty — data
uncertainty, structural uncertainty, and behavioural uncertainty.
These extend and complement the uncertainty that can be ex-
pressed in Famelis and Salay’s partial models [41, 153]. Due to
the need for domain specific analysis of uncertainty, we have pre-
sented a framework that enables metamodellers to provide sensi-
tivity analysis tool support for models conforming to their meta-
models. This framework has an architecture which allows new
sampling methods and response measures to be integrated, mak-
ing it easy to tailor to new domains. Sampling is achieved using
Crepe by altering the genotypic form of the input model with
respect to user-defined alternate values. We have illustrated the
usefulness of this kind of framework by instantiating it to support
an existing acquisition tool, and applied the analysis to a real
problem. The analysis provided new insight into the solutions
produced by the tool, which would better inform the acquisition
decision makers.
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There are a number of interesting directions for future work.
Firstly, a deeper exploration of uncertainty in MDE is required.
Uncertainty should be identified and dealt with, and so under-
standing where it can arise, and providing a way to aid users with
managing uncertainty, would be very beneficial. This could pos-
sibly be in the form of tool support, or a set of guidelines or best
practices. With respect to the framework, we plan to extend the
uncertainty metamodel to account for structural and behavioural
uncertainty, and devise a method to analyse these. For example,
for structural uncertainty, changing the type of an attribute would
require changes to the underlying metamodel, which may not be
trivial, and so some thought is required to determine the best ap-
proach to take. It would be interesting to see if we use these ideas
to search for partial models. Partial models capture design alter-
natives, but these may not be complete: the modeller may have
no considered all possibilities. Employing SBSE techniques to
search for alternative, constraint satisfying, designs could present
the modeller with a more complete partial model, enabling them
to more thoroughly address uncertainty.

Additionally, we wish to include support for probability distri-
butions for specifying data uncertainty. This would add an extra
dimension to the analysis as it would also show the likeliness
of a particular result occurring. We also plan to develop a meta-
model to capture the results of analysis in order to define analysis
methods as model transformations, and thus increase reusability
of analyses. Finally, although Crepe is only used here for model
variant generation, we can utilise it further to search for input fac-
tor configurations that result in large response deviations. Sam-
pling techniques may miss highly deviating configurations, but
search could be used to discover them. This would allow mod-
ellers to inspect the worst case scenarios, and either discard the
scenario or improve their model accordingly.
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Analysis of the Properties of
the Model Representation

THIS THESIS HAS PRESENTED a metamodel-agnostic representa-
tion of models that is amenable to many standard SBSE tech-
niques, and has applied it to discovering optimal models, ex-
tracting models from system behaviour traces, and utilised it to
analyse the effects of model uncertainty. Up to this point there
has been little consideration of the properties of the representa-
tion or how the different genetic operators affect the evolvability
of the representation. This chapter presents a preliminary study
that aims to answer questions related to these topics. In particu-
lar, we focus on understanding the locality and the redundancy of
the representation — two properties that have been shown to be
important for the performance of evolutionary search. Regard-
ing the effects of the adaptation operators, section 5.2.4 applied
a Central Composite Design [116] over the probabilities of each op-
erator’s application on the SAF adaptation case study to find the
optimal parameter configurations for each sub-experiment. The
optimal parameter configurations discovered highlighted that the
SAF adaptation problem suffers from noise, and so we cannot
draw many conclusions from the results. In order to truly un-
derstand the effects of the adaptation operators we would need
to analyse numerous, well-defined search problems, and so we
leave an exhaustive study for future work.

To effectively analyse properties of the representation, we need
to do so with respect to multiple metamodels, as the different
characteristics of metamodels affect the properties of the repre-
sentation. Indeed, by analysing metamodels with different char-
acteristics, we can begin to understand how these characteristics
affect the representation and therefore guide users towards desir-
able search parameters for the metamodel used in their problem.
As such, this chapter also includes a structural analysis of a cor-
pus of more than 500 publicly available metamodels in order to
determine what metamodels commonly look like. The analysis
focuses on metamodel structure due to the fact that our genotype-
phenotype transformations use the metamodel’s structure to per-
form their mappings. Therefore, different structural characteris-
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tics of the metamodel will affect the transformation. From this
corpus we select representative metamodels to use for the analy-
sis of our representation, or other similar representations.

Chapter Contributions The contributions of this chapter are
as follows.

e The definition of 19 structural metrics of metamodels and the
automated analysis of a corpus of 500 publicly available meta-
models — the largest known such analysis to date. This pro-
vides utility not just in evaluating our representation, but in
understanding how metamodels are being developed in prac-
tice, highlighting common traits of metamodels, and practices
of metamodellers.

* The identification of four metamodels that are representative
of the corpus which can act as benchmarks for analysing the
properties of the representations of models.

¢ The empirical analysis of the locality of our representation,
gaining insight into how the metamodel that defines the prob-
lem space affects this.

¢ The empirical analysis of the redundancy of our representa-
tion, also discovering the effects of different characteristics of
the metamodel that defines the problem space.

* A plan for future empirical analysis to gain a deeper under-
standing of the properties of the representation and the influ-
ence that the metamodel has both on these properties and on
the metaheuristic.

Chapter Structure We start in section 7.1 by describing the
properties of representations which have been shown to be im-
portant in efficient evolutionary search. We also discuss the dif-
ferent features of our representation that will affect these prop-
erties. Our analysis of the structural features of a large meta-
model corpus is presented section 7.2. Section 7.3 presents an
empirical evaluation of the locality of the representation on four
representative metamodels, selected from the corpus. Section 7.4
describes an empirical analysis of the redundancy of the represen-
tation with respect to the four representative metamodels. Section
7.5 discusses other properties of the representation previously not
addressed and defines a plan for further detailed analysis.

7.1 Properties of Representations

Rothlauf [147] is the seminal work on representations for evolu-
tionary algorithms. A representation should, at least, be able to
express all possible solutions to a problem [147]. Moreover, the



representation can have a dramatic effect on an evolutionary al-
gorithm’s ability to solve a problem — in some cases turning sim-
ple problems into challenging problems, or challenging problems
into more manageable problems [147]. The locality and redundancy
of a representation are two properties that have been shown, theo-
retically and empirically (see [147]), to influence the performance
of evolutionary algorithms. These were described in section 2.2.2.
Locality relates to the effects that small changes to a genotypic
individual have on its phenotypic form. A representation is said
to ‘have locality” if neighbouring genotypes correspond to neigh-
bouring phenotypes [52, 147]. Redundancy relates to areas of the
genotype that are not used in the mapping to the phenotype [147].
This section examines two particular aspects of our representation
of models which may affect these properties.

7.1.1 Features of our Representation

When using our representation, there are a number of configura-
tion parameters that the user can tailor to suit their problem (see
Table 4.1). Each of these parameters will influence the properties
of the representation described above. This section discusses the
effects of the representation-related parameters.

Maximum Allele Value When initialising a population of indi-
viduals at the start of the execution of an evolutionary algorithm,
it is common to create each member of the population at random
(we showed in section 5.2.4 the benefits of seeding the initial pop-
ulation). For example, in a binary representation, each allele is
randomly set to be a zero or a one. In an integer representation
where the mapping process takes the allele value modulo some
other value (such as in Grammatical Evolution or our represen-
tation), the maximum allowed allele value has an impact on the
phenotypes that can be represented (and therefore discovered by
search). If this value is too low then not all phenotypes can be
represented, and if this value is too high then there will be more
genotypes than phenotypes. In other words, the maximum al-
lele value plays an important role in creating redundancy in the
representation. Furthermore, the maximum allele value has some
impact on the locality of the representation. An overly large value
will create extra, redundant phenotypical neighbours which in-
creases non-locality.

Although there are proponents on both sides of the argument,
it is commonly believed that redundancy should be limited as
it can result in inefficient search. Goldberg [56] argues that the
alphabet used to define the representation should be as small as
possible. Therefore, the maximum allele value is defined as:

max(#seg, fimax) (7.1)

where fin,,y is the largest number of finitisation values given to
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a single feature in the finitisation model. #seg is required in case
there is an object with an association that can reference every ob-
ject in the model (including itself). This ensures that all segments
and all finitisations are able to be referenced by a feature pair, thus
ensuring that the encoding is complete with respect to the length
of the individual. We discuss further the effects of the maximum
allele value in section 7.4.

Individual Length As well as the maximum allele value, the
length of an individual can impact both redundancy and the size
of the model space (i.e. the number of possible phenotypes that
can be encoded). In our representation, the number of segments
in an individual impacts the number of objects that can appear in
the associated model. Adding more segments to that individual
allows for larger models to be represented. Similarly with fea-
ture pairs, the more feature pairs present in a segment, the more
object features can be assigned values (this is particularly impor-
tant for references with large upper bounds). If the individual
length is fixed, then to discover a solution model that consists
of very few objects, the search algorithm would need to find so-
lutions with many redundant segments (which may not be pos-
sible). Conversely, if the solution model is large, it may not be
able to be encoded by the limit of the individual’s length — mean-
ing that some knowledge of the solution is required to select an
appropriate genotype length. It is for this reason that our rep-
resentation allows users to specify the minimum and maximum
number of segments and feature pairs per segment, thereby cre-
ating individuals with varying lengths. The segment creation and
destruction search operators are then able to increase or reduce
individuals. Incidentally, Miller et al. [111] demonstrate an in-
crease in the evolvability of the search algorithm with extremely
large genotypes with very high redundancy (>90%) for two stan-
dard problems.

Throughout this chapter we will empirically demonstrate the ef-
fects of these two aspects of our representation, illustrating in
particular how the length of an individual has significant effect
on both locality and redundancy.

7.1.2 Summary

In this section we have discussed the aspects of our representa-
tion of models which affect two key properties of representations.
We touched upon the idea that the metamodel being searched
over influences the properties of the representation. In the next
section we perform an analysis of a corpus of publicly available
metamodels to discover common structural properties of meta-
models, and use this to select a set of representative metamodels
with which to analyse the properties of our representation.



What do Metamodels Really
Look Like?

7.2

Note: The work described in this section is a based on joint work with Athana-
sios Zolotas, Louis Rose, Nicholas Matragkas, Dimitrios Kolovos, Richard
Paige and Fiona Polack, and has been published in [187]. All work pre-
sented here was performed by me, with the exclusion of the associated re-
lated work section which was originally written by Zolotas and Matragkas.
The metamodel corpus was collected by Matragkas. The paper [187] includes
extensions of the statistics presented here that are not directly relevant to rep-
resentations and so are not presented.

Our model representation (section 4), Crepe, is based on a
structured linear genotype. The structure of the genotype re-
lates to three specific aspects of metamodels — meta-classes, meta-
features, and the values that can be assigned to meta-features.
The structure of the metamodel impacts on the properties of the
representation. For instance, figure 7.1 shows two metamodels:
one with features and one without. Two identical segments ex-
press different properties when mapped to objects with respect to
different metamodels. The first segment (figure 7.1, left) has no
redundancy as each feature pair maps to different meta-features.
This compares to the second segment (figure 7.1, right), which
exhibits redundancy due to the meta-class being instantiated not
containing any features. Therefore, any mutations to the feature
pairs would have no effect — resulting in non-locality.

Metamodel X Metamodel Y
r 1 r 1
3 * . A ‘ B
E oo : String |
£ Jbar : Int
|| [o[i[2[o[s) [ofil2[e[3]
- ‘/ ‘/
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° 8 bar = 3

Therefore, the level of locality and amount of redundancy in
Crepe is dependent on the particular metamodel being repre-
sented. Having information about the metamodel can aid deci-
sion making when configuring the representation for search. For
example, if every meta-class in the metamodel has zero features,
then there is no need to have feature pairs, as these would simply
be junk and therefore waste computational effort and increase re-
dundancy and locality. In a less extreme case, it may not make
sense to have a high number of feature pairs when there are few

Figure 7.1: A simple illus-
tration of the effects that the
structure of a metamodel
has on the representation.
The shaded boxes represent
redundant  feature  pairs.
The ovals containing num-
bers are the meta-element

identifiers used by the
genotype-to-phenotype
transformation.
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meta-features. Conversely, it would not make sense to have a low
number of feature pairs when there are many meta-features. Fur-
thermore, the quantity of meta-features may not be a useful guide
to selecting the number of feature pairs. References have upper
bounds - if each reference in the metamodel has an explicitly
defined upper bound then it would be possible to select the max-
imum number of feature pairs in a segment. However, if many
references define ‘many” or ‘*” as the upper bound, this is not
possible. The solution may simply be to choose a large number
of feature pairs, accept redundancy as a consequence, and deter-
mine effective means to exploring the enlarged search space.

This section, therefore, attempts to understand how metamod-
els are commonly structured by automatically analysing a set of
structural characteristics of a corpus of more than 500 publicly
available metamodels. Analysing the structural characteristics of
many metamodels illustrates the common practices that are made
by metamodellers — the most used parts of the metamodelling
language, and the ways in which domain concepts are typically
expressed. This analysis will guide the evaluation of the rep-
resentation by allowing us to select appropriate metamodels to
investigate how the metamodel affects the representation, whilst
providing insight into how best to make use of the representation.

There are, however, wider implications for this work. There
has been much research into the quality of models, but there is
little empirical analysis of metamodels. If we can analyse meta-
models in the general case, we would to be able to identify and
detect good and bad practices, and understand the ways in which
people are commonly structuring their metamodels today. Un-
derstanding structure is just a first step: once we can analyse
metamodels in different contexts and for different purposes, we
can identify patterns of metamodelling best practice for different
contexts, and metamodel refactorings that facilitate model opera-
tions such as transformation. We can also develop understand-
ing of how metamodels evolve over time, and seek to control
the complexity of evolving metamodels to minimise the effects
on model artefacts, operations and tools. We are currently pro-
ducing a set of standard metrics and analyses for metamodels —
similar to what exists in other domains (e.g. OO) — and develop-
ing a supporting automated metamodel measurement workbench
[187].

A more thorough analysis can be found in [187] and at www.
jamesrobertwilliams.co.uk/mm-analysis, including considera-
tion of how metamodels evolve over time.

Section 7.2.1 introduces a set of metrics, focusing for now on
structural analysis of metamodels. Section 7.2.2 presents the re-
sults of analysing the corpus of metamodels. Section 7.2.3 de-
scribes related research. Section 7.2.4 summarises the findings of
the experiment, and section 7.2.5 selects four metamodels from
the corpus with which to analyse our representation.


www.jamesrobertwilliams.co.uk/mm-analysis
www.jamesrobertwilliams.co.uk/mm-analysis

7.2.1 Structural Properties of Metamodels

We define a set of structural metrics that offer us insight into the
common ways in which people develop metamodels. Arbitrarily
selecting a set of metamodels to use for analysing the represen-
tation may not produce generalisable results, as the metamodels
may not be representative of those that are being developed in
practice. Analysing a corpus of existing metamodels allows us to,
firstly, understand how practitioners are developing metamod-
els, and secondly, select representative metamodels to use in the
evaluation of our representation or even guide the automatic gen-
eration of metamodels with representative characteristics.

The metrics considered in this section are all defined in EOL
[92] because it provides an executable query language, akin to
OCL, that can be executed on Ecore metamodels (see Section
7.2.2).

In general, metamodels consist of two sorts of elements: meta-
classes, and the meta-features defined by those classes (attributes,
and references to other meta-classes). The example metrics are
grouped into metrics concerning meta-classes and metrics con-
cerning meta-features.

Metrics concerning Meta-classes Our initial set of meta-class
metrics, summarised in Table 7.1, focuses on the number occur-
rences of meta-classes with various properties in a metamodel.
For instance, metric C gives an indication of the size of a meta-
model, whilst C. focuses on concrete meta-classes. Further met-
rics could explore the depth and shape of meta-class hierarchies
in more detail.

Identifier Description

C Total number of classes

C. Total number of concrete classes

Cr Total number of completely featureless classes
Cra Total number of completely featureless abstract classes
Crc Total number of completely featureless concrete classes
Cr Total number of immediately featureless classes
Cia Total number of immediately featureless abstract classes
Cic Total number of immediately featureless concrete classes

CFayc Average number of features per class
CAavc  Average number of attributes per class
CRavg Average number of references per class

Metrics focusing on numbers of features gives us insight into
the ways developers model domains. Here, we provide metrics on
two kinds of featureless meta-class: immediately featureless classes
are those that have no attributes or references, but may inherit
features from a superclass (Cj, Cra, Cjc); completely featureless
classes have absolutely no features (Cr, Cra, Crc). Cy is a subset
of Cr. Further metrics might explore the frequency of reference

Table 7.1: Structural met-
rics defined for meta-classes.
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Table

features, as compared to attribute features, or the distribution of
features across hierarchies.

In addition to counting, we can create descriptive statistics
such as means and medians. Table 7.1 lists three metrics for the
average number of features per class (CFayg, CAave, CRavG)-
These metrics can be used to analyse whether there is a tendency
to create many small classes, develop ‘God’ classes, or distribute
features across classes.

Metrics concerning Meta-features The metrics concerning
meta-features are summarised in Table 7.2. These metrics are
global — they refer to the number of occurrences of features in an
entire metamodel. These metrics illustrate how metamodellers
commonly define the data (attributes) in metamodels (F4), and
how they relate meta-classes to one another (Frc, Fry)-

Identifier Description

7.2:

F Total number of features

Fy Total number of attributes

Fr Total number of references

Frc Total number of containment references

FrN Total number of non-containment references
Frun Proportion of references with upper bound set to 1
Frux Proportion of references with upper bound set to many
Frun Proportion of references with upper bound set to N

Structural

metrics defined for meta-

features.
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Table 7.2 also has examples of metrics that provide more de-
tailed analysis of metamodelling characteristics, for example by
analysing the upper multiplicity bounds of references (Fry1, Frir«,

Frun)-

Summary The 19 metrics listed in this section are examples of
what is possible, and incidentally, though unintentionally, over-
lap and extend the metrics defined in recent work by Ma et al.
[104]. Listing 7.1 shows two of these metrics coded in EOL: they
are not difficult to write. There are many more structural analy-
ses that could be supported by similar metrics — for instance, the
distribution of data types selected for attributes, the use of string
attributes, enumerations, and custom datatypes. Whilst these ad-
ditional metrics may not be relevant to our representation, they
are necessary in the development of a set of standard metamodel
metrics.

var numMetaClasses = EClass. all.size();
var numNonContainmentReferences =
EReference. all.select(rlnot r.containment).size();

Listing 7.1: Example EOL statements: metrics C and Frc

To understand the characteristics of a metamodel, we can also
combine metrics. For example, examining the total number of




meta-classes (C) and total number of meta-features (F) may high-
light a metamodeller’s preference for modelling — perhaps pre-
ferring many classes but few features, or few classes but many
features. Furthermore, it can help us in defining the size of each
individual used in a search problem for that metamodel.

7.2.2 Analysis: What do Metamodels Really Look
Like?

This section uses the metrics defined in the previous section to
analyse a large number of metamodels in an attempt to determine
what the average metamodel looks like structurally. It should
be noted that a metamodel that is dissimilar to the average may
not necessarily be a ‘bad” metamodel — though it may increase
the difficulty in using it for a specific purpose. By computing
the average metamodel, we hope to inform the community of
how people are modelling domains and attempt to learn how to
improve current practice. The analysis script and the corpus of
metamodels are available online at: www.jamesrobertwilliams.
co.uk/mm-analysis.

Analysing the Corpus of Metamodels We have accumulated
a corpus of 537 publicly available Ecore [170] metamodels. The
corpus is made up of metamodels collected from GitHub®, Google
Code?, the AtlantEcore Zoo3, the EMFText Zoo#, and from inter-
nal projects. The corpus includes many well known modelling
languages — such as the UML [122], DoDAF [174], and MARTE
[119] — as well as metamodels for many programming languages
such as Java, C#, C, and Pascal. Each metamodel was analysed
using a script written in EOL to calculate each of the properties
described in section 7.2.1. We then collated the scores and now
describe the results. The complete analysis script is listed in ap-
pendix B.3.1.

Meta-class Metrics Figure 7.2 shows the frequency distribu-
tion for the total number of meta-classes. The median total num-
ber of meta-classes in the corpus is 13, with a mean of 39.3, a max-
imum of 912, and a minimum of one. This suggests that meta-
models (at least, in this corpus) are often fairly small. Twelve
of the 537 metamodels have a single meta-class. Five of these
metamodels are meaningless and should be removed, four were
extensions of other metamodels, and three were domain-specific
metamodels which also defined custom data types or enumer-
ation types. Although small, a single-class metamodel can still
define a suitable modelling language for some domains. The cor-
pus showed that abstract meta-classes were not popular: 44% of
metamodels did not contain a single meta-class denoted as be-
ing abstract. Furthermore, 96% of the corpus has fewer than 20
abstract meta-classes, whereas only 69% of the corpus has fewer

"github.com

2 code.google.com

Swww.emn.fr/z-info/
atlanmod/index.php/Ecore

“www.emftext.org/index.php/
EMFText_Concrete_Syntax_Zoo
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Figure 7.2: Frequency dis-
tribution of the total number
of meta-classes (C, C., Cq).

Figure 7.3: Frequency dis-
tribution of featureless meta-
classes.

Swww.eclipse.org/uml2
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than 20 concrete meta-classes. This is arguably due to the small
average size of the corpus: smaller metamodels are likely to con-
tain only concrete classes, whereas larger metamodels are more
likely to utilise abstract classes and inheritance hierarchies.
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Featureless classes were uncommon. Figure 7.3a shows that
58% of the corpus has no completely featureless classes, and 27%
have no immediately featureless classes. Interestingly, in the UML
metamodel (developed by the Eclipse UML2 project®), 50 of the
227 meta-classes were immediately featureless, 40 of those were
concrete. Immediately featureless classes are more common than
completely featureless ones, and it is much more likely that these
immediately featureless classes are concrete. Further analysis
would likely show that these are specialisations of abstract classes
(figure 7.3b), perhaps used to add extra semantics to the hierar-
chy.


www.eclipse.org/uml2

Meta-feature Metrics Figure 7.4a shows the frequency distri-
bution of the total number of meta-features contained in the meta-
model corpus. The median number of meta-features per meta-
model is 23.5, with a mean of 69.2, a maximum of 2410, and
a minimum of zero. Furthermore, metamodels commonly have
more references (median 13.5, mean 43.0) than attributes (median
8, mean 26.2). Figure 7.4b shows that the average metaclass has
2.1 features: 1.15 references and 0.95 attributes. The large number
of featureless classes present in the corpus (figure 7.3) affects this
data. If we exclude featureless classes when calculating the aver-
age features per class, we obtain the same distributions, however
the mean number of features per meta-class increases slightly to
2.3, with 1.3 references and 1.0 attributes.
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(b) Average number of features per class (CFayg, CAave, CRave).

Metrics Frc and Fry showed that on average metamodels con-
tain more non-containment references (median 6, mean 27.3) than
containment references (median 5, mean 15.7). With respect to
metrics Fryy1, Frus, and Fryn, the upper bounds of references
are set to ‘one’ 52% of the time, to ‘many’ 47% of the time, and
are explicitly given a value just 1% of the time. The trend to-
wards selecting ‘many” as opposed to explicitly defining an upper
bound might be attributed to the inherent uncertainty in mod-
elling [192, 179] (of course, sometimes specifying an upper bound
as ‘many’ is perfectly acceptable and not related to domain un-
certainty).

7.2.3 Related Work

Note: This section draws extensively on Zolotas and Matragkas’ contribution
to the background section in [187], and included for completeness.

While there is a significant amount of work in the field of anal-
ysis of MDE artefacts, the majority of the related work we have
encountered has a different focus to this paper. While this paper
provides an empirical study on a large corpus of metamodels,
the majority of existing work proposes either new metrics or new

Figure 7.4:
meta-features.

Analysis of
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approaches for measurement of models. Another characteristic,
which makes this paper novel is the size of the corpus, which
gives more validity to the obtained results.

The closest work to ours is Cadavid et al. [20] who present an
empirical analysis of the ways MOF and OCL are used together.
They define metrics to analyse the complexity of 33 metamodels,
their constraints, and the coupling between the two. The work in
this paper aims to complement Cadavid et al’s work with deeper
analysis of the metamodel structure (as opposed to its relation-
ship with its constraints). Additionally, Vepa et al. [175] mea-
sure a set of metamodels that is stored in the Generative Model-
ing Technology/ATLAS MegaModel Management (GMT/AM3)
Repository. This work focuses on the model repository and the
measuring technique, rather than the presentation of the results
of the analysis.

O’Keeffe and O Cinnédie [124] define five object-oriented met-
rics that are used to evaluate refactorings to class diagrams. These
metrics partially overlap with our metrics. In particular, they de-
fine a featureless class metric — aiming to minimise this “since
they have no responsibilities and increase design complexity”
[124]. They also define metrics related to methods, which should
be added to our metric collection.

Ma et al. [104] propose a model to assess the quality of meta-
models based on five properties (reusability, understandability,
functionality, extendibility, well-structuredness). In their study
they measure the quality of four well-known metamodels (UML,
SysML, BPMN and MOF). Kargl et al. [81] propose a metric that
compares the concepts that appear in the abstract syntax of mod-
elling languages with the concepts that are used in the concrete
syntax, and apply this to two versions of UML. Finally, Arendt et
al. [4] describe an Eclipse plugin, EMF Metrics, that can be used to
assess the quality of EMF metamodels based on nine quantitative
criteria. The aforementioned approaches focus mainly on model
quality (as with software), while we (and Cadavid) are interested
in understanding the usage of metamodelling languages and how
metamodels are built.

7.2.4 Summary of Experiment

In this section we have posited the need for a deeper understand-
ing of metamodels, not only to provide guidance for tailoring
Crepe to specific problems, but also to understand, analyse, and
inform the practices of metamodellers. We illustrate structural
analysis on a corpus of over 500 Ecore metamodels, gaining in-
sight into how metamodels are commonly structured. We are
now in a position to start the analysis of good and bad prac-
tice in metamodelling, for general purpose modelling languages
or domain-specific modelling languages, and in different model
management contexts.



To facilitate development of further metrics, we are creating a
metrics metamodel. We plan to create a web-based automated
metamodel measurement workbench that allows users to upload
and analyse their own metamodels, which will automatically aug-
ment to the results given here. We plan to devise a comprehensive
set of metrics, and develop state-of-the-art analyses for metamod-
els, taking inspiration from similar domains, such as bad smell
detection [48] and design patterns [27].

7.2.5 Selecting Representative Metamodels

From the results of analysing the corpus, we have gained insight
into the most common ways in which metamodels are structured.
By gaining this knowledge, we are able to determine which struc-
tural characteristics have the most effect on different properties.
We can then either guide users towards refinements to their meta-
models that improve evolvability, or use the knowledge to refine
the representation itself, so that it is tuned towards the most com-
mon metamodel structures. We have selected four metamodels
with which to use when evaluating properties of our representa-
tion, and to act as benchmarks for other model representations.
We refer to these metamodels as MUTs: metamodels under test.
The detailed analysis of the MUTs are shown in Table 7.3. Each
MUT has approximately the median number of meta-classes, but
varying numbers of features. We keep the number of meta-classes
(almost) constant as it doesn’t affect the representation dramati-
cally. The more meta-classes, the larger an individual would need
to be to ensure that each meta-class is fairly representated, mak-
ing analysis more costly. Moreover, properties of meta-features
will have more variable effects than meta-classes.

Name C C A CC CF C I F F A FR
EG-MOF 13 0o 13 o 11 6 0 6
Java 13 3 10 O 30 12 18
ATOM 14 0 14 O 60 38 22
DsIModel 14 3 11 1 1 23 8 15
Corpus median 13 2 11 O 2 235 8 13.5

Each of the selected MUTs are now described, and are shown
graphically in appendix B.4.

EG-MOF This metamodel comes from the AtlantEcore Zoo and
defines the concepts for drawing graphs of program execu-
tion. An ExecutionGraph contains a collection of Nodes. Each
node has a set of predecessor nodes and a set of successor node.
There are 11 specialisations of the Node class, including Start,
Branch, and Fork. This metamodel represents those who have
fewer than the median number of features.

Java This metamodel was found on GitHub and defines a basic

Table 7.3: The metric scores
for four metamodels, and the
median scores of the corpus.
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metamodel for representing Java programs. A Model contains
many Elements — Packages, Classes, Enumerations etc. Classes
contain Methods and Fields. Methods have MethodParameters
and Statements. This metamodel represents those who have
more than the median number of features.

ATOM This metamodel, taken from the AtlantEcore Zoo, depicts
the Atom Syndication Format [60] — a web standard for content
syndication, and an alternative to RSS. Each Atom feed has col-
lections of Links, Entrys. Entries contain more information re-
lated to the content being syndicated. This metamodel repre-
sents those who have many more than the median number of
features.

DsIModel Also taken from the AtlantEcore Zoo, this metamodel
captures the concepts used to define domain specific languages
(DSL). In essence it defines a basic meta-metamodelling lan-
guage. Models contain Elements such as ModelElement and Refer-
encelLinks between model elements. This metamodel represents
the median metamodel.

Now that we have selected our MUTs we can begin to analyse
the properties of our representation, starting with locality.

7.3 Locality

As previously discussed, locality is necessary for mutation-based
search [147, 150]. The structured nature of our representation
means that different types of gene in an individual encode differ-
ent parts of the model being represented. Mutating these differ-
ent types will have varying degrees of impact on the represented
model — illustrated in figure 4.14 — a phenomenon known as posi-
tional dependence [25]. Therefore, in analysing the locality, we are
interested not just in the general effect of mutation, but also in the
effects of mutating the different types of genes. It seems obvious
that mutating class bits will have the most impact on the encoded
model — if we can show this, we might wish to set the mutation
probability for class bits to a much lower value than those for the
feature-related bits.

A result of positional dependence is that the locality of our rep-
resentation is tightly integrated with the metamodel that defines
the model space being explored. Analysing the locality of a set of
metamodels with different characteristics can aid users in config-
uring their metamodel for use with search: a small set of simple
refactorings to a metamodel with non-locality may result in local-
ity being exhibited. Manually creating metamodels with certain
characteristics may, however, result in contrived metamodels that
are not representative of the kinds of metamodels that people de-
velop in practice. As such, in this section we analyse the locality



of the four metamodels (referred to here as MUTs) selected in the
previous section.

The set of models that can conform to a metamodel is poten-
tially unbounded. With respect to the representation, adding an
extra segment or feature pair to an individual increases the num-
ber of models that can be represented by that size of individual.
If a metamodel defines upper bounds for all features, then there
is a maximum size that models can take and any new segments
added to an individual will be redundant. However, if the meta-
model does not define upper bounds, the model space is infinite
and new segments can be added to an individual without intro-
ducing redundancy. Even though a model space may be infinite
in size, it is unlikely that there is an upper limit on the size of
the models used in the particular domain — especially in the cases
of domain-specific metamodels. Therefore, although adding seg-
ments will increase the size of the phenotypic space, it may intro-
duce models that are not representative of the domain and thus
increase the difficulty of the search problem.

One consequence of positional dependence and infinite state
spaces is that full enumeration of the model space is not feasible.
Therefore in order to calculate the locality of our representation
with respect to each MUT, we sample the model space and in
particular, we sample each type of gene.

7.3.1 Experimental Setup

Objective In this experiment, we investigate the locality of the
representation, with a focus on determining the locality with re-
spect to the different types of gene used in our representation,
and attempt to understand how characteristics of the MUT affect
locality.

Approach To analyse locality, we randomly generate a set of
models conforming to each MUT and mutate samples of the class
bits, feature selector bits, and feature value bits.

For each of the four MUTs, we created appropriate finitisation
models — 100 random strings and 100 integers were used to fini-
tise any string or numeric attributes present in the metamodels.
Table 7.4 lists the parameters used in this experiment. For each
metamodel we generate 50 random individuals using the mini-
mum and maximum sizes specified in Table 7.4. For each gen-
erated individual, we randomly select and mutate 200 class bits,
500 feature selector bits, and 500 feature value bits. This means
that for each model we analyse 1,200 mutants, and for each meta-
model we analyse 60,000.

To allow for parallel execution, the experiments were split into
groups of ten models, each executed with a different seed to the
pseudo-random number generator.

Locality is defined using distance metrics on the genotype and
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Table 7.4: The parameters
used to analyse locality with
respect to a single meta-
model.

Shttp://www.eclipse.org/emf/
compare/
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Parameter Setting

Number of models 50

Class bit sample size 200

Feature selector bit sample size 500

Feature value bit sample size 500
Segment size (min-max) 10-50
Feature pair size (min-max) 12-30

Maximum allele value 50

phenotype. For our experiments, we define our distance met-
rics as follows. A genotypic distance of one is defined as being
a single gene difference: i.e. one application of the mutate op-
erator. This value of the differing gene can be anything within
the range of zero to the maximum specified. Phenotypic distance
is calculated using EMF Compare® (as was done in section 3.4.1),
a framework for comparing EMF models. An alternative would
be to define our own matching algorithm, allowing us to have
fine-grained control over the matching. In [180] we propose ex-
tensions to an existing model comparison language, ECL [9o0].
These extensions include: the ability to perform partial matching,
restricting matching rule application, specifying match multiplic-
ity, and defining custom matching strategies. Having these ex-
tensions would allow us to have total control over the matching:
for example, enabling us to define different weights for different
types of matching elements. Writing a robust matching algorithm,
however, offers many challenges and so for the locality analysis
the differences computed by EMF Compare are satisfactory and
the extensions to ECL are left as future work.

7.3.2 Results

Table 7.5 shows a summary of the results of the experiment. As
well as listing the locality scores and distances, we also show the
percentage of neutral mutations: those that resulted in a pheno-
typic distance of zero. Figure 7.5 shows the results presented as
violin plots. Violin plots combine box plots and a kernal density
plot to give a more detailed visualisation of the distribution. Sur-
prisingly, given its simplicity, the MUT that exhibits the most non-
locality is EG-MOF. Furthermore, the metamodel that exhibits the
most locality is ATOM, the metamodel with a well above average
feature load. DsIModel and Java score similar results and lie in
between EG-MOF and ATOM.

The reason for this unexpected behaviour is that the selection
of ranges used to define the individuals’ lengths for the experi-
ment is not representative of all of the MUTs. EG-MOF exhibits
a significant number of differences when a single class bit is mu-
tated. By inspecting the generated models, the reason for these
large distances was found to be due to the reference-heavy na-
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Table 7.5: The results of EG-MOF DslModel Java ATOM

analysing the locality of the Overall Locality score 675636 126367 154628 31114

representation against the CB locality score 639929 120676 146769 30147
four MUTs. CB = class bit, FSB locality score 14001 3198 4974 799
FSB = feature selector bit, FVB locality score 21706 2493 2885 168
FVB = feature value bit. -
CB mean distance 70.7 16.9 17.4 4.8
CB median distance 70 12 11 4
FSB mean distance 2.3 2.4 2.3 1.3
FSB median distance 2 1 1 1
FVB mean distance 3.0 2.5 2.1 1.1
FVB median distance 4 1 1 1
Overall neutrality 48.6% 80.7% 74.0%  78.9%
CB neutrality 8.2% 24.0% 10.7%  20.2%
FSB neutrality 55.9% 90.9% 84.1%  89.8%
FVB neutrality 57.4% 93.1% 89.2%  91.6%

ture of the metamodel combined with its inheritance hierarchy.
The hierarchy of the metamodel means that mutating an object’s
metaclass likely results in a new object who's meta-class has the
same superclass. For example, one might mutate a Branch object
into a Fork object. As all references in the metamodel are defined
with respect to the super type (Node), any references that were
pointing at the original object are instead pointing at the new ob-
ject. The feature pair size range selected for the experiment had
the unfortunate effect of creating a large number of references
from each object in the generated models. This meant that the
each object referenced 10 or 15 other objects, creating a highly
connected graph. Therefore, a change to a single object would af-
fect a huge portion of the model, and thus increase the number of
differences computed by EMF Compare. More importantly, these
highly connected models are not representative of the domain.
EG-MOF defines a language to express the execution graphs of a
program. Although program execution graphs can be complex, it
is unlikely that they exhibit the complexity found in the generated
models.

This has highlighted the importance of selecting appropriate
sizes of individuals. Selecting inappropriate sizes can have a
devastating impact on the locality of the representation, which
can lessen the effects of evolutionary search. To address this, in
the next section we redesign the experiment to use metamodel-
specific sizes of individuals in the aim of analysing the locality of
more realistic models.
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7.3.3 Experimental Redesign

To ensure that the individuals analysed in the experiment are rep-
resentative of the metamodel, we manually adjusted the range
values and manually inspected the generated models. Table 7.6
shows the ranges selected for this. EG-MOF has much lower
and shorter ranges than in the previous experiment, and the up-
per limit of the number of segments for ATOM has increased.
DslModel and Java are similar to the original values, with a small
decrease of the lower limit of the number of feature pairs, a re-
duction on the upper limit of the number of feature pairs for
DslModel, and a reduction on the upper limit of the number of
segments for Java.

Metamodel Segment Range FP Range Max. Allele Table 7.6: The metamodel-

EG-MOF 4-20 4-20 20 specific ranges used when
DsIModel 10-50 820 50 generating individuals for
Java 10-30 8-30 30 locality analysis.

ATOM 10-80 12-30 8o

Note that we were not the authors of these metamodels, and
have made assumptions that the models produced using these
ranges are representative. Further analysis should more accu-
rately determine what a representative model would look like for
each metamodel, and use that to seed the experiment.

The parameters regarding the experimental design (table 7.4)
are kept the same.

7.3.4 Redesign Results

Table 7.7 shows a summary of the results of the redesigned ex-
periment, and figure 7.6 visualises the results as violin plots. The
effect of adjusting the defining ranges of the individuals is ap-
parent, although not as much as expected. The average distance
caused by mutating the class bit has almost halved for EG-MOF,
and increased slightly for ATOM.

It is obvious from all sets of results that mutating the class
bit is much more destructive than mutating either of the feature
bits. The metamodels are ordered in Table 7.7 by increasing num-
ber of features in the metamodel. Unexpectedly, there appears
to be a increase in locality as the number of metamodel features
increases. The average phenotypic distance introduced by mutat-
ing the class bit decreases from left to right. EG-MOF scores the
worst for locality, but also has the lowest percentage of neutrality
(which will increase the locality score). Feature selector bits and
feature value bits have approximately the same effect regardless
of the metamodel, although there is still a decrease present in the
average distance as the number of metamodel features increases.

We now take a closer look at the results for each MUT in order
to understand how their different characteristics affect locality.
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EG-MOF DslModel Java ATOM Table 7.7: The results of

Overall Locality score 355671 142596 118504 25717 Aanalysing the locality of the

CB locality score 329751 136062 110645 24844 Tepresentation against the

FSB locality score 10402 3577 4919 7o4  four MUTS. CB = class bit,

FVB locality score 15518 2957 2940 169 FSB = feature selector bit,
- FVB = feature value bit.

CB mean distance 37.4 18.0 13.5 6.6

CB median distance 38 13 9 6

FSB mean distance 2.2 2.3 2.2 1.3

FSB median distance 2 1 1 1

FVB mean distance 2.8 2.4 2.0 1.1

FVB median distance 2 1 1 1

Overall neutrality 56.1% 78.6% 73.8%  79.3%

CB neutrality 9.4% 20.1% 11.6%  19.2%

FSB neutrality 65.7% 88.9% 83.6%  90.4%

FVB neutrality 65.0% 91.6% 88.8%  92.3%

EG-MOF This metamodel represents those that have below av-
erage number of features, having just six references and no at-
tributes (as determined by the analysis in the previous section).
The number of differences caused by mutating the class bit has
decreased by nearly half as compared to the original experiment,
however the number is still extremely high. Again, this is due to
the metamodel enabling a model to become highly connected. Re-
ducing the feature pair range further would again bring down the
scores, but may end up produce unrealistic models. Further work
is needed in understanding how models conforming to EG-MOF
commonly look, or the metamodel may need to be constrained to
restrict unrealistic models from being produced. This information
can then guide the selection of ranges.

Figure 7.7 shows a more detailed view of the distributions of
the phenotypic distances affected by the experimentation. The
class bit frequency plot (upper right) exhibits an unusual step
function, with step distance of four — likely due to the structure of
the references in the metamodel. Mutating the feature bits has a
much less dramatic effect on the model, however EG-MOF scores
higher on average than the other metamodels regarding feature
bits. This is due to the fact that EG-MOF has only references,
and no attributes. In the general case, mutating the value of an
(single-valued) attribute would only cause one structural differ-
ence (though perhaps may result in a vastly different model se-
mantically). Mutating a reference value, however, can cause more
than one difference. For instance, if the target of a reference from
object A to object B is moved to object C and that reference has an

opposite reference” defined, the opposite reference (B to A) is also 7 An ‘opposite’ reference is the in-
verse of a bidirectional reference.

) . . R . Ecore automatically updates/sets
sulting in more than one difference. Moreover, if the reference is a opposite references when creating

new or modifying existing refer-

ences.
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unset, and a new reference from C to A is created, therefore re-
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Distance

containment reference, it will affect the object(s) being contained,
again resulting in more than one difference.

DsIModel This is the metamodel whose characteristics most
closely resemble the average (median) metamodel found in the
corpus: it is this metamodel whose locality results may be most
informative for future case studies. The plots in figure 7.8 empha-
sise that mutations to feature bits result in high locality, whereas
class bits are non-local — with a fairly uniform distribution of dis-
tances between one and 4o. This highlights the destructive power
of the class bit — changing the type of an object can have a huge
knock-on effect to other areas of the model and result in a totally
distinct model.

Reducing the number of feature pairs had little effect on the
feature pair locality, however there is a slight increase in the non-
locality caused by the class bit. Neutrality decreased slightly in
the second experiment which may account for this increase.

Java This is the MUT that represents metamodels with an above
average number of features, with respect to the analysed cor-
pus. The results (shown in figure 7.9) are very similar to those
of DsIModel but exhibit slightly reduced effects of mutation. Hi-
erarchically, these two metamodels are similar which accounts for
the similarities. The amended segment range produced a reduc-
tion in the number of differences caused by class bit mutation.
This is a result of there being fewer objects in the generated mod-
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els. Models conforming to Java are obviously well connected and
so class mutation will have a big impact.

ATOM This metamodel was a very feature-heavy metamodel.
Surprisingly, it was the most resistant to mutation in both exper-
iments, as illustrated by the results in figure 7.10. By increasing
the number of segments, the effects of class bit mutation did in-
crease slightly, but the median distance is still more than half of
the closest metamodel (Java). The reason behind this is the fact
that ATOM has a large number of featureless, or feature light,
meta-classes. Mutating objects conforming to these classes will
have a smaller effect than mutating objects conforming to the few
meta-classes with a heavy load. Were the number of segments
increased, and the class bit sample size also increase, the effect of
mutating these classes would like become more apparent.

7.3.5 Discussion

In this section we have shed light on the locality of our repre-
sentation, by analysing the effects of small mutations to sets of
models conforming to the MUTs. We showed how the choice of
the defining ranges of an individual’s length is vital for ensuring
locality. The inheritance hierarchy of the MUT, combined with
the distribution and classification of its features, heavily influ-
ences the locality of the representation. The results demonstrated
that mutating feature bits causes, on average, a small number of
changes to the phenotype. In contrast, mutating a single class bit

20 30

Distance

40

Figure 7.8: DsIModel local-
ity frequency distributions.
The dotted line is the culmu-

lative frequency.
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can cause a dramatic change to the phenotype. Locality has been
shown to produce efficient evolutionary search, therefore, when
using our representation it may be appropriate to set the muta-
tion probability of the class bit to a very low value. A user of
our representation can analyse their metamodel’s locality before
applying the metaheuristic in order to gain insight for selecting
mutation rates and defining optimal lengths of individual used
in the search. Finally, one needs to consider the problem at hand.
Although a representation could be shown to have locality, this
may not be beneficial to the metaheuristic. Rothlauf demonstrates
how non-locality can reduce the difficulty of a problem which has
a misleading fitness landscape (where fitness increases the away
from the global optimum) [147].

Of course, we must be careful with our conclusions - there
are many other characteristics of metamodels that may influence
locality, and should be addressed in future work.

7.4 Redundancy

During the transformation from genotype to phenotype, parts of
the genotypic individual - i.e. single feature pairs and entire seg-
ments — may have no impact on the resulting phenotypic indi-
vidual. Any part of a genotypic individual that does not appear
in its associated phenotypic individual is said to be non-coding or
inactive. Even with non-coding parts, it is possible that different
genotypic individuals can encode the same phenotypic individ-
ual. These two phenomenon result in redundancy in the represen-
tation.

It is argued that too much redundancy creates an inefficient
representation, which cannot encode as much information as its
potential [147]. Some argue that redundancy is beneficial, as mu-
tations to inactive parts of the genotype will activate new areas
of the solution space [147, 111], whilst increasing the frequency
of optimal solutions [82]. For example, changing the value of a
class bit may activate a previously redundant feature pair in the
production of that model object. This section examines the areas
of the representation where redundancy manifests, with a focus
on non-coding redundancy. As with locality, we show that the
characteristics of the MUT play an important role in determin-
ing the amount of redundancy in the representation of its model
space. Section 7.4.1 describes how redundancy can manifest in
our representation, classifying redundancy into two categories.
Section 7.4.2 describes an experiment to analyse the non-coding
redundancy of the representation with respect to the four MUTs
selected in section 7.2. The results of this experiment are pre-
sented in section 7.4.3 and the amount of non-coding redundancy
is related to the structural characteristics of the MUTs.
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Figure 7.11: A surjective
function.
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7.4.1 Redundancy in the Representation

Rothlauf’s definition of redundancy is simply an inefficient repre-
sentation — one where there are more genotypes than phenotypes
[147]. Rothlauf uses the terms synonymously redundant to express
representations where the set of genotypes that encode the same
phenotype are similar to one another, and non-synoymously redun-
dant to mean the opposite [147]. By those definitions, the neu-
trality that we exposed in the previous section (see Table 7.5) was
synonymous redundancy: these were small mutations that causes
a phenotypic distance of zero. In this section, we classify redun-
dancy into two subtly different categories: surjective redundancy
and non-coding redundancy. We use the term surjective redundancy
to stand for cases where more than one genotype represents the
same phenotype (which therefore encompasses both synonymous
and non-synonymous redundancy). Non-coding redundancy is
lower level: the surjection of the phenotype is not of interest,
but instead this relates to determining which specific parts of the
genotype do not play a role in defining the phenotype.

Surjective Redundancy A surjective function is one where ev-
ery element in the codomain is mapped to by at least one element
in the domain (see figure 7.11). Surjective redundancy refers to
situations where different genotypes encode the same phenotype.
In our representation, two genotypes can map to the same phe-
notype in a number of ways. Firstly, surjective redundancy can
be introduced by the value selected to be the maximum allele al-
lowed. A larger maximum value increases the size of the search
space and, due to the fact that the modulus is used to select meta-
elements and values, two different numbers can represent the
same phenotypic element(s). Goldberg [56] argues that the alpha-
bet (i.e. the range of allele values) should be as small as possible.
Secondly, the ordering of segments and feature pairs impacts on
surjective redundancy. If two segments encode objects that are
in no way related in the phenotype, their order can be swapped
in the genotype without affecting the phenotype. Figure 7.12 il-
lustrates these two points. The two simple individuals shown
have the same segments specified in opposite orders and yet re-
sult in the same phenotype. Furthermore, the two feature value
bits encode the same reference assignment due to the transforma-
tion phase taking the modulus of those values when selecting the
target object.

According to Rothlauf’s definitions, the example shown in fig-
ure 7.12 would be considered to be non-synonymously redun-
dant. This is because a single application of the mutation opera-
tor, which defines the neighbourhood of an individual, to the first
individual would not result in the second.
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(a)

Non-Coding Redundancy During the reference construction
phase of the transformation, we may be left with a number of ob-
jects that are not contained by the root object. To partially address
this issue, we force the root object to contain every object it possi-
bly can before we assign the unhandled references. The reference
construction phase is allowed to then break an object’s direct con-
tainment with the root. Once the reference handling phase has
completed, there may remain a number of objects that are not di-
rectly or indirectly contained by the root object. These are called
islands and are automatically removed from the model. The seg-
ments that produced the objects in the islands are therefore non-
coding segments, and introduce redundancy into the representa-
tion.

Where a feature pair relates to a multi-valued feature, it can
become non-coding if no referenceable objects have been instanti-
ated, or if the reference has reached its upper bound. With respect
to single-valued features, the genotype-to-phenotype transforma-
tion will always assign the value specified by the feature value
bit to a single-valued features. This may overwrite the current
value of the feature, resulting in the feature pair that previously
assigned a value to the feature becoming non-coding. This is in-
dependent of whether the feature is an attribute or a reference.

The locality experiment carried out in the previous section gave
insights into surjective redundancy by recording the percentage
of neutral mutations. In the next section we perform an experi-
ment to analyse non-coding redundancy. We aim to understand
the source of neutral mutations by analysing non-coding redun-
dancy of the representation. We leave detailed analysis of surjec-
tive redundancy as future work and discuss the challenges of this
analysis in section 7.4.4.

7.4.2 Experimental Setup: Non-Coding Redundancy

Objective In this experiment, we perform an investigation into
the amount of non-coding redundancy in our representation, and
discover how different properties of the MUT affect this form of
redundancy.

Approach To analyse non-coding redundancy, we shall gener-
ate a large number of models for each MUT and calculate the

(b)

Figure 7.12: Illustration of
surjective redundancy. The
ordering of the segments has
no effect on the encoded
model. The two unshaded
feature pairs assign the same
reference (from object A to
object B) even though their
feature value bit differs.
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Figure 7.13: Illustration
of overriding a single-valued
feature, resulting in a non-
coding feature pair.  The
dashed box represents the
feature pair currently being
decoded. The shaded boxes
represent redundant feature

pairs.
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proportion of non-coding segments and feature pairs.

Determining the number of coding segments in an individual
is straightforward. Each segment represents one object, therefore
to determine how many segments were non-coding, we can sim-
ply subtract the number of objects in the phenotype (excluding
the root object) from the number of segments in the genotype.
Alternatively, we could map the resulting model back down to its
canonic genotypic form and count the number of segments.

Calculating the number of non-coding feature pairs, however,
is non-trivial. The feature selector bit can represent attributes or
references, both of which may be single-valued or multi-valued.
When a feature selector bit references a single-valued feature pre-
viously set, its associated feature value bit will overwrite the fea-
ture’s value - as illustrated in figure 7.13. When a feature selector
bit references a multi-valued features, its associated feature value
bit will select an element to add to the feature’s set of values,
providing that the feature’s upper bound has not been reached.
Unfortunately, subtracting the number of feature assignments in
the phenotype from the number of feature pairs in the genotype
does not accurately give us a count of the number of coding fea-
ture pairs. This is because assigning a value to one feature can
cause other features in the model to be updated. For instance, in
the case of opposite references, setting one reference in an object
will update the target object’s opposite reference. Furthermore,
any attributes that have default values specified in the metamodel
which were not modified by a feature pair will add false positives
to the count.
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This is where using a model to represent the genotype proves
beneficial. To support non-coding analysis of both segments and
feature pairs, we extended the search metamodel (figure 4.18) to
include two new boolean attributes: one in the Segment meta-
class, and one in the FeaturePair meta-class. These flags are up-
dated when the genotype-phenotype transformation recognises
that the associated segment or feature pair has been made redun-
dant. Once an individual has been mapped to its phenotype, we
can inspect it and count the number of non-coding segment and
feature pair flags that are set to true. Adding support for this
to the transformation involved the addition of approximately 20



lines of EOL and two map data structures — required to keep track
of which feature pairs and segments have been assigned to which
model elements. The extra computation and memory required is
not substantial but should not be included in the general case.

To analyse the amount of non-coding redundancy in our repre-
sentation, and to understand the influence of the structural char-
acteristics of the metamodel, we perform a three step experiment
for each MUT:

1. Generate 1000 random individuals conforming to the MUT.
2. Transform each individual to its phenotypic form.

3. Inspect the individual and log the proportion of redundant
segments and feature pairs.

For consistency, the segment and feature pair ranges, and the
maximum allele value, used to create the random individuals
were reused from the locality experiment (table 7.4).

7.4.3 Results

Figure 7.14 presents violin plots showing the proportion of non-
coding segments and feature pairs for each of the MUTs. Inciden-
tally, the proportion of non-coding redundancy found in these ex-
periments matches the proportion of neutrality displayed in the
locality experiments from the previous section. We address each
MUT in turn.

EG-MOF This MUT has the lowest amount of feature pair re-
dundancy out of the four. Non-coding feature pairs are likely
introduced here due to two of the references of the Node class not
being able to be assigned values. One of these references points
up to the container object ExecutionGraph — the root of the model,
and therefore not expressed in the genotype. The other refer-
ence points to ExecutionGraph objects that are contained in sepa-
rate models — i.e. it is a cross-model reference. The inheritance
hierarchy of the metamodel results in there being zero non-coding
segments — every instantiable meta-class is a subclass of Node and
can therefore be directly contained by the root object.

DsIModel This MUT represents the median metamodel in the
corpus. It exhibits a high percentage of non-coding feature pairs
(median 87.0%) and a much lower percentage of non-coding class
bits (median 35.0%). Non-coding segments are introduced where
the segment encodes subclasses of the NamedElement meta-class.
The inheritance hierarchy of the metamodel separates the meta-
classes into two groups: children of NamedElement, and children
of ModelElement (both subclasses of Element). The root meta-class
(Model) has an unbounded containment reference to ModelElement,
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but not NamedElement which is, instead, contained by ModelEle-
ment. Segments that encode objects which are not directly con-
tained by the root are more likely to become non-coding, as they
rely on other segments to specify feature pairs to create the con-
tainment references that encapsulate them in the model.

The high proportion of non-coding feature pairs is due to the
fact that the majority of the meta-features are bounded. Out of
23 features, 17 have an upper bound of either one or two. This
highlights that is not the number of features in a metamodel that
is is most important, it is the upper bounds of those features that
affects non-coding redundancy.

Java This MUT has more features than the previous two but ex-
hibits similar amounts of non-coding feature pair redundancy to
DsIModel (median 88.6%). As with the DsIModel metamodel, the
majority of the MUT’s features are bounded to one value — with
only 10 out of 30 features being unbounded. The non-coding seg-
ment redundancy, however, is much lower than that of Ds/Model,
with a median of 0.0%. All meta-classes bar one share a common
super type: Element, enabling the root object to initially contain al-
most all generated objects. Segments can still become non-coding
however, as the mapping transformation can reassign their con-
tainer away from the root object. Another feature pair could then
remove this containment reference by overriding the reference’s
value. If this occurs, it results in an object not being contained
by any other (known as an island), making its associated segment
non-coding. This is illustrated in figure 7.15: object A1 is initially
assigned to the root object (phase 1) before object B becomes it
container (phase 2). The containment reference is then reassigned
to object A2, resulting in object A1 not being contained by another
object, and therefore making its segment non-coding.

One potential solution to this issue is to move the root refer-
ence construction phase until after the object reference construc-
tion phase. Only objects who are not contained by another are
then assigned to the containment references of the root. To exam-
ine this idea, we repeated the experiment for the Java metamodel
using the alternative reference construction phase, the results are
shown in figure 7.16b alongside the original plot. The results
show the opposite effect to what was expected — there is a slight
increase in the 75th percentile, but a reduction in the whisker,
but this may be put down to noise in the analysis. The cause of
non-coding segment redundancy in this metamodel is therefore
the one meta-class which does not share the same super class as
all other meta-classes. We conclude that the alternative mapping
shows little benefit in reducing redundancy for this metamodel.

ATOM Once more, this MUT displays a large amount of non-
coding feature pairs (median 92.1%). 47 out of 60 features have an
upper bound of one. As shown in Table 7.3, 38 of these bounded
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Figure 7.15:
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(a) Phase 1: All objects have been instantiated, their single-valued attributes set, and their
container set to the root object (where possible).
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(b) Phase 2: The object reference assignment phase begins and object B takes ownership of

object A1.
Root
A1 A2 B
AR 2 ~ | -
B 2 5]2]: ) (o [ = 5 )

(c) Phase 3: The decoding of a second feature pair means that object B becomes the container
of object Az. This containment reference has an upper bound of one, turning object A1 into an
island and meaning that its encoding segment becomes non-coding.

A contain-

ment reference reassignment

that results in a non-coding

segment.
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Figure 7.16: Repetition of
the non-coding redundancy
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features are attributes, meaning that the majority of references
(60%) are unbounded. Figure 7.14 shows a large variation in the
amount of non-coding segments (median 50.0%). The reason for
this is due to the flat structure of the metamodel. The MUT uses
very little inheritance, but heavily uses containment references,
meaning that the island-inducing phenomenon mentioned above
can occur regularly.

The non-coding redundancy analysis for this metamodel was
repeated with the alternative reference assignment process and
the results are shown in figure 7.16d. The median percentage
of non-coding segments reduced from 50.0% to 45.5%, and the
interquartile range reduced by 2%. The alternative reference as-
signment process, therefore, can be seen to reduce non-coding
segment redundancy for this metamodel. The objects that re-
mained uncontained were instances of meta-classes not directly
containable by the root object (Content and its three subclasses).
Furthermore, only one meta-class (Entry) defines a reference to
Contents and this reference has an upper bound of one. As such, it
is understandable that segments encoding these objects will com-
monly be non-coding.

For completeness, we also ran the alternative reference construc-
tion process experiment for the DsIModel MUT. The effects of at-
tempting to assign all islands to the root were negligible. Due to
EG-MOF not suffering from non-coding segment redundancy, we
did not analyse the effect of the alternative process.

7.4.4 Discussion

In this section, we have empirically investigated the amount of
non-coding redundancy found in our representation, using the
four archetypal metamodels from section 7.2 as the case studies.
This analysis has highlighted how different structural properties
influence the non-coding redundancy. Although the four MUTs
were originally selected based purely on feature load, some of
their other characteristics have been exposed in this analysis, and
have helped to shed light on redundancy. A key influencer on
redundancy is the inheritance hierarchy of the metamodel. EG-
MOF and Java exhibited little or no non-coding redundancy due
to the structure of their meta-class hierarchies, and the ability of
their root objects to contain objects of (almost) every type. Java,
DslIModel, and ATOM all showed us how heavily influenced non-
coding feature pair redundancy is by the upper bounds of fea-
tures.

Reducing the number of feature pairs in each segment would
reduce this non-coding feature pair redundancy, whilst also re-
ducing the size of the model space. As discussed previously,
however, some practitioners argue that this redundancy can re-
duce the difficulty of optimisation problems (i.e. it increases the



evolvability) as it increases the number of genotypes with high
fitness [147, 82, 111, 189]. Determining an optimal number of fea-
ture pairs is a tricky task: one needs to ensure that they don’t
accidentally exclude solutions from the search space. Further in-
vestigation is needed to determine whether this redundancy is
good for our representation or not. This investigation needs to
analyse the effect of redundancy on a set of well-defined search
problems, over a set of metamodels with distinct characteristics.

In this section we have not examined surjective redundancy.
Due to the fact that the maximum allele value and the ordering of
segments and feature pairs increases surjective redundancy, it is
challenging to evaluate. Comparing each generated phenotype is
infeasible due to the computational cost: comparing two graphs is
NP-complete [169], and this procedure would require comparing
huge numbers of models against one another. One potential way
of reducing this complexity is to reuse our representation. Each
model can be transformed into its canonical form. If we can order
the segments and feature pairs in a way that makes direct com-
parison easier, we can reduce comparison time and perhaps make
this analysis practical. This would also allow us to dig deeper into
surjective redundancy and evaluate whether the representation is
synonymously redundant or non-synonymously redundant, and
gain insight into how much of an influence the MUT has on this.

Search spaces that exhibit a ‘needle-in-a-haystack’” landscape
are commonly difficult for evolutionary algorithms. Yu and Miller
[190] have shown how it is possible to create a neutral network — a
network of equal-fitness solutions — that can guide the search to-
wards the needle (global optimum). Therefore, before attempting
to limit surjective redundancy, one should also attempt to gain
insight into the fitness landscape.

7.5 Discussion and Future
Analysis

In this chapter we have taken the first steps towards a detailed
analysis of our search-amenable representation of models. There
is much more to done. Our focus here was on analysing the
locality and redundancy of our representation — two properties
that have been shown to play a vital role in efficient evolutionary
search. These analyses would not have been possible without a set
of appropriate metamodels to define the search space. We have
shown how different characteristics of metamodels affect both the
locality and redundancy of the representation. The metamodel
characteristics that we investigated, however, only touched the
surface of those that are commonly exhibited and each will have
some effect, minor or not. For instance, the notion of connectivity
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will influence locality. Connectivity refers to the connections be-
tween meta-classes, and therefore the instances of meta-classes. If
a model is loosely connected, then a small mutation to its geno-
type should result in fewer changes to the phenotype than in a
highly connected model. We therefore need to extend our set of
metamodel metrics, and devise a method to systematically evalu-
ate the effects of each characteristic, and combinations of charac-
teristics, on properties of the representation and on evolutionary
search.

A crucial requirement is a set of benchmark MDE problems
that can be tackled by search. In this chapter, we have defined
four benchmark metamodels with which to evaluate representa-
tions of models. As more detailed analysis of metamodels is per-
formed, these benchmarks should be updated. Work is needed
in defining metamodels and fitness functions for a set of search
problems. These problems could be grouped into the categories
defined in section 2.3: discovery of models, validation of models,
discovery of model management operations (MMO), and valida-
tion of MMOs. These benchmarks would enable rigorous compar-
ison of different approaches to combining modelling and SBSE,
and would help to move the field forward.

We now propose a set of experiments that will enable a deeper
understanding of the representation, highlight areas of improve-
ment, and provide guidance to users for tailoring it to their prob-
lem.

7.5.1 Further Analyses of the Representation

There are many more analyses that can be applied to our rep-
resentation. In this thesis we focused solely on redundancy and
locality, however there are other properties of the representation
that need addressing. Furthermore, during the design of our rep-
resentation, certain decisions had to be made that should be eval-
uated. We present these now.

Properties of the Representation An important requirement
for analysing the representation further is gaining a better under-
standing of how metamodels are commonly structured. Section
7.2.4 proposes a web-based automated metamodel measurement
workbench. Such a workbench would allow practitioners to up-
load their metamodels and receive detailed measurements of their
metamodel based on a set of standard metrics. In doing so, this
analysis would add to the cumulative summary of the corpus,
providing detailed statistics about the construction of metamod-
els, insight into modelling practices, understanding of the most
used parts of the meta-metamodelling language, and more. This
information would enable the selection of benchmark metamod-
els with which to analyse model representations — as we have
done in this section. The analyses presented in this section are



not just applicable to our representation, but should be applied
to any representation of models, be it a metamodel-specific rep-
resentation or a generic one, like ours. Developers and users of a
representation of this kind need to understand how the represen-
tation holds up in the face of differing metamodel characteristics.
The information gained from these analyses can help developers
improve the representation and help users tailor it to their needs.

The set of analyses that a representation of models should un-
dergo are as follows. This list is inevitably incomplete and further
analyses will arise as a result of performing these. This list can,
however, be seen as a starting point for detailed research into this
area.

* The analysis of the redundancy of our representation focused
purely on surjective redundancy. Rothlauf groups represen-
tations into two categories based on surjective redundancy:
those that are synonymously redundant and those that are
non-synonymously redundant [147]. Rothlauf also defines rep-
resentations to be uniformly redundant if the same number of
genotypes encode every phenotype [147]. An investigation is
required into understanding which category our representa-
tion fits, whether the redundancy is uniform, and whether this
is the case for all metamodels or whether the metamodel influ-
ences the similarity of genotypes that encode the same pheno-

type.

¢ Further to knowing the amount and type of redundancy that
is present in a representation, it is important to know how this
redundancy affects the performance of evolutionary search.
Goldberg defines the complexity model as a way of understand-
ing this [147, section 3.1.3]. Furthermore, an empirical analysis
on a set of benchmark case studies is required.

¢ Holland [73] introduced the notion of schemata to capture com-
mon patterns expressed in a genotype, and defined the schema
theorem which defines how the number of instances of a par-
ticular schema evolves over time. Goldberg [56] defined the
concept of building blocks: highly fit, short in length schemata
that propagate through the generations of the evolutionary al-
gorithm. Building blocks and the schema theorem can help
to describe how evolutionary algorithms can solve a problem
[147]. An investigation into building blocks of the representa-
tion could help improve the design of the representation such
that it encourages building blocks to arise and propagate.

¢ Section 5.2.4 went some way to understanding the effects of the
search operators by attempting to discover the optimal proba-
bilities of operator application for the SAF adaptation study.
The effects of the representation’s search operators needs fur-
ther investigation over a number of different problems.
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e In section 7.3 we demonstrated that the size of individuals
plays a key role in determining the locality of the representa-
tion for each metamodel. A crucial next step, therefore, would
be to define an experiment and methodology for determining
the optimal segment and feature pairs ranges for a given prob-
lem. Moreover, it is important to understand how differing lev-
els of locality affect other properties of the representation, such
as redundancy. Optimal sizes for individuals may be defined
in a problem-specific manner, balancing the trade-offs between
locality, redundancy, and other properties.

* An extension to the previous proposition would be to empir-
ically analyse the size of real-world models. In the same way
that we analysed different characteristics of metamodels in sec-
tion 7.2, we can learn much from analysing a large number of
models. Knowing the size and structure of real world mod-
els would allow the representation to be tailored to particular
problems. Initial populations could be seeded with common
structures in an attempt to increase evolvability. Of course we
also want to include some diversity in the search population
to ensure that optimal models that exist outside the recognised
normal boundaries are not missed. A huge hurdle, however,
is getting access to a large corpus of models that conform to a
given metamodel. Newly developed metamodels will not have
such a corpus, and those that do may not be publicly available.

Design Decisions The design process of the representation lead
to a number of choices being made regarding the structure of the
genotype and the genotype-phenotype mapping. Without proper
empirical or theoretical analysis of the alternatives, it is possible
that a bad decision was made. Here we list two of the design
decisions made that require further investigation.

¢ In designing the crossover operator used in the representation,
we decided to only allow crossover to occur at the gap be-
tween segments. The reason behind this was to attempt to
allow entire objects to be swapped between the two models.
An alternative would be to allow crossover to occur anywhere.
Obviously this would be a more destructive operation, how-
ever the large amount of non-coding redundancy exhibited by
the representation in our experiments may mean that this is a
more fruitful approach. These two operators would need to
be compared on a set of benchmark search problems; in con-
junction with varying mutation probabilities. A technique such
as the response surface methodology [116] would prove useful in
determining optimal mutation probabilities for each crossover
operator, whilst enabling a comparison of their efficacy.

* During the genotype-phenotype transformation, the pheno-
typic contribution of a feature pair can be overridden by an-
other feature pair, resulting in non-coding redundancy. This is



a level of redundancy that we currently accept, but perhaps it
would be better to instead repair the non-coding feature pair so
as to remove non-coding redundancy. This would mean that
individuals in the search population could be smaller as every
bit would be used. This does, however, raise many questions.
Do we repair the feature selector bit, or the feature value bit?
How would one select an appropriate repair tactic? Do we ran-
domly assign a new value, or use domain knowledge to select
this? Perhaps the individual could be duplicated a number of
times with each duplicate having a different repair value. Each
duplicate could then be evaluated and the best is kept in the
population whilst the others are disgarded.

Many studies have demonstrated non-coding redundancy to
be beneficial at increasing the evolvability of a search algo-
rithm, so perhaps repairing the genotype would be a bad idea.
However, the thought of increasing the efficiency of the encod-
ing, and the potential of finding a solution quicker, means that
genotype repair could be an interesting avenue of research.

7.5.2 Summary

This chapter has provided new insights into the ways in which
practitioners commonly structure their metamodels, and used the
information to select a representative set of metamodels to act as
benchmarks in the analysis of representations. These metamod-
els have guided the empirical evaluation of the locality and re-
dundancy of the representation, which in turn highlighted other
characteristics of metamodels that affect these properties. We con-
cluded with a proposal for future analysis of the representation
in the hope of refining it and understanding how to best make
use of it.

193






Conclusion

THIS THESIS HAS ADDRESSED the challenge of devising a generic
approach to applying Search-Based Software Engineering (SBSE)
techniques to the challenges found in Model-Driven Engineering
(MDE). SBSE has proven to be adept at discovering optimal so-
lution to a broad range of software engineering problems [28, 62,
67]. MDE has been shown to be a promising approach to increas-
ing productivity, maintainability, and portability [162, 176, 77].
There has, however, been little effort in applying SBSE techniques
to MDE problems, or utilising MDE for SBSE techniques. The
research in this thesis has addressed this gap and explored the
following hypothesis, stated in section 1.2:

A generic, search-amenable representation of models
would enable the wealth of existing research into SBSE
to be applied to a broad range of problems found in the
MDE domain.

To address this hypothesis, we defined the following objectives
in section 1.2:

* To identify existing research that combines SBSE and mod-
elling, and propose extensions where their synergy would be
fruitful.

¢ To design and implement an encoding that can represent any
(and all) model(s) that conforms to a given metamodel, and
that is applicable to existing SBSE techniques.

* To design and implement a model-driven SBSE framework that
uses this encoding and provides standard SBSE algorithms.

* To use the model representation to address a set of known
challenges in the MDE domain.

* To evaluate properties of the representation that have been
shown to be important for evolutionary search, and use the
knowledge gained from the evaluation to provide guidance to
users of the representation and to propose improvements to
the representation.

8

Contents
8.1 Thesis Contributions . . . .
8.2 FutureWork ... .....

8.3 Coda

195



196

Chapter Structure This chapter summarises the research per-
formed in this thesis towards addressing the hypothesis above:
section 8.1 highlights and discusses the novel contributions made
in the thesis; and section 8.2 identifies opportunities for future
work.

8.1 Thesis Contributions

The contributions made in this thesis are summarised below.

A survey of the literature regarding integration of SBSE and
modelling. Chapter 2 presented a survey of previous work that
has attempted to apply SBSE techniques to MDE problems, or
posit how the two fields can be fruitfully combined. Furthermore,
we catalogued the case studies used in the literature and pro-
posed to use this catalogue, and existing MDE model and MMO
repositories to select a set of benchmark problems for use in the
field.

An initial, grammatical evolution-based prototype repre-
sentation of models. This prototype demonstrated the feasi-
bility of defining a representation that can express models con-
forming to a wide range of metamodels. Furthermore, we demon-
strated that we could effectively apply metaheuristic search over
this representation, and illustrated this on a case study to discover
optimal models.

The definition of a novel generic representation of models
that is amenable to a wide range of existing metaheuris-
tic optimisation techniques. The limitations of the prototype
representation, and lessons learnt from its development, lead to
the production of a model representation that is capable of en-
coding any model conforming to any given metamodel. We im-
plemented the representation using state-of-the-art MDE tech-
nologies, where an individual is expressed as a model and the
genotype-phenotype mappings are model transformations. To
support the representation we developed a model-driven meta-
heuristic search framework that used the representation at its
core. Metaheuristic algorithms and user-defined fitness functions
are implemented as model management operations, whilst the
search space and configuration parameters are embodied in mod-
els. Utilising MDE so heavily enabled the creation of a web-based
search-space visualisation application. This allows users to in-
spect the search algorithm to manually validate the algorithm,
and to gain insight into the evolution of their problem.

The demonstration of the feasibility of using the represen-
tation to solve in-scope problems. In Chapter 3, we applied



our prototype model representation to discovering optimal op-
ponents in a simple fighting game. Chapter 5 later employed
our improved representation of models to address the same case
study and showed an improvement in performance. Chapter 5
also addressed the challenge of self-adaptive systems, present-
ing a model- and search-based approach to extracting a model of
runtime system behaviour for use in component-level adaptation.
Finally, chapter 6 presented a framework for applying sensitivity
analysis to MDE models, and utilised the representation for this
task. We applied sensitivity analysis to a set of models that are
used to aid the decision making process of high-value acquisi-
tion scenarios, and highlighted not only how different elements
in the model contributed towards the model’s value, but also that
certain ‘optimal’ solutions were heavily affected by model uncer-
tainty and should be viewed with less confidence. Furthermore,
we identified three areas where uncertainty arises in MDE.

The empirical analysis of two important properties of the
representation. Chapter 7 performed an analysis of the local-
ity and redundancy of the model representation. This highlighted
how different areas of the represention contribute towards these
properties and provided some basic guidelines to help users con-
figure the representation for use in their problem. Furthermore,
we set out a detailed plan for future empirical analysis of the
representation, or any similar representation of models.

A large-scale analysis of the structure of metamodels. In
chapter 7, we performed a structural analysis of a large corpus of
publicly available metamodels, providing detailed insight into the
ways in which practitioners commonly build their metamodels.

The identification of a set of representative metamodels.
The analysis of the metamodel corpus in chapter 7 enabled the
selection of a set of representative metamodels that act as an ini-
tial set of benchmarks for evaluating the properties of represen-
tations of models. As more metamodels are added to the corpus,
this benchmark set will be updated and extended.

8.2 Future Work

In this section we describe some potential avenues of future work.
We separate the work into: extensions to the representation and
search framework; extensions to the adaptation approach pre-
sented in section 5.2; extensions to the sensitivity analysis pre-
sented in section 6; and finally we posit other applications to
which the representation and its search framework could be ap-
plied.
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8.2.1 Representation and Search Framework

With respect to Crepe and MBMS, we propose the following ex-
tensions and investigations.

Address representation limitations Section 4.7 highlighted a
number of issues relating to the representation, and section 5.1
illustrated that the representation struggles with reference-heavy
metamodels. To address the reference-related issue, it is possible
to manually define a refactored version of the metamodel that is
more suited to use with the representation. This, however, places
an extra cost on the user and potentially raises concerns regard-
ing the semantics of the refactored metamodel. It may be possi-
ble to automate this refactoring transformation, based on pattern
matching applied to the input metamodel, but semantics may still
remain an issue. In section 4.7 we discuss potential ways to ad-
dress the issues of validation, minimum scoping and custom data

types.

Probabilistic finitisation Presently, the information captured
in the finitisation model is selected for instantiation without dis-
crimination. Although a user may specify a range of values for
an attribute, it may be the case that a probability distribution over
that range better captures the semantics of the domain. Rose and
Poulding [145] have demonstrated the efficacy of using probabil-
ity distributions for this, but use a grammar-based representation
of the metamodel. Probability distributions don’t have to be de-
fined only for attribute data: we can define them for meta-classes
as well, enabling the search to produce more realistic models.

Performance optimisation We stated throughout this thesis
that our focus was on the efficacy of a generic, search-amenable
representation for models, as opposed to developing a highly op-
timised, high-performance metaheuristic optimisation platform.
There are many areas where optimisation can be achieved. For in-
stance, we could cache finitisation information for quick retrieval,
and use profiling techniques to discover bottlenecks in the algo-
rithms. One of the known bottlenecks is the fact that EOL is
an interpreted language. Rewriting the original representation
and search framework in EOL from Java improved maintainabil-
ity and increased productivity, but it introduced a performance
hit. One potential solution might be to use a model-driven ap-
proach to developing MBMS. The search algorithms and opera-
tors could be specified in high-level models, and performance-
optimised code could be generated from them.

Visualisation In section 4.5.4 we demonstrated how we could
apply a model-to-text transformation to the search history model
to produce a web-based, interactive visualisation of the search.



In its current form, models are represented in the generic texual
syntax, HUTN. A more desirable visualisation would be to visu-
alise solutions in their native concrete syntax, however work is
required in determining how this could be made possible. Visu-
alisation could be performed whilst the search is taking place: for
instance, to support interactive evolution. We could even visualise
the search space, not just the search history, though the multi-
dimensionality of models would make this very complicated.

Representation theory In chapter 7 we evaluated Crepe with
respect to two important properties of representations. To gain a
deeper understanding of the representation, in order to discover
improvements and offer guidance to users, we need to extend this
evaluation. Section 7.5 proposed a set of analyses to address this.

Model and metamodel corpus analysis In section 7.2, we
performed an analysis of a large corpus of metamodels to dis-
cover the most common structural characteristics of metamodels.
The metrics used in the analysis are very basic and there are many
more metrics that we could analyse. Understanding metamodels
will enable us to improve the representation and provide useful
information for users based on the properties of their metamodel.
Furthermore, analysing corpora of models would help to opti-
mise the finitisation probability distributions (above) or provide
seeding strategies for MBMS. It is unlikely, however, that large
corpora of models would be available for many metamodels, and
so this will only be useful for general purpose modelling lan-
guages.

Investigate designing the representation with respect to the
Epsilon Model Connectivity [91] (EMC) layer The represen-
tation has been designed for MOF-like metamodels, and Crepe
has been implemented for EMFE. The model connectivity layer
in Epsilon enables differing modelling technologies to be used
within Epsilon, even within the same MMO. We utilise that in
MBMS: the EMF driver is used to load the metamodel, finitisa-
tion model, and search model, and the Properties file driver loads
the configuration parameters. EMC works by defining an inter-
face that all drivers need to implement. We could investigate the
possibility of reimplementing Crepe such that it uses the EMC
model interface. This would allow us to use MBMS on a wide
range of modelling technologies. To enable this, we would also
need to define a generic approach to metamodel finitisation.

8.2.2 Adaptation and Sensitivity Analysis

In chapter 5 we posited that the representation could be used for
component-level adaptation and illustrated this on SAF. The re-
sults were not as promising as one would have hoped, however
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Figure 8.1: The compo-
nents and uses of our repre-
sentation.
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this could be down to issues relating to SAF itself. To determine
whether our proposed model- and search-based framework is fea-
sible, we need to apply it to real-world case studies. Furthermore,
it would be interesting to continue the investigation into different
seeding strategies to improve the performance of the search, and
discover ways to optimise both Crepe and MBMS to enable its use
at runtime.

Chapter 6 presented a framework that enables metamodellers
to create tool support for applying sensitivity analysis to models
conforming to their metamodel(s). Uncertainty is an important
topic in MDE (and software engineering in general), and so it
would be interesting to further explore the capabilities of such a
framework. Crepe was used to apply the sensitivity analysis, but
no metaheuristic search was performed — instead sampling meth-
ods were applied to the genotype. Harman et al. [66] use SBSE
to perform sensitivity analysis on system requirements in order
to discover which requirements are sensitive to cost. Embedding
MBMS in our sensitivity analysis framework would allow the un-
certainty space to be explored further. Fitness functions could be
used to steer the search towards areas that exhibit large devia-
tions, in order to allow developers to gain a better understanding
of their models and devise methods for managing their uncer-
tainty.

8.2.3 Other Applications

We showed with the sensitivity analysis work that our represen-
tation need not only be useful for metaheuristic search. Figure 8.1
illustrates the building blocks of the representation and how they
combined to address MDE challenges. Below we list some other
potentially fruitful areas where the representation could be used.

Discovering Discovering Sensitivity
Models MMOs Analysis

Testing
Metaheuristic Search Maodel Generation
Genotype < Phenotype Mappings

Genotype Representation

Model generation Automatically generating models can useful
for testing purposes. We discussed, in section 2.3, the existing ap-
proaches that use SBSE to discover models for testing MMOs. It
is unclear whether the existing approaches could deal with scale.
The size of models being created in industry is increasing and
huge models are needed to test systems that deal with such mod-
els [115]. To increase the size of a model in our representation,
one simply needs to add more segments and feature pairs to the
individuals.



Testing MMOs As mentioned, there has been work in the area
of discovering models for testing MMOs. Applying Crepe and
MBMS to the case studies used in those papers would provide
evidence as to whether or not a generic representation is capa-
ble of performing as well as problem-specific representations (in
terms of execution time and quality of test set). The cost of using a
generic representation as compared to a task-specific representa-
tion is likely to be performance. However, the cost of developing
a task-specific representation (e.g. time, expertise) may outweigh
the cost of using a generic representation.

Running transformations in reverse Bidirectional transforma-
tions are challenging to implement, but are particularly important
in synchronising models [171, 55]. Many modern transformation
languages (e.g. ETL, ATL) do not provide support for bidirection-
ality [55], however we could use Crepe and MBMS to search for the
input to a transformation when given the output. We could apply
MBMS over the input model space to discover a model that, when
executed with the model transformation, results in the given out-
put model. If the original input model is known, then it can be
used to seed the initial population.

Pattern detection The genotypic representation exhibits pat-

terns®. The same analyses applied to the metamodel corpus in "The ideas here came out of dis-
y PP p
cussions at ICSE 2013 with Benoit

K . . X Baudry, a researcher at INRIA in
sentation. This has a number of advantages. Loading and reading  France (http://people. rennes.

section 7.2, if couched differently, could be applied to the repre-

models takes time: traversing each model element and reading at- ~ inria.fr/Benoit.Baudry/).
tribute values is slow. There exist, however, many fast algorithms

that detect patterns in strings (e.g. [14, 89]). Our representation

could be used to not only quickly identify common structural

characteristics, or calculate various software metrics, but it could

be used to detect more complex relationships, such as correlations

between the values assigned to features.

8.3 Coda

Model-Driven Engineering is argued to be the future of software
engineering. Raising the level of abstraction, and automating
challenging tasks will be an important way to address the com-
plexity and scale of the systems of the future. MDE hasn’t, how-
ever, been adopted on a universal scale and part of the reason for
this is that MDE practices and tools haven’t matured to the same
level as traditional software development techniques. Search-
Based Software Engineering is a practice that can help MDE gain
universal status. We believe that a generic representation for MDE
models can lower the entry-point for MDE practitioners wanting
to benefit from SBSE techniques and therefore provide vital sup-
port in the development of modern systems.
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A.2  Discovering Model Manage-
ment Operations
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Code Listings

B.1 Fighter Description Language

Grammar

B.1.1 EMFText Grammar

[

SYNTAXDEF fantastic
FOR <fighter>
START Bot

OPTIONS {

}

TOKENS {

}

TOKENSTYLES {

}

RULES {

usePredefinedTokens = "false";
reloadGeneratorModel = "true";
tokenspace = "o";

DEFINE NAME $('A’.."Z'17a’.. "z’ 1 "0’..7g" | "_"1"=")+$;
DEFINE NUMBER $(’0’.."9")+$;

DEFINE CHARACTERISTIC $(’punchReach’ |’ punchPower’ |’
kickReach " | "kickPower ") $;

DEFINE CONDITION $(“always’| “near’| "far’| "much_stronger’ |’
stronger ' | “even’ | “weaker’ | "much_weaker’) $;

DEFINE MOVE_ACTION $(’'run_towards’| ‘run_away’ | "jump’ |’
crouch stand ' | “walk_towards’ | “walk_away ") $;

DEFINE FIGHT_ACTION $(’block_low ’| “block_high’| “punch_low
"1 “punch_high’ | "kick_low " | “kick_high ") $;

"

s

DEFINE WHITESPACE $(’ “1'\t"1'\f")$;
DEFINE LINEBREAK $('\r\n’l’\r’1’\n")$;

"NAME" COLOR #o0o00000, BOLD;
"NUMBER" COLOR #2A00FF;

"CONDITION" COLOR #oobboo, BOLD;
"and" COLOR #oobboo, BOLD;
"or" COLOR #oobboo, BOLD;

"CHARACTERISTIC" COLOR #7Fo055, BOLD;
"MOVE_ACTION" COLOR #7Fo055, BOLD;
"FIGHT_ACTION" COLOR #7Fo055, BOLD;

Bot ::= name[NAME] "{" linebreaks[LINEBREAK] personality
behaviour "}";
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Personality ::= (characteristics linebreaks[LINEBREAK]) x;

Characteristic ::= type[CHARACTERISTIC] "=" value [NUMBER];
Behaviour ::= (rules linebreaks[LINEBREAK]) %;

Rule ::= condition "[" moveAction " " fightAction "]" ;
AtomicCondition ::= type[CONDITION] ;

AndCondition ::= parts " " "and" " " parts ;

OrCondition ::= parts " " "or" " " parts ;

MoveAction ::= type[MOVE ACTION] "choose (" (type[

MOVE_ACTION] " ")+ type[MOVE_ACTION] ")" ;

FightAction ::= type[FIGHT_ACTION] | "choose(" (typel
FIGHT _ACTION] " ")+ type[FIGHT_ACTION] ")" ;

Listing B.1: The EMFText grammar definition for FDL.

B.1.2 Xtext Grammar

grammar org.xtext.example.mydsli.MyDsl with org.eclipse.
xtext.common. Terminals

generate myDsl "http: //uwww. xtext.org/example/mydsli/MyDsl”

Model:
"Sample’ "{’ ‘\n’
personality=Personality
behaviour=Behaviour

r}r,
’

Personality:
(characteristics+=Characteristic) +;

Characteristic:
"punchReach’ ’'=’value=NUMBER '\n’ |
‘punchPower’ ’'=’ value=NUMBER '\n’ |
"kickReach’” "=’ value=NUMBER '\n’ |
"kickPower’ ‘=’ value=NUMBER '\n’ ;

Behaviour:
(rules+=BehaviourRule)+
always=AlwaysRule;

AlwaysRule:
‘always’ [’ action=Action ’]” '\n’ ;

BehaviourRule:
condition=Condition ‘[’ action=Action ']’ '\n’ ;

Condition:
type+=ConditionType | (type+= ConditionType * ’ (‘and’ | ’
or’) ' 7 type+=ConditionType) ;

Action:
(moveAction+=MoveAction | “choose’ ’(’ (moveAction+=
MoveAction * ’)* moveAction+=MoveAction ") ") ~ ’
(fightAction+=FightAction | ’“choose’ "(’ (
fightAction+=FightAction ~ ’)+ fightAction
+=FightAction ) ’);
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terminal MoveAction:
, iy Rz iy
run_towards’ | ‘run_away’ | 'jump’ | “crouch
| "walk_towards ' | “walk_away ’;

s

stand ’

terminal FightAction:
"block_low " | “block_high’ | “punch_low " |
“punch_high’ | "kick_low " | “kick_high ’;

terminal ConditionType

‘near’ | “far’| “much_stronger’ |
"stronger ' | “even’ | "weaker’ | “much_weaker’;
terminal NUMBER :

0’1717 2 | r3/| /4r| r5/| 67 | r7r| '8 | 197;

Listing B.2: The Xtext grammar definition for FDL.

B.2  Delivery Man Problem

B.2.1 Hill Climbing Algorithm

import "platform:/resource/jw.research.crepe.casestudies.
util/finModelUtil.eol";

import 'platform:/plugin/jw.research.crepe/pancake/algs/
hillClimbing.eol ’;

// Utility wvariables
var t = o; // iteration counter
var random = setupRandomSeed () ;
var maxAllele = 1000;

// Necessary for genotype to phenotype mapping
var unassignedReferences;

var modelObjects;

var instantiableClasses;

var objectSegmentMap ;

var featureFeaturePairMap;

var featureCollection;

var fitFunctionIsEol = true;

// Setup finitisation model

var fin = new FIN!MetamodelFinitisation;

fin.rootObject = MM!EClass. all .selectOne(c | c.name == "
Route") ;

fin. finitisations.add(createEObjectFeatureListFinitisation (

selectFeatureByName ("Stop", "city "), MAP!City.all));
fin.ignores.add MM!EClass . all .selectOne(c | c.name == "
Product"));
fin.ignores.add(selectFeatureByName (" Stop", "goods"));

// Configure segments based on #cities

setOrCreateConfigurationProperty (" population.segments.
quantity .max", MAP!City.all.size());

setOrCreateConfigurationProperty (" population.segments.
quantity .min", MAP!City. all.size());

// Now search
for (seed in Sequence

{724377,7199439,4096091,7163541,2691539,8282485,4824792,

6231867,6579662,6256102}) {
random = new Native ("java.util .Random") (seed.asLong());
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seed. print();
t = o; // Reset generation count
commence () ;

}

operation doEvaluateFitness(candidate : MM! EObject) : Real {
MOD. getResource . getContents () . clear () ;
MOD. getResource. getContents () .add(candidate) ;
MOD. store () ;

// First of all punish solutions which don’t include all
cities (I.e. aren’t wvalid)

var missingCities = o;
for (city in MAP!City.all) {
if (candidate.stops.select(s | s.city == city).size() ==
0) {
missingCities = missingCities + 1;

)
}

if (missingCities <> o) {
return missingCities;

}

// Now calculate the distance score for wvalid solutions
var distance = 0.0;
var isComplete = false;
for (i in Sequence{o..candidate.stops.size()}) {
var stop = candidate.stops.at(i).city;
var nextStop;
// Need to get back to the start
if (i + 1 >= candidate.stops.size()) {
nextStop = candidate.stops.at(o).city;
isComplete = true;
} else {
nextStop = candidate.stops.at(i+1).city;

}

distance = distance + MAP!Distance. all.selectOne(d |
(d.city1 == stop and d.city2 == nextStop) or
(d.cityr == nextStop and d.city2 == stop)).
distance;

if (isComplete) break;
}
var fitness = 1.asDouble() — (1.asDouble()/distance.
asDouble () );
return fitness;

}

Listing B.3: Solving the delivery man problem using hill climbing.

B.2.2 Random Search Algorithm

import "platform:/resource/jw.research.crepe.casestudies.
util /finModelUtil . eol";

import 'platform:/plugin/jw.research.crepe/pancake/algs/
hillClimbing .eol ’;

// Utility variables
var t = o; // iteration counter
var random = setupRandomSeed () ;
var maxAllele = 1000;

// Necessary for genotype to phenotype mapping
var unassignedReferences;
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var modelObjects;

var instantiableClasses;
var objectSegmentMap ;

var featureFeaturePairMap;
var featureCollection;

var fitFunctionIsEol = true;

// Setup finitisation model

var fin = new FIN!MetamodelFinitisation;

fin.rootObject = MM!EClass. all .selectOne(c | c.name == "
Route") ;

fin.finitisations.add(createEObjectFeatureListFinitisation (
selectFeatureByName ("Stop", "city "), MAP!City.all));

fin.ignores.add(MM! EClass. all .selectOne(c | c.name == "
Product"));

fin.ignores.add(selectFeatureByName ("Stop", "goods"));

// Configure segments based on #cities

setOrCreateConfigurationProperty (" population.segments.
quantity .max", MAP!City . all.size());

setOrCreateConfigurationProperty (" population.segments.
quantity .min", MAP!City. all.size());

// Now search
for (seed in Sequence
{724377,7199439,4096091,7163541,2691539,8282485,4824792,
6231867,6579662,6256102}) {
random = new Native("java.util .Random") (seed.asLong());
seed . print () ;
t = o, // Reset generation count
commence () ;

}

operation doEvaluateFitness(candidate : MM! EObject) : Real {
MOD. getResource . getContents () . clear () ;
MOD. getResource. getContents () .add(candidate) ;
MOD. store () ;

// First of all punish solutions which don’t include all
cities (I.e. aren’'t valid)

var missingCities = o;
for (city in MAP!City.all) {
if (candidate.stops.select(s | s.city == city).size() ==
0) |
missingCities = missingCities + 1;

}
}

if (missingCities <> o) {
return missingCities;

}

// Now calculate the distance score for wvalid solutions
var distance = 0.0;
var isComplete = false;
for (i in Sequence{o..candidate.stops.size()}) {
var stop = candidate.stops.at(i).city;
var nextStop;
// Need to get back to the start
if (i + 1 >= candidate.stops.size()) {
nextStop = candidate.stops.at(o0).city;
isComplete = true;
} else {
nextStop = candidate.stops.at(i+1).city;
}

distance = distance + MAP!Distance. all.selectOne(d |
(d.cityr == stop and d.city2 == nextStop) or
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(d.cityr == nextStop and d.city2 == stop)).
distance;

if (isComplete) break;
}
var fitness = 1.asDouble() — (1.asDouble()/distance.
asDouble () ) ;
return fitness;

}
/>(->E

+ Override default impl: Just one neighbour — a random one.
*/

operation SEARCH!Individual createNeighbours() : Sequence {
var neighbours = new Sequence;
neighbours.add(randomlyCreatelndividuals (1) .at(0));
return neighbours;

}

Listing B.4: Solving the delivery man problem using random search.

B.3  Metamodel Analysis

B.3.1 Analysis Program

/’(-’('
+ Metamodel Statistics: Calculates some simple structural
statistics about the input metamodel.

*/

// Metamodel name
var modelName = MM. getAliases () .at(o);

8| // Num meta—classes

var numMetaClasses = EClass. all.size();
var numConcreteMetaClasses = EClass. all.select(clnot c.
abstract).size();

// Num meta—features

var numMetaFeatures = EStructuralFeature.all.size();

var numReferences = EReference. all.size();

var numContainmentReferences = EReference. all.select(rlr.
containment) .size () ;

var numNonContainmentReferences = EReference. all.select(rl
not r.containment).size();

var numAttributes = EAttribute. all.size();

// Mean num meta—features per meta—class

var avgMetaFeaturesPerClass = numMetaFeatures.asDouble() /
numMetaClasses . asDouble () ;

var avgReferencesPerClass = numReferences.asDouble() /
numMetaClasses . asDouble () ;

var avgAttributesPerClass = numAttributes.asDouble() /
numMetaClasses . asDouble () ;

// Median num meta—features per meta—class

var medMetaFeaturesPerClass = EClass. all.collect(clc.
eStructuralFeatures.size ()).sortBy(ili).median();

var medAllMetaFeaturesPerClass = EClass. all.collect(clc.
eAllStructuralFeatures.size ()).sortBy(ili).median();

var medReferencesPerClass = EClass.all.collect(clc.
eReferences.size()).sortBy(ili).median();

var medAllReferencesPerClass = EClass. all.collect(clc.
eAllReferences.size () ).sortBy(ili).median();
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var medAttributesPerClass = EClass. all.collect(clc.
eAttributes.size()).sortBy(ili).median();

var medAllAttributesPerClass = EClass. all.collect(clc.
eAllAttributes.size()).sortBy(ili).median();

// Featureless classes

var numClassesWithNolmmediateFeatures = EClass. all.select(cl
c.eStructuralFeatures.size ()==0).size();

var numAbstractClassesWithNolmmediateFeatures = EClass. all.
select(clc.abstract and c.eStructuralFeatures.size ()==0)
.size();

var numConcreteClassesWithNolmmediateFeatures = EClass. all.
select(clnot c.abstract and c.eStructuralFeatures.size ()
==0).size();

var numClassesWithNoFeaturesAtAll = EClass. all.select(clc.
eAllStructuralFeatures.size () ==0).size ();

var numAbstractClassesWithNoFeaturesAtAll = EClass. all.
select(clc.abstract and c.eAllStructuralFeatures.size ()
==0).size ();

var numConcreteClassesWithNoFeaturesAtAll = EClass. all.
select(clnot c.abstract and c.eAllStructuralFeatures.
size ()==0).size();

// Average attributes per class (excluding featureless
classes)

var avgFeaturesExclFeatureless = numMetaFeatures.asDouble ()
/ EClass. all.select(clc.eAllStructuralFeatures.size () >0)
.size () .asDouble () ;

var avgReferencesExclFeatureless = numReferences.asDouble ()
/ EClass.all.select(clc.eAllStructuralFeatures.size () >0)
.size () .asDouble () ;

var avgAttributesExclFeatureless = numAttributes.asDouble ()
/ EClass. all.select(clc.eAllStructuralFeatures.size () >0)
.size () .asDouble () ;

// Reference upper bounds

var refUpperOne = EReference.all.select(r | r.upperBound ==
1).size () .asDouble () / numReferences.asDouble();

var refUpperMany = EReference. all.select(r | r.upperBound ==

—1).size () .asDouble() / numReferences.asDouble () ;

var refUpperN = EReference.all.select(r | r.upperBound <> 1
and r.upperBound <> —1).size ().asDouble() /
numReferences.asDouble () ;

// Print as CSV
var result = modelName;
for (s in Sequence {numMetaClasses, numConcreteMetaClasses,
numMetaFeatures, numReferences, numAttributes,
numContainmentReferences,
numNonContainmentReferences,
avgMetaFeaturesPerClass, avgReferencesPerClass,
avgAttributesPerClass,
medMetaFeaturesPerClass,
medAllMetaFeaturesPerClass,
medReferencesPerClass, medAllReferencesPerClass,
medAttributesPerClass, medAllAttributesPerClass,
numClassesWithNoIlmmediateFeatures,
numClassesWithNoFeaturesAtAll,
numAbstractClassesWithNoIlmmediateFeatures,
numConcreteClassesWithNolmmediateFeatures,
numAbstractClassesWithNoFeaturesAtAll,
numConcreteClassesWithNoFeaturesAtAll,
avgFeaturesExclFeatureless,
avgReferencesExclFeatureless,
avgAttributesExclFeatureless ,
refUpperOne , refUpperMany , refUpperN
DA

result = result + "," + s;
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65| }

66

67| result. println () ;

68

69 />(->{-

7| * Calculates the median of a list of numbers.
n| o/

72| operation Sequence median() : Real {

7 if (self.size() == 1) return self.at(o);
74

75 if (modulo(self.size(),2) == 1) {

76 return self.at(self.size()/2);

7 } else {

78 var lower = self.at((self.size()/2)—1);
79 var upper = self.at(self.size()/2);

80 return (upper + lower) / 2.0;

8|}

82 }

83

84 /x-ae

ss| * Calculates the remainder of a modulo b.
86| */

87| operation modulo(a:Integer, b:Integer) : Integer ({
88 return a — (a/b).floor() = b;

89 }

Listing B.5: The EOL program used to analyse the structural properties
of metmaodels.

B.g4 Metamodels

B.41 EG-MOF

@namespace (uri="eg_mof", prefix="eg_mof")
2| package EG MOF;

-

4| class ExecutionGraph {

5 lordered val Node[+]#executionGraph node;
6 lordered ref Node[1]#nested nodeNested;

7| }

9| class Node {

10 lordered ref Node[*]#successor predecessor;

11 lordered ref Node[#]#predecessor successor;

12 lordered ref ExecutionGraph[1]#node executionGraph;
13 lordered ref ExecutionGraph[+]#nodeNested nested;

1|}
6| class Start extends Node { }
18| class End extends Node { }

0| class Control extends Node { }
: class Basic extends Node { }
j class Branch extends Control { }
: class Loop extends Control { }
: class Fork extends Control { }
zz class Join extends Control { }
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class Acquire extends Control { }
class Release extends Control { }

class Split extends Control { }

Listing B.6: The EG-MOF metamodel defined in Emfatic notation.

B.4.2 Java

@namespace(uri="http://Java/1.0", prefix="Java")
package Java;

class Model ({
attr PrimitiveTypes.String name;
val Element [+]#owningModel ownedMember;

}

abstract class Element {
lunique !ordered attr PrimitiveTypes.String[1] name;
ref Model#ownedMember owningModel;

}

class Package extends Element {
lordered val Class[+]#~package classes;
lordered val Enumeration[+]#~package enumerations;
'unique !ordered attr PrimitiveTypes.Boolean[1] isImported

’

}

abstract class ClassMember extends Element {
'unique !ordered attr PrimitiveTypes.Boolean[1] isStatic;
'unique !ordered attr PrimitiveTypes.Boolean[1] isPublic;
lordered ref Class[1]#members owner;
lordered ref Type type;

}

class Field extends ClassMember {
'unique !ordered attr PrimitiveTypes.String initializer;

}

abstract class Type extends Element {

}

class Class extends Type {
'unique !ordered attr PrimitiveTypes.Boolean[1] isAbstract
lunique !ordered attr PrimitiveTypes.Boolean[1] isPublic;
lunique !ordered attr PrimitiveTypes.Boolean[1]
isInterface;
lordered ref Class[+*] superClasses;
ref Class[*] actualTypeParameters;
lordered ref Package[1]#classes ~package;
lordered val ClassMember [*]#owner members;

}

class Method extends ClassMember {
'unique !ordered attr PrimitiveTypes.String[1] body;
val MethodParameter[+]#method parameters;
val Statement[*] statements;
ref Class[*] exceptions;

}

class PrimitiveType extends Type {

}
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class Enumeration extends Type {
lordered ref Package[1]#enumerations ~package;
val EnumerationLiteral [#]#enumeration enumerationLiterals;

}

class EnumerationLiteral extends Element {
lordered ref Enumeration[1]#enumerationLiterals
enumeration;

}

class MethodParameter extends Element {
lordered ref Type[1] type;
lordered ref Method[1]#parameters method;
}

class Statement |
attr PrimitiveTypes.String[1] name;
attr PrimitiveTypes.String[1] body;
}

@namespace (uri="http://JavaPrimitiveTypes", prefix="
PrimitiveTypes")
package PrimitiveTypes {
datatype String : java.lang.String;
datatype Integer : java.lang.Integer;

datatype Boolean : boolean;

Listing B.7: The Java metamodel defined in Emfatic notation.

B.43 ATOM

@namespace (uri="atom", prefix="atom")
package ATOM;

class ATOM ({
'unique !ordered attr String[1] title;
'unique !ordered attr String[1] ~id;
'unique !ordered attr String subtitle;
'unique !ordered attr String rights;
'unique !ordered attr String icon;
'unique !ordered attr String logo;
lordered val Link[+] links;
!ordered val Date[1] lastUpdate;
!ordered val Generator generator;
lordered val Category[+] categories;
lordered val Author[+] authors;
lordered val Contributor[#] contibutors;
lordered val Entry[+]#atom entries;

}

class Entry ({
'unique !ordered attr String[1] title;
'unique !ordered attr String[1] ~id;
'unique !ordered attr String rights;
'unique !ordered attr String summary;
lordered val Link[+] links;
lordered val Source source;
!ordered val Date published;
lordered val Date[1] lastUpdate;
lordered val Content content;
lordered val Category[+] categories;




lordered val Author[+] authors;
lordered val Contributor[+] contibutors;
lordered ref ATOM[1]#entries atom;

}

class Source {
'unique !ordered attr String ~id;
'unique !ordered attr String icon;
'unique !ordered attr String logo;
'unique !ordered attr String rights;
lunique !ordered attr String title;
'unique !ordered attr String subtitle;
tordered val Link[*] links;
lordered val Date lastUpdate;
lordered val Generator generator;
lordered val Contributor[*] contributors;
lordered val Category[+#] categories;
lordered val Author author;

}

class Content {
'unique !ordered attr String type;

}

class InLineXHTMLContent extends Content |
}

class InLineOtherContent extends Content {

}

class OutOfLineContent extends Content {
lunique !ordered attr String[1] src;

}

class Generator {
lunique !ordered attr String uri;
!unique !ordered attr String version;

}

class Category {
lunique !ordered attr String[1] term;
'unique !ordered attr String scheme;
'unique !ordered attr String label;

}

class Link {
lunique !ordered attr String[1] href;
'unique !ordered attr String rel;
lunique !ordered attr String type;
!unique !ordered attr String hreflang;
lunique !ordered attr String title;
lunique !ordered attr int lenght;

}

class Person {
lunique !ordered attr String[1] name;
'unique !ordered attr String uri;
lunique !ordered attr String email;

}

class Author extends Person {

}

class Contributor extends Person {

}

class Date ({
'unique !ordered attr int[1] day;
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'unique !ordered attr int[1] month;
'unique !ordered attr int[1] year;
'unique !ordered attr int[1] hours;
'unique !ordered attr int[1] minutes;
'unique !ordered attr int[1] seconds;

}

Listing B.8: The ATOM metamodel defined in Emfatic notation.

B.4.4 DslIModel

@namespace (uri="dslmodel", prefix="dslmodel")
package DSLModel;

class Model {
'unique !ordered attr String domainModel;
val ModelElement[+] contents;

}

abstract class Element ({
'unique !ordered attr String type;
'unique !ordered attr String ~id;

}

class ModelElement extends Element {
lordered ref EmbeddingLink[1]#elements parentLink;
lordered val Property[+]#owner properties;
lordered val EmbeddingLink|[x]#owner embeddinglinks;
lordered val ReferenceLink[=]#owner referencelinks;

}

class ModelElementLink extends ModelElement {
lordered ref ReferencelLink[#]#modelElement links;

}

class EmbeddingLink extends NamedElement {
lordered ref ModelElement#embeddinglinks owner;
lordered ref ModelElement[«+]#parentLink elements;

}

class ReferenceLink extends Element {
lordered ref ModelElement#referencelinks owner;
lordered ref ModelElementLink[1]#1links modelElement;
lordered val Role[2]#owner roles;

}

abstract class NamedElement {
'unique !ordered attr String name;

}

class Property extends NamedElement {
lordered ref ModelElement[1]# properties owner;
lordered val Value[1] value;

}

class Role extends NamedElement {
lordered ref ModelElement[1] element;
lordered ref ReferencelLink[1]#roles owner;

}

abstract class Value {

}

class IntegerValue extends Value {
'unique !ordered attr int value;

}




class DoubleValue extends Value {
lunique !ordered attr double value;

}

class BooleanValue extends Value ({
'unique !ordered attr boolean value;

}

class StringValue extends Value {
lunique !ordered attr String value;

}

Listing B.9: The DsIModel metamodel defined in Emfatic notation.
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