Madalina Negoita
Domain walls in ferromagnetic nanowires for atom trapping applications

Chapter 4: 

DWs  in Single Rings

In this chapter I describe a method by which domain walls in planar magnetic ring-shaped nanowires can be propagated controllably at arbitrarily low velocities by confining them to geometrically-defined energy minima, velocities low enough to allow ultra-cold atoms to be transported in magnetic “traps” formed by the domain wall’s stray field. Focused magneto-optic Kerr effect measurements are used to characterize the walls’ behaviour at a range of field amplitudes and frequencies.

4.1. Introduction
As presented in the introduction chapter of this thesis, the main goal is to find ways of propagating DWs in planar ferromagnetic nanowires. Rather than attempt to control the DW velocity in the same direction as applied field, I instead consider using nanowire geometry to create a field-defined minimum energy position. I used a ring-shaped nanowire to achieve this.
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Fig. 4.1. Atomic force micrograph of the 800 nm wide Ni81Fe19 ring, 10 µm radius, 10 nm thickness.
The wires investigated here are Ni81Fe19 ring-shaped nanowires 10 μm radius with widths ranging from 100 nm to 900 nm and a thickness of 10 nm obtained as previously described in Chapter 3. The DWs are expected to take transverse or vortex form [1] depending on the wire width for the specified thickness. 

4.2. Controlling DW velocity

The DWs’ motion was analysed with a focused magneto-optic Kerr effect (MOKE) magnetometer described in §3.4. The system’s laser spot had a full width at half maximum (FWHM) of ~5 μm and was focused on the lower edge of the ring, as shown in fig. 4.1. The MOKE system was operated in the longitudinal configuration so that magnetisation sensitivity was along the x-axis (defined in fig. 4.1.). MOKE magnetometer generates rotating magnetic fields with an in-plane vector. Localised changes in the ring’s magnetisation could then be detected as DWs passed through the laser spot.
This procedure is illustrated schematically in fig. 4.2.(a). First a DW pair consisting of one head-to-head (H2H) and one tail-to-tail (T2T) structure is nucleated in the nanowire ring using an in-plane magnetic field Hx=400 Oe (Hy=0 Oe). This formed the bi-domain “onion” state of the magnetic ring [2, 3] in which the DWs are on opposite sides of the ring (fig. 4.2.(a)). If an external magnetic field, Happlied, is now applied in the plane of the ring the Zeeman energy depends on the angle, θlag, between the applied field direction and the line passing through the two DWs. An energy minimum is found for the case where the DWs are aligned with the applied field (θlag=0°), while for non-zero values of θlag the DWs will experience a restoring torque towards the energy minimum. Thus, the two DWs are both confined to geometrically defined energy minima. If the direction of Happlied is now rotated in the plane of the ring, the positions of these minima will propagate around the ring, dragging the DWs with them (fig. 4.2.(b)). As the frequency of rotation of Happlied can be set to any value this approach in principle allows DW velocities to be decreased to arbitrarily low values (< 1 cm/s). 
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Fig. 4.2. (a) Schematic diagram indicating the nanowire geometry used to control DW velocity. The applied field is rotating clockwise. (b) Schematic diagram showing how a rotating field propagates the DWs.

The above picture is somewhat complicated by the presence of lithographic defects and material inhomogeneities that pin DWs. In the presence of such defects it is expected that the DWs will “lag” behind the rotating field by θlag. This can be understood intuitively by considering the fact that only the component of Happlied parallel to the DWs instantaneous propagation direction (tangential to the ring),[image: image4.wmf](
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, acts to depin the wall. Thus for a DW pinned at a defect with characteristic pinning field Hpin, a finite value of θlag is required for the value of Hparallel to be large enough for the walls to propagate. For large |Happlied| (> 100 Oe), θlag will be small (close to zero) and thus the DWs are expected to follow the field closely, while for smaller |Happlied| (< 100 Oe), θlag can be predicted to be more substantial. In practise, due to the localized nature of defects along a wire edge, θlag is likely to vary as the walls rotate around a ring (local velocity is calculated later in §4.6). Nevertheless, over a full rotation period, the time-averaged domain wall velocity will be constant for one frequency.

4.3. Experimentally measured Kerr signal of rings

Measured Kerr loops from the bottom of the ring showed quite unusual shapes. Figure 4.3. depicts the Kerr response of the 800 nm wide ring under a rotating magnetic field, first, with respect to Hx (fig. 4.3.(a)) and then with respect to Hy (fig. 4.3.(b)) for an applied field Happlied=60 Oe and a frequency ν=27 Hz. In fig. 4.3. (c) & (d) is depicted the recorded ‘Kerr’ signal from an unpatterned area of the sample, bare silicon. The loops are normalised in the plots shown in fig. 4.3. but the signal from silicon (fig. 4.3.(c)&(d)) is ~ 5 times smaller than the signal measured from rings (fig. 4.3.(a)&(b)). Measurements were usually averaged over several hundred field-cycles to reduce experimental noise.
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Fig. 4.3. Kerr loop for 800 nm wide ring raw data with respect to (a) Hx and (b) Hy and background data with respect to (a) Hx and (b) Hy. Vertical axes for (c)&(d) are ~5 times smaller.
The unusual shape of the loops in fig. 4.3. (a) & (b) suggested that there might be some artefacts contributing to the overall signal. These might be geometric effects of focussing a polarised light beam, measuring a nanostructure that doesn’t fill the focal spot, possible field-induced vibrations in holders and Faraday effect in the nearby optics. The contribution these artefacts bring into the recorded signal can be eliminated by measuring under the same conditions an unpatterned area of the Si substrate fig. 4.3. (c) & (d), scaling its intensity and then subtracting it from the ring signal. This approach is crucial to obtaining accurate quantitative data. The resulting signal is presented in fig. 4.4. red line overlapped on the signal without background subtraction, black line. The insets show how the DWs are propagating in the ring while the field is rotating. Despite initial appearances, these are not hysteresis loops in the proper sense because they are obtained under a rotating field of fixed amplitude, rather than a uniaxial field of variable strength.
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Fig. 4.4. MOKE signal plotted against (a) Hx and (b) Hy for an in-plane rotating magnetic field of 60 Oe at a frequency of 27 Hz for a Ni81​Fe19ring of 10 µm radius, 10 nm thickness and 800 nm wide. The pictograms in the plots show DWs position as the field rotates.  The MOKE laser spot was positioned on the lower portion of the rings and magnetisation in the x-direction measured.

The measured MOKE signals take one of two characteristic forms depending on how they are parameterized. When the MOKE signal is plotted against Hx the observed signal is similar in shape to a conventional hysteresis loop (fig 4.4.(a)), with closed ends and significant hysteresis visible around zero field. On the other hand when the MOKE signal is plotted against Hy a more unusual “open”, rectangular shape is observed (fig 4.4.(b)), with the greatest changes in MOKE signal occurring close to maximum field. The appearance of these loops is, of course, subject to the chosen measurement position in the rings (fig. 4.1) and magnetisation sensitivity direction (x-direction).
In a perfect system the DWs would follow the vector of the applied field exactly. However, in a real nanowire defects will pin DWs such that they need a finite torque to depin. The result of this is that the DWs will lag behind the vector of the rotating field by an angle θlag. This can be understood by considering that, at the position of the DWs, Happlied can be resolved into components Hparallel=Happlied sin θlag (as described above) and Htransverse=Happlied cos θlag which are parallel and perpendicular to the DW direction of motion, respectively. As in the case of a linear nanowire, it is the parallel component, Hparallel, that drives the DWs through the nanowires, and hence it follows that for a system with finite pinning θlag ≠ 0. The presence of this finite lag in my experimental data can be observed from the apparent “hysteresis” in the loop shown in fig. 4.4. (a), and from the slight tilt of the vertical edges of the loop in fig. 4.4. (b). The role of Htransverse will be to modify the DW structure and, therefore, the DW response to the Hparallel drive field, again, as is observed in linear wires [4].

4.4. Analytical model of the ring

To allow interpretation of these experimental results a simple numerical model was developed in Matlab. The ring was divided into 50 nm cells within which the magnetisation pointed circumferentially around the ring in either a clockwise or anticlockwise direction 
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for one half ring and 
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(4.2.)
for the other half, where n is the total number of particles and i is the particle number. The walls are defined as squares with the same width as the wire width pointing radial as in fig. 4.5.
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Fig. 4.5. Schematic of the analytical model in which a magnetic ring of dimensions equal to the experimental ring studied was divided into 50 nm grains. Each grain’s magnetic moment pointed circumferentially around the ring except for the DWs where the magnetisation pointed radial. The walls have the same width as the ring.
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(4.3.)
where σ is the full width at half maximum (FWHM) of the envelope (I assumed it has the same dimensions on both x and y), xi the x component of magnetisation of particle i as described in equation (4.1.), x0 the origin of the system on x, yi the y component of magnetisation of particle i as described in equation (4.2.), y0 the origin of the system on y.
The FWHM of my system was considered 5 μm to represent the focussed laser intensity. The x-components of the ring’s magnetisation were weighted by this function, centred on the bottom of the ring, and then summed to estimate the relative MOKE signal for a given DW position. MOKE signals as a function of applied field were calculated by assuming that the DWs rotated smoothly around the ring at fixed θlag to the applied field. This procedure also allows a shift of the laser spot in the x and y directions and the introduction of a phase lag θlag between the rotating field vector and the axis between the DWs in order to understand the experimental results. 
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Fig. 4.6. Simulated MOKE signals plotted against Hx and Hy for θlag=0° and the spot centred on the bottom of the ring.

For data simulated with θlag=0° (figs. 4.6.) the modelled MOKE loops were found to take forms broadly similar to that of the experimental data, providing strong evidence that the DWs were propagating around the ring as intended. However, several notable differences between the experimental and simulated results were also observed. For simulated plots of MOKE against Hx(fig. 4.6.(a)) the hysteresis observed in the experimental data (fig. 4.4.(a)) was entirely absent, while for simulated data plotted against Hy (fig. 4.6.(b)) the edges of the loop were entirely vertical rather than tilted as in the experimentally measured results (fig. 4.6.(b)).
4.5. Determining phase lag and spot misalignment 

The differences between the experimental (fig. 4.4.) and simulated (fig. 4.6.) loops could be introduced into the simulated data in one of two ways: either by deliberately introducing a θlag or by displacing the laser spot in the x direction from its position of symmetry (the shift on the y-axis will only decrease the size of the signal) at the bottom of the ring (figs 4.7.). Both effects led to the emergence of apparent hysteresis when plotted against Hx but the misalignment also led to reduced signal levels.
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Fig. 4.7. Simulated MOKE signals plotted against (a), (b), (c) Hx and (d), (e), (f) Hy for (a), (d) θlag=0° (■ black line), (b), (e) θlag=30° (● red line) and (c), (f) a spot misalignment in the x-direction of 1 μm (blue dashed line), no phase lag.

As one of these effects (DW lag) reflected a fundamental behaviour of DWs, while the other (spot misalignment) was merely caused by experimental imperfections, the ability to differentiate these effects was of great importance. To achieve this, the MOKE signal, SMOKE, (normalised to extend from values of -1 to 1) from the ring under clockwise and anti-clockwise rotating fields was obtained experimentally and from simulations. The magnitude of the normalised MOKE signals |SMOKE| was then plotted against field angle, θfield, on a polar plot. Simulated data (fig. 4.8.) with θlag=0° exhibited identical two-lobed shapes for both clockwise and anti-clockwise fields (fig. 4.8.(a)), with lines of symmetry running through θfield=0°/θfield=180° and θfield=90°/θfield=270° axes.
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Fig. 4.8. (a) Simulated polar plot with the spot perfectly centred on the bottom of the ring and no phase lag between the field and the domain walls (b) Simulated polar plot with θlag=30° Data is shown for both clockwise (black line) and anticlockwise (red dashed line) rotating fields (c) Simulated polar plot for 2 μm spot misalignment 
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Fig. 4.9. Change in the degree of symmetry rotation in polar plots of simulated MOKE response to DW rotation for different extents, x, of x-direction MOKE laser spot misalignment.
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Fig. 4.10. (a) Polar plot showing the experimentally measured MOKE signal against the angle of the applied field. Data is shown for both clockwise (black line) and anti-clockwise (red dashed line) rotating fields. (b) MOKE signal plotted against the vector field worked out from plots in fig. 4.4. The inset shows the fitting of the peaks used to get an accurate result on the phase lag and spot misalignment.

The introduction of a 2 m x-direction spot misalignment produced an uniform rotation of the plots (fig. 4.8.(c)) such that, while curves for both clockwise and anti-clockwise fields were identical to each other, their lines of symmetry were rotated from the perfectly aligned case. The extent of rotation of the polar plots from the 90o/270o symmetry axis for a few spot misalignment distances is shown in fig. 4.9. For the 1 – 3 m investigated in fig. 4.9., the symmetry axis rotation is approximately linear. On the other hand, the introduction of a finite phase lag θlag between the DWs and field vector caused the clockwise and anticlockwise plots to rotate their lines of symmetry in opposite directions, by -θlag and +θlag respectively (fig. 4.8.(b)), so that they were no longer identical. Parameterising the data in this way thus allowed the effects of finite phase lag and spot misalignment to be differentiated.

The experimental data for both field rotation directions are rotated anticlockwise from the θfield=90-270o axis (fig. 4.10.(a)), indicating a misalignment of the spot during the experimental measurement. However, the degree of rotation is different for the data measured with clockwise and anticlockwise fields, thus showing a finite phase lag between the DWs and the field vector. Halving the sum in rotation from the θfield=90-270o axis between the clockwise and anticlockwise field plots (
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) allowed a numerical value of θlag=3.9o ± 0.5o to be extracted. This lag reflects the level of control of DW motion that is achievable using my approach, as the localised nature of pinning sites are likely to mean that the DWs move in nanoscopic steps around the ring, rather than smoothly (this is shown later in §4.8.). The low value of θlag measured here indicates that my approach can be used to obtain good control of motion. 

Fig. 4.10.(b) shows the Kerr response plotted against the angle of the vector field. This is similar to the polar plot in fig. 4.10.(a) but was chosen here to extract the phase lag and spot misalignment over the polar plot by fitting the peak areas with a cosine function |A cos2 (θlag-φ)| (inset of fig. 4.10.(b)) instead of simply using the symmetry axes as described previously. So, the rotation of the polar plot from the 90o/270o symmetry axis (fig. 4.10.(a)) is similar to the shift of the plot in fig. 4.10.(b); the peaks are shifted from their position in 90o and 270o  by the same amount as the polar plot is rotated. By extracting these values for the measurements when the field rotates clockwise and then anticlockwise, the phase lag of DWs behind the rotating vector field can again be calculated using 
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  provides a measure of the x-direction spot misalignment from the bottom of the ring in the experiment. It should be noted that the instantaneous value of θlag is likely to vary somewhat throughout the DWs’ passage around the ring. My experimental values therefore represent a typical value in the region probed by the laser spot.

4.6. Phase lag, spot misalignment, drive and transverse fields 

Fig. 4.11. shows plots of θlag against Happlied measured with ν=27 Hz and different field amplitudes. As Happlied increases, the lag decreases (fig. 4.11.(a)) and approaches zero for large fields. This variation can be understood by noting that for a given defect a critical value of the field must be applied for the DW to depin. If Happlied increases, a smaller value of θlag is obtained, and hence the DWs follow the field vector more closely. The data show that while for values of Happlied in excess of 100 Oe θlag is close to zero and almost constant, at values below this θlag increases rapidly and can be >15o for Happlied ~50 Oe and smaller.
It is highly unlikely that DWs follow the applied field at a constant value of θlag. DW motion is more likely to consist of multiple depinning events where the DWs “catch-up” to the field vector before becoming pinned again. A lower value of θlag is therefore best interpreted as the DWs circulating the ring more smoothly, and undergoing smaller “jumps” around the rings circumference. 

Figure 4.11.(a) also compares the values of θlag obtained for nanowires with different widths. It is expected that the pinning from defects will become more significant as the width of the nanowires decreases. Indeed, it can be seen that the nanowire with w=400 nm shows lags consistently higher than the wires with larger widths in the region where Happlied<100 Oe and pinning is significant.

When the applied field rotates in the ring, it drags the DWs with it, because of the restoring force that acts on DWs to align them with the field direction. A phase lag implies a field, along the direction of DW propagation, which drags the DWs in the structure. This field is the drive field, Hparallel, calculated as Hparallel=|Happlied| sin θlag. In fig. 4.11.(b) values of Hparallel derived from the experimentally measured values of θlag are plotted. As explained previously, these values represent typical values of the field parallel to the direction of motion required to depin the DWs from defects within the probed region. The measured values of Hparallel lie in the range 2-20 Oe and are of the order of magnitude expected to be required to depin a DW from a small lithographic or material defect. Of more significance is the fact that substantial variation in the value of Hparallel is observed as Happlied is changed, with lower fields being required to depin the walls as Happlied increases. Were the structure of the DWs to remain consistent as Happlied is increased it would be expected that Hparallel would also remain constant, as the same defects will always be present in a given ring. The most obvious reason for the variation of Hparallel is that the DW structure is being modified as Happlied increases. In fig. 4.11. (b) there can be noticed an increase in drive field for applied fields higher than 175 Oe. This is similar to the shape of DW velocity-magnetic field characteristics in straight nanowires when a transverse field is applied [4]; at low drive fields, transverse field modifies the proportionality constant between drive field and DW velocity and, at high drive fields, Walker breakdown can be suppressed to allow DW velocity to increase with drive field again. 
The cause of this can be seen by considering figs. 4.11.(c) and (d), which present Hparallel/Happlied and Htransverse/Happlied versus Happlied. While Hparallel/Happlied is small and varies significantly with Happlied (as would be expected from fig. 4.11.(b)), Htransverse/Happlied, where Htransverse is calculated as Htransverse = sqrt(Happlied2- Hparallel2), varies very little, and is ~1. This suggests that for given external parameters the DWs can be considered to be moving under an almost constant transverse field, of the order of Happlied. So, this transverse field modifies the DWs as it increases, most likely causing a widening of their magnetisation structure and making it easier for them to depin from defects. Furthermore, the canting of the surrounding domains will reduce the additional magnetostatic energy associated with a DW, which will reduce the influence of edge imperfections. Previous studies in linear nanowires have also noted decreased depinning fields of DWs when in the presence of strong transverse fields [5].
Calculated as described earlier in § 4.5. the spot misalignment is depicted in fig. 4.11.(e) as number of degrees from the polar plot and then translated into microns fig. 4.11.(f) as depicted in fig. 4.9. It is seen that during the measurements of each ring the spot is placed a few microns away from the bottom of the ring and then, due to the system (the drift of the stage), it moves towards the bottom of the ring Δx = 0. This is a smooth motion and for each measurement the spot gets closer to the bottom of the ring.
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Fig. 4.11. Effect of the applied field amplitude (Happlied) on DW propagation through Ni81Fe19 rings. Results are shown for nanowires with w= ■ 800 nm (black), ● 600 nm (red) and ▲400 nm (green) at a field rotation frequency of ν=27 Hz. (a) Shows measured values of θlag plotted against Happlied. These were then used to derive plots of (b) Hparallel, (c) Hparallel/Happlied and (d) Htransverse/Happlied against Happlied. (e) Measured spot misalignment angle against Happlied and (f) spot misalignment distance against Happlied. By convention Δx>0 for a spot shifted relative to the bottom of the ring to the right and Δx<0 for a spot shifted to the left. 

Having established the basic feasibility of my approach, I will now consider how this approach can be used to “tune” DW velocities. The experimental measurements were repeated using rotating field frequencies in the range 10 – 200 Hz, corresponding to mean DW velocities in the range 0.6 mm/s to 12.6 mm/s, calculated as 
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Fig. 4.12. (a) Effect of the applied magnetic field rotation frequency, ν, on DW propagation for nanowires with w= ■ 800 nm, ● 600 nm, ▲400 nm at a constant field amplitude of Happlied=80 Oe. (a) Measured values of θlag plotted against ν. (b) Hparallel derived fromθlagvalues.(c) Htransverse/Happliedand (d) Htransverse/ Happlied plotted against ν. Htransverse is derived from |Happlied| cosθlagSpot misalignment(e) angle and (f) displacement plotted against the applied field magnitude.
Fig. 4.12.(a) plots θlag measured as a function of field frequency with Happlied=80 Oe. For all nanowires the value of θlag shows a modest increase with the measurement frequency. This reflects the fact that the depining of DWs from defects is in general a thermally activated process, and therefore has a characteristic timescale for a given value of Hparallel and Hpin. As the frequency of the applied field increased the DWs began to lag further behind until Hparallel increased to a level at which the timescale of depining from a typical defect coincided with that required for the DWs to follow the applied field. It is likely that this increase in θlag with frequency could be compensated by increasing the magnitude of the applied field; however there will be a limit to how large the applied field can be before it overcomes the ring’s shape anisotropy and the DWs are lost. Therefore, while my approach is highly appropriate in applications where very low DW velocities are desirable, such as in the transport of trapped atoms, it is likely to be less useful in applications where higher velocities are required. A deviation from the trend is observed at high frequencies.
The stochasticity of the depinning process from a defect is investigated further in [6].

Fig. 4.12.(b) and (c) show how Hparallel and the ratio Hparallel/Happlied increase slightly with ν due to stronger fields required to drag the DWs in the ring when the field is moving faster. The ratio Htransverse/Happlied remains decreases only marginally with increasing ν in the range considered (fig. 4.12.(d)) indicating that DW structure is likely to remain effectively unchanged. 
Similar as described above, the spot misalignment is calculated first from the polar plots (or their equivalent) in fig. 4.12.(e) and then transposed these quantities in microns, fig 4.12.(f). Again, a continuous shift of the laser spot from the bottom of the ring is observed.
The whole fig. 4.12. presents for high frequencies (160 Hz and above) an unusual behaviour which doesn’t follow the trend set by lower frequencies. This could be due to a resonance in the system or to the sample and is analysed further in fig. 4.13.
4.7. Parameters that might influence phase lag measurements 

Although the increasing lag in fig. 4.12.(a) is consistent with a general picture of DW propagation, there remained the possibility that it was an artefact of the measurement system behaviour. To test this, unpatterned areas of the sample and a thin film of permalloy were measured and then the Kerr signal form the unpatterned area was subtracted from thin film Kerr’s signal in the same manner as the ring-shaped nanowires used in my studies. 

MOKE analysis of the (non-magnetic) unpatterned areas of Si (fig. 4.13.(a)) allowed effective values of ‘lag’ to be interpreted from the data, using the methodologies described above. The analysis showed a decrease of θlag with increasing ν at low frequencies and, again, random variation at high frequencies. However, the values of θlagwere relatively large. The thin film with the same thickness as the wires 10 nm showed θlagto increase with ν, although a constant behaviour would be expected.
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Fig. 4.13. (a) lag vs frequency ν for Si (b) lag vs frequency ν for thin film (c) lag vs frequency ν for film-Si 

Fig. 4.13.(c) shows the Kerr signal for unpatterned areas subtracted from thin film’s Kerr signal. This plot shows an approximately constant derived lag, within experimental errors ±0.5o, which means that the lag values from ring structures above are likely to be representative of DW motion and not a measurement of the magnetic field response of optical and mechanical components in the magnetometer.

Another parameter that might influence the measurements is the spot focusing. In fig. 4.14. is presented a study on the spot focusing when scanning a ring of 800 nm width, 10 nm thickness and 10 μm radius. The spot focusing is changed slightly (the degrees in the fig legend are those on the micrometer used to adjust spot focusing of lenses). The differences introduced by spot focusing are due to a lack of precise adjustment of the laser spot. Since the spot focussing is achieved within ± 2 degrees the lag error introduced by spot focusing is neglected. 
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Fig. 4.14. An analysis on how the spot focusing influences the phase lag measured on a 800 nm wide ring. The degrees mentioned in fig. legend are the number of degrees of which the micrometer is rotated.
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Fig. 4.15. 800 nm wide ring measured on top and bottom for several field amplitudes.
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Fig. 4.16. Phase lag on the bottom of the 800 nm wide ring for ten different successive measurements under the same conditions.
Measuring the rings on top or bottom edges probes a different local wire environment but results in broadly the same Kerr response (fig. 4.15.) due to the symmetry of the structure.
The measurements under the same conditions were repeated for ten times and the lag was calculated each time in fig. 4.16. This analysis showed that the lag can vary about 1 degree during a set of measurements. The applied field is 100 Oe at 27 Hz.

The analysis described in this paragraph showed that the phase lag error is about ± 0.5o, error included in the analysis presented in figs. 4.11. and 4.12.
4.8. Local DW velocity

The analysis above of DWs propagating over relatively large length-scales does not confer any details of DWs moving over smaller, micrometre-scale, distances. Figs. 4.17.(a) and (b) show the Kerr signal with respect to Hx and Hy obtained from a ring 800 nm wide 10 nm thick and 10 μm radius. The data indicate that DWs move in a finite number of nanoscopic steps around the ring due to the presence of material defects and edge roughness. The insets in the figures underline this step-like behaviour of DWs. This indicates that DWs are weakly pinned by small pinning sites. This general behaviour is an example of Barkhausen jumps that characterise magnetisation reversal in many systems [7]. Thermal energy plays an important role in DW depinning. The distance between these pinning sites determines how accurately the DWs can be positioned. An analysis of these loops for field rotation frequencies 70 Hz and 140 Hz with Happlied= 80 Oe shows that the higher frequency loop contains Barkhausen jumps. The time-dependence of depinning causes higher field rotation frequencies to lead to higher Hparallel (fig. 4.12). These larger drive fields mean that when a DW is depinned it has a greater probability of ‘skipping’ the pinning potential of the next defect it encounters.
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Fig. 4.17. MOKE signal plotted against (a) Hx and (b) Hy for a field amplitude of 80 Oe and frequencies of the applied field of - 70 Hz and - - 140 Hz, for the 400 nm wide ring. (c) The derivative of the Kerr signal with respect to time for the two frequencies. To simplify, each point of the derivative was averaged over 4 points of the original data. (d) The Kerr signal plotted against the circumferential DW position in the ring from the numerical MOKE model. (e) DW velocity variation as function of time. (f) DW velocity variation as function of time for 27 Hz and two applied fields 80 Oe and 250 Oe.

The Kerr signal’s derivative in time (fig. 4.17.(c)) shows, in the laser spot region, peaks of different amplitudes. High field rotation frequency presents higher peaks showing that DWs move in larger steps at high frequencies. The numerical model described earlier (§4.4) allows the Kerr signal to be calculated as a function of DW position in the ring (fig. 4.17.(d)), based upon the optical parameters of the MOKE magnetometer. Correlating this with experimental MOKE data (such as fig. 4.17.(a)) makes it possible to calculate the time-resolved DW velocity within the laser spot. 

Using this procedure with ν = 70 Hz and 140 Hz (fig. 4.17.(e)) suggests that DWs move in steps and that although velocity varies as they depin from defects. Although the higher frequency may have fewer Barkhausen jumps, the propagation of a DW is still subject to large variations in velocity and results in large spikes in velocity. This behaviour may be important in applications that have a strict upper limit on the DW velocity that can be accommodated.
The instantaneous velocity for Happlied = 80 Oe and 250 Oe with ν= 27 Hz, i.e. the same nominal DW propagation speed around the ring, is shown in fig. 4.17.(f). The range of velocities for the higher field is smaller than the one for lower field showing that at higher fields the DWs move more smoothly through the ring, overcoming more easily the pinning by defects due to a higher Zeeman energy. Under lower fields, like the one used for frequency measurements described in fig. 4.17.(a), (b) and (e), the pinning is more pronounced and the DW velocity when depinning from a defect is higher than the averaged velocity and can even be higher than my target limit of 1 cm/s, imposed by the proposed application of mobile atom traps.
4.9. Domain canting in nanowire rings

The potential variation of DW structure in nanowire rings requires further investigation to confirm the above behaviour as, for sufficiently high values of Happlied, the DWs are likely to widen to such an extent that the magnetisation state of the ring-shaped nanowire will be better classified as quasi-saturated rather than bi-domain. This loss of discrete DWs, and the concentration of magnetic poles they provide, has obvious implications for my intended application and most importantly that magnetized particles trapped above DWs in the nanowires might no longer be well localized.  
To investigate this further I first consider the two limiting cases of a nanowire’s magnetisation state. In the first case, the nanowire’s magnetisation is bi-domain, with circumferentially aligned magnetisation and radial DWs (‘Ring with DWs’ state in fig. 4.18.(a)). This represents the system forming an idealised onion state at low values of Happlied. In the second case the ring is entirely saturated, with its magnetisation aligned along Happlied, as would occur at very high applied fields (‘Saturated ring’ state in fig. 4.18.(a)). The MOKE response has been modelled for each case under rotating applied field. For the with-DWs state the numerical model described in §4.4 was used. For the saturated state, where the magnetisation follows the applied field exactly, the MOKE response is proportional to Hx and therefore takes the form 
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Fig. 4.18. (a) Schematic of the models used here: a ring with DWs and a saturated ring. (b) Experimental and modelled MOKE signals plotted as a function of time over one complete field cycle. Experimental data is shown for ●Happlied=40 Oe and ▲Happlied=250 Oe. Modelled signals are shown for the ■ with-DWs and ▼ saturated cases. The differential of these signals are shown in (c). (d) Fast Fourier Transforms (FFTs) of experimental signals (e) Amplitudes of the 3rd (81 Hz) and 5th (135 Hz) harmonics as found from FFTs of experimentally measured signals.
Fig. 4.18.(b) and (c) show the simulated time-dependent MOKE responses and their time derivatives for both simple models, respectively, along with experimental data measured at Happlied=40 Oe and 250 Oe for the 800 nm wide ring. It can be seen that the low-field Happlied=40 Oe signal has a form very similar to that of the with-DWs model, best characterised by the flat plateaus either side of the central peak in the differentiated data. The fine detail of this peak in the Happlied=40 Oe data most likely indicates Barkhausen jumps between pinning sites as the DWs propagate. The data taken at Happlied=250 Oe is more ambiguous, neither taking the smooth, sinusoidal form of the saturated model, nor the flat plateaus expected for the with-DWs model.

In order to analyse how saturated a ring is for a certain applied field, Fast Fourier Transforms (FFTs) of modelled and experimental MOKE data were employed (fig. 4.18.(d)). For the saturated model case (bottom black line in fig. 4.18.(d)) a single peak is seen at the first measurement frequency of 27 Hz (1st harmonic), as would be expected for a purely sinusoidal function. The FFT of the with-DWs model (top purple line in fig. 4.18.(d)) data is more complex and shows significant peaks at both the 3rd and 5th harmonics (even harmonics are absent as 
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). I suggest that the presence of these peaks in the FFT data to be a signature of a state containing DWs. The FFTs of experimental MOKE data (fig. 4.10(d)) taken at a range of values of Happlied all show the expected strong peak at the 1st harmonic but there is the strength of the 3rd and 5th harmonic peaks decreases as Happlied increases. This is illustrated more clearly in fig. 4.18.(e), where the amplitudes of these harmonics are plotted as a function of Happlied. 

Two conclusions can be drawn from this analysis: first, while the amplitudes of the higher harmonics are reduced at high applied fields, even at Happlied=250 Oe they remain a noticeable feature of the Fourier spectrum. This suggests that at these fields the magnetisation state of the nanowires is intermediate between the two cases modelled and most likely consists of a pair of wide DWs separating domains with magnetisation canted away from circumferential alignment to an extent that is dependent on the applied field strength. As explained earlier, for my proposed application this represents a key finding because the traps created in such circumstances will be weaker and spread over larger areas due to the DWs’ expansion but also, the larger area of the DWs may lead to the traps extending over longer distances. Second, it is noteworthy that the 3rd and 5th harmonics retain relatively constant amplitudes for Happlied<=100 Oe (fig. 4.18(e)). This suggests that over this range of field the 800 nm wide nanowires contain well-defined DWs and domains that retain a strong circumferential alignment. Furthermore, from fig. 4.11.(a) it can be seen that at the upper limit of this field range, θlag assumes values close to zero, indicating that the DWs propagate smoothly around the nanowire. In combination, these features suggest that my proposed technique could be used to achieve smooth, low speed propagation of magnetic DWs in nanowires while retaining zero-field-like magnetic configurations. These are ideal characteristics for future applications of trapping and transporting ultra-cold paramagnetic atoms using DWs in magnetic nanowires.
4.10. Nanowire geometries for transport of trapped atoms

The geometry of the ring system considered so far can only offer cyclical motion of DWs and is likely to be of limited utility. In the context of cold atom confinement, the ability to move trapped atoms in a particular direction or even to be able to controllably bring together and separate atoms in different traps would be very helpful. Fig. 4.19.(a) shows a nanowire shape that may allow linear transport of a trapped cold atom in which the geometry of a ring is “unwrapped” to create an undulating nanowire of arbitrary length. DWs could be propagated along such a nanowire by reversing the direction and chirality of a rotating field every half cycle. An experimental investigation of this approach is discussed in Chapter 5. Fig. 4.19.(b) contains an alternative proposal in which DWs are propagated around rings by a rotating magnetic field while DWs in straight wires remain pinned close to the rings at artificial defects [8]. Atoms are trapped above head-to-head DWs in each ring and also above each head-to-head pinned DW. This procedure allows local interactions between atoms to occur when the rings’ DWs are brought into close proximity to pinned DWs. Cycling this process would allow atoms trapped along a chain of rings and traps to interact and, if the atoms were used as qubits, for the ensemble to become entangled.
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Fig. 4.19. Nanowire geometries that could be used to achieve linear transport of information in QIP systems.(a) An undulating nanowire containing a single DW. (b) A series of alternating ring-shaped and linear nanowires where atoms trapped above head-to-head DWs in rings are propagated by rotating fields to interact with those in straight wires and thus propagate information.

4.11. Conclusions

This chapter shows how DWs in ferromagnetic ring-shaped nanowires can be controlled to move relatively slowly (< 1 cm.s-1) and smoothly. The motion of DWs confined to magnetic-field-induced 1D propagating energy minima in rings has been studied for a range of applied field amplitudes, frequencies and ring widths. My results indicate that the DWs propagate by a continuous process of thermally-assisted “hopping” between defect sites. The smoothness of this motion, as characterized by the typical angular distance the DWs lag behind the vector of the applied field, depends strongly on the field’s strength, with smoother motion being obtained at higher fields. Average DW velocities then depend purely on the ring radius and rate of field rotation, rather than magneto-dynamics. By transporting DWs around a ring of 10 μm radius velocities as small as 0.6 mm/s have been achieved, ~105 orders of magnitude lower than those measured in linear nanowires [9]. For rotating fields of ~100 Oe, and induced DW velocities ~ 1 mm/s, DWs typically follow the field vector to within just a few degrees, indicating relatively smooth motion. For fields significantly lower than this the DW motion becomes less smooth, with larger angular lags measured. However, higher fields can cause the DWs to widen significantly and the intermediate domains to become significantly canted away from their remanent alignment along the nanowires. My results also imply that decreasing the width of the nanowires or increasing the velocity of the DWs also decreases the smoothness of their motion. I also have described how the frequency of the applied field influences the depinning process and a method of calculating the local velocity between DW jumps in the ring. As expected, a high frequency of field rotation results in higher maximum instantaneous velocities while larger field amplitudes lead to smoother propagation of DWs in the nanostructure with few velocity spikes.

The level of control over DW positioning demonstrated here and the ability to propagate DWs at arbitrarily low velocities would be difficult to achieve using standard field/current induced methods of propagating and, while it is unlikely that my approach could be implemented into the high-speed information technology applications, it will be ideal for use in applications where DWs are used to transport magnetized particles such as ultra-cold atoms or magnetic micro-beads.

Finally, I have proposed methods by which my approach could be adapted to allow linear transport and entanglement of trapped atoms in quantum information processing applications.
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