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Abstract 

One of the limiting factors in the efficiency of organic photovoltaic devices utilising 

new generations of donor polymers is the ability to obtain Ohmic contacts between the 

electrodes and the organic layers. This is due to the fact these new donor polymers often 

have deeper energy levels meaning that at the interfaces between the organic layer and 

the electrode contact barriers are formed. PEDOT:PSS is the current benchmark 

material that is used to reduce or remove these contact barriers however even this 

material has too shallower an energy level and has serious issues with long term 

stability. One possible class of materials that might overcome these limitations and give 

increased device performance and lifetimes are metal oxides. However these materials 

are currently deposited mainly through vacuum deposition and the difficulty of 

incorporating vacuum based depositions into roll-to-roll fabrication setups limits the 

commercial use of these materials. 

Using a combination of spectroscopic techniques and device results this work 

shows that metal oxides can be used to effectively reduce these contact barriers and 

achieve high performance using deep energy level donor polymers. It has been shown 

that Vanadium (V) Oxide can be deposited from solution at room temperature without 

while maintaining high efficiencies. The work continues to look at spray coating, a roll-

to-roll compatible deposition technique, and how it can be used to incorporate ultrathin 

film of solution processed Molybdenum (VI) Oxide for fabricating efficient devices. In 

addition I have shown that the processing of these materials is only limited by the 

possible introduction of metallic gap states that can occur due to high temperature 

processing. 
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Chapter 1 

Introduction 

 

1.1 Organic Photovoltaics 

Currently energy usage within many developed nations has still not reached a peak and 

in addition much growth in demand for energy is coming from developing nations due 

to more people demanding access to electricity.
[1]

 It is expected that global energy 

consumption will double by 2050, and by 2100 it will have tripled.
[2]

 In order to meet 

these demands new power plants have to be built.  However there are several issues that 

have come to the attention of the public over the past decade that make the production 

of power stations reliant upon oil, coal, gas and nuclear less desirable. These issues 

include anthropogenic climate change being driven by the release of CO2 in part from 

emissions from fuel burning power plants and fears about the safety of nuclear power 

after the Fukushima disaster which changed German and Japanese nuclear policy 

overnight.
[3]

 In addition many areas of the developing world lack grid infrastructures for 

electricity to connect these large scale power plants to. This makes localised micro 

generation potenitally better suited to meet energy demands of developing nations. A 

combination of all these factors mean that many people are looking towards a clean, 

safe and renewable source of energy that can be deployed on both a small and large 
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scale to not only increase the total energy output but to eventually look towards 

reducing our reliance upon fossil and nuclear sources of energy. 

According to the International Energy Agency the total electricity production for 

the world in 2009 was over 20 PWh with 19.8 percent of this being from what people 

would deem renewable sources with this increasing to 31% by 2035.
[4,5]

 A breakdown 

of the renewable energy production reveals that over 83.3% of renewable generation is 

from hydroelectricity (including pumped storage).
[4]

 These statistics show that 

renewable technologies that have had enough time to be developed and deployed upon a 

large scale, such as hydroelectricity can be used to great effect in producing large 

amounts of energy. However, one of the most promising forms of renewable energy is 

solar photovoltaics; the reason for this is the sheer amount of solar radiation that reaches 

the Earth and the ability to deploy on both large and small scales. The mean 

extraterrestrial solar irradiance at the distance Earth is from the sun is 1368W.m
-2

 this is 

known as the solar constant.
[6] 

If the irradiance at a point on the surface is needed then 

atmospheric absorption has to be taken into account along with the angle that the 

ground makes to the Sun. It should be noted that the average solar irradiance at the 

Earth’s surface is approximately 198 W.m
-2

.
[6]

 This means that the electricity 

consumption of the entire planet is equal to the amount of solar power that reaches an 

area of approximately 110,000Km
2
. To put this into perspective, the amount of land that 

is currently covered by roads, buildings and pavements is approximately 580,000Km
2
.
[7]

 

It may seem like a simple matter of installing large swathes of photovoltaic 

panels over much of the land that has already been developed upon, but this scenario is 

not realistic. There are a few major issues that, at the moment, make this impractical; 

these issues include the fact that commercially available solar photovoltaic panels from 
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the world leading suppliers are currently at around 16% to 17% efficiency.
[7,8]

 

Photovoltaic panels also do not provide a constant source of energy, meaning that a 

method of storing power for when there is no sunlight is needed. The amount of energy 

that is required to produce inorganic photovoltaics is large due to the purification 

process of the Silicon substrates. Finally, the dollar-per-watt cost of power from solar 

photovoltaics is currently too high to make it economically viable to sell to many 

consumers.
[8]

 Due to the almost negligible operating costs of solar photovoltaics, the 

only way to reduce the cost of the power that is generated is to reduce the initial cost of 

installation or to increase the output by increasing efficiency. However increases within 

the efficiency lead to increases in the cost of production; this is either because of the use 

of more expensive materials such as GaAs or the introduction of additional complexity 

in the architecture of the device in order to overcome the Shockley-Queisser limit.
[10-12]

 

There is a possibility however to reduce the cost of photovoltaics by the use of cheaper 

processing or materials such as organic semiconductors.
[13-15]

 

Organic semiconductors are one of the possible ways of being able to produce 

cheap photovoltaic devices due to the simplicity of the fabrication process. Unlike most 

inorganic semiconductor devices they do not need to be fabricated onto a high-purity 

crystalline substrate, they, instead, can be deposited onto amorphous substrates such as 

glass, quartz and even flexible plastic materials.
[14,16]

 This should lead to a large 

reduction in the cost of fabrication and to a reduction in the total amount of energy 

required to fabricate a device reducing the energy payback time for the device.
[13,17,18]

 

Organic semiconductors also have the advantage of not needing to be deposited in 

vacuum, they can be deposited using techniques that are already highly developed and 

see widespread use in multiple industries such as gravure printing, inkjet printing and 
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spray coating. These deposition methods can allow for an extremely high production 

volume, combined with the relatively low cost of materials the production of very cheap 

photovoltaic devices is possible.
[13,19] 

Even though devices based on organic semiconductors have several advantages 

over inorganic materials they fall short on two important factors: the efficiency of 

devices and the lifetime. Currently commercialisation of organic PV technology is 

being held back by these factors.  In order to eventually realise full commercialisation, 

devices need to reach a minimum of 10% efficiency and to have a minimum lifetime 

comparable to inorganic photovoltaics of 10 years.
[9]

 Currently in laboratory conditions 

it has been shown that in single-junction organic photovoltaic devices efficiencies as 

high as 9.2% have been reported, while double-junction have reported efficiencies as 

high as 12%.
[21,22]

 The lifetime of organic photovoltaics are currently not as well 

reported as efficiencies of devices however recent work has shown promising results 

with lifetimes of devices ranging between 4 and 11 years.
[10]

  It can currently be 

deduced that the efficiency and lifetime of laboratory based devices is approaching the 

speculated commercial breakthrough point for organic photovoltaics. 

There are several pathways that have been used in order to improve the 

efficiencies and lifetimes of organic electronic photovoltaics. The most robust method 

of improving both of these is by the synthesis of new materials. Materials such as 

poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-

benzothiadiazole)] (PCDTBT), Poly [[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b'] 

dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl]] 

(PTB7) and Poly(benzo[1,2-b:4,5-b′]dithiophene-alt-thieno[3,4-c]pyrrole-4,6-dione 

(PBDTTPD) are part of what is deemed  the third generation of organic semiconducting 
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materials.
[13,21,24-28] 

These types of materials are vastly more complicated in terms of the 

structure and synthesis than first, and even second generation materials, such as 

polyparaphenylene (PPV) and poly(3-hexylthiophene) (P3HT). These new materials 

offer more stable organic layers, higher mobility and increased ease of processing 

among other advantages.
[23,24]

 However many of these third generation semiconductors 

have energy levels much deeper than the first and second generation, this means that 

benchmark materials such as poly(3,4-ethylene-dioxythiophene): poly(styrenesulfonate) 

(PEDOT:PSS) no longer allow for efficient charge transfer from the organic layer to the 

electrode due to inbuilt potential barriers.
[29-31]

 

Energy barriers that form when there is no longer Ohmic contact between the 

layers lead to large reductions in the device performance from the theoretical maximum 

value for any given material, it can also lead to reductions in the lifetimes of 

devices.
[32,33]

 Therefore obtaining Ohmic contacts between the organic layers and the 

electrodes is an important part of making a highly efficient and stable device. In order 

for an Ohmic contact to be formed at the interfaces between the organic layers and the 

electrodes a new class of materials is needed. Metal oxides have seen much interest over 

that past several years as possible candidates for helping form these contacts.
[34,35]

 

Oxides not only have deep energy levels they also have several other properties that 

make them desirable for use in organic electronic devices. They often have large band 

gaps leading to optically transparent films, some oxides can also act as charge blocking 

layers leading to further performance increases, different metals and different oxidation 

states allow for a large selection of possible materials to match energy levels with, they 

have higher stability than many other materials, can act to dope adjacent layers and can 

be deposited from solution.
[34-42]
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Much of the work that has been done on metal oxides has been focused on the 

use of vacuum evaporated Molybdenum (VI) Oxide as a replacement for PEDOT:PSS 

with increased interest recently in the solution processing of this material. However 

there is still little effort into studies of scaling of these material and few studies on the 

fundamentals of what is happening at the interfaces between these layers especially with 

regards to the effects of different processing conditions. In order to understand why 

improvements are often seen, detailed knowledge of the varying properties of these 

deposited layers are needed. Up until recently it was believed that the electronic 

structure for most metal oxides was known and was at a fixed value however much of 

this has changed with the revelation that not only is the electronic structures of these 

metal oxide films much deeper but that they can vary depending upon processing 

parameters. 

 

1.2 Summary of This Thesis 

The purpose of this work is to characterise the electronic structure of hole extracting 

metal oxides for the use in organic photovoltaic devices and to determine appropriate 

materials for the replacement of the commonly used hole extraction layer PEDOT:PSS. 

Upon finding suitable replacements, studies of solution processed versions of these 

metal oxides have been explored, and how different processing methods affect the 

performance of these materials investigated. Finally the ability to transfer these solution 

processable metal oxides from spin coating of the layers to spray coating of the layer is 

reported. In Chapter 2 background knowledge of the theory of organic semiconductors, 

metal oxides and the interactions that occur at the interfaces of these materials is given. 
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Chapter 3 covers the fabrication techniques used in order to make the organic 

photovoltaic devices and thin film samples and discusses the measurement of these 

devices along with the origins of the parameters that affect their performance. In 

Chapter 4 the methods for characterising thin films of the materials used and the theory 

behind these techniques are presented. These include ultra-violet photoelectron 

spectroscopy, x-ray photoelectron spectroscopy, spectroscopic ellipsometry and atomic 

force microscopy. 

Chapter. 5 describes the characterisation of hole extracting metal oxides 

deposited via vacuum deposition and organic semiconductors that are used in the 

fabrication of organic bulk-heterojunction within organic photovoltaic devices. The 

results show that the hole extracting metal oxides that are studied exhibit similar 

characteristics with deep work functions and Fermi levels pinned close to the 

conduction band of the material leading to a p-type semiconducting material. In addition 

these materials often have wide band gaps allowing for low loss within the intensity of 

light entering the organic bulk-heterojunction. (reference your publication here – and 

similarly in the next chapters) 

Chapter 6 reports the use of a solution processable version of Vanadium (V) 

Oxide called Vanadium (V) Isopropoxide and how different processing conditions 

affect the performance of these devices. Comparisons against vacuum deposited 

Vanadium (V) Oxide and PEDOT:PSS as hole extraction layers are made and it can be 

seen that the solution processable Vanadium (V) Oxide shows comparable 

performances to both PEDOT:PSS and vacuum deposited Vanadium (V) Oxide.  
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In Chapter 7 the study of depositing a solution processed form of Molybdenum 

(VI) Oxide via an ultrasonic spray coating technique that can be placed within a roll-to-

roll deposition setup. Ammonium Molybdate Tetrahydrate has been shown previously 

to exhibit high performances while allowing for low temperature solution processing in 

spin coated devices. Transferring this to the ultrasonic spray coating technique, the 

results showed a strong dependence upon the solvent used along with the thickness 

dependence. Once below a critical thickness the deposited layer allows for efficient 

extraction of holes and the control of this thickness is highly dependent upon the 

deposited solution.  

The final experimental Chapter 8 looks at the effects of changes in oxidation 

state of the metal oxide Molybdenum (VI) oxide has been studied as these can be 

introduced via the processing of both vacuum deposited and solution processed metal 

oxides. The results indicate that the presence of specific oxidation states can have a 

dramatic effect upon the performance of organic photovoltaic devices. Lower oxidation 

states of Molybdenum Oxide result in the reoccupation of lower binding energy orbitals 

causing a shift of the work function to lower binding energies introducing extraction 

barriers for holes. 

The conclusion of this work is reported in Chapter 9. Overall it has been 

discovered that the metal oxides are effective materials for obtaining low resistance 

contacts for the interfaces between organic semiconductors and the electrodes. It is also 

possible to transition from the costly vacuum based processing that metal oxides have 

previously been deposited with, towards solution processing without losing device 

performance; in addition it is possible to deposit these solution based materials via roll-

to-roll compatible techniques. 
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Chapter 2  

Theory of devices 

 

2.1 Introduction 

In this chapter information on underlying theories behind organic semiconducting 

materials and metal oxides are discussed. This begins by looking at the origins of 

atomic and molecular orbitals and orbital hybridization as these are crucial in 

understanding the formation of the electronic structure of these materials. Afterwards 

the origins of the electronic properties of organic materials are discussed including band 

formation, charge transportation and charge carrier interactions. Similarly further 

insight into the atomic orbitals of transition metals is given and how this relates to band 

structure. Finally the theories behind interfacial mechanics are discussed with respect to 

the various interfaces that are encountered within organic photovoltaic devices. 
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2.2 Atomic and Molecular Orbitals 

Electrons that are present within an atom are said to be within orbitals around their 

nucleus, these orbitals are not like the traditional view of an orbiting body but are rather 

a probability that an electron will be found within a specific location around an atom 

due to the uncertainty principle.
 [1]

 The shape and occupation of these orbitals are 

determined by the four quantum numbers: the principal quantum number n which is the 

potential energy of the electron; Azimuthal quantum number ℓ which is the magnitude 

of the angular momentum of the electron; the magnetic quantum number mℓ which is 

the direction of the angular momentum; and the spin quantum number ms which is the 

direction of spin of the electron.
 [2]

 

 The values that these numbers can take are all integers, except for the spin where 

the spin value for an electron is ½. All of these numbers are determined by a specific set 

of statement given by Equations 2.1 to Equation 2.4.
 [3]

 

 

     Equation 2.1 

            Equation 2.2 

         Equation 2.3 

         Equation 2.4 

   

By using these statements and obtaining values for each of the quantum numbers 

it is possible to determine the shape of the orbitals and also the amount of electrons that 

can occupy a specific orbital. Table 2.1 shows the quantum numbers and the amount of 

electrons in the first couple of shells. In the first shell only two electrons are able to 
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occupy this region and they are within what is known as the 1s orbital. S-orbitals occur 

when the angular momentum quantum number is 0 this means that there are 2s, 3s, 4s 

orbitals each containing 2 electrons. In the second shell the angular momentum quantum 

number can also be equal to 1, any electron with an ℓ value equal to 1 are within a p-

orbital. The axis about which the p-orbital is orientated is determined by the vector 

value mℓ therefore in the second shell the p-orbital become split into 3 different kinds 

the 2pz, 2py and 2px all with equal energy. In higher energy shells there are more orbitals 

present, these are the d and f orbitals and these occur when ℓ is equal to 2 and 3 

respectively. These orbitals often have complex shapes and orientations and are not 

present within most organic materials however they are important in metal oxides and 

so will be discussed in Chapter 2.7 

 

n ℓ  mℓ ms Total electrons 

n = 1 ℓ = 0 mℓ = 0 
ms= 1/2 

2 
ms = -1/2 

n = 2 

ℓ = 0 mℓ = 0 
ms= 1/2 

8 

ms = -1/2 

ℓ = 1 

mℓ = -1 
ms= 1/2 

ms = -1/2 

mℓ = 0 
ms= 1/2 

ms = -1/2 

mℓ = 1 
ms= 1/2 

ms = -1/2 

 

Table 2.1 Values for the various quantum numbers and the total possible amount of 

electrons that can occupy a given shell are shown. Only the first two shells are shown 

for simplicity. 
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In organic semiconductors all the atoms are part of molecules and in order to 

form a molecule covalent bonds between atoms need to be formed. When two atoms are 

brought close enough together molecular orbitals are created these are the combination 

of overlapping atomic orbitals. Figure 2.1 shows how when bringing an atom with half 

filled s-orbitals close together the bonding and anti-bonding orbitals form and shows 

how the energy of these orbitals varies. Bonding orbitals form a single electron cloud 

between the two atoms that is occupied by the first two electrons. The energy of the 

bonding molecular orbitals is lower due to increased electron density between the 

atoms, electrons within this area have a larger Coulombic force between them and the 

nuclei resulting in a tighter bound electron.
 [4]

If one or more atoms have a full shell the 

additional electrons cannot occupy the bonding orbital due to the Pauli Exclusion 

Principle therefore they must occupy the anti-bonding orbital.
 [5]

 Electrons in this orbital 

do not occupy the region between the nuclei, this reduces shielding of the atomic charge 

and leads to a higher energy orbital and a less stable molecule.
 [4] 

 

Figure 2.1 Shows how bringing atomic orbtials close enough to overlap leads to the 

formation of bonding and anti-bonding orbtials. In addition the energy of the molecular 

orbitals of hydrogen are shown. 
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In addition to whether a molecular orbital is bonding or anti-bonding it can also either 

be a σ or π bond. These two types of bonds depend upon the symmetry of the atomic 

orbitals with relation to the axis joining the two nuclei. When the atomic orbital is 

symmetrical around the axis that the atoms are adjoined through it is called a σ-bond. 

When the orbitals are asymmetrical around the axis through which the atoms are 

adjoined the bond is a π-bond.
 [4]

 Figure 2.2 shows the individual atomic orbitals and 

the combined molecular orbitals, the σ-bond is situated directly between the two atoms 

and the electrons within these orbitals provide shielding of the nuclear charges.  

Similarly the π-bond provides shielding but the orbital formed due to π-bonding is 

skewed away from the adjoining axis either in the y-axis or z-axis. This skewing of the 

orbital leads to a lower electron density between the two nuclei this results in a lower 

attraction from the two nuclei reducing the strength of the Coulombic interactions. 

Therefore σ-bonds are stronger and more stable than π-bonds. 

 

 

Figure 2.2 Shows a simplified diagram of the p-orbitals of an individual and two 

overlapping atoms, p-orbitals parallel to the adjoining axis (green orbitals) form σ-

bonds and those perpendicular (red orbitals) form π-bonds. 



 
 

Chapter 2. Theory of Devices Page 19 
 

2.2 Orbital Hybridization 

Organic molecules consist mainly of carbon, hydrogen and oxygen so it is important to 

see what kind of molecular orbitals are formed in carbon based molecules, Figure 2.3 

shows one of the simplest organic materials around - methane. It consists of one carbon 

atom surrounded by four hydrogen atoms. In any atom the electron shells are filled in a 

specific order and for low atomic number atoms the electrons fill up in the order 1s
2
, 

2s
2
, 2p

2
, 3s

2
 and 3p

6
. For carbon six electrons are present and the orbitals fill up 1s

2
, 2s

2
, 

2p
2
 this means that only two electrons within the p-orbtials are available to form stable 

molecular orbitals. Accordingly, that would mean that it is not possible to form methane 

and that the maximum amount of hydrogen atoms that could bind to carbon would be 

two. This, however, isn’t true due to a process called orbital hybridization, in almost all 

organic materials orbital hybridization of carbon occurs allowing for carbon to fill its 2p 

level resulting in an electronic configuration of 1s
2
, 2s

1
, 2p

3
.
[4, 6, 7]

 

 

Figure 2.3 Methane is one of the simplest organic materials consisting of a central 

carbon atom covalently bonded to four hydrogen atoms to give a full shell of outer 

electrons. 
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This happens is a two step process in which an electron is excited from the 2s orbital 

into the 2p orbital. In the case of methane when a hydrogen atom is brought close to the 

carbon the hydrogen imparts an attractive force due to electromagnetism, this excites 

one of the electrons in the 2s orbital to the 2p orbital. When this is done the electronic 

configuration then becomes 1s
2
, 2s

1
, 2px

1
, 2py

1
, 2pz

1
 giving us four half filled atomic 

orbtials that can form molecular orbtials. Afterwards the second step, which is called 

hybridization, occurs; this is the formation of a new kind of orbital called an sp orbital.
 

[4]
 This sp orbital is a mixture, or hybrid, of the individual s and p atomic orbitals 

leading to the formation of new degenerate atomic orbitals. The amount of sp orbitals 

within an atom depends upon the degree of hybridization. There are three degrees of 

hybridization: sp
3
, sp

2
 and sp. Figure 2.4 shows the different degrees of hybridization, 

in sp
3
 hybridization three p-orbitals are mixed with the s-orbital forming four new non-

overlapping sp orbitals. For sp
2
 and sp

1
 hybridization, 3sp and 2sp orbitals are formed 

respectively. 

 

 

Figure 2.4 sp
3
, sp

2
 and sp hybridized with the sp hybrid orbitals in blue and the p-

orbitals in red. 
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2.3 Conjugation and Band Formation 

The theory of atomic orbitals, molecular orbitals and orbital hybridization although 

being informative, does not directly give the reason behind why some organic materials 

can exhibit electronic properties similar to semiconductors and metals. The reason 

behind these various properties is due to the presence of alternating single-double or 

single-triple covalent bonds along a molecule or monomer, this alternation of bonds is 

called conjugation. Benzene is a commonly used example of conjugation; Figure 2.5 

shows a molecule of benzene one of the most common components in many organic 

semiconducting materials, it is a ring of six sp
2
 hybridized carbon atoms surrounded by 

6 hydrogen atoms with alternating single double bonds.
 [4]

 If we look at the position that 

the double bonds can take around the molecule they can either be in positions shown in 

benzene one or benzene two. The positioning of these double bonds makes no 

difference to the molecule overall and the two types of benzene are, in essence, 

indistinguishable. It is this indistinguishable nature that allows the π-bonds to be in both 

positions at once making them delocalised across the entire chain of conjugation.
[4, 7]

 

This dissociation of the π-bonds means that these molecular orbitals become spread 

across the entire length of conjugation, this leads to a probability that the electrons 

within the π-bonds of benzene will be found anywhere around the ring.  
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Figure 2.5 Benzene 1 and 2 show the different π-bond locations that are possible. Due 

to both molecules being indistinguishable it can be said that the bonds are delocalised 

across the entire benzene ring as shown in benzene 3.  

 

This delocalised orbital, due to being a π-bond, is the weakest bound molecular orbital 

and hence has the highest energy, it is therefore called the highest occupied molecular 

orbital (HOMO). This HOMO level in organic semiconductors is often classed as being 

analogous to the valence band in inorganic semiconductors and likewise organic 

materials have something similar to the conduction band and this is called the lowest 

unoccupied molecular orbital (LUMO) which is the π-antibonding orbital, similarly 

organic materials have a bandgap and this is the difference in energy between the 

HOMO and the LUMO.  

Molecular orbital energies are not just affected by the individual atoms that are 

involved they are also influenced by the surrounding environment. Within films of a 

material changes within the environment lead to slightly shifted molecular orbital 

energies. These shifts affect both the HOMO and the LUMO levels and the amount the 

HOMO and LUMO vary within a material is known as the energetic disorder.
[8-10]

 

Within ordered materials such as molecular crystals the surrounding environment is a 

repeating structure, this leads to little variation in the energy level of the HOMO. 
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However for poly-crystalline or amorphous materials there is little order, leading to 

small perturbations in the energy levels of the HOMO giving a wide band for these 

disordered materials. Figure 2.6 shows the difference in HOMO and LUMO level 

structure for ordered and disordered materials. Variation in the energy levels is 

important with regards to both charge transport and also charge transfer between 

materials.   

 

 

Figure 2.6 Shows how the densities of different energy states vary for materials that are 

energetically ordered and for those that are energetically disordered. 

 

2.4 Charge Transport 

The delocalisation of the HOMO and LUMO across a molecule or monomer through 

conjugation of the carbon bonds leads to the delocalisation of electrons along the 

conjugation length allowing for charge transport. Delocalisation, however, can only 

occur between states of equal energy, in materials with disorder the energy levels vary 



 
 

Chapter 2. Theory of Devices Page 24 
 

due to localised effects. These variations in energy levels lead to the formation of 

localised states and it is transport between these localised states that determine the 

mobility of charge carriers in the organic semiconducting materials used in this work.
[8, 

11]
 There is currently no universally accepted way of completely describing transport of 

charge carriers through localised states within a material; though it is agreed that 

transport is due to a hopping process that is dependent upon both the energetic disorder 

of the localised sites and the positional disorder.
[11, 12]

 Hopping is a process in which the 

electron tunnels from one localized state to the next; if the binding energy of the two 

sites is not equal the tunnelling process is also associated with a phonon.
[11, 13, 14]

 The 

probability of hopping is dependent upon the difference in energy of the localised states 

and also the physical separation of these localised states. In order to increase charge 

transportation both of these need to be reduced, this can be done by the control of the 

chemical structure and the processing conditions. Physical distance between charge 

transport sites can be reduced intramolecularly by reducing the distance between charge 

transport sites on monomers or by increasing the conjugation length.
[15, 16]

 In addition 

the intermolecular distance can be reduced by lowering the stacking distance between 

polymer chains by crystallizing the polymers.
[17, 18]

 These effects not only lead to a 

reduction in the distance between localized states but also have the additional effect of 

reducing the energetic disorder. 

 

2.5 Charge Carrier Interactions 

The HOMO and LUMO have been treated as either fully occupied or empty however 

when looking at charge transport or injection of charge carriers at an interface this is not 
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true. In organic materials charges carriers are either classed as a hole within the HOMO 

level or an electron within the LUMO level.  The presence of these charge carriers 

means that there are changes in the occupation of certain orbitals. In the case of an 

excited electron in the LUMO the electron occupies the π-anti-bonding orbital; these 

orbitals are unstable though due to the presence of σ-bonding molecular orbitals the 

molecules stay intact. Deformations within the area surrounding the occupied π-anti-

bonding orbital occurs leading to a relaxation of the surrounding bonds reducing the 

overall energy of the molecule and the LUMO and increasing the stability of the π-anti-

bonding orbital.
[7, 8]

 This interaction between the excited electron and the surrounding 

environment can be seen as a quaziparticle known as an electron polaron. Similarly the 

presence of a hole within the HOMO causes changes within the surrounding bonds that 

cause the reduction of the energy of the whole molecule to reduce leading to an increase 

in the energy of the HOMO. This combined effect of lattice distortion and hole is called 

a hole polaron. Figure 2.7 shows the shifts in energy levels for the hole and electron 

polarons in comparison to the ground state. 

 

Figure 2.7 Interactions between charge carriers and their surroundings cause shifts in 

the energy of the orbitals resulting in a shallower HOMO level and a deeper LUMO. 
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When a photon is absorbed by the organic material promotion of an electron from the 

HOMO to the LUMO leads to the formation of an electron/hole polaron pair and due to 

close proximity the Coulombic attraction leads to them forming a bound pair. The 

strength of this attraction is much higher in organic semiconductors due to the low 

dielectric constant leading to a lower shielding of the Coulombic force. This results in a 

tightly bound exciton known as a Frenkel exciton that cannot be dissociated 

thermally.
[19]

 In organic photovoltaics exciton dissociation can achieved at an interface 

between the absorbing material and a second semiconductor known as the acceptor 

which has a deeper LUMO level. The difference in the LUMO’s of the materials has to 

be higher than the potential required to split the exciton; this is typically given as around 

0.3V.
[19-21]

  

Excitons are short lived and in organic materials, they typically have a lifetime 

on the order of nanoseconds giving a diffusion length of 10nm.
[22-23]

 If an exciton is 

formed further from an interface than this length or is unable to dissociate at the 

interface the exciton undergoes geminate recombination. In organic photovoltaics this 

path length limitations are overcome by using a mixed phase of two materials known as 

the electron donor and electron acceptor materials are used. By depositing both of these 

materials from solution a diffuse interface throughout the device is formed known as a 

bulk-heterojunction.
[24,25]

 Upon arriving at the interface dissociation of the excitons can 

occur in which the hole polaron remains within the donor layer and the electron polaron 

is transferred to the acceptor via charge transfer states. In addition excitons pairs can 

also recombine at the interface due to trap states. If the exciton is able dissociation other 

recombination mechanisms can occur these are classed as non-geminate recombination 

as the electrons and holes do not originate from the same exciton. Defect states can act 
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as charge recombination sites where a charge carrier can become trapped in an energy 

state that is within the band gap of the material. Recombination can also occur at the 

charge extraction interface due to interfacial states or defect states that are present. 

 

2.6 Electronic Structure of Transition Metal Oxides 

The filling of orbitals is dependent upon their binding energy with the highest binding 

energy orbitals being occupied first. An electron with a principle quantum number n can 

occupy one of several orbitals as mentioned in Section 2.2, these orbitals are designated 

as s, p, d or f depending upon their Azimuthal quantum number l which is 0, 1, 2 or 3 

respectively for these orbitals.
 [2]

 With increased angular momentum the orbit of the 

electron is spread over a larger area and further away from the nucleus of the atom on 

average.
 [26]

 In multi-electron atoms this leads to the breakdown in the degeneracy of 

electrons with the same quantum number but varying angular momentums. This is due 

to variations in the effective shielding of full sub shells; Figure 2.8 shows the 

probability of finding an electron at a specific distance away from the nucleus for the 

different orbitals of an atom. It can be seen that for the 2s-orbital there is a significant 

chance of finding the electron within the 1s-orbital, this penetration into the full sub-

shells circumvents a portion of the electron density of the 1s-orbital that shields the 

electron that would occupy this orbital. This increases the Coulombic attraction between 

the nucleus and an electron within the 2s-orbital in comparison to the 2p-orbital 

effectively reducing the energy of the orbital and increasing the electrons binding 

energy. 
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Figure 2.8 The probability of finding an electron in the 1s, 2s and 2p shell of an atom as 

a function of the radial distance away from the nucleus.  

 

This leads to the filling of atomic orbitals in a specific order, for the first two periods of 

transition metals the filling order of the atomic orbitals is 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 

5s and then 4d. The filling order deviates from this due to spin-orbit coupling that 

occurs between the spin of an electron and the orbital angular momentum. This has no 

bearing on s-orbitals as they have zero angular momentum but for p-orbitals and d-

orbitals spin-orbit coupling leads to the splitting of the energy levels due to either 

constructive or destructive interference between the generated magnetic fields.
 [26]

 

Energy levels in transition metal oxides can therefore closely overlap; examples of this 

are the 4s and 3d levels and the 5s and 4d levels. This close overlap can cause variations 

in the filling of orbitals when spin-spin interaction is taken into account. Orbit-orbit 

interactions occur when filling an orbital with electrons of opposite spin, as these two 

electrons do not violate the Pauli exclusion principle they can occupy the same position, 
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this leads to an increase in the energy of the orbital due to Coulombic repulsion between 

the electrons. An example of this is Molybdenum is [Kr] 5s
1
 4d

5
 where the 5s orbital is 

lower in energy than the 4d
3/2

 orbital only when occupied by a single electron. This 

leads to the half filling of the 5s orbital and then the 4d orbital begins to fill. Figure 2.9 

shows the effects on the orbital energy levels for the spin-orbit and spin-spin 

interactions. 

 

 

Figure 2.9 Spin-Orbit interactions cause shifts in the energies of orbitals with angular 

momentum due to the constructive or destructive interference of the electron spin with 

the angular momentum component. Orbit-Orbit interactions cause an increase in the 

orbital energy due to Coulombic repulsion of electrons within the same orbital. 

 

By knowing the electron configuration of a metal oxide it is possible to determine the 

electron configuration of the metal atoms and the oxygen atom within a metal oxide. 

Due to the high electronegativity of the oxygen atom, the electron density within the 
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orbitals of the metal oxide is stripped from the higher d-orbitals and s-orbitals 

essentially forming a highly ionic bond. This electron density goes towards filling the 

partially occupied 2p orbital within oxygen.
[27, 28]

 This leads to several classes of metal 

oxides that depend on the amount of electrons left within the d and s orbitals. High 

oxidation state metal oxides such as MoO3, WO3 and V2O5 have all electrons removed 

from the d-orbitals and s-orbtials. This results in the lowest occupied atomic orbital 

being the O2p-orbital; this then becomes the valence band of the metal oxide with the 

now empty s-orbitals and d-orbitals becoming the conduction band.
[28, 29]

 These metal 

oxides are what will be studied within this body of work. 

  

2.7 Energy Level Alignment and Interfacial Mechanics 

Electronic structures of materials that are used in organic photovoltaic devices have 

been described and for both organic materials and metal oxides they have been shown to 

be semiconductors. Both material types have a conduction band and valence band with 

the Fermi level for these materials within the gap between these bands. In devices it is 

often useful to compare the energy level structures of two materials to determine how 

effective they will be within a device. When referencing two materials against each 

other vacuum alignment conditions are used in which all energies are relative to the 

vacuum level this is where the electron is not affected by the potential of the material.
[30, 

31]
 This alignment condition holds true between two materials as long as they are not in 

electrical contact with one another; when materials are brought into contact to form an 

interface transfer of charges can occur. When this occurs under specific conditions 
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Fermi level alignment can occur where the Fermi levels of the two materials equalise 

with the formation of an interfacial dipole. 
[31]

 

Figure 2.10 shows the energy level structure for vacuum level aligned and 

Fermi level aligned interfaces for different materials. The simplest interface is the 

metal-metal interface that occurs at the Calcium Aluminium cathode within devices. 

When in contact electrons flow from the shallow Fermi level material to the deeper 

material, this rearrangement of charge leads to the formation of the interfacial dipole. 

For metal-organic contacts they can either align to the LUMO level or HOMO level, 

this occurs if the work function of the metal is shallower than the upper critical Fermi 

level (ΦP) of the organic layer for LUMO level alignment or deeper than the lower 

critical Fermi level (ΦN) for HOMO level alignment. If the work function of the metal is 

between these values Fermi level alignment is not satisfied and the interface will remain 

vacuum level aligned.
 [32]

The method by which a dipole forms for metal-organic 

interfaces is not just due to the transfer of electrons from an energy level on one 

material to the next. Additional effects such as chemical reactions, the formation of 

additional interfacial states, or permanent dipoles within the organic layer can affect the 

interfacial dipole.
[30, 33, 34]

 This makes being able to determine the dipole between these 

two interfaces from knowledge of the individual materials is difficult as these effects are 

difficult to take into account when aligned against vacuum. HOMO level alignment at 

the interfaces between organic materials and metal oxides have recently been shown to 

follow a similar trend to that of metal-organic interfaces in which the work function of 

the metal oxide must be below a critical value.
[28, 29]

 Work functions at, or below this 

value, cause Fermi level alignment; however, the method through which the interfacial 

dipole is formed is still yet not fully known. It is likely due to charge transfer from the 
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HOMO of the organic layer to unoccupied states within the empty s, d or p orbitals of 

the metal. 

 

Figure 2.10 Vacuum level alignment and Fermi level alignment for (a) metal-metal (b) 

metal-organic (LUMO), and (c) metal-organic (HOMO) interfaces. Φ is the work 

function/Fermi level, ΦP upper critical Fermi level, ΦN lower critical Fermi level, Ea 

electron affinity, IP ionization potential and Δ interfacial dipole. 

 

Alignment of energy levels is crucial within organic photovoltaic devices to reduce 

losses that can occur when transferring charge carriers from one material type to 

another. Differences in the energy levels between the charge transport states of the two 

materials result in barriers for the extraction of charges.
[35-37]

 These losses manifest 

itself as an increase within the series resistance of the device. Two forms of contact can 

be formed at an interface and these are known as Ohmic and Schottky-Mott contacts. 
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The formation of an Ohmic contact occurs when there is effectively no barrier between 

the charge transport states, this form of contact occurs for metal-metal contacts, they 

can also occur in metal-organic and organic-metal oxide contacts.
[31, 38]

 For an Ohmic 

contact to form at an organic interface, Fermi level alignment must be satisfied; in 

addition dipoles that occur from possible chemical reactions or permanent dipoles may 

induce differences in the charge transport state leading to the formation of barriers. If 

there is a significant barrier for charge transfer between the two materials a Schottky-

Mott contact will form, for Vacuum level alignment the formation of a Schottky-Mott 

contact is highly likely.
 [38]

  

 Plotting the Substrate work function against the work function of the 

polymer/substrate interface the alignment conditions can easily be observed. Figure 

2.11 shows such a plot where a ‘Mark of Zorro’ dependence is observed.
[32]

 For 

substrate work functions less than ΦP Fermi alignment with LUMO occurs and the work 

function of the polymer/substrate interface become pinned to the LUMO. When the 

work function of the substrate is between these critical values vacuum alignment occurs 

as Fermi alignment conditions are not satisfied and a metal-insulator-metal behaviour is 

observed. Once the work function of the substrate goes beyond ΦN Fermi level 

alignment occurs and the work function of the polymer/substrate interface become 

pinned to the HOMO level. 
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Figure 2.11 A ‘mark of Zorro’ dependence observed when measuring the substrate 

work function against the work function of the polymer/substrate interface. This is due 

to the different alignment conditions observed at the interface. 
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Chapter 3 

Device Fabrication and Measurement 

 

3.1 Introduction 

Organic electronic devices have the advantage of using materials that have a large 

variety of different processing methods that are capable of depositing thin films.
 [1]

 The 

ability to process from solution is one of the defining points behind the ease of 

processing of organic electronics. Deposition from solution allows for the possibility of 

large scale printing via roll-to-roll processing. However, within laboratory based 

devices that obtain the highest performance, many of the layers still have to be 

deposited through vacuum based deposition techniques that are difficult and costly to 

incorporate into roll-to-roll processing setups.
[2,3]

 Throughout the experimental chapters 

both solution based deposition techniques and vacuum processing techniques are used 

with Chapter 6 and Chapter 7 focusing largely on transitioning from the vacuum 

deposition of metal oxide layers to the solution processing of these layers. The 

following chapter discusses the fabrication of organic photovoltaic (OPV) devices along 

with the various deposition techniques used with the theory of these techniques 

discussed; information on the materials used is also given. Finally the method for 

measuring OPV devices is discussed along with the relationship between measured 

parameters and the physics of devices. 
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3.2 Device Structure 

For all OPV devices fabricated throughout this body of work the standard sandwich 

architecture is used, this is shown in Figure 3.1. It consists of an organic active layer 

that is placed between two electrodes, the metallic top contact and the Indium Tin Oxide 

(ITO) coated substrate. Between the electrode and the organic layers charge extraction 

layers are placed to reduce the potential barriers that exist at these interfaces reducing 

the losses that can occur. The direction in which these devices are fabricated are the 

standard direction rather than an inverted device. In the standard architecture holes are 

extracted at the ITO interface while electrons are extracted at the reflective metallic 

interface.  

 

 

Figure 3.1 An organic electronic device fabricated using a sandwich architecture. (a) 

shows the device structure with pixels defined by the ITO and (b) shows the device 

structure with pixels defined by the metallic top contact. 
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Another important structural consideration in the device is with the active layer, 

this layer typically consists of two different materials, a donor material and an acceptor 

material. Due to it consisting of two different materials there is internal structure to this 

layer, this can either be a bi-layer structure in which the two materials are subsequently 

deposited one on top of the other or a bulk heterojunction where the two materials are 

deposited simultaneously in order to form a large interface between the two materials.
 [4]

 

This large interface allows for the reduction in distances that excitons need to travel in 

order to reach an interface between the acceptor and donor material and aids in the 

splitting of excitons increasing the quantum efficiency of the device.
[5,6]

 Within all 

devices fabricated a bulk heterojunction structure is used as this gives the highest 

performance for semiconducting polymers due to the short exciton lifetime.
 [7]

 

 

3.3 Device Fabrication 

Devices are fabricated on 20mm x 15mm glass substrates coated with 100nm thick pre-

patterned layer of fully oxidized ITO purchased from Ossila Ltd.
 [8]

 The substrate can 

either have the ITO patterned such that there are six individual pixel, the dimensions of 

these pixels are 3mm x 1.5mm (4.5mm
2
) acting as the anodes and a single strip of ITO 

that acts as the cathode as shown in Figure 3.1a. Alternatively the metallic cathodes can 

be used to define the pixel, where the overlapping of the individual metallic top contact 

and the single ITO square define the pixel size as shown in Figure 3.1b. The sizes of 

the pixels for these substrates are 2mm x 2mm (4mm
2
). This alternative substrate design 

is used to reduce losses associated with the resistance of the ITO layer of the devices. 



 
 

Chapter 3. Device Fabrication and Measurement Page 43 
 

Initially the substrates are cleaned in order to remove any dust or contaminants 

that are present on the surface; this is done by sonicating them in various solvents and 

cleaning agents at high temperatures (typically between 60
o
C and 70

o
C). Initially the 

substrates are sonicated in a 10% concentration NaOH solution for 5 minutes, they are 

then rinsed in deionised (DI) water. Once rinsed they are then place within a 5% 

Hellmanex solution and sonicated for a further 5 minutes and then rinsed with DI water 

again. This is followed by sonicating for 5 more minutes in DI water to remove any 

Hellmanex that may be present on the substrates, finally they are then transferred to iso-

propan-2-ol (IPA) and sonicated for another 5 minutes. Substrates are then removed 

from the solution and dried using a nitrogen source. In some cases the substrate are 

transferred to a barrel asher where an oxygen plasma is used to clean and treat the 

surface of the ITO in order to improve the wettability of solution onto the substrate. 

After the substrates are dry the deposition of the bottom charge extraction layer can be 

done. 

Deposition of the bottom charge extraction layer has no limitations on the 

method that can be used due to the robustness of both the glass substrate and the ITO 

film. Typically the bottom contact buffer layer is either deposited from solution by spin 

coating or spray coating in air, or is deposited in vacuum by evaporation or sputtering 

within vacuum deposition systems housed inside a nitrogen filled glovebox. The 

nitrogen glovebox has a controlled atmosphere such that the moisture and the oxygen 

levels stay below 0.1ppm. For each individual experiment information on the deposition 

techniques will be given within the experimental chapters. Discussion on the materials 

used and the preparation of solution processable bottom contacts will be given in 

section 3.4. Solution Processed Materials. 
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The organic active layer is spin coated within the nitrogen glovebox for all 

experimental chapters except for Chapter 7 where the active layer is spray coated 

within air. Once this layer has been deposited the cathodes are cleaned of any organic 

material to allow for the deposition of the top contacts into the device while allowing 

for a direction contact with the ITO used for the cathode. Limitations on the deposition 

of this layer are set by the wettability of a particular solvent upon the substrate with 

spray coating being highly sensitive to this property. The preparation technique for 

organic solutions will be given in 3.4. Solution Processed Materials. 

Deposition of the top contacts in OPV’s is severely limited by the underlying 

organic layer. Sputtering is ruled out as a method for depositing top contacts this is 

because the energy to dissociate a carbon-carbon bond is much lower than the energy of 

the sputtering ions.
[9-11]

 For semiconducting polymers this can either cause breaking of 

polymer chains, or disruption to the structure of the monomer, leading to changes in the 

electronic properties.
 [12]

 In addition the solution processing of top contacts are limited 

by post deposition processing that may need to be performed. For many solution 

processed metals and metal oxides high temperatures are required to allow for sintering 

or oxidation.
[13,14]

 This can either cause the breaking down of the underlying organic 

material or alterations to the morphology of the donor acceptor blend.
[15]

 Therefore 

layers deposited after the organic active layer are often done by subsequent vacuum 

evaporation of the charge extraction layer and the electrode without breaking vacuum. 

After deposition of the top contacts the device is complete, in order to stop any 

further ingress of water and oxygen into the deposited layers the devices are 

encapsulated. This is done by placing a glass cover slide on top of the deposited layers 

and sealing it onto the surface using an inert UV setting epoxy.  After curing the epoxy 
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under a UV light for 30 minutes the device are taken out of the glovebox ready to be 

measured. 

 

3.4. Solution Processed Materials 

Solutions are prepared within a clean room environment; the material is weighed out 

within an amber glass vial that has been blown with a dry nitrogen source to remove 

any large dust particles, and then cleaned using IPA and the solvent that the material is 

to be dissolved in. Once weighed out the materials are then transferred to the glovebox 

where the solvent is added, the material is then dissolved with the aid of a heater and 

magnetic stir bar. For the organic semiconductors the donor material is dissolved in 

chlorobenzene on its own at a concentration of 4mg.ml
-1

, it is then added to 16mg of dry 

PC70BM material giving a blend ratio of 1:4 with a total concentration of 20mg.ml
-1

. 

Once the acceptor and donor materials are fully dissolved, the blend is filtered through a 

0.45μm Polytetrafluoroethylene (PTFE) filter into a pre-cleaned amber vial. For spray 

coating the solution is diluted to an overall concentration of 4mg.ml
-1

 to obtain the 

optimum film thickness. 

The structures of each of organic semiconductors that are used throughout this 

thesis are shown in Figure 3.2 shows PCDTBT, PCDTBT-8 and PC70BM, the 

properties of these organic semiconductors as detailed within literatures are given in 

detail in Table 3.1. 
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Figure 3.2 The structures of organic semiconducting materials PCDTBT, PCDTBT-8 

and PC70BM that are used in OPV’s.  
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 PCDTBT PCDTBT-8 PC70BM 

HOMO (eV) -5.35 to -5.5
[16-18]

 -5.40
[16-19]

 -6.1
[20,21]

 

LUMO (eV) -3.42 to -3.6
[16-18] 

-3.27
 [16]

 -4.3
[20,21]

 

Band Gap (eV) 1.88 to 1.9
[16-18]

 1.98
 [16]

 1.8
[20,21] 

Peak Absorption (nm) 570
[16] 

536
 [16]

 N/A 

Table 3.1 Information on the different organic semiconducting materials that are used 

throughout the experimental chapters that have been taken from literature. 

 

Preparation of PEDOT:PSS is done from a premade water based dispersion purchased 

at a weight volume of 6% through Ossila Ltd. PEDOT:PSS. The dispersion is filtered 

through a 0.45μm Polyvinylidene fluoride (PVDF) filter into a pre-cleaned vial. 

Vanadium (V) Isopropoxide is prepared by diluting the liquid with IPA to its desired 

concentration the solution is then filtered through a 0.45μm PTFE filter into a pre-

cleaned vial. Ammonium molybdate tetrahydrate is prepared by dissolving within water 

to its desired concentration; the solution is then filtered through a 0.45μm PVDF filter 

into a pre-cleaned vial. The solution is then mixed with the organic solvent acetonitrile 

at a ratio of 1:1.5 water: acetonitrile to decrease the viscosity and aid in wettability. 

 

3.5 Spin Coating 

Spin coating has the advantage of being able to deposit extremely flat films with 

thicknesses that can be finely controlled by the spin speed; However, there are several 

disadvantages that come with spin coating, including only being able to deposit onto 
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one substrate at a time; and the thickness of the films does not remain constant over 

distance, making coating large areas difficult.
[22]

 In spin coating the substrates are held 

in place on a chuck using a vacuum, they are then accelerated to the desired rotational 

velocity and solution is dispensed onto the surface by a micropipette. Centrifugal force 

causes the material to move outwards from the axis of rotation spreading the material 

over the entire surface, the thickness of the material that remains depends upon the 

rotational velocity and the viscosity of the fluid. While this happens the solvent will 

evaporate eventually leaving the solute on the surface of the substrate, the rate of 

evaporation can cause issues with uniformity of the film over large areas due to 

increasing concentration and hence viscosity leading to thicker films.
[22]

 In order to 

reduce the chances of none uniformity of the film higher boiling point solvents are 

desired, however with a higher boiling point the film will take a longer time to dry.
[23]

 

Consequently spin coating is an extremely wasteful process as most of the solution is 

flung off the edge of the substrate rather than used to coat the substrate. 

 

3.6 Ultrasonic Spray Coating 

Spray coating is a technique designed for coating large areas rapidly while maintaining 

a uniform film across these large areas. The spray coater that has been used is a Prism 

ultra-sonic spray coater purchased from Ultrasonic Systems Inc (USI). Ultrasonic spray 

coating differs from standard spray coating due to the nozzle head from which the 

solution is dispensed vibrating at a high frequency (~35KHz). This high frequency 

vibration causes the solution to atomise into small droplets, these fine droplets are then 

planarized into a thin jet of solution with a wide spray angle by using an air flow.
[24]
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This fine jet of solution is passed over the substrate in order to coat the surface with a 

thin layer of solution. Both the height and the speed at which the nozzle head moves can 

be changed in order to vary the amount of solution that is deposited onto the substrate. 

Ideally the solution spreads across the surface rather than forming individual droplets, 

the film then dries evenly across the entire surface leaving behind a thin film of material 

with the thickness being highly dependent upon the concentration of the dispensed 

solution. In order for this to occur the solvent must be wettable on the surface and have 

a low contact angle, if this does not occur the solution will not dry evenly and will 

congregate into small droplets leaving behind large uncoated areas. Figure 3.3 shows 

the schematic of the ultrasonic spray coater. 

 

 

Figure 3.3 Schematics of the ultrasonic spray coating setup, a substrate holder and hot 

plate are used in order to be able to replicate the position of the samples and the 

temperatures 
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Choosing a solvent is a compromise between solubility, boiling point, vapour 

pressure and surface tension and viscosity.
[24-27]

 Solubility and wetting can be controlled 

together by using a blend of miscible solvents.  Typically one of these solvents will be 

able to dissolve a large amount of the solute while the other will be a solvent that is 

known to wet the surface of the substrate well. Examples of such a solvent system are 

seen in Chapter 7 where a mixture of water and acetonitrile are used to spray coat 

ammonium molybdate tetrahydrate. An alternative way to control wetting is by 

modifying the surface energy of the substrate this is done either through cleaning with 

different solvents or via the use of oxygen plasma treatment of the surface of the 

substrate. 

 

3.7 Vacuum Evaporation 

Vacuum based deposition is reserved for layers that cannot be solution processed; these 

are typically the metals or metal oxides used for the top contact. All the chambers that 

are used have multiple sources available so can do subsequent evaporations without 

exposing the deposited layers to atmospheric conditions. In addition the vacuum 

deposition systems are housed within nitrogen filled glove boxes to allow for 

subsequent encapsulation or storage without further exposing the samples or devices to 

air. In vacuum deposition the samples are loaded into a chamber using a stainless steel 

evaporation mask that allows for deposition of material over a desired area of the 

substrate. The chamber is then pumped down to a low base pressure typically in the 

region of 10
-7

mbar to 10
-6

mbar in order to remove as much trace gasses that could react 

with the deposited layers or source material as possible. The source material that is 
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being used for deposition is then gradually heated by passing current through a resistive 

tungsten coil; the material is allowed to evaporate for a period of time behind a shutter 

that stops deposition of material onto the substrates. This is done in order to evaporate 

any contaminants that are present on the surface of the source material so as to not 

contaminate the devices or substrates.  Just before deposition the substrates are set to 

rotate and then the shutter is opened, this rotation allows for an even coverage across the 

surface of the substrates. Deposition rate and thickness are both monitored using a 

quartz crystal gauge set up that has been calibrated for each of the different source 

positions. The deposition rate for Aluminium is kept at around 1Å.s
-1

 while the 

deposition rates for Calcium and Molybdenum Oxide are kept between 0.1Å.s
-1

 and 

0.3Å.s
-1

. During deposition the maximum pressure the system is allowed to reach is 

1x10
-5

mbar, if the system exceeds this pressure the deposition shutter is closed and the 

pressure is allowed to reduce by lowering the temperature of the source material. Before 

the chamber is opened and substrates removed the entire setup is allowed to cool down 

for 5 to 10 minutes. The temperature of the substrate at any point during the deposition 

procedure is below 80
o
C as estimated using temperature sensitive stickers. 

 

3.8 Sputter Deposition 

Sputter deposition is a plasma assisted deposition technique that uses high energy ions 

that are accelerated towards a target material in order to ablate atoms, these ablated 

atoms then become deposited onto any surrounding surface. In this work a reactive 

magnetron sputtering system with a 13.5MHz radio frequency (R.F) source and 

impedance matching circuit in order to generate the plasma, this system is housed 
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within a nitrogen filled glovebox. By using this system, it is possible to sputter from a 

range of targets including pure metals, metal oxides, semiconducting materials and 

resistive materials.
[28-30]

 Substrates are loaded into the vacuum chamber at a fixed 

distance of 150mm from the deposition target and the chamber is then pumped down to 

a base pressure of approximately 10
-6

mbar.  Argon is introduced as an inert sputtering 

gas, the rate at which Argon is bled into the chamber is varied using an Edwards mass 

flow controller between 0 and 10sccm. In addition, Oxygen is bled into the chamber at a 

rate between 0 and 10sccm. The overall flow rate into the chamber is kept fixed at 

10sccm; the pressure of the chamber reaches a maximum value of between 1x10
-2

mbar 

and 2x10
-2

mbar. 

Figure 3.4 shows a simplified schematic of the sputter target, a plasma is 

formed by applying a large bias between the surface of the target and the chamber walls 

/target shield. The formation of a plasma is described as a glow discharge, where at low 

electric fields a current flows through the gas. Upon increasing the potential between the 

anode and cathode the free electrons that are present gain sufficient enough energy to 

ionize gas molecules within the chamber. Once the plasma is struck ionized gas is 

accelerated towards the target and hits the surface, through the transfer of momentum 

from the impinging ion and the target material is ablated from the surface. During this 

process electrons are also emitted from the targets surface, these can recombine with the 

ions to give the characteristic ‘glow’ of the discharge or can go on to produce further 

ionisation. Once ionization due to electrons emitted from the surface begins a self 

sustaining plasma can be formed and sputter deposition can be said to begin.
[31, 32]
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Figure 3.4 A simplified diagram of the sputtering setup and the process of sputtering. 

(a) shows the ionization of argon gas and the acceleration towards the target, (b) shows 

the sputtering of material upon impact of the ion and scattering of sputtered material. 

 

For magnetron sputtering in addition to the setup described a strong magnet is 

placed underneath the target this is to aid in the generation of ions within the chamber. 

This is done by increasing the path length that the electrons have to travel once emitted 

from the target’s surface. For lower energy electrons they become trapped by the 

magnetic field in a close loop near the target’s surface; in addition, higher energy 

electrons are deflected reducing the chance of bombardment of the substrate. Trapped 

electrons help to generate a dense plasma for the low pressure of gas that is within the 

deposition system allowing for higher sputtering yields.
[33, 34]
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In reactive sputtering with oxygen the reactive gas causes the target to become 

oxidized and the target begins to be covered with an insulating material. As more 

oxygen is added to the chamber or deposition occurs for longer the surface coverage of 

the oxide increases diffuses into the target causing a thicker insulating layer.
[33]

 This 

insulating layer reduces the rate that electrons get replenished at the surface of the target 

reducing the bias at the surface and the amount of electrons available for further 

ionization. A combination of the reduced amount of electrons and bias cause the amount 

of gas being ionized to drop and eventually the plasma cannot be sustained and will die. 

In order to overcome this, R.F biases are used rather than constant fixed bias, by having 

a rapidly oscillating alternating bias the electrons that are emitted from the surface do 

not get a chance to accelerate far from the surface of the target before the polarity of the 

bias is switched. This reversing of polarity of the applied bias causes electrons to 

become trapped close to the surface of the target leading to a very dense plasma close to 

the surface allowing for sputtering of insulating targets.
[29] 

When operating using an R.F 

bias the impedance of the source needs to match the impedance of the sputter system 

this is due to the possibility of reflections of the transmitted power when it is coupled 

into a load. When reflections occur the amount of power that is delivered to the plasma 

can vary, furthermore the reflected power can cause an overload on transmission lines 

and in the power source. In the sputtering setup an impedance matching system is used 

in order to correctly match the source impedance to the sputtering system impedance in 

order to remove any reflected power losses. 

With sputtering there are several different parameters that can be varied in order 

to obtain films with desired properties. Among these the main processing parameters are 

the overall pressure, the partial pressure of reactive gasses, the power coupled into the 
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plasma and the distance between the target and the substrate. In Chapter 8 the overall 

pressure, partial pressure of reactive gasses and power coupled into the plasma are 

varied. Changes in the power coupled into the plasma is done by increasing the bias 

applied to the target, with a stronger electric field the energy gained by ions accelerated 

towards the targets surface increases. Ions that impact upon the surface with higher 

energy will cause more material to be ablated from the surface and for the kinetic 

energy of the emitted material to be higher. Overall pressure in a sputtering system has 

multiple effects on the deposition process. By increasing the amount of gas within the 

chamber the probability of an ionisation event occurring rises, with more ions present 

the amount of material that is ablated from the surface rises too. This causes an increase 

in the deposition rate; however, this with more gas in the chamber this increase is offset 

by scattering of the ablated material due to collisions with the gas present. The highest 

deposition rate achievable is therefore determined by a trade-off between the increase in 

the amount of material ablated and the amount of scattering that occurs. 

Partial pressure of the different gasses is important with regards to the 

introduction of reactive gasses into the sputtering chamber. With the introduction of 

oxygen the surface layer of the target begins to oxidise and become insulating. With a 

mixture of an inert sputtering gas and reactive gas two processes occur simultaneously, 

the first is the reaction of oxygen with the surface and the second is the ablation of the 

surface by ions. At low partial pressures the ablation rate will exceed the oxidation rate 

of the surface. The deposited layer will therefore be a mixture of oxidised and metallic 

materials. As the partial pressure of the reactive gas increases with respect to the inert 

gas the rate of oxidation of the surface will increase until it exceeds the ablation rate. 

The amount of reactive gas needed for this to occur will depend upon the material being 
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ablated with easily oxidised materials requiring a low partial pressure of oxygen for 

rapid oxidation of the surface to occur. Over time, the oxide layer will increase in 

thickness as oxygen diffuses into the target, with further increased partial pressure of the 

reactive gas the rate at which the oxide layer grows will increase. This process is called 

target poisoning, when the reactive gas is removed from the chamber a poisoned target 

will not immediately return to depositing metal instead a layer of oxide will have to be 

removed. Due to the low deposition rates of oxidised targets the removal of the oxide 

layer can take a considerable amount of time. 

 

3.9 Measurement of Organic Photovoltaic Devices 

With organic photovoltaic devices the characterisation of performance is done by 

measuring the devices ability to convert energy in sunlight directly to electric power. 

This is called the power conversion efficiency (PCE) of a solar cell and is the product of 

the absorption, recombination mechanisms and resistive losses that occur within a 

device. By reducing the recombination of charge carriers and resistive losses, and 

increasing the amount of light that is absorbed the efficiency can be increased. The PCE 

is characterised by taking current-voltage (I-V) measurements of a device under 

constant illumination from a solar simulator. The emission of the solar simulator is 

designed to match the irradiance of the sun across the near ultraviolet, visible and 

infrared wavelength. The emitted spectra matches the spectral response after it has 

passed through a given length of atmosphere this distance is known as the air mass 

coefficient. An AM1.5 standard is used for all measurements; this matches the suns 

spectrum after passing through 1.5 earth atmospheres. The solar simulator used is a 
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Newport 92251A-1000 with a constant irradiance of 100mW.cm
-2

 Figure 3.5 shows an 

AM1.5 spectrum. 

 

 

 

Figure 3.5 AM1.5 spectra showing the ultraviolet, visible and infrared regions of the 

solar spectrum. 

 

While under constant illumination I-V sweeps are taken of the device, the current 

voltage response for an organic photovoltaic device is that of a diode. The Shockley 

diode equation is given in Equation 3.1 this equation is for an ideal photodiode. Where 

J0 is the dark saturation current density of the device, K is Boltzmann’s constant, T the 

temperature and Jsc is the short circuit current. The first term is related to the diode like 

response while the short circuit current is due to the harvesting of light within the 
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photodiode. Equation 3.2 shows the modified Shockley photodiode equation where the 

losses within the device architecture are taken into account. The additional terms in this 

equation are the series resistance Rs, the shunt resistance Rsh and the ideality factor n. Rs 

arise from losses from transport through resistive layers, and losses at interfaces due to 

extraction barriers while Rsh is due to defects within the device that allows for alternate 

paths for photo-generated current to leave the cell. The ideality factor describes the 

different recombination mechanics that can occur within the device, for an ideal diode 

the ideality factor is set as 1 while in an organic photovoltaic device this ranges between 

1.5 and 2 depending upon the materials used.
[35]

 Information on the various forms of 

recombination that can occur within an organic photovoltaic device is given in Chapter 

2.5. 

 

            
  

  
         Equation 3.1 

 

            
        

   
     

     

   
     Equation 3.2 

 

When measuring the devices the current is converted to current density to normalise the 

performance to the size of the solar cells active area resulting in a current density-

voltage (J-V) plot. Figure 3.6 shows a typical J-V curve for a device under illumination. 

The parameters that can be extracted from the graph are the open circuit voltage Voc, 

short circuit current density Jsc, maximum power point voltage Vmpp and maximum 

power point current density Jmpp. The Voc is the voltage required to reduce the current 
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generated by the solar cell to zero, Jsc is the amount of current generated by the solar 

cell with zero applied voltage. Jmpp and Vmpp are the current density and voltage for the 

maximum power output of the device. The shunt resistance is proportional to the 

gradient of the line in the negative bias negative current region of the curve and the 

shunt resistance is proportional to the inverse of the gradient of the line in the positive 

current positive bias region of the curve. 

 

 

Figure 3.6 Current density-voltage characteristics for an organic solar cell showing 

parameters Voc, Jsc, Vmpp and Jmpp that can be measured. 

 

Equation 3.3 shows how the efficiency of the device can be calculated using these 

parameters, the fill factor FF is shown in Equation 3.4 and is the ratio of the products 
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of Vmpp and Jmpp, and Voc and Jsc. These parameters are closely linked to the materials 

and the structure of the organic photovoltaic device. The theoretical maximum Voc of 

the device is determined by the acceptor strength of a material, this is the difference 

between the HOMO of the donor and the LUMO of the acceptor material.
[36, 37] 

In 

addition disorder as described in Chapter 2.3 within organic materials leads to the 

HOMO and LUMO levels having a Gaussian spread in the energy states. This spread 

means that charge carriers generated by photo excitation are not at the centre of the 

Gaussian distribution.
[38, 39]

 Another factor that can reduce the Voc is recombination of 

charge carriers, increased recombination leads to an increase in the dark saturation 

current. This increase in the dark saturation current increases the amount of current 

contributed from the diode response of the Shockley photodiode equation.
[40]

 A final 

factor that influences the Voc is the contact at the electrodes of a device, as mentioned in 

Chapter 2.7 two major types of contact can be formed these are Ohmic and Schottky-

Mott contacts. In Schottky-Mott contacts the open circuit voltage will no longer depend 

on the difference on the acceptor strength but on the difference in work function of the 

metallic contacts as seen in metal-insulator-metal devices.
[38,41]

 In addition the presence 

of barriers for charge transfer at the interfaces will lead to losses in the Voc due to the 

need to overcome these internal barriers. 

Jsc is the maximum current that can be drawn from a solar cell under 

illumination; therefore it is dependent upon several factors. These include the total 

amount of light that is absorbed, which in turn is related to the band gap of the 

absorbing material. With a lower band gap, more excitons are generated due to a larger 

amount of photons with energy greater than the band gap; however, reduction in the 

bandgap leads to a reduction in Voc; therefore in a single junction device there is a limit 
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to how low the bandgap can be. Jsc is also dependent upon losses that occur within a 

device; these include recombination of charge carriers that lead to an increase in the 

dark saturation current that opposes photogenerated current. In addition both high series 

resistance and low shunt resistance lead to reduction in the maximum obtainable Jsc. 

The Fill Factor depends upon several properties of a device; however the 

simplest way of describing the Fill Factor is how well a device behaves like an ideal 

diode. Therefore the factors that lead to a reduction in the Fill Factor are low shunt 

resistance, high series resistance, and ideality factors that are greater than 1. In order to 

increase the overall performance of a device there are a few crucial things that need to 

be improved upon these are reduction in combination, reduction in the current that can 

pass through device shorts and losses due to series resistance. With metal oxides the 

most important factor is the reduction in the series resistance due to contact resistances 

at the interfaces between the organic semiconducting materials and the electrodes. 
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Chapter 4  

Thin Film Characterisation 

 

4.1 Introduction 

The following chapter focuses upon the measurement techniques that are used to study 

thin films throughout the various experimental chapters. The different techniques used 

are absorbance spectroscopy, ultraviolet photoelectron spectroscopy, x-ray 

photoelectron spectroscopy, spectroscopic ellipsometry and atomic force microscopy. 

Using these measurement techniques it is possible to extract information about the 

chemical state, electrical properties, optical properties, thickness and surface profile of a 

thin film. Information on the theory behind these measurement techniques is given and 

also how to analyse data obtained from them. 
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4.1. Absorbance Spectroscopy 

Absorbance spectroscopy is used to see how the transmission of light through a sample 

can vary across the spectrum ranging from the near ultraviolet at 250nm across the 

visible spectrum to 850nm. Figure 4.1 shows the structure of the Jobin Yvon Horiba 

Fluoromax-4 that is used throughout this thesis to take absorbance spectra. A Xenon arc 

lamp is used as the light source with emission starting at 240nm, the light is focused 

using an elliptical mirror into a Czerny-Turner monochromator.
 [1]

 The light entering is 

focused onto an entrance slit; this slit is used to control the intensity of light. Light is 

then collimated using a mirror and is then incident upon a blazed diffraction grating, 

upon diffraction the light is reflected by a second mirror that refocuses the beam onto a 

secondary slit. The wavelength of light that passes through the secondary slit is 

dependent upon the angle the blazed grating makes with respect to the second mirror. In 

addition the width of the secondary slit can be used to vary the resolution of the spectra, 

with a smaller slit size giving higher resolution. When the light exits the 

monochromator a reference beam is generated by focusing the light through a beam 

splitter onto the sample. The reference beam is then measured by a photodiode and is 

equal to the amount of light incident upon the sample. By measuring the amount of light 

transmitted through a sample using a second photodiode it is possible to calculate the 

transmittance of a sample and hence its absorbance. 
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Figure 4.1 A Jobin Yvon Horiba Fluoromax-4 schematic, the instrument is broken up 

into four separate chambers which are the light source, monochromator, reference beam 

detection and sample chamber.  

 

The transmittance of a sample is calculated from the Beer-Lambert law given in 

Equation 4.1 where T is the fraction of light transmitted through the sample, I is the 

amount of light transmitted and I0 is the amount of light incident upon the sample.
 [2]

 

These values are ratios of the total amount of light present before and after passing 

through the sample, this includes not just the absorption of light within the sample itself 

but also dispersion of light and reflections that occur at the interfaces. 
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 Equation 4.1 

 

Transmittance spectra of blank reference slides are taken before measuring a sample in 

order to determine the losses due to the substrate. Transmittance spectra are most useful 

for determining absorption peaks of a material and can also be used to determine the 

complex part of the refractive index (extinction coefficient) of a material. This is shown 

in Equation 4.2 however this method of determining the extinction coefficient leads 

itself to possible errors if scattering or light occurs within the film leading to extinction 

coefficients that are incorrect.
 [2]

 

 

             
    Equation 4.2a 

 
  

  

  
 

Equation 4.2b 

 

4.2. Ultraviolet Photoelectron Spectroscopy 

Photoelectron spectroscopy is the study of the energy spectrum of electrons that have 

been emitted from the surface of a material after it has been illuminated with photons of 

a specific known energy. By measuring the kinetic energy spectrum of the emitted 

electrons and by knowing the exact energy of the illuminating photon it is possible to 

determine the binding energy of electrons within the film through the photoelectric 

relationship given in Equation 4.3.
 [3]
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               Equation 4.3a 

                   Equation 4.3b 

 

Where EB.E is the binding energy of the electron, h is Planck’s constant, f is the 

frequency of light and EK.E is the kinetic energy of the electron. This can be simplified 

due to the fact that the product of h and f is the energy of the photon EPhoton. In UPS the 

source of the photons are from a gas discharge, most often the gas used is Helium. The 

energy of the emitted light is dependent not only upon the type of gas but also the 

ionization state of a gas, for neutral Helium the emission line is He (I) at 21.2eV or for 

singly ionized Helium the emission line is He (II) at 40.8eV.
[4,5]

  

 

 

Figure 4.2 Schematic diagram of the Kratos Axis Ultra photoelectron spectroscopy 

chamber used for XPS and UPS analysis of samples. 
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Figure 4.2 shows a simplified structure of the Kratos Axis Ultra photoelectron 

spectroscopy chamber. The photon source, in the case of UPS, is a gas discharge 

chamber with a window that is highly transparent across the UV region of the spectrum; 

this is used to separate the analysis chamber from the discharge chamber in order to 

maintain the ultra-high vacuum required for photoelectron spectroscopy. In addition to 

the analysis chamber and the gas discharge chamber there are the sample loading 

chamber and the transfer chamber. These additional chambers are used so that the 

analysis chamber can be kept at an ultra-high vacuum at all times when introducing 

samples for analysis. The samples for analysis are transferred through the chambers by 

the use of a sample bar attached to an arm that can be moved forward and backwards, in 

addition this arm can also be rotated to allow for angle resolved studies of samples.  

In order to measure the spectra of the electrons kinetic energy the emitted 

electrons need to pass through a hemispherical analyser. The hemispherical analyser 

takes advantage of the Lorentz force that states that a charged particle passing through a 

magnetic field will experience a force upon it determined by the cross product of the 

magnetic field and the product of the charge and velocity of the particle. The equation 

for the Lorentz force acting upon an electron is given in Equation 4.4a where F is the 

force, e is the charge of an electron, v is the velocity of the electron and B is the 

magnetic field.
[5,6]

  

 

 
          Equation 4.4a 
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 Equation 4.4b 

 
     

   
 

 
 Equation 4.4c 

 

      
  

    

  Equation 4.4d 

 

The hemispherical analyser has fixed radius that electrons can pass through in order to 

enter the electron multiplier. This makes it possible to determine the kinetic energy of 

an electron that passes through the hemispherical analyser from the applied magnetic 

field alone. This is done by using the equation for centripetal force given by Equation 

4.4b where me is the mass of an electron and r is the radius of circle the electron will 

travel through; and also the kinetic energy equation given by Equation 4.4c where EK.E 

is the kinetic energy. Equation 4.4d then gives the final equation that relates the kinetic 

energy of an emitted electron to the magnetic field applied within the hemispherical 

analyser. Once the electrons at a particular kinetic energy pass through the analyser the 

signal is amplified by an electron multiplier tube and these electrons are then measured 

by a detector. By amplifying the amount electrons emitted from the sample it is possible 

to measure small fluctuations in the amount of electrons emitted at a specific kinetic 

energy. 
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Figure 4.3 Shows the conversion of, (a) the kinetic energy spectrum to, (b) the binding 

energy spectrum for a metallic sample. 

 

Figure 4.3 shows a typical kinetic energy spectrum for a material measured by 

UPS; in this case the sample is a metal. The kinetic energy of electrons is often 

converted into a binding energy spectrum with the Fermi level calibrated to zero 

binding energy. This is to make the information about the material independent of the 

energy of the exciting photon. The binding energy spectrum consists of two separate 

spectrums superimposed upon one another; these are the spectra for the primary and 

secondary electron emission. Two spectra are present due to the fact that the emission of 

electrons is often a multistep process; initially photons cause the excitation of an 

electron from its ground state into an excited state. These excited electrons are then free 

to move within the material and those that travel towards the surface have a chance of 

emission from the sample. Once the electron reaches the surface of the sample if the 

energy of the electron exceeds the work function of the material the electron will be 

emitted. However during electron transport to the surface of the sample scattering can 

occur leading to energy loss for the electron, the distance that an electron can travel 
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before being scattered is called its inelastic mean free path (IMFP) and determines the 

maximum depth that an electron can escape from a sample, for UPS this is typically less 

than 5nm.
[7,8]

 Primary emission electrons are electrons that are emitted from the sample 

without any of these scattering events occurring. Secondary electrons are emitted 

electrons that have undergone these scattering events, this means that typically primary 

emission electrons only originate close to the surface of the sample. The intensity of 

secondary electron emission can be estimated by using a Tourgaard background 

calculation; this models the distribution of energy of electrons that undergo an energy 

loss process due to inelastic scattering.
 [9]

 Figure 4.4 gives a simplified diagram of the 

electron emission from the sample and in addition shows the contribution to the UPS 

spectra of the primary electrons and secondary electrons as calculated using a Tougaard 

background function.  

 

 

Figure 4.4 Primary and secondary electron emissions make up the UPS spectra, (a) 

shows a simplified version of the origins of primary and secondary electrons and (b) 

shows the contribution of primary and secondary electrons in UPS spectra. 
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  Due to the low photon and electron energies that are associated with UPS the 

technique lends itself to studying in detail the energy level states close to the Fermi 

level. These states are important within organic electronic devices as the energy of these 

states often deternmine the transfer of charge carriers from one material to another. UPS 

can be used to measure the work function of a material, the Fermi level, the valence 

band position and HOMO, and density of occupied states close to the Fermi level 

allowing for a better understanding of how charge carriers will behave at an interface. 

Workfunctions of a material can be determined by observing the position of the cut-off 

for the secondary electron emission. This is the steep drop off that occurs at high 

binding energies in the secondary electron contribution to the spectrum. The physical 

origin behind this is due to the fact that the binding energies measured for secondary 

electrons are not just the energy needed to remove the electron from their bound orbital 

but also the energy lossed during scattering collisions. If the energy of the electron 

drops below the workfunction of the material then it is unable to escape from the 

surface and be measured by the instrument. Therefore a maximum limit to the amount 

of energy an electron can lose and hence the maximum binding energy an electron can 

have within a sample depends upon the workfunction of the sample and the energy of 

the exciting photon given by Equation 4.5. Ф is the workfunction of the material and 

ECut-Off is the maximum binding energy value that the UPS spectra measures. 

   

                    Equation 4.5 

In order for this to be true the Fermi level of the material has to be at zero binding 

energy, this normally occurs within the analysis chamber however if charging of the 
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sample occurs due to the high amount of electrons lost during measurement the Fermi 

level can shift. Finding the Fermi level position within a material can vary in difficulty 

depending on the material that is being measured. Metals have high density of occupied 

states that extend all the way to the Fermi level at binding energies lower than the Fermi 

level the signal rapidly drops to zero. Figure 4.5a shows the Fermi edge for the metallic 

sample shown previously, determination of the position is fairly simple and can be done 

by eye. For semiconducting materials such as metal oxides and organic polymers the 

determination of the position of the Fermi level is difficult, this is due to these materials 

having very low density of states between the valence band and the Fermi level. Figure 

4.5b shows the same region but for a semiconducting material. By changing the scaling 

and smoothing the spectra using an average adjacent filter it is possible to see clearly 

the position of the Fermi level. Figure 4.5c shows the same semiconductor spectra after 

smoothing and rescaling of the spectra.  

 

Figure 4.5 Locating the Fermi level for different materials in order to determine 

charging of the sample, (a) shows a metallic sample, (b) shows a semiconducting 

sample and (c) shows the same semiconducting sample after smoothing and rescaling of 

the spectra. 
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Valence band onset, HOMOs and defect states are easy to determine via UPS, these 

features are due to primary electron emission from occupied orbitals. Figure 4.6 shows 

the valence region of three different samples. A metal oxide sample is shown in Figure 

4.6a, determination of the valence band onset is done by observing the background 

emission of defect states at lower energies and the emergence of the highest occupied 

orbital, in the case of this metal oxide it is the O2p orbital. When exposed to any form 

of atmospheric conditions a thin layer of material from the surrounding environment 

will stick to the surface, these are often organic materials Defect states that are observed 

in Figure 4.6a are due to these organic molecules and the subsequent charging of them. 

In addition defect states in metal oxides can be formed due to the reduction in the 

oxidation state, Figure 4.6b shows a sample in which the material has decomposed 

from a stoichiometric metal oxide to a mixture of several oxidation states. This 

reduction leads to the reoccupation of the orbitals that electrons were previously 

donated from via π-backbonding to fill the O2p orbital. These orbitals are at lower 

binding energies than the O2p orbital leading to emission of electrons at lower binding 

energies. For organic materials the HOMO onset can be determined, Figure 4.6c shows 

an organic sample. The UPS emission of organic samples consists of several low 

intensity peaks closely packed with the peak at the lowest binding energy being the 

highest occupied orbital. The onset of this emission is the edge of the HOMO and can 

this be determined in a similar way to the valence band of metal oxides by observing the 

intercept of the emission peak and the background emission. 
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Figure 4.6 Valence region of samples studied by UPS showing (a) the valence band 

onset for a metal oxide, (b) defect and/or metallic states (c) the HOMO onset of an 

organic semiconductor. 

 

UPS spectra are taken using the He(I) emission line, full scans are done between 21.2eV 

and -3eV and a higher intensity scan is taken between 5eV and -3eV. For the full 

spectrum scans the pass energy is set at 10eV, the energy step of the scan is set at 

0.025eV, the aperture size used is 110μm and the dwell time was 250ms. For the higher 

intensity scans at lower binding energies the slot aperture was used, this is the largest 

aperture size available in the instrument. Initial analysis of the UPS spectra has been 

done using CasaXPS software package, data has then been exported to Origin graphing 

software to create plots and perform smoothing of the spectra. 

 

4.3. X-Ray Photoelectron Spectroscopy 

XPS like UPS involves the study of the kinetic energy of electrons emitted from the 

surface of a sample via the photoelectric effect. However with XPS higher energy X-
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rays are used as the incident photons allowing for the study of electrons bound within 

higher energy orbitals. XPS uses photons with an energy of 1486.6eV, the source of 

these monochromatic x-rays is from the bombarding an aluminium target with high 

energy electrons. These high energy electrons can remove electrons from high binding 

energy shells such as the 1s shell. When this occurs, electrons occupying higher energy 

levels decay through radiative emission giving characteristic emission lines.
 [10]

 In the 

case of aluminium the 2p to 1s transition leads to the strong emission of x-rays, this 

transition is called the Al-kα transition. On top of this Bremsstrahlung emission occurs 

due to the rapid deceleration of electrons, the Bremsstrahlung spectrum and in addition 

lower intensity Al-Kβ transitions are filtered out using a quartz crystal as a diffraction 

grating to scatter the x-rays.
[4,5,11-13]

 

 Measuring the emission of electrons from higher binding energy orbtials can 

reveal information about the chemical structure and abundance of elements within a 

material. 
[5]

 Chemical structures can be inferred by observing shifts in the binding 

energy of the orbitals for an element. In order to observe these shifts high resolution 

scans of an orbital need to been taken, however there are constraints on choosing an 

orbital to observe. A maximum binding energy is set by the energy of the exciting 

photon of 1486.6eV and high resolution scans of lower energy binding energies below 

100eV are not taken due to the low intensity of emission due to reduced primary 

electron emission and increased absorption by contaminant layers.
 [8]

 In addition if a 

sample has multiple elements within it, as is often the case, some orbitals will have 

binding energies that overlap. Most samples due to exposure to air have contamination 

from Carbon, Nitrogen and Oxygen each of these elements have electrons occupying 

the 1s, 2s and 2p orbitals. Binding energies of the 2s and 2p orbitals of these elements 
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are in the low intensity region of the XPS spectra therefore the only orbitals for Carbon, 

Nitrogen and Oxygen that are practically observable via XPS are the 1s-orbitals. The 

binding energy of these emissions are 284.2eV, 409.9eV and 543.1eV, there are several 

orbitals for d-block metals that overlap these include the Mo3p1/2 peak at 411.6eV, 

Sc2p1/2 at 403.6eV, Cd3d3/2 at 411.9eV and Hf4s at 538eV.
 [14]

 In addition there are 

more that due to chemical shifts during bonding may mean the oxides of the d-block 

metals orbital emissions may overlap the commonly seen carbon, nitrogen and oxygen 

peaks. 

 In order to determine what chemical state a material is in when observing a high 

resolution scan of a specified orbital the peak must be broken down into several 

individual Gaussian peaks offset by different energies. In order to do this a background 

correction is needed, this is to allow for the analysis of the electrons emitted directly 

from orbital and to remove as much of the secondary electrons as possible. There are 

several different background corrections that can be used including linear, Tougaard, or 

Shirley. Figure 4.7 shows these different background spectra used on a high resolution 

scan of the Mo3d peak for a fully oxidized MoO3 sample. Figure 4.7a shows the 

simplest background, this is a linear background; this background substitution takes the 

intensity at two different points (E1and E2) within the spectrum and creates a signal that 

increases linearly across this region. Linear approximations can be used with high 

accuracy if the intensity before and after the peak is of a similar value.
 [15]

 

A Tougaard background is shown in Figure 4.7b this spectrum is formulated 

using an energy loss cross-section where electrons undergo energy loss via inelastic 

scattering before being emitted from the surface of a sample.
[9,16]

 Electrons that are 

emitted from an orbital with binding energy of E will contribute towards the measured 
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intensity at higher binding energy levels. The amount of energy that is lost depends 

upon the depth of absorption and the inelastic mean free path of the electron (IMFP). 

The IMFP in addition is dependent upon the energy of the electron with maximum 

inelastic scattering occurring for electrons with kinetic energies in the region of 20eV to 

100eV. Tougaard backgrounds are useful for estimating the background intensity over 

large regions such as chemically shifted p-orbitals, d-orbitals and f-orbitals, and for 

regions with high energy loss due to scattering, this typically occurs for scans where the 

emitted electrons have low kinetic energy.
[15,17]

 

 The Shirley background is the most commonly used background correction and 

is shown in Figure 4.7c this background correction uses an algorithm to relate the area 

of the measured spectra against itself. It does this by taking two points E1 and E2 where 

these points represent electrons with kinetic energy below the emission peak and above 

the emission peak respectively. By using an iterative process the Shirley background 

calculates the area for electrons with kinetic energies higher and lower than the peak 

energy after an initial background correction. The areas of the electrons with energies 

above and below the peak must match a specified ratio and once this is achieved 

background intensity is determined. The Shirley background is a very powerful 

background determination however its uses can be limited when it comes to the 

calculating the background for chemically shifted orbitals this is due to the background 

calculated often subtracting from the real spectra of these chemically shifted 

materials.
[17,18]
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Figure 4.7 High resolution scan of the Mo3d orbital showing the intensity of calculated 

background between points E1 and E2 using three different models, (a) Linear, (b) 

Tougaard, and (c) Shirley. 

 

Once the background corrections are made to a peak it is possible to determine 

the chemical state of a material. Figure 4.8 shows a simple s-orbital spectra, Figure 

4.8a has the spectra before correction along with the background intensity, in this 

example a Shirley background correction is used. Figure 4.8b shows the spectra after 

correction with several peaks fitted corresponding to different chemical states that that 

the element is within. Shifts in the binding energy occur due to changes within the 

oxidation state of an atom (Atomic effects) and the surrounding environment (extra-

atomic effects). With increased oxidation state of an atom the binding energy of an 

electron will increase due to an increase in the electromagnetic force exhibited between 

the core and the remaining outer electrons. In addition surrounding atoms indirectly 

bound to the element being observed can cause similar shifts due to the 

electronegativity of surrounding atoms and their ability to cause perturbations in the 

electron density surrounding the observed atom.
[7,19,20]
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Figure 4.8 A sample s-orbital spectra showing (a) the measured spectra with a Shirley 

background, and (b) spectra corrected for background emission with fitted peaks. 

 

Spectra from d-orbitals and p-orbitals are more complex than s-orbitals, this is 

due to the addition of the splitting of orbitals due to spin-orbit coupling. When an 

electron has an orbital angular momentum that is not zero the magnetic fields 

established by the spin of the electron and the orbit of the electron can interact. This 

interaction is either constructive or destructive leading to either an increase in the 

binding energy of an electron or a decrease. Figure 4.9 shows a high resolution d-

orbital spectra and it can be seen that two peaks are observed. For each element the 

splitting of a particular orbital has a fixed energy gap that is dependent upon the 

strength of the spin-orbit coupling as. In addition the relative areas of the two doublet 

peaks depends upon the orbital that the electron has been emitted from. 
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Figure 4.9 A sample d-orbital spectra showing (a) the measured spectra with a Shirley 

background, and (b) d-orbital spectra with a single chemical state with split orbitals. 

 

The ratio of areas for the peaks can be calculated for different orbitals by using 

Equation 4.6 where l is the Azimuthal quantum number and s is the spin of an electron. 

For the p-orbital, d-orbital and f-orbitals the ratio of emission from the peaks is 1:2, 2:3 

and 3:4 respectively. 

                   Equation 4.6 

  

Initial analysis of the UPS spectra has been done using CasaXPS software package, data 

has then been exported to Origin graphing software to create plots and perform 

smoothing of the spectra. For the wide scan spectrum the pass energy is set at 10eV, the 

energy step of the scan is set at 0.025eV, the aperture is a slot apeture and the dwell 

time was 250ms. For the higher resolution scans at lower binding energies the slot 

aperture was used, this is the largest aperture size available in the instrument. 



 
 

Chapter 4. Thin Film Characterisation Page 86 
 

 

4.4 Spectroscopic Ellipsometry 

Spectroscopic ellipsometry is a powerful technique that can be used to calculate several 

properties of a material including the thickness, refractive index and extinction 

coefficient.
 [21]

 It is done by measuring the change in phase and intensity of polarization 

of light as it is reflected from a surface of a substrate coated in a layer of the material 

being studied. Figure 4.10 shows the schematics of a spectroscopic ellipsometer, at 

point one in the figure light has been generated from a discharge lamp and is made up of 

multiple wavelengths spanning from the near UV to the near IR. Light is then passed 

through a monochromator and at point two the light consists of randomly polarized light 

at a single wavelength. This light is then passed through a polarizing filter that can be 

rotated to polarize light to a specified polarization. At point 3 polarized monochromatic 

light is transmitted through the film and reflected off of the silicon substrate, the 

intensity and phase of the light will vary due to this transmission and reflection. At 

point 4 the light passes through a second polarizing filter known as the analyzer, where 

the intensity is then measured by a CCD camera.
[22-24]
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Figure 4.10 Schematic of a spectroscopic ellipsometer, the dotted line traces the path of 

light through the equipment; the angle θ is typically set at 30
o
 to avoid high loss due to 

reflections at the interface. 

 

By varying the angle of the analyzer the exact polarization and intensity of the light can 

be measured. From the change in phase (Δ) and the change in intensity of polarization 

(Ψ) the ratio of the reflectance of light in the s-plane and p-plane can be determined. 

Equation 4.7 shows the relationship between Δ, Ψ, the reflectance ratio (ρ), and the 

reflectance of light in the p-plane (rp) and s-plane (rs) at an interface. 
[23]

 

 

   
  

  
           Equation 4.7 
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The reflectance values here can be calculated using the Fresnel equations (Equation 

4.8a and Equation 4.58), Δ and Ψ can then be related to the complex refractive index of 

the incident material (na) and the transmitting material (nb).
 [2]

 For samples with multiple 

layers the Fresnel equations are applied at all the interfaces and the resulting 

interactions between the reflected fractions of light are solved in order to determine the 

final value of Δ and Ψ. 

 

    
                 

                 
 Equation 4.8a 

    
                 

                 
 Equation 4.8b 

 

Ellipsometry is not able to directly measure the thickness or optical properties of 

a material; instead a model is used that approximates the structure of the sample being 

measured. Properties such as the thickness of these layers and the complex refractive 

index can then be varied and the values used within the Fresnel Equations to determine 

values for Δ and Ψ. These calculated values can then be compared against the values 

measured experimentally, in order to obtain the most accurate value. An iterative 

process of changing the values is used to obtain the minimum least-square error when 

matching the simulated data against the experimentally measured data. In order to 

model the system a set of layers of different materials need to be defined, for every 

model the first layer is the underlying substrate and is modelled as an infinitely thick 

layer of silicon. On top of this a thermal oxide layer of SiO2 is placed, determination of 

the thickness of this layer can be done by using a blank substrate and measuring Δ and 



 
 

Chapter 4. Thin Film Characterisation Page 89 
 

Ψ, using reference data for the optical properties of the Si and SiO2 layer the thickness 

of the thermal oxide can be determined. By calculating the thickness and having 

reference values for the optical constants of the native oxide layer the amount of layers 

that need to be fitted when modelling the sample will be reduced, increasing the 

accuracy of the fit. 

Once the oxide layer has been characterised the sample with the material is then 

measured, the model is then altered to account for the fact an additional layer is present. 

In the model this layer typically consists of two regions the bulk and the surface with 

the surface layer being used to model both the roughness of a material along with the 

effect of exposing the bulk material to the environment. Examples of this effect include 

oxidation and adsorption of material onto the surface. In addition to modelling the 

structure of the sample a model is needed for the material in order to generate the 

optical constants by iterative fitting of the data. The choice of model is dependent upon 

the material type and the region of the spectrum that the material is being fitted over.  

Analysis of deposited materials begins with obtaining a value for the thickness 

of the material being studied, for materials with a band gap this process is done by 

modelling across the transparent region of the spectra in order to remove the complex 

part of the refractive index. A simple transparent Cauchy model can be used to model 

the refractive index and get an estimate of the thickness of the material
 [25]

. The Cauchy 

equations for the refractive index are shown in Equation 4.9, the terms A to C are 

variables for fitting and λ is the wavelength. 
[22]
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Equation 4.9 

 

Afterwards this rough estimate of the thickness is added to the model in order to reduce 

the amount of fitting parameters. The model is once more fitted against the data across a 

wider region of the spectrum including the absorbing region. The material model needs 

to take account of absorption and hence the addition of the complex part of the 

refractive index. An absorbing version of the Cauchy model can be used in which a 

additional Lorentzian oscillator is used to model the complex part of the refractive index 

in order to account for absorption within the material.
 [26]

 Equation 4.10 shows the 

equation for the Lorentzian oscillator as a function of photon energy (E).
 [22]

Where the 

amplification factor (A), the broadening of the oscillator peak (B), the energy of the 

oscillator peak (Ec), and the offset for the real part of the dielectric constant (ε1.offset) are 

terms to be fit. 

 

 
                

   
          

 Equation 4.10 

 

For metals the optical response can be modelled using Drude-Lorentz model in which 

the Lorentzianz oscillator is modified to take account of high concentration of free 

charge carriers that exist in metals.
 [27]

 The restoring force that is the cause behind the 

centralisation energy does not exist for free charge carriers and so is eliminated. The 

Lorentz equation then becomes Equation 4.11 for metallic films where the Plasmon 

energy (Ep) is related to plasma frequency of a material. 
[22]
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  Equation 4.11 

 

4.5 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) is a technique that is capable of measuring the 

structure of a samples surface in the scale of nanometres. AFM works by scanning a 

probe across the surface of a sample, this probe consists of a cantilever with a tip on the 

underside that is only a few nm in size. By measuring the deflection of the cantilever as 

the tip scans the surfaces it is possible to determine the relative height of the surface that 

the tip is in contact with.
[28,29]

 Figure 4.11 shows an atomic force microscope, the 

deflection of the cantilever is measured by reflecting a laser from the surface of the 

cantilever and measuring the position of the laser spot using a quadrant photodiode. 

Scanning of the surface of the sample is achieved by using a piezoelectric controlled X, 

Y stage to move the sample relative to the probe. 
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Figure 4.11 Simplified schematic of the Veeco Dimension 3100 atomic force 

microscope 

 

With AFM the surface can be scanned in different modes, this can either be in 

contact mode where the tip is in physical contact with the surface and the deflection of 

the tip directly relates to the height; non-contact mode where the cantilever is oscillated 

at low amplitude above the surface and the change in amplitude and frequency of the 

oscillation is used to determine the height from the surface; or tapping mode where the 

cantilever is oscillated with a high amplitude and the tip comes in intermittent contact 

with the surface. In this work the samples have all be scanned using tapping mode in 

order to reduce any damage to the sample due to the tip.
[29-31]

 The cantilever is driven 

close to its resonant frequency by a piezoelectric motor, when the tip gets closer to the 

surface it begins to make contact and lift away from the surface. This contact with the 

surface causes loss of energy and a reduction in the amplitude of oscillation and the 

amount the amplitude is changed by is directly related to the distance between the 

surface and the tips resting position. By using a feedback loop to vary the height in 
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order to maintain constant oscillation amplitude it is possible to determine features upon 

the surface of a sample and measure their dimensions. Measurements of samples have 

been performed using a Veeco dimension 3100 instrument, the Gwyddion software 

package was used to analyse the data that had been obtained and to create figures. The 

AFM tips used were purchased from Budget Sensors (300G-Al) with a resonance at 300 

kHz and a spring constant of 40 N m–1. 
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Chapter 5  

Characterisation of Materials via 

Spectroscopy 

 

5.1 Introduction 

Characterisation of materials is important in developing an understanding of the 

properties of individual layers and how they may behave when introduced into a device. 

There are many ways that materials can be characterised these include X-ray 

photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectroscopy (UPS), and 

spectroscopic ellipsometry. Using these different techniques it is possible to determine 

chemical structure, electronic structure and the optical properties of a deposited material 

from these it should be possible to gauge how well they will perform on organic 

photovoltaic devices. These techniques have been applied to two commonly used vacuum 

evaporated hole extracting metal oxides, Vanadium (V) Oxide and Molybdenum (VI) 

Oxide, in addition to the two versions of PCDTBT used within the experimental chapters. 
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5.2 Metal Oxide: Molybdenum Oxide 

Molybdenum Oxide has been used successfully in organic photovoltaic devices as a hole 

extraction material for various donor polymers including the commonly used poly(3-

hexylthiophene-2,5-diyl) (P3HT) and Poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-

di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT).
[1-3]

 Figure 5.1 shows photoelectron 

spectroscopy studies of films of molybdenum oxide deposited by vacuum evaporation. 

Three different species are observed within the O1s scan, these have been attributed to 

H2O absorbed into the film at 532.5eV, hydroxide species adsorbed onto the surface at 

531.1eV and Molybdenum-Oxygen bonds at 530.4eV. The percentage of bonds within 

the film that are associated with water is only 3.7% this scans indicates that absorption of 

water is limited into vacuum evaporated molybdenum oxide films. Within the Mo3d high 

resolution scan two different Molybdenum species are seen, these are attributed to Mo
6+

 

at 235.8eV/232.6eV and the reduced oxide state Mo
5+

 at 234.6eV/231.4eV. The reduction 

from stoichiometric Molybdenum (VI) Oxide is due to the high temperature low pressure 

deposition of the material leading to the leeching of oxygen from the surface of the source 

material. UPS data shows that the Fermi level of the vacuum deposited molybdenum 

oxide layer is -5.2eV as calculated from the secondary electron cut-off. The valence band 

is located 2.8eV below Fermi level, giving a valence band position of -8eV. These values 

are in agreement with previously reported literature values for molybdenum oxide 

deposited via vacuum evaporation. In addition literature reports that the band gap of 

Molybdenum Oxide is between 2.8eV and 3.2eV this would place the Fermi level just 

below the vacant Molybdenum 4d orbital. 
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Figure 5.1 Photoelectron spectroscopy scans of vacuum evaporated molybdenum oxide 

showing (a) the O1s peak, (b) the Mo3d peak, and (c) UPS scans showing the secondary 

electron cut off and the valence band region. 

 

Figure 5.2 shows the transmittance data for 15nm films of Molybdenum (VI) Oxide a 

sharp drop in transmission due to the optical absorption is observed with an absorption 

edge of 420nm giving an optical band gap for the material of approximately 3eV this is 

close to reported figures for the band gap of the air exposed vacuum evaporated 

Molybdenum (VI) Oxide.
[4]
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Figure 5.2 Shows optical spectroscopy data for vacuum deposited Molybdenum (VI) 

Oxide films with the calculated extinction coefficient of the film on the inset. 

 

5.3 Metal Oxide: Vanadium Oxide 

Vanadium Oxide, like Molybdenum Oxide, has been successfully used within organic 

photovoltaic devices. However much of the work done using vanadium oxide has been 

using shallow HOMO polymers such as P3HT.
[1]

 Figure 5.3 shows photoelectron 

spectroscopy scans of vacuum deposited vanadium oxide. Like with Molybdenum Oxide 

three different species are present within the O1s spectra, they have been attributed to 

H2O at 531.4eV, hydroxides adsorbed onto the surface at 530.5eV and Vanadium-Oxygen 

bonds within the film at 530eV. The amount of bonds associated with water is 10.5%, this 

value is larger than that for Molybdenum Oxide, the reason for this is likely due to the 

higher density of Molybdenum Oxide reducing the rate of water absorption. The high 
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resolution V2p peak shows the presence of two different species, these are attributed to 

V
5+

 at 524.6eV/517.1eV and V
4+

 at 523.4eV/516.4eV these species are analogous to the 

Mo
6+

 and Mo
5+

 species respectively with the presence of the reduced state being due to 

the reoccupation of the 4s orbital for Vanadium and the 5s orbital for Molybdenum. In 

addition the reduction of the V
5+

 to V
4+

 is due to the high temperature low pressure 

deposition of the Vanadium (V) Oxide. UPS data shows that the Fermi level of the 

vacuum deposited film, as calculated from the secondary electron cut-off, as -5.1eV. 

From the valence band region of the scan it is calculated that the valence band should be 

approximately 2.3eV below the Fermi level giving an absolute position of -7.4eV.  
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Figure 5.3 Photoelectron spectroscopy scans of vacuum evaporated vanadium oxide 

showing (a) the O1s peak, (b) the V2p peak, and (c) UPS scans showing the secondary 

electron cut off and the valence band region. 

 

Figure 5.4 shows the transmittance of the vanadium oxide film along with the calculated 

extinction coefficient. Ellipsometry data for Vanadium Oxide films was taken and the 

optical properties of the film determined. Results show that across most of the visible 

spectrum the coefficient of absorption is close to zero at wavelengths above 700nm the 

transmittance of the film exceeds 90%. However at shorter wavelengths at 550nm and 

below where light absorption within the active layer occurs there is reduced transmittance 

in the vanadium oxide films. The extinction coefficients obtained from absorbance 

spectroscopy show that the absorbance edge is approximately 520nm, the optical band 
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gap therefore is approximately 2.4eV this is the same as reported for thick films of 

Vanadium (V) Oxide.
[5]

  

 

 

Figure 5.4 Shows absorption spectroscopy data for vacuum deposited Vanadium (V) 

Oxide films with the calculated extinction coefficient of the film on the inset. 

 

5.4 Organic Semiconductor: PCDTBT 

PCDTBT is one of the most commonly used current generation donor materials in bulk 

heterojunction organic photovoltaic devices. It has been characterised within literature as 

having a deep HOMO level leading to a deep LUMO level allowing for increased 

stability within atmospheric conditions, the structure of this material in shown in Figure 

3.2. Spectroscopic information obtained for this material is shown in Figure 5.5 UPS has 

been used to determine both the positions of the Fermi level of the material and the 

HOMO level. Samples were spun onto ITO coated quartz substrates, it can be seen that 
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the Fermi level of the material is situated at -3.7eV and the HOMO level being 1.7eV 

deeper than the Fermi level giving a value of -5.4eV. Absorbance data shows that the 

peak absorbance of PCDTBT is at approximately 570nm giving an optical bandgap of 

2.1eV. 

 

 

Fig 5.5 Shows spectroscopy data for PCDTBT films where (a) is UPS spectra and (b) 

UV-Vis absorbance data. 

 

5.5 Organic Semiconductor: PCDTBT-8 

PCDTBT-8 is a newly synthesised material with a similar structure to PCDTBT however 

in order to improve the solubility of the polymer additional side chains have been added 

to the thiophene unit.
[3]

 The chemical structure of the donor polymer is shown in Figure 

3.2. Figure 5.6 shows spectroscopic data obtained for thin films of PCDTBT-8 spun coat 

onto ITO substrates, UPS scans show a distinct secondary electron cut off giving a Fermi 

Level position of -4.8eV, there are several occupied molecular orbitals that can be seen 

within the PCDTBT-8 spectra. The first of these has a peak at -4.4eV below the Fermi 
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level, the second at -2.8eV and a final weakly emitting peak which is the highest occupied 

molecular orbital has a cut off at approximately -0.6eV. This gives an absolute position 

for the HOMO of approximately -5.4eV, this is close to the value given for PCDTBT 

indicating the presence of soluble side chains does not significantly alter the electronic 

structure. One interesting observation is that the first of these two occupied orbitals are in 

the same positions as occupied orbitals observed in PCDTBT however the peaks observed 

in PCDTBT-8 are of much lower intensity.  The absorption peak of the PCDTBT-8 film 

is at approximately 540nm this is equivalent to 2.3eV, this gives a LUMO position of -

3.1eV. 

 

Fig 5.6 Shows spectroscopy data for PCDTBT-8 films where (a) is UPS spectra and (b) 

UV-Vis absorbance data. 

 

5.6 Conclusion 

Through the spectroscopic studies of both molybdenum oxide and vanadium oxide it can 

be seen that both materials have deep work function with pinning of the Fermi level close 

to the conduction band. Both materials offer high transmission across the visible spectra; 

however vanadium oxide shows a lower energy band gap resulting in absorption in the 
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blue region of the spectra. This absorption in vanadium is at higher energies than the 

absorption band of the semiconducting donor materials PCDTBT and PCDTBT-8. This 

results in a reduction in the effective amount of light that can reach the active layer when 

vanadium oxide is used in comparison to molybdenum oxide. Even with this slight 

increase in absorption for vanadium oxide both materials have good prospects for being 

used as hole extraction layers. Figure 5.7 given below shows the electronic energy levels 

of relevant materials used throughout this work against each other as determined via 

spectroscopic studies of the materials and literature values.
[2, 6-9] 

 

 

Figure 5.7 An energy level diagram showing the relevant energy levels for each of the 

materials used throughout the following experimental chapters either determined through 

spectroscopy of materials or from literature. 

 



 
 

Chapter 5. Characterisation of Materials via Spectroscopy Page 108 
 

5.8 References 

[1] V. Shrotriya, G. Li, Y. Yao, C. W. Chu & Y. Yang. Transition Metal Oxides as the 

Buffer Layer for Polymer Photovoltaic Cells. Applied Physics Letters. 88. (2006) 

073508  

[2] 1. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy & A. J. Heeger. 

Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the 

Anode Interfacial Layer. Advanced Materials. 23 (2011) 2226-2230 

[3] D. C. Watters, J. Kingsley, H. Yi, A. Iraqi & D. Lidzey. Optimising the Efficiency 

of Carbazole co-polymer Solar Cells by Control Over the Metal Cathode Electrode. 

Organic Electronics. 13 (2012) 1401-1408 

[4] M. C. Gwinner, R. D. Pietro, Y. Vaynzof, K. J. Greenberg, P. K. H. Ho, R. H. 

Friend & H. Sirringhaus. Doping of Organic Semiconductors Using Molybdenum 

Trioxide: a Qunatitative Time-Dependent Electrical and Spectroscopic Study. 

Advanced Functional Materials. 21 (2011) 1432-1441 

[5] A.Z. Moshfegh & A. Ignatiev. Formation and Characterization of Thin Film 

Vanadium Oxides: Auger Electron Spectroscopy, X-ray Photoelectron 

Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy, and Optical 

Reflectance Studies. Thin Solid Films. 198 (1991) 251-268 

[6] Y. He & Y. Li. Fullerene Derivative Acceptors for High Performance Polymer 

Solar Cells. Physical Chemistry Chemical Physics. 13 (2011) 1970-1983 

[7] K. Sugiyama, H. Ishii, Y. Ouchi & K. Seki. Dependence of Indium–Tin–Oxide 

Work Function on Surface Cleaning Method as Studied by Ultraviolet and X-ray 

Photoemission Spectroscopies. Journal of Applied Physics. 1 (2000) 295-298 

[8] G. Greczynski, T. Kugler, M. Keil, W. Osikowicz, M. Fahlman & W. R. Salaneck. 



 
 

Chapter 5. Characterisation of Materials via Spectroscopy Page 109 
 

Photoelectron spectroscopy of thin films of PEDOT–PSS conjugated polymer 

blend: a mini-review and some new results. Journal of Electron Spectroscopy and 

Related Phenomena. 121. (2001) 1-17 

[9] D. R. Lide. Handbook of Chemistry and Physics. 79
th

 edition. Boca Raton: CRC 

Press; 1998 

 

 

 

 



 
 

Chapter 6. Solution Processing of Vanadium (V) Oxide Page 110 
 

Chapter 6 

Solution Processing of Vanadium (V) 

Oxide 

 

6.1 Introduction 

Vanadium (V) Oxide has been shown to be an effective hole extraction layer within 

organic photovoltaic devices. However Vanadium (V) Oxide has severe limitations in 

comparisons to other metal oxides due to its high toxicity. Solution processed versions 

of Vanadium (V) Oxide could present an alternative means as the precursor compounds 

themselves may not be toxic. Vanadium (V) Isopropoxide is a solution processable form 

of Vanadium (V) Oxide where additional soluble side chains are added onto the oxygen 

atoms. This allows for the material to be processed in a wide range of solvents allowing 

for greater ease of processing upon multiple different surface types. 
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6.2 Thickness Dependence 

Devices were fabricated by spin coating Vanadium (V) Isopropoxide in the organic 

solvent isopropyl alcohol at concentrations of 10mg.ml
-1

, 5mg.ml
-1

 and 3mg.ml
-1

 in 

order to control the thickness of the deposited Vanadium (V) Oxide layer. The hole 

extraction layer was spun in atmosphere and then transferred to the glovebox in order to 

complete the device fabrication. In order to calibrate the thickness of the deposited 

Vanadium (V) Oxide films were spun at several spin speeds onto silicon and then 

measured via ellipsometry. The data points obtained were used to calculate the 

thickness by the spin-speed thickness relationship where the thickness is proportional to 

the inverse of spin speed squared.
[1]

 Figure 6.1 shows the thickness dependence on spin 

speed for several concentrations of Vanadium (V) Isopropoxide in isopropyl alcohol. 

From this data it is possible to determine the correct spin speed and solution 

concentration needed to deposited films with thicknesses between 20nm and 2nm. 

 

 

Figure 6.1 Thicknesses of Vanadium (V) Oxide as calculated by ellipsometry for 

different concentrations and spin speeds of solutions. 
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Spinning in atmosphere allows for the hydrolysis of the deposit vanadium Isopropoxide 

film, Equation 6.1 shows the chemical reaction that occurs when vanadium 

Isopropoxide is exposed to air. Water itself undergoes constant splitting and reformation 

where it breaks into constituent OH
-
 and H

+
 when a H

+
 cation is present it causes the 

cleaving of the alkyl chain and binds with the singly bound oxygen present on the 

vanadium oxide. The OH
-
 anion then binds with the positively charged alkyl chain and 

isopropanol is formed, this then evaporates from the surface.  The vanadium 

intermediary molecules then react releasing water and leaving behind Vanadium (V) 

Oxide. 

 

 2.OV(OCH(CH3)2)3 + 6.H2O → 6.C3H7OH + 2.VO4H3 Equation 6.1a 

 2.VO4H3 → V2O5 + 3.H2O Equation 6.1b 

 

Figure 6.2 shows the calculated optical properties of 15nm films of solution processed 

Vanadium (V) Oxide films. It can be seen that the absorption properties of these films 

vary in comparison to vacuum deposited versions, a higher transmittance is seen across 

the entire visible spectrum with films showing greater than 95% transmittance between 

500nm and 1100nm. Similarly to vacuum deposited films there is an absorption peak 

observed at 400nm with the edge leading up to around 500nm this peak has a higher 

transmission of 85% in comparison to 40% for vacuum deposited films. In addition the 

refractive index observed is lower than that for vacuum deposited films. This 

combination of observed optical characteristics for solution processed Vanadium (V) 
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Oxide point towards a film similar to that of vacuum deposited Vanadium (V) Oxide 

but of lower density. 
[2] 

 

 

Figure 6.2 Shows optical spectroscopy data for solution deposited Vanadium (V) Oxide 

films with (a) transmittance data obtain from absorption spectroscopy and (b) 

ellipsometry data calculating the refractive index and extinction coefficient of the 

deposited film. 

 

Figure 6.3 shows performance parameters for devices fabricated with Vanadium (V) 

Oxide layers with thicknesses varying from 12nm to 2nm. It can be seen that the highest 

contribution to the change in PCE is due to the large variations observed in the Jsc 

generated by the devices with varying thicknesses. As there is no variation in the Voc 

when the film tends towards 2nm in thickness it can be assumed that surface coverage 

of the ITO remains complete. In addition the electronic interactions at the interface 

between the anode and the organic layer will be due to PCDTBT and Vanadium (V) 

Oxide. As the film becomes thinner the absorption of light as it passes through the 
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Vanadium (V) Oxide will reduce, the reduction in Jsc opposes this and the likely reason 

for a reduction in Jsc is from the Vanadium (V) Oxide acting as an optical spacer. As 

organic layer thickness is fixed at approximately 55nm adding an optical spacer layer 

will alter the optimal thickness of the organic active layer, this will shift towards a 

thinner film. This shift in optimal active layer thickness due to the thickness of the 

optical spacer layer is one of the reasons for the drop in Jsc for thicker films; in addition 

the optical properties determined via ellipsometry indicate that the material has a short 

bandgap of approximately 2.6eV this is close to the range of values reported in 

literature.
[3,4]

 This gives it some absorption in the blue region of the spectra where a 

portion of the light harvest by the donor material is, this in effect reduces the intensity 

of light within the organic layer. 
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Figure 6.3 Comparison of performance parameters for OPV’s using solution processed 

Vanadium (V) Oxide with varying film thicknesses. Where the performance parameters 

are (a) Fill Factor, (b) Short Circuit Current, (c) Power Conversion Efficiency, and (d) 

Open Circuit Voltage. 

 

6.3 Atmospheric Dependence 

In order to reduce both the cost and the inbuilt energy of organic photovoltaic devices 

the solution processed layers ideally need to be deposited within atmospheric conditions 

without losing the high performances obtained in inert atmospheres. Comparisons of 

devices fabricated within an inert atmosphere and for devices fabricated in air using 

optimum thicknesses of Vanadium (V) Oxide layer have been done. Figure 6.4 shows 
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the results for devices with the hole extraction layer spun in atmospheric conditions and 

those spun in air. For all device parameters a reduction is observed for those fabricated 

within the inert nitrogen glovebox, the average values for the FF, Jsc, PCE and Voc drop 

from 58%, -10.2mA.cm
-2

, 4.9%, and 0.85V for atmosphere deposited films to 48%, -

9.0mA.cm
-2

, 2%, and 0.46V for glovebox deposited films. This is a significant 

reduction in performance and the ability to determine the cause of this difference is 

difficult as many techniques that would measure changes within the films properties, 

such as AFM, XPS, UPS, and UV-Vis spectroscopy, require exposure to atmospheric 

conditions. Vanadium (V) Isopropoxide and many similar metallic Isopropoxides 

undergo hydrolysis in which exposure to water causes the breakdown of the 

Isopropoxide molecule. Upon hydrolysis Vanadium (V) Oxide remains along with 

isopropyl alcohol created via the hydrolysis reaction, this then evaporates from the film. 

In the inert atmosphere in the glovebox the presence of water is limited to below 

0.1ppm, this means that the amount of water available for hydrolysis is limited. It has 

been shown that the electronic structure of Vanadium (V) Isopropoxide before 

hydrolysis exhibits a metallic structure with occupation of the V3d orbital.
[5]

 In its 

oxidized form Vanadium has no electrons occupying the V3d orbital and the highest 

occupied orbital is that of O2p, this results in a deep valence band for fully oxidized 

films with the Fermi level pinned below the empty V3d orbital. If hydrolysis does not 

occur the Fermi level will be situated above the V3d orbital leading to a much shallower 

work function. This shallow work function for films spun within the inert atmosphere of 

the glovebox explains why there is such a large difference in the performance as there 

would likely be a large interfacial barrier for hole extraction between the Vanadium (V) 

Isopropoxide and the PCDTBT. These results therefore indicate that the processing of 
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the Vanadium (V) Oxide interface requires the presence of a significant amount of 

water for the film to fully undergo hydrolysis. 

 

 

Figure 6.4 Comparison of performance parameters of OPV’s where the Vanadium (V) 

Oxide films are deposited in different atmospheres. Where the performance parameters 

are (a) Fill Factor, (b) Short Circuit Current, (c) Power Conversion Efficiency, and (d) 

Open Circuit Voltage. 

 

6.4 Temperature Dependence 

Most forms of solution processable metal oxides require post deposition annealing in 

order to achieve fully stoichiometric oxides. Devices were fabricated with 8nm thick 

Vanadium (V) Oxide layers annealed at temperatures ranging from 100
o
C to 400

o
C and 

compared against unannealed devices. Figure 6.5 shows AFM images of the deposited 

Vanadium (V) Oxide films annealed at different temperatures, for all deposited films 

high surface uniformity is observed over 5μm X 5μm scans. The RMS roughness of 

bare ITO is 2.6nm upon deposition of the Vanadium (V) Oxide layer the RMS 
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roughness increases to approximately 3.5nm. The RMS roughness stays the same for 

films until they are annealed up to 200
o
C and above, after this the RMS roughness drops 

from 3.5nm to 2.7nm. It can be observed that as the annealing temperature increases 

that the underlying structure of the ITO becomes more visible this would indicate that a 

reduction in the thickness of the deposited layer is occurring. 

 

Figure 6.5 AFM images of the surfaces of (a) ITO, (b) unannealed films of Vanadium 

(V) Oxide films and ((c), (d), (e) and (f)) Vanadium (V) Oxide films annealed at 100
o
C, 

200
o
C, 300

o
C and 400

o
C respectively. 

 

Figure 6.6 shows electron spectroscopy data for Vanadium (V) Oxide unannealed films 

and films annealed at temperatures ranging from 200°C and 400°C. Figure 6.6a shows 
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that for all samples the Vanadium 2p peak has two different species present these have 

been attributed to the fully oxidised state V
5+

 and the reduced state V
4+

. Upon annealing 

the amount of reduced states V
4+

 increases however no reduced metallic states are 

present. Figure 6.6c shows that UPS spectra for films annealed at temperatures below 

300
o
C are fixed and that the work function of the deposited layer is approximately -

5.5eV upon annealing at temperatures of 300
o
C and higher the work function shifts to 

lower binding energies. The position of the valence band remains constant and there is 

no significant emission from states close to the valence band indicating that the film still 

has a true bandgap. 

 

 No Anneal 200°C 300°C 400°C 

H2O 7% 8% 12% 11% 

OH
-
 46% 52% 50% 55% 

V-O 47% 40% 38% 34% 

V
5+

 85% 78% 74% 72% 

V
4+

 15% 22% 26% 28% 

Fermi Level -5.51eV -5.46eV -5.4eV -5.25eV 

Valence Band -7.78eV -7.75eV -7.75eV -7.76eV 

Table 6.1 Percentage abundance of different chemical states present in the O1s scans 

and V2p scans along with Fermi level and valence band positions derived from UPS 

spectra. 
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Figure 6.6 Photoelectron spectroscopy data of thermally annealed Vanadium (V) Oxide 

films where (a) is the V2p spectra, (b) O1s spectra and (c) UPS spectra. 
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Figure 6.7 shows device data obtained for OPV’s fabricated with Vanadium (V) Oxide 

films thermally annealed at different temperatures. A decline in the average PCE is 

observed between unannealed films and those annealed at 200
o
C however this decline is 

not statistically significant. Upon annealing at temperatures of 300
o
C and above the 

performance of the devices shows a significant decline from an average PCE of 4.2% at 

200
o
C to 3.1%. This drop in efficiency is driven by a decrease in all device parameters 

with a significant drop in the Voc from 0.77V to 0.63V, from the UPS results annealing 

at temperatures of 300
o
C and higher causes the work function to drop from –5.5eV to -

5.2eV this reduction in work function will induce contact barriers. The formation of 

contact barriers lead to drops in all device parameters due to increased series resistance. 

The reason for the drop in work function observed is not due to the formation of 

metallic states within the film, however it has been observed in other work that 

annealing metal Isopropoxide films at high temperatures can lead to changes in the 

crystalline structure.
[6]

 Work function itself is a surface property and can vary due to 

crystalline orientation, if changes to the crystalline structure are occurring this could 

lead to changes in the work function.
[7]

 Device data therefore indicates that the major 

effect of annealing major is the reduction of the work function of the material and that 

there is no observable advantage of annealing films post deposition. 

 



 
 

Chapter 6. Solution Processing of Vanadium (V) Oxide Page 122 
 

 

Figure 6.7 Comparison of performance parameters of OPV’s where the Vanadium (V) 

Oxide films are thermally annealed at different temperatures. Where the performance 

parameters are (a) Fill Factor, (b) Short Circuit Current, (c) Power Conversion 

Efficiency, and (d) Open Circuit Voltage. 

 

6.5 Comparisons against other materials 

In order to determine how effective solution processed vanadium (V) Oxide is within 

organic photovoltaic devices it has been compared against both vacuum evaporated 

Vanadium (V) Oxide and also the current benchmark hole extraction material 

PEDOT:PSS. Figure 6.8 shows how the various device characteristics vary for each of 
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the different hole extraction layers. ITO alone produces poor device results with average 

efficiencies of around 1% this is due to the shallow work function of approximately -

4.5eV for ITO.
[8] 

This leads to non-ohmic contact resulting in extraction barriers and 

increased series resistance within the device. PEDOT:PSS, Vacuum evaporated 

Vanadium (V) Oxide and solution processed Vanadium (V) Oxide all show device 

performance that are comparable. It should be noted that a larger deviation in the 

measured parameters is observed for films that have been solution processed. Vacuum 

evaporation allows for high uniformities across the substrate, solution processing 

however is a highly dynamic process where thickness variations are observed across the 

length of the substrate. These changes in thickness are the likely cause of differences in 

the deviations of device results between the vacuum evaporated Vanadium (V) Oxide 

films and the solution processed PEDOT:PSS and Vanadium (V) Oxide.  
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Figure 6.8 Comparison of performance parameters for OPV’s fabricated with various 

optimized hole extraction layers. Where the performance parameters are (a) Fill Factor, 

(b) Short Circuit Current, (c) Power Conversion Efficiency, and (d) Open Circuit 

Voltage. 

 

6.6 Conclusion 

It has been shown that it is possible to fabricate OPV’s with the use of a solution 

processable form of Vanadium (V) Oxide called Vanadium (V) Isopropoxide. These 

devices were fabricated at low temperatures under atmospheric conditions without 

leading to a reduction in device performance in comparison to vacuum evaporated 

Vanadium (V) Oxide. It is observed that in order to obtain high performance devices the 
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deposited Vanadium (V) Isopropoxide must be exposed to water in order for hydrolysis 

of the deposited material to occur. This reaction leads to the formation of Vanadium (V) 

Oxide films with Isopropyl alcohol as the waste product of the reaction which rapidly 

evaporates from the thin films due to its low boiling point. Further annealing of films 

leads to no significant change in the device performance for temperatures below 300
o
C 

above this point reduction in the work function of Vanadium (V) Oxide occurs, leading 

to reductions in the performance due to extraction barriers that form at the PCDTBT 

Vanadium Oxide interface. 
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Chapter 7 

Spray Coated Molybdenum (VI) Oxide 

  

7.1 Introduction 

Several factors affect the overall viability of organic photovoltaics as a solution to the 

production of clean energy. Among these the most important are the monetary cost and 

the energy cost in the production of these devices. In order to allow organic 

photovoltaics to accomplish this, high throughput using low energy deposition 

techniques are needed. Processing under vacuum or at high temperatures is therefore not 

an acceptable method of depositing materials. Current methods of depositing hole 

extraction layers made from Molybdenum (VI) Oxide are involve both high 

temperatures and vacuum.
[1,2]

 In the previous chapter work on a solution processable 

version of Vanadium (V) Oxide showed that it is possible to replace vacuum evaporated 

films with solution processed versions without compromising performance. In this 

chapter work has been carried out using Ammonium Molybdate Tetrahydrate which has 

been shown previously to work at low temperatures.
[1]

 This work looks at depositing 

both the hole extraction layer and the organic active layer without any post deposition 

treatment using ultrasonic spray coating a roll-to-roll compatible technique. 

 

 



 
 

Chapter 7. Spray Coated Molybdenum (VI) Oxide Page 128 
 

7.2 Studying the Properties of the Deposited Films 

In Chapter 7.3 organic photovoltaic device results are shown for device fabricated 

using molybdenum oxide hole extraction layers deposited via vacuum evaporation, 

reactive sputtering and solution processing with several different post deposition 

thermal annealing temperatures. In order to understand and discuss the results obtained 

from these devices information on what is happening to the deposited molybdenum 

oxide layers needs to be given first. Several techniques have been undertaken in order to 

characterise how the thermal annealing step affects the deposited molybdenum oxide. 

Initial analysis of the films was focused upon observing any possible changes in the 

chemical and electronic structure of the deposited films through X-ray Photoelectron 

Spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS). Figure 7.1 to 

Figure 7.5 shows variations in (a) O1s spectra, (b) N1s spectra, (c) Mo3d spectra and 

(d) UPS scans with an enhanced view of the valence band region for unannealed films 

and those annealed at 200
o
C, 300

o
C, 350

o
C and 400

o
C. The background intensity for all 

high resolution scans was calculated using a Shirley background substitution. Wide 

scans for all the samples show large amounts of Nitrogen, Molybdenum, Oxygen and 

Carbon with no trace of contamination from other sources. 

Mo3d scans show the presence of two different species of molybdenum within 

the films these are attributed to Mo
6+

 and Mo
5+

 oxidation states. In transition metal 

oxides the higher the oxidation state the more electrons are donated to O2p orbitals, this 

loss of electron density around the molybdenum atom results in higher binding energies 

for electrons that remain in molybdenum atomic orbitals. It can be seen that the 

percentage concentration of the reduced Mo
5+

 state increases as the films are annealed. 

For unannealed films the concentration of Mo
5+

 states present are 1.5%, upon annealing 



 
 

Chapter 7. Spray Coated Molybdenum (VI) Oxide Page 129 
 

at 200
o
C the concentration of Mo

5+
 increases by a small amount to 1.7%. This reduction 

in oxidation state is due to the decomposition of Mo
6+

 Oxide at high temperatures. The 

sample annealed at 300
o
C shows a significant increase in the presence of these reduced 

Molybdenum Oxide states to 9.7%, further annealing at 350
o
C and 400

o
C does not lead 

to an increase and the concentration of Mo
5+

 states are 7% and 7.9% respectively. It 

should be noted that the standard deviation between the fitted peaks and the measured 

spectra is below 5 for all scans indicating high fitting accuracy. The concentration of 

reduced states within vacuum evaporated films as seen in XPS scans in Chapter 5.1 is 

5.4% while for films sputtered at 25% oxygen concentration as seen in XPS scans in 

Chapter 8.5 is 10.8%, for these films the performance of devices fabricated with them 

are nearly identical. 

 N1s scans incorporate both chemical states associated with Nitrogen species 

(409.9eV) and also those from Molybdenum due to the close proximity of the Mo3p 

peak (411.6eV to 394eV).
[2]

 Oxidized Molybdenum as seen within the samples has the 

possibility of the Mo3p peak overlapping nitrogen species within the N1s spectra, 

however due to the high oxidation state of the molybdenum oxide the peaks associated 

with Mo3p are shifted to energy levels higher than the N1s peak. The two peaks fitted in 

the N1s spectra are associated with ammonium (NH4
+
) that is present within the 

Ammonium Molybdate Tetrahydrate and nitrogen gas (N2) that has absorbed into the 

film from the surrounding environment. Assignment of the small peak is due to the 

positively charged Nitrogen atom that leads to an increased binding energy. The 

assignment of molecular Nitrogen to the secondary peak is due to the high content of 

nitrogen within the sample preparation atmosphere allowing for the absorption of the 

gas into the film. For unannealed samples the intensity of the peak associated with 
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Ammonium is 16.8% of the total intensity of the N1s spectra upon annealing at the 

different temperatures the intensity of this peak drops to 12.8%, 8.7%, 8.1% and 4% 

respectively. This drop in intensity is due to the de-sorbtion of trapped ammonium 

present within all the films upon deposition. 

 O1s spectra recorded for samples annealed at different temperatures show the 

presence of three different chemical states of oxygen. The highest binding energy state 

is associated with water (H2O) due to Oxygen within water has a small dipole negative 

dipole due to the high electronegativity of oxygen reducing the binding energy in 

comparison to molecular oxygen. The next lowest binding energy peak is associated 

with the formation of metal hydroxides (OH
-
) the negative charge of the molecule is 

localised to the oxygen making the oxygen binding energy lower than for oxygen within 

water. The last peak in the O1s spectra is that for Oxygen bound to Molybdenum (ie. 

MoO); the bond between Molybdenum and Oxygen results in the donation of an 

electron from the Molybdenum 4d or 5s orbital to the O2p orbital. Oxygen will then 

have a charge of -2e leading to a further decrease in the binding energy of the electrons 

within Oxygen’s orbital. Across all the different annealing conditions the abundance of 

the peaks with relation to each other does not change. One outcome of this is that 

annealing does not lead to a change in the absorbed water at the films surface; 

absorption of water can cause changes in the electronic structure of the film by altering 

the cluster size of Molybdenum Oxide.
[3] 

The Molybdenum hydroxide peak shows good 

agreement with the Molybdenum 3d spectra due to the fact that no metallic states are 

induced by the annealing process. If metallic states are present this would allow for 

electrons to be redistributed through the Mo4d conduction band leading to a formation 

of a surface dipole and the ionic binding of more hydroxide groups at the surface. 
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 UPS spectra showing both the secondary electron cut-off and valence band 

region give information on the position of the Fermi level for deposited film and also 

the position of the valence band. The position of the secondary electron cut-off for the 

different annealing conditions shows a variation between 16eV and 16.1eV however 

this does not correlate with the change in annealing temperature. In addition the error 

associated with the determination of the secondary electron cut-off is ±0.1eV making 

the difference in the secondary electron cut-off between the samples within 

experimental error. The Fermi level is then from the energy of the incoming UV photon 

and the secondary electron cut-off and is shown, for the deposited films, to be on 

average -5.04eV ±0.1eV. The valence band of the deposited layer varies from 2.97eV 

below the Fermi level for unannealed films to 2.89eV below the Fermi level for films 

annealed at 400
o
C. Once again this variation is within experimental error for UPS 

therefore no observable change in the position of the valence band in relation to the 

Fermi level is observed. From both UPS scans it is possible to say that there is no 

change in the electronic structure of the deposited film that could be the cause of the 

change in device performance.  

From the combination of both XPS and UPS data it is clear that the annealing of 

the solution processed molybdenum Oxide layer does not lead to any significant change 

in the chemical or electronic structure of the deposited layers that could result in 

changes in device performance. The only notable change in the films seen through these 

techniques is the reduction in the trapped ammonium within the film, this occurs due to 

the dissolving of ammonium in water allowing for the evaporation of ammonia. 

Tabulated data for all the photoelectron spectroscopy scans are shown in Table 7.1. 
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Figure 7.1 Photoelectron Spectroscopy scans of unannealed solution processed 

Molybdenum Oxide showing (a) O1s, (b) Mo3d, (c) N1s, (d) UPS scans with an 

enhanced valence region. 
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Figure 7.2 Photoelectron Spectroscopy scans of solution processed Molybdenum Oxide 

annealed at 200
o
C showing (a) O1s, (b) Mo3d, (c) N1s, (d) UPS scans with an enhanced 

valence region. 
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Figure 7.3 Photoelectron Spectroscopy scans of solution processed Molybdenum Oxide 

annealed at 300
o
C showing (a) O1s, (b) Mo3d, (c) N1s, (d) UPS scans with an enhanced 

valence region. 
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Figure 7.4 Photoelectron Spectroscopy scans of solution processed Molybdenum Oxide 

annealed at 350
o
C showing (a) O1s, (b) Mo3d, (c) N1s, (d) UPS scans with an enhanced 

valence region. 
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Figure 7.5 Photoelectron Spectroscopy scans of solution processed Molybdenum Oxide 

annealed at 400
o
C showing (a) O1s, (b) Mo3d, (c) N1s, (d) UPS scans with an enhanced 

valence region. 
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No Anneal 200
o
C 300

 o
C 350

 o
C 400

 o
C 

Mo3d 

Mo
6+

 98.5% 98.3% 90.3% 93% 92.1% 

Mo
5+

 1.5% 1.7% 9.7% 7% 7.9% 

O2p 

H2O 3.8% 3.6% 5.4% 4.7% 4.1% 

OH
-
 20% 15.6% 15.1% 14.8% 12.7% 

MoO 76.2% 80.8% 79.5% 80.5% 83.2% 

N1s 

NH4
+
 16.8% 12.8% 8.7% 8.1% 4% 

N2 83.2% 87.2% 91.3% 91.9% 96% 

UPS 

Fermi -5.15eV -5.18eV -5.09eV -5.16eV -5.13eV 

Valence -8.12eV -8.13eV -8.11eV -8.05eV -7.98eV 

Table 7.1 Tabulated data for the different photoelectron spectroscopy scans of solution 

processed molybdenum oxide films under different annealing conditions. 

 

Figure 7.6 shows images obtained by Atomic Force Microscopy (AFM) for a 20μm x 

20μm scan; unnanealed films show high surface uniformity with the RMS roughness of 

the sample being approximately 0.8nm with a peak to peak roughness of 13nm. The 

underlying ITO typically shows an RMS roughness of 2.6nm as seen in Chapter 6.4 

indicating that the addition of the solution processed molybdenum oxide leads to a 

smoothening of the contact between the electrode and the organic layer. This 

planarization has been reported to lead to improvements in device performance due to 

the reduction in possible shorts through the device.
[4]

 Upon annealing of the films at 

200
o
C and 300

o
C a slight increase in the surface roughness is observed with an RMS 

roughness for the films of 1.4nm and 1.6nm respectively. The active layer that is 
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deposited onto the Molybdenum Oxide layer is approximately 80nm; the change in the 

RMS roughness between as-sprayed films and those annealed at 300
o
C is approximately 

1% of the active layer thickness. This is extremely small increase and the likelihood of 

inducing shorts due to the roughening of the surface via annealing is minimal. Upon 

increasing the annealing temperature to 400
o
C the RMS roughness of the film rises to 

6.9nm and the films can be seen to undergo crystallization. These crystallized regions 

show large differences in the height in comparison to the surrounding material.  The 

variation in height is on the same order as the thickness of the deposited active layer this 

will likely lead to paths for shorts to form between the anode and cathode. With the 

formation of short pathways through the organic layer reductions in the Voc and Jsc are 

likely to be observed due to the increased charge carrier recombination and shunt 

current. 
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Figure 7.6 20μm x 20μm AFM scans of the deposited Ammonium Molybdate 

Tetrahydrate for (a) no annealing, (b) 200
o
C, (c) 300

o
C, and (d) 400

o
C. 

 

Figure 7.7 shows a higher resolution AFM scan of the annealed samples with a total 

scan size of 1μm X 1μm. Over this region the surface roughness shows a similar trend 

to the large area scans in which unannealed film shows reduced surface roughness in 

comparison to ITO. The unannealed sample has an RMS roughness of 0.5nm with a 

peak to peak roughness of 7.7nm. With annealing at 200
o
C and 300

o
C the RMS 

roughness of the Molybdenum Oxide increases to 0.7nm and 0.9nm, and the peak to 

peak roughness increases to 7.8nm and 8.6nm. For both films these low roughness 
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values indicate that the likelihood of shorts occurring through the organic layer remains 

small. At 400
o
C both the RMS and peak to peak show a large increase to 2.5nm and 

33.1nm upon crystallization. The changes in peak to peak roughness seen upon 

crystallization on the small scale indicate that shorts are likely to occur often due to the 

high rate of variation in the height of the surface.  

 

 

Figure 7.7 1μm x 1μm AFM scans of the deposited Ammonium Molybdate 

Tetrahydrate for (a) no annealing, (b) 200
o
C, (c) 300

o
C, and (d) 400

o
C. 
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Figure 7.8 shows spectroscopic ellipsometry results in which the thickness of the 

deposited ammonium molybdate tetrahydrate film varies as the substrate is annealed up 

to a temperature of 300
o
C. The substrates are then left to cool as the samples are 

measured in order to see how the subsequent cooling affects the films thickness. The 

initial thickness of the deposited layer is 13.2nm, upon annealing a sharp decline in the 

thickness occurs between 75
o
C and 200

o
C with a temporary reduction in the rate 

observed between 100
o
C and 150

o
C. The solution that the Molybdenum Oxide is cast 

from contains a blend of two solvents, water and acetonitrile; these two solvents have 

boiling points of 100
o
C and 82

o
C.

[2] 
It is expected that these two solvents should 

evaporate from the film at different rates depending on the temperature that the 

substrate is annealed at. The initial drop in thickness (as a function of temperature) can 

be attributed mainly to the evaporation of acetonitrile from the film, while drops at 

higher temperatures should be a combination of evaporation of both trapped solvents. 

Thermal expansion of the film will act to counter the reduction in the thickness and is 

the reason behind the drop in the rate of thickness reduction observed between 100
o
C 

and 150
o
C. At higher temperatures reductions in the thickness is still observed, earlier 

work on ammonium molybdate tetrahydrate showed that thermal annealing causes 

decomposition of the precursor material to Molybdenum (VI) Oxide through a 

multistage process.
[7]

 This decomposition begins at temperatures as low as 100°C, 

Equation 7.1  shows the chemical reaction involved in the thermal decomposition of 

ammonium molybdate tetrahydrate. This decomposition is what leads to the reduction 

in film thickness at higher temperatures this is due to a combination of removal of 

residual NH4 as observed in XPS, reduction in the molybdate cluster size and 

densification of the deposited film. 
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Once cooling of the film begins the thickness shows a gradual decrease due to the 

reduced thermal expansion, once at room temperature the final film thickness is 7.7nm. 

Over the heating and cooling cycle the film shows a 42% reduction in total thickness, 

the trapped solvent within spray coated Molybdenum Oxide films therefore contribute a 

significant amount to the overall thickness.  
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Figure 7.8 The thickness of deposited Molybdenum Oxide as it is heated to 300
o
C (─) 

and left to cool to room temperature ( ) 

 

7.3 Comparison of PCDTBT OPV Devices 

Devices were fabricated with a PCDTBT:PC70BM (Poly[N-9'-heptadecanyl-2,7-

carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1', ‘-benzothiadiazole)]: 6,6]-Phenyl-C71-butyric 

acid methyl ester) active layer that had been spray coated on top of vacuum evaporated 

and sputtered control devices, and solution processed molybdenum oxide. The solution 

processed molybdenum oxide was annealed at several temperatures between 200
o
C and 

400
o
C for 1 minute; in addition samples of solution processed molybdenum oxide were 

left unnanealed as a comparison. The thickness of the vacuum deposited layers was 

10nm at a pressure below 10
-6

mbar with the sputter deposited film being deposited at 

20% oxygen partial pressure with a chamber pressure of 1.6x10
-2

mbar and a flow rate of 

9 SCCM. Solution processed Molybdenum Oxide was spray coated onto clean ITO 

substrates kept at 60
o
C in air with a pass height and speed of 50mm and 60mm.s

-1
. 
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Ammonium Molybdate Tetrahydrate ((NH4)6
+
.Mo7O24

6-
.4H2O) was dissolved in a 2:3 

de-ionized water: acetonitrile blended solution at a concentration of 6mg.ml
-1

. 

PCDTBT:PC70BM was dissolved in chlorobenzene at a ratio of 1:4 with an overall 

concentration of 4mg.ml
-1

. The organic active layer was sprayed onto substrates held at 

40
o
C with a pass height and speed of 35mm and 80mm.s

-1
,
 
for more information on 

spray coating technique please see Chapter 3.6. Figure 7.9 shows the variations in 

device performance parameters for the different deposition conditions of molybdenum 

oxide. In addition Table. 7.2 shows the average values for devices fabricated under 

different processing conditions. It can be seen that for vacuum evaporated and sputter 

deposited devices the performance is the same within experimental error for the Fill 

Factor (FF), Short Circuit Current (Jsc), Power Conversion Efficiency (PCE) and Open 

circuit Voltage (Voc).  However in comparison to the spray coated Molybdenum Oxide 

device the performance is significantly lower. The reason for this was due to poor 

wetting of the organic layer for devices fabricated using vacuum deposited 

Molybdenum Oxide; this led to a thinner organic layer than was expected causing a 

reduction in both the Jsc and FF from what could be achieved with these devices. 

Solution processed Molybdenum Oxide shows a large variation as a function of 

annealing temperature, for unnanealed films and films annealed at 200
o
C the 

performance is at a minimum with the PCE and Jsc being effectively zero. UPS data 

shows that the work function of the deposited Molybdenum Oxide layer does not 

change with annealing temperature and is equal to that of vacuum deposited 

Molybdenum Oxide. This means that contact resistances at the interface between the 

anode and the hole transporting PCDTBT should not vary as a function of temperature. 

If this is the case then the Molybdenum Oxide layer itself is the only variable and for 
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low annealing temperatures is acting as a highly resistive layer that effectively blocks 

the transport of charge. The only observed difference between these films and those 

annealed at higher temperatures is the thickness of the deposited Molybdenum Oxide 

layer. Due to the large film swelling that occurs from trapped solvents one possible 

reason for the observed device characteristics could be that the solvents act to separate 

molybdate (Mo7O24) clusters. As charge carrier conduction through the film occurs 

because of electron transport through the Mo4d orbital localised on the molybdenum 

atom separation of the clusters would lead to an increased distance between the charge 

transport sites. 

 Upon annealing between 250
o
C and 350

o
C the performance of devices show an 

increase that is driven by both the change in Jsc and FF. As mentioned previously the 

UPS data show that over this annealing range the device show no variation in the 

electronic properties, and the work function of these layers remains fixed. AFM data 

shows a gradual increase in the roughness of the film when thermally annealed however 

this change is very small and would not account for such large variations that are seen 

in the device data. The only evidence for any significant change within the 

Molybdenum Oxide layer is from ellipsometry showing that the thickness has a large 

dependence upon trapped solvent. Increases in device performance are therefore 

attributed to this reduction in the thickness leading to a denser film. This has also been 

shown in previous work that films deposited from ammonium molybdate tetrahydrate 

have a strong dependence upon the thickness of the layer.
[1]

 Devices fabricated using 

Molybdenum Oxide annealed at 400
o
C show a drop in all the metrics that are used to 

gauge device performance. AFM data obtained show that at this temperature 

crystallization occurs and the surface of the film increase in roughness, this increase will 
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lead to shorts through the organic layer. Shorts through the device cause reductions in 

Voc due to charge recombination and the Jsc is reduced because of alternative paths for 

current to flow a reduction in both these values leads to a reduction in FF. 

 

 

Figure 7.9 Comparison of performance parameters for devices with molybdenum oxide 

hole extraction layers deposited via vacuum deposition techniques and spray coating 

followed by subsequent annealing. Where the performance parameters are (a) Fill 

Factor, (b) Short Circuit Current, (c) Power Conversion Efficiency, and (d) Open 

Circuit Voltage. 
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 FF (%) Voc (V) PCE (%) Jsc (mA.cm
-2

) 

Sputtered 42.5 0.87 2.49 -7.32 

Evaporated 45.9 0.84 2.66 -6.90 

Unannealed 17.0 0.67 0.01 -0.01 

200
o
C Anneal 21.8 0.85 0.01 -0.17 

250
o
C Anneal 28.0 0.86 1.59 -5.45 

300
o
C Anneal 47.5 0.86 3.62 -8.92 

350
o
C Anneal 51.6 0.88 4.07 -9.12 

400
o
C Anneal 29.2 0.80 1.37 -5.86 

Table 7.2 Shows the average values for the Fill Factor, Open Circuit Voltage, Power 

Conversion Efficiency and Short Circuit Current for OPV device fabricated with 

different molybdenum oxide hole extracting layers. 

 

7.4 Improvements in Device Performance 

The work performed in previous experiments showed that annealing did not cause 

significant changes in either the chemical state or electronic structure as observed by 

photoelectron spectroscopy. In addition high temperature annealing exceeding 350
o
C 

led to the crystallization of the deposited layer putting an upper limit on the annealing 

temperature. Annealing below this temperature led to slight roughening of the surface 

and was not the cause of the large variations in the performance of devices. 

Spectroscopic ellipsometry revealed that the main reason behind the changes in device 

performance was the reduction in thickness of the Molybdenum Oxide layer via the 

driving out of trapped solvent. In order to achieve a low temperature solution 
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processable Molybdenum Oxide film via a scalable process such as spray coating 

greater control of the thickness of the deposited layer is needed. In spray coating the 

thickness can be controlled by variations in the amount of solution dispensed onto the 

surface, this can be altered by changing the nozzle height or the pass speed this method 

allows for fine tuning of the thickness. A large reduction in film thickness can only be 

achieved by variations in the initial concentration of the dispensed solution. In order to 

deposit Molybdenum Oxide films via spray coating that require no annealing the 

concentration of the dispensed solution was reduced to 1mg.ml
-1

, 0.5mg.ml
-1

 and 

0.25mg.ml
-1

. 

 Figure 7.10 shows the average device results for films sprayed at the three 

different concentrations; in addition films have been annealed at 150
o
C, 250

o
C and 

350
o
C to see if further annealing leads to increase in the performance. The average 

values obtained are also shown in Table 7.2. It can be seen for the highest concentration 

solution (1mg.ml
-1

) that working devices can be obtained for unannealed films, upon 

annealing of these higher concentration films a gradual increase in the performance is 

seen. The increase in performance, as seen in previous work, is due to the improved FF 

and Jsc this indicates that for the higher concentration films that there is still trapped 

casting solvent. For films deposited from 0.5mg.ml
-1

 solution the unannealed films 

show performance almost identical to that of films cast from higher concentration 

solutions and annealed at 350
o
C. This confirms that reduction in film thickness is the 

driving force behind the improvements seen within devices where the molybdenum 

oxide layer had been annealed. Reducing the thickness of deposited films either by 

further solution concentration reduction to 0.25mg.ml
-1

 or by thermal annealing does 

not lead to major changes within efficiency. The only exception to this is for films 
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deposited from 0.5mg.ml
-1

 solution and annealed at 350
o
C, an average efficiency of 

4.6% is observed with this being 0.4% higher than the average for any other device. 

Looking at the individual values for the FF, Voc and Jsc it can be seen that none of them 

show any major improvement over values obtained under different deposition 

conditions. The high PCE observed for films deposited from 0.5mg.ml
-1

 solution and 

annealed at 350
o
C are due to statistical variations from a low sample size rather than 

any improvements brought about by changes in the processing conditions. 

 

 

Figure 7.10 Comparison of performance for films deposited from solutions with 

1mg.ml
-1

 (), 0.5mg.ml
-1

 (), and 0.25mg.ml
-1

 (). Where the performance parameters 

are (a) Fill Factor, (b) Short Circuit Current, (c) Power Conversion Efficiency, and (d) 

Open Circuit Voltage. 
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  Concentration 0
o
C 150

 o
C 250

 o
C 350

 o
C 

FF [%] 

1mg.ml
-1

 31 33 40 52 

0.5mg.ml
-1

 50 48 50 54 

0.25mg.ml
-1

 51 49 52 49 

Jsc [mA.cm
-2

] 

1mg.ml
-1

 -6.5 -7.9 -7.4 -9 

0.5mg.ml
-1

 -9.1 -9.6 -9.2 -9.5 

0.25mg.ml
-1

 -9.3 -9.1 -9.3 -9.4 

PCE [%] 

1mg.ml
-1

 1.6 2 2.3 4.1 

0.5mg.ml
-1

 3.8 4.1 4 4.6 

0.25mg.ml
-1

 4 3.8 4.2 4 

Voc [V] 

1mg.ml
-1

 0.85 0.83 0.82 0.88 

0.5mg.ml
-1

 0.84 0.84 0.88 0.89 

0.25mg.ml
-1

 0.83 0.82 0.87 0.84 

Table 7.2 Average results for OPV devices fabricated with solution processed 

molybdenum oxide spray coated from different.  

 

7.5 Conclusion 

Using ultrasonic spray-coating it is possible to sequentially deposit molybdenum oxide 

from a solution for use in organic photovoltaic device. Results show that the thermal 

annealing of the Molybdenum Oxide film causes increases in all device parameters with 

a peak PCE of 4.1% occurring at an annealing temperature of 350
o
C. This increase in 

device performance is attributed to the reduction in thickness of the Molybdenum Oxide 
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layer due to the driving out of trapped solvent within the deposited layer and subsequent 

structural rearrangement. XPS and UPS reveal that no significant change in the 

chemical composition or the electronic structure of the Molybdenum Oxide film occurs 

and that the only change observed is a small increase in reduced Mo
5+

 states and the loss 

of NH4
+
 from the layer. Annealing beyond a critical temperature induced crystallization 

of the deposited Molybdenum Oxide layer leading to a reduction in the PCE of the 

device to 1.4%. This performance reduction is due to shorts within the device induced 

by the high surface roughness of the anode material leading to a reduction in the Voc, FF 

and Jsc. In order to obtain maximum device performance the deposited molybdenum 

oxide must be below a specific thickness. Further device data in which the concentration 

of the deposited Molybdenum Oxide solution was varied show that is possible to 

deposit a film thin enough via spray coating to obtain high device performance without 

annealing. For unannealed devices the highest power conversion efficiency obtained 

was 4.3% for a 0.25mg.ml
-1

 solution. The highest PCE for any cell was 4.8% for 

devices deposited from 0.5mg.ml
-1

 solution followed by thermal annealing at 350
o
C. 

This indicates that with further optimization of the initial solution it should be possible 

to deposit spray coated Molybdenum Oxide films that require no annealing that have 

performances greater than spin coated PEDOT:PSS. In addition characterisation of how 

the lifetime of solution processed devices compare to those fabricated using vacuum 

deposited molybdenum oxide is needed. Along with characterisation of the lifetime of 

solution processed molybdenum oxide for different annealing conditions to see if the 

levels of trapped solvents affect the stability of devices. 
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Chapter 8 

The Effect on Devices of Reduced States 

in sputtered MoOx Films 

 

8.1 Introduction 

Deposition of metal oxides by various different means can often lead to variations in the 

oxidation state of the deposited material. A prime example of this is with vacuum 

evaporation; this deposition technique relies on heating a small amount of material at 

just below or beyond its melting point and allowing material to undergo evaporation or 

sublimation from the surface.  However these materials can undergo decomposition in 

which the oxidation state reduces due to leeching of oxygen from the surface to the 

surrounding environment.
[1,2]

 Due to the high temperatures needed to evaporate metal 

oxides it is often the case that reduced oxidation states are observed in deposited films, 

it is also possible that high temperature heat treatment of solution processed films could 

lead to these reduced states. In the following chapter work has been undertaken in order 

to observe if reduced states of Molybdenum Oxide can affect device performance in 

organic photovoltaics. Characterisation of the reactive sputtering process is done 

looking at the presence of different oxidation states and the average overall oxidation 



 
 

Chapter 8. The Effect on Devices of Reduced States in MoO3 Films Page 154 

 

state. The effect these reduced states have on the performance of organic photovoltaic 

devices are studied by looking at a combination of the energy level structure of 

deposited films, the average oxidation states of deposited films, and the presence of 

specific oxidation states through x-ray photoelectron spectroscopy and ultraviolet 

photoelectron spectroscopy, and comparing that to solar cell device results obtained. 

 

8.2 Deposition Characterisation 

Initial characterisation of the sputter deposition of Molybdenum Oxide was done by 

studying the changes in the DC bias of the deposition target. As mentioned previously 

in Chapter 3.8 oxidation of the surface layers of the sputter target lead to the formation 

of insulating layers at the targets surface, these insulating layer lead to changes in the 

applied bias of the deposition system in order to maintain a fixed power coupled into the 

plasma. This process can be done to test the points in which changes in the oxidation 

state of the target occur and at what point target poisoning occurs. Deposition from the 

Molybdenum target was started at 0% oxygen partial pressure and the Bias was allowed 

to settle for 30seconds before increasing the partial pressure of oxygen. Figure 8.1 

shows the bias response for the increase in oxygen partial pressure, the solid line with 

squares shows the bias for increasing partial pressure and the dotted line with circles 

shows it for decreasing partial pressure. The initial drop in applied bias is due to an 

increase in the overall system pressure, this overall increase leads to more molecules 

present within the chamber increasing the probability of collisions. With a higher 

probability of collisions occurring the amount of charge carriers within the plasma 

increase this leads to a reduction in the applied voltage needed to maintain the plasma at 
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a fixed power. Further increases in the partial pressure lead to a gradual increase in the 

bias this is due to oxidation of the surface of the target. The rate of removal of this oxide 

layer will likely be higher than the oxidation rate of the target as the increase in bias is 

only small over this time scale.  This gradual increase in bias occurs until around 15%, 

when the partial pressure is further increased the applied voltage sees a increase of 0.5V 

per percent increase to 1.5V per percent increase as a function of the increase in oxygen 

partial pressure. This indicates that a switch from oxidation of the surface layer of the 

target to oxidation of deeper layers is occurring leading to an increase in the resistance 

of the target. At 30% the rate of increase in the bias reaches a maximum of 2.8V per 

percent increase indicating that oxidation of the targets surface is complete. Increases in 

the applied bias after 30% oxygen partial pressure are due to the diffusion of oxygen 

into the target leading to a further increase in resistance. Upon reducing the oxygen 

partial pressure it can be seen that a hysteresis effect occurs in the applied bias, this 

hysteresis is due to poisoning of the target in which the oxidation of the target has 

reached a sufficient depth into the surface that it takes a prolonged amount of sputtering 

time to remove this oxide layer. From Figure 8.1 it is possible to estimate that oxidation 

of the surface occurs from 5% oxygen partial pressure onwards, this oxidation is not 

fully complete until some point between 15% oxygen partial pressure and 20% oxygen 

partial pressure. Beyond this oxygen within the chamber directly oxidizes molybdenum 

just below the surface layer until 30% when a maximum is reached and diffusion is the 

main process by which further oxidation of the target occurs. This is the point at which 

the target can be said to be poisoned and a minimum deposition rate will be obtained for 

the sample. 
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Figure 8.1 Shows how the variations in the partial pressure of oxygen can cause 

changes to the applied bias to the target and how the reverse bias characteristics (Dotted 

line and circles) vary for high oxygen content. 

 

Figure 8.2 shows how the three main deposition parameters cause variations in the 

deposition rates of the molybdenum/molybdenum oxide layer. The films deposited for 

varying pressure and power were done using Argon as the sputtering gas. Figure 8.2a 

shows the variation in deposition rate as a function of the overall pressure, the power 

was maintained at 200W, it can be seen that an increase in deposition rate is observed 

until approximately 1.3x10
-2

mbar. This increase in deposition rate is due to the 

increased presence of Argon able to be used in sputtering material from the surface, as 

mentioned previously in Chapter 3.8 the pressure dependence on sputtering rate is a 

trade off between an increased number of ions available for sputtering and an increased 

amount of atoms and molecules for scattering. As the scattering begins to dominate this 

trade off the deposition rate drops, this scattering is also important for reducing the 

amount of high energy atoms are sputtered from the surface. By sputtering at higher 
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pressures the damage to the substrate from high energy sputtered atoms can be reduced. 

Figure 8.2b shows the deposition rates dependence upon the power, it can be seen that 

it can be estimated as a linear dependence, higher powers lead to higher energy 

sputtered atom. The power has a limit to the value it can be reduced to as the ability to 

strike a plasma is reduced as the applied bias is directly related to the power used. From 

these experiments the lowest power that could reliably result in a plasma being struck 

was around 180W. Figure 8.2c shows the deposition rates dependence on the oxygen 

partial pressure, in this experiment the overall pressure was fixed at 1.5x10
-2

mbar and 

the power fixed at 200W. It is possible to relate regions within the graph to the bias 

dependence upon oxygen partial pressure shown in Figure 8.1, for low oxygen partial 

pressures the deposition rate drops at a slow rate similar to the slow increase in the bias 

observed. This slow drop in deposition rate is due to the increased surface coverage of 

the oxide layer, a large drop is not observed yet as the surface is likely not fully 

oxidized. Between 10% and 20% a drop in the deposition rate of approximately 1Å.s
-1

 

is seen, this is due to the complete surface coverage of Molybdenum Oxide and the 

oxidation of the target just beneath the surface layer. Such a drastic change is observed 

due to the sputtering yield of Molybdenum Oxide being lower than that of pure 

molybdenum. The deposition rate shows a gradual decline after this surface oxidation as 

the oxide layer on the surface penetrates deeper into the target. 

 From these graphs the ideal sputtering conditions to use in devices would be the 

lowest possible power that a plasma can be reliably struck and as higher pressure as 

possible. However in reality with reactive sputtering this is not viable due to the 

extremely low deposition rates that occur at higher oxygen concentration, for 
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subsequent depositions of molybdenum oxide via sputtering the power was maintained 

at 200W and the overall pressure was kept at 1.5x10
-2

mbar. 

 

 

Figure 8.2 Sputtering conditions have varying effects on the deposition rate; (a) the 

pressure, (b) the power, and (c) the oxygen partial pressure are shown. 
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8.3 Optical Properties of Films 

Spectroscopic ellipsometry of the deposited films was performed between 350nm and 

700nm for samples sputtered between 0% oxygen partial pressure and 45% oxygen 

partial pressure. Figure 8.3 shows the real and the imaginary part (the extinction 

coefficient) of the refractive index, along with the comparison of measure and fitted 

values for delta and psi for samples sputtered at 0%, 10% and 15% oxygen partial 

pressure. The Molybdenum Oxide layer was modelled using a combination of a Drude 

oscillator to model the absorption due to electrons within the conduction band and 

Lorentzian oscillators to model band to band absorption of light. Results show that for 

films sputtered at 0% oxygen concentration that the extinction coefficient calculated is a 

high value ranging from 2 to 2.4 across the visible spectrum. This high absorption 

across much of the measured spectrum is due to the absorption from electrons within 

the conduction band as is indicative of metallic materials. Comparisons against the 

measured refractive index for purely metallic molybdenum by Palik reveal that 

similarities are observed in the spectra.
[3]

 The observed refractive index as measured by 

Palik varies from around 3.2 at 300nm to 5 at 1200nm with a rapid increase in the 

refractive index between 300nm and 500nm. These values are close to those observed 

for Molybdenum Oxide films sputtered at 0% oxygen content however it should be 

noted that due to the presence of Molybdenum Oxide species even within films 

sputtered at 0% oxygen content the films are not pure Molybdenum like those measured 

by Palik. 
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Figure 8.3 Films sputtered at 0% (a and b), 10% (c and d) and 15% (e and f) oxygen 

partial pressure showing (a, c and e) the real and imaginary parts of the refractive index, 

and (b, d and f) the comparison of measured values ( and ) against the fitted values 

() of Delta and Psi. 
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Figure 8.4 shows the real and the imaginary part (the extinction coefficient) of the 

refractive index, along with the comparison of measure and fitted values for delta and 

psi for samples sputtered at 20% and 25% oxygen partial pressure. Observations with 

the modelled spectra of molybdenum oxide sputtered at 15% that show that a single 

oscillator is observed at around 400nm, the energy of this peak is approximately 3.1eV 

and is associated with absorption from the O2p band to the Mo4d3/2 band in highly 

oxidized molybdenum oxide. This peak indicates that the oxide material dominates the 

optical properties of the film and the modelling using the Cauchy dispersion model at 

higher oxygen concentrations will yield more accurate results due to the reduced fitting 

parameters. From films sputtered at both 20% and 25% oxygen partial pressure 

ellipsometric data shows that the absorption peak remains static. The dispersion of light 

at longer wavelength shows an increase in intensity however the dispersion at shorter 

wavelengths close to the absorption band edge is reduced. 
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Figure 8.4 Films sputtered at (a and b) 20% and (c and d) 25% oxygen partial pressure 

showing (a and c) the real and imaginary parts of the refractive index, and (b and d) the 

comparison of measured values ( and ) against the fitted values () of Delta and Psi. 

 

8.4 Oxidation of Sputtered Films 

Films sputtered in tandem with substrates used for devices were measured via XPS in 

order to determine the overall oxidation state of the film, the presence of individual 

oxidation states, and possible contaminants within the film. Figure 8.5 and Figure 8.6 

shows scans of the wide spectra, O1s spectra and Mo3d spectra for films sputtered 

between 0% oxygen partial pressure and 25% oxygen partial pressure. In addition XPS 

scans were taken for samples up to 70% oxygen partial pressure, the scans for these are 

not shown however results obtained from the Mo3d peaks are shown in Figure 8.3. 
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Wide scans from all samples indicate that only Carbon, Nitrogen, Oxygen and 

Molybdenum were found. A small trace of Silicon (less than 0.5%) was also found in 

samples sputtered at 5%, 10% and 15% the presence of this silicon is attributed to the 

underlying silicon substrates used for XPS analysis and should not be present within the 

devices. O1s spectra for all samples reveal the presence of three different species within 

the films; these are water (H2O), metal hydroxides (OH
-
) and molybdenum oxide 

(MoO). The O1s peak backgrounds were fitted using a Shirley background substitution 

and the chemical states were fitted using several Gaussian peaks. The peaks of these 

chemical states are situated on average at 531.9eV, 530.9eV and 530.2eV.
[4,5]

 Table 8.1 

shows the variation in the abundance and position of these different species for films 

sputtered between 0% oxygen partial pressure and 30%. 

The backgrounds of the Mo3d spectra were subtracted using a Shirley 

background substitution until 25% oxygen partial pressure; at higher oxygen partial 

pressure a linear background subtraction was used.  Individual oxidation states were 

fitted using a doublet pair that was separated by 3.15eV where the full width half 

maximum (FWHM) were made equal and the intensity of the higher binding energy 

peak was two thirds that of the lower binding energy peak.
[4,6,7]

 In the samples sputtered 

with low oxygen concentration multiple doublet peaks are observed corresponding to 

different oxidation states ranging from Mo
1+

 to Mo
6+

 with increased oxygen during 

sputtering the intensity of the lower binding energy peaks decreases and the intensity of 

the higher binding energy peaks increase. Table 8.2 shows the abundances of the 

different doublet peaks and their position for samples sputtered between 0% oxygen 

partial pressure and 30% oxygen partial pressure. 
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Figure 8.5 High resolution XPS scans of the O1s peak, and Mo3d peak for films 

sputtered at, (a,b) 0% oxygen partial pressure, (c,d) 5% oxygen partial pressure, and 

(e,f) 10% oxygen partial pressure. 
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 Figure 8.6 High resolution XPS scans of the O1s peak, and Mo3d peak for films sputtered at, 

(a,b) 15% oxygen partial pressure, (c,d) 20% oxygen partial pressure, and (e,f) 25% oxygen 

partial pressure. 
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 0% 5% 10% 15% 20% 25% 30% 

H2O 531.8eV 531.8eV 532.2eV 532.1eV 531.8eV 531.8eV 531.9eV 

OH
- 530.8eV 530.7eV 530.9eV 530.9eV 530.9eV 531.0eV 531.1eV 

MoO 530.2eV 530.1eV 530.1eV 530.3eV 530.4eV 530.5eV 530.6eV 

H2O 15.6% 14.7% 10.9% 10.3% 11.1% 4.3% 5.8% 

OH
- 76.4% 78.4% 79.5% 74.6% 58.3% 43.1% 36.4% 

MoO 8.1% 6.9% 9.6% 15.1% 30.5% 52.6% 57.8% 

Table 8.1 Position and abundances of the difference chemical peaks in the high resolution 

O1s spectra.  

 

Table 8.1 shows that as the oxygen content of the film are increased the relative abundance of 

the H2O and OH
-
 species decrease both of these are related to penetration of water into the 

film. This reduction is likely due to the increased presence of the O-Mo-O bonds within the 

film because of the higher oxidation state of the Molybdenum Oxide film. Table 8.2 shows an 

increase in the higher oxidation states and a decrease in the lower oxidation states as the 

oxygen content in the chamber increases. This correlates to the increased relative abundance 

of the O-Mo-O peak that is seen in the O1s spectra. 
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  0% 5% 10% 15% 20% 25% 30% 

Mo
1+

 230.9 230.9 231.0  - - - - 

Mo
2+

 231.7 231.6 231.7  - - - - 

Mo
3+

 - 232.9 232.8 232.4   - - - 

Mo
4+

 233.2 - - 233.2  - - - 

Mo
5+

 234.8 234.8 234.8 234.6  234.7  234.2 234.3  

Mo
6+

 235.9 235.9 235.9 235.9  235.8 235.9  236  

Mo
1+

 35.71 26.88 2.33 - - - - 

Mo
2+

 30.67 27.31 43.25 - - - - 

Mo
3+

 - 20.7 14.09 17.31 - - - 

Mo
4+

 13.19 - - 14.54 - - - 

Mo
5+

 14.94 15.47 28.65 48.33 25.9 0.13 0.53 

Mo
6+

 5.49 9.64 11.67 19.82 74.1 99.87 99.47 

O:Mo 1.29 1.39 1.65 2.35 2.87 2.999 2.997 

Table 8.2 Position and abundances of the difference chemical peaks in the high 

resolution Mo3d spectra. Values given are for the 3d
3/2

 emission peak, the abundances 

and FWHM are the same for the 3d
5/2

 peak and the binding energy is 3.15eV lower. 

 

Figure 8.7 shows that the oxidation state of the film increases rapidly beyond 5% 

oxygen partial pressure, this correlates with the increase in bias observed at 5% total 

pressure as seen in Figure 8.1. Initial increases in the overall oxidation state is driven 

by the rise in the amount of the Mo
5+

 state, once the metallic Mo
4+

 state and below are 

no longer present the Mo
6+

 state begins to lead to the increase in overall oxidation state. 
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Figure 8.7 Results of the XPS scans of sputtered samples between 0% and 70% oxygen 

partial pressure showing (a) the percentage presence of Mo
6+

, Mo
5+

 and metallic states 

below Mo
5+

, and (b) the oxygen to molybdenum ratio. 

 

8.5 Oxidation State and Electronic Structure 

A second sputtering run was done for films reactively sputtered between 0% oxygen 

partial pressure and 25% oxygen partial pressure in order to determine how the energy 

level structure varied along with the stoichiometry. For each sample XPS spectra of the 

Mo3d, O1s and C1s peaks were taken along with a wide scan across the XPS emission 

spectra. In addition Ultraviolet Photoelectron Spectroscopy (UPS) scans from 0eV 

binding energy to 21.2eV were taken looking at the secondary electron cut-off and the 

valence band region. Wide scans were used to see if any contamination was present 

from other materials and C1s peaks were used to calibrate the position of the XPS 

peaks. Figure 8.8 shows the spectra for films deposited with 0% oxygen partial 

pressure. Emission from the Mo3d peak is shown in Figure 8.8a, background 

subtraction was performed using a Shirley background correction. Doublet peaks were 
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fitted in which the ratio of the areas of the 3d
3/2

 and 3d
5/2

 peaks were 1:2, the FWHM of 

the doublet peaks were identical and the distance between the peaks was fixed at 

3.15ev.
[6,7]

 Information on the different chemical states of Molybdenum ranging from 

Molybdenum (VI) Oxide to Molybdenum (I) Oxide can be seen in Table 8.4. Figure 

8.8b shows the O1s emission in higher detail, the background of the spectra has been 

corrected using the Shirley background correction. The spectra have been broken down 

into several individual Gaussian peaks corresponding to Oxygen within different states 

of chemical bonding. There are three different chemical states of oxygen measured and 

these have been attributed to H-O
-
 (OH-), Mo-O-Mo (MoO), and H-O-H (H2O) these 

peaks are located at roughly 530.2eV, 530.8eV and 531.7eV.
[4,5]

 Positions of these 

peaks, abundance of each chemical state and the FWHM of the Oxygen peaks are 

shown in Table. 8.5. 

Figure 8c shows the secondary electron cut-off and valence band region of the 

UPS spectra for the sputtered film. The work function is calculated from measuring the 

energy difference between the secondary electron cut-off and the Fermi level. The 

valence band position can be determined relative to Fermi level by looking at the drop 

off from the O2p peak that can be seen as the large increase in intensity at around 3eV. 

For metallic films the Valence band is not of importance due to the large amount of 

occupied states between the valence band and Fermi level. Table 8.6 shows the 

different values measured and calculated from the UPS spectra for sputtered films. 

Figure 8.10 to Figure 8.13 show the different photoelectron spectroscopy scans for 

samples prepared at 5%, 10%, 15%, 20% and 25% oxygen respectively. Information 

about these spectra is given in Table 8.3 to Table 8.5 for comparison of different values 

as a function of sputtering conditions. 
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Figure 8.8 Photoelectron spectroscopy spectra for molybdenum oxide films sputtered at 

0% oxygen partial pressure. X-ray photoelectron scans of the (a) Mo3d peak, (b) O1s 

peak, and (c) the full UPS spectra with an enhanced view of the valence band region. 
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Figure 8.9 Photoelectron spectroscopy spectra for molybdenum oxide films sputtered at 

5% oxygen partial pressure. X-ray photoelectron scans of the (a) Mo3d peak, (b) O1s 

peak, and (c) the full UPS spectra with an enhanced view of the valence band region.  
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Figure 8.10 Photoelectron spectroscopy spectra for molybdenum oxide films sputtered 

at 10% oxygen partial pressure. X-ray photoelectron scans of the (a) Mo3d peak, (b) 

O1s peak, and (c) the full UPS spectra with an enhanced view of the valence band 

region. 
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Figure 8.11 Photoelectron spectroscopy spectra for molybdenum oxide films sputtered 

at 15% oxygen partial pressure. X-ray photoelectron scans of the (a) Mo3d peak, (b) 

O1s peak, and (c) the full UPS spectra with an enhanced view of the valence band 

region. 
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Figure 8.12 Photoelectron spectroscopy spectra for molybdenum oxide films sputtered 

at 20% oxygen partial pressure. X-ray photoelectron scans of the (a) Mo3d peak, (b) 

O1s peak, and (c) the full UPS spectra with an enhanced view of the valence band 

region. 
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Figure 8.13 Photoelectron spectroscopy spectra for molybdenum oxide films sputtered 

at 25% oxygen partial pressure. X-ray photoelectron scans of the (a) Mo3d peak, (b) 

O1s peak, and (c) the full UPS spectra with an enhanced view of the valence band 

region. 
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 Mo 0% Mo 5% Mo 10% Mo 15% Mo 20% Mo 25% 

HO
-
 530.8eV 530.8eV 530.9eV 531.2eV 531.3eV 531.6eV 

MoO 530.2eV 530.2eV 530eV 530.5eV 530.8eV 530.8eV 

H2O 531.7eV 531.9eV 531.6eV 532eV 532eV 532.1eV 

HO
-
 1.33eV 1.40eV 1.32eV 1.29eV 1.19eV 0.99eV 

MoO 1.01eV 0.98eV 1.24eV 1.21eV 1.09eV 1.15eV 

H2O 3.19eV 3.26eV 3.37eV 3.03eV 2.75eV 2.65eV 

HO
-
 41.9% 43.1% 29.7% 24.2% 18.4% 6.7% 

MoO 17% 14.2% 33.1% 37.5% 55.7% 67.7% 

H2O 41.1% 42.7% 37.3% 38.3% 25.8% 25.6% 

Table 8.3 Position, FWHM and abundances of the different chemical peaks in the high 

resolution O1s spectra for sputtered Molybdenum Oxide films at varying percentage 

pressures. 

 

Table 8.3 shows the relative abundances, peak positions and FWHM of the different 

oxygen species for different sputtering conditions. The abundance of the hydroxide 

(OH
-
) peak can be seen to vary as a function of sputtering condition, as the oxygen 

content within the deposited layer is increased a decrease in the hydroxide peak is seen. 

This is related to the presence of metallic molybdenum states allowing for the adhesion 

to the surface of the sample due to the formation of metal-hydroxide ionic bonds. The 

amount of water within the sample decreases as the oxygen content of the film 

increases, the adhesion of water onto metallic surfaces is due mainly to the interactions 

between the metallic molybdenum species and the dipole present within the water 
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molecule. As metallic species are reduced this interaction is decreased and less water is 

adsorbed onto the surface of the sample. The final species observed in the O1s spectra is 

the Molybdenum oxygen bond (MoO), this shows a general rise in the overall 

percentage as the amount of oxygen present increases, this is expected as the film 

becomes of a higher oxidation states more Mo-O bonds will be present within the 

material. It should be noted that in the C1s spectra we observe species associated with 

C-O and C=O bonds, these are expected to be present in the O1s spectra at a similar 

position to the MoO peak. The presence of these peaks are omitted from the O1s spectra 

due to the low intensity of the peaks in comparison to the MoO peak meaning we can 

assume they have negligible effect on the relative abundance of the 3 oxygen species 

present. 

 Table 8.4 Shows the relative abundances, peak positions and FWHM of the 

oxidation states of molybdenum oxide as observed in the Mo3d high resolution spectra. 

As the oxygen content within the sputtering chamber increases the oxidation state of the 

film increases, as is shown in the O:Mo row at the bottom of the table. In addition we 

see that as well as the overall oxidation state increasing the presence of the higher 

oxidation state species increases at the expense of lower oxidation states.  It can be seen 

at 20% to 25% oxygen concentration that the oxidation of the film begins to become 

saturated as the increase in Mo
6+

 and overall oxidation is significantly reduced and that 

it is expected that further increase in the oxygen during sputtering will not yield high 

increases in the Mo
6+

 state. 
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 Mo 0% Mo 5% Mo 10% Mo 15% Mo 20% Mo 25% 

Mo
6+  - 235.3eV 235.7eV 236.0eV 235.9eV 

Mo
5+ 234.7eV 234.9eV 234.2eV 234.7eV 234.8eV 234.6eV 

Mo
4+ - - 233.1eV 233.4eV - - 

Mo
3+

 232.4eV 232.7eV 232.2eV 232.6eV - - 

Mo
2+ 231.6eV 231.9eV - - - - 

Mo
1+

 231.0eV 231.2eV - - - - 

Mo
6+ - - 2.00eV 2.21eV 1.56eV 1.66eV 

Mo
5+ 2.53eV 2.91eV 1.34eV 1.56eV 0.95eV 0.94eV 

Mo
4+ - - 1.40eV 1.25eV - - 

Mo
3+

 1.46eV 1.36eV 0.99eV 0.82eV - - 

Mo
2+ 1.00eV 0.95eV - - - - 

Mo
1+

 0.70eV 0.81eV - - - - 

Mo
6+ - - 25.4% 26.0% 89.0% 89.2% 

Mo
5+ 4.9% 9.9% 15.3% 39.8% 11% 10.8% 

Mo
4+ - - 35.2% 24.6% - - 

Mo
3+

 3.3% 4.9% 24.1% 9.6% - - 

Mo
2+ 4.8% 7.7% - - - - 

Mo
1+

 87% 77.6% - - - - 

O:Mo 0.66 0.79 2.21 2.41 2.94 2.95 

Table 8.4 Position, FWHM and abundances of the difference chemical peaks in the 

high resolution Mo3d spectra. Values given are for the 3d
3/2

 emission peak, the 

abundances and FWHM are the same for the 3d
5/2

 peak and the binding energy is 

3.15eV lower. 
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 Mo 0% Mo 5% Mo 10% Mo 15% Mo 20% Mo 25% 

SE  

cut-off
 

16.57eV 16.46eV 16.56eV 16.37eV 15.93eV 16.06eV 

Fermi 

Offset
 

0eV 0eV 0eV 0eV 0.20eV 0.24eV 

Work 

Function 

-4.65eV -4.76eV -4.66eV -4.85eV -5.49eV -5.4eV 

Valence 

Band 

- - - - -7.88eV -7.98eV 

Table 8.5 Position of the secondary electron cut off, Fermi level offset, and the 

calculated positions for the work function and valence band position for sputtered 

Molybdenum Oxide films. 

 

Table 8.5 shows various properties of the electronic structure of the molybdenum oxide 

films that can be determined via the UPS spectra. There is no linear change in the 

position of the work function as a function of the overall oxidation state of the deposited 

film. However a step change is observed between 15% and 20% oxygen content within 

the chamber, from the Mo3d spectra obtained for these films it can be seen that the 

presence of Mo
4+

 and lower oxidation states is reduced to zero. In addition a clearly 

defined valence band is observed for films sputtered above 15% oxygen content 

indicating that a shift from a metallic like film to a semiconducting/insulating film is 

observed.  
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Figure 8.14 shows the occupancy of the valence bands for Molybdenum Oxide. 

For purely metallic molybdenum partial occupation of the Mo5s band and full 

occupation of the Mo4d3/2 band occur leading to pinning of the Fermi Level and hence 

the work function at just above the Mo4d3/2 band. For films with oxidations states at 

Mo
1+

 to Mo
4+

 partial occupancy of the Mo4d3/2 band will occur leading to the Fermi 

level being within this band. This means that further oxidation from Mo
1+

 to Mo
4+

 does 

not yield large changes in the work function as observed with the increase in the oxygen 

content during sputtering from 0% to 15%. The position of the Mo4d3/2 state is 

determined by the work function of films sputtered between 0% and 15% and is 

estimated to be approximately -4.7eV. For films where the lowest oxidation state 

present is Mo
5+

 the Mo4d3/2 band is no longer occupied and the highest occupied band is 

Mo5s, the Fermi level of the material then becomes pinned above the Mo5s orbital. 

Films sputtered at 20% and 25% have Mo
5+

 states present indicating that the Mo5s state 

is approximately -5.5eV. Fully stoichiometric Molybdenum (VI) Oxide has a 

completely empty Mo5s orbital and the highest occupied orbital is the O2p, the Fermi 

level will therefore be pinned at some point between the Mo5s state and the O2p state. 

Within devices or samples exposed to atmosphere this does not occur due to the 

normalization of the Fermi levels of the adsorbed or deposited layers. For these 

materials electron transfer occurs from the HOMO to the Mo5s eventually leading to the 

pinning of the Fermi level at the interface to just above the Mo5s state.  
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Figure 8.14 Shaded areas show the occupied electronic bands within different oxidation 

states of molybdenum oxide ranging from pure metallic molybdenum (Mo
0
) to 

stoichiometric MoO3 (Mo
6+

). 

 

8.6 Organic Photovoltaic Devices 

Fabrication of the PCDTBT-8:PC70BM organic photovoltaic devices was done in 

tandem with the fabrication of samples prepared for AFM, Ellipsometry and XPS for 

sputtering conditions between 0 and 70% oxygen concentration. Figure 8.15 shows a 

box plot of the Fill Factor (FF), short circuit current density (Jsc), power conversion 

efficiency (PCE) and open circuit voltage (Voc) for the various devices. For devices 

fabricated at low oxygen concentrations (between 0% and 10%) it can be seen that there 

is no observable device performance. The absorption of light within the molybdenum 

oxide film over this region is high in comparison to films sputtered at higher oxygen 

partial pressure. For films sputtered at 0% the absorption of light at the peak absorption 



 
 

Chapter 8. The Effect on Devices of Reduced States in MoO3 Films Page 182 

 

of PCTDBT-8 is approximately 66% this drops to 22% for films sputtered at 10%. This 

increase in transmission does not lead to any observable increase in the performance of 

the organic photovoltaic device indicating that the limiting factor is not the intensity of 

light. The low Voc shows that a non-Ohmic has contact formed between the organic 

layer and the molybdenum oxide layer leading to large injection barriers; this arises due 

to the mismatch between the work function of the Molybdenum layer of approximately 

-4.7eV in comparison to the HOMO of PCDTBT-8 at -5.45eV. This large interfacial 

barrier of 0.69eV will cause an increase in the contact resistance of a device. 

As the oxygen concentration within the chamber is increased to 15% an increase 

in all the measured parameters is observed with the most notable increases being 

associated with the Jsc and FF of 3.82mA.cm
-2

 and 28% respectively. An increase of 

these two values is typically associated with a decrease in shunt current passing through 

the device, as the sheet resistance of the cathode increases or the number of pinholes 

within a device reduces the shunt current will reduce. As the molybdenum oxide on the 

surface of the cathode is being oxidized it is expected that the conductivity of this film 

should decrease. In addition the absorption of the material as calculated through 

ellipsometry is further reduced from 22% at 10% oxygen partial pressure to 6% at 15% 

oxygen partial pressure. The Voc of 0.06eV for devices sputtered at this oxygen partial 

pressure still show that the contact between the organic layer and the metal oxide is still 

non-Ohmic due to the large interfacial barrier. 

Upon increasing the percentage of oxygen during sputtering to 20% a further 

increase in performance can be seen. The most significant improvements are in the Voc 

and PCE with them increasing by 0.86V and 2.36%. This is due to the loss of the 

metallic states below Mo
5+

 as can be seen in the XPS scans in Section 8.4; UPS scans in 



 
 

Chapter 8. The Effect on Devices of Reduced States in MoO3 Films Page 183 

 

Section 8.5 indicate that this loss of lower oxidation states leads to a deepening of the 

work function of the deposited molybdenum oxide to around -5.45eV this is the same as 

the HOMO of PCDTBT-8. With closely matched energy levels Ohmic contact at the 

interface is possible and the contact resistance within the device is greatly reduced 

leading to a large gain in Voc. The absorption of the Molybdenum Oxide layer is 

reduced to 5% as calculated via ellipsometry for fully oxidized layers, this small change 

in the absorption between layers sputtered at 15% and 20% oxygen partial pressure does 

not account for the increase in the Jsc of 2.4mA.cm
-2

.  

At 25% the performances shows a reduction in the overall performance, except 

for the Voc. Combinations of UPS and XPS data collected and the maintenance of the 

high Voc indicate that energy level alignment at the interface is maintained and that any 

potential barriers at the interface are not the cause of this drop in performance. In 

addition ellipsometry data shows that the imaginary part of the refractive index does not 

show any significant change implying that absorption within the molybdenum oxide 

layer does not cause a reduction in the intensity of light that reaches the active layer. 

Thickness data obtained via ellipsometry also show that a trend is observed towards 

thinner films for higher sputtering concentrations between 20nm at 20% oxygen partial 

pressure and 9nm at 30% and beyond. 

For devices sputtered with oxygen concentrations at 25% and higher a general 

trend in the increase of the FF, Jsc and PCE are seen up until a maximum is reached at 

45% oxygen concentration where the values are 40.8%, 8.45mA.cm
-2 

and 3.16%. 

Afterwards a gradual reduction is observed as the percentage of oxygen during 

sputtering is increased to 70%, the values of the FF, Jsc and PCE eventually become 

36.9%, 7.88mA.cm
-2

 and 2.68%. This change in the performance is not due to the 
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energy level alignment at the interface as indicated by the constant Voc over this region 

and the XPS showing that no changes in the oxidation state are observed. In addition 

ellipsometry shows that no change in the complex refractive index occurs indicating 

that the transmission of light through the molybdenum oxide layer does not change with 

regards to the sputtering conditions. The thickness of deposited films remains constant 

at 9nm between 30% oxygen partial pressure and 45% oxygen partial pressure. 

Ellipsometric results therefore indicate that a change in the optical structure of the 

device due to the molybdenum oxide layers is not the cause for this change in the short 

circuit current, fill factor and power conversion efficiency over the range of sputtering 

conditions. 
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Figure 8.15 Photovoltaic device results for films sputtered between 0 and 70% oxygen. 

Triangles represent upper and lower quartiles, diamonds the average and circles 

individual data points. (a) Shows the short circuit current, (b) the fill factor, (c) power 

conversion efficiency and (d) the open circuit voltage.   

 

8.7 Conclusion 

Devices results in combination to measurements of the electronic, optical and physical 

properties of reactively sputtered molybdenum oxide films show that there are several 

important factors that control the performance of devices fabricated using molybdenum 
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oxide. The most important factor is the energy level alignment at the interface between 

the molybdenum oxide and the hole transporting material, by reducing the difference 

between the work function of the molybdenum oxide and the HOMO level of the hole 

transporting polymer extraction barriers are minimized and contact resistance is 

reduced. The work function of the molybdenum oxide layer is determined largely due to 

the presence of lower oxidation states these being Mo
4+

 and below. These oxidation 

states allow for partial occupation of the Mo4d3/2 orbital and a pinning of the Fermi 

Level and the work function at shallower values of between 4.65eV and 4.75eV. In 

addition these oxidation states exhibit metallic behaviour due to the partial occupation 

of the Mo4d orbital allowing for the easy thermal excitation of charge carriers into the 

unoccupied orbitals. Observations in device performance show that once the lower 

states are removed device performance shows a marked increase even with large 

amounts of reduced Mo
5+

 present. In addition to the interfacial barriers caused by the 

presence of metallic molybdenum states large amount of absorption is observed across 

the visible spectra as shown via ellipsometry, this absorption reduces the amount of 

light transmitted to the organic layer and hence the maximum amount of excitons that 

can be formed. 

 Once the deposited films are above this oxidation threshold the work function is 

pinned at the Mo5s orbital and the absorption of light due to metallic states is reduced. 

This leads to two different properties of the deposited film that affect the performance 

of the device for films sputtered at higher oxygen concentration, the first of these is the 

surface roughness that could lead to shorts and the second is the thickness of the 

deposited film that will increase scattering and absorption. For higher oxygen content 

the deposition rate is reduced due to lower sputtering yield from Oxygen ions and also 
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target poisoning leading to a drop in the deposition rate. Ellipsometry results have 

shown that the thicknesses of sputtered films have thicknesses around 14nm ±5nm. 

 An additional note that can be made about the results from the devices comes 

from those sputtered at 20%, the presence of Mo
5+

 states within these devices are very 

high in comparison to films sputtered at higher oxygen concentrations and molybdenum 

oxide produced via vacuum evaporation. The percentage of Mo
5+

 states that are present 

in films sputtered at 20% is 35.9% with the remainder being Mo
6+

. The performance of 

devices sputtered at 20% are close to the performance for device sputtered at higher 

concentrations indicating that the Mo
5+

 presence even in large quantities does not alter 

the electronic structure of the interface and effect charge extraction.  
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Chapter 9 

Conclusion and Further Work 

 

9.1 Conclusion of Work Undertaken 

The use of organic semiconductors in photovoltaics opens up the ability to produce 

solar cells via roll-to-roll processing allowing for the production of solar cells on a large 

scale. With these roll-to-roll compatible printing techniques it is possible to deposit onto 

substrates several meters wide at speeds of several kilometres per hour allowing for the 

fabrication of solar cells on an unprecedented scale. However like any burgeoning 

photovoltaic technology there are many issues that need to be overcome before this 

possibility becomes reality. The biggest obstacles to the fabrication of organic based 

photovoltaics is the issues with low efficiencies and short lifetimes of devices in 

comparison to that of already developed technologies such as silicon, copper indium 

gallium selenide or cadmium telluride. Improvements in these key parameters have been 

achieved through the use of new generation semiconducting materials such as PCDTBT 

which have low bandgaps and deep highest occupied molecular orbitals.
[1,2]

 These deep 

HOMO level materials require electrodes that have deep work functions in order to 

facilitate charge extraction at the interfaces. Metal oxides have been shown to allow for 

efficient extraction of charges from these deep HOMO polymers with performances 

equalling and even exceeding those achieved with PEDOT:PSS. Metal oxides in 
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addition have been shown to have increased stability over PEDOT:PSS, however most 

work regarding these materials have been focused on the use of techniques that are 

incompatible with the needs of organic photovoltaics, these needs being the deposition 

of layers via techniques compatible with roll-to-roll processing.
[3,4]

 Throughout this 

work the overarching theme was the study of metal oxides within organic photovoltaic 

devices with the aim of trying to improve the performance of devices using these deep 

HOMO level polymers. In addition focus has been placed upon the processing of these 

metal oxides and how the solution processing of metal oxide layers using roll-to-roll 

compatible materials and techniques can be achieved without sacrificing performance 

within a device.  

Initial work presented in Chapter 5 looked at studying the basic properties of 

vacuum deposited metal oxides and also the organic materials that have been 

incorporated into devices through later chapters. Across the commonly used hole 

extracting metal oxides Molybdenum (VI) and Vanadium (V) Oxide there are several 

features that are common. These include the high transparency across the visible region 

of the spectrum, deep work functions and high stability. This is true for many other hole 

extracting metal oxides that have been studied within the literature such as Nickel (II) 

Oxide. When compared against the electronic structures of the organic semiconductors 

it was observed that all of the metal oxides should allow for the fabrication of high 

performance devices. Between the different hole extracting metal oxides there is little 

variation, all exhibit deep work functions and high optical transmission indicating that 

as long as a metal oxide has these two properties they should perform well.  

Chapter 6 followed on from the promising results observed with vacuum 

deposited Vanadium (V) Oxide seen in Chapter 5 and looked into replicating this 
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performance using a solution processable precursor of this metal oxide, Vanadium (V) 

Isopropoxide. Comparisons of optimized devices fabricated using both spin coated and 

vacuum evaporated Vanadium (V) Oxide show that little difference is observed in the 

performance of devices fabricated through this technique. Peak power conversion 

efficiencies of 4.9% were achieved for devices fabricated with spin coated Vanadium 

(V) Oxide. From results it was seen that there are several key processing requirements 

needed for these films to achieve optimal efficiency these include atmospheric 

processing where it was found that exposure to air is an important step due to the 

hydrolysis of the carbon oxygen bonds present within the material. In addition thickness 

dependence was another important factor with this dependence likely a combination of 

resistive losses through the layer and also the reduction in the hydrolysis of material 

deeper in the film due to increased diffusion lengths for water.  

Chapter 7 investigated devices fabricated using a solution processable form of 

Molybdenum (VI) Oxide Ammonium Molybdate Tetrahydrate looking at how to 

process this material using ultrasonic spray coating, a roll-to-roll compatible deposition 

technique. Organic photovoltaic devices fabricated using this technique showed a strong 

dependence upon the annealing temperature of the deposited layer. Through 

spectroscopic studies it was hypothesised that this dependence upon temperature was 

due to the reduction in film thickness by the driving out of trapped residual solvent. 

Further device experiments confirmed this theory. This was done by reducing the 

concentration of the solution in order to reduce the amount of material deposited onto a 

substrate. Results showed that as the concentration of the solution was reduced that the 

performance of the device increased without the need for annealing. Maximum power 

conversion efficiency for unannealed devices of 4.3% was achieved, however with 
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further annealing a maximum efficiency of 4.8% was obtained showing that with further 

control of the initial solution concentration that higher performances can be achieved. 

Unannealed efficiencies are comparable to device sprayed onto PEDOT:PSS coated 

ITO and far exceed those for device spray coated onto vacuum deposited Molybdenum 

Oxide.  

Chapter 8 finally looked at the effect of inducing reduced states in metal oxide 

by depositing Molybdenum Oxide of varying oxidation states via reactive sputtering. 

By controlling the percentage partial pressure of the oxygen within the sputtering 

chamber during deposition it was possible to vary the oxidation state of the 

Molybdenum Oxide from MoO2 to MoO3. Use of spectroscopic techniques showed that 

as the oxygen partial pressure within the chamber increased the relative abundance of 

different states changed. Higher oxidation states began to become more prevalent while 

lower oxidation states began to disappear. Two distinct types of films were observed as 

the oxidation state changed; the first being highly metallic films dependent upon the 

presence of low oxidation states of Molybdenum, the second type was a highly 

transparent semiconducting film that formed when only Mo
5+

 and Mo
6+

 states were 

present. When metallic states were present the increase in oxidation state of the film 

resulted in a gradual deepening of the work function from -4.65eV to -4.85eV, however 

upon transitioning to a semiconducting films a large shift in the work function down to -

5.2eV was observed. By incorporating these sputtered layers into organic photovoltaic 

devices the results showed that the presence of metallic state led to poor devices due to 

large interfacial barriers that form between the Molybdenum Oxide and the organic 

semiconductor. Once these metallic states were removed devices showed increased 

performance due to the deepening of the work function. These results show that the 
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reoccupation of lower binding energy orbitals via the reduction of metal oxides can lead 

to large interfacial barriers. By avoiding processing steps that induce the presence of 

these reduced states high device performances can be achieved. 

 

9.2 Further Work 

The results obtained within this body of work show that by using correct 

processing steps with metal oxides it is possible to deposit films from solution via 

scalable techniques while maintaining high device performances. The most promising 

solution processable forms of metal oxides are the isopropoxides. These are readily 

soluble in a variety of organic solvents allowing for solutions with low surface tension 

and viscosity, that can be deposited at low temperatures allowing for ease of processing 

for high volume roll-to-roll processing.
[5-8]

 The natural progression of this research is 

towards a fully solution processable device deposited onto flexible substrates via spray 

coating while maintain high device performances. Within the literature work has been 

made in the progress towards this however issues with maintaining performance have 

been observed.
[9-13]

 In order to achieve a fully solution processed device while 

maintaining efficiencies several crucial steps are needed along the way, the first of these 

is to invert these devices and deposit the low temperature solution processable metal 

oxides onto the organic layer. The largest problem that could be foreseen would be with 

the solvents used in processing the metal oxide layer. Certain solvents used may not be 

compatible with the organic bulk heterojunction that is being deposited onto. This could 

be either through dewetting of the solution from the surface leading to poor uniformity 

of the deposited layer or a more serious consequence would be dissolving of the organic 



 
 

Chapter 9. Conclusion and Further Work Page 194 
 

layer itself. If this occurs the morphology of the bulk heterojunction could be altered, 

metal oxide particles may even diffuse into the organic layer or it may not be possible to 

form a complete layer on top of the organic layer. If inversion of the device is possible 

without the loss of performance the next step would be to deposit the underlying 

electron extraction layer. This process would be very similar to what has been done 

within this body of work with screening of suitable metal oxides, the choice of a 

suitable low temperature solution processable version and then the subsequent 

optimization of this solution processable material. Once this has been achieved the final 

step would be the deposition of the electrodes. Currently a large effort across many 

groups is being put into finding a suitable solution processable replacement for the 

transparent electrode (ITO) and there have been several different paths this has taken.
[14]

 

These include the use of alternative metal oxide combination such as Aluminium Zinc 

Oxide,
[15,16]

 the use of thin films of graphene,
[17,18]

 carbon nanotube arrays,
[19,20]

 silver 

nanowires,
[21,22]

 high conductivity PEDOT:PSS,
[23,24]

 or a combination of these 

approaches.
[25-27] 

The results obtained show that metal oxides can be processed not just in vacuum 

but also from solution and that these solution based metal oxides produce films with 

electrical and optical properties identical to that of vacuum deposited films. Solution 

processed metal oxides have also been show to be able to be deposited using a variety 

of techniques without compromising the efficiency of the device. Therefore metal 

oxides have the ability to be used for electrodes in printed organic electronics without 

affecting the scalability that is often seen as the crucial advantage of organic electronics. 
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