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Abstract

This thesis contributes a novel approach to navigation tasks in large graphs. Graph

visualization is the problem of representing the structureof a mathematical graphG=

(V,E), V a set of vertices (or nodes) andE⊆V×V a set of edges. My work is concerned

with the node-link representation of graphs and I use the term network to distinguish

this external representation from the underlying mathematical structure. Networks are

an intuitive representation of a set of elements and the relationships between them, and

are known to be effective for analysis tasks involving following paths between nodes. I

definenavigationas the task of identifying and following such a path in display space.

Unfortunately the utility of a network diminishes as the density of edges increases and

edge-crossings make navigation taxing. A well-explored approach to this problem is to

find a perspicuous layout of the nodes. While this improves thereadability of individual

nodes and edges it may also require a compromise: to be easilyunderstood the overall

arrangement of the network should also correspond with the user’s internal mental model

of the domain, a property referred to ascongruence. Other solutions distort the display

space or use multiple-scaled-views to promote comprehension of local details while re-

taining awareness of the global context, but often lack direct support for navigation of

the network topology beyond the local context.

This thesis contributes a model of visual graph analysis that brings together recent ad-

vances in cartographic representation, diagram comprehension, and graph visualization,

leading to a greater understanding of network navigation bottlenecks in terms of the de-

gree of correspondence between the external graph representation, and the user’s ‘men-

tal map’. Motivated by this model I present a new approach to graph visualization that

separates concerns of navigation from those of depiction with the aim of improving cor-

respondence between the internal and external representations. I describe the design and

realization of an interface for network navigation inspired by the new approach within a

pipeline-based architecture, and provide a reflective evaluation of the implementation.
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Chapter 1

Introduction

I begin this chapter by introducing the purpose of visualization and outline the princi-

ple issues of data, representation, and implementation. This leads to a discussion of the

general problems of visual scalability and its impact on themain focus of this thesis:

navigation. Graph visualization is a challenging, well-studied research topic and sev-

eral graph representations and navigation tools are available, which are outlined here.

The chapter concludes with an introduction to my approach tothe network navigation

problem, and a statement of the scope and contributions of this thesis.

1.1 Visualization

Visualization refers to the process of using an external visual representation to enhance

cognition by externalizing memory, and by arranging graphical marks in space such that

visual cues enable useful interpretations of the data [21].Bergeron [19] sets out three

uses of visualization:

descriptive visualization is used to present evidence to others of some phenomenon

known to exist in the data set;

analytical visualization is the process of searching the data for evidence that either

confirms or refutes a known hypothesis; and,

exploratory visualization is used when the user has no particular hypothesis about the

data and wishes to understand what is present by, for example, recognizing items,
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Figure 1.1: Minard’s figurative map from 1869 combines depictions of time, geography,
temperature, and mortality to tell the story of Napoleon’s failed campaign on Russia.
(Figure licensed under Creative Commons).

or identifying patterns, outliers and trends in the data, soan hypothesis may be

formed.

The capacity of modern visualization systems to support these tasks emerges from the

interaction between a computer, which provides an interface to rapidly refine and encode

data as graphical marks on the screen, and the human user, whohas an innate ability to

perceive and infer meaning from those marks.

Hand-crafted visualization artefacts have been used for data presentation for at least two

centuries: Minard’s 1869 map for example presents data in several dimensions to illus-

trate the fate of Napoleon’s campaign on Russia. In recent decades visual data presenta-

tion has become a topic of formal study, leading to the formulation of data presentation

heuristics based on Gestalt theories of spatial grouping, and works such as Tufte’s “The-

ory of Data Graphics” [125] and Bertin’s classification of “retinal variables” [14]. An

early approach to computerized visualization sought to automate the process of visual-

ization design. Rules of visual encoding and diagram construction were encoded and

used by the system to calculate and display the most “effective and efficient” represen-

tation given a particular input data-type [79], with later models also incorporating rules

based on the user’s task [22].

Limited by graphical processing power, early systems concentrated on presenting a static

view of the data. Tukey [126] had already demonstrated the utility of exploratory data

analysis, using data plots to discover an hypothesis in contrast to the earlier practice
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Figure 1.2: An example of exploratory visual analysis of a complex system. In this
simulated circuit diagram the grey circles change size to represent the performance of
each component given a particular input signal frequency. The input frequency is ad-
justed using the slider control on the right of the diagram. In this way the user can
continuously explore the range of input values, observing the effect of changes in input
instantaneously. (Figure adapted from [117]).

of merely presenting findings to others. Meanwhile Bertin [14] described a process of

visual thinking, constructing a matrix of data values and permuting the columns until

patterns emerge that could indicate trends or reveal outliers. Once an interesting permu-

tation is found it is the job of the analyst to reason about what information the patterns

reveal, in the context of their domain knowledge.

Bertin initially conducted visual exploration using specially prepared cards on a table-

top, only moving to computerized support after more than a decade. Exploratory analysis

is where computerized visualization provides the greatestbenefit, enabling visual think-

ing through interactive tools that allow the user to filter, group and rearrange the display

on demand. Spence’s electronic circuit diagram [117] is a compelling example of in-

teractive visualization that enables insight into a complex phenomenon by changing the

visual display in response to user inputs (see Figure 1.2).

1.1.1 Scientific Visualization

The formal study of visualization in computer science is generally attributed to the publi-

cation of a synopsis of a National Science Foundation advisory report on “Visualization

in Scientific Computing” [83]. The report identified that scientists were producing in-

creasing volumes of output from computational simulationsyet few tools were available

to assist them in analysing large, complex sets of data. Visualization offered the possi-
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bility of transforming the raw symbolic data into geometricforms that are more readily

interpreted by the scientist. Furthermore, the ability to steer computation during pro-

cessing was required so that the effects of parameter changes were immediately visible,

to not onlyseethe data, but also tointeractwith it in real-time.

Scientific visualization as it has come to be known, is used toanalyse numerical data

such as the output of a medical MRI scan, or an engineering simulation. It may be

categorized as being concerned with models ofcontinuousdata with the consequence

that sample points may be interpolated in a meaningful way [124].

1.1.2 Information Visualization

The term “Information Visualization” was first coined by Robertson, Card and MacKin-

lay [104] to mean, “the direct manipulation of information objects and the structure

between them.”. While scientific visualization was aimed at analysis of the continuous

models produced by scientists, increasing attention was being given to visualizing data

from discrete structures such as the tabular data and document collections found in com-

mercial databases. An early example of this is SemNet [44], agraph visualization tool

aimed at exploring the relationships between items in a large knowledge base.

The data represented by information visualization systemsrepresent a space that isab-

stract [42], and therefore has no direct mapping to the geometric structures used in

graphics. The information visualization designer must therefore select an appropriate

spatial metaphor. Popular spatial metaphors include landscapes [8], cities [120], and

trees. The use of metaphor need not be consistent or realistic: consider the now familiar

metaphor used in the graphical interface of a personal computer: groups of “files” are

contained in “folders” which are placed on the surface of a “desktop”. To interact with

a file or folder, its contents are displayed in a “window”. Themixed metaphors (folders

arranged on a desk versus looking through a window) do not seem to be a barrier to

effectiveness, as each one is appropriate to a particular activity. Figure 1.3 contains an

example of visualizations of the same underlying data usingboth a continuous model to

form a 3D volume rendering and a discrete model using a tree metaphor.

A key challenge in information visualization is the provision of tools tonavigatethe

space the diagram is drawn in. Navigation refers to the “process of selecting and fol-

lowing a path in display space” [70]. While the drawing canvasis an infinite plane the

computer display is constrained by its dimensions and pixelresolution. This often means
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Figure 1.3: Fission of a plutonium nucleus represented using a continuous model and
rendered as a 3D volume (left), and a discrete model with a tree metaphor (right). The
discrete model indicates critical points in the vector fieldwhich can then be related to
the spatial position of phenomena as displayed in the volume.

that the whole data cannot be displayed in sufficient detail on a single display, as doing

so would present the viewer with an unintelligible mass of graphical marks. To combat

this, pan and zoom tools are commonly employed so the user maychoose what portion

of the diagram is visible in the display, but this can lead to “desert fog”, the condition

that there are insufficient visual marks to enable the user tonavigate successfully [70].

With no recognizable visual references the user becomes lost in the visualization and

may be unable to answer navigation questions such as, “wheream I now?”, “where do I

go next?”, or “how do I get back to where I started?”

1.2 Graphs and Networks

Graph visualization refers to the problem of representing amathematical graphG =

(V,E),V a set of vertices andE⊆V×V a set of edges. A graph is a formal mathematical

model of data items and relationships between those data items. The surveys by Herman

et al [64] and Landesberger et al [134] described a number of graph representations,

which of these to use to depends on structural properties of the graph and on the task at

hand.

• Containment diagrams such as tree-maps [111] allow a compactrepresentation of

hierarchical data.

• Adjacency matrices reveal patterns of different shaped blocks (clusters of inci-

dent edges) provided an appropriate ordering of the rows andcolumns can be
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Figure 1.4: (Top) Comparison of network and containment representations of the same
hierarchical data. (Bottom) Comparison of matrix and networkrepresentation of the
same graph data. In both cases, the network representation is more effective when fol-
lowing paths between items.

found [62].

• Node-link diagrams, where vertices are represented by glyphs, and edges by poly-

lines or splines, are appropriate for tasks related to pathsformed by sequences of

adjacent vertices [54].

Figure 1.4 shows a comparison of different representationsof the same graph and tree

data.

This thesis deals exclusively with the node-link representation of graphs, and following

Bertin [14], I use the termnetworkto distinguish this external representation from the

underlying mathematical structure. Networks provide an intuitive spatial metaphor of

a discrete set of related elements by taking advantage of basic human visual principles

of enclosure to represent a contained object and connectedness to indicate a relationship

between them [129].
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1.2.1 Layout

A layout algorithm assigns coordinates to each element of a graph with the aim of pro-

ducing an effective and efficient network drawing.Aestheticsare drawing rules encoded

in the algorithm that constrain the placement of graphics primitives [33]. Computing the

coordinates of a layout to optimize aesthetics is well-studied (see [33] for a comprehen-

sive survey and [134] for more recent advances).

A primary aesthetic concern is to produce a network in which edges can be easily fol-

lowed between nodes. User studies by Purchase [98] and others have shown that the

number of bends in edges and the number of edge-crossings significantly reduce the ac-

curacy of following paths in a network. Beyond minimizing edge-crossings, there are

too few empirical studies of aesthetics to underpin a set of general layout principles.

1.2.1.1 Node Layout

Since the general optimization problem is NP-hard [64], various approximation ap-

proaches to node layout have been devised. Sugiyama et al [122] introduced a layout

method for directed acyclic graphs that first positions nodes in horizontal layers so that

all edges point downwards. A second pass re-orders the nodesto minimize the number of

edge crossings between layers. Force-directed methods were introduced by Eades [39]

with improvements by Kamada and Kawai [71], and Fruchtermanand Reingold [48]

amongst others. These algorithms model the network as a mechanical system where

edges are treated as springs that repel vertices that are close together and pull together

vertices that are distant. A minimal total energy of the system is then computed iter-

atively. The running time complexity of these methods is quadratic and therefore pro-

hibitive on large graphs. To overcome this problem modern force-directed algorithms

use the fast multi-pole multilevel method (FM3) introduced by Hachul and Jünger [58]

that lays out a general graph inO(|V|log|V|+ |E|). The speed-up is achieved by first

solving a coarsened representation of the original graph and then iteratively refining the

solution until the original input graph is laid out.

1.2.1.2 Edge Layout

The simplest edge representation draws a straight line between the two end-points of

an edge. Parallel edges may be drawn as parallel arcs to avoidover-plotting. Edge-
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Figure 1.5: A graph of US airline routes rendered with conventional straight-line edges
(above) and bundled edges (below). The bundles reduce the cluttering effect of edge
crossings by closely grouping edges that have a similar start and end point. Following in-
dividual edges requires additional tools to separate them.The method shown here [110]
separates the bundles according to the direction of edges (direction is encoded as a blue-
to-red colour ramp).

routing algorithms introduce splines so that edges can be routed around obstacles [35].

Recently, several techniques similar to “hierarchical edgebundles” [65] have emerged

that reduce overall clutter by very closely grouping edges that have similar start and

end points. For some specific applications highly specialized representations have been

developed. In Agrawala and Stolte’s route-map system [2] edges (representing roads) are

carefully distorted to shorten them and simplify their shape to ensure important junctions

are clearly readable. For cases where edge attributes are ofprimary concern to the user,

an alternative design is to duplicate nodes and vertically list all the edges in the centre of

the display [14, 97].

1.2.1.3 Semantics

In addition to readability of the edges of the network it is important to note that the

overall layout affects what meaning is suggested by the drawing. Topological features
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Figure 1.6: The relative positions of nodes suggests meaning. From left to right: a cycle
implies equal status; the top node is superior to the two lower nodes; and, an ordered
sequence. (Adapted from [32]).

such as symmetry or the presence of highly-connected subgraphs can be revealed with

an appropriate layout. Moreover, certain spatial arrangements invoke particular meaning

based on Gestalt principles and well-known conventions. Upon initial viewing, before

the fine details of the edges are perceived, nodes that are in close proximity will be per-

ceived as a group. In a circular layout all nodes have equal status, a linear arrangement

implies an ordered sequence, and a top-bottom arrangement suggests a hierarchical rela-

tionship [32] (see Figure 1.6). Therefore, to be most effective a network must be readable

and also should be arranged so that unintended inferences are avoided. Put another way,

a network should be structured in a way that is consistent with the user’s internal mental

model of the domain it represents: a property referred to ascongruence[78, 128].

To satisfy the congruence property graph layout algorithmsthat depend solely on topo-

logical structure require that the topology is in some way analogous to the intended

meaning. In the case of a hierarchy such as a tree, the order ofnodes in the drawing

should mirror the rank of nodes in the hierarchy. In many cases however, the semantics

of the graph are not made explicit by its topology and so the effects of layout may be

misleading. Arguably, the most effective drawings of graphs are hand-curated as they

may be refined over many iterations and incorporate domain conventions, see for ex-

ample the KEGG pathway maps [72]. However, hand-crafting a non-trivial network is

time-consuming, requiring many hours of refinement.

More specialized automated graph layout may be achieved by making some assumptions

on the connection between topology and meaning. Schreiber et al [108] add constraints

between substructures in the graph that reflect well established domain drawing con-

ventions. Bespoke visualization systems can be developed tosupport highly specialized

domain requirements (e.g. [90, 96]) by specifically encoding knowledge elicited from

domain experts and designing an interface that supports a set of well-defined tasks.
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1.2.1.4 Non-Graph Features

Additional semantic content can be given to networks by displaying non-graph features.

Commonly, text labels positioned close to nodes or edges are used to display nominal or

quantitative values associated with them. For some specialist applications such as class

diagrams in software engineering, nodes are drawn as a significant geometrical shape,

with details shown as text contained within the node [47]. Quantitative values attached to

graph elements can also be rendered as “retinal variables” [14], varying edge-thickness

or the area of nodes. Perceptual grouping other than spatialclusters can be supported by

varying node shape or colour to differentiate classes.

Spatially grouped clusters of nodes can be collapsed and represented as single meta-

nodes [40]. An alternative to collapsing nodes is to delineate clusters by adding regions

of colour or texture to the substrate of the network to give a map-like appearance [51].

There are cases where the nodes represent some naturally spatial class of items, such as

the airline map in Figure 1.5. Since the layout of the nodes isrelated to their geographical

position, this type of network can be embedded in a geographical map. The addition of

non-graph features represents a continuum of visual complexity from a plain, node-link

diagram, through those imbued with retinal variables, to embedding in a continuous

substrate.

1.2.2 Navigation in Networks

Navigating a large network is a frequent and non-trivial task. Lee et al’s “Task Taxon-

omy for Graph Visualization” [74] summarizes commonly performed graph tasks and

shows how they are composed of common low-level tasks. Many of the low-levels tasks

they describe involvefindinga particular node (perhaps using a search facility) and then

following an edge to some adjacent target node. The tasks are cast in terms of topologi-

cal navigation but are conducted in the display space, with the consequence that the ease

with which one can navigate a network is related to the effectiveness of the results of

layout. This problem becomes particularly relevant in the case that the network is too

large to fit within the display at a readable level of detail. If we consider the network dis-

play and pan and zoom tools as an interface into the graph dataset, the problem becomes

an instance of Norman’s “Gulf of Execution” [92]: the vocabulary of the interface (pan,

zoom, etc.) is semantically distant from the intention of the user (find this node, follow

that edge).
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Figure 1.7: Overview of a network. While relations between spatial groups of nodes can
be perceived, local connectivity between individual nodesis not readable. The group
outlined by the black rectangle is enlarged in Figure 1.8.

Figure 1.8: Detail view of the group outlined in Figure 1.7. At high zoom individual
nodes and edges are easily followed but their relationship with the wider context of the
network is lost.
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Consider a scenario in which a user wishes to compare and contrast two similar looking

subgraphs within a large network. A fully zoomed out view of the network may be

sufficient to identify thelocation of the subgraphs in the overall space but to read the

fine details of edges and labels she must zoom in to the first subgraph (see Figures 1.7

and 1.8). This means that the overall context is no longer visible. To then move to the

second subgraph our user must recall its location in the overall network relative to the

current position. In the absence of domain conventions and thus lacking congruence

with the users internal spatial model, the user does not havea usable ‘mental map’ of

the space occupied by the network. Instead she must suspend the primary analysis task

and zoom out to regain the overall context so that the second subgraph can be located.

Only after zooming in again on the second subgraph can analysis resume. The need to

repeatedly switch task context disrupts the primary analysis task, and the user is forced

to direct cognitive effort [73] towards navigation.

1.2.3 Solution Space

Given the difficulties encountered when required to navigate networks various strategies

to aid the user have emerged.

Reduce the amount of graphical marks byfiltering out unneeded data [113] or by in-

stead displaying a suitableabstraction. A common abstraction method involves

an hierarchical clustering of connected subgraphs into single meta-nodes [40], so

that the connectivity between meta-nodes is depicted instead of the low-level de-

tails of the network.

Scale parts of the network to provide bothfocus and context[107] in the same view or

provide multipleoverview and detailviews at various scales.

Enhance the visual appearance of the nodes and edges of the network byjudicious use

of colour, edge-routing, or rendering techniques.

Each of these methods changes the final appearance of the network by modifying the data

model, the coordinate system, or the graphical encoding respectively. A complementary

approach is to add further specific support for network navigation. For example,

Topological navigation adds specific interactive support for following edges between

adjacent nodes [85].
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Explicit landmarks added to the display highlight familiar semantic components within

a network [91].

The techniques described in this section are discussed further in Chapter 2. This thesis

is concerned with the latter solution: adding explicit landmarks to the display with the

aim of improving the correspondence between the network display and the user’s spatial

mental model.

1.3 Thesis and Contributions

This thesis proposes a novel approach to the problem of network navigation imple-

mented as a distinct layer of customized navigation supportthat promotes congruence by

strengthening the link between the meaning encoded in the graph, the network display,

and the user’s spatial mental model. The design is grounded in theory of graph compre-

hension and uses ideas adapted from navigation in the real-world. I provide arguments

and evidence that adding extra graphical marks to a graph visualization enhances navi-

gability without compromising the primary network displaywith additional clutter.

Specifically, this thesis makes the following contributions:

• A model of visual graph analysis that brings together recentadvances in carto-

graphic representation, diagram comprehension, and graphvisualization.

• Motivated by this model I present the design of a new approachto graph visual-

ization as a separate navigation layer.

• Realization of the design in a pipeline-based architecture designed for general,

large-scale visualization.

• A reflective analysis of the new visualization designs.
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A Note on Software Implementation To support the development of this thesis a pro-

totype network visualization system, known as “CoronaScope”, was implemented that

provides navigation in the form of a pan and zoom tool. The navigation overlay designs

set out in Chapters 3 and 4 were implemented within the CoronaScope application. The

software was developed within a demand-driven pipeline architecture [57, 109] that has

traditionally been used for scientific visualization and only recently adapted to include

components to support information visualization [139]. Since the use of this paradigm

in information visualization is experimental, I report on my experiences in Chapter 6.

1.4 Thesis Organization

In this chapter I highlighted the benefits of visualization,introduced the problem of

navigation in networks, and presented the background, aimsand contributions of this

thesis. In the remainder of this thesis each chapter begins with a brief synopsis of the

topics covered, and concludes with a summary in which key issues and contributions are

highlighted. A thorough overview may be obtained by readingthe introductions, figure

captions, and summaries in the order they appear. Briefly, thesubject of this thesis is

organized into the following chapters:

Chapter 2 contains an analysis of work related to this thesis, including models of in-

formation visualization, cognitive theory of how networksare comprehended, and

existing solutions to the problem of network navigation.

Chapter 3 sets out the theoretical motivation for using landmarks to support network

navigation, and heuristics for selecting landmarks from the structural and semantic

content of the underlying network are proposed. The design of an overlay of visual

landmarks is described and justified in terms of the cognitive basis.

Chapter 4 is concerned with the use of landmarks in a multi-scale visualization, that is,

using a basic pan and zoom tool. I show how landmarks can be used to promote

awareness of the global network structure using off-screenvisualization, and go

on to describe specific support for following network paths,and revisiting.

Chapter 5 looks at three case studies to demonstrate the proposed landmark and off-

screen visualization tools, and contains an informal analysis of their efficacy.

Chapter 6 contains a detailed description of the overall software implementation, and



15

reports on my experience of using the pipeline paradigm to add navigation support

to an existing information visualization technique.

Chapter 7 is a discussion of the contributions of this thesis and suggests future direc-

tions for the work.
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Chapter 2

Related Work

This chapter begins with a review of some of the organizing principles of information

visualization, and I highlight recent developments that incorporate theories from the

related field of cognitive science. Inspired by MacEachren’s multi-level approach to

forming a comprehensive theory of map interpretation, I discuss results related to how

networks are perceived and integrated with high-level inference processes. After out-

lining the some of the difficulties that arise in network navigation, the existing solution

space is considered, along with specific design issues related to the use of overlays and

transparency in visualization design. Finally, options for software implementation are

reviewed.

2.1 Foundations of Information Visualization

2.1.1 Reference Models

When studying or describing a complex domain like information visualization, a ref-

erence model can help to identify the primary concepts of study, and provides a set of

common principles and language for programmers, visualization designers and users

alike [19]. The “Information Visualization Reference Model” [21] and Chi’s contempo-

raneous “data state reference model” [24] both describe a model which begins with some

set of data that is transformed between each stage in the model (see Figure 2.1). After

filtering and structuring the data, it is mapped to geometrical objects that are arranged

on a substrate. Finally, a view of the substrate is presentedto the user. The parameters
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Figure 2.1: The information visualization reference model[21]. A user conducts a visu-
alization task by interactively modifying the parameters of each of the transformations
between data states.
Data transformations Raw data is processed and organized into relations and meta-data
(graph and node/edge attributes).
Visual mappingsValues are mapped to visual structures and positioned on a substrate
(network).
View transformations The substrate is positioned, clipped and scaled to produce the
final rendered image (view). (Figure adapted from [21]).

to each transform are interactively modified by a user according to some specific task,

allowing them to choose a new sub-set of data or change their viewpoint. The similarity

between the two reference models is significant, suggestinga strong consensus.

A taxonomy imposes structure on a domain by organizing the relevant methods into cat-

egories (a comprehensive survey of information visualization taxonomies can be found

in [140]). Chi used his data states model to structure a taxonomy of information visu-

alization techniques [23]. Additionally, Shneiderman [112] classifies data into several

types and gives a list of tasks that encapsulate the high-level goals of users. On the basis

that information seeking requires selection of items that satisfy a range of values Shnei-

derman summarizes the tasks in his mantra, “Overview first, zoom and filter, details on

demand.” Ward and Yang [135] similarly define screen, data, and visual attribute spaces

and identify interaction operators such as ‘navigate’, or ‘select’. Rather than focussing

on presentation and interaction techniques others [140, 142] organize the topic from the

point of view of the user’s analytic intent, giving rise to categories such as ‘cluster’,

‘compare’, and ‘rank’.
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2.1.2 Distributed Cognition

While taxonomies and reference models are useful in generating or thinking about visu-

alization design, a fully developed theoretical model is lacking in information visualiza-

tion [75]. One review of the literature suggested that visualization designers have relied

on a ḿelange of design guidelines [30] such as Shneiderman’s mantra [112], Bertin’s

semiotics of graphics [14] and Tufte’s graphic design rules[125]. Often the theories

have focussed on the design and implementation of systems that respond to the user

through interaction.Cognitive scienceis the study of the structure and processes of the

human mind drawing together numerous disciplines including behavioural psychology,

neuro-imaging and computational modelling. A deeper understanding of cognition as it

relates to information visualization allows researchers to take a top-down perspective:

how does the user respond to the visualization system? More recent work on the prop-

erties of the human visual system and how these affect the perception of visual displays

show promising steps in this direction [101, 136].

The bottom-up and top-down perspectives are clearly not unconnected, just as interac-

tion changes the visual display, so the user’s internal state must change in response.

Liu et al proposeddistributed cognitionas a theoretical basis for information visualiza-

tion [75]. Unlike the traditional cognitive science view that cognition is internal while

external spaces are merely input that must be encoded, distributed cognition extends the

boundaries of study to include external stimuli as part of the range of cognitive resources

available to the subject, allowing researchers to considernew ways in which people co-

ordinate internal and external spaces. Liu and Stasko [76] also gave a definition of a

mental model for information visualization that encompasses the visual and interactive

properties of the external system as well as internal representations that link schematic,

semantic and item-level information about the data. They also proposed that the study

of interaction in information visualization should include three primary processes:

external anchoring is the act of locating a feature in the external image upon which

we superimpose orprojectan internal image, such as extrapolating an imaged line

(project) from a plot-line to intersect the axis mark (anchor);

information foraging involves reconfiguring and exploring a visualization; and,

cognitive off-loading means that internal working memory is transferred to the external

representation.

In his seminal book on reading and understanding maps, MacEachren [78] draws to-
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gether several theories and empirical results at multiple levels of abstraction, from low-

level perception via cognitive theories of visual reasoning, to theory of knowledge repre-

sentation. MacEachren links this top-down theory with the more traditional cartographic

approach of semiotics (this meansthat), to show how the symbols and other visual de-

tails in maps are associated with specific meaning. Inspiredby MacEachren’s systematic

approach, the following section considers some of the existing evidence onhow networks

work.

2.2 Reading and Understanding Networks

2.2.1 How Networks are Seen

Ware’s book [136] provides a thorough overview of theories and models of perception

that relate to information visualization and describes howgeneral theories of perception

such as Gestalt grouping [43] can inform visualization design. Individual perceptual

theories have been the subject of user studies specifically for information visualization,

for example Healey et al’s work [60] on pre-attentively (automatically and in parallel)

estimating the number of items in categories, where categories are delineated by hue or

orientation. Others showed that spatial arrangement is a limiting factor in the effective-

ness of pre-attentive abilities [59]. Beyond pre-attention, often referred to as pop-out,

there is no consensus on the salience of features and which are more likely to be en-

coded. May et al [82] propose a hierarchical decomposition with significant top-level

objects being composed of parts. A deliberate shift in attention requires that the viewer

must first move to a top-level object before accessing any of its consituent parts.

Purchase [98] compared different graph drawing aestheticsto see which was the most

“important to human understanding” by conducting controlled experiments measuring

time and error on basic topological tasks such as following apath between two nodes

or identifying cut-edges. Ware et al [138] found that while short paths of up to a few

nodes can be read in parallel (at a glance), bends, edge-crossing, and number of branches

all add to the cognitive cost for longer paths. They concludethat these features can be

subjected to a trade-off: estimating the cognitive cost of a38◦ bend is equivalent to one

edge crossing.

Eye-tracking studies have been conducted to understand thegaze patterns employed by

users when following paths in a network. Branching, edge-crossing, and nearby edges
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caused the users attention to be distracted from the correctpath [66] and edges incident

to a node that go in the direction of the target of a path are searched first [67]. The latter

finding contradicts previous work that found users tended tofollow paths with the fewest

turns [138]. There are currently too few controlled studiesfrom which to derive a general

theory of aesthetics and the experiments are often limited to only local, topological tasks.

2.2.2 How Networks are Understood

Figure 2.2: A brief outline of Pinker’s “Theory of Graph Comprehension.” [94]
Visual Array The image as perceived as patterns of light and dark on the viewer’s retina.
Visual Description A visual encoding process structures and constrains the visual array
according to perceptual principles (Gestalt grouping, representation of magnitude, etc.)
to generate a default visual description. What is initially perceived is limited to a few
highly salient items: an elaborated visual description is generated only after selective
attention is applied by the schema. The encoding process maybe primed to recog-
nize particular patterns, hence experienced users can recognize significant features more
rapidly than beginners.
SchemaA given visual description is compared (in parallel) with schemata in long-
term memory to find the closest match. Aschemais a memory representation that can
interpret a particular type of graph, and interface betweenthe visual description and
high-level inference processes. In response to interrogation by inference processes, the
schema translates the request from a conceptual question toa visual query and locates
the required visual information, (possibly by deploying attention in a visual search, or
interactively by navigating to a new view). Once the result is supplied via the visual de-
scription, it is translated into a conceptual message and supplied to high-level inference
processes. Responses will be fastest if the information was available in the default visual
description, without requiring the viewer to search or navigate for the information.
High-Level Inference Inference processes interrogate the schema for new information
by asking conceptual questions, and act in response to conceptual messages received
from the schema. Given sufficient importance, certain inferences may ultimately be
learned (stored in long-term memory). (Figure adapted from[94]).

In his “Theory of Graph Comprehension”, Pinker [94] draws on evidence from visual

perception and cognition to give a systematic account of howgraphs are perceived and

how visual forms are incorporated with high-level reasoning about the data. Pinker’s
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General graph schema General map schema General network schema
Pictorial content is linked
to frame position via
scales

Theme is linked to geo-
graphic position via geo-
graphic coordinates

Graph is linked to net-
work position via embed-
ding (layout) coordinates

Objects + parts described
in terms of visual variables

Objects + parts described
in terms of visual variables

Objects + parts described
in terms of visual variables

Ratios-magnitudes speci-
fied in terms of a coordi-
nate system defined by the
graph

Symbol referents specified
in terms of explicit or im-
plicit assignment in a leg-
end

Relations specified in
terms of nodes connected
by edges

Text grouped with objects
labels or specifies absolute
value of object

Text grouped with objects
labels or specifies absolute
value of object

Text grouped with objects
labels or specifies absolute
value of object

Relative position of ob-
jects specifies relative po-
sition in attribute space

Relative position of ob-
jects specifies relative po-
sition in geographic space

Relative position of ob-
jects is arbitrary

Table 2.1: General schemata for graphs (i.e. numerical plots) [94], maps [78], and a
proposed general network schema. A general schema is an internal representation that
contains the knowledge required to recognize and work with agiven class of diagram.

model is summarized in Figure 2.2. Though Pinker’s theory refers to diagrams that have

a meaningful coordinate system, in contrast to the imposed space found in networks, the

limitation only results from his choice of general graph-schema (note that Pinker uses the

term graph in the general sense of numerical plot, rather than the specific meaning used

in computer science). A general schema contains the knowledge required to recognize

and work with a particular class of diagrams. Based on Pinker’s theory, a general schema

for recognizing and using maps was proposed by MacEachren [78] which he refines to

include sub-schema for more specific representations and tasks. MacEachren’s general

map schema is reproduced in Table 2.1 and compared with a proposed general network

schema.

2.2.2.1 Internal Representations and Schemata

The structure of internal representations of space are key to understanding users’ con-

ception of external space. Pinker shows how the visual description and schema can

be described in propositional form (Figure 2.3 for example). MacEachren argues that,

although Pinker’s form contains spatial concepts (orientation and relative position for

example), meaning is only attached to those concepts through the specification of the

formal language itself [78]. He goes on to say thatimage schemataon the other hand are
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Figure 2.3: An example of a propositional form of graphical encoding from Pinker’s
theory of graph comprehension. Though expressive, the complexity of such a notation
for even the simplest scenes can be seen as evidence that an image-based internal repre-
sentation of visual stimulus is a more logical format.

inherently meaningful and there is neuro-physical evidence that map-like structures are

used and retained in the neo-cortex. MacEachren also describes anevent schematathat

contain sequences of actions for achieving particular goals.

In relation to dynamic networks that change over time Purchase suggested “preserving

the mental map” by fixing the positions of nodes was importantto promote object-

constancy, the ability to recognize a graphical object as representing the same item [99].

It was later suggested that beyond nodes, recognition of groups of features and user’s

ability to track moving targets required a more sophisticated notion of mental map [105].

Some potential types of features (symmetrical and orthogonal arrangements) were re-

cently identified as being more memorable [81].

Meaning is attached to abstract spaces (maps or other types of visualization) using

metaphors of our experiences in the real world: in schema terms, this suggests that we

may interpret a visualization using schema derived from those used to interpret and navi-

gate in more familiar, embodied situations [78, p. 196]. Studies of how people remember

and navigate in real-world spaces may reveal potentially useful insights, on the principle

that schema for navigating in abstract spaces are derived from more familiar, everyday

knowledge. Tversky [127] suggests that rather than a map-like structure, internal rep-

resentations of space are better thought of as a “cognitive collage”. Collages comprise

various representational media such as imagery, plans, andverbal-propsitional knowl-

edge, arranged in overlapping and partial hierarchies, thestructure of which is not a

precise analogue of the real-world, being incomplete and systematically distorted [127].

A coarse representation is sufficient for navigation since corrections can be made as one

progresses. The cognitive collage is similar to MacEachren’s view that a mixture of

propositional, image and event schema types are linked and instantiated in response to

perceptual cues and guided attention mechanisms.

Understanding the distortions people make in their internal spatial representations can
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lead to more effective external visual displays. A good example of how theories of com-

prehension and cognition can inform the computational design of a visualization system

is the route-map system of Agrawala and Stolte [2]. Based on the systematic distortions

people employ when giving directions, they devised a set of drawing heuristics: long

roads were shortened and minor bends removed on the rationale that these features are

of little informational value; and, angles of road junctions were increased to make them

easier to perceive as when wayfinding along roads it is the junctions that provide the

most useful information since they represent decision points. Reference points orland-

marksthat gave confirmation of progress such as bridges or junctions were preserved

where they did not interfere with junctions. Agrawala and Stolte’s maps were deliber-

ately structured to reflect the structure of the user’s internal representation, a property

Tversky [128] refers to ascongruence. MacEachren (referring to both Pinker [94] and

Bertin [14]) puts forward a similar theory that,

“information displays will be most effective when the designer uses a log-

ical schema to organize the display and the viewer employs anidentical

schema” [78, p. 210].

The theories and approaches outlined so far suggest a connection between how one’s

internal representation can inform tools for navigation inthe real world, and that un-

derstanding and exploiting similar correspondences between internal representation and

visualization structure can lead to a more efficient design.The notion forms the basis

of my approach to the network navigation problem, and these theories are referred to

throughout the remainder of this thesis.

2.2.2.2 Landmarks

Landmarks have often been proposed as a way of supporting navigation in large-scale, 3-

D virtual environments. Quinn et al considered thememorabilityof landmarks and sug-

gest that simple structures are easier to use due to their lowinformation content [100].

Vinson [132] argued that the way we navigate in, and learn thelayout of 3-D virtual

environments is analogous to those processes used in the physical world. Vinson sug-

gests the use of landmarks on the principle that they are essential when following a route

and that memories of routes are formed by linking landmarks.Survey knowledge allows

one to consider a space from any perspective and is formed as aresult of navigation

experience [127]. Adopting Lynch’s classification of navigational elements in cognitive

maps of urban environments [77], Vinson recommends including all five types of ele-
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ment: paths; edges; districts; nodes; and landmarks. (Lynch uses the term landmark to

specifically refer to objects that can not be entered such as astatue).

In proposing a definition of landmarks suitable for both “real and virtual spaces”, Sor-

rows and Hirtle [116] criticized Lynch’s classification as considering almost every fea-

ture as an equally viable landmark. Instead they defined three dimensions that a land-

mark should contain, and suggest that the type of landmark touse depends on the type

of navigation task.

Visual dimension relates to how visuallystriking the landmark is;

Cognitive dimension relates to howmeaningfula landmark is; and,

Structural dimension relates to thesignificanceof the location of the landmark.

Visual and structural dimensions are more useful in initialexploration, while navigat-

ing to a known target uses visual and cognitive landmarks. Sorrows and Hirtle [116]

also highlighted an interesting sub-task referred to asdigressionwhere landmarks along

a route are remembered as being of potential candidates for later exploration. These

findings will strongly inform the design of the navigation components proposed in later

chapters of this thesis.

While the evidence for virtual environments supports the general principle that there is a

strong link between navigation in real and virtual spaces, it is important to remember that

the user’s point of view in a network is not necessarily that of walking in an environment.

If viewing a network is more similar to the aerial view of reading a map, there is evidence

to suggest that survey knowledge is gained with reference tolandmarks and need not

include route knowledge [102].

2.2.3 How Networks are Imbued with Meaning

Text labels located close to elements in a network can associate specific meaning with

those elements and the elements themselves can be rendered as colours and shapes whose

perceptual properties immediately convey values or categories, referred to as “retinal

variables” [14]. For this thesis the scope is limited to plain, unembellished networks

yet even the spatial arrangement of nodes and edges can infermeaning. In networks,

Dengler [32] showed that conventions about the semantics attached to different align-

ments of nodes were the same for both experienced and new users (Figure 1.6). Huang
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presented evidence that nodes that are above or centred in a group are perceived as more

important [68] in social networks. Dwyer et al [37] found that ensuring the distance

between nodes was equivalent to the graph-theoretic distance produced networks that

were “preferred” by users, though users often preferred symmetry over a more effective

layout for some tasks. Recent empirical evidence showed thatusers were more likely

to notice and remember symmetrical or orthogonal arrangements of nodes than other

arrangements [81]. Layout algorithms based on aesthetics may fail to convey the mean-

ing expected by the user as discussed in Section 1.2.1.3: there is a trade-off between

concerns of aesthetics with those of semantics.

2.3 Navigation and Interaction

A taxonomy of graph tasks was drawn up by Lee et al [74] to support designers, eval-

uators, and to identify the strengths and weaknesses of existing tools. They identified

seven objects of interest to users: graphs; nodes; links; paths; connected; components;

clusters (spatially close and connected subgraph); and, groups (nodes with a common

attribute). Four groups of operations are listed that involve those objects and show how

analytic tasks can be composed of these operations. The groups are: topology-based;

attribute-based; browsing; and, overview. The browsing group is of particular relevance

to this thesis since it is composed of two navigation tasks:

follow path requires identifying and tracing sequences of links between adjacent nodes,

referred to astopological navigation[85]; and,

revisit object is not tied to topology and can be thought of as navigating thesubstrate

of the network.

I revisit this distinction in Chapter 3, where network navigation is discussed in greater

depth.

2.3.1 Cognitive Costs

Though the task taxonomy described above links topologicaltasks with the user’s intent,

different solutions to navigation may require a variety of interactions by the user. Lam

conducted a survey of information visualization evaluation literature to find reports of
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Figure 2.4: Lam’s cognitive costs of interaction framework[73], based on Norman’s
“Seven Stages of Interaction”. Poor interface design can cause additional cognitive ef-
fort, leading to three gulfs:
thegulf of formationinvolves costs related to forming high-level, conceptual goals;
the gulf of executionrelates to the cost of translating conceptual goals to system com-
mands; and,
thegulf of evaluationincludes issues around perception, interpretation, and integration
of the visual display with working memory. (Figure adapted from [73]).

the cognitive costsof interaction [73]. Based on Norman’s “Seven Stages of Interac-

tion” [92] Lam organized these costs of interaction around aframework of three gulfs,

described in Figure 2.4. As costs accumulate, the gulf between the users’s intent and the

interface presented by the visualization system grows, leading to errors and confusion.

Lam highlights seven specific areas where interaction costscan accumulate, described

briefly below.

1. Cost of forming decisions, e.g. where to explore now?

2. Cost of selecting from many system operations.

3. Cost of detecting the current system operation mode.

4. Cost of physical movements.

5. Cost of visual clutter.

6. Cost of maintaining object-association between animatedor multiple views and

cost of local-global object association.

7. Cost of visual state changes that may prevent revisiting a previously found state.
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Of particular relevance to this thesis are the object-association costs associated with

maintaining visual references using a pan and zoom interface, the cost of visual clut-

ter in comprehending the network view, and costs of forming decisions with regard to

navigating the space of the network.

2.3.2 Solutions

Comprehensive surveys of various aspects of graph visualization are available. Her-

man et al [64] gives an overview of graph layout and detailed descriptions of interac-

tion methods while more recently, Landesberger et al [134] highlight new interaction

methods and discuss layout and graph-theoretic techniquesmore suited to very large

networks. A comparative review of multiple-view, zoomable, and distortion-based inter-

faces for information visualization generally was carriedout by Cockburn et al [26]. In

the remainder of this section, a brief review of general network navigation techniques is

given, followed by more detailed consideration of solutions related directly to this thesis.

Representation and layout options were outlined in Chapter 1. In this thesis, con-

cerns of representation and layout are put aside in order to focus on how one navigates a

given network. I assume therefore, that the representationis a node-link diagram with a

layout already selected so they are not discussed further here.

Filtering reduces the amount of data to be displayed to a small subset with the advan-

tage that the final view is less cluttered. Constellation [89]limited the number of nodes

in view to enable an easily perceived layout, and allowed users to incrementally navigate

along the edges of the network, bringing a new region into view. For certain combina-

tions of task and data other topological methods can be used.Networks that contain

motifs, interesting subgraphs whose structures appear frequently in a data set, can be

filtered by searching for and extracting all instances of a given motif [133]. Filtering by

semantics ignores topology and selects nodes whose attributes (associated values) fall

within a selected range. Network Visualization by SemanticSubstrates [113] for exam-

ple, displays multiple filtered views with each view containing an attribute range, and

arcs between nodes in related views. While filtering enhancesthe perception of selected

features they do this by abandoning local-global association altogether.
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Distortion techniques distort the substrate of the network to allow more space for fea-

tures of interest while retaining some information about the surrounding context. One

possibility is to perform layout in an alternative coordinate system such as hyperbolic

space [87], that when rendered in the Euclidean plane, more space is given over to fea-

tures in the centre of the view. Sarkar and Brown [107] introduced fish-eye views of

networks that magnify one or more regions of the view to provide multiple foci while sur-

rounding context is scaled down. A continuous scaling function means that the change

between focus and context regions is smoothed rather than abrupt. The main difficulty

with distorted views is that the features may be unrecognizable, or even not visible at all,

depending on where in the focus or context region they lie, and the weight of evidence

is that this prevents any expected performance benefit [26].One way to combat this

problem is to ensure the scale of important features is sufficient to guarantee they are

visible [90].

Overview and detail uses multiple views at varying levels of scale with the aim of

locating the current detail view within the overall context. Multiple views use addi-

tional screen real estate and requires additional effort toform local-global association

between distinct views [26]. It was also suggested that the maximum scale difference

between views should be limited to allow better recognitionof features rendered at dif-

ferent scales [21].

2.3.2.1 Clustered Graph Visualization

The approach taken in this thesis is related to the visualization of clustered graphs in

that they both seek to derive a visual abstraction of the datathat can act as an overall

framework for navigation. Clustered graph visualization refers to a set of techniques

for representing an hierarchical abstraction of the underlying graph, with clusters or

subsets of vertices treated separately. Suitable abstractions must either be present in the

graph data or induced algorithmically. Abello et al [1] generated a hierarchy of clusters

using an algorithm that forms clusters based on the density of subgraphs. Their rationale

was to direct users to areas in the network of greater structural complexity. Use of an

algorithmically-induced hierarchy was required by the size of graphs involved, but in

response to feedback the authors added the ability to annotate nodes, helping users to

revisit specific areas of interest.

Clustered graph visualizations hide topological detail, sointeraction tools are usually
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provided to open or enter clusters for closer inspection [40]. The exploration process

can be streamlined by having the cluster provide perceptualor other clues as to what it

contains, often referred to as “scent” or “residue” [49]. Herman et al [63] addressed the

simpler problem of tree visualization, using the Strahler metric to replace sub-trees with

schema triangles, and applying the metric to edge-width as avisual hint to the complex-

ity of sub-trees. Plaisant et al [95] provided a thumbnail representation that gives a low

definition overview of the structure of clustered sub-trees. More recent work dealt with

providing visual cues in clustered graphs, for example Balzer and Deussen [7] repre-

sented clusters using implicit surfaces that mimic the shape of the contained subgraph at

various selected levels of detail.

2.3.2.2 Zooming

In zooming interfaces users manipulate the scale of the view, zooming in to perceive the

fine details of individual nodes and edges, and zooming out togain a coarser overview.

Coupled with the ability to pan, this gives users complete freedom over their point of

view of a network. Furnas and Bederson [50] provided a useful conceptual model for

understanding pan and zoom interaction in their “space-scale diagram” and applied it to

the calculation of shortest-path trajectories between points in zoom-space.

“Desert fog”, the problem of having no visual cues on which tomake a navigation deci-

sion, was introduced by Jul and Furnas [70] in an analysis of navigation in zoom-space.

In contrast, “critical zones”, are contiguous regions in the current view where zooming

in is guaranteed to contain information. Jul and Furnas [70]presented algorithms that

compute all the possible views that contain at least one critical zone, and display them as

rectangular outlines in an overview. When no critical zones are visible, i.e. desert fog,

the simplest recovery strategy is to zoom out until one appears.

A second problem related to pan and zoom interfaces is that oftemporal frame associ-

ation [73]. As the view changes the user must expend cognitive effort to track objects,

particularly when the objects move or change appearance [26]. Animated pan and zoom

smoothly transitions from one view to the next to allow the user to track objects without

the effort of interacting [131]. Despite being a passive viewer, users form mental maps

from watching animated transitions [26].
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2.3.2.3 Topological Navigation

In networks the critical zones can be thought of as any view ofthe substrate that contains

nodes/edges.Topological navigationlimits movements to the nodes and edges of the

network. Assisted viewpoint finding and data-aware pan and zoom techniques have

received much attention in the 3-D visualization literature, though techniques specific to

graph visualization have now begun to emerge, Ahmed and Eades 3-D graph system [3]

being an early example. In 2-D space, techniques such as link-sliding [85] allow users to

quickly move to adjacent vertices by selecting an edge to follow. This method has been

shown to work well in applications where the semantics and topology of the network

are closely related, such as the tree-like structures of genealogy diagrams where edges

represent parent-child relationships [15]. In the CGV system [123] panning along edges

was augmented by an on-demand preview of all adjacent nodes,including those that are

not in the current view. Topological navigation was combined with a degree-of-interest

function to show only the context around a specific node of interest, providing the means

to iteratively explore graphs where an overview is too largeto display [130].

2.3.2.4 Off-Screen Visualization

Like the perceptual cues provided by clustered graph visualizations, visual cues as to

the existence and extent of off-screen information are widely used. The scrollbar is

a ubiquitous 1-D example; ‘sunken’ sections represents an entire document, while the

raised widget show the user’s current position relative to the overall content. This idea

inspired City Lights [141], a variety of techniques to project off-screen objects on to

the screen borders to indicate parameters such as direction, distance and identity, in the

context of a street map application for small-screen devices. The Halo method [12] and

later Wedge [55] built on this, both draw a simple shape around off-screen features that

protrudes in to the view to give a perceptual hint about the distance and direction to

nearby points of interest. WinHop [93] is a method that combined Halos to indicate the

existence of off-screen targets, with automatic panning toa selected target. As with the

all the techniques discussed so far, the method was implemented to support only a small

number of off-screen targets as the shapes soon begin to overlap and create additional

clutter.

A more scalable approach to dealing with off-screen features is to place aproxy rep-

resentation of each target on to a second substrate displayed around the edges of the
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network drawing, an idea first proposed in EdgeRadar [56]. Frisch and Dachelt [47] ex-

tended the design space of proxy-based off-screen visualization in the context of UML

diagrams. Underradial projectionthe proxy appears on a line drawn from the centre of

the display towards the centre of the off-screen feature. They highlighted the problem

that using the edge of the view restricts the proxy space to one dimension, hence proxies

can easily overlap. Also there is a perceptual discontinuity at the corners of the display

as the proxy flips from one edge to the other, in other words, the 1-D display space is

distorted with respect to the projection space. Anorthogonal projectionis especially

limiting, as a large proportion of the off-screen space mapsto the corners of the display.

They suggested rounding off the screen corners to reduce theeffect of distortion and pre-

sented several methods for stacking and merging coincidentproxies, effectively creating

a 1.5-D space. The design space of off-screen visualizationis discussed further, and a

new technique is proposed that addresses issues of distortion and cluttering in Chapter 4.

2.3.2.5 Visual Levels

The creation ofvisual levels, overlapping surfaces or groups of objects that can be at-

tended to individually [78], is an important facet in the design of cartographic maps. Fol-

lowing a hundred and fifty years of advances, the ability of cartographers to create maps

with multiple layers of information has enabled high information densities without sac-

rificing readability, as can be seen in Figure 2.5. The effecthas received little attention in

the information visualization community, although it was recently suggested as a method

for managing attention in visual displays [101]. In the related area of set diagrams, con-

tributions often focus on accurate representation of set membership (e.g. [27]), but must

depend upon user perception to separate the two representations (items and sets) based

on hue, shape, transparency, or Gestalt grouping.

A transparent overlay is one way that visual levels can be created. An exploratory study

of a system for a civil engineering application showed that users could efficiently dif-

ferentiate between two visually dissimilar layers when theoverview was drawn as a

semi-transparent overlay on top of the detail view [29]. Stone and Bartram [121] con-

sidered the effects of transparency on black and white reference grids, with the aim of

drawing grids that were “legible, but not obtrusive” (see Figure 2.6). They later showed

that when colour was introduced, red grids were as salient asblack grids, but blue grids

were less salient, hinting at a complex relationship between transparency and colour [10].

Stone and Bartram [10] also suggested thatx-junctionsformed between the boundaries
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Figure 2.5: Careful creation of visual levels allows the cartographer to overlay sev-
eral classes of information while avoiding clutter. This figure shows a comparison of
map-making technologies from c.1850 with a contemporary design at the same scale.
(Copyright Ordnance Survey, used with permission).

Figure 2.6: By testing reference grids rendered at varying levels of opacity, Stone and
Bartram found that with an alpha of 0.4, the grid remains “legible, but not obtrusive”.

of transparent objects provide an important perceptual cue, allowing the visual system to

resolve ambiguous overlap of transparent regions. Visual levels and transparency issues

become relevant in later chapters, where the design of an overlay is presented as a means

of imbuing a network with additional navigation information.

2.4 Software Tools

Software tools for network visualization can be seen as forming a continuum, from li-

braries that provide only data and algorithm structures with no direct support for visual-

ization, through modular systems, to plug-in based and monolithic applications specif-
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Figure 2.7: Examples of software tools to support network visualization implementation.
The range spans fixed tools that though lacking in flexibility, can produce results quickly,
to libraries of graph data and algorithm structures. In the middle lies a range of modular
tools which can be quickly composed, and also provide support for customization.

ically designed for network visualization. Figure 2.7 shows a selection of exemplars.

While basic graph libraries such asBoost Graph Library (BGL)[115] andOpen Graph

Drawing Framework (OGDF)[25] provide many useful graph-theoretic features and

layout algorithms, a great deal of flexibility is afforded inhow those structures can be

represented visually. The trade-off for such flexibility isthat the visualization designer

must implement the graphics and interaction functions themselves. At the other end of

the spectrum the static drawing packageGraphViz/dot[52] provides a good selection of

node and edge layout algorithms, in addition to a simple graphical language to create

detailed designs, but lacks the architecture to provide efficient, dynamic interactions.

CGV [123] is a monolithic application that provides many network navigation and inter-

action tools ‘out-of-the-box’, leaving the user to decide which tool is appropriate for a

given task. Simililarly, libraries of fixed visualizationssuch asInfoVis Toolkit[45] leave

the choice of representation to the user, and are constrained to a small number of fixed de-

signs. Network visualization specific frameworks, for exampleGephi[11] andTulip [6],

provide a high-level application programming interface toprovide data structures, al-

gorithms and abstractions to support common interaction tasks. In this way these tools

provide some ability to customize the design of an application through object-inheritance

or plug-ins, but lack direct support for non-network visualization without extending the

framework itself. Between these extremes lie modular tool kits for general visualization,

including Prefuse[61], Visualization Tool Kit (VTK)[109], andd3 [16]. The benefit
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of modular tools is that they provide both a range of existingcomponents that can be

quickly composed to form a new design, while also providing the necessary application

programming interface to create customized components.

VTK stands apart from the other tools mentioned in this section in that it was originally

designed specifically to support scientific visualization.Despite the traditional distinc-

tion between scientific and information visualization there is evidence that the gap is

closing. Duke [36] demonstrated that a scientific visualization pipeline could be adapted

to support graph visualization and graph data types and other support for information

visualization has since been added to VTK [139]. To support the research for this thesis

I implemented a network visualization application using the VTK platform and added

an overlay of navigation tools, the design of which is described in subsequent chapters.

Chapter 6 contains a more detailed description of the VTK platform and I discuss my

experiences of using the pipeline paradigm in an highly interactive visualization system.

2.5 Summary

In the first part of this chapter I reviewed the foundational principles of information vi-

sualization such as reference models and taxonomies, and found a recent trend towards a

distributed approach where internal, cognitive models andexternal models of visualiza-

tion are combined to provide a more complete picture. Towards a more thorough under-

standing of network comprehension in particular, I drew together perceptual evidence

and cognitive theories from the domains of information visualization and cartography,

and highlighted a connection between internal processes used in real-world navigation,

and those employed in more abstract visual domains, suggesting landmarks as a potential

method of improving congruence between internal and external representations.

In the second part some cognitive difficulties associated with navigation were identified,

noting in particular costs of object-association, visual clutter, and, of forming navigation

decisions. This led to a review of the existing solutions including clustering, off-screen

visualization, and more recent work on topological navigation. I also considered the

concept of visual levels as a method for adding additional overlays of information while

avoiding clutter.
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Chapter 3

An Overlay of Landmarks for Network

Navigation

This chapter begins with a proposed model of network navigation based on the concept

of landmarks. Implicit landmarks arise naturally from the arrangement of features in

the current view, but lack the important properties of stability and semantic content. To

counter these problems I propose a definition of explicit landmarks that may be over-

laid upon the network to control the user’s deployment of attention in a manner that is

more efficient for navigation. Based on this model I go on to describe the selection and

depiction of landmarks in order to maximize their utility.

3.1 Theoretical Model

3.1.1 Implicit Landmarks

As a starting point consider Lynch’s theory of landmarks in urban environments, where

every feature is a potential landmark [77], referred to in this thesis as animplicit land-

mark. In networks this equates to the possibility that at any one moment, a node, edge,

or a group of nodes and edges, may act as a landmark, suggestive of a space containing

combinatoric implicit landmarks. In scale-space the situation becomes more compli-

cated, as the user modifies the view, different features become recognizable. Though

scale-space is technically infinite, it can initially be bounded by the extremes of what

the user is likely to view. At one extreme the entire network occupies the view (usually
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referred to as an overview) and so zooming out further only serves to make the network

appear smaller. At the other extreme, the user is unlikely tozoom in past the point where

fewer than one or two edges are in view.

Furthermore, as suggested by Pinker’s theory of graph comprehension [94], not every

visual object within view is actually comprehended. Perceptual principles serve to limit

the number of visual objects that become encoded and form part of the user’s schema

or internal representation. In particular, pop-out limitswhat is initially seen to striking

features that contrast strongly with their surroundings. An hierarchical model of view

decomposition [82] suggests that following pop-out, high-level features are recognized

first, and access to individual items only follows if attention is deliberately directed to

them. Thereforesalienceis likely to be a key factor in which potential implicit landmarks

are actually encoded and used.

Unfortunately, the resulting implicit landmarks can not beguaranteed to assist the user

in recognizing features, as the effects of graph layout do not take semantic informa-

tion into account. Sorrows and Hirtle suggested a more refined model of landmarks in

the context of both real and electronic spaces [116]. According to their model the im-

plicit landmarks described so far arestriking (i.e. salient) andstructural, but to navigate

successfully the landmarks should contain acognitivedimension, with the benefit that

top-down knowledge can prime the visual system to recognizeobjects that one would

expect to see, given sufficient experience in a given domain.Priming of the visual sys-

tem leads to faster recognition of significant features, andincreases the likelihood that

those features are encoded into the visual description, andhence available in the user’s

schema. Given sufficient exposure the availability of meaningful features may induce

learning, adding the features into longer-term memory structures.

3.1.2 Explicit Landmarks

Due to the limited capacity of the visual system (only a few objects are available in the

visual description at any given moment), and the uncontrolled way in which implicit

landmarks may be recognized, it seems unlikely that useful navigational references will

be comprehended by the user. Moreover, as the user moves around in scale-space, the set

of landmarks available is subjected to frequent changes. Instead I propose that the addi-

tion of explicit landmarksin a controlled manner will provide a stable, and recognizable

set of features, upon which to anchor the movements in scale-space.
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To satisfy the requirements for explicit landmarks I suggest they must have the following

properties:

Salience to ensure that attention is initially directed to explicit landmarks before the

underlying network, thus overriding the encoding of implicit landmarks; and

Meaningful and significant so that user can more easily identify the conceptual content

of features, and link them with their internal representation.

Note that a feature can be formed by more than a single node or edge, asconnectedsub-

graphs (or motifs) can represent expected configurations ofindividual relations. There-

fore I define anexplicit landmarkas a connected subgraph that represents a significant

or familiar unit of knowledge, overlaid upon the network with the aim of improving

congruence.

In the remainder of this chapter I introduce the design of meaningful landmarks that aim

to improve congruence: alignment of the user’s internal spatial mental model with the

meaning encoded in the graph. The alignment effect is achieved by highlighting explicit

landmarks in the network. I have defined anexplicit landmarkas a connected subgraph

that represents a significant or familiar unit of knowledge,in contrast to theimplicit

landmarksthat result from the placement of edges and node-grouping introduced by the

choice of layout algorithm, and while useful for navigationcannot be guaranteed to relate

to the meaning of the underlying network. To create meaningful explicit landmarks there

are two principal concerns:

• What is a landmark? That is, what features in the dataset meet our criteria for a

landmark and, of these candidates, which are selected for representation?

• Given a well-principled selection of landmarks, how shouldthey be depicted to

maximize their operational utility? Specifically, how do webalance salience against

occlusion of the primary network display.

These questions are addressed in the following sections.

3.2 Landmark Selection

To serve the dual purposes ofsignificanceandutility an appropriate choice of landmarks

depends on several factors.
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Figure 3.1: A network without explicit landmarks. Attention is guided by the salience
of features that arise from topologically-based graph layout.

Figure 3.2: A network with explicit landmarks. The landmarks override the salience
of the underlying network, guiding attention to significantsemantic units within the
network.
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Domain What are the significant features in the domain?

Network semantics Of the domain-significant features, which appear in the dataset and

how frequently?

User Of the features available, which are likely to be most usefulto the user? For

example, are there at least some features which will be immediately recognizable

to the user?

Analysis task Does the nature of the user’s analysis task require certain features to be

made explicit?

Network size Clearly, the larger the network, the more landmarks can be included. A

balance should be sought between too many landmarks which reduces their indi-

vidual significance, and too few so that their effect is only active in a small part of

the network.

Network layout The layout of the network directly influences the placement of land-

marks. Some consideration should be given to how the resulting visual landmarks

are distributed throughout the network and, where possible, avoiding the two ex-

tremes. All landmarks concentrated in one area reduces the utility of the land-

marks by restricting their physical reach in the network. A uniform distribution of

landmarks across the network increases cognitive load by limiting opportunities

for “chunking” of landmarks: a group of landmarks itself forms a recognizable

landmark, helping to distinguish larger regions of the network.

There is no algorithmic method to match the salience of features to specific tasks, and

given the general nature of the landmark selection problem it is not possible to be pre-

scriptive but a set of heuristics may provide some guidance.To summarize therefore, an

ideal choice of landmarks would:

• provide a high-level semantic summary of the network;

• link useful and recognizable features in the network with the users existing knowl-

edge;

• be ‘nicely’ distributed over the network display, and;

• be neither too few nor too many.

These guidelines are subject to a trade-off, for example oneshould not sacrifice an aes-

thetically efficient network layout in exchange for an ideallayout of landmarks. For
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example, if the nature of the domain/task is such that the landmarks are concentrated in

one area then this in itself may provide a fact about the content of the network.

In the following paragraphs I describe four possible methods of selecting landmarks and

which to use is largely determined by the properties of the graph data. Motifs and metrics

rely only on the topology of the graph, which in the case of a homogeneous structure

such as a lattice, balanced tree, or fully-connected graph,gives little insight into local

regions of the graph (all subgraphs have a similar topology). Semantic analyses depend

on the availability of suitable attributes on the nodes and edges of the graph.

3.2.1 Motifs

Network motifs are defined as “patterns of interconnectionsoccurring in complex net-

works at numbers that are significantly higher than those in randomized networks.” [84].

Motifs represent the “basic building blocks” of the networkthey are drawn from. Analy-

sis using motifs has been successfully applied to many phenomena that can be modelled

as a graph, such as gene-regulation networks, molecular composition, and the hyperlink

structure of the World Wide Web (again see [84] for a longer list of examples) where

the topological structure of the graph provides useful insights. Landesberger et al [133]

introduced a network visualization system where motifs could be defined interactively

and then used as a basis for searching, filtering and clustering the network.

3.2.2 Metrics

Metrics are distance measures calculated from the topological structure of a graph and

may be applied to graphs, subgraphs or individual nodes and edges. An example is

node-degree: the number of edges incident to a given node. For the purposes of select-

ing landmarks it is important that the chosen metric reflectsimportant domain-related

information. In a hypertext network for example, Mukherjeaand Hara [86] select land-

marks based partly on the in-degree of a node, on the basis that important web-pages

have many hyper-links pointing to them. Once metrics have been assigned to the ele-

ments of the graph a threshold may be used to select those elements which will be used

as landmarks.
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3.2.3 Semantic Analysis (node and edge properties)

Clearly some form of domain analysis and model is a necessary prerequisite for any

visualization that attempts to incorporate domain semantics. Data mining and machine

learning techniques assist in automating this modelling process, just as they do in the

generation of ontological models (see e.g. [80]). However in small domains it may be

possible to conduct a manual analysis to generate an appropriate set of candidates. I

describe an example of such a process in Section 5.1, taken from earlier work in the

specific domain of software memory visualization [91].

3.2.4 Annotation

Annotations are graphical marks added by the user, saving working memory resources

by replacing the cognitive effort of remembering with a simple visual search task. The

annotations serve to locate “chunks” of knowledge in the display, and provide com-

mon points of reference that can be easily revisited or shared amongst collaborators.

In recent years there has been a trend towards architecturesand standards to support

the analysis process by specifically aiding the discovery, recording and coordination of

analysis artefacts. For example a W3C recommendation [106] defined extensions to web

services schemata that allows items to be imbued with meta-level semantics by linking

to ontologies. Shrinivasan and van Wijk [114] proposed a framework to support visual

analytic reasoning that defines three separate views: a primary data representation; a

visual representation of the exploration process; and a knowledge view to coordinate

analysis artefacts. The landmarks as described in this thesis can act as annotations that

are overlaid upon the primary data representation to form a combined view.

3.2.5 Hybrids

Annotation is a useful adjunct to the previous methods with for example, metrics provid-

ing an initial spatial reference framework for exploration, and annotations being added

during exploration. Other hybrid methods are possible, in the hypertext example cited

earlier [86] a composite formula is used to take account of structural importance in ad-

dition to the attributes of individual nodes with the resulting landmarks being used to

select and highlight areas of significance. A further possibility is to take a user-defined
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Figure 3.3: Styles of drawing contained sets. Lines joiningset members have a similar
appearance to network edges and introduce an ordering of nodes (left); contour lines
avoid the ordering effect (centre); filled contours avoid ordering effects and provide
good visual contrast with the network edges to form a separate visual level (right).

annotation as the definition of a motif (structure) or landmark class (structure plus labels)

and automatically highlight other instances of that class in the network [133].

3.3 Landmark Depiction

The primary design goal is for the overlaid landmarks to besalient (to promote rapid

acquisition) whileavoiding occlusionof the underlying network. Examples of visual-

izations that highlight subsets of nodes in a network are common [5, 20, 27, 103, 118].

These works focus on accurate set containment while attempting to maintain interac-

tive running times and use contour lines, filled contours, orjoining lines to indicate set

membership (see Figure 3.3). Of these methods only filled contours avoid becoming

confused with edges of a network and provide sufficient shapeand colour contrast with

the network to form avisual level. The existing designs avoid occluding the primary

display by placing the landmarks underneath the primary display with the effect that in

a network with many edges, the contours themselves become occluded with the result

that salience is lost. The use of a semi-transparent overlayand careful attention to the

creation of visual levels as described here allows the contours to be drawn on top of the

network without causing occlusion.

Since the purpose of landmarks in this case is to merely draw attention to the correct

region of the display I relax the requirement for strict set-containment. I also use an

overlay so that the landmarks may remain visible regardlessof the density of the network

and use transparency to allow the network to be read. Visual levels are formed as the

overlay contrasts with the underlying network in both shapeand colour, allowing the

user to attend separately to the network or the landmarks.
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The purpose of explicit landmarks is to locate meaningful subgraphs in the display. The

visual encoding therefore must indicate both what and wherethe landmark is, more

formally:

identity the knowledge artefact that is represented by the landmark;and,

membership the graph elements that comprise the landmark.

3.3.1 Identity

Textual labels alone give an approximate indication of landmark location but do not con-

vey membership, size, and shape. Nor do they form a visual level, being easily confused

with vertex or edge labels. Instead colour is used to either categorize or order the land-

marks depending on whether the landmarks were selected by class or by metric value

respectively. BrewerColor [18] provides convenient sets of colours for this purpose with

variation in hue suitable for categorized landmarks and variation in saturation denoting

an ordered set.

3.3.2 Membership

Drawing a filled contour around members of a subgraph is subject to a number of prob-

lems in general. One must avoid including non-members despite the vagaries of the

graph layout algorithm. And where the subset is disconnected, additional marks or

colour-based encoding must be introduced so that the set maybe perceived as a whole.

By restricting landmarks to a connected subgraph the latter issue is removed entirely. In

the case of the former, I relax the requirement for strict set-containment: the purpose of

the landmark is fulfilled even if non-members are accidentally included since its mem-

bers are located and attention is drawn to that region of the network. A hierarchical

theory of display decomposition [82] suggests that attention is first deployed to the top-

level visual structure, the constituent parts only being attended to if the group becomes

the focus of attention: for visual search tasks the top-level objects are key. Therefore I

take the simple approach of drawing the filled convex hull of the landmark’s vertices.

In early prototypes of the design I rejected two other approaches: 2.5-D tubes drawn

along the edges contained within the landmark show accurateset-containment but pro-

vide little salience (they simpler cover fewer pixels) and were of no use in the case of a



46

landmark containing a single vertex; and, implicit surfaces were found to be relatively

slow to compute and required careful parameter selection given the wide variation in the

bounds of the input coordinates (i.e. the output of different layout algorithms). Recent

implicit surface techniques such as BubbleSets [27] providea near-linear approximation

that correctly contain each set however, such methods require the entire network to be

rendered. The simplified approach I describe here only requires the position of member

vertices as input with the advantage that filled hulls can be calculated in an early stage

of the visualization pipeline, immediately following graph layout.

3.3.3 Visual Levels

The overlay is rendered with alpha-blending to reduce occlusion of the network and to

assist in creating the visual layer effect. Following Stoneand Bartram’s advice [121] on

rendering reference grids an opacity of 40% was initially used, though this was found to

be insufficient for the lighter hues with 50% being more easily perceived. With respect to

the use of colour and transparency together, Stone and Bartram suggest there is a more

complex interaction [10], and it was noted that landmarks inthe overlay did not have

equal contrast with the substrate. A useful advance here would be to adjust the alpha

value of each hue so that they appear equally salient.

3.3.4 Guaranteed Visibility

Prerequisite to the provision of salience is the issue of visibility: the landmarks must

be drawn sufficiently large for them to be seen. A problem highlighted in Munzner

et al’s TreeJuxtaposer [90] is that graphical objects may beculled by the rasterization

process if they subtend less than the size of one pixel. Occlusion may also occur such

that fragments of the landmark may not be written to the framebuffer. To overcome

this TreeJuxtaposer artificially scales landmarks so that rendering to the frame buffer is

guaranteed.

Beyond ensuring that the landmark is actually rendered to thedisplay several additional

factors must be taken into account to ensure that the mark is large enough to be seen:

• the density of the network as edges and nodes ‘compete’ for salience;

• the pitch and resolution of the display, i.e. the physical size of each pixel; and,
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Figure 3.4: By fixing a minimum size in pixels for landmarks, they remain visible at any
scale. In this figure the same landmark is shown at three different levels of scale.

• the visual acuity of the user (in concert with environmentalfactors such as light-

ing).

Where necessary we correct for this problem by scaling landmarks to guarantee a minimum-

size bounding box (measured in pixels in bothx andy directions). The landmark retains

its original centre position and shape so it is still identifiable. As the user zooms in, any

distortion is reduced until the on-screen dimensions of thelandmark equal the required

minimum. The minimum size is set initially to 30 pixels for a standard resolution 1680

x 1050 desktop display (approximately 3%), and can be configured interactively accord-

ing to the user’s individual preference. One case remains problematic: long, thin convex

hulls are prone to invisibility and may appear excessively distorted when scaled.

One further problem occurs when the display can be panned as landmarks may no longer

appear in the display as a result of frustum culling. This issue is dealt with in Chapter 4.

3.4 Landmark Management

The CoronaScope application includes a user interface so that users may activate sets of

landmarks in response to changing task demands. A colour is associated with each set of

landmarks and to assist the user in choosing sets of colours that provide a perceptually

efficient range, several palettes from the ColorBrewer [18] tool are provided. Broadly

there are two types of colour palettes: varying hues are usedfor nominal data; and,

varying saturation is used to indicate a quantitative range. In the former case, hues that

are easily separated and consistently named are used, to assist the user in remembering

the otherwise arbitrary relationship between colour and class [137]. A property sheet

displays the colours and the names of landmark sets associated with them, acting as a

legend similar to those found in geographical maps (Chapter 6contains further details).
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In Lam’s cognitive costs of interaction framework [73], sheconsidered the need to sup-

port reflective cognition, allowing users the time to compare and contrast different hy-

potheses about the data. Furthermore, Lam provides evidence that interfaces that support

refinding a previous state in a visualization encourage users to explore more, and goes on

to suggest that allowing users to save the state is an important design consideration. The

CoronaScope toolbox provides the means to save and load sets of landmarks in XML

format so they can be reused between sessions, and to supportcollaboration between

users (again see Chapter 6).

3.5 Summary

In this chapter I began by considering a network in scale-space as a combinatoric collec-

tion of implicit landmarks, constrained by the limitationsof low-level perceptual mecha-

nisms including the deployment of visual attention. To counter the problem that implicit

landmarks in networks arise from topologically-based layout algorithms, and are unsta-

ble as the user moves around in scale-space, I proposed explicit landmarks with particu-

lar properties that ensure they are recognizable, and manipulate the viewers deployment

of attention in a positive way. Based on the theoretical grounding I went on to set out

several ways of selecting landmarks in a network that attempt to maximize the dual aims

of providing useful navigational reference points and forming an explicit link between

the user’s existing knowledge of key high-level concepts inthe domain and their loca-

tion in the network display. I explored the design space of landmark representation in

networks and suggest that coloured convex hulls provide therequired effect provided the

constraint of strict set-containment is relaxed. The use ofshape and colours that contrast

with the points and arcs of the network drawing creates a distinct visual level which,

coupled with semi-transparency, avoids occlusion of the primary display of the network

while maintaining a suitable level of salience.
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Chapter 4

Landmark Awareness in Scale-Space

Simple, camera-based pan and zoom is useful in network visualization as a means to

access both overview and the fine details of the network. The consequence of zooming

in on a network is that, while a small area of fine detail is madereadable, the global nav-

igation context is lost. Significantly, any explicit landmarks added to the network may

no longer be visible within the view since they are off-screen. To overcome this kind of

problemoff-screen visualizationmethods add navigational cues to the current view that

indicate the presence and location of features elsewhere inthe network. In this chapter

I survey the design space of existing off-screen visualization, then propose a new tech-

nique that addresses problems of distortion and visual clutter. The new method, known

as “CoronaScope”, is then extended to provide specific support for two key tasks: fol-

lowing paths in the network that extend beyond the current view; and, revisiting features

of interest.

4.1 Design Space of Off-Screen Visualization

Off-screen visualization refers to the set of techniques for providing visual cues that

inform the user of important information that is not currently within the view. Such

techniques are potentially useful in concert with pan and zoom so that when the user has

focussed the display on one part of the scene, awareness of the global context can be

maintained and it becomes possible to directly navigate to points of interest. Instances

of off-screen visualization are common in document-based applications where distortion

methods would make text unreadable. The Eclipse programming environment [41] for
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example uses an enhanced scrollbar widget with annotation marks that indicate the po-

sition of significant features such as to-do comments and syntax errors. The annotations

can then be used to rapidly navigate to the marked location.

In a survey of off-screen visualization designs very few methods specific to 2-D network

applications were found so the scope was expanded to includea number of systems

aimed at using urban maps on small-screen devices that include a pan and zoom interface

and have a similar aerial view of the substrate. As positive results in user studies have

been reported [56, 93] in the context of both networks and maps, the technique warrants

further investigation. This review highlights three aims of off-screen visualization:

1. enable the user tolocatean off-screen feature with respect to their current view;

2. enable the user toidentifyan off-screen feature without navigating to it; and,

3. be displayed in such a way that the main view is not obfuscated.

In the remainder of this section the existing design space isdescribed in terms of these

three aims. A summary of the designs reviewed (including references) can be found in

Table 4.1. Screen shots comparing implementations of the main techniques are given in

Figures 4.1 and 4.5.

4.1.1 Locate: Distance and Direction

Visually locating an off-screen feature from within the current view requires a represen-

tation of the direction and distance to some target. I identified two main methods for

doing this:

1. draw a shape around the target that protrudes in to the view; and,

2. draw an object in the view that points to the off-screen target.

Amodal completion refers to the perceptual principle that a viewer may mentally

complete cropped figures and interpret them as simple geometrical objects (see Fig-

ure 4.2). The Halo [12] system uses a circle centred about thetarget so the user must not

only complete the shape, but also interpolate the centre of the circle to locate the target

thus incurring significant cognitive costs. Wedge [55] simplifies the task by co-locating

the off-screen point of a triangle with the target. In both cases, the viewable portion of
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Figure 4.1: Comparison between amodal-based methods of off-screen visualization.
Halo (left) and Wedge (right) locate off-screen landmarks using amodal completion.

the shapes can be compared with each other to quickly estimate the relative distance be-

tween objects. Figures 4.3 and 4.4 show how the amodal shapesare drawn with respect

to examples of off-screen targets.

Proxy methods add items to the view that act as an on-screen representation of some

off-screen target. The simplest method uses part of the edgeof the screen as a scaled-

down view of the off-screen parts of the network, though thatmethod has limited scal-

ability as the off-screen representation soon becomes too cluttered to discern individual

items.

More sophisticated methodsproject the off-screen target into the view along a defined

path. Figures 4.6 and 4.7 illustrate the idea, with a proxy being placed anywhere along

the line of projection. The principle is that users can mentally reconstruct the line of

projection and thus the path along which the off-screen target lies. An obvious limitation

Figure 4.2: The principle ofamodal completion: simple, cropped figures can provide the
anchor structure required to mentally project the hidden part of the shapes.
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Figure 4.3: In Halo [12] a circle is drawn, centred about eachoff-screen target. This con-
figuration requires the user to both project the circleandestimate the centre point. The
white area in the centre of the diagram is the current view while the grey box represents
the bounds of the network. Two off-screen targets are shown as black points.
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Figure 4.4: The Wedge method [55] uses a triangle whose off-screen point is co-located
with the target. Unlike Halo in Figure 4.3, the user does not need to estimate the centre
of the shape.
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Figure 4.5: Comparison between proxy-based methods of off-screen visualization. Bor-
derScope (left) and CoronaScope (right) use proxies that point to their off-screen coun-
terpart.

of orthogonal projectionis that there are significant areas of off-screen space whoseon-

screen location is undefined, the simplest solution being todedicate the corners of the

view to these spaces, though this can rapidly lead to clutter. Furthermore, the movement

of proxies as the view is panned around the network is not smooth as proxies appear to

‘stick’ at the corners.Along-edge projectionis a form of orthogonal projection used in

networks where proxies are placed at the edge of the view, at the point where the graph-

edge that links the off-screen target intersects the edge ofthe view. Frisch et al [47]

explore this idea more deeply and present several schemes for dealing with the problem

that the off-screen target is not necessarily in line with the edge along which the proxy

is placed.

Underradial projectionthe entire off-screen space can be represented equally withno

distortion, though there is still a tendency for proxies to clutter the corners of the view.

The solution often employed in this case is to round off the corners of the view to provide

more space to fit proxies in those regions.

4.1.1.1 Additional Distance Encoding

Some methods display only a limited indication of distance,for example RadarView [123]

groups proxies around two concentric circles to give a coarse representation of near and

far targets. In addition to encoding the distance to the target using the length or position

of the proxy/amodal shape, some methods [12, 55] also reducethe opacity as target dis-

tance increases. Choosing this type of encoding over more obviously ‘spatial’ methods
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Figure 4.6: Orthogonal projection of off-screen features.A proxyof an off-screen target
can be placed anywhere along the line of projection, pointing towards the target. Targets
that fall within the regions of the network in the four corners of the off-screen area
(shown here in grey) have no line of projection that intersects with the view.
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Figure 4.7: Radial projection of off-screen features. A proxy of an off-screen target can
be placed anywhere along the line of projection, in the direction of the target. The origin
of the line of projection can be at the centre of the view as shown here, or may be taken
from the current cursor position. Using radial projection,all off-screen regions can be
represented within the view.
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seems counter-intuitive, adds complexity, and uses additional perceptual dimensions that

could be used to encode other attributes.

4.1.2 Identity

Hue, text labels, and appearance (shape) have all been used to signal the identity of a

proxy object. A significant advance was “Dynamic Insets” [53] that aid identification by

providing an image of the off-screen target and its surrounding context. Each proxy was

interactive, using the same modes as the main display so could be zoomed as required.

The technique seems to work well in map-like applications since the high density of

graphical marks usually provides sufficient context. However, it is not clear how this

technique extends to networks as the availability of usefulcontext cannot be guaranteed

while keeping the intended target object visible at a reasonable scale.

4.1.3 Visual Design

In the amodal completion methods there is little flexibilityin the overall layout, unlike

proxy-based methods which allow some freedom over where in the line of projection

to place the proxy objects. Also, under radial projection one must decide where in the

view to project from, the centre of the view or, the current cursor position. The latter

option is more suitable when the off-screen representationis presented on-demand as

continuously moving and updating the location of the proxies or any reference structure

could be confusing.

The space allocated to proxies can be limited to a 1-D space ator near the edges of the

view. This means that only direction is indicated by the position of the proxy and some

other perceptual dimension must be used to encode the distance to the target. Where a

small space at the edge of the view is allocated to proxies a 2-D scaled mapping of the

off-screen space soon becomes too distorted to be usable. This is less of a problem for

those methods that provide an on-demand display since a larger proportion of the view

may be used and the proxies can be targeted to a particular direction of interest [123].

A compromise is to stack overlapping proxies to create a 1.5-D space where the nearest

proxies are nearest the top of the stack which deals with the problem of clutter but only

shows the relative distance in the case of overlaps. This works well in the case that

the Euclidean distance is considered less important, for example relatively small class
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diagrams [47]. A further option is to encode the distance as part of the proxy itself using

a retinal variable such as item-length. Many of the techniques reviewed used distortion,

deliberately perturbing the position of the proxy to avoid overlaps between proxies.

4.2 CoronaScope: A Novel Off-Screen Visualization

Since existing off-screen visualization designs are limited to adjacent nodes or suffer

from clutter and distortion around the screen corners a new design to support off-screen

landmarks is desirable. This section describes a new technique that aims to address these

problems and provide an effective method of indicating the presence of off-screen land-

marks. As before, a key design constraint is to avoid occluding the primary display of

the network. The new method is named “CoronaScope”, “corona”as it resembles the

sun’s corona and “scope” being an instrument for viewing. Figures 4.11 and 4.8 pro-

vide schematic illustrations of CoronaScope’s main elements. Briefly, CoronaScope is

composed of a circularbezeldrawn in the centre of the view that provides a frame of

reference or ‘visual scaffold’ around whichproxy elements are placed. These compo-

nents, and other features of the design are justified and described in the remainder of this

chapter.

4.2.1 Bezel Design

A circularbezelis drawn in the centre of the view, providing a visual scaffold or reference

frame around which theproxyelements are placed. The use of radial projection coupled

with a circular bezel has two positive effects: off-screen targets are given equal space

around the bezel regardless of their position with respect to the current view so there

are no problematic corners where bunching can occur; and, the movement of proxies

around the bezel is smooth and continuous. Furthermore, theorganization of navigation

cues around a central structure, rather than distributed between points in the display or

around the border, reduces the perceptual cost of visual transitions [137] by placing the

proxies close to the user’s expected point of focus. In addition to the bezel, the centre of

the screen is marked by a small circle that assists the user toform a mental representation

of the line of projection, starting at the centre circle and passing through a proxy in the

direction of an off-screen landmark.

If the user is not interacting (i.e. not moving the mouse) then it may be reasonable to
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Direction Projection Layout Corners
Amodal
or
Proxy

Radial
(display
centre)

Radial
(cursor
pos’n)

Ortho-
gonal

Along-
edge

Border Circle Area No
corners

RoundedSquare

Halo [12] A • • •
Wedge [55] A • • •
Hop [69] A • • • •
WinHop [93] A • • • •
Class diagrams [47] P • • •
Dynamic Insets [53] P • • •
Bring & Slide [15] P • • •
RadarView [123] P • • •
Bring & Go [85] P • • •
EdgeRadar [56] P • • •

CoronaScope P • • •

Table 4.1: Classification of existing off-screen visualization methods compared with CoronaScope, across key design attributes. Coro-
naScope uses a unique combination of radial projection and aview-centred, circular layout that avoids the problems of bunching and
distortion in corners.
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Figure 4.8: Off-screen distance and direction indication design used in CoronaScope. A
centre-mark and bezel are rendered as an overlay. Proxies can be placed where the line
of projection (illustrated by the dashed lines in the figure)between the centre-mark and
the off-screen landmark intersects the bezel.

assume the user is viewing some details of the network and therefore not referring to the

global navigation cues. This leads to a further design enhancement whereby the opacity

of both the bezel structure and the proxies is reduced to a very low level (5%) when the

navigation aid is not needed, causing the off-screen overlay to mostly fade out of view.

Any cluttering effect is removed and the user can more easilyattend to the network

details. Retaining a faint trace of the overlay provides affordance, acting as a reminder

to the presence of the navigation aid and thus reducing the cognitive costs of view-state

changes (see Figure 4.9). Once the mouse begins moving againthe original opacity level

is restored. The overlay can be held in the visible state by hovering the mouse over the

bezel, allowing the user to override the assumption encodedin the visual design.

4.2.2 Proxy Design

4.2.2.1 Distance and Direction

The main body of the proxy is a sector shape that moves smoothly around the bezel

in response to changes in the position of the view, and acts asa visual anchor being

large enough to be readily perceived. The proxy is located onthe bezel such that it

falls on theline of projection, a conceptual line that extends from the centre marker to

the off-screen target. A pointer orindicator is added to the main body to provide more

fine detailed information about the direction and distance of the target. Pointer marks

such as arrows and lines are often used as graphical “gestures” [129], a metaphor for the
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Figure 4.9: When the user is not navigating, the CoronaScope fades smoothly from 50%
(left) to 5% (right) opacity, leaving a faint trace as affordance. Once navigation resumes,
the original opacity is immediately restored.

dynamic hand movements people use to describe locations in space. Here the indicator

is used to similar effect, pointing along the line of projection and towards the off-screen

target. The indicator is scaled so that the length is proportional to the distance to the

off-screen target. Distances to off-screen targets are calculated in world coordinates so

that the length of a distance indicator is invariant to the current level of zoom, otherwise

it would be necessary for the length of the pointers to represent an almost infinite range.

Limiting the length of the indicator is essential to ensure that it remains visible within

the view. Themaximumlength of the distance indicator is calculated to fit within the

smallest space available between the bezel and the edge of the view. Assuming the view

contains at least some part of the network, the maximum possible distance between view

and off-screen landmark is approximately the diagonal of the bounding rectangle of the

network (see Figure 4.10). Theminimumpossible distance in world coordinates between

the centre of the view and an off-screen landmark decreases as the view is zoomed in.

To ensure the perceptual effect of pointing to the target remains, a minimum indicator

length of 10 pixels is fixed: on a standard desktop monitor this is sufficient to add a

noticeable protrusion to the smooth sector shape of the proxy (see Figure 4.11).

The limited space available to display the proxy indicatorshas potentially negative con-

sequences since in large networks where high levels of zoom are required, off-screen
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Figure 4.10: The maximum pointer length is calculated to be proportional to the maxi-
mum possible distance to an off-screen landmark. Assuming some part of the network
is in view, the diagonal of the bounding rectangle of the network provides a reasonable
estimate of the maximum distance that the user would wish to navigate.

landmarks that are near may not be accurately represented. Similarly, the range of pos-

sible distances is poorly represented by the relatively small number of pixels available

to encode them. This loss of fidelity is a typical example of the kind of trade-off one

must make when creating a layered visualization design: increasing the space available

to indicators by reducing the diameter of the bezel increases the visual clutter of the

primary representation of the network. Returning to the gesturing metaphor that led to

the indicator design, its purpose is to provide an approximation of the magnitude and

direction of the distance to a landmark.

4.2.2.2 Identification

To aid in identifying the feature referred to by a proxy, the proxy is filled with the same

colour as its off-screen counterpart. Text labels provide amuch more direct identification

(since the meaning encoded by a colour must be remembered or looked up in a legend)

but add a large amount of visual clutter, especially if the network nodes and edges are

also labelled. To avoid the additional clutter, a text labelof the landmark name is shown

only when the user hovers over a proxy with the cursor.

In the context of navigation in virtual environments users relied on features formed by

spatial configurations of landmarks such as an ‘L’ shape to provide directional informa-

tion, though in that study the landmarks were uniform in appearance and placed ran-

domly throughout the scene [31]. If the same spatial grouping affect applies here, it
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Figure 4.11: CoronaScope’s proxy design. The main body of theproxy is sector-shaped
so that fits neatly within, and moves smoothly around the bezel. A distance indicator
grows and shrinks in response to pan movements to encode the distance “on the map”,
subject to a minimum size of 10 pixels to ensure the indicatoris visible.

may aid identification of landmark instances if they are partof a larger spatial feature.

The group of landmarks in Figure 4.14 illustrates an examplewhere the group occurs as

a result of a close semantic relationship thus the configuration of features is expected.

This hints at the possibility of a hierarchy of landmarks, anidea that is returned to in

Chapter 7.

4.2.3 Overlap Removal

As increasing numbers of off-screen points are projected onto the bezel, overlaps are

inevitable as a 2-D space is projected into 1-D, since the proxies are fixed to the bezel.

Overlapping proxies can be difficult to recognize and distinguish from each other, and

selecting an overlapped proxy with the mouse can be similarly challenging. In partic-

ular, since they are transparent, two overlapping proxies can cause confusing blending

artefacts and appear as three objects. My initial solution was to exploit x-junctions

by staggering the baseline of the proxies, but this creates amore complex view (see

Figure 4.12). Similarly, stacking the proxies or adding additional concentric bezels to

represent increasing radial regions in off-screen space were rejected in favour of the

perceptually simpler option of perturbing the proxies to remove overlaps altogether.

While there is no direct evidence of how users internalize off-screen space, studies of

how people remember and recall real-world spaces revealed distortions in people’s in-

ternal models [127]. This suggests that the requirement that proxies must indicate the

exactdirection to the off-screen point may be relaxed, allowing the positions of proxies

to be perturbed so that confusing overlaps are removed. The error introduced by per-
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Figure 4.12: Overlapping, transparent shapes can create ambiguity as the individual
shapes can not be easily distinguished (top). Creating X-junctions by staggering the
shapes resolves the problem (centre) while perturbing the horizontal position creates a
simpler view (bottom).

turbing proxies diminishes as the user navigates closer to atarget point, with the positive

effect that, for distant landmarks the proxy pointers convey a sense of direction, while

for closer landmarks they provide finer spatial discrimination. A similar observation was

made by Jul and Furnas in the context of zooming interfaces [70]. Although the appar-

ent distance between off-screen landmarks may appear distorted, the relative position of

landmarks is represented, provided the order of proxies around the bezel is not changed.

A related thread of research proposes algorithms for removing overlaps between rect-

angles in two dimensions, a common application being networks where rather than an

infinitesimal point, nodes are represented by a significant shape and can contain a text

label. Generally these algorithms proceed by setting separation constraints between ob-

jects then solving a set of linear equations to find a solution. Solving this optimization

problem in two dimensions was shown to be NP-hard, so currentalgorithms often sim-

plify the problem by first solving for thex-direction, theny, and merging the two results

to provide a reasonable approximation. For example Dwyer [38] gives an algorithm that

removes overlaps in near-linear time by moving the rectangles as little as possible, and a

slower variant that takes into account the relative distance between objects so that group-

ing effects are preserved. Removing overlaps in two dimensions has the advantage that

the space available on the plane is infinite whereas the proxies in CoronaScope have only

one degree of freedom, radially as they move around the bezel. The constrained space

means that rather than preserving relative spacing betweenproxies, I propose a simpler

algorithm that produces an exact solution with the following characteristics:

• the radial ordering of proxies is preserved;
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• the amount of distortion applied to any one proxy is minimal;and,

• the proxy positions can be updated within the limited time available to maintain

interactive frame-rates.

Although distances between off-screen landmarks are not accurately represented using

this method, the fixed radial order ensures that relative positional information is pre-

served. A detailed description of the algorithm follows.

4.2.3.1 Algorithm Description

A segmentis defined as an ordered array of angles, each angle referringto the mid-point

of a proxy, measured around the bezel with the origin in the centre of the view. The

arc of a segment is defined as the amount of space required to distribute its constituent

proxies, separated byδ , and themid-point is the angle half way between the first and

last proxies in that segment. Given the arc and mid-point of asegment, the expected left

and right extents of the segment when overlaps have been removed may be calculated,

since each proxy requiresδ space, hence given a segmentScontainingn proxies:

LEFT(S) =
S1+Sn−δn

2
, RIGHT(S) =

S1+Sn+δn
2

If the product of the total number of proxies andδ is greater than the amount of space

available around the bezel (δn> 360), then there is no solution, though this is unlikely

in practice given the relatively small number of off-screenlandmarks.

Initially, input is supplied to the algorithm as an ordered array of segments, where each

segment contains one proxy. The algorithm then proceeds in two stages:

Merge overlapping segmentsIn the first stage, consecutive pairs of segments are com-

pared and if the expected extents overlap, the two segments are merged into one,

such that the order of proxies within the new segment is preserved, and the length

of the segment array is reduced by one. Note that the first and last segments in the

array may also overlap so the first comparison is between thelast andfirst seg-

ments in the array (it is assumed that calculations are performed using angles in

degrees and aremodulo360). As the merge operation recalculates the combined

arc of the two segments about their new mid-point, new overlaps with neighbour-

ing segments can be created. Overlaps to the front are dealt with in the next step,

as the new segment is compared with its successor. Otherwise, the entire merge
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Figure 4.13: Illustration of the proxy overlap removal algorithm. In the first stage a
segment is merged with its successor if they overlap. Once all segment overlaps have
been removed the proxies are evenly distributed within their segment. The result is the
removal of overlaps with minimal distortion to each proxy.

operation is repeated with the new set of segments until no new overlapping seg-

ments are found, or only one segment remains. The result is anordered array

of non-overlapping segments, where each segment contains an ordered array of

overlapping proxies.

Distribute proxies The second stage takes each segment in turn and distributes its prox-

ies equally within the bounds of the segment which, since thesegments are non-

overlapping, does not create any new overlaps. By distributing the proxies in the

minimum amount of space required, the displacement of any one proxy is mini-

mized. Figure 4.13 illustrates the process using a small example.

Pseudo-code is given in Algorithm 1, and a brief analysis of asymptotic bounds [28]

follows. Letn be the number of proxies. In the first merge loop there aren comparisons

(Line 2), and in the worst case, thenth comparison detects an overlap and merges two

segments, thus reducing the number of segments by 1. Letk be the number of iterations

of the merge loop required to remove all overlapping segments. Since initiallyk= n, in

the worst-case only one pair of segments is merged, and one new overlap is created in

every iteration then there are at most

n+(n−1)+(n−2)+ . . .+2=
1
2

n2−
1
2

n−1



65

comparisons to give an asymptotic upper bound ofΘ(n2). The example in Figure 4.13

illustrates the worst case: reversing the direction of the merge loop would find all the

overlapping segments in the first iteration and thus solve the example in justn steps.

As the segments are somewhat sparse then in practice only a relatively small number of

new overlaps are created following each merge loop, therefore for most configurations

of proxies, running time is close toO(n).

Algorithm 1 Remove proxy overlaps.
Input: P an ordered array of segments, where each segment contains one proxy.
Input: δ the required separation between proxies.

1: repeat ⊲ Merge overlapping segments.
2: n← |P|
3: previous← Pn

4: for i← 1 to |P| do
5: if RIGHT(previous) > LEFT(Pi) then
6: MERGE(previous, Pi)
7: else
8: previous← Pi

9: end if
10: end for
11: until |P|= 1 or |P|= n

12: for i← 1 to ndo ⊲ Distribute proxies.
13: for j ← 1 to |Pi| do
14: Pi j ← LEFT(Pi)+δ ( j−1)
15: end for
16: end for
Output: P an ordered array of non-overlapping segments.

Figure 4.14 shows a comparison between the arrangement of proxies before and after

overlap reduction. The figure also shows a further design iteration whereby the error

introduced by distorting a proxy position is also displayed, a feature that was added in

an attempt to replace the absolute distance information that is lost when proxy positions

are perturbed. In order to clearly indicate that proxies have been perturbed the tip of the

direction remains in its original position. The effect of encoding this additional infor-

mation is that the main proxies give a coarse indication of the relative arrangement of

a group of off-screen landmarks, while more detailed attention to the distance indica-

tors provides a more accurate picture. Clearly this connotesadditional cognitive effort,

and since the structure of the user’s cognitive model of off-screen space is not well un-

derstood in practice, caution should be used in adding perceptual complexity where the
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Figure 4.14: (Left) Overlapping proxies can be difficult to distinguish from each other.
Since they are transparent, and lacking x-junctions, two overlapping proxies can appear
as three. (Centre) After overlap removal the proxies retain their original ordering and
are more easily discerned. (Right) The amount of distortion applied to each proxy is
encoded by rotating the tip of the distance indicators back to the original positions. (Far
right) The off-screen arrangement referred to by the proxies in this figure.

cognitive benefit is not clear. Lacking a firm theoretical justification for its inclusion, the

feature was left as a user option.

4.3 Following Long Paths in Scale-Space

As well as being a fundamental component of many graph tasks [74], the ability to fol-

low paths isthe rationale for selecting a network representation [54]. Evidence from

user studies suggest that following a paths of more than seven nodes in a network is par-

ticularly challenging [98, 138]: as the number of branches,edge-crossings, and bends

increases, the cognitive costs of these decision points accumulates leading to task break-

down. Although there is no empirical evidence of path-following tasks that extend be-

yond the current view, and thus requiring pan and zoom interaction, additional cognitive

costs of navigation arise from the need for the viewer to maintain temporal-frame asso-

ciation [73]. Also relevant are the finding that users tend tosearch for the next node in

the path either in a straight line or towards the target [67],neither strategy is likely to be

helpful in the case that the correct path meanders toward thefinal target.

Previous work on topological navigation has provided solutions to incrementally traverse

a network by moving between adjacent nodes [85]. Having created a framework of

global navigational reference points, it becomes possibleto provide interactive tools
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for navigating along long paths in scale-space. Briefly, a path is calculated between

a node nearest the centre of the view and a node in a selected destination landmark,

and an animated pan and zoom smoothly translates the view to the target. The target

landmark is selected by clicking the mouse while hovering over its proxy representation

in CoronaScope. The calculation of the network path, and the path of the animation are

described next.

4.3.1 Network Path Selection

The start point for the network path is the node nearest to thecentre of the view, which

can be explicitly selected by positioning the desired node within the centre marker. After

some initial testing it was noted that when the nearest node led to an edge that leads away

from selected target landmark, the effect was that the animation initially moved away

from the target, in a direction that was not anticipated by the viewer with the effect that

they become temporarily lost. To avoid the jarring effect, the selection of a start node is

constrained to within a 180◦ arc, centred in the direction of the target. The end point is

simply the representative node of the target landmark.

Having determined the start and end nodes a graph-path can becalculated, which has

one of three possible outcomes:

• the nodes are in distinct connected components and therefore no path exists be-

tween them;

• only one path exists; or,

• there are multiple paths that may be followed.

In the first case where no graph-path exists, the network edges are ignored and a direct

line across the substrate between the start and end points isused. In the case that only

one graph-path exists then the selection is trivial. Where there are many possible graph-

paths, a systematic method of route selection is used, described next.

To select a suitable route, edge weights are added to the input graph and a minimum

weight spanning tree is calculated. In this tree representation only one graph-path exists

between the start and endpoints, and which particular routeis selected is influenced by

the selection of edge weights. Weights are associated with edges based on three types of

features:
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• lengthl , the physical length of the edge in world coordinates;

• importancei, the combined vertex degree of the edge’s end points; and,

• landmark proximityp, the number vertices between the edge and the nearest land-

mark.

The sum of these three properties is then calculated for eachedge:

w(e) = α l −β i− γ p

Modifying the multiplicative constantsα, β , andγ therefore gives rise to a variety of

possible routes: increasingα favours short edges; increasingβ steers the route through

highly connected vertices; and, increasingγ causes the route to pass close to, or through

landmarks. The effect is to provide support for differing scenarios, for example the

shortest route minimizes animation time whereas passing close to landmarks could aid

the formation of survey knowledge.

4.3.2 Animated Pan and Zoom

Once the network path to be followed has been calculated, thenext step is to determine

the 3-D path that the camera must follow to provide an effective animated view. Tver-

sky [128] conducted a thorough review of empirical evidenceof the effectiveness of

animation and found that to be understood, animations must adhere to two principles:

congruence between the changes over time and the conceptual information that is being

conveyed; and,

apprehension of the content of the external representation.

An example of the application of these two principles to produce effective route maps

of the real world has been reported before [2]. Specifically,long roads were shortened

and the angle at junctions was increased on the basis that thejunctions are important

decision points whereas long roads give little useful information to support navigation.

Furthermore, distorting the angles did not lead to difficulties since the exact angles are

not comprehended.

An alternative method to illustrate changes over time is to provide multiple views of

snapshots at key points, allowing the viewer to freely shiftattention between the time-
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Figure 4.15: The camera path is formed by a sequence of ‘nodes’ placed along the
network path. As the time to move the camera between nodes is fixed, and more nodes
are placed close to network nodes, the effect is that important junctions are in view for
more time than long edges. This method also ensures a ‘slow-in-slow-out’ effect at the
start and end of the animation. Uninformative undulations in edges are also smoothed
out.

steps that carry the most information. Instead, a continuous pan and zoom animation

is used, with the benefit that tracking objects allows the viewer to maintain object-

association between views. In CoronaScope the layout of the network is not distorted,

instead the speed of the change in view is modulated, so that more time is available

to perceive junctions while long edges are traversed relatively quickly and bends are

smoothed out. The animated effect is controlled by adding a sequence of ‘nodes’ to the

network path that each represent a camera position, then moving the camera in a lin-

ear interpolation between nodes (note that these nodes are not actually rendered). The

amount of time allowed to move from one node to the next is fixed, with the result that

a short distance between nodes appears slower than a long distance (see Figure 4.15).

Nodes are arranged along the network path so that more time isavailable to perceive

complex regions of the network with many turns, while long edges are traversed more

quickly. The arrangement of nodes means that undulations inlong edges that contribute

little useful information about the network path are removed, though varying the zoom

level (described next) means that network edges remain within view. Limiting the max-

imum distance between nodes on the animation path avoids transitions that are too fast

to apprehend (as is the case for very long edges), and allows the path to approximately

follow curved edges.
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Figure 4.16: The zoom level during the animation is varied sothat the at the mid-point
of the animation both start and end points are in view, to enable local-global association.
At the end of the animation the zoom level is restored to the original level.

Local-global association is the cognitive cost associatedwith making sense of local fea-

tures within the structure of the global context. One optionis to arrange the zoom level

so that the entire network is in view, however doing so may mean that the path being

followed becomes too small to be discerned as the edges it follows are lost in clutter. In-

stead we attempt to ensure the start and end points are made visible in one view to at least

provide an overview of at the path being followed. Generalized formulae for calculating

smooth camera paths through scale-space have previously been determined [50, 131],

but both methods depend on metrics such as shortest-path andoptical flow rather than

the application-specific requirement here. As illustratedin Figure 4.16 the zoom level

is varied such that at the mid-point of the animation, the entire path is within the view.

Zoom level is restored at the end of the animation on the assumption that the level of

detail at which the user was viewing the start feature is the same at which they wish to

view the feature at the end of the animation.

An additional visual cue as to the network path being followed is created by highlighting

the relevant edges with a light, semi-transparent poly-line. A dashed line drawn directly

between the start and end points is used to encode the case where a graph-path was not

found, the broken line suggesting a weaker link. Illustrated examples of following paths

in a network using the animated pan and zoom tool can be found in Chapter 5.
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4.3.3 Revisiting

The animated pan and zoom method as described here attempts to promote congru-

ence and to facilitate the user in maintaining both object-association and local-global

association. As Tversky noted [128], there are several challenges to apprehension that

come in to effect when using animation, but interaction can provide the necessary tools

to allow the user to overcome these difficulties. One problemis that key information

can be missed if the animation moves too quickly, particularly when the view contains

many edges. Conversely, an animation that is too slow can cause frustration amongst

users [13]. Although the technique described above reducesoverall animation time by

moving quickly over uninteresting sections, a simple and effective addition is the pro-

vision of a speed control so that a user may adjust the animation according to their

preference.

Missed information can also be obtained byrevisitingpoints along the animation path,

allowing the user to selectively view features of interest.The provision of specific sup-

port for revisiting previous view states reduces the “gulf of evaluation”, and encourages

users to explore the network [73]. Specific tasks that benefitfrom revisiting support

include:

• comparison of two features;

• exploring digression points;

• returning to a known point to become reorientated in the network.

In CoronaScope a number of camera positions (nodes) are stored in a view history cache,

Since each node is simply thex,y,z-position of the camera, a few hundred nodes can

easily be stored. Following an animated pan and zoom the usercan interactively move

through the cached views by pressing the left/right arrow keys. Direct support for com-

parison by moving between any two features can be achieved byinteractively annotating

the two features, then using a combination of animated exploration and user-controlled

revisiting along the one or more network paths that can be found by varying edge weights

during route calculation.
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4.4 Summary

The design space of off-screen navigation was surveyed as a potential solution to the

problem that landmarks are not visible within the view of a multi-scale system such

as pan and zoom. Existing solutions are based on topologicalnavigation that limits

movement to adjacent nodes in the network, or suffer from distortions and cluttering in

the corners of the view. To counter this I contributed “CoronaScope”, a novel off-screen

visualization that avoids the problems described by fixing proxies to a circular bezel

in the centre of the view, thereby providing an on-screen representation of the overall

configuration of landmarks.

To deal with the visual clutter created by overlapping proxies, an efficient algorithm was

devised that removed overlaps, maintaining the original order of proxies and distorting

each by the smallest amount possible. In this way the relative arrangement between off-

screen landmarks could be comprehended. In this case, encoding the absolute distances

between landmarks was subject to a trade-off against a simple, easily perceived view.

The framework created by the landmark overlay, the bezel, and the proxies provided the

basis for specific interactive tools to directly support path-following. Path-following is a

fundamental task in networks, and most studies and tools areconcerned with incremental

navigation between adjacent nodes. To enable following longer paths I proposed the use

of automatic pan and zoom, tailored to following the edges ofa network through scale-

space. The addition of a history tool enabled views to be revisited, a task that often forms

part of network exploration.

In all cases, the design decisions taken during construction of the new designs were

grounded within perceptual evidence and cognitive theory,with the aim of providing

navigational information in a way that is readily perceived, and structured in a way that

is congruent with the user’s internal representation of theglobal network space.



73

Chapter 5

Analysis: Three Case Studies

The design of navigation aids for networks based on theoriesof navigation in related

environments, has been described in previous chapters. In this chapter three example

data sets are presented with the aim of demonstrating the selection of landmarks, and the

potential benefits of carrying out network exploration withlandmarks overlaid upon the

network representation. It is shown that the initial selection of landmarks is key to the

utility of the overlay, but that even in extreme cases of clutter, the new tools offer some

analytical support.

5.1 Case Study One: A Map of the Heap

This example demonstrates the selection of landmarks in a graph that represents the

structure of objects in heap memory storage of a running C++ program. The example

was first used in [91], and has been reworked for this thesis. Each vertex represents an

instance of C++ class or basic data type (integer, float, etc.). A directed edge is formed

when an object instantiates another object in heap memory. The data was extracted by

taking a snapshot of the objects allocated on the heap from a running VTK program.

The program contains a visualization pipeline that reads graph data in from a file and

displays a network.
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Figure 5.1: The collaboration graph of a vtkAlgorithm takenfrom Doxygen documenta-
tion. The blue edges represent inheritance relationships,while the pink edges represent
‘has-a’ relationships. The ‘has-a’ relationships of several key objects are used as the
basis for the set of landmarks in a heap memory graph.

5.1.1 Landmark Selection

Documentation and training material was used as a source of insight into the concepts

and abstractions that VTK users will be familiar with. In introducing programmers to

the architecture, VTK documentation such as [109] describes two major object models:

• The visualization modelrefers to the part of the system devoted to converting

raw data to a geometric representation which is then rendered by the graphics

model. Two key classes underpin implementation of the visualization pipeline:

vtkDataObject serves as the base class for a family of specialized data types that

are passed along the pipeline; vtkAlgorithm likewise provides a common base type

for the filters that operate on the data objects at each stage in the pipeline. These

two classes are fundamental in pipeline execution and thus meet thesignificance

criterion for landmark selection.

• The graphics modelcovers those classes used to take data from a pipeline and

assemble a graphical scene. Examples include vtkActor, vtkLight, vtkCamera and

vtkTransform. A specific pipeline will contain concrete instances of subclasses

that are appropriate to the underlying graphics library.
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Figure 5.2: VTK pipeline heap memory network without explicit landmarks.

5.1.2 Analysis

Instances of the above classes (and their subclasses) form the backbone of a VTK pipeline.

They are part of the user’s vocabulary and are explicitly instantiated by the user in their

own code. It is likely therefore that these classes are significant in linking regions of

the heap graph to components of the user’s code. However, in examining the heap, in-

dividual class instances are unlikely to be distinctive or perceptually helpful. Instead, a

landmark is defined to be thecollaboration graphof such a class. In the case of VTK,

this graph is obtained from the online documentation which is generated automatically

from the source code with the Doxygen tool. Each landmark therefore represents a func-

tional unit consisting of several C++ objects.

The example in Figure 5.2 shows the resulting network with nolandmarks highlighted,

with node and edge labels removed for clarity. In this case the graph is a special case

known as a quasi-tree, a tree with a very small number of additional edges. Having this

property means that the graph can be embedded using a tree layout algorithm, with the

additional non-tree edges being added after the tree layoutstep. With no explicit land-

marks the network can be seen to comprise three connected components, each of which

is a VTK filter (the pipeline connections between filters are not included in the graph).

In this case: a delimited text file reader that outputs a vtkTable; a filter that converts
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Figure 5.3: VTK pipeline heap memory network overlaid with aselection explicit land-
marks. The landmarks give high-level structure to the network, highlighting familiar
sub-structures within the view.

from the vtkTable to a vtkGraph data object; and, a complex filter that performs layout,

geometric encoding and contains the graphics/rendering model. Upon closer reading an

unusual looking cluster of nodes can be seen near the centre of the network which turns

out to be the command/observer structure used to propagate interaction events.

The addition of explicit landmarks (Figure 5.3) immediately provides information to the

viewer about the locations of some key, well understood and expected components in

the heap memory graph. At the core of each filter is a vtkAlgorithm object (orange), and

there are three vtkDataObject types (green). At the top of the network is a vtkCamera

(purple), with a vtkLight (yellow), and various associatedvtkTransforms (blue). Dis-

tributed throughout are a number of command/observer structures (pink). Furthermore,

the display of landmarks as a semi-transparent overlay forms a separable visual level, so

that the nodes and edges of the network are not obscured.

The use of colours that are easily named promotes remembering [136]. Given sufficient

exposure to the landmarks view, the connection between a given colour and the referred

to class is soon learned. At this stage a brief glance at the display is often enough to

recognize and locate the significant features of interest. From the point of view of heap-

memory debugging, the presence or absence of these major features can provide clues to
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Figure 5.4: An overview of a more complex VTK pipeline heap memory graph. The
circular layout is not based on semantic or topological input, therefore creating an arbi-
trary arrangement of nodes. The addition of landmarks exactly reflect the objects (VTK
filters) that a programmer would have directly instantiated, thereby creating an immedi-
ately recognizable layer of abstraction, above the specificdetails of nodes and edges.

solve problems. For example, the small connected componentcontains a vtkAlgorithm

but no vtkDataObject is present, as would be expected.

The tree-like data used for this example meant that the layout algorithm was able to

capture and present the semantics of the data to a large extent, suggesting that the land-

marks may not provide much further assistance beyond some high-level overviews. One

positive effect noticed by the author, is that the simpler, abstracted view is easier to re-

member, and one can continue to reason about the data long after actually viewing the

network. Using a more complex example with a circular layout, the landmarks provide

a complete overview of the objects instantiated in heap memory (Figure 5.4). In general,

a circular layout is simple to compute but takes no account ofthe topology, or semantics

of the network. The radial layout of nodes in itself removes any ordering or hierarchy

effects, desirable or otherwise. In this case, the landmarks are able to solely provide the

semantics of the network.
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5.2 Case Study Two: InfoVis Co-Authorship Network

This example data set was used in the IEEE Information Visualization (InfoVis) con-

test [46] in 2004, and has since become a benchmark data set having been used to demon-

strate graph visualization techniques in several publications since then. The data set con-

tains complete details of all the papers published at InfoVis during the years 1995-2002.

In this example a graph was generated from the data by linkingall authors who have

worked together on an article, referred to as a co-authorship network, so that vertices

represent individual authors, and edges are instances of co-authorship for a particular

paper. The original graph contained one large connected component plus hundreds of

small connected components containing only two or three authors. For this analysis, and

for the purpose of illustration, the many small components were filtered out to leave just

one large connected graph.

5.2.1 Landmark Selection

In social networks such as the one used in this case study,betweenness centralityis

often used to determine the importance or influence of particular individuals in a net-

work [17]. Betweenness centrality is a graph-theoretic metric based on the number of

times the shortest path between every pair of vertices passes through a given node: the

more such paths that pass through a vertex, the higher the degree centrality value. To se-

lect landmarks for the co-authorship network betweenness centrality was calculated and

the most significant ten vertices were chosen. This appearedto be a reasonable measure

with the influence of MacKinlay, Card, and Robertson clearly represented, as well as

other well known contributors.

5.2.2 Analysis

As the landmarks represent well-recognized names in the field of information visual-

ization their immediate effect is to label the clusters of nodes (see Figure 5.5). The

clusters represent close collaborations, presumably between researchers from the same

institution (supervisors and students for example), with the landmark node calling out

the senior member of the group. The benefit is that the viewer can quickly become

orientated, and the otherwise arbitrary arrangement of clusters is easily linked with the

semantic content.
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Figure 5.5: Landmarks as an overview.

In addition to anoverviewof the network, CoronaScope can also presentdetails-on-

demand. Consider a scenario where the user is zoomed in to the clusterat the top of

the network containing Steven Roth, and wishes to answer the question, “what, if any,

is the relationship between Steven Roth and Ben Shneiderman?”This conceptual ques-

tion translates to a network task of path-following, to determine if there is a graph-path

between the two nodes. From the current view, the user can select the off-screen proxy

that represents Ben Shneiderman, and observe the animated pan and zoom that follows.

The three panels in Figure 5.6 illustrate the main stages of the animation, beginning

with Steven Roth, zooming out to reveal the entire path in the global context of the

network, and coming to rest at Ben Shneiderman, zoomed in so that the local context

is discernible. At this point the history function allows the viewer to rapidly return to

any position along the route, perhaps to inspect the local context around the group of

landmarks that was passed along the way.
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Figure 5.6: CoronaScope provides direct support for following network paths through
scale-space. An animated pan and zoom is initiated by selecting a proxy, the network
path is highlighted, and an animated camera movement moves the view to focus on the
selected off-screen target.
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Figure 5.7: Path-following in an extremely dense network. Despite the heavy cluttering
of edges, the animated pan and zoom tool can be used to identify the relatively simple
paths between familiar objects.

5.3 Case Study Three: Marvel Comics Network

The data set for this example is from a paper that studied which Marvel comics super-

heroes have appeared together in at least one episode. The study found that the network

has some graph-theoretic properties in common with a real social network [4]. It is

included as an example here due to the relatively large size and high density, having over

6,000 vertices (super-heroes) and approximately 40,000 edges (co-appearances).

5.3.1 Landmark Selection

The top ten most popular super-heroes were determined via a web based poll in which

around 7,000 people voted which were then used as landmarks. Again this method

resulted in the appearance of some highly recognizable names in the list of landmarks,

for example Captain America, Spiderman, and Incredible Hulk.
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5.3.2 Analysis

Unlike the other examples shown the overview gives very little information: clutter

caused by overlapping edges almost completely removes any relational information, and

the landmarks are grouped within one area of the network. This could be interpreted as

a complete failure, though the grouping of landmarks suggests an opportunity to filter

the network to focus on the small region occupied by the most significant actors. In the

case of following paths between vertices the animated pan and zoom technique proves

to be useful. Despite the large number of over-plotted edges, highlighting of the path

being followed reveals that the structure between landmarks is relatively simple (see

Figure 5.7).

5.4 Summary

In this chapter three case studies were set out with the aim ofdemonstrating methods

of landmark selection, and how the resulting overlays can benefit network navigation.

Initially the landmark overlay provides a high-level, semantic overview of a network,

and with repeated exposure one can expect the user to become familiar with, and is more

likely to remember, the overall structure of the network. Direct interactive support for

the specific tasks of following long paths and revisiting wasdemonstrated, although a

reasonable distribution of landmarks across the network isrequired to provide compre-

hensive coverage. In the final chapter these findings are reviewed and recommendations

for further work are made.
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Chapter 6

Implementation

A prototype graph visualization system known as “CoronaScope” was implemented to

experiment with the network navigation overlay designs described in earlier chapters.

In this chapter I justify the choice of the Visualization Tool Kit (VTK) as an application

framework, and describe details of the implementation of CoronaScope. Since VTK uses

a data-flow pipeline model, and was originally designed to support scientific visualiza-

tion, its use for information visualization is somewhat experimental. While the modular

design enabled the logical separation of network representation from the implementation

of the new navigation tools, the assumptions implicit in thepipeline model as intended

for scientific visualization led to some challenges. Following an introduction to the data-

flow pipeline model and graphics models used by VTK, I report on my experience and

describe the design of new components that, combined with existing features, enabled

implementation of the CoronaScope application.

6.1 Rationale for using VTK

Figure 6.1 shows a series of conceptual layers through whicha visualization application

communicates with the underlying graphics hardware. The role of a visualization library

is to provide developers with an environment that is organized around visualization con-

cepts, and to translate those concepts into the language of the underlying graphics library,

freeing the developer from low-level concerns. Systems supporting graph visualization

span a range of software architectures. At one extreme are language extensions and

graph libraries such as BGL [115] and OGDF [25], which providesuitable algorithms
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Application

Visualization Library

Graphics Library

Graphics Hardware

Figure 6.1: A layered systems architecture for informationvisualization development. A
visualization library provides functionality in the language of visualization and interfaces
with the native graphics library/hardware. This separation allows concerns of graphics
generation to be abstracted away from those of visualization development.

and data structures, but lack support for graphics and interaction. At the other extreme

are specialized, monolithic tools, such as GraphViz [52] for producing static drawings,

or systems that provide a suite of network-specific interaction techniques, for example

CGV [123]. The space in between is occupied by extensible systems and modular tools,

some of which (e.g. Tulip [6] and Gephi [11]) are primarily for graph visualization, while

others, including Prefuse [61] and VTK [109], are more general visualization tools with

components for graph visualization.

A primary contribution of this thesis is the realization of amodular navigation layer, sep-

arated from concerns of graph representation. VTK [109] is an extensive open-source

software library aimed originally at scientific visualization and recently extended to in-

clude components for information visualization [139]. VTKis based on a demand-driven

pipeline architecture [57], where each component in the pipeline performs some trans-

form on its input data before passing the data along to the next component in the pipeline.

The output of the pipeline is a set of geometry that is passed onto a graphics model that

prepares the final scene for rendering by graphics hardware,and provides facilities for

interaction. Requests for new or updated data are passed upstream to the component

that can fulfil the request. The benefit of VTK’s modular architecture for the work in

this thesis is that an existing network visualization pipeline can be enhanced by adding

a new pipeline branch, taken from the graph layout filter, andinto the new navigation

components. The output of this new branch is then added to therenderer along with the

network representation. The original pipeline remains unchanged and distinct from the

additional navigation support.

From a visualization users point of view, the advantage of the modular architecture is
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that it provides the flexibility to create custom pipelines to support particular combina-

tions of task and data with relatively little programming knowledge. The user must have

some understanding of the visualization process, though pipeline building tools such

as ParaView [119] provide a graphical user interface that can assist with design. This

advantage also holds for visualization developers, as onlyspecific modules need to be

developed to create new designs as many existing data structures, graphical techniques,

and interaction components are already available in the tool kit. One further advantage of

VTK is that it is somewhat mature, and has an active communityof users and developers.

As an open-source product, VTK provides an online review system to allow code con-

tributions from the community to be subjected to peer review, before being added to the

publicly released code. Two of the newly implemented components produced to build

CoronaScope were submitted for review and have been includedin the public release of

VTK since version 5.8, namely vtkConvexHull2D and vtkGraphAnnotationLayersFilter

described in the second part of this chapter.

Having justified the choice of framework, the following section contains a detailed de-

scription of a basic graph visualization pipeline, and the new navigation components.

VTK provides bindings for Java, Python, and Tcl, but all codefor this project was writ-

ten in the native C++ language as doing so results in the fastest possible executables.

6.2 The Basic Network Pipeline

A minimal network visualization pipeline can be constructed from four main compo-

nents, approximating the data states found in the information visualization reference

model [21]:

• a data source (raw data and data tables);

• a layout algorithm (visual structures);

• a representation step that maps topological structure and vertex positions into ge-

ometric entities (visual structures); and,

• mapping the representation from geometric entities to graphics primitives (view).

However, before considering the specific example of a network pipeline, it is necessary

to describe the pipeline execution model of VTK.
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Figure 6.2: A basic network visualization pipeline in VTK. Eachfilter produces an out-
put data objectthat is passed as input to the next filter in the pipeline. Execution of the
pipeline is triggered by thesinkfilter which asks for updated data from its upstream filter
in the pipeline. Update requests pass along the pipeline until each filter is up to date and
data flows back to the sink. Update requests only propagate asfar as is needed: since
each filter can store a copy of its data object, only filters whose parameters or input data
have been modified need to re-execute.

In VTK terminology each pipeline component is referred to asa filter, anddata objects

are passed from filter to filter, so that data flows along the pipeline. A sourceis a filter

that has no input, rather its output data object is constructed parametrically in the case of

simple geometrical objects, or as a result of reading data from a file or network stream.

The visualization pipeline is terminated by asink. The sink is usually a type of mapper

that converts the geometric data from the pipeline into a setof graphics primitives suit-

able for display by the graphics model, described in the nextsection. A filter contain

two major components: analgorithm; and anexecutive. The algorithm component is

responsible for performing some computation that results in some output data object.

The executive is part of the pipeline execution system that is able to determine whether

its output data is up to date, and if not, to run the algorithm to generate the updated data.

Figure 6.2 is an overview of the pipeline execution process,showing the direction of

update requests and the direction of data flow.

Pipeline execution is triggered by asink object, typically in response to a request from

the graphics model to render the scene. The sink object passes the request to its input

filter, which checks to see if its data object is up to date. If so, execution returns to

the sink object, otherwise the algorithm must compute the data, which may require a

request for data from its input and so on. Update requests arepropagated back down the

pipeline until the required data is found, possibly as asourcealgorithm. By default each

algorithm’s output data is cached so that it need only be recomputed when input data,

or a parameter of the algorithm is modified. This mode increases memory requirements

in exchange for improved pipeline update performance. Notethat reference counting
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reduces the need to copy data objects, so in the network pipeline described here, the

graph with layout is simply a reference to the initial graph data object with an additional

set of points. Several alternative pipeline execution models are available, for example

using multiple-passes to stream subsets of data, or distributing pipelines across multiple

processors but these are not used here.

A basic network visualization pipeline then, begins with some source data streamed

into the pipeline by a file reader. For this project the Tulip file format [6] was used

as VTK already provided a suitable reader. The output of the reader is a vtkGraph

data object which at this stage contains only a description of the topology (vertices and

edges). vtkGraphLayout is a filter that takes a vtkGraph and calculates a layout of the

vertices according to the chosen vtkGraphLayoutStrategy.Strategies are instances of

layout algorithms, of which VTK provides a small number of basic methods such as

circular, force-directed, and clustering. To enhance the set of default layout algorithms, I

created an adaptor to the Open Graph Drawing Framework (OGDF) which includes more

modern algorithms, in particular the fast multi-pole multilevel (FM3) type algorithms [9].

The layout step imbues the vtkGraph with a point (x,y-coordinate) for each vertex. By

default the edges are drawn as straight lines between their end points. Edge layout may

be carried out as a separate step, adding additional points to each edge to create arcs, or

bundles.

All data objects in VTK ultimately derive from the same base class. The input and

outputs of filters are strongly typed so that only those specific data types a particular

algorithm is designed to use may be connected to a filter, otherwise an error message is

issued and pipeline execution terminates. Data objects that already contain geometry (in

VTK these are known specifically as datasets) can be mapped directly into the graphics

pipeline, as is often the case with scientific visualizationdata formats, a structured mesh

for example. Otherwise, it is necessary to use a filter that isable to convert the abstract

data into a collection of polygons, lines, and other graphics primitives. The class vtk-

GraphToPolyData is a filter that takes a vtkGraph as input andgenerates a glyph at each

vertex position, and lines or poly-lines for the edges. Finally, a mapper converts the poly-

gon data to a format specific to the underlying graphics platform, and the network can

then be represented within the graphics model, described inthe next section. Execution

of the pipeline is triggered by a request for it to be rendered. The generated data remains

in memory until either a new file is requested, or a new layout algorithm is selected by

the user, via CoronaScope’s graphical user interface (see Figure 6.7 for screen shots of

the user interface).
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6.2.1 Graphics Model

The graphics model in VTK is an abstraction layer that separates the underlying platform-

specific graphics application programming interface (API)from the concerns of visual-

ization data. This decision is largely historical, since when VTK was conceived there

were several competing graphics formats. Most objects within the graphics model are

instantiated by static factory classes that transparentlyprovide concrete instances of the

classes that support the underlying library. For now at least, OpenGL is the predominant

platform used in scientific and information visualization,however the layer of abstrac-

tion has allowed advances in hardware design and GPU programming to be incorporated

into VTK without modifying the high-level visualization pipeline.

VTK uses a film production metaphor to describe the renderingAPI. Actorsrepresent

visual objects arranged in a scene withlights, and acamerato represent point of view

from which the scene is rendered. The geometry of an actor is provided by amapperas

described in the previous section, and the actor itself contains positioning, and possibly

colour and texture information. For CoronaScope, an orthographic view on to a 2-D

plane was used, so that the camera remains above the plane, pointing down thez-axis.

Pan and zoom controls enabled the user to interactively movethe camera in thex,y (pan)

andz (zoom) directions only. Lighting for the scene was similarly fixed, using the single

default global light source. A vtkRenderer is responsible for managing the rendering of

all its actors, and a vtkRenderWindow represents a rectangular window or viewport in a

graphical user interface and can contain one or more renderers. It is this combination that

presents that final view of the network, including removal ofhidden objects by frustum

culling and rasterization.

Closely related to the render window is a vtkRenderWindowInteractor. This class pro-

vides interaction support by routing mouse, keyboard, window, and timer events into

VTK’s event handling mechanism. Event handling in VTK is based on the command/

observer design pattern, that defines a one-to-many dependency between objects so that

when an interaction event occurs, all registered observersare notified automatically. This

allows multiple observers to be added to the interactor at run-time, after which observers

respond to the events by running their associated command method. A typical example

is the routing of mouse events to modify the camera position,producing pan and zoom

interactions. The observer mechanism is organized on a priority basis, and further pro-

cessing of events can be prevented so that, for example, mouse clicks can be intercepted

by an overlay layer and not passed on to the underlying plane.Various picking opera-
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tions are possible, with hardware-based methods being fastest but providing only pixel

coordinates, whereas slower software methods such as ray casting, or the use of space-

dividing data structures, can be used to identify specific actors or pieces of geometry.

6.3 The CoronaScope Application

Having described the VTK pipeline and graphics models, and illustrated a generic net-

work visualization pipeline, in this section I describe thedevelopment of the Coro-

naScope software, a network visualization application that provides basic network vi-

sualization tools, plus the new components that provide custom support for network

navigation. The navigation components are additional pipelines, that do not affect the

existing graph visualization pipeline. Figure 6.3 shows how the new components are

branched from the graph layout step. Also shown is the correspondence with the infor-

mation visualization reference model [21], first introduced in Chapter 2.

6.3.1 Landmarks Overlay

Landmark definitions are represented using vtkAnnotationLayers, an existing VTK data

object type that stores layers of selections of vertices. Each selection is a set of vertex

indices which can be used to access thex,y-coordinate of the corresponding vertex from

the graph layout data. This creates an hierarchy: a set of layers; layers of landmarks;

individual landmarks; and, vertices. There are no restrictions on the membership of a

landmark so a vertex may be contained in more than one landmark. Similarly landmarks

can be fully contained within landmarks to (potentially) create an hierarchy of land-

marks. Additional indexed arrays store text labels, a representative vertex, and colour

information.

Landmarks can be streamed in to the pipeline using an XML file reader, or added interac-

tively using the mouse to make a selection of vertices in the view, achieved by observing

selection events generated by the render window. To provideperceptual support for mak-

ing selections, a “rubber-band” bounding area is drawn directly in to the renderer’s pixel

buffer. When a selection is made by the user, the set of vertices is added to the vtkAn-

notationLayers data as a new landmark. Two new filters were developed specifically for

this component of the project, described in the following paragraphs, and illustrated in

Figure 6.4.
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Figure 6.3: Implementation model showing distinct pipelines for network representation
and navigation: the addition of the navigation tools leavesthe network visualization
pipeline unchanged. A branch is taken from the graph layout module which, along with
landmark definitions (sets of graph vertices) in the vtkAnnotationLayers data, form the
input for drawing the landmark and off-screen overlay representations. Pan and zoom
causes window events that change the scale and extent of the view, so these events are
passed back in to the navigation pipeline to provide for landmark scaling to guarantee a
minimum pixel size, and to enable off-screen landmarks to bedetermined.



91

vtkGraphAnnotationLayersFilter 

vtkConvexHull2D

vtkPolyData
(Landmarks)

vtkRenderer

vtkAnnotationLayers

vtkGraph

Figure 6.4: The constituent points of each landmark are processed by vtkConvexHull2D
to determine the convex hulls to draw. Information from the renderer is used to determine
the current camera position so that landmarks are scaled to satisfy the requirement for
minimum pixel dimensions.

vtkConvexHull2D generates a polygon that is the convex hull of a set of input points.

A second input from the renderer provides the current cameraposition, so that minimum

polygon dimensions can be calculated in pixels, ensuring that the landmark is a constant

size regardless of the current scale (zoom level). The filteris explicitly invalidated in

response to camera-move events with the result that the landmarks are recalculated the

next time an update request is received, typically the next render frame.

vtkGraphAnnotationLayersFilter takes the data from vtkAnnotationLayers plus the

output of the graph layout filter to draw polygons that form the convex hull of each land-

mark. The filter takes the vertex indices from each landmark in the vtkAnnotationLayers

and looks up their points from the graph layout data. This setof points is then passed

to the convex hull routine described in the previous paragraph. The output of this filter

is polygon data of the set of convex hulls that represent the landmarks which finally, is

added to the renderer along with the network representation.

Since both the new filters must respond to events generated inresponse to camera move-

ments, any delay in re-execution of the pipeline could causean interruption to rendering,

leading to a reduction in responsiveness. In the pipeline model, any one filter that needs

to be updated causes all the filters between it and the sink to also re-execute. For this

reason it was beneficial to ensure that these particular filters were not only very efficient,

but also positioned close to their sink, minimizing the timerequired to bring the pipeline

up to date. In this way, coupled with the relatively small number of landmarks, delays in

rendering are avoided.
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6.3.2 CoronaScope Overlay Widget

The CoronaScope overlay refers to the navigation component proposed in Chapter 4

that provides a representation of off-screen landmarks within the view. While window

events can be used to trigger changes of view point to producepan and zoom effects,

users may also wish to interact with the scene in more complexways. For this purpose

VTK provides a “widget” API that allows an interactive mechanism to be supported by

a visual representation so the user can control the operation, for example manipulating

a bounding box around a 3-D volume rendering. The widget API is implemented in two

parts that separate interaction and changes to the scene from the graphical representation

of the widget. In Figure 6.5 for example, the vtkFlightMap, responsible for animating the

camera is part of interaction, while the vtkDiskSource/vtkSectorSource filters provide

the graphical objects used to create proxies and the bezel.

vtkCoronaScopeWidget was developed as a widget that is rendered into thegraphics

overlay plane. The overlay plane is defined in display coordinates and always appears

above the main scene. The overlay plane can be thought of as being attached to the cam-

era so that changes to the camera position do not affect the appearance of the overlay, in

this case the bezel and centre mark of the CoronaScope overlayremain fixed in position.

Calculating and drawing the proxies is more complicated, since they must respond to

changes in the view. This is achieved by observing pan and zoom events, which triggers

the calculation of which landmarks are currently off-screen and their distance: these val-

ues are used to determine the position of proxies and length of the distance indicators.

vtkDiskSource and vtkSectorSource are filters that generate basic geometrical shapes

according to given parameters. Each proxy is created by appending two sectors and the

set of proxies forms one polygon data output. The bezel and centre-mark are formed

from disks, and combined in a second output.

The CoronaScope design requires that hovering over a proxy causes that proxy to be

highlighted and its text label to be displayed. VTK providesa number of picking meth-

ods and which to use is a trade-off between speed and the levelof abstraction at which

the picked object is identified:

• hardware picking is fastest and returns only the pixel coordinate from the window;

• ray casting is an approximate method carried out in softwarethat can return a

reference to a specific vtkActor; and,
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Figure 6.5: The CoronaScope widget generates the bezel and centre marks from two disk
sources. The presence and location of each proxy is determined from the locations of
landmarks and the extent of the currently rendered view, then each proxy item is formed
by combining two sectors.

• space-dividing data structures take longer to compute but can accurately pick in-

dividual primitives in geometric data.

Note that the entire CoronaScope widget is represented by a single actor and each proxy

contains many points and cells. This turned out to be a problem, as none of these methods

can return item-level information about which proxy was picked, that is, the index into

the vtkAnnotationLayers data structure: the information needed is lost when the data is

encoded as geometry. A simple solution in this case was to associate an array containing

text labels with the points and polygons when the proxies areencoded, effectively adding

a large amount of redundant data to ensure its availability later in the pipeline.

Highlighting the selected proxy was a greater challenge since again, the item-level infor-

mation about the proxy itself is not available. In this case,given a picked cell index, and

hence the index of the landmark it referred to, it was then necessary to identify all the

cells in the geometry data of the proxies with the same landmark index. Having identified

all the geometry which belongs to the selected proxy, the obvious choice of temporar-

ily changing the colour associated with it would require theunderlying landmark data

to be changed, and consequently would cause that section of the visualization pipeline

to be recalculated. The approach taken instead was to draw a second semi-transparent

proxy shape over the selected proxy so that when combined theeffect is to increase the

intensity of the colour. Clearly none of these approaches arescalable due to the linear
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searches involved and the computational expense of pickinggeometric primitives.

The problems of obtaining item-level information about theunderlying data from the

geometrical data in later stages of the visualization pipeline seem to be a limitation of

the VTK model. Since scientific visualization is generally concerned with continuous

spaces that are interpolated, there is often no connection between a particular location

in the view and a specific value from the underlying data set. At the time of writing,

a new information visualization API is being created for VTKthat is similar to a scene

graph, with lightweight items that represent individual ‘visual data items’. This new API

may well have been a better choice for the highly responsive interaction required in the

CoronaScope application.

vtkFlightMapFilter is a graph algorithm that adds edge weights to the input graph

data. CoronaScope uses this when the user has selected a proxyto determine a route

along which to move the camera, as described in Chapter 4. Oncea route has been

selected the path is first smoothed using Kochanek splines toavoid jerky camera move-

ments. The animation is achieved using a timer callback thateach time it is called, moves

the camera to the next position. The path is stored so that theuser can revisit the route

using arrow key presses.

6.3.3 Desktop User Interface Integration

Qt is a cross-platform desktop application development framework with an extensive

graphical user interface (GUI) module [34]. Coupling Qt withVTK allows desktop-style

widgets to be used to display and edit data, while benefiting from VTK’s visualization

capabilities. A class is provided that wraps a vtkRenderWindow in a Qt widget for

display, and synchronizes event mechanisms between the twoframeworks. A key benefit

of this approach is the ability to change parameters on VTK filters, or even reconfigure

the pipeline during run-time. For example, a combo-box lists each of the available graph

layout algorithms. When a new layout is selected by the user, an event is fired that

ultimately causes the current graph layout strategy to be replaced with the new choice.

Doing so invalidates the data flow in the pipeline so that the next time rendering triggers

an update request, the graph layout will be recalculated using the new filter.

In the case of the list of layout algorithms described in the previous example, being

a small amount of static data it is a simple matter to hard-code the possible choices.
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Figure 6.6: The model/view architecture as implemented in Qt provides a clear separa-
tion of concerns between managing data and updating the display. A model communi-
cates with a data source and presents a standard interface tocomponents that provide a
view. The view obtains data via the model, and individual data items are rendered by a
delegate object. Changes to the model are signalled to all registered views.

To maintain a table-view of current landmarks is more involved, since the data can be

changed in several places: loading a new XML file via the user interface; editing the

values using the table-view in Qt itself; and, interactively by making a vertex selection

within VTK. For this situation Qt provides a model/view architecture to separate the data

model from the view (see Figure 6.6). The benefit of this architecture is that changes to

the underlying VTK data object are automatically reflected in the data model and any

attached view is automatically updated to display the new values. Similarly, changes to

the model by editing values in the table view are passed through to the underlying data

object, causing the navigation pipelines to be updated. Figure 6.7 contains screen shots

of the table of landmarks, and other GUI components used to control CoronaScope.

6.4 Summary

The rationale for choosing the Visualization Tool Kit as an information visualization

development framework for this thesis was that it allowed the rapid construction of a

generic network visualization pipeline that could be branched, with the advantage that

additional navigation support could be provided as a distinct pipeline. From the user’s

point of view, such tools can be easily incorporated in theirown visualization designs by

composing pipelines from the required components. I described the implementation of

several new VTK filters, and those that were used to create thelandmarks overlay have

since been incorporated in the public release of the VTK library.
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Some of the assumptions implicit in the pipeline design, as it was originally intended for

scientific visualization led to difficulties, particularlythe need to identify item-level data

during picking. Otherwise, the modular design provided many of the facilities needed

for this project, for example the network visualization pipeline, interaction and event

handling mechanisms, and integration with Qt. The new scene-graph API being devel-

oped for VTK may prove to be a superior choice for future information visualization

applications, none the less the final result was the development of a fully operational

network visualization tool.
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Figure 6.7: Screen shots of the CoronaScope toolbox. TheGraphpanel contains options for layout and node/edge labelling;theLand-
markspanel is used to import, export, and edit sets of landmarks and acts as a colour-class legend; and, theCoronaScopepanel provides
configuration options for the landmarks overlay, off-screen visualization, and animation parameters.
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Chapter 7

Conclusion

In this final chapter I summarize the problem of network navigation, reflect on the

strengths and limitations of the cognitive theory-based approach, and the resulting de-

sign of an overlay of landmarks. In conclusion, I offer some recommendations for future

directions arising from this work.

7.1 Network Navigation

Information visualization supportsexploratory analysisof relational data by allowing the

user to interactively reconfigure and refine the view. Anetworkis a visual representation

of a graph that is particularly effective for understandingpaths formed by sequences of

nodes and edges, andnavigationis the act of selecting and following such paths. There

are cognitive costs incurred during navigation, partly dueto the potential confusion aris-

ing from false nodes that appear where two distinct edges cross. Also, the limitations of

display dimensions and resolution with respect to increasingly large networks mean that

visual clutter is inevitable, with the potential for users to become lost in “desert fog”.

To counter this problem, pan and zoom allows the user to adjust the view, zooming in

to read the fine details of nodes and edges, and zooming out to understand these local

features within the global context, though doing so entailsthe additional cognitive costs

of maintaining object-association during movements. These costs add up to form a “gulf

of evaluation” in comprehending the network, and a “gulf of formation” whereby the

information needed to form conceptual goals, for example “where do I go next?”, is not

available, leading to task breakdown.
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7.2 Theory and Approach

Inspired by MacEachren’s multi-level, multi-discipline approach to a theory of map com-

prehension I set out theories and evidence related to the comprehension of networks from

various points of view:

perceptual concerns included models of visual attention, and empirical studies of low-

level path-following tasks;

cognitive models of graph and map comprehension, and theories of internal representa-

tions (schemata); and,

semantic attributes of networks induced by layout algorithms based on purely topolog-

ical data.

Synthesizing these concepts with models of information visualization I highlighted the

need forcongruence: a logical organization of the display that reflects the expected

structure of the user’s internal representation. This becomes particularly relevant in the

case of networks where graph layout algorithms based on topology optimize the aes-

thetic appearance of the network, often failing to account for its semantic content. Like

Agrawala and Stolte’s route-map system [2], visualizationdesigns should be based on

an understanding of the systematic distortions in the user’s mental map of an environ-

ment. This led me to establish a link between the internal processes used in real-world

navigation, and those we might expect to be employed during navigation of a network.

7.3 An Overlay of Landmarks

Landmarkswere proposed as a means of providing a framework of navigation refer-

ences, just as they do in both urban, and virtual environments. I defined a landmark in a

network as a meaningful subgraph representing a functionalunit in the semantic domain

of the data, and proposed a set of guidelines for selecting and depicting landmarks. The

aim was to provide a set of visual references that are available throughout scale-space,

by setting a minimum size regardless of scale, and through off-screen visualization. Be-

cause the landmarks provide semantic information rather than merely acting as structural

markers, they promote congruence by acting as a high-level semantic overview of the

network. The framework of landmarks enabled the provision of some support for the
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specific key tasks offollowing long paths in scale-spaceusing an edge-based animated

pan and zoom, andrevisiting, an essential component of exploration tasks.

The proposed new designs for overlaid navigational tools support were implemented in

a desktop application, built on a pipeline-based framework. The framework was origi-

nally designed specifically for scientific visualization but later adapted with new features

to support information visualization data types. The assumption implicit in the pipeline

model that the final view is an interpolated space led to difficulties in identifying item-

level data during picking. However, a fully functional prototype application was suc-

cessfully produced by working round the problem, made possible by the relatively small

number of landmarks. Two of the new components now form part of the public release

of the Visualization Tool Kit, and acceptance by a user community is one way in which

a design can be validated [88].

7.4 Looking Back

During analysis of the new designs some strengths and limitations were identified. Due

to the semantic dimension of the explicit landmarks they immediately provided a general

overview of the network, indicating some recognizable features, potentially extending

beyond individual nodes to functional subgraphs or motifs.With careful use of shape,

colour, and transparency it was possible to create additional visual levels, without obfus-

cating the primary network representation. The creation ofvisual levels relied here on

transparency, and could benefit from a perception-based transparency measure since dif-

ferent hues produced vary levels of intensity for the same level of opacity. The concept

of visual levels rarely features in the information visualization literature, though efficient

deployment of visual attention is key to achieving efficiency. In cartography visual levels

are exploited to produce information-dense displays, and this could become particularly

relevant as display densities increase.

The design of an off-screen visualization to provide globalawareness of landmarks

throughout scale-space was more complicated, due to the limitations in our understand-

ing of how users reason about off-screen space. The implementation described in this

thesis was predicated on models of real-world navigation, and while theories of how

schemata visualization evolve from a more general navigation schema are evidence of

a connection between the two domains, there are also some significant differences. Not

least is that viewing a network is not embodied in the same waythat moving in the



102

real world, or even a 3-D virtual environment, being more like reading a map: a scaled

representation of some ‘other’ place.

Although some specific navigation task support was demonstrated (path-following and

revisiting), many parts of the design would be challenging to validate empirically, due to

the expectation that users have some network visualizationexpertise, knowledge about

the data domain, and because many of the expected benefits of enhanced navigational

knowledge may require the development of longer-term memory structures that take time

to develop, potentially over multiple analysis sessions.

7.5 Looking Forward

Being predicated on cognitive theories the work here indicated a lack of understanding

of the user’s internal representation, and the exact information required to support navi-

gation tasks in any one moment. Models of salience are insufficiently tailored to network

representation, and perceptual evidence from network userstudies is limited. These limi-

tations suggest a need to investigate network comprehension but to go beyond short-term,

localized path-following tasks, and instances of domain-specific applications. The multi-

level approach (low-level vision, cognitive theories, semiotics) to map comprehension

espoused by MacEachren [78] combines theories of low-levelvision, comprehension,

and semiotics: a similar approach to a unified model of network navigation would be

a positive step. Particularly useful would be a functional model of salience, to predict

how visual attention is deployed during network navigation, linked with a model of net-

work features (nodes, edges, subgraphs) as they appear in scale-space. One possibility is

that groups of landmarks may form a hierarchy, as noted in Section 4.2.2.2. The initial

selection of landmarks is crucial, and I presented some guidelines, but the methods sug-

gested often require a great deal of work ‘up-front’ to identify the appropriate technique.

To overcome this problem CoronaScope would benefit from the automated selection of

landmarks, based on the models just described.

A dimension of landmarks not explored in this thesis was lifetime, as the aim was to

guarantee a stable set of visual references. However, during animated or manual pan

and zoom operations for example, it may be helpful to providetemporary landmarks to

assist with sub-tasks. While manual annotation is a step in this direction, as implemented

it was not easy to create and manage temporary landmarks as this represented a break

in the primary activity. A more analysis-focussed approach(such as Shrinivasan and
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van Wijk’s “knowledge view” [114]), indicating search results in-situ by for example,

matching motifs, or attribute-based filtering, could extend the ideas presented in this

thesis to a wider range of tasks.

In summary, separation of navigation concerns from those ofrepresentation has been

beneficial in recognizing the limitations of topology-based layout algorithms, leading to

consideration of the navigation task with respect to both the appearance of networks in

scale-space, and the user’s internal model of that space. Anongoing challenge is the

development of a deeper understanding of both external and internal representations, to

reduce the gulfs of evaluation and formation, and improve congruence.
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