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Abstract 

Arbuscular mycorrhizal fungi (AMF) can form a mutualistic symbiosis with over two-

thirds of all land plants, providing phosphorus and/or nitrogen in exchange for carbon. 

They can have a significant effect on the surrounding soil, altering pH, water content, 

structure, and drainage. Important greenhouse gases (GHG) including carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O) can be influenced by these factors, yet to 

date the interactions between AMF and soil GHG fluxes are surprisingly understudied.  

 

A microcosm system was developed to study GHG fluxes in the presence and absence 

of AMF hyphae. A central compartment contained an AMF host plant (Zea mays L.), 

with two outer compartments, that either allowed (AMA) or prevented (NAMA) AMF 

hyphal access. Organic matter patches of dried, milled, Z. mays leaves mixed with soil 

were added to the outer compartments to encourage proliferation of AMF hyphae and 

GHG production. Soil-atmosphere fluxes of N2O, CO2 and CH4 from the outer 

compartments were quantified, and gas probes were developed to measure N2O 

concentrations within the organic matter patches.  

 

Data from a series of microcosm experiments provide evidence for AMF interactions 

with soil fluxes of N2O and CO2, but not CH4. Soil CO2 fluxes were found to be a useful 

non-invasive method for determining the presence of AMF in hyphal compartments. 

The N2O concentrations in organic patches decreased in AMA treatments, and a 

subsequent experiment demonstrated that N2O production by nitrifiers may be limited 

in the presence of AMF hyphae. In contrast, following harvesting, N2O fluxes from 

organic matter patches were higher in the AMA treatment; possibly because carbon 

release from severed AMF hyphae fuelled denitrification. These interactions have 

important implications for N cycling and sustainable agriculture. The evidence 

presented in this thesis suggests that AMF may play a previously unappreciated role in 

reducing soil-atmosphere losses of N2O.  



  -3- 

Table of Contents 

Title Page ____________________________________________________________ 1 

Abstract ______________________________________________________________ 2 

Table of Contents ______________________________________________________ 3 

List of Figures _________________________________________________________ 9 

List of Tables _________________________________________________________ 15 

List of Equations ______________________________________________________ 17 

Acknowledgements ___________________________________________________ 18 

Authors declaration ___________________________________________________ 19 

 General Introduction _________________________________________ 20 Chapter 1.

1.1 The gases that contribute to global climate change ____________ 20 

1.1.1 Methane (CH4) _________________________________________ 21 

1.1.2 Nitrous oxide (N2O) ______________________________________ 25 

1.2 Arbuscular mycorrhizal fungi (AMF) _________________________ 27 

1.2.1 AMF modifying the soil environment ________________________ 28 

1.2.2 Roles of AMF in soil nutrient cycling ________________________ 31 

1.2.2.1 Phosphorus acquisition by AMF ____________________________ 31 

1.2.2.2 Nitrogen cycling ________________________________________ 32 

1.2.2.3 Carbon cycling __________________________________________ 39 

1.2.3 AMF and global change __________________________________ 41 

1.2.4 The potential for interactions between AMF and soil 

greenhouse gas fluxes ___________________________________ 42 

 The interactions between arbuscular mycorrhizal fungi (AMF) and Chapter 2.

soil greenhouse gas fluxes _____________________________________ 44 

2.1 Introduction ___________________________________________ 44 

2.2 Materials and Methods __________________________________ 50 

2.2.1 Selecting a suitable host plant to encourage proliferation of 

AMF hyphae in organic matter patches ______________________ 50 



  -4- 

2.2.1.1 Experimental design _____________________________________ 50 

2.2.1.2 Microcosm design _______________________________________ 50 

2.2.1.3 Microcosm planting and growth media ______________________ 51 

2.2.1.4 Organic matter patches __________________________________ 52 

2.2.1.5 Growth conditions and nutrient solution _____________________ 53 

2.2.1.6 Harvest data collection ___________________________________ 53 

2.2.1.7 Data analysis ___________________________________________ 54 

2.2.2 The effect of fine mesh presence on CO2 diffusion rates in 

microcosm systems used to study AMF ______________________ 54 

2.2.2.1 Microcosm unit design ___________________________________ 54 

2.2.2.2 Experimental design _____________________________________ 56 

2.2.2.3 Data analysis ___________________________________________ 57 

2.2.3 The interactions between AMF and soil CO2, N2O and CH4 fluxes __ 57 

2.2.3.1 Experimental design _____________________________________ 57 

2.2.3.2 Microcosm design _______________________________________ 58 

2.2.3.3 Growth media __________________________________________ 61 

2.2.3.4 Organic matter patches __________________________________ 62 

2.2.3.5 Experiment growth conditions _____________________________ 63 

2.2.3.6 Microcosm based gas sampling ____________________________ 64 

2.2.3.7 Harvest data collection ___________________________________ 66 

2.2.3.8 Post-harvest gas flux measurements ________________________ 67 

2.2.3.9 Gas sample analysis _____________________________________ 70 

2.2.3.10 Gas flux calculations _____________________________________ 71 

2.2.3.11 Data analysis ___________________________________________ 73 

2.3 Results ________________________________________________ 76 

2.3.1 Selecting a suitable host plant _____________________________ 76 

2.3.2 The effect of fine mesh presence on CO2 diffusion rates in 

microcosm systems used to study AMF ______________________ 78 

2.3.3 The interactions between AMF and soil CO2, N2O and CH4 fluxes __ 79 

2.3.3.1 AMF growth and colonisation of Zea mays ___________________ 79 

2.3.3.2 Pre-harvest trace gas fluxes in the presence of AMF hyphae _____ 83 



  -5- 

2.3.3.3 Post-harvest patch greenhouse gas fluxes ____________________ 88 

2.3.3.4 Post-harvest soil greenhouse gas fluxes ______________________ 91 

2.3.3.5 Post-harvest patch and soil analysis _________________________ 94 

2.4 Discussion _____________________________________________ 98 

2.4.1 Preliminary experiments__________________________________ 98 

2.4.2 Experimental design _____________________________________ 98 

2.4.3 Pre-harvest gas fluxes ____________________________________ 99 

2.4.3.1 Carbon dioxide (CO2) ____________________________________ 99 

2.4.3.2 Nitrous oxide (N2O) _____________________________________ 100 

2.4.3.3 Methane (CH4) ________________________________________ 103 

2.4.4 Post-harvest patch N2O fluxes ____________________________ 104 

2.4.5 Post-harvest soil N2O fluxes ______________________________ 107 

2.4.6 Conclusions ___________________________________________ 108 

 The interactions between the hyphae of arbuscular mycorrhizal Chapter 3.

fungi (AMF) and localised organic patch N2O concentrations ________ 110 

3.1 Introduction __________________________________________ 110 

3.2 Materials and Methods _________________________________ 115 

3.2.1 Gas probe development _________________________________ 115 

3.2.1.1 Gas probe design ______________________________________ 116 

3.2.1.2 Gas probe testing ______________________________________ 117 

3.2.2 Experimental design ____________________________________ 119 

3.2.3 Microcosm design ______________________________________ 120 

3.2.4 Growth Media _________________________________________ 121 

3.2.5 Growth conditions _____________________________________ 122 

3.2.6 Organic matter patches _________________________________ 122 

3.2.7 Inorganic nitrogen addition ______________________________ 123 

3.2.8 Gas sampling and analysis _______________________________ 124 

3.2.9 Post-harvest plant and AMF analyses ______________________ 124 

3.2.10 Data analysis __________________________________________ 125 

3.3 Results _______________________________________________ 126 



  -6- 

3.3.1 Gas probe testing ______________________________________ 126 

3.3.2 AMF colonisation of Z. mays and production of hyphae ________ 127 

3.3.3 Patch CO2 and N2O concentrations ________________________ 128 

3.3.4 Patch moisture content _________________________________ 132 

3.3.5 Host plant response to AMF hyphal access to organic matter 

patches ______________________________________________ 134 

3.4 Discussion ____________________________________________ 136 

3.4.1 Gas probe design ______________________________________ 136 

3.4.2 Density of AMF hyphae and CO2 concentrations in organic 

matter patches ________________________________________ 137 

3.4.3 Organic patch N2O concentrations in the presence of AMF 

hyphae ______________________________________________ 138 

3.4.4 The effect of NH4NO3 addition on patch N2O concentrations in 

the presence of AMF hyphae _____________________________ 141 

3.4.5 Conclusions ___________________________________________ 146 

 The effect of severing arbuscular mycorrhizal fungal (AMF) hyphae Chapter 4.

and the addition of NH4 or NO3 on organic patch N2O fluxes ________ 148 

4.1 Introduction __________________________________________ 148 

4.2 Materials and Methods _________________________________ 154 

4.2.1 Experimental design ____________________________________ 154 

4.2.2 Microcosm design ______________________________________ 156 

4.2.3 Growth conditions _____________________________________ 156 

4.2.4 Severing and nitrogen addition treatments __________________ 157 

4.2.5 Gas sampling __________________________________________ 158 

4.2.6 Gas flux and concentration calculation _____________________ 159 

4.2.7 Post-harvest analysis ___________________________________ 160 

4.2.8 Data analysis __________________________________________ 160 

4.3 Results _______________________________________________ 162 

4.3.1 Growth of AMF hyphae in organic matter patches and patch 

moisture content ______________________________________ 162 



  -7- 

4.3.2 Pre-treatment gas concentrations and fluxes ________________ 165 

4.3.3 Post-severing gas concentrations and fluxes _________________ 169 

4.3.4 Changes in N2O production following the addition of inorganic 

N ___________________________________________________ 172 

4.4 Discussion ____________________________________________ 178 

4.4.1 Extraradical mycelium length densities and CO2 fluxes _________ 178 

4.4.2 Pre-treatment N2O production in the presence of AMF hyphae __ 179 

4.4.3 Gas fluxes and concentrations following the severing of AMF 

hyphae ______________________________________________ 180 

4.4.4 The change in N2O production following the addition of 

inorganic N to organic matter patches ______________________ 181 

4.4.4.1 The pathways of N2O production in organic matter patches _____ 181 

4.4.4.2 The difference between AMA and NAMA patch N2O response 

upon inorganic N addition _______________________________ 183 

4.4.5 Future study __________________________________________ 187 

4.4.6 Conclusions ___________________________________________ 187 

 The interactions between arbuscular mycorrhizal fungi (AMF) and Chapter 5.

patch N2O production in organic matter patches with varying N and 

P availability _______________________________________________ 189 

5.1 Introduction __________________________________________ 189 

5.2 Materials and Methods _________________________________ 194 

5.2.1 Experimental design ____________________________________ 194 

5.2.2 Microcosm design and growth media ______________________ 194 

5.2.3 Growth conditions and harvesting _________________________ 195 

5.2.4 Organic matter patches and treatments ____________________ 196 

5.2.5 Gas sampling and calculations ____________________________ 197 

5.2.6 Data analysis __________________________________________ 198 

5.3 Results _______________________________________________ 200 

5.3.1 Extraradical mycelium (ERM) length densities of AMF in organic 

matter patches ________________________________________ 200 



  -8- 

5.3.2 CO2 and N2O production in the presence or absence of AMF 

hyphae ______________________________________________ 201 

5.3.3 Change in N2O production following the addition of (NH4)2SO4 __ 204 

5.3.4 Organic patch and sand/Agsorb® moisture contents ___________ 207 

5.4 Discussion ____________________________________________ 207 

5.4.1 The density of AMF hyphae in organic matter patches _________ 207 

5.4.2 The impact of nutrient content on the density of AMF in organic 

matter patches ________________________________________ 208 

5.4.3 The effect of AMF presence on N2O production in organic 

matter patches of varying N and P content __________________ 212 

5.4.4 The effect of (NH4)2SO4 addition on N2O production in organic 

patches of varying N and P content ________________________ 213 

5.4.5 Conclusions ___________________________________________ 213 

 General Discussion _________________________________________ 215 Chapter 6.

6.1 Summary of the initial aims ______________________________ 215 

6.2 The interactions between AMF hyphae and CO2 or CH4 fluxes ___ 216 

6.3 AMF hyphae significantly affect N2O production in soils and 

organic matter patches __________________________________ 218 

6.3.1 Interactions between AMF and denitrification pathways _______ 220 

6.3.2 Interactions between AMF and nitrification pathways _________ 221 

6.3.3 Specifying the N2O pathways that are affected by AMF hyphae __ 223 

6.3.4 The drivers of the interactions between AMF hyphae and N2O 

production ___________________________________________ 224 

6.4 Proposed mechanisms for interactions between AMF hyphae and 

microbial N2O production ________________________________ 228 

6.5 The organisms involved in interactions between AMF and N2O 

production ___________________________________________ 231 

6.6 The implications of interactions between AMF hyphae and N2O 

production ___________________________________________ 231 



  -9- 

6.7 Conclusions ___________________________________________ 235 

Appendix ___________________________________________________________ 237 

List of References ____________________________________________________ 238 

 

List of Figures 

Figure 1.1. The pathways of a. CO2, b. CH4 and c. N2O production and 

consumption in soils. __________________________________________ 24 

Figure 1.2. Schematic diagram of the areas of soil influenced by the arbuscular 

mycorrhizal (AM) symbiosis _____________________________________ 29 

Figure 1.3. The soil microbial nitrogen (N) cycle______________________________ 34 

Figure 2.1. Microcosm design used in experiment 2.2.1. _______________________ 51 

Figure 2.2. Microcosm unit with mesh fittings shown in a diagram and 

photograph. _________________________________________________ 55 

Figure 2.3. Microcosm unit with 0.45 µm mesh fitted to the ‘back-nut’ (a,b) 

and with no mesh fitted (c). _____________________________________ 56 

Figure 2.4. Diagram of the three compartment microcosm design. T _____________ 59 

Figure 2.5. Photographs of the three compartment microcosm design ___________ 61 

Figure 2.6. Photographs (A,B) and diagram (C) showing the two microcosm 

based pre-harvest (in situ) gas sampling methods ___________________ 65 

Figure 2.7. Syringe-based system for measurement of gas fluxes from nutrient 

patch mesh bags following destructive harvests. ____________________ 68 

Figure 2.8. Mean percentage root length colonisation (RLC) and root length 

colonisation by arbuscules and vesicles (%) in Z. mays (solid bars), L. 

usitatissimum (hatched bars) and P. lanceolata (open bars) plants. _____ 76 



  -10- 

Figure 2.9. Mean extraradical mycelium (ERM) length density (m g-1 DW) 

measured in plant compartment, patch, and soil ____________________ 77 

Figure 2.10. The mean length of time taken for the CO2 concentration in the 

second half of the microcosm unit to reach half of its maximum for 

three mesh treatments ________________________________________ 78 

Figure 2.11. Extraradical mycelium (ERM) length densities (m g-1 DW) from 

AMF access (AMA; solid bars) and no AMF access (NAMA; hatched 

bars) (a) soils and (b) patches for each harvest at 56, 84, and 105 d 

since planting. _______________________________________________ 81 

Figure 2.12. Mean cumulative CO2 production for AMF access (AMA; solid 

bars) and no AMF access (NAMA; hatched bars) compartments for 

the time preceding each harvest (n = 6). ___________________________ 83 

Figure 2.13. Mean cumulative N2O production for AMF access (AMA; solid 

bars) and no AMF access (NAMA; hatched bars) compartments for 

the time preceding each harvest. ________________________________ 84 

Figure 2.14. Mean cumulative CH4 production for AMF access (AMA; solid 

bars) and no AMF access (NAMA) compartments for the time 

preceding each harvest. ________________________________________ 85 

Figure 2.15. Carbon dioxide (CO2) flux from the AMF access (AMA) 

compartment plotted against the CO2 flux from the no AMF access 

(NAMA) compartment preceding each destructive harvest.____________ 86 

Figure 2.16. Total extraradical mycelium (ERM) length estimate for AMF 

access (AMA) compartments for the 105 d harvest plotted against 

the AMA compartment CO2 flux measured 24 h preceding the 

harvest _____________________________________________________ 87 



  -11- 

Figure 2.17. Mean AMF access (AMA; solid bars) and no AMF access (NAMA; 

hatched bars) organic patch N2O fluxes at each harvest _______________ 88 

Figure 2.18. Nitrous oxide (N2O) flux for AMF access (AMA) patches measured 

at each harvest (56 d, 84 d, 105 d post-planting) plotted against 

corresponding extraradical mycelium (ERM) length densities (m g-1 

DW; n = 18, r2 = 0.42). _________________________________________ 89 

Figure 2.19. Nitrous oxide (N2O) fluxes post-harvest for AMF access (AMA) and 

no AMF access (NAMA) patches following the harvest at 105 d post-

planting. A Spearman rank order correlation was used to determine 

the relationship between the AMA and NAMA patch N2O fluxes (n = 

6, r2 = 0.89). _________________________________________________ 90 

Figure 2.20. Mean soil N2O fluxes from AMF access (AMA; solid bars) and no 

AMF access (NAMA; hatched bars) treatments following each 

harvest (at 56, 84 and 105 d since planting) ________________________ 91 

Figure 2.21. Mean N2O flux from AMF access (AMA; solid circle) and no AMF 

access (NAMA; open circle) soils following the final (105 d post-

planting) harvest, pre-KNO3, and 24, 48 and 96 h post KNO3 

addition. ____________________________________________________ 92 

Figure 2.22. Mean N2O flux from AMF access (AMA; solid circle) and no AMF 

access (NAMA; open circle) soils pre-glucose addition (following the 

third harvest at 105 d post-planting) and 24, 48 and 96 h post 

glucose addition ______________________________________________ 93 

Figure 3.1. Summarized potential interactions between AMF hyphae and soil 

N2O producing processes. _____________________________________ 113 

Figure 3.2. Gas probe with white rubber Suba-Seal® in the top. ________________ 116 



  -12- 

Figure 3.3. Unit design (not to scale) used to test the time taken for the 

concentration of N2O inside the gas probe (described in Section 

3.2.1.1) to reach equilibrium with that of a certified standard in the 

surrounding Wheaton bottle. __________________________________ 118 

Figure 3.4 Microcosm unit at 73 d post-planting (44 d post-organic patch 

addition). __________________________________________________ 121 

Figure 3.5. N2O concentrations measured in gas probes (solid circle) and 

Wheaton bottles (open circle) at 0, 0.17, 0.5, 8 and 24 h _____________ 126 

Figure 3.6. Mean percentage length of Z. mays roots colonised by AMF hyphae 

(RLC), arbuscules and vesicles for AMF hyphal access (AMA; solid 

bars) and no AMF hyphal access (NAMA; hatched bars) treatments. ____ 127 

Figure 3.7. Mean extraradical mycelium (ERM) length density (m g-1 DW) in 

AMF access (AMA) and no AMF access (NAMA) patches. _____________ 128 

Figure 3.8. Mean (a) CO2 and (b) N2O concentration (ppm) in AMF access 

(AMA) and no AMF access (NAMA) organic matter patches at 43 d 

post-organic patch addition. ___________________________________ 129 

Figure 3.9. Mean patch N2O concentration at 24, 48 and 96 h following 

NH4NO3 addition ____________________________________________ 131 

Figure 3.10. Mean change in organic patch N2O concentration (∆N2O 

concentration) from pre-NH4NO3 addition to 24 h post-NH4NO3 

addition (NH4NO3: grey bars, water: white bars) for the AMF access 

(AMA) and no AMF access (NAMA) patches. _______________________ 132 

Figure 4.1. Pathways of N2O production in soil. _____________________________ 150 

Figure 4.2. Blade (a) used in the microcosms to sever AMF hyphae and (b) the 

blade inserted into the stainless steel mesh housing inside the 

microcosm unit. _____________________________________________ 156 



  -13- 

Figure 4.3. Mean extraradical mycelium (ERM) length densities (m g-1 DW) in 

(a) AMF access (AMA) and no AMF access (NAMA) patches (n = 40) 

and (b) split by hyphal severing treatment ________________________ 163 

Figure 4.4. AMF access (AMA) organic matter patch extraradical mycelium 

(ERM) length density (m g-1 DW) plotted against the gravimetric 

moisture content (%) of the AMA organic patches. _________________ 164 

Figure 4.5. Mean (a) CO2 concentration at 86 d post-planting and (b) CO2 flux 

at 87 d post-planting measured in the AMF access (AMA) and no 

AMF access (NAMA) patches and compartments ___________________ 167 

Figure 4.6. Mean (a) N2O concentration at 86 d post-planting and (b) N2O flux 

at 87 d post-planting measured in the AMF access (AMA) and no 

AMF access (NAMA) patches and compartments. __________________ 168 

Figure 4.7. Mean CO2 concentrations inside the organic matter patches (a) and 

CO2 fluxes from outer compartments (b) for AMF access (AMA; 

solid bars) and no AMF access (NAMA; hatched bars) treatments 

split by non-severed and severed treatments at 89 d post-planting. ____ 170 

Figure 4.8. Patch N2O concentration (a) and outer compartment N2O flux (b) 

for AMF access (AMA; solid bars) and no AMF access (NAMA; 

hatched bars) treatments split by severed and non-severed 

treatments at 89 d post-planting. _______________________________ 171 

Figure 4.9. Mean difference between 48 h post-N addition (92 d post-planting) 

and pre-N addition (89 d post-planting) N2O flux (∆N2O flux) for 

AMF access (AMA; solid bars) and no AMF access (NAMA; hatched 

bars) treatments split by severing treatment. ______________________ 173 

Figure 4.10. Mean difference between 48 h post-N addition (92 d post-

planting) and pre-N addition (89 d post-planting) N2O flux (∆N2O 



  -14- 

flux) for AMF access (AMA; solid bars) and no AMF access (NAMA; 

hatched bars) treatments, split by N addition treatment _____________ 176 

Figure 4.11. AMF access (AMA) – no AMF access (NAMA) change in N2O flux 

(∆N2O flux) calculated from the 48 h post-N addition (92 d post-

planting) minus pre-N addition values (89 d post-planting). ___________ 177 

Figure 5.1. Mean extraradical mycelium (ERM) length densities (m g-1 DW) in 

AMF access (AMA; solid bars) and no AMF access (NAMA; hatched 

bars) patches _______________________________________________ 200 

Figure 5.2. Mean cumulative CO2 flux from 69 to 98 d post-planting (37 to 66 d 

post-patch addition) __________________________________________ 201 

Figure 5.3. AMF access (AMA) compartment plotted against no AMF access 

(NAMA) compartment cumulative CO2 fluxes from 69 to 98 d post-

planting (37 to 66 d post-patch addition). _________________________ 202 

Figure 5.4. Mean cumulative N2O flux from 69 to 98 d post-planting (37 to 66 

d post-patch addition) ________________________________________ 203 

Figure 5.5. Mean change in N2O flux from pre-N addition values (98 d post-

planting) to (a) 48 h and (b) 96 h after the addition of (NH4)2SO4_______ 205 

Figure 6.1. Proposed interactions between AMF hyphae and N2O production 

in organic matter patches as described in this thesis. ________________ 230 

 

 

 

 

 

 



  -15- 

List of Tables 

Table 2.1. Carbon (C) and nitrogen (N) content of the mixed organic patch 

material ____________________________________________________ 63 

Table 2.2. Mean percentage root length colonised by AMF (%RLC) and 

percentage of roots colonised by arbuscules and vesicles for Zea 

mays L. plants at each harvest ___________________________________ 79 

Table 2.3. Mean extraradical mycelium (ERM) length densities (m g-1 DW) in 

the central planted compartments for each harvest ± standard 

error of the mean (n = 6). _______________________________________ 80 

Table 2.4. One-way ANOVA or Wilcoxon signed ranks test results for AMF 

hyphal access (AMA) – no AMF hyphal access (NAMA) extraradical 

mycelium (ERM) length density data from patches and soils split by 

harvest (at 56, 84 or 105 d post-planting). _________________________ 82 

Table 2.5. Mean patch C and N contents, patch C:N ratio, patch C and N 

concentrations, and patch and soil gravimetric moisture contents 

(%) following each destructive harvest ____________________________ 95 

Table 2.6. Correlation coefficients and r2 values for correlations between pre- 

or post-harvest N2O fluxes against other patch variables (C and N 

content, C and N concentrations and patch gravimetric moisture 

content) ____________________________________________________ 97 

Table 3.1. Carbon (C) and nitrogen (N) content and C:N ratio of the mixed 

organic patch material (13 g DW equivalent soil mixed with 2 g DW 

milled Z. mays leaves) and Z. mays leaves _________________________ 123 

Table 3.2. Mean gravimetric moisture content (%) for AMF access (AMA) and 

no AMF access (NAMA) patches following the harvest at 48 d post-

organic patch addition. _______________________________________ 133 



  -16- 

Table 3.3. Spearman’s rank order correlation coefficients and r2 values for the 

relationship between organic patch N2O concentration at 24, 48 

and 96 h post-NH4NO3 addition and organic patch gravimetric 

moisture content (%) following the harvest at 48 d after organic 

patch addition ______________________________________________ 134 

Table 3.4. Mean leaf N and C total content (mg), concentration (mg g-1 DW) 

and C:N ratio of AM host plants for AMF access (AMA) and no AMF 

access (NAMA) treatments ____________________________________ 135 

Table 4.1. Mean carbon (C) and nitrogen (N) content and C:N ratio of the 

mixed organic patch material (13 g DW equivalent soil mixed with 2 

g DW milled Z. mays leaves) and Z. mays leaves ____________________ 154 

Table 4.2. Experimental design. _________________________________________ 155 

Table 4.3. Experimental schedule including addition of hyphal severing (blade 

insertion) and inorganic nitrogen (N) addition treatments ____________ 159 

Table 4.4. Mean gravimetric patch and sand/Agsorb® moisture contents (%) 

for AMF access (AMA) and no AMF access (NAMA) compartments 

following the harvest at 100 d post-planting. ______________________ 165 

Table 4.5. Wilcoxon rank sum (Mann Whitney U) statistics comparing the 

post-N addition N2O flux response (at 48 h, 96 h and 192 h post-N 

addition/92 d, 94 d 98 d post-planting) of the non-severed 

treatment with those from the severed treatment for each AMF 

access (AMA: AMF hyphal access; NAMA: no AMF hyphal access) 

and N addition treatment. _____________________________________ 174 

Table 4.6. Friedman’s test statistics controlling for block comparing the post-N 

minus pre-N patch N2O concentrations (∆N2O concentrations) or 

compartment N2O fluxes (∆N2O fluxes) ___________________________ 175 



  -17- 

Table 5.1. Carbon (C), nitrogen (N) and phosphorus (P) content of Z. mays leaf 

material used in the organic patches ± standard error of the mean 

for the high nitrogen (HN) and low nitrogen (LN) treatments _________ 197 

Table 5.2. One-sample t-tests (t) or Wilcoxon signed rank tests (S) comparing 

AM access (AMA) – no AMA access (NAMA) cumulative CO2 fluxes 

to zero for each of the nutrient treatments _______________________ 202 

Table 5.3. One-way ANOVA or Wilcoxon rank sum statistics comparing the 

N2O concentration from within the organic patches to atmospheric 

N2O at 0.324 ppm (Blasing, 2013). _______________________________ 206 

Table 5.4. Organic matter patch and sand/Agsorb® gravimetric moisture 

contents (%) following the harvest at 103 d post-planting (71 d 

post-patch addition) __________________________________________ 207 

Table 6.1. The observed changes in N2O production in the presence of AMF 

hyphae found in this thesis. ____________________________________ 219 

Table 6.2. Reported effects of AMF presence on N2O producers or N2O 

producing pathways in either mycorrhizosphere (vs. non-AM or 

low-AM rhizosphere), or hyphosphere (vs. soil only) soils from the 

published literature. __________________________________________ 222 

 

List of Equations 

Equation 3.1 First order diffusion model___________________________________119 

Equation 3.2 Diffusion coefficient calculation_______________________________119  



  -18- 

Acknowledgements 

I would like to thank my supervisors Phil Ineson and Angela Hodge for their invaluable 

help and advice throughout my PhD. They have made my PhD enjoyable while helping 

me to develop as an independent researcher, and I am very grateful for the time, 

effort and support that they have provided over the last four years. I would also like to 

thank my training panel members, Alastair Fitter and James Chong who have helped to 

direct my research and provided excellent discussions. I would like to thank Aisha 

Coggan for her time, enthusiasm, effort and support. I would also like to thank the 

Biotechnology and Biological Sciences Research Council for providing the funding to 

support my PhD studies.  

 

I have been very lucky to be part of the knowledgeable, fun and supporting D0 lab 

group. The extended lab members both past and present have all been very 

supportive, and have provided excellent advice and discussions. I’d like to thank 

Thorunn Helgason, Sue Hartley, Kelly Redeker, Sylvia Toet, Andreas Heinemeyer, 

Joanna Banasiak, Anne Cotton, David Sherlock, Naomi Voke, Ruth Wade, Debbie 

Coldwell, James Stockdale, Ben Keane, Claudia Harflett, Tom Thirkell, Vicky Chadfield, 

Rhys Walden and Sheila Davitt-Betts for their friendship and advice throughout my 

PhD. Thank you to Anna Riach, who has been there to help me see the bright side, and 

to Nicola, Emma and Rachel for their friendship and support. I’d also like to thank the 

horticultural staff, particularly Alison Fenwick, Paul Scott, and Chris Lancaster, and 

Mark Bentley in mechanics.  

 

I especially want to thank my parents, who have always supported and encouraged me 

without reservation and have always been there to help when I needed them. Above 

all, I thank Matt, for his unending support, reassurance and patience.  

  



  -19- 

Authors declaration 

I, Kate Elizabeth Storer declare that all the material contained within this thesis except 

for the work outlined below is a result of my own work and has been written solely by 

myself.  

 

The microcosm experiment outlined in Chapter 3 was designed by Kate Storer but 

carried out with help from a summer student (Aisha Coggan). Practical work was both 

taught and overseen by Kate Storer. Maintenance of the plants (watering/feeding) was 

planned by Kate Storer, and carried out by both Kate and Aisha. Gas sampling was 

predominantly carried out by Aisha with one sample by Kate. Harvesting was carried 

out by Kate and Aisha, and root staining and hyphal extractions were carried out by 

Aisha but taught and overseen by Kate. Post-harvest analyses including ERM length, 

colonisation counts and C:N measurements were carried out by Kate. All calculations, 

statistical analysis and writing up was carried out by Kate. 
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 General Introduction Chapter 1.

1.1 The gases that contribute to global climate change 

It is now widely accepted among the scientific community that global climate change is 

caused by anthropogenic driven increases in greenhouse gases (GHG; Forster et al., 

2007) and that climate change will have major implications ecologically (Parmesan, 

2006), socially (Godfray et al., 2010; Patz et al., 2005) and economically (Stern, 2007). 

Long-lived GHG including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4), 

are significant contributors to global climate change (Forster et al., 2007), and nitrous 

oxide is also a significant cause of ozone depletion (Ravishankara et al., 2009).  

 

As a result of anthropogenic influences, the atmospheric concentration of CO2, which 

had previously been stable at around 270 ppm for ca. 10, 000 years, has increased 

from ca. 280 ppm in 1750, to ca. 392 ppm in 2011 (Blasing, 2013; Forster et al., 2007). 

Similarly, the atmospheric concentration of CH4 is currently higher than it has been in 

the past 650,000 years (Spahni et al., 2005), and CO2, CH4 and N2O have all been 

increasing rapidly over the past 200 years (MacFarling Meure et al., 2006). The 

atmospheric concentrations of CH4 and N2O in 2011 were ca. 1.8 ppm and ca. 0.32 

ppm respectively (Blasing, 2013). Much of the research to date has focused on the 

effects of increased CO2 levels in the atmosphere (e.g. Schimel, 1995; Vargas et al., 

2010), largely because CO2 currently dominates in terms of GHG warming equivalents. 

However, although N2O and CH4 are present at lower concentrations than CO2, they 

both have a high mean residence time in the atmosphere of 114 and 12 years, 

respectively, and also produce higher levels of radiative forcing in relation to their 

concentrations than CO2 (Forster et al., 2007). For example, over 100 years, CH4 has a 

global warming potential that is 25 times greater than that of CO2 (Forster et al., 2007). 

Consequently, CH4 and N2O are increasingly being seen as immediate targets to 

achieve trace gas reductions (Wuebbles & Hayhoe, 2002; Reay et al., 2012), requiring 

an increased understanding of the sources and sinks of these gases. 
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One of the major producers and consumers of CO2, CH4 and N2O are soils (Figure 1.1a-

c; Ojanen et al., 2010; Schaufler et al., 2010; Anderson-Teixeira & DeLucia, 2011). 

While the production and consumption pathways of CH4 from soils are relatively well 

understood (Chan & Parkin, 2001; Le Mer & Roger, 2001), the production and 

consumption of N2O by soils is more complex than previously realised (Baggs & 

Philippot, 2010; Butterbach-Bahl et al., 2013), and the interactions of CH4 and N2O 

pathways with other soil organisms are not fully understood (Singh et al.,  2010).  

 

1.1.1 Methane (CH4)  

Methane is produced from both anthropogenic (e.g. accessing and burning natural gas) 

and natural (e.g. wetlands) sources, but biogenic sources (i.e. biologically mediated, 

regardless of anthropogenic influence) account for up to 69% of global CH4 emissions 

(Forster et al., 2007; Conrad, 2009). The main biogenic sources of CH4 are wetlands, 

ruminant animal production and rice paddies (Wuebbles & Hayhoe, 2002; Forster et 

al., 2007). The major sink for CH4 is the chemical reaction with hydroxyl (OH) radicals in 

the troposphere (the lowest portion of the Earth’s atmosphere), forming water and 

CO2, but CH4 can also be consumed by soils via CH4 oxidation (Wuebbles & Hayhoe, 

2002). Although the global atmospheric concentration of CH4 is currently increasing, if 

there are any changes in these fluxes (from sources or sinks), it could result in a major 

change in the net balance of CH4 world-wide (Nazaries et al., 2013a).  

 

Methane can be both produced and consumed by soils during methanogenesis and 

methane oxidation, respectively (Figure 1.1b). Both processes tend to occur in most 

soils, and the dominant process determines if the soil is a net source or sink of CH4 (Le 

Mer & Roger, 2001). In methanogenesis, the organisms involved are methanogens, 

which produce CH4 and belong to the archaea (Angel et al. 2012). Methanogenesis 

produces both CO2 and CH4 as organic material is completely mineralised in the 

absence of oxygen (O2). This commonly occurs in waterlogged soils such as rice 

paddies, but can also occur in anaerobic patches of aerobic soils (Chan & Parkin, 2001; 
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Le Mer & Roger, 2001). In contrast, the organisms responsible for CH4 oxidation in soils 

are methanotrophic bacteria and archaea, and nitrifying bacteria (Prosser, 2007; Singh 

et al., 2010). There are two groups of methanotrophic bacteria; high affinity 

methanotrophs working at low CH4 concentrations of < 12 ppm (commonly from the 

class Alphaproteobacteria) and low affinity methanotrophs functioning at higher CH4 

concentrations > 40 ppm (mainly members of the class Gammaproteobacteria) 

(Bender & Conrad, 1992; Singh et al., 2010).  

 

Low affinity CH4 oxidation tends to occur in soils where methanogenesis is also 

occurring, with CH4 concentrations which are high but for short periods (for example in 

rice paddies). A large proportion of CH4 produced in soil is consumed by low affinity 

CH4 oxidation (Whalen et al., 1990; Conrad & Rothfuss, 1991), but in soils that are 

exposed to CH4 concentrations which are closer to the lower atmospheric levels, high 

affinity CH4 oxidation is more likely (Bull et al., 2000). However, more is known about 

the low affinity, than the high affinity CH4 oxidisers, since the majority of studies on 

methanotrophs to date have been carried out on wetland soils or cultivated rice 

paddies (Le Mer & Roger, 2001; Conrad, 2009). There is also some evidence for 

anaerobic methane oxidation in peatland systems (Gupta et al., 2013), and it has also 

been revealed that denitrifiers are capable of oxidising CH4 (Ettwig et al., 2010). The 

denitrifiers were found to bypass the production of N2O during denitrification, and 

subsequently oxidise CH4 using the oxygen produced (Ettwig et al., 2010).  

 

A range of factors determine whether a soil is a net producer or consumer of CH4 but, 

as a result of anthropogenic activity, the CH4 oxidation capacity of managed land may 

have been substantially decreased, possibly as a result of increased nitrogen (N) 

deposition (Hütsch, 1996; Reay & Nedwell, 2004; Aronson & Helliker, 2010). Other 

factors that can influence soil CH4 oxidation or production include water content 

(Bender & Conrad, 1995), organic matter content, soil texture and drainage (Smith et 

al., 2003a), chemical properties (Reay & Nedwell, 2004) and any factors that may 

influence microbial activity, such as temperature and pH (Segers, 1998; Le Mer & 
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Roger, 2001). However, the dominant factor controlling the activity of most CH4 

oxidising and producing bacteria is the concentration of O2 (Chan & Parkin 2001; Angel 

et al. 2012).  
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Figure 1.1. The 

pathways of a. CO2, b. 

CH4 and c. N2O 

production and 

consumption in soils. 

Adapted with 

permission from 

Macmillan Publishers 

Ltd: [Nature Reviews 

Microbiology] Singh et 

al.  copyright (2010). In 

Figure 1.1a, C6H12O6 = 

glucose; in Figure 1.1b, 

CH3COOH = acetic acid; 

in  Figure 1.1c, NO3 = 

nitrate, NH4 = 

ammonium, NH3 = 

ammonia. Figure 1.1c 

has also been modified 

to include N2O sources 

from nitrifier 

nitrification and 

dissimilatory nitrate 

reduction to 

ammonium (DNRA). 

  

N2O 

DNRA N2O 

CO2  

CH4  
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1.1.2 Nitrous oxide (N2O) 

Nitrous oxide is a gaseous product of the N cycle in soil systems (Figure 1.1c; Singh et 

al., 2010), and is often produced in agricultural systems (Forster et al., 2007) with the 

marked global N2O atmospheric concentration increases between 1940 and 2005 

being predominantly a result of increased use of N-based fertilisers (Park et al., 2012). 

As the world population is expected to increase significantly over the next 40 years 

(Godfray et al., 2010), the pressure on agricultural systems to increase yields will 

continue to rise, together with increased global use of nitrogenous fertilisers. 

Consequently, in order to reduce anthropogenic driven N2O emissions, there is a need 

to better understand the factors controlling production of N2O in agricultural systems 

(Reay et al., 2012). There are a number of other important natural sources of N2O, 

mainly oceans and tropical wet soil, with anthropogenic sources making up about 1/3 

of all N2O sources world-wide. The major sink for N2O is destruction in the 

stratosphere (Forster et al., 2007; Schlesinger & Bernhardt, 2013), but N2O can also be 

consumed by denitrifiers via the nitrous oxide reductase enzyme during the final stage 

of denitrification (Spiro, 2012). Since N2O has a long mean residence time of 114 years 

compared to only 14 years for CH4 (Forster et al., 2007), it is essential that we 

understand the soil derived fluxes of N2O as, unlike CH4, any changes in the 

atmospheric concentration of N2O will have long term consequences.  

 

In recent years, our understanding of N2O production in soil systems has significantly 

improved, mostly as a result of the development of isotopic methods for tracing the 

sources of N2O (Baggs, 2008; Kool et al., 2011; Ostrom & Ostrom, 2011). There is now 

evidence for a wide range of pathways and organisms in soils that are capable of 

producing N2O, including nitrification, denitrification, nitrifier denitrification, 

dissimilatory nitrate reduction to ammonium, co-denitrification, and chemo-

denitrification (Baggs, 2011; Butterbach-Bahl et al., 2013), which are discussed in more 

detail in Chapter 4 (Section 4.1). The production of N2O and CH4 in soils is also being 

increasingly linked as some organisms that control the production and consumption of 

N2O and CH4 are capable of carrying out more than one function. Denitrification rates 
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can be positively related to the rate of CH4 oxidation (Khahil & Baggs, 2005), possibly 

as a result of methanotroph-dependent denitrification (Islas-Lima et al., 2004). 

Methanotroph-dependant denitrification is not well understood, but an increase in 

denitrification may be driven by a provision of carbon (C) to denitrifiers during 

methane oxidation (Knowles, 2005). Alternatively, the close-coupling of CH4 oxidisers 

and denitirifers may be a route for CH4 oxidisers to obtain oxygen under anaerobic 

conditions (Raghoebarsing et al., 2006).  Ammonia oxidising bacteria (AOB) are capable 

of oxidising CH4 (Prosser, 2007), and methanotrophs can produce N2O (Lee et al., 

2009). However, because the AOB have higher oxidation rates for NH4 than for CH4, 

and the opposite is true for methane oxidisers, it is thought that the role of CH4 and 

NH4 oxidisers is only minor in the production of N2O and CH4 respectively (Prosser, 

2007).  

 

Although there are now a wide range of known pathways which produce N2O, the 

main factors that influence N2O production rates via these pathways in soils are 

relatively well understood. These include O2 availability (which might be limited by 

diffusion through the soil structure or water content; Bollmann & Conrad, 1998), 

availability of the required N source (NO3
- or NH4

+; Hino et al., 2010) and factors that 

generally influence the activity of microorganisms (e.g. temperature, C availability 

and/or pH; Bollmann & Conrad, 1998; Prosser, 2007; Thomson et al., 2012). 

Wallenstein et al. (2006) defined proximal and distal controls on denitrifiers and 

denitrification. Proximal controls include factors that affect the rate of N2O production 

by denitrifiers that are already present (e.g. the short term availability of C), whereas 

distal controls such as long term availably of O2 or C will affect the community 

composition of denitrifiers (Wallenstein et al., 2006). These terms could also be used 

to describe the controls on nitrification rates. Thus, any change in N2O production 

could be a result of either proximal or distal controls, or both. Whilst nitrification 

pathways are generally aerobic and autotrophic (Wrage et al., 2001), and 

denitrification pathways are generally anaerobic and heterotrophic (Giles et al., 2013), 

their interactions with other soil organisms are likely to also vary.  
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Although requiring varying conditions, many of the N2O producing pathways can occur 

in parallel in soils. Anaerobic pathways (e.g. denitrification) can occur in microsites at 

the centre of soil aggregates or between soil particles that trap water (Singh et al., 

2010), even in the same soils as aerobic pathways such as nitrification. Despite 

understanding some of the major controls on these pathways, there is still a gap in 

knowledge necessary for prediction of which soils are most likely to produce N2O 

(Butterbach-Bahl et al., 2013). This is partly because, to date, it has been difficult to 

link the populations of N2O producers with functional roles and their controls; the 

recent advancement of molecular methods is now making this a very real possibility 

for certain organisms. For example, Whitby et al. (2001) demonstrated, using 13C-CO2 

enrichment cultures of AOB in fresh water sediment, that Nitrosomonads out-

competed Nitrosospiras in their laboratory incubation system. Nonetheless, these 

methods are still under development (Butterbach-Bahl et al., 2013), and there are still 

many unknowns with respect to the controls on N2O producing microorganisms (Singh 

et al., 2010). 

 

1.2 Arbuscular mycorrhizal fungi (AMF) 

Arbuscular mycorrhizal fungi (AMF) form a symbiosis with over 2/3 of all land plants 

(Smith & Read, 2008) which goes back as far as the first colonization of land by plants 

(Remy et al., 1994; Redecker et al., 2000), and is found across all major terrestrial 

biomes (Treseder & Cross, 2006). The symbiosis is formed by AMF penetrating the cell 

walls of plant roots and forming intraradical structures including intraradical mycelium 

(IRM), arbuscules and vesicles (Parniske, 2008). Arbuscules are ‘tree-like’ fungal 

structures that are formed inside plant cells, but do not penetrate the host cell 

membrane. Instead, the AMF branches are surrounded by a peri-arbuscular membrane 

produced by the plant which separates the fungus from the plant cytoplasm (Parniske, 

2008). Arbuscules have a large surface area and are thought to be sites of nutrient 

exchange between the AMF and plant host (Parniske, 2008).  
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Vesicles are also formed by many AMF species (although not all) and these ‘balloon-

like’ structures are thought to be storage organs (Smith & Read, 2008). Arbuscular 

mycorrhizal fungi also produce an extraradical mycelium (ERM), which are hyphae that 

extend out into the soil and beyond the plant root system. The ERM is involved in 

nutrient uptake from the soil and in searching for new plant hosts (Friese & Allen, 

1991; Olsson et al., 2003). The ERM length densities produced by AMF can far exceed 

root length densities, with a recent field study on tropical soils finding AMF hyphal 

densities (10.4 m g-1 soil) to be ca. 13 times higher than root lengths (Camenzind & 

Rillig, 2013). Therefore, AMF hyphae can significantly extend the volume of soil 

available for nutrient uptake (Smith & Smith, 2011b).  

 

1.2.1 AMF modifying the soil environment 

Arbuscular mycorrhizal fungi can affect soil systems both in the mycorrhizosphere, the 

volume of soil influenced by an AMF colonised root and AMF hyphae, and in the 

hyphosphere, the volume of soil influenced by AMF hyphae away from the plant roots 

(Figure 1.2; Johansson et al., 2004). These terms are referred to throughout this thesis 

and the experiments detailed in the following Chapters focus on interactions between 

AMF hyphae and microorganisms in the hyphosphere. 

 

The main role of the arbuscular mycorrhizal (AM) symbiosis is thought to be in aiding 

plant phosphorus (P) nutrition, as the AMF can access P that is outside the depletion 

zone that builds up around the root surface (Fitter et al., 2011). However, there are a 

range of AMF benefits to host plants that have proven the symbiosis to be more 

complex. Arbuscular mycorrhizal fungi can improve soil structure (Rillig et al., 2002) 

and water status of their host plants (Augé, 2001; Ruiz-Lozano et al., 2001), host plant 

disease and pest resistance (Fritz et al., 2006; Jung et al., 2012), protection from heavy 

metal contamination (Guo et al., 1996; Göhre & Paszkowski, 2006), reduction in 

nutrient leaching (Asghari & Cavagnaro, 2011; Asghari & Cavagnaro, 2012), and uptake 

of additional nutrients including copper (Liu et al., 2000a), zinc (Thompson, 1996; 

Cavagnaro, 2008) and nitrogen (Leigh et al., 2009). Three main influences of AMF on 
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the soil environment will be considered in more detail here, including AMF mediated 

changes in pH, glomalin production, and changes in nutrient availability (Section 1.2.2) 

as these could all mediate interactions between AMF and soil GHG production. 

 

Figure 1.2. Schematic diagram of the areas of soil influenced by the arbuscular 

mycorrhizal (AM) symbiosis  (not to scale). The soil influenced by a root colonised by 

AMF and AMF hyphae (in A this is denoted by the dark shading around the AMF 

colonised root and AMF hyphae) is known as the ‘mycorrhizosphere’. The soil 

influenced by the AMF hyphae only (in B this is the dark shading around the AMF 

hyphae) away from the AM root is termed the ‘hyphosphere’. Adapted from Johansson 

et al. (2004) with permission from John Wiley & Sons.  

 

In a compartmentalised pot system Li et al. (1991a) found that AMF can reduce the pH 

of both mycorrhizosphere and hyphosphere soils by up to 1 pH unit. Villegas & Fortin 

(2001) also found that AMF hyphae reduced the pH of growth media in a Petri plate 

system using transformed carrot roots when grown with NH4 as a N source, and this 
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has also been found in the mycorrhizosphere of onion roots grown in soil with added 

NH4 (Bago & Azcón-Aguilar, 1997). It has been proposed that the observed decreases 

in pH were a result of H+ release during NH4 uptake (Li et al., 1991a; Villegas & Fortin, 

2001). In contrast, Bago et al. (1996) reported an increase in the pH of growth media 

when AMF hyphae were grown in hairy root cultures and provided with nitrate (NO3). 

Bago et al. (1996) proposed that the AMF were actively taking up NO3, which 

subsequently could release OH- into or remove H+ from the surrounding media during 

NO3 uptake (Smith & Smith, 2011b), in a similar way to plants (Marschner et al., 1986). 

A recent study using compartmentalised boxes found that hyphae of Glomus 

intraradices L. reduced the pH of the hyphosphere when supplied with phytin (an 

organic P supply) and NH4, but not when supplied with phytin and NO3 (Wang et al., 

2013). Consequently, because phosphatase activity can be increased at lower pH (Ding 

et al., 2011), in the NH4 and phytin treatment, shoot P content was increased under 

the lower pH conditions (Wang et al., 2013). Thus, NH4 uptake by AMF hyphae may 

also increase P availability (also see Section 1.2.2 on nutrient cycling).  

 

As well as modifying soil pH, AMF hyphae can produce a glycoprotein called glomalin, 

which is operationally described as a glomalin related soil protein (GRSP) in soil studies 

(owing to the extraction and purification methods not being specific; Purin & Rillig, 

2007). Nonetheless, GRSP has been linked to benefits for soils including stabilising soil 

structure (Rillig & Mummey, 2006), C storage (Rillig et al., 2001; Wilson et al., 2009) 

and water retention under drought conditions (Augé, 2001). It is N-rich (Lovelock et al., 

2004) and may act as an N source for microorganisms in N limited soils (Purin & Rillig, 

2007). The concentration of GRSP in soil frequently correlates with the soil aggregate 

stability (Wright & Upadhyaya, 1998; Rillig et al., 2002), leading to the suggestion that 

this is the major role of glomalin in soils (Wright & Upadhyaya, 1998). However, 

Gadkar and Rillig (2006) discovered that  glomalin is in fact a homolog of Heat Shock 

Protein 60 and Driver et al. (2005), using in vitro cultures, found that ca. 80% of the 

glomalin produced by G. intraradices was located within hyphae and spores; 

consequently the majority of glomalin may only enter the soil once the hyphae 

senesce. As a result, Purin and Rillig (2007) proposed the primary role of glomalin was 
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physiological within living AMF hyphae, perhaps as a chaperonin. Secondly, because of 

the location of glomalin in cell walls, Purin & Rillig (2007) proposed that glomalin may 

make the hyphae less palatable to fungal grazers. The hyphae of AMF have been found 

to be less palatable to microarthropods (mites and collembola) than other saprobic soil 

fungi (Klironomos & Kendrick, 1996). Therefore, glomalin’s role in improving soil 

aggregate stability may only be a simple coincidental by-product of these two more 

recently discovered functions, because it is relatively persistent in soils (Purin & Rillig, 

2007).  

 

Through increasing the aggregate stability of soils (Rillig & Mummey, 2006), AMF may 

improve soil structure and aid plant water uptake and diffusion of gases through soils 

(Bronick & Lal, 2005; Horn & Smucker, 2005). Thus, AMF-mediated changes in pH and 

improvements in soil structure via hyphae and glomalin production will impact on the 

soil environment for soil microorganisms, which will undoubtedly include GHG 

producers and/or consumers that are sensitive to edaphic conditions.  

 

1.2.2 Roles of AMF in soil nutrient cycling 

The main role of AMF in most plant-soil systems is believed to be improved P uptake 

for the host plant in exchange for C (Fitter et al., 2011). However, AMF can also take up 

N (Ames et al., 1983; Tanaka & Yano, 2005) and promote decomposition of organic 

material (Hodge et al., 2001), and, consequently AMF are closely related to P, N and C 

cycling in soils, these interactions are outlined in more detail below (Sections 1.2.2.1, 

1.2.2.2 and 1.2.2.3 respectively).   

 

1.2.2.1 Phosphorus acquisition by AMF  

The available form of P in soils (predominantly orthophosphate) can rapidly become 

adsorbed by clay mineral surfaces (Plante, 2007), thereby reducing the availability of 

phosphate in soils, and diffusion is insufficient to provide the P required by plants for 
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growth. Consequently, P depletion zones develop around plant roots, and plants can 

easily become limited by the availability of P (Jackson & Caldwell, 1993; Tinker & Nye, 

2000). Arbuscular mycorrhizal fungi are thought to aid in plant P uptake by extending 

their fine hyphae and exploring a larger soil volume than is possible by the plants root 

system alone, rather than producing enzymes to mineralise organic P (Li et al., 1991b; 

Smith & Read, 2008). Despite Toljander et al. 2007 demonstrating that AMF hyphal 

exudates can include organic acids, there is no evidence to date that these are used by 

AMF to aid in accessing P. However, there is also some evidence of AMF mediated 

decreases in pH increasing the mineralisation of phytate (an organic P source) and 

therefore the availability of phosphate for AMF uptake and transfer to their host plant 

(Wang et al., 2013). Consequently, AMF play a significant role in P modifications and 

availability in soils.   

 

The uptake of inorganic phosphate (Pi) by AMF is via high-affinity transporters in the 

ERM (Lei et al., 1991; Harrison & van Buuren, 1995), and this P is then transferred to 

the IRM in the form of polyphosphate (polyP; Hijikata et al., 2010). Once released from 

the arbuscules, Pi is transported into the plant roots via mycorrhizal-specific plant Pi 

transporters in the peri-arbuscular membrane (Maeda et al., 2006; Javot et al., 2007), 

although the transporters that release Pi from the IRM are still unknown (Smith & 

Smith, 2011b). The contribution of AMF to plant P nutrition can be significant and 

although AMF may not necessarily increase the total P content of their host plant they 

can, in some cases, be responsible for all P supply for their host (Smith et al., 2004).  

 

1.2.2.2 Nitrogen cycling  

The published interactions of AMF with soil microbial N cycling are summarised in 

Figure 1.3. Nitrogen mineralisation involves the breakdown of organic matter into 

readily available inorganic forms, predominantly NH4 and NO3 by bacteria and 

saprotrophic fungi (Booth et al., 2005). However, as AMF have no known saprotrophic 

capability (Smith & Read, 2008), it is unlikely that AMF play a direct role in 
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mineralisation of organic N forms. Nonetheless, there is evidence for enhanced 

decomposition of organic matter in the presence of AMF (Hodge et al., 2001; Atul-

Nayyar et al. 2009) possibly because the presence of AMF can improve the ability of 

decomposers to break down organic N forms into inorganic forms, for example, via C 

exudation in the hyphosphere (Hodge et al., 2001; Toljander et al., 2007). Atul-Nayyar 

et al. (2009) showed that N mineralization in added organic matter increased by, on 

average, 228% in the AM treatments and this occurred in the three different AMF 

species screened (Glomus intraradices, Glomus claroideum, and Glomus clarum). There 

is also evidence to show that AMF hyphae proliferate in organic matter patches 

(usually containing dried shoot material) in soils (St John et al., 1983; Hodge & Fitter, 

2010; Leigh et al., 2011) and can acquire N from these sources (Leigh et al., 2009; 

Hodge & Fitter, 2010).  
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Figure 1.3. The soil microbial nitrogen (N) cycle. Adapted from Thomson et al. 

copyright (2012) with permission from The Royal Society. The known interactions of 

arbuscular mycorrhizal fungi (AMF) with soil N cycling are numbered and outlined. 1. 

Assimilation: AMF can take up both NH4 and NO3 in soils, 2. Fixation: AMF can improve 

nitrogen fixation in plant roots and 3. Ammonification: AMF can increase 

mineralisation rates in organic matter patches. These interactions may subsequently 

affect rates of denitrification, nitrification and dissimilatory reduction of nitrate to 

ammonium (DNRA). Numbers in brackets are the oxidation states of the N forms.  

 

It has been proposed that AMF have a significant role in soil N cycling (Hodge & Fitter, 

2010) and it has been demonstrated, firstly in laboratory systems, that AMF can take 

up and transfer N to their host plant (Ames et al., 1983; Tanaka & Yano, 2005) and 

secondly, in field systems, that AMF can improve the N status of their host plants 

(Blanke et al., 2011; Cavagnaro et al., 2012). The range of N forms that AMF hyphae 

can take up is varied, with evidence for AMF uptake of inorganic N as NH4 (Tanaka & 

Yano, 2005) or NO3 (Bago et al., 1996) and as amino acids (Hawkins et al., 2000). In a 

field study using quantum dots to trace the uptake of organic N, Whiteside et al. 
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(2012) found that both labile (glycine) and recalcitrant (chitosan) organic N forms can 

be taken up by AMF hyphae. However, the specific uptake rates (per unit biovolume) 

of labile organic N were reduced under conditions of higher inorganic N availability 

(Whiteside et al., 2012). Hodge et al. (2001) also demonstrated that AMF can uptake N 

from an organic source, although this was probably following mineralisation by other 

microorganisms (Hodge & Fitter, 2010). In an experiment using microcosm units in 

which AMF hyphae were allowed access to 15N and 13C labelled organic matter, Hodge 

and Fitter (2010) found that whilst nearly a third of total N in the AMF hyphae was 

derived from the organic matter, there was no 13C enrichment of fungal or plant 

material. Therefore, the AMF were not taking up N in simple organic forms, and 

mineralisation must have occurred prior to AMF uptake of N. Furthermore, using hairy 

root cultures under gnotobiotic conditions, Leigh et al. (2011) found that AMF hyphae 

did not improve root N acquisition from a range of organic matter types, supporting 

the idea that they compete with microorganisms for decomposition products.  

 

The reported amounts of N transferred from AMF to the host plant are varied, values 

of 30-50% for root N derived from AMF hyphae are reported from root organ culture 

studies (Govindarajulu et al., 2005; Jin et al., 2005). Some studies report no effect of 

AMF on plant N content (Reynolds et al., 2005) or concentration (Cui  & Caldwell, 

1996) but in a microcosm based study using Glomus aggregatum (Schenk & Smith) and 

Zea mays L., Tanyaka and Yano (2005) found that when slow-release NH4 was added to 

a hyphal-only compartment, up to 74% of total shoot N was derived from that NH4 

source, whereas in the NO3 treatment, this value was only 2.9%. Furthermore, Leigh et 

al. (2009) found that by adding 15N labelled organic matter patches to a hyphal-only 

compartment up to ca. 13% or 22% of plant N may have been patch derived when 

either Glomus hoi or G. intraradices were the AMF partner respectively, even though 

total plant N capture did not change. While there is evidence of AMF hyphae taking up 

both NH4 (Tanaka & Yano, 2005) and NO3 (Bago et al., 1996), it is thought that AMF 

preferentially take up inorganic N in the form of NH4 (Hawkins et al., 2000; Tanaka & 

Yano, 2005), although, in water stressed conditions, NO3 uptake can increase (Tobar et 

al., 1994). In the ERM of Glomus intraradices, two high affinity NH4 transporters have 
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been characterised (López-Pedrosa et al., 2006; Pérez-Tienda et al., 2011), and there is 

also some evidence for the existence of a low-affinity NH4 transporter (Pérez-Tienda et 

al., 2012). Ammonium is probably assimilated via the glutamate synthase or glutamine 

synthase/glutamine oxoglutarate aminotransferase (GS/GOGAT) cycle (Govindarajulu 

et al., 2005). Transport of nutrients between the ERM and IRM is usually in a ‘packaged 

form’ as diffusion is too slow (Parniske, 2008) and the form of N transferred to the IRM 

is likely to be arginine (Govindarajulu et al., 2005; Cruz et al., 2007). The uptake of N 

(as NH4) by the ERM before transfer to the host plant may require less energy than 

uptake of NO3, as it would avoid the step of converting NO3 to NH4 via nitrate 

reductases, which is thought to be required before the N can be incorporated into 

amino acids for transfer to the IRM (Govindarajulu et al., 2005).  

 

There have been suggestions that transfer of N from the AMF to the plant host may be 

linked to the uptake of P. Once in the ERM, orthophosphate can form polyphosphate 

(polyP) which is transported along hyphae but also acts to buffer cytoplasmic Pi and 

store P (Hijikata et al., 2010; Smith & Smith, 2011b). However, because both 

orthophosphate and polyP have a negative charge, cations are necessary to balance 

this, and arginine (Arg+; the form of N thought to transport N from the ERM to the IRM 

(Govindarajulu et al., 2005) may fulfil this role (reviewed by Smith & Smith, 2011b). 

However, AMF can pass N on to their host plants (Hawkins et al., 2000; Tanaka & Yano, 

2005) and in systems where N is limiting, but P is not, AMF can aid in plant N nutrition 

in the field (Blanke et al., 2011). This supports the model described by Treseder and 

Allen (2002) whereby if a plant is limited by N or P it will allocate C to its associated 

AMF, and only when both nutrients are not limiting, will the plant reduce this 

allocation.  

 

This model, proposed by Treseder and Allen (2002), complements the model proposed 

by Fitter (2006) describing C and P fluxes in AMs. Fitter (2006) proposed that plants 

may respond to AMF nutrient provision by directing C supply to the areas of high P 

(and/or N) availability in the roots (extended to include N by Hodge et al. (2010)). 
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Fitter (2006) suggested that the roots are unaware whether the increased P and/or N 

is derived from AMF or epidermal uptake and, even if the AMF were not present, the 

root would direct C to the location of higher P and/or N availability, and would result in 

root proliferation. Kiers et al. (2011) demonstrated using in vitro Ri T-DNA-transformed 

carrot root (‘hairy root’) cultures and stable isotope probing in pot cultures, that AMF 

hosts can re-direct C to the ‘most co-operative’ AMF partner (based on P provision, 

plant growth responses, C costs or hoarding strategy). Furthermore, the AMF provided 

more 33P to the roots with the highest sucrose available to them (Kiers et al., 2011). 

Fellbaum et al. (2012) recently published similar findings for N, and proposed that root 

C flux acts as a trigger for AMF N uptake.  

 

However, while all these studies provide evidence of AMF P and/or N allocation to 

plant hosts depending upon root C provision, they are based on conditions of 

artificially high C availability, with no plant shoots, and the hormonal balance of the 

transformed roots can differ to that of normal roots (Hu & Du, 2006). In contrast, 

shading of the host plant (to reduce C supply to the AMF) had no effect on the AMF 

uptake and transfer of N to the host plant in a microcosm based study by Hodge and 

Fitter (2010), where the AMF hyphae had access to an organic matter patch. 

Therefore, the mechanisms of AMF changing P and/or N provision for the plant host in 

response to the host plant C supply still remain to be demonstrated under more 

realistic conditions. Nonetheless, it is probable that AMF are in competition for N with 

other soil microorganisms both in the mycorrhizosphere and the hyphosphere, and 

subsequently, the implications of the presence of AMF for N cycling may be significant 

(Figure 1.3).  

 

There is limited and variable evidence for interactions between AMF and N cycling 

organisms in field studies (Cavagnaro et al., 2007; Veresoglou et al., 2011a). Glomus 

mosseae has been shown to increase free-living bacterial nitrogenase activity in a 

study using a mixed crop of clover (Trifolium alexandrinum L., B and Trifolium 

resupinatum L., P; Zarea et al., 2009). In the same study, the activity of bacterial 
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nitrogenase was further increased upon the addition of earthworms, and shoot N 

uptake also followed the same pattern (Zarea et al., 2009). Furthermore, nitrification 

rates can decrease in the mycorrhizosphere of AM, when compared to low- or non-AM 

plants (Veresoglou et al., 2011a). However, the number of ammonia oxidisers (AO) was 

not different in the mycorrhizosphere of an AM tomato compared to the rhizosphere 

of an AM defective tomato mutant (Cavagnaro et al., 2007) yet, in a pot-based study, 

the number of AO increased in the AM Z. mays treatments compared to the non-AM 

treatments (Amora-Lazcano et al., 1998).  

 

There is also some evidence for the number (Amora-Lazcano et al., 1998) and 

community structure (Veresoglou et al., 2012a) of denitrifiers changing in the 

mycorrhizosphere of AM plants, possibly driven by an AMF mediated distal control. 

Although limited in number, these studies indicate that AMF are influencing 

communities involved in larger scale nutrient cycling. As yet, only one study has 

researched the effect of AMF presence on N2O fluxes from field soils. Using an AM 

defective mutant of Solanum lycopersicum L. (tomato) as a non-AM control, and the 

AM wildtype progenitor as the AM treatment, Cavagnaro et al. (2012) found that while 

root presence decreased 15N2O fluxes from soils, the presence of AM roots had no 

significant effect on soil N2O fluxes, even though the uptake of 15NO3 was higher in the 

AM treatments than in the non-AM treatments (Cavagnaro et al., 2012), but the NO3 

addition may have masked any AMF-mediated effects under conditions of lower N 

availability.  

 

Another major N input into soils comes from nitrogen fixation, and this can also be 

significantly affected by AMF. Nitrogen fixation involves the conversion of atmospheric 

nitrogen (N2) to ammonium (NH4) and is carried out by N-fixing bacteria and archaea 

(Figure 1.3; Canfield et al., 2010). These microbes inhabit the rhizosphere alongside 

AMF and therefore are likely to interact. There is both glasshouse and field based 

evidence that suggests the presence of compatible AMF and N-fixing bacteria increases 

the availability of N to plants (Toro et al., 1998; Xavier & Germida, 2003; Tajini et al., 
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2011; Wang et al., 2011). This effect is generally more pronounced under low P 

conditions, with little difference observed when N and P are not limiting.  Generally, it 

is thought that the AMF provide P for the N-fixers under low P conditions which will 

release the N-fixers from P limitation and thus increase N availability for the plant 

(Artursson et al., 2006; Tajini et al., 2011; Wang et al., 2011). In a field study using 

soybeans, the deep rooting genotype of the soybean used had greater nodulation of 

roots with a higher P supply (Wang et al., 2011), demonstrating that P availability was 

limiting soybean nodulation. Under nutrient limited conditions, the benefits of dual 

symbiosis for host plant growth may be significant compared to a single symbioses 

with either AMF or rhizobia (Mortimer et al., 2013), although this is not always the 

case (Kaschuk et al., 2010). Additionally, N-fixing genes have also been discovered in 

the endosymbionts of certain species of AMF (Minerdi et al., 2001), but the role of this 

is not yet understood.  

 

1.2.2.3 Carbon cycling 

As AMF rely on their plant host for C, they are also closely linked to soil C transfers. The 

AM symbiosis involves a rapid (Johnson et al., 2002b) and significant transfer of 

atmospheric C to the below-ground system, with between 1 and 20% of plant 

photosynthate being transferred to the AMF (Paul & Kucey, 1981; Jakobsen & 

Rosendahl, 1990; Johnson et al., 2002b), although around 5-10% is more typical (Bryla 

& Eissenstat, 2005). Furthermore, the net C gain, and therefore, uptake of CO2 may be 

increased when a plant is AM (Miller et al., 2002). Using a meta-analysis Kaschuk et al. 

(2010) demonstrated that the photosynthetic rates of a legume were increased by 14% 

when it was AM compared to non-AM, possibly as a result of C sink stimulation, which 

may help to ensure that the host plants do not become C limited when colonised by 

AMF (Kaschuk et al., 2010).  

 

Arbuscular mycorrhizal fungi may have an important role in soil C sequestration 

(Treseder & Allen, 2000; Wilson et al., 2009); predominantly for two main reasons, 
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firstly AMF hyphae can improve the aggregate stability of soils, protecting C sources 

from decomposition inside macro-aggregates (Rillig & Mummey, 2006). Secondly, AMF 

can produce glomalin, a glycoprotein that also has a role in improving soil structure 

(Rillig et al., 2002; but see Section 1.2.1). Furthermore, glomalin has a long residence 

time in soils (Steinberg & Rillig, 2003), and therefore may act as a further form of C 

storage. However, a recent study by Cheng et al. (2012), found that under increased 

atmospheric CO2 concentrations there was a greater loss of C from organic matter that 

was colonised by AMF hyphae. Cheng et al. (2012) also provided evidence to suggest 

that increasing plant demand for NH4 under elevated CO2 could lead to an increase in 

AMF mediated priming of decomposition by soil saprotrophs. Whether or not soils 

become a sink or source of C seems to depend on the relative interactions between 

soil N and C cycling (Kowalchuk, 2012), and may also be different over the short and 

long term (Verbruggen et al., 2013), with short term losses as a result of increased 

decomposition (Cheng et al., 2012), but long term C storage as a result of AMF 

mediated improved aggregate stability and production of recalcitrant C forms such as 

glomalin (Steinberg & Rillig, 2003; Rillig & Mummey, 2006).  

 

In non-AM roots, C exudation from plant roots constitutes a significant C input into the 

rhizosphere (Phillips et al., 2006; Jones et al., 2009), which may in turn fuel 

mineralisation of soil organic matter (Jones et al., 2004). In contrast, when a plant is 

AM, the release of C is reduced in the mycorrhizosphere, as it is instead passed directly 

on to the AMF (Jones et al., 2004). However, AMF hyphae themselves can exude low 

molecular weight C compounds in the hyphosphere which can modify the bacterial 

community composition (Toljander et al., 2007). Furthermore, Staddon et al. (2003) 

demonstrated, using 14C labelling, that some AMF hyphae can turnover in only 5-6 

days. However, more than one type of hyphal structure is produced by AMF (Friese & 

Allen, 1991) and it is thought that the finer hyphae turn over rapidly (days) whereas 

the thicker ‘runner’ hyphae persist for weeks (Steinberg & Rillig, 2003; Zhu & Miller, 

2003). Additionally, the CO2 flux from field soils surrounding AM tomato plants was 

increased compared to those surrounding soils of AM defective tomato plants. 

Similarly in a microcosm-based study, the same authors demonstrated that the CO2 
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flux per unit root-length can be higher in AM roots (Cavagnaro et al., 2008) and, in 

grassland systems, the contribution of AMF hyphae to soil CO2 fluxes can be significant 

(Heinemeyer et al., 2012b). Thus the presence of AMF may result in both C loss, as well 

as C storage, in soils.   

 

1.2.3 AMF and global change 

In light of current climate change concerns, there has been a substantial effort in 

attempting to model future GHG production, which has mainly focused on CO2 fluxes 

(e.g. Cox et al., 2000) but, more recently, there has been an increased realisation of 

the importance and need to model both N2O (Chirinda et al., 2011) and CH4 (Riley et 

al., 2011) fluxes in terrestrial systems. Microbial interactions are often considered as a 

‘black box’ when modelling biogeochemical cycling (Nazaries et al., 2013b) but there is 

increasing evidence, for CH4 at least, the need to incorporate microbial regulation of 

biogeochemical cycling (Nazaries et al., 2013b). Changes in microbial community 

following tree growth on bog, grassland and moorland sites were strongly correlated 

to the subsequent increase in CH4 oxidation rates (Nazaries et al., 2013b) but this 

relationship may partly be explained by the narrow and well characterised range of 

CH4 oxidisers. Any change in environmental conditions is likely to affect the 

interactions among, and therefore community of, the CH4 oxidisers present. This may 

not be the case for functions which have a larger associated microbial diversity and 

therefore increased potential for functional redundancy (Nazaries et al., 2013b). 

Nonetheless, the results presented by Nazaries et al. (2013b) demonstrate that by 

understanding the interactions between the microbes controlling N2O and CH4 fluxes 

from soils, we can get a better grasp on the future changes of these gases (Butterbach-

Bahl et al., 2013). 

 

There have been a number of studies on the response of AMF to global change, usually 

in terms of their responses to abiotic factors including temperature (Hawkes et al., 

2008), ozone (Duckmanton & Widden, 1994; Yoshida et al., 2001), drought (Augé, 
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2001; Ruiz-Lozano et al., 2001), nutrient deposition (Treseder, 2004) and CO2 increases 

(Staddon & Fitter, 1998; Rillig et al., 2000; Staddon et al., 2004). It has been 

demonstrated using stable isotope probing (SIP) that there is a high flux of C from 

plants to AMF and other active soil organisms, with indications that some AMF may 

receive more C than others (Vandenkoornhuyse et al., 2007). Furthermore, under 

elevated CO2, rather than changes in soil C availability simply increasing microbial 

activity, there can be shifts in active AMF species as well as changes in the active 

rhizosphere bacterial and fungal communities (Drigo et al., 2009; Drigo et al., 2010). 

Thus, AMF may be important mediators of soil C dynamics under global change. 

However, other than considering the potential effects of AMF on soil C storage under 

predicted future conditions (e.g. Cheng et al., 2012) very few studies have considered 

to what extent AMF contribute to, or could buffer the effects of global change. Our 

ignorance is largely a consequence of the difficulty of working with AMF, but 

techniques have been developed (e.g. microcosms and hairy root cultures) which now 

enable the study of AMF as individual organisms (e.g. Fitter et al., 2000; Fortin et al., 

2002).  

 

There has been recent debate over the nomenclature used for AMF, particularly with 

reference to Glomus intraradices which is commonly used throughout this thesis. The 

new nomenclature system suggests that Glomus intraradices is actually Rhizophagus 

irregular (Krüger et al., 2012), but, in order to remain consistent with the referenced 

literature, the old nomenclature of Glomus intraradices is used throughout this thesis. 

 

1.2.4 The potential for interactions between AMF and soil greenhouse 
gas fluxes 

There have been very few studies that have looked at the involvement of mycorrhizas 

in GHG fluxes from soils, but recent studies on soil CO2 fluxes suggest that both 

ectomycorrhizal (ECM) fungi (Heinemeyer et al., 2007) and AMF (Vargas et al., 2010) 

may be an important component in determining these fluxes at a large scale. To date, 

there have been no studies on the interactions between AMF and soil CH4 fluxes, and 
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only one study that has measured N2O fluxes in the presence of AMF, and then only in 

the mycorrhizosphere (Cavagnaro et al., 2012). As outlined in Sections 1.2.1 and 1.2.2, 

AMF can alter aggregate stability (Rillig et al., 2002), pH (Li et al., 1991a), C, N and P 

status of soils (Hodge et al., 2010) which are all important controls on the net fluxes of 

CH4 and N2O (Section 1.1; Singh et al., 2010). When one considers that AMF hyphae 

and soil GHG producers and consumers will inhabit similar environments, alongside 

the numerous overlaps between the effects of AMF on soils, and the controls on soil 

GHG fluxes, there is significant potential for interactions between AMFs and GHG 

fluxes. As a result of the ubiquitous nature of AMF (Smith & Read, 2008) and the 

critical importance of atmospheric concentrations of CH4 and N2O (Forster et al., 

2007), any interactions between AMF and GHG fluxes could have implications at a 

global scale.   

 

The aims of this thesis were to determine the following:   

• A suitable methodology for studying the effects of the presence of AMF hyphae 

on soil GHG fluxes 

• If there were any effects of AMF hyphae on the net flux of CH4 or N2O from soil 

and organic matter patches (dried, milled Z. mays leaves)  

• The use of in situ CO2 flux as a non-invasive measure of AMF hyphal growth into 

microcosm compartments, when compared to those that contained neither 

roots nor AMF hyphae 

• If the N2O and CO2 fluxes in an AMF hyphal-only compartment systems 

changed when the connections between AMF hyphae and their plant host were 

severed  

• The process controlling production of N2O in the presence or absence of AMF 

hyphae and to determine if the cause for any observed changes in N2O 

production were a consequence of a change in N and/or P availability
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 The interactions between arbuscular mycorrhizal Chapter 2.

fungi (AMF) and soil greenhouse gas fluxes 

2.1 Introduction  

In recent years, studies have demonstrated that arbuscular mycorrhizal fungi (AMF) 

can take up substantial amounts of N from organic matter patches (Hodge et al., 2001; 

Leigh et al., 2009), and are therefore likely to have a significant, previously 

unappreciated, role in soil N cycling (Hodge & Fitter, 2010). AMF can also modify the C 

available in the mycorrhizosphere and hyphosphere, thus there are close links 

between AMF and soil C cycling (Jones et al., 2009). As outlined in the General 

Introduction, greenhouse gases (GHG) including carbon dioxide (CO2), methane (CH4) 

and nitrous oxide (N2O) are also closely linked to C and N cycling in soils (Schlesinger, 

1997), thus it is highly likely that there are interactions between AMF and soil GHG 

fluxes. 

 

However, it is difficult to predict the effect of AMF on soil GHG fluxes as there are 

various, potentially opposing interactions that could occur, and thus it is unknown if 

CH4 and N2O fluxes will increase or decrease in the presence of AMF. It is unlikely that 

AMF can produce or consume CH4 or N2O themselves, they have no known 

saprotrophic capability (Langley & Hungate, 2003), and although fungi, including 

ectomycorrhizal fungi (ECM; Prendergast-Miller et al., 2011) have a role in 

denitrification (Herold et al., 2012), and saprotrophic fungi can produce CH4 (Lenhart et 

al., 2012); to date, there is no evidence of AMF producing or consuming either CH4 or 

N2O. However, AMF can host endobacteria (Bianciotto et al., 2000; Bianciotto & 

Bonfante, 2002) forming tripartite interactions, which although not yet fully 

understood (Bonfante & Anca, 2009; Ghignone et al., 2012), may have a role in 

nutrient cycling, possibly involving N2 fixation (Minerdi et al., 2001; Cruz & Ishii, 2012). 

It is therefore considerably more likely that AMF influence the production or 

consumption of GHG such as CH4 and N2O from soils indirectly.  
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The uptake of N by AMF is probably in an inorganic form, most likely as NH4 

(Govindarajulu et al., 2005; Jin et al., 2005; Tanaka & Yano, 2005), and this N is partly 

used by the N rich hyphae (Hodge & Fitter, 2010). However, when AMF hyphae are 

allowed access to organic matter patches, some patch derived N can also be 

transferred to the host plant and this N is also likely to be taken up by AMF in an 

inorganic form (Leigh et al., 2009). Hyphal uptake therefore has the potential to reduce 

the availability of NH4 and/or NO3. In turn, this could reduce the rates of N2O 

production because N2O producers are reliant on supplies of NH4 and/or NO3 (Hino et 

al., 2010). Conversely, AMF hyphal presence can increase mineralisation rates in soils 

(Hodge et al., 2001; Atul-Nayyar et al., 2009), and N mineralisation rates are closely 

linked to N2O production as they increase the available NH4 and NO3 (Vinther et al., 

2004; McLain & Martens, 2005); thus N2O fluxes may increase in the presence of AMF 

hyphae.  

 

Alternatively, as nitrifiers can be limited by the availability of P (Purchase, 1974), a 

reduction in P availability in the presence of AMF hyphae may limit the production of 

N2O. Arbuscular mycorrhizal (AM) mediated decreases in pH (Li et al., 1991a) could 

also result in lower N2O fluxes as N2O production can be limited at lower pH (Baggs et 

al., 2010). Arbuscular mycorrhizal fungi are also known to alter the soil structure and 

water retention by producing glomalin (a glycoprotein that improves soil structure; 

Rillig & Mummey, 2006). They are aerobic organisms, thus will also reduce the 

availability of O2 as the hyphae respire (Smith & Read, 2008). By increasing the 

frequency of anaerobic microsites, this may move the balance from methanotrophy 

(aerobic, consuming CH4) to methanogenesis (anaerobic, producing CH4; Le Mer & 

Roger, 2001; Yu et al., 2001), potentially turning soils from net sinks to net sources of 

CH4. Additionally, any anaerobic process such as denitrification (Zumft, 1997) could 

increase if O2 availability is lowered as AMF presence creates more anaerobic patches, 

and therefore the net N2O fluxes may also increase.  
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Arbuscular mycorrhizal fungi also alter C inputs into the soil, AM colonisation usually 

reduces the amount of C released from roots into the soil in the mycorrhizosphere as 

the AMF hyphae act as a sink for excess C (Smith & Read, 2008). In contrast, there may 

be a C flow into the soil from the AMF hyphae in the hyphosphere via hyphal 

exudation (Toljander et al., 2007) or turnover which may be rapid; Staddon et al. 

(2003) found that fine AMF hyphae may turnover in only 5-6 days. Toljander et al. 

(2007) demonstrated, using root organ cultures, that AM mycelia can also produce 

hyphal exudates of low molecular weight sugars and organic acids, as well as other 

unidentified high molecular weight compounds, another available C source in the 

hyphosphere. It is not clear how much C is added to the soil by AMF hyphae or its 

importance as a C source in natural systems, but in the hyphosphere this could act as 

an additional substrate for heterotrophic CH4 oxidising or for N2O producing 

organisms, whereas the opposite may be true in the mycorrhizosphere.  

 

There is increasing evidence for AMF hyphae interacting with both bacteria (Albertsen 

et al., 2006; Welc et al., 2010; Herman et al., 2012) and archaea (Nuccio et al., 2013) 

and this can be significant; in one microcosm based study, AMF hyphae modified the 

soil bacterial community of an organic patch to a similar extent as an active root 

growing through soil (Nuccio et al., 2013). Potential nitrification rates have also been 

found to be decreased in the presence of AM plants (Veresoglou et al., 2011a), but the 

impacts of AMF presence on soil N2O fluxes in the field are unclear (Cavagnaro et al., 

2012). Thus, there are many contrasting ways in which AMF may potentially affect soil 

CH4 and N2O fluxes, yet to date these interactions are surprisingly understudied.  

 

There is considerably more information on the impact of AMF hyphae to soil CO2 

fluxes. In a grassland study, Johnson et al. (2002a) demonstrated that between 3.9-

6.2% of fixed C could pass through AMF hyphae and into the atmosphere as 13CO2 

within 21 h of pulse-labelling the host plants with 13C. The rapidity of this transfer 

suggested that hyphal respiration was predominantly controlled by the provision of 

recent photosynthates from the host plant, which has also been demonstrated under 
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laboratory conditions (Johnson et al., 2002b; Heinemeyer et al., 2006). The presence of 

AMF hyphae may also increase heterotrophic activity through the release of low 

molecular weight (LMW) compounds during hyphal exudation (Toljander et al., 2007). 

In forest systems, LMW compounds such as sugars and amino acids represent a small 

but high turnover pool of C that is rapidly used and respired by soil microorganisms 

(van Hees et al., 2005). The effect of AMF hyphae on soil CO2 flux is likely to be driven 

at least in part by hyphal exudation, but the extent of this is not well understood 

(reviewed by Finlay, 2008). If it can be demonstrated in microcosm studies that hyphal 

compartment CO2 fluxes were directly related to AMF extraradical mycelium (ERM) 

lengths, it may be possible to use the CO2 flux as an alternative indicator of AMF 

hyphal presence, removing the need for the destructive, time consuming harvests that 

are usually required to quantify ERM length densities (e.g. Drew et al., 2003; Barrett et 

al., 2011); this possibility was planned to be assessed.  

 

It has been suggested that the whole soil environment may be classed as the 

mycorrhizosphere as AMF are so ubiquitous (Johansson et al., 2004). However, when 

considering the size of microorganisms such as bacteria, fungi and archaea, which are 

the predominant producers of CH4 and N2O (Singh et al., 2010; Lenhart et al., 2012), 

the mycorrhizosphere and hyphosphere could be very different environments; this 

study focused on the interactions between AMF hyphae and GHG fluxes in the 

hyphosphere. Microcosm systems, in which AMF hyphae are allowed, or prevented, 

access to a non-root compartment have been essential for understanding the role of 

AMF hyphae in nutrient uptake and transfer to host plants (e.g. Hodge et al., 2001; 

Leigh et al., 2009; Hodge & Fitter, 2010). AMF hyphae both colonise and proliferate in 

organic matter patches placed in these hyphal-only compartments  which are usually 

high in N with a low C:N ratio (e.g. Leigh et al., 2009; Hodge & Fitter, 2010). The C:N 

ratios of organic material can be related to mineralisation rates  (Janssen, 1996; Antil 

et al., 2013) and have been used to model C and N mineralisation rates (Nicolardot et 

al., 2001). As C:N ratios decrease, both decomposition rates (Cotrufo et al., 1994) and 

N2O fluxes (Huang et al., 2004) can increase. Organic material mixed with a natural 
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microbial inoculum should therefore provide a suitable system for studying 

interactions between AMF hyphal presence and GHG production.  

 

In order to measure GHG fluxes from the hyphal compartments, a microcosm similar in 

design to those used by Barrett et al. (2011) and Leigh et al. (2009) was modified to 

incorporate a cover-box lid (described in Section 2.2.3.2). Cover-boxing techniques are 

commonly employed in the field (Liang et al., 2004; Heinemeyer & McNamara, 2011) 

and have been used to assess the contribution of ECM to forest CO2 fluxes 

(Heinemeyer et al., 2007). A soil core is inserted into the ground with a small section 

remaining above the soil surface. A cover-box lid is attached above this core, enclosing 

a known headspace above the soil, creating either a static chamber (closed static 

chamber, CSC) or a dynamic chamber (closed dynamic chamber, CDC) depending on 

the attachments fitted (Heinemeyer & McNamara, 2011; Kutsch et al. 2010; Rochette 

et al. 1997). The CSC has no air flow over the soil surface, any gases produced from the 

soil build up in concentration over time inside the headspace, and a gas sample is 

removed at regular intervals (10-30 min), usually over an hour period. These samples 

are analysed and used to calculate the change in concentration over time (flux). In 

contrast, the CDC usually has an attached gas analyser (e.g. infrared gas analyser to 

measure CO2). The analyser is attached to the cover-box by inlet and outlet tubing 

through which there is a constant flow of air in a closed loop. The gas is passed 

through the analyser which is frequently measuring the gas concentration over time 

(Heinemeyer & McNamara, 2011). This method usually results in more accurate flux 

calculations as the higher rate of sampling means that there is reduced error. More 

traditional soil incubations were also used to assess the organic matter patch and soil 

GHG fluxes independently during destructive harvests. This was to assess spatial 

variability in N2O and CH4 production. By adding CH4 to the atmosphere in these 

incubations, the potential CH4 oxidation rates could be assessed (as used by Wang & 

Ineson, 2003). Addition of NO3 and glucose to the soil incubations also assisted in 

understanding if any AMF effects on N2O were a result of C and/or NO3 limitation 

(Gillam et al., 2008). 
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In order to test the hypothesis that AMF hyphae affected CO2, N2O or CH4 fluxes, a 

number of technical issues initially needed to be addressed. Firstly, a host plant species 

that had agricultural relevance, which could be grown in a container with limited 

space/nutrients and would produce significant quantities of AMF hyphae in an 

adjoined root-free compartment needed to be identified. As AMF are often proposed 

for use in sustainable agriculture (reviewed by Fester & Sawers, 2011), and agricultural 

soils are some of the largest soil GHG producers (Reay et al., 2012), the suitability of 

two crops  (Zea mays L. (maize) and Linum usitatissimum L. (flax)) were compared as 

AMF host plants in a microcosm experiment. Both of these crops are grown world-

wide (Kim et al., 2009; FAO, 2012), and are known to form a symbiosis with AMF 

(Olsson et al., 1999; Boomsma & Vyn, 2008). The ERM length densities produced for 

each host species were compared to those from Plantago lanceolata L. (ribwort 

plantain) as it is commonly used as a host plant in AMF studies because it supports 

high levels of AMF colonisation (e.g. Gange & West, 1994; Hodge et al., 2001; 

Veresoglou et al., 2011b). The hypothesis was that there would be no significant 

difference in the ERM length produced in the organic matter patches that the AMF 

hyphae had access to for the three AMF host plant species. Secondly, preliminary 

measurements of the rate of CO2 diffusion across the mesh membrane barriers that 

are normally used to prevent (0.45 µm) or allow (20.0 µm) AMF hyphal access in the 

microcosm were taken to ensure that the microcosm design did not affect the flux of 

GHG across the membranes. 

 

The microcosm system developed as a result of these preliminary studies, alongside 

more traditional soil and organic patch incubations, were used to assess four main 

hypotheses. Firstly, it was expected that there would be a lower flux of N2O from 

microcosm units that contained an organic matter patch when AMF hyphae were 

present, as the N available to nitrifiers and/or denitrifiers would be decreased. This 

difference was predicted to be maintained in both the soils and patches following a 

destructive harvest. In contrast, the CO2 flux was expected to increase in the presence 

of AMF hyphae as a result of hyphal respiration, and CH4 oxidation rates to decrease 

when AMF hyphae were present as a result of decreased O2 availability. Finally, after 
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separating the patches and soils in a destructive harvest, the N2O fluxes from soils, 

with or without AMF hyphae present, were predicted to increase following the 

additions of glucose or KNO3, thus indicating that availability of N or C may be limiting. 

 

2.2 Materials and Methods 

2.2.1 Selecting a suitable host plant to encourage proliferation of AMF 
hyphae in organic matter patches 

2.2.1.1 Experimental design 

Microcosm units were used to compare the ERM length densities produced by AMF 

when in symbiosis with three different plant species, L. usitatissimum, P. lanceolata 

and Z. mays. There were a total of 15 microcosms, with 5 replicates of each plant 

species.   

 

2.2.1.2 Microcosm design 

The microcosms were made from two 1L plastic boxes (145 mm x 145 mm x 70 mm), 

screwed together on the largest surface with a 6 mm thick perspex sheet in the 

middle. This perspex sheet had a 70 x 70 mm window in the centre covered by a 

double layer of 20.0 µm mesh membrane (John Stanier & Co., Whitefield, Manchester, 

UK) glued to the perspex using industrial strength superglue (Everbuild Building 

Products Ltd. Leeds, UK). The two boxes were joined together using four equally 

spaced screws with aquarium sealant between the joining surfaces (Aquamate, 

Everbuild Building Products Ltd. Leeds, UK) to prevent hyphal breakthrough. The 

aquarium sealant was guaranteed free from fungicides, and therefore should not 

adversely affect the AMF inoculum added. Before use, all microcosm parts were 

soaked in a 50% (v/v) solution of sodium hypochlorite for a minimum of 30 min then 

thoroughly rinsed in water to prevent any contamination from use in previous 

experiments.  
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Figure 2.1. Microcosm design used in experiment 2.2.1. Compartment A contained the 

host plant in a sand and Terra-Green® medium (50:50 mix, v:v) with a Glomus 

intraradices inoculum and plant roots present. The white perspex plate had a window 

through to compartment B which was covered with a 20.0 µm mesh membrane, 

allowing AMF hyphal access to compartment B, but preventing root access. 

Compartment B was filled with sieved agricultural soil and contained an organic matter 

patch in a 20.0 µm mesh membrane bag represented in the photograph by the green 

circle. The microcosm unit was covered in aluminium foil throughout to prevent 

photosynthetic growth inside the compartments, but was removed for the purpose of 

this image.  

 

2.2.1.3 Microcosm planting and growth media  

One side of the microcosm was filled with washed and autoclaved sand and Terra-

Green® (a calcined attapulgite clay soil conditioner, Oil-Dri(UK)Ltd, Cambridgeshire) 

mix (plant compartment, 50:50, v:v), with the other side filled with a locally sourced 

soil (53˚92’N, -1˚00’E). In each plant compartment, the sand and Terra-Green® were 
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further well mixed with 0.25 g L-1 of bonemeal (a complex N and P source; 3.5% N, 

8.7% P; Vitax, Leicestershire, UK) and 85 g fresh weight (FW) of Glomus intraradices 

(Schenck & Smith; isolate BB-E; Biorize, Dijon, France) live inoculum and root mix (P. 

lanceolata/Trifolium repens L.) that had been growing for at least 6 months. Three pre-

germinated seeds were added to each of the plant compartments on 18th March 2011; 

either, Z. mays (F1 incredible variety; Mr Fothergill’s, Suffolk, UK), P. lanceolata 

(Emorsgate seeds, Norfolk, UK), or L. usitatissimum, (Chiltern seeds, Wallingford, UK) 

for each treatment, respectively. All seeds were sterilised in 3% sodium hypochlorite 

for 5 min, washed in deionised water then placed on moist filter paper in Petri dishes 

for 5 d before planting. The soil was locally sourced from an agricultural site that had 

previously had a Z. mays crop on it (53˚92’N, -1˚00’E). It was sieved through a 6 mm 

sieve and added to the soil compartment 10 d post-planting to allow the AMF time to 

colonise the plants. The soil used had a pH of 6.6 in 0.01M CaCl2 (following Allen 

(1974)). The units were wrapped in three layers of aluminium foil to prevent any 

photosynthetic growth inside the units. 

 

2.2.1.4 Organic matter patches 

The organic patches consisted of a 20.0 µm mesh bag (John Stanier & Co., Whitefield, 

Manchester, UK). A 120 x 60 mm piece of 20.0 µm mesh was folded in half and sealed 

with aquarium sealant. Each bag was filled with 1 g dry weight (DW) of milled Z. mays 

shoots (F1 incredible variety) well mixed with 3.25 g (FW, equivalent to 3 g DW) of the 

same soil as used in the outer compartment to provide a natural microbial community 

within the patch material (see Section 2.2.1.3). The plant material used in the patches 

contained 4.5% nitrogen (N), whereas the soil contained 0.1% N, thus providing at total 

of 48.3 mg N per patch. The patches were added 23 d after planting to the soil 

compartment, 2 cm from the mesh membrane window and at a depth of 7 cm.  
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2.2.1.5 Growth conditions and nutrient solution 

The microcosm units were placed in a temperature controlled glasshouse in a 

randomised block design and were rotated within blocks every two weeks. The mean 

daily temperature was 18.58 ± 0.04oC and overhead lights (400 W, Son-T Agro) were 

used to ensure a 16 h day.  Photosynthetically available radiation (PAR) readings were 

measured at plant level in each block, weekly at midday. There was no significant 

difference in PAR between blocks and the mean midday PAR level was 110 ± 4 µmol m-

2 s-1. The plant and soil compartments were watered daily as required with deionised 

water. The plant compartments also received 50 cm3 of a nutrient solution containing 

1/10th of N and P (modified from Thornton & Bausenwein (2000); Appendix 1) once a 

week.  

 

2.2.1.6 Harvest data collection  

All microcosms were harvested on 11th May 2011, 54 d post-planting, 31 d post-patch 

addition. Upon harvesting the following data were collected; fresh and dry weights of 

shoots, roots, sand/Terra-Green®, soil and patches. AMF colonisation was assessed by 

staining a sub-sample of fresh roots in 0.01% acid fuchsin (following Koske & Gemma, 

1989; Grace & Stribley, 1991) in order to collect information on the percentage root 

length colonised (% RLC) measured at x200 magnification (following McGonigle et al. 

(1990)) using both bright light and epifluorescence (Merryweather & Fitter, 1991). The 

length of external AMF hyphae (ERM) was assessed using the modified membrane 

filter technique described by Staddon et al., (1998), and hyphal length estimation as by 

Miller and Jastrow (1992) in the plant compartment, patch and soil compartment (at 

least 5 cm away from the mesh membrane). As the patches were too small to sample 

for ERM length densities alone, a 5 g (FW) soil sample was taken from between the 

patch and the 20.0 µm mesh window and used to increase the patch sample to 

generate an ERM estimate (as 10 g was needed and the patch fresh weight at harvest 

was ca. 5 g). 
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2.2.1.7 Data analysis 

All data were tested for normality and equality of variance assumptions using 

Kolmogorov-Smirnov and Levene’s Homogeneity of Variance tests respectively. 

Percentage colonisation data were arcsine transformed before analysis in SAS (v9.3 

SAS institute Inc., North Carolina, USA), and both colonisation and extraradical 

mycelium (ERM) length data were analysed using a two-way ANOVA including block, 

with Duncans tests used for post-hoc analysis. Untransformed data are shown in all 

figures.  

 

2.2.2 The effect of fine mesh presence on CO2 diffusion rates in 
microcosm systems used to study AMF 

This preliminary study investigated the flux of CO2 across the different meshes 

commonly used in AMF studies. This involved the development of a new microcosm 

that could be used to take gas flux measurements using a cover-box technique yet still 

fulfilled the needs of a standard microcosm, being large enough to accommodate a 

grown plant with associated soil, and preventing hyphal access to a second 

compartment as required. The microcosm also had to prevent gas from entering or 

exiting the unit unless required, whilst also being cost effective, reusable, and 

adaptable for any future applications (e.g. soil gas flux monitoring and addition of 

nutrients). As such, the new systems also required removable lids that were air tight 

and meshes which could be easily replaced between experiments.  CO2 was used as a 

test gas as it is a large molecule (molecular weight = 44) and concentration changes 

could be measured easily over seconds rather than hours using an infra-red gas 

analyser (IRGA, LI-COR® Biosciences, Lincoln, USA).  

 

2.2.2.1 Microcosm unit design  

A microcosm unit was designed to facilitate GHG measurements, using air-tight food 

containers (140 x 140 x 160 mm; Lock & Lock, Australia PTY Ltd., Austraila; see Figure 
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2.2). Two containers were joined by a metal, externally threaded, tunnel (90 mm long x 

40 mm diameter) and sealed with aquarium sealant free of anti-microbial chemicals 

(Aqua Mate, Everbuild Building Products Ltd., Leeds, UK.). To create the mesh 

membrane treatments, in turn, each different membrane was screwed onto the end of 

the tunnel (with care being taken not to split it) using plastic bulkhead nuts. As the 

0.45 µm membrane was easily damaged, instead of screwing it into place, it was stuck 

onto the flat surface of a bulkhead nut using industrial strength superglue (Everbuild 

building products Ltd. Leeds, UK) and the bulkhead was then screwed onto the end of 

the threaded tunnel (Figure 2.3). By screwing the meshes into place, and sealing all 

other routes between the two units, this ensured that the only route for gas transfer 

between the two units was through the mesh.  

  

Figure 2.2. Microcosm unit with mesh fittings shown in a diagram and photograph. 

Photograph shows the whole microcosm unit in a water bath with lids and gas tubing 

connected. When testing the unit for an air-tight seal it was submerged and held under 

the water with the elastic cords. When comparing the diffusion of CO2 across the 

different meshes, the mesh fittings were alternated between 0.45 µm, 20.0 µm or fully 

blocked. A known concentration of CO2 was added to compartment ‘a’ and the 

concentration of CO2 in compartment ‘b’ was then measured over time, the rate of 

change in CO2 in compartment ‘b’ following CO2 addition to compartment ‘a’ was 

compared between the three mesh treatments.  
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Figure 2.3. Microcosm unit with 0.45 µm mesh fitted to the ‘back-nut’ (a,b) and with 

no mesh fitted (c).  

 

2.2.2.2 Experimental design 

There were four treatments; no mesh, 0.45 µm mesh (GE Water & Process 

Technologies, Belgium), 20.0 µm mesh (Section 2.2.1.2), and fully blocked (solid plastic 

- to check that the mesh was the only route of air flow between or into the units). The 

unit was placed in a water bath to maintain a constant temperature of between 18-

19.5oC whilst gas testing (Figure 2.2).  

 

For each mesh treatment, a known concentration of CO2 was added to side ‘a’ and the 

subsequent increase in CO2 concentration over time in side ‘b’ was measured using an 

infra red gas analyser (IRGA; LI-COR® Biosciences, Lincoln, USA; Figure 2.2). Preceding 

each new measurement, the unit was flushed with N2 for 20-30 min; until very low 

levels of CO2 were present (< 9.29 ppm). One microcosm unit was constructed and the 

length of time taken for the CO2 concentration in the second compartment (side ‘b’, 

Figure 2.2) to reach half of its maximum was calculated three times for each mesh 

treatment (totalling three replicates). The mesh type was alternated between each 

measurement in a random order and fresh mesh was used in each of the replicates. 

Following the flushing with N2, CO2 was added to side ‘a’ (Figure 2.2), and an equal 

volume of gas was removed at the same rate. The volumes of CO2 added to the unit 
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were calculated to deliver a target concentration in the 5.2 L unit, post diffusion, of ca. 

500 ppm (915 mg m-3). The CO2 concentration in side ‘b’ was measured every 30 

seconds for up to 200 min. Concentration vs time was then plotted and the time taken 

to reach half of the absolute CO2 concentration in the unit (ca. 250 ppm) was 

calculated  using Lineweaver-Burk (double-reciprocal) plots. The time taken to reach 

half of the maximum could not be calculated for the solid plate experiments as there 

was no transfer to the second compartment, therefore these data are not included. 

 

2.2.2.3 Data analysis 

Data were assessed for normality and equality of variance assumptions using 

Kolmogorov-Smirnov and Levene’s Homogeneity of Variance tests respectively. As 

these assumptions were fulfilled, differences between treatments were evaluated 

using a one-way ANOVA in SAS v. 9.3 (SAS institute Inc., North Carolina, USA).  

 

2.2.3 The interactions between AMF and soil CO2, N2O and CH4 fluxes 

2.2.3.1 Experimental design  

Microcosms were designed as outlined in Section 2.2.3.2 below measure interactions 

between AMF hyphae and soil GHG fluxes. Each microcosm unit contained one side 

that allowed AMF hyphal access (AMA), and one that did not (NAMA), creating a 

paired design. There were three destructive harvests to allow the quantification of 

ERM length densities over time. The patch and soil N2O fluxes were also measured 

independently following each destructive harvest, allowing identification of the main 

site of N2O production at different stages of the experiment. There were 18 units in 

total, with six replicates per harvest. The plants were grown for 8 weeks (56 d) until 

the first harvest, 12 weeks (84 d) until the second harvest and 15 weeks (105 d) until 

the third harvest (from planting), equivalent to 30 d, 58 d and 79 d post-patch 

addition. Pre-germinated seeds were added to the plant compartments on 8th June 
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2011 and soil was added to the outer compartments 12 d later, with patches inserted 

26 d after planting (described in Section 2.2.3.4).  

 

2.2.3.2 Microcosm design 

Plants were grown in microcosm units each with three compartments separated by 

double layered mesh membranes (see Figure 2.4 and Figure 2.5). The units were 

developed following the testing of CO2 fluxes across the mesh membranes outlined in 

Section 2.2.2. Each microcosm consisted of a central ‘plant’ compartment (volume: 2L, 

dimensions: 150 x 150 x 150 mm; Thumbs Up Ltd., Bury, UK), containing a single Z. 

mays plant inoculated with G. intraradices (see Section 2.2.3.3), and on either side of 

the central plant compartment, two soil compartments (volume: 2.6L, dimensions: 140 

x 140 x 160 mm; Lock & Lock, Australia PTY Ltd., Australia). The central compartment 

had windows cut out of either side (65 x 65 mm) to which the outer soil compartments 

were attached.   
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Figure 2.4. Diagram of the three compartment microcosm design. The two outer 

compartments both contained soil; AMF hyphae had access to one side (AMA; 20.0 µm 

mesh) but not the other (NAMA; 0.45 µm mesh). The central plant compartment 

contained AMF hyphae and plant roots, grown in a sand and Terra-Green® medium 

(50:50 mix v:v) with no soil. The gas sampling lids were removable and when not in 

used were replaced by aluminium foil to reduce photosynthetic growth in and 

moisture loss from the outer compartments.   

 

There was a 5 mm thick Perspex plate (95 mm tall x 12 mm wide) separating the 

central and outer compartments which also had a 65 x 65 mm window cut out of the 

centre. The window in the Perspex plate was covered on either side by mesh that was 

stuck on using industrial strength superglue (Everbuild building products Ltd. Leeds, 

UK)  creating a double layered mesh membrane which, when the unit was filled with 

media, were pushed together preventing any air gaps. The mesh window either 

allowed AMF hyphal access (AMA; 20.0 µm mesh; Section 2.2.1.2) or prevented AMF 

hyphal access (NAMA; 0.45 µm mesh; Section 2.2.2.2) from the central plant to the 
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outer soil compartment. Each unit had one AMA outer compartment and one NAMA 

outer compartment, creating a paired design. 

 

There was a supporting stainless steel mesh (0.25 mm aperture; Mesh Direct, Hanscan 

Ltd., Burslem, UK) inside the plant compartment to reduce root pressure on the fine 

meshes (0.45 µm and 20.0 µm) which was held in place using a thinner PVC plate (2 

mm thick, 90 mm tall x 120 mm wide, with a 65 x 65 mm window in the centre). The 

mesh covered Perspex plates were fastened in-between the central and outer 

compartment using a series of eight screws and nuts positioned at regular intervals, 

these also held the stainless mesh and supporting PVC plate in position. Aquarium 

sealent (Aquamate, Everbuild Building Products Ltd. Leeds, UK) was applied between 

all adjoining surfaces and around the screws to prevent the AMF hyphae accessing the 

outer compartments through any route other than the mesh membrane. Drainage 

holes (6 mm diameter) were drilled into the base of each box within the units to allow 

drainage of water. All seals were coated in petroleum jelly (Vaseline®, Surrey, UK) to 

minimise the risk of gas leaks when the gas tight lids were attached. The microcosms 

were wrapped in double layered aluminium foil to prevent any photosynthetic growth 

on the walls of the units, and the soil compartments were covered with a foil layer 

when the lids were not attached to prevent them from drying out. These fittings are 

outlined in Figure 2.5.  
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Figure 2.5. Photographs of the three compartment microcosm design showing the 

unplanted unit with cover-boxing lids (A), a stainless steel covered mesh window inside 

the central plant compartment (B) and the fine mesh membrane (0.45 µm) as viewed 

from the outer compartment (C).The AMF access (AMA) and no AMF access (NAMA) 

compartments were on either side of the planted compartment (Plant & AMF) (A) and 

fittings including drainage holes (C), screws (B), sealant (A,C), and petroleum jelly (A) 

used to drain, attach and seal the compartments have been identified.  

 

2.2.3.3 Growth media  

The plant compartments contained a 50:50 (v:v) mix of sand and Terra-Green® 

(Section 2.2.1.3). The sand and Terra-Green® mix had been washed in deionised water 

and autoclaved twice with a week gap between autoclave events, then mixed with 

0.25 g L-1 of bonemeal (Section 2.2.1.3) and 150 g (FW) of live Glomus intraradices 

inoculum (see Section 2.2.1.3), totalling 2 L per pot. Z. mays seeds (Section 2.2.1.3) 

were sterilised in 3% sodium hypochlorite and pre-germinated for 24 hours on filter 

paper before planting three seedlings per unit. The seedlings were thinned to one per 

unit two weeks after sowing. The soil was sieved through a 2 mm sieve and well mixed 
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before 2 L was added to each of the outer compartments, 12 d after the plant 

compartments were planted.  

 

2.2.3.4 Organic matter patches  

All outer soil compartments contained a discrete zone or ‘patch’ of organic matter 

comprised of 2 g (DW) of dried, milled Z. mays shoots and 14.8 g (FW, equivalent to 13 

g DW) of soil and made as in Section 2.2.1.4. This patch was added to each outer 

compartment to encourage hyphal growth and create potential N2O ‘hot-spots’. Sterile 

centrifuge tubes (50 cm3), were placed in the soil to create a space for the patches 

which were added two weeks after soil addition (26 d after planting). The Z. mays 

shoots were purposely grown for patch material to have a high N content. Zea mays 

seedlings (Incredible F1, Mr Fothergills, Newmarket, UK) were grown in F2 + S compost 

(Scotts Levington, UK) for between 4 and 6 weeks and fed as required with 80 cm3 of a 

full nutrient solution (Thornton & Bausenwein, 2000) modified to include 3 x Iron (Fe) 

as some shoots were showing Fe deficiency. The leaves were then harvested, dried at 

70oC until they reached constant mass before milling for use in the patches.  

 

The composition of the patches is outlined in Table 2.1. Patches were added to the soil 

compartments 3 cm from the mesh and 8 cm deep by removing the centrifuge tubes 

and placing the patch bags into the remaining hole. Each patch received 1 cm3 of 

deionised water to bring the patch water to approximately the same water content as 

the surrounding soil. Any remaining gap was filled with soil of the same type with the 

same water content. 
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Table 2.1. Carbon (C) and nitrogen (N) content of the mixed organic patch material (13 

g DW equivalent soil mixed with 2 g DW milled Z. mays leaves) and Z. mays leaves that 

were used in the mixed organic matter patches before addition to the microcosms. 

Total values are for 15 g (DW equivalent) mixed organic patch and 2 g DW of milled Z. 

mays leaves. 

 
Total C 

(mg) % C 

Total N 

(mg) % N C:N Ratio 

Mixed patch 1845  12.3 145.5  0.97 13:1 

Plant Material  876.2  43.81 79  3.95 11:1 

 

2.2.3.5 Experiment growth conditions 

The microcosms were placed in a temperature controlled glasshouse. There were 

temperature probes in the centre of each block and a PAR sensor rotated between 

blocks weekly, all of which were logging every 30 min. A hand-held PAR sensor was 

used to measure PAR readings from each block three times a week and there were no 

significant differences in PAR between blocks. The mean PAR level measured daily at 

midday was 187 ± 7 µmol m-2 s-1 and the mean daily temperature over the 

experimental period was 20.1 ± 0.02°C. 

 

Water contents of the soil compartments were maintained by measuring soil water 

content weekly using a SM200 Water Sensor (Delta-T Devices, Cambridge, England) 

attached to a Multimeter (Meterman, UK) calibrated to the soil used. Deionised water 

was added once a week to these compartments to equal approximately 19% moisture 

(volumetric) content, thus counteracting any effects of AMF hyphal presence on water 

availability. This level of water content was based on the original field water content at 

soil collection. Additionally, one unit in each block had moisture probes in both sides of 

the unit to determine if the water content of the AMA vs. NAMA compartments drifted 

apart throughout the week as a result of the presence of AMF hyphae. Once a week 

the plant compartments received 50 cm3 of a nutrient solution modified from 
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Thornton & Bausenwein (2000) (1/10th N and P; see Appendix 1). This addition was 

increased to twice a week at 44 d post-planting as the plants were showing signs of 

nutrient deficiency.  At 58 d the nutrient additions were increased to 3 times per week, 

two at 1/10th N and P and one at full N, 1/10th P as the plants were showing signs of N 

deficiency following the first harvest.  

 

2.2.3.6 Microcosm based gas sampling  

The two outer (soil) compartments had a gas tight lid that could be fitted during gas 

sampling in situ (as used in Section 2.2.1.1), enclosing a 600 cm3 headspace volume 

above the soil surface. These lids were used to enable gas sampling by one of two 

methods (see Figure 2.6; as described in Section 2.1); firstly manual samples were 

taken using a cover-box technique (forming a closed static chamber (CSC)) followed by 

the second method of measurements taken using a continuous flow loop (similar to 

the closed-dynamic chamber, CDC method). Following the cover-box sampling (CSC), a 

modified lid was fastened onto each soil compartment in turn which was attached to a 

flow through system (CDC). This system was attached to a continuous flow loop with a 

Los Gatos bench top CH4 recorder (LGR) which measured the concentration of CH4 

once a second (Los Gatos Research, Inc. California, USA), and an infra-red gas analyser 

(IRGA) that measured the CO2 concentration once a second (LI-COR® Biosciences, 

Lincoln, USA). The lid was attached to each of the 36 soil compartment fluxes in 

sequence for a minimum of 5 min, with 2 min of flushing the system with lab air 

between each compartment measurement and a circulating air flow rate of 

approximately 1.5 L min-1.       
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Figure 2.6. Photographs (A,B) and diagram (C) showing the two microcosm based pre-

harvest (in situ) gas sampling methods, firstly forming a closed static chamber (CSC) 

using the cover-box technique (A) and secondly forming a flow-through system (B,C) 

with a closed loop of air flowing in a loop through the attached IRGA and LGR (CDC; 

not to scale). 

  

Background gas fluxes were measured 24 h after soil addition (13 d after planting). Gas 

sampling was carried out at 13, 27, 41, 55, 69, 83 and 104 d post planting (pre-harvest; 

equivalent to 1, 15, 28, 42, 56, 70, and 91 d post-soil addition). During the first week of 

gas sampling, the drainage holes in the soil compartments were sealed with tape to 

reduce potential gas leaks but because of concerns for disturbance of growing hyphae, 

this discontinued for future measurements with the drainage holes being left open. For 

the cover-box samples, the lids were attached for 2.5 h with 7 cm3 gas samples being 

removed through a Suba-Seal® (No. 25, Sigma-Aldrich, UK) in each lid every 50 min. All 

manual gas samples were stored in pre-evacuated 3 cm3 Exetainers® (Labco Ltd., 

Buckinghamshire, England) which were over pressured to 7 cm3. The Exetainers were 
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pre-evacuated for a minimum of 15 s using a vacuum pump (KNF Neuberger, Inc. 

Oxfordshire, Great Britain).  

 

2.2.3.7 Harvest data collection 

At each harvest the following data were collected; fresh and dry weights of shoots, 

roots, stalk, flowers, ear, soil, sand/Terra-Green® and patches, soil and patch 

gravimetric water content (g g DW -1). The shoot material was cut off and separated 

into leaves, dying leaves (> 50% of the leaf dried up), stalk, ear and tassel and the roots 

were picked out of the growth medium using forceps for 5 min before washing to clear 

away any attached growth medium, patting dry and weighing. Two 5 g (FW) samples of 

sand/Terra-Green®, soil (from AMA and NAMA compartments) and AMA and NAMA 

organic patches (post-gas sampling, as outlined in Section 2.2.3.8) were taken to 

determine the length of the AMF ERM. This was measured following the modified 

membrane filter technique (as in Section 2.2.1.6). At least 50 grid squares were 

counted at x 100 magnification on a Nikon Eclipse 50i microscope (Nikon Instruments 

Europe B.V.) and ERM lengths were converted to densities (m hyphae g-1 DW soil). The 

soil samples were taken from all four sides, the top and bottom of each soil 

compartment, well mixed and stored in a plastic bag at 4oC in the dark until ERM 

measurements were taken (no more than 96 h post-harvesting). Additional, 20 g (fresh 

weight), soil samples were taken from the same sample and stored in Wheaton bottles 

for gas flux analysis in the absence of the patches post-harvest (explained in detail in 

Section 2.2.3.8).  

 

The percentage total root length colonised (RLC), % arbuscules, and % vesicles for the 

Z. mays roots were assessed following the method of McGonigle et al. (1990). Briefly, 

the roots were picked out of the sand/Terra-Green® mix, washed in deionised water 

and then split into sub-samples for dry weight and staining. The sub-samples for 

staining were placed into 20% KOH for 3 d and then placed into 1% HCl to acidify the 

roots for 1 hour before being moved into a 0.01% acid fuchsin stain (lactic acid, 
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glycerol, deionised water 14:1:1 and 0.1 g L-1 acid fuchsin) for a further 3 d. The roots 

were then stored in destain (lactic acid, glycerol, deionised water 14:1:1) for at least 2 

d before being mounted onto microscope slides (after Grace & Stribley, 1991; Koske & 

Gemma, 1989; Walker & Vestberg, 1994). The number of intersects with a gridline at 

200 x magnification were counted for each of the hyphae, arbuscules and vesicles, 

with at least 100 root intersections taken for each replicate (Mcgonigle et al., 1990). 

The percentage of the root length colonised was then calculated from these values. 

Patch C:N ratios were determined by analysing dried, milled patch samples in an 

elemental combustion system (Costech  Analytical Technologies Inc., California, USA). 

Patch N and C contents were calculated using the % N and C values from elemental 

combustion system and converted to masses using the dried weights of the patches 

following each harvest.  

 

2.2.3.8 Post-harvest gas flux measurements  

Patches 

Following the first harvest (56 d), the organic patches were removed intact (in their 

bags), surface debris removed and weighed. The patches were then placed into 50 cm3 

syringes and left in the dark for 24 hours at 20oC and then assessed for gas production 

rates. This involved creating a syringe based gas sampling system, as shown in Figure 

2.7. The patch was placed in the 50 cm3 syringe; a second 10 cm3 syringe was attached 

to the 50 cm3 syringe at the inlet via a 3-way tap with a luer lock fitting to which a 

needle was connected. The 50 cm3 syringe was filled with 57 cm3 of air and the 10 cm3 

syringe was empty, with the whole system closed (no ambient air access). A known 

concentration of CH4 was added to produce a final volume of 60 cm3, with an initial 

CH4 concentration of 20 ppm (see methane dilutions Section below).   
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Figure 2.7. Syringe-based system for measurement of gas fluxes from nutrient patch 

mesh bags following destructive harvests.  The patch bag was placed inside the 50 cm3 

syringe which was then closed to outside air. Gas samples (7.5 cm3) were removed 

from the 50 cm3 syringe at regular intervals using the 10 cm3 syringe attached by the 3-

way tap. This allowed any change in N2O production to be quantified over time.  

 

At each gas sampling event, the 3-way tap was opened to the connected 10 cm3 and 

50 cm3 syringes, allowing air surrounding the patch (in the 50 cm3 syringe) to be 

sampled. This was well mixed by pumping the 10 cm3 syringe, with a final 7.5 cm3 

sample collected in the 10 cm3 syringe. The tap was then moved to connect the 10 cm3 

syringe to the needle and slight pressure was applied to the 10 cm3 syringe plunger 

(releasing 0.5 cm3 into the atmosphere) and the remaining 7 cm3 sample was 

transferred into a pre-evacuated 3 cm3 Exetainer through the needle. At the first 

harvest (56 d), four 7.5 cm3 samples were taken at 50 min intervals over 2.5 hours. This 

was found to yield very high N2O concentrations and consequently, during the 

subsequent harvests it was decided to take four 7.5 cm3 samples every 20 min over 

one hour. The N2O fluxes were found to be linear during this time. The syringes were 

kept in the dark at 20oC when not being sampled. Following gas sampling, the patches 

were destructively harvested for ERM analysis and dry weight collection within 96 h of 

the start of the harvest (as described in Section 2.2.3.7).  
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Soils 

At each harvest 20 g (FW) samples of soil were sampled from both soil compartments 

of each unit. Each time a soil sample was collected it was well-mixed sample from the 

front, sides, top and bottom of the compartment. Each sample was then placed into a 

Wheaton bottle (detailed in Section 2.2.3.7) which was then sealed with Parafilm 

(Pechiney Plastic Packaging Company; Chicago, Illinois, USA), to allow gas flow but limit 

water loss, and then stored in the dark at 20oC for 24 hours before gas sampling.   

 

During each gas sampling event, the Wheaton bottles were initially left outside for a 

minimum of 30 min with the Parafilm removed to allow the mixing of air from within 

the bottles with outdoor air to reduce any chance of contamination. The bottles were 

then sealed using rubber septa and aluminium crimp caps and immediately over-

pressured (by 25 cm3) with a mixture of air and a known concentration of methane 

(CH4) to make the CH4 concentration approximately 20 ppm within the bottle (see 

methane dilutions Section below). Gas was then sampled (7.5 cm3) every 50 min for 

2.5 h. Soil dry weights were estimated from additional parallel soil samples, dried at 

105oC to constant mass.  

 

This procedure was carried out once for harvest 1 (56 d post-planting) soils. The soils 

were sampled again at harvest 2 (84 d post-planting). At harvest 3 (105 d post-

planting), two samples were taken from each of the AMA and NAMA compartments, 

and an average of the two samples for each were used as replicates for the soil gas 

fluxes, and otherwise treated the same as those taken previously. After the first 

sampling event, half of the bottles (6 AMA, 6 NAMA) received 7 cm3 of a 60 mM KNO3 

solution (equivalent to a mid-range to high N addition) (Abbasi & Adams, 1999; Wang 

& Ineson, 2003), whilst the other half of the bottles received 7 cm3 of glucose (C6H12O6) 

at a concentration equivalent to 200 µg C g-1 DW. This concentration was chosen as a 

mid-range glucose addition (see Koops et al., 1996; Abbasi & Adams, 1999; Murray et 

al., 2004). These were then left for 24, 48 and 96 h between the 2nd, 3rd and 4th gas 
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sample events respectively. In between sample events the Wheaton bottles were 

covered with Parafilm and stored in the dark at 20oC. 

 

Methane dilutions 

A known amount of CH4 was added to allow quantification of potential CH4 oxidation 

rates as preceding the experiment, the soil used had been found to oxidise CH4. In all 

of the sealed bottles/syringes measured for gas sampling, a known concentration of 

CH4 was added. The CH4 added was diluted from a pure (1000000 ppm) sample of CH4 

in a series of dilution steps using evacuated 12 cm3 Exetainers (over-pressured to 20 

cm3) and Wheaton bottles. The Wheaton bottles were sealed, and flushed with N2 for 

at least 10 minutes using one needle as an inlet and another as an outlet (0.5 mm x 25 

mm, BD Microlance 3; Becton, Dickinson and Co., USA). They were then over-

pressured using a mix of N2 and CH4 to 200 cm3. A set amount (depending on the 

required CH4 concentration/volume) of this CH4/N2 mix was then removed from this 

stock bottle and added to the syringe/Wheaten containing the patch/soil sample 

respectively to make the CH4 concentration up to 20 ppm. A CH4 concentration of 20 

ppm was selected as this concentration would be suitable for high affinity methane 

oxidisers and is similar to the range used in previous studies (e.g. Wang & Ineson, 

2003) to quantify potential high affinity CH4 methane oxidation rates.  

 

2.2.3.9 Gas sample analysis 

All manually collected gas samples (i.e. not sampled using the IRGA or Los Gatos) were 

stored in 3 cm3 Exetainers (overpressured to 7 cm3) and analysed using a Perkin Elmer 

ARNEL Autosystem XL Gas Chromatograph (GC) with a flame ionisation detector (FID) 

and an electron capture detector (ECD) which measured CH4, CO2 and N2O 

concentrations. Eight reference samples of known concentrations (certified mixed 

standard from BOC, UK) of CH4 (103 ppm), N2O (9.4 ppm) and CO2 (523 ppm) were 

analysed within each GC run as pairs at regular intervals to allow calculation of the 

concentrations of the unknown samples. These references were also used to correct 
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for any machine drift, although machine drift was rare. Nitrogen ‘blanks’ were also 

included at the beginning and end of each run to check for consistency. Once the 

samples has been run through the GC, the gas inside the exetainers would be back at 

atmospheric pressure, leaving 3 cm3 of gas sample in the 3 cm3 exetainer. Where N2O 

concentrations were out of range of the GC detection (i.e. in the 56 d harvest patch 

samples and the 105 d harvest soil + glucose samples) the Exetainers were re-

pressurised to 7 cm3 by adding 4 cm3 of N2. Parallel standards of known N2O (9.4 ppm) 

concentration were also diluted and re-run through the GC. This was repeated until 

the samples came into the range of the GC again and the original ppm values were 

calculated using the dilution factors calculated from the concentration of the diluted 

standards. Post-harvest CO2 fluxes were not used as the sample period was 50 min 

between time points, and therefore an accurate flux rate could not be generated for 

CO2 from either the patches or the soils. 

 

2.2.3.10 Gas flux calculations 

Gas concentrations of unknown samples were calculated from the GC outputs (as area 

values) using SAS (v9.3 SAS institute Inc., North Carolina, USA) and were always 

calibrated against gases of known concentrations (outlined in Section 2.2.3.9). To 

prevent the use of data arising from rare injection or Exetainer failures, two criteria 

had to be met otherwise standards were discarded. The first was that the area 

measure on the GC for each gas could not be below a low minimum value (CH4: 

150000, CO2: 200000, N2O: 200000). This was to prevent the inclusion of standards 

that had failed to inject correctly. The second criterion was that the mean of the pair of 

standards at any point in the run was not greater than 1.96 x their standard deviation 

away from the mean of all standards in the run. This was to ensure that there were no 

contaminated standards included in the run. For example, if the standard had become 

contaminated with CO2 and had a higher than certified CO2 concentration, this step 

would remove that sample from the calculations. Contamination or false injection of 

any kind was very rare but both were allowed for by using these criteria to ensure that 

the most accurate data were obtained.  
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Linear regressions were used to calculate flux values for each of the three gases, N2O 

CH4 and CO2 by plotting the concentration change against time. For each gas the 

concentrations (ppm) were converted to mass (mg) using the headspace volumes at 

standard temperature and pressure. There were four measurement time points for 

each gas, t0 (0 min), t1 (20 or 50 min), t2 (40 or 100 min), t3 (60 or 150 min), the 

different time intervals being for patch (20 min) and soil or cover-box (50 min) 

sampling respectively. A regression procedure was used to calculate the gradient of 

the line representing the change in mg over time for each gas. As for the reference 

standards, there was a small possibility that a sample may have become contaminated 

or falsely injected into the GC. As the samples were far more variable than the 

standards, different criteria were used to prevent any values with undue influence 

from being included. Studentized residuals were calculated for each value in each 

regression by dividing the residual by the estimated error variance in the absence of 

that data point. Studentized residuals are considered to indicate an outlier if the 

absolute value is > 2 (SAS, v9.3 SAS institute Inc., North Carolina, USA). In this case, if 

the number of time points included in the initial regression was greater than three and 

the absolute value of the studentized residual for any of the measurements in that 

regression exceeded 5, then that measurement was not included in the final regression 

used to calculate the flux value. A studentized residual of 5 was used to ensure that 

the measurements were only removed rarely and in extreme cases (e.g. false 

injections/contamination). This method was used for all flux calculations derived from 

GC gas analyses.  

 

Gas concentration measurements from the flow-through system were calculated in a 

similar way. Initially, concentration values were converted to masses as above (Section 

2.2.3.10); these were then converted to flux values (mg m-2 h-1). The length of time 

that the lid was attached for was recorded. The fluxes were calculated using values 

measured between 120 to 200 s after the lid was attached for both CO2 and CH4. 

Linear regressions were then used to calculate the change in the concentration of each 

gas over time, with the time interval between measurements being one second. All 

regressions were run in SAS (v9.3 SAS institute Inc., North Carolina, USA) to obtain mg 
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s-1 values. The headspace in the microcosm unit (0.6 L), volume of connecting tubing 

(0.274 L) and internal volume for each instrument (IRGA, 0.019 L; LGR, 0.408 L) along 

with the surface area of soil sampled (0.024 m-2) were used in the calculation of the 

flux rates of each of the gases, in mg m-2 h-1. As this method did not involve any 

storage of samples or dilution procedures, there were no analytical outliers. 

 

Cumulative fluxes were calculated by plotting the bi-weekly flux values, integrating the 

area under the curve for the days specified and then dividing that value by the number 

of days. At the 56 d post-planting harvest, the 0 and 50 min samples were the only 

ones used for the patch N2O flux calculations as the N2O concentrations were high and 

may have started to back diffuse past this point. In order to create true replicates for 

soil N2O fluxes at the third (105 d post-planting) harvest (when two soil samples were 

taken from each replicate) the mean of these two samples was used as the true 

replicate to prevent pseudo-replication. All gas flux calculations were carried out in 

SAS (v9.3 SAS institute Inc., North Carolina, USA).  

 

It was originally intended to compare the compartment (pre-harvest) and post-harvest 

gas fluxes to check the methods used. However, the disturbance of the destructive 

harvests greatly affected the gas fluxes from the patches (particularly for N2O) 

therefore these comparisons were not informative and as such have not been 

included.  

 

2.2.3.11 Data analysis 

All data were tested for normality and equality of variance assumptions using 

Kolmogorov-Smirnov and Levene’s Homogeneity of Variance tests in SAS (v9.3 SAS 

institute Inc., North Carolina, USA) respectively. SAS was used for all data analyses.  
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Where patch compartment data for AMA or NAMA treatments (e.g. gas fluxes, patch 

moisture contents, patch C and N content etc.) were analysed over independent time 

points or among harvests, a two-way analysis of variance (ANOVA) including block with 

Duncan’s multiple range post hoc tests was used. Differences between AMA and 

NAMA treatments were analysed by comparing the AMA – NAMA value to zero using a 

one-sample t-test at each time point or harvest. Where normality or equality of 

variance assumptions were not fulfilled, the data were log10 transformed. If 

transformations failed to produce normality or equal variances, an equivalent 

Friedman’s non-parametric two-way ANOVA with Wilcoxon post hoc tests and 

Bonferroni corrections was used. Similarly, Wilcoxon Signed Ranks tests were used for 

comparing differences from zero. All proportion or percentage data were arcsine 

transformed before analysis.  

 

Plant compartment data (e.g. percentage root length colonised by AMF) were also 

analysed using a two-way ANOVA including block with Duncan’s multiple range post 

hoc tests, unless assumptions were not fulfilled in which case a Friedman’s non-

parametric two-way ANOVA with Wilcoxon post hoc tests and an applied Bonferroni 

correction were used. Where all harvest data were combined to assess relationships 

between variables either a Pearson or Spearman rank order partial correlation was 

used to control for the effect of harvest time depending on whether data passed or 

failed normality assumptions respectively. Where relationships between variables 

within harvests were tested, unless data failed normality assumptions, data were 

correlated using Pearson’s correlations; if data failed normality assumptions, 

Spearman’s correlations were used.   

 

Measured soil N2O fluxes from harvest 3 (105 d post-planting) following KNO3 addition 

failed normality and equality of variance assumptions; and were log10 transformed 

before analysis. Soil N2O fluxes from the same harvest following glucose addition 

fulfilled all normality assumptions and were not transformed. In both cases, paired t-

tests were carried out for each time point. Repeated measures ANOVAs failed to show 
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any significant effects other than time and, as the number of time points was low, the 

risk of type one error from individual t-tests was considered very low.  

 

Patch C:N ratios did not fulfil equality of variance or normality assumptions, and were 

therefore analysed using a Friedman’s two-way non-parametric ANOVA. The 

differences between AMA and NAMA patches were compared using a Wilcoxon Signed 

Ranks test on the difference compared to zero.   
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2.3 Results 

2.3.1 Selecting a suitable host plant  

The percentage total root length colonised by AMF (RLC) and arbuscules was higher in 

Z. mays and P. lanceolata roots compared to L. usitatissimum roots (RLC: F2,8 = 19.79, P 

= 0.0008; arbuscules: F2,8 = 9.17,  P = 0.0085; Figure 2.8). However, the percentage of 

roots containing vesicles was significantly higher in the Z. mays roots than both the L. 

usitatissimum and P. lanceolata roots (F2,8 = 10.99, P = 0.0051; Figure 2.8). 

 

Figure 2.8. Mean percentage root length colonisation (RLC) and root length 

colonisation by arbuscules and vesicles (%) in Z. mays (solid bars), L. usitatissimum 

(hatched bars) and P. lanceolata (open bars) plants. Error bars represent ± standard 

error of the mean (n = 5). Different letters represent significantly different averages 

within each group identified using Duncans multiple range post-hoc tests (at the P = 

0.05 level).  
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The Z. mays treatments had significantly higher extraradical mycelium (ERM) length 

densities in all three locations (Figure 2.9) than either P. lanceolata or L. usitatissimum 

(Plant: F2,8 = 23.2, P = 0.0005; Patch: F2,8 = 41.18, P < 0.0001; Soil: F2,8 = 13.88, P = 

0.0025), but there was no difference between these latter two species for any location 

(P > 0.05 in all cases).  

 

Figure 2.9. Mean extraradical mycelium (ERM) length density (m g-1 DW) measured in 

plant compartment, patch, and soil for Z. mays (solid bars), L. usitatissimum (hatched 

bars) and P. lanceolata (open bars) plants.Error bars represent ± standard error of the 

mean (n = 5). Different letters represent significantly different results within each 

group (plant, patch or soil; at the P = 0.05 level) following post hoc analysis using 

Duncans multiple range tests.  
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2.3.2 The effect of fine mesh presence on CO2 diffusion rates in 
microcosm systems used to study AMF 

There was no significant difference in the length of time taken for the CO2 

concentration to reach half of its absolute maximum in the second compartment 

among the three mesh treatments (Figure 2.10; F2,6 = 0.68, P = 0.543).  

 

Figure 2.10. The mean length of time taken for the CO2 concentration in the second 

half of the microcosm unit to reach half of its maximum for three mesh treatments; no 

mesh, 20.0 μm mesh and 0.45 μm mesh. There was no significant difference between 

treatments (one-way ANOVA) as indicated by the lettering. Error bars represent ± 

standard error of the mean (n = 3). 
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2.3.3 The interactions between AMF and soil CO2, N2O and CH4 fluxes 

 

2.3.3.1 AMF growth and colonisation of Zea mays 

Colonisation of Zea mays roots 

The Z. mays roots were well colonised by G. intraradices at the first harvest (56 d) and 

remained highly colonised thereafter with no significant differences between 

subsequent harvests (Table 2.2; Q2 = 4.95, P = 0.084). The percentage of roots 

colonised by vesicles did not differ among harvests (Table 2.2; F2,13  = 3.02, P = 0.084), 

but the frequency of arbuscules was higher at harvests 2 (84 d) and 3 (105 d) 

compared to harvest 1 (56 d; Table 2.2; Q2 = 9.810, P = 0.0074). All percentage 

colonisation data were significantly different from zero (P < 0.05). 

 

Table 2.2. Mean percentage root length colonised by AMF (%RLC) and percentage of 

roots colonised by arbuscules and vesicles for Zea mays L. plants at each harvest  (days 

since planted) ± standard error of the mean (n = 6).Statistical significance among 

harvests was determined using Duncans multiple range post hoc tests for vesicle data 

and Bonferroni post hoc tests for RLC and arbuscule data. Rows within the same 

column with the same letters are not significantly different (P > 0.05).  

  RLC (%) Arbuscules (%) Vesicles (%) 

Harvest 1 (56 d) 88.2 ± 3.1a 28.9 ± 4.2w 16.1 ± 2.8z 

Harvest 2 (84 d) 93.1 ± 1.5a 52.0 ± 6.6x 27.1 ± 3.3z 

Harvest 3 (105 d) 94.4 ± 2.2a 43.6 ± 2.9x 28.9 ± 5.3z 
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Extraradical mycelium (ERM) length densities 

Hyphae were present in the plant compartments at the first (56 d) harvest, and the 

mean ERM length densities for all harvests were greater than zero (P < 0.05 in each 

case). There was no significant difference between the ERM length densities in the 

plant compartment at each of the three harvests (Table 2.3; F2,13 = 1.40, P = 0.280).  

 

Table 2.3. Mean extraradical mycelium (ERM) length densities (m g-1 DW) in the central 

planted compartments for each harvest ± standard error of the mean (n = 6). There 

were no significant differences among harvests following a two-way ANOVA as 

indicated by the lettering (P > 0.05).  

  

ERM length density  

(m g-1 DW) 

Harvest 1 (56 d) 1.08 ± 0.25 a 

Harvest 2 (84 d) 1.35 ± 0.12 a 

Harvest 3 (105 d) 1.33 ± 0.09 a 

 

There were no significant differences in the ERM length densities measured in the AMF 

access (AMA) compartments among harvests in either the soil (Figure 2.11a; Q2,13 = 

3.43, P = 0.180) or patch (Figure 2.11b; Q2,13 = 3.43, P = 0.180). There were consistently 

higher ERM length densities in the AMA compartments than NAMA compartments for 

both soils and patches (Figure 2.11a,b; Table 2.4). There were no significant differences 

in AMA-NAMA ERM length densities among the three harvests in the soil (Q2 = 5.14, P 

= 0.077) or patch (Q2 = 3.43, P = 0.180).  
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Figure 2.11. Extraradical mycelium (ERM) length densities (m g-1 DW) from AMF access 

(AMA; solid bars) and no AMF access (NAMA; hatched bars) (a) soils and (b) patches 

for each harvest at 56, 84, and 105 d since planting. Error bars represent ± standard 

error of the mean (n = 6). Different letters within a harvest represent a significant 

difference between AMA and NAMA treatments (P < 0.05) and were determined using 

a Wilcoxon test to compare the AMA – NAMA values to zero.  
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Table 2.4. One-way ANOVA or Wilcoxon signed ranks test results for AMF hyphal 

access (AMA) – no AMF hyphal access (NAMA) extraradical mycelium (ERM) length 

density data from patches and soils split by harvest (at 56, 84 or 105 d post-planting). 

The AMA-NAMA values were compared to zero using either a one way ANOVA or 

Wilcoxon signed ranks test. Significant values are highlighted in bold (*P < 0.05).   

 Harvest  Test statistic P 

Patch 56 S5 10.5 0.031* 

 84 t5 2.59 0.049* 

 105 S5 2.41 0.031* 

Soil 56 S5 10.5 0.031* 

 84 t5 2.77 0.039* 

 105 t5 3.94 0.011* 
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2.3.3.2 Pre-harvest trace gas fluxes in the presence of AMF hyphae 

Cumulative CO2 production decreased between harvests for both AMA (F2,13 = 11.98, P 

= 0.0038) and NAMA (F2,13 = 27.48, P <  0.0001)  treatments. There was no significant 

difference between AMA and NAMA treatments preceding the first harvest (56 d post-

planting; Figure 2.12; t5 = 0.58, P = 0.587), but there was a significant difference in 

AMA and NAMA CO2 fluxes leading up to the 84 d and 105 d harvests (Figure 2.12; 55 

to 83 d post-planting: t5 = 3.77, P = 0.013 and 83 to 104 d post-planting: t5 = 2.62, P = 

0.047). There was however, no difference between the AMA-NAMA CO2 fluxes among 

the three time points (F2,13 = 2.50, P = 0.120). 

 

Figure 2.12. Mean cumulative CO2 production for AMF access (AMA; solid bars) and no 

AMF access (NAMA; hatched bars) compartments for the time preceding each harvest 

(n = 6). Error bars represent ± standard error of the mean (n = 6). Bars with different 

letters indicate significant differences (P < 0.05) within each time period. Significant 

differences within each time period were determined using a one-sample t-test to 

compare the AMA – NAMA values to zero.   
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Both the AMA and NAMA compartments were producing N2O but the rate of this 

production did not differ between the three harvest times in the presence of AMF 

hyphae (AMA; Q2 = 1.81, P = 0.405) whereas it was lower leading up to the final 

harvest for the NAMA compartments (Q2 = 8.86, P = 0.012). The difference between 

AMA and NAMA cumulative N2O fluxes did not differ from zero at any time point 

(Figure 2.13; P > 0.10 in each case) or from each other over all three time points (Q2 = 

2.47, P = 0.291).  

 

Figure 2.13. Mean cumulative N2O production for AMF access (AMA; solid bars) and no 

AMF access (NAMA; hatched bars) compartments for the time preceding each harvest. 

Error bars represent ± standard error of the mean (n = 6). There were no significant 

differences between AMA and NAMA treatments within each harvest as indicated by 

letters (P > 0.05 in each case) as determined using one-sample t-tests to compare the 

AMA – NAMA values to zero. 
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The cumulative CH4 oxidation did not differ over time in the AMA (Q2 = 1.24, P = 0.539) 

or NAMA treatments (Q2 = 5.81, P = 0.055). The difference between AMA and NAMA 

cumulative CH4 oxidation was not significantly different from zero at any time point 

(Figure 2.14; P > 0.05 in each case), but the AMA and NAMA CH4 oxidation rates were 

all significantly different from zero at each time point (P < 0.05 in each case). There 

was a significant difference among the AMA-NAMA values over the three time points 

(Q2 = 7.68, P = 0.021), however, the source of this difference was not clear when a 

Bonferroni correction was applied as P > 0.016 in all cases.  

 

Figure 2.14. Mean cumulative CH4 production for AMF access (AMA; solid bars) and no 

AMF access (NAMA) compartments for the time preceding each harvest. Error bars 

represent ± standard error of the mean (n = 6). There were no significant differences 

between AMA and NAMA treatments within each harvest as shown by letters (P > 0.05 

in each case); determined using one-sample t-tests to compare the AMA – NAMA 

values to zero. 
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The pre-harvest CO2 fluxes from the AMA compartments positively correlated against 

those from the NAMA compartments when controlling for harvest time (Figure 2.15; n 

= 18; rs = 0.7620, P = 0.0004, r2 = 0.6), but this was not significant within each harvest 

(P > 0.05 in each case). The pre-harvest CH4 fluxes for AMA also positively correlated 

with those from the NAMA compartments overall when harvest time was controlled 

for (n = 18; rs = 0.7734, P = 0.0003, r2 = 0.6), but when each harvest was taken 

separately, the CH4 fluxes from AMA and NAMA treatments were only positively 

correlated at the 105 d harvest (n = 6; rs = 0.8286, P = 0.042, r2 = 0.69). However, the 

pre-harvest AMA and NAMA N2O fluxes did not correlate (r = 0.1964, P = 0.450) and 

the pre-harvest N2O and CO2 fluxes also did not correlate for either of the AMA or 

NAMA treatments (AMA: r = -0.0909, P = 0.729; NAMA: rs = -0.2633, P = 0.307). 

 

Figure 2.15. Carbon dioxide (CO2) flux from the AMF access (AMA) compartment 

plotted against the CO2 flux from the no AMF access (NAMA) compartment preceding 

each destructive harvest. Dashed line is a 1:1 line. A Spearman partial rank order 

correlation controlling for time was used to test the relationship between AMA and 

NAMA treatment CO2 fluxes (n = 18, r2 = 0.6).  
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The total ERM length of the outer compartment was estimated by multiplying the soil 

ERM length densities by the total mass of soil (estimated as 2000 g) and adding this to 

the total patch ERM length (calculated by multiplying the patch ERM length density by 

15, as the patches were 15 g dw). The total ERM length estimates did not correlate 

with pre-harvest N2O fluxes at any harvest, or overall (P > 0.05 in each case). The AMA 

total ERM lengths also did not correlate with the AMA CO2 flux over all harvests when 

controlling for time (n = 18; rs = 0.4063, P = 0.106), or preceding the 56 d or 84 d 

harvests (56 d: rs = 0.4286, P = 0.397; 84 d: r = 0.4661, P = 0.351), but it did positively 

correlate with the CO2 flux measured preceding the 105 d harvest (Figure 2.16; r = 

0.9806, P = 0.0006, r2 = 0.9616). There were also no significant correlations of the 

NAMA total ERM lengths against CO2 flux, overall or for any harvest (P > 0.05 in each 

case).  

 

Figure 2.16. Total extraradical mycelium (ERM) length estimate for AMF access (AMA) 

compartments for the 105 d harvest plotted against the AMA compartment CO2 flux 

measured 24 h preceding the harvest The significant relationship was assessed using a 

Pearson correlation (n = 6, r2 = 0.9616).  
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2.3.3.3 Post-harvest patch greenhouse gas fluxes 

The patch N2O fluxes did not differ among harvests for AMA patches (Figure 2.17; Q2 = 

2.67, P = 0.264) but decreased significantly after the 56 d harvest for NAMA patches 

(Q2 = 11.81, P = 0.0027). The differences between AMA and NAMA N2O fluxes from the 

patches remained similar among harvests (Figure 2.17; Q2 = 0.38, P = 0.827) and did 

not differ from zero at the 56 d or 84 d harvest (56 d: S5 = 1.5, P = 0.844; 84 d: S5 = 5.5, 

P = 0.313), but were significantly higher than zero at the 105 d harvest (S5 = 10.5, P = 

0.031). Thus, the AMA patches were producing more N2O than NAMA patches by this 

stage. All N2O fluxes were significantly greater than zero at every harvest (P < 0.05 in 

each case). There were no significant relationships between post-harvest patch N2O 

fluxes and pre-harvest CO2 fluxes in either the AMA or NAMA treatment when harvest 

time was controlled for using a partial correlation (AMA: rs = -0.2079, P = 0.423; NAMA: 

rs = 0.4464, P = 0.073). 

Figure 2.17. Mean AMF access (AMA; solid bars) and no AMF access (NAMA; hatched 

bars) organic patch N2O fluxes at each harvest, (56 d, 84 d and 105 d post-planting). 

Error bars represent ± standard error of the mean (n = 6). Different letters show 

significant differences between AMA and NAMA patches within each harvest (P < 0.05) 

after Wilcoxon Signed Ranks tests comparing AMA – NAMA values to zero.  
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There was a significant negative correlation between N2O fluxes from the AMA patches 

and corresponding ERM lengths when time was controlled for using a partial 

correlation (Figure 2.18; rs = -0.653, P = 0.005), but only the 84 d harvest maintained 

the significant correlation when analyses were performed for each harvest (r = -

0.8783, P = 0.021).  There was no similar relationship in the NAMA patch treatment (P 

> 0.05). The patch N2O fluxes for AMA and NAMA treatments were positively 

correlated for the 105 d harvest (Figure 2.19; rs = 0.9429, P = 0.0048), but not at any 

other harvest or overall (P > 0.05 in each case). With the exception of one occasion 

(NAMA, 56 d harvest; S5 = -10.5, P = 0.031) the patch CH4 oxidation rate was not 

significantly different to zero. There were also no significant CH4 fluxes measured from 

the post-harvest soils; therefore these data are not shown.  

 

Figure 2.18. Nitrous oxide (N2O) flux for AMF access (AMA) patches measured at each 

harvest (56 d, 84 d, 105 d post-planting) plotted against corresponding extraradical 

mycelium (ERM) length densities (m g-1 DW; n = 18, r2 = 0.42). Different symbols 

represent the three harvests (56 d (black circle), 84 d (grey circle), and 105 d (black 

triangle) post-planting). A Spearman partial rank sum correlation controlling for 

harvest time was used to determine the relationship between the two variables.   
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Figure 2.19. Nitrous oxide (N2O) fluxes post-harvest for AMF access (AMA) and no AMF 

access (NAMA) patches following the harvest at 105 d post-planting. A Spearman rank 

order correlation was used to determine the relationship between the AMA and NAMA 

patch N2O fluxes (n = 6, r2 = 0.89).  
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2.3.3.4 Post-harvest soil greenhouse gas fluxes 

The soil N2O flux from both AMA and NAMA soils did not significantly differ among 

harvests (Figure 2.20; P > 0.05 in each case). There was no significant difference in N2O 

flux between AMA and NAMA soils (P > 0.05 in each case, although note the 56 d 

harvest: S5 = 9.5, P = 0.063) and consequently, no difference among harvests (Figure 

2.20; Q2 = 5.81, P = 0.055). The N2O fluxes did not differ from zero at any harvest, 

although it was close in the AMA treatment at 56 d post-planting (S5 = 9.5, P = 0.063) 

and in the NAMA treatment at 105 d post-planting (S5 = 9.5, P = 0.063).   

 

 

Figure 2.20. Mean soil N2O fluxes from AMF access (AMA; solid bars) and no AMF 

access (NAMA; hatched bars) treatments following each harvest (at 56, 84 and 105 d 

since planting). Error bars represent ± standard error of the mean (n = 6). There were 

no significant differences in N2O flux between AMA and NAMA treatments within each 

harvest (Wilcoxon signed ranks tests were used to compare AMA-NAMA values to 

zero; P > 0.05 in each case).  
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The mean post-harvest soil fluxes for the AMA and NAMA treatments (0.04 and 0.04 

ng g-1 DW h-1 respectively) were 2450 and 1966 times smaller than the post-harvest 

patch fluxes for the same AMA and NAMA treatments (106.7 and 79.2 ng g-1 DW h-1 

respectively). 

 

Prior to the addition of KNO3 to the soils sampled at the final (105 d post-planting) 

harvest, there was no difference in the N2O fluxes from AMA and NAMA soils (Figure 

2.21; t5 = -1.24, P = 0.269). This was still not significant at 24 h (t5 = 0.596, P = 0.596) or 

48 h (t5 =0.71, P = 0.512 after KNO3 addition, but the N2O fluxes from the AMA soils 

were 98.1% higher than those from the NAMA soils at 96 h after KNO3 addition (t5 = 

3.01, P = 0.030).  

 

Figure 2.21. Mean N2O flux from AMF access (AMA; solid circle) and no AMF access 

(NAMA; open circle) soils following the final (105 d post-planting) harvest, pre-KNO3, 

and 24, 48 and 96 h post KNO3 addition. Error bars represent ± standard error of the 

mean (n = 6). Asterisk indicates significant differences at the *P < 0.05 level for 

individual time points, determined using a paired t-test.   

 

 

* 



Chapter 2 

  -93- 

Glucose addition to post-harvest soils did not result in any difference in N2O flux from 

AMA and NAMA treatments (Figure 2.22; pre-glucose: t5 =0.29, P = 0.784; 24 h: t5 =        

-1.61, P = 0.167; 48 h: t5 = -0.66, P = 0.537; 96 h: t5 = -0.29, P = 0.784), although there 

was an increase in N2O flux over time in those soils following the addition of glucose 

(Time: F3,18 = 77.3, P < 0.0001). However, there were no significant correlations 

between soil ERM length densities and N2O fluxes following addition of KNO3 or 

glucose, for any time point (P > 0.05 in each case). 

 

Figure 2.22. Mean N2O flux from AMF access (AMA; solid circle) and no AMF access 

(NAMA; open circle) soils pre-glucose addition (following the third harvest at 105 d 

post-planting) and 24, 48 and 96 h post glucose addition  (n = 6). Paired t-tests were 

used to determine that the AMA and NAMA treatment N2O fluxes did not differ at any 

time point (P > 0.05 in each case).  
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2.3.3.5 Post-harvest patch and soil analysis 

Post-harvest C:N ratios for the patches did not differ between the AMA and NAMA 

treatments at any harvest (Table 2.5; 56 d: S5 = 4.5, P = 0.438; 84 d: S5 = 0.5, P = 1.0; 

105 d: S5 = 1.5, P = 0.844); there was also no significant difference in the C:N ratio of 

patches among harvests (AMA: Q2 = 1.81, P = 0.405; NAMA:  Q2 = 1.14, P = 0.565).  

 

The patch C content did not differ between the AMA and NAMA treatments at any 

harvest (Table 2.5; 56 d: t5 = 0.59, P = 0.583; 84 d: t5 = -1.68, P = 0.154; 105 d: t5 = 0.32, 

P = 0.762) and the C content of AMA and NAMA patches also did not differ among 

harvests (AMA: F2,13 = 2.05, P = 0.169;  NAMA: F2,13 = 1.01, P = 0.391). There were also 

no differences among harvests or treatments for the patch C or N concentrations 

(Table 2.5; P > 0.05).  

 

The N content of AMA and NAMA patches did not significantly differ at the 56 d or 105 

d harvests (56 d: t5 = 0. 0.13, P = 0.904; 105 d: t5 = 0.73, P = 0.498), but the N content 

of AMA patches was slightly higher than that of the NAMA patches following the 84 d 

harvest (84 d: t5 = -2.61, P = 0.048). The patch N content in both the AMA and NAMA 

treatments did not differ among harvests (AMA: F2,13 = 0.56, P = 0.583; NAMA: F2,13 

=3.74, P = 0.052).  
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Table 2.5. Mean patch C and N contents, patch C:N ratio, patch C and N concentrations, and patch and soil gravimetric moisture contents (%) following each 

destructive harvest at 56, 84, and 105 d post-planting (30 d, 58 d and 79 d post-patch addition) and overall patch and soil gravimetric moisture content (%) 

for AMF access (AMA) and no AMF access (NAMA) treatments ± standard error of the mean. Different letters within each row and harvest indicate 

significant differences at P < 0.05, determined using either one-sample t-tests or Wilcoxon signed rank tests to compare the AMA-NAMA values to zero 

(further details in Section 2.3.3.5). The significant differences are highlighted in bold. 

 56 d 

 

84 d 

 

105 d 

  AMA NAMA AMA NAMA AMA NAMA 

C content (mg) 658.5 ± 27.6a 623.5 ± 47.9a 537.1 ± 39.4m 680.8 ± 64.8m 603 ± 52.8x 576.7 ± 63.3x 

N content (mg) 63.5 ± 4.0a 62.7 ± 3.4a 57.3 ± 3.1m 71.6 ± 5.5n 62.1 ± 5.3x 57.8 ± 3.9x 

C concentration (mg g-1 DW) 46.3 ± 1.8a 44.3 ± 3.6a 39.1 ± 3.4m 48.8 ± 4.5m 43.0 ± 4.0x 41.4 ± 4.6x 

N concentration (mg g-1 DW) 4.5 ± 0.3a 4.5 ± 0.3a 4.2 ± 0.3m 5.1 ± 0.4m 4.4 ± 0.4x 4.2 ± 0.3x 

C:N ratio 10.5 ± 0.4a 9.9 ± 0.4a 9.4 ± 0.6m 9.5 ± 0.3m 9.7 ± 0.1x 9.9 ± 0.5x 

Soil moisture content (%) 12.2 ± 0.1a 11.8 ± 0.1a 12.1 ± 0.5a 11.6 ± 0.3a 15.3 ± 2.1a 11.9 ± 0.3a 

Patch moisture content (%) 37.7 ± 2.5x 34.4 ± 0.6x 38.0 ± 2.6x 34.6 ± 1.2x 42.0 ± 2.7x 32.8 ± 1.4y 

Overall moisture content (%)  AMA NAMA 

Soil 13.2 ± 0.8a 11.8 ± 0.1b 

Patch  39.2 ± 1.5x 33.9 ± 0.6y 
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Overall the percentage (%) water content (g g-1 DW soil) of the patches was 

significantly higher for the AMA patches than for the NAMA patches (Table 2.5; n = 18; 

S17 = 59.5, P = 0.0077), but the % water content was not significantly different between 

AMA and NAMA treatments following the 56 d and 84 d (post-planting) harvests (Table 

2.5; 56 d: S5 = 6.5, P = 0.219; 84 d: S5 = 3.5, P = 0.563). There was also no change in the 

% water content of the AMA and NAMA patches among harvests (AMA: Q2,13 =1.81 P = 

0.405; NAMA:  Q2 = 1.23, P = 0.539). However, by the 105 d post-planting harvest, the 

AMA patches were significantly wetter than the NAMA patches (S5 = 10.5, P = 0.031). 

Even though the water content of the outer compartments was equalised weekly, 

following the destructive harvests, the soil % water content was higher overall when 

AMF hyphae had access (Table 2.5; n = 18; S17 = 51.5, P = 0.024), although this was not 

significant within each harvest (P > 0.05 in each case). The patch water content was 

not correlated with the patch ERM length densities at any point (P > 0.05) and the soil 

water content was also not correlated with the soil ERM length densities or N2O flux in 

either AMA or NAMA treatments (P > 0.05 in each case).  

 

The patch C:N ratios did not correlate with the pre- or post-harvest N2O fluxes (P > 

0.05 in each case). However, the N and C contents and N concentration of AMA 

patches positively correlated with the pre-harvest N2O fluxes, but the same 

relationships were not found for the NAMA treatment (statistics in Table 2.6). There 

were also no significant relationships between post-harvest N2O fluxes for AMA or 

NAMA treatments with patch C or N contents (Table 2.6). Although the C and N 

contents of the patches were positively correlated in both the AMA and NAMA 

treatments (Table 2.6). The patch % moisture for the AMA treatments was negatively 

correlated with the pre-harvest N2O fluxes but the same relationship was not found for 

NAMA compartments, or for AMA or NAMA post-harvest patch N2O fluxes (Table 2.6). 

Patch ERM length densities were also not related to the C:N, C content, N content, C or 

N concentration of the patches (P > 0.05 in each case). 
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Table 2.6. Correlation coefficients and r2 values for correlations between pre- or post-harvest N2O fluxes against other patch variables (C and N 

content, C and N concentrations and patch gravimetric moisture content). Correlation coefficients are from either Pearson’s or Spearman’s 

rank order partial correlations controlling for harvest time indicated by r or rs respectively. Significant correlations are shown in bold and 

indicated by asterisks (*P < 0.05, **P < 0.01 ***P < 0.0001).  

   AMA NAMA 
 Patch variable  coefficient P r2 coefficient P r2 
Pre-harvest N2O flux C content r 0.4974 0.042* 0.25 -0.0187 0.943 0.0003 

C concentration r 0.4532 0.068 0.21 0.0127 0.962 0.0002 

N content r 0.6792 0.0027** 0.46 -0.0695 0.791 0.005 

N concentration r 0.6470 0.005** 0.42 -0.0538 0.838 0.003 

 Moisture content r -0.5801 0.015* 0.34 0.1095 0.676 0.01 

Patch C content Patch N content r 0.8184 <0.0001*** 0.67 0.8940 <0.0001*** 0.80 

Post-harvest patch N2O 
flux 

C content rs -0.0158 0.952 0.0002 -0.2275 0.380 0.05 

C concentration rs -0.0575 0.827 0.003 -0.2316 0.371 0.05 

N content rs 0.1799 0.490 0.032 -0.0458 0.861 0.002 

N concentration rs -0.0724 0.783 0.005 -0.0889 0.734 0.008 

Moisture content  rs 0.0785 0.765 0.006 0.3657 0.149 0.13 
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2.4 Discussion 

2.4.1 Preliminary experiments 

Plantago lanceolata is commonly used in AMF experiments with organic patches 

(Hodge et al., 2001; Hodge & Fitter, 2010; Barrett et al., 2011) and when in symbiosis 

with G. intraradices, the hyphae have previously proliferated in organic matter patches 

(Leigh et al., 2009; Leigh et al., 2011). In this case, the symbiosis with Z. mays produced 

the highest ERM length densities in the patches (Figure 2.9), and the highest 

colonisation of host plant roots (Figure 2.8). Therefore as Z. mays is an important 

agricultural crop world-wide (FAO, 2012), it was selected as the host plant for all future 

experiments on AMF interactions with trace gas fluxes in this thesis. Following the 

second preliminary experiment (outlined in Section 2.2.2), the microcosm units with 

gas tight lids were found to be suitable for use in cover boxing as the meshes did not 

impede the flow of CO2. As CO2 has a molecular weight of 44, it was therefore unlikely 

that N2O and CH4 would also not be impeded by the meshes as they were either the 

same molecular weight (N2O: 44) or smaller (CH4: 16). The discussion below relates to 

the subsequent experiment assessing the interactions between AMF hyphae and trace 

gas fluxes outlined in Section 2.2.3. 

 

2.4.2 Experimental design 

The colonization of the host plants and outer compartments by G. intraradices was 

comparable to that of previous studies using similar systems (Leigh et al., 2009; Hodge 

& Fitter, 2010). The Z. mays host plants were highly colonised by AMF (Table 2.2) and 

the extraradical mycelium (ERM) length densities produced in the patches at 84 d and 

105 d of 2.2 ± 0.84 m g-1 DW and 3.84 ± 1.57 m g-1 DW respectively (Figure 2.11; 58 d 

and 79 d post-patch addition respectively) were not dissimilar to those reported by 

Leigh et al. (2009) where patch ERM length densities were typically 3.1 m g-1 at 70 d 

post-planting (42 d post-patch addition). There was also a greater than 1000x 

difference between patch and soil N2O fluxes in both AMA and NAMA treatments. As 

outlined in Section 2.2.3.4, the patches were designed to create a location in which 
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AMF and N2O producers could interact and the combination of high ERM length 

densities and patch N2O production should therefore have provided suitable 

conditions. 

 

2.4.3 Pre-harvest gas fluxes 

2.4.3.1 Carbon dioxide (CO2) 

The presence of AMF hyphae is known to increase CO2 fluxes (Heinemeyer et al., 2006; 

Heinemeyer et al., 2012b), which was also the case here (Figure 2.12). If AMF hyphal 

respiration was the main cause of the difference between AMA and NAMA treatments, 

the CO2 flux might have been expected to correlate with the total ERM lengths 

measured. This did occur at the 105 d harvest, but not at the 84 d harvest. It is 

therefore probable that the presence of AMF hyphae influenced soil respiration in 

more than one way. The most likely causes are carbon (C) and nitrogen (N) deposits 

from hyphal exudation (Toljander et al., 2007) and turnover (Staddon et al., 2003; 

Godbold et al., 2006) causing increased mineralisation rates and microbial respiration 

in the hyphosphere.  

 

Since neither the patch nor soil water content correlated with the CO2 fluxes for either 

AMF treatment, the differences in AMA and NAMA CO2 flux were unlikely to be a 

result of the AMA patches being wetter. Moreover, soil water content is only likely to 

affect CO2 fluxes when conditions are very dry or very wet (Bowden et al., 1998), which 

was not the case in the patches here (Table 2.5; see Curtin et al. (2012)). Although the 

soils were relatively dry (Table 2.5), the moisture contents did not differ between the 

AMA and NAMA treatments and thus moisture content was not likely to be a driver for 

the difference in CO2 flux between the AMA and NAMA treatments. Additionally, root 

respiration was probably contributing to both the AMA and NAMA compartment 

fluxes, as the AMA and NAMA CO2 fluxes were positively correlated. Similar plant 

compartment effects are also likely to have caused the correlation in AMA and NAMA 

CH4 fluxes. It is also possible that the flow of air over the soils in the closed loop system 
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(CDC system) may have resulted in some purging of air from the soil which could also 

contribute to the similar fluxes of CH4 and CO2 in the AMA and NAMA compartments 

and would have reduced the possibility of finding a significant difference between the 

AMA and NAMA treatments. However, since the AMA and NAMA treatments shared a 

plant compartment, it was still possible to determine the effect of AMF hyphae on CO2. 

In the case of CO2 fluxes, the regression line falls below that of the 1:1 line (Figure 

2.15), thus while related to the AMA CO2 fluxes, the NAMA CO2 fluxes were not 

increasing at the same rate. The microcosm design paired the AMF treatments by unit, 

and thus allowed AMF influence on CO2 to be detected regardless of root respiration 

rates. This not only demonstrates that the AMF hyphae were influencing hyphosphere 

activity, but also that in this experiment and under the specific conditions used here, 

CO2 could be used as an indicator of hyphal presence without the need for destructive 

harvest when using these microcosms.   

 

2.4.3.2 Nitrous oxide (N2O) 

While AMF hyphae can take up N from organic sources, albeit as inorganic forms (Leigh 

et al., 2009; Hodge & Fitter, 2010), the hypothesis that this reduces the availability of 

NH4 and NO3 and subsequently the production of N2O, was not supported by this 

study. To date, only one other study has measured the impact of AMF presence on 

N2O fluxes directly. Cavagnaro et al. (2012) found no difference in the 15N2O 

production from field based soils surrounding AM colonised tomato plants compared 

to those of AM defective tomato mutants following 15N addition as 15N-KNO3. 

However, they did find that 15N uptake by AM plants was higher than that of the non-

AM mutants. Additionally, the 15N2O production was lower in the presence of roots 

compared to soil alone; thus the difference in available 15N in soils from AM plants 

compared to the non-AM mutants may not have been large enough for it to affect the 

overall 15N2O production.  
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The relationships between pre-harvest N2O fluxes and patch C, N and moisture content 

in the AMA treatments here indicate that, despite the lack of overall difference in N2O 

flux rates between the AMA and NAMA treatments, the AMF hyphae were interacting 

with the N2O production pathways (Table 2.6). N2O producers have differing N, C and 

moisture requirements (Philippot et al., 2009), and the r2 values for these relationships 

were all below 0.5, thus at most these relationships explain no more than 50% of the 

observed variation. This may suggest that there was more than one pathway 

contributing to the pre-harvest N2O fluxes for the AMA treatments.  

 

Residue N content can be positively related to N2O fluxes (Millar et al., 2004; Baggs et 

al., 2006) and this was also found for the AMA patches and pre-harvest N2O fluxes 

here. In this case, as suggested by Millar et al. (2004) the mineralisation rates may 

have increased in the patches with higher N content, which would stimulate the pre-

harvest N2O fluxes. Increased mineralisation rates would result in higher NH4 and NO3 

availability, which could potentially reduce the competition between autotrophic 

nitrifiers and other heterotrophic organisms for NH4 (Verhagen et al., 1995). While the 

ERM length densities in this study were not related to the pre-harvest N2O fluxes, or to 

the patch N content, it has been demonstrated that mineralisation rates can increase 

in the presence of AMF hyphae, although the mechanism is unclear (Hodge et al., 

2001; Atul-Nayyar et al., 2009). Herman et al. (2012) found that when AMF hyphae 

were present in an organic patch of 13C labelled plant roots, the atom% 13C-PLFA was 

lower than when the AMF hyphae were absent. The authors suggested that loss of 12C 

plant carbon from AMF hyphae may have diluted the 13C enrichment of the 

hyphosphere organisms, and this could have resulted in increased decomposition as a 

result of C ‘priming’. However, root mediated priming effects are not always positive 

(Cheng & Kuzyakov, 2005), and probably depend on the quantity of labile C added (de 

Graaff et al., 2010).  

 

In the AMA treatment patch, C content was also positively correlated with the pre-

harvest N2O fluxes. Previous studies have found denitrification rates to correlate with 
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total organic C (Stanford et al., 1975; Baggs & Blum, 2004), and AMF can influence the 

communities of denitrifiers in the mycorrhizosphere (Veresoglou et al., 2012a). The 

presence of AMF hyphae may therefore have increased the available N via increased 

mineralisation, acted as a C source either by exudation (Toljander et al., 2007; Herman 

et al., 2012) or hyphal turnover (Staddon et al., 2003), or acted as an additional N 

source (Hodge & Fitter, 2010). Alternatively, uptake of NH4 by AMF has been proposed 

to increased decomposition rates in soils (Cheng et al., 2012). Cheng et al. (2012) 

suggested that saproptrophs could be released from metabolic repression as NH4 is 

removed by AMF, while also having access to more labile C. If this resulted in N 

mineralisation in these patches the N available for N2O production could have 

increased. However, in the present study, decomposition rates were probably not that 

different in the AMA and NAMA treatments as the C:N ratio of the patches did not 

differ at the final harvest. Furthermore, the patch N and C contents were positively 

correlated in both the AMA and NAMA treatments, therefore only one of these may 

have been related to the N2O flux and the other was probably a consequence of that.  

 

In the AMA treatments, there was also a negative relationship between patch % 

moisture and pre-harvest N2O fluxes which was predominantly driven by the highest 

moisture contents (> 43%) that only occurred in the AMA patches. The N2O flux would 

be expected to increase at higher moisture contents if denitrification was the 

dominant source of N2O (e.g. Abbasi & Adams, 2000; Bateman & Baggs, 2005), thus in 

this case, at least some of the N2O produced probably originated from aerobic 

pathways such as nitrification which would require a source of O2 (Bollmann & Conrad, 

1998). As the N2O flux decreased at higher moisture contents, any beneficial effect of 

AMF presence on N2O production via mineralisation may have been neutralised by the 

negative effect of increasing moisture content. Taken together, the relationships 

between pre-harvest N2O and patch moisture, N and C contents indicate a complex 

relationship between AMF hyphal presence and N2O production pathways, which 

requires further investigation.   
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In the present study, the overall production of N2O detected in the outer 

compartments was almost certainly driven by that of the organic patches, which 

following the destructive harvests, were found to be producing over 1000 times more 

N2O than the surrounding soils. The positive relationship between the patch N and C 

contents with the pre-harvest N2O fluxes also indicates that the N2O fluxes measured 

were predominantly driven by the patches. The cover-box method used to measure 

pre-harvest N2O fluxes from the outer compartments included both the soil and patch 

with a headspace volume of 600 cm3, which is much larger than the patch volume (ca. 

25 cm3) and the patches were located 8 cm below the soil surface. Therefore there will 

have been significant dilution of any N2O produced by these patches in measurements 

taken using the cover-box method. If the concentration of N2O measured falls to that 

of atmospheric (ca. 324 ppb in 2011; Blasing, 2013), the reliability of the measured flux 

values declines.  Furthermore, the N2O flux values were calculated from only four time 

points. While precautions were taken by discarding outlying values (see Section 

2.2.3.10), this had the potential to increase the variability between samples and was 

not optimal for identifying an effect of AMF hyphae on N2O fluxes from these units. 

Use of a soil gas probe inserted into the patch bag, similar to those used by Kammann 

et al. (2001) or Mastepanov & Christensen (2008), may be a more appropriate method 

of quantifying patch N2O fluxes. The patches had both the highest ERM length 

densities and N2O fluxes and are clearly the predominant site where interactions 

between the AMF hyphae and N2O producing organisms were occurring. 

 

2.4.3.3 Methane (CH4)  

While dilution may also have been an important factor limiting the accuracy of CH4 

fluxes measured, there was a detectable rate of CH4 oxidation in both AMA and NAMA 

compartments (Figure 2.14). While quite low, these fluxes were within the range of 

CH4 oxidation rates measured in previous studies on forest (McNamara et al., 2008), 

and arable (Dobbie & Smith, 1996; Priemé et al., 1997) soils. Although there are many 

potential interactions between AMF hyphae and CH4 fluxes, there was no evidence for 

any effects of AMF hyphal presence in this study either before or after destructive 



Chapter 2 

  -104- 

harvest. Even the difference in water content between the AMF treatments did not 

appear to reduce the rate of CH4 oxidation, yet increasing water availability is often 

found to reduce CH4 oxidation rates (Castro et al., 1994; Hiltbrunner et al., 2012; Yu et 

al., 2013). The post-harvest CH4 fluxes were also very low despite the addition of 20 

ppm CH4. This suggests that the CH4 oxidisers were not limited by CH4 in this system, 

and that another factor was impacting on the rate of CH4 oxidation. Again, the lack of 

difference between AMA and NAMA treatments suggests that it was not related to the 

presence of AMF hyphae. It may be that AMF do not have a large enough impact on 

soil conditions to affect methanotrophs or methanogens in this system, particularly 

since only the net CH4 flux was measured. There is evidence suggesting that some 

saprotrophs can produce CH4 (Lenhart et al., 2012), however, at the time of writing, 

there is no literature available showing AMF hyphae interacting with soil CH4 fluxes, 

possibly because no interactions have yet been found, or because the potential 

interactions have not yet been studied in sufficient detail.  

 

2.4.4 Post-harvest patch N2O fluxes 

The post-harvest N2O fluxes from patches at the 105 d harvest were markedly higher in 

the presence of AMF hyphae (Figure 2.17). The denitrifying community can be 

modified in the mycorrhizosphere (Veresoglou et al., 2012a) and the number of 

denitrifying bacteria were lower in the mycorrhizosphere in another study (Amora-

Lazcano et al., 1998), possibly because the C available to denitrifiers was reduced as it 

was instead passed onto the AMF (Veresoglou et al., 2012a). In the hyphosphere, as 

studied here, the opposite may be true as there were no roots present. The harvesting 

method used by Amora-Lazcano et al. (1998) has also come under criticism since it 

may have increased the C available for denitrifiers upon root severing (Veresoglou et 

al., 2012b). Conversely, this criticism may present an explanation for the higher N2O 

flux from the patches when the AMF hyphae were present in this study. When the 

patches were removed from the units, the hyphae must have been severed on all 

surfaces of the patch bag. Unlike autotrophic nitrifiers which only require a source of 

NH4, denitrifiers require a C source alongside NO3 (Hino et al., 2010; Parkin, 1987). 
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Severing the AMF hyphae may therefore have increased the available C and/or N in the 

patch, which may have acted as a proximal (short term, sensu Wallenstein et al., 2006) 

control, increasing rates of nitrification, denitrification or both. 

 

AMF hyphae can affect soil structure and water status, possibly via the production of 

glomalin (Rillig & Mummey, 2006; Purin & Rillig, 2007) and this can lead to an increase 

in the number of bacteria in subsequent stable aggregates (Andrade et al., 1998). As 

the AMA patches were wetter than the NAMA patches, the frequency of anaerobic 

microsites may have increased the rates of denitrification and consequently N2O 

production as denitrification is an anaerobic process (Zumft, 1997). Mineralisation 

rates can also increase at higher moisture contents (Curtin et al., 2012), possibly as a 

result of an increase in the mobility of mineralisation substrates, which in turn may 

result in higher levels of available NH4 and NO3 that could also fuel N2O production. 

However, the patch water content did not correlate with the N2O flux. AMF can also 

reduce pH in the hyphosphere (Li et al., 1991a), and reduction in pH can reduce total 

denitrification rates (Šimek & Cooper, 2002; Čuhel et al., 2010), and nitrification rates 

(e.g. Nugroho et al., 2007; Cheng et al., 2013). Unfortunately, the patches were too 

small to sample for pH, however as the N2O fluxes increased in the AMA treatments, it 

is unlikely to be related to AMF mediated pH changes. The higher N2O fluxes from the 

AMA patches post-harvest are therefore likely to be a consequence of a combination 

of availability of N and/or C and increased patch water content.  

 

The difference in N2O fluxes between AMA and NAMA treatments only became 

significant at the final (105 d) harvest, although the trend appeared by the 84 d 

harvest. The high N2O production at the 56 d harvest in both treatments may have 

masked any effect of AMF presence as the initial mineralisation rates of the low C:N 

patches would have been high (Huang et al., 2004). Over time, as the available N and C 

decreased, the overall mineralisation rates and subsequent N2O fluxes decreased as 

the ERM length densities increased, resulting in a negative correlation between the 

two, but a partial correlation controlling for time demonstrated that this relationship 
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was not simply a consequence of time. AMF have been demonstrated to take up N 

from organic patches (Leigh et al. 2009), which may reduce the N available for N2O 

production pathways, and therefore could explain the negative relationship between 

patch N2O flux and ERM length. This seems to contradict the finding that the AMA 

patches were producing more N2O than the NAMA patches post-harvest, but the 

interactions between N and C may help to explain this. After harvesting, C loss from 

the AMF hyphae may have released denitrifiers from C limitation and subsequently 

increased overall N2O production. However, once the denitrifiers were no longer 

limited by C, they may have become limited by the availability of N. If the AMF hyphae 

were taking up N, they could have reduced the N available in the patches, and 

therefore the N2O production was negatively related to the ERM length densities 

present, even though it was still higher in the AMA treatment than in the NAMA 

treatment. Thus it was probably the balance between available N and C that was the 

main factor controlling the N2O fluxes and the relationship of these with the ERM 

length densities.   

 

The correlation between the AMA and NAMA patch N2O fluxes at the 105 d harvest 

was probably caused by influences from the shared plant compartment. Root exudates 

and rhizodeposits are likely to have been present in the planted compartments, and 

can act as a C source for denitrifiers (Mahmood et al., 1997; Jones et al., 2004; 

Mounier et al., 2004). All planted compartments received the same amount of nutrient 

solution and water, but these were only separated from the outer compartments by 

fine mesh membranes, thus it is possible that rhizodeposits, nutrients and/or water 

may have entered the outer compartments from the plant compartment. These 

influences would be equally likely for both outer compartments, and are likely to have 

increased over the growing period, hence the correlation only being significant at the 

105 d harvest.  
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2.4.5 Post-harvest soil N2O fluxes 

In contrast to the patches, the soils were not producing N2O (Figure 2.20), probably 

because they were much lower in N and C content. However, the AMA soil N2O flux 

was almost significantly higher than that of the NAMA soil at the 56 d harvest. Both 

NH4 and NO3 are mobile in soils, particularly NO3 (Tinker & Nye, 2000). Thus, NH4 

and/or NO3 may have passed into the soils which were N limited via diffusion or mass 

flow from the patches, which were producing high amounts of N2O and thus had high 

levels of NH4 and/or NO3 available. The presence of hyphae may have increased the C 

availability in the AMA soils via hyphal exudation (Toljander et al., 2007), thus resulting 

in slightly higher denitrification rates (and therefore N2O production) in the presence 

of AMF hyphae. As the mineralisation rates in the patches decreased, so would the 

available NH4 and NO3 passing into the soil and therefore the N2O fluxes ceased. 

Although the outer compartments were equalised for water content weekly, the AMA 

soil water content was higher overall then in the NAMA treatment, although not within 

each harvest. Thus the effect of water availability cannot be ruled out, but, as soil 

water content did not correlate with either soil N2O or ERM length, there is no 

evidence to suggest that it was related to the soil N2O production in this case.  

 

Denitrifiers are a very diverse group of soil organisms (Chèneby et al., 2000), they are 

present in most soil bacterial communities, and there are estimates that denitrifiers 

make up to 5% of the soils microbial community (Philippot et al., 2007). However, 

denitrifiers are often limited by availability of C, NO3, and/or water or low pH 

(Bollmann & Conrad, 1998; Šimek & Cooper, 2002), and thus denitrification does not 

always occur. If a rate limiting factor such as C or NO3 is relieved, the response of 

denitrifiers can be rapid, often resulting in increased rates of N2O production within 

hours (e.g. Gillam et al., 2008; Čuhel et al., 2010; Miller et al., 2012). This was also the 

case here, with increased N2O production only 24 h following glucose addition and 48 

h following KNO3 addition (Figure 2.21 and 2.22). Thus, it is unlikely that the 

denitrifying population was reduced in the absence of AMF as there were no 

significant differences in N2O flux from AMA and NAMA soils following glucose 
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addition (Figure 2.22). Moreover the denitrifiers were likely to have been C limited in 

the soils used, and the addition of glucose removed this limitation (Parkin, 1987; Miller 

et al., 2012). Furthermore, the glucose concentration used here (200 mg kg-1) was 

unlikely to be high enough to result in an increase in bacterial community abundance 

(Miller et al., 2008; Miller et al., 2012). Miller et al. (2012) only found significant 

increase in bacterial community abundance if the C addition treatment exceeded 1000 

mg kg-1. However, it should be noted that there are cases of heterotrophic nitrification 

which may result in N2O production (Laughlin et al., 2008), and this pathway cannot be 

ruled out.  

 

Additionally, 96 h following KNO3 addition, the N2O flux was higher in the presence of 

AMF (Figure 2.21). When the denitrifiers in the NAMA soils were no longer limited by 

availability of water or NO3, they were probably limited by C availability (Gillam et al., 

2008). The AMF hyphae were therefore presumably acting as a C source, either as a 

result of severing, hyphal exudation (Toljander et al., 2007), hyphal turnover (Staddon 

et al., 2003) or most likely, all three. Since the KNO3 additions did not have an 

equivalent salt control, and neither the glucose nor KNO3 additions had an equivalent 

water control, the effect of K+ and water addition on N2O production, although 

unlikely, cannot be ruled out. For example, the glucose and KNO3 additions were made 

in the same volume of water, yet the observed N2O fluxes were very different between 

these treatments. While salt effects cannot be ruled out, other studies have used KNO3 

in a similar way (Bergstermann et al., 2011; Cavagnaro et al., 2012), therefore it is 

most likely that it was the NO3
- and glucose additions, and not the added water and K+ 

that caused the observed effects.  

 

2.4.6 Conclusions 

The presence of AMF hyphae resulted in higher cumulative CO2 fluxes, and thus CO2 

fluxes could be used as an indicator of AMF hyphal presence in this microcosm study. 

However, CH4 fluxes did not differ between AMF treatments, although as only the net 
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CH4 flux was measured, interactions between AMF and CH4 flux pathways could not be 

ruled out. There appeared to be no effects of AMF presence on N2O production in 

intact microcosms, but it is unclear as to whether this was a result of imprecise gas flux 

measurement methods or a lack of influence of non-severed AMF hyphae on N2O 

fluxes; the relationships with patch N, C and moisture content suggest the former. 

Thus, it is still unclear as to whether AMF can affect N2O fluxes without being 

damaged. On the contrary, N2O fluxes were increased in the presence of AMF hyphae 

following a destructive harvest, and this was probably a result of the increase in C 

available to heterotrophic N2O producers (Johnson et al., 2002b; Toljander et al., 

2007). This was supported by evidence of increased N2O fluxes from soils taken from 

both AMA and NAMA treatments following glucose addition, and only N2O increases in 

AMA soils following KNO3 addition.  

 

As AMF hyphae appeared to have a significant impact on N2O production, the 

following two Chapters use novel methods of N2O measurement to examine this 

interaction in more detail by attempting to:  

i. determine whether AMF hyphae can affect N2O fluxes when they 

have not been severed from their host plants and if this is a result of 

interactions with N availability  

ii. determine if severing AMF hyphae from their host plant has a 

different effect on N2O production when compared to leaving the 

AMF hyphae intact 
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 The interactions between the hyphae of arbuscular Chapter 3.

mycorrhizal fungi (AMF) and localised organic patch N2O 

concentrations 

3.1 Introduction 

Arbuscular mycorrhizal fungi (AMF) can form an obligate symbiosis with over two-

thirds of land plants, providing P and/or N in exchange for C (Kiers et al., 2011; 

Fellbaum et al., 2012). Olsson et al. (1999) found that the extraradical mycelium (ERM) 

of AMF in a Linum usitatissimum L. field made up the largest fraction of the soil 

microbial biomass, and in biomass terms, the ERM was 10 times larger than the 

intraradical mycelium (IRM). In Chapter 2 it was found that the presence of AMF 

hyphae increased nitrous oxide (N2O) fluxes from patches of organic matter, but only 

once the hyphae had been severed from their host plant. However, it remains unclear 

as to whether an intact AMF mycelium can influence soil N2O fluxes, and whether this 

would lead to an increase or decrease in N2O flux, as the pre-harvest N2O fluxes 

reported in the previous Chapter (Chapter 2, Section 2.3.3.2) were highly variable.  

 

Cheng et al. (2012) proposed that the uptake of NH4 and simultaneous release of labile 

C by AMF could release saprotrophic microorganisms from metabolic repression, and 

therefore increase decomposition rates. If there was subsequent net mineralisation of 

N this could, in turn, increase N2O production from soils when intact AMF hyphae are 

present (Vinther et al., 2004; Manzoni et al., 2008). Denitrification has been found to 

be increased in the rhizosphere (Mahmood et al., 1997), and evidence suggests that 

this is driven by increased C availability from root exudates (Mounier et al., 2004; 

Henry et al., 2008). Since AMF hyphae both exude C (Toljander et al., 2007) and can 

have rapid turnover (Staddon et al., 2003) a similar effect may also occur in the 

hyphosphere (the volume of soil influenced by AMF hyphae).  Additionally, AMF can 

improve water retention of soils (Augé et al., 2001), which could increase N2O 

production through denitrification (Bateman & Baggs, 2005), but simultaneously 

decrease N2O from nitrification (Bollmann & Conrad, 1998). In Chapter 2, the presence 
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of AMF hyphae may have modified the organic matter patch water content, and 

subsequently affected the N2O flux, as the patch water content was negatively 

correlated with the pre-harvest N2O flux. Nitrification can also be limited by the 

availability of CO2 (the source of C for nitrifiers; Azam et al., 2004), which is usually 

higher with AMF hyphae (Heinemeyer et al., 2006).  

 

In direct contrast, it is possible that N2O production may decrease in the presence of 

AMF hyphae. Arbuscular mycorrhizal fungi can provide their host plant with significant 

quantities of N from organic matter patches to which only the AMF hyphae have 

access (Leigh et al., 2009), but they also require large amounts of N for their own 

nutrition (Hodge & Fitter, 2010). Additionally, AMF hyphae can decrease the 

concentration of available inorganic N in soils (Tu et al., 2006), and the presence of 

arbuscular mycorrhizal (AM) colonised tomato plants reduced NO3 loss via leaching 

when compared to transgenic non-AM tomato plants (Asghari & Cavagnaro, 2012). 

Therefore, AMF may increase competition for N in the hyphosphere, and this 

competition may, in turn, reduce N2O fluxes as the N2O producers become N limited. 

Potential nitrification rates have been found to decrease in the presence of AM 

colonised plants (Veresoglou et al., 2011a), which lends support to this hypothesis. In 

contrast, the number of ammonium oxidisers (AO) can both increase (Amora-Lazcano 

et al., 1998), or remain unchanged (Cavagnaro et al., 2007) in the presence of AMF. 

Veresoglou et al. (2011a) also suggested that AMF mediated allelopathy could limit 

nitrification rates, although to date, there is no evidence for this. However, AMF are 

probably best known for their ability to acquire and transfer P to their host plants 

(Smith & Read, 2008), and as nitrifiers can become P limited (Purchase, 1974), this 

could also reduce the N2O produced via nitrification in the hyphosphere. 

 

As copper (Cu) is immobile in soils (Mengel & Kirkby, 2001), AMF hyphae can also 

improve their host plants Cu nutrition by extending the accessible volume of soil (Li et 

al., 1991c; Liu et al., 2000a). A reduction in the availability of Cu can increase N2O 

production as the activity of the nitrous oxide reductase (NOR) enzyme, which has a 
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Cu-based centre, is reduced (Zumft, 1997). In contrast, the nitrite reductase (NIR) 

enzyme in some organisms can contain Cu (Suzuki et al., 2000; Stein, 2011). Thus, if the 

AMF are taking up Cu, they may reduce the production of N2O by reducing the activity 

of the Cu-based NIR enzyme. The availability of iron (Fe) can also be important in 

determining the rate of N2O production, for example the production of N2O via the 

oxidation of hydroxylamine (during nitrification) is increased when the availability of 

Fe(III) is higher (Bengtsson et al., 2002). A recent study found correlative evidence 

showing that the availability of Fe in soils can be positively linked to N2O production 

(Zhu et al., 2013b). Since AMF hyphae can also take up Fe and transfer it to their host 

plants (Caris et al., 1998; Farzaneh et al., 2011), they therefore have the potential to 

modify soil N2O production via Fe uptake.  

 

The pH of growth media in the presence of AMF hyphae has been found to decrease in 

a Petri plate system (aka. hairy root culture; Villegas & Fortin, 2001) and a microcosm 

based soil system (Li et al., 1991a). Soil pH can affect rates of nitrification, 

denitrification, and dissimilatory nitrate reduction to ammonium, all of which produce 

N2O (Šimek & Cooper, 2002; Cheng et al., 2013; Giles et al., 2013). Nitrification rates 

often decrease at lower pH (e.g. Nugroho et al., 2007; Cheng et al., 2013), although 

nitrifiers can actually cope with lower pHs than previously thought (De Boer & 

Kowalchuk, 2001). Additionally, the length of time following pH change can be 

important in determining the effect of pH on nitrification (Baggs et al., 2010). In 

contrast, the ratio of N2O:N2 production via denitrification can increase at lower pH 

(Šimek & Cooper, 2002), although the overall rate of denitrification tends to be lower. 

As there are various opposing mechanisms by which AMF may interact with N2O 

production, no change in net N2O production may occur, yet the communities and 

pathways producing the N2O may be significantly different between the AMA and 

NAMA treatments. The interactions between AMF hyphae and N2O production are 

therefore varied, potentially complex, and counter-acting; they are summarized in 

Figure 3.1, which also shows the implications for N2O production rates.  
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In Chapter 2, it was demonstrated that the predominant location for interactions 

between AMF hyphae and N2O production was in the organic matter patches. 

Therefore, it was decided to develop and use gas probes to sample the N2O and CO2 

concentrations from directly inside the patches. Gas probes generally consist of a 

hollow metal tube sealed at the base with a gas sample port at the top and a small 

hole near the base covered with a gas permeable membrane such as silicone (e.g. 

Panikov et al., 2007; Mastepanov & Christensen, 2008), expanded Teflon (DeSutter et 

al., 2006), or polyvinylidene fluoride (PVDF; Albanito et al., 2009). As both N2O and CO2 

are soluble in water (Weiss, 1974; Weiss & Price, 1980), these membranes are used to 

prevent water access but allow equilibration of the internal and external 

concentrations of gases including CO2 and N2O over relatively short timescales 

(minutes or hours depending on the membrane used; Jacinthe & Dick, 1996; DeSutter 

et al., 2006; Panikov et al., 2007). Heinemeyer et al. (2012a) used a PVDF membrane as 

the gas permeable material in the ‘Gas-Snake’; a gas sampling tube that is used to 

measure soil surface gas fluxes. Polyvinylidene fluoride is a semi-crystalline 

thermoplastic polymer that exhibits both chemical and mechanical resistance with a 

pore size of 0.2 µm, and a very fast diffusion rate of 3.95 ± 0.31 x 10-8 m2 s-1 for CO2 

(Albanito et al., 2009; Heinemeyer et al., 2012a; Bio-Rad, Laboratories Inc. 

Hertfordshire, UK). The suitability of a PVDF membrane in this study was tested using 

an incubation chamber similar to that used by Jacinthe & Dick (1996) and PVDF was 

subsequently selected for use in the gas probe design used here.  

 

As previously discussed, there are various mechanisms by which AMF hyphae could 

interact with N2O production (see Figure 3.1), but the greatest effect of the presence 

of AMF hyphae is hypothesised to be the modification of NH4, NO3, C or O2 availability 

as these are the most common limiting factors for N2O producers (Gillam et al., 2008). 

The addition of NH4NO3 usually results in increased N2O production from soils as it 

simultaneously removes NH4 and NO3 limitations (Baggs et al., 2003a; Bateman & 

Baggs, 2005), and was therefore used to test for N limitation in the organic matter 

patches. The hypothesis was that N2O concentration would be lower in the AMA 

patches as N2O producers would be N limited, even if C availability was higher. 
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Furthermore, following NH4NO3 addition, the N2O production in the AMA patches was 

hypothesised to increase to equal that of the NAMA patches as the N2O producers in 

the AMA patches would no longer be N limited.  

 

Nuccio et al. (2013) demonstrated that when only AMF hyphae had access to an 

organic matter patch, they provided 7% of their host plants N content from the patch 

material. Total plant N content can also increase when the AMF hyphae are permitted 

access to organic matter patches (Hodge & Fitter, 2010; Barrett et al., 2011; Nuccio et 

al., 2013), although this has not always been found (see Leigh et al., 2009). As Z. mays 

adopts a strategy where the leaf N concentration is directly lowered under N limitation 

(Vos et al., 2005), the hypothesis tested was that the leaf N content would be higher 

when AMF hyphae were permitted access to an organic patch compared to when they 

were not. This was tested using a two-compartment microcosm design. It was also 

predicted that the lower N2O concentration in the AMA patches, would be related to 

the leaf N content, as a result of the AMF transferring N from the patch to the plant.  

 

3.2 Materials and Methods 

3.2.1 Gas probe development 

Following the discussion arising from Chapter 2 regarding dilution of the N2O fluxes in 

large experimental units, measurement of the N2O concentration directly in the 

organic matter patch was considered more informative, as this was where the highest 

ERM length densities were present, together with the highest N2O fluxes post-harvest. 

Thus, initially, gas probes were developed to allow gas sampling in the patch only and 

these are outlined below.  
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3.2.1.1 Gas probe design 

A stainless steel tube (9 cm long, outer diameter 1 cm, wall thickness 1 mm; Coopers 

Needle Works Ltd., UK) was welded at the base to form an airtight seal (see Figure 

3.2). Two diametrically opposed holes, 6 mm, were drilled through each tube 13 mm 

from the base, making two holes through which air could enter the tube. These holes 

were then covered in a PVDF membrane (pore size 0.2 µm, Sequi-blot PVDF 

membrane, Bio-Rad Laboratories Inc.) that was air permeable but impermeable to 

water. The PVDF was stuck onto the stainless steel tube using aquarium sealant 

(Aquamate, Everbuild Building Products Ltd. Leeds, UK). This fine PVDF membrane was 

then housed in a supporting silicone tube (wall thickness 0.8 mm, outer diameter 8 

mm; Silex Ltd., UK) with access holes exposing the membrane covering the holes in the 

stainless steel tube (Figure 3.2a, solid arrow); this silicone tube had a further layer of 

sealant sealing the top and bottom joins to ensure that the gas probe was water tight. 

Consequently, the only exposed area of PVDF membrane was that covering the hole in 

the stainless steel tube. The stainless steel tube was then sealed at the other (top) end 

with a white rubber Suba-Seal® (No. 13, Sigma-Aldrich, UK) to form a gas sampling 

port. The total internal volume of the gas probe was approx. 4.5 cm3 (Figure 3.2).  

 

Figure 3.2. Gas probe with white rubber Suba-Seal® in the top. (A) At the base of each 

gas probe there was an outer housing of silicone tubing forming a water tight seal 

(dashed arrow) over the PVDF membrane exposed only at the drilled hole (solid arrow) 

and, (B) gas probe enclosed in the 20.0 µm bag that contained the organic matter 

patch material.  

A B 
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3.2.1.2 Gas probe testing 

Gas samples removed from the gas probes needed to be in equilibrium with gas 

concentrations in the surrounding organic matter patch at the time of sampling. Before 

being used in the organic matter patches, the minimum length of time required for the 

gas probes to reach equilibrium with the surrounding air needed to be quantified. To 

do this, a gas probe (Figure 3.2a) was placed inside a Wheaton bottle with a modified 

crimp cap lid surrounding the gas probe and a rubber stopper to create both an air-

tight seal around the gas probe, but also allowing the removal of gas samples from the 

Wheaton bottle (see Figure 3.3). The Suba-Seal® in the top of the gas probe allowed 

removal of gas samples from the probe using a needle and syringe. The Suba-Seal® 

ensured that the internal volume of the gas probe was not exposed to outside air, 

therefore only gas from inside the Wheaton bottle could diffuse through the PVDF 

membrane and into the gas probe volume. Three gas probe and Wheaton bottle units 

of this type (Figure 3.3) were used to provide adequate replication.  

 

Known concentrations of CO2 (523 ppm) and N2O (9.4 ppm) were added to the 

Wheaton by flushing with a certified standard for at least 5 min. A 10 cm3 syringe filled 

with the same standard was then attached to the Wheaton bottle via a needle port. 

The gas probe was then flushed with N2 for 30 s and a second 10 cm3 syringe filled with 

N2 was attached to the gas probe in the same way. Gas samples (2 cm3) were then 

taken at intervals (10 min up to 24 h) from both the Wheaton bottle and gas probe. To 

prevent pressure differences affecting the rate of diffusion the attached ‘reservoir’ 

syringes were depressed by 2 cm3 each time a sample was removed from the gas 

probe or Wheaton. The gas probe units were stored at 20oC throughout. 
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Figure 3.3. Unit design (not to scale) used to test the time taken for the concentration 

of N2O inside the gas probe (described in Section 3.2.1.1) to reach equilibrium with 

that of a certified standard in the surrounding Wheaton bottle. The gas probe was 

secured inside a Wheaton bottle using a rubber septa and crimp cap creating an air 

tight seal (described in Section 3.2.1.2).  

 

The samples were injected into Exetainers that had been pre-filled with 5 cm3 N2 

before being analysed using a gas chromatograph (GC, Perkin Elmer ARNEL 

Autosystem XL Gas Chromatograph, Massachusetts, USA). The areas were then 

converted to concentrations by comparing to certified standards that had also been 

diluted in parallel in the same ratio (see Chapter 2, Section 2.2.3.9). The ppm 

concentration was plotted over time for both the Wheaton and gas probes, and the 

time at which they did not differ was identified as the length of time necessary for the 

probes to reach equilibrium. The gas probes were also tested for water retention. 

Three of each gas probes were left in wet soil for 3 d, dried externally with a paper 

towel, weighed, dried internally and then weighed again to assess for leaks into the 

tube.  
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The methods outlined by DeSutter et al. (2006) and Jacinthe & Dick (1996) were used 

to fit the data to a first order diffusion model (Equation 3.1),  

ln(𝐶ℎ  −  𝐶𝑖)  =  −𝑘𝑡𝑒𝑞  +  ln(𝑞0)        (3.1) 

where Ch was the concentration of N2O in the Wheaton bottle, and Ci was the 

concentration of N2O in the gas probe at time t, k was the rate constant (min-1) 

calculated from a plot of  ln(𝐶ℎ  −  𝐶𝑖)  against time (min) and q0 was the difference 

between the N2O concentration in the gas probe (Ci) and Wheaton bottle (Ch), as 

(𝐶ℎ  −  𝐶𝑖)  at time zero (t0). Following Jacinthe & Dick (1996), Equation 3.1 was solved 

for time (t) using the first three time points by substituting 0.05q0 for (Ch - Ci) to 

calculate the time taken for the N2O concentration inside the gas probe and Wheaton 

bottle to reach 95% equilibrium (teq). The diffusion coefficient (D) was calculated using 

Equation 3.2, following methods used by Jacinthe & Dick (1996) and DeSutter et al. 

(2006); 

 𝐷 =  𝑘𝑉𝐿
𝐴

           (3.2) 

where k is the rate constant (min-1) as above, V is the internal volume of the gas probe, 

L is the thickness of the PVDF (cm) membrane, and A is the surface area of the exposed 

PVDF membrane over which the N2O can diffuse (cm2).     

 

3.2.2 Experimental design 

Twenty-four, two-compartment microcosm units (see Section 3.2.3 below) were 

planted on 25th June 2012. One compartment contained the AMF host plant (Z. mays), 

and was separated from the second compartment (hyphal compartment) by either a 

20.0 µm or 0.45 µm mesh that allowed (AMF access; AMA) or prevented (no AMF 

access; NAMA) hyphal access respectively, creating two AMF access treatments (n = 12 

for each treatment). The organic matter patches were placed in the hyphal 

compartments after 29 d of plant growth and each patch contained a gas probe. At 44 

d after patch addition, half of the patches within each of the AMF access treatments 

received NH4NO3 and half received deionised water, now creating four treatments (n = 
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6) as follows: AMA + NH4NO3, AMA + water, NAMA + NH4NO3, NAMA + water. Patch 

gas concentrations were measured using gas probes (Section 3.2.1 above) before (pre-

NH4NO3) and after NH4NO3 addition (post-NH4NO3) and the units were destructively 

harvested on 10th September 2012 at 77 d after planting (48 d post-patch addition).  

 

3.2.3 Microcosm design 

The same microcosms were used as in Chapter 2, Section 2.2.1.1. Two 1 L plastic boxes 

(145 x 145 x 70 mm) were screwed together at 4 equidistant points with a 6 mm thick 

plastic plate separating them (Figure 3.4). This created two compartments, one 

compartment was planted with Z. mays (details in Section 3.2.4 below) and the other 

compartment was the ‘hyphal’ compartment, to which roots were prevented access. 

The plastic plate that separated the plant and hyphal compartments had a 70 x 70 mm 

hole cut out which was covered on both sides of the plastic plate with either a 20.0 µm 

(John Stanier & Co., Whitefield, Manchester, UK) or 0.45 µm (Osmonics Inc., 

Minnetonka, USA) mesh membrane. These mesh membranes either allowed (AMA) or 

did not allow (NAMA) AMF hyphal access from the planted to the AMF compartment 

respectively. In both cases, the mesh membrane was glued into place using industrial 

strength superglue (Everbuild Building Products Ltd. Leeds, UK). Aquarium sealant 

(Aquamate, Everbuild Building Products Ltd. Leeds, UK) was used between the surfaces 

of the boxes and the plastic plate to create a seal between the two compartments 

preventing AMF hyphal breakthrough. The unit lids were taped into place on either 

side of the microcosm after both sides had been filled with the growth medium (see 

Section 3.2.4 below). There were three 6 mm drainage holes in the base of each 

compartment and, once planted, the units were wrapped in three layers of aluminium 

foil to prevent any algal growth inside the units.  
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Figure 3.4 Microcosm unit at 73 d post-planting (44 d post-organic patch addition). The 

planted compartment (left) was separated from the organic patch compartment by a 

plastic plate that had a double layer of either a 0.45 µm or 20.0 µm mesh membrane 

covering a 70 x 70 mm window between the two compartments. The white rubber 

Suba-Seal® indicated by the white circle and arrow is in the right hand ‘hyphal’ 

compartment, denoting the top of the gas probe and associated patch which was 

located 7 cm below the surface, and at a distance of 2 cm from the membrane. The 

units were wrapped in aluminium foil to prevent algal growth inside the units.  

 

3.2.4 Growth Media 

Both the plant and hyphal compartments contained a 50/50 mix of sand/Agsorb® (v/v) 

(Agsorb® is a calcined attapulgite clay soil conditioner; previously called TerraGreen 

but now rebranded as Agsorb®; Oil-Dri, USA) that had been rinsed three times in 

deionised water to remove any excess soluble N and/or P. The planted compartments 

also had 50 g of a fresh Glomus intraradices inoculum (Schenck & Smith; Plantworks 

Ltd., Kent, UK) and 0.25 g L-1 bonemeal (a complex N and P source; 3.5% N, 8.7% P; 

Vitax, Leicestershire, UK) added. Three pre-germinated Z. mays seeds were added to 

each plant compartment on 25th June 2012 and thinned to one per pot after two 

weeks (11 d), as in Chapter 2, Section 2.2.3.3. At 8 d post-planting, the second (hyphal) 

compartments were filled with a 50/50 mix of sand/Agsorb® (v/v). Addition of the 

growth media to the hyphal compartments was delayed to allow the AMF time to 
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colonise the host plant roots in the plant compartment. Similar to Chapter 2 Section 

2.2.3.4, a sterile 15 cm3 centrifuge tube was added to the hyphal compartments to 

enable creation of a hole into which the organic matter patches could be added at a 

later date (see Section 3.2.6 below).  

 

3.2.5 Growth conditions 

Twenty-four microcosm units were housed in a temperature controlled glasshouse in a 

randomised block design. The photosynthetically active radiation (PAR) was measured 

weekly between 10 am and 2 pm and at plant level in the centre of each block using a 

hand-held PAR meter (Skye Instruments, UK); the mean PAR over all blocks was 141 ± 

15 µmol m-2 s-1. Overhead lights were used in the morning and evening to extend the 

photoperiod to 16 h per day and the mean daily temperature over the experimental 

period was 21.9 ± 0.02°C.  

 

The planted and hyphal compartments for all microcosm units were watered daily as 

required. The water content of the outer compartments could not be equalised to the 

same extent as in Chapter 2 as the units were too small to allow insertion of a 

moisture probe. After two weeks of plant growth, the plant compartments received 50 

cm3 of a modified nutrient solution originally from Thornton and Bausenwein (2000) 

(1/10th N and P; see Appendix 1 for details) once a week. 

 

3.2.6 Organic matter patches 

After four weeks (29 d post-planting), the centrifuge tubes were removed and an 

organic matter patch was inserted in the hyphal compartment of each microcosm (2 

cm from the mesh membrane) that was composed of dried milled Z. mays shoots (F1 

Earligold, Moles Seeds; 2 g dw) mixed with soil (equivalent to 13 g dw), as in Chapter 2 

Section 2.2.3.4. The patch was contained in a 20.0 µm bag that also housed a gas 

probe (described in Section 3.2.1). The bags were made as in Chapter 2 (Section 



Chapter 3 

  -123- 

2.2.1.4) but were 1 cm wider at the top to allow for the insertion of a gas probe (see 

Section 3.2.1 for details on gas probe design), and the top was sealed around the gas 

probe using a 100 mm x 2.5 mm plastic cable tie (Centurion Europe Ltd., UK). The 

patches were all inserted at a depth of 7 cm and at a distance of 2 cm away from the 

mesh window. The moisture content of each patch was adjusted to 20% moisture 

(w/w) content using deionised water. The remaining hole was then filled with 50/50 

mix of sand/Agsorb® at approximately 20% moisture content. The C and N content of 

the mixed organic patches and milled Z. mays leaves used in the organic patches are 

outlined in Table 3.1. 

 

Table 3.1. Carbon (C) and nitrogen (N) content and C:N ratio of the mixed organic 

patch material (13 g DW equivalent soil mixed with 2 g DW milled Z. mays leaves) and 

Z. mays leaves that were used in the organic patches before addition to the 

microcosms. Mean values ± standard error of the mean (n = 3).Total values are for 15 g 

(DW equivalent) mixed organic patches and 2 g DW of milled Z. mays leaves.  

 Total C (mg) % C Total N (mg) % N C:N Ratio 

Mixed patch 1435.4 ± 181.8 9.6 ± 1.2 116.4 ± 14.7 0.78 ± 0.1 12:1 

Z. mays leaves  874.4 ± 3.5  43.7 ± 0.2  55.7 ± 1.8 2.79 ± 0.1 16:1 

 

 

3.2.7 Inorganic nitrogen addition 

Half of the AMA and NAMA patches were injected with 7 cm3 of 30 mM NH4NO3 and 

the other half with 7 cm3 of deionised water (n = 6 in each case) at 44 d after patch 

addition. This solution was administered in two batches of 3.5 cm3 with an hour gap in 

between additions to reduce the risk of the solution diffusing away from the patches. 

Consequently, the treatments were: AMA + NH4NO3, AMA + water, NAMA + NH4NO3 

and NAMA + water.  
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3.2.8 Gas sampling and analysis 

The air in the gas probes was sampled before N addition at 73 d post planting (44 d 

post-patch addition). The NH4NO3 and water addition treatments were then added and 

the gas probes were sampled again at 24, 48 and 96 h post-NH4NO3 addition. Since the 

gas probes had a limited internal gas volume (approx. 4.5 cm3), the samples taken 

during the experiment were reduced to 1 cm3. Before sample removal, 1 cm3 of N2 was 

added to the probe via the Suba-Seal®, taking care not to disturb the surrounding 

media. This was left for 10 s before a 1 cm3 sample was slowly removed from the gas 

probe, waiting for a further 5 s to allow the sample to mix inside the syringes. Each gas 

sample was then stored in a pre-filled 3 cm3 Exetainer (with 6 cm3 N2), over-pressuring 

the sample to 7 cm3 in total. All gas samples were analysed using a gas chromatograph 

(GC) as in Chapter 2 Section 2.2.3.9 which analysed the samples for CO2 and N2O. The 

ppm values for each sample were calculated by comparing to standards that were 

diluted in parallel in a 1 cm3 standard: 6 cm3 N2 ratio and correcting for this dilution. 

The concentration values were also corrected for dilution from addition of N2 to the 

gas probe just before gas sample removal (Section 3.2.8).  

 

3.2.9  Post-harvest plant and AMF analyses 

The plant compartments were harvested as described in Chapter 2 Section 2.2.3.7, 

except extraradical mycelium (ERM) lengths from the planted compartment were not 

quantified. After the plant shoots were removed, but before removal of the growth 

medium, a sharp metal blade was passed down the membrane at the planted 

compartment side to sever the hyphae from the hyphal compartment. The plant 

compartment was then emptied and the roots collected and stained, as in Chapter 2 

Section 2.2.3.7. The hyphal compartments were then destructively harvested; the 

patches were removed and well mixed sub-samples of the patches were taken for ERM 

length quantification (again, as in Section 2.2.3.7). Following the destructive harvest, 

the dried plant leaves (green leaves only, defined as > 50% green) were milled and 

analysed for C and N content using an elemental combustion system (Costech 

Analytical Technologies Inc., California, USA). 
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3.2.10  Data analysis 

To determine whether the data were suitable for analysis using parametric statistical 

tests, the data were first tested for normality and equality of variance assumptions 

using Kolmogorov-Smirnov and Levene’s equality of variance tests respectively. All 

statistical analyses were carried out in SAS (v9.3 SAS institute Inc., North Carolina, 

USA).  

 

Gas probe data were analysed for changes in concentration over time inside the gas 

probe and Wheaton bottle using a repeated measures ANOVA. At each time point, the 

difference between the concentration of N2O or CO2 in the gas probe and Wheaton 

bottle was compared to zero using a one-sample t-test.  

 

Where N2O concentration and ERM length data did not fulfil normality or equality of 

variance assumptions they were log10 transformed; all percentage colonisation data 

were arcsine transformed before analysis. All gas, AMF and plant data were analysed 

using a two-way ANOVA including block, with Duncans post hoc tests used to identify 

differences between treatments. However, transformations on percentage 

colonisation by vesicles, patch moisture and changes in N2O concentration following N 

addition failed to normalise the data, and non-parametric equivalent Friedman’s two-

way ANOVAs, including block, with Wilcoxon post hoc tests and Bonferroni corrections 

were used. Where N2O concentrations were measured over time, repeated measures 

ANOVA including treatment and block was used on log10 transformed data. Pearson’s 

product moment correlations were used to determine the relationship between 

variables. Where variables were not normally distributed, Spearmen’s rank order 

correlations were used. Untransformed data are presented in all figures.  
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3.3 Results  

3.3.1 Gas probe testing 

The time taken for the gas probe N2O concentration to equal that of the Wheaton 

bottle was < 8 h when the PVDF membrane was used (time: F4,16 = 18.76, P < 0.0001; 

time*treatment: F4,16 = 16.88, P < 0.0001; Figure 3.5). Using a first order diffusion 

model, the diffusion coefficient (D) and time taken to reach 95% equilibrium (teq) for 

N2O were 7.02 ± 0.46 x 10-3 cm2 s-1 and 1.64 ± 0.1 h respectively. These values could 

not be calculated for CO2 as this gas equilibrated too quickly; the CO2 concentrations in 

the gas probe and Wheaton bottle were not significantly different following the first 

sample (t0, up to 1 min after N2 was no longer flushed through the gas probe; time: 

F4,16 = 1.74, P = 0.191; time*treatment: F4,16 = 0.22, P = 0.924; t0: t2 = 2.13, P = 0.167). 

After three days in wet soil, the gas probes contained a small amount of water (0.018 

cm3 ± 0.002), this equated to an input daily average of 0.006 ± 0.0008 cm3.   

Figure 3.5. N2O concentrations measured in gas probes (solid circle) and Wheaton 

bottles (open circle) at 0, 0.17, 0.5, 8 and 24 h after a known concentration of N2O (9.4 

ppm) was added to the Wheaton bottle and allowed to diffuse into the gas probe that 

had been flushed with N2 for at least 30 s. Error bars represent ± standard error of the 

mean (n = 3). Asterisks indicate significant differences between treatments within each 

time point (*P < 0.05, **P < 0.01, ***P < 0.001), determined using a one-sample t-test 

to compare the difference between the treatments to zero.  

  

*** *** *** 
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3.3.2 AMF colonisation of Z. mays and production of hyphae 

All of the Z. mays plants were well colonised by AMF hyphae, arbuscules and vesicles 

(Figure 3.6). The plants that grew in AMA microcosms had a higher percentage of their 

root length colonised by AMF than those in NAMA microcosms (F1,12 = 10.62, P = 

0.0068). There was no difference in the frequency of arbuscules or vesicles between 

the AMA and NAMA treatments (arbuscules: F1,12 = 3.58, P = 0.083; vesicles: Q1 = 0.4, P 

= 0.527), and no differences in the % RLC, arbuscule or vesicle colonisation as a result 

of N addition treatment (i.e. NH4NO3 or water addition; P > 0.05 in each case, data not 

shown). The ERM length densities measured in the AMA organic matter patches were 

greater than those in the NAMA patches (Figure 3.7; F1,12 = 30.77, P = 0.0001).  

 

Figure 3.6. Mean percentage length of Z. mays roots colonised by AMF hyphae (RLC), 

arbuscules and vesicles for AMF hyphal access (AMA; solid bars) and no AMF hyphal 

access (NAMA; hatched bars) treatments. Error bars represent ± standard error of the 

mean (n = 12). Different letters within each group (RLC, arbuscules or vesicles) 

represent significant differences between AMA and NAMA treatments at P < 0.05 as 

determined using a Duncans post hoc test on the RLC data.  
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Figure 3.7. Mean extraradical mycelium (ERM) length density (m g-1 DW) in AMF access 

(AMA) and no AMF access (NAMA) patches. Error bars represent ± standard error of 

the mean (n = 12). Different letters represent significant differences at P < 0.05 as 

determined using a two-way ANOVA including block.  

 

3.3.3 Patch CO2 and N2O concentrations  

At 43 d post-organic patch addition, there was no significant difference in the CO2 

concentration measured from the AMA compared to the NAMA patches (Figure 3.8a; 

F1,12 = 0.23, P = 0.637). There was also no relationship between the measured ERM 

length densities and CO2 concentration in AMA patches (n = 12, rs = 0.0559, P = 0.863, 

r2 = 0.003). However, the N2O concentration inside the NAMA patches was significantly 

higher than that of the AMA patches at 43 d post-organic patch addition (Figure 3.8b; 

F1,12 = 6.46, P = 0.026). There was also a negative relationship between the 

concentration of N2O and CO2 in the organic matter patches preceding NH4NO3 

addition (rs = -0.6434, P = 0.024, r2 = 0.41) but this was not significant in the NAMA 

treatment (rs = -0.5315, P = 0.075). 
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Figure 3.8. Mean (a) CO2 and (b) N2O concentration (ppm) in AMF access (AMA) and no 

AMF access (NAMA) organic matter patches at 43 d post-organic patch addition. Error 

bars represent ± standard error of the mean (n = 12). Different letters represent 

significant differences at P < 0.05 as determined using two-way ANOVAs.  
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The highest N2O concentrations were observed at the first gas sample which was taken 

24 h after the addition of NH4NO3 and water (Figure 3.9a). Subsequently, the N2O 

concentrations in the patches decreased over time except in the AMA + water 

treatment which did not change (Figure 3.9a; time: F2,30 = 4.37, P = 0.023). There was 

also a significant effect of the AMF access + N treatment (NH4NO3 or water) on patch 

N2O concentration (Figure 3.9a,b; F3,15 = 5.67, P = 0.0084) and the interaction between 

time and AMF access + N treatment was also significant (Figure 3.9a,b;  F6,30 = 3.23, P = 

0.015). Two-way ANOVAs at each time point showed that the N2O concentration of the 

AMA + water treatment was lower than all other treatments at 24 h post-NH4NO3 

addition (Figure 3.9a,b; F3,15 = 4.44, P = 0.020). This effect decreased by the 48 h 

sample, although the NAMA + water treatment still had a higher N2O concentration 

that that of the AMA + water treatment (F3,15 = 3.05, P = 0.030). At 96 h post-NH4NO3 

addition, the AMA patch N2O concentrations were no longer different from each other 

but were significantly lower than those of the NAMA patches (F3,15 = 7.25, P = 0.0031). 

There was no relationship between the ERM length densities in AMA patches and N2O 

concentration at any point, before or after NH4NO3 and water addition (P > 0.05 in 

each case).  

 

At 24 h post-NH4NO3 addition, the N2O concentration increased in both the AMA + 

NH4NO3 and NAMA + NH4NO3 treatments, but this increase did not occur in the AMA + 

water treatment (Figure 3.10; Q3 = 8.2 P = 0.042). However, the NAMA + water 

treatment was not significantly different from the AMA + NH4NO3 treatment (Z = 1.92, 

P = 0.055) or NAMA + NH4NO3 treatment (Z = -1.76, P = 0.078) when a Bonferroni 

correction was applied (where P < 0.0083). There were also no significant changes in 

N2O concentration at 48 h or 96 h post-NH4NO3 addition when compared to pre-N 

addition values (48 h: Q3 = 7.4 P = 0.060; 96 h: Q3 = 7.2 P = 0.066).  
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Figure 3.9. Mean patch N2O concentration at 24, 48 and 96 h following NH4NO3 

addition for AMF access (AMA; (a) solid lines or (b) solid bars) and no AMF access 

patches (NAMA; (a) dashed lines or (b) hatched bars) shown (a) over time and (b) 

separated by treatment for each sample (NH4NO3: (a) filled symbols or (b) grey bars; 

water: (a) open symbols or (b) white bars). Error bars represent ± standard error of the 

mean (n = 6). In Figure 3.9a, asterisks represent a significant difference between 

treatments within each sample period (*P < 0.05, **P < 0.01) as determined using a 

Friedman’s two-way ANOVA. Different letters within each sample time in Figure 3.9b 

represent significant differences between treatments (P < 0.05).  
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Figure 3.10. Mean change in organic patch N2O concentration (∆N2O concentration) 

from pre-NH4NO3 addition to 24 h post-NH4NO3 addition (NH4NO3: grey bars, water: 

white bars) for the AMF access (AMA) and no AMF access (NAMA) patches. Error bars 

represent ± standard error of the mean (n = 6). Bars with different letters are 

significantly different (P < 0.05) as determined using Wilcoxon post hoc tests.  
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negative correlation between organic patch moisture and N2O concentration following 

NH4NO3 and water addition at the 24, 24 and 96 h samples for the AMA + water 

treatment and at the 24 and 48 h samples for the NAMA + water treatment (Table 3.3). 

However, this was not the case for the NH4NO3 treatments (Table 3.3).   

 

Table 3.2. Mean gravimetric moisture content (%) for AMF access (AMA) and no AMF 

access (NAMA) patches following the harvest at 48 d post-organic patch addition. The 

means are separated by both NH4NO3/water addition and AMF access treatment (n = 

6) or by AMF access treatment only (overall, n = 12) ± standard error of the mean. 

Different letters in the central section indicate significant differences between the four 

AMF access and NH4NO3/water addition treatments at P < 0.05 and different letters in 

the bottom row (overall) indicate a significant difference between AMA and NAMA 

treatments only (P < 0.05) as determined using a Friedman’s two-way ANOVA.  

 Mean gravimetric moisture 
content (%) 

 Treatment AMA  NAMA 

Water 43.8 ± 3.2 a 53.2 ± 9.1 a 

NH4NO3 50.5 ± 2.8 a 49.0 ± 1.8 a 

Overall 47.1 ± 2.2x 51.0 ± 4.5 x 
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Table 3.3. Spearman’s rank order correlation coefficients and r2 values for the 

relationship between organic patch N2O concentration at 24, 48 and 96 h post-NH4NO3 

addition and organic patch gravimetric moisture content (%) following the harvest at 

48 d after organic patch addition for each of the four treatments, AMF hyphal access 

(AMA) + NH4NO3, AMA + water, no AMF hyphal access (NAMA) + NH4NO3 and NAMA + 

water.  Significant relationships are highlighted in bold and are indicated by asterisks 

on the P values (* P < 0.05, ** P < 0.01). 

 

 

 

3.3.5 Host plant response to AMF hyphal access to organic matter 
patches 

Neither the addition of NH4NO3 or water had any effect on the leaf C and N content or 

concentrations or on the C:N ratios (P > 0.05 in each case), therefore, these data were 

combined for comparison of AMA and NAMA treatments. Leaf carbon (C) content was 

not different between AMA and NAMA host plants (Table 3.4; F1,12 = 0.30, P = 0.595), 

AMF 
access 

treatment 

NH4NO3 or 
water 

addition 
treatment 

Gas sample           
(h post-NH4NO3  

addition) 
rs P r2 

AMA NH4NO3 24 0.1429 0.787 0.02 

  48 0.3143 0.544 0.10 

  96 0.5429 0.266 0.29 

 Water 24 -0.8857 0.019* 0.78 

  48 -0.8286 0.041* 0.69 

  96 -0.9429 0.005** 0.89 

NAMA NH4NO3 24 -0.0286 0.957 0.0008 

  48 -0.3714 0.469 0.14 

  96 -0.2000 0.704 0.04 

 Water 24 -0.8857 0.019* 0.78 

  48 -0.8857 0.019* 0.78 

  96 -0.7714 0.072 0.60 
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although the C concentration of the leaves was lower in the AMA plants compared to 

the NAMA plants (Table 3.4; F1,12 = 5.37, P =0.039). Both the N content (Table 3.4, F1,12 

= 14.81, P = 0.0023) and concentration (Table 3.4; F1,12 = 20.06, P =0.0008) of the 

leaves were higher in AMA plants compared to the NAMA plants, and consequently 

the C:N ratio of the leaves was lower in the AMA plants when compared to the NAMA 

plants (Table 3.4; F1,12 = 18.51, P = 0.001).  

 

Table 3.4. Mean leaf N and C total content (mg), concentration (mg g-1 DW) and C:N 

ratio of AM host plants for AMF access (AMA) and no AMF access (NAMA) treatments 

± standard error of the mean (n = 12). Different letters within rows represent 

significant differences at P = 0.05 (highlighted in bold) as determined using two-way 

ANOVAs.  

  AMF access treatment 

   AMA NAMA 
Leaf N Total content (mg) 13.8 ± 0.8a 10.2 ± 0.9b 
 concentration (mg g-1 DW) 11.3 ± 0.6f 8.8 ± 0.5g 
Leaf C Total content (mg) 503.2 ± 19.9j 488.1 ± 27.2j 
 concentration (mg g-1 DW) 413.4 ± 2.8m 422.9 ± 3.7n 
 Leaf C:N ratio 37.6 ± 2.0x 50.0 ± 3.0y 

 

 

The organic patch N2O concentration was not related to the leaf C or N content or 

concentration, nor was the patch N2O concentration related to the leaf C:N ratio, 

either before or after N addition for both AMA and NAMA treatments (P > 0.05 in each 

case). There were no significant differences between AMA and NAMA plant DW either 

overall or when compared by tissue type (leaf, total shoot, stalk, total root, root weight 

ratio, tassel), therefore these data are not shown (P > 0.05 in each case). There was 

also no relationship between ERM length densities and host plant leaf C and N status 

for the AMA treatment (P > 0.05 in each case). 
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3.4 Discussion 

3.4.1 Gas probe design 

The time taken for the concentration of N2O inside the gas probe to reach equilibrium 

(teq) with the N2O concentration in the Wheaton bottle was 1.64 ± 0.1 hours and the 

diffusion coefficient for N2O was 7.02 ± 0.46 x 10-7 m2 s-1. This diffusion coefficient is in 

a similar range to the value for CO2 calculated by Albanito et al. (2009), yet Albanito et 

al. (2009) measured equilibration times closer to 14 min for CO2. The diffusion 

coefficients for CO2 in this study could not be calculated as the gas equilibrated too 

quickly. This may have been a result of various factors; a CO2 concentration of 523 ppm 

was used which could increase the rate of diffusion into the gas probe, variation in 

sampling CO2 at a concentration of 523 ppm may have masked the diffusion rate as the 

gas concentration would not have been diluted by much when diffusing into the gas 

probe (i.e. it is difficult to quantify a small change in a large number), or contamination 

of the gas in the gas probe with CO2 from lab air or human error may have contributed.  

 

Additionally, to prevent pressure issues, the gas samples in this thesis were not mixed 

(by pumping the syringe) upon removal from the gas probe or Wheaton bottle. While 

this may not have affected the CO2 (at a concentration of 523 ppm), it is likely to have 

affected the N2O measurements as this was only present at ca. 1.4 ppm. Consequently, 

each time a gas sample was taken, the N2O concentration measured inside the gas 

probe was probably diluted, as N2 had been pushed into the gas probe from the 

reservoir syringe, and therefore the teq was overestimated. Ideally, these diffusion 

rates could be calculated using a more sophisticated automated gas monitoring 

system. However, as gas sampling was not planned to be more frequent than once 

every 24 h, the measured diffusion coefficient and teq values were deemed acceptable 

for N2O which was the focus of this study. The water permeability rate of 0.006 ± 

0.0008 cm3 d-1 was also minimal, and following the destructive harvest of the 

microcosm experiment, the probes did not show any signs of leaking, thus water 

permeability was not an issue.  
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The gas sample removed from the gas probe was large compared to the volume (1 cm3 

from a 4.5 cm3 volume), which could not be avoided to obtain a large enough sample 

for GC analyses. Thus, it is likely that gas beyond the patch was sampled. However, 

since all units were identical and the gas probes were inserted into the centre of each 

patch in every case, it should not have affected the comparisons between the AMA 

and NAMA patch gas concentrations. Additionally, the addition of N2 to the probe 

before gas sampling may have escaped through diffusion, this was intended to reduce 

the gas sampling from beyond the patch but may have increased the variation and 

thus made it less likely for differences between AMA and NAMA treatments to be 

observed. Nonetheless, the AMA and NAMA comparisons are valid, but the absolute 

concentration values should be considered with caution.  

 

3.4.2 Density of AMF hyphae and CO2 concentrations in organic matter 
patches  

The ERM length densities from the AMA patches in this experiment (1.23 ± 0.25 m g-1 

DW; 48 d post-patch addition) were similar to those measured in Chapter 2 at the 56 d 

(0.77 ± 0.44 m g-1 DW; 30 d post patch addition) and 84 d harvest (2.20 ± 0.84 m g-1 

DW; 58 d post-patch addition). These values were also comparable to other studies 

using organic matter patches in a sand/Terra-Green® medium. Nuccio et al. (2013) 

measured hyphal lengths of ca. 1 m hyphae g-1 DW soil at 42 d post-patch addition, or 

between 1.5 to 2 m hyphae g-1 DW soil at 70 d post-organic patch addition, and Hodge 

et al. (2001) measured ca. 1 m hyphae g-1 DW soil at 42 d post-organic patch addition. 

Therefore, AMF hyphal lengths reported in the present study were comparable to 

other previous studies and demonstrated that AMF did proliferate in the organic patch 

zone when permitted access. However, there were measured values of ERM length 

densities in the NAMA treatments. It is not always possible to distinguish AMF hyphae 

from non-AMF hyphae (Leake et al., 2004), and since there was no evidence of AMF 

hyphal breakthrough on the 0.45 µm mesh membranes, these ERM length density 

values in the NAMA treatment are probably representative of the non-AMF 
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component included in the ERM length density measurements. This is discussed in 

further detail in Chapter 4, Section 4.4.1).  

 

The CO2 concentration inside the AMA patches however did not increase with AMF 

hyphal presence (Figure 3.8a). Soil CO2 concentrations are normally very high 

(Pumpanen et al., 2003; Kusa et al., 2010), and this study was no exception with 

concentrations in the range of 3021 to 9462 ppm. One study with forest soils 

measured soil CO2 concentrations ranging from 580 to 780 ppm in the humus layer, up 

to 13620 to 14470 ppm in the C-horizon (Pumpanen et al., 2003), whereas CO2 

concentrations in two agricultural soils from Japan ranged from 2100 to 22000 ppm, 

increasing with depth (Kusa et al., 2010). The CO2 flux (and concentration) would be 

expected to increase in the presence of AMF hyphae as found in Chapter 2. However, 

as discussed in Chapter 2, the CO2 fluxes may have been influenced by the presence of 

host plant roots in neighbouring compartments, which in this unpaired design would 

not be shared by the AMA and NAMA treatments. Therefore, as root respiration 

exceeds hyphal respiration, (Karasawa et al., 2012), AMF hyphal influences may have 

been masked, particularly as in Chapter 2, hyphal effects on CO2 were only measured 

leading up to the 105 d harvest (79 d post-organic patch addition), by which point the 

ERM length densities (3.84 ± 1.57 m g-1 DW) exceeded the values measured here (1.23 

± 0.25 m g-1 DW; 48 d post-organic patch addition).  The level of PAR was quite low in 

this study and the others discussed in this thesis. It could be argued that this could 

impact upon the activity of the AMF partner. However in a microcosm based study 

Hodge and Fitter (2010) showed that shading a host plant had no impact upon AMF 

uptake of N or ERM length densities, and therefore the slightly lower PAR levels were 

unlikely to have a major impact on the studies outlined in this thesis.   

 

3.4.3 Organic patch N2O concentrations in the presence of AMF hyphae 

When AMF hyphae were permitted access to the organic patches, the patch N2O 

concentration was significantly reduced (Figure 3.8b). Thus, at least one, if not all, N2O 
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producing pathways in the AMA patches must have been negatively affected by the 

presence of AMF hyphae, which has significant implications for N cycling, particularly 

our understanding of controls on N2O production in soil systems. This fits with the 

findings of Veresoglou et al. (2011a) who measured lower potential nitrification rates 

in soils surrounding AM plants compared to soils from low-AM or non-AM plants. A 

field study on the effect of ectomycorrhizal (ECM) mycelia on soil N2O fluxes in an 

afforested organic soil similarly found that the exclusion of roots and ECM mycelia 

significantly increased the soil N2O fluxes, whereas the exclusion of roots alone did not 

(Ernfors et al., 2011).  Ernfors et al. (2011) suggested that the ECM mycelia were either 

reducing the water availability to anaerobic denitrifiers, or reducing N availability for 

N2O producers but this was not determined. Since N is essential for N2O production 

(Prosser, 2007; Thomson et al., 2012), N limitation of N2O producers may have been a 

result of competition for N by AMF hyphae in the present study. Veresoglou et al. 

(2011a) also proposed that the presence of AMF may increase competition for N in the 

mycorrhizosphere, reducing the PNR rates as the slow growing ammonium oxidisers 

(AO; Woldendorp & Laanbroek, 1989) were suppressed by N limitation (Veresoglou et 

al., 2011a). Similarly, NO3 is the essential substrate for denitrification (Groffman et al., 

2006). While in fertilised systems, NO3 availability may not affect N2O production 

unless both O2 and C availability are optimised (Gillam et al., 2008), Firestone & 

Davidson (1989) proposed that in non-fertilised systems, NO3 availability is only second 

to O2 availability in controlling denitrification rates, and particularly the N2O:N2 ratio; 

thus if NO3 is limiting, the rate of N2O production is likely to decrease. In fact, in some 

cases, cropped systems can produce less N2O than fallow soils as a result of 

competition for N (Duxbury et al., 1982). Nitrogen limitation of N2O producers was 

therefore further investigated in the current work by the addition of NH4NO3 to 

release any potential N limitations.  

 

The majority of studies to date have found that the main factors limiting N2O 

production is often the availability of N, C or O2 (Parton et al., 1996; Gillam et al., 2008; 

Enwall et al., 2010), most probably because N and C are substrates required for the 

production of N2O (Wrage et al., 2001; Giles et al., 2013), and O2 availability 
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determines if aerobic or anaerobic organisms dominate (Khalil et al., 2004). 

Unfortunately, it was impossible to determine if the water content of the patches 

increased in the AMA treatment, as reported in Chapter 2 (section 2.3.3.5), due to the 

addition of NH4NO3 solution or water to the organic patches just before harvest in the 

present study. Consequently, the patch moisture contents did not differ between the 

AMA and NAMA treatments at the exact time of measurement. But, if the moisture 

contents had increased in the AMA treatments prior to NH4NO3 addition, it is possible 

that the rate of N2O production from nitrification could have decreased with the 

declining availability of O2 as the patches became more anaerobic (Bollmann & Conrad, 

1998). The negative correlation between the N2O and CO2 concentrations in the 

organic matter patches preceding NH4NO3 addition in the AMA treatment may also be 

an indication of this occurring. Similarly, it was not possible to determine the pH of the 

organic patches, as they were too small to sub-sample, but AMF mediated decreases in 

pH (Li et al., 1991a) may also be responsible for the observed decreases in N2O 

concentration (reviewed by Šimek & Cooper, 2002; Nugroho et al., 2007; Cheng et al., 

2013), although in comparison to changes in N availability, the relative impact of pH on 

N2O production is not clear.  

 

The availability of other nutrients that are also required by N2O producers such as P 

(Purchase, 1974), Cu (Zumft, 1997; Enwall et al., 2010) or Fe (Zhu et al., 2013b) can 

also be reduced by AMF (Caris et al., 1998; Li et al., 1991b; Liu et al., 2000a). However, 

these nutrients may be secondary in the control of N2O production to the availability 

of N, C and O2. For example, in a field study Enwall et al. (2010) found that, although 

the abundance of Cu containing NIR genes was correlated with the soil Cu content, the 

activity of denitrifiers was predominantly correlated with availability of N and C. 

However, AMF can dominate their host plants P supply (Smith et al., 2003b), extending 

the P depletion zone beyond the plant roots (Li et al., 1991b), and the plants in this 

study received reduced P in the added nutrient solution (Section 3.2.5). Nitrifiers can 

be limited by the availability of P (Purchase, 1974), therefore, the potential for N2O 

producers to become P limited in the presence of AMF hyphae, and consequently 

produced less N2O, cannot be ruled out, but is further investigated in Chapter 5. 



Chapter 3 

  -141- 

3.4.4 The effect of NH4NO3 addition on patch N2O concentrations in the 
presence of AMF hyphae  

The addition of 7 cm3 of 30 mM NH4NO3 was equivalent to 5.88 mg N per patch, which 

is equivalent to N additions in similar previous studies (e.g. Hodge et al., 1999; Hodge, 

2001). Furthermore, the concentration is not dissimilar to those used to encourage 

growth of denitrifiers and nitrifiers under optimal conditions (Vilcáez & Watanabe, 

2009; Arnaout & Gunsch, 2012), and therefore should not have had any adverse 

effects on these groups of organisms; thus the NH4NO3 addition should have released 

N transforming organisms from any N limitation. It was expected that since the 

NH4NO3 was added as liquid media, some of this would drain out of the patch to the 

base of the microcosm. However, it was expected that this would be equal for the 

AMA and NAMA treatments, and therefore should not have impacted upon the 

findings presented here.  

 

Within 24 h of NH4NO3 addition, the N2O concentrations in the AMA and NAMA 

organic patches increased by up to 27 times the pre-NH4NO3 addition N2O 

concentrations (Figure 3.10). Baggs et al. (2003a) also measured the highest N2O 

production within one day following NH4NO3 addition to Lolium perenne L. swards. By 
15N labelling the NH4NO3, Baggs et al. (2003a) identified that 56% of the total 

denitrified 15N-N2O emission over a 7 d period occurred on the first day following the 

NH4NO3 addition. However, overall, nitrification was the dominant source of N2O over 

the 7 d studied. Similarly, in a soil incubation study, Bateman & Baggs (2005) measured 

peak N2O fluxes from both nitrification and denitrification 24 h after NH4NO3 addition. 

Thus, in the present study, it is likely that both nitrification and denitrification 

contributed to the N2O concentrations measured over the 4 d period following NH4NO3 

addition. The addition of NH4NO3 to the AMA patches demonstrated that the N2O 

producers were limited by the supply of NH4 and/or NO3. In contrast, when water 

alone was added, the N2O concentration was negatively related to the patch water 

content (Table 3.3). This suggests that in the absence of NH4NO3 addition, the water 

content of the organic patches may have been an important controller of N2O 
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production. However, water content can be linked to the availability of O2 (Bollmann & 

Conrad, 1998) and also to the diffusion of nutrients, including NH4, NO3 and P (Tinker & 

Nye, 2000), which can all influence N2O production (Gödde & Conrad, 2000; Hino et al., 

2010).    

 

The N2O concentration in the NAMA organic patches also increased following the 

NH4NO3 addition, but while the N2O concentration didn’t increase following water 

addition to the NAMA patches, these values were not significantly different from each 

other (see Figure 3.9b and Figure 3.10). Preceding NH4NO3 and water addition, the N2O 

concentrations in the NAMA patches were very variable (0.4 to 25.4 ppm; Figure 3.8b), 

and this variability may partly explain why the change in N2O concentration following 

water addition was not significantly different from that following NH4NO3 addition 

(although a trend is apparent; Figure 3.10). N2O production can be dominated by a 

single controlling factor such as water availability, which can mask the effect of other 

treatments unless it is tightly controlled (e.g. Gödde & Conrad, 2000). Furthermore, 

N2O production in soils can be highly variable both spatially and temporally, with 

factors such as soil structure, and water content determining the availability of 

compounds (reviewed by Giles et al., 2013). In this case, if AMF hyphae reduced the 

availability of N in the AMA treatment, the N2O concentration (and associated 

variation) would decrease. In contrast, in the NAMA treatment, as there was less 

competition for N, the control of N2O production may not have been N availability, but 

a more spatially variable factor such as O2 availability, and subsequently the variability 

in N2O production was higher in the NAMA treatment (Figure 3.8b and at 96 h after 

treatment addition in Figure 3.9a).  

 

If O2 concentrations are low, and C is readily available, then NO3 availability is often the 

main controller of N2O production, via denitrification (Gillam et al., 2008). In this 

system, the patches were very wet following NH4NO3 and water addition (Table 3.2), 

and they initially had a high C content (Table 3.1). Thus, it is feasible that in the 

presence of AMF hyphae, a reduced availability of NO3 resulted in lower N2O 
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concentrations, and upon NO3 addition, this effect was removed. Alternatively, 

autotrophic nitrifiers can struggle to compete with heterotrophic bacteria and plants 

for NH4, particularly under conditions of increased C availability (Verhagen et al., 

1995). One possible explanation for this is the slow growth of nitrifying bacteria (e.g. 

ammonia oxidising bacteria (AOB)) means that they are therefore unlikely to obtain 

the numbers that would be able to exploit the soils maximum nutrient supply 

(Woldendorp & Laanbroek, 1989), particularly following a short term pulse of NH4 as 

provided here. Conversely, ammonia oxidising archaea (AOA) can cope with very 

limiting NH4 availabilities in marine systems and therefore successfully compete with 

heterotrophic bacterioplankton and phytoplankton (Martens-Habbena et al., 2009). 

Although this has not been demonstrated for soil AOA, the wide range of soil 

conditions that AOA inhabit could indicate a similar adaptation to low NH4 (Leininger et 

al., 2006). However, an adaptation to low NH4 conditions suggests that AOA may not 

be able to respond to a pulse of NH4 any more successfully than AOB; therefore, the 

nitrifiers in the AMA patches may not have been able to respond to the NH4 pulse. As 

the N was added in the form of NH4NO3, it was not possible to distinguish whether 

nitrification or denitrification was limiting N2O production in both the AMA and NAMA 

patches. Nevertheless, as both AMF access treatments responded positively to NH4NO3 

addition, at least one pathway of N2O production in each AMF access treatment must 

have been N limited. 

 

It is noteworthy that the patch N2O concentrations for AMA treatments declined to 

levels below those of the NAMA patches 96 h after NH4NO3 addition. At this time, the 

patch moisture contents were equal (Table 3.2), therefore O2 availability was unlikely 

to be the cause. This response suggests a long term inhibitory effect of AMF hyphae on 

nitrifier and/or denitrifier activity that continued to limit N2O production even after N 

addition. One explanation may be that the heterotrophic denitrifiers responded rapidly 

in both the AMA and NAMA treatments to NH4NO3 addition. When NH4NO3 was added 

to L. perenne swards there was a rapid increase in denitrification within 24 hours of 

NH4NO3 addition (Baggs et al., 2003a). In contrast, the nitrifiers may have responded 

more slowly and continued to produce N2O in the NAMA treatments at the 96 h post-
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NH4NO3 addition sample. In Bateman & Baggs (2005), nitrification was found to 

stimulate N2O production for up to a week following NH4NO3 addition, thus 

nitrification can be stimulated for a longer period following N addition than 

denitrification. However, neither of these studies included an AMF treatment (Baggs et 

al., 2003a; Bateman & Baggs, 2005).  

 

Wallenstein et al. (2006) defined proximal and distal controls on denitrifiers and 

denitrification. Long term structural changes in the denitrifying community are 

controlled by ‘distal’ controls including environmental and biotic factors such as C and 

O2 availability and pH, but not NO3 availability (Wallenstein et al., 2006). In contrast, 

short term changes in denitrifying rates are controlled by ‘proximal’ factors which will 

affect the activity of the existing denitrifying community such as a peak in C availability 

(Wallenstein et al., 2006). These terms could also be applied to nitrifiers and 

nitrification rates, but whereas NO3 may not be a distal control on denitrifier 

communities (Mergel et al., 2001), NH4 may be a distal control for nitrifier 

communities since AOA and AOB may be differentially adapted to NH4 availability 

(Leininger et al., 2006; Verhamme et al., 2011).   

 

The slow growing nitrifiers in the AMA patches in the present study may not have been 

capable of responding to the proximal control of NH4 addition, possibly because the 

presence of AMF hyphae had reduced their numbers or activity in the longer term via a 

distal control such as competition for NH4, reduced O2 availability, or decreased pH (as 

discussed in Section 3.4.3). Therefore, once the denitrification peak declined, the N2O 

concentration in the AMA treatment returned to the pre-NH4NO3 addition value, as 

was found here (Figure 3.9a & b). In the mycorrhizosphere, the number of ammonia 

oxidisers (AO) increased in one study (Amora-Lazcano et al., 1998), but did not change 

in another (Cavagnaro et al., 2007). In contrast, the number and community of 

denitrifiers can decrease (Amora-Lazcano et al., 1998) and change (Veresoglou et al., 

2012a) respectively in the mycorrhizosphere. Thus, to date there is no consensus of 

the effect of AMF on the nitrifying or denitrifying populations, and these interactions 
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have only been studied in the mycorrhizosphere, which can be a different environment 

to the hyphosphere that was studied here (Johansson et al., 2004). Thus, the idea that 

AMF hyphae have a distal effect on nitrifiers, while possible in theory, is highly 

speculative, and would require the use of either 15N techniques (e.g. Bateman & Baggs, 

2005) or separate additions of NH4 and NO3 (e.g. Bergstrom et al., 2001; Li et al., 2005) 

to identify the predominant source of N2O in the different AMF access treatments; this 

will be further investigated in Chapter 4.  

 

AMF hyphae can reduce the extractable inorganic N in the hyphal compartment of a 

microcosm system (Tu et al., 2006), and there is evidence for AMF hyphal uptake of 

NH4 and NO3 (Tanaka & Yano, 2005), but AMF are thought to preferentially take up N 

as NH4 (Govindarajulu et al., 2005). In the current experimental system, there would 

have been very little N available to the AMF hyphae outside the patch as the washed 

sand/Agsorb® medium has a very low N and available P content (Oil-Dri, USA; Leigh et 

al., 2009). The percentage of the root length colonised by the AMF hyphae was also 

higher in the AMA treatments, which agrees with the findings of previous studies (e.g. 

Blanke et al., 2005; Hodge & Fitter, 2010). This could be a result of host plant N 

limitation, as Blanke et al. (2005) found that plants with lower plant N concentrations 

(e.g. leaf concentrations of 1.76 and 2.03%) had higher rates of internal colonisation by 

AMF hyphae, even under high P conditions. It was proposed that the AMF were aiding 

in the plant N nutrition as N was limiting in that system (Blanke et al., 2005). The very 

low N concentration of Z. mays leaves in the present study (only 1.13% ± 0.06 in the 

AMA treatment and 0.88% ± 0.05 in the NAMA treatment compared to 3.5% under 

high N supply (Vos et al., 2005)) also supports this.  

 

Zea mays adopts a strategy of reducing leaf N concentration when N is limiting, and at 

higher N supply leaf N concentration can reach values of up to 3.5% (Vos et al., 2005). 

Thus, the increased N content and concentration in the leaves of the AMA treatment 

host plants, indicates that the AMF were contributing to the plant N nutrition as they 

had access to additional N in the organic patch. This is supported by the fact that all 
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planted compartments received the same amount of nutrient solution, and similar 

studies using 15N labelled organic patches with non-AMF access treatments have 

shown that the risk of diffusion of inorganic N from the patch to the plant roots was 

very low (Leigh et al., 2009; Hodge & Fitter, 2010). This AMF to host plant transfer of N 

in the AMA treatment, alongside the fact that the N rich AMF hyphae will also require 

a high N supply (Hodge & Fitter, 2010), may have increased competition for N in the 

AMA patches. It is therefore probable that competition for NH4 would be high within 

the organic patch, which was likely to, at least, affect the AOB (Woldendorp & 

Laanbroek, 1989), if not the AOA.  

 

3.4.5 Conclusions 

The presence of AMF hyphae in an organic patch resulted in a decreased N2O 

concentration compared to when AMF hyphae were absent. Addition of NH4NO3 

removed the effect of AMF hyphal presence on N2O concentration for up to 48 h by 

increasing the N2O concentration in both AMA and NAMA organic patches, indicating 

that the N2O producers in both treatments were limited by NH4 and/or NO3.  The high 

variability in the N2O concentration measured in NAMA patches, and rapid response to 

NH4NO3 addition in both AMA and NAMA treatments, suggested that there may have 

been more than one N2O producing pathway stimulated by N addition. By 96 h after 

NH4NO3 addition, the N2O concentration in AMA patches returned to a value below 

that of the NAMA patches. This suggests that the N2O producing pathways in both 

AMA and NAMA patches were N limited, but that the AMA patches had a longer term 

limitation to N2O production. The AMA host plants had a higher leaf N content and 

concentration, indicating that the AMF was supplying the host plant with additional N, 

presumably from the organic patch. Thus the lower N2O concentration in AMA patches 

was probably a result of N limitation as the AMF hyphae removed N from the organic 

patch for both their own use, and that of their N limited host plants. Although unlikely, 

other causes including pH changes, long term water availability and availability of P 

and Cu could not be ruled out.  
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The results from this experiment are in contrast to those from Chapter 2 where the 

N2O flux was higher from AMA patches compared to NAMA patches, once the organic 

patches had been removed from the microcosm units, and therefore the hyphae had 

been severed from the host plant. The following Chapter (Chapter 4) considers the 

effect of severing hyphae on patch N2O fluxes by modifying the three compartment 

microcosm used in Chapter 2. The results from this chapter will be further explored by 

incorporation of NH4 and NO3 treatments to assess whether the main effect of AMF 

hyphal presence is linked to nitrification or denitrification pathways, and particular, 

whether or not this differs between severed and intact hyphal treatments.  
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 The effect of severing arbuscular mycorrhizal fungal Chapter 4.

(AMF) hyphae and the addition of NH4 or NO3 on organic patch 

N2O fluxes 

4.1 Introduction 

Nitrous oxide (N2O) is an important greenhouse gas which has a global warming 

potential that is 310 times greater than that of CO2 over a 100 years (Forster et al., 

2007). The results presented in Chapter 2 demonstrated that the flux of N2O from an 

organic matter patch was higher when AMF hyphae were present, although it was 

unclear if this was because the AMF hyphae were severed during the harvest process. 

Severing the AMF hyphae may increase the C and N input into the growth medium in 

two ways. Firstly, by increasing decomposition; Staddon et al. (2003) used 14C analysis 

to determine the turnover rate of AMF hyphae in a semi-sterile system and found that 

fine AMF hyphae had a rapid turnover rate of only 5-6 days and suggested that in the 

field could be even more rapid. If the hyphae are severed from their host, the rate of 

decomposition may increase, and could therefore increase N2O production. Secondly, 

severing AMF hyphae could release labile C. Between 1 and 20% of photosynthetically 

derived C can be transferred to the AMF (Paul & Kucey, 1981; Jakobsen & Rosendahl, 

1990; Johnson et al., 2002b), although values around 5-10% are more common (Bryla 

& Eissenstat, 2005), and up to 25% of this is transferred to the AMF hyphae (Hamel, 

2004) where it is found in the form of chitin, lipids or hexoses (Pfeffer et al., 1999; 

Bago et al., 2000). Therefore severing AMF hyphae has the potential to result in 

leakage of a significant quantity of low molecular weight C into the soil which could 

fuel heterotrophic denitrification (Parkin, 1987; Hino et al., 2010). In the current 

experiment, by severing the AMF hyphae, without destructively harvesting the organic 

matter patches, confounding factors including aeration of the patches and disturbance 

could be eliminated and the effect of severing AMF hyphae on patch N2O production 

and how this compares to the effect of undisturbed AMF hyphal presence on patch 

N2O production could be determined.  
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In contrast, the presence of intact AMF hyphae in an organic patch in Chapter 3 

resulted in decreased N2O concentrations within the organic patches. The addition of 

NH4NO3 removed this effect, suggesting that N limitation in the presence of AMF 

hyphae was the main cause of the reduction in N2O concentration. However, as shown 

in Figure 4.1, the addition of NH4NO3 could have resulted in a stimulation of N2O 

production from any of the known N2O producing pathways in soil (Baggs, 2011; Zhu et 

al., 2013a). Therefore, it is unclear as to whether the N2O producers were limited by 

the availability of both or either of NH4 or NO3 in the presence of AMF, and which of 

the main N2O producing pathways were involved. However, the main nitrification and 

denitrification pathways are under microbial control (except for chemodenitrification) 

and as indicated in Figure 4.1, they can be broadly separated by their requirement for 

either NH4 or NO3.  

 

The main ‘nitrification’ pathways in soil potentially resulting in N2O release are nitrifier 

nitrification, and nitrifier denitrification. Nitrifier nitrification is an aerobic process 

carried out by autotrophic nitrifiers that converts NH4 or NH3 to NO3 via NO2 (Wrage et 

al., 2001). Ammonium oxidation is the first stage of nitrification (NH4 to NO2), carried 

out by ammonia oxidising bacteria (AOB), or archaea (Leininger et al., 2006) and it is 

during this process that incomplete aerobic hydroxylamine oxidation can result in N2O 

production as a side product  (Hooper & Terry, 1979; Jiang & Bakken, 1999; Stein, 

2011). Nitrite is then further oxidised to nitrate by nitrite oxidising bacteria (NOB). 

Autotrophic nitrification is an energetically expensive process, and therefore nitrifiers 

are generally slow growing (Wrage et al., 2001). While nitrification is generally an 

autotrophic process, there are cases of heterotrophic nitrification carried out by both 

fungi (Laughlin et al., 2008) and bacteria (Brierley & Wood, 2001). In contrast to the 

well-known aerobic nitrification processes, autotrophic nitrifiers have also been found 

to denitrify under conditions of low O2 and this process is termed nitrifier 

denitrification (Wrage et al., 2001; Bateman & Baggs, 2005; Zhu et al., 2013a). Nitrifier 

denitrification follows an almost identical pathway to denitrifier denitrification (Baggs, 

2011), but NO3 is not produced as an intermediate, instead the NO2 produced during 

nitrifier nitrification is converted to N2 via N2O (Wrage et al., 2001).  
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Figure 4.1. Pathways of N2O production in soil. Pathways coloured orange are 

controlled by the provision of NH4 and nitrifier activity (broadly termed nitrification 

pathways), whereas pathways coloured in blue are reliant upon the provision of NO3 

(broadly termed denitrification pathways). The grey pathways are non-microbial 

sources of N2O (chemodenitrification: the chemical decomposition of nitrite (NO2
-) or 

hydroxylamine (NH2OH)) that are still potentially linked to provision of NH4. The 

general control of oxygen (O2) availability on these pathways is indicated by the 

gradient arrow at the bottom of the diagram, and pathways that require a source of 

carbon are indicated by the black dashed arrows. While this diagram includes what are 

considered to be the main N2O producing pathways in soil at present, there are also 

cases of aerobic denitrification (reviewed by Chen & Strous, 2013), and heterotrophic 

nitrification (Laughlin et al., 2008) which are not included here. NH2OH = 

hydroxylamine, NO2
- = nitrite, NO = nitric oxide, DNRA = dissimilatory nitrate reduction 

to ammonium. Adapted from pathways described in Baggs (2011) and Zhu et al. 

(2013a).  
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Denitrifier denitrification is a facultative anaerobic process carried out by a wide range 

of organisms including bacteria (Dandie et al., 2008), fungi (Herold et al., 2012), and 

archaea (Cabello et al., 2004). This process is predominantly heterotrophic, although 

autotrophic denitrifiers have been identified (Claus & Kutzner, 1985; Trouve et al., 

1998), which use inorganic sources (e.g. sulphur compounds or Fe2+) as electron 

donors (Straub et al., 1996; Trouve et al., 1998). There is also evidence for aerobic 

denitrification, although this appears to be under conditions of low O2 and at rates 

generally much lower than anaerobic denitrification (reviewed by Chen & Strous, 

2013). However, as both aerobic and anaerobic denitrification follow the same 

pathways they are both included in denitrification here. Denitrification is a process 

where NO3 is reduced in stages to N2 via NO2, NO, and N2O (Groffman et al., 2006); a 

different group of facultative anaerobes control each stage and N2O is only produced 

when the process does not complete to form N2 (Ye et al., 1994; Singh et al., 2010). 

Denitrifiers can utilise the outputs of nitrification (NO2 or NO3) to carry out 

denitrification, termed ‘nitrification-coupled denitrification’ to acknowledge the 

difference between this and nitrifier denitrification. Dissimmilatory nitrate reduction 

to ammonium (DNRA; also known as nitrate ammonification) can also yield N2O as a 

side product in a stepwise reduction process with NO2 as the intermediate stage at 

which N2O can be released (Kelso et al., 1997; Stremińska et al., 2012). This is a 

heterotrophic process carried out by both bacteria and fungi that occurs under 

anaerobic conditions. Although, in contrast to denitrification, DNRA can occur at low 

O2 levels (Fazzolari et al., 1998). Finally co-denitrification is currently considered an 

extension of denitrification, where NO joins with N from another substrate (e.g, amino 

acids, azide, ammonia etc.) to form N2O (Su et al., 2004). This process is poorly 

understood at present, but may contribute a significant quantity of N2O to 

denitrification outputs (Baggs, 2011).   

 

By measuring the change in N2O production following the addition of NH4 or NO3 to 

organic matter patches (as used in Chapters 2 and 3) that contain AMF hyphae, it was 

possible to determine if the rate of N2O production by nitrifiers, denitrifiers or both is 

limited in the presence of AMF hyphae. For example, increases in N2O production 
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following NO3 addition could be attributed to denitrification. Conversely, if NH4 

addition resulted in a large N2O flux whereas NO3 addition did not, it could be assumed 

that the main N2O source was a nitrification pathway (Figure 4.1). If, upon severing, 

the turnover of AMF hyphae resulted in a release of C, by adding NO3, it is expected 

that denitrifiers would be released from both C and N limitation (Figure 4.1), resulting 

in increased N2O produced in the AMF hyphal access (AMA) treatment. Alternatively, 

the reduced N2O production in the AMA treatments is predicted to be a result of 

reduced nitrification rates in the presence of AMF hyphae. Arbuscular mycorrhizal 

fungi (AMF) are thought to preferentially take up N in the form of NH4 (Govindarajulu 

et al., 2005; Hodge et al., 2010) which could increase competition for NH4 in the 

hyphosphere and limit the supply for nitrifiers, acting as a long term ‘distal’ control 

(sensu Wallenstein et al., 2006) on their numbers and/or activity. Therefore, in the 

non-severed treatments, it was expected that the slow growing nitrifiers (Woldendorp 

& Laanbroek, 1989) would not be able to respond to the addition of a pulse of 

inorganic NH4 and consequently less N2O would be produced in the AMA patches 

compared to the NAMA patches following NH4 addition.   

 

Following the hyphal severing treatment, solutions containing NH4 or NO3 were 

injected directly into the patches as these were the main sites of N2O production (as 

demonstrated in Chapter 2). The concentrations of (NH4)2SO4 and KNO3 (15 mM and 

30 mM respectively) were selected to optimise growth conditions for nitrifiers (Stanier, 

1987; Yue et al., 2007; Arnaout & Gunsch, 2012) and denitrifiers (Stanier, 1987; Vilcáez 

& Watanabe, 2009; Arnaout & Gunsch, 2012). Nitrous oxide concentrations were 

measured in the organic patches using gas probes as in Chapter 3 both before, and 

after, hyphal severing and N addition treatments. A Los Gatos Isotopic N2O analyser 

(Los Gatos Research, Inc., California, USA) was delivered days before gas sampling 

began, and could therefore be used to measure N2O fluxes from the AMA and NAMA 

treatments following the closed dynamic chamber (CDC) approach outlined in Chapter 

2 (Section 2.1). While the N2O fluxes measured using the closed static chamber (CSC) 

chamber method in Chapter 2 were unreliable due to dilution effects (Section 2.4.3.2), 

the N2O analyser used here had a much better accuracy at lower N2O concentrations 
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with a measurement range of 0.3 – 100 ppm and a precision of 0.2 ppb (Los Gatos 

Research, Inc., California, USA), therefore eliminating any dilution issues, and making it 

technically possible to accurately measure the compartment N2O fluxes and compare 

these to the patch N2O concentrations. The AMA and NAMA compartment CO2 fluxes 

were also quantified, and it was intended that the CO2 fluxes would be used as an 

indicator of AMF hyphal presence as demonstrated in Chapter 2. In order to confirm 

the findings in Chapter 2 that AMF hyphae do not affect CH4 production, the CH4 fluxes 

from the outer compartments were also measured.  

 

The hypotheses tested in this study were as follows;  

1. The organic patch N2O concentration and compartment N2O flux would 

decrease in the presence of AMF hyphae compared to when they were absent. 

2. Severing the AMF hyphae, thus increasing the availability of C and/or N to other 

soil organisms, would reverse this effect and the N2O flux would increase in the 

presence of AMF hyphae.  

3. Nitrate (NO3) addition to the severed AMA treatment would result in a higher 

N2O flux than that of the NAMA treatment, as the severing of AMF hyphae 

would release C into the patch, therefore increasing N2O produced via 

denitrification in the AMA treatment. 

4. Ammonium (NH4) addition to the non-severed treatment would stimulate N2O 

production from the NAMA organic patches, but not the AMA organic patches 

as the activity of the nitrifiers would be limited by a distal control in the 

presence of AMF hyphae. 
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4.2 Materials and Methods  

4.2.1 Experimental design 

Forty, three-compartment microcosm units (described in Section 4.2.2 below) were 

planted on 25th June 2012 in the central compartment with three pre-germinated a 

Zea mays L. seeds (Incredible F1, Mr Fothergills, Newmarket, UK) that were thinned to 

one per pot after two weeks (14 d) as in Chapter 2, Section 2.2.3.3. All microcosm 

compartments contained a 50/50 mix of sand/Agsorb® (v/v) (Oil-Dri, USA) and the 

planted compartment also contained 90 g of a live Glomus intraradices inoculum 

(Schenck & Smith; Plantworks Ltd., Kent, UK). The sand/Agsorb® and G. intraradices 

inoculum were prepared as in Chapter 3, Section 3.2.4. Each unit had two outer 

compartments, one on either side of the central compartment. In each unit, one outer 

compartment allowed AMF hyphal access (AMA) or prevented AMF hyphal access 

(NAMA) creating a paired design (described in Chapter 2, section 2.2.3.2). A sterile 50 

cm3 centrifuge tube was added to the outer compartments to create a hole into which 

an organic matter patch with a gas probe inserted (n = 40) was added at 28 d post-

planting. These organic patches were made as in Chapter 3, Section 3.2.6 using 2 g of 

dried milled Z. mays shoots (Incredible F1, Mr Fothergills, Newmarket, UK), mixed with 

13 g DW equivalent of a sieved (2 mm) agricultural soil (Chapter 2, Section 2.2.1.3; 

53˚92’N, -1˚00’E). The organic patch C and N contents are outlined in Table 4.1. 

 

Table 4.1. Mean carbon (C) and nitrogen (N) content and C:N ratio of the mixed 

organic patch material (13 g DW equivalent soil mixed with 2 g DW milled Z. mays 

leaves) and Z. mays leaves that were used in the mixed patches before addition to the 

microcosms. Mean values ± standard error of the mean (n = 3).Total values are for 15 g 

(DW equivalent) mixed organic patches and 2 g DW of milled Z. mays leaves.  

 Total C (mg) % C Total N (mg) % N C:N Ratio 

Mixed patch 1199.7 ± 78.5 8.0 ± 0.5 99.1 ± 15.2 0.7 ± 0.1 12:1 

Leaf material  870.4 ± 2.1 43.5 ± 0.1 61.7 ± 3.7 3.1 ± 0.2 14:1 
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At 87 d after planting (59 d after patch addition), twenty of the units had a blade 

inserted alongside the mesh membrane separating the central and outer 

compartments to sever the hyphae from the host plant (severing treatment n = 20). 

Three days later, NH4 (as (NH4)2SO4), NO3 (as KNO3), K2SO4 or water were applied 

directly to the patches (N addition treatments, n = 5). The experimental design is 

outlined in Table 4.2. The plants were destructively harvested over three days at 100 d 

after planting (72 d after patch addition).  

 

Table 4.2. Experimental design. There were two AMF access treatments (AMF hyphal 

access; AMA, no AMF hyphal access; NAMA; n = 40) which were paired within each 

microcosm unit. Half of the microcosms had blades added to sever the AMF hyphae in 

both the AMA and NAMA compartments creating the severed (S) or non-severed (NS) 

treatments (n = 20). Inorganic nitrogen (N) was then added to each of these 

treatments as (NH4)2SO4 or KNO3 to form the NH4 and NO3 addition treatments with 

K2SO4 and water controls (N addition treatments; n = 5).  

Treatment 
AMF access n Severing n N addition n 
AMA 40 Severed (S) 

 
20 (NH4)2SO4 5 
 KNO3 5 
 K2SO4 5 
 Water 5 

Non-severed (NS) 20 (NH4)2SO4 5 
 KNO3 5 
 K2SO4 5 
 Water 5 

NAMA 40 Severed (S) 
 

20 (NH4)2SO4 5 
 KNO3 5 
 K2SO4 5 
 Water 5 

Non-severed (NS) 20 (NH4)2SO4 5 
 KNO3 5 
 K2SO4 5 
 Water 5 
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4.2.2 Microcosm design 

The three-compartment microcosms used in this experiment were slightly modified 

from those used in Chapter 2 (Section 2.2.3.2) through the incorporation of blade 

guides to facilitate the severing of the hyphae. The blade guides were two pieces of 

stainless steel mesh (100 x 130 mm; woven stainless wire cloth 60 mesh, 0.25 mm 

aperture; Hanscan Ltd. Stoke on Trent, UK) that were screwed into the outer 

compartment and sealed around three edges using aquarium sealant (Everbuild 

Building Products Ltd. Leeds, UK). This created a housing into which a stainless steel 

blade (110 x 65 mm; Figure 4.2a) could be tightly inserted (Figure 4.2b), thus severing 

any AMF hyphae that were growing through the fine mesh membrane. The blades 

were inserted into both the AMA and NAMA sides of the severing units to account for 

any possible disturbance resulting from blade insertion.  

 

Figure 4.2. Blade (a) used in the microcosms to sever AMF hyphae and (b) the blade 

inserted into the stainless steel mesh housing inside the microcosm unit. 

 

4.2.3 Growth conditions 

Forty, three-compartment microcosms were placed in a temperature controlled 

glasshouse in a randomised block design. The mean daily temperature was 21.5 ± 0.3oC 

and daily PAR was measured at plant height between 10 am and 2 pm once a week 

and averaged 251 ± 45 µmol m-2 s-1.  Lights (high pressure sodium 400 W; Philips SON-T 

AGRO) were used to extend the photo-period to 16 h per day.  The moisture contents 

b a 
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of the outer compartments were equalised weekly as described in Chapter 2, Section 

2.2.3.5. The plants were watered with equal volumes of deionised water daily as 

required. After 14 d of plant growth, the plant compartments received 50 cm3 of a 

nutrient solution modified from Thornton & Bausenwein (2000) (1/10th N and P; 

Appendix 1) once a week. This was increased to twice weekly at 49 d after planting and 

to full N at 55 d after planting as the plants were showing symptoms of N deficiency. At 

76 d the plants were showing P deficiency symptoms, so a 3/10th P, full N solution was 

used once a week in addition to two 1/10th N and P additions. The plants received no 

further nutrient solution after the blades were added on 20th September 2012 to 

reduce unequal mass flow of nutrients to the patch compartments.  

 

4.2.4 Severing and nitrogen addition treatments 

At 59 d after organic patch addition, stainless steel blades were inserted into twenty 

(half) of the microcosm units in both the AMA and NAMA compartments. The blades 

were sharpened at the base and were inserted into the stainless steel housings that 

were incorporated into the microcosm design (described in Section 4.2.2). These blade 

guides protected the fine mesh membranes (0.45 µm or 20.0 µm for NAMA and AMA 

compartments respectively) from the blade and also acted as a guide to ensure that 

the blades were inserted into the same location in all units, ensuring equal disturbance 

and severing of all hyphae between treatments. Once the blades were inserted they 

were left in place. At 63 and 69 d after organic patch addition (19 and 97 d post-

planting) the blades were lifted by 2 cm and then re-inserted to ensure that the 

hyphae had not reconnected.  

 

At 62 d after organic patch addition (90 d after planting) each patch was injected with 

one of 7 cm3 of 15 mM (NH4)2SO4 (NH4 treatment), 30 mM KNO3 (NO3 treatment), 15 

mM K2SO4 or deionised water, where the N treatments were equivalent to 0.196 mg N 

g-1 DW patch. Two 3.5 cm3 aliquots of solution were injected into each organic patch 
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with an hour gap between each addition to reduce the risk of flooding out into the 

surrounding sand/Agsorb®.  

 

4.2.5 Gas sampling 

Gas sampling was carried out using both gas probes (described in Chapter 3, Section 

3.2.1) and continuous flow loop sampling (CDC sampling, outlined in Chapter 2, Section 

2.2.3.6) with an attached Infra-Red Gas analyser (IRGA; LI-COR® Biosciences, Lincoln, 

USA), Los Gatos Rackmount CH4 recorder (LGR CH4; Los Gatos Research, Inc., California, 

USA) and Los Gatos Isotopic N2O analyser (LGR N2O; Los Gatos Research, Inc., 

California, USA) which together provided CO2, CH4 and N2O concentrations once per 

second. The isotopic N2O analyser also provided continuous measurements of the site 

specific isotopic ratios δ15Nα and δ15Nβ as well as δ18O of N2O, however these isotopic 

data proved to be very variable at the low concentrations of N2O measured throughout 

this study, therefore these data are not included. The modified microcosm lid was 

attached to each of the 80 soil compartments in block sequence for a minimum of 5 

minutes, with a minimum of 2 min flushing the system with lab air between each 

compartment measurement. The gas sampling timetable is outlined in Table 4.3.  
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Table 4.3. Experimental schedule including addition of hyphal severing (blade 

insertion) and inorganic nitrogen (N) addition treatments presented as days since 

planting and organic patch addition. The gas probes were sampled at 86 d post-

planting and the N2O fluxes were measured at 87 d post-planting. Gas samples were 

then taken at 2, 3, 5, 7 and 11 d (hours in brackets; h) following blade insertion to 

sever AMF hyphae and at 0, 48, 96 and 192 h after N addition (gas sample post-N 

addition i, ii, and iii respectively). n.a. = not applicable as treatment not yet applied. All 

microcosm units were harvested at 100-103 d post-planting (72-75 d post-patch 

addition).  

  Time 

since 

planting 

Time since 

organic patch 

addition 

Time since 

severing  

Time 

since N 

addition  

 days days days (h) days (h) 

Gas sample pre-treatment 86-87 58-59 n.a. n.a. 

Blade insertion 87 59 0 n.a. 

Gas sample post-severing 89 61 2 (48) n.a. 

N addition 90 62 3 (72) 0 

Gas sample post-N addition i 92 64 5 (120) 2 (48) 

Gas sample post-N addition ii 94 66 7 (168) 4 (96) 

Gas sample post-N addition iii 98 70 11 (264) 8 (192) 

Harvest 100-103 72-75 13 (312) 10 (240) 

 

4.2.6 Gas flux and concentration calculation  

Gas concentration measurements from the CDC system were calculated as in Chapter 

2, Section 2.2.3.10 and N2O concentrations in the gas probes were corrected for 

dilution as in Chapter 3, Section 3.2.8. All regressions were calculated using SAS (v9.3 

SAS institute Inc., North Carolina, USA) to obtain mg s-1 values. The headspace in the 

microcosm unit (0.6 L), volume of connecting tubing (0.274 L) and internal volume for 

each instrument (IRGA, 0.019 L; LGR CH4, 0.408 L; LGR N2O, 0.850 L) along with the 

surface area of the soil sampled (0.024 m-2) were used in the calculation of the flux 
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rates for each of the gases, in mg m-2 h-1. These fluxes were calculated using values 

measured between 120 to 200 s after the lid was attached for both CO2 and CH4 and 

200 to 280 s for N2O; the N2O analyser took slightly longer to settle as it was more 

sensitive to the unavoidable slight pressure change occurring upon lid closure; hence 

the later sample time. Since there were no significant effects of AMF hyphae on the 

CH4 fluxes measured at any point, these data have not been included.  

 

4.2.7 Post-harvest analysis 

At each harvest the following data were collected; fresh and dry weights of shoots, 

roots, stalk, flowers, ear, soil, sand/Terra-Green® and patches, soil and patch % water 

content (g g-1 DW). The shoot material was cut off and separated into leaves, dying 

leaves (> 50% of the leaf dried up), stalk, ear and tassel and the roots were picked out 

of the growth medium using forceps for 5 min before washing to clear away any 

attached growth medium, patting dry and weighing. Two 5 g (FW) samples of each of 

the AMA and NAMA organic matter patches were taken to determine the extraradical 

mycelium (ERM) length densities of the AMF. The units were harvested as in Chapter 2, 

Section 2.2.3.7, omitting post-harvest gas sampling and quantification of root length 

colonisation as these would not provide any further information in this experiment.  

  

4.2.8  Data analysis 

All data were first tested for normality and equality of variance using a Kolmogorov-

Smirnov and Levene’s Homogeneity of Variance tests in SAS (v. 9.3, SAS institute Inc., 

North Carolina, USA) respectively and SAS was also used for all subsequent data 

analyses. There was hyphal breakthrough in one of the NAMA compartments 

(treatment: non-severed + K2SO4) as significant quantities of AMF hyphae were found 

in the ERM length density sample for this treatment therefore this microcosm was not 

included in any analyses. 
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The gas probe and gas flux data for CO2 and N2O preceding the severing of AMF 

hyphae or N treatment addition, were log10 transformed and analysed using a 

Spearman rank order correlation as the data failed normality assumptions. As some of 

the N2O fluxes were slightly negative values, a positive integer constant was added to 

all N2O flux (+3) values before log10 transformation as described in Field and Miles 

(2010). Differences between AMA and NAMA treatments were tested by comparing 

the AMA-NAMA values to zero using a one-sample t-test, or if the AMA-NAMA data 

were not normally distributed, a Wilcoxon Signed Ranks test was used; these tests 

were also used to compare absolute values (ERM length densities, N2O fluxes etc.) to 

zero.  

 

Differences among treatments where the number of treatments exceeded two (e.g. 

comparing all four treatments after hyphal severing) were analysed using a two-way 

ANOVA including block with Duncan’s multiple range tests applied for post hoc 

analysis. Where the data failed normality and/or equality of variance assumptions, and 

transformations did not improve this, non-parametric tests were used. As there were 

more than two replicates per block of each treatment before the N addition 

treatments were added, a Friedman’s test could not be used to control for block (as it 

requires one replicate per block/treatment combination), therefore the Cochran-

Mantel-Haenszel (CMH) statistic was calculated for the ranked data; this is a 

generalization of Friedmans’s test, controlling for block (SAS Institute Inc., 2008). 

Extraradical mycelium length density data failed normality assumptions and were 

therefore log10 transformed before analysis. The CO2 concentration and CO2 flux data 

for the post-severing gas sample (89 d post-planting) also failed normality assumptions 

and were therefore log10 transformed before analysis using a two-way ANOVA. 

 

The pre-N addition fluxes or concentrations (48h post-hyphal severing, at 89 d post-

planting) were subtracted from the post-N addition fluxes or concentrations 

respectively (at 48 h, 96 h or 192 h post-N addition, 92, 94 or 98 d post-planting) to 

obtain the change in N2O flux or concentration following N addition (referred to as the 
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∆N2O flux or ∆N2O concentration respectively). This reduced the variability within 

treatments and increased the precision in finding any N addition effects. These data 

were not normally distributed, even after transformation, and therefore a Friedman’s 

non-parametric two-way ANOVA, controlling for block with Mann Whitney U (a.k.a. 

Wilcoxon rank sum) post hoc tests and Bonferroni corrections (where P = 0.05/number 

of tests performed), was used on the untransformed data. Where comparisons in 

∆N2O flux or ∆N2O concentration data were made over time, a non-parametric 

Friedman’s repeated measures analysis was used. 

 

The paired AMA-NAMA values were compared to zero using Wilcoxon signed ranks 

tests. The N2O concentration for one experimental unit in the AMA treatment 

(treatment: severed + (NH4)2SO4) was out of range on the GC at the 48 h post N 

addition sample (92 d post-planting) and therefore the AMA and NAMA N2O gas probe 

values were not included in the analysis for this sample. To compare flux values to 

zero, either a one-sample t-test or Wilcoxon signed rank test was used, depending on 

normality of data. The relationship between the change in N2O flux and change in 

patch N2O concentration for each gas sample following N addition (48 h, 96 h and 192 

h post-N addition) was determined using a Spearman’s rank order correlation for these 

non-normally distributed data.  

 

4.3 Results 

4.3.1 Growth of AMF hyphae in organic matter patches and patch 
moisture content 

There were significantly higher ERM length densities measured in the AMA treatment 

compared to the NAMA treatment (Figure 4.3a; t39 = 8.993, P < 0.0001) and both the 

AMA and NAMA treatments were significantly greater than zero (AMA: t39 = -3.22, P = 

0.0026; NAMA: t39 = -15.49, P < 0.0001). The ERM length densities from the AMA 

patches remained higher than those of the NAMA treatments when split by severing 

and all treatments compared (Figure 4.3b; F3,58 = 24.61, P < 0.0001).  
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 Figure 4.3. Mean extraradical mycelium (ERM) length densities (m g-1 DW) in (a) AMF 

access (AMA) and no AMF access (NAMA) patches (n = 40) and (b) split by hyphal 

severing treatment (n = 20; AMA: solid bars; NAMA: hatched bars) following the 

harvest at 100 d post-planting. Different letters represent significant differences at P = 

0.05 (in a: comparing the AMA-NAMA value to zero using a one-sample t-test; in b: 

using a two-way ANOVA with Duncan’s multiple range post hoc tests). Error bars 

represent ± standard error of the mean.   
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In the AMA treatment, the patch moisture content was positively correlated with the 

ERM length densities (Figure 4.4; rs = 0.5937, P < 0.0001), but not in the NAMA 

treatment (rs = 0.2032, P = 0.215).  

 

Figure 4.4. AMF access (AMA) organic matter patch extraradical mycelium (ERM) 

length density (m g-1 DW) plotted against the gravimetric moisture content (%) of the 

AMA organic patches. The ERM length densities in the AMA patches were positively 

correlated with the patch moisture content as determined using a Spearman’s rank 

order correlation (n = 40; r2 = 0.35).  

 

There was no significant difference between the AMA and NAMA organic patch % 

moisture contents following the destructive harvest at 100 d post-planting (Table 4.4; 

t39 = -0.26, P = 0.799). There was also no significant difference in the % moisture 

content of the sand/Agsorb® medium when the AMA and NAMA compartments were 

compared (Table 4.4; S39 = -47, P = 0.519). 
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Table 4.4. Mean gravimetric patch and sand/Agsorb® moisture contents (%) for AMF 

access (AMA) and no AMF access (NAMA) compartments following the harvest at 100 

d post-planting. There was no significant difference between the AMA and NAMA 

treatments for either organic patch or sand/Agsorb® % moisture content. This is 

indicated by the letters within each column and was determined using a one-sample t-

test or Wilcoxon signed ranks test to compare the AMA-NAMA values to zero for patch 

and sand/Agsorb® data respectively (at P = 0.05).  

 

 

 

 

4.3.2 Pre-treatment gas concentrations and fluxes 

Preceding the addition of blades and inorganic N treatments, there was no significant 

difference between the AMA and NAMA CO2 fluxes (Figure 4.5a; t38 = -0.196, P = 0.846) 

or patch CO2 concentrations (Figure 4.5b; t38 = -1.58, P = 0.123) but the CO2 fluxes did 

positively correlate with the patch CO2 concentrations (Figure 4.5c; rs = 0.4887, P < 

0.0001). There was also a positive relationship between the AMA and NAMA CO2 fluxes 

(r = 0.5286, P = 0.0005), but not between the AMA and NAMA organic patch CO2 

concentrations (rs = 0.2773, P = 0.087). The ERM length densities measured in the AMA 

compartments were not correlated with the CO2 fluxes or concentrations before 

severing and N treatment addition (P > 0.05 in both cases). However, the organic patch 

moisture content was negatively correlated with the CO2 flux in the NAMA treatment 

(rs = -0.3296, P = 0.041, r2 = 0.11), but not in the AMA treatment (rs = -0.2024, P = 

0.217).  

 

The N2O concentrations in the patches were significantly higher in the NAMA patches 

than the AMA patches before the severing or N addition treatments were added 

(Figure 4.6a; S38 = -186, P = 0.0076). The same trend was apparent in the N2O fluxes, 

 Organic patch % 

moisture content  

Sand/Agsorb® % 

moisture content 

AMA 37.1 ± 1.8a  22.7 ± 0.5x 

NAMA 37.6 ± 1.8a 23.2 ± 0.2x 
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although it was only significant at P = 0.1 (Figure 4.6b; S38 = -128, P = 0.074). The N2O 

fluxes also positively correlated with the patch N2O concentrations (Figure 4.6c; rs = 

0.7495, P < 0.0001). The N2O fluxes and concentrations were all significantly greater 

than zero in both AMA and NAMA treatments (P < 0.0001 in each case) but the ERM 

length densities measured in the AMA compartments were not correlated with the 

N2O fluxes or concentrations before severing and N treatment addition (P > 0.05 in 

both cases). The N2O concentrations in the AMA and NAMA treatments were also not 

correlated (rs = 0.1352, P = 0.412), but the N2O fluxes were (rs = 0.3249, P = 0.044).  

 

In the NAMA treatment the CO2 and N2O concentrations were weakly positively 

correlated (rs = 0.3464, P = 0.031, r2 = 0.12), as were the CO2 flux and N2O 

concentration (rs = 0.3812, P = 0.017, r2 = 0.15). However, the N2O flux and CO2 flux 

were not related in the NAMA treatment (rs = 0.1253, P = 0.447) and there were no 

relationships between the CO2 and N2O concentrations or fluxes in the AMA treatment 

(P > 0.05 in each case). Following the harvest, the patch moisture content was 

negatively correlated with the pre-treatment N2O flux (before severing or N addition) 

in the AMA treatment (rs = -0.3577, P = 0.025, r2 = 0.13) but this relationship was not 

present in the NAMA treatment (rs = -0.1850, P = 0.260), or between the patch 

moisture and the AMA or NAMA N2O concentrations (P > 0.05). 
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4.3.3 Post-severing gas concentrations and fluxes  

Forty-eight hours after the severing treatment was applied, there were no significant 

differences between the AMA and NAMA (within the severing treatments) CO2 

concentrations (Figure 4.7a; severed, t19 = -0.58, P = 0.571; non-severed, S18 = -24, P = 

0.353) or fluxes (Figure 4.7b; non-severed, t18 = 1.58, P = 0.131; severed, t19 = 0.27, P = 

0.788). There were also no significant differences among the CO2 concentrations over 

all treatments (Figure 4.7a; F3,58 = 0.20, P = 0.899), but the CO2 flux was higher from 

the AMA non-severed treatment than from both the AMA and NAMA severed 

treatments (Figure 4.7b; F3,58 = 3.48, P = 0.022). There was also a positive relationship 

between the CO2 fluxes from the AMA and NAMA compartments in both severing 

treatments (non-severed: r = 0.5819, P = 0.009; severed: r = 0.5189, P = 0.019).  

 

There was no difference between the N2O concentration or N2O flux measured from 

the AMA and NAMA treatments in either the non-severed (Figure 4.8a,b; N2O 

concentration: S18 = -41, P = 0.104; N2O flux: S18 = -30, P = 0.241) or severed (N2O 

concentration: S19 = -22, P = 0.430; N2O flux: S19 = -8, P = 0.784) treatments and when 

compared overall, the N2O concentration or fluxes of all four treatments did not differ 

(N2O concentration: Q3 = 2.45, P = 0.484; N2O flux: Q3 = 3.43, P = 0.330).   
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Figure 4.7. Mean CO2 concentrations inside the organic matter patches (a) and CO2 

fluxes from outer compartments (b) for AMF access (AMA; solid bars) and no AMF 

access (NAMA; hatched bars) treatments split by non-severed and severed treatments 

at 89 d post-planting. Gas samples were taken 48 h after blade insertion. Different 

letters indicate significant differences (P < 0.05) between AMA and NAMA treatments 

within each severing treatment determined by comparing the AMA-NAMA value to 

zero using either a one-sample t-test or Wilcoxon signed ranks test depending on 

normality of the data. Error bars represent ± standard error of the mean (n = 20).     
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Figure 4.8. Patch N2O concentration (a) and outer compartment N2O flux (b) for AMF 

access (AMA; solid bars) and no AMF access (NAMA; hatched bars) treatments split by 

severed and non-severed treatments at 89 d post-planting. Gas samples were taken  

48 h after blade insertion. There were no significant differences between AMA and 

NAMA treatments within each severing treatment as determined by comparing the 

AMA-NAMA value to zero using a Wilcoxon signed ranks test and indicated with the 

lettering. Error bars represent ± standard error of the mean (n = 20).   
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4.3.4 Changes in N2O production following the addition of inorganic N 

The ∆N2O fluxes and concentrations changed over time following N addition, both 

peaked at the 48 h sample following N addition and then decreased back towards pre-

N addition values at the 96 h and 172 h samples (∆N2O flux: Q6 = 79.30, P < 0.0001; 

∆N2O concentration: Q6 = 81.86, P < 0.0001).  There was also a significant effect of 

treatment on ∆N2O fluxes and concentrations when all gas samples were combined in 

a repeated measures analysis (∆N2O flux: Q15 = 84.98, P < 0.0001; ∆N2O concentration: 

Q15 = 55.62, P < 0.0001).  

 

The ∆N2O flux values differed among all treatments at 48 h following N addition 

(Figure 4.9; Q15, = 46.59, P < 0.0001), but due to the high number of post hoc tests, 

when a Bonferroni correction was applied (where P = 0.00042) the source of this 

significant result could not be identified. However, even when a Bonferroni correction 

was not applied, there were no significant differences between the non-severed and 

severed values for each AMF access + N addition combination (P > 0.05 in each case, 

see Table 4.5) at the 48 h and 96 h post-N addition gas samples. Therefore, as the 

severing treatment had no effect on the N2O production, the data from the non-

severed and severed treatments were combined to increase n.  
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Table 4.5. Wilcoxon rank sum (Mann Whitney U) statistics comparing the post-N 

addition N2O flux response (at 48 h, 96 h and 192 h post-N addition/92 d, 94 d 98 d 

post-planting) of the non-severed treatment with those from the severed treatment 

for each AMF access (AMA: AMF hyphal access; NAMA: no AMF hyphal access) and N 

addition treatment. Significant differences between non-severed and severed 

treatments are indicated by bold text (*P < 0.05, **P < 0.01). 

  48 h post-N 
addition 

96 h post-N 
addition 

192 h post-N 
addition 

AMF 
access 

N 
addition 

Test 
statistic 
(Z) 

P Test 
statistic 
(Z) 

P Test 
statistic 
(Z) 

P 

AMA NH4  -0.208 0.841 1.253 0.222 2.507 0.0079** 

 NO3  <0.0001 1.0 -0.836 0.421 <0.0001 1.0 

 K2SO4 <0.0001 1.0 0.612 0.556 -0.612 0.556 

 Water 1.253 0.222 0.418 0.691 -0.418 0.691 

NAMA NH4  -0.627 0.548 -0.418 0.691 -1.671 0.095 

 NO3  0.418 0.691 0.209 0.841 0.836 0.421 

 K2SO4 <0.0001 1.0 -0.367 0.730 -0.367 0.730 

 Water 0.836 0.421 0.627 0.548 1.880 0.056 

 

 

The ∆N2O flux and ∆N2O concentration data were compared between treatments at 

each gas sample (Table 4.6). The same trends were apparent in the ∆N2O 

concentration data as for the ∆N2O flux data, but higher variation in the ∆N2O 

concentration values resulted in reduced P values (Table 4.6), therefore, only the ∆N2O 

flux data are presented graphically. 
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Table 4.6. Friedman’s test statistics controlling for block comparing the post-N minus pre-N patch N2O concentrations (∆N2O concentrations) or 

compartment N2O fluxes (∆N2O fluxes) among N addition and severing treatment combinations (all treatments), among N treatments for non-

severed units only (non-severed), among N treatments for severed treatments only (severed) or among N treatments when severed and non-

severed treatments were combined (combined) for each of the gas sampling events. N2O concentration and flux values that were analysed 

were post-N addition (48 h, 96 h, 102 h post-N addition or 92 d, 94 d, 98 d post-planting) minus pre-N addition values (89 d post-planting) for 

each of the gas sampling events at 48, 96 and 192 h post-N addition. Q = Friedman’s test statistic, df = degrees of freedom. Significant results 

are indicated in bold at P = 0.05 (*P < 0.05, **P < 0.01, ***P < 0.001). 

Time since N addition 48 h    96 h   192 h   

  Q df P Q df P Q df P 

Patch N2O 

concentration 

All treatments 30.32 15 0.011* 23.06 15 0.083 14.96 15 0.455 

Non-severed  12.65 7 0.081 11.80 7 0.107 5.49 7 0.601 

Severed 14.33 7 0.046* 10.20 7 0.178 5.93 7 0.548 

Combined 28.89 7 0.0002*** 14.35 7 0.045* 3.79 7 0.804 

Compartment 

N2O flux 

All treatments 46.59 15 <0.0001*** 29.55 15 0.014* 18.71 15 0.227 

Non-severed  20.08 7 0.0054** 12.22 7 0.094 7.61 7 0.368 

Severed 23.40 7 0.0015** 15.13 7 0.034* 10.60 7 0.157 

Combined 44.85 7 <0.0001*** 25.63 7 0.0006*** 4.80 7 0.684 
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When the severing treatments were removed there was a significant difference in 

∆N2O fluxes among the N addition treatments at 48 h post-N addition (Figure 4.10; Q7 

= 44.85, P < 0.0001). In both the AMA and NAMA patches, the NH4 addition treatments 

produced more N2O than any other N addition treatment. While the AMA – NAMA 

values were not significantly different from zero in any treatment, it almost was in NH4 

treatment when a paired Wilcoxon signed ranks analysis was used (Figure 4.11; S9 = -

26.5, P = 0.0039), whereas the AMA – NAMA values for all other treatments had P > 

0.05.  

Figure 4.10. Mean difference between 48 h post-N addition (92 d post-planting) and 

pre-N addition (89 d post-planting) N2O flux (∆N2O flux) for AMF access (AMA; solid 

bars) and no AMF access (NAMA; hatched bars) treatments, split by N addition 

treatment.The N addition treatments were: (NH4)2SO4 (NH4), KNO3 (NO3), K2SO4 or 

water. Bars with different letters are significant at P = 0.0018 as determined using 

Mann Whitney U post hoc tests and a Bonferroni correction. Asterisks below the bars 

indicate significant differences to zero (*P < 0.05, **P < 0.01). Error bars are ± standard 

error of the mean (n = 10). 
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When the AMA-NAMA values were compared between the N addition treatments, 

there was a significantly higher difference between the AMA and NAMA treatment 

post-N minus pre-N N2O fluxes when NH4 was added than when NO3 or water was 

added, although not when K2SO4 was added (Figure 4.11; Q3 = 10.57, P = 0.014). 

Figure 4.11. AMF access (AMA) – no AMF access (NAMA) change in N2O flux (∆N2O 

flux) calculated from the 48 h post-N addition (92 d post-planting) minus pre-N 

addition values (89 d post-planting). The error bars represent ± standard error of the 

mean (n = 10). Bars with different letters are significantly different at P = 0.0083 (Mann 

Whitney U tests). Where a treatment was significantly different from zero (Wilcoxon 

signed rank test), this is indicated by an asterisk below the bar (*P < 0.05, **P < 0.01).  

 

The ∆N2O concentration data following N addition were positively correlated with the 

∆N2O flux data following N addition at all three gas samples (48 h: rs = 0.7993, P < 

0.0001, r2 = 0.64; 96 h: rs = 0.6217, P < 0.0001, r2 = 0.39; 192 h: rs = 0.7561, P < 0.0001, 

r2 = 0.57). There was no relationship between the ∆N2O fluxes or concentrations with 

patch moisture content when the data were combined by severing treatment for any 

of the eight AMF access + N treatments (n = 10, P > 0.05 in each case) at 48 h or 96 h 

post-N addition.  
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4.4 Discussion 

4.4.1 Extraradical mycelium length densities and CO2 fluxes 

There were significantly higher ERM length densities in the AMA organic patches than 

in the NAMA organic patches, demonstrating successful growth into the organic 

patches by the AMF hyphae (Figure 4.3). However, the organic patch ERM length 

densities would generally be expected to exceed 1 m g-1 DW by 45 d post-patch 

addition, and be closer to 2 m g-1 DW by 70 d post-patch addition (Hodge et al., 2001; 

Nuccio et al., 2013). Yet, in the present study at 72 d post-patch addition, the mean 

ERM length density in the AMA patches was only 0.88 ± 0.08 m g-1 DW. In a glasshouse 

study using Z.mays as an AMF host plant, Liu et al. (2000b) found that peak ERM 

lengths occurred at intermediate N levels (70 mg kg-1) rather than when high (140 mg 

N kg-1) or no N fertiliser was applied, possibly because when N is limiting for both the 

plant and AMF, the plant may not invest C in AMF if they do not provide N (Fitter, 

2006; Hodge et al., 2010). While in the present study it was an intended effect to 

reduce the N and P available to the host plant, the plants received no further nutrient 

solution following insertion of the blade into the microcosm unit which may have 

increased their N and/or P limitation, possibly to levels at which plants no longer 

support AMF growth as in Liu et al. (2000b), which may have resulted in the reduced 

ERM length densities in the patches.  

 

There are a number of issues with the method used here for quantification of ERM 

length densities (Cheng & Baumgartner, 2006). It can be difficult to identify the AMF 

hyphae when they are present in a complex medium such as the organic patches used 

here, particularly as the acid fuchsin stain is not AMF specific (Thies et al., 2002; 

Vierheilig et al., 2005), and AMF structures can be easily mistaken for other organisms 

(Leake et al., 2004; Cheng & Baumgartner, 2006). However, this is the best method 

available for quantifying AMF ERM length densities in soil (Leake et al., 2004), but 

results need to be considered with caution. The ERM length densities in the NAMA 

patches in this study were probably not AMF in origin, as there was no indication of 

hyphal breakthrough on the mesh membranes, but as these structures could not be 
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distinguished from AMF hyphae, they should therefore be considered as an indication 

of possible background non-AMF organisms included in the ERM measurements. At 

low ERM length densities, the CO2 fluxes would not be expected to increase in the 

presence of AMF hyphae as found in Chapter 2 and this was also the case here (Figure 

4.5a,b). Nonetheless, even when low ERM length densities were present in the AMA 

organic patches, they still had a significant effect on patch N2O production.  

 

4.4.2 Pre-treatment N2O production in the presence of AMF hyphae 

Even when low amounts of AMF hyphae were present in the organic patches, N2O 

production was significantly reduced (Figure 4.6a). In the AMA treatment, patch 

moisture content was negatively correlated with both the N2O flux and ERM length 

density. At higher moisture contents, O2 availability is reduced, and the rate of aerobic 

nitrification can also decrease (Bollmann & Conrad, 1998; Baggs, 2011), which may 

have been occurring here. However, the r2 for the correlation between the N2O flux 

and patch moisture was very low (0.13) and the organic patch N2O concentration was 

not correlated with the patch moisture content which would have been expected if the 

patch moisture was significantly affecting the N2O production. The N addition may 

have reduced the relationship between patch moisture and N2O production, but as the 

same quantity of liquid was added to each patch, a higher r2 than 0.13 would be 

expected. Furthermore, at low ERM length densities, the respiration of AMF hyphae is 

unlikely to result in decreased O2 availability (discussed in Chapter 2, Section 2.4.3.1). 

Therefore, moisture and/or O2 availability appeared to be influencing the N2O 

production in the AMA patches, but this alone is insufficient to account for the 

decreases in N2O production found here. In contrast, the N2O flux in the NAMA 

treatment was positively correlated with the CO2 flux. CO2 emission is indicative of 

heterotrophic activity and mineralisation (Villegas-Pangga et al., 2000; Baggs et al., 

2003b), therefore decomposition may have been involved in controlling the N2O 

production in the NAMA patches (although not solely responsible as the r2 was only 

0.15). Something other than decomposition may have been limiting the N2O producers 

in AMA treatments such as pH changes, N or C availability as discussed in Chapter 3.   
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While N2O fluxes and concentrations exhibited the same trend (Figure 4.6a,b), there 

was large variability in N2O fluxes over a small range of low N2O concentrations. This 

may be because of the variability in the organic patch texture and pathways through 

which N2O could escape to the surface (Heincke & Kaupenjohann, 1999), which may 

have been more tortuous under higher patch moisture contents, increasing the range 

of fluxes. However, the patch N2O concentrations would be expected to increase if the 

N2O fluxes were limited by slow diffusion pathways (Heincke & Kaupenjohann, 1999). 

Alternatively, the dilution of the gas probe samples in the Exetainers (1 cm3 in 6 cm3 

N2) may have reduced the accuracy of measured N2O concentrations that were close 

to atmospheric (ca. 324 ppb in 2011; Blasing, 2013); the higher variability in N2O fluxes 

at lower N2O concentrations supports this, thus the N2O fluxes appear to be more 

accurate at lower N2O concentrations.  

 

4.4.3 Gas fluxes and concentrations following the severing of AMF 
hyphae 

Decomposition of AMF hyphae resulting from severing did not appear to significantly 

affect either the CO2 or N2O production within 11 d of severing, as the ERM length 

densities also did not alter within 13 d of severing. Whilst viable AMF hyphae turn over 

their C within 5-6 days (Staddon et al., 2003), decomposition rates may be 

considerably longer; Steinberg & Rillig (2003) found that AMF hyphae can take over 30 

d to decompose, and some hyphae could still be extracted 150 d after severing. Thus, 

hyphal decomposition was probably not the cause for the increased N2O fluxes 

measured post-severing in Chapter 2, although the ERM length densities in this 

experiment were lower, which may be why no differences were found. 

 

Nonetheless, in Chapter 2, even when low ERM length densities were present and 

KNO3 was added to the post-harvest soil, there was a significant increase in the N2O 

flux from the AMA soils at 120 h post-harvesting (96 h post-N addition; Chapter 2, 

Section 2.3.3.4), which did not occur in the present study. Up to 25% of the C that AMF 

receive from their host plant can be transferred to the ERM (Hamel, 2004), in 
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structural tissue, stored as lipids or broken down to hexoses (Pfeffer et al., 1999; Bago 

et al., 2000), and severing them will probably result in the release of low molecular 

weight C compounds. In contrast to Chapter 2, the hyphae in the current experiment 

were only severed in one location, immediately next to the mesh membrane, and 

away from the actual organic patch. Therefore any C and/or N released may have been 

used by other organisms before it could reach the N2O producers, and may explain 

why N2O production was unaffected by severing in this experiment. However, upon 

severing, the CO2 fluxes decreased slightly in both the AMA and NAMA treatments. As 

in Chapter 2, root respiration in the plant compartment was probably influencing the 

outer compartment CO2 fluxes as demonstrated by the positive relationship between 

the AMA and NAMA CO2 fluxes. The insertion of the blades probably reduced the CO2 

transfer from the plant to the outer compartment and a similar plant compartment 

influence was probably responsible for the weak positive relationship (r2 = 0.11) 

between the AMA and NAMA N2O fluxes pre-severing. However, as in Chapter 2 

(Section 2.4.3), it is also possible that the flow of air over the soils in the closed loop 

system (CDC system) may have resulted in some purging of air from the sand/Agsorb® 

mix which could also have contributed to the relationship between gas fluxes in the 

AMA and NAMA compartments and may have reduced the possibility of finding a 

significant difference between the AMA and NAMA treatments. 

 

4.4.4 The change in N2O production following the addition of inorganic 
N to organic matter patches 

4.4.4.1 The pathways of N2O production in organic matter patches 

The addition of (NH4)2SO4 resulted in an increase in N2O production from both the 

AMA and NAMA treatments, whereas the addition of KNO3, K2SO4 or water did not 

(Figure 4.10). Ammonium (NH4) is the precursor for nitrification pathways in soil 

(reviewed by Baggs, 2011), and although it can be converted to NO3 via nitrification 

(Baggs, 2011), the separate addition of KNO3 had no comparable effect within 48 h of 

N addition; consequently, NO3 reducing pathways can be discounted for this 

experiment under these specific conditions. Denitrifiers are facultative anaerobes 
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(Wrage et al., 2001), therefore if there were insufficient anaerobic sites within the 

patches, the conditions would not favour denitrification, although this is unlikely as the 

patches were moist upon harvesting (ca. 37% moisture g g-1 DW) and thus would be 

expected to contain anaerobic microsites. However, the majority of denitrifiers are 

also heterotrophic (Parkin, 1987; Hino et al., 2010), and therefore if there was not 

enough available C, the NO3 addition would not stimulate N2O production which may 

have been occurring here.  

 

The source of N2O in the organic patches can therefore be limited to one of three 

different pathways; nitrifier nitrification (NN), nitrifier denitrification (ND), or 

chemodenitrification (CD) (Figure 4.1). While the addition of inorganic N increased the 

moisture content of the patches, it is probable that there were still aerobic microsites 

within the organic patches and therefore the N2O may have been produced via NN. 

Nitrifier nitrification can be performed by a range of organisms, predominantly 

autotrophic ammonia oxidising bacteria (AOB; Prosser, 2007) and archaea (AOA; 

Leininger et al., 2006), although methane oxidising bacteria (Stein, 2011) and 

heterotrophic fungi (Laughlin et al., 2008) can also nitrify. Autotrophic nitrification can 

be a significant source of N2O between 35 – 60% water filled pore space (Bateman & 

Baggs, 2005), although it is still relatively unclear as to how much N2O produced by 

nitrifiers is produced as a by-product of the ammonia oxidation pathway (Snider et al., 

2012).  

 

Alternatively, following N addition, if the availability of O2 was quite low, particularly at 

the centre of soil aggregates; the source of N2O could have been via an anaerobic 

pathway, ND. In a recent microcosm study, Zhu et al. (2013a) found that under low O2 

availability (≤ 0.5% O2), within 36 h of (NH4)2SO4 addition, the predominant source of 

N2O was ND rather than ammonia oxidation. Furthermore, while the gross nitrification 

rates decreased at lower O2, the total amount of N2O produced from NH3 oxidation 

pathways increased 81-fold as the availability of O2 decreased from 21% to 0.5% O2 

(Zhu et al., 2013a). This contrasts with the common assumption that the rate of N2O 
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production via nitrification decreases at low O2 (Zhu et al., 2013a), and could partly 

explain the findings here. However, if the main source of N2O was ND, a negative 

relationship may have been expected between the patch moisture content (a proxy for 

available O2) and N2O flux after N addition (Venterea, 2007), which was not the case 

here. Finally, while CD cannot be ruled out, it is thought to be less important for N2O 

production than nitrification or denitrification (Bremner, 1997), and generally only 

occurs under acidic conditions (Mørkved et al., 2007; Venterea, 2007). It is unlikely 

that the organic patches were very acidic (the soil added was pH 6.6), and therefore 

the conditions were unlikely to be conducive to this pathway. Furthermore, AMF can 

reduce soil pH (Li et al., 1991a) and thus would be expected to increase the rate of CD 

rather than decrease it. Thus in both the AMA and NAMA patches, the predominant 

N2O producers were almost certainly nitrifiers, following nitrification and/or 

denitrification pathways. 

 

4.4.4.2 The difference between AMA and NAMA patch N2O response 

upon inorganic N addition  

The production of N2O in the NAMA compartments was greater following NH4 addition 

than the production of N2O in the AMA compartments, irrespective of severing 

treatment. This suggests that, regardless of the route through which N2O was 

produced (NN, ND or CD), the nitrifiers were partially inhibited in the AMA treatments, 

possibly as AMF were exhibiting a long term distal control on nitrifier activity. Nitrifiers 

are generally autotrophic  (Prosser, 2007), and slow growing, taking from 8 h up to a 

number of days to double in number (Belser & Schmidt, 1980; Woldendorp & 

Laanbroek, 1989; Prosser, 2007). It is therefore possible that the presence of AMF 

hyphae throughout the experimental period prevented the slow-growing nitrifiers 

from increasing their population size or activity. Veresoglou et al. (2011a) suggested 

that their finding of decreased potential nitrification rates in soils from AM plants 

compared to soils from low- or non-AM plants could have been caused by AMF-

mediated allelopathic suppression of ammonia oxidisers (AO), thus ensuring that AMF 

had access to available NH4. However, although some plants can exhibit allelopathic 
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effects by suppressing nitrification (Alsaadawi et al., 1986; Mao et al., 2006), it is 

unlikely that AMF produce or transport allelochemicals, and there is no evidence of 

this to date. Furthermore, as nitrifiers are slow growing (Prosser, 2007), it is probable 

that AMF affect them in a less complex manner.  

 

Nitrifiers are affected by the availability of O2, NH4 and the pH of the soil (Prosser, 

2007) and the AMF hyphae in the current experiment may have influenced any one of 

these factors as discussed in Chapter 3 (Section 3.4.3) and Section 4.4.2 above. 

Unfortunately this experiment cannot rule out these factors, but the patch moisture 

content appeared to only have a minor influence in pre-N addition N2O production 

(discussed in Section 4.4.2) and, as discussed in Chapter 3, the evidence so far suggests 

that N limitation is likely to be the most important control. The availability of NH4 in 

this experiment was expected to have decreased over time as the patches had been 

decomposing for 62 days by the point of (NH4)2SO4 addition. AMF hyphae are thought 

to predominantly take up inorganic N in the form of NH4 (Govindarajulu et al., 2005; 

Tanaka & Yano, 2005), and AO are generally thought to be poor competitors for NH4 

(Verhagen et al., 1995; Bollmann et al., 2002). If the AMF hyphae were further 

reducing patch NH4 content, the AMA patches would be expected to support a smaller 

population of active nitrifiers if the AMF hyphae are successfully outcompeting them.  

 

Veresoglou (2012) found that nitrification rates were lower in root compartments of 

non-AM P. lanceolata than in root compartments of AM P. lanceolata or root free (soil 

only or soil + AMF hyphae) compartments, but the nitrification rates did not differ 

between AM root compartments (mycorrhizosphere) and root free compartments. In 

comparison to rhizosphere soils, there is often a reduction in root derived C 

compounds in the mycorrhizosphere as these are passed on to the AMF (reviewed by 

Jones et al., 2004). Therefore, fewer heterotrophic organisms will be present, as 

demonstrated by Amora-Lazcano et al. (1998), potentially releasing other autotrophic 

organisms such as AO from competition for inorganic N sources. However, Veresoglou 

(2012) found no difference between the nitrification rates in the AMF hyphal access 
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compartments (hyphosphere) and soil only compartments, which is in contrast to the 

findings presented here (Figure 4.6a and Figure 4.11).  

 

Veresoglou (2012) measured unusually low potential nitrification rates in their system, 

which they attributed to the experimental design not being ideal for the study of slow 

growing nitrifiers (Veresoglou, 2012), and did not provide information on the level of 

AMF ERM length densities in AMF hyphal access compartments. A microbial 

suspension, excluding predators, was reintroduced to a sterile system and left to 

equilibrate for 3 weeks before treatment additions, which is in contrast to the present 

study, in which a soil inoculum was added to a non-sterile system. Veresoglou (2012) 

suggested that the lack of predators in their study resulted in an unrealistic scenario in 

which to study the interactions between nitrifiers and AMF hyphae. A recent study has 

demonstrated that the presence of protozoa in organic matter to which AMF hyphae 

had access, improved N uptake and transport by AMF to their host plant (Koller et al., 

2013). It is thought that bacteria initially remove N from the system, which is then 

mobilized by the protozoa as part of the ‘microbial loop’ (Clarholm, 1985; Bonkowski, 

2004; Koller et al., 2013). Evidence was also presented showing increased transfer of C 

from the AMF hyphae to the organic patch when protozoa were present, which could 

help to explain the increased mineralisation rates found in previous studies (Hodge et 

al., 2001; Atul-Nayyar et al., 2009). Therefore by excluding protozoa, Veresoglou 

(2012) may have limited the interactions between AMF hyphae and nitrifiers in their 

study.  

 

If mineralisation rates increase in the presence of AMF hyphae (Hodge et al., 2001; 

Atul-Nayyar et al., 2009), along with the availability of C (Toljander et al., 2007; Koller 

et al., 2013), heterotrophs are likely to become more competitive for N sources 

including NH4. This is in addition to the increased uptake of N by the AMF hyphae 

(Leigh et al., 2009; Hodge & Fitter, 2010; Koller et al., 2013), and means that nitrifiers 

are likely to be outcompeted for NH4. However, nitrification (often measured by NO3 

production) has been found to increase in the presence of protozoa (Verhagen et al., 
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1994; Alphei et al., 1996; Bonkowski et al., 2000), which is thought to be caused by the 

combined effects of selective grazing by protozoa on other bacteria, and the release of 

NH4 by protozoa which is used by the nitrifiers (Bonkowski, 2004). The response of 

nitrifiers seems to depend to some extent on the presence or absence of organisms 

more competitive for substrates. In a pot based study, the presence of protozoa 

increased the potential ammonia-oxidising and nitrite-oxidising activity when only soil 

was present, but when a plant (P. lanceolata) was also present, this was not the case; 

in fact, all evidence of both ammonia-oxidising and nitrite-oxidising activity ceased 

(Verhagen et al., 1994). Verhagen et al. (1994) attributed this to the poor competitive 

ability of nitrifiers in competition with plant roots for NH4. Thus, in the present study, 

the AMF were probably better competitors for NH4 than nitrifiers in the presence of 

protozoa, and it is very likely that the reduced N2O response to NH4 addition in the 

AMA treatments was the result of these complex microbial interactions acting as a 

distal control on N2O production.  

 

Both AOA and AOB can carry out nitrification in most soils but there is relatively little 

known about the niche separation of these organisms (Prosser & Nicol, 2012). A 

laboratory incubation study by Verhamme et al.  (2011) demonstrated that AOA grew 

at low, intermediate and high NH4 concentrations, whereas AOB only grew significantly 

at high NH4 concentrations. Verhamme et al. (2011) suggested that AOA were more 

adapted for growth in most soils of low to intermediate NH4 availability, relying on 

mineralisation as the main NH4 source, whereas AOB were more suited to soils with 

high NH4 availability, such as agricultural systems with fertiliser N inputs. Di et al. 

(2010) reported similar findings in a soil incubation study where urea was added to 

soils;  AOA preferred low NH3 conditions and AOB high NH3 conditions. In the present 

study, the soil originated from an agricultural site which had probably received NH4 

fertiliser in the past. Therefore, it is likely that both AOA and AOB were present in the 

patches, and possible that the reduction in NH4 availability in the AMA treatments may 

have resulted in less activity of the AOB when NH4 was added in relatively high 

quantities. However, there are various organisms that can nitrify, including bacteria 

(Prosser, 2007), archaea (Leininger et al., 2006) and fungi (Laughlin et al., 2008) making 
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it difficult to predict with any certainty which of these organisms is responsible. 

Clearly, detailed molecular analysis of the microbial populations in the organic patches 

may help to further unravel which N2O producing organisms are involved, although the 

pathways are still not well understood (Baggs, 2011; Stein, 2011).  

 

4.4.5 Future study 

Isotopic analysis of the N2O produced can be used to determine the specific source of 

N2O (Baggs, 2008; Ostrom & Ostrom, 2011) which could help in determining why AMF 

hyphae were reducing N2O production. The distribution of 15N between the central (α) 

and outer (β) N atoms in N2O atoms changes depending upon the pathway of N2O 

production and the difference between δ15Nα and δ15Nβ values (called the ‘site 

preference’, SP) can be used to differentiate some sources of N2O (e.g. Ostrom et al., 

2010), as can δ18O values (Ostrom & Ostrom, 2011). Unfortunately, in this study the 

values of atmospheric δ15N, δ18O and SP were found to be unreliable at the low 

concentrations measured here. Nonetheless, by using 15N labelled patch material or by 

adding 15N labelled inorganic N (e.g. Bateman & Baggs, 2005), isotopic analysis could 

be used in future studies to identify the N2O source in the presence and absence of 

AMF and the factors which control production, although to date, there is no one 

method available to identify all N2O sources in soils (Baggs, 2008; Kool et al., 2011). 

Furthermore, while it would be interesting to compare the N2O source between AMA 

and NAMA treatments, the similar response to N addition suggests that it is probably 

the same dominating process in both treatments. Instead, the more interesting 

question relates to determining the specific effect of AMF hyphae on N2O producers; 

why is N2O sourced from nitrification reduced in the presence of AMF hyphae? This 

will be explored further in Chapter 5.  

 

4.4.6 Conclusions 

The presence of AMF hyphae significantly reduced N2O production in organic patches, 

but as the ERM length densities produced were low, there was no significant effect on 
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CO2 production. The patch N2O concentrations and fluxes were positively related, 

although at lower N2O concentrations, the gas probe sampling may have been limited 

by the dilution of N2O during sampling. Nonetheless, the N2O concentrations and 

fluxes demonstrated the same trends throughout. Severing the AMF hyphae did not 

affect N2O production, probably because of the spatial separation between the site of 

severing and the organic patch, which was the site of N2O production. Insertion of the 

blades also reduced the CO2 production in both AMA and NAMA compartments, 

indicating that the CO2 fluxes measured previously also included root respiration from 

the planted compartment.  

 

The addition of inorganic N in the form of KNO3 did not affect the N2O production from 

either the AMA or NAMA organic patches, whereas the addition of (NH4)2SO4 resulted 

in significant increases in N2O production in both the AMA and NAMA treatments 

regardless of severing, suggesting that the main pathway of N2O production in these 

patches was nitrification. Furthermore, the production of N2O following N addition was 

lower in the AMA treatment than in the NAMA treatment, suggesting that the nitrifiers 

could not respond to the NH4 addition in the presence of AMF hyphae, probably due to 

competition for NH4 among these key microbial groups acting as a distal control on the 

nitrifying community. However, the reason for the inability of the nitrifiers to respond 

to the added NH4 such as competition for NH4 or P was not determined. Therefore, in 

Chapter 5, the effect of and organic N and inorganic P availability on N2O production in 

an organic patch will be determined in the presence and absence of AMF hyphae.  
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 The interactions between arbuscular mycorrhizal Chapter 5.

fungi (AMF) and patch N2O production in organic matter 

patches with varying N and P availability 

 

5.1 Introduction 

The experiments presented in Chapters 3 and 4 clearly demonstrated that the 

presence of arbuscular mycorrhizal fungal (AMF) hyphae can significantly decrease the 

production of nitrous oxide (N2O) from an organic matter patch, and this appears to be 

caused by the inhibition of a nitrification related N2O pathway (Section 4.4.4.2). AMF 

hyphae are nitrogen (N) rich (Hodge & Fitter, 2010) and may have a role in N provision 

to their plant hosts (Blanke et al., 2005; Leigh et al., 2009), as well as producing 

glomalin which can be a significant component of soil N pools (Lovelock et al., 2004). 

Thus, the N requirements of AMF may be high, and they do have the potential to 

deplete N in the hyphosphere (Johansen et al., 1992; Bago et al., 1996). The specific 

mechanism by which nitrifiers are inhibited in the presence of AMF hyphae is 

unknown, but, it is likely that the uptake of inorganic N by AMF hyphae results in 

increased competition for NH4, with the slow growing nitrifiers losing out (Belser & 

Schmidt, 1980; Woldendorp & Laanbroek, 1989). However, besides N acquisition 

(Hodge et al., 2001), AMF hyphae can have a range of effects in the hyphosphere, 

including C input via exudation (Toljander et al., 2007) micronutrient acquisition (Liu et 

al., 2000a), and soil structural changes (Rillig & Mummey, 2006; Wilson et al., 2009; 

detailed further in Chapter 2, Section 2.1); perhaps the best studied being the uptake 

of phosphorus (P) (Cavagnaro et al., 2005; Smith & Read, 2008).  

 

The major controls on P availability in soils are often chemical processes (Plante, 2007). 

This includes the rapid adsorption of soluble P (predominantly orthophosphate) onto 

clay mineral surfaces (such as calcium (Ca), aluminium (Al) or iron (Fe)) forming 

secondary minerals, and the formation of precipitates including Fe, Al, or Ca 
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phosphates (Plante, 2007). As a result, the amount of inorganic phosphate (Pi) in soils 

(the form of P taken up by roots and AMF) is generally low, controlled in part by the pH 

of the soil; the optimal availability of orthophosphate is around pH 6.5 (Plante, 2007). 

Transpiration by plants creates a water potential gradient along which water and 

nutrients are carried towards the plant roots via mass flow (Barber, 1995; Fitter & Hay, 

2002). However, as the concentration of Pi in soil solution is low, mass flow is 

insufficient to fulfil plant P requirements, thus Pi movement to plant roots is 

predominantly via diffusion (Schachtman et al., 1998). Since the concentration of Pi in 

soils is low (Raghothama, 1999), diffusion of Pi to the plant roots is slow (Tinker & Nye, 

2000; Fitter & Hay, 2002), and consequently P can become very limiting for plants, 

resulting in depletion zones of Pi around roots (Bagshaw et al., 1972; Jackson & 

Caldwell, 1993; Tinker & Nye, 2000). It is for this reason that AMF are thought to have 

evolved the ability to uptake and transfer P to their host plants as, by producing fine 

hyphae, they effectively increase the volume of soil from which P can be obtained (Li 

et al., 1991b; Smith & Read, 2008).  

 

Other effects of AMF presence on plant P uptake have also been reported; root 

colonisation by AMF in the presence of P solubilising bacteria in soils can cause 

positive, synergistic effects on plant P uptake and growth (Azcon et al., 1976; Kim et 

al., 1997). The pH of the medium in which AMF hyphae are present has also been 

found to decrease, as P uptake by AMF hyphae increases, leading to the suggestion 

that AMF decrease the pH in order to solubilise P (Villegas & Fortin, 2001; Shi et al., 

2011). There is also evidence for production of phosphatases by AMF hyphae that can 

mineralise organic P to inorganic P (Joner & Johansen, 2000; Feng et al., 2002); 

although the overall contribution of AMF phosphatases to plant P nutrition in soil 

systems is thought to be low (Joner et al., 2000). Whether driven by one or all of these 

mechanisms, in the presence of AMF hyphae, the P content of the media decreases (Li 

et al., 1991b; Joner & Jakobsen, 1994; Feng et al., 2002) which means that AMF 

hyphae are competing with other organisms for P (Joner & Jakobsen, 1994).  
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N2O production is predominantly driven by pH and the availability of N, O2, and C in 

soils (Parton et al., 1996; Gillam et al., 2008), and nitrification in particular is controlled 

by the availability of NH4 (Norton & Stark, 2011). Thus, if similar processes to those 

described above are affecting soil NH4 availability in the presence of AMF hyphae, the 

production of N2O via nitrification is also likely to decrease (Kool et al., 2011). 

Additionally, under conditions where N availability is not limiting the activity of 

nitrifiers, the availability of P itself may become important to nitrifiers. Phosphorus is 

an essential nutrient for living organisms as it is involved in the production of essential 

cell compounds such as nucleic acids and DNA; after N, P is the second most limiting 

element for biological productivity (Plante, 2007). Nitrifiers can be limited by the 

availability of P in soil (Purchase, 1974; Pastor et al., 1984) and groundwater systems 

(de Vet et al., 2012), with Purchase (1974) finding that under conditions of non-limiting 

NH4, the rate of nitrification was decreased with limited P availability, and nitrite 

oxidisers were more affected than ammonia oxidisers. If P limitation in the presence of 

AMF hyphae was significant for ammonia oxidisers, production of N2O via nitrification 

pathways would be reduced. In contrast, if P was limiting for nitrite oxidisers, it is 

possible that the production of N2O via nitrifier denitrification (ND), carried out by 

ammonia oxidising bacteria (AOB) (Baggs, 2011) may increase, as the availability of the 

ND substrate nitrite (NO2
-) is increased.  

 

It has also been suggested that under high N but low P conditions, the rate of P 

immobilisation decreases and therefore fewer active organisms are competing for N, 

resulting in increased N2O production via nitrification or denitrification (Hall & Matson, 

1999; Sundareshwar et al., 2003). In support of this, Mori et al. (2013) found that N2O 

produced via denitrification was reduced upon NO3 and Pi fertilisation of soils sampled 

from under an Acacia mangium plantation. It was proposed that addition of Pi could 

have released denitrifiers from P limitation (Mori et al., 2013). Alternatively, the 

activity and therefore respiration of other soil organisms may have increased, resulting 

in decreased O2 availability and thus more anaerobic microsites, promoting 

denitrification (Mori et al., 2013). However, as N2O production from organic matter 

patches decreased in the presence of AMF in Chapters 3 and 4, and because this 
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appeared to be a result of an AMF mediated effect on nitrifier N2O production, it may 

have been caused by decreased availability to nitrifiers of N, P or a combination of the 

two.  

 

Nitrogen mineralisation rates of decomposing organic material are largely controlled 

by the N and C content of the organic matter (Killham, 2006). Similarly, microbial P 

mineralisation is controlled by the C and P content of the organic matter, with higher P 

mineralisation rates at lower C:P ratios (Plante, 2007). Therefore, by altering the N 

and/or P content of the Zea mays L. leaf material used as organic matter patches this 

could modify the rates of mineralisation and, consequently, the supply of mineralised 

N and P. The form of N available to AMF hyphae can affect the growth response of 

AMF. In a field study, equivalent quantities of organic N and NH4NO3 were added in 

discreet mesh bag patches to soil containing AMF hyphae in symbiosis with Z. mays 

(Aleklett & Wallander, 2012). The growth response of the AMF (quantified as relative 

biomass from phospholipid and neutral lipid fatty acid analyses) was only positive in 

the N rich organic N treatment (Medicago sativa L.), whereas addition of NH4NO3 or 

low N organic material (Hordeum vulgare L. straw) resulted in negative and neutral 

AMF growth responses, respectively (Aleklett & Wallander, 2012). However, Aleklett & 

Wallander (2012) did not report the P content of the organic material added, and as N 

and P content of plant material can often be related (Garten, 1976), the conclusion 

that N content of organic matter was the sole driver for AMF responses may be 

misleading, particularly as AMF are also strongly linked to P uptake (Smith & Smith, 

2011b).  

 

Thus, in the current Chapter, the interactions between the availability of N and P in 

organic material and the impact of this on N2O production in the presence of AMF 

hyphae were assessed. Zea mays shoots were grown with different N and P 

availabilities to create four organic nutrient treatments, high N high P (HNHP), high N 

low P (HNLP), low N high P (LNHP), low N low P (LNLP). Unfortunately, manipulation of 

the P content in harvested shoot tissue proved to be unsuccessful, therefore the leaf 
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material from the HNLP and LNLP treatments (with similar P contents) were used and 

the high P treatments were created by soaking half of the organic patches in 7 cm3 of 

25 mM sodium dihydrogen phosphate (NaH2PO4) before addition to the microcosms.  

This concentration of NaH2PO4 is in the range of concentrations used in previous 

studies on root (e.g. Auken et al., 1992; Duke & Caldwell, 2000) and AMF hyphal (Cui & 

Caldwell, 1996) responses to patchy P availability, and by adding 7 cm3 (i.e. 5.39 mg P) 

to each organic patch, the P added almost doubled the quantity of P added in the 

organic leaf material (ca. 6 mg). 

 

The addition of Pi was expected to increase the available P and therefore reduce 

competition between N2O producers and AMF hyphae for P. However, upon addition 

to soils, Pi rapidly becomes fixed via immobilisation following microbial uptake, 

precipitation of mineral phosphates, or sorption of ions onto soil surfaces (Plante, 

2007). AMF will rely on mineralisation of organic P sources (such as the milled Z. mays 

shoots added here), or solubilisation of non-labile P pools to release orthophosphate 

(Smith & Read, 2008), the soluble form of P thought to be taken up by AMF hyphae 

(Smith et al., 2003b). By increasing the total P in the organic patch, the relative 

abundance of soluble P was expected to increase in the high P treatments, as the rate 

of P mineralisation can be related to P content of media (Mafongoya et al., 2000), 

therefore competition among the organisms for P may be reduced. The organic 

patches were added to the outer compartments of a three-compartment microcosm 

that either allowed (AMA) or prevented (NAMA) AMF hyphal access as described in 

Chapter 2 (Section 2.2.3.2), and the CO2 fluxes were measured to assess hyphal activity 

in the AMA compared to the NAMA compartments. As in Chapter 4 (Section 4.2.5), 

both gas probes (Chapter 3, Section 3.2.1) and a Los Gatos Isotopic N2O analyser 

(Chapter 4, Section 4.2.5) were used to measure organic patch N2O concentrations and 

compartment N2O fluxes, respectively.  

 

The hypothesis under test was that the production of N2O in the NAMA treatments 

would be higher than those in the AMA treatments regardless of the nutrient 
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treatment (HNHP, HNLP, LNHP or LNLP) because the AMF hyphae would effectively 

reduce the availability of N and P to other soil organisms.  

 

5.2 Materials and Methods  

5.2.1 Experimental design 

Twenty, three-compartment microcosm units (described in Chapter 2, Section 2.2.3.2) 

were planted in the central compartment with a Z. mays host plant colonised by the 

AMF Glomus intraradices (details in Section 5.2.2). In each unit, one outer 

compartment allowed AMF hyphal access (AMA) or prevented AMF hyphal access 

(NAMA) creating a paired design. The outer compartments each contained an organic 

patch with a gas probe inserted. Dried, milled Z. mays shoots were mixed with soil to 

make the organic matter patches, half of the organic patches contained milled Z. mays 

shoots that were high in N content, and half were low in N content. There were also 

two levels of P content (high and low P), created by adding NaH2PO4 to the organic 

patches in half of the treatments. This created the four nutrient treatments outlined in 

Section 5.2.4; high N high P (HNHP), high N low P (HNLP), low N high P (LNHP), and low 

N low P (LNLP), for each of the AMF access treatments (AMA, NAMA), totalling eight 

treatments. Gas probes and closed dynamic chamber (CDC) gas sampling were used to 

determine N2O concentrations in the organic patches and N2O and CO2 fluxes from the 

outer compartments respectively (see Section 5.2.4 below).  

 

5.2.2 Microcosm design and growth media 

The three-compartment microcosms were constructed as described in Chapter 2, 

Section 2.2.3.2. All three compartments were filled with a 50/50 mix of washed sand 

and Agsorb® (v/v) as prepared in Chapter 3, Section 3.2.4. The central planted 

compartments had 0.25 g-1 bonemeal (a complex N and P source; 3.5% N, 8.7% P; 

Vitax, Leicestershire, UK) added along with 90 g of a well-mixed live Glomus 

intraradices inoculum (Plantworks Ltd., Kent, UK) and root mix (P. lanceolata/Trifolium 

repens L.), cut into 2 cm long fragments that had previously been growing for at least 6 
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months. Three pre-germinated Z. mays seeds were added to each plant compartment 

on 30th September 2012 and thinned to one seedling per pot after 13 d, as in Chapter 

2, Section 2.2.3.3. At 13 d post-planting, the outer compartments were filled with a 

50/50 mix of sand/Agsorb® (v/v). As in Chapter 2 (Section 2.2.3.4), a sterile 50 cm3 

centrifuge tube was added to the outer compartments to create a hole into which the 

organic matter patches could be added at a later date.  

 

5.2.3 Growth conditions and harvesting 

The microcosm units were placed in a temperature controlled glasshouse in a 

randomised block design. The mean daily temperature was 19.1oC ± 0.4 and the mean 

PAR (measured at plant height) between 10 am and 2 pm was 83 ± 12 µmol m-2 s-1. 

There was no significant difference in PAR among blocks and supplementary lighting 

(high pressure sodium 400 W; Philips SON-T AGRO) was used to extend the photo-

period to 16 h per day. The moisture contents of the outer compartments were 

equalised weekly as described in Chapter 2, Section 2.2.3.5 and the plants were 

watered with equal volumes of deionised water daily as required. After 13 d of plant 

growth, the plant compartments received 50 cm3 of a nutrient solution modified from 

Thornton & Bausenwein (2000) (1/10th N and P; Appendix 1) once a week. After 6 

weeks of growth (42 d post-planting) this was increased to twice a week (50 cm3 of 

1/10th N and P, 50 cm3 of full N 1/10th P). Additionally, to avoid nutrient deficiency, the 

plants were provided with increasing quantities of P during the last 4 weeks of growth, 

by adding full N and 20, 40, 50 or 75% P twice a week at 11, 12, 13 and 14 weeks post-

planting respectively. The units were destructively harvested on 11th and 12th 

December 2012 (at 103 to 104 d post-planting or 71 to 72 d post-organic patch 

addition) following the same methods as described in Chapter 2, Section 2.2.1.6 but 

without quantification of root length colonisation and post-harvest gas sampling.  
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5.2.4 Organic matter patches and treatments 

At 32 d post-planting, an organic matter patch was added to each of the AMA and 

NAMA compartments, 2 cm away from the mesh membrane and 8 cm deep. The 

organic patches were made up of 2 g dried, milled Z. mays shoots and 13 g DW 

equivalent soil (details in following paragraph). This mixed ‘organic patch material’ was 

placed in a 20.0 µm mesh bag as used in Chapter 3, Section 3.2.6. As also described in 

Chapter 3, Section 3.2.6 each organic patch bag contained a gas probe within the 20.0 

µm mesh bag. To reduce the retention of moisture in the organic patches, as had been 

observed in the previous experiments, the 20.0 µm mesh bags were pierced with a 0.6 

mm diameter needle (BD Microlance Nr.14, Beckton, Dickinson and Company, New 

Jersey, USA) in a regular pattern so that each organic patch bag had 50 holes at a 

density of 2.4 holes per cm2. This ensured that the organic patch material stayed 

within the patch bag, whilst improving drainage of water out of the organic patch.  

 

The soil used in the organic patches was collected from the same site as in Chapter 2, 

Section 2.2.1.3 and was sieved through a 2 mm sieve before use. In order to produce Z. 

mays leaf material with high or low N contents, Z. mays seedlings (F1 Incredible, Moles 

Seeds (U.K.) Ltd., Essex, UK) were grown in seed trays containing a 50/50 mix (v/v) of 

sand/Agsorb® that had been washed three times in deionised water to reduce the 

availability of N. The treatments were provided with 120 cm3 increasing to 160 cm3 per 

tray of a nutrient solution daily (Thornton & Bausenwein, 2000; Appendix 1). 

Throughout the growing period of 4 to 5 weeks, the high N treatments received a total 

of 139.8 mg N and the low N treatments received 38.3 mg N. Once the plants had 6 

leaves (BBCH stage 16; Lancashire et al., 1991) they were harvested and the leaves 

were separated from the stalks. The leaf material was then dried at 70oC before 

milling.  

 

The milled leaf material for each of the high N (HN) and low N (LN) treatments was 

pooled, mixed well and a sub-sample was taken to measure the N and P content. The 
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N content was quantified using an elemental combustion system (Costech Analytical 

Technologies Inc., California, USA) and the P content was determined after triple acid 

digestion using the molybdenum blue method (Allen, 1974). The N and P contents of 

the milled leaf material are outlined in Table 5.1. Before addition to the microcosm, 

each high P treatment organic patch was soaked in 7 cm3 of 25 mM NaH2PO4 to ensure 

even uptake throughout the organic patch, which equated to 5.39 mg P added per 

organic patch. This almost doubled the quantity of P provided by the leaf material in 

each organic patch, which was 6.15 ± 0.39 mg or 6.59 ± 0.62 mg in the HN and LN 

treatments respectively. Seven cm3 of deionised water was added, as a control, to the 

low P treatments.  

 

Table 5.1. Carbon (C), nitrogen (N) and phosphorus (P) content of Z. mays leaf material 

used in the organic patches ± standard error of the mean for the high nitrogen (HN) 

and low nitrogen (LN) treatments (n = 3). [P] = P concentration (mg g-1 DW). n.a = not 

applicable. 

 Units  High nitrogen 
(HN) 

Low nitrogen 
(LN) 

% N % 1.57 ± 0.01 0.85 ± 0.03 
% C % 42.30 ± 0.11 41.83 ± 0.06 
Leaf [P]  mg P g-1 DW 3.08 ± 0.19 3.29 ± 0.31 
C:N ratio n.a 27:1 49:1 

 

 

5.2.5 Gas sampling and calculations 

Following the same methods as described in Chapter 4, Section 4.2.5, the organic 

patch N2O concentrations and compartment N2O, CO2 and CH4 fluxes were sampled at 

69, 84, 91 and 98 d post-planting (37, 52, 59 and 66 d post-patch addition, pre-N gas 

samples), followed by an addition of (NH4)2SO4 at 98 d post-planting (66 d post-patch 

addition) before a second set of gas sampling (post-N addition gas samples) at 48 and 

96 h post-N addition (100 and 102 d post-planting or 68 and 70 d post-patch addition). 

As there was no effect of nutrient treatment or AMF hyphal presence on CH4 
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production, these data are not reported. Gas concentration measurements from the 

CDC system were calculated as in Chapter 2, Section 2.2.3.10 followed by regression 

analysis to determine the fluxes as described in Chapter 4, Section 4.2.6. Cumulative 

fluxes were calculated by plotting the four pre-N gas sample N2O or CO2 fluxes, 

integrating the area under the curve and then dividing that value by the number of 

days and N2O concentrations in the gas probes were corrected for dilution as in 

Chapter 3, Section 3.2.8.  

 

5.2.6 Data analysis 

Data were first tested for normality and equality of variance using Kolmogorov-

Smirnov and Levene’s Homogeneity of Variance tests respectively. Proportion data 

were arcsine transformed before analysis and all data analysis was carried out in SAS 

(v9.3 SAS institute Inc., North Carolina, USA). The untransformed data are shown in all 

figures and tables. 

 

Where all eight treatments were compared, and fulfilled normality and equality of 

variance assumptions, two-way ANOVAs including block were used with Duncan’s 

multiple range post hoc tests to determine the source of any significant results. Where 

data failed normality or equality of variance assumptions, and transformation of the 

data failed to improve this, a Friedman’s non-parametric two-way ANOVA controlling 

for block with Mann Whitney U (a.k.a. Wilcoxon rank sum) post hoc tests and 

Bonferroni corrections were used on the untransformed data. Differences between 

AMA and NAMA treatment values were determined by taking the AMA-NAMA value 

and comparing to zero using either a one-sample t-test or Wilcoxon Signed ranks test 

depending on whether or not the data fulfilled normality assumptions. As in Chapter 4, 

Section 4.2.8, the pre-N addition fluxes or concentrations (at 98 d post-planting) were 

subtracted from the post-N addition fluxes or concentrations respectively (at 48 h or 

96 h post-N addition, 100 or 102 d post-planting) to obtain the change in N2O flux or 
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concentration following N addition (referred to as the ∆N2O flux or ∆N2O 

concentration, respectively).  

 

To determine if there was significant production of CO2 or N2O, the flux values were 

compared to zero within each treatment using a one-sample t-test or Wilcoxon Signed 

rank test depending on fulfilment of normality assumptions. Similarly, a one-way 

ANOVA was used to compare the N2O concentration data to the atmospheric N2O 

concentration at 0.324 ppm (Blasing, 2013), but if data failed normality assumptions, a 

Wilcoxon rank sum test was used. Relationships between variables were determined 

using Pearson’s correlations, or if variables failed normality assumptions, Spearman’s 

correlations were used.  

 

The extraradical mycelium (ERM) length density data failed equality of variance 

assumptions and were therefore log10 transformed prior to analysis using a two-way 

ANOVA. Within each nutrient treatment, the AMA – NAMA values were compared to 

zero using one-sample t-tests but the results did not differ from the Duncan’s post hoc 

tests in this case. The sand/Agsorb® moisture content data were arcsine transformed 

before analysis. The cumulative CO2 flux, cumulative N2O flux, organic patch N2O 

concentration (pre-N addition), and organic patch moisture content data failed 

normality assumptions, as did the ∆N2O flux and ∆N2O concentration data following 

(NH4)2SO4 addition, even after transformation. These data were therefore analysed 

using a Friedman’s non-parametric two-way ANOVA.  
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5.3 Results  

5.3.1 Extraradical mycelium (ERM) length densities of AMF in organic 
matter patches 

There were significantly higher ERM length densities present in the AMA patches for all 

treatments except the HNHP treatment (Figure 5.1; F7,24 = 5.67, P < 0.0001). In the 

HNHP treatment the ERM length densities in the AMA patches did not differ from 

those in the NAMA patches or from the NAMA patches in the LNLP treatment.  

 

 

Figure 5.1. Mean extraradical mycelium (ERM) length densities (m g-1 DW) in AMF 

access (AMA; solid bars) and no AMF access (NAMA; hatched bars) patches  for each 

nutrient treatment (high N high P: HNHP; high N low P: HNLP; low N high P: LNHP; low 

N low P: LNLP). Error bars represent ± standard error of the mean (n = 5). Significant 

differences among treatments are identified by different letters as determined using a 

two-way ANOVA with a Duncan’s multiple range post hoc test on log10 transformed 

data.   
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5.3.2 CO2 and N2O production in the presence or absence of AMF 
hyphae 

There was no significant difference in the CO2 flux among organic patch nutrient 

treatments (Q7 = 12.33, P = 0.090). However, there was a higher CO2 flux from the 

AMA treatments overall (S19 = 84, P = 0.0009), and the AMA CO2 fluxes were higher 

than the NAMA fluxes in the LNLP treatment (Figure 5.2, statistics in Table 5.2). There 

was also a positive relationship between the AMA and NAMA cumulative CO2 fluxes 

overall (Figure 5.3; r = 0.5847, P = 0.0068), but there was no relationship between the 

CO2 fluxes and ERM length densities in the AMA patches (r = 0.6368, P = 0.248). 

Figure 5.2. Mean cumulative CO2 flux from 69 to 98 d post-planting (37 to 66 d post-

patch addition) for each of the AMF access (AMA; solid bars), no AMF access (NAMA; 

hatched bars) and nutrient treatments (high N high P: HNHP; high N low P: HNLP; low 

N high P: LNHP; low N low P: LNLP). Error bars represent ± standard error of the mean 

(n = 5). Significant differences between AMA and NAMA CO2 fluxes within each 

nutrient treatment are indicated by an asterisk and were determined using one-

sample t-tests or Wilcoxon Signed rank tests to compare the difference to zero (*P < 

0.05, Table 5.2).  
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Table 5.2. One-sample t-tests (t) or Wilcoxon signed rank tests (S) comparing AM 

access (AMA) – no AMA access (NAMA) cumulative CO2 fluxes to zero for each of the 

nutrient treatments  (high N high P: HNHP; high N low P: HNLP; low N high P: LNHP; 

low N low P: LNLP). Test statistics are either t or S values (depending on the test used). 

df = degrees of freedom. Significant results are shown in bold (*P < 0.05). 

  Test statistic  df P 
HNHP t 0.42 4 0.694 
HNLP t 2.48 4 0.068 
LNHP S 7.5 4 0.063 
LNLP t 2.82 4 0.048* 

 

 

Figure 5.3. AMF access (AMA) compartment plotted against no AMF access (NAMA) 

compartment cumulative CO2 fluxes from 69 to 98 d post-planting (37 to 66 d post-

patch addition). The positive relationship between AMA and NAMA cumulative CO2 

fluxes was determined using a Pearson’s correlation (n = 20; r2 = 0.34).  

  

  



  Chapter 5 

  -203- 

There was no significant difference in the cumulative N2O flux among the eight 

nutrient and AMF access treatments (Figure 5.4; Q7 = 8.87, P = 0.263). There was also 

no significant difference between the AMA and NAMA N2O fluxes within each nutrient 

treatment (P > 0.1 in each case), and the N2O fluxes from the HNLP NAMA treatment 

was the only one that was significantly greater than zero (t4 = 3.37, P = 0.028). 

 

Figure 5.4. Mean cumulative N2O flux from 69 to 98 d post-planting (37 to 66 d post-

patch addition)  for each of the AMF access (AMA; solid bars), no AMF access (NAMA; 

hatched bars) and nutrient treatments (high N high P: HNHP; high N low P: HNLP; low 

N high P: LNHP; low N low P: LNLP). Error bars represent ± standard error of the mean 

(n = 5). There were no significant differences among any of the treatments. Cumulative 

N2O flux values that are greater than zero are indicated by an asterisk above the bar 

(*P < 0.05), as determined using a one-sample t-test.   
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The patch N2O concentrations did not significantly differ among treatments (Q7 = 1.6, P 

= 0.979), the N2O concentrations of the AMA and NAMA patches also did not differ 

within any of the nutrient treatments (P > 0.05 in each case) and the N2O fluxes were 

positively correlated with the patch N2O concentration (rs = 0.4993, P = 0.001). There 

was no relationship between the patch N2O concentration and the compartment CO2 

flux before N addition (98 d post-planting, 66 d post-patch addition) in either the AMA 

or NAMA treatments (AMA: rs = 0.3429, P = 0.139; NAMA: r = 0.0795, P = 0.739).  

 

5.3.3 Change in N2O production following the addition of (NH4)2SO4   

The ∆N2O flux at 48 h post-N addition was not significantly different among treatments 

(Figure 5.5a; Q7 = 5.67, P = 0.579), and only the HNLP NAMA treatment was 

significantly greater than zero (t4 = 3.01, P = 0.039). There were also no differences 

among treatments in the ∆N2O flux at 96 h post-N addition (Figure 5.5b; Q7 = 7.0, P = 

0.429), although again only one treatment (LNLP NAMA; t4 = 3.04, P = 0.039) was 

significantly greater than zero. There were also no differences in the ∆N2O 

concentrations in the organic matter patches among treatments at 48 h (Q7 = 8.2, P = 

0.315) or 96 h (Q7 = 9.87, P = 0.196) post-N addition. However, the patch N2O 

concentrations were not always greater than atmospheric N2O (0.324 ppm; Blasing, 

2013), as shown in Table 5.3.  
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Table 5.3. One-way ANOVA or Wilcoxon rank sum statistics comparing the N2O 

concentration from within the organic patches to atmospheric N2O at 0.324 ppm 

(Blasing, 2013). The comparisons were made for each treatment within each gas 

sample at pre-N addition (98 d post-planting, 66 d post-patch addition), 48 h and 96 h 

post-N addition for each of the AMF access (AMA), no AMF access (NAMA) and 

nutrient treatments (high N high P: HNHP; high N low P: HNLP; low N high P: LNHP; low 

N low P: LNLP). Asterisks show values that are significantly greater than 0.324 ppm, *P 

< 0.05, **P < 0.01 and ***P < 0.001. No values were significantly lower than 0.324 

ppm.  

 

  

Gas sample  AMF access Nutrient 
treatment 

 Test statistic P 

Pre-N AMA HNHP t4 3.73 0.020* 
  HNLP t4 6.40 0.0031** 
  LNHP S4 2.5 0.625 
  LNLP t4 1.21 0.291 
 NAMA HNHP t4 1.46 0.218 
  HNLP t4 1.20 0.298 
  LNHP t4 3.79 0.019* 
  LNLP t4 3.79 0.019* 
48 h post-N AMA HNHP t4 1.90 0.130 
  HNLP  t4 3.40 0.027* 
  LNHP t4 1.97 0.120 
  LNLP t4 1.76 0.153 
 NAMA HNHP t4 3.79 0.019* 
  HNLP t4 2.60 0.060 
  LNHP S4 6.5 0.125 
  LNLP t4 1.99 0.118 
96 h post-N AMA HNHP S4 7.5 0.063 
  HNLP t4 2.27 0.086 
  LNHP S4 7.5 0.063 
  LNLP S4 7.5 0.063 
 NAMA HNHP t4 3.15 0.034* 
  HNLP t4 2.17 0.096 
  LNHP t4 14.10 0.0001*** 
  LNLP t4 3.23 0.032* 
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5.3.4 Organic patch and sand/Agsorb® moisture contents 

There was a significant difference in the organic matter patch gravimetric moisture 

content (Table 5.4; Q7 = 15.87, P = 0.026) among treatments, but when a Bonferroni 

correction was applied (where P = 0.00179), the source of this significance could not 

be identified. There was no significant difference among treatments in the 

sand/Agsorb® gravimetric moisture content (Table 5.4; F7,28 = 1.29, P = 0.290).  

 

Table 5.4. Organic matter patch and sand/Agsorb® gravimetric moisture contents (%) 

following the harvest at 103 d post-planting (71 d post-patch addition) for each of the 

AMF access (AMA), no AMF access (NAMA) and nutrient treatments (high N high P: 

HNHP; high N low P: HNLP; low N high P: LNHP; low N low P: LNLP) ± standard error of 

the mean (n = 5). There were no significant differences among treatments in either 

sand/Agsorb® or patch moisture contents (Wilcoxon rank sum tests; P = 0.00179). 

 

 

HNHP (%) HNLP (%) LNHP (%) LNLP (%) 

Organic patch AMA 40.1 ± 3.7 46.2 ± 3.7 34.1 ± 4.8 47.0 ± 1.3 

 NAMA 46.0 ± 1.7 46.2 ± 2.5 41.7 ± 6.9 44.4 ± 2.7 

Sand/Agsorb®  AMA 23.1 ± 1.2 21.0 ± 1.0  22.6 ± 1.3 20.8 ± 1.2 

 NAMA 23.1 ± 0.7 20.4 ± 1.5 21.6 ± 1.0 19.9 ± 0.9 

 

 

5.4 Discussion 

5.4.1 The density of AMF hyphae in organic matter patches  

The higher CO2 fluxes in the AMA treatments compared to the NAMA treatments 

demonstrated, non-invasively, that the organic matter patches appeared successfully 

colonised by AMF hyphae. However, when the cumulative CO2 fluxes were split by 

treatment, this significant difference was only maintained in the LNLP treatment 

(Figure 5.2). Additionally, the ERM length densities measured in the organic matter 

patches were not related to the CO2 fluxes overall, or within each nutrient treatment. 

This is probably because, as in the previous Chapters, the measured CO2 flux was 
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derived from a combination of AMF hyphal respiration and soil microorganism 

respiration driven by decomposition (as discussed in Chapter 2, Section 2.4.3.1). 

Furthermore, since the 0.45 µm and 20.0 µm mesh membranes separating the central 

(planted) and outer (AMA and NAMA) compartments did not impede gaseous diffusion 

(Chapter 2, Section 2.3.2), the CO2 produced via root respiration in the central 

compartment may have diffused into the outer compartments, potentially concealing 

the CO2 produced by AMF hyphae, which is supported by the positive relationship 

between the AMA and NAMA CO2 fluxes.  

 

Root respiration from the central compartment may have also masked any effect of 

patch N content on AMA and NAMA CO2 fluxes. At higher C:N ratios, the rate of 

decomposition decreases (Taylor et al., 1989; Enríquez et al., 1993; Riffaldi et al., 

1996). In an incubation study, Huang et al. (2004) found that cumulative CO2 emissions 

were negatively correlated with the C:N ratio of plant residues (ranging from 8 to 118) 

that were incubated with soil for 21 d. Thus, in the present study, lower CO2 fluxes may 

have been expected from the LN, compared to the HN, treatments; yet this was not 

the case. However, this may help to explain why the LNLP treatment was the only one 

in which the AMA compartments maintained a higher CO2 flux than the NAMA 

compartments, despite not having the highest ERM length densities (Figure 5.1). 

Presumably, lower decomposition rates would reduce the background CO2 flux from 

the organic patches, and therefore make it easier to detect the contribution of AMF 

hyphae to the measured CO2 fluxes.  

 

5.4.2 The impact of nutrient content on the density of AMF in organic 
matter patches 

Extraradical AMF hyphae appear to have three main functions; finding, and 

subsequent uptake of nutrients, or searching for a new host plant from which to 

obtain C (Friese & Allen, 1991). Net N mineralisation from organic material generally 

occurs when the C:N ratio is < 25:1 with immobilisation of N occurring at C:N > 30:1 

(Hodge et al., 2000; Killham, 2006; Robertson & Groffman, 2007). In the present study, 
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the N mineralisation rates in the LN treatment were probably low as the added leaf 

material had a high C:N ratio (49:1), which is high when compared to other plant litters 

(e.g. Muhammad et al., 2011), thus the availability of inorganic N was probably limiting 

the production of the N rich hyphae (Hodge & Fitter, 2010) regardless of the 

availability of P. This could explain why the hyphal lengths measured were lower at 71 

d post-patch addition in the LN treatments (LNHP: 1.37 ± 0.24 m g-1 DW; LNLP: 1.21 ± 

0.28 m g-1 DW) than those in Chapter 2 at 58 d post-patch addition (2.20 ± 0.84 m g-1 

DW). In contrast, there may have been slightly higher levels of N mineralisation in the 

HN treatment, as the added leaf material had a C:N of 27:1, with saprotrophic fungi, 

but not bacteria, still being able to cause net N mineralisation (Hodge et al., 2000). 

There may have been an increased availability of mineralised inorganic N in the HN 

treatment, for which the AMF hyphae could compete. This N could then be used by the 

AMF for growth, producing more AMF hyphae and a further increase in nutrient 

uptake (e.g. P), consequently producing ERM length densities at 71 d post-patch 

addition (HNLP: 2.99 ± 0.70 m g-1 DW), that were closer to those measured in Chapter 

2 at 79 d post-patch addition (3.84 ± 1.57 m g-1 DW).  

 

However, the ERM length densities measured in the HNLP treatment were almost 

double those measured in any of the other treatments (Figure 5.1), which is perhaps 

counter-intuitive since the highest N and P availability would have been expected in 

the HNHP treatment. The ERM length densities measured in the HNLP treatment were 

similar to those reported in other studies where the AMF hyphae have proliferated in 

organic material; thought to be a response to an increase in nutrient availability such 

as P or N (St John et al., 1983; Joner & Jakobsen, 1995; Ravnskov et al., 1999; Leigh et 

al., 2009). The only difference between the HNHP and HNLP treatments was the supply 

of P; it may be that the addition of Pi was inhibitory for some of the microorganisms 

present, possibly as a result of osmotic effects (Madigan & Martinko, 2006). However, 

other studies have used concentrations of 25 mM and above of NaH2PO4 or K2PO4 to 

create ‘patches’ in soils of high Pi concentration to determine both root (e.g. Auken et 

al., 1992; Duke & Caldwell, 2000) and AMF hyphal (Cui & Caldwell, 1996) responses to 

patchy P availability, and these additions were not detrimental to root or hyphal 
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growth. Furthermore, the addition of a 25 mM solution of NaH2PO4 to forest soils in a 

field study resulted in an increase in microbial biomass (Liu et al., 2012a). Since the 

ERM length densities measured in the LNHP treatment were in the range of those in 

previous experiments (Chapters 2, 3 and 4), it was therefore unlikely that the addition 

of 25 mM NaH2PO4 was negatively affecting the microorganisms present in this study.  

 

The uptake of P by external hyphae can be up to 10x slower than the rate of P transfer 

at the symbiotic interface with the host plant (Sukarno et al., 1996), therefore the AMF 

hyphae are usually expected to increase the surface area over which P is absorbed. 

However, in the HNHP treatment, the ERM length densities were not as high as in the 

HNLP treatment. Even in the HN treatments used here, N was probably limiting, as the 

C:N ratios of the organic matter patches were > 20:1. Thus, in the HNHP treatment, 

rather than produce more N rich hyphae, it may have been more efficient for the AMF 

to increase the number of hyphal Pi transporters or Pi uptake rates in response to the 

higher levels of P. This could also explain why the HNHP treatment exhibited lower 

ERM length densities than the HNLP treatment. In a microcosm study, Cavagnaro et al. 

(2005) used fine meshes to prevent root, but allow AMF hyphae, access to an attached 

compartment in which there were three different levels of added KH2PO4, equivalent 

to bicarbonate extractable P concentrations of 9, 29, and 68 µg g-1 soil (P0, P1 and P2 

respectively). Hyphae from G. intraradices proliferated in the P1 treatment, but less so 

in the P2 treatment, even though the acquisition of P remained the same. Cavagnaro 

et al. (2005) suggested that the AMF may have increased the rate of Pi uptake or 

number of Pi transporters in response to encountering a higher concentration of Pi, 

rather than responding through increased hyphal production.  

 

Evidence from studies using both split-plate (transformed ‘hairy’ root cultures) and 

whole plant (non-transformed) systems show that high affinity Pi transporters can be 

up-regulated in AMF hyphae when they are exposed to an increased Pi supply (in the 

range of 1-320 µM; Maldonado-Mendoza et al., 2001; Fiorilli et al., 2013), which could 

be occurring in the HNHP treatment here. However, these high-affinity transporters 
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are down-regulated at unusually high Pi concentrations (3.5 mM Pi; Maldonado-

Mendoza et al., 2001; Fiorilli et al., 2013). Therefore, up-regulation of high affinity Pi 

transporters would only be relevant in this study if the soluble Pi concentration that 

the hyphae were exposed to was well below 3.5 mM. However, there is some evidence 

for passive low affinity Pi transporters in AMF (Thomson et al., 1990), which could be 

more important under higher P availability, but their role in nutrient uptake is poorly 

understood (Smith & Read, 2008). There is also evidence that active H+-ATPases 

(capable of driving H+-phosphate co-transport; Lei et al., 1991) exist in AMF and may 

energize Pi uptake across an electrochemical gradient in AMF hyphae (Smith & Smith, 

2011b).  

   

Alternatively, if significant quantities of P leached out of the organic patch bag along 

with N in the HNHP treatment, the AMF hyphae may have proliferated outside the 

patch and therefore were not accounted for here. High levels of fertiliser addition can 

result in P leaching (Withers et al., 2001), and as the P release in the HNLP treatment 

would be lower, this could also account for why this did not occur in the HNLP 

treatment. The P may also have reached the plant compartment and thus reduced the 

P limitation of the host plant. Generally fertilisation of soils by adding inorganic N and 

P will reduce colonisation of plant roots by AMF and production of AMF hyphae (Liu et 

al., 2012b) but in sites that are heavily polluted with P, AMF can still be present and 

are thought to provide the host plants with N when it is limiting (Blanke et al., 2005; 

Blanke et al., 2011). In this case as the plants were both N and P limited, the hyphae 

would still be expected to respond to the higher N availability in the organic matter 

patches and the response of the HNLP treatment indicates that N was clearly limiting. 

Furthermore, it is felt that significant P leaching is unlikely as the majority of P would 

have been rapidly fixed following addition to the patches (Section 5.1).  
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5.4.3 The effect of AMF presence on N2O production in organic matter 
patches of varying N and P content 

The organic patches did not produce any N2O between 37 to 66 d post-patch addition 

(Figure 5.4) which is in contrast to the results in Chapters 2, 3 & 4, and therefore any 

impact of AMF presence on N2O production could not be assessed. This was probably 

because the milled leaf material in the patches had considerably higher initial C:N 

ratios (27:1 and 49:1 in the HN and LN treatments respectively) than in the previous 

Chapters (where the C:N ratios ranged from 11:1 to 16:1). As discussed in Section 

5.4.2, mineralisation rates are reduced in material with a C:N ratio < 30:1 (Hodge et al., 

2000; Killham, 2006; Robertson & Groffman, 2007). Ernfors et al. (2008) found that 

88% of the estimated total N2O emissions from drained organic forest soils in Sweden 

was from soils with a C:N ratio below 25:1, and other studies have shown the C:N 

ratios of both organic material (Khalil et al., 2002) and plant residues (Huang et al., 

2004; Toma & Hatano, 2007) were negatively correlated with the N2O production 

during incubation. Nitrification rates are also decreased in the presence of residues 

with higher C:N ratios (Eiland et al., 2001; Robertson & Groffman, 2007). Thus, the C:N 

ratio of decomposing material is clearly an important control on N2O production, and 

in the current experiment was probably the main factor limiting the production of N2O. 

In the HN treatment, it is possible that low levels of N mineralisation may have 

occurred (Section 5.4.2), but following the results in Chapter 4, the N2O producers 

were expected to be predominantly nitrifiers, which are poor competitors for NH4 (e.g. 

Verhagen et al., 1995; Bollmann et al., 2002), and were therefore probably N limited in 

both HN and LN treatments regardless of AMF hyphal presence.    

 

Generally, the decomposition of organic materials with a C:P ratio < 200:1 will result in 

P mineralisation, whereas those with C:P > 300:1 will result in immobilization of P and 

material with a C:P of 200:1 to 300:1 will result in no net change in P availability 

(Plante, 2007). The C:P of the plant material before any inorganic P addition here was 

137:1 (HN) or 127:1 (LN), therefore as these were well below the 200:1 threshold, net 

mineralisation of P should have occurred, thus P should not have been limiting to N2O 
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producers in the NAMA treatments, yet no N2O was produced. It would appear, 

therefore, that it was N rather than P that was limiting to the N2O producers here.   

 

5.4.4 The effect of (NH4)2SO4 addition on N2O production in organic 
patches of varying N and P content 

While the N2O fluxes did not increase following the NH4 addition, the concentration of 

N2O in the patches did marginally increase at 96 h post-NH4 addition, but only very 

slightly (Table 5.3). Thus, dilution of the N2O produced from the patches in the 

headspace of the outer compartments was probably preventing the N2O from being 

detected in the N2O fluxes. The source of N2O in Chapter 4 was likely to have been via 

nitrification (see Chapter 4, Section 4.4.4.1) and, as the experimental design was very 

similar here, using the same soil and similar leaf material amendments in the organic 

patches (Section 5.2.4), a nitrification pathway was predicted to be the main N2O 

source here too. As discussed above, there were probably few nitrifiers present in the 

patches preceding (NH4)2SO4 addition and nitrifiers can take from 8 h up to a number 

of days to double in number (Belser & Schmidt, 1980; Woldendorp & Laanbroek, 1989; 

Prosser, 2007). Therefore, the slow growing nitrifiers were probably simply 

outcompeted by faster growing organisms for any available NH4, immobilizing the 

majority of it before the nitrifiers could respond, regardless of the presence of AMF 

hyphae (Killham, 2006).  

 

5.4.5 Conclusions  

AMF hyphae successfully colonised the organic matter patches in this experiment, as 

indicated by the increased CO2 fluxes from the AMA treatments, although CO2 fluxes 

were not related to the ERM length densities measured. This may be because the CO2 

measured was derived from a combination of root, microbial and hyphal respiration. 

The ERM length densities were three times higher in the HNLP treatment compared to 

the other three nutrient treatments, possibly because the higher N availability allowed 

the AMF hyphae to proliferate in search of nutrients. In contrast, the ERM length 
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densities were much lower in the HNHP treatment. The AMF hyphae may have 

responded to the increased P availability by increasing Pi uptake or the number of Pi 

transporters rather than investing in more hyphal structures when N was limiting.  

 

The patches were producing very little or no N2O in all four nutrient treatments, 

regardless of AMF hyphal presence and this was probably because the organic patch 

C:N ratios were too high for significant levels of mineralisation to occur, demonstrating 

that the availability of N was very important to the N2O production in these patches. 

Addition of NH4 did not increase the N2O fluxes, and only slightly increased the N2O 

concentration measured in some of the NAMA patches, probably because the slow 

growing nitrifiers were being outcompeted for NH4. Therefore, it was not possible to 

demonstrate any interactions between AMF hyphae, N or P availability and N2O 

production in the organic matter patches in this study. Clearly, the experiment needs 

to be repeated, but with patches that have lower C:N ratios (e.g. below 20:1), or using 

LNLP patch material with a high C:N ratio together with additions of NH4 and/or 

inorganic NaH2PO4 at regular intervals to create the four nutrient treatments; current 

evidence suggests it is the available N in the soil which dominates any interactions 

between N2O production and AMF hyphae.  
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 General Discussion Chapter 6.

6.1 Summary of the initial aims  

Arbuscular mycorrhizal fungi (AMF) can influence both carbon (C) (Jones et al., 2009) 

and nitrogen (N) cycling (Veresoglou et al., 2012b) in soils. Therefore it was predicted 

that the gaseous outputs of these cycles, including CO2, CH4 and N2O, were likely to be 

affected by the presence of AMF hyphae in soils, and could have major implications for 

our understanding of the soil-atmosphere fluxes of these important greenhouse gases 

(GHG). In order to determine if this was the case, a microcosm was designed to allow 

measurement of CO2, CH4 and N2O fluxes in the presence or absence of AMF hyphae 

using either closed static chamber (CSC) or closed dynamic chamber (CDC) methods 

(described in Chapter 2, Section 2.1). The microcosms had an AMF access (AMA) 

and/or a no AMF access (NAMA) compartment that either allowed or prevented AMF 

hyphal access, respectively (Chapter 2, Section 2.2.3.2). Gas probes were also designed 

to enable gas sampling from within the organic matter patches, with subsequent 

measurement of the concentrations of N2O and CO2 (Chapter 3, Section 3.2.1). The gas 

probes were intended to enable quantification of N2O production in the organic matter 

patches, as this was found to be the main site of N2O production (Chapter 2, Section 

2.4.4). Using these methods the following questions were addressed: 

• Can the compartment CO2 fluxes be used as a non-invasive indicator of AMF 

hyphal presence in microcosm studies? 

• Do the fluxes of CH4 or N2O differ when AMF hyphae are present compared to 

when they are absent?  

• Which pathway(s) of N2O production are affected by the presence of AMF 

hyphae?  

• Does the relative availability of N and/or P affect the production of N2O when 

AMF hyphae are present? 
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6.2 The interactions between AMF hyphae and CO2 or CH4 fluxes 

In two of the three experiments in which CO2 fluxes were measured (Chapters 2, 4 and 

5), the CO2 flux increased in the presence of AMF hyphae, enabling their presence and 

activity in AMF hyphal access (AMA) compartments to be detected without destructive 

sampling. Where the CO2 fluxes did not differ between the AMA and no AMF hyphal 

access (NAMA) compartments, the extraradical mycelium (ERM) length densities were 

found to be uncharacteristically low (Chapter 4). It is therefore probable that there 

was a threshold ERM length density that was required in the AMA compartment 

before the CO2 fluxes were sufficient to indicate AMF hyphal presence. In Chapters 2 

and 5, the ERM length densities measured in the organic matter patches exceeded 1 m 

g-1 DW before CO2 fluxes could be relied upon to detect the presence of AMF hyphae. 

In contrast, in Chapter 4, the organic patch ERM length densities were only 0.88 ± 0.08 

m g-1 DW (at 72 d post-patch addition) and there was no difference in the CO2 fluxes, 

probably because the ERM length densities were too low to affect the CO2 fluxes. The 

CO2 concentrations within the organic matter patches were also not informative with 

regards to AMF hyphal presence (Chapters 3 and 4), probably because the 

concentration of CO2 within the patches was very high, including large background 

respiration contributions from sources other than AMF hyphae. Also, when measuring 

CO2 production within the organic patch alone, the AMF hyphal respiration from 

outside the patch (in the surrounding sand/Agsorb®) is not included. Therefore, the 

presence of AMF hyphae would be difficult to determine using patch CO2 

concentrations, as AMF respiration would be a relatively low contribution to a larger 

respiratory flux.  

 

Existing methods for assessing AMF hyphal presence often limit the number of 

replicates possible in experiments and require destructive samples to quantify hyphal 

presence, either via hyphal extractions (e.g. Hodge & Fitter, 2010) or phospholipid 

fatty acid analysis (PLFA; e.g. Li et al., 2013). Destructive sampling can disturb the soil, 

and soil disturbance can affect the fluxes of CO2 (Omonode et al., 2007), CH4 

(Kessavalou et al., 1998) and N2O (MacDonald et al., 2011). Therefore, there is a 
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technical conflict between minimising disturbance when quantifying GHG fluxes, and 

checking that units are sufficiently colonised by AMF hyphae before treatment 

application. The microcosm based studies in this thesis have demonstrated that, while 

not necessarily directly related to measured ERM length densities (Chapter 2, 4 and 5, 

also see Chapter 4, Section 4.4.1), the CO2 flux from AMA and NAMA compartments 

can be compared and used to determine whether AMF hyphae are present at ERM 

length densities exceeding 1 m g-1 DW in the AMA compartments. Hyphal lengths of 1 

m g-1 DW and above are often reported in microcosm (Leigh et al., 2009; Li et al., 2013) 

and field (Treseder & Allen, 2002; Mummey & Rillig, 2006) studies, and therefore it 

may also be possible to use CO2 as a non-invasive indicator of AMF hyphal presence in 

other microcosm and field systems.   

 

The presence of AMF hyphae had no significant effect on the CH4 fluxes reported in 

Chapter 2 (Section 2.3.3.4), and it was decided to focus attention on the observed 

interactions with N2O; consequently, CH4 was not further discussed in Chapters 3 to 5. 

However, CH4 fluxes were measured using the CDC system in Chapters 4 and 5 

(Chapter 4, Section 4.2.5 and Chapter 5, Section 5.2.5), and, consistent with the 

findings described in Chapter 2, there was also no effect of AMF hyphae on CH4 fluxes 

in these experiments. In Chapter 2, the pre-harvest CH4 oxidation rates were not 

affected by the presence of AMF hyphae, and following the harvest, even under 

optimal conditions for CH4 oxidation (ca. 20 ppm CH4), there was also no effect of AMF 

hyphae on CH4 oxidation. There are various ways in which AMF hyphae could 

potentially interact with CH4 production or consumption (described in Chapter 2, 

Section 2.1), the most likely being the effect of AMF hyphae on soil O2 availability, 

either via AMF hyphal respiration, increased decomposition rates in the presence of 

AMF (Hodge et al., 2001; Atul-Nayyar et al., 2009) or changes in soil structure (Rillig & 

Mummey, 2006) and water retention (Augé et al., 2001); despite these possible 

effects, no such impacts were observed in Chapters 2, 4 or 5. It is therefore likely that 

either the influence of AMF hyphae on soil O2 availability or other controlling factors 

(e.g. C availability or pH) were not sufficient to impact on the activity of CH4 producers 

and consumers under the conditions used here.  
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6.3 AMF hyphae significantly affect N2O production in soils and 

organic matter patches 

The presence of AMF hyphae has been shown here to reduce the production of N2O 

and, in Chapter 4, the N2O was probably produced via a nitrification pathway as this 

effect was exaggerated by NH4 addition (Table 6.1; Chapters 3 & 4). However, AMF 

hyphae have also been shown to increase the production of N2O when the hyphae are 

severed (Table 6.1; Chapter 2). Only one other study, to date, has investigated the 

impact of AMF hyphae on N2O production, finding no interaction, but this was under 

quite contrasting conditions (Cavagnaro et al., 2012). Cavagnaro et al. (2012) worked 

in an organic tomato production system, using either wild type AM tomatoes or non-

AM mutant tomatoes, with the production of 14+15N2O or 15N2O from mycorrhizosphere 

soils following the application of 15N-KNO3 not differing when the plants present were 

either AM or non-AM. Unfortunately, N2O fluxes before KNO3 addition were not 

reported by Cavagnaro et al. (2012), therefore it is possible that any AMF mediated 

effects preceding KNO3 addition could have been masked by the addition of KNO3. A 

similar effect was found in Chapter 3, where there was no longer a difference in the 

N2O concentration of AMA and NAMA patches within 48 h of NH4NO3 addition, 

although by 96 h the N2O concentration in the AMA treatment dropped below that of 

the NAMA treatment again; Cavagnaro et al. (2012) did not measure the N2O fluxes 

beyond 48 h post-KNO3 addition. It is therefore possible that Cavagnaro et al. (2012) 

missed any AMF mediated effects on nitrifiers, by stimulating the denitrifier activity 

beyond that of the nitrifiers and failing to quantify N2O production in the absence of 

fertiliser addition. 
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Table 6.1. The observed changes in N2O production in the presence of AMF hyphae found in this thesis. The increase (↑), decrease (↓) or no 

significant difference (n.s) in production of N2O in AMF access (AMA) compared to no AMF access (NAMA) treatments are shown (n.a = not 

applicable). Hypothesised sources of N2O are listed, and those in bold are supported by additional information outlined in the relevant 

Chapter. Experiments are listed in order of whether or not N2O was produced, and if so, how the AMA treatment differed from the NAMA 

treatment; dashed lines group the data by the effect of AMF hyphae on N2O production. The timing (pre- or post- harvest), source of N2O 

measurement (patch, soil or compartment which includes both patch and soil or sand/Agsorb® fluxes) and additional treatments are detailed. 

Chapter Was N2O produced? AMA vs NAMA N2O 

production 

Hypothesised N2O source Timing Measured N2O Additional Treatment 

2 Yes ↑ Denitrification Post Patch n.a 

2 Yes ↑ Denitrification Post Soil + KNO3 
3 Yes ↓ Nitrification Pre Patch n.a 
4 Yes ↓ Nitrification Pre Compartment, Patch n.a 
4 Yes ↓ Nitrification Pre Compartment, Patch Patch + NH4 
2 Yes n.s Unknown Pre Compartment n.a 
2 Yes n.s Denitrification Post Soil + glucose 
3 Yes n.s Nitrification & Denitrification Pre Patch + NH4NO3 
4 Yes n.s Nitrification Pre Patch Severed hyphae 
2 No n.a n.a Post Soil n.a 
4 No n.a n.a Pre Compartment, patch Patch + NO3 
5 No n.a n.a Pre Compartment, Patch Patch N and P content 
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6.3.1 Interactions between AMF and denitrification pathways 

In this thesis, the addition of KNO3 to soils containing AMF hyphae resulted in an 

increase in N2O production, but only after the hyphae had been severed (Table 6.1; 

Chapter 2). In contrast, when KNO3 was added to soils containing intact AMF hyphae 

(Table 6.1; Chapter 4), there was no significant difference in N2O produced between 

AMA and NAMA treatments, suggesting that in the intact hyphosphere, the 

interactions between AMF hyphae and N2O produced via denitrification were minimal. 

 

Cavagnaro et al. (2012) compared rhizosphere soils to mycorrhizosphere soils, in which 

one may expect a reduction in C available to denitrifiers as result of decreased root 

exudation (Bansal & Mukerji, 1994). This could partly explain the decrease in the 

number (Amora-Lazcano et al., 1998) or changes in the community structure 

(Veresoglou et al., 2012a) of denitrifiers reported in other studies (Table 6.2). 

However, there was no difference in the production of N2O from mycorrhizosphere 

and rhizosphere soils measured by Cavagnaro et al. (2012), and in the study of 

Veresoglou et al. (2012a), plant age was the main explanatory variable for the changes 

in denitrifying community, while AM status was secondary. However, the population 

or community of denitrifiers are not necessarily good indicators of N2O production in 

response to changing environmental conditions (Attard et al., 2011), as different 

species of denitrifiers can have different potential to denitrify (Ka et al., 1997). 

Nonetheless, there is some evidence for AMF hyphae interacting with N2O produced 

through the process of denitrification in this thesis, probably as a result of a peak in C 

availability acting as a proximal control (sensu Wallenstein et al., 2006) on the activity 

of the denitrifiers present when the AMF hyphae were severed at harvest (Table 6.1; 

Chapter 2), but this is only under certain conditions; this interaction could be very 

different in the mycorrhizosphere, which was not studied here.  
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6.3.2 Interactions between AMF and nitrification pathways 

As N2O can be a side product of nitrification (Hooper & Terry, 1979; Stein, 2011), N2O 

production can be linearly related to the rate of nitrification (Khalil et al., 2004). 

Veresoglou et al. (2011a) reported a series of experiments (three mesocosm and one 

field based) in which the potential nitrification rate (PNR) was lower in soils 

surrounding plants that were AM, compared to those that were weakly AM. While the 

method used by Veresoglou et al. (2011a) for determining the mycorrhizal treatments 

was not ideal (they compared the percentage colonisation of plant roots by AMF, 

which may not necessarily represent AMF activity (Hart & Reader, 2002; Smith & 

Smith, 2011a), the findings of Veresoglou et al. (2011a) are in agreement with the 

results obtained here in Chapters 3 and 4 (Tables 6.1 and 6.2). In Chapters 3 and 4, the 

production of N2O decreased in the AMA treatments compared to the NAMA 

treatments, thus, decreased PNR rates in the presence of AMF (Veresoglou et al., 

2011a) could explain the reduced N2O production in the AMA treatments following the 

NH4 addition (Chapter 4), the substrate for nitrification (Prosser, 2007).  

 

In a further study by Veresoglou  (2012), actual nitrification rates did not differ in 

hyphosphere compared to soils in which AMF hyphae were denied access, yet, in the 

mycorrhizosphere, the actual nitrification rates increased when AMF were present 

(compared to non-AM rhizosphere soils). This latter study did not include protozoa, 

which may have impacted upon the competitive interactions between AMF and 

nitrifiers in the hyphosphere (see Chapter 4, Section 4.4.4.2). A reduction in C 

exudation in the mycorrhizosphere, compared to non-AM rhizosphere soils, can result 

in fewer saprotrophic microorganisms being present (Christensen & Jakobsen, 1993; 

Bansal & Mukerji, 1994), which may have caused less competition from heterotrophs 

for NH4. Furthermore, their use of sterilised soils that were re-inoculated with bacteria 

was probably not appropriate for studying slow growing nitrifiers alongside AMF 

hyphae (Veresoglou, 2012).  
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Table 6.2. Reported effects of AMF presence on N2O producers or N2O producing pathways in either mycorrhizosphere (vs. non-AM or low-AM 

rhizosphere), or hyphosphere (vs. soil only) soils from the published literature. The effect of AMF presence on the measured variable is shown 

here as an increase (↑), decrease (↓) or no significant change (n.s) in the measured variable. Ammonia oxidisers = AO.    

Reference Location of interactions Measured variable Effect of AMF  Limitation of the study 

Veresoglou et al. (2011) Mycorrhizosphere Potential nitrification rate ↓ AMF treatment may be misleading 

Amora-Lazcano et al. (1998) Mycorrhizosphere Number of: 
° Ammonia oxidisers (AO) 
° Ammonifiers 
° Denitrifiers 

 
↑ 
↓ 
↓ 

 
Doesn’t include AO activity and AO 
numbers in control were not stable 

Cavagnaro et al. (2007) Mycorrhizosphere AO bacteria:  
° Community composition 
° Population density 

 
n.s 
n.s 

Doesn’t include AO activity, short 
duration (2 months), AOB only 

Veresoglou (2012) ° Hyphosphere  
° Mycorrhizosphere  

Actual nitrification rate n.s 
↑ 

Excluded predators & re-inoculation of 
sterilised soil with microbes not 
suitable for slow growing nitrifiers 

Cavagnaro et al. (2012) Mycorrhizosphere 14+15N2O and  15N2O production 
following 15N-KNO3 addition 

n.s High variability in N2O fluxes,  focus on 
denitrification as only measured N2O 
after KNO3 addition 

Veresoglou et al. (2012a) Mycorrhizosphere Denitrifying community Community change  Response mainly driven by plant age  
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Other studies (summarised in Table 6.2) have considered the effect of AMF presence 

on the number and communities of nitrifying organisms i.e. the organisms which carry 

out the pathways which potentially lead to N2O production. However, the number of 

nitrifiers are not necessarily related to the rate of nitrification (Klopatek & Klopatek, 

1997), and the methods used to quantify the ammonia oxidizers (AO) differ between 

studies, making direct comparisons difficult (Smith et al., 2001; Cavagnaro et al., 2007). 

These published studies have been inconclusive, with an increase (Amora-Lazcano et 

al., 1998) or no change (Cavagnaro et al., 2007) in numbers of ammonia oxidisers (AO) 

reported in the presence of AMF. There are also many other N2O producing organisms 

including heterotrophic nitrifiers (e.g. Laughlin et al., 2008), and ammonia oxidising 

archaea (AOA; e.g. Leininger et al., 2006) that have not been studied alongside AMF. 

Despite this, there is increasing evidence for AMF interacting with nitrification in both 

the published literature (Table 6.2) and this thesis (Table 6.1), which may result in a 

reduction in the production of N2O in the hyphosphere. 

 

6.3.3 Specifying the N2O pathways that are affected by AMF hyphae 

There are a range of methods involving stable isotopes that could be used to further 

specify the source of N2O production that is affected by the presence of AMF hyphae, 

but to date no single method can identify every N2O source in soils. Using 15N or 18O 

enrichment alone cannot distinguish between nitrifier nitrification and nitrifer 

denitrification pathways (Bateman & Baggs, 2005), or account for the exchange of 

oxygen between nitrogen oxides and water (Kool et al., 2011). Alternatively, source 

partitioning (quantifying the distribution of naturally abundant 15N between the 

central and outer (δ15Nα and δ15Nβ) N atoms in N2O) can help to broadly identify the 

source of N2O without the need for 15N enrichment (Ostrom & Ostrom, 2011), but it is 

only useful in discriminating between pathways which use different enzymes, and 

therefore doesn’t separate N2O produced via nitrifier or denitrifier denitrification. Kool 

et al. (2011) described a method of dual labelling using 15N and 18O which can identify 

between N2O produced from main pathways in soils. However, this method does not 

account for all N2O producing pathways (e.g. codenitrification and DNRA) and so far 
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has only been demonstrated under laboratory conditions using soil incubations (Kool 

et al., 2011). The main controls on N2O production (i.e. N, C or O2 availability) can be 

split by nitrification and denitrification pathways (Baggs & Philippot, 2010). Therefore, 

the techniques that are currently available to identify the source of N2O will probably 

not tell us much more about the interactions between AMF hyphae and N2O 

production than was achieved by additions of NH4 and/or NO3 as in Chapters 2 and 4. 

Instead, it would be more interesting to determine how the functions of N2O 

producers change in the presence of AMF hyphae. 

 

6.3.4 The drivers of the interactions between AMF hyphae and N2O 
production 

Evidence in Chapter 4 suggested that nitrifiers producing N2O could not respond to an 

NH4 addition in the presence of AMF hyphae, but the reason for this was not clear 

(Table 6.1). Possible explanations include a short term proximal effect, such as 

competitive exclusion of nitrifiers by AMF hyphae, or longer term distal effects of AMF 

hyphal presence on the nitrifying community composition (described in Chapter 3, 

Section 3.4.4), via N, P or O2 limitation, or pH changes. The hyphae of AMF are N-rich 

(Hodge & Fitter, 2010), and can also transfer N to their host plant (Nuccio et al., 2013), 

thus AMF have a high N requirement, and consequently may be able to outcompete 

other soil organisms for N (see Chapter 4, Section 4.4.4.2). Ectomycorrhizal fungi have 

been found to outcompete other soil microorganisms (e.g. saprotrophs) and therefore 

decrease decomposition rates (the ‘Gadgil effect’; Gadgil & Gadgil, 1971; Gadgil & 

Gadgil, 1975). One suggested mechanism is that ECM have a competitive advantage 

over other soil microorganisms for nutrient uptake (e.g. N) as they are not C limited 

(Bending, 2003). Similarly, AMF obtain C from their host plants (Paul & Kucey, 1981) 

and, may also have a competitive advantage over other soil microorganisms. However, 

unlike ECM, AMF are not thought to have saprotrophic capabilities (Smith & Read, 

2008) and so may actually compete more intensely for nutrients with the surrounding 

microbial community (Leigh et al., 2011). Alternatively, it could be argued that soil N 

transforming organisms have a spatial advantage over AMF hyphae (typically 2 - 20 µm 
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diameter; Friese & Allen, 1991) since they can be smaller. However, although less 

mobile than NO3, NH4 is still mobile in soils, with a diffusion coefficient in the range of 

4 x 10-12 to 1 x 10-10 m2s-1 (Fitter & Hay, 2002), and thus, at that scale, diffusion 

gradients of NH4 and NO3 are probably not large enough to exclude AMF.  

 

While AMF hyphae may influence soils in the hyphosphere in various ways (including P 

or copper limitation, pH changes, changes in O2 availability or production of 

allelochemicals; outlined in Chapter 3, Section 3.1), competition for N alone is likely to 

be great enough to reduce rates of nitrification as AO are thought to be poor 

competitors for NH4 (Verhagen et al., 1995; Bollmann et al., 2002). Therefore, the 

observed decreases in N2O production in the presence AMF hyphae are probably a 

side-effect of AMF outcompeting nitrifiers for NH4. In comparison, an alternative AMF 

driven mechanism to reduce the competition from nitrifiers for NH4 such as increased 

production or transport of allelochemicals to inhibit nitrifiers, as proposed by 

Veresoglou et al. (2011a), would require more ‘effort’ from the AMF to achieve the 

same goal, and therefore seems less likely. 

 

Veresoglou et al. (2011a) tried to determine if nitrogen (N) limitation was the main 

cause for the change in PNR. Three forb species were grown in upland grassland soil in 

pot-based monocultures for six months. While a single N addition as NH4NO3 at the 

beginning of the experiment increased the PNR in soils from all three forbs (one AM, 

two non-AM), the soils from the AM forb still exhibited a lower PNR than soils from the 

two non-AM species. Similarly, in Chapter 4, the change in N2O production 48 h after 

NH4 addition was lower in the AMA than in the NAMA treatment. The application of a 

single dose of N is unlikely to release the slow growing nitrifiers (Woldendorp & 

Laanbroek, 1989) from N limitation given they may not be able to respond as quickly as 

other organisms to a sudden peak in available N, and would therefore be outcompeted 

by other organisms (Verhagen et al., 1995). Thus, long term N limitation of nitrifiers 

was not sufficiently assessed in Chapter 4 or in the study by Veresoglou et al. (2011a). 

In contrast, the experiment described in Chapter 5 was designed to identify the 
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relative importance of N and P availability on N2O production in the presence of AMF 

hyphae. However, because the C:N ratios (above 20:1) of the milled leaf material used 

in the organic patches was probably too high for N mineralisation (Robertson & 

Groffman, 2007) or N2O production (Ernfors et al., 2008), there was no N2O produced. 

Thus, If the experiment in Chapter 5 was repeated with organic patches of higher N 

content (lower C:N ratios), the relative important of N and P availability on N2O 

producers in the presence of AMF hyphae may be revealed.  

 

Alternatively, since it is hypothesised from the results in Chapters 3 and 4 that AMF 

hyphae reduce the availability of NH4 in the patches via competition, inorganic N 

additions could be used to determine the relative importance of long versus short term 

availability of NH4 on N2O production in the presence of AMF hyphae. This could be 

achieved by adding inorganic N at regular intervals to organic patches to create non-

limiting conditions of N. Therefore, N could be added as NH4 or NO3 to determine the 

relative importance of each of these forms of N. However, since NH4 is converted to 

NO3 via nitrification (Wrage et al., 2001), it would be necessary to include a 

nitrification inhibitor. Bateman and Baggs (2005) used a nitrification inhibitor to 

determine the relative contribution of nitrification and denitrification to N2O 

production in soils with different water filled pore spaces. Since non-invasive isotopic 

methods are still under development (Baggs, 2008; Butterbach-Bahl et al., 2013), a 

nitrification inhibitor may be the most effective method at present for separating 

these pathways. If there was no effect of AMF hyphae on N2O production in the 

presence of increased NH4 or NO3, then N limitation could be assumed. If this was not 

the case, further study manipulating each of the proposed drivers (such as O2, pH etc.) 

in turn would then be appropriate to determine the driver.  

As N2O production can be affected by the availability of O2 (Khalil et al., 2004), which in 

turn can be controlled by the water content of the medium (Franzluebbers, 1999; 

Moyano et al., 2013), in all but one of the experiments outlined here (Chapters 2, 4 

and 5) the moisture content of the outer compartments was equalised weekly. 

Nonetheless, the patch moisture content was higher in the AMA treatment by the final 



  Chapter 6: General Discussion 

  -227- 

(105 d post-planting) harvest in Chapter 2 and the positive correlations between patch 

moisture content and N2O concentration (regardless of AMF hyphal presence) in the 

water addition treatments (but not the NH4NO3 addition treatments) demonstrated 

the importance of moisture content for N2O production in Chapter 3 (Section 3.3.4).  

 

An increase in the water content of soils can change conditions for microorganisms in 

one of two ways. Firstly, it may increase the mobility of nutrients (such as NH4 or NO3) 

via diffusion (Moyano et al., 2013), which is particularly important in dry soils, and 

consequently was unlikely to have had an impact in the experiments in this thesis as 

the patches were quite wet, regardless of presence of AMF hyphae. Secondly, because 

O2 diffusion through water is slower than in air (Schlesinger, 1997), an increase in 

water content can reduce the availability of O2 for nitrifiers, potentially reducing N2O 

production via aerobic nitrifier nitrification (Wrage et al., 2001). There was a negative 

correlation between organic patch moisture content and pre-harvest N2O flux in the 

AMA treatment, but not NAMA treatment in Chapter 2 (r2 = 0.34) and Chapter 4 (r2 = 

0.13), but a negative relationship between organic patch moisture content and N2O 

concentration was found in the NAMA (r2 = 0.46), but not the AMA treatment in 

Chapter 3 (Section 3.3.4). There was also no relationship between organic patch 

moisture content and post-harvest patch N2O production in Chapter 2. Similarly, the 

only evidence for a negative relationship between N2O and CO2 production (a proxy for 

respiration and therefore O2 availability) was found in the AMA treatment in Chapter 

3. These variable results for relationships and effects of moisture contents on patch 

N2O production may be a result of Type 1 error, especially considering the low 

statistical significance in some cases. Taken together, this suggests that water content 

and/or O2 availability is unlikely to be the only driver of the observed changes in N2O 

production in the presence of AMF hyphae, with N and C availability also being as, if 

not more important in determining the rate of N2O production under these non-

saturated conditions.   
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Whatever the cause is for the observed changes in N2O production in the presence of 

AMF hyphae, there is very little evidence in the experiments outlined in this thesis for 

AMF hyphal length densities being related to N2O production (but see Chapter 2, 

Section 2.3.3.3). While the AMF hyphal length densities can be positively related to the 

plant N captured from hyphal only compartments (Ames et al., 1983; Hodge et al., 

2001), this is not always the case (Leigh et al., 2009). This is probably because the 

methods used to quantify the ERM length densities do not identify which hyphae are 

viable. However, in part, it may also be because AMF species differ in their own N 

requirements, but very little is known about why different AMF species produce 

different ERM length densities under the same conditions (e.g. Cavagnaro et al., 2005; 

Smith & Smith, 2011b). In a microcosm study comparing the hyphal lengths produced 

by three different AMF species, Jakobsen et al. (1992) found that whilst the P uptake 

of the symbiosis between Trifolium subterraneum L. and Acualospora laevis 

(Gerdemann and Trappe) was twice that of the symbiosis with Scutellospora calospora 

(Nicolson and Gerdemann), the total ERM lengths produced were very similar; clearly 

the rate of hyphal spread or ability to uptake P per unit hypha may be more important 

than the total ERM length in some cases. This diversity among species probably allows 

them to fulfil different and complementary but, as yet, poorly understood niches 

(Koide, 2000). The variability in ERM length densities for the same AMF species has 

been demonstrated in Chapter 5, where the highest ERM length densities were 

measured in the high N, low P treatment, possibly indicating an up-regulation of Pi 

transporters in the high P but N limiting conditions. Thus, it is perhaps not surprising 

that the ERM length densities were generally not related to the rate of N2O production 

in the presence of AMF hyphae in the current work. 

 

6.4 Proposed mechanisms for interactions between AMF hyphae and 

microbial N2O production 

Following the results from the experiments described in this thesis (summarised in 

Table 6.1), three predominant mechanisms are proposed by which AMF hyphae 

interact with N2O production pathways (outlined in Figure 6.1). Firstly, AMF hyphae 
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increase competition for NH4 in the hyphosphere (1; Chapters 3 & 4), this distal control 

will limit slow-growing nitrifiers, and thus reduce N2O production via nitrification 

(dashed orange pathways in Figure 6.1). Secondly, the severing of AMF hyphae may 

release low molecular weight (LMW) C compounds (2; Chapter 2), a short term 

proximal control that could increase the rate of heterotrophic denitrification when NO3 

is not limiting (solid blue pathways in Figure 6.1), but hyphal turnover and exudation 

are proposed to have less impact on denitrification, since severing the connections 

between AMF hyphae and their host plant did not affect the N2O production after 11 d 

in Chapter 4 (Section 4.3.4). Finally, AMF hyphae might increase the water content of 

organic matter patches (Chapter 2) thus reducing the availability of O2 (a long term, 

distal control) and subsequently the rate of N2O production via aerobic nitrification (3), 

or increase N2O production via anaerobic denitrification. Other factors including 

changes in pH, allelopathy and reduced Cu or P availability in the presence of AMF 

hyphae have been included (4) but are considered less likely to be the drivers of 

changes in N2O production compared to N, C and O2 availability (Chapters 2, 3, 4 and 

5). While beyond the scope of this thesis, ideally, further microcosm based studies 

could be used to sequentially determine the relative importance of each of these 

proposed drivers in defining the interactions between AMF hyphae and N2O 

production. 
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6.5 The organisms involved in interactions between AMF and N2O 

production 

Recent developments in metagenomics and metaproteomics are making previously 

impossible insights into the organisms and processes underpinning functional activities 

in soil microbial communities (Zhang et al., 2010). When combined with stable isotope 

probing (SIP) fresh insights into the functional response of some nitrifying communities 

are now possible. For example, by using 18O-water Adair & Schwartz (2011) found that 

the growth of AOB was stimulated by the addition of NH4 whereas the growth of AOA 

was not. However, SIP techniques are relatively targeted since the organisms under 

study need to assimilate the substrate, and SIP methods are not yet available for 

denitrifiers (Butterbach-Bahl et al., 2013). N2O can be produced via a variety of 

pathways and organisms that may be using the same enzymes (Baggs, 2011; Stein, 

2011), or may have the ability to carry out more than one pathway of N2O production, 

and there may still be some organisms capable of N2O production that we are not yet 

aware of (Baggs & Philippot, 2010). Furthermore, N2O is measured at a much broader 

scale than ‘omics’ or SIP approaches, information is generally only available on the net 

N2O release and it is not yet possible to separate all N2O pathways. Therefore, 

targeting specific functional responses would be premature for research on AMF and 

N2O producers at this stage. However, if the drivers of interactions between AMF 

hyphae and N2O production were further understood, and the techniques available for 

assessing functional responses were linked to N2O production pathways in the future, 

this could help to explain and predict the response of N2O producers to changes in 

environmental conditions.  

 

6.6 The implications of interactions between AMF hyphae and N2O 

production  

The experiments presented in this thesis have further supported the role of AMF in N 

cycling (Hodge & Fitter, 2010), by demonstrating that AMF hyphae significantly 

influence the output of the GHG N2O (Chapters 2, 3 and 4). Microcosm systems are 
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ideal for determining mechanistic interactions between organisms under controlled 

conditions (Drake & Kramer, 2012), and it is under these conditions that the 

mechanisms underlying the interactions between AMF and N2O production can be 

further explored (Section 6.3.3). Equally, it is essential to determine the real-world in 

situ relevance of these interactions. There is microcosm based evidence of the 

increased transfer of N to host plants and increased residue decomposition when a mix 

of AMF species are present (Tu et al., 2006), or when hyphae have access to organic N 

along with earthworms (Li et al., 2013). In field systems other factors, such as plant 

nutrient status, can affect plant colonisation by AMF (Blanke et al., 2005). These are 

examples of factors that could affect the interactions of AMF with N2O production in a 

field system and it is necessary to compare rhizosphere, mycorrhizosphere and 

hyphosphere interactions of AMF with N2O producers under field scenarios, in order to 

determine how relevant the potential implications for field estimates of AMF 

influences on N2O fluxes are and, subsequently, to determine the relevance of any 

mechanism controls discovered under laboratory conditions (Section 6.3.3).  

 

Studying the interactions between AMF hyphae and N2O production in field systems is 

not a simple task. The creation of hyphal only treatments can be difficult in the field, 

since it usually requires the use of fine mesh membranes to either allow (20.0 µm) or 

prevent (0.45 µm) AMF hyphal access, and these can be easily damaged. However, it is 

possible, Johnson et al. (2001) designed soil cores that allowed the study of AMF 

hyphae in field soils with minimal disturbance to the soil system. These cores had four 

windows that were covered by a 35.0 µm mesh membrane, allowing AMF hyphal 

access, but preventing root access. In a subsequent field study, Johnson et al. (2002a) 

used these cores and found that AMF hyphae represent a significant route via which 

plant C can enter soils. However, creating a non-AMF access control is difficult, and 

Johnson et al. (2002a) rotated the cores to sever the AMF hyphae from their host 

plant, but the evidence presented in this thesis show that in some circumstances 

severing AMF hyphae would affect the N2O flux (Chapter 2). Therefore the use of finer 

mesh membranes may be more appropriate to create the no-AMF access treatment 

when studying N2O, but whether these fine membranes (0.45 µm) will remain intact 
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under field conditions is yet to be determined. Furthermore, the cores designed by 

Johnson et al. (2001) were small (18 mm inner diameter), thus gas sampling with a CDC 

system would not be feasible without significantly increasing the core size, although a 

gas probe (Chapter 3, Section 3.2.1) could be designed to fit inside small cores. 

  

The recent development of instruments that are capable of rapid N2O measurement 

greatly reduce the methodological limitations that have in the past added to the 

variation in N2O measurements in laboratory (e.g. Chapter 2) and field systems (e.g. 

Cavagnaro et al., 2012), and it would now be possible to use cores that can exclude 

roots but allow AMF hyphal access in field studies (Heinemeyer et al., 2012b; Johnson 

et al., 2002a). Combining exclusion cores with an automated multiplexed chamber 

system (e.g. Heinemeyer et al., 2012b) that included an isotopic N2O analyser (e.g. Los 

Gatos Isotopic N2O analyser, as used in Chapter 4, Section 4.2.5) would allow high 

frequency measurement of the N2O fluxes in the presence and absence of AMF 

hyphae; we now know that CO2 fluxes can (in certain cases) be used as a non-invasive 

indicator of AMF hyphal presence or absence (Section 6.2). An understanding of 

factors and interactions that affect the rate of N2O production in field systems will be 

vital to improve the models that are under development to help predict future N2O 

emissions and the influence of changes in environmental conditions on the production 

of N2O (Reay et al., 2012). Therefore, while understanding the basic mechanisms 

controlling the interactions between AMF and N2O production are essential, their 

relevance in real-world scenarios will be equally important if models are to sufficiently 

predict responses of N2O fluxes to environmental change.   

 

AMF can form a symbiosis with over 2/3 of all land plants (Smith & Read, 2008), and 

AMF hyphae can make up a significant proportion of the soil biomass (Olsson et al., 

1999). If, as in the microcosm systems used here (Chapters 3 and 4), AMF hyphae 

reduce the production of N2O in field systems, they could be important globally for our 

understanding of soil N2O production, particularly in agricultural systems. In 

conventional agricultural systems, the colonisation of plants by AMF can be reduced 
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when compared to low-input agricultural systems (Mäder et al., 2000b), and the 

diversity of AMF in agricultural systems is much lower than in woodland systems 

(Helgason et al., 1998). The production of N2O in agricultural systems is also generally 

high, mainly because of high N inputs (Bouwman et al., 2010), and therefore a key 

target for sustainable agriculture is to improve N use efficiency and reduce N2O 

outputs (Reay et al., 2012). The use of AMF in sustainable or low-input agriculture is 

often discussed (Hart & Trevors, 2005; Gosling et al., 2006; Fitter et al., 2011) since 

these symbionts can improve the nutritional status of their host plants (Mäder et al., 

2000a; van der Heijden et al., 2006) as well as providing other benefits, including 

improved soil structure (Rillig & Mummey, 2006; Purin & Rillig, 2007), and pathogen 

resistance (Cameron et al., 2013; Vos et al., 2013). The reduction of N2O production 

may therefore be an additional benefit of encouraging AMF in sustainable agriculture, 

but evidence of similar effects on N2O in the mycorrhizosphere and in field systems 

need to be tested.    

 

Agricultural management could also be important in controlling field AMF-N2O 

interactions, with evidence in this thesis (Chapter 2) suggesting that the presence of 

AMF hyphae may actually result in a burst of N2O production upon tilling, as severed 

hyphae resulted in increased N2O production. Fitter et al. (2011) argued in favour of 

no- or low-till agriculture, as tilling can have detrimental effects on AMF growth (Kabir 

et al., 1997; Fitter et al., 2011), and no-till agriculture  can reduce CO2 emissions and 

improve C storage (e.g. Fuentes et al., 2012). Therefore, the evidence that N2O fluxes 

may increase if AMF are severed (Chapter 2), but decrease in the presence of intact 

AMF hyphae (Chapters 3 and 4) supports the use of low- or no-till management. 

However, within the first 10 years of no-till management there are often increases in 

N2O production (Six et al., 2004), possibly because the low-tilled soils retain more 

water and therefore improve conditions for anaerobic denitrification (e.g. Beheydt et 

al., 2008).  
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Furthermore, tilling occurs after the plants have been harvested, when the AMF 

hyphae are no longer connected to their host plants, and the host plant C supply will 

no longer be present, therefore loss of C from the AMF hyphae via ‘leaking’ or 

exudation (see discussion in Chapter 4, Section 4.4.3) may not be as important as the 

decomposition of AMF hyphae with regards to supplying additional C to the N2O 

producers. In Chapter 4 (Section 4.3.4), after 11 d, the decomposition of AMF hyphae 

did not significantly affect N2O production. However, since AMF hyphae can take 30 to 

150 d to decompose (Steinberg & Rillig, 2003), decomposition of AMF hyphae may 

affect N2O production over a longer time period than measured in the experiments 

described here. The role of AMF in no-till or low-till agriculture in N2O production has 

not been considered to date. Additionally, harvesting root crops will inevitably sever 

AMF hyphae, and any mechanical disturbance of the hyphae during agricultural 

management may result in a burst of N2O via denitrification. If this were to occur, the 

N2O produced during or after harvesting might counteract any AMF mediated 

reduction in N2O production, via nitrification, during the growth of the crop. Once the 

underlying mechanisms driving the interactions between AMF and N2O production are 

better understood, it would be interesting to consider the role of AMF in N2O 

production from agricultural systems throughout the annual cycle of land 

management. 

 

6.7 Conclusions  

In recent years, there has been growing evidence suggesting that AMF interact with 

soil N cycling (Hodge & Fitter, 2010; reviewed by Veresoglou et al., 2012b). The series 

of microcosm based studies outlined in this thesis provide further evidence of this by 

demonstrating AMF hyphae can significantly affect the loss of N2O from soils and 

organic matter patches. The hyphae of AMF can reduce the loss of N2O from 

decomposing organic matter via nitrification (Chapters 3 and 4), whereas the presence 

of severed AMF hyphae can result in an increase in N2O loss under conditions that 

favour denitrification (Chapter 2). In undisturbed systems, the severing of AMF hyphae 
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will be negligible, and therefore AMF hyphae may have the potential to significantly 

decrease soil N2O losses.  

 

Possible interactions between AMF hyphae and N2O pathways under the specific 

microcosm conditions used throughout this thesis have been described (Figure 6.1). It 

is proposed that the uptake of NH4 by AMF hyphae results in less N2O produced from 

nitrification as the nitrifiers are outcompeted in the long term for NH4 (Chapter 4), 

whereas a release of C upon severing of AMF hyphae can stimulate N2O production in 

the short term via denitrification (Chapter 2). However, future work is needed to 

elucidate the main mechanisms that are driving the observed increases and decreases 

in N2O production in the presence of AMF hyphae. The roles of N and P in these 

interactions were not clear from the current studies although, for N2O production in 

general, N availability appeared more important than P availability in this system 

(Chapter 5). As the work presented here was microcosm based, further work should 

also determine the relevance of these findings under field conditions, but the 

indication is that AMF may have a significant, previously unappreciated role in 

reducing soil-atmosphere N2O losses.  
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Appendix 

Appendix 1. Modified nutrient solution after Thornton & Bausenwein (2000). The 

concentration of NH4NO3 and NaH2PO4 have been reduced to 1/10th of the original 

concentrations and (NH4)6Mo7O24.4H2O was added. The concentrations are included 

for both stock solutions and final concentrations in the solution used on the plants. 

The salt and concentration from the original are listed on the left, and on the right the 

salts used in this thesis are included.  

 

 

Stock 
No. Salt Concentration 

(mol m-3) 
Salt used in 

solution 

Concentration 
in stock 
solution  

(g L-1) 

Final 
concentration 

in solution  
(mg L-1) 

1 NH4NO3 0.15 NH4NO3 1.201 12.01 
2 CaCl2 2.1 CaCl2 23.31 233.1 
3 MgSO4 0.75 MgSO4.7H2O 18.49 184.85 
4 K2SO4 0.5 K2SO4 8.71 87.129 
5 NaH2PO4 0.0307 NaH2PO4.2H2O 0.48 4.789 
6 FeC6H5O7 0.01 FeC6H5O7 0.245 2.449 
7  
 

H3BO3 0.05 H3BO3 0.31 3.091 
MnSO4 0.0086 MnSO4.4H2O 0.19 1.918 
ZnSO4 0.002 ZnSO4.7H2O 0.058 0.575 
CuSO4 0.001 CuSO4.5H2O 0.025 0.249 

 (NH4)6Mo7O24.4H2O 0.0000712 (NH4)6Mo7O24.4H2O 0.0088 0.088 
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