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T
here is a tide in the affairs of men,
Which, taken at the flood, leads on to fortune;
Omitted, all the voyage of their life
Is bound in shallows and in miseries.
On such a full sea are we now afloat;
And we must take the current when it serves,
Or lose our ventures.

William Shakespeare, c. 1599

.





T
he beauty and genius of a work of art may
be re-conceived, though its �rst material expression be
destroyed; a vanished harmony may yet again inspire
the composer; but when the last individual of a race
of living beings breathes no more, another heaven
and another earth must pass before such a one can
be again.

Charles William Beebe, 1906
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Summary

Current extinction rates are thought to be significantly higher than at any
point in the last 65 million years. Such a loss of species could have serious
implications for human well being, as humanity depends upon services that
are derived from diverse, functioning ecosystems. Given the predicted increase
in human alterations to the global biosphere in the next century, minimis-
ing the loss of species, both now and in the immediate future, has become a
prime concern, and has led to policy driven initiatives designed to halt or slow
biodiversity loss. Tackling this loss of diversity requires an understanding of
current, and recent, extinction events, as well as how future environmental
change may alter the probability of a species persisting.

In this thesis I explore, using small-scale aquatic microcosms, modelling,
and data from real-world extirpations, the predictability of extinction events,
both historic and future, and how environmental change may alter the persis-
tence of populations alone and in a community context.

I present results that suggest our ability to accurately infer the current
rate of species loss will depend upon the method used to infer extinction, the
amount of a habitat historically searched when looking for a species, and also
the underlying population dynamics of that species, which can be altered by
environmental change.

I demonstrate that the timing of extinction events, driven by various rates
of environmental change, can be predicted using a simple phenomenological
model, if a detailed knowledge of how the environment will change over time
is known.

Lastly, I show that environmental change can interact with community
assembly processes to alter the probability of a species persisting, and thus
community composition.

The results of this work contribute to our understanding of current, and
future, extinction events, and provide a basis for using quantitative approaches
to inform conservation decision-making.
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1

1 | Introduction

The fossil record shows that extinction is common and is the ultimate
fate of all species; 99% of all the species that have ever existed are
thought to now be extinct (Novacek 2001). Extinction, and the op-

posite process, speciation, create a continuous turnover of species that, along
with abundance, determines local and global biodiversity (Newman & Sibani
1999; Chamberlain & Fuller 2000). From the temporal distribution of fossils
it is possible to estimate the average length of time species persist for, gener-
ally acknowledged to be ∼106-107 years (May, Lawton & Stork 1995), which
equates to a background rate of species loss in marine systems, for example,
of about 0.1-1 species per year (Rockström et al. 2009). However, at a few
key points during the history of life on earth this relatively slow rate of species
turn-over has accelerated, with a large proportion of species (>75%) being lost
over a relatively short period of time (typically 1-2 million years Barnosky et al.
2011). These “mass extinction” events have been documented only five times
over the last 600 million years, the most recent (and infamous - the Creta-
ceous/Tertiary mass extinction responsible for the loss of the dinosaurs) being
c. 65.5 million years ago (Schulte et al. 2010). Evidence suggests, however,
that the current rate of extinction, despite significant uncertainty (Thuiller
et al. 2004; Stork 2010), may be similar to those five devastating periods in
the history of life on earth when mass extinction events occurred (Pereira et
al. 2010; Barnosky et al. 2011), and these estimates and comparisons have
lead to suggestions that a sixth mass extinction event is occurring (Wake &
Vredenburg 2008; Barnosky et al. 2011).

Much of this increase in the rate of extinctions has been linked to recent,
all-pervasive, anthropogenic alterations to the global biosphere (Chapin et al.
2000; Thomas et al. 2004) which have coincided with a period of extremely
high biodiversity, probably the highest ever seen in the history of life on earth
(Fig. 1.1). The effect has been, and is predicted to be, the staggering loss
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Figure 1.1: The change in the number of families of marine taxa and insects over the past
600 million years (adapted from Labandeira & Sepkoski 1993; Sepkoski 1993).

of species at rates 100’s to 1000’s of times higher than that found in the fos-
sil record (Pereira et al. 2010). Between 18 and 35% of species globally are
thought to be committed to extinction (Thomas et al. 2004), and in some in-
stances (such as birds on oceanic islands) 28-56% of species will be functionally
extinct (see below) by 2100AD (Şekercioǧlu, Daily & Ehrlich 2004). However,
the uncertainty associated with such figures is often large, as by necessity such
estimates are based on extrapolations from limited data (see, for example,
Thuiller et al. (2004) in response to Thomas et al. (2004)). Additionally, for
many other less well studied groups the number of species at risk of extinction
is simply unknown (for invertebrates, the conservation status of less than 1%
of species is documented (Collen et al. 2012), a worry given the critical role
they play in the functioning of ecosystems (e.g. Folgarait 1998)). Thus, the
true scale of current species loss is to a large extent unknown, and could be
lower, or, more worryingly, higher, than current estimates suggest.

The loss of species diversity at the scale of a mass extinction event could
have serious implications for ecosystem stability and functionality (Dunne,
Williams & Martinez 2002; Worm et al. 2006; Lecerf & Richardson 2010), and
consequently human well being, as we rely heavily on the services derived from
ecosystems (Dı́az et al. 2006). Thus predicting how future global change will
affect global diversity is a prime concern. Because extinction is a non-random
process (and may be dependant on species-specific traits such as body size
(Purvis et al. 2000)), understanding why, and when, future extinction events
will manifest themselves is facilitated by a good understanding of the current
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extinction crisis (Collen & Turvey 2009). Of key importance is quantifying if
and when a species has gone extinct, and how extinction events may be driven
by environmental change, information which can be used in the development
of metrics of extinction, and estimates of extinction risk.

1.1 Defining extinction

Extinction has classically been viewed as the global loss of all the
individuals of a species, also termed “true extinction” (Ladle & Jepson
2008). This is the interpretation employed by the International Union

for Conservation of Nature (IUCN) in their Red List of Threatened Species
(IUCN 2012), and typically when people allude to extinction it is this event
they are referring to. For many animal species a global extinction event can
be regarded with some certainty as the point of no return, and a species is
categorised as extinct when the last individual dies. However, this is a rather
simplistic view, and issues with this definition arise as extinction is rarely, if
ever, observed and therefore must be inferred. This is particularly problematic
when long-lived dormant-but-viable forms of a species persist, for example
the seeds of some plant species that can remain viable for hundreds or even
thousands of years (Shen-Miller et al. 1995; Leino & Edqvist 2010).

Extinction events more commonly occur at the local, population level. Such
local extinction (often termed “extirpation” (Ladle & Jepson 2008)) occurs
when a population or sub-population of a species ceases to exist in a given
area, but persists elsewhere. For some species the continued extinction and
re-establishment of local populations is viewed classically as part of their meta-
population dynamics (Harrison 1991), whilst for others the loss of a population
may have more serious consequences (such as a reduction in genetic variation,
and thus a species’s gene pool (Mccauley 1991)). It is worth noting that global
extinctions are really a special subset of local extinctions, where the population
being lost is the last (globally) of that species. Consequently, understanding
the drivers and dynamics of local extirpations can help inform our understand-
ing of global extinction events. Because such extirpation events are far more
common than global extinction events, they can provide some of the only data
available on extinction dynamics in wild populations (e.g. Fagan & Holmes
2006).

In addition to the more commonly considered local and global extinctions,
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it has been recognized for over 150 years that there may be stages preceeding
these events where a species could be considered “extinct”, even though some
individuals persist (Murray 1860). The conceptual example given by Murray
(1860) highlights one of these cases: if only one sex of a sexually reproducing
species is still extant, that species is “committed to extinction”. Such a scenario
can also be produced by, for example, low genetic variation, as inbreeding
depression can condemn a species to extinction at some point in the near
future (Bijlsma, Bundgaard & Boerema 2000; O’Grady et al. 2006; Wright,
Tregenza & Hosken 2007).

Low population size can also produce “ecologically” or “functionally”1extinct
species (Ladle & Jepson 2008; Säterberg, Sellman & Ebenman 2013), where
population densities have fallen to the point that a species no longer interacts
to any great extent with other species in a community (Estes, Duggins & Rath-
bun 1989; Ladle & Jepson 2008). A simple example of this is a species that has
no wild populations still extant, and is only present in captivity; the species is
not extinct but forms no part of a natural community. Such ecological extinc-
tions can have significant cascading effects, for example the well-documented
decline in Sea-Otter numbers in the Northeast Pacific resulted in huge increases
in Sea Urchin numbers, and consequently the loss of whole kelp forests due to
overgrazing (Estes & Duggins 1995). More recently, work has shown that the
functional extinction of a species can significantly affect the survival of other
species that interact with it: primary extinctions are more often caused by
the functional extinction of a threatened species than by the rapid decline to
extinction of the threatened species (Säterberg, Sellman & Ebenman 2013).

In this thesis I will concentrate on the extinction of local populations (i.e.
with no spatial element, such as metapopulation or metacommunity dynam-
ics), but with no explicit differentiation between extirpation and global extinc-
tion. Population level extinctions are fundamental ecological processes, and
the concepts, techniques, and findings presented here are applicable whether
those extinctions are local or global.

1It should be noted that “functionally extinct” has been used to refer to species that are
both “ecologically extinct” and “committed to extinction”. Here I use it only to refer to
species that are “ecologically extinct”, as this is how it has been used most frequently in
recent times (e.g. Säterberg, Sellman & Ebenman 2013).
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1.2 Causes of species loss

The manifold drivers of population extinction can be grouped into three
broad categories (Griffen & Drake 2008): (i) Demographic effects, (ii)
Genetic effects, and (iii) Environmental stressors (both biotic and

abiotic).
Demographic drivers of extinction derive from the size, variability, and

connectivity of a population (Griffen & Drake 2008). Small populations are
especially susceptible to extinction, not only because there are few individuals
left, and so catastrophic events are more likely to wipe out the entire popu-
lation, but also because small population size can cause a host of deleterious
effects, such as increased population stochasticity (May 1972). Such variability
in population size is caused by chance mortality and reproduction events which
are driven by variation between individuals (Shaffer 1981), and the magnitude
of these events are predicted to scale with population size by the inverse square
law (May 1972). Demographic effects become more important as a population
size decreases, as stochastic events affect proportionally more of the popula-
tion (Forney & Gilpin 1989; Lande, Engen & Saether 2003; Desharnais et al.
2006). The magnitude of this stochasticity can determine the minimum vi-
able population size of a species (Shaffer 1981); the greater the magnitude of
population stochasticity, the greater the probability that random population
fluctuations will drive the population to extinction. Migration into and out of
a population can mitigate some of the detrimental effects of low abundance,
however when migration rates are high there is an increased probability that
connected populations will simultaneously fall to low abundances, and thus
lead to the extinction of all the populations (Earn, Levin & Rohani 2000).

Genetic effects influencing extinction risk include all debilitating genetic
variation that reduces the fitness of a population (for a review see Frankham
2005). Such effects are usually driven by small, highly-connected populations
(although see Lynch 1991), where inbreeding, low genetic variation, and the
accumulation of deleterious mutations are common (Novella et al. 1995; Hans-
son & Westerberg 2002; Frankham 2005). Saccheri et al. (1998) showed that
inbreeding in the Glanville Fritillary butterfly (Melitaea cinxia) led to an in-
creased chance of extinction, and Lynch et al. (1993) suggested the uptake
of deleterious mutations can potentially lead to negative population growth,
termed “mutational meltdown”. Low genetic diversity means that populations
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are less able to cope with stressful events, such as a changing biotic or abiotic
environment, as they have less evolutionary potential, and so are at greater risk
of extinction (Bijlsma et al. 2000; Reed, Briscoe & Frankham 2002; Acevedo-
Whitehouse et al. 2003; Spielman et al. 2004). Frankham et al. (1999)
clearly demonstrated this process in populations of Drosophila melanogaster:
low genetic diversity, caused by population bottlenecks, reduced a population’s
ability to adapt to cope with abiotic stress, leading to more rapid extinction.

Environmental effects, both biotic and abiotic, arguably have the greatest
effect on the extinction risk of a population, although this depends, critically,
on population size (Lande 1993; Wootton & Pfister 2013). Within this cate-
gory can be included such high-profile stressors as habitat deterioration, habi-
tat fragmentation, climate change, exploitation, disease, and invasive species,
many of which are directly or indirectly driven by human activity (Chapin et
al. 2000; Thomas et al. 2004). Environmental conditions can directly and in-
directly determine whether a species can survive in a habitat, and consequently
environmental change can lead to the loss of large numbers of individuals, or in
extreme cases the loss of a population. For example, Thomas et al. (1996) de-
scribe the effects of environmental perturbations on a butterfly (Euphydryas
editha) metapopulation, where a single weather event (a late summer frost,
that killed the butterfly’s plant food source) led to the extinction of several
populations.

Environmental drivers of extinction risk typically interact with one another,
and also with genetic and demographic effects (e.g. Coulson et al. 2001). En-
vironmental conditions may also drive demographic and genetic effects, by
reducing a species’s population size to the extent that demographic and ge-
netic effects become important. The potential interactions between these three
broad categories mean assigning a single cause to an extinction event can be
problematic. As a conceptual example, a population might go extinct due to a
disease, which it was susceptible to because of low genetic diversity caused by a
population bottleneck, which was the result of a cataclysmic series of extreme
weather events. However, whilst in many cases there may be uncertainty as
to the specific drivers of species loss, it is unquestionable that humanity is
dramatically changing the global environment, both biotic and abiotic, and
with this change comes unprecedented threats to global biodiversity (Chapin
et al. 2000).

Over the last 500 years the global human population has risen from ∼500
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Figure 1.2: Historic global human population estimates (1500AD - 2000AD from Klein
Goldewijk et al. 2010), and low, medium, and high population projections from 2000AD
until 2100AD (from UN Population Division 2013). Vertical dashed line indicates the year
2013.

million to over 7 billion, an increase of 1400% (Klein Goldewijk, Beusen &
Janssen 2010; UN Population Division 2013), and this trend is projected, al-
though with a large degree of uncertainty, to continue until around 2100 (Fig.
1.2). The knock-on effects of this explosion of the human population on the
biotic and abiotic environment have been dramatic: we consume ∼1/3 of the
net primary productivity of terrestrial ecosystems (Chapin et al. 2000), by
2050 we are expected to use 74% of the world’s available freshwater (Postel,
Daily & Ehrlich 1996), levels of CO2 and other highly active greenhouse gasses
are rising (Meinshausen et al. 2009; Ramanathan & Feng 2009) with knock-
on effects to the planet’s climate and weather systems (Meehl et al. 2000;
Gastineau & Soden 2009; Pall et al. 2011), and exploitation of resources (both
mineral and organismal) has never been higher. These human driven alter-
ations are so profound that we may have ushered in a new geological epoch,
the anthropocene (Crutzen 2002), where anthropogenic effects dominate how
the global biome functions.

1.3 Consequences of species loss

The extinction, both “true” and “functional”, of a high number of
species will change the composition, function, and stability of ecosys-
tems worldwide (Dunne et al. 2002; Gaston & Spicer 2004; Hooper et
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al. 2005; Worm et al. 2006; Lecerf & Richardson 2010), and has the potential
to threaten human well-being (Dı́az et al. 2006). Humanity relies on stable,
functioning ecosystems for a diverse range of services, including soil fertility,
pest and disease control, protection from natural hazards, water quality, and
food (Dı́az et al. 2006). Of particular concern may be the loss of critical ser-
vices such as pollination which we rely heavily upon (Şekercioǧlu et al. 2004;
Johnson et al. 2010); in 2006 the ecological services, including pollination,
provided by insects alone to the United States of America were estimated to
be worth $57 billion annually (Losey & Vaughan 2006). The loss of key species,
such as pollinators, can also influence the extinction risk of those dependent
upon them, destabilising communities and increasing the risk of further extinc-
tion events (Bond 1994). Examples of this are common: a study into the loss
of primate-dispersed trees in Peru found that extirpation of all large primates,
and a 61% reduction of medium sized primates, has led to a 46% reduction in
the number of trees whose seeds rely on primate dispersal, and a 248% increase
in abiotically dispersed trees (Nunez-Iturri, Olsson & Howe 2008).

At a less pragmatic level, many people intrinsically value biodiversity. For
years non-governmental organizations (NGOs) have strived, using public do-
nations, to minimize the loss of flagship species (Walpole & Leader-Williams
2002). Regardless of the reasons, minimizing biodiversity loss in the face of
the continued exploitation and alteration of natural ecosystems has become a
key scientific and political goal, however doing so requires the ability to gauge
accurately which species have gone extinct, when, and how predicted changes
to the environment are likely to alter species persistence.

1.4 Quantifying extinction - the challenges of getting
it right, and consequences of getting it wrong

Current best estimates put the number of species on Earth between
8 and 9 million (Chapman 2006; Mora et al. 2011), however of these
less than 1.8 million have been formally described (Chapman 2006;

IUCN 2013), and significantly less have been assessed to find out whether
they are either extinct, or at risk of extinction. The IUCN’s Red List of
Threatened Species (Mace et al. 2008; IUCN 2013) provides the most complete
evaluation of the conservation status of plant and animal species, but in 2013
the Red List had assessed and categorized only 70,289 species, or about 4% of
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Figure 1.3: Proportion of each species from each taxon that are assessed by the IUCN Red
List of Threatened Species (IUCN 2013).

formally described species (IUCN 2013). Of the assessed species 20,219 (28.7%)
were threatened with extinction, 20% of animal and 7% of plant species were
classified as Data Deficient (had insufficient data to determine whether they
were under threat), and 799 plant and animal species were thought to have
gone extinct in the last 500 years (IUCN 2013, Fig. 1.3). The number of
species assessed by the IUCN has steadily increased (Fig. 1.4), and whilst this
is clearly a significant step in the right direction, given the relatively small
number of species assessed so far, the true number of extinct and threatened
species is likely to be far higher than 799 (Dirzo & Raven 2003; Dunn et al.
2009). Indeed, the number of extinctions over the last 500 years is probably
somewhere in the tens of thousands (Dunn et al. 2009), and it is thought
we may be responsible for 5-20% of extinctions in some groups of organisms
(Chapin et al. 2000). However, many of these numbers are strongly biased,
with the majority of assessments carried out on terrestrial vertebrates and
plants as these taxa are typically better documented (Collen et al. 2012, Fig.
1.3).

Uncertainty in the true rate of biodiversity loss arises from, amongst other
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Figure 1.4: The number of species assessed by the IUCN since 2000 (IUCN 2013).

things, the ambiguity associated with classifying a species as extinct. For some
species the exact date and location of the last individual to perish is known,
as well as the causes of extinction (e.g. Ectopistes migratoruis, the Passenger
Pigeon, driven to extinction by hunting on an industrial scale (Schorger 1936;
Halliday 1980)), however for the vast majority of species this is not the case
(see the above example of Data Deficient species). Species-specific traits may
affect the ease with which a species can confidently be classified as extinct;
for example, if the species has a habitat inaccessible to observers (Scott et
al. 2008), is un-described, or is cryptic (Reed 1996) individuals are likely to
be overlooked. This difficulty has led to the rediscovery of more than 1/3 of
mammal species that have previously been classified as extinct by the IUCN
and in the scientific literature (Fisher & Blomberg 2011).

The incorrect designation of a species as extinct can have far reaching
consequences; if a species is declared extinct then conservation efforts to help
the species will cease (Collar 1998), and legal protection for the species and
its habitat could be withdrawn (Scott et al. 2008). There may therefore be
reluctance to designate a species as extinct in an attempt to minimize the risk
of Romeo error - declaring a species extinct before it actually is (Collar 1998)
- and Lazarus taxa - species declared as extinct being found extant (Keith &
Burgman 2004).

On the other hand, waiting to declare a species as extinct also has its
drawbacks; it lessens the perceived impacts we are having on the world around
us (Diamond 1987), and may continue to commit funds to a species that has
already been lost, when those funds could, perhaps, be used to save an en-
dangered species. The recent example of the “rediscovery” of Campephilus
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principalis, the Ivory-Billed Woodpecker (Fitzpatrick et al. 2005), is a case in
point; the US Department of the Interior and the US Agriculture Department
immediately injected $10 million to preserve and aid conservation of its habi-
tat (Wilcove 2005), however subsequent studies have shown no evidence at all
of the persistence of C. principalis, with search efforts now suspended (Dalton
2010). A retrospective analysis by Gotelli et al. (2011) suggested this mis-
take could have been avoided by applying methods to infer whether a species
is likely to still be extant, with their work suggesting that C. principalis was
unlikely to have survived past 1980 (see also Scott et al. 2008).

Clearly it is of paramount importance to positively identify the actual ex-
tinction status of a species. The IUCN states that a species should be con-
sidered extinct when “exhaustive surveys in known and/or expected habitat,
at appropriate times (diurnal, seasonal, annual), throughout its historic range
have failed to record an individual” (IUCN 2012). However this is far from
fool-proof, as one is unlikely to be able to search 100% of a species’s habitat,
and even if it were possible it requires significant input of time and effort for
each and every species. Turvey et al. (2007) documented the recent search
(in 2006) for any remaining individuals of the Yangtze River Dolphin (Lipotes
vexillifer), a six week, multi-boat acoustic and visual survey of 3338km of
the Yangtze River, concluding that the species was “likely to be extinct”, but
conceding that “it is conceivable that a couple of surviving individuals were
missed”.

To circumvent the enormous and costly expenditure of effort required to
conduct adequate surveys to confirm extinction, techniques have been de-
veloped in an attempt to infer whether a species is currently extinct or ex-
tant (e.g. Robson & Whitlock 1964; Strauss & Sadler 1989; Solow 1993a, b,
2005; Burgman, Grimson & Ferson 1995; Reed 1996; McCarthy 1998; Solow &
Roberts 2003; Gotelli et al. 2011). Many of these utilize historic sighting data,
which is often all that is recorded of little known species (Solow 1993a). Such
techniques may provide relatively simple ways of accurately quantifying the
extinction status of large numbers of organisms quickly, and one has already
been put forward as being potentially suitable to inform a proposed IUCN
category of “Critically endangered - possibly extinct” (Butchart, Stattersfield
& Brooks 2006; Collen, Purvis & Mace 2010). This would be a significant step
forward in quantifying biodiversity loss. The applicability of such techniques
resides, however, in their accuracy, and meaningful tests of these methods re-
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main rare as there are often significant issues with the approaches used to test
them (Clements et al. 2013).

1.5 Approaches to extinction research

Three main approaches have been used to attempt to understand the
drivers, consequences, and predictability of extinction events: (i) The-
oretical models (e.g. Mosimann & Martin 1975; Lande 1993; Foley

1994; Allen & Allen 2003; Lande et al. 2003; Dunne & Williams 2009; Ri-
vadeneira, Hunt & Roy 2009), (ii) Observational studies of wild population
extinctions (e.g. Estes et al. 1989; Laurance, McDonald & Speare 1996;
Thomas et al. 1996; Brooks et al. 2002; Fagan & Holmes 2006; Pounds et al.
2006), and (iii) Experimental approaches using, usually, small scale commu-
nities (e.g. Philippi et al. 1987; Burkey 1997; Belovsky et al. 1999; Drayton
& Primack 1999; Vucetich et al. 2000; Bancroft & Turchin 2003; see Griffen
& Drake 2008 for a review). Analysis of the fossil record, the spatial and
temporal distribution of fossil finds, has also given important insights into, for
example, previous climate driven extinctions (Lister & Stuart 2008), the effects
of human settlement on species survival (Wroe et al. 2004), and the effects
of species loss (Lopes dos Santos et al. 2013). However such data suffer from
the same disadvantages as observational studies (see below), with the added
complexity that the fossil record is inherently incomplete, and this approach
is not considered further in this thesis.

Whilst all three have their merits, they are also each flawed: mathematical
models are, by design and necessity, simplifications of real world processes
(e.g. Lotka 1920; Volterra 1926), data from wild population extinctions are
often limited both spatially and temporally (e.g. Laurance et al. 1996), whilst
small scale experimental systems have, due to their simplicity, a perceived
lack of relevance to the real world (e.g. Carpenter 1996). Such approaches can,
however, be complementary to one another, and understanding the weaknesses
of each, and combining these methods to validate findings, should be the goal
of all ecological research.
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1.5.1 Studying extinction using mathematical models

Mathematical models are ubiquitous in ecology, and have a long
history of use (arguably the first being Fibonacci’s prediction of
how rabbit numbers would increase, published in 1202AD (Gill-

man 2009), 667 years before Ernst Haeckel coined the term “Ecology” (Begon,
Townsend & Harper 2006)). Commonly, models may be employed to describe
the potential dynamics of populations under a range of future scenarios (e.g.
Ovaskainen & Meerson 2010). Statistical approaches may also prove useful,
for example to help predict which types of species may be at risk of extinction
(e.g. Brook et al. 2000), or infer if, or when, a species has gone extinct (e.g.
Solow 2005). Seminal papers using these approaches have been able to dispel
commonly held misconceptions; for example Lande (1993) showed that small
populations with high growth rates may persist for long periods of time, even
in the face of environmental stochasticity and random catastrophes.

Such theoretical models may provide mechanistic understanding upon which
empirical data can build, but key is the validation of such models, be they sta-
tistical or dynamical, with data.

1.5.2 Studying extinction using data from observational studies

Whilst the fossil record is full of the remains of species no longer
extant, actually observing the extinction of a wild population re-
mains a very rare event, a function of the uncertainty of knowing

in advance if a population is at risk of extinction, and the low probability
of observing the demise of the last individual. Historic records of extinction
events often come in the form of sporadic recorded sightings of individuals
(e.g. the infamous Dodo (Roberts & Solow 2003)), usually produced because
of some endeavour other than searching for that species (Solow 2005). Such
records provide little or no indication of population size, or if, or when, a
species has finally gone extinct, only the times at which the species is known
to be extant (assuming the sightings are trustworthy (Solow et al. 2011)).
Whilst this information may be useful for gauging whether a species is likely
to still be extant (e.g. Solow 2005), it is of limited use in understanding how
or why species go extinct. The exception to this is the use of such data to
identify the traits that predispose species to extinction, so called “correlates
of extinction risk”. These include large body size, limited geographic range,
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complex social mating systems or structures, and high trophic level (Purvis et
al. 2000; Jones, Purvis & Gittleman 2003; O’Grady et al. 2004), and often
relate back to demographic threats to a population’s persistence. For example
limited geographic range inherently limits population size, a factor known to
influence extinction risk (Purvis et al. 2000). Correlating species traits with
extinction risk forms an important tool for predicting what species might be
especially at risk of future extinction, but relies on accurately determining
what species are currently extinct, without which correlates of extinction risk
cannot be quantified.

Rarely, significant input of effort has yielded detailed data on wild popu-
lations that have declined to extinction, usually gained by targeted surveys of
species or populations thought to be at risk (e.g. Laurance et al. 1996). In
many instances observations are restricted both temporally and spatially as
large-scale surveys are time consuming, costly, and logistically difficult, espe-
cially if the habitat is sizeable, or the organism hard to identify (see Turvey et
al. 2007). Where such data does exists, it can provide invaluable information
on the dynamics of species declines in wild populations, but is subject to the
limitations of collecting data in an uncontrolled setting, chief amongst these
being uncertainty as to whether a species is truly extinct (Turvey et al. 2007).
This lack of certainty limits the usefulness of the data, as the event you are
seeking to quantify and understand (extinction) cannot be confirmed.

1.5.3 Studying extinction using experimental communities

A wide variety of both natural and artificial systems, ranging from
relatively large scale field manipulations (e.g. Drayton & Primack
1999; Ferraz et al. 2007) to small-scale experimental communities

(e.g. Philippi et al. 1987; Belovsky et al. 1999; Petchey et al. 1999), have
been used to investigate the processes driving, and consequences of, extinction
events. Field manipulations are often affected by a variety of factors (natural
environmental variation, immigration and emigration, heterogeneous environ-
ments (Griffen & Drake 2008)), such that it may be impossible, or logistically
unreasonable, to disentangle links between the hypothesized drivers of ob-
served extinction events (Griffen & Drake 2008). In addition, there are ethical
issues associated with observing, or forcing, extirpation in wild communities.

Laboratory based experimental systems, characterized by their relative sim-
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plicity, replicability, rapid dynamics, and tractability, have consequently been
employed widely in extinction research (Lawton 1995; Griffen & Drake 2008).
Of particular interest is the facility to accurately record population dynamics,
and to observe extinction events with a high degree of certainty.

Due to their simplicity, and, to a greater or lesser extent, perceived lack of
realism, small-scale experimental systems have often become whipping posts
for the ire of field-ecologists; Carpenter (1996) called them “irrelevant and
diversionary”. Whilst such setups are clearly simplifications of the complex-
ity of real-world systems, their use of living organisms (with their associated
stochasticity), in moderately complex scenarios, means they are able to pro-
vide a bridge point between theory and real world observations or large-scale
field manipulations. Due to the short-replication times of the organisms used
in such studies, and consequently the long ecological time frames that can be
achieved over short periods of time in the real-world, microcosms have recently
been championed as experimental systems for unpicking global problems, such
as the responses of ecosystems to climatic change (Benton et al. 2007). As
with any simplification of real-world systems (be they controlled, small-scale
field manipulations, mathematical models, or microcosm experiments) care
should be taken in extrapolating findings to more complex situations. How-
ever, careful design of experimental communities, and linking the results gen-
erated within them to theory, larger-scale experimentation, and observational
studies, can yield significant benefits.

1.6 Aims and methods of subsequent chapters

The discussion above highlights the need to quantify current biodiver-
sity loss, and understand how future human-mediated global change
may alter species persistence and community structure. Whilst signif-

icant effort has been applied to these questions, they are all far from answered,
and, given the prevalence of current anthropogenically driven stressors, we are
at a critical stage of biodiversity research. Of paramount importance will
be the synthesis of different techniques (theory, experimentation), sources of
data (simulated, experimental, and real-world observational), and modes of
inquiry (observation, experimentation). In this thesis I aim to advance our
understanding of real world biodiversity issues by utilising the flexibility of
laboratory based microcosm experiments, in conjunction with both theoretical
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approaches and data from real world extirpations.
The current extinction crisis, and our seeming inability to accurately de-

clare a species as extinct, even after large inputs of effort (Fisher & Blomberg
2011), has driven the development of probabilistic based statistical metrics
for inferring if or when a species has gone extinct (e.g. Robson & Whitlock
1964; Strauss & Sadler 1989; Solow 1993a, b; Burgman et al. 1995; Reed
1996; McCarthy 1998; Solow & Roberts 2003; Gotelli et al. 2011; Fisher &
Blomberg 2012). Recent efforts have assessed how well such metrics perform
(Rivadeneira, Hunt & Roy 2009; Collen, Purvis & Mace 2010), however limi-
tations exist in the approaches taken (Clements et al. 2013).

The work presented in Chapter 2 introduces a novel approach to test-
ing such methods for inferring extinction, which addresses many of the issues
encountered previously (such as uncertain extinction events, and temporally
limited data) by utilising data from small-scale experimental communities.
Specifically, I test Optimal Linear Estimation (Roberts & Solow 2003; Solow
2005), as this technique has previously been suggested as a candidate for in-
forming the proposed IUCN Red List category “Critically endangered - Pos-
sibly extinct” (Butchart, Stattersfield & Brooks 2006; Collen, Purvis & Mace
2010).

Whilst conducting the work in Chapter 2, it became clear that that whilst
numerous methods to infer extinction have been proposed over the last 20
years, these methods are not readily available. To facilitate future testing and
development of such methods I collected together six commonly used metrics
into a package for the statistical programming language R (R Development
Core Team 2013). Chapter 3 introduces this package, called “sExtinct”, and
walks the reader through how to use the package, what it is capable of, and
some troubleshooting of common mistakes.

Whilst Chapter 2 set a precedent for testing methods for inferring extinc-
tion using microcosm data, of particular use to conservation practitioners is
knowing what methods perform better than others and whether these methods
are robust to different potential drivers of error. To this end, Chapter 4 builds
on the results of Chapter 2 by investigating how various rates of population
decline can affect our ability to infer extinction events accurately, and how
robust the different techniques are to these rates of population decline. This
work uses data from a microcosm experiment where temperature was manip-
ulated through time to alter the rate of extinction of replicate populations,
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and also data on real world extirpations recorded within the Living Planet
Index (Collen et al. 2009), in Fagan and Holmes (2006), and in Laurance et
al. (1996).

Whilst assessing whether certain species are currently extinct or extant is
clearly important, and has serious implications for funding and policy (Wilcove
2005), the ability to understand how projected anthropogenic environmental
alterations may alter a species’s risk of extinction is central to our ability to
minimise biodiversity loss in the future. The first step towards understanding
such effects in natural communities is to first investigate them under controlled
conditions. In Chapter 5 I look at how the rate of temperature change over
time, an important component of anthropogenic environmental change (IPCC
2007), can alter the timing of extinction events in replicate populations, and
whether it is possible to predict when these extinction events will occur using
a simple, four-parameter phenomenological model that incorporates metabolic
theory.

Species do not, however, reside individually but in assemblages of species.
Having shown how different temperature conditions can alter the growth rate
and persistence of a single species (Chapter 5), in Chapter 6 I investigate how
environmental conditions can alter the persistence of a species in a community
context. The survival of a species is known to be altered not only by abiotic
conditions such as temperature, but also by the strength of species-species
interactions, which can be altered by on-going invasion processes in wild com-
munities (Shorrocks & Bingley 1994). I present the results of a microcosm
experiment where temperature and the order in which species invade a habitat
are factorially manipulated, to show how future climatic change may interact
with stochastic processes that drive community composition, and potentially
influence the extinction risk of a species.
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2 | Experimentally testing the accuracy of
an extinction estimator:
Solow’s Optimal Linear Estimation
model

2.1 Abstract

Mathematical methods for inferring time of extinction have been
widely applied but poorly tested. Optimal Linear Estimation (also
called the “Weibull” or “Weibull extreme value” model) infers time

of extinction from the temporal distribution of sighting events. Previous pa-
pers have suggested Optimal Linear Estimation provides accurate estimates of
extinction time for some species, however an in-depth test of the technique is
lacking.

The use of data from wild populations to gauge the error associated with
estimations is often limited by very approximate estimates of the actual extinc-
tion date and poor sighting records. Microcosms provide a system in which the
accuracy of estimations can be tested against known extinction dates, whilst
incorporating a variety of extinction rates created by changing environmental
conditions, species identity, and species richness.

We present the first use of experimental microcosm data to exhaustively
test the accuracy of one sighting based method of inferring time of extinc-
tion under a range of search efforts, search regimes, sighting frequencies, and
extinction rates.

Our results show that the accuracy of Optimal Linear Estimation can be
affected by both observer-controlled factors, such as change in search effort,

This chapter has been published in the peer-reviewed Journal of Animal Ecology.
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as well as inherent features of the system, such as species identity. Whilst
Optimal Linear Estimation provides generally accurate and precise estimates,
the technique is susceptible to both overestimation and underestimation of
extinction date.

Microcosm experiments provide a framework within which the accuracy of
extinction predictors can be clearly gauged. Variables such as search effort,
search regularity and species identity can significantly affect the accuracy of
estimates, and should be taken into account when testing extinction predictors
in the future.

2.2 Introduction

Species are being lost at an unprecedented rate (Barnosky et al. 2011).
This loss of biodiversity could have huge impacts both on ecosystem
function and the survival of co-dependent extant species (Memmott,

Waser & Price 2004). Biodiversity loss is one measure used to infer human
impacts on ecosystems, however the exact rate of species loss is unclear, and
the fate of many species remains unknown (e.g. Rös & Pineda 2009). This has
been highlighted by the re-appearance of 36% of mammal species (67 species)
classified as extinct since A.D.1500 (Fisher & Blomberg 2011), the so-called
“Lazarus effect” (Keith & Burgman 2004).

Categorising a species as extinct with confidence is deceptively difficult,
since searching an entire species range is often unfeasible, and detection prob-
abilities may be low, for example if the species is cryptic, small, has a large
range or low population density (Solow 2005). Inferring extinction from data
produced by less than exhaustive searching would reduce the effort spent at-
tempting to classify a species as extinct. Recent examples, such as the search
for Campephilus principalis (Fitzpatrick et al. 2005; Fitzpatrick 2006), the
Ivory Billed Woodpecker, highlight the advantage of quantitatively estimat-
ing the extinction status of a species, prior to a large investment of time and
money in the search for any remaining individuals (Jackson 2006; Rout, Heinze
& McCarthy 2010). Consequently a considerable number of extinction predic-
tors have been proposed over the last 20 years (e.g. Solow 1993a, b; Mccarthy
1998; Solow & Roberts 2003; Solow 2005; McInerny et al. 2006; Gotelli et al.
2011). A large proportion of these aim to infer extinction from sighting only
(as opposed to abundance) data in an attempt to deal with the many species
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for which only a few sightings have been recorded (Fisher & Blomberg 2012).

Clearly inferring the date of extinction of a species could be of considerable
practical value, but if such techniques are to be widely applied to the critical
question of extinction status, thorough testing to identify their limitations is
essential (Collen, Purvis & Mace 2010). Gauging how well these predictors of
time of extinction will cope under real world conditions has historically been
tackled by using either data from modelled populations or sighting data from
species thought to be currently either extinct or on the verge of extinction (Ri-
vadeneira, Hunt & Roy 2009; Elphick, Roberts & Reed 2010; Collen, Purvis
& Mace 2010; Fisher & Blomberg 2011). Collen, Purvis & Mace (2010) ap-
plied “Optimal Linear Estimation” to assess the probability of extinction in
10 mammal and 10 bird species from Oceania and Asia respectively. For those
species with more than 5 reported sightings the technique appeared to provide
accurate predictions. However species with few or widely spaced sightings
were assigned extinction times with upper confidence intervals often millennia
into the future, even when the last recorded sighting of the species was over
100 years ago. Rivadeneira, Hunt and Roy (2009) assessed the accuracy of
several sighting based estimators of time of extinction using data from model
populations. Accuracy was defined as the date of extinction of the model
population falling within the upper 95% confidence interval produced by each
method. Predictions tended to be more accurate when populations fell rapidly
(as opposed to gradually) to extinction. Unfortunately given the often-wide
confidence intervals, the use of confidence intervals as a metric of accuracy
appears unhelpful (e.g. Collen, Purvis & Mace 2010). Fisher and Blomberg
(2012) attempted to assess the accuracy of three sighting-only extinction esti-
mators (stationary Poisson, non-parametric, and the Weibull/Optimal Linear
Estimation) by comparing predicted probabilities of extinction with current
IUCN classification, using data on mammal species currently thought to be
extinct or possibly extinct. However the inherent problem with using data
from wild populations is that there are very few examples where the time
of extinction has been accurately observed (Collen, Purvis, and Mace 2010).
Data such as those published in Fagan and Holmes (2006), where species have
been monitored for population abundances preceding a local extinction event,
offers the opportunity to test extinction indices on extinctions in natural com-
munities. Unfortunately such data sets are few and far between, and often
only deal with very small populations just prior to extinction.
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Small-scale experimental communities offer an opportunity to test specific
methods for inferring extinction on data generated by living organisms, under
a range of biotic and abiotic treatments. Given the replicability, ease of ma-
nipulation of a variety of environmental variables, short generation time and
large number of readily culturable species, microcosms can be used to bridge
the gap between modelled and field data. Where an experimental microcosm
approach provides particular advantages in testing extinction estimators is the
ability to search an entire habitat of known size and accurately assess whether
a species is extinct or not. With regular sampling, population declines and
extinction dates can be quantified to a level of accuracy that is simply not
feasible in field systems.

Here we concentrate on exhaustively testing test a single method for infer-
ring extinction date based on sighting only data - Optimal Linear Estimation
(Roberts & Solow 2003; Solow 2005), hereafter OLE, and outline a new frame-
work within which extinction predictors can be tested in the future. Our aim
is not to compare multiple indices, which has been addressed previously (e.g.
Rivadeneira, Hunt & Roy 2009), but to use the combination of experimental
microcosm systems, with a specific method for predicting extinction, to inves-
tigate whether varying search efforts and population dynamics are likely to
impact our ability to infer extinction. OLE has received attention for several
reasons: i) OLE does not assume that detection probability or abundance prior
to extinction is stable (assumptions that are made by other models, specifi-
cally the stationary Poisson model, Fisher & Blomberg 2012), ii) it has been
found to perform well even when a species is declining in abundance gradu-
ally through time, and when the probability of observing the species is low
(Rivadeneira, Hunt & Roy 2009), and iii) it has been proposed as a method
to inform an IUCN category of “Critically Endangered - Possibly Extinct”
(Collen, Purvis & Mace 2010). Given the importance of IUCN categorization,
and the potential perils of wrongly classifying a species as extinct (or extant),
thorough testing of this method is critical.

Using a time series of historic sighting events, OLE can be used to infer the
date of extinction of a species which is currently thought (or assumed) to be
extinct (Roberts & Solow 2003; Solow 2005). Observations of an individual (or
multiple individuals at the same point in time) are recorded as a single sighting
event; the species has been observed as being extant at a given point in time.
OLE assumes that the joint distribution of the most recent sighting events
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has the form of a Weibull extreme value distribution, and estimates the shape
parameter of this distribution from the temporal spread of the sighting events.
In a simple example, a vector of sighting events at times 10, 14, 17, 25 and 59
forms the input data for OLE. From this OLE produces a point estimate of the
extinction date (for the example given above this would be at t=143) as well
as a lower and upper 1-alpha confidence interval (in this case these would be
t=99 and t=1100 respectively, with a 95% confidence interval). Because OLE
estimates the time of extinction from the gaps between sighting events, OLE
assumes search effort never drops to zero, and so gaps in sighting record are
not simply a product of irregular search forays, a situation that clearly occurs
when remote or hostile habitats are rarely searched (e.g. the infrequent search
for the Alaotra Grebe, Tachybaptus rufolavatus, in 1989, 2004 and 2009, when
the species was declared extinct (BirdLife International 2010)). Although OLE
makes no other assumptions, change in the “observability” of individuals of a
species as the population becomes smaller caused by, for example, a change
in behaviour, could have significant impacts on the accuracy of predictions.
On top of this, intrinsic factors (e.g. the life history of a species) or outside
pressures (e.g. overhunting) could alter the rate at which a species falls to
extinction. Further details are provided in Roberts & Solow (2003) and Solow
(2005).

Here we utilise some of the features of microcosm systems to generate long
runs of abundance data, preceding eventual extinction, in replicate popula-
tions. Varying environmental conditions and community compositions allows
us to produce variation in the rate of population decline and timing of extinc-
tion. Knowing both the abundances of the populations through time and the
size of the habitat in which they live, we generate search regimes to produce
data sets of sighting events that vary both in frequency and temporal spacing.
We then examine the effect of both observer controlled (e.g. search effort) and
intrinsic (e.g. species identity) factors on the accuracy of extinction estimates
made using OLE.

2.3 Methods

Fifteen different communities were constructed using every possible
composition of four bactiverous protist ciliate species (Paramecium
caudatum, Loxocephalus sp., Colpidium striatum and Blepharisma
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japonicum), i.e. four single-species communities, six two-species communities,
four three-species communities, and one four-species community. Five repli-
cates of each community were kept at 15oC for the duration of the experiment
and five replicates at 20oC, giving a total of 150 microcosms. The microcosms
were housed in two incubators, each containing 75 microcosms, with one repli-
cate of each community on each of five shelves, and the position on a shelf
randomized. Shelves were rotated vertically within the incubators every sam-
pling day, and the microcosms were swapped between incubators (but kept at
a constant temperature) every seven days to minimize any possible incubator
effect. Microcosms consisted of lidded plastic petri dishes (diameter 100mm,
height 20mm) containing 50ml of liquid medium. The medium solution con-
tained 0.1g of crushed protozoa pellets (Carolina Biological Supply, USA) per
litre of Chalkley’s medium (Thompson et al. 1988). The medium was inoc-
ulated with the bacteria Bacillus cereus, B. subtilis and Serratia marcescens
on day -2. Communities were established on day 0 by adding a volume of
medium containing ∼100 individuals of each species from high-density stock
cultures. Extinctions were driven by competition for limited resources, and so
were due to competitive exclusion or starvation. Evaporative loss over time
was replaced with distilled water to avoid any increase in the concentration of
salts within the microcosms.

2.3.1 Sampling

Sampling was undertaken three times a week for 163 days, at which
point the rate of population loss had dropped to only 1-2 extinctions
per week and so, given that a high proportion of Loxocephalus and

P.caudatum populations had gone extinct (86%), the experiment was stopped.
To assess presence or absence of a species, each microcosm was placed under a
stereoscopic microscope and surveyed for each species at 7.5-30x magnification.
If a species was not seen within a 5-minute search period it was assumed to be
extinct. In this event the species was then explicitly searched for during the
next sampling period to confirm this. No species that had been recorded as
absent in two consecutive samples was observed again.

Sampling to estimate population sizes was based on the methods of Lawler
and Morin (1993) and closely mirrored that of Worsfold, Warren and Petchey
(2009). Microcosms were mixed and a sample of nine drops was then trans-
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Figure 2.1: Four search regimes were simulated, with the percentage of the habitat searched
(search effort) either being held constant, or changing through time according to the regime.

ferred onto a sterile petri dish, weighed, and the number of individuals of each
species counted. The medium was then returned to the microcosm. For rare
species that were not present in the first sample the process was repeated whilst
retaining the original sample until a count was obtained. As numbers became
very low, individuals were counted within the entire microcosm and the mass of
the medium checked with a balance. Simulations were run on the two species
(Paramecium caudatum and Loxocephalus sp.) where multiple extinctions oc-
curred in 2, 3, and 4 species communities and allowed comparison of both the
effect of species richness on predictive accuracy and any interactions between
species richness and other variables.

2.3.2 Simulating search effort

Replicates of P.caudatum and Loxocephalus sp. in which extinction
was observed over the experimental time period were treated individ-
ually, and to each of these records of population abundance through

time four different search regimes were applied (Fig. 2.1). These regimes were
based in part on the search regimes implemented by Rivadeneira, Hunt and
Roy (2009): i) “constant” effort, ii) “decreasing” effort, iii) “increasing” effort



34 CHAPTER 2. EXPERIMENTALLY TESTING AN EXTINCTION. . .

and iv) “realistic” search effort. Decreasing search regime was produced by
randomly assigning a search effort (between 0 and 0.95) to the first sampling
day, and then for each subsequent day search effort decreased by a random
fraction (to 0). The increasing search regime was produced exactly as decreas-
ing, but with the random fraction increasing up to 0.95 of the habitat. Thus
both increasing and decreasing search regimes covered a variety of rates of
change in the fraction of the habitat searched. As suggested by Rivadeneira,
Hunt and Roy (2009) a constant search regime, where the fraction of the habi-
tat searched does not change through time, is perhaps the most unrealistic
of the four scenarios and should be viewed as a best-case scenario. Both de-
creasing and increasing search regimes seem plausible as search effort could be
either increased to see if a species has gone extinct, or decreased as a species
becomes so rare it is assumed to be extinct.

To produce a realistic search effort, change in the area searched through
time from a real world scenario is necessary. The Continuous Plankton Recorder
project (Sir Alister Hardy Foundation for Ocean Science, SAHFOS) provided
this information for plankton sampling along known shipping routes. Using
a single data set from route A between the years 1958 and 2009, and then
calculating the fraction of the vector of route A sampled per month generated
a set of search efforts. So, given the average length of route A in 2009 was 173
nautical miles, and each drag (sample event) was for a distance of 10 nautical
miles, the search effort in any given month was calculated (with the assump-
tion of no overlap of sampling events) as the number of drags, multiplied by
the length of the drag in nautical miles (10) divided by the average length of
the route (173 nautical miles). These monthly search efforts were then treated
as the search effort for each sample day. The area covered by sampling gener-
ated in this way was high (typically around 50%). A search of the literature
provided no accurate estimates of search effort through time whilst assessing
the status of rare species and so the search regime generated from the SAH-
FOS data, whilst not perfect, provides at least some example of a real-world
sampling regime.

In order to generate data sets of sighting events under each sampling regime,
the original (i.e. complete) data from the microcosms were resampled as fol-
lows. Data were converted to total population size within a microcosm. The
probability (p) of observing at least one individual at each search event was
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calculated as:
p = 1 − (1 − e)d (2.1)

Where e is the search effort (fraction of the habitat searched) and d is the abun-
dance of the species within the microcosm (both searched and unsearched).
This assumes a random distribution of individuals within a habitat, and thus
an increasing chance of observation with increasing abundance and search ef-
fort. The “observation” of a species was then generated as a random event with
a probability of success p. This produced in effect a series of “historic” sight-
ing events, when extinction is known to have occurred. Using these sampling
regimes produced a series of sighting events at regular intervals, as sighting
events could be as frequent as the recorded abundances. This regularity of
search effort is probably unrealistic, as highlighted by sporadic searching both
temporally and spatially to assess the extinction of Lipotes vexillifer (Tur-
vey et al. 2007), the Yangtze River dolphin, and again represents a “best
case scenario”. A more realistic irregular sampling regime was implemented
by running a second simulation, identical to the first, but each sighting event
produced was given a 50% probability of being used within the OLE calcula-
tion. Simulations were run between 40 and 95 times, thus each population that
suffered an extinction event had between 40 and 95 vectors of sighting events
produced. Because there was an element of chance in the sighting events, and
so in the number of times point estimates of extinction by OLE occurred, a
random sample of 500 estimates of extinction from each of the search regimes
were used for comparison.

From Solow (2005), Optimal Linear Estimation takes k sighting events and
estimates a time of extinction, TE, using the form:

T̂E =
i=1∑

k

witn−i+1 (2.2)

where the weight vector w, length k, is given by:

w = (e
′
Λ−1e)−1Λ−1e (2.3)

e being a vector of k 1’s and Λ is a symmetric k by k matrix with typical
element:

Λij =
Γ(2v̂ + i)Γ(2v̂ + j)

Γ(v̂ + i)Γ(j)
j ≤ i (2.4)
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where Γ is the gamma function and v is an estimate of the shape parameter
of the Weibull extreme value distribution given by

v̂ =
1

k − 1

k−2∑
i=1

log
tn − tn−k+1

tn − ti+1

(2.5)

tn being the n times a species is observed over the period of time t. So under
the assumption a species is extinct, the upper bound of an approximate 1− α

confidence interval for TE is

T u
E =

tn − c(α)tn−k+1

1 − c(α)
(2.6)

where
c(α) = (

k

−log(α)
)−v̂ (2.7)

Because OLE assumes an extreme Weibull distribution of sightings, it should
theoretically only be used with the most recent sighting events (Solow 2005).
However there remains some uncertainty as to the optimum number of sighting
events as Collen, Purvis and Mace (2010) found that increasing the number of
sightings used (tested to a maximum of 18) increases the accuracy of prediction.
Consequently all four search regimes had extinction estimates produced with
the 5 most temporally recent sighting events (k=5) from a vector of n sighting
events, and the total number of sighting events produced by each search regime
simulation (k=n).

OLE produces a point estimate of the time of extinction, as well as an
upper and lower confidence interval. Previously, accuracy of a prediction has
been defined as the true date of extinction falling within the 95% confidence
intervals (Rivadeneira, Hunt & Roy 2009). However given that upper confi-
dence intervals can be thousands of years into the future (Collen, Purvis &
Mace 2010), this seems unhelpful. Here we regard accuracy as the proximity
of the estimated date of extinction to the actual date of extinction, regardless
of the upper or lower confidence interval.

All simulations and analyses were carried out using the R package (R De-
velopment Core Team 2013). Statistical tests of the difference between treat-
ments were not employed as the numbers of predictions of extinction date was
an arbitrary product of both the number of times simulations were run and
the stochastic nature of sighting events.
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Figure 2.2: Plots are of 500 randomly selected predictions of extinction for each species
(P.caudatum & Loxocephalus) where sampling was regular, i.e. sighting events could po-
tentially occur at every experimental sampling date. Line shows 1:1 (or perfect) prediction.
Extinction predictions were run with both k=5 and k=n sighting events. Using all avail-
able sighting events produced more accurate and precise results under constant, increasing
and realistic search regimes. OLE produced more accurate predictions when k=5 under a
decreasing search regime, although precision was reduced. Gaps in the plots are a product
of a lack of extinctions between days 34 and 55.

2.4 Results

2.4.1 Observer effects

Regular sampling provided accurate and precise predictions of time to
extinction across all search regimes (Fig 2.2). Increasing search effort
had the least error (defined as the difference between the actual and

predicted date of extinction) associated with predictions (a mean absolute error
(overestimation and underestimation combined) of 2.9 days) and the greatest
precision (r2=0.99, p<0.001 for both k=5 and k=n sightings). Decreasing
and constant showed relatively large variation in predictive precision (Fig 2.2),
although they were still highly correlated (r2 values higher than 0.97, p<0.001).
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Figure 2.3: Plots are of 500 randomly selected predictions of extinction for each species
(P.caudatum & Loxocephalus) where sampling was irregular, i.e. all sighting events gen-
erated by simulations had a 50% chance of being used in the OLE calculation. So when
search effort or population densities are high the vector of sighting events produced is not
a simply a regular sighting every 2-3 days, but has some stochasticity to mimic probable
real-world sampling scenarios. Line shows 1:1 (or perfect) prediction. Extinction predictions
were run with both k=5 and k=n. Irregular searching greatly affects the precision of OLE.
Decreasing search effort showed a significant loss of both precision and accuracy, with a
large increase in underestimation of extinction date. Gaps in the plots are a product of a
lack of extinctions between days 34 and 55.

Using k=n minimized mean error under constant, increasing, and realistic
search regimes. Under a decreasing search regime mean error was minimized
using k=5 sightings, although this decreased the precision of predictions (r2

0.98 with k=5 and 0.99 with k=n sighting events, p<0.001 for both). The
difference in predictive error across all four search regimes between k=5 and
k=n sightings was less than one day.

Irregular sampling also provided generally accurate predictions under all
but a decreasing regime (Fig. 2.3), however the precision of predictions was
lower compared to regular sampling. The precision of predictions was again
higher using k=n for constant, increasing, and realistic search regimes (Fig.
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Figure 2.4: Effect of the fraction of the habitat searched on the accuracy of inferred dates
of extinction. a) The majority of error in prediction is accounted for by underestimation
of the date of extinction. Overestimation shows remarkably little variation as search effort
increase above 7%. b) Absolute error shows the increase in overall predictive accuracy as
search effort is increased. Above 10% of the habitat sampled there appears to be relatively
little increase in predictive precision. All error bars are one SE, missing SE bars indicate
means comprised of less than 3 values. Data is from the constant search effort regime with
regular searching.

2.3, r2 values higher than 0.96 and p<0.001 for all three regimes). Both increas-
ing and realistic regimes produced estimates of extinction that were prone to
overestimation, a pattern that is present with regular sampling although the
magnitude of error is small (Fig. 2.2). Irregular sampling with a decreas-
ing search regime produced the greatest error. Predictions of extinction time
with a decreasing regime dropped from being generally accurate with regular
sampling (mean absolute error of 4.1 days when k=5) to providing very poor
predictions (mean absolute error of 50.2 days when k=5). This error was al-
most exclusively accounted for by underestimation of the extinction date, and
this pattern was more pronounced as the time to extinction increased (Fig
2.3). Precision of estimates with decreasing search effort was also affected by
irregular searching (r2<0.17, p<0.001 for both k=5 and k=n).
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Figure 2.6: Temperature and species richness both negatively correlated with time to extinc-
tion, whilst species identity changed the time to extinction by up to an order of magnitude.
Higher temperatures and more species rich communities drove both P.caudatum and Loxo-
cephalus to extinction at faster rates.

The fraction of the habitat searched (held constant through time and with
regular sampling) affected the accuracy of predictions, with area of the habitat
searched positively correlating with precision (Fig. 2.4). The majority of this
error is underestimation (Fig. 2.4a). Overestimation accounts for only a small
proportion of the magnitude of the total error, and above 7% search effort there
is remarkably little variation in error. Increasing the fraction of the habitat
searched from 1 to 4% produced a large decrease in absolute error (an average
of 3.9 days, Fig. 2.4b). Similarly an increase from 4% to 10% continued to
increase precision, albeit at a lesser rate. Increasing search effort from 10 to
95% produced an increase in precision of only 2.1 days.

The number of sighting events (k) used in the OLE calculation showed no
clear relationship to accuracy (Fig 2.5). Increasing and realistic search regimes
showed little variation in error as the number of sightings used increased. Con-
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Figure 2.7: Change in error associated with a change in each variable was calculated by
subtracting the range of mean errors, grouped by similar intrinsic and observer attributes,
from one another. Thus the change in error due to an increase of 5 degrees is the mean error
associated with the 20 ◦C treatment predictions minus the mean error associated with the
15 ◦C treatment predictions, with all other variables kept constant. Thus all difference in
mean error are relative to the reference point, not to the actual date of extinction. Cons.
= “Constant” search effort, Inc. = “Increasing” search effort, Dec. = “Decreasing” search
effort, Rea. = “Realistic” search effort.

stant search regime peaked in error when k=18, although this can probably be
attributed to a low number of estimations of extinction made using 18 sightings
(n=16, mean=231), a product of both the stochastic nature of sighting events
and a lack of extinctions between days 34 and 53. Decreasing search regime
with irregular sampling generated around an order of magnitude more error
than regular sampling. With a decreasing regime and regular sampling the
number of sightings used shows a weak positive correlation to error, a pattern
that becomes more obvious when sampling is irregular.
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2.4.2 Intrinsic effects

In this experiment, systems differed in three ways: the number of species
present, the identities of those species, and the temperature at which they
were kept. These three variables all affected the rate at which species were

driven to extinction (Fig. 2.6). However, predictions of extinction produced
using OLE appear in general to be unaffected by these variables, with a few
notable exceptions (Fig. 2.7). As temperature increased from 15oC to 20 oC
mean error in general decreased, but the majority of this error decreased by an
insignificant amount (1-2 days) with a few cases having a much larger reduction
in error. Increased species richness had almost no effect on error. The identity
of the species was associated with large variation in the error of the predicted
date of extinction, with P.caudatum almost always having greater error and
in a few cases this error was orders of magnitude larger than found in the
comparative Loxocephalus treatments.

2.4.3 Generation times

In order to better understand the ecological significance of our results we
estimated the ecological timescale of our experiments in number of gen-
erations. Estimates of maximum intrinsic growth rate (r, Table. 2.1) for

the two species (at both 15 and 20 ◦C) were calculated from the exponential
growth phase (identified by visual inspection) of single species communities.
Implemented from Stevens (2009) r was the intercept of the linear regression
of per capita growth rates at given population densities. Minimum doubling
times (Td, equivalent to generation time at exponential growth (as in Fin-
lay 1977)) were then calculated, by rearranging the equation for exponential
growth, as

Td =
ln(2)

r
(2.8)

Minimum generation times were thus calculated as 0.73 days for P.caudatum
and 0.84 days for Loxocephalus sp..
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Table 2.1: Both species identity and temperature affected estimates of maximum r and thus
minimum doubling time for Loxocephalus and P.caudatum. Doubling time of species was
used as a proxy to determine the relative time scale of microcosms compared to real world
systems.

Species Temperature ◦C r Doubling time (Days)
Loxocephalus 15 0.83 0.84

20 0.85 0.81
P.caudatum 15 0.92 0.73

20 0.95 0.75

2.5 Discussion

Given the problematic nature and history of determining whether a
species is extant or extinct (Fisher & Blomberg 2011), and the con-
sequences of getting it wrong (Collar 1998; Jackson 2006), the ability

to accurately infer extinction status would be an invaluable tool for conser-
vation. For many species sighting data is all that is available, so if sighting
based methods for inferring extinction are accurate then this provides a tool
of great utility. For those species where sighting data exist OLE appears, in
general, to provide accurate and precise predictions of time to extinction. OLE
has, unsurprisingly, proved sensitive to factors both inherent to the system it
is applied to, and those arising through the observation process. Under ideal
conditions (and assuming an inability to search 100% of a species’s habitat)
sighting data collected using the highest possible search effort held constant
through time with regular, frequent sampling would yield the most accurate
and precise predictions of a species’s extinction date.

However the major advantage of OLE, and extinction estimators in gen-
eral, is in their ability to infer extinction under data depauperate conditions.
Irregular searching and low search effort can produce large variations in both
the accuracy and precision of estimates of extinction. At low search efforts
small increases in the search area provide large decreases in error (Fig. 2.4a,
b). Search effort correlates positively with the potential to overestimate an ex-
tinction event (Fig. 2.4a), and this correlation between search effort and over-
estimation explains the trends seen in both increasing and decreasing search
effort (Fig. 2.1 & 2.2). This makes intuitive sense as searching large propor-
tions of a habitat prior to an extinction event means the chances of observing
an individual close to the actual date of extinction increase, and consequently
shift the predicted extinction date forward through time (and visa versa).
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Overestimation of the extinction date was more common than underestima-
tion (a ratio of ∼3:1), although this is almost certainly a product of low search
efforts simply not producing enough sighting events to use in OLE, thus more
estimations were made at higher search efforts. That being said where un-
derestimation of the extinction date was present it was generally of greater
magnitude than overestimation (means of 6.4 and 3.9 days respectively).

Our results suggest that change in search effort through time, either through
increasing or decreasing resource availability or fluctuations brought on by op-
portunistic sampling, can reduce predictive accuracy, especially if searching is
irregular (where patterns observed under a regular sampling appear magnified
(Fig. 2.1 & 2.2)). Unfortunately in many situations it may not be apparent
whether the search effort has changed (for example where there may be habitat
loss, poor records of the area sampled, or areas wrongly identified as suitable
habitat). The interaction between changing search effort, search regularity
and species identity is one that should be considered carefully, especially if
applying OLE or other extinction indices to species whose life histories are
particularly long or unknown.

The estimations of extinction with exceptionally high associated error (Fig.
2.7) all share some common features: they are predictions of extinction of the
species P.caudatum at 15oC under a decreasing search effort with an irregular
search pattern. The population dynamics of P.caudatum at 15oC (Fig 2.6) are
such that for relatively long periods of time population abundances are very
low prior to an extinction event: a population of P.caudatum survived for 23
days with fewer than 5 individuals, and for 9 days with a single individual.
With these dynamics, a decreasing search regime and, importantly, irregular
searching, the chances of missing the final few individuals for long periods of
time becomes almost a certainty. Where populations fell rapidly to extinction
(e.g. Loxocephalus in species rich communities at 20oC (Fig 2.6)) predictions
produced far less error, even with irregular searching and a decreasing search
regime. This supports work by Rivadeneira, Hunt & Roy (2009) who found
that model populations with rapid population declines to extinction produced
significantly better predictions of time of extinction than those with slower
rates of decline, across a range of extinction predictors. It should be noted,
however, that because OLE requires a minimum of five sighting events to make
a prediction a larger proportion of the population decline is covered by the
same number of sighting events for species with rapid rates extinction. This
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explains some of the overestimation of extinction date seen with a decreasing
search regime and irregular searching where extinctions occurred early in the
experiment (Fig. 2.2).

There has been some uncertainty as to the optimum number of sightings
to use in the OLE calculation (Solow 2005; Collen, Purvis & Mace 2010). Be-
cause OLE assumes a Weibull extreme value distribution, large numbers of
sightings may violate the asymptotic argument on which the model is based
(Solow 2005). Rivadeneira, Hunt and Roy (2009) identified during preliminary
analysis that including large numbers of sightings increased the upper bounds
of the estimates. However when considering the estimated date of extinction
(as opposed to upper confidence intervals as in Rivadeneira, Hunt and Roy
(2009)) this was found not to be the case as all regimes other than decreas-
ing showed overall a greater precision when an unlimited number of sightings
were used (Fig. 2.1 & 2.2), and there appeared to be no obvious relationship
between error and the number of sighting events (Fig. 2.4). Across all search
regimes (and under regular or irregular sampling) the difference in mean ab-
solute error between using either k=5 or k=n was never greater than 3 days.
Consequently the use of all available sightings (k=n) for real world calculations
seems reasonable as for the majority of search scenarios this improved both
the precision and accuracy of predictions.

Although on average OLE produces accurate estimations of time of ex-
tinction, within this there is both overestimation and underestimation of the
extinction date, and when search effort is low and sampling irregular, care
should be taken when declaring a species extinct. Previously the confidence
intervals (typically set at 95%) produced by OLE and other extinction indices
have been used to reduce the chance of erroneously declaring a species extinct
(Rivadeneira, Hunt & Roy 2009). However this overcautious approach serves
to increase uncertainty, as confidence intervals are typically wide, spanning
centuries or millennia (Collen, Purvis & Mace 2010). Within this experiment
upper 95% confidence intervals were occasionally over 700 days after the pre-
dicted date of extinction (with regular sampling) and over 3000 days after the
point estimate of extinction with irregular sampling (Fig 2.8). The use of k=n
sighting events reduced the number of extremely high 95% confidence intervals,
but only with regular sampling. Within this experiment 95.3% of observed ex-
tinctions were encompassed by the upper and lower 95% confidence intervals
when sampling was regular, and 82.4% when sampling was irregular. However
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Figure 2.8: Upper and lower 95% confidence intervals (CIs) are often wide, and are dependent
on both the number of sighting events used in the OLE calculation and the search regime.
Points are a random selection of 500 upper and lower 95% CI estimates for each search regime
and each sampling regularity, bars highlight the maximum temporal spacing of CIs around
the predicted date of extinction. Using k=5 sightings produce wide confidence intervals
more often than when k=n was used. However in many instances there is no difference in
the maximum difference from the predicted date of extinction.

an alternative approach is to employ a fixed time period, or “safety-net”, after
the point estimate of extinction produced by OLE before declaring a species as
extinct. This period should be a balance between the risk of investing time and
money on trying to save a species that is extinct and removing funding early
and losing a species that could be saved, whilst reducing the uncertainty pro-
duce by wide confidence intervals. This is a potentially novel way of applying
OLE and using this approach, with a “safety-net” period of 5 days added to
point estimates of extinction, 90% of extinction events were encompassed with
regular sampling and 73% with irregular. When this “safety-net” is increased
to 10 days these figures grow to 95% and 81% respectively.

Estimates of minimum generation times for P.caudatum and Loxocephalus
(between 0.73 and 0.84 days (Table 2.1)) suggest that it is both convenient
and appropriate to consider a day within the microcosm system to be roughly
analogous to a year in a natural system. These estimates would then be roughly
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equivalent (0.73-0.84 years) to, say, time of first reproduction of many mammal
species (Wootton 1987). If a day can be viewed as roughly analogous to a
year (and the species in question has generation times roughly equivalent to
those presented here), then imposing a “safety net” of 5 - 10 years, depending
on the regularity of historical searching, after the predicted extinction date
before a species is declared extinct would reduce any potential “Romeo Error”
(declaring a species as extinct when it is still extant, Collar 1998). However
this is a rough estimate, not a prescriptive value. Species with significantly
different life histories, fecundity, ability to recover from small populations and
a myriad other factors, could influence the time period required as a “safety
net”.

2.6 Conclusions

Optimal Linear Estimation has proved sensitive to both intrinsic and
observer controlled factors, however on average it appears to accu-
rately predict the date of an extinction event. Use of the point esti-

mate of extinction generated by OLE, as opposed to the confidence intervals
considered previously, provides more sensible estimates of extinction that are
more widely applicable to real-world scenarios.

The accuracy of predictions was highly dependent on search effort, search
regularity and change in search effort through time. Increasing search effort
from 1 to 10% of a species’s habitat rapidly reduces the error associated with
predictions, whilst searching more than 10% produces a negligible increase
in predictive precision. Decreasing search effort through time and irregular
searching are liable to produce the greatest predictive error.

Intrinsic properties of the system, such as populations that persist for ex-
tended periods of time at very low densities, can magnify error, especially
underestimation of the date of extinction. When low search efforts, irregu-
lar searching, and species identity interact, error can be orders of magnitude
larger than otherwise found. Extensive testing in this model system suggests
that to minimise error in real world scenarios using all possible sighting events
will eliminate most of the error associated with differing search regimes, and
implementing a 5-10 year “safety-net” before declaring a species as extinct
will minimise any “Romeo Error”. Observer controlled and intrinsic factors
can significantly affect predictive accuracy, and should be taken into account
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when testing extinction predictors in the future.
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3 | sExtinct: an R package for inferring
extinction from sighting events

3.1 Abstract

Here, I present a new package for the R statistical computing envi-
ronment that combines several sighting based methods for inferring
historical extinction. The focus of this package is to provide a user-

friendly method for comparison between current extinction estimators, and so
facilitate the development of future methods for inferring extinction, as well
as make current methods widely accessible. I describe the major functions in
the package, the different ways they can be used and the data required. I then
provide a demonstration of the package, including its graphical outputs and
some simple problem solving on an included sample data set.

3.2 Introduction

Over the last 20 years estimating the extinction status of organisms
has become a major concern for conservation biologists, with recent
examples highlighting the impacts of wrongly declaring a species as

extant or extinct (Wilcove 2005; Fitzpatrick et al. 2005; Jackson 2006; Fitz-
patrick 2006). For many rare species there is little available data, the majority
of which consists of “sighting events”, i.e. an individual of that species has
been observed as extant at a given point in time. Consequently focus has
tended to centre on inferring when/if a species has gone extinct based on the
distribution of these historical sighting events. Comparison of the accuracy of
these estimators has historically been difficult (Clements et al. 2013), however
without comparison there can be little improvement of these techniques into
the future. In addition, and central to the reason these methods were created
in the first place, inferring extinction quantitatively must be accessible to those
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working in the field of conservation. Currently (to my knowledge) only a sin-
gle publication has presented the R code for the techniques they implemented
(McPherson & Myers 2009) and there is no framework for simply analysing
sighting data to test for extinction status.

Given the widespread use of the computing environment R (R Development
Core Team 2013), and this obvious shortfall in the availability of methods for
inferring extinction, I developed a package designed to be user-friendly to those
not familiar with the techniques employed, but flexible enough to be useful for
those wanting to extract specific data. The package is called “sExtinct” and
can be installed from the Comprehensive R Archive Network (CRAN). Within
this package I have, so far, combined six different sighting-based methods for
inferring extinction (Robson & Whitlock 1964; Strauss & Sadler 1989; Solow
1993, 2005; Burgman et al. 1995; Roberts & Solow 2003). The different
methods can be run independently or all together to provide a comparison
between the dates of extinction from the different methods.

In the following sections I will describe the implementation of the methods,
both individually and together, and how they handle/return data. Following
this I will demonstrate the methods and the potential outputs they can gen-
erate.

3.3 Description

The sExtinct package is written entirely in the computing language R
(R Development Core Team 2013) and takes advantage the R package
“lattice” (Sarkar 2008) for visualising extinction probabilities. It cur-

rently consists of six methods for inferring extinction (Table 3.1). To simplify
data manipulation all the functions for inferring extinction take data in the
form of a two column data frame, the first column being the years a species
has, or has not, been observed as being extant, and the second column con-
taining the number of sightings that occurred in each year. For all methods
except Robson1964() there must be a minimum of 3 times at which sightings
have occurred. For Robson1964() only two are required.

If the techniques are being run through the intermediate or high-level func-
tions (Table 3.1) then missing data (i.e. years where no sightings have been
recorded) can, but do not have to, be included within this data frame. Some
(but not all) of the low level functions require that missing data be included
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within the data given to the function. Low-level functions, on which the higher-
level functions run, are included in their own right for advanced users, but in
the vast majority if instances the use of the intermediate or high level functions
is appropriate.

Low-level functions (functions with the .fun affix (Table 3.1)) provide the
framework on which intermediate and high-level functions work. Details of the
arguments of each function change slightly (Table 3.1), and the data required to
calculate the probability of persistence and the outputs of each method differ
slightly. For example OLE.fun() only requires the dates at which sightings
have occurred and produces a point estimate of extinction, but Burgman.fun()
requires a data frame containing all the years at which a species has and has
not been observed over a given observation period and predicts the probability
of persistence of a species at the last year of the observation period. Further
details are given in the package help files.

Intermediate-level functions (Table 3.1) use lower level functions to predict
if/when a species has gone extinct between the last sighting event and a given
year (typically the current year). Arguments for these functions are a standard
data set and a value for alpha (for the 1-alpha confidence interval at which
a species should be declared extinct, i.e. when the probability of persisting
<= alpha the species is assumed to be extinct). In addition some functions
also take a test.year (the point in time after the final sighting event which
the chance of a species persisting should be calculated up to, typically the
current year) and a true/false argument, data.out, which controls whether the
full data set of p-values for each time step is returned, or simply the estimated
date of extinction (Table 3.1). Those functions where test.year is required
will calculate the date of extinction to the nearest whole time step. Using
these intermediate level functions circumvents potential data problems (such
as missing values), as data are manipulated to be appropriate for the lower-level
function being employed. Because of this, the data given to the intermediate
level functions are simply a two column data frame of the years at which a
species has been observed as being extant, and the number of sighting events
in that year (i.e. non-sighting events can, but do not need to, be included).
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The highest level function, run.all(), combines all the intermediate func-
tions to produce estimates of the date of extinction from all the methods, with
the option to plot these and return either a data frame of the estimated chance
of persistence at each point in time from each method, or a simplified table
of the predicted dates of extinction (rounded to the nearest year). run.all()
takes identical arguments, and data, to the intermediate-level functions, with
the addition of the true/false plot argument.

3.4 Example

To demonstrate sExtinct, I created a data set of sighting events that
is included within the package (as example.data). This data mimics
that of many species where there are infrequent and irregular sighting

events spread over decades, and where the species hasn’t subsequently been
observed as being extant. The data frame of sightings is comprised of two
columns; the first is the year at which the sightings have (or have not) occurred,
the second is a column of the number of sightings that have occurred in that
year. Note that the names of columns within the data frame do not matter,
only that the first contains the years, and the second the record of sightings.
For the sake of brevity, here I will demonstrate the intermediate and high-level
functions only, as these are likely to be the most widely applicable.

3.4.1 Intermediate level functions

All intermediate functions take the data frame described above as the
initial argument and an alpha value as a second argument. In addi-
tion all functions (except OLE()) also take a TRUE/FALSE data.out

final argument, and some take an additional test.year (typically set as the cur-
rent year), which values for probability of persistence are calculated up to (see
Table 3.1). So, running the Burgman() function with the included data set:

> data(example.data)

> example.data
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years sightings
1 1907 1
2 1910 1
3 1915 3
4 1916 4
5 1920 3
6 1925 1
7 1930 2
8 1931 1

> Burgman(example.data, alpha=0.05, test.year=2012, data.out=FALSE)

Estimate:

[1] 1942

To return a full list of the probabilities of persistence (column “chance”) for
each year (yrs) from the last sighting event until the test.year (set here to 1945
to reduce the size of the output data frame):

> Burgman(example.data, alpha=0.05, test.year=1945, data.out=TRUE)

yrs chance
26 1932 0.38126262
27 1933 0.43633363
28 1934 0.49178012
29 1935 0.54662696
30 1936 0.59996052
31 1937 0.38939500
32 1938 0.24371061
33 1939 0.15138540
34 1940 0.09449704
35 1941 0.05957024
36 1942 0.03798757
37 1943 0.02451162
38 1944 0.01599916
39 1945 0.01055870
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3.4.2 High level function

The function run.all() provides a simple way to compare all the meth-
ods currently encompassed within the package. In addition to the
arguments taken by the intermediate level functions, diagnostic plots

are called by the argument plot=TRUE (Fig. 3.1). So for a simple comparison:

> data(example.data)
> run.all(example.data, alpha=0.05, 2012, data.out=FALSE, plot=TRUE)

Test Estimate
1 OLE 1935
2 Strauss 1944
3 Solow1993.eq2 1936
4 Solow2005.eq7 1941
5 Robson 1950
6 Burgman 1942

This produces the predicted date of extinction (rounded to the nearest whole
time step) given the sighting record for each method. If NA’s are produced
in this table then the null hypothesis (that the species is still extant) cannot
be rejected. The graphical output shows the probability of persistence at each
time step where applicable (Fig. 3.1). OLE() produces a point estimate of
extinction only, plotted as the vertical dashed line. The given value of alpha is
also plotted. As with the intermediate level functions the full set of probabili-
ties of persistence at each year from the last sighting event until the test.year
can be produced by using the argument data.out=TRUE.

3.5 Troubleshooting

The graphic output from the plot=TRUE argument in the run.all()
function can be used to check whether the methods appear to be
working normally and troubleshoot any problems. Commonly NA’s

may be produced instead of estimates for the date of extinction, typically this
is caused by having a value of test.year too close to the last sighting event
and increasing this value is likely to solve the problem. However, this is only
possible up until the current year, and cannot be extended into the future to
“predict” the future time of a species’s loss. Issues may also be encountered if
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Figure 3.1: Diagnostic plot showing the predicted probability of persistence given the sight-
ing record in the example.data data frame across all methods in the package. OLE produces
a point estimate of extinction only (represented as the vertical dashed line), and the alpha
level set is marked with the dotted black line.

there are very few sightings, and alpha is relatively large. Here the first year
after the last sighting event may have a p-value of persistence less than alpha,
and so extinction may be predicted immediately.

The Burgman() function often exhibits an increasing chance of persistence
shortly after the last sighting event (Fig. 3.1), as this calculates whether the
sightings are randomly distributed. Occasionally the initial estimates may
be lower than the value of alpha, however this function has been coded such
that the predicted date of extinction is given as the first time the probability
returned by the function is <=alpha after any initial increase in the probability
of persistence.

The number of sighting events used (both in terms of the number of sight-
ings at each time point and the number of time points where sightings occur)
to estimate the date of extinction may, in some cases, invalidate the mathe-
matical assumptions of the methods (Solow 2005). sExtinct does not suppress
the number of sighting events used in the calculations, and so care should be
taken when analysing sighting histories with many sighting events. A simple
solution may be to reduce the number of sighting events at each time point to
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presence/absence, i.e. the species is either observed or not, although this may
affect the accuracy of those methods that can utilise multiple sighting events
at each point in time.

3.6 Conclusions

The package sExtinct provides a convenient way of comparing multiple
estimators of historical extinction based on sighting only data. The
package aims to give a user-friendly interface that allows people un-

familiar with the techniques included to run them with relative ease, however
care must still be taken to avoid invalidating any mathematical assumptions
made.
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4 | Historic environmental change may
affect our ability to infer extinction
status

4.1 Abstract

Correctly classifying a species as extinct or extant is of critical impor-
tance if current rates of biodiversity loss are to be accurately quanti-
fied. Observing an extinction event is rare, so in many cases extinction

status is inferred using methods based on the analysis of records of historic
sighting events. The accuracy of such methods is difficult to test. However, re-
cent experiments using microcosm communities suggests that the rate at which
a population declines to extinction, potentially driven by varying environmen-
tal conditions, may alter our ability to accurately infer extinction status. We
tested how the rate of population decline, driven by historic environmental
change, altered the accuracy of six commonly used sighting based methods for
inferring extinction. We used data from small-scale experimental communi-
ties and recorded wild population extirpations, and assessed how the accuracy
of the different methods depended on rate of population decline, search ef-
fort, and number of sighting events recorded. Although the rate of population
decline affected the accuracy of inferred extinction dates, so did the historic
population size of the species: faster declines produced more accurate inferred
dates of extinction, but only when population sizes were higher. Optimal Lin-
ear Estimation (OLE) offered the most reliable and robust estimates, though
no single method performed best in all situations, and it may be appropriate to

The following chapter has been preliminarily accepted for publication in the peer-reviewed
journal Conservation Biology
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use a different method if information regarding historic search efforts is avail-
able. Importantly, we show that OLE provided the most accurate estimates of
extinction when the number of sighting events used was >10, and future use
of this method should take this into account. Data from experimental popula-
tions provide added insight into testing techniques to discern wild extirpation
events. Care should be taken designing such experiments more closely to mir-
ror the abundance dynamics of populations that suffer real world extirpation
events.

4.2 Introduction

Reducing global biodiversity loss in the face of unprecedented popu-
lation extirpation and species extinction has become a fundamental
goal for conservation. However, whilst current extinction rates are

thought to be much higher than those recorded in the fossil record (Barnosky
et al. 2011), quantifying the exact rate of species loss, despite much invested
effort, remains problematic (Fisher & Blomberg 2011; Clements et al. 2013).
This is, in part, due to the difficulty of observing extinction, i.e. the absence
of something that is otherwise rarely seen, and this difficulty has given rise to
many techniques that attempt to allow historic extinction events to be inferred,
rather than observed directly (Burgman et al. 1995; McCarthy 1998; Roberts
& Solow 2003; Solow 2005). Given the often limited information available on
many species, such methods have often concentrated on inferring extinction
based on historic sighting events data (e.g. Solow 1993, 2005; Roberts & Solow
2003; Solow & Roberts 2003; McPherson & Myers 2009). Recent work has sug-
gested that such quantitative methods could be used to inform decisions on
whether to classify species as extinct (Collen, Purvis & Mace 2010), however
the accuracy of these methods remains difficult to test. Traditionally such
tests have been tackled with either data from wild populations that may have
suffered local extinction events (e.g. Collen, Purvis & Mace 2010), or with
data from simulated populations (e.g. Rivadeneira, Hunt & Roy 2009). Re-
cently, we have used experimental microcosm communities to provide detailed
abundance time series data for species where the date of extinction can be
accurately observed (Clements et al. 2013). Such an approach allows one to
test the accuracy of estimates because the actual date of extinction is precisely
known, something that is rarely possible with wild populations.
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The rate at which a population declines to extinction can play an important
role in determining how accurately a method for inferring extinction performs
(Rivadeneira, Hunt & Roy 2009; Clements et al. 2013). Where species persist
at low density for a lengthy period of time (and thus are rarely observed),
estimates are worse than when the species falls rapidly to extinction. Thus,
historic pressures on a species (be those abiotic, such as temperature change
or habitat loss, or biotic, such as an invasive species or disease) that increase
the rate at which a species declines may alter our ability to judge accurately
whether the species has in fact been lost, and over what time frame that may
have occurred.

Data that have been collected on wild populations have shown that both
the identity of the species (and thus life history) as well as the nature of the
threat can alter the rate of population decline (Weimerskirch & Jouventin
1987; Laurance et al. 1996; although see Di Fonzo et al. 2013). For example,
Laurence et al. (1996) showed distinct differences in the rates of rapid disease
driven population declines of four species of rain forest dwelling frogs, whilst
Weimerskirch & Jouventin (1987) recorded differences in the rates of popula-
tion decline of the Wandering Albatross, Diomedea exulans, between islands,
probably as a result of each island’s location in relation to fishing areas. Given
the high rates of environmental change over the last 100 years (Crowley 2000)
the potential for factors that govern the rates of a species’s decline to alter
our ability to infer whether a species is extinct is of concern, and quantifying
this effect is an issue that may affect our current understanding of the scale of
biodiversity loss.

Here, we utilise small-scale experimental communities to test whether there
is a negative correlation between rate of population decline and the magnitude
of the error of estimates of time of extinction produced using six commonly
applied methods. We then apply the same techniques to eight historic wild
population extirpations. We use various rates of environmental change to alter
the dynamics and extinction times of the experimental communities, whilst
the wild population data are chosen to include a variety of rates of population
decline driven by a number of different processes (including habitat loss, disease
and extreme weather events). Given time series of the abundance of these
experimental and wild populations, we generate sets of sighting events using
three search regimes (Rivadeneira, Hunt & Roy 2009; Clements et al. 2013).
We then examine the effect of the rate of population decline, as well as the
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effect of search regime and the number of sighting events the calculations use,
on the accuracy of estimations of the date of extinction, and compare the
robustness of the six techniques. Finally, we make recommendations about
the use of such techniques in real-world scenarios.

4.3 Methods

4.3.1 Experimental data

Experimental data were gathered on the abundances of replicate pop-
ulations of the bactiverous ciliate Loxocephalus sp., which were sub-
jected to various rates of temperature change through time (Fig 4.1a).

These different rates of directional temperature change produced varying rates
of population decline, and thus times of extinction (Fig 4.1b). Detailed ex-
planations of the experimental set up, temperature treatments, and sampling
methodology are covered in Chapter 5 and Appendix 8.1.1.

4.3.2 Wild population data

Data on population dynamics followed by extirpation events were col-
lected from three sources: a literature search (using Google Scholar
with search terms such as “extirpation”, “population extinction”, and

“extinction dynamics”), the Living Planet Database (Collen et al. 2009), and
Fagan and Holmes (2006). From these datasets we selected eight time series
(Parr 1992; Burrows et al. 1995; Laurance et al. 1996; Fagan & Holmes
2006): one mammal (African Wild Dog - Lycaon pictus), four birds (Hawai-
ian Crow - Corvus hawaiiensis, Corncrake - Crex crex, Whooping Crane -
Grus americana, European Golden Plover - Pluvialis apricaria), and three
amphibians (Waterfall Frog - Litoria nannotis, Common Mist Frog - Litoria
rheocola, Sharp Snouted Day Frog - Taudactylus acutirostris), each with at
least seven recorded population abundances prior to a recorded extirpation
event (a recorded population count of 0). These time series covered a range
of rates of population decline from slow to fast (estimated by fitting linear
regressions to the abundance data, Fig. 4.2), hypothesised to be caused by a
variety of factors including extreme weather events, disease, habitat loss and
degradation, and invasive species. These rates of decline ranged from the very
rapid (e.g. Common Mist Frog, Litoria rheocola) where approximately 40%
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Figure 4.1: (a) Microcosms were heated or cooled at varying rates by moving them between
incubators of different temperatures, giving a series of treatments where the rate of temper-
ature change varied. “D” indicates a treatment where temperatures decreased over time, “I”
where temperature increased, and “C” where the temperature was constant. Rate of change
is printed next to the direction of change, and is measured in degrees per week (so D0.75 is
a treatment where temperature decreased by 0.75 ◦C per week). The medium was initially
incubated at 20 ◦C, with two bacteria species (Serratia marcens and Bacillus cereus) added
at day -14, the protozoa added at day-10, and the media split into microcosms at day 0.
(b) Microcosms were sampled through time for abundance data, plotted are the means of
replicate populations (error bars not included to improve clarity). Different temperature
treatments produced different rates of population decline, with warmed treatments having
much faster rates of decline than cooled.

of the initial population was lost per year, to the relatively slow (e.g. Corn-
crake, Crex crex), where the population declined by roughly 16% of the initial
population per year.

4.3.3 Creating sighting events

Abundance data from replicates of Loxocephalus where extinction was
observed (all populations except those in the treatments D1.5 and
D3, where no extinctions were recorded), and wild populations, were

converted into sighting data based on the method proposed by Clements et al.
(2013, see below). To these records of abundance through time three simulated
search regimes were applied: (i) constant, (ii) increasing, and (iii) decreasing.
The “constant” search regime was simulated with search efforts (the fraction of
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Figure 4.2: Population dynamics prior to extinction of eight species, collected from the
literature. Linear regressions give an indication of each population’s rate of decline, shaded
areas are +/- one standard error. Species are ordered by the rate of population decline,
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the habitat searched) of 0.01 to 0.95, in 0.01 steps, held constant through time.
The “increasing” search regime had a randomly assigned initial search effort,
and then increased by a random fraction at each time step, until the search
effort reached 0.95 after which it remained constant. “Decreasing” mirrored
the increasing search effort, but the fraction of the habitat decreased through
time. These simulated search efforts at each point in time were then used to
generate series of sighting events. Multiplying the search effort (the fraction of
habitat searched) by the total number of individuals in the entire habitat gave
the expected number of individuals observed. The actual number observed
was drawn from a Poisson distribution with mean set to this expectation.

As in Clements et al. (2013), these sampling regimes produced regular
sighting events when search effort or abundance was high. However in reality
this is probably unrealistic, as sampling of wild populations is often sporadic.
Thus, two search “regularities” were simulated: “regular” sampling (as above),
and “irregular” sampling. Irregular sampling was implemented identically to
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the regular sampling, but with every time point where observations occurred
having a 50% probability of being used. All analyses present results that
include data from both regular and irregular sampling, with the results of
the effect of regularity of sampling on the accuracy of extinction estimates
presented in Appendix 8.1.2.

Hereafter, we refer to the times at which sightings were recorded as “sight-
ing events” (these are days in the experimental system, and months or years in
the wild population data). At each of these points in time there are a number
of observations generated, which depend on the abundance of the population
and the amount of the habitat searched: these are referred to as “sightings”.
If there were fewer than four sighting events then estimates were not made.

The sighting records derived above were used to test the six sighting-based
methods for inferring historical extinction currently included in the R pack-
age “sExtinct” (Appendix 8.1.3, Chapter 3). These methods do not explicitly
take into account the search effort that generated a sighting event (although
methods that do this do exist, e.g. Thompson et al. 2013). Thus, given
that the methods here will be applied where search efforts are inherently un-
known, it is especially important to gauge their performance under various
search efforts and drivers of predictive error. The methods are referred to by
simplifications of the function names in the R package, and are as follows:
(i) Burgman (Burgman et al. 1995), (ii) OLE (Roberts & Solow 2003; Solow
2005), (iii) Robson (Robson & Whitlock 1964), (iv) Solow1993.eq2 (Solow
1993), (v) Solow2005.eq7 (Solow 2005), and (vi) Strauss (Strauss & Sadler
1989). Very high numbers of sighting events caused the Burgman technique to
fail, and so the number of sightings was converted to presence/absence data
(i.e. an individual had been observed or not at that time point) for use with
this method.

Of the methods included in the sExtinct package, three (Burgman, Solow
1993.eq2, and Solow2005.eq7) calculate the probability that a species has gone
extinct at a given point in time. For these methods, the package tests the
probability of extinction iteratively at each time point after the last sighting
event, up until a given date (the “test.year”, see “sExtinct” help files). The
date of extinction is then calculated as the date at which the probability of a
species persisting falls below the alpha value. Typically, for real world data
the test.year will be set to the current year (i.e. what is the probability that
a species is extinct). Preliminary testing (not presented) suggested that the
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maximum extinction date for the microcosm system would not fall above day
300, and for the real-world extirpations not above the year 2200, so we set the
test.year conservatively at day 400 for the experimental data and 2300 for the
wild population data. For those methods that simply produce a point estimate
of the date of extinction from a sighting record (OLE, Robson, Strauss), only
estimates that were less than or equal to day 400 were included in the analysis.
After the simulations had been run, we were able to show that the maximum
estimated date of extinction for the microcosm data was day 225, and year
2061 for the real-world data, both well under the time up to which extinctions
were tested.

Simulated samplings were run on the experimental and wild population
data enough times to provide 500 extinction estimates for each combination
of search regime and search regularity. For the experimental data the simu-
lations were run 950 times for each individual experimental population. This
number was chosen because the constant search regime had a fixed number
of search efforts (95, see above), and this was then repeated 10 times to gen-
erate a high number of extinction estimates. This was then mirrored in the
increasing and decreasing regimes. In total, across the replicate populations,
search regimes, search regularities, and number of sighting events, this pro-
duced 631,452 simulations where at least four sighting events were produced
(and thus an extinction estimate could be made). Given the generally low
population sizes and short time series of the wild population data, all simu-
lations were repeated four times as often as the experimental simulations to
produce a sufficient number of occasions where four sighting events occurred,
producing a total of 746,148 sets of more than four sighting events.

To assess the accuracy of each method, error was calculated as the difference
between the inferred date of extinction and the observed date of extinction.
Because the number and temporal distribution of sighting events were deter-
mined by the search regimes, all analysis were carried out on a subset of the
data; 500 randomly selected extinction estimates from each search regime for
each of the six methods for inferring extinction. The wild population data
covered a range of population decline rates, and a range of time spans over
which those declines were monitored. Because of these different observation
periods, error of inferred dates of extinction was normalised by dividing it by
the minimum time between observations (for most species this was 1 year, but
could be as little as four weeks (e.g. for the Common Mist Frog).
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Figure 4.3: Mean error of predictions made by each method across the different temperature
treatments. Treatments are ranked from fastest decreasing on the left, to fastest increasing
on the right. Error is the difference between the predicted date of extinction and the
observed date of extinction, calculated from of a random subsample of 500 data points from
each combination of search regime and search regularity. Bars represent +/- 1 s.e. and
printed above or below each bar is the proportion of estimates that were overestimates or
underestimates of the date of extinction.

All simulations were carried out using the R statistical software (R Devel-
opment Core Team 2013). In the main we assess the accuracy of estimates in
terms of relative error (the distance from the inferred date of extinction to the
observed date of extinction, split into overestimation and underestimation of
the extinction date). We used the frequency and magnitude of overestimation
and underestimation to assess the overall robustness of each method.

4.4 Results - experimental data

4.4.1 Effects of environmental change

The rate and direction of temperature change altered the rate at which
populations declined (Fig 4.1b); warmer treatments produced faster
rates of extinction, and cooler treatments slower. These environmen-

tally driven rates of decline affected the accuracy of estimates, with mean error
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Figure 4.4: Mean error of predictions made by each method under the different simulated
search regimes. Error is the difference between the predicted date of extinction and the
observed date of extinction, calculated from of a random subsample of 500 data points
from each combination of search regime and search regularity across the seven temperature
treatments (Fig. 4.3). Effect of search regularities are presented in Appendix 8.1.2. Bars
represent +/- 1 s.e. and printed above or below each bar is the proportion of estimates that
were overestimates or underestimates of the date of extinction. “con” = constant, “dec” =
decreasing, “inc” = increasing.

of estimates tending to be higher in cooler treatments, and lower in warmer
treatments (Fig 4.3). In general this effect was most noticeable in the change
in the accuracy of underestimates of extinction, with all methods showing a
clear decrease in the mean error of underestimates at warmer temperatures.

The proportion of underestimates to overestimates of the extinction date
was also affected by the treatments, with, in general, warmer treatments having
a greater proportion of overestimates than cooler treatments, although this was
not true for Solow1993.eq2 and Solow2005.eq7.



4.4. RESULTS - EXPERIMENTAL DATA 73

●
●●●●

●
●●●●●●●●

●●

●
●●●●●

●●●

●

●

●

●●●●●●●●●●●
●

●

●●

●●
●●●

●
●●●●●●●

●●

●
●

●
●

●

●

●●●●●●●●●●

● ● ● ●
●

●
●

● ●
●

●
●

●
●

●
● ● ● ● ● ● ●

● ● ●

●
●●●●

●●●●●●●●●●●

●
●

●●●●●●

●●●

Burgman OLE Solow1993.eq2

Solow2005.eq7 Strauss

−40

−20

0

20

−40

−20

0

20

5 10 15 20 5 10 15 20 5 10 15 20

5 10 15 5 10 15 20

Number of sighting events

M
ea

n 
er

ro
r 

(d
ay

s)

Figure 4.5: Mean error of predictions depending on the number of sighting events (i.e.
dates at which sightings occurred) used to calculate extinction across all search regimes and
experimental treatments. Error is the difference between the predicted date of extinction and
the observed date of extinction, calculated from of a random subsample of 500 data points
from each combination of search regime and search regularity across the seven temperature
treatments (Fig. 4.3). Error bars are +/- 1 s.e., trends are shown by a LOESS smoothing,
shaded areas represent +/- 1 s.e of the LOESS. The effect of the number of sightings on the
Robson method is not presented, as the techniques estimates extinction from the distribution
of the last 2 sighting events only.

4.4.2 Effects of search regime

The effects of search regime and number of sighting events used (below)
were calculated across data from the seven temperature treatments
where extinction occurred. Search regime dramatically altered the

accuracy of estimates (Fig 4.4). For half of the methods (OLE, Solow1993.eq2,
Strauss) error was minimised when the search regime was either constant or
increasing, and the greatest error was generated when the search regime was
decreasing (Fig 4.4). For OLE and Solow1993.eq2 the vast majority of the
error generated by decreasing search effort was underestimates of the date of
extinction. Solow2005.eq7 produced no estimates of extinction when search
efforts were increasing.
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Burgman, Robson, and Strauss all showed similar patterns of error, with
the greatest magnitude of overestimates occurring when the search regime was
either constant or increasing (this error was typically much greater than OLE,
Solow1993.eq2 or Solow2005.eq7), and the greatest magnitude of underesti-
mates occurring when search effort was decreasing.

4.4.3 Effects of number of sightings used

The number of sighting events (time points at which sightings were
recorded) used to infer extinction altered the accuracy of all of the
methods tested (Fig 4.5). In general the more sighting events used,

the lower the mean error, this was especially true for underestimates of the date
of extinction, which, across all methods, increased in accuracy as the number
of sighting events used increased. In general, the greatest accuracy of estimates
was achieved when the number of sighting events was greater than 10, and this
was especially noticeable with OLE, Solow1993.eq2, and Solow2005.eq7. The
Robson method was excluded from this analysis, as it uses only the last two
recorded sighting events to estimate extinction.

4.4.4 Robustness of methods

The method used had a large impact on the accuracy of estimates (Fig
4.6a). Mean absolute error (mean error normalized to positive val-
ues) was calculated for each method across all search regimes, and

temperature treatments, to give an indication of each method’s applicability
to real-world data (where information of search effort and rates of extinction
are usually unknown). OLE produced the lowest mean error (7.9 days), with
Solow2005.eq7 also having relatively low error (9.1 days). All other methods
produced mean errors >10.4 days, with the greatest mean error associated with
estimates made using Burgman (19.1 days). All methods inferred extinction
to have occurred between day 0 and day 400 (the last observed extinction date
was day 70) in a high proportion of simulations, except Solow2005.eq7 where
extinction was inferred to have occurred in only 1/4 of the simulations (Fig
4.6a). OLE, Solow1993.eq2, and Solow2005.eq7 all produced less mean error
than when a random method was selected for each inference of extinction, but
more mean error than when the method that produced the lowest error for
each inference of extinction was selected (Fig 4.6a).
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Figure 4.6: a) Mean absolute error and b) mean relative error of predictions made by each
method across all search regimes, temperature treatments, and number of sighting events,
bars show +/- 1 s.e. Error is the difference between the predicted date of extinction and
the observed date of extinction, calculated from of a random subsample of 500 data points
from each combination of search regime and search regularity. The mean error if a random
method is chosen for each inference of extinction, or if the method with the lowest error is
always chosen, are also plotted. Printed in each bar of a) is the fraction of the simulations
where there were 4 or more sighting events produced for which each method produced an
extinction estimate that fell between 0 and 400 days (note that the last potential extinction
event in the experimental treatment was day 70, and that the fraction of simulations that
produced estimates is not printed for the“lowest error” as selecting the method with the
lowest error inherently means that an estimate has been made), and in b) the proportion of
those estimates that fell after the observed date of extinction, and before the observed date
of extinction.

When positive and negative errors are plotted separately, instead of being
normalised to positive values, it becomes clear that most methods are prone to
either overestimation or underestimation of the date of extinction (Fig 4.6b).
In some cases this bias is dramatic: Solow1993.eq2 and Solow2005.eq7 under-
estimate the date of extinction 99% and 95% of the time respectively, whilst
Strauss, Robson, and Burgman all overestimate extinction more than 79% of
the time (Fig 4.6b). Only OLE shows little bias in the frequency of overesti-
mation to underestimation. The magnitude of this overestimation or under-
estimation is highly dependent on the method. In most cases, however, the
magnitude of error is consistently weighted to either underestimation or over-
estimation, with the exception of Robson, where the magnitude of the error is



76 CHAPTER 4. HISTORIC ENVIRONMENTAL CHANGE MAY . . .

1 1 0.81
0.74

1

0.7

1
0.76

0 0

0.19 0.26

0

0.3

0

0.24

0.81 0.62 0.45 0.52
0.89

0.48
0.49 0.19

0.19
0.38

0.55

0.48

0.11

0.52
0.51

0.81

1 1
1 1

1

1 1
0.88

0 0 0 0 0 0 0
0.12

0.76 0.27 0.07 0.05
0.83

0.01 0.03 0.02

0.24
0.73

0.93

0.95

0.17

0.99
0.97

0.98

0.89 0.79 0.64 0.37

0.95

0.28 0.27 0.22

0.11
0.21

0.36

0.63

0.05
0.72

0.73
0.78

1 0.81 0.72
0.67

0.94

0.55
0.84

0.67

0
0.19

0.28
0.33

0.06

0.45
0.16

0.33

Burgman OLE Robson

Solow1993.eq2 Solow2005.eq7 Strauss

−10

0

10

20

−10

0

10

20

Cor
nc

ra
ke

Haw
aii

an
 C

ro
w

W
ho

op
ing

 C
ra

ne

Afri
ca

n 
W

ild
 D

og

W
at

er
fal

l F
ro

g

Gold
en

 P
lov

er

Sha
rp

 S
no

ut
ed

 D
ay

 F
ro

g

Com
m

on
 M

ist
 F

ro
g

Cor
nc

ra
ke

Haw
aii

an
 C

ro
w

W
ho

op
ing

 C
ra

ne

Afri
ca

n 
W

ild
 D

og

W
at

er
fal

l F
ro

g

Gold
en

 P
lov

er

Sha
rp

 S
no

ut
ed

 D
ay

 F
ro

g

Com
m

on
 M

ist
 F

ro
g

Cor
nc

ra
ke

Haw
aii

an
 C

ro
w

W
ho

op
ing

 C
ra

ne

Afri
ca

n 
W

ild
 D

og

W
at

er
fal

l F
ro

g

Gold
en

 P
lov

er

Sha
rp

 S
no

ut
ed

 D
ay

 F
ro

g

Com
m

on
 M

ist
 F

ro
g

R
el

at
iv

e 
m

ea
n 

er
ro

r

Figure 4.7: Effect of species identity on accuracy of inferred dates of extinction across
all search regimes and numbers of sighting events. Error is the difference between the
predicted date of extinction and the actual date of extinction of a random sample of 500
data points from each search regime, for each method. Error is normalised across the
different observation periods by dividing the error in estimates of the date of extinction
by the minimum time between recorded abundances during the observation period of each
species. Species are ordered by the rate of population decline, from the slowest (on the left)
to the fastest (on the right), with the expectation being that slower declining populations
are likely to have greater mean error than faster declining. Bars represent +/- 1 s.e. and
printed above or below each bar is the proportion of estimates that were overestimates or
underestimates of the date of extinction.

roughly equal (Fig 4.6b). In many instances the difference in the magnitude
of the mean error is large, for example OLE tends to have greater error in the
underestimates, rather than overestimates, of the date of extinction.

4.5 Results - wild population data

4.5.1 Effects of rate of population decline

The decline dynamics of the wild populations altered the accuracy of
inferred dates of extinction, but the relationship between the rate of
decline and accuracy was dependent on the method used (Fig 4.7). A
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general pattern of decreased accuracy with faster rate of population decline is
apparent in all methods except Robson, which showed a decrease in mean er-
ror as populations declined at faster rates (Fig 4.7). For OLE, Solow1993.eq2,
and Solow2005.eq7 this pattern was driven in the main by an increase in the
magnitude of the error in underestimates of extinction, whilst for Burgman
the opposite is true (Fig 4.7). Strauss showed an increase in the magnitude
of the error associated with both overestimates and underestimates of extinc-
tion as populations declined more rapidly. Interestingly OLE, Solow1993.eq2,
Solow2005.eq7, and Strauss all show very similar patterns of error across the
different species.

Some species had consistently large error associated with their inferred
dates of extinction across the majority of the methods tested (notably the
Waterfall Frog, which tended to have an inferred extinction date after the
actual date of extinction, Fig 4.7). No species had consistently low error in
the estimated date of extinction, although the Corncrake and Hawaiian Crow
had low error in all estimates save those made by Robson (Fig 4.7).

4.6 Discussion

We show that the rate at which a population has declined may influ-
ence the accuracy with which we can infer when that population
has gone extinct. Previously it has been suggested that more rapid

rates of decline may facilitate accurate inference of extinction (Rivadeneira,
Hunt & Roy 2009; Clements et al. 2013), and this is indeed seen with some
inference methods using data generated from microcosm communities. How-
ever, when using data from wild populations the opposite is often observed,
with species that decline slowly typically having less error associated with in-
ferred dates of extinction. In line with previous studies (Rivadeneira, Hunt &
Roy 2009; Clements et al. 2013), we find that the search regime can strongly
influence the accuracy of estimates, but that the most important driver of pre-
dictive error appears to be the inference method used, and that in general OLE
is the most accurate and potentially most widely applicable of the methods
tested.

The rate at which a population declines to extinction may vary based on
generation time and reproductive output, as well as the rate of biotic or abiotic
environmental change (Fig. 4.1b, 4.2). We show that, whilst different rates of
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population decline can alter the accuracy of estimates, the nature of this effect
is not necessarily consistent across different sources of data (Fig 4.3, 4.7). Data
from experimental populations produce results similar to those previously ob-
served (Clements et al. 2013); more rapid rates of population decline, driven
by environmental change, lead to more accurate estimates of extinction time.
However, this was dependent on the identity of the method used, probably
due to the different assumptions underlying each of the methods (Appendix
8.1.3), and consequently how each method predicts the probability of extinc-
tion to change through time (Appendix 8.1.4). For example, Solow2005.eq2
does not predict extinction where search efforts have increased over time, prob-
ably because the method assumes the pre-extinction sighting rate decreases,
an assumption clearly broken when search effort increases over time. Burgman
on the other hand consistently overestimates extinction when search efforts are
increasing or constant; however, this is likely to be in part due to the need to
reduce high numbers of sightings to presence and absence data. When there
are low numbers of multiple sightings at each time point this method may
perform better than is suggested by the results here.

It seems unlikely that the results presented here will be particular only to
extinctions driven by directional environmental change (as in the microcosms),
as previous work using data from modelled populations has shown similar find-
ings (Rivadeneira, Hunt & Roy 2009). Data from wild population extirpations,
however, often show an opposing pattern, with increasing error of estimates
when the rate of population decline was rapid (Fig. 4.3, 4.7). The differing
results generated using microcosm data and those from real world population
extirpations may appear conflicting. This could be driven by the difference
between the drivers of extinction (directional environmental change in the ex-
perimental set up and a variety of pressures in the wild population data), but
is more likely to be driven by an interaction between the way sighting events
are produced, and the (generally) lower abundances of the wild populations
over short observation periods (Fig. 4.2, Appendix 8.1.5). When population
abundances are low, and observation periods are short (e.g. the Corncrake,
Fig. 4.2), there are only a limited number of possible times at which sighting
events can be produced. This means that, unlike the microcosm data, there
is limited time over which wild populations can produce temporally sporadic
sightings. Sighting events are further reduced by decreasing search efforts,
irregular sampling, and because some methods require at least four sighting
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events to infer extinction. Given that widely temporally spaced sighting events
tend to produce estimates long after a population has been observed to go ex-
tinct, there are fewer opportunities for poor estimates of extinction to be pro-
duced. Consequently, when there are a small number of sighting events that
are closely clustered the inferred date of extinction cannot fall far from the
observed extinction event. This highlights a problem found in many records of
contemporary wild population extirpations: they are both spatially and tem-
porally limited. However, real historic sighting events may cover relatively long
periods of time, with potentially a relatively high number of sighting events, a
case in point being the most recent sightings of the Dodo (Raphus cucullatus):
1598, 1601, 1602, 1607, 1611, 1628, 1628, 1631, 1638, 1662 (Roberts & Solow
2003). Consequently, we suggest that data from microcosm experiments may
in fact be far more suitable for testing methods of inferring extinction, not
only because the date of extinction can be accurately gauged (Clements et
al. 2013), but because sighting records more akin to those found historically
can be produced than are feasible using short abundance data sets from wild
populations. Sighting records produced using microcosm data must then be
compared to those typically found in real-world scenarios to see whether such
sighting records are appropriate. When designing future microcosm-based ex-
periments the conditions should be such that lower population abundances
through time are produced to more accurately reflect wild population declines,
which can be achieved by using lower temperatures, lower nutrient levels, or
smaller habitats.

The rate and form with which a population declines, and historic search
efforts, are both significant drivers of the temporal distribution of sighting
events, and, consequently, both are important factors in determining the ac-
curacy of inferred dates of extinction (Rivadeneira, Hunt & Roy 2009; Collen,
Purvis & Mace 2010; Clements et al. 2013). To illustrate this conceptually,
imagine a situation where a population declines slowly to extinction, but search
efforts slowly increase, potentially due to increasing concern for that species; a
constant frequency of sighting events could result, whilst masking the decline
of a population up until a seemingly abrupt extinction event. Conversely, pop-
ulations that crash from high abundances to extinction over a very short time
period (e.g. Euphydryas editha, Thomas et al. 1996) may have high numbers
of sighting events prior to extinction. However, sighting records are typically
produced by sporadic chance observations of a species, often as a byproduct
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of some other endeavor, rather than systematic searches for an endangered
species (Roberts & Solow 2003). Gauging historic search efforts is therefore
likely to be difficult. In real world terms, this means that appropriate choice of
which method to apply, and the number of sighting events to use, are likely to
be the two main ways in which error can be minimized. Identifying techniques
that provide robust, accurate estimates over a variety of different potential
drivers of error is thus of critical importance.

We find the method that produces the lowest mean error among our tests
is OLE (Fig. 4.4, Appendix 8.1.6), and that it also exhibits relatively little
bias towards either overestimation or underestimation of the date of extinc-
tion. In addition, and unlike some other methods (notably Solow2005.eq2),
OLE infers extinction to have occurred in a high proportion of the simulations
(Fig. 4.6a, Appendix 8.1.6). This means that for many real-world situations,
where historic search efforts and rates of population decline remain unknown,
OLE should be regarded as the most reliable of the six methods tested here.
Of particular importance to the real-world application of this method is our
finding that using OLE with 10 or more sighting events typically produces the
most accurate estimates of extinction. This contradicts the widely held belief
that OLE should be used with the five most recent sighting events only (Solow
2005), and consequently we recommend a change in how this method is used
in the future.

In situations where search effort has decreased through time OLE, and
in fact the majority of methods tested here, does poorly (Fig. 4.4). This is
probably a function of infrequent sighting events that are not representative
of actual population declines (sighting frequency declines rapidly, driven by
search effort rather than population decline). Irregular sampling often exacer-
bates this pattern, although the size of this effect is rather small and in general
the methods tested are robust to the regularity of sampling, an encouraging
finding when applying such methods to real-world data (Appendix 8.1.2). The
Robson and Strauss methods do better than the other four methods tested
when search effort is decreasing (Fig. 4.4), almost certainly a function of their
tendency to overestimate the date of extinction in most other circumstances
(Fig. 4.6b), a fact that makes them less appropriate for use where search ef-
forts are constant or increasing. If there were an indication that the search
effort through time that produced a series of historic sighting events had de-
clined, but the exact search effort had not been recorded, then choosing either
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Robson or Strauss as an alternative to OLE would be appropriate. However,
if no such information is available then OLE should be used, as it is relatively
robust to search effort and overall produces accurate estimates of extinction.

Where a more detailed knowledge of sampling intensity over time is known,
other methods may be applicable. For example, search effort through time
may be explicitly accounted for in the method proposed by Thompson et al.
(2013). However, the availability of information on historic search efforts is
often lacking - a function of the often stochastic nature of sighting events - and
potential solutions for effectively selecting extinction estimators in the absence
of this information have been suggested (Vogel et al. 2009). For example, the
use of L-moments to assess how well the assumptions of each method are met
by the underlying distribution of historic sighting events could be implemented
(Vogel et al. 2009). Testing the L-moment approach using experimental data
with known extinction dates, and varying rates of species decline, could form
an interesting future direction for the selection of such sighting based methods
of extinction.

4.7 Conclusions

In conclusion, to gauge accurately the current rate of biodiversity loss we
must be able to reliably classify a species as either extinct or extant. How-
ever, many factors may influence our ability to infer extinction status cor-

rectly, not least the choice of inference method. In an ideal situation, methods
could be selected based on their strengths. Unfortunately, this is probably an
unrealistic scenario given the often poor knowledge of important factors that
relate to these strengths, such as search effort. Consequently, methods should
be applied that are robust to a variety of drivers of uncertainty. This work
shows that in the majority of cases OLE (Roberts & Solow 2003; Solow 2005)
provides the most accurate estimates of the time of extinction of experimen-
tal and wild populations. Importantly, and contrary to previous work (Solow
2005), we show that the accuracy of OLE improves as the number of sighting
events used increases, and that ideally one should infer extinction using this
technique with a minimum of ten sighting records. Using a robust technique
such as OLE will allow more accurate inference of the current extinction status
of species than would be possible if one were to pick one of the six methods
tested here without any prior knowledge. However, in certain circumstances
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(especially when historic search efforts have been decreasing) inferred dates
of extinction should be treated with care. If there was an indication that
this had occurred, using either Robson (Robson & Whitlock 1964) or Strauss
(Strauss & Sadler 1989) instead could be appropriate. Where greater informa-
tion on search efforts is available, techniques that explicitly account for search
intensity should be considered (e.g. Thompson et al. 2013).
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5 | The effects of directional
environmental change on extinction
dynamics in experimental microbial
communities are predicted by a simple
model

5.1 Abstract

Global temperatures are expected to rise between 1.1 and 6.4 ◦C over
the next 100 years, although the exact rate will depend on future
greenhouse emissions, and will vary spatially. Temperature can alter

an individual’s metabolic rate, and consequently birth and death rates. In
declining populations, these alterations may manifest as changes in the rate
of that population’s decline, and subsequently the timing of extinction events.
Predicting how temperature change can alter the timing of such events could
be of considerable use. We use a small-scale experimental system to inves-
tigate how the rate of temperature change can alter a population’s time to
extinction, and whether it is possible to predict this event using a simple
phenomenological model that incorporates information about population dy-
namics at a constant temperature, published scaling of metabolic rates, and
temperature. In addition, we examine (i) the relative importance of the direct
effects of temperature on metabolic rate, and the indirect effects (via tem-
perature driven changes in body size), on predictive accuracy of the model
(accuracy defined as the proximity of the predicted date of extinction to the
mean observed date of extinction), (ii) the combinations of model param-

The following chapter has been published in the peer-reviewed journal Oikos.
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eters that maximise accuracy of predictions, and (iii) whether substituting
temperature change through time with mean temperature produces accurate
predictions. We find that extinction occurs earlier in environments that warm
faster, and this can be accurately predicted. Increasing the number of param-
eters that were temperature-dependent increased the model’s accuracy, as did
scaling these temperature-dependent parameters with either the direct effects
of temperature alone, or with the direct and indirect effects. Using mean tem-
perature through time instead of actual temperature produces less accurate
predictions of extinction. These results suggest that simple phenomenological
models, incorporating metabolic theory, may be useful in understanding how
environmental change can alter a population’s rate of extinction.

5.2 Introduction

Global climate change is forecast to alter environmental conditions
significantly over the next 100 years (IPCC 2007). Current predic-
tions suggest that global temperatures will rise between 1.1 and 6.4 ◦C

over this time period, although the exact magnitude, and therefore rate, of
temperature change will depend both on location and future greenhouse gas
emissions (IPCC 2007). This heterogeneity in the rate of temperature change
means that some areas (e.g. the polar regions) are expected to experience rates
of warming up to twice the global average (Koenigk et al. 2007), with poten-
tially profound impacts on the species that reside there (Thomas et al. 2004).
Temperature can have complex effects at the individual level - for example
increasing temperature increases metabolic rate, meaning that an individual
will use resources at a faster rate, senesce faster, and ultimately die sooner
(Van Voorhies & Ward 1999; Brown et al. 2004) - with potential consequences
for the persistence of populations. Understanding how varying rates of tem-
perature change may alter a population’s dynamics is therefore essential.

Recent developments in theory have produced an apparently accurate, and
convenient, way of incorporating the effects of temperature change into math-
ematical models (Brown et al. 2004). An organism’s metabolic rate, and
dependent functions such as growth and mortality rates, have been shown to
scale with its body size and temperature, via the Arrhenius equation (Gillooly
et al. 2001; Brown et al. 2004). Thus, the metabolic rate of an individual (I)
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scales with temperature (T , in Kelvin) and body size (M), as

I = i0M
3/4

e−E/kT (5.1)

where i0 is the normalization constant, independent of body size and temper-
ature, E is the activation energy (Ernest et al. 2003), and k is the Boltzmann
constant (Boltzmann 1872). Such scaling relationships hold over a large num-
ber of taxa, life histories, and trophic positions (Brown et al. 2004, although
see DeLong et al. 2010), and this has led to this method’s widespread appli-
cation (e.g. Berlow et al. 2009; Reich et al. 2006; Woodward et al. 2005),
though there is also evidence suggesting that there is significant variation in
the rate of this scaling (i.e. the activation energy) both within and across
species (e.g. Chown et al. 2007; Glazier 2010; White, Cassey & Blackburn
2007). Furthermore, temperature has been shown to alter an individual’s body
size (e.g. Atkinson 1994, Atkinson et al. 2003), meaning temperature can both
directly alter metabolic rate, and indirectly alter it through the temperature
dependence of body size.

From this scaling of metabolic rate (eq. 5.1), the subsequent change in
birth, growth, feeding, and mortality rates, as well as other metabolic depen-
dent functions, can similarly be scaled via the same power function (Brown et
al. 2004). Thus a parameter, P , at temperature t2 is scaled from the parameter
at t1 as

Pt2 = i0Pt1M
3/4e−E/kT (5.2)

Temperature influences a wide range of biological processes, but it may be
possible to simplify this complexity by incorporating the effects of temperature
change into phenomenological models. For many species phenomenological
models, such as the Lotka-Volterra equations (Lotka 1920; Volterra 1928),
provide a way of describing a population’s dynamics through time. Their
advantage lies in their simplicity, and consequently the relatively small amount
of information required to parameterise them. Knowing whether it is possible
to use such simplistic models to accurately predict how a changing environment
may alter population dynamics, instead of requiring more complex mechanistic
models (that as a result of their complexity require far more information to
parameterise), is of some importance.

Ideally, one would tackle such a question using data produced by manipu-
lating natural communities. However, the complexity of such systems, where



88 CHAPTER 5. EFFECTS OF DIRECTIONAL. . .

populations interact within a network of other species, in heterogeneous habi-
tats, means collecting data and isolating replicate populations, whilst eliminat-
ing confounding factors, is often unfeasible (Griffen & Drake 2008). Progress
can be made, however, by utilising small-scale experimental systems, which
by their nature are highly tractable, and allow abiotic factors such as tem-
perature to be precisely manipulated (Griffen & Drake 2008). Whilst such
experiments are clearly simplifications of real world systems (and have their
critics, e.g. Carpenter (1996)), the ability to replicate extinction events (which
are often undesirable in wild populations) has meant that such an experimen-
tal approach has often been used as a proving ground for theory (Lawler 1998).
Furthermore, if one cannot understand dynamics in such simple systems, then
one is unlikely to be able to do so in highly complex natural ones. One of the
simplifications often involved in such experimental communities is that they
are closed, i.e., there is no immigration or emigration, and/or no inflow or out-
flow of resources (e.g. Godoy & Costa 2005; Drake & Griffen 2010). Whilst
such closed systems may appear unrealistic, naturally occurring populations
range from being quite closed to very open (e.g. Polisini et al. 1970; Hanski
& Singer 2001; Mora & Sale 2002), and indeed it is often the scale of study
that determines how open or closed a system is (Camus & de Ciencias 2002).
Experiments with closed systems are obviously relevant for more closed popu-
lations, such as those on isolated islands, isolated habitat patches, or isolated
lakes. However, understanding closed system dynamics can provide important
information on within patch dynamics required to understand and model pop-
ulations experiencing immigration, emigration, and resource flows (e.g. Hanski
1998; Logue et al. 2011).

We use closed experimental microcosms to investigate the empirical ef-
fect of the rate of temperature change on a protozoan population’s time of
extinction, and whether these extinction events can be predicted using a sim-
ple phenomenological model that incorporates metabolic theory. To address
this we fitted a phenomenological model that included intrinsic growth (r),
carrying capacity (K), and an exponential decay in the population size (λ) to
the dynamics of an experimental population where temperature remained con-
stant. Then, using information on rates of temperature change through time,
we scaled the model parameters to predict when a population would go ex-
tinct in the treatments where temperature had been manipulated. Using this
method, we then addressed the following objectives: (i) to accurately (defined
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as the proximity of the predicted date of extinction to the observed date of
extinction) predict extinction events where temperature change through time
had occurred, (ii) to examine if predictions were more accurate if the actual
temperature change over time was modelled, rather than the mean tempera-
ture, and (iii) to examine the relative importance, on the predictive accuracy
of the model, of scaling parameters either directly, or indirectly (via published
temperature driven changes in body size), with temperature.

5.3 Methods

5.3.1 Experimental setup

Experimental microcosms consisted of lidded petri dishes (diameter
100mm, height 25mm) containing 50ml of medium. Medium consisted
of Chalkley’s solution (Thompson et al. 1988), which provided essen-

tial salts, and 0.05g/L of protist pellet (Carolina Biological Supply, Burlington,
NC) which provided organic nutrients. The medium was inoculated on day
-14 with the bacteria Bacillus cereus and Serratia marcescens and incubated
at 20 ◦C. On day -10, 200 individuals of the bactiverous protist Loxocephalus
sp. (a long-term laboratory culture, originally obtained from the Culture Col-
lection of Algae and Protozoa) were added to each litre of medium, incubated
at 20 ◦C, and left to reach high densities. On day 0, the first day of the experi-
ment, the medium was homogenised and 50ml added to each of 27 petri-dishes
(three replicate populations of nine temperature treatments).

The nine treatments comprised of one (termed treatment C) that was in-
cubated at 20 ◦C for the duration of the experiment (70 days) and eight treat-
ments that were either heated or cooled. All heated treatments started at
20 ◦C and finished at 26 ◦C, and all cooled treatments started at 20 ◦C and
finished at 14 ◦C, however the rate at which microcosms reached these final
temperatures differed between treatments (Fig. 5.1). This was achieved by
moving the microcosms between nine incubators set at 1.5 ◦C increments from
14 ◦C to 26 ◦C. Thus, the eight rates of cooling and heating were: i) increasing
by 3 ◦C per week (I3), ii) decreasing 3 ◦C per week (D3), iii) increasing 1.5 ◦C
per week (I1.5), iv) decreasing 1.5 ◦C per week (D1.5), v) increasing 1.5 ◦C ev-
ery 2 weeks (I0.75), vi) decreasing 1.5 ◦C every 2 weeks (D0.75), vii) increasing
1.5 ◦C every 3 weeks (I0.5), viii) decreasing 1.5 ◦C every 3 weeks (D0.5, Fig.
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Figure 5.1: Microcosms were heated or cooled at varying rates by moving them between
incubators of different temperatures, giving a series of treatments where the rate of tem-
perature change varied. All media was initially incubated at 20 ◦C.The two bacteria species
(Serratia marcescens and Bacillus cereus) were then added at day-14, Loxocephalus sp. were
added at day-10, and the media split into microcosms at day 0.

5.1).

5.3.2 Sampling to estimate abundance

Sampling to estimate population abundances was based on that of Lawler
and Morin (1993) and was the same as that of Clements et al. (2013).
Population abundances were estimated twice a week for 70 days. To

estimate population abundances the microcosm medium was mixed by repeat
pipetting, and a known volume extracted using a Gilson pipette. The indi-
viduals of Loxocephalus sp. in this known volume were then counted using a
stereoscopic microscope, and from this the total population size in the micro-
cosm was estimated. Medium was replaced into the microcosms after counting.
When populations became very low, individuals were counted in the whole
microcosm under the microscope. A species was recorded as extinct when no
individuals were observed after 5 minutes of searching on two consecutive sam-
pling days. Evaporative loss was replaced with distilled water prior to each
sampling event.
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5.3.3 Phenomenological model

To the mean population abundances of treatment C (incubated at a
constant 20 ◦C) we fitted, using a maximum likelihood approach, a
deterministic, four-parameter phenomenological model that incorpo-

rates logistic growth followed by exponential decay. This model was chosen
because it requires relatively little information to parameterise (only the pop-
ulation size through time, and not, for example, resource abundances). Mean
abundances for each treatment were used, as individual replicate populations
were highly variable and either produced inappropriate parameter estimates
or failed to find a set of parameters that produced a maximum likelihood for
the model. Thus we attempted to predict extinction of the “best case sce-
nario”, where there is little population variability. Initial population growth
was modelled as

dn

dt
= r · n(1 − n

K
) (5.3)

Where r is the intrinsic growth rate and K is the carrying capacity. After
initial logistic growth an exponential decay in the carrying capacity, K, caused
a decline in abundance that drives model populations to extinction. This
decline in the model carrying capacity mirrored the observed decline in carrying
capacity within the experimental microcosms, which was driven by a decline
in the availability of the protist resource (bacteria), in response to the closed
and nutrient limited nature of the microcosms. The time at which exponential
decay occurred was determined by the parameter alpha, such that when

n ≥ α · K (5.4)

the growth model became

dn

dt
= r · n(1 − n

−λK
) (5.5)

where λ is the decay constant.

5.3.4 Scaling parameters with metabolic theory

Estimated parameter values for the constant temperature treatment
(C) were then scaled with metabolic theory (eq. 5.2). Temperature
has been shown to alter not only an individual’s metabolic rate, but
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also body size (in protozoa body size decreases linearly with temperature by
∼2.5% per +1 ◦C (Atkinson et al. 2003)). We assessed the relative impor-
tance of including direct and indirect effects of temperature, by predicting
population extinction when parameters were scaled in three ways: (i) with
temperature only, (ii) with predicted change in body size only, and (iii) with
both temperature and body size. Thus in the first case model parameters were
determined by the direct effects of temperature as

Pt = PCe− E
kT (5.6)

where E is the activation energy, k is the Boltzmann constant, T is the tem-
perature (in Kelvin), and PC is the estimated value of the parameter from the
constant temperature treatment.

In the second instance we scaled the model parameters with body size,
which was determined by temperature, so the magnitude of the parameter at
a given temperature (Pt) was

Pt = PCM3/4 (5.7)

where PC is the parameter in the constant treatment and

M = MCt + ((t − Ct) · 0.025) (5.8)

where t is the temperature of the treatment, Ct is the temperature of treatment
C (20 ◦C) and MCt is the mass at the temperature of the constant treatment.

Thirdly we scaled the parameters with both the predicted change in body
size and temperature scaling as in Brown et al. (2004)

Pt = PCM3/4e− E
kT (5.9)

We assume the parameters r (the intrinsic growth rate), λ (the decay constant)
and K (the carrying capacity) will increase with increasing temperature, due
to an increase in the protist’s bacterial prey densities at higher temperatures,
and a subsequent increase in the rate of consumption of organic nutrients
(Membré et al. 2005; Vasseur & McCann 2005). Thus as temperature increases
the growth rate of the protists will increase, as will the carrying capacity and
the speed at which these populations decline after the growth period. We
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Figure 5.2: Mean error of predictions (+/- 1 s.e.) was calculated as the absolute difference
(in days) between the predicted date of extinction given by the model and the mean extinc-
tion date observed in the experiment, for a random subset of 500 predictions. Data were
only included where predictions of extinction were made for all of the seven experimental
treatments where extinction was observed (I3, I1.5, I0.75, I0.5, C, D0.5, D0.75). Increasing
the number of parameters scaled in general decreased the error associated with extinction
predictions. The lowest error was found where all four model parameters were scaled with
both body size and temperature.

assume that α, the fraction of the carrying capacity at which exponential
decay occurred, decreased with temperature as higher bacterial densities used
the available chemical energy at a faster rate, and thus populations began to
decline earlier at higher temperatures. Across species, body size is predicted
to negatively correlate with r (Blueweiss et al. 1978) and K (Damuth 1981).
We assumed that this pattern held between treatments, and that increased
body size would decrease λ, as individuals senesce more slowly (Van Voorhies
& Ward 1999), but increase α, as larger individuals require more nutrients.

We investigated how these three scaling methods (i. temperature only,
ii. body size only, iii. both temperature and body size) affected prediction
accuracy when they were applied to all possible combinations of parameters.
I.e., each model parameter was scaled individually (whilst holding the other
three parameters constant), in all possible combinations of pairs (whilst holding
the other two parameters constant) and triples (whilst holding the other one
constant), and all four simultaneously (Fig. 5.2).

In order to include uncertainty in the model predictions we drew parameter
values from a normal distribution with a mean of the predicted parameter value
at the constant treatment, and the standard deviation as the predicted error for
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each parameter. Then, for every combination of parameters (four individually,
six in pairs, four in triplicate, and one where all four are scaled simultaneously,
i.e. 15 in total for each scaling method) we ran the simulations 200 times,
for 140 time steps (equivalent to 140 days), to produce predicted dates of
population extinction for each temperature, each combination of parameters,
and each scaling method. Preliminary testing (not reported) showed that 200
simulations were sufficient to produce robust estimates of the mean error of
predictions, with no change in the mean error if simulations were run more
than 200 times. In addition, we draw the activation energy (E) from a normal
distribution, with a mean of 0.652 and a standard deviation of 0.061 (Hansen
et al. 1997; Vasseur & McCann 2005), as the rate of this scaling varies within
species (Brown et al. 2004).

5.3.5 Assessing the accuracy of predictions

To investigate how well the dynamics produced by the model could
match the observed data we compared the output from the model
where all four parameters were scaled with both body size and tem-

perature (this represents the most realistic scenario as protists are known to
alter body size with temperature, and both body size and temperature are
known to alter metabolic rate) to the observed population dynamics. We as-
sessed the fit of the model dynamics using r-squared values rather than a model
comparison method such as AIC, as here we fit a single model to the mean
data of one temperature treatment, and then use that model to attempt to
predict when the other treatment populations will go extinct.

The error of the model in predicting future extinction events was gauged by
comparing the predicted date of extinction to the mean date of extinction of
the replicate populations of each temperature treatment, calculated as the first
day at which the mean abundance of the replicates fell below one individual.
Mean extinction date was used as the model was fitted to the mean abundance
of the constant treatment.

Mean error (the difference between the predicted and mean observed date of
extinction) for each combination of scaled parameters was calculated from 500
randomly selected predictions across all the temperature treatments and only
where predictions were made for all experimental treatments where extinction
was observed (i.e. I3, I1.5, I0.75, I0.5, C, D0.5, D0.75). A random sub-sample
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Figure 5.3: Rate of temperature change altered the speed at which replicate populations of
Loxocephalus went extinct, and also the rate at which populations grew and the maximum
population sizes that they reached. Bars are one SE. Inset, mean temperature negatively
correlated with extinction date (linear regression fitted to the extinction dates of all repli-
cate populations where extinction occurred (black dots)). Blue area highlights 95% CI.
Mean temperature negatively correlated with extinction date (linear regression, coef=-2.3,
s.e.=0.46, t=4.93, p<0.001).

of estimates was used as there was an imbalance in the number of estimates
produced by each method.

5.4 Results

5.4.1 Effects of temperature treatment

Extinctions occurred in 19 of the 25 populations, and all but two
treatments had extinctions in all the replicate populations (all pop-
ulations of D1.5 and D3 were extant at day 70). One replicate of

each of the treatments I0.75 and I3 was contaminated, and so were excluded
from the analysis. Where extinctions did occur, mean temperature negatively
correlated with mean extinction date (linear regression, coef=-2.3, s.e.=0.46,
t=4.93, p<0.001, Fig. 5.3), and the date of extinction differed significantly
between treatments (ANOVA, d.f.=6, F=7.77, p<0.01, Fig. 5.3).
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5.4.2 Model predictions - scaling parameters with temperature
and body size

When model parameters were scaled with the direct effect of tem-
perature only (i.e. no indirect effects via body size, eq. 5.6) there
was relatively low mean error (error calculated as the difference, in

days, between the predicted and mean observed date of extinction), although
this was highly dependent on which combination of parameters were scaled
(Fig. 5.2). There was a significant negative correlation between the number
of parameters scaled with temperature and the mean error of the predicted
dates of extinction generated by the model (log linear regression, log-coef=-
0.51, log-s.e.=0.14, t=3.63, p<0.05, Fig. 5.2). The lowest mean error occurred
when the parameters r, α and λ were scaled with temperature (mean error of
2.0 days with a standard error of 0.77).

When parameters were scaled with the indirect effects of temperature, via
changes in body size (i.e. no direct effects of temperature, eq. 5.6), there was a
relatively large error associated with the predicted date of extinction (Fig. 5.2).
Scaling greater numbers of parameters with body size had less of an impact
on the mean error, although there was still a significant negative correlation
between the number scaled and the mean error (log linear regression, log-
coef=-0.18, log-s.e.=0.05, t=3.57, p<0.01, Fig. 5.2). The lowest mean error
was produced when all four model parameters were scaled (mean error 8.80
days with a standard error of 1.07).

When model parameters were dependent on direct and indirect effects of
temperature (eq. 5.9), prediction error was very similar to when parameters
depended on only the direct effect of temperature (Fig. 5.3). Again, there was
a strong negative correlation between the number of parameters scaled and
the mean error (log linear regression, log-coef=-0.56, log-s.e.=0.15, t=3.73,
p<0.05, Fig. 5.2). As when parameters were scaled with body size only, the
lowest mean error was produced when all four parameters were scaled (mean
error 1.74 days with a standard error of 0.83). This error was not significantly
different in magnitude to the error produced by the combinations r-K-α (scaled
both directly and indirectly, t-test, d.f.=995.1, t=0.63, p>0.05), r-α-λ (scaled
only directly, t-test, d.f.=996.5, t=1.22, p>0.05), or when all four parameters
were scaled with only the direct effects of temperature (t-test, d.f.=996.6,
t=1.02, p>0.05).
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Figure 5.4: Predicted abundances when all four parameters were scaled with both predicted
change in body size and actual temperature (solid lines) are plotted against the experimental
data (open circles). The model prediction for treatment “C” is based on the parameters
produced from the maximum likelihood estimation, all other predictions are produced by
scaling the model parameters with mean temperature. Model fits were high (r-squared
values 0.69-0.98) for all treatments except D3. The model tended to systematically predict
extinction before it had occurred in increasing temperature treatments, and also in the two
decreasing treatments where extinction was not observed (D1.5, D3). Bars are one SE.

5.4.3 Model fits to observed data

The fit of the model was generally good (for all but one of the tem-
perature treatments the r-squared value was greater than 0.69, with
the maximum r-squared value being 0.98 for the treatment D0.5, Fig.

5.4). In general the model predicted the date of extinction to be earlier than
the mean observed extinction date in the experimental communities (Fig. 5.4),
but most of the time this error was still within a few days of the mean date of
extinction.

In addition to comparing the model fits (r-squared values) where the pa-
rameters were scaled with predicted change in body size and the actual tem-
perature at each time step, we compared the fits of the model where mean
temperature within each treatment was used to scale the parameters (Fig.
5.5). Here every fit is poorer than when temperature at each time step is
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Figure 5.5: Predicted abundances when all four parameters were scaled with both predicted
change in body size and mean temperature of each treatment (solid lines) are plotted against
the experimental data (open circles). The model prediction for treatment “C” is based on
the parameters produced from the maximum likelihood estimation, all other predictions are
produced by scaling the model parameters with mean temperature. Model fits were high
where temperature increased through time (I3-I0.5), but poor where temperature decreased,
especially in comparison to predictions made where parameters were scaled with the actual
temperature at any given time point (Fig. 5.4). Bars are one SE.

used (Fig. 5.4, 5.5). Predictions for the abundances of the four increasing
temperature treatments still followed the patterns observed in the experimen-
tal data, and, as with the fits made using actual temperature change through
time, predicted dates of extinction were earlier than the mean observed dates
(Fig. 5.4, 5.5). In treatments with decreasing temperatures the model fits
were poor, with populations predicted to persist past day 70 (the last day of
the experiment).

5.5 Discussion

We show that in a closed, nutrient limited system, the greater the
mean temperature (which depends on the rate of temperature
change through time), the earlier a population goes extinct. Using

a simple phenomenological model, and scaling the parameters with tempera-
ture and predicted changes in protist body size, we were able, with reasonable
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accuracy (R-squared values in most cases >0.84, and mean error of <2 days),
to predict the mean date of extinction of a population in a changing environ-
ment, from information on the population trends in a constant environment.
The accuracy of these predictions was dependent not only on which combina-
tions of parameters are scaled, but also the method by which the parameters
are scaled and the rate and direction of temperature change, with the most
accurate estimates produced when all four parameters are scaled with both the
direct and indirect effects of temperature.

The simple four-parameter phenomenological model provides a good fit to
the population dynamics of the constant treatment (C, Fig. 5.4), and, using
metabolic theory, we were able to accurately predict the date of extinction in
most temperature treatments (Fig. 5.4). However, the accuracy of predictions
was dependent upon which parameters of the model were scaled with temper-
ature, and what scaling method was used. In general, across all the scaling
methods, increasing the number of parameters scaled produced the most accu-
rate estimates of time of extinction (Fig. 5.2). This is somewhat unsurprising,
as temperature is known to alter birth rate, death rate, carrying capacity and
the rate at which prey are consumed, all of which are directly or indirectly in-
cluded within the model presented here, and thus scaling all parameters should
include all of the temperature-dependent processes that are occurring within
the experimental communities. There is, however, some redundancy in the
model, as in some instances scaling only three parameters provided as accu-
rate predictions as scaling all four simultaneously (Fig. 5.2). Where all four
parameters are scaled with both the direct and indirect effects of temperature
the mean error across treatments was around 1.7 days, or approximately two
generations of Loxocephalus sp. (Clements et al. 2013).

There were large differences in accuracy between the different scaling meth-
ods, although to some extent this also depended on the number of parameters
being scaled (Fig. 5.2). When all four parameters were scaled simultaneously
with only the predicted change in body size (indirect temperature effects), the
error associated with predictions was high (a mean of 8.8 days). Scaling all
four parameters with only the direct effects of temperature produced a pat-
tern of errors very similar to that produced when parameters are scaled with
both temperature and assumed change in body size (predicted to be -2.5% per
+1 ◦C (Atkinson et al. 2003), body size was not measured in the experiment,
Fig. 5.2). Indeed, there was no significant difference between the mean error
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produced when all four parameters were scaled with temperature alone, or
with temperature and body size. This implies that when modelling such pop-
ulation declines using metabolic theory, the inclusion of the direct effects of
temperature is far more important than any body-size driven indirect effects.

The fit of the model depended on the rate of temperature change, with the
worst fits in the treatments D1.5 and D3 (Fig. 5.4). This was due to the sim-
plicity of the model and the method for implementing the decrease in carrying
capacity (K). The timing of the exponential decline of carrying capacity was
controlled by the parameter α, the fraction of the carrying capacity at which
exponential decay of the carrying capacity begins to occur. However other as-
sumptions made in the model, specifically that carrying capacity decreases as
temperature decreases, occasionally affect the implementation of this decrease
in K. This was especially problematic with a rapidly decreasing temperature
(i.e. D1.5, D3), as carrying capacity also decreased rapidly, and so the expo-
nential decay of K occured sooner. While a more mechanistic model might
improve this situation, there is a downside: more prior knowledge is required
to parameterise such a model. Given the underlying variation in extinction
date inherent within each temperature treatment, and the already relatively
high accuracy of the phenomenological model in predicting extinction (where
extinction has occurred), it seems unlikely that the benefits of using a more
mechanistic model will outweigh the costs, at least within the small-scale closed
system presented here.

Whilst mean temperature negatively correlates with mean extinction date,
there exists among-replicate variation in extinction date (Fig. 5.6). In most
cases this variation is small, but this is not always the case. Where the model
was bootstrapped to include the error associated with parameter estimations,
all the extinction events fell within the 95% confidence intervals, and in fact
the vast majority fell very close to, or exactly on, the mean predicted date of
extinction (Fig. 5.6).

Using metabolic theory to incorporate temperature change into theoretical
models has, in part given its convenience and simplicity, been widely applied
(Woodward et al. 2005; Reich et al. 2006; Berlow et al. 2009), although
variation in the how metabolic rate scales both within and across species sug-
gests that it may not be applicable in all cases (Chown et al. 2007; White et
al. 2007; Glazier 2010). We find that when the body size and temperature
components of metabolic theory are both used to scale parameters, model fits
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to observed data are good (Fig. 5.4), and that in this instance using metabolic
theory to scale parameters is reasonable.

The simplicity of the model, and consequently the assumptions made by
it, may limit its applicability in real world scenarios. Effectively the model as-
sumes that a species suffers an exponential decline in its population size from
carrying capacity until extinction (in this case driven by a closed system with
a degrading habitat and limited resources). This assumption may well be valid
in some circumstances in the natural world (exponential declines in habitat size
have previously been observed, and have led to the declines of resident species
(Short & Burdick 1996; Hughes et al. 2002)), but caution should be exercised
as sudden population crashes (Lande 1993), rescue effects (Brown & Kodric-
Brown 1977), or habitat restoration (Waltz & Covington 2004) may invali-
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date such an assumption. Temperature driven extinction has been proposed
through more complex dynamics, such as increased demographic stochasticity,
and this may be an additional factor that leads to population loss (Vasseur
& McCann 2005). However, the data presented here is unsuitable for testing
such hypotheses due to the nutrient limitations of the system, and consequent
lack of potentially destabilising oscillations.

The work presented here does, however, provide a conceptual starting point
for understanding the effects of the rate of temperature change in more complex
systems, and adds to work that has previously used simplistic systems as a way
of gaining an understanding of complex dynamics, especially those processes
that govern the extinction of populations (see Griffen & Drake 2008). This
work contributes to this body of knowledge by showing how simplistic models
can be used to forecast extinction in relatively simple systems, and provides a
basis for theoretical exploration of these problems in more complex systems.
Whilst the closed system we present here may appear unrealistic, in reality
resource availability in a habitat can be very low, particularly in declining
“sink” populations, with an insignificant flux of resources (e.g. Polisini et al.
1970). In such scenarios, where the influx of nutrients is much lower than
that required to sustain a viable population, extinction will occur. The work
presented here suggests that in such a scenario extinction will happen much
more rapidly where mean temperature is high, and that it may be possible to
infer how such a system would then behave under varying rates of temperature
change, using simple phenomenological modelling. Where resource flux is high
the use of a more mechanistic model that takes into account the possibility of an
increase in the abundances of prey may provide a more helpful starting point.
Evaluating the relative merit of phenomenological and mechanistic models to
predict extinction in a more open system would provide an interesting next
step to the work presented here.

5.6 Conclusions

In conclusion, temperature is known to alter many individual and popula-
tion level processes, including metabolic rate, which in turn alters the rate
of senescence and time of death of an individual (Van Voorhies & Ward

1999; Brown et al. 2004). Predicted future changes in temperature could thus
alter not only the persistence of individuals, but of populations and potentially
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of a species. Predicting population declines in the light of current global change
is necessary, but for many species the detailed knowledge required to param-
eterise a complex, mechanistic model will be unavailable, or be too costly or
time consuming to obtain. Fitting a simple model of logistic growth with an
exponential decline allows accurate predictions of population extinction under
various rates of temperature change in a model system. However, rapid rates of
cooling invalidate assumptions made by the model. Using mean temperature
over a given time period (rather than actual temperature change) significantly
reduces the accuracy of the predictions made by the model, and should be
avoided. The results presented here suggest that using such simplistic models,
and incorporating the actual rates of temperature change, to predict the effect
of future climatic change has some merit, and that scaling parameters with
metabolic theory is, in this instance, appropriate.
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6 | Interactions between assembly order
and environmental change can alter
both short and long-term community
composition

6.1 Abstract

Both the order in which species arrive in a community, and environ-
mental conditions such as temperature, are known to affect commu-
nity structure. Little is known, however, about the potential for, and

occurrence of, interactions between assembly history and the environment. Of
particular interest may be the interaction between temperature and community
assembly dynamics, especially in the light of predicted global climatic change
and the fundamental processes that are governed, through metabolic rate, by
an individual’s environmental temperature. We present, to our knowledge, the
first experimental exploration of how the influence of assembly history, temper-
ature, and the interaction between the two, alters the structure of communities
of competitors, using small-scale protist microcosm communities where tem-
perature and assembly order were manipulated factorially. In our experiment,
the most important driver of long-term abundance was temperature, but long-
lasting assembly order effects influenced the relationship between temperature
and abundance. Any advantage of early colonisation proved to be short lived,
and there was rarely any long-term advantage to colonising a habitat before
other species. The results presented here suggest that environmental condi-
tions shape community composition, but that occasionally temperature could
interact with the stochastic nature of community assembly to significantly al-

The following chapter has been published in the peer-reviewed journal Ecology and Evolution
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ter future community composition, especially where temperature change has
been large. This could have important implications for the dynamics of both
rare and invasive species.

6.2 Introduction

Species’ abundances and distributions are predicted to change substan-
tially under anthropogenically driven climate change (Condit et al.
1996, Iverson & Prasad 1998, Perry et al. 2005). Current predictions

suggest that global temperatures are set to rise between 1.1 and 6.4 ◦C over the
next 100 years (IPCC 2007), with potentially profound impacts on ecosystems
and communities worldwide (Kasischke et al. 1995, Thomas et al. 2004, Pan-
dolfi et al. 2011). Temperature can directly determine which species survive
in a habitat (Ferguson 1958, Southward 1958), but can also alter individual,
population, and community scale processes, which in turn can have complex
cascading effects (Kratina et al. 2012). For example, as the metabolic require-
ments of an organism increase with increasing temperature, resource compe-
tition will intensify, so higher temperatures may result in greater interspecific
interaction strengths (Gresens et al. 1982, Sanford 1999, 2002, Englund et
al. 2011). Jiang & Morin (2004) showed that a temperature difference of
just 2 ◦C reversed competition between two ciliate protozoa; initial rapid com-
petitive exclusion was replaced by co-existence. This change in community
structure could in turn impact food web stability (Rall et al. 2009), and may
have the potential to alter ecosystem function. For example a shift in com-
munity composition caused by temperature change has been shown to alter
cyanobacterial diversity, with, in some instances, a shift to toxin-producing
species (Kleinteich et al. 2012).

Another way in which community composition can be altered is through
assembly order effects, where the order in which species colonise a habitat
can influence the competitive ability or abundance of a species (Shorrocks
& Bingley 1994, Almany 2003, Louette & De Meester 2007, Chase 2010).
Such effects have been demonstrated in model (Atkinson & Shorrocks 1981,
Law & Morton 1996), small-scale experimental (Drake 1991, Fukami & Morin
2003, Warren et al. 2003), and field systems (Weslien et al. 2011, Dickie
et al. 2012). Assembly order effects can be profound: arriving at a patch
even marginally before another may transform an inferior competitor into a
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superior one (Shorrocks & Bingley 1994), allowing a species to persist where it
might otherwise be excluded. Moreover, because species may be competitively
excluded based on the order in which they arrive in a habitat, assembly order
could also play an important role in the survival of species at a local or regional
scale (Shorrocks & Bingley 1994, Chase 2010).

Recent work has started to look at how environmental factors, including
disturbance (Jiang & Patel 2008) and productivity (Chase 2010), may alter
the role of community assembly processes. It has been suggested that as-
sembly order effects are most likely to be important when the species pool is
large and the habitat is both productive, and stable (Chase 2003). So far, how-
ever, despite the acknowledged importance of temperature effects on biological
processes, and the importance of understanding the consequences of environ-
mental warming, the interaction between assembly order and temperature has
received little attention.

In this study we investigated the interaction between temperature and
assembly order using a laboratory experiment where temperature and the as-
sembly order of a three-species protist community were manipulated factori-
ally to assess: (i) how temperature alters the advantage of initially colonising
a habitat, (ii) whether colonising a habitat early has a long term advantage
for a species, and (iii) whether the order in which species invade a habitat
can modify the strength, and direction, of the effect of temperature on species
abundances.

6.3 Methods

We performed a two-way factorial manipulation of assembly order
and temperature in microcosm communities assembled with three
species of bactiverous ciliate protozoa: Blepharisma japonicum,

Paramecium caudatum, and Loxocephalus sp. (subsequently denoted by the
letters B, P, and L). These three species were chosen because they compete for
similar resources, can co-occur in natural environments, and they are morpho-
logically very distinct, facilitating accurate sampling. One species, Blephar-
isma japonicum, is known to be able to form enlarged predatory morphs, how-
ever over the course of the experiment none of these morphs were observed, and
previous experiments have shown that predatory morphs form most frequently
when nutrients were low (half the concentration used in this experiment) and
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populations persisted for an elongated period of time (Clements pers. obs.).
Therefore we feel justified in considering the communities presented here as
communities of competitors only.

Microcosms consisted of petri dishes (diameter 100mm, height 25mm) con-
taining 50ml of medium, composed of Chalkley’s solution (Thompson et al.
1988) and 0.2g/l crushed protist pellets (Carolina Biological Supply, USA)
autoclaved together. Medium was batch inoculated with the bacteria Serratia
marcescens and Bacillus cereus, and incubated for 7 days at 18.5 ◦C, to allow
bacterial populations to develop. Medium was then mixed and split among
the microcosms (experimental day 0) when a single wheat seed was added to
each to provide an additional source of nutrients.

Protists were added sequentially at 7-day intervals (on days 0, 7 and 14).
On each day a sample of high density stock culture containing ∼30 individuals
of each species was added to each microcosm. Assembly orders covered all
seven possible combinations of species invasions: BPL (i.e. B on day 0, then P
on day 7, then L on day 14), BLP, PBL, PLB, LBP, LPB, and a control group,
ALL, where all three species were added at day 0. Each assembly order was
replicated three times at each of six temperatures (11, 14, 17, 20, 23 and 26 ◦C)
in six individual incubators, giving a total of 126 microcosms. The microcosms
were randomly assigned a position on a shelf within each incubator. As the
incubator facility was shared, with other experiments being run concurrently
with this one, we were unable to switch treatments between incubators during
the experiment to guard against possible incubator effects, though we have no
reason to suspect such effects were likely to be present. The abundances of all
species present in each microcosm were sampled on days 7, 14, 21, 42 and 70.
A setup error in all three replicates of BPL at 23 ◦C meant that this treatment
had to be excluded.

Sampling to estimate species abundances was based on that of Lawler and
Morin (1993). Microcosms were mixed thoroughly, and then known volumes
(between 0.2 and 0.5ml) were sampled using a Gilson pipette. Individuals of
each species present in these subsamples were counted under a stereoscopic
microscope. If no individuals of a species were observed, the microcosm was
re-sampled up to three times. For rare species the entire microcosm was placed
under the microscope and searched, with a species being recorded as extinct
if no individuals were observed after 5 minutes of searching. All sampled
medium was returned to the microcosm. Evaporative loss was checked on a
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weekly basis, and microcosms were topped up to 50ml with distilled water
as required. No additional nutrients were added to the microcosms, and no
replacement of medium (save for evaporative loss) occurred.

Count data recorded during the experiment were highly skewed, with some
species (especially Loxocephalus) having high numbers of extinctions (i.e. zero
densities) whilst also having some populations at extremely high densities
(>11,000 in a microcosm). Consequently, generalized linear models (GLMs),
with Gaussian or quasi-Poisson distribution families were used to model abun-
dances of Blepharisma and Paramecium. A GLM with zero-inflated negative
binomial distribution family (henceforth ZNBR) was used to model the abun-
dance of Loxocephalus due to the high proportion of zero counts and overdis-
persion of the observed data (Ridout et al. 2001). Analyses were repeated
on data from days 42 and 70, the last two days at which microcosms were
sampled. This allowed us to investigate long-term community structure, and
how the relative strength of factors influencing species abundance changed over
time.

We calculated the strength of any advantage of colonising a habitat 1st,
2nd, or 3rd as the difference in abundance between treatments where the
species were added sequentially, and the mean abundance in the control treat-
ment where all the species were added simultaneously (i.e. with no assembly
order effects). This gave six values (one from each of the three replicates of the
two treatments where a species was added 1st, 2nd, or 3rd); we then calculated
the mean and standard error of these.

All statistical analyses were carried out using R (R Development Core Team
2013).

6.4 Results

6.4.1 Analysis of abundance patterns at days 42 and 70

Abundances of Paramecium were significantly negatively, and Ble-
pharisma significantly positively, correlated with temperature (Fig.
6.1; Table 6.1, 6.2). This general pattern held for both day 42 and

day 70, although the strength of the effect of temperature on species abun-
dance tended to be higher at day 70 than at day 42 (Fig. 6.1; Table 6.1, 6.2).
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Figure 6.1: Mean abundances of the three species at day 42 and day 70 for each assembly
order and temperature treatment, highlighting the individual species responses to tempera-
ture. Line colour indicates assembly order. Bars represent +/- 1 standard error.

Assembly order also altered the abundances of both Paramecium and Ble-
pharisma (Fig. 6.1; Table 6.1, 6.2), although the strength of this effect de-
creased from day 42 to day 70, and accounted for less of the variation in
abundance than the effect of temperature (Table 6.1, 6.2). Blepharisma at
day 42 showed particularly clear differences in abundance between assembly
orders (Fig. 6.1a), with some assembly orders having consistently lower or
higher abundances than others (e.g. PLB, BLP, Fig. 6.1a).

In addition to directly altering Paramecium and Blepharisma abundances,
assembly order could also alter the relationship between a species’s abundance
and temperature (Fig. 6.1; Table 6.1, 6.2). This interaction could either
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Table 6.1: Analysis of deviance of generalized linear models fitted to the abundance of
Paramecium at days 42 and 70. Statistically significant interaction coefficients of general-
ized linear models presented as Temp ∼ the relevant assembly order. 95% significance is
highlighted in bold. Error structures are: “G” = Gaussian, “q-P” = quasi-Poisson.

Term Day 42 Day 70
Error Df F-value p-value Error Df F-value p-value

Temp G 1, 120 24.95 <0.001 q-P 1, 120 138.22 <0.001
Ass. Or. G 6, 114 5.41 <0.001 q-P 6, 114 2.42 <0.05

Interaction G 6, 108 1.71 >0.05 q-P 6, 108 3.45 <0.01
Error Estimate t-value p-value Error Estimate t-value p-value

Temp∼BPL G -0.17 2.12 <0.05 q-P 0.08 0.94 >0.05
Temp∼LBP G -0.17 2.30 <0.05 q-P -0.01 0.08 >0.05
Temp∼PBL G -0.04 0.50 >0.05 G 0.19 2.58 <0.05

Table 6.2: Analysis of deviance of generalized linear models fitted to the abundance of
Blepharisma at days 42 and 70. Statistically significant interaction coefficients of general-
ized linear models presented as Temp ∼ the relevant assembly order. 95% significance is
highlighted in bold. Error structures are: “G” = Gaussian, “q-P” = quasi-Poisson.

Term Day 42 Day 70
Error Df F-value p-value Error Df F-value p-value

Temp q-P 1, 120 149.06 <0.001 G 1, 120 152.10 <0.001
Ass. Or. q-P 6, 114 21.70 <0.001 G 6, 114 4.87 <0.001

Interaction q-P 6, 108 3.44 <0.01 G 6, 108 2.36 <0.05
Error Estimate t-value p-value Error Estimate t-value p-value

Temp∼LBP q-P 0.13 3.08 <0.01 G 0.64 1.03 >0.05
Temp∼LPB q-P 0.11 2.16 <0.05 q-P 1.68 2.71 <0.01

increase or decrease the strength of the effect of temperature (Fig. 6.1), and in
some cases this interaction accounted for a two order of magnitude difference
in the abundance of Blepharisma (e.g. the assembly order LPB at day 70, Fig.
6.1b) and Paramecium (e.g. the assembly order PBL at day 70, Fig. 6.1b).
These interactive effects are particularly clear, but less frequent, at day 70
(Fig. 6.1b).

Variation in abundance among the different assembly orders correlated
with temperature, with the direction and strength of this correlation depen-
dant on both species identity and the time since community assembly (Fig.
6.2). Blepharisma showed a strong positive correlation between temperature
and variance in abundances at day 42 (i.e. large differences between assembly
orders, especially at higher temperatures), and a still positive, but weaker,
relationship at day 70. Paramecium meanwhile showed exactly the opposite
relationship, with temperature negatively correlating with variation in abun-
dance between assembly orders, however the strength of this relationship again
decreased from day 42 to 70 (Fig. 6.2).

The abundances of Loxocephalus in each treatment exhibited little evi-
dence of systematic trends at either day 42 or day 70, and abundances were
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Figure 6.2: Variation in abundance between assembly orders as a function of temperature.

not significantly affected by temperature, assembly order, or any interaction
between the two. There was, however, a significant increase in zero counts (i.e.
extinctions) with increasing temperature, and the assembly order BLP at day
70 (Appendix 8.2).

6.4.2 Effect of sequential invasion on species abundances at days
42 and 70

Whilst there appeared to be some advantage, in terms of increased
abundance, of colonising a habitat sequentially over colonising si-
multaneously there was not necessarily an advantage of colonising

earlier and the magnitude of any advantage could also be modified by tem-
perature (Fig. 6.3). Higher temperatures did not necessarily lead to a larger
long-term advantage of colonising a habitat early, rather species-specific re-
sponses to temperature often drove the magnitude and direction of assembly
order effects at each temperature treatment (Fig. 6.3): Blepharisma was more
abundant at higher temperatures, and Paramecium was less abundant.

Of the four assembly orders where Blepharisma and Paramecium were
added before any other species (i.e. added 1st; BLP, BPL and PBL, PLB)
the initial colonisers tended to have higher, but not significantly higher, abun-
dances (Fig. 6.3). At day 70 only one assembly order showed significantly
higher abundances of the initial coloniser: PBL (Fig. 6.3b; Table 6.1).
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Loxocephalus abundances appeared to be almost randomly distributed
across temperatures and treatments, and so were excluded from the analy-
sis of early colonisation advantage at days 42 and 70.

Arriving at a habitat after initial colonisation by another species (i.e. arriv-
ing 2nd or 3rd) could alter abundance (when compared to the treatment ALL),
but the direction of this effect was species and temperature specific (Fig. 6.3).
At day 42 Paramecium showed an advantage of being added to a microcosm
2nd or 3rd (Fig. 6.3a) but by day 70 these effects had disappeared (Fig. 6.3b;
Table 6.1). For Blepharisma, however, there appeared to be some disadvan-
tage of colonising a habitat late (after the two other species): populations had
significantly lower abundances at days 42 and 70 when added to a community
3rd, although this was to a large extent negated by higher temperatures (Fig.
6.3a, b; Table 6.2).

6.5 Discussion

Aalthough both temperature and assembly order are known to be
important drivers of community composition (Shorrocks & Bingley
1994, Jiang & Morin 2004, Kleinteich et al. 2012) there has been

little investigation of the potential interaction between these two factors. The
experimental evidence presented here suggests that the effect of temperature
on species abundances, and therefore community composition, can be contin-
gent on the order of assembly of that community. This does not appear to
be driven by an advantage of colonising early, as we only occasionally found a
significantly higher abundance of initial colonisers at days 42 and 70, however
those species that colonised later were often at a disadvantage. Furthermore,
we showed that the strength of the interaction, and of the main effects of
temperature and assembly sequence, are a function of both time and species
identity. These findings have important implications for modelling the po-
tential effects of future climate change on community structure and species
distributions.

In line with previous findings, our experimental work shows that species-
specific responses to temperature are a major determinant of abundance, and
thus community composition (Fig. 6.1). Over the period of this experiment
(∼100 protist generations for these species at 20 ◦C (Clements et al. 2013)) the
strength of this temperature effect increased, possibly because there has been a
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greater period of time for inferior competitors to be excluded (Fig. 6.1, Table.
6.1, 6.2). In contrast, whilst there were assembly order effects (Table 6.1, 6.2),
the strength of these are species-specific and transient; the size of the assembly
order effect decreased from day 42 to 70, a finding supported by a decrease
in the variance between assembly orders over the same period (Fig. 6.2). In
addition, by day 70 the effect of assembly order was small when compared
to the dominant effect of temperature (Table 6.2). Our results indicate that
intermediate levels of environmental change may have the potential to mask
assembly order effects, leading to multiple similar community types regardless
of assembly history. However, greater levels of change may, occasionally, pro-
mote the prevalence of such effects as, within the 15 ◦C temperature range of
our experiment, assembly order effects were most evident where it was either
hottest or coldest.

Whilst interactions between temperature and assembly order appear to be
rare, where they do occur they can significantly alter the long-term structure
of a community (Fig. 6.1). Although the magnitude of this interactive effect
is small when compared to the effect of temperature alone (Table 6.1, 6.2),
and whilst it is only present in two of the seven assembly orders at day 70,
the impact on the abundance of a species can be dramatic (Fig. 6.1b, Ble-
pharisma and Paramecium). Clearly there is the potential for such significant
increases or decreases in a species’s abundance to have a substantial effect on
a community, especially if the species affected is a key pollinator (Memmott
et al. 2004) or an invasive alien (Lowe et al. 2000).

Accurately predicting the potential impacts of future climate change on
global diversity requires knowledge of the effects temperature can have at a
population, community, and ecosystem level (Cramer et al. 2001, Brown et
al. 2004, Jiang & Morin 2004). Earlier work has identified the role of tem-
perature and other abiotic factors in shaping a species’s fundamental niche
(Hutchinson 1957), and such fundamental niches provide the underpinnings
for “climate envelope” approaches to estimating future species distributions in
relation to climatic change (Davis et al. 1998). However, this approach has
been criticised, as species exist within a realised niche that is defined not only
by the abiotic conditions but also interactions between species (Davis et al.
1998), as well as stochastic processes such as dispersal (Mitikka et al. 2007). If
the interactions between species, that shape the realised niche, are also altered
by climatic change, then climate envelopes, and other models that fail to take
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into account temperature dependent interspecific interactions, may provide
misleading estimates of future species distributions or community composition
(Davis et al. 1998). Such concerns seem well founded, as previously small shifts
in temperature have been shown to interact with a species’s specific thermal
tolerance to reverse competition in model systems (Jiang & Morin 2004). Our
results add to this body of knowledge by highlighting the interaction between a
stochastic driver of community composition and environmental change. How-
ever, further work is required to understand the mechanistic underpinnings of
the interactions between temperature and assembly order presented here if we
are to improve predictive frameworks.

6.6 Conclusions

In conclusion, the results presented here suggest that our ability to un-
derstand how communities may react to climate change is complicated
by species-specific responses to temperature, ephemeral effects of assem-

bly order, and, occasionally, complex interactions between the order in which
species invade a habitat and their competitive ability, as well as the time frame
over which this occurs. Incorporating such interactions, in addition to stochas-
tic and deterministic drivers of community composition, in future modelling
is essential if one aims to encompass the full range of potential climate driven
future community states. Whilst this may sound daunting, some heart should
be taken from the fact that long-term dynamics are generally driven by abiotic
conditions, and the potential complexity added by strong priority effects, at
least in this system, appears in general to be short lived. Thus, understanding
general patterns of diversity under climatic change may be feasible, but iden-
tifying when and where temperature and assembly order will interact to alter
community composition is likely to remain challenging.
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7 | Discussion

In this thesis I have demonstrated the utility of using small-scale exper-
imental communities to address large-scale ecological and conservation
problems, especially those issues surrounding the loss of a population or

species where studying the loss of a wild population is often time consuming,
expensive, or impractical.

In Chapter 2 I demonstrated that the intrinsic properties of the microcosm
system (its replicability, controllability, and small scale) could be used to pro-
duce data suitable for testing methods to infer extinction events from records
of historic sightings. This work suggested that underlying population dynam-
ics (such as the speed at which a population declines to extinction), as well as
historic search efforts, could alter how accurately extinction events could be
inferred.

In Chapter 3 I presented a new package for the statistical software R that
brings together six different methods that have been proposed as ways to infer
extinction from sets of historic sighting events.

Chapter 4 utilised the framework pioneered in Chapter 2, in combination
with real-world extirpation data and simulated population extirpations, to test
the six methods for inferring extinction included in the R package detailed in
Chapter 3, with a specific focus on testing these methods for robustness against
known drivers of error which could affect our ability to infer extinction events
accurately. This work highlighted the importance of selecting a method that
is robust to multiple different drivers of predictive error.

Whilst accurately inferring the extinction status of a species is important if
we are to gauge current rates of biodiversity loss, arguably more important is
our ability to understand how future environmental change may alter rates of
species loss. In Chapter 5 I showed that it is possible to use simple models to
predict how directional environmental change can alter population dynamics,
and ultimately the timing of extinction events in an experimental system.
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The work in Chapter 5 showed that temperature change could, through
alterations to an individual’s metabolic rate, strongly affect population dy-
namics. This lead on to the experiments in Chapter 6 in which I investigated
how environmental change might interact with ever-present community assem-
bly processes to alter a species’s chance of persistence, or extinction.

The implications of each of these chapters are detailed in their individual
conclusions, however below I provide an overview of how the work presented in
this thesis has contributed to our understanding of both conservation biology
and ecology, and how the techniques detailed here have demonstrated that us-
ing small-scale experimental communities can help answer applied, real-world,
issues.

7.1 Understanding the timing of extinction events

Current rates of biodiversity loss are thought to be significantly higher
than at any period in the recent past, a function of both a burgeon-
ing, industrialised, human population (Fig. 1.2, Thomas, Singer &

Boughton 1996; Thomas et al. 2004; Travis 2003; Turvey et al. 2007; Wake
& Vredenburg 2008), and a level of species-diversity higher than perhaps any
other point in the earth’s history (Fig. 1.1, Sepkoski 1993). Whilst this gen-
eral trend of biodiversity loss is reasonably well understood, on an individual
level determining whether a species is extant or extinct remains fundamen-
tally challenging. Simply put, it is impossible to survey a habitat with a 100%
probability of observing a species should it be extant. One approach to coun-
tering this issue is to repeatedly survey of as much of a species’s habitat as
possible, over several years, thus reducing the probability of failing to see it
should it be extant (Turvey et al. 2007; BirdLife International 2010). However,
such an approach requires significant input of time and money. Consequently,
being able to accurately infer whether a species is extant or extinct, using
historic data (and therefore eliminating any need to conduct further surveys)
is of considerable value (Clements et al. 2013), leading to many methods be-
ing proposed to tackle this problem (e.g. Solow 1993, 2005; McCarthy 1998;
Gotelli et al. 2011). Rigorously testing such methods requires data where the
date of extinction of the species is accurately known, and this restriction has
limited previous studies to rely, in the main, on data from in silico simulations
of population extinction (e.g. Rivadeneira, Hunt & Roy 2009).
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In Chapter 2 of this thesis I proposed a novel approach for producing data
with extinction dates that are accurately known, allowing methods such as that
proposed by Roberts & Solow (2003) to be tested. This analysis concentrated
on testing Optimal Linear Estimation as it had previously been suggested that
this method could be used to inform a proposed IUCN category of “Critically
endangered - possibly extinct” (Butchart, Stattersfield & Brooks 2006; Collen,
Purvis & Mace 2010). Using this microcosm-based approach I showed that his-
toric search effort (the amount of the habitat searched to produce a sighting
event), and the population dynamics of the species going extinct could signif-
icantly alter the accuracy of inferred dates of extinction produced by Optimal
Linear Estimation. Estimates of extinction were particularly poor when search
efforts had historically declined, were irregular, or when species persisted for
extended periods of time at very low abundances (one or two individuals). The
ability for species to persist at low abundances for extended periods of time
was dependent on the temperature at which the microcosms were incubated,
as higher temperatures increased an individual’s metabolic rate, and conse-
quently the rate of senescence and need for resources, reducing the probability
that one or two individuals survived (Fig. 2.6). This work therefore sug-
gested that historic changes to a population’s abiotic environment may alter
the accuracy of inferred extinction events (investigated in Chapter 4).

This was the first work to approach the problem of testing methods for
inferring extinction with experimental data, and it set the groundwork for
Chapter 4. However, whilst the use of small-scale systems has distinct advan-
tages over large-scale field manipulations or observational studies, there are
still some limitations. The ability to quantify, with a high degree of certainty,
that a species has been lost is a feature of the microcosm system which lends
itself to the testing of extinction theory, but gauging exactly when a species is
lost depends upon the frequency at which sampling of the microcosm occurs.
In the experiment in Chapter 2 sampling occurred three times a week, and so
the date of extinction could (with a high degree of certainty) be narrowed down
to within two days of the actual date of extinction. Ideally sampling of the
microcosms for populations abundances would occur far more frequently, but
more frequent sampling would limit the number of replicates and treatments
feasible. Recently, developments in video monitoring have allowed multiple in-
dividuals of multiple species to be tracked through time (Owen Petchey, pers.
comm.). Utilising such a monitoring system would produce precise times of
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extinction, population dynamics (estimated from subsamples of the total mi-
crocosm in Chapter 2), and spatial dynamics, at the resolution of minutes or
seconds. This would allow more realistic search regimes to be simulated that
could include, for example, non-random spatial distributions of a population
(in Chapter 2 a random distribution of individuals was modelled). However
the data presented in Chapter 2 still have significant advantages over limited
real-world extirpation data (see Chapter 4) and represent the current best
option for testing such sighting based methods for inferring extinction.

7.2 Selecting robust methods to inform conservation
planning

Limited conservation funding may be rapidly allocated to save a species
thought to be extant based on a single sighting event (Wilcove 2005;
Fitzpatrick et al. 2005). Whilst this rapid deployment of funds may

in some circumstances be necessary save a species on the brink of extinction,
care must be taken to learn from recent mistakes which have seen millions
of dollars invested to save a species that was likely to have been extinct for
a quarter of a century (Wilcove 2005; Gotelli et al. 2011). Generally, and
perhaps obviously, this means that a careful assessment of the probability of
a species still persisting should be made prior to any investment of time and
money to save it. To do this, however, methods for inferring extinction must be
selected that are robust to a range of potential drivers of error. In Chapter 2 I
demonstrated that search effort, search regularity, and intrinsic factors such as
population dynamics, could alter the accuracy of inferred dates of extinction.
I used the framework piloted in Chapter 2, and the R package detailed in
Chapter 3, as the basis for the work presented in Chapter 4, with a particular
focus on how environmental change could alter extinction dynamics (Chapter
5) and in turn alter the accuracy of inferred dates of extinction produced by
the different methods in the “sExtinct” R package (Chapter 3).

I demonstrated in Chapter 4 that most methods are prone to either over-
estimating or underestimating the date of extinction of a species, although
this may depend on extrinsic (e.g. historic search efforts) and intrinsic (e.g.
rate of population decline) factors. Overall, I showed that, of the six meth-
ods tested, Optimal Linear Estimation was the most robust to all drivers of
error, and, of particular interest to conservation practitioners (and contrary
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to what had previously been suggested by Solow (2005)), that Optimal Linear
Estimation produced the most accurate results when more than ten historic
sighting events were used to calculate the probable date of extinction. These
are novel insights, which will hopefully shape how such techniques are applied
in the future, and potentially have an impact on how and when such methods
are used to inform real-world conservation decision-making.

As with the data described in Chapter 2, the data presented in Chapter 4
have their limitations (see above). Additionally, whilst the number of meth-
ods tested in Chapter 4 is significant, and on a par with the number tested
previously by Rivadeneira, Hunt and Roy (2009), it is hardly exhaustive. Test-
ing all the proposed methods for inferring extinction (both sighting only (e.g.
Roberts & Solow 2003), or otherwise (e.g. Thompson et al. 2013)) in a single
publication, or even series of publications, is unfeasible. Consequently, this
work, along with that previously done by Rivadeneira, Hunt and Roy (2009),
forms the groundwork upon which future methods may be tested - through
a combination of experimental and modelled population data. Ideally, this
framework would be made available for newly proposed methods to be tested
within, a task which the R package “sExtinct” (Chapter 3) begins to address.
Currently the R package does not include example data within it, however it
would be useful to do so (perhaps a subset of the data presented in Chap-
ter 2), along with the ability to generate modelled population declines, and
simulate a range of sampling regimes to generate sighting data. This would
more easily allow for new methods to be directly compared to those previously
proposed, and eventually could produce a database of methods with their indi-
vidual advantages and disadvantages clearly identified, work that could be tied
into recent advances that have sought to produce a quantitative framework for
selecting what method to use when (Vogel et al. 2009, see below).

7.3 Predicting the effects of future climate change on
species persistence

The dramatic loss of species over the last century, driven in the main by
anthropogenic alterations to the global biome (Thomas et al. 2004;
Barnosky et al. 2011; Walters, Blanckenhorn & Berger 2012), seems

likely to be overshadowed only by the imminent future loss of an even greater
amount of biodiversity (Brook, Sodhi & Bradshaw 2008; Cahill et al. 2013).
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Global temperatures are set to rise considerably over the next 90 years (IPCC
2007), although by how much depends on both geographic location and future
greenhouse gas emissions. Consequently, interest has focused on building pre-
dictive frameworks to model the effects of temperature change on populations
and assemblages of species. Central to any predictive framework is likely to be
the metabolic theory of ecology, where the effects of temperature change on
an individual’s metabolic rate - and associated functions - can, in general, be
predicted using a simple law (Brown et al. 2004; although see White, Cassey
& Blackburn 2007). Understanding the responses of complex, multi-species,
multi-trophic level communities to environmental change first requires one to
attempt to predict the response of simple communities. An understanding of
how and when model predictions fail under these simple circumstances allows
data to be collected to circumvent such failures in more complex models.

The findings in Chapter 5 showed that the effects of different rates of envi-
ronmental change on population dynamics could be predicted by a simple four
parameter phenomenological model that incorporated metabolic theory. In ad-
dition, I showed that the temperature component of metabolic theory drives
more of the model accuracy than the body-size component, but that when
body-size and temperature are both taken into account the model produces
the most accurate predictions. This work also formed the basis of Chapter 4,
where I investigated how rates of environmental change (shown in Chapter 5
to alter extinction dynamics) might also alter our ability to infer extinction
status correctly.

The modelling presented in Chapter 5 provides a general framework for pre-
dicting the effects of environmental change on population dynamics (a function
of the simplistic nature of the phenomenological model employed, and the gen-
eral, 3/4 power, scaling of metabolic rate with body size (Brown et al. 2004)).
It should be noted, however, that this 3/4 power scaling law (know as Kleiber’s
law (Kleiber 1932)) is not universally applicable, and the actual relationship
between metabolic rate and body size depends upon the evolutionary history
of the organism (DeLong et al. 2010). Care should thus be taken to choose
appropriate scaling relationships when using such a framework to predict the
effects of environmental warming on complex, multi-species systems.

Whilst the system in which this work is carried out in is clearly a sim-
plification of many real-world communities (e.g. there is no immigration or
emigration, no influx of resources, and the model predicts the mean response
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of several populations to environmental change), these results do lay the theo-
retical groundwork to develop more complex modelling approaches to predict
the potential effects of environmental change on more species-rich communi-
ties.

7.4 Linking environmental change to stochastic drivers
of community composition

Future temperature increases seem likely to drive continued species
extinctions, as well as dramatic range shifts (Chen et al. 2011). At a
fundamental level temperature can alter the functions of an individual

that are associated with its metabolic rate (e.g. growth rate, carrying capacity,
interspecific interaction strength, and senescence (Van Voorhies & Ward 1999;
Brown et al. 2004)), and consequently a species’s chance of persisting, or not,
at any given point in time (see Chapter 5). However, species do not reside
in isolation, but within complex networks of interacting organisms, and such
interspecific interactions can affect the probability of a species persisting in a
community (Shorrocks & Bingley 1994; Jiang & Morin 2004). The strength of
these interactions can be modified not only by environmental conditions such
as temperature (e.g. Jiang & Morin 2004), but also by stochastic processes
such as the order in which species invade a habitat (Shorrocks & Bingley 1994;
Chase 2003; Warren, Law & Weatherby 2003; Fukami et al. 2010; Weslien et
al. 2011).

Past work had started to look at the interaction between abiotic environ-
mental conditions (such as disturbance (Jiang & Patel 2008)) and community
assembly processes in shaping community composition. However, the potential
for an interaction between temperature and assembly order to alter community
composition had not been studied. This was a significant gap in our under-
standing, especially in the light of predicted future climatic change (IPCC
2007) and the dramatic effects that environmental change can have on extinc-
tion dynamics (Chapter 5).

I demonstrated in Chapter 6, for the first time, that interactions between
community assembly processes and temperature could significantly alter the
abundance, and persistence, of a species in a simple community. In the ma-
jority of cases a species’s abundance was predicted by the temperature of
the habitat, however there were occasional interactions between temperature
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and community assembly order, and where this interaction occurred the effect
could be dramatic: in some cases species survived where they would otherwise
have been outcompeted, and in others the interaction drove a species to dra-
matically lower abundances (two orders of magnitude) than would otherwise
have been expected. These results suggested that climate envelope modelling,
a stalwart for predicting distributions under climate change scenarios, may in
some circumstances provide dramatically wrong predictions of where species
may be found, and at what densities. Unpicking the mechanistic drivers of
the temperature-assembly order interaction should be an avenue for future re-
search, as without a mechanistic understanding we are unlikely to be able to
identify when and where these interactions will occur.

As with Chapter 5, the findings detailed in Chapter 6 are limited, neces-
sarily, in scope, and consequently form the basis for future work, rather than
the completion of this line of investigation. A major constraint of the work
is the low species diversity (three competitors), unrealistically simplistic when
compared to the majority of real-world systems (although instances of simple
communities do exist, for example Hirudo verbena, the medicinal leech, has
been shown to have a natural community of only two bacteria inhabiting its
crop (Kikuchi & Graf 2007)). This low species diversity was necessitated by
the experimental design (fully factorial over a large range of temperatures),
and consequently the time required to sample all of the microcosms. It is in-
teresting to note, however, that even in such a simple system, with a single
trophic level, the interaction between assembly order and temperature can al-
ter community composition drastically, and consequently future work should
look to see whether such interactions persist in more complex scenarios (see
below).

7.5 Critique of the microcosm system

Data generated from microcosm experiments has featured heavily within
this thesis, because advantages of the system lend themselves partic-
ularly to the questions addressed (specifically their small size, which

allows extinction events to be confirmed easily, communities to be replicated,
and temperature treatments administered). However some issues with the use
of this system have also been highlighted (see also above).

Chapter 4 tested multiple methods for inferring extinction events, using a
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combination of microcosm, real-world extirpation, and simulated data. The
purpose of this work was to assess not only how robust the different meth-
ods were, but also how intrinsic factors (such as population dynamics) could
alter our ability to infer extinction status correctly. Data from the micro-
cosm experiment detailed in Chapter 5 (where the rate of temperature change
through time was manipulated) were used, as this experiment had produced
significantly different extinction dynamics based on environmental conditions.
For microcosm data, as predicted by earlier work (Chapter 2), populations
that declined more rapidly had lower error associated with predicted dates of
extinction than those that declined more slowly. The wild population extir-
pation data, however, showed the opposite pattern, with species that declined
more slowly to extinction having lower error associated with predicted dates
of extinction. Subsequent work, that used modelled population declines (Ap-
pendix 8.1.5), suggested that the size of the population may interact with the
rate at which that population declined to extinction to alter the accuracy of
inferred dates of extinction. This has important implications for the design
of future microcosm experiments, namely that whilst the tractability of these
systems can be very useful, more care should be taken to produce populations
analogous in size to those of the wild populations one is interested in study-
ing, a fact that may have been missed had Chapter 4 not combined data from
several different sources.

7.6 Future research

7.6.1 Further testing of methods for inferring extinction

Identifying when, or if, a species has gone extinct remains a key goal
for conservation biology, and methods to achieve this aim are still being
developed (e.g. Thompson et al. 2013). The most recent methods seek

to explicitly incorporate potential drivers of predictive error, such as survey
effort (e.g. Thompson et al. 2013) or uncertain sighting events (e.g. Solow et
al. 2011). The continued development of these methods must be accompanied
by robust testing of their practicality, accuracy, and performance in relation
to previously proposed metrics; simply put, do new methods perform better
than those previously tested?

Key to advancing the practicality of such methods is to clearly identify
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when certain methods should be used, where each method performs well, and
where its weaknesses lie. Recent work by Vogel et al. (2009) has suggested
a framework, using L-moments, to identify how well the assumptions of a
proposed method are met by the distribution of the sighting data to be used
to infer extinction; in effect, how appropriate it is to use a particular method
given the temporal distribution of a set of sightings. Because the distribution
of historic sighting events can be based on search effort, as well as the rate
at which a population declines, microcosm experiments provide the perfect
system in which to test, ex silico, whether the L-moments approach correctly
identifies what method to use in a given situation, work that would form a
logical development to that presented in Chapter 4.

Predicting when a taxon has been lost is not only useful for current conser-
vation decision making, but also forms an important part of the paleontological
literature, as people seek to link extinctions in deep time to, for example, the
shift in the distribution of human populations (Solow, Roberts & Robbirt 2006)
or climatic change (Lister & Stuart 2008). The problem of correctly inferring
when extinction has occurred is in many ways analogous to that of identifying
modern extinction events from the distribution of historic sightings, as the fos-
sil record provides points in time at which a species is known to have existed
(in effect, a sighting event). The similarity of paleontological methods to those
tested within this thesis raises the possibility of using small-scale experimen-
tal systems to compare and contrast the various paleontological methods (e.g.
Marshall 1997; Weiss & Marshall 1999; Solow, Roberts & Robbirt 2006), work
which, to the best of my knowledge, has not yet been done.

7.6.2 Predicting the effects of the rate of temperature change on
community composition

Whilst it is well known that global temperatures will change dramat-
ically over the coming century, the exact rate of warming remains
uncertain (IPCC 2007). Consequently, being able to predict how

populations and communities will respond to varying rates of environmental
change is fundamental to our understanding of the future rates of species loss.
The work presented in Chapter 5 demonstrates that, in a very simple system,
the effects of directional environmental change on population dynamics can
be predicted with a reasonable degree of accuracy. However, this work con-
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centrated on single-species populations, whereas real-world species reside in
complex matrices of interacting species. Using the experimental framework
set out in Chapter 5, but expanding the work to multi-species communities,
and then to multiple trophic levels, are interesting next logical steps. Com-
paring how well simple (phenomenological) and more complex (mechanistic)
models predict observed experimental dynamics, and assessing the trade-off
between the information required to parameterise such models and the accu-
racy of predictions would also be important.

7.6.3 Modelling the interactions between temperature and assem-
bly order

The work presented in Chapter 6 has raised interesting questions re-
garding the potential interactions between assembly order and tem-
perature, especially in the light of predicted future climatic change.

However, the results presented are purely observational, and more work is
required to unpick the mechanisms underpinning this potentially important
interaction between abiotic and biotic factors that govern community compo-
sition. Without such a mechanistic understanding we cannot hope to predict
where and when such an interaction will occur, and how important it will be
for the survival of a species.

Key to a mechanistic understanding of this interaction is the detailed quan-
tification of the community dynamics early on during the assembly process.
Once a detailed understanding of the transient dynamics of a community is
known, it may then be possible to identify the drivers of the occasional interac-
tions between temperature and assembly order, and to begin to suggest where
such interactions may occur in more complex systems. This process would be
facilitated by the fitting of mechanistic models that incorporate, for example,
attack rates and the temperature dependence of parameters, a task only pos-
sible with a detailed knowledge of the population dynamics of the different
species. Such a mechanistic model would then form the basis for a predictive
framework to identify when and where such interactions may occur in more
complex systems. Key future questions include how would further trophic lev-
els affect the frequency of temperature-assembly order interactions, and when
will such interactions manifest in more species-rich competitive systems?
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7.7 Final conclusions

This thesis has sought to use small-scale experimental systems, in con-
junction with mathematical modelling and data from real-world pop-
ulations, to address issues surrounding the quantification of current

biodiversity loss, and build new foundations to begin to understand how future
climatic change may alter the probability of species persisting. In doing so I
have shown that small-scale experimental systems can have a central role in de-
veloping our understanding of biodiversity issues, and should be utilised more
widely, especially to test conservation theory where manipulating real-world
communities is often undesirable. The results presented here move beyond the
small-scale nature of the systems employed by providing not only a founda-
tion for important future work on the effects of climatic change on population
persistence and community structure, but also a basis for making more in-
formed decisions in the field of conservation, by demonstrating the strengths
and weaknesses of methods for inferring the extinction status of species.
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8 | Appendices

8.1 Appendices for Chapter 4

8.1.1 Experimental set up and sampling

Microcosms were lidded petri dishes (diameter 100mm, height 25mm) con-
taining 50ml of medium. The medium consisted of 0.05g/L of crushed protist
pellets (Carolina Biological Supply, Burlington, NC), providing organic nu-
trients, and Chalkley’s solution (Thompson et al. 1988), containing essential
salts. On day -14 the medium was inoculated with the bacteria Bacillus cereus
and Serratia marcescens and incubated at 20 ◦C. On day -10, a volume of
high-density stock culture containing ∼200 individuals of the ciliate bacteri-
vore Loxocephalus sp. was added to each litre of medium. This culture was
sampled every two days, and the experiment started (day 0) when the den-
sity of Loxocephalus had reached approximately the carrying capacity of the
medium (i.e. exponential growth had stopped). On day zero the medium
was homogenised, and 50ml added to each of 27 petri dishes (three replicate
populations of nine temperature treatments).

The temperature treatments comprised: one treatment kept at a constant
20 ◦C for the duration of the experiment (treatment C), four treatments that
were heated at different rates, and four treatments that were cooled at different
rates (Fig. 4.1a). Cooling and heating were achieved by moving replicate
populations between nine incubators set at 1.5 ◦C increments from 14 ◦C to
26 ◦C. The four heated treatments were: i) increasing 0.5 ◦C/week (I0.5),
ii) increasing 0.75 ◦C/week (I0.75), iii) increasing 1.5 ◦C/week (I1.5) and iv)
increasing 3 ◦C/week (I3). The four treatments that decreased in temperature
(D) mirrored the heated, and were thus D0.5, D0.75, D1.5 and D3.

Microcosms were sampled to estimate population abundances twice per
week for 10 weeks. Sampling was based on the protocol of Lawler and Morin
(1993). Microcosms were homogenised by repeat pipetting of the medium,
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Figure 8.1: Mean error of predictions made by each method under the different simulated
search regimes. Error is the difference between the predicted date of extinction and the
observed date of extinction. Bars represent +/- 1 s.e. “con” = constant, “dec” = decreasing,
“inc” = increasing, “irr” = irregular, “reg” = regular.

and then a known volume (0.1-0.3ml) extracted using an adjustable-volume
pipette. The individuals within this known volume were then counted under
a stereoscopic microscope (7.5-30x magnification), and the total population in
the microcosm estimated. When densities became very low the whole micro-
cosm was placed under the microscope and the individuals counted. A species
was recorded as extinct if, on two consecutive sampling days, no individuals
were observed after 5 minutes of searching. This method has been shown to
reliably identify when a species has gone extinct (Clements et al. 2013), and
no populations that were initially recorded as extinct were re-observed at the
next sampling occasion. All medium was replaced after counting, and any
evaporative loss (checked with a balance) was replaced with distilled water.

8.1.2 Effect of search regularity on the accuracy of extinction es-
timates

When sampling was irregular, in most cases the error associated with esti-
mates was higher than with regular sampling (Fig. 8.1).
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Table 8.1: The six methods included within the sExtinct package, the assumptions made,
and data required for each.

Method Main Assumptions Data Reference
Burgman Chance of observing a species

does not change over time.
Counts Burgman et al. (1995)

OLE Search effort never falls to
zero, but does not have to be
constant, and the most recent
sightings have a Weibull
extreme value distribution.

Presence Roberts & Solow
(2003), Solow (2005)

Robson Chance of observing a species
does not change over time.

Presence/absence Robson & Whitlock
(1964)

Solow1993.eq2 Chance of observing a species
does not change over time.

Counts Solow (1993)

Solow2005.eq7 Declining pre-extinction
sighting rate.

Counts Solow (2005)

Strauss Chance of observing a species
does not change over time.

Presence/absence Strauss & Sadler
(1989)

8.1.3 Brief summaries of each of the methods tested

Briefly summarised are the assumptions made by the six methods tested,
the data required by each, the abbreviation used in the chapter, and the orig-
inal publications proposing the methods (Table 8.1).

Burgman

Estimates the probability of getting a run of times where a species has not
been observed, given the maximum time between previously recorded sighting
events. Assumes that the sightings are independent and randomly distributed
through time. Sightings are recorded as presence, absence, or multiple sight-
ings at each time point.

OLE

Assumes that the most recent sighting events have the form of a Weibull
extreme value distribution, and estimates the shape parameter of this distri-
bution from the temporal spread of the sighting events. The beginning and
end of the observation period need not be specified, but the method assumes
(unrealistically) that search effort never falls to 0. Sightings, or multiple sight-
ings, are recorded as presence data (i.e. the species is extant at a given time
point) and are not assumed to be randomly distributed through time.
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Robson

Estimates the the time of extinction based on the rate of sightings at the end
of the observation period, reflected by the interval between the two most recent
sighting events. This estimation is unbiased when the chance of observing a
species is uniformly distributed over time. Sightings are recorded as binary
data: a species is either present or absent.

Solow1993.eq2

Estimates the probability that a species is extinct when it has not been
observed as extant for a given period of time after the last sighting event, and
the observations are independent and randomly distributed through time. So,
as the period of observation increases, and there are no new sighting events,
the probability that a species is extinct also increases. Sightings are recorded
as presence, absence, or multiple sightings at each time point.

Solow2005.eq7

Estimates the probability of extinction over an observation period, but
unlike Burgman and Solow1993.eq2 the sightings are not assumed to be ran-
domly distributed over time, but that as a species becomes rarer the frequency
of observation events decreases. Sightings are recorded as presence, absence,
or multiple sightings at each time point.

Strauss

Estimates the time at which a species has gone extinct, using the mean
gap between sightings, and assuming that sightings are uniformly distributed
through time. I.e. how large does the gap have to be after the last sighting
event for a species to be unlikely to be observed again. Sightings are recorded
as binary data: a species is either present or absent.

8.1.4 Probability of extinction on a method-by-method basis

The probability that a species is extinct at any given time point varies from
method to method, depending upon each method’s underlying mathematical
assumptions (Fig. 8.2). Some methods, noticeably Solow1993.eq2, have sharp
declines in the probability that a species persists, and are therefore more likely
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Figure 8.2: Diagnostic plot showing the predicted probability of persistence given the sight-
ing record in the example.data data frame across all methods in the sExtinct package. OLE
produces a point estimate of extinction only (represented as the vertical dashed line), and
the alpha level set is marked with the dotted black line.

to underestimate the date of extinction. Others, such as Robson, initially
predict a rapid decline in the probability of persistence with time, but subse-
quently an elongated tail where a species has a low possibility of persisting.
This may lead to a bias toward overestimating the date of extinction.

8.1.5 Interaction between small population size and rate of decline
on the accuracy of estimates

Ten different rates of population decline were simulated by creating popula-
tions with various starting abundances (from 5 to 95 individuals), and making
them decline to extinction over a 20 time step period (Figure 8.3). Abundances
at each time step had some random fluctuations added (with a magnitude rel-
ative to the population’s rate of decline) and were rounded to whole numbers.
This produced 10 different rates of population decline, from -0.28 individuals
per time step to -5.21 individuals per time step. This data was then analysed
in exactly the same way as the wild extirpation data, and showed a somewhat
similar pattern: error produced by OLE, Solow1993.eq2, Solow2005.eq7, and
Strauss tended to increase as the rate of population decline increased, although
this pattern is less obvious than when the extirpation data were used (Figure
8.4). As with the wild extirpation data, the error associated with estimates
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1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0.47
0.11

0.18 0.27 0.22 0.21
0.23

0.27 0.2 0.19

0.53 0.89
0.82 0.73

0.78
0.79 0.77 0.73 0.8 0.81

1 1
1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0.39
0 0

0.01 0.01
0

0.01
0 0 0

0.61 1
1 0.99

0.99
1 0.99 1 1 1

0.36 0.22
0.11 0.1

0.04
0.08 0.13 0.07 0.05 0.11

0.64
0.78

0.89 0.9 0.96
0.92 0.87 0.93

0.95 0.89

1
1 0.85 0.82 0.75 0.86 0.84 0.87 0.81 0.78

0 0 0.15 0.18
0.25

0.14 0.16 0.13 0.19 0.22

Burgman OLE Robson

Solow1993.eq2 Solow2005.eq7 Strauss
−5

0

5

10

15

−5

0

5

10

15

−0
.5

2
−1

.6
2
−2

.9
7
−4

.1
2
−4

.4
2
−5

.9
1
−6

.5
−7

.9
7
−9

.4
5

−1
0.

52
−0

.5
2
−1

.6
2
−2

.9
7
−4

.1
2
−4

.4
2
−5

.9
1
−6

.5
−7

.9
7
−9

.4
5

−1
0.

52
−0

.5
2
−1

.6
2
−2

.9
7
−4

.1
2
−4

.4
2
−5

.9
1
−6

.5
−7

.9
7
−9

.4
5

−1
0.

52

Rate of population decline
(individuals/time step)

M
ea

n 
er

ro
r

Figure 8.4: Magnitude of error produced by the six different techniques, across the 10
different rates of population decline.

made using Robson decreased as the rates of population decline increased (Fig-
ure 8.4).

8.1.6 Overall accuracy of methods using wild population data

As with the experimental data, one of the main drivers of error was the
method chosen to produce the predictions (Fig. 8.5). OLE, Solow1993.eq2,
Solow2005.eq7, and Strauss all had much lower error in predictive accuracy
than Burgman or Robson. The majority of the methods predicted that extinc-
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Figure 8.5: a) Normalised mean absolute error, printed in each bar is the fraction of the
simulations for which each method produced an extinction estimate that fell before the year
2012, and b) normalised mean relative error, with the proportion of estimates that were
after the observed date of extinction, or before the observed date of extinction. Proportions
do not always sum to 1 as estimates that fall on the recorded year of extinction are neither
positive or negative. Error is the difference between the predicted date of extinction and the
actual date of extinction, and is normalised across the different species by dividing by the
minimum time between recorded abundances. Mean is calculated from a random sample of
500 data points from each search regime, for each method. Bars show +/- 1 s.e.

tion had occurred before the year 2300 in a high proportion of the simulations
(note that the latest recorded extinction, that of the Hawaiian Crow, was 2003,
Fig. 4.2), with the exception of Solow2005.eq7 (Fig. 8.5).

When the error is split into overestimation and underestimation of the
date of extinction (Fig. 8.5b) the distribution of error amongst the meth-
ods is almost identical to that seen with the experimental data (Fig. 4.6b).
The notable exceptions to this are Robson (where effectively all of the predic-
tions are now large overestimates of the date of extinction), and Solow2005.eq7
and (where overestimates and underestimates are roughly as frequent as one
another, whereas with the experimental data >93% of estimates were under-
estimates of the date of extinction).
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8.2 Appendices for Chapter 6

Presented are the full results of the Generalized Linear Models and Zero-
Inflated Negative Binomial Regression fitted to the abundance data of Blephar-
isma japonicum, Paramecium caudatum, and Loxocephalus sp. at days 42 and
70. This data is presented as supplementary information in the manuscript
published in Ecology and Evolution which is based on this chapter.

Table 8.2: Coefficients of zero-inflated negative binomial regression models fitted to the
abundances of Loxocephalus at days 42 and 70. Zero-inflated model is the effect of the
factors on the number of zeros (i.e. extinctions) recorded in the data. “nb” refers to the
negative binomial error structure.

Day 42 Day 70
Error Std. Er Coef. z-value p-value Error Std. Er. Coef. z-value p-value

Count model
Temp nb 0.13 0.03 0.23 >0.05 nb 0.14 0.03 0.24 >0.05
BLP nb 2.49 -1.39 0.56 >0.05 nb 3.06 0.12 0.04 >0.05
BPL nb 2.57 -0.52 0.2 >0.05 nb 2.92 2.29 0.79 >0.05
LBP nb 2.45 1.2 0.49 >0.05 nb 2.91 1.4 0.48 >0.05
LPB nb 2.44 -1.71 0.7 >0.05 nb 3.46 -3.46 1 >0.05
PBL nb 2.58 -1.8 0.69 >0.05 nb 3.18 -1.16 0.37 >0.05
PLB nb 2.87 0.47 0.16 >0.05 nb 2.88 1.7 0.59 >0.05

T∼BLP nb 0.15 0.03 0.22 >0.05 nb 0.17 -0.02 0.1 >0.05
T∼BPL nb 0.16 0.05 0.3 >0.05 nb 0.17 -0.16 0.93 >0.05
T∼LBP nb 0.15 -0.05 0.33 >0.05 nb 0.17 -0.05 0.29 >0.05
T∼LPB nb 0.15 0.08 0.53 >0.05 nb 0.19 0.09 0.5 >0.05
T∼PBL nb 0.16 0.05 0.35 >0.05 nb 0.18 0.02 0.14 >0.05
T∼PLB nb 0.17 -0.05 0.27 >0.05 nb 0.16 -0.11 0.67 >0.05

Zero-inflation model
Temp nb 0.25 0.13 1.99 <0.05 nb 0.12 0.1 1.14 >0.05
BLP nb -1.22 4.36 0.28 >0.05 nb 5.73 3.03 1.89 >0.05
BPL nb 1.78 3.24 0.55 >0.05 nb 0.31 2.71 0.12 >0.05
LBP nb 2.14 3.03 0.71 >0.05 nb 0.97 3.03 0.32 >0.05
LPB nb 1.45 3.13 0.46 >0.05 nb 4.41 3.23 1.37 >0.05
PBL nb 2.3 3.09 0.75 >0.05 nb 2.36 2.69 0.88 >0.05
PLB nb 2.6 3.03 0.86 >0.05 nb 2.18 2.68 0.81 >0.05

T∼BLP nb -0.06 0.21 0.28 >0.05 nb -0.32 0.16 2.03 <0.05
T∼BPL nb -0.17 0.17 0.97 >0.05 nb -0.05 0.15 0.31 >0.05
T∼LBP nb -0.15 0.16 0.9 >0.05 nb 0 0.17 0.01 >0.05
T∼LPB nb -0.12 0.16 0.75 >0.05 nb -0.19 0.17 1.15 >0.05
T∼PBL nb -0.18 0.16 1.08 >0.05 nb -0.14 0.14 0.94 >0.05
T∼PLB nb -0.18 0.16 1.14 >0.05 nb -0.12 0.14 0.84 >0.05
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Table 8.3: Full coefficients of generalized linear models fitted to the abundances of Parame-
cium at days 42 and 70. Error structures are as follows: “G” = Gaussian, “q-P” = quasi-
Poisson.

Day 42 Day 70
Error Std. Er Coef. t-value p-value Error Std. Er. Coef. t-value p-value

Temp G -0.01 0.02 0.3 >0.05 q-P -0.24 0.07 3.66 <0.001
BLP G 1.2 0.63 1.9 >0.05 q-P -0.95 1.2 0.79 >0.05
BPL G 1.36 0.64 2.11 <0.05 q-P -0.94 1.24 0.75 >0.05
LBP G 1.57 0.63 2.48 <0.05 q-P 0.66 1.17 0.57 >0.05
LPB G 1.07 0.63 1.69 >0.05 q-P 1.03 1.14 0.9 >0.05
PBL G 0.86 0.63 1.36 >0.05 q-P -2.18 1.1 1.98 <0.05
PLB G 0.94 0.63 1.48 >0.05 q-P 0.25 1.12 0.22 >0.05

T∼BLP G -0.06 0.63 1.89 >0.05 q-P 0.08 0.08 1 >0.05
T∼BPL G -0.07 0.03 2.12 <0.05 q-P 0.08 0.09 0.94 >0.05
T∼LBP G -0.08 0.03 2.28 <0.05 q-P -0.01 0.08 0.08 >0.05
T∼LPB G -0.03 0.03 0.97 >0.05 q-P -0.02 0.08 0.27 >0.05
T∼PBL G -0.01 0.03 0.38 >0.05 q-P 0.19 0.07 2.58 <0.05
T∼PLB G -0.02 0.03 0.5 >0.05 q-P 0.03 0.08 0.41 >0.05

Table 8.4: Full coefficients of generalized linear models fitted to the abundances of Ble-
pharisma at days 42 and 70. Error structures are as follows: “G” = Gaussian, “q-P” =
quasi-Poisson.

Day 42 Day 70
Error Std. Er Coef. t-value p-value Error Std. Er. Coef. t-value p-value

Temp q-P 0.09 0.03 3.22 <0.01 G 1.63 0.44 3.71 <0.001
BLP q-P 0.46 0.71 0.64 >0.05 G -12.44 11.89 1.04 >0.05
BPL q-P -0.09 0.74 0.13 >0.05 G 5.57 12.12 0.46 >0.05
LBP q-P -2.65 0.95 2.8 <0.01 G -21.18 11.89 1.78 >0.05
LPB q-P -3.01 1.19 2.54 <0.05 G -44.19 11.89 3.71 <0.001
PBL q-P 0.29 0.85 0.34 >0.05 G -8.85 11.95 0.74 >0.05
PLB q-P -2.33 1.35 1.72 >0.05 G -20.86 11.89 1.76 >0.05

T∼BLP q-P 0.01 0.03 0.36 >0.05 G 0.58 0.62 0.94 >0.05
T∼BPL q-P 0.03 0.03 1 >0.05 G -0.47 0.65 0.73 >0.05
T∼LBP q-P 0.13 0.4 3.08 <0.01 G 0.64 0.62 1.03 >0.05
T∼LPB q-P 0.11 0.05 2.16 <0.05 G 1.68 0.62 2.71 <0.01
T∼PBL q-P -0.03 0.04 0.69 >0.05 G -0.01 0.63 0.02 >0.05
T∼PLB q-P 0.05 0.06 0.85 >0.05 G 0.61 0.62 0.99 >0.05

.
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