
The optical and thermal properties
of quantum cascade lasers

Craig Anthony Evans

submitted in accordance with the requirements for the degree of
Doctor of Philosophy

Institute of Microwaves and Photonics
School of Electronic & Electrical Engineering

The University of Leeds

January 2008

The candidate confirms that the work submitted is his own and that appropriate credit
has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material
and that no quotation from the thesis may be published

without proper acknowledgment.



For my family.

i



“We have a habit in writing articles published in scientific journals to make the work as finished
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degli Studi di Bari, Italy working in the group of Prof. Gaetano Scamarcio. I would

iii



iv

like to thank him and his colleagues; Dr. Miriam Vitiello, Dr. Vincenzo Spagnolo,

and Dr. Antonia Lops for sharing their expert knowledge on the thermal properties of

quantum cascade lasers.

On a personal note, I would also like to thank Dave Evans and Clive Vallance,

my friends throughout both undergraduate and postgraduate studies, with whom

I have had shared many interesting conversations about all aspects of science and

engineering during my time in Leeds - althoughmost of these conversation took place

when we were drunk in the student union bar! I would finally like to express my

regards tomy friends from SOMS for keepingme company in the Eldon pub on Friday

evenings after a hard weeks work.

I would also like to acknowledge the Engineering and Physical Sciences Research

Council (EPSRC) for their generous financial support of my research in Leeds.



Abstract

The optical and thermal properties of quantum cascade lasers (QCLs) are investigated

through the development of comprehensive theoretical models. The optical properties

of various multilayer quantum cascade laser waveguides are investigated by solving

Maxwell’s equations using a transfer-matrix method. The complex material refractive

indices are calculated using a Drude-Lorentz model which takes into account both

phonon and plasma contributions to the material properties. A Caughey-Thomas-like

mobility model is used to estimate the temperature dependence of the electron mo-

bility which is found to have a significant effect on the optical waveguide properties.

The incorporation of this effect leads to better agreement with experimentally mea-

sured threshold current densities.

In order to investigate the thermal properties of QCLs, a multi-dimensional

anisotropic heat diffusionmodel is developedwhich includes temperature-dependent

material parameters. The model is developed using finite-difference methods in such

a way that is can be solved in both the time-domain and in the steady-state. Various

heat management techniques were compared in the time-domain in order to extract

the heat dissipation time constants. In the steady-state, the model is used to extract

the temperature dependence of the cross-plane thermal conductivity of a GaAs-based

THz QCL and compare the thermal properties of THz and InP-based mid-infrared

QCL optical waveguides.

In addition, fully self-consistent scattering rate equationmodelling of carrier trans-

port in short-wavelength QCLs is carried out in order to understand the internal car-

rier dynamics. This knowledge is then used to optimise the device design and the

model predicts significant improvements in the performance of the optimised device.
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elling of antimonide-based quantum cascade lasers’, 28th International Conference

on the Physics of Semiconductors - ICPS-28, Vienna, Austria, 24–28 July 2006, AIP

Conference Proceedings, 893, pp. 1441–1442 (2007).
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12. C. A. Evans, D. Indjin, Z. Ikonić, P. Harrison, M. S. Vitiello, V. Spagnolo, and G.

Scamarcio, ‘Thermal modeling of THz quantum-cascade lasers’, 9th International

Conference on Intersubband Transitions in Quantum Wells - ITQW2007, Ambleside,

Lake District, UK, 9–14 September 2007, Program and Abstracts, paper P1.
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Chapter 1

Introduction

1.1 Introduction to quantum cascade lasers

Quantum cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-

infrared portion of the electromagnetic (EM) spectrum and were first demonstrated

by Faist et al. at Bell Laboratories in 1994 [1]. Unlike typical interband semiconductor

lasers that emit electromagnetic radiation through the recombination of electron–hole

pairs across the material bandgap (Fig. 1.1a), QCLs are unipolar (typically electrons)

and laser emission is achieved through the use of intersubband transitions in a re-

peated stack of semiconductor superlattices, an idea first proposed in 1971 by Kazari-

nov and Suris [2]. Once an electron has undergone a radiative transition in one period

of the superlattice, it is recycled into the next period where another radiative transi-

tion can take place (Fig. 1.1b). This means that many photons can be generated for

each electron and hence QCLs have intrinsically higher powers than interband semi-

conductor lasers.

In the case of interband semiconductor lasers, the emission wavelength is essen-

tially fixed by the bandgap of the particular material system used, however QCLs free

us of this so called ‘bandgap slavery’ as the emission wavelength can be tuned over a

wide range in the same material system by suitable design of the layer thicknesses in

the semiconductor superlattice.

1
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(a) (b)

Figure 1.1: (a) Electron–hole recombination in a typical interband quantum well laser (b)

Photon generation through repeated intersubband transitions.

1.2 QCL output parameters

1.2.1 Scattering rates and subband populations

Aswith all lasers, to achieve laser emission a population inversionmust be engineered

between two energy levels in the system. In QCLs, careful design of the layer thick-

nesses of the quantum wells (QWs) and barriers that make up the superlattice allow

the electron wavefunctions and scattering rates between laser levels to be tailored in

order to achieve a population inversion between two of the subbands. A population

inversion is typically achieved in a QCL using a three-level system (other schemes are

also used and these will be discussed later in the chapter) which is outlined in Fig. 1.2

and shows the relevant scattering processes. Each level contains a number of electrons

n=3

n=2

n=1

electrons injected

electrons extracted

τ τ

τ τ

τ13

21 12

2331
τ

32

Figure 1.2: Schematic diagram showing the relevant levels and transitions in a QCL active

region.
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per unit area (ni where i is the level number) which scatter between levels through

various mechanisms. The main scattering mechanism in QCLs is through interactions

with longitudinal-optical (LO) phonons, especially so for QCLs in the mid-infrared

(MIR). In the far-infrared (FIR) region of the spectrum which is commonly known as

the terahertz (THz) region then other scattering mechanisms such as electron-electron

and electron-impurity interactions become important [3, 4]. The scattering rates are

defined as Wif = 1/τif , where τif is the lifetime of the transition and i and f are the

initial and final subband indices.

The rate equations of the three level system in the unity injection approximation

(i.e. all electrons are injected into the upper laser level) are written as

dn3

dt
=
Jin

e
+
n1

τ13
+
n2

τ23
− n3

τ31
− n3

τ32
(1.1)

dn2

dt
=
n3

τ32
+
n1

τ12
− n2

τ21
− n2

τ23
(1.2)

dn1

dt
=
n2

τ23
+
n1

τ13
− n3

τ31
− n3

τ32
− Jout

e
(1.3)

where J is the current density and e the fundamental charge of an electron.

In equilibrium (steady-state) d/dt = 0 and assuming that absorption process can

be ignored (which is the case when the temperature is low) Eqn. 1.2 gives

n3

τ32
=
n2

τ21
(1.4)

from which it is apparent that if τ32 > τ21 then n3 > n2 and a population inversion

will exist between the n = 3 and n = 2 levels and laser action will be possible. The

electron wavefunctions therefore have to be tailored such that the scattering rateW32

is smaller thanW21.

1.2.2 Current density

Also in the steady-state, Jin = Jout = J and from Eqns. 1.1 and 1.3 we have

n3

τ32
+
n3

τ31
=
J

e
. (1.5)

The total lifetime of the upper laser level is given by

1

τ3
=

1

τ32
+

1

τ31
(1.6)
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and hence

J =
n3e

τ3
. (1.7)

1.2.3 Modal gain

The optical gain in a QW system is given by (see Appendix A for the derivation)

G32 =

[

4πe2

ǫ0n

|〈3|z|2〉|2
2γ32Lpλ

]

∆n32 (1.8)

where n is the refractive index, |〈3|z|2〉| is the dipolematrix element between the upper

and lower laser levels, 2γ32 is the full-width at half-maximum (FWHM), Lp is the

period length and λ the free-space wavelength.

From Eqn. 1.4 and the fact that τ2 = τ21, under the auspices of the unity injection

approximation, we can write the population inversion as

∆n32 = n3 − n2 = n3

(

1− τ21
τ32

)

. (1.9)

Re-arranging Eqn. 1.7 in terms of n3 and inserting into the above equation we find

∆n32 =
τ3
q

(

1− τ2
τ32

)

J. (1.10)

Inserting this into Eqn. 1.8 we arrive at the well-known equation for gain in a QCL

G =

[

4πe

ǫ0n

(z32)
2

2γ32Lpλ

]

τ3

(

1− τ2
τ32

)

J = gJ (1.11)

where z32 is short-hand for the bra-ket notation of the dipole matrix element and g is

defined as the gain coefficient

g =

[

4πe

ǫ0n

(z32)
2

2γ32Lpλ

]

τ3

(

1− τ2
τ32

)

. (1.12)

If we nowmove away from the unity injection approximation and recast the above

equations allowing a fraction (1−η) of the current to be injected directly into the lower

laser level we find that the rate equations of the laser levels are now given by

dn3

dt
=
ηJin

e
+
n1

τ13
+
n2

τ23
− n3

τ31
− n3

τ32
(1.13)

dn2

dt
=

(1− η)Jin

e
+
n3

τ32
+
n1

τ12
− n2

τ21
− n2

τ23
. (1.14)
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From these equations in the steady-state we obtain

n3 =
ητ3J

e
(1.15)

and

n2 =
n3τ2
τ32

+
(1− η)τ2J

e
. (1.16)

We then find the population inversion is given by

∆n32 =
J

e

(

ητ3 − τ2
[

1− η
(

1− τ3
τ32

)])

(1.17)

and the gain coefficient is modified to

g =
4πez2

32

ǫ0Nlpλ(2γ32)

(

ητ3 − τ2
[

1− η
(

1− τ3
τ32

)])

. (1.18)

Themodal gain is proportional to the fraction of the optical field that overlaps with

the gain media and is given by

GM (J) = gΓJ (1.19)

where Γ is the overlap of the optical mode with the active region.

To achieve a large amount of modal gain, we require a large upper laser level

lifetime (τ3) and a short lower laser level lifetime (τ2) together with a high injection

efficiency η. A small FWHM and short period length also help to attain large values

of gain, and it is easier to achieve at shorter wavelengths. A large fraction of the

optical mode must also overlap with the gain media. The above equations suggest

that a large dipole matrix element is required, and this is true in some sense, although

τ32 is inversely proportional to the matrix element. Therefore a larger z32 reduces the

population inversion and so a trade-off is required.

1.2.4 Threshold current density

A QCL will begin to lase when the modal gain is equal to the round-trip cavity losses

i.e. when

GM = αM + αW (1.20)

where αM is the mirror loss (loss from the ends of the laser cavity) and αW is the

waveguide loss (primarily due to free-carrier absorption). The above equation can be
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re-written as

gΓJ = αM + αW (1.21)

and hence we can estimate the current that is required to reach the lasing threshold to

be

Jth =
αM + αW

gΓ
. (1.22)

It will be shown later in Chapter 3 why it is beneficial to reduce Jth as much as

possible.

1.3 QCL device designs

This section describes the various design schemes of QCLs and how each one attains

enough gain for lasing to take place.

1.3.1 Three quantum well active region

In the first QCL [1] and subsequent designs, a population inversion was engineered

utilising a three quantum well (3QW) active region, with each QW contributing one

subband. Fig. 1.3 shows a schematic conduction band diagram of a λ ∼ 8.4µm QCL

with a 3QW active region and a diagonal transition. In order tominimise τ2, the energy

Figure 1.3: Schematic conduction band diagram of a 3QW diagonal transition active re-

gion QCL at a bias of 60 kV/cm emitting at λ ∼ 8.4µm. The upper laser level is shown in

bold and the lower laser level and ground levels are shown as a bold dashed lines.

gap between the n = 2 and n = 1 (ground level) states is designed such that they are

separated in energy by the LO phonon energy of the quantumwell material (∼ 36meV
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in GaAs) and hence resonant LO-phonon scattering can then efficiently depopulate

the lower laser level. In order to ensure τ32 is greater than τ2, a diagonal transition

is used. This means that the n = 3 wavefunction is mostly confined within the first

quantum well of the active region, reducing the overlap between the laser levels and

hence increasing τ32 but also reducing z32.

In this type of design, a large value of η is obtained by the penetration of the n = 3

wavefunction into the injection barrier and so electrons are injected from the injector

states into the n = 3 state through resonant tunnelling. Injection of electrons from the

injector directly into the n = 2 state (i.e. non-unity injection) is minimised by careful

design of the injection barrier thickness. If it is too thin, the selectivity of the injection

from the injector is reduced and current channels are opened up directly into the n = 2

state. Care must also be made to ensure that the injection barrier is not too thick or

else η will be reduced. It is also important to choose the right thickness of extraction

barrier. If the barrier is too thick, the escape time of the electrons from the n = 1 is

increased, which creates an electron ‘bottleneck’ and reduces the performance.

There is another class of 3QW active region utilising a ‘vertical transition’ . In this

scheme, the n = 3 state is more spread out over the 3QW active region, increasing the

overlap between the laser levels (z32) but also reducing the injection efficiency i.e. η,

as well as decreasing the value of τ32. Fig. 1.4 shows a schematic conduction band

diagram of a λ ∼ 5µm QCL with a 3QW active region and a vertical transition.

Figure 1.4: Schematic conduction band diagram of a 3QW vertical transition active region

QCL at a bias of 76 kV/cm emitting at λ ∼ 5µm
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1.3.2 Double LO-phonon resonance

It is possible to improve the performance of 3QW QCLs by adding a further quantum

well to the active region. The lasing transition takes place between the n = 4 and n = 3

states with the n = 2 state being one LO-phonon energy below the n = 3 state as with

the 3QW case. The extra subband (n = 1) added to the active region by the additional

well is designed such that it is one LO-phonon energy below the n = 2 state. This

active region configuration maintains the good injection efficiency at the same time

as reducing the lifetime of the lower laser level, τ3 leading to a concomitant increase

in the population inversion. A schematic conduction band diagram of the first room

temperature continuous wave (cw) QCL by Beck et al. [5] which utilised a double LO-

phonon depopulation scheme is shown in Fig. 1.5. The addition of the extra subband

Figure 1.5: Schematic conduction band diagram of a double LO-phonon resonance QCL

at a bias of 28 kV/cm emitting at λ ∼ 9.1µm. The upper laser level is shown in bold and

the lower laser level and ground levels are shown as a bold dashed lines and are designed

to be separated by the LO-phonon energy

also increases the energy gap between the highly populated injector miniband and the

lower laser level. This reduces an effect known as ‘thermal backfilling’ of the lower

laser level and allows the QCL to operate at higher temperatures. At high tempera-

tures in a standard 3QW active region, electrons in the injector states can have enough

thermal energy to be activated back into the lower laser level reducing the population

inversion and limiting the device performance.
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1.3.3 Interminiband/Chirped superlattice

QCLs have also been reported in which the radiative transition is not intersubband,

but rather an interminiband one in a superlattice active region. In this QCL design

scheme, there are only two main states involved in the laser transition; the upper laser

level is the lowest state in the upper miniband and the lower laser level is the up-

permost state of the lower miniband. This breed of QCL has an intrinsic population

inversion due to the very fast intraminiband scattering between the miniband states

which efficiently depopulates the lower laser level (i.e. a small τ2 following the no-

tation in Fig. 1.2). This type of scattering is much quicker than the interminiband

scattering between the minibands themselves and also helps to avoid any electron

bottleneck problems that are found with 3QW active regions (i.e. the escape time of

electrons from the active region is negligible). However, the injection into the upper

laser level (η) is not as great as in 3QW active regions but both the laser level wave-

functions are localised across the entire active region leading to a larger dipole matrix

element.

Due to the wide energy minibands in the SLs, these QCLs have a higher current

carrying capability compared to QCLs with 3QW active regions which leads to higher

output powers. In the first interminiband QCL [6], the active region superlattice had

to be doped to compensate for the applied bias and so the minibands remained flat.

This led to high optical losses, broadened emission and increased threshold currents

compared to 3QW QCLs preventing room temperature emission being achieved. In

the next generation of interminiband QCLs, only the injector regions were doped [7]

which lead to room temperature emission. In this design, the field generated by the

doped injector region exactly compensated the applied field and by suitable design of

the layer thicknesses, the minibands in the active and injector regions could be aligned

ensuring efficient injection into the upper state of the lasing transition. However, the

best performance was obtained by removing the dopants altogether and ‘chirping’ the

superlattice. By changing the period of the superlattice, the actual electronic potential

is modified and under the applied bias, quasi-flat minibands can be obtained without

the need for dopants [8]. This type of QCL design is known as a ‘chirped superlattice’
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and led to record room temperature peak powers and record low threshold current

densities for QCLs at the time. A schematic conduction band diagram of the first ter-

ahertz (THz) QCL emitting at 4.4 THz (λ ∼ 67µm) based upon a chirped superlattice

design [9] is shown in Fig. 1.6.

Figure 1.6: Schematic conduction band diagram of two periods of the first THz QCL

based upon a chirped superlattice design. The upper laser levels are shown in bold and

the lower laser levels are shown as bold dashed lines.

1.3.4 Bound-to-continuum

In 2001, a new class of QCLs combining the advantages of the 3QW and chirped su-

perlattice designswas developed by Faist et al. [10]. The design takes advantage of the

good injection efficiency in 3QW active regions achieved through resonant tunnelling

and the good extraction efficiency of the chirped superlattice design (i.e. small τ2). The

lasing transition takes place between a bound state localised close to the injection bar-

rier and a miniband; hence the name ‘bound-to-continuum’. A schematic conduction

band diagram of the first bound-to-continuum QCL emitting at λ ∼ 9.1µm is shown

in Fig. 1.7. The design is based upon a chirped SL with the active region spanning the

whole period. The upper laser level is created in the minigap between the minibands

by a thin well next to the injection barrier. Bound-to-continuum QCLS have proven

particularly successful in the both the mid-infrared (MIR) and THz frequency range,

with cw operation above room temperature and pulsed mode operation up to 425 K

reported in the MIR [11] and cw emission up to 70 K in the THz [12].
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Figure 1.7: Schematic conduction band diagram of the first bound-to-continuum QCL

under a bias of 35 kV/cm. The bound state (upper laser level) is shown in bold and the

continuum state (lower laser level) is shown as a bold dashed line.

1.3.5 Direct LO-phonon depopulation

Another successful active region design in the THz frequency range is based on direct

LO-phonon depopulation of the lower laser level, directly into the upper laser level of

the next period. The QCL period consists of a two well active region and a two well

injector. Fig. 1.8 shows a schematic conduction band diagram of a 3.4 THz direct LO-

phonon depopulation QCL designed by Willams et al [13]. The lasing transition takes

Figure 1.8: Schematic conduction band diagram of 3.4 THz QCL utilising direct LO-

phonon depopulation under a bias of 12.2 kV/cm. The upper laser level is shown in

bold and the lower laser level is shown as a bold dashed line

place between the laser levels denoted in the figure and at the design bias, the lower

laser level is approximately one LO-phonon energy above the injector states which are
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aligned with the upper laser level of the next period. Therefore resonant LO-phonon

depopulation of the lower laser level takes place and injects the electrons directly into

the upper laser level of the next period. A significant advantage of this design is

the narrow period of the active region Lp, which as well as resulting in a larger gain

coefficient g, also means that the overlap of the active region with the optical mode in

the waveguide is increased. This direct-LO depopulation scheme has led to the THz

QCLs operating at high temperatures, emitting at approximately 3.0 THz up to 164 K

in pulsed mode and 117 K in cw [14].

1.3.6 One-well injector

A further THz active region design which is similar to the direct LO-phonon depopu-

lation design is the one-well injector scheme. In this design, there is a three quantum

well active region and a single injector well. A schematic conduction band diagram

of a 1.9 THz QCL with a one-well injector [15] is shown in Fig. 1.9. The radiative

Figure 1.9: Schematic conduction band diagram of 1.9 THz QCL with a one-well injector

under a bias of 8.4 kV/cm. The upper laser level is shown in bold and the lower laser

level is shown as a bold dashed line.

transition takes place between the laser levels denoted in the figure. The electrons are

extracted from the lower level into the single injector subband by resonant LO-phonon

scattering from which they are injected into the upper laser level of the next period by

sequential tunnelling. Since most of the carriers reside in the injector region which has

only one subband, the lack of additional injector states prevents reabsorption of the
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THz radiation and significantly reduces the waveguide loss which is a limiting factor

for long wavelength emission. This fact, coupled with the short QCL period, enabled

the one-well injector QCL denoted in Fig. 1.9 to achieve the longest wavelength QCL

emission (λ ∼ 161µm) without the assistance of a magnetic field [15].

1.4 QCL material systems

Due to the fact that the radiative emission process in QCLs arises from intersubband

transitions, the quantum cascade principle should be equally applicable to any semi-

conductor heterostructure. This sections details the variousmaterial systems that have

been used to produce QCLs.

1.4.1 InP-based

The first reported QCL was fabricated in the In0.53Ga0.47As/In0.52Al0.48As material

system [1]. This particular material composition is lattice-matched to InP, which

is used as the device substrate. The band offset of this particular composition is

∆Ec = 0.52 eV. There are several advantages to this material system; namely the avail-

ability of the InP substrate, the fact that the binary InP has a higher thermal conductiv-

ity than ternary semiconductors and the low refractive index of InP. The fact that InP

has a low refractive index means that the substrate acts as a natural waveguide and

also opens up the possibility of lateral regrowth of InP upper cladding layers which re-

sults in a large overlap of the active region with the optical mode and low losses. The

high thermal conductivity allows heat to be efficiently extracted from the active re-

gion and increases the operating temperatures of the QCLs. The inherent advantages

of the InP-based material systemmeans these QCLs have achieved high levels of per-

formance in the MIR, including room temperature cw emission [5]. The performance

level of the InP-basedQCLs can be further increased by utilising strain-balanced active

regions. In these QCLs, the composition of the material system is altered to introduce

strain into the system which increases the conduction band offset. An increased con-

duction band offset is beneficial for high temperature operation as it reduces electron

leakage (also known as thermionic emission) from the upper laser level into higher
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energy continuum-like states and helps to conserve a population inversion at raised

temperatures. An increased conduction band offset also allows higher photon en-

ergies and the use of strain-balanced active regions has led to the short wavelength

emission at λ ∼ 3.05µm [16]. At the present time, GaAs-based QCLs have dominated

the THz frequency range (see next section) although there has been one report of an

InP-based THz QCL [17] which operated up to 45 K.

In 2001, an InP-based QCL was reported in which the In0.52Al0.48As barriers were

replaced by AlAs0.56Sb0.44 [18]. This heterostructure is lattice matched to InP and

increases the conduction band offset to 1.6 eV. This high value of conduction band

offset makes this material system inherently less sensitive to temperature and suitable

for short wavelength emission. To date, InGaAs/AlAsSb QCLs have been reported

working in pulsed mode above room temperature in the wavelength range λ ∼ 3.7–

4.5µm [19, 20], with emission at wavelengths as low as λ ∼ 3.05µm reported [21].

This material system is the focus of Chapter 6.

1.4.2 GaAs-based

In 1998, the first GaAs-basedQCLwas reported [22] with a 3QW active region emitting

in the MIR. The GaAs/Al0.33Ga0.67As material system has a conduction band offset of

295 meV and this relatively small value led to a maximum operating temperature of

140 K. The GaAs-based material system has several disadvantages compared to InP-

based material systems. Together with the smaller conduction band offset which in-

creases the electron leakage, the GaAs substrate has a larger refractive index than the

QCL active region and so cannot be used as a waveguide cladding layer as in InP-

based QCLs. This means specially designed plasmon-enhanced waveguides must be

used [23]. Another disadvantage is the fact that GaAs has a lower thermal conductiv-

ity than InP and so GaAs-based lasers have less ability to dissipate heat away from the

active region. Despite these disadvantages, room temperature pulsed mode emission

has been achieved in MIR GaAs-based 3QW QCLs with Al0.45Ga0.55As barriers. The

larger Al content increases the band offset to 390 meV and hence reduces the electron

leakage at higher temperatures [24]. To further increase the conduction band offset,
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AlAs barriers have also been used. This increases the band offset to ∼ 1 eV, although

it also introduces indirect states in the barrier material as the conduction band min-

imum is at the X point of the Brillouin zone and the resulting intervalley scattering

is thought to be detrimental to device performance. Even so, QCLs with AlAs bar-

riers have been realised emitting at 11.4 and 11.8 µm [25, 26]. These lasers exhibit

better thermal properties than GaAs-based QCLs with AlGaAs barriers, in particular

threshold currents which are less sensitive to temperature [25].

Although it is very unlikely that GaAs-based QCLs will ever match the per-

formance levels InP-based QCLs in the MIR, GaAs-based QCLs have proven ex-

tremely successful in the THz frequency range. The first THz QCL was in the

GaAs/Al0.15Ga0.85As material system [9] and since then THz QCLs in this material

system have reported in the frequency range 1.2 – 4.9 THz [27, 28] (and down to 830

GHz with the assistance of a magnetic field [29]).

1.4.3 InAs/AlSb QCLs

Another material system that has attracted large amounts of interest for the develop-

ment of short wavelength QCLs is InAs/AlSb grown on InAs substrates. This ma-

terial system has a very large conduction band offset of 2.1 eV which lends itself to

short wavelength emission. However there are some difficulties with this material

system. The large band offset neccesitates the use of very thin barriers but the lack of

a common atom at the interfaces makes growth difficult. This material system is also

not as well studied as InP- and GaAs-based technologies and so there is some uncer-

tainty about thematerial parameters which makes the design andmodelling more dif-

ficult. Early devices suffered from very large threshold current densities and the lack

of a suitable waveguide. Recently, the development of an optical waveguide utilising

InAs/AlSb spacer layers together with InAs plasmon layers has led to the realisation

of λ ∼ 3.3µm devices working up to 400 K in pulsed mode [30] and devices operat-

ing at wavelengths as short as 2.75µm at 80 K [31] (the current quantum cascade laser

‘world record’ shortest wavelength). The potential for even shorter wavelength emis-

sion has also been confirmed by the observation of room temperature intersubband
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emission at λ ∼ 2.5µm [32].

1.5 Fabrication

1.5.1 Molecular beam expitaxy

The main growth technique of QCLs is molecular beam epitaxy (MBE) which was de-

veloped in the early 1970s [33] and can produce high-quality layers with abrupt inter-

faces and tight control of the layer thickness, doping level and concentration. In order

to obtain high-purity layers, thewhole process takes place in an ultra-high vacuum en-

vironment. In solid source MBE, ultra high purity elements (such as gallium, arsenic

and aluminium) are heated in cells separated from the main growth chamber until

they sublime. Inside the main growth chamber, the target substrate wafer is heated

and rotated. Opening the shutters between the cells and growth chamber allows the

gaseous elements to condense onto the substrate, where, in the case of gallium and

arsenic, they will react to form GaAs [34].

An important point is the slow growth rates which allow the films to grow epitax-

ially and follow the crystal structure of the substrate. Since the shutters can be con-

trolled in a fraction of a second, the slow growth rates mean that atomically abrupt

interfaces between layers of different materials (e.g. GaAs and AlGaAs) can be pro-

duced. This fact is what allows the complex alternating layered structure of QCLs to

be grown using MBE.

1.5.2 Metal-organic vapour phase epitaxy

An alternative growth technique is metal-organic vapour phase epitaxy (MOVPE)

which is also know as metal-organic chemical vapour deposition (MOCVD) [35]. Sim-

ilarly to MBE, it allows the epitaxial growth of high-quality layers with precise control

of the thickness and composition. In contrast to MBE, which is a physical deposition

method, in MOVPE layers are deposited through chemical reactions on the surface of

the heated substrate. This does not take place in a vacuum, but in a gaseous environ-

ment at moderate pressures [34].
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1.6 Potential applications of QCLs

The fact that QCLs emit from the near- to the far-infrared makes them ideal candidates

as radiation sources in a wealth of applications in this wavelength range. The major-

ity of chemical compounds have fundamental vibrational modes in the wavelength

range from 3 to 15 µm. This means the detection of various chemicals such as CO2,

CH4, NH3, N2O, SO2 and HNO3 is possible which has many important applications

in the detection of pollutants, the monitoring of industrial processes, chemical foren-

sics, the detection of chemical and biological warfare agents and non-invasive medical

diagnostics. There are also two ‘atmospheric windows’ between 3 and 5 µm and 8 and

12 µm offering the possibility of remote sensing and detection as well as wireless op-

tical communication links. There is also a possibility that in the future, QCLs may be

developed which are compatible with the optical fibre wavelengths 1.3 and 1.55 µm.

There are a wealth of possible applications in the THz region. Before the advent

of THz QCLs, there was a distinct lack of compact, low-consumption, solid-state THz

sources and led to a ‘terahertz gap’ in the EM spectrum, between microwave and

millimetre wave technologies and optical systems. THz applications are based around

imaging which have the possibility of replacing harmful X-rays with harmless T-rays.

These THz imaging applications include medical imaging (particularly in the field of

oncology), dental imaging (i.e. detection of cavities and tooth decay) and security (i.e.

airport scanners). For more details, see for example [36].

1.7 Thesis structure

Following this introductory chapter which has introduced the fundamental concepts

of QCLs to give the reader a solid platform from which to understand the remainder

of the thesis, Chapter 2 focusses on the types of optical waveguides that are used

in QCLs. After outlining the development of a one-dimensional optical waveguide

solver based on a transfer matrix technique, the optical properties of semiconductors

are discussed before analysing the various optical waveguiding schemes that are used

in the MIR and THz.
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Chapter 3 explains the importance of the device temperature and how it affects

performance. The thermal properties of semiconductors are discussed and then the

development of a multi-dimensional thermal model of heat diffusion in QCLs based

on finite-differences is outlined. This thermal model is then used in Chapter 4 to study

the transient thermal behaviour of InP-based MIR QCLs, and in Chapter 5, the model

is used to investigate the thermal properties of both MIR and THz QCLs under cw

operation. In Chapter 6, the self-consistent scattering rate model developed in Leeds is

outlined and adapted in order to investigate the carrier dynamics in short-wavelength

InGaAs/AlAsSb QCLs.

Finally, conclusions are drawn and possible avenues for furtherwork are discussed

in Chapter 7.
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Chapter 2

Quantum cascade laser optical

waveguide analysis

2.1 Introduction to optical waveguides

The optical waveguide is an integral aspect of a semiconductor laser and serves the

purpose of confining as much of the optical mode as possible inside the active region

in order to increase the photon density and promote stimulated emission. In typical

interband semiconductor laser diodes which emit from the blue to near-infrared ar-

eas of the EM spectrum, optical confinement is provided through standard dielectric

slab waveguides with refractive index mismatches and the light is contained in the

layer with the highest refractive index through total internal reflection (TIR). In longer

wavelength QCLs this approach is not viable since the large thicknesses of waveguide

layers that are required in order to confine a sufficient amount of the optical mode

inside the active region are not readily achievable through current growth techniques.

Therefore several QCLwaveguiding schemes have been developed for use at different

wavelengths.

The optical waveguide described above provides optical confinement in the

growth direction and typically lateral confinement is provided through the use of

ridge structures. As well as providing optical confinement, a ridge structure also con-

fines the electrical current. Although in principle a planarised structure could be used

in collaboration with a gain-guiding approach to confine the optical mode, this is not

23



2.1. Introduction to optical waveguides 24

favoured due to the strong anisotropy of the active region electrical conductivity [1].

Typically the facets of the laser cavity are formed by simply cleaving the semicon-

ductor crystal and, as in all lasers, (Fresnel) reflections between the facets allows the

radiation to make multiple passes of the gain medium until it is amplified enough to

balance the waveguide losses. When this condition is satisfied, laser action can com-

mence.

To achieve laser action, the modal gain GM must therefore be larger than the total

losses and from Eqn. 1.19 it can be seen that GM can be increased by having a large

overlap factor Γ. Any optical waveguide must therefore confine as much of the optical

mode inside the gain medium as possible while minimising the losses. As already

shown in Eqn. 1.22, the laser threshold current density can be calculated using

Jth =
αM + αW

gΓ
. (2.1)

By inspecting the above equation it is also apparent that a ‘good’ waveguide design

(i.e. large Γ, small α) will also bring about a smaller threshold current density for a

given gain coefficient g. This is not only useful from a power consumption standpoint,

but as will be discussed in further detail in Chapter 3, it will also cause a lowering of

the active region temperature and therefore an improvement in device performance.

This chapter first outlines the development of a QCL optical waveguide solver. Fig.

2.1 shows a typical cross section of a QCL ridge waveguide. It is apparent from the

Figure 2.1: Schematic cross section of a typical QCL ridge waveguide showing a one-

dimensional TM mode profile.

figure that a QCL waveguide is a two-dimensional structure, in this work however, a

one-dimensional approximation is used. This approximation is valid when the ridge
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width is much larger than the emissionwavelength, as generally is the case with QCLs

[2].

2.2 One-dimensional optical waveguide solver

2.2.1 Transfer matrix method

The geometry of a one-dimensional multilayer dielectric waveguide is shown in Fig.

2.2. For a transverse electric (TE) mode propagating in the+z direction in the ith layer

x
0

x
1

x
2

n
M

n
M-1

x

z

x
M-1

n
2

n
1

n
0

Figure 2.2: Geometry of a multilayer dielectric waveguide

(xi−1 ≤ x ≤ xi) of thickness di which has a constant refractive index ni and perme-

ability µr = 1, the electric field is given by the product of a plane wave propagating

in the +z direction with a propagation constant γ (γ = β + jα, where β and α are

the phase and attenuation propagation constants respectively) modulated by an am-

plitude Eyi(x). The electric field distribution has the form

Eyi(x) = Ai exp[−κi(x− xi−1)] +Bi exp[κi(x− xi−1)] (2.2)

where κi =
√

γ2 − k2
0n

2
i are the complex transverse wavevectors, k0 = 2π/λ0 and λ0 is

the free-space wavelength. In order to calculate the waveguide parameters, a transfer-

matrix method (TMM) has been adopted. This method is relatively easy to implement

and allows one to calculate the waveguide parameters for a waveguide with a arbi-

trary number of layers, each with different material parameters. The transfer matrix

of the ith layer is given by (see Appendix B for a full derivation):
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Qi =
ǫi

2ǫi+1







[

1 + fi
κi

κi+1

]

exp[−κidi]
[

1− fi
κi

κi+1

]

exp[κidi]
[

1− fi
κi

κi+1

]

exp[−κidi]
[

1 + fi
κi

κi+1

]

exp[κidi]







For a TE mode, fi = 1 and for a Transverse Magnetic (TM) mode, fi = ǫi+1/ǫi [3].

Following the intersubband selection rules, QCLs emit radiation in a TM mode and

therefore this chapter will concentrate on the fundamental TM mode. The transfer

matrix of the entire waveguide is from

Qwg =
0
∏

i=M−1

Qi. (2.3)

The field coefficients of the first and last layer can then be related using Qwg.







AM

BM






= Qwg







A0

B0













AM

BM






=







q11 q12

q21 q22













A0

B0







where qij are the elements of the waveguide transfer matrix Qwg. For guided modes,

the fields must be evanescent and therefore A0 and BM must be zero. All the coeffi-

cients are proportional to B0 and it is set to unity to normalise the field distribution.

From the above equations it can be seen that a guided mode solution exists when

q22 = 0. This leads to the dispersion equation for the waveguide which is solved

numerically to determine the propagation constant γ

q22(γ) = 0. (2.4)

2.2.2 Steepest descent method

Finding the value of γ that makes q22 = 0 involves finding the roots of a complex func-

tion. Fig. 2.3 shows the complex plane of q22 for a MIR GaAs-based QCL waveguide
1.

Generally, a QCL waveguide supports more than one mode and each of these is repre-

sented by a root (i.e. the bottom of the one of the ‘valleys’) in Fig. 2.3. After inspecting

Fig. 2.3 it becomes clear that finding the roots of a complex function is more difficult

1The complex plane of all QCL waveguides has the same general shape.
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Figure 2.3: Complex plane of q22 for a QCL waveguide. Each of the waveguide modes is

found at the bottom of each ‘valley’.

than finding the roots of a standard purely-real function. This problem can be thought

of as finding the lowest point on hilly terrain, where the terrain is analogous to the

complex plane. The fundamental mode is generally the one of interest and this is the

one with the highest value of β/k0 (which is the effective mode index n). In order to

find these complex roots, a ‘steepest descent’ method is used. Fig. 2.4 outlines this

method. Following an initial guess, the values of q22 are found at the surrounding

β

α

Figure 2.4: The ‘steepest descent’ method. The solid circles represent the lowest values

and the open circles represent the surrounding points.
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points in the complex plane. Whichever is the lowest point becomes the next central

point and the process is repeated until the central point is the lowest value. Once the

root has been found, the step length is reduced until the lowest point is found once

again. This is repeated until the root, and hence γ, is found to the required degree

of accuracy. In order to find the correct root, i.e. the fundamental waveguide mode,

an appropriate initial guess must be made. This is achieved by suggesting a suitable

value of n. It will be shown in later sections that n can be thought of as an ‘average’ re-

fractive index of the waveguide and due to the III-V semiconductors having refractive

indexes in the range ∼3–3.8, any value in this range will converge to the fundamental

waveguide mode. Higher-order modes have smaller effective mode indexes and so if

one is interested in a higher-order waveguide mode, reducing the value of the initial

guess of n will result in one of the higher-order modes being found.

2.2.3 Calculation of waveguide parameters

Once γ (= β+α) has been determined, the waveguide parameters can be determined.

The effective mode index of thewaveguidemode is given determined by the the phase

propagation constant β

n =
β

k0
. (2.5)

The waveguide loss αW is given by

αW = 2α (2.6)

and the waveguide mirror losses can be calculated from

αM =
1

L
ln(R) (2.7)

where L is the cavity length and R is the Fresnel reflection coefficient at the semicon-

ductor/air interface

R =

(

n− 1

n+ 1

)2

. (2.8)

In order to find the mode overlap factor Γ, Ey(x) must be plotted using Eqn. B.3.

Up to this point, all the individual values of Ai and Bi have not needed to be known,

however to plot the mode profile, these values must be known and can be found using

the relation
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





Ai

Bi






=

0
∏

j=i−1

Qj







0

1







Once the A and B coefficients have been found, Ey(x) can be plotted and Γ found

using

Γ =

∫ d
0 |Ey(x)|2dx

∫ +∞
−∞ |Ey(x)|2dx

(2.9)

where d is the width of the waveguide active region.

2.3 Optical properties of materials

2.3.1 Complex dielectric constant

Semi-insulating semiconductors

It is clear from the previous section that the waveguide properties are primarily deter-

mined by the individual layer thicknesses di and the refractive indices ni (and hence

the dielectric constants, ǫ = n2) of the layers. In general, the dielectric function of a

semiconductor is dispersive and complex.

ǫ(ω) = ǫr(ω) + iǫi(ω) (2.10)

where ω = 2πf = 2πc/λ, f is the frequency, λ is the wavelength and c is the speed

of light in a vacuum. Therefore the refractive index is also complex and frequency

dependent

n′(ω) = n(ω) + ik(ω) =
√

ǫ(ω) (2.11)

where n is the ordinary (real) refractive index and k is known as the extinction coeffi-

cient. The real and imaginary parts of the dielectric constant can be described in terms

of the real and imaginary parts of the refractive index

ǫr = n2 − k2 (2.12)

and

ǫi = 2nk. (2.13)
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Similarly, the real and imaginary parts of the refractive index can be described in

terms of the real and imaginary parts of the dielectric constant

n =

√

√

√

√

√

ǫ2r + ǫ2i + ǫr

2
(2.14)

and

k =

√

√

√

√

√

ǫ2r + ǫ2i − ǫr
2

. (2.15)

The absorption coefficient of the semiconductor is intrinsically linked to the extinction

coefficient and is calculated from [4]

α =
4π

λ
k. (2.16)

In the infrared region of the EM spectrum, the complex dielectric constant of semi-

conductors can be explained by a damped harmonic oscillator model [4]

ǫ(ω) = ǫ∞

(

1 +
ω2
LO − ω2

TO

ω2
TO − ω2 − iωγ

)

(2.17)

where ǫ∞ is the high frequency dielectric constant, ω2
LO and ω2

TO are the long-

wavelength LO and transverse-optical (TO) phonon frequencies respectively and γ

is the phonon damping constant. Table 2.1 lists the values used in Eqn. 2.17 for the

important III-V semiconductor binaries [4, 5]. The dispersion relations for the material

Material ǫ∞ ωLO (cm
−1) ωTO (cm

−1) γ (cm−1)

GaAs 10.89 292.1 268.7 2.4

AlAs 8.48 401.5 361.8 8

InAs 12.25 240 218 4

InP 9.61 345.0 303.7 3.5

Table 2.1: Binary material parameters used in the damped single harmonic oscillator

model

in Table 2.1 are shown in Fig. 2.5

The dispersion that can be seen in the figures is caused by the EM field at these

frequencies (called the Reststrahlen region) interacting with fundamental lattice vi-



2.3. Optical properties of materials 31

0 20 40 60 80 100
λ [µm]

-150

-100

-50

0

50

100

150

R
e[

ε(
λ)

]

AlAs
GaAs
InAs
InP

√ε∞

√ε
s

(a) ℜǫ(λ)

0 20 40 60 80 100
λ [µm]

10
-6

10
-4

10
-2

10
0

10
2

Im
[ε

(λ
)]

AlAs
GaAs
InAs
InP

(b) ℑǫ(λ)

Figure 2.5: Dispersion relations of important III-V binaries showing the (a) real and (b)

imaginary parts of the complex dielectric constant.

brations. This results in the absorption or emission of EM waves due to lattice vibra-

tions being annihilated or created and also scattering of the EMwave due to the lattice

vibrations. It is important to see the difference in the refractive index above and be-

low the Reststrahlen region. On the long wavelength side of the Reststrahlen region

(lower frequency) the refractive index is higher and tends towards the root of the static

dielectric constant (ǫs) while on the shorter wavelength side (higher frequency) the re-

fractive index is lower and tends towards the root of the high frequency dielectric

constant (ǫ∞). The difference in the dielectric constants is due to different polarisation

mechanisms that come into play at different frequencies. At frequencies below the

Reststrahlen band (far-infrared) the phase velocity is determined by both electronic

and ionic polarisation, however, above the Reststrahlen band at optical frequencies,



2.3. Optical properties of materials 32

ionic polarisation is too slow to respond to the EM field and hence the phase velocity

is determined by only electronic polarisation and is therefore larger. Given that the

refractive index can be defined as n = c/v (where v is the phase velocity), a larger

phase velocity results in a lower refractive index.

Fig. 2.6 shows the absorption coefficient of the important III-V binaries calculated

using the values in Table 2.1 and Eqn. 2.16. It can be seen that the absorption is
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Figure 2.6: Absorption coefficient of the important III-V binaries in the vicinity of the

Reststrahlen region.

very strong around the Reststrahlen region due to interaction of the EM wave with

fundamental lattice vibrations and prevents laser emission at wavelengths around the

phonon energies in the semiconductor.

The dielectric constants of the III-V ternary alloys display two-mode behaviour

associated with the constituent binary materials. This two-mode behaviour is calcu-

lated by linearly interpolating between dielectric constants of the relevant binaries

(i.e. Abele’s interpolation (Appendix C) with the bowing parameter equal to zero).

The dispersion relations of the important III-V ternaries (In0.53Ga0.47As, In0.52Al0.48As

and Al0.45Ga0.55As) are shown in Fig. 2.7. The GaAs-, InAs- and AlAs-like phonon

like modes are highlighted on the figures. The absorption coefficient for the ternaries

as a function of wavelength is shown in Fig. 2.8.
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Figure 2.7: Dispersion relations of important III-V ternaries showing the (a) real and (b)

imaginary parts of the complex dielectric constant.
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Figure 2.8: Absorption coefficient of the important III-V ternaries in the vicinity of the

Reststrahlen region.

Doped semiconductors

Eqn. 2.17 is valid for semi-insulating semiconductors, but if the semiconductor is

doped, the equation must be modified to take into account plasma contributions to

the dielectric constant from the free carriers

ǫ(ω) = ǫ∞
(

1 + ǫphonon − ǫplasma
)

. (2.18)

The total relation for the dielectric constant then reads

ǫ(ω) = ǫ∞

(

1 +
ω2
LO − ω2

TO

ω2
TO − ω2 − ωγ −

ω2
p

ω(ω + ωa)

)

(2.19)
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and is known as the Drude-Lorentz model. ωp is the plasma frequency and ωa is the

plasma damping constant2. The plasma frequency is calculated by

ωp =

√

Ndq2

ǫ0ǫ∞m
(2.20)

where Nd is the concentration of the free carriers, q is the charge of an electron, ǫ0 is

the permittivity of free space and m is the mass of an electron in the semiconductor

(m = m∗m0, where m
∗ is the effective mass and m0 is the electron rest mass). The

plasmon damping constant is calculated using [3]

ωa =
q

mµ
(2.21)

where µ is the electronmobility. The effective masses of the important semiconductors

used in QCLs are listed in Table C.1.

A resonant semiconductor plasma can be defined as a material with Re[ǫ(ω)]=0.

Considering just the plasma contributions to the dielectric constant

ǫr(ω) = ǫ∞

(

1−
ω2

p

ω2 + ω2
a

)

(2.22)

and

ǫi(ω) = −
ǫ∞ωaω

2
p

ω(ω2 + ω2
a)
. (2.23)

For the case when ω ≫ ωa,

ǫr(ω) = ǫ∞

(

1−
ω2

p

ω2

)

(2.24)

and the semiconductor is a resonant plasma (i.e. Re[ǫ(ω)]=0) when ω = ωp. If the effect

of ωa is taken into account, Eqn. 2.22 equals zero when

ω =
√

ω2
p − ω2

a. (2.25)

Defining
√

ω2
p − ω2

a as ω0, when ω < ω0, Re[ǫ(ω)]< 0 and the electron gas in the plasma

exhibits metallic behaviour. When ω > ω0, Re[ǫ(ω)]> 0 and the electron gas in the

plasma exhibits dielectric behaviour.

2It should be noted that ωa is the inverse of the electron momentum relaxation time τ .
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Free-carrier absorption

Free-carrier absorption in semiconductors is caused by electrons undergoing transi-

tions in any one energy band and is the primary loss mechanism in QCLs waveguides

(i.e. electrons in the conduction band). Free carrier absorption is calculated using

Eqns. 2.16 and 2.13

αfc =
4π

λ
k =

ωǫi
cn

. (2.26)

When ω > ωp, the Drude scattering time is generally long enough such that ω ≫ ωa

and Eqn. 2.23 reduces to

ǫi(ω) = −
ǫ∞ωaω

2
p

ω3
. (2.27)

Inserting this into Eqn. 2.26 and remembering n =
√
ǫ gives

αfc =
ǫωaω

2
p

ω2c
√
ǫ
. (2.28)

Substituting in Eqns. 2.20 and 2.21 and converting to wavelength using ω = 2πf gives

αfc =
Ndq

3√ǫλ2

4π2c3m2ǫ0µ
. (2.29)

It can be seen that in the first approximation, the free carrier losses (and hence the

waveguide losses) are proportional to λ2. However, this relationship breaks down as

the emission wavelength approaches the plasma wavelength and/or when ωa is com-

parable in magnitude to ω. It is also apparent that the losses are directly proportional

to the doping density and inversely proportional to the electron mobility. To compli-

cate matters further, the electron mobility is a function of both doping density and

temperature.

2.3.2 Electron mobility

In this work, a Caughey–Thomas-like mobility model is used [6]. This is an empirical

model in which parameters for a variety of III-V semiconductors have been fitted to a

wide range of experimental data over a range of doping concentrations and tempera-

tures. The mobility in this model is expressed as

µ(Nd, T ) = µmin +
µL − µmin

1 +
(

Nd

Nref

)γ3
(2.30)
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where µmin is the value that the mobility saturates to at very high doping which is

temperature independent and µL is the contribution to the mobility from lattice scat-

tering and is given by

µL = µ300
L

(

T

300

)γ1

(2.31)

and Nref is given by

Nref = N300
ref

(

T

300

)γ2

. (2.32)

Table 2.2 lists the fitting parameters for the main semiconductor materials used in

QCLs. To test the validity of the model, it was used to calculate the effect of doping on

Material µ300
L [cm2/Vs] γ1 µmin N300

ref [cm
−3] γ2 γ3

GaAs 9400 -2.2 950 1×1017 5.5 0.5

AlAs 410 -2.1 10 5.5×1017 3 1

InP 5800 -1.9 400 4× 1017 5.4 0.5

In0.53Ga0.47As 14000 -1.59 300 1.3 × 1017 3.68 0.48

In0.52Al0.48As 4800 -1.46 800 3× 1016 3 1.10

Table 2.2: Fitting parameters for the mobility model

the mobility for multiple GaAs samples at 77 and 300 K. The results of the simulation

and the experimentally measured values3 are displayed in Fig. 2.9. The good fit be-

tween the simulated and experimentally measuredmobility values is clearly shown in

the figure. The mobility reduces as the doping density increases due to the increased

influence of ionised impurity scattering at higher doping levels. At very low doping

concentrations, themobility saturates at µL, which is the lattice-limitedmobility which

is shown in figure 2.10 along with the effect of temperature on the mobility of GaAs

for a series of doping concentrations. At low temperatures the mobility is primarily

determined by ionised impurity scattering, whilst at high temperatures, the mobility

is determined by phonon scattering and saturates at the lattice-limited mobility re-

gardless of the doping density. Fig. 2.11 shows the variation of electron mobility with

3Thanks to Prof. Edmund Linfield and Suraj P. Khanna for supplying the experimentally measured

values for the GaAs samples.
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Figure 2.9: GaAs electron mobility as a function of doping density. The solid symbols are

experimentally measured values and the lines are the result of the model.

doping density at T = 300 K for the QCL materials listed in Table 2.2.

2.3.3 Complex refractive index

By following the previous sections it should be apparent that the complex refractive

index is determined by the EM field interacting with both phonons and the free carri-

ers (plasma). The interaction with phonons is inherent to the material system whilst

interaction with the free carriers is determined by the plasma frequency (which is

dependent upon the doping density) and the plasma damping frequency (which is

dependent upon the electron mobility). It has been discussed how the mobility is also

dependent upon doping density so it follows that for a particular material, the com-

plex refractive index at a particular wavelength is dependent upon only the doping

density and temperature (through the mobility).

To calculate the complex refractive index for a given doping density in a particular

material, the plasma frequency is first calculated using Eqn. 2.20. The mobility is then

estimated using the Caughey–Thomas-like mobility model in Sec. 2.3.2 (for a given

temperature). The plasmon damping constant can then be calculated using Eqn. 2.21

and the complex dielectric constant obtained from the Drude–Lorentz model (Eqn.

2.19) from which the complex refractive index is simply the root of this.

The complex refractive index of GaAs was calculated using the above procedure

at 300 K as a function of wavelength for various doping densities. The real part of
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the refractive index and the free carrier losses are plotted in figure 2.12. It can be seen

from Fig. 2.12(a) that strong dispersion occurs around the Reststrahlen region due

to interaction with phonons for all values of doping density. There is also additional

dispersionwhich occurs at different wavelengths depending upon the doping density.

The wavelength at which this occurs is actually the plasma wavelength. The plasma

wavelength for GaAs as a function of doping density is plotted in Fig. 2.13. Each of

the dispersions in Fig. 2.12(a) can be explained by finding the corresponding plasma

wavelength for each doping density in Fig. 2.13. As discussed in Sec. 2.3.1, when the

wavelength is equal to the plasma wavelength, the real part of the complex dielectric

constant is approximately equal to zero which strongly reduces the real part of the

refractive index4.

Fig. 2.12(b) shows that in general, the free carrier losses increase with doping den-

sity and also with wavelength. Eqn. 2.29 predicts that the loss increases with λ2 and

Fig. 2.12(b) confirms this is true up to ∼ 20µm (i.e. the straight lines on the figure). It

can be seen that close to and above the Reststrahlen region, this relation breaks down,

especially at higher doping densities. The reason for this is two-fold. Firstly, (as shown

by the dashed line in Fig. 2.12(b)) it breaks down when the wavelength is longer than

4As seen in Fig. 2.12(a), the real part of the refractive index does not actually go to zero. This is due to

the real part of the refractive index also having a contribution from the imaginary part of the dielectric

constant (Eqn. 2.14) which is non-zero at the plasma wavelength.
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Figure 2.11: Electron mobility as a function of (a) doping density at T = 300 K and (b)

temperature atNd = 1×1017 cm−3 for the important QCL III-V semiconductors at T = 300

K.

the plasma wavelength invalidating the approximation ω > ωp used in the derivation

of Eqn. 2.29. Secondly, the mobility decreases as the doping density increases leading

to an increase in ωa. This causes the approximation ω ≫ ωa used in the derivation of

Eqn. 2.29 to become less valid especially when ω is smaller i.e. when λ is larger.

Fig. 2.14(a) shows the real part of the refractive index of GaAs doped to 1 × 1017

cm−3 as a function of wavelength at different temperatures. It can be seen that for

wavelengths less than ∼ 50µm, the real part of the refractive index is independent of

temperature. For these wavelengths ω ≫ ωa and therefore Eqn. 2.19 is less sensitive

to changes in temperature (which changes the mobility and hence ωa). As the wave-

length increases (and hence ω decreases), Eqn. 2.19 becomesmore sensitive to changes

in ωa. From Figs. 2.14(a) and 2.10 it can be seen that the change in refractive index is

larger for temperatures where the mobility is large.

Fig. 2.14(b) shows that the free carrier losses are larger for temperature with

smaller mobilites, which is also shown in Eqn. 2.29. However, as before this relation-

ship breaks down when the wavelength becomes larger than the plasma wavelength

(∼ 90µm at a doping density of 1× 1017 cm−3).
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Active region refractive index

The model presented in the previous sections is valid for bulk semiconductors. How-

ever, as discussed in Chapter 1, the active region and injector stack of a QCL are made

up of semiconductor superlattices. The quantum confinement properties that arise

from the superlattice affect the mobility of the two-dimensional electron gas (2DEG)

in the QCL. This effect would be very difficult to model and therefore for simplicity,

the refractive index of the QCL-active region/injector stack is modelled as a linear in-

terpolation between the refractive indices of the constituent alloys according to their
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Figure 2.14: (a) Real part of refractive index and (b) free carrier losses as a function of

wavelength at different temperatures at a doping density of 1× 1017 cm−3.

respective fractions.

nAR = xnwell + (1− x)nbarrier (2.33)

where x is the fraction of the well material with refractive index nwell and nbarrier is the

refractive index of the barrier material 5.

With regards to the active region/injector region doping density, in general only a

few wells/barriers in the injector region are doped. To model this, the doping density

is averaged out across the entire active region stack. The active region doping density

is calculated from the sheet doping density (Ns) by

Nd =
Ns

Ld
(2.34)

whereLd is the length of the doped regions. It follows that the effective doping density

(Nd) is given by

Nd =
NdLd

Lp
=
Ns

Lp
(2.35)

where Lp is the length of the period.

5In the case of GaAs-based QCLs with GaAs wells and AlxGa1−xAs barriers it follows that the active

region is considered as purely AlxGa1−xAs with an effective value of x determined by the Al content of

the barrier and the ratio of the total length of the barriers to the period length
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2.3.4 Dielectric constant of metallic layers

As well as semiconductor layers, QCL waveguides also contain metallic layers, gen-

erally used as electrical contact layers. The complex dielectric constant of a metal is

described by the plasma contribution in the Drude model. Table 2.3 lists the values of

ωp and ωa for various metals [5, 7, 8].

Metal Au Pd Ag Cu

ωp (eV) 9.03 9.72 9.01 10.83

ωa (meV) 53.0 8.0 48.0 30.0

Table 2.3: Values of ωp and ωa for various metals

Unfortunately, due to a lack of data in the literature, the effect of temperature on

the optical properties of metals is ignored in this work and room temperature values

are used in all cases.

2.4 Mid-infrared QCL optical waveguide analysis

This section combines the theory set out in Secs. 2.2 and 2.3 to analyse the different

QCL waveguiding schemes that are used in the MIR. Generally, the particular scheme

that is employed is determined by the material system that is being used and the

wavelength of interest.

2.4.1 Plasmon-enhanced waveguides

Dielectric waveguides are obvious choices if the particular material system provides a

sufficiently large refractive index mismatch between the high refractive index waveg-

uide core containing the QCL-active region and injector stack and the lower refrac-

tive index waveguide cladding layers. InP has a refractive of ∼ 3.1 and hence pro-

vides natural cladding layers for the InGaAs/InAlAsQCL-active region/injector stack

(n ∼ 3.3, dependingupon the respective fractions). Since the InP substrate can provide

lower cladding, the time for the MBE growth can be significantly reduced. The upper
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cladding can either be formed by InP or by low-refractive index InAlAs (n ∼ 3.2).

On top of the QCL waveguide, a metal layer is deposited to form the top elec-

trical contact. If the optical mode couples to the surface-plasmon at the metal–

semiconductor interface (see next section for more details) additional waveguides

losses are introduced. It would be possible just to increase the thickness of the upper

cladding layer to reduce this coupling but this would also increase the MBE growth

time. To alleviate this problem, ‘plasmon-enhanced’ waveguides were developed [9].

A schematic diagram of a plasmon-enhanced waveguide is shown in Fig. 2.15. In this
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Figure 2.15: Schematic diagram of a plasmon-enhanced waveguide.

type of waveguide, a highly doped (n++) semiconductor layer (InGaAs) is grown on

top of the upper InAlAs cladding layers. As discussed previously, when the doping is

high enough, the plasma wavelength of the n++ layer approaches the wavelength of

the waveguide mode and there is a resulting strong decrease in the refractive index of

the layer, increasing the optical confinement and reducing the overlap with the lossy

metal contact layer.

Waveguide parameters

Fig. 2.16 shows the profile of the fundamental TM mode in a λ ∼ 8.4µm InP-based

QCL with a plasmon-enhanced waveguide [9]. The figure shows the calculated over-

lap of the the optical mode with the active region to be Γ = 0.41 and an effective mode

index of N = 3.22. These are in excellent agreement with the values of Γ = 0.41 and

N = 3.25 in Ref. [9]. Fig. 2.17 shows the refractive index profile and the waveguide
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Figure 2.16: TM mode profile in a λ ∼ 8.4µm InP-based QCL with a plasmon-enhanced

waveguide.

structure and the free-carrier losses associated with the waveguide layers. It can be
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Figure 2.17: (a) Refractive index profile of the structure and (b) free carrier losses in each

of the waveguide layers.

seen from Fig. 2.17(a) that the refractive index of the n++ layer is strongly reduced

which enhances the optical confinement and keeps the optical mode away from the

highly-lossy top metal layer (Fig. 2.17(b)). At 300 K, the waveguide loss αW is calcu-

lated to be 16.5 cm−1, of which 13.1 cm−1 is associated with the n++ layer (the layer

has a loss of∼ 6400 cm−1 and an overlap of 0.002 with the optical mode). Even though

the metal layer has a loss of 7×105 cm−1 at this wavelength, the reduced refractive in-

dex of the n++ layer prevents any of themode overlappingwith themetal, eliminating
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the losses.

Estimation of the threshold current density

When the waveguide parameters have been calculated it is possible to estimate the

threshold current density Jth from Eqn. 1.22. In Ref. [9], g was calculated to be

5.7 × 10−2 cm/A at 10 K and 2.4 × 10−2 cm/A at 100 K. Jth was then estimated (with

αm = 7.8 cm−1 and αm = 9.8 cm−1 for 1.3 mm long cavity) to be 0.7 kA/cm2 at 10 K

and 1.7 kA/cm2 at 100 K. These are not in good agreement with the measured values

of 2.1 and 2.8 kA/cm2 at 10 and 100 K respectively. An underestimation of the waveg-

uide losses was given as a possible reason for the discrepancy. Table 2.4 outlines the

calculated waveguide parameters in Ref. [9] and this work and the corresponding es-

timated values of Jth. High resolution spectra of the QCL at 10 K and 100 K reveal the

waveguide modes are at ∼ 8.3µm and ∼ 8.4µm respectively. The results displayed

Parameter Ref. [9] This work Measured

T [K] 10 100 10 100 10 100

Γ 0.41 0.41 0.41 0.41 - -

αW [cm
−1] 7.8 7.8 29.0 18.8 ‘39.2’ ‘17.8’

αM [cm
−1] 9.8 9.8 9.9 9.9 - -

g [cm/A] 5.7 × 10−2 2.4 × 10−2 - - - -

Jth [kA/cm
2] 0.7 1.7 1.7 2.9 2.1 2.8

Table 2.4: Calculated and experimental results of Jth in a λ ∼ 8.4µm InP-based QCL.

in Table 2.4 show that it is necessary to include the effect of temperature when calcu-

lating the waveguide parameters in order to obtain good agreement with experiment

6.

6The ‘measured’ waveguide losses are obtained using the measured values of Jth and Eqn. 1.22.
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Exclusively InP waveguides

The plasmon-enhancedwaveguide presented here utilises InAlAs upper cladding lay-

ers with a highly-doped InGaAs plasma layer to complete the optical confinement,

but it is also possible to replace these layers with lower refractive index InP to im-

prove performance7. Once the QCL-active region/injector has been grown on the InP

substrate using MBE, the wafer is transfered to a MOCVD chamber to overgrow with

InP.

When designing and optimising QCL waveguides, it is useful to define a figure of

merit to compare different structures.

Φ =
Γ

αW
. (2.36)

This figure of merit should then be maximised to obtain optimum performance and

can be used to compare different waveguide designs. The figure of merit was cal-

culated as a function of temperature for the same layer structure as in Fig. 2.15 but

with the upper cladding layers replaced by InP. The results are displayed in Fig. 2.18

together with the figure of merit for the same structure as in Fig. 2.15 for compari-

son. It can be seen from the figure that exclusively InP-based waveguides display far
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Figure 2.18:Waveguide figure of merit as a function of temperature for InP-based waveg-

uide with upper InAlAs/InGaAs cladding layers (solid line) and exclusively InP-based

waveguide (dashed line).

7Also, as mentioned earlier binary semiconductors have superior thermal properties compared to

ternary materials
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greater optical properties than equivalent InAlAs/InGaAs waveguides. The overlap

factors are approximately the same in both structures (41–43 %) so the increase in per-

formance is due to reduced waveguide losses. It should be noted that the exclusive

InP-based waveguide was not optimised, the InAlAs and InGaAs layers were simply

replaced by InP keeping the same thickness and doping density. If the layer struc-

ture was optimised, even greater levels of performance could be expected. This result

clearly shows that exclusive InP-based waveguides are far better than waveguides

with InAlAs/InGaAs upper cladding layers in terms of their optical performance, and

will also have intrinsically better thermal properties. These advantages are however

weighed against increased complexities in the fabrication process.

2.4.2 Double plasmon-enhanced waveguides

As discussed previously, InP-based QCLs have the natural advantage of low refractive

index cladding layers. However, in the case of GaAs-based QCLs, the GaAs substrate

has a higher refractive index than the QCL-active region/injector stack and therefore

cannot be used as a natural cladding layer. The first GaAs-based QCL [10] utilised

short AlGaAs cladding layers to act as cladding layers on both sides of the active re-

gion/injector stack together with a n++ GaAs upper cladding layer to complete the

optical confinement. However, as well as being lossy, AlGaAs, like all ternary ma-

terials has poorer thermal properties than binary materials. Therefore a new type

of GaAs-based waveguide was developed; the ‘double plasmon-enhanced’ waveg-

uide[11]. A schematic diagram of a double plasmon-enhanced waveguide is shown in

Fig. 2.19.

In these waveguides, both the upper and lower cladding layers are formed from

n++ GaAs layers in which the doping has been carefully chosen so that the plasma

wavelength approaches the wavelength of the waveguide mode as in the case of ‘sin-

gle’ plasmon-enhanced waveguides used in InP-based QCLs. In order to reduce the

waveguide loss, the bulk of the optical mode is separated from the lossy highly-doped

layers by thick low-doped spacer layers. In this particular QCL, the barriers in the QC-

active region/injector stack are made up of Al0.33Ga0.67As and the particular ratio of
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Figure 2.19: Schematic diagram of a double plasmon-enhanced waveguide.

well to barrier widths gives an effective Al0.16Ga0.84As active region.

Waveguide parameters

Fig. 2.20 shows the profile of the fundamental TM mode in a λ ∼ 9µm GaAs-based

QCL with a double plasmon-enhanced waveguide [10, 11]. The figure shows the cal-
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Figure 2.20: TM mode profile in a λ ∼ 9µm GaAs-based QCL with a double plasmon-

enhanced waveguide.

culated overlap of the the optical mode with the active region to be Γ = 0.31 and an

effective mode index of n = 3.21, in perfect agreement with those in Ref. [11]. The

losses at 300 K are calculated to be 16.75 cm−1, in good agreement with the losses of

16 cm−1 in Ref. [11]. Fig. 2.21 shows the refractive index profile and the waveguide

structure and the free-carrier losses associated with the waveguide layers. The doping



2.4. Mid-infrared QCL optical waveguide analysis 49

0 2 4 6 8 10 12
Distance [µm]

2

2.5

3

3.5

n

(a) n

0 2 4 6 8 10 12
Distance [µm]

10
0

10
1

10
2

10
3

10
4

fr
ee

-c
ar

rie
r 

lo
ss

 [c
m-1

]

(b) αfc

Figure 2.21: (a) Refractive index profile of the structure and (b) free carrier losses in each

of the waveguide layers.

in the n++ layer is 6 × 1018 cm−3 which results in a plasma wavelength of ∼ 11.5µm

(Fig. 2.13) which is close to thewaveguidemode (9.5µm) resulting in a strong decrease

in the refractive index which is evident in Fig. 2.21(a). Fig. 2.21(b) shows that these

layers have free-carrier losses of ∼ 1750 cm−1 but they only have a total overlap of

0.007 with the optical mode resulting in them contributing losses of 12.30 cm−1 to the

overall 16.75 cm−1 (73 %).

Waveguide losses

In Ref. [11], the waveguide loss is measured at both 10 K and 77 K and values of

21 cm−1 and 19 cm−1 are obtained respectively. The laser emission wavelength at 77 K

is measured as 8.9 µm, and using the methods outlined in this chapter gives estimated

waveguide losses of 16.9 cm−1 in reasonably good agreement with the experimentally

measured ones. There is no experimental data on the emissionwavelength at 10 K, but

as generally the case with QCLs, there is a red-shift of the wavelength as the tempera-

ture increases. It could therefore be expected that the emission wavelength decreases

from 77 K to 10 K. Fig. 2.22(a) shows the calculated waveguide loss as a function of

emission wavelength. It can be seen from the figure that over this small waveleg-

nth range there is a linear relationship between the loss and emission wavelength as

opposed to the λ2 dependency which is predicted by Eqn. 2.29. It can be seen that
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Figure 2.22: (a) Waveguide loss as a function of emission wavelength for the λ ∼ 9µm

GaAs-based QCL. The dashed line is a linear fit to the data. (b) Waveguide figure of merit

as a function of temperature for the λ ∼ 9µm GaAs-based QCL.

whatever the emission wavelength, the losses are in reasonable agreement with the

experimentally measure ones and are in excellent agreement when λ ∼ 8.55µm.

Waveguide figure of merit

Fig. 2.22 shows the figure of merit for the λ ∼ 9µm GaAs-based QCL with a dou-

ble plasmon-enhanced waveguide as a function of temperature. Comparing the data

in Fig. 2.22 with the data for the InP-based waveguide with upper InAlAs and In-

GaAs layers in Fig. 2.18 it can be seen that the GaAs-based double plasmon-enhanced

waveguide has poorer performance compared to its InP-based counterpart (∼ 20%

lower Φmax). Its maximum value also occurs at a different temperature than the InP-

based waveguides due to the different mobility functions for these materials as shown

in Fig. 2.11. As discussed previously, the confinement factor is found to be constant

with respect to temperature and so the change in the figure of merit is purely down to

the waveguide losses changing with temperature through the mobility.
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2.4.3 Surface-plasmon waveguides

InP-based waveguides

As the emission wavelength increases above λ ∼ 15µm, the required thickness of the

cladding layers in plasmon-enhanced waveguides are at the limits of MBE growth

techniques. Also, since free carrier absorption scales in the first approximation as

λ2 (Eqn. 2.29) optical losses are much larger at longer wavelengths. In order to

circumvent these two issues, waveguides based on surface-plasmons have been de-

veloped [12, 13]. Surface-plasmons are TM EM modes confined to the interface be-

tween materials with opposite signs of dielectric constants. This is typical of a metal–

semiconductor interface below the plasma frequency. As mentioned earlier, surface-

plasmons had earlier been a hindrance to QCL operation in the MIR due to the in-

creased losses associatedwith the surface-plasmon at the boundary between the upper

cladding and top metal contact layers, this is not true however at longer wavelengths

since the loss associated to the surface-plasmon is given as [14]

α =
4πnn3

s

k3λ
(2.37)

where n and k are the real and imaginary parts of the complex refractive index of the

metal and ns is the refractive idnex of the semiconductor.

Fig. 2.23 shows a schematic diagram of the first QCL (λ ∼ 19µm) to utilise

a surface-plasmon waveguide [12]. In surface-plasmon waveguides, thin (∼ 50

3.13 µm

InGaAs contact layers

InGaAs

~50 nm~1x10
20

5x10
16

Active region 3.48x10
16

1 µm

~2x10
17

Au 300 nm

InP
substrate

Figure 2.23: Schematic diagram of an InP-based surface-plasmon waveguide.

nm) highly doped semiconductor contact layers are grown on top of the active re-
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gion/injector stack followed by a metal (usually gold) surface-plasmon carrying layer.

The active region is preceded by a low-doped InGaAs layer on the low-doped InP sub-

strate which acts a natural lower cladding layer.

Waveguide parameters

Fig. 2.23 shows the calculated fundamental TM mode profile of the first surface-

plasmon QCL [12]. The loss and overlap are are calculated to be 85.3 cm−1 and 0.75
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Figure 2.24: Mode profile of the fundamental TM mode of a λ ∼ 19µm InP-based QCL

with surface-plasmon waveguide showing the calculated confinement factor.

at 10 K respectively. These values are in comparison to the published values of 62

cm−1 and 0.81. In the literature, Jth is estimated to be 1.3 kA/cm
2 which is consider-

ably smaller than the measured value of 4.5 kA/cm2 with an underestimation of the

waveguide losses a likely cause. It can be seen that by including the effect of tempera-

ture on the waveguide properties, the estimated waveguide parameters can be moved

closer to what is measured experimentally.

As with all of the waveguides that include a metallic layer, there is uncertainty

over the complex dielectric constant of the layer. In reality, if the dielectric constant

is slightly different and the mode penetrates into this metal layer more than the cal-

culations suggest, the waveguide losses will increase resulting in a higher value of

Jth.
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Waveguide figure-of-merit

Fig. 2.25 shows Φ for the surface-plasmon waveguide as a function of temperature.

The maximum value of 1.6 occurs at 225 K, slightly less than that of the GaAs-based
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Figure 2.25: λ ∼ 19µm InP-based surface-plasmon QCL waveguide figure of merit as a

function of temperature.

double plasmon-enhanced waveguide at 9.4µm and the InP-based plasmon-enhanced

waveguide at 8.4µm, even though the wavelength in this case is approximately double

and therefore the losses can be expected to be of the order of four times larger. This fact

highlights the usefulness of surface-plasmons for providing long wavelength optical

confinement.

GaAs-based waveguides

Since the first surface-plasmon waveguides were reported in the InP-based material

system, the low refractive index InP substrate is used for the lower cladding. How-

ever, as is the case with GaAs-based double plasmon-enhanced waveguides, the GaAs

substrate has a higher refractive index than the core and cannot be used as lower

cladding without being highly doped to reduce the refractive index of the layer. In

order to prevent unacceptably high waveguide losses due to free-carrier absorption,

especially at these longer wavelengths, the active region is separated from the highly

doped substrate by a thick low-doped spacer layer. Fig. 2.26 shows a schematic dia-

gram of a GaAs-based QCL with a surface-plasmon waveguide.
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Figure 2.26: Schematic diagram of a GaAs-based surface-plasmon waveguide.

Waveguide parameters

Due to the close proximity of the emission wavelength to the Reststrahlen region of

GaAs, the Drude-Lorentz model is used to calculate the the dielectric constant. Fig.

2.27 shows the calculated mode profile in the QCL with an effective aluminium frac-

tion of x = 0.07 in the active region/injector stack8 (in this particular QCL, the barriers

were comprised of Al0.35Ga0.65As). The averaged value of doping density is 4.6×1016

cm−3. Γ is calculated to be 0.78, in good agreement with the value of 0.80 in Ref. [15].
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Figure 2.27: Mode profile of the fundamental TM mode of a λ ∼ 23µm GaAs-based QCL

with surface-plasmon waveguide showing the calculated confinement factor.

8It should be noted that at longer wavelengths, the active region of choice is either a chirped super-

lattice or bound-to-continuum design, which typically have thinner barriers and wider wells than 3QW

active regions used in mid-infrared QCLs and hence a smaller effective Al fraction in the active region.
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It is worth pointing out that n at this wavelength is 2.95, which is less than the values

at shorter mid-infrared wavelengths (∼ 3.2) and can be explained by the reduction

of the ǫ(ω) close to the Reststrahlen region (Fig. 2.12(a)) and results in larger mirror

losses.

Waveguide figure-of-merit

Fig. 2.28 shows the figure-of-merit as a function of temperature. The figure of merit
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Figure 2.28: λ ∼ 23µmGaAs-based surface-plasmon QCL waveguide figure of merit as a

function of temperature.

is slightly lower than that of the InP-based waveguide. Since both optical waveg-

uides have similar overlaps, the difference in figure of merit is due to the losses. As

mentioned in previous cases, the increased losses in the GaAs-based devices can be

associated with its longer wavelength.

2.5 THz QCL optical waveguide analysis

This section presents an investigation into the optical properties of the two types of

THz QCL waveguides that are used.

2.5.1 Semi-insulating (double) surface-plasmon waveguides

The first THz QCL which had an emission frequency of 4.4 THz was reported in 2002

[16] and used a new type of optical waveguide. The much larger wavelength of the
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THz QCL (λ ∼ 67µm) compared to the previous largest (λ ∼ 23µm) meant that a

surface-plasmon waveguide would result in a unfeasibly small overlap of the opti-

cal mode with the device active region. The overlap could be increased by using a

thicker action region but THz QCLs tend to have active region thicknesses of the or-

der of 10 µmwhich is already a very demanding task in terms of growth. Therefore a

semi-insulating (or double) surface-plasmonwaveguide (SISP) was used. A schematic

diagram is shown in Fig. 2.29. Optical confinement is achieved in SISP waveguides
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n
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 GaAs 800 nm2x10
18
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18

Au
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Figure 2.29: Schematic diagram of a semi-insulating surface-plasmon waveguide.

through surface-plasmons on each side of the active region merging to form a single

mode. On the upper side, a surface-plasmon is formed in the same way as for the sin-

gle surface-plasmonwaveguides in theMIR, between the semiconductor active region

andmetallic top contact. The lower surface plasmon is pinned to the interface between

the thin highly-doped layer (which has shifted it’s plasma wavelength close to that of

the mode) and the active region. The calculated mode profile of the first THz QCL is

shown below. The confinement factor is found to be 0.48, in excellent agreement with

the published value [16], although the calculated losses of 25 cm−1 are slightly higher

than the reported value of 16 cm−1. This is likely due to proximity of the Reststrahlen

region and the uncertainty over the optical properties of the gold layer. It can be seen

that a significant portion of the optical mode resides within the substrate and there-

fore the semi-insulating substrate is used to minimise free-carrier losses. This means

that in the ridge waveguide structure, the thin highly-doped layer is used for electri-

cal contacting. The optical mode also overlaps with this highly-doped layer and this
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Figure 2.30: Mode profile of the fundamental TM mode of a 4.4 THz QCL with surface-

plasmon waveguide showing the calculated confinement factor and effective refractive

index of the mode.

is the reason why it is made thin; again to reduce the free-carrier losses.

Fig. 2.31 shows the overlap factor and waveguide loss as a function of frequency

for a SISP waveguide. It can be seen that at low frequencies, Γ decreases to very small
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Figure 2.31: Overlap factor and waveguide loss as a function of frequency in a semi-

insulating surface-plasmon THz optical waveguide.

values (< 20% at 2 THz). This will have serious implications on the modal gain, even

though there is a concomitant decrease in the waveguide losses (since the mirror loss

will remain largely unchanged).
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2.5.2 Double-metal waveguides

Double-metal (or metal-metal) waveguides are the other type of optical waveguide

that is used in THz QCLs [17]. In principle they are basically the same as microstrip

transmission lines that are commonly used for waveguiding purposes in microwave

and millimetre-wave circuits. A schematic diagram is shown in Fig. 2.32. The semi-
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Figure 2.32: Schematic diagram of a double-metal waveguide.

conductor active region is surrounded on both sides by metallic layers which com-

pletely confine the optical mode between them, achieving overlap factors close to

unity. The fundamental TM mode of a metal-metal (MM) waveguide used for a 3

THz QCL (λ ∼ 100µm) is shown in Fig. 2.33. As with THz QCLs with SISP waveg-
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Figure 2.33:Mode profile of the fundamental TMmode of a 3 THz (λ ∼ 100µm)QCLwith

double metal waveguide.

uides, the active region tends to be of the order of 10 µm thick in QCLs with MM
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waveguides and losses of the same order meaning the figure of merit of MM waveg-

uides is inherently better due to Γ ≈ 1. However, this does come at the disadvantage

of a much more complex fabrication process. The QCL active region is grown on a

substrate and capped with a metal layer, which is then bonded upside down onto the

n+ substrate (which is also covered in metal) using a thermo-compression technique

[17]. The metal that is commonly used for the bonding layer is gold, although it has

been shown that the QCL temperature performance can be improved through the use

of a copper-copper bonding layer due to its higher thermal conductivity [18]. This will

be discussed in more detail in Chapter 5.

Gold is the standard metal layer that is used on top of the active region, although it

is possible to use other metals such as silver and copper to improve performance [19,

20]. Fig. 2.34 shows the optical losses in a MM waveguide as a function of frequency

for different top contact metals. The waveguide is assumed to be ‘empty’ i.e. the

active region is assumed to be undoped. The optical properties of eachmetal are listed

in Table 2.3. In all cases Γ ≈ 1 and the bonding layer is assumed to be gold. It can
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Figure 2.34: Optical losses in a MM waveguide as a function of frequency for different

metals; gold, silver, copper and palladium.

be seen that in all cases, the losses of the empty waveguide increase with increasing

frequency (i.e. decreasingwavelength) in contrast towhat is predicted by Eqn. 2.29 for

wavelengths below the Reststrahlen region. For all frequencies, gold has the highest

losses with palladium having the lowest. From Table 2.3 it can be seen that all metals

have similar plasma frequencies and the reason for the different losses is due to the
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plasma damping frequency ωa through Eqn. 2.28 which shows that the free-carrier

loss is proportional to ωa and this is lowest in palladium. These results suggest that

by using palladium as the top contact metal will result in lower waveguide losses and

hence lower threshold current densities leading to increased operating temperatures.

Indeed, there has been recent reports of a THzQCLs utilising a copperMMwaveguide

operating up to 178 K in pulsed mode, a record for THz QCLs [20].

2.6 Conclusions

The development of a one-dimensional optical waveguide solver has been presented.

The wave equation has been solved for an arbitrary multilayer structure using a

transfer-matrix method in order to obtain the complex propagation constant and

waveguide parameters. The complex refractive indexes were calculated using a

Drude-Lorentz model. This model takes into account both plasma and phonon con-

tributions to the semiconductor refractive indices. It was shown how the extinction

coefficient is strongly dependent upon the electron mobility and a Caughey-Thomas-

like mobility modelwas introduced and used to calculate the temperature dependence

of the semiconductor optical properties

Optical waveguide analysis was then performed on the different waveguide

schemes that have been adopted for different wavelength ranges. In particular, it

was shown that by including the temperature dependent material properties, better

agreement with experimentally measured values of threshold current density can be

achieved. For the case of THz QCLs, metal–metal optical waveguides were found to

offer the best performance as the emission wavelength increases due to the near unity

mode overlap factor. It was also found that the use of palladium as the plasmon-

carrying layer could offer the possibility of lower waveguide losses and lead to higher

maximum operating temperatures.
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Chapter 3

Thermal properties of quantum

cascade lasers

3.1 Introduction

QCLs generally suffer from high threshold currents and voltages [1] and therefore re-

quire large amounts of input electrical power. Due to the relatively low wall-plug effi-

ciencies, the vast majority of the input power is dissipated in the device active region

as heat, causing its temperature to rise considerably. The active region temperature is

a critical parameter which strongly affects the operation of QCLs through the temper-

ature dependence of the scattering rates. It is known that there are two main mecha-

nisms which affect temperature performance which were discussed briefly in Chapter

1: thermal backfilling and electron leakage. Thermal backfilling is the phenomenon

where electrons in the injector gain sufficient thermal energy to ‘climb back up the

energy ladder’ and re-populate the lower laser level. Electron leakage is a mechanism

which affects the upper laser level; at sufficiently high temperatures, electrons gain

enough energy to escape from the upper laser level into the continuum-like states.

So, following the same nomenclature as in Sec. 1.2.1, thermal backfilling increases the

population of the n = 2 state (lower laser level) and electron leakage reduces the pop-

ulation of the n = 3 state (upper laser level) resulting in a decrease of the population

inversion (n3 − n2) and hence the modal gain. These effects are most strongly felt

under cw operation, since there is a constant supply of power (and therefore heat) to
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the active region. Therefore QCLs operate at much higher temperatures under pulsed

mode operation, where the input power is supplied in short bursts and therefore the

active region has a chance to cool in between pulses.

In order to improve the performance of QCLs and achieve high temperature op-

eration, knowledge of the thermal dynamics inside the device are mandatory. The

temperature of the active region (TAR) can be estimated through the simple relation

TAR = TH + PRTH = TH + V IRTH (3.1)

where TH is the heat sink temperature, P is the input electrical power at threshold, V

and I are the voltage and current at threshold respectively and RTH is defined as the

device thermal resistance. Assuming Jth (= I/A where A is the device area) can be

expressed as the phenomenological relation

Jth = J0 exp(TAR/T0) (3.2)

where T0 is the characteristic temperature, the active region temperature can be recast

into the form

TAR = T0 ln(Jth/J0). (3.3)

Inserting this into Eqn. 3.1 and re-arranging gives

TH = T0 ln(Jth/J0)− V JthRTHA. (3.4)

Differentiating with respect to Jth and setting the result equal to zero gives an expres-

sion for Jth at the maximum heat sink temperature TH,max

dTH
dJth

=
T0

Jth
− V JthRTHA = 0 (3.5)

Jth =
T0

V RthA
. (3.6)

Inserting Eqn. 3.6 into Eqn. 3.4 gives

TH,max =T0 ln

(

T0

J0V RTHA

)

− T0

=T0

[

ln

(

T0

J0V RTHA

)

− 1

]

.

(3.7)

Inspecting Eqn. 3.7 it can be seen that in order to achieve a high value of TH,max, a

large value of T0 and a small value of Rth are necessary.
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As already shown in Eqn. 1.22, the threshold current density can be expressed as

Jth =
αm + αwg

gΓ
. (3.8)

Inserting this into Eqn. 3.1 and replacing V by FNpLp, where F is the applied elec-

tric field, Np is the number of periods and Lp is the length of one period gives an

expression for the active region temperature1

TAR = Tsink +
RTHAFNpLp(αm + αwg)

gΓ
. (3.9)

For the case of a set heat sink temperature, it is clear from the above analysis the

device active region temperature can be reduced in a number of ways:

• By reducing the input electrical power. This can be done through the use of

pulsed mode operation at low duty cycles. Typical pulse widths are of the order

of 100 ns with pulse repetition frequencies in the range 1–10 kHz. Although

QCLs operating in pulsed mode have higher maximum operating temperatures,

cw operation is particularly useful for gas-sensing applications in the MIR while

in the THz range, cw QCLs could form local oscillators in heterodyne receiver

systems used in radio astronomy. The required input power can also be reduced

by shrinking the dimensions of the active region. If the number of periodsNp is

reduced then the value of electric field F that is required to bring the subbands

into correct alignment can be achieved with a smaller voltage. The electrical

current can be reduced by decreasing the area of the ridge although doing this

by decreasing the length of the cavity will result in smaller gain and increased

mirror losses (Eqn. 2.7). Reducing the active region dimensions results in a

smaller emitting volume and therefore lower output powers and so care must

be made to achieve a balance between temperature and power performance.

• By improving the waveguide design to increase the overlap factor Γ and de-

crease the total losses αW and αM.

1It should be noted that this simplified expression ignores the output photon energy and therefore

overestimates the dissipated electrical power. However, this does not alter the effect of each parameter

on the device heating.
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• By optimising the active region design to increase g. As shown in Equation

1.12 the gain coefficient is proportional to the population inversion. As men-

tioned before, at high temperatures electron leakage and thermal backfilling act

to reduce the population inversion. Electron leakage can be reduced by using

material systems with large conduction band offsets and thermal backfilling re-

duced by increasing the energy gap between the lower laser level and the injec-

tor states. This can be achieved through use of a double-LO phonon resonance

design as was discussed in Sec. 1.3.2.

• By using advanced thermal management techniques to reduce Rth. These in-

clude:

– Epilayer-down mounting[2]. This technique involves bonding a pla-

narised structure ‘upside–down’ directly onto the heat sink. This distance

between the heat-generating active region and the heat sink is reduced, thus

increasing the efficiency of heat diffusion from the device active region.

– Buried Heterostructures (BH) [3]. In typical ridge waveguides, there is

no lateral heat channel for heat to escape from the active region. Laterally

overgrowing a ridge waveguide with i-InP opens up a heat escape channel

and increases the efficiency of heat removal from the active region. This

approach combined with epilayer-down bonding allowed the first demon-

stration of room-temperature cw QCL emission [4].

– Gold plating around the laser ridge [5] to act as a pseudo-heat sink. Thick

layers (5–20 µm) of gold are electroplated on top of and to the side of the

laser ridge to help remove the waste heat. This technique is similar in prin-

ciple to epilayer-down mounting but requires less complicated processing.

Despite this, above room-temperature cw emission has been achieved us-

ing this technique [6].

– A combination of two or more of the above thermal management tech-

niques

This chapter presents the development of a QCL thermal model which is used to
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investigate the thermal properties of different QCL structures under a range of oper-

ating conditions in both pulsed- and continuous-wave mode.

3.2 The heat equation

The thermal model is based upon Fourier’s law of heat conduction

q = −κ∇T (3.10)

where q is the heat flux vector, κ is the thermal conductivity of the material and ∇T

is the temperature gradient. The negative sign indicates heat flows from a region of

higher temperature to a region of lower temperature. The conservation of energy gives

∇ · q = Q− ∂E

∂t
(3.11)

where ∇ · q the net heat conducted out of the material, Q is the internally generated

power per unit volume and ∂E/∂t is the change in stored internal energy density in

the material. The change in stored internal energy desnity can also be expressed as

∂E

∂t
= ρc

∂T

∂t
(3.12)

where ρ is the material density and c is the specific heat capacity of the material. By

eliminating q between Eqns. 3.10 and 3.11 and inserting the above expression for the

change in internal energy one arrives at the well known heat equation

ρc
∂T

∂t
= ∇ · [κ∇T ] +Q. (3.13)

which must be solved in order to calculate the temperature distribution inside a QCL

structure.

3.3 Material properties

3.3.1 Thermal conductivity

In order to obtain accurate results from the solution of the heat equation, it is impor-

tant to include the effects of temperature on the material parameters, particularly the

thermal conductivity.
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Semiconductors

The lattice thermal conductivity of semiconductors results from interactions between

phonons and from scattering of phonons at defects in the semiconductor crystal lattice.

At absolute zero the thermal conductivity is zero and rises almost exponentially to a

maximum around 10 K before decreasing until the melting point.

The electronic contribution (from free electrons) to the thermal conductivity was

estimated using the Weidmann-Franz law and found to be negligible compared to the

lattice thermal conductivity. It is therefore ignored in this work.

Table 3.1 lists the temperature dependent thermal conductivities for the important

III-V (undoped) semiconductors.

Material Thermal conductivity [W m−1 K−1]

GaAs 74500T−1.30 [7]

AlAs 225270T−1.37 [8]

InP 289000T−1.45 [9]

InGaAs 23− 9.30 × 10−2T + 1.06 × 10−4T 2 [2]

InAlAs 20.5 − 8.40× 10−2T + 0.95 × 10−4T 2 [10]

Table 3.1: Temperature-dependent semiconductor thermal conductivities.

For the case of AlxGa1−xAs, Abele’s interpolation method (Appendix C) is used

in order to obtain the thermal conductivity from the thermal conductivities of the cor-

responding binaries (the bowing parameter CAB = 3.33 W/m K [7]). It is known that

each decade of doping reduces κ by ∼8% starting from 1015 cm−3 due to the influ-

ence of the ionised impurities on the phonon transport [9] and the values of thermal

conductivity in Table 3.1 are scaled accordingly.

Anisotropic thermal conductivity

Eqn. 3.13 is valid for isotropic materials. In the case of the multi-layered superlattice-

like QCL active regions, the thermal conductivity is anisotropic. Therefore κ is re-
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placed in Eqn. 3.13 with a thermal conductivity tensor i.e. for the case of a 3D-problem

ρc
∂T

∂t
= ∇ ·

























κx 0 0

0 κy 0

0 0 κz













· ∇T













+Q (3.14)

Due to its superlattice-like nature, the thermal conductivity of the QCL active re-

gion is strongly-anisotropic and as a result, both the in-plane (κ‖) and cross-plane

(κ⊥) thermal conductivities are significantly reduced compared to the bulk values of

the constituent materials. Since the layer widths are comparable to or less than the

phonon mean free path, the phonon scattering rate at the interfaces between layers

increases, hindering the phonon transport [11, 12]. The partially diffuse scattering of

phonons at the interfaces can explain the reduction in κ‖ [13], while the stronger re-

duction in κ⊥ is caused by the multiple reflections of phonons at the many interfaces

[12]. Furthermore, THz QCLs particularly suffer compared to MIR devices since they

generally contain more active region periods resulting in a larger number of interfaces

and a higher value of thermal resistance (RTH). It has been found that the interface

contribution to the overall thermal resistivity of the THz QCLs can be as high as 97%

[14].

The reduction in κ⊥ has been measured experimentally in SiGe/Si and GaAs

/AlAs superlattices [12, 15]. However, no experimental measurements of the ther-

mal conductivity of QCL active regions have been published to date, but values of the

cross-plane conductivity have been inferred indirectly by fitting the results of theoret-

ical thermal models to experimentally measured temperature profiles and found to be

over an order of magnitude smaller than the corresponding bulk alloy (see for exam-

ple Refs. [16] and [17] and Chapter 5). It has been estimated that κ‖ is roughly equal

to 75 % of the value of its bulk constituents and this is included in this work [16].

Insulators and metals

Temperature dependent thermal conductivities of relevant non-semiconductor mate-

rials are listed in Table 3.2.
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Material Thermal conductivity [W m−1 K−1]

Copper 349 + 14710/T [16]

Gold 337 − T/15.15 [16]

Indium 93.9 − 6.96 × 10−2T + 9.86 × 10−5T 2 [16]

SiO2 0.0974 + 5.38 × 10−3T − 4.69 × 10−6T 2 [18]

Diamond 2000 [19]

Table 3.2: Temperature-dependent thermal conductivities of the relevant metals and in-

sulators.

3.3.2 Specific heat capacity

The semiconductor specific heat capacities are calculated using the Debye specific heat

equation

c = 9NAV kB

[

T

ΘD

]3 ∫ ΘD/T

0

x4ex

(ex − 1)2
dx (3.15)

whereNAV is Avogadro’s number, kB is the Boltzmann constant and ΘD is the Debye

temperature.

Material ΘD [K]

InP 425 [20]

InGaAs 330 [20]

Table 3.3: Debye temperatures of the relevant semiconductors

Due to a lack of experimental data, the specific heat capacities of the othermaterials

are taken to be constant and room-temperature values are used. These are listed in

Table 3.4

3.3.3 Density

Over the temperature range of interest, the material densities remain largely un-

changed with temperature and are therefore taken to be constant. Table 3.5 lists the

room temperature densities of the relevant materials.
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Material c [J kg−1 K−1]

Copper 385 [20]

Gold 128 [20]

Indium 233 [20]

SiO2 160 [20]

Diamond 520 [19]

Table 3.4: Material specific heat capacities (300 K).

Material ρ [kg m−3]

InP 4480 [20]

InGaAs 5520 [20]

Copper 8960 [20]

Gold 19300 [20]

Indium 7310 [20]

SiO2 3180 [20]

Diamond 35150 [19]

Table 3.5: Material densities (300 K).

3.4 Solution of the heat equation

The complex geometry of a QCL makes a numerical solution of the heat equation the

most favourable option and in this work, finite-difference methods are used due to

their relative simplicity compared to more complex finite-element methods.

3.4.1 Finite-difference approximation to the heat equation

In order to solve the heat equation using finite-difference methods2, the time domain

is discretised into finite steps and the spatial domain where the solution is to be found

is split into smaller regular-sized subdomains (i.e. squares/rectangles in 2D, cuboids

2more information on finite-differences is given in Appendix D.
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in 3D) which are commonly known as cells or elements. The collection of the cells

is known as the computational mesh or grid. The discretised heat equation is then

solved inside each of these cells with appropriate continuity of the solution across the

interfaces and subject to relevant boundary conditions at the edges of the grid.

To solve the heat equation (for example in 2D), at each of the grid nodes a five-point

stencil is used which connects the node with each of its four ‘nearest neighbours’ in

the grid3. Fig. 3.1 shows the five-point stencil that is used to solve the heat equation.
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Figure 3.1: Five-point stencil used in the model. Interface values of κ are denoted by the

lower-case subscripts while nodal values have upper-case subscripts.

Expanding Eqn. 3.13 and including the anisotropic thermal conductivity gives

ρc
∂T

∂t
=

∂

∂x

(

κx
∂T

∂x

)

+
∂

∂y

(

κy
∂T

∂y

)

+Q. (3.16)

The time derivative is replaced using a forward finite-difference approximation and

the space derivatives are replaced with central finite-difference approximations (this

3It is simple to extend this concept to 3D and a seven-point stencil is used to connect the node to its

six nearest neighbours.
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is known as ‘forward time central space’ - FTCS).

ρi,jci,j

(

Tm+1
i,j − Tm

i,j

∆t

)

=
κi+ 1

2
,j(T

m
i+1,j − Tm

i,j)

∆x2
−
κi− 1

2
,j(T

m
i,j − Tm

i−1,j)

∆x2

+
κi,j+ 1

2

(Tm
i,j+1 − Tm

i,j)

∆y2
−
κi,j− 1

2

(Tm
i,j − Tm

i,j−1)

∆y2

+Qm
i,j.

(3.17)

In order to make the notation easier to follow, it is common to replace the co-ordinates

in terms of i, j, k with N,S,E,W,F,B, P to represent the nodes to the north, south,

east, west, in front and behind the current node P

ρP cP

(

Tm+1
P − Tm

P

∆t

)

=
κe(T

m
E − Tm

P )

∆x2
− κw(Tm

P − Tm
W )

∆x2

+
κn(Tm

N − Tm
P )

∆y2
− κs(T

m
P − Tm

S )

∆y2

+Qm
P .

(3.18)

Interface values of k

From Eqn. 3.17 it can be seen that the values of κ are taken at the boundary between

the nodes. Instead of using a simple mean value, a harmonic mean is used for the

interface values such that the heat flux is continuous at the boundaries and gives the

correct value if κ tends to zero. For the situation depicted in Fig. 3.1, continuity of the

flux requires

κe
∂T

∂x

∣

∣

∣

xe

= κP
∂T

∂x

∣

∣

∣

xP

= κE
∂T

∂x

∣

∣

∣

xE

. (3.19)

Applying finite difference approximations to the above derivatives gives

κe
TE − TP

∆x
= κP

Te − TP

∆x/2
(3.20)

κe
TE − TP

∆x
= κE

TE − Te

∆x/2
(3.21)

where Te is the temperature at the interface. From the above equations

Te − TP = κe
TE − TP

2κP
(3.22)

TE − Te = κe
TE − TP

2κE
. (3.23)

Adding the two equations above gives

TE − TP = κe
TE − TP

2κP
+ κe

TE − TP

2κE
(3.24)
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which can be rearranged to give the value of k at the boundary which ensures a con-

tinuous heat flux across the interface

κe = 2
κPκE

κE + κP
. (3.25)

The same argument can be used to derive (or write through direct analogy) similar

expressions for κw,κn and κs.

Boundary conditions

There are several types of boundary condition that can be applied to the heat equation

Isothermal (Dirichlet) : T = fi(x, y, t) (3.26)

Insulated/Symmetrical (Neumann) :
∂T

∂ni
= 0 (3.27)

Convective (Robin) : k
∂T

∂ni
= hi(T − Ta) (3.28)

where fi is an arbitrary function, ni is the outward direction normal to the surface

in direction i, hi is the heat transfer coefficient and Ta is the ambient temperature. A

Dirichlet boundary condition is applied to the surface of the device which is held in

contact with the heat sink and kept at a fixed temperature. In most cases, Neumann

boundary conditions are appropriate for the other surfaces of the device since QCLs

are commonly measured under vacuum conditions and is hence the heat transfer pro-

cess is adiabatic (i.e. no heat flow out of the device).

The Neumann boundary condition is also very useful as it can be applied to any

plane of symmetry in the structure to reduce the size of the computational grid (i.e.

number of nodes) by a factor of two and hence make dramatic savings on the CPU

run time and memory requirements.

The above equations define the full set of tools required in order to solve the heat

equation using finite-differences. However, there are different approaches to solve the

finite-difference heat equation depending on whether the solution is to be found in

the time-domain (i.e. the QCL under pulsed operating conditions) or in steady-state

(continuous-wave).
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3.4.2 Steady-state thermal analysis

In steady-state the left-hand side of Eqn. 3.18 is equal to zero and as the solution is

independent of time, hence the superscriptsm can be dropped.

κe(TE − TP )

∆x2
− κw(TP − TW )

∆x2
+
κn(TN − TP )

∆y2
− κs(TP − TS)

∆y2
= −QP . (3.29)

Re-arranging to make TP the subject gives

TP = Wx(κwTW + κeTE) +Wy(κnTN + κsTS) +WqQp (3.30)

where

Wx =
∆y2

(κw + κe)∆x2 + (κn + κs)∆y2
(3.31)

Wy =
∆x2

(κw + κe)∆x2 + (κn + κs)∆y2
(3.32)

Wq =
∆x2∆y2

(κw + κe)∆x2 + (κn + κs)∆y2
(3.33)

are the weighting functions. Inspecting Eqn. 3.30 it can be seen that the nodal temper-

ature is the weighted average of its four nearest neighbours temperatures (with the

weights dependent upon the distance to its neighbours and the thermal conductivity

of the points in the five point stencil) plus a contribution to its temperature from any

heat source at the node. It is worth noting that in the absence of a heat source (QP = 0)

in a homogeneous material (constant k) on a square grid (∆x = ∆y) that the equation

reduces to

TP =
TN + TS + TE + TW

4
(3.34)

and TP is simply equal to the mean temperature of its nearest neighbours. These

properties of the systemmake it very easy to solve using a simple iterative technique.

The relaxation method

Once the computational grid has been set up, each nodal temperature in the structure

is initialised to some arbitrary value (usually the heat sink temperature - the actual

value does not influence the final solution but it does affect the speed of the conver-

gence). The nodes are stepped through one by one and at each node, Eqn. 3.30 is

applied so that the finite differences at that point are satisfied. However, once a nodal
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temperature has been updated, its neighbours values will change once the sweep

reaches those points and the finite-differences will no longer be satisfied. In order to

reach a solution the above procedure must be repeated many times and gradually af-

ter each iteration, the nodal temperatures will converge to values that simultaneously

satisfy the finite-differences at all the grid points and the grid is said to be relaxed.

In order to include the effect of a temperature dependent thermal conductivity,

after each iteration when the nodal temperatures have been updated, the thermal con-

ductivities are also updated according to the updated temperatures.

In order to speed convergence and reduce the number of iterations required a suc-

cessive over-relaxation (SOR) technique can be implemented. In this scheme, instead

of applying the updated temperature T ′
P at each node determined by Eqn. 3.30, an

over-corrected value T ′′
P is applied instead.

T ′′
P = ωT ′

P + (1− ω)TP (3.35)

where ω is the relaxation factor and can be in the range 1 ≤ ω < 2. It is very difficult

to calculate an optimum value of ω to speed converge without causing instability and

is best chosen through experience4.

In order to determine when the system of equations are relaxed and a solution has

been reached the residual at each point is calculated using

R = T ′
P − TP . (3.36)

In order to measure the level of convergence independently of the magnitude of the

nodal temperatures,R is normalised by T ′
P

RN =
T ′

P − TP

T ′
P

= 1− TP

T ′
P

. (3.37)

The iterative process is repeated until the maximum normalised residual (RN
max) dur-

ing the current iteration is less than a set tolerance level (which in this work is 10−6).

4During this work, a value between 1.7–1.9 has been found to give acceptable levels of convergence
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3.4.3 Time-domain solution

In order to find the solution in the time-domain, Eqn. 3.18 is rearranged to make Tm+1
P

the subject.

Tm+1
P = Tm

P +
∆T

ρP cP

∆t

∆x2∆y2
(3.38)

where

∆T = κe(T
m
E − Tm

P )∆y2 + κw(Tm
W − Tm

P )∆y2

+ κn(Tm
N − Tm

P )∆x2 + κs(T
m
S − Tm

P )∆x2

+Qm
P ∆x2∆y2.

(3.39)

The above equation can be solved using a simple explicit time-marching algorithm.

It can be seen from the above equation that the temperature at node P in the current

time step (m + 1) is determined by the temperature of nodes P,N, S,E andW in the

previous (m) time step together with QP also in the previous time step. It is therefore

straight forward to initialise the nodal temperatures (again to the heat sink tempera-

ture) at t = 0 and then increment t by ∆t, update each nodal temperatures according

to Eqn. 3.38 (and also the material properties). This process can then be repeated until

the required time duration is complete.

Stability issues

As is the case with many explicit numerical solutions of partial differential equations,

in order to achieve convergence, the Courant–Friedrichs–Levy (CFL) condition must

be obeyed. This convergence criteria sets certain constraints on the maximum allowed

time step dependent upon the grid size. For instance, if a simple wave equation was

being solved, the maximum time step must be less than the time it would take for

the wave to travel to the next grid point. For the case of the two-dimensional heat

equation, this means that the time step is limited to

∆t ≤ ρc

2k

(

∆x2∆y2

∆x2 + ∆y2

)

. (3.40)

It can be seen from the above equation that the smaller the step in the x− and

y−axis, the smaller the time step must be. This can be problematic in the fact that

for small values of ∆x and ∆y, ∆t can become extremely small and hence increase
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the number of time steps required in order to simulate a given time period. In fact, if

∆x and ∆y are halved, ∆t must be reduced by a factor of four to maintain stability.

Halving the mesh sizes will also increase the number of mesh points (and therefore

RAM requirements) by a factor of four. This means that the total number of required

calculations (i.e. CPU runtime) for a given duration of time will increase by a factor of

24 = 16.

3.5 Conclusions

It has been shown how knowledge of the active region temperature of a QCL is very

important if device performance is going to be improved. At high temperatures, ther-

mal backfilling and electron leakage combine to severely reduce the population inver-

sion and hence the maximum device operating temperatures. Methods of reducing

the active region temperature, such as active region optimisation and the incorpora-

tion of advanced thermal management techniques to reduce the thermal resistance

have been discussed.

In order to help to understand the thermal dynamics of QCLs further, the de-

velopment of a thermal model based upon Fourier’s law of heat diffusion has been

presented. The model takes into account the anisotropic thermal conductivity of

the QCL active region caused by its supperlattice-like nature and temperature- and

doping-dependent material parameters. The heat equation has been solved used

finite-differences in both the steady-state and the time-domain, meaning QCLs can

be simulated under both cw and pulsed operating conditions.
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Chapter 4

Transient thermal analysis of

quantum cascade lasers

4.1 Introduction

As described in the previous chapter, when a QCL is operated in pulsed mode signif-

icantly less active region heating occurs than when in cw and therefore higher heat

sink temperatures can be reached. For instance, one of the highest operating temper-

ature THz QCLs lases up to 167 K in pulsed mode and 117 K in cw [1]. Although

cw operation is desirable for certain applications, the higher temperatures that can be

reached in pulsedmode can be themost important factor under certain circumstances.

It is therefore important to understand the effect of different driving conditions on the

active region temperature.

In this chapter, the thermal dynamics of a QCL operating in pulsed mode are in-

vestigated using the transient thermal model described in Sec. 3.4.3. The benchmark

QCL at the centre of the work is a λ ∼ 3µm InGaAs/AlAsSb QCL which is the focus of

Chapter 6 and is discussed in much detail there. The various heat management tech-

niques outlined in Sec. 3.1 are compared and the effect of various operating conditions

on the active region temperature is investigated.

The work presented in this chapter was published in IEEE Journal of Quantum

Electronics, ‘Investigation of thermal effects in quantum cascade lasers’, Volume 42,

pp. 859–867 (2006).
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4.2 Device structure and theoretical framework

The benchmark QCL is based upon the device described in Ref. [2], an InP-based QCL

with an InGaAs/AlAsSb active region. The substrate is taken to be 100 µm thick and

the InP upperwaveguide cladding layers are taken as 2.5 µm in total. The active region

is composed of 30 periods giving a total active region thickness of 1.5 µm. The laser

ridge is assumed to be 10 µmwide and the cavity 2 mm long. The ridge is assumed to

be coated in 500 nm of SiO2 insulation with a 4 µmwindow on top of the ridge for the

top contact. The whole device is then assumed to be coated in 1 µm of gold acting as

the top contact. A schematic of the device is shown in Fig. 4.1a.

The active region of the device is taken to be the same as the one described in

Chapter 6. From electron transport calculations1 as described in Chapter 6, the elec-

tric field–current density curves were calculated at a variety of lattice temperatures

and are shown in Fig. 4.2. By extracting the current density as a function of lattice

temperature at the operating bias point of 135 kV/cm, a ‘quantum source term’ can

be extracted which gives the electrical power density dissipated in the active region

which is generated in the active region through quantummechanical effects. The tem-

perature dependent electrical power density Q(T ) is given by FJ(T ) and by fitting

the data in Fig. 4.2 is found to be Q = 1 × 1015 exp(T/1023) W/m3. This source term

is entered directly into the thermal model. Using the active region dimensions given

earlier in the section, the equivalent electrical power dissipated in the active region is

P = 30 exp(T/1023)W. Resistive heating in the cladding layers is ignored.

The device is found to generate enough gain for laser action to be possible up to a

lattice temperature of 300 K (again, this will be explained in more detail in Chapter 6

but for now just the result is important).

As discussed in Sec. 3.4.3, the time step of the simulations is determined by the

mesh size and in this work a mesh size of ∆x = ∆y = 500 nm is used. This gives an

acceptable mesh density while allowing a large enough time step (of the order of ns)

to make the simulation run-times feasible.

1At this point, the method of calculating the I − V curves and gain are not important, just the final

results. The method is explained in great depth in Chapter 6
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Figure 4.1: Schematic diagrams of the device structures used in the simulations (a) stan-

dard ridge waveguide (b) double channel ridge with electroplated gold (c) epilayer-down

mounted device and (d) a buried heterostructure.
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Figure 4.2: Electric field versus current density characteristics for a range of lattice tem-

peratures. The operating bias point (135 kV/cm) is denoted by the dotted line.

At the time of this work, little was known about the thermal conductivity of QCL

active regions apart from the fact that the cross-plane thermal conductivity κ⊥ was

considerably less than bulk. There was also found to be little knowledge in the litera-

ture of the thermal properties of AlAsSb and so the approach of Ref. [3] was followed;

the in-plane thermal conductivity of the active region κ‖ is taken to be that of bulk

InGaAs and κ⊥ is taken to be one order of magnitude smaller. Therefore, the work in

this chapter is equally applicable for InGaAs/InAlAs QCLs based on InP substrates

assuming that the heat generated in the active region is the same for each case.

4.3 Influence of operating conditions

In this section, the operating conditions of the benchmark laser are varied to see the

effect on the calculated device performance. When operated in pulsed mode, the de-

vice heats up during the pulse and this heat then dissipates in the period before the

next pulse arrives. Depending upon the pulse width and repetition frequency, the

active region may not have recovered the heat sink temperature by the time the next

pulse arrives. This means that during the next pulse the maximum temperature will

be higher and this process carries on for several periods until the system settles to a

steady-state. This is highlighted in Fig. 4.3 which shows the temperature–time pro-

file at a heat sink temperature of 200 K with 100 ns pulses and a 500 kHz repetition

frequency (5 % duty cycle).
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Figure 4.3: Temperature–time profile for a standard ridge waveguide showing the aver-

age active region temperature as a function of time.

In this work, the temperatures are extracted once this steady-state has been

reached.

4.3.1 Heat sink temperature

Fig. 4.4 shows the effect of varying the heat sink temperature on both the minimum

and maximum value of the active region temperature for 100 ns pulses at 100 kHz

(1 % d.c.). The temperatures are extracted at the end of the pulse. It can be seen
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Figure 4.4: Spatial minimum andmaximum values of TAR for different values of TH at 100

kHz with 100 ns pulse widths.

from the figure that TAR increases linearly with TH. The relationship is of the form

TAR = T1 + αs–ARTH, where αs–AR is a coupling constant between the heat sink and

active region and is extracted from straight line fits to the data. For the case of TmaxAR ,

αs–AR = 1.167, while for TminAR it is equal to 1.097. Hence as α
max
s–AR > αmins–AR, the temper-
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ature range inside the active region increases with increasing TH which could cause

damaging thermal stress effects at high sink temperatures. The cause of the tempera-

ture range increase is due to the thermal conductivity of the materials in the devices

decreasing with temperature. The hotter areas of the active region have a lower ther-

mal conductivity than the cooler areas and are less able to dissipate heat leading to

an increase in temperature, while the cooler areas are better able to dissipate heat and

hence the temperature rise is not as great.

For the case of the InGaAs/AlAsSb QCL in question being driven under these

conditions (100 ns, 100 kHz) at TH = 220 K, the entirety of the active region is less than

300 K, meaning laser action would be expected. With TH = 240 K, the active region

has a temperature range of ∼260–325 K, meaning that only the active region periods

at T < 300 K would contribute to lasing resulting in a decrease in output power. Even

at TH = 255 K, some of the active region is still less than 300 K and so laser action may

still be present at this temperature.

The fact that the temperature gradient inside the active region increases with heat

sink temperature could help to explain the abrupt decrease in slope efficiency at higher

temperatures which has been measured experimentally [4]. When the device is being

operated at close to its maximum temperature, not all of the active region periods

may be contributing to laser action. As the heat sink temperature is increased, the

temperature gradient is increased further and less periods will contribute to laser ac-

tion. This process will cause the output power to decrease further (and hence the slope

efficiency) until eventually all of the active region periods will cease lasing and the de-

vice reaches cut-off. In addition, if each of the active region periods are at a slightly

different temperature, the amount of red shift in the emission wavelength will vary,

leading to a broadening of the linewidth.

It is possible to define a thermal resistance for the device using Eqn. 3.1. The

dissipated power is calculated using the quantum source term mentioned previously.

The upper and lower limits of the pulsed mode device thermal resistance are plotted

in Fig. 4.5 for the different heat sink temperatures. These values of RTH are very small

compared to conventional values for InP-based MIR device (see Chapter 5) due to
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Figure 4.5: Upper and lower bounds of the pulsed mode thermal resistance as a function

of heat sink temperature.

the fact that the device is operated in pulsed mode. The temperature rise (and hence

RTH) is limited by the pulse width and so the thermal resistance will be different for

different duty cycles. The figure shows the thermal resistance increasing with heat

sink temperature which is a direct consequence of the thermal conductivities being

reduced at higher lattice temperatures.

4.3.2 Pulse repetition rate

The duty cycle can be increased by increasing either the pulse repetition frequency or

the pulse width (or a combination of both). The same device as described in the pre-

vious sections was simulated with TH = 200 K and a pulse width of 100 ns at different

repetition rates and the results are shown in Fig. 4.6a. For frequencies of less than 50

kHz, the temperature range of the active region is independent of the pulse frequency.

This is due to the relatively long time period between pulses, which gives the active

region enough time to entirely dissipate the heat accumulated during the pulse and

recover the heat sink temperature. For these cases, the only factors which affect the

active region temperature range are the heat sink temperature (which determines the

thermal conductivities of the materials and the source power density) and the pulse

width (determines how much the active region heats up). These are constant in this

simulation and hence the temperature profiles in Fig. 4.6a are flat for frequencies be-

low 50 kHz. Above this value of frequency the active region temperatures start to rise
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Figure 4.6: (a) TAR for different pulse frequencies with a pulse width of 100 ns. (b) TAR for

different pulse widths with f = 100 kHz. In both cases TH = 200 K.

rapidly due to heat accumulation effects. This heat accumulation effect is outlined

in Fig. 4.7 which shows the device cross section temperature profile (taken along the

line of symmetry in Fig. 4.1a) evolving with time at a frequency of 500 kHz (period

length 2 µs). It can clearly be seen how the heat in the device builds up during each

successive pulse. For the InGaAs/AlAsSb QCL in question, with 100 ns pulses and TH

Figure 4.7: Time evolution of the QCL cross-sectional temperature profile. TH = 200 K and

the time period between the 100 ns pulses is 2 µs (500 kHz).

= 200 K, a repetition frequency of ∼600 kHz (6 % duty cycle) is possible without the
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entire active region being above 300 K and hence laser action could occur. An advan-

tage of intersubband devices over interband devices is the ultrafast carrier lifetimes

(on the order of picoseconds) meaning extremely high modulation frequencies in the

GHz should be possible [5]. Figs. 4.6 and 4.7 highlight the fact that to achieve high fre-

quency modulation (and indeed cw operation) in QCLs, careful thermal management

is required to improve the heat dissipation away from the active region and reduce

the heat accumulation effects.

4.3.3 Pulse width

The effect of increasing the duty cycle by increasing the pulse width on TAR is shown

in Fig. 4.6b. For pulse widths of less than 10 ns, very little active region heating

occurs. Above this value there is a considerable increase in active region temperature

with pulse width. This is due in principal to the same heat accumulation effects that

are outlined in Fig. 4.6a but on a more pronounced scale. In Fig. 4.6a for a 100 ns

pulse, 1000 kHz corresponds to a 10 % duty cycle and the maximum active region

temperature is ∼370 K. In the case of Fig. 4.6b, a 10 % duty cycle is equivalent to a

1000 ns pulse and the maximum active region temperature is ∼ 1000 K. This is caused

by the rate of temperature increase during the pulse being far greater than the rate of

temperature decrease during cooling phase. Therefore it is better to increase the duty

cycle by increasing the pulse repetition frequency rather than increasing the pulse

width. In terms of the InGaAs/AlAsSb QCL, for a 100 kHz repetition frequency at a

200 K heat sink temperature, a maximum pulse width of ∼ 200 ns (2 % duty cycle) is

possible without the entire active region temperature rising above 300 K.

4.3.4 Ridge width

The previous sections have investigated the effects of the QCL driving conditions on

the active region heating with a 10 µmwide ridge. In this section the effect of increas-

ing the ridge width is investigated and the results are shown in Fig. 4.8. It should be

noted that the electrical power density is kept constant in the simulations to make the

comparison more meaningful. If the electrical power was kept constant, the density
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would be less for the larger ridge widths (larger volume) and so less heating would

occur. It can be seen from the figure that both the active region temperature and the
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Figure 4.8: Spatial minimum and maximum values of TAR for different ridge widths. TH

= 200 K and the pulse width is 100 ns with a 100 kHz.

temperature range inside the active region increase with the ridge width, agreeing

with experiment [6]. This is explained by a wider laser ridge having a greater active

region volume meaning higher power and therefore more heating. Narrow ridges

would therefore be advantageous at high temperatures from a thermal viewpoint al-

though decreasing the ridge width would also decrease the maximum power due to

the smaller emitting volume.

4.4 Comparison of thermal management techniques

In the previous sections, the investigations have been carried out on a standard ridge

waveguide mounted substrate side down. In this configuration (which is shown

schematically in Fig. 4.1a), heat must escape from the active region through the sub-

strate to the heat sink. Efficient heat transfer in this direction is prevented by the small

κ⊥ and consequently substantial active region heating occurs. Alternative device ge-

ometries which were discussed in Sec. 3.1 are possible which improve the heat dissi-

pation from the active region and the schematic cross-sections of these are shown in

Fig. 4.1. For the case of the double-channel ridge waveguide (Fig. 4.1b), a thick (5 µm)

gold layer is electroplated (EP) on top of the laser ridge to efficiently spread the cur-

rent and heat on the laser surface and the device is mounted substrate side down [7].
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The epilayer-down mounted device (Fig. 4.1c) is a double-channel ridge waveguide

which has then been soldered epilayer-down onto the copper heat sink. In the follow-

ing simulations, it is assumed that the indium solder between the heat sink and the top

contact is pressed out during mounting, as described in [3]. Fig. 4.1d shows a buried

heterostructure (BH) device in which the active region is completely surrounded by

i-InP allowing heat to escape in all directions. In order to further improve the perfor-

mance of the devices, BH QCLs have been used in conjunction with epilayer-down

bonding on diamond heat sinks. This configuration led to the first demonstration of a

QCL operating in cw at room-temperature [8].

In order to compare the different device configurations, the temperature–time pro-

files and device cross-section temperature profiles were calculated for each. The av-

erage active region temperatures as a function of time for the different configurations

are shown in Fig. 4.9.
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Figure 4.9: Temperature–time profiles (average TAR) for (a) a standard ridge waveguide

(b) a double channel waveguide mounted substrate side down with electroplated gold

(c) epilayer-down mounted ridge waveguide on a copper heat sink and (d) a buried

heterostructure mounted epilayer-down on a diamond heat sink. All simulations are at

TH = 200 K, with 100 ns pulses at a repetition rate of 100 kHz.

For the benchmark ridge waveguide (A), the average TAR at the end of the pulse
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is 262 K. Both the double-channel ridge waveguide mounted epilayer-down (B) and

the gold covered double-channel ridge waveguide mounted substrate side down (C)

have the same TAR of ∼ 258 K at the end of the pulse. For the case of the BH device

(D), this is reduced slightly to ∼ 252 K. In this instance, due to the small pulse width,

the effect of the different configurations on the maximum active region temperature

is relatively small, however it does play a large part in the ability of the device to dis-

sipate heat away from the active region. In order to characterise the heat dissipation

ability, the cooling phase of the temperature–time profiles were fitted using a second-

order exponential decay function [9]. Table 4.1 shows the fitted equations for each

structure. It can be seen that for the case of the devices mounted substrate side down,

Table 4.1: Results of fitting the cooling phases of each structure (Fig. 4.9) to a second-order

exponential decay function

TAR = a0 + a1e
−t/τ1 + a2e

−t/τ2 (t > 100 ns)

Device a0 a1 τ1(µs) a2 τ2(µs)

A 203.0 47.5 0.19 32.1 2.67

B 203.1 75.5 0.17 13.7 1.98

C 200.1 32.4 0.14 52.3 0.47

D 200.1 43.7 0.12 45.3 0.33

A and B, a0 is slightly higher than TH due to the slight heat accumulation effects in

these configurations. However, for the epilayer downmounted devices, no heat accu-

mulation effects occur and so a0 is very close to TH. The second-order exponential fit

indicates that there are two distinct cooling stages (denoted by the two thermal time

constants τ1 and τ2). τ1 represents the heat initially escaping from the active region

into the waveguide cladding and insulation layers primarily in the vertical direction.

The substrate side mounted devices are similar in this respect and hence the values
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of τ1 for these devices are relatively similar. Although device C, the double-channel

ridge waveguide mounted epilayer down, has a similar structure to devices A and B),

the upper cladding layer is in closer proximity to the heat sink and hence its value

of τ1 is smaller. In the case of device D, the BH device, heat diffusion can take place

in both the vertical and lateral directions and in combination with the epilayer down

mounting causes the buried heterostructure to have the smallest value of τ1.

The time constant τ2 represents the second stage of cooling in which the heat dif-

fuses towards the heat sink through the substrate and cladding regions. It appears

from the data that this mechanism dominates the cooling process and is the major dif-

ference between the different device mountings. τ2 is much longer in devices A and B,

compared to devices C and D, since they are mounted substrate side down and so the

heat generated in the active region has to diffuse through the substrate to reach the

heat sink. τ2 is smaller in device B compared to device A since heat can spread into

the thick gold layer on top of the laser ridge as well as into the substrate which is the

only heat escape channel in device A. Devices C and D have values of τ2 several times

smaller than devices A and B due to the epilayer downmounting and hence the active

region being in closer proximity to the heat sink. τ2 is smaller in the BH device and

this is likely due to both the effect of heat escaping both vertically and laterally, and

the fact that diamond has a higher thermal conductivity than copper. Fig. 4.10 shows

the cross section temperature profiles for each of the devices at t = 1 µs.

Devices A and B have similar temperature profiles, with heat primarily escaping

through the substrate, although the thick gold layer causes a reduction in the average

active region temperature at t = 1 µs from 225 K in the standard ridge to 210 K in

the gold covered device. Fig. 4.10d shows the heat escaping from the active region

of the BH device in all directions compared to the primarily vertical heat channel in

the epilayer-down mounted double-channel ridge waveguide (Fig. 4.10c), leading to

a lower average active region temperature.

Table 4.1 and Fig. 4.10 highlight the fact that a BH device is up to now one of

the best solutions in terms of thermal management of QCLs, especially in conjunc-

tion with epilayer down mounting. As well as the reduced active region temperature,
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Figure 4.10: Cross sectional temperature profiles for each of the devices in Fig. 4.9, 1 µs

into the period (0.99 µs into the cooling stage). Note the different temperature scales.
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the temperature profile inside the active region is much more uniform and so the ma-

jority of the periods will be at the same temperature. Despite this improvement, the

increased performance must be balanced against the much more complicated process-

ing techniques required.

4.5 Conclusions

Thermal analysis of an InGaAs/AlAsSb QCL has been carried out under a range of

operating conditions. Electron transport calculations (which will be discussed in more

depth in Chapter 6) have been performed in order to find the temperature dependent

power density generated in the device active region. Sufficient gain was estimated up

to a lattice temperature of 300 K.

As the heat sink temperature is increased, it has been seen that the temperature

range inside the active region increases, which could cause detrimental thermal stress

problems at high heat sink temperatures. Since each period of the QCL active region

has a different temperature, close to cut-off, some periods may not be contributing to

lasing and is a probable cause of the output power roll-off observed experimentally.

It has been found that the device is much more sensitive to an increase in duty-

cycle through using a longer pulse rather than a higher repetition rate. This is due to

the rate of temperature rise in the active region during the pulse being considerably

large than the rate of temperature decrease in between pulses. Larger ridge widths

have been shown to cause a larger temperature rise (for a given power density), simply

due to the larger emitting volume. This means a trade-off must be made between

power and temperature performance (since a smaller emitting volume means a lower

output power).

Different thermal management techniques (a epilayer-downmounted device, a EP

gold-covered device and a buried heterostructure) have been compared to the bench-

mark ridge structure. The buried heterostructure is found to be the best solution in

terms of thermal management due to heat being able to dissipate from the active re-

gion in all directions, leading to thermal time constants several times smaller than

those found in standard ridge waveguides.
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Chapter 5

Steady-state thermal analysis of

quantum cascade lasers

5.1 Introduction

In this chapter, both MIR and THz QCLs are investigated whilst under cw operation

which is highly desirable for applications such as trace gas sensing. As mentioned in

previous chapters, in cw mode, significant amounts of electrical power are dissipated

in device active regions causing large temperature rises compared to the heat sink

which are detrimental to device performance.

5.2 Thermal analysis of THz QCL optical waveguides

This work was carried out in collaboration with the group of Prof. Scamarcio at

the CNR INFM Regional Laboratory LIT3 in the Dipartimento Interateneo di Fisica

“M.Merlin” at the Universitá degli Studi di Bari, Italy, who are a leading experimental

group who specialise in determining the lattice temperature of QCLs using a micro-

probe photoluminescence (PL) technique [1, 2].

The work has been submitted to IEEE Journal of Quantum Electronics, ‘Thermal

modeling of terahertz quantum-cascade lasers: comparison of optical waveguides’,

Craig A. Evans, Dragan Indjin, Zoran Ikonić, Paul Harrison, Miriam S. Vitiello, Vin-

cenzo Spagnolo, and Gaetano Scamarcio.
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5.2.1 Introduction

THzQCLs have shown a considerable increase in performance since their first demon-

stration [3], covering the frequency range 1.2 [4] to 4.9 THz [5] (and down to 0.83 THz

with the assistance of a magnetic field [6]) with maximum operating temperatures of

117 K in cw [7] and 178 K in pulsed-mode [8]. Improving the maximum operating

temperatures of THz QCLs still further is highly attractive for a range of technolog-

ical applications. This is made inherently more difficult in the THz frequency range

than in the MIR due to the smaller photon energy (typically less than 20 meV). At

higher lattice temperatures (and hence higher electron temperatures) it becomes more

difficult to achieve selective injection and depopulation of the upper and lower laser

levels. Additionally, since the photon energy is less than the LO phonon energy (36

meV in GaAs) in the THz frequency range, at sufficiently high electron temperatures,

thermally activated LO phonon emission from the upper laser level can significantly

reduce the population inversion.

In order to reduce the electron temperature and improve the temperature perfor-

mance, the lattice temperature itself must be reduced through careful thermal man-

agement. Furthermore, THz QCLs particularly suffer compared to MIR devices since

they generally contain more active region periods resulting in a larger number of in-

terfaces and a higher value of thermal resistance. It has been found that the interface

contribution to the overall thermal resistivity of the THz QCLs can be as high as 97%

[9].

The configuration of the optical waveguide also plays an important role in deter-

mining the thermal performance of the device and to date, as discussed in Chapter

2, two types of THz optical waveguides have been implemented: semi-insulating

surface-plasmon (SISP) and metal-metal (MM) waveguides. THz QCLs with MM

waveguides have proven to have to highest operating temperatures thus far [7].

It is clear that in order to understand the internal thermal dynamics of QCLs with

the aim of improving temperature performance, knowledge of the temperature depen-

dence of the active region thermal conductivity and the effect of the optical waveg-

uide on the device thermal properties is crucial. In this section, a study of the local
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lattice temperature of a surface-emitting distributed-feedback (DFB) THz QCL [10],

measured using a microprobe PL technique [1, 2], is presented.

5.2.2 Experimental procedure and results

A microprobe band-to-band PL technique was used to measure the local lattice tem-

perature (TL) of the surface-emitting THz QCL
1. By measuring the energy of the main

PL peak and comparing the shift to calibration curves obtained when probing the de-

vice at zero current while varying the heat sink temperature TH it is possible to extract

TL. Whereas in previous works the facet temperatures of various THz and MIR de-

vices have been measured [1, 2, 11–13], the use of a surface-emitting device allows TL

to be measured on top of the device active region through the apertures in the second-

order DFB grating [9]. The investigated sample has an active region thickness of d =

10 µm, a ridgewidth of 45 µmand a cavity length of 1.14 mm. The optical confinement

is provided by a MM waveguide fabricated with Cu-Cu bonding. The second-order

DFB grating is composed of i = 1 to 30 apertures, each 6 µm wide with a grating

period of Λ = 30 µm. Fig. 5.1 shows a schematic picture of the device.

Λ=30 µm

i
i

=1
=30

Figure 5.1: Schematic diagram of the surface-emitting DFB THz QCL. The diagram shows

the location of the i = 1 and i = 30 apertures together with the grating period of Λ = 30

µm. Thanks to Zachary Coldrick for generating the figure.

Fig. 5.2 shows TL measured in the centre of the central (i = 15) aperture as a

1The experimental measurements were carried out by the group of Prof. Scamarcio at the University

of Bari.
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function of electrical power P at a heat sink temperature TH = 75 K.
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Figure 5.2: Local lattice temperature (TL) measured in the central aperture of the surface-

emitting THz QCL as a function of electrical power (P )[Data from Ref. [9]]. The dashed

line shows a linear fit to the data according to the relation (TL = TH + RTHP ) from which

a device thermal resistance of RTH = 27.8± 0.2K/W is extracted. All measurements were

performed at TH = 75 K.

From the experimental data of Fig. 5.2 the device thermal resistance RTH can be

extracted using Eqn. 3.1 and is found to be RTH = 27.8 K/W. It is worth noting that

since TL has been measured on top of the laser ridge, which is the hottest region of the

device, this value of RTH is an upper bound, if the measurement had been performed

on a cooler area of the device the corresponding temperature rise and hence thermal

resistance would be smaller.

5.2.3 Extraction of the cross-plane thermal conductivity

In order to fully understand the thermal dynamics of QCLs and improve their tem-

perature performance, knowledge of κ⊥ and its dependence on temperature is crucial.

In this section, the steady-statemodel described in Sec. 3.4 is employed in conjunction

with the experimental data of Sec. 5.2.2 to extract κ⊥ and its temperature dependence.

A two-dimensional cross-section of the device taken from the centre of the laser cavity

was simulated for each of the electrical powers in Fig. 5.2 at TH = 75 K with κ⊥ the

only fitting parameter. By matching the value of κ⊥ in the simulations that causes the

same temperature rise as measured for each power in Fig. 5.2, it is possible to extract
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κ⊥ as a function of temperature and the results are shown in Fig. 5.3.
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Figure 5.3: Cross-plane thermal conductivity (κ⊥) of the active region as a function of

temperature extracted from fitting the results of the two-dimensional thermal model to

the experimental data presented in Fig. 5.2. The dashed line is a power law fit to the data,

9.6T−0.14 W m−1 K−1. For comparison, the solid lines shows the thermal conductivities

of bulk GaAs and Al0.15Ga0.85As.

The same power law (κ = κ0T
n) that is often used for bulk semiconductors is used

to fit the data and values of κ0 = 9.6W m−1 K−(1+n) and n = −0.14 were extracted.

The results show that κ⊥ is a decreasing function of temperature with a much weaker

temperature dependence than III-V bulk semiconductors, where n is found to be typi-

cally in the range −1.55 ≤ n ≤ −1.20 [14]. The values of κ⊥ extracted here are in good

agreement with experimentally measured values of the cross-plane thermal conduc-

tivity of standard edge-emitting THzQCLs (κ0 = 10.6Wm−1 K−(1+n), n = −0.16 [15])

and GaAs/AlAs superlattices [16]. Also shown in Fig. 5.3 for comparison are the ther-

mal conductivities of bulk GaAs and Al0.15Ga0.85As which are much larger than κ⊥, a

trend which has previously been observed in the GaAs/AlGaAs [17], GaInAs/AlInAs

[2, 18] and Si/SiGe [19] material systems.

It is worth noting that as opposed to the decrease of κ⊥ with temperature that

is found in GaAs-based superlattices, in the GaInAs/AlInAs and Si/SiGe material

systems, κ⊥ is found to increase with temperature [2, 18, 19].
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5.2.4 Thermal properties of THz QCL optical waveguides

The optical waveguide is an integral component of a THz QCL and in order to in-

crease the maximum operating temperature it is important to understand the effect

of the waveguide on the thermal properties of the QCL. A Similar study has recently

been carried out on InP-based MIR devices [20]. This section presents a comparison

between the thermal properties of MM and SISP optical waveguides and the effect on

device performance.

In the following simulations, the MM optical waveguide is taken to be the same as

the one in Sec. 5.2.2 (45-µm-wide laser ridge and a 1.14-mm-long cavity) with d = 10

µm and a 160-µm-thick substrate. In order to make the comparison more meaningful,

the SISP waveguide is taken to be similar to the one in [21] (150-µm-wide laser ridge

and a 2-mm-long cavity) but with the same active region and substrate thicknesses as

theMMwaveguide. In the case of the SISPwaveguide, the substrate is semi-insulating

while the MM waveguide substrate is n+ doped at 2 × 1018 cm−3. In both cases, the

κ⊥ values extracted in Sec. 5.2.3 are used together with the temperature-dependent

thermal conductivity values given in Sec. 3.3.1, correctly adjusted for the doping level.

When comparing the thermal resistances of MM and SISP waveguides, it is impor-

tant to take into account the variation of the device dimensions. Due to the strong op-

tical confinement in MMwaveguides, the laser ridge can be sub-wavelength in width

as opposed to SISP waveguides and in order to take this into account, the thermal re-

sistances of the two waveguides have been normalised according toR∗
TH = RTH×A/d

where A is the area of the laser ridge. Simulations were performed over a range of

electrical powers at various values of TH and RTH extracted according to Eqn. 3.1.

The results are plotted in Fig. 5.4 as a function of TH. The results shows that at low

heat sink temperatures, the normalised thermal resistance of the MM waveguide is

higher than that of the SISP waveguide and above TH ∼ 35 K the normalised thermal

resistance of the SISP waveguide becomes much higher than that of the MM waveg-

uide and the difference between the two continues to increase as TH increases. This

behaviour is explained by the different substrates and bottom contact layers in each of

the waveguides.
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Figure 5.4: Normalised calculated thermal resistance R∗

TH as a function of TH for both the

SISP andMMoptical waveguide. The unnormalised thermal resistanceRTH is also shown

for comparison.

Below this threshold temperature, the total thermal resistance of the SI substrate

and n+ bottom contact layer in the SISP waveguide is less than that of the n+ sub-

strate and the Cu bottom contact layer in the MM waveguide. The n+ substrate in

the MM waveguide is the major contributor to this behaviour. Beyond the critical

temperature, the reduced thermal conductivity of the n+ bottom contact layer in the

SISP waveguide compared to the Cu bottom contact layer in the MM waveguide be-

comes the major contributor and the normalised thermal resistance of the MMwaveg-

uide is therefore lower than that of the SISP waveguide. Since one of the major goals

of research into THz QCLs is to increase the temperature performance (at least up

to temperatures accessible by thermo-electric coolers), these results confirm that MM

waveguides offer the best route for achieving this goal. The results also suggest that

by using a substrate with a lower thermal resistivity (such as InP or even diamond),

the total device thermal resistance will decrease causing a corresponding increase in

temperature performance, although care must be taken to try and keep the thermally

induced stresses (caused by thermal expansion coefficient mismatches) under control.

5.2.5 Investigation of the longitudinal temperature distribution

In order to investigate the temperature distribution along the length of the laser ridge

in the surface-emitting THz QCL, fully three-dimensional simulations have been per-
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formed using the thermal model outlined in Sec. 3.4. The longitudinal temperature

distribution is extracted from the top of the active region along the centre of the laser

ridge, where the measurements in Sec. 5.2.2 were taken. Fig. 5.5 shows the simulated

longitudinal temperature distribution at the centre of the ridge along one half of the

cavity length at TH = 75 K for P = 2.1 and 4 W.
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Figure 5.5: Simulated longitudinal temperature distribution at the centre of the ridge

along the laser cavity of the surface-emitting THz QCL at TH = 75 K for P = 2.1 W (solid

line) and 4 W (dashed line). The dotted lines show the locations of the first (i = 1) and

central (i = 15) apertures in the DFB grating. Close to the ends of the laser cavity, TL is

reduced due to longitudinal heat escape channels formed by the insulator/metallic coat-

ing on the laser facets. The inset shows a schematic cross section along the length of the

surface-emitting THz QCL (not to scale).

The results show that along the length of the laser cavity where the apertures ex-

ist, TL remains approximately constant, with the temperature in the central (i = 15)

aperture being slightly higher (∼ 3 K) than the temperature in the aperture at the end

of the cavity (i = 1). These results are in excellent agreement with experimentally

measured values on the same device [9]. In the surface-emitting THz QCL, bond pads

are fabricated at the ends of the cavity that also cover the electrically insulated ends

of the cavity while the sidewalls are left uncoated [10]. This configuration opens up

longitudinal heat escape channels which take advantage of the fact κ‖ > κ⊥ and hence

TL decreases near to the ends of the laser cavity. This effect is particular to this type of

device as in standard edge-emitting QCLs, the laser facets at the ends of the cavity are
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uncoated and hence no longitudinal heat channels will exist and the temperature can

be expected to be constant along the length of the laser cavity.

5.3 Thermal analysis of InP-based MIR QCLs

In the following section, the thermal properties of InP-based MIR QCLs are inves-

tigated and is similar in principle to Sec. 4.4 in that various thermal management

techniques are compared to a benchmark ridge waveguide structure.

5.3.1 Introduction

MIR QCLs have shown a large improvement in performance since their first demon-

stration [22] and high-power, above room-temperature (RT) cw operation is nowadays

readily achieveable in InP-based devices [23–27]. In order to understand the internal

thermal dynamics of the devices with the aim of improving the temperature perfor-

mance further still, in this section a standard ridge waveguide is used as a bench-

mark and compared to a buried heterostructure (BH) device and a ridge waveguide

with a thick electroplated (EP) gold top contact layer. The devices are simulated us-

ing the steady-state thermal model and material parameters outlined in Chapter 3

over a range of operating powers and temperature-dependent thermal resistances are

extracted together with the power outflows from the device active regions. These

parameters allow the thermal properties of each device to be quantified in order to

understand the internal thermal dynamics.

The cross-plane thermal conductivity of the active region is fixed at 2 W m−1 K−1

[18].

5.3.2 Comparison of device thermal properties

Device structures

In this work we investigate the thermal properties of three types of InP-based devices:

a benchmark standard ridge waveguide (A), a BH (B) and a ridge waveguide with a

thick EP gold top contact layer (C). In order to make comparisons between the devices
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more meaningful they have been kept as similar as possible and are based upon the

device in Ref. [27]. The active region is assumed to be 1.5 µm thick with the well ma-

terial (InGaAs) assumed to account for 63% of the total thickness. The upper cladding

layer is formed by 3.5 µm of InP and the InP substrate is assumed to be 100 µm-thick.

The laser ridge is assumed to have been etched to the bottom of the active region. A

250 µm-thick copper heat sink and 10 µm of indium solder are also included in the

simulation. In all cases, the laser ridge is taken as being 12 µm-wide and 3 mm-long.

Device A is assumed to be covered in 300 nm of SiO2 with an 8 µmwindow for the 300

nm-thick gold top contact layer. The ridge in device B is assumed to be surrounded on

both sides by i-InP and then covered in 300 nm of SiO2 and 300 nm of gold (also with

an 8 µm window on top of the ridge). Device C is taken to be the same as A, apart

from an additional 5µm of gold on top of the top contact layer.

5.3.3 Thermal resistance extraction

By running simulations for a range of electrical powers, TL can be extracted as a

function of P for each of the three devices. TL is defined as the temperature in the

centre of the QCL active region. The thermal resistance is then defined by the slope

RTH = dTL/dP . Fig. 5.6a shows the temperature rise (∆T = TL − TH) as a function of

P for all three devices at TH = 300 K.
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Figure 5.6: (a) Temperature rise ∆T as a function of electrical power P for: device A

- standard ridge waveguide, device B - buried heterostructure and device C - standard

ridge covered in thick electroplated gold. Dashed lines are fits to Eqn. 5.1. (b) Intrinsic

thermal resistance R0 as a function of TH for each device.
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It can be seen that for all three devices, the temperature rise has a quasi-linear

dependency for low powers and begins to deviate at higher powers. The following

empirical function is found to be an excellent fit to the data in the figure with correla-

tion coefficients in excess of 0.999

∆T = T0[exp(P/P0)− 1]. (5.1)

Differentiating the above equation with respect to P gives an expression for the ther-

mal resistance as a function of P

RTH = (T0/P0) exp(P/P0) = R0 exp(P/P0) (5.2)

where R0 is defined as the intrinsic thermal resistance of the device. Fig. 5.6b shows a

plot of intrinsic thermal resistance (R0) as a function of TH for each of the three devices.

It can be seen from that figure that device A has the highest intrinsic thermal resistance

for all values of TH. At heat sink temperatures below 165 K device B has the lowestR0

value while above this value, device C has the lowest.

By replacing the exponential function in Eqn. 5.1 with its Taylor series and ne-

glecting the higher-order terms it can be seen that in the low power regime, Eqn. 5.1

recovers the form of Eqn. 3.1. In this form the thermal resistance is constant irrespec-

tive of the change in the lattice temperature, whereas by combining Eqns. 5.1 and 5.2

we obtain a temperature dependent thermal resistance

RTH = R0

(

∆T

T0
+ 1

)

(5.3)

which takes into account the temperature-dependent thermal conductivities of the

materials in the device. For values of P where ∆T << T0, then the RTH can be well

approximated by R0 justifying the use of Eqn. 3.1, however for higher values of P

when∆T becomes comparable to T0, the quasi-linear relationship breaks down and a

temperature-dependent RTH must be used. A plot of RTH as a function of P at TH =

300 K for all three devices is shown in Fig. 5.7.

At this value of TH, device A has the highest thermal resistance and device C the

lowest, regardless of the value of P . It can be seen from the figure that as P increases,

RTH begins to significantly deviate from R0, questioning the validity of Eqn. 3.1 at

higher powers.
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Figure 5.7: Device thermal resistances as a function of electrical power at TH = 300 K.

5.3.4 Heat-flow analysis

In order to understand the internal thermal dynamics of the devices, it is useful to

know how the heat is evacuated from the active region. In this device the active region

is cuboid in shape and the power which flows through each surface of the cuboid can

be calculated as

Pf =

∫

−k(r)∇T (r)dS (5.4)

where in the steady-state the total power which flows through each surface is equal to

the input electrical power P dissipated in the active region volume. Here the power

flow through the front and back facets of the active region has been neglected. The

power outflow through each surface of the active region (out of the top through the

upper cladding, laterally, and through the bottom into the substrate) for P = 5W at

TH = 300 K for each device is shown in Table 5.1.

Table 5.1: Total amount of heat flowing through each surface as a percentage of the total

input electrical power (5 W) at TH = 300 K for each device.

Flow direction Device A Device B Device C

↑ 26.9 % 41.4 % 45.6 %

←→ 5.3 % 8.5 % 5.3 %

↓ 67.8 % 50.1 % 49.1 %
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It can be seen from the table that with respect to device A, the majority (68%) of

the heat dissipated in the active region escapes through the substrate. The extra 5

µm of gold in the case of device C compared to device A increases the amount of

heat escaping through the top of the active region by ∼ 70%, causing a subsequent

reduction in the amount escaping through the substrate to∼ 50% of the total. In device

B (the BH), the lateral heat channels are enhanced by ∼ 60% compared the device

A, taking advantage of the higher in-plane thermal conductivity of the active region

compared to the severely reduced cross-plane conductivity. Although increasing the

lateral heat escape channels reduces the active region temperature, there is a limit on

howmuch these channels can be enhanced which is determined by the aspect ratio of

the active region. In this particular case, the active region has an aspect ratio of 8:1,

meaning that vertical heat transport will always dominate over lateral heat transport.

Reducing the laser ridge width will reduce the aspect ratio and increase the effect of

the lateral heat channels on the active region temperature.

Fig. 5.8 shows a plot of the power outflow through each surface of device B as a

function of TH for P = 5W.
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Figure 5.8: Power outflow for device B as a function of TH at P = 5 W showing the

percentage of heat escaping through each surface of the active region.

It can be seen from the figure that as TH is increased, there is a suppression of the

lateral heat escape channels caused by the reduction of the in-plane thermal conduc-

tivity of the active region with temperature which explains the crossover of the curves
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for devices B and C in Fig. 5.6b. As the fraction of heat that escapes through the

substrate remains approximately constant, the suppression of the lateral heat escape

channels is compensated by an increase in the amount of heat that escapes through

the upper cladding layer. This heat that evacuates the active region via the upper

cladding layer then streams towards the heat sink through the i-InP surrounding the

laser ridge.

The effect of varying the thickness of the gold layer of device C on the lattice

temperature and the heat outflow components is shown in Fig. 5.9 for P = 5 W at

TH = 300 K.
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Figure 5.9: Power outflow for device C as a function of gold thickness d for P = 5W at

TH = 300 K showing the percentage of heat escaping through each surface of the active

region. Also shown is the lattice temperature TL as a function of d.

As the thickness of the gold layer increases, the lattice temperature steadily drops.

By comparing the data for device B in Fig. 5.6 with the above figure, it can be seen

that at TH = 300 K, the critical thickness of the gold layer is ∼1.5 µm. For thicknesses

above this value, the rise in temperature is less in device C than for device B. It should

be stressed that this critical thickness is not universal, it can be expected to change

with TH and the ridge aspect ratio.

Fig. 5.9 also shows that the amount of heat that escapes laterally is almost indepen-

dent of the thickness of the gold layer. Instead, as the gold layer thickness increases,

the fraction of heat that escapes through the upper cladding increases and offsets the

decrease in the fraction of heat that escapes through the substrate. As the layer be-
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comes even thicker, the fractions of heat escaping through the vertical channels begin

to balance, indicating that the high thermal conductivity gold layer begins to act as a

pseudo heat sink.

5.4 Conclusions

The cw thermal properties of both InP-based MIR and GaAs-based THz QCLs have

been studied using the thermal model presented in Chapter 3. For the case of the

THz QCL, the work was carried out in collaboration with the University of Bari who

provided experimental data. By fitting the results of the thermal model to the ex-

perimental measurements, values of the temperature-dependent cross-plane thermal

conductivity of the active region have been extracted. The thermal conductivity is

found to be a decreasing function of temperature in good agreement with experimen-

tally measured values for GaAs/AlAs superlattices. The temperature dependence is

found to be much weaker than that of bulk semiconductors.

The thermal properties of THz MM and SISP waveguides have been compared.

Above a heat sink temperature of∼ 35 K, MMwaveguides are found to have the low-

est thermal resistance due to the higher thermal conductivity of the metallic bonding

layer. Three-dimensional calculations have been performed in order to calculate the

longitudinal temperature distribution and the results are in excellent agreement with

experimentally measured values.

The thermal properties of InP-based MIR QCLs with different thermal manage-

ment techniques have been compared to a benchmark ridge waveguide. It has been

found that at higher values of dissipated electrical power, the standard linear relation

between power and temperature rise (Eqn. 3.1) which results in a constant thermal re-

sistance breaks down. An alternative exponential function has been suggested which

fits the simulation results very well and results in a temperature-dependent thermal

resistance. This is expected due to the temperature-dependent material thermal con-

ductivities.

For the particular device structure investigated here, a QCL with a thick EP gold

layer is found to have a lower thermal resistance than a BH device. However, this
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can be expected to change depending on the aspect ratio of the active region. For a

smaller aspect ratio, the lateral heat escape channels will start to compete more with

the dominant heat escape channel through the substrate. Heat flows from the active

region have been calculated in each device and a larger lateral heat flow in the BH

is found compared to the benchmark ridge and EP gold covered device. For larger

thicknesses of gold in the EP devices, the thick gold layer acts as a pseudo-heat sink.

The results have shown, especially for larger aspect ratios, that EP gold devices offer

comparable, if not better, thermal performance than BHdevices with the added benefit

of much simpler processing.
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Chapter 6

Design and simulation of

InGaAs/AlAsSb quantum cascade

lasers

6.1 Introduction

As mentioned briefly in Chapter 1 replacing the In0.52Al0.48As barriers in InP-based

QCL active regions with AlAs0.56Sb0.44 increases ∆Ec from 0.52 to 1.6 eV, whilst

still maintaining a lattice match to an InP substrate. The increased conduction

band offset and compatibility with well-established InP-based waveguides makes

the InGaAs/AlAsSb material system one of the prime candidates for realising high-

performance QCLs with short emission wavelengths. Devices emitting in the λ ∼ 3–

5µm atmospheric transmission window are of interest due to the potential applica-

tions of high-speed free-space optical communication links. Since the first observation

of λ ∼ 4.3 µm laser emission from these devices [1] there has been rapid progress with

wavelengths covering the range λ ∼ 3.05 – 4.5 µm [2–4]. Due to the large conduction

band offset, these devices are intrinsically less sensitive to the temperature than tradi-

tional InP- and GaAs-based devices and have been reported operating up to 400 K in

pulsed mode [2]. However, because of the large electric fields that are required to bias

these structures (due to the large photon energy) and the relatively large threshold

120
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current densities (∼ 10 kA/cm2 at 300 K [2, 3]), cw emission has been limited to 94 K

using thick EP-gold covered waveguides mounted epilayer-down [5].

For InGaAs/AlAsSb with wavelengths approaching 3 µm, the upper laser level

in the Γ-valley can lie above the X-valley which is around 520 meV above the bot-

tom of the InGaAs quantum wells [4]. It was suggested that laser emission from In-

GaAs/AlAsSb QCLs with wavelengths smaller than λ ∼ 3.7 µm may not be possible

due to the difficulty in achieving population inversion because of intervalley scatter-

ing [4]. However these fears were allayed by the report of an InGaAs/AlAsSb QCL

with an emission wavelength of λ ∼ 3.05 µm, albeit with a maximum operating tem-

perature of only 110 K in pulsed mode [3].

In this chapter, simulations of the electronic transport and electron heating in

short-wavelength In0.53Ga0.47As/Al0.56As0.44Sb QC structures are undertaken in or-

der to shed light on the carrier dynamics in these structures.

The work presented in this chapter was published in Applied Physics Letters, ‘De-

sign and simulation of InGaAs/AlAsSb quantum cascade lasers for short wavelength

emission’, Volume 87, no. 141109 pp. 1–3 (2005).

6.2 Theoretical framework

The carrier dynamics of the investigated structure were calculated using the self-

consistent scattering ratemodelwhich has been developed in Leeds [6–9] and is briefly

outlined in this section.

6.2.1 Electronic structure

In order to calculate the electronic structure of the QCL, the one-dimensional (1D)

Schrödinger equation is solved within the envelope function approximation

−~
2

2

d

dz

1

m∗(z)

d

dz
ψi(z) + V (z)ψi(z) = Eiψi(z) (6.1)

where m∗(z) is the effective mass function of the semiconductor layers in the QCL,

ψi(z) is the wavefunction of the i
th subband, V (z) is the conduction band potential

profile of the structure (which varies according to the applied field) and Ei is energy
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of the ith subband. Non-parabolicity is taken into account via an energy-dependent

effective mass as described in Appendix C.

In order to solve the Schrödinger equation, a finite-difference method is used [7].

The equation is discretised onto a one-dimensional gridwithNz points and the deriva-

tives are represented by central finite-differences (see Appendix D). After discretisa-

tion, the Schrödinger equation becomes

− ~
2
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


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+ Vnψn = Eψn (6.2)

where∆z is the mesh size andm∗
n+ 1

2

is obtained through interpolatingm∗
n andm

∗
n+1.

Eqn. 6.2 reduces to a matrix eigenvalue problem with a tridiagonal Hamiltonian ma-

trix

[H(E)] = − ~
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Since the effective mass is energy-dependent (via the non-parabolicity), the eigen-

value problem is nonlinear

[H(E)]ψ = Eψ (6.4)

and cannot be solved using conventional diagonalisation routines that handle linear

eigenvalue problems. In order to solve the nonlinear problem, the eigenvalues of Eqn.

6.4 are found using

|H(Ei)]− Ei[I]| = 0 (6.5)
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where Ei are the eigenvalues (i.e. energies of the electronic states) and [I] is the Nz by

Nz unity matrix. The eigenvectors (i.e. electron wavefunctions) are found by recasting

Eqn. 6.4 in the form of a fictitious linear eigenproblem [7]

([H(Ei)]− Ei[I])ψi = λψi. (6.6)

One of the eigenvalues λ of the above equation will be almost equal to zero (due to

round-off errors) and the corresponding eigenvector is the actual eigenvector of Eqn.

6.4 corresponding to the eigenenergy Ei. The eigenvector is then calculated using a

standard diagonalisation routine1.

Transport within the structure is described within a tight-binding picture where

each state within the structure is assigned to some specific period based upon its lo-

calisation properties. Due to the periodic nature of the structure, if ψ(z) is a solution

of the Schrödinger equation at energy E, then ψ(z − Lp) is also a solution at energy

E − ∆V where Lp is the length of the period and ∆V is the potential energy drop

across one period. Therefore, in order to obtain the wavefunctions in two periods of

the structure, which are required for the transport calculations, the N states that are

assigned to one period of the structure are each translated in space and energy to the

next period of the cascade.

6.2.2 Carrier scattering

Once the electronic structure of the cascade has been obtained, it is possible to calculate

the carrier dynamics of the system. The rate (Wif ) of an electron in an initial state |i〉

scattering into a final state |f〉 after experiencing a time-dependent perturbation is

given by Fermi’s golden rule as [6]

Wif =
1

τif
=

2π

~

∣

∣〈f |H|i〉
∣

∣

2
(6.7)

where τif is the lifetime of the transition andH is Hamiltonian of the perturbation. In

this work, electron–LO phonon (e–LO) and electron–electron (e–e) scattering mecha-

nisms are taken into account.

1The open source LAPACK routine DSTEBZ is used in this case
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For a bulk phonon of angular frequency ω and wave vector K at position r, the

perturbation Hamiltonian is given by

He–LO = e

(

~ωP

2|K|2
)1

2 e−iK � r

V
1

2

(6.8)

where

P =
1

ǫ∞
− 1

ǫs
(6.9)

and V is the volume of the bulk crystal.

For the case of e–e scattering, the perturbation that appears in Fermi’s golden rule

is the Coulombic interaction

He–e =
e2

4πǫ0ǫrd
(6.10)

where ǫr is the relative dielectric constant of the material and d is the separation be-

tween the electrons. The mean scattering rate of a carrier making the transition i to

f is then calculated assuming a thermalised Fermi-Dirac distribution in each of the

subbands.

For a more in depth discussion of the carrier scattering rates, including full deriva-

tions of expressions for both e–LO and e–e scattering rates see Refs [6] and [7]. In this

work Γ–X scattering is ignored but in order to gain more understanding of the factors

that limit the performance of these devices, it should be included in any future work.

6.2.3 Rate equations

Once the scattering rates for each of the transitions within the two period structure

have been calculated, rate equations for each of the i subbands are formed [10]. The

rate of change of population of the ith subband is given by the expression

dni

dt
=
∑

f 6=i

nfWfi −
∑

i6=f

niWif (6.11)

where i and f are run over all states in both periods, and ni and nf are the initial and

final subband populations. In equilibrium, dni/dt = 0 and

∑

f 6=i

nfWfi −
∑

i6=f

niWif = 0. (6.12)

The above equation, together with
∑

i ni = Ns, where Ns is the total sheet doping

density, gives a system of equations that can be solved for the subband populations
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ni. However, since the scattering rates themselves are also dependent upon the sub-

band populations, the system of equations must be solved self-consistently until con-

vergence is reached.

In addition to the above rate equations, an energy balance condition is also in-

cluded in the model [11]. In equilibrium, the rate at which the electron distributions

gain kinetic energy relative to the subband minimum through scattering processes

balances the rate at which they lose kinetic energy to the lattice. For each particular

scattering mechanism, the energy balance is given by

∆ =
∑

i,f

niWif (Ei − Ef + δE) = 0 (6.13)

where δE = −ELO for phonon emission, +ELO for phonon absorption and zero for

e–e scattering. In the case of GaAs, ELO = 36meV. The above energy balance equation

is included as an additional self-consistent loop in the calculation. The scattering rates

are dependent upon the electron temperature (which is assumed to be the same for

each subband) and this is varied until the energy balance equation is satisfied.

6.2.4 Output parameters

After solving the rate equations self-consistently and obtaining the subband popula-

tions, it is possible to extract the output parameters of the QCL2. The current density

is calculated by considering the flow of electrons across the plane separating the two

periods (i.e. across the injection barrier of the second period)

J = e





N
∑

i=1

N
∑

j=1

ni[Wi,j+N −Wi+N,j]



 . (6.14)

The first term represents the contribution to the current from electrons travelling from

the first to the second period while the second term represents the current flowing

from the second to the first period i.e. back-scattering. By repeating the simulation at

various values of applied electric field, the current–voltage characteristics of the laser

are obtained.

2It should be noted that these output parameters take into account transitions between all states in

both periods of the device and therefore give amuchmore detailed description of the device performance

compared to the simple three-level scheme outlined in Chapter 1
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The modal gain of the laser is calculated at each bias point using Eqn. 1.11. By

plotting the value of modal gain at each bias point as a function of the current density

at that point, the gain coefficient g can be obtained from the slope of the graph (Eqn.

1.19). The threshold current density (Jth) can then be estimated by observing at which

current density the modal gain exceeds the total waveguide loss (which is determined

using the methods outlind in Chapter 2).

6.3 Design optimisation and results

In this work, the device presented in Ref. [12] is used as a benchmark structure. The

device is an InGaAs/AlAsSb QC structure (structure A) from which electrolumines-

cence was observed at λ ∼ 3.1µm up to 240 K. At the time of publication (2004), 3.1µm

was the shortest observed intersubband emission wavelength from any material sys-

tem and served to prove InGaAs/AlAsSb as a prime candidate for achieving short

wavelength emission from QC structures. A schematic conduction-band diagram of

structure A showing two active regions separated by an injector region at the design

field of 128 kV/cm is shown in Fig. 6.1. Themoduli squared of the active region wave-

functions (probability densities) are shown in red, while the injectorwavefunctions are

shown in blue.

The structure was simulated using the self-consistent rate equation model at the

design bias of 128 kV/cm at a lattice temperature of TL = 77 K with a sheet doping

density of Ns = 2.4 × 1011 cm−2. The calculated emission wavelength is λ ∼ 2.8µm.

The discrepancy with experiment is likely due to the non-parabolicity model that is

used which will affect the position of the high energy upper laser level. It should be

noted that very thin layers are required in the design due to the large value of Ec and

even a small variation in the grown layer thickness (of the order of monolayers) can

shift the subband energies by several meV thus also contributing to the discrepancy

between the calculated and measured values.

The calculated subband populations in structure A at TL = 77 K are shown in

Fig. 6.2 It can be seen from the figure that 53% of the carriers are trapped in the

ground level of the active region. This ’bottleneck’ arises as a direct consequence of
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Figure 6.1: Schematic conduction-band diagram of structure A at the design field of 128

kV/cm. The layer sequence of one period of the structure (in Å) starting from the injec-

tion barrier is: 24/11/11/32/10/29/16/23/15/23/15/22/15 /21/15/19/15/17/15/16/

15/15/15/14/16/13/17/13. The bold script denotes the Al0.56As0.44Sb barriers, the nor-

mal script the In0.53Ga0.47As wells. The underlined wells are doped with a sheet doping

density of Ns = 2.4× 1011 cm−2.

the minimal overlap of the ground level with the injector states. The highest energy

injector state is hybridised with the lower laser level at the design bias, causing it

to be one LO phonon energy (32.7 meV in InGaAs) above the active region ground

level thus preventing efficient electron extraction. The electron bottleneck limits the

population inversion to only 2.6% of Ns and is the reason why lasing is not possible

from the structure.

In order to improve the device performance and achieve enough gain for laser

emission, the design was optimised (structure B). The main aim of the optimisation

is to remove the electron bottleneck from the structure and hence increase the popu-

lation inversion. This is achieved by thinning the extraction barrier (from 16 Å to 13

Å) allowing the active region ground level wavefunction to penetrate into the injector

miniband, thus increasing the overlap with the injector states and therefore the scat-

tering rate. As mentioned earlier, in structure A, the upper most injector level is one

LO phonon energy above the active region ground level hindering the electron trans-
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Figure 6.2: Calculated subband populations of structure A at the design field of 128

kV/cm at TL = 77 K.

port. In order to improve the electron transport properties of the structure compared

to structure A, the first injector well is widened (from 23 Å to 27 Å) in order to lower

the uppermost injector level and bring it into alignment with the active region ground

level. The injection efficiency into the upper laser level from the lowest injector level is

also improved by thinning the injection barrier from 24 Å to 21 Å. Transport through

the injector is also improved by slightly thinning the barriers in order to increase the

mixing between the miniband states. It is found that the radiative transition element

z32 increases from 0.8 nm in structure A to 0.9 nm in structure B.

A schematic conduction-band diagram of structure B showing two active regions

separated by an injector region at the design field of 130 kV/cm is shown in Fig.

6.3. The moduli squared of the active region wavefunctions (probability densities)

are shown in red, while the injector wavefunctions are shown in blue.

Structure B was simulated following the same procedure as structure A keeping

the same level of sheet doping density and lattice temperature. The calculated sub-

band populations are given in Fig. 6.4. It can be seen from the figure that the electron

bottleneck is no longer present and the electron transport is more efficient through-

out the structure. The population inversion in structure B is 20 % of Ns compared to

the 2.6 % in structure A. Fig. 6.5 shows an overview of the populations of the most

important levels in each structure at 77 K.
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Figure 6.3: Schematic conduction-band diagram of structure B at the design field of 130

kV/cm. The layer sequence of one period of the structure (in Å) starting from the injection

barrier is: 21/11/11/32/10/29/13/27/13/24/13/22/14/ 20/14/18/14/17/15/16/15/

15/16/14/16/13/17/13. The bold script denotes the Al0.56As0.44Sb barriers, the normal

script the In0.53Ga0.47As wells. The underlined wells are doped with a sheet doping den-

sity of Ns = 2.4× 1011 cm−2.

By repeating the simulations over a range of bias points, electric field–current den-

sity (F–J) are obtained. The F–J curves for structures A and B at a lattice temperature

of 77 K are shown in Fig. 6.6. The current density in structure A is limited to ∼ 2.2

kA/cm2 before the onset of negative differential resistance (NDR) due to the bottle-

neck effect. This value is in good agreement with the experimentally measured value

[12]. Due to more efficient carrier transport in structure B, the maximum current den-

sity of the device increases to ∼ 5.6 kA/cm2 before the NDR occurs. This increase in

the maximum current density occurs without significantly changing the applied bias,

period length or sheet doping density and is down purely to the improved carrier

transport.

The modal gain GM of each device was calculated using Eqn. 1.8 with a FWHM

of 2γ32 = 53meV [12]. The waveguide parameters were calculated using the methods

presented in Chapter 2. For the InP-based waveguide described in Ref. [12], with

30 QCL periods sandwiched between 200 nm of low-doped InGaAs with a 2120 nm
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Figure 6.4: Calculated subband populations of structure B at the design field of 130

kV/cm at TL = 77 K.

low-doped InAlAs upper cladding layer capped with a 150 nm highly-doped InAlAs

confinement layer, the mode overlap is found to be Γ = 0.41 and the waveguide loss

αW = 3 cm−1. The mirror loss, calculated from Eqn. 2.7 is ∼ 7 cm−1 giving total losses

of ≈ 10 cm−1. The modal gain as a function of current density for each structure at

TL = 77 K is shown below in Fig. 6.7. The total calculated waveguide losses of 10

cm−1 are represented by the dashed line. The threshold current density Jth can be

obtained by extracting the value of J at which GM exceeds the total losses. From the

figure it is apparent that Jth = 4 kA/cm2 for structure B at a lattice temperature of 77

K. Using Eqn. 1.19, the gain coefficient g can be extracted from the slope of the graph.

Values of 4.4 and 5.1 cm/kA are extracted for structures A and B respectively. It can be

seen that the improved carrier transport in structure B results in a ∼ 15% increase in

g compared to structure A. Since GM is also a function of J as well as g, the increased

current carrying capability of structure B means that the maximum value of GM is

more than double of that in structure A.

The simulation was repeated for structure B at higher values of lattice temperature

and the maximum operating temperature was found to be 140 K.
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Figure 6.5: Overview of the subband populations of each structure at TL = 77 K.

6.4 Increasing the maximum operating temperature

The maximum operating temperature can be increased by increasing the modal gain

and this can be achieved in a number of ways. From Eqn. 1.19 we have

GM (J) = gΓJ. (6.15)

For a given active region, GM can be increased through either increasing the mode

overlap Γ of the optical waveguide or by increasing the current density J in the device.

6.4.1 Improved optical waveguide design

In order to increase Γ, a new plasmon-enhancedwaveguidewas designed, based upon

the approach used by Yang et al. in their λ ∼4.5 µm InGaAs/AlAsSb QCL operating

up to 400 K [2]. In this design, 30 periods of the active and injector regions of structure

B are sandwiched between two 200 nm of In0.53Ga0.47As confinement layers doped

to 1 × 1017 cm−3. The above layer sequence is surrounded on one side by an InP

substrate and by three separate InP layers acting as waveguide cladding and contact

layers on the other. Starting from the upper In0.53Ga0.47As confinement layer, the InP

layers doping densities and thicknesses are as follows: 5× 1017 cm−3, 20 nm; 2× 1017

cm−3, 1.3 µm; 7× 1018 cm−3, 1.3 µm. The mode confinement factor of the waveguide

is calculated to be Γ = 73% with αW = 0.73 cm−1. With this improved waveguide
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Figure 6.6: Electric field versus current density characteristics of structures A and B at a

lattice temperature of 77 K.
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Figure 6.7: Modal gain of each structure as a function of current density. The dashed line

indicates the total losses.

design, the maximum operating temperature of structure B was calculated to increase

to 240 K.

6.4.2 Increasing the current density

The maximum current density through the device is proportional to the sheet doping

density Ns. In order to further increase GM and hence the maximum operating tem-

perature,Ns was increased from 2.4×1011 cm−2 to 3.8×1011 cm−2 and laser emission

was simulated up to a lattice temperature of 300 K. The relative subband populations

at this higher doping are shown in Table 6.1 at 77 K and 300 K and are similar (< 2%)
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to the relative populations at lower doping level. However, as the gain is approxi-

mately proportional to the doping level (through the concomitant increase in current

density), overall the gain increases by ∼ 50%.

Table 6.1: Calculated subband populations in the structures. ULL: upper laser level, LLL:

lower laser level, GL: ground level, LIL: lowest injector level.

Structure A B B B B

F [kV/cm] 128 130 130 130 130

T [K] 77 77 77 300 300

Ns [cm
−2] 2.4× 1011 2.4 × 1011 3.8× 1011 2.4× 1011 3.8× 1011

State Populations [%]

ULL 4.3 23.8 22.1 12.2 12.4

LLL 1.7 3.8 4.1 3.8 4.2

GL 53.3 5.8 5.9 5.2 5.2

LIL 21.2 18.1 17.2 12.5 12.4

It is important to realise that the maximum operating temperature referred to here

is the lattice temperature and, as discussed in Chapter 3, this in not necessarily equal

to the heat sink temperature. The work presented in Chapter 4 investigates the rela-

tionship between the heat sink and lattice temperatures in structure B.

6.5 Threshold current density extraction

Structure B was simulated over a range of lattice temperatures at both sheet doping

densities. By extracting the value of current density at which the modal gain is equal

to the total waveguide loss, it is possible to extract the temperature dependence of the

threshold current density which is shown in Fig. 6.8. The characteristic temperatures

(T0) are extracted by fitting the curves in Fig. 6.8 to the well known equation

Jth ≈ Jth(0) exp(T/T0). (6.16)

Values of 376 K and 348 K are extracted for the lower and higher values of Ns

respectively.
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Figure 6.8: Calculated threshold current densities as a function of lattice temperature. The

dashed lines show the exponential fits used to calculate the characteristic temperatures

(T0).

6.6 Investigation of electron heating

The electron temperature as a function of current density for structure B was calcu-

lated at both injector sheet doping densities and is shown in Fig. 6.9 at lattice tem-

peratures of 77 and 300 K. At 77 K a linear dependence was obtained although at

300 K there is evidence of an exponential increase in electron temperature with cur-

rent density but this can still be reasonably approximated as being quasi-linear. The

electron–lattice coupling constants (αe–l) were deduced from straight line fits to the

data [11]. At the lower sheet doping density (Ns = 2.4×1011 cm−2) αe–l was calculated

to be equal to 49.1 and 58.5 K/kA cm−2 at 77 and 300 K respectively. These values are

slightly lower than the calculated coupling constants of structure A (53.7, 61.5 K/kA

cm−2 at 77, 300 K) indicating no degradation in electron heating. When the sheet dop-

ing density was increased to 3.8×1011 cm−2, the coupling constants decreased to 28.9

K/kA cm−2 at 77 K and 38.16 K/kA cm−2 at 300 K.

A quasi-linear relationship was also found between the electron temperature and

the electrical power density (PD = F × J), even at 300 K (see inset Fig. 6.9). The

relationship is of the form Te = Tl + βe–lPD where Tl is the lattice temperature and the

coupling constant βe–l is obtained from straight line fits to the data. At 77 K, βe–l has

values of 0.36 and 0.21 K/MW cm−3 at the lower and higher sheet doping densities
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Figure 6.9: Electron temperature as a function of current density at both doping densities

and at lattice temperatures of 77 and 300 K. The coupling constants αe–l were calculated

from straight line fits to the data. Inset: Electron temperature as a function of electrical

power density (F × J). The straight line fits were used to calculate the coupling constants

βe–l.

respectively. At 300 K the corresponding values of βe–l are 0.43 K/MW cm
−3 and 0.28

K/MW cm−3. The values of both αe–l and βe–l decrease as the sheet doping density

increases due to the higher number of electrons in the device. At a higher doping

density, a smaller applied bias generates the same current density as a larger applied

bias at a lower doping density. Hence for a given current density, the power input

per electron is lower at the higher doping density and therefore less electron heating

occurs. This was confirmed by calculating the ratio between the relative increase in

electron temperature and the power of each individual electron (Te − Tl)/(PE/Ns)

which is equivalent to βe–lNs and shows almost constant behaviour for both doping

levels.

6.7 Conclusions

In conclusion, the simulation and design of InGaAs/AlAlSb QCLs has been reported

using a fully self-consistent rate equation model. For the designed QCL a large popu-

lation inversion is predicted, which in conjunction with the suggested improvements



6.7. Conclusions 136

in the waveguide design, yields sufficient gain for the possibility of laser action up

to at least 300K. Considerable electron heating is anticipated, reflected by the large

electron temperature–current density coupling constants of average value ∼ 55 K/kA

cm−2 which are twice as large as those found in mid-infrared GaAs-based QCLs [13].

The validity of the proposed QCL was proven by the later report of lasing at λ ∼ 3.05

µm from a similar structure [3]. It has been suggested that in any future work, the role

of Γ–X scattering should be investigated.
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Chapter 7

Conclusions

The aim of this thesis was to investigate the optical and thermal properties of quan-

tum cascade lasers through the development of comprehensive theoretical models.

In depth knowledge of both of these important properties is paramount to under-

standing the factors that limit device performance and key to increasing maximum

operating temperatures.

In Chapter 1, the quantum cascade (QC) principle was introduced through the

adoption of a simplified three-level rate equation model. The model was then used to

explain how optical gain is achieved in each of the QCL active region design schemes

that have been used to date. Although the QC principle is, in theory, applicable to any

material system, it has been most successful in InP-, GaAs-based and most recently in

InAs/AlSb heterostructures. Thesematerial systemswere discussed and current mile-

stones outlined. Finally, the growth and potential applications of QCLs were outlined

in order to give the reader a wider base from which to follow the rest of the thesis and

appreciate the difficulties in experimentally realising these complex devices.

In addition to a gain medium, QCLs also require an optical waveguide in order

to increase the photon density in the laser cavity and promote stimulated emission.

Without sufficient photon densities, lasing would not be possible and hence the opti-

cal waveguide forms a critical component of a QCL. Chapter 2 presented an in-depth

study of QCL optical waveguides. This was achieved by solving Maxwell’s equations

in one-dimension using a multi-layer transfer-matrix method. The one-dimensional

approach is viable for ridge widths larger than the wavelength of radiation in the
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waveguide; this is generally true in QCLs. The waveguide performance depends

strongly on the optical properties of the materials used to engineer the waveguide

layers. Generally the refractive index of the materials involved is complex and in this

work, refractive indices were calculated using a Drude-Lorentz model. This model

takes into account both plasma and phonon contributions to the semiconductor refrac-

tive indices. It was shown how the extinction coefficient is strongly dependent upon

the electronmobility and a Caughey-Thomas-like mobility model was introduced and

used to calculate the temperature dependence of the semiconductor optical proper-

ties. The developed model was then used to analyse the different types of waveg-

uiding scheme that have been adopted for different wavelength ranges. In particular,

it was shown that by including the temperature dependent material properties, bet-

ter agreement with experimentally measured values of threshold current density can

be achieved. Also, for the case of THz QCLs, it was shown that metal–metal optical

waveguides offer the best performance as the emission wavelength increases and that

the use of palladium as a plasmon-carrying layer could offer the possibility of lower

waveguide losses.

In the author’s own opinion, the most crucial aspect of a QCLs operation which

determines its performance levels is the temperature of the active region. Due to the

large amounts of electrical power dissipated in the active region, its temperature can

be significantly higher than that of the heat sink. These higher temperatures cause

several effects such as thermal backfilling and electron leakage which are detrimental

to device performance. In addition, the various electron scattering mechanisms are

strongly temperature dependent and the carrier dynamics are also affected. Since the

active region temperature is not easily measured experimentally, theoretical models

are required. In Chapter 3, the concept of the device thermal resistance was intro-

duced and methods discussed of reducing the active region temperature with regards

to the heat sink temperature. A thermal model was presented based upon the finite-

difference solution of the heat equation. In order to fully account for the thermal

behaviour of the devices, temperature dependent material parameters are used and

these were presented. The model is capable of solving the heat equation in both the
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time-domain (using a iterative time-marching algorithm) and in the steady-state (us-

ing a successive-over-relaxation technique).

The transient thermal model was used in Chapter 4 to investigate and compare

the thermal properties of mid-infrared QCLs operating in pulsed mode. The carrier

transport model presented in Chapter 6 was used to calculate the dissipated power

in an InP-based InGaAs/AlAsSb QCL. For a benchmark ridge waveguide structure,

it was found that the temperature range inside the active region increases for higher

heat sink temperatures, meaning each period is at a different temperature and could

be a limiting factor of device performance together with causing damaging thermal

stress effects. It was found QCLs are much more sensitive to increases in duty-cycle

through the use of longer pulses rather than increased repetition rates. Various heat

management techniques were compared to the benchmark ridge in order to see which

offered the best thermal performance. The cooling phase of each structurewas fitted to

a second-order exponential function in order to extract thermal time constants. Buried

heterostructures were found to have the smallest time constants, several times smaller

than the benchmark ridge waveguide.

In Chapter 5, the thermal properties of QCLs operating in continuous-wave mode

were investigated. Using experimental data from the University of Bari, the tempera-

ture dependent cross-plane thermal conductivity of a GaAs-based THz QCL was de-

duced using the thermal model developed in this thesis. It was found to be a de-

creasing function of temperature as opposed to the increasing function that is found

in InP-based active regions. This is in good agreement with experimentally measured

values of GaAs-based superlattices. The thermal properties of metal–metal and semi-

insulating surface-plasmon THz optical waveguides were compared and it was found

that for higher temperature operation, metal–metal waveguides offer the best per-

formance. A similar study to that performed in Chapter 4 was carried out on mid-

infrared QCLs operating in continuous-wavemode. However in this case, a QCLwith

a thick electroplated top contact layer was found to have the lowest value of thermal

resistance. After performing heat-flow analysis, it was found that this situation de-

pends very strongly on the thickness of the gold layer. Below a critical thickness, the
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buried heterostructure is the best option for reducing the active region temperature.

A self-consistent rate equation model of carrier transport in QCLs that has been

developed in Leeds was presented in Chapter 6. It was modified and used to in-

vestigate the carrier dynamics of a short-wavelength InGaAs/AlAsSb QC structure

presented in the literature that failed to lase. The results of the modelling revealed

that an electron bottleneck in the ground state of the active region was trapping over

half of the carriers and limiting the performance. The injector was redesigned using

the modelling results as a guideline. The new design was predicted to have gain for

laser emission up to 140 K. Through the re-design of the optical waveguide using the

methods detailed in Chapter 2 and an increased sheet doping density, laser emission

was predicted up to a lattice temperature of 300 K. The validity of the design was later

verified by the report of lasing from a QCL with a very similar design.

7.1 Suggestions for further work

After reading this thesis, it should be apparent that it is far from a complete work. As

is the case with scientific research, there is always scope for further investigation. The

work presented in this thesis does not focus solely on one aspect of quantum cascade

lasers in particular and instead covers a range of the most important aspects of QCLs;

their thermal, optical and carrier transport properties. Therefore, it seems obvious that

in order to increase the understanding of the processes that limit device performance,

the aspects that are covered in this thesis should be combined in any future work.

Firstly, the optical waveguide analysis presented in Chapter 2 could be extended

to two-dimensions. This would make the optical analysis compatible with the thermal

model presented in Chapters 3 to 5. One of the ways to reduce the dissipated electrical

power in QCLs is to reduce the laser ridge dimensions. However, reducing the ridge

too much will ‘squeeze’ the optical mode out of the ridge, reducing the mode overlap

and hence the laser gain. Therefore, a two-dimensional optical waveguide analysis

would allow investigation of the impact of the lateral confinement on the mode over-

lap and waveguide loss, which when combined with the thermal model, would allow

a balance between the optical and thermal performance of QCLs to be found.
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Secondly, the combination of the presented thermal models with the carrier trans-

port model of Chapter 6 would allow electro-thermal modelling of QCLs to take place.

It is clear that the carrier dynamics in QCLs are heavily dependent upon the lattice

(and electron) temperature and in turn determine the current density which flows in

the device. This current density then determines the lattice temperature and creates

a positive feedback loop. The self-self-consistent solution of the rate equations cou-

pled with the heat equation would allow a more in-depth analysis of the carrier and

thermal dynamics of QCLs than has been previously possible.

By using the self(-self)-consistent model to analyse THz QCLs in order to improve

their performance through the optimisation of active region designs. In particular a re-

duction in electron leakage and thermal backfilling would reduce the current densities

and in turn the lattice temperature, bringing the maximum operating temperatures of

THz QCLs ever closer to those accessible by thermo-electric coolers.

Finally, the role of Γ-X scattering in short-wavelength (λ ∼ 3µm) QCLs could be

investigated. Although InGaAs/AlAsSb QCLs have been reported with the upper

laser level above the X-point conduction band minima in InGaAs, their performance

has not reached the same level as InGaAs/AlAsSb QCLs with emission wavelengths

in the range of λ ∼ 4–5µm. By including Γ-X scattering in the rate equationmodel, the

role of theX-valleys on the carrier transport could be investigated and their influence

reduced through optimised active region designs.



Appendix A

Optical gain in a quantum well

system

The optical gain g per unit length of a quantum well system is given by [1]

G =
σ1

ǫ0cn
(A.1)

where σ1 is the real part of the optical conductivity and n is the real part of thematerial

refractive index. For intersubband transitions in quantumwells, the real part of optical

conductivity is given by [1]

σ1(ω) =
πe2

2m∗Lp

∑

i,j

fji∆njiδ(ω − ωji) (A.2)

wherem∗ is the electron effective mass, Lp is the period length, ∆nji is the difference

in population between subbands j and i, δ is the Dirac delta function, ωji is the angular

frequency of the transition and fji are the oscillator strengths of the transitions given

by

fji =
2m∗

~
ωji|〈j|z|i〉|2 . (A.3)

Inserting (A.2) and (A.3) into (A.1) gives

G(ω) =
πe2

ǫ0cn~Lp

∑

i,j

ωji∆nji|〈j|z|i〉|2δ(ω − ωji). (A.4)

The above equation gives sharp δ-functions in the gain spectrumwhen ω = ωji but

in reality, the sharp peaks are broadened by the lifetime of the states involved and the
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δ-functions can be replaced by a Lorentzian profile.

f(ω;ωji, (2γji)) =
(2γji)/2

π

1

(ω − ωji)2 + ([2γji]/2)2
(A.5)

where 2γji is the full-width at half-maximum (FWHM). The gain can then be ex-

pressed as

G(ω) =
πe2

ǫ0cn~Lp

∑

i,j

ωji∆nji|〈j|z|i〉|2
(2γji)/2

π

1

(ω − ωji)2 + ([2γji]/2)2
. (A.6)

For a given j → i transition at ω = ωji, A.6 simplifies to

Gji =

[

2e2

ǫ0cn~

ωji|〈j|z|i〉|2
2γjiLp

]

∆nji (A.7)

which, after converting to wavelength gives

Gji =

[

4πe2

ǫ0n

|〈j|z|i〉|2
2γjiLpλ

]

∆nji (A.8)
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Appendix B

Derivation of the dielectric

waveguide transfer matrix

For a transverse electric (TE) mode propagating in the +z direction in the ith layer

(xi−1 ≤ x ≤ xi) which has a constant refractive index ni and permeability µr = 1,

the electric field is given by the product of a plane wave propagating in the +z di-

rection with a propagation constant γ (γ = β + jα, where β and α are the phase and

attenuation propagation constants respectively), modulated by an amplitude Eyi(x).

~εi = ŷEyi exp[j(ωt − γz)] (B.1)

Eyi(x)must satisfy the reduced wave equation

∂2Eyi

∂x2
− κ2

iEyi = 0 (B.2)

where κi =
√

γ2 − k2
0n

2
i are the complex transverse wavevectors, k0 = 2π/λ0 and λ0

is the free-space wavelength. The general solution of Eqn. B.2 is given in Eqn. B.3 and

can be thought of as a superposition of forward and backward propagating electric

fields.

Eyi(x) = Ai exp[−κi(x− xi−1)] +Bi exp[κi(x− xi−1)] (B.3)

Ai and Bi are complex coefficients relating to the forward and backward propagat-

ing fields respectively and xi−1 is the boundary between the i
th and (i − 1)th layer.

By matching the tangential field components of the displacement fields at each layer

interface, the transfer matrices of each layer can be derived.
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FromMaxwell’s equations

∂

∂x
Eyi(x) = −ωµ0Hzi(x). (B.4)

In layer i, the electric and magnetic fields are given by Eqns. B.5 and B.6 respectively.

Eyi(x) = Ai exp[−κi(x− xi−1)] +Bi exp[κi(x− xi−1)] (B.5)

µ0ωHzi(x) = −κi (Ai exp[−κi(x− xi−1)] +Bi exp[κi(x− xi−1)]) (B.6)

In layer i+ 1, the electric field is given by

Eyi+1(x) = Ai+1 exp[−κi+1(x− xi)] +Bi+1 exp[κi+1(x− xi)] (B.7)

and the magnetic field by

µ0ωHzi+1(x) = −κi+1 (Ai+1 exp[−κi+1(x− xi)] +Bi+1 exp[κi+1(x− xi)]) (B.8)

The displacement field in each layer is given by D̄i = ǫiĒi (where ǫi is the dielectric

constant of the ith layer) and hence Eqns. B.5 and B.6 must be multiplied by ǫi and

Eqns. B.7 and B.8 multiplied by ǫi+1. At x = xi (i.e. the boundary between the i
th and

(i + 1)th layer) the tangential components of the displacement fields are continuous

and by substituting x = xi in Eqns. B.5 and B.7, the following relation from the electric

fields in each layer is given

ǫi (Ai exp[−κidi] +Bi exp[κidi]) = ǫi+1 (Ai+1 +Bi+1) (B.9)

where di is the layer width given by xi− xi−1. By substituting x = xi in Eqns. B.6 and

B.8, the following relation from the magnetic fields in each layer is given

− κiǫi (Ai exp[−κidi]−Bi exp[κidi]) = −κi+1ǫi+1(Ai+1 −Bi+1) (B.10)

Eqn. B.9 can be re-arranged to give

Ai+1 =

[

ǫi
ǫi+1

(Ai exp[−κidi] +Bi exp[κidi])

]

−Bi+1 (B.11)

Re-arranging Eqn. B.10 gives

Bi+1 = Ai+1 −
[

ǫi
ǫi+1

(

Ai
κi

κi+1
exp[−κidi]−Bi

κi

κi+1
exp[κidi]

)]

(B.12)
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Substituting Eqn. B.12 into Eqn. B.11 and collecting variables gives

Ai+1 =
ǫi

2ǫi+1

[

Ai

(

1 +
κi

κi+1
exp[−κidi]

)

+Bi

(

1− κi

κi+1
exp[κidi]

)]

(B.13)

Substituting Eqn. B.11 into Eqn. B.12 and collecting variables together gives

Bi+1 =
ǫi

2ǫi+1

[

Ai

(

1− κi

κi+1
exp[−κidi]

)

+Bi

(

1 +
κi

κi+1
exp[κidi]

)]

(B.14)

Eqns. B.13 and B.14 can be put into matrix form







Ai+1

Bi+1






= Qi







Ai

Bi







where the transfer matrix of the ith layer,Qi, is given by

Qi =
ǫi

2ǫi+1







[

1 + fi
κi

κi+1

]

exp[−κidi]
[

1− fi
κi

κi+1

]

exp[κidi]
[

1− fi
κi

κi+1

]

exp[−κidi]
[

1 + fi
κi

κi+1

]

exp[κidi]







For a TE mode, fi = 1 and for a Transverse Magnetic (TM) fi = ǫi+1/ǫi [1].



References

[1] E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and

leaky modes in lossless and lossy planar multilayer optical waveguides: Reflec-

tion pole method and wavevector density method,” IEEE J. Light. Technol., vol. 17,

pp. 929–941, May 1999.

150



Appendix C

Material parameters

C.1 Abele’s interpolation scheme

Abele’s interpolation scheme enables the properties of a ternary semiconductor to be

obtained from the properties of the corresponding binary semicnductors i.e.

AxB1−xC = xAC + (1− x)BC + x(1− x)CAB (C.1)

where CAB is known as the bowing parameter.

C.2 Electron effective mass

The electron mass in a semiconductor is given by

m = m∗m0 (C.2)

wherem∗ is the electron effective mass andm0 is the rest mass of an electron (9.10956×

10−31 kg).

Table C.1 lists the effective mass of an electron in various semiconductors

C.2.1 Band nonparabolicity

Band nonparabolicity in the semiconductor quantum wells is taken into account fol-

lowing the method of Nelson et al. [1] which is based on a two-band (Kane) model. In

this model the dispersion relation in a quantum well is given by

E =
~

2k2
w

2m∗
i (E)

(i = w, b) (C.3)
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Material m∗

GaAs 0.067

InAs 0.023

InP 0.079

AlxGa1−xAs (x < 0.45) 0.067+0.083x

In0.53Ga0.47As 0.042

In0.52Al0.48As 0.075

AlAs0.52Sb0.48 0.125

Table C.1: Electron effective masses

where w denotes well and b barrier. The energy-dependent effective masses are given

by

m∗
i (E) = m∗

i [1− (V − E)/Ei] (i = w, b) (C.4)

where Ew and Eb are the energy gaps between the conduction and light-hole valence

bands in the well and barrier material. The energy gaps are calculated by

Ei =
~

2

2m∗
i γi

(i = w, b) (C.5)

where γi is the nonparabolicity parameter. The nonparabolicity parameters in the well

and barrier materials are related through

γw

γb
=

(

m∗
b

m∗
w

)2

(C.6)

which means that only one value of γi is required and the other can be inferred

through the above relation providing the electron effective masses are known in the

well and barrier materials.

Table C.2 lists the nonparabolicty parameters of the most common QCL well ma-

terials.
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Material γw (m2)

GaAs 4.9 × 10−19 [1]

In0.53Ga0.47As 1.13 × 10−18 [2]

Table C.2: Nonparabolicity parameters
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Appendix D

Introduction to finite-difference

methods

There are three common types of finite difference approximations to differential equa-

tions, the forward, backward and central difference approximations. From Taylor’s theo-

rem we have

f(x+ h) = f(x) +
f ′(x)h

1!
+
f ′′(x)h2

2!
+
f ′′′(x)h3

3!
+ ...+

fn(x)hn

n!
(D.1)

and

f(x− h) = f(x)− f ′(x)h

1!
+
f ′′(x)h2

2!
− f ′′′(x)h3

3!
+ ...

fn(x)hn

n!
(D.2)

Ignoring the higher order terms in Equation D.1 we obtain the forward difference

approximation to f ′(x)

f ′(x) =
f(x+ h)− f(x)

h
+O(h) (D.3)

Following the same approach with Equation D.2 we obtain the backward difference

approximation to f ′(x)

f ′(x) =
f(x)− f(x− h)

h
+O(h) (D.4)

If we subtract Equation D.2 from D.1 we obtain the central difference approximation

to f ′(x)

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2) (D.5)
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To obtain the central difference approximation to f ′′(x), we add Equation’s D.2 and

D.1

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2) (D.6)

Both the forward and backward approximations introduce truncation errors of the

order h to the finite-difference approximation of f ′(x), while the central difference

approximation is more accurate and introduces truncation errors of the order of h2.
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Threshold current density, 45
Total internal reflection, 23
Transfer-matrix method, 25
Transverse electric mode, 25, 147
Transverse magnetic mode, 26, 149
Two-dimensional electron gas, 40

Vertical transition, 7

Wall-plug efficiency, 64
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