[bookmark: _Toc365230169]

Enhancement of Model Generalisation in Multiobjective Genetic Programming

by Ji Ni

Thesis submitted to the University of Sheffield
for the degree of Doctor of Philosophy, December 2013

Supervisor: Dr. Peter I. Rockett
Department: Department of Electronics and Electrical Engineering
Address: University of Sheffield, S1 3JD, UK
Email: j.ni@outlook.com

Acknowledgements

 First and foremost, I would like to thank my supervisor, Peter I. Rockett for offering me the opportunity to study at the University of Sheffield. I am grateful for all his valuable insights, patience and guidance which gave me invaluable support for my research work. He is always happy to share his time with me for discussing academic details that always inspires me and corrects my mistakes. In this way, I have made rapid progress in discovering machine learning and genetic programming area. More important, he also provides a great research environment that is inspiring and motivating that makes me joyful for doing the research.
 Throughout my research program, I have been surrounded by an amazing group of colleagues. Conversations with them always inspired me a lot. Specifically, my colleague and friend Yilong Cao has provided invaluable suggestions throughout all my research, especially for fifth chapter of this thesis.
 Last but not least, I would appreciate the love and unconditional support from my parents, my wife and all my families, without whom I could never imagine to reach this far.

Publications:

 While pursing this Ph.D research programming, I have selected my principal research achievements for publication. According to the main chapters, three papers have been published or submitted, which are:

J. Ni, R. H. Drieberg, and P. I. Rockett, "The use of an analytic quotient operator in genetic programming," IEEE Transactions on Evolutionary Computation, vol. 17, pp. 146-152, 2013

J. Ni and P. I. Rockett, "Tikhonov regularisation as a complexity measure in multiobjective genetic programming," (conditionally accepted by) IEEE Transactions on Evolutionary Computation, November, 2013.

J. Ni and P. I. Rockett, "Training genetic programming classifiers by vicinal risk minimisation," (submitted to) Genetic Programming and Evolvable Machines, November, 2013.

Contents

Abstract	- 1 -
Chapter 1 Introduction	- 2 -
1.1 Background	- 2 -
1.2 Research Perspective	- 5 -
1.3 Overviews and Contributions	- 5 -
Chapter 2 Literature Review	- 8 -
2.1 Model Generalisation	- 8 -
2.1.1 Tikhonov Regularisation and Ill-posed Problems	- 8 -
2.1.2 Statistical Learning Theory and Risk Minimisation	- 11 -
2.1.3 Comparison of the Two Theories	- 14 -
2.1.4 Other Theories about Model Generalisation	- 16 -
2.2. Genetic Programming (GP)	- 19 -
2.2.1 General GP	- 19 -
2.2.2 Discontinuity and Disjointedness	- 25 -
2.2.3 Complexity Measure in Genetic Programming	- 29 -
2.3 Summary	- 33 -
Chapter 3 The Use of an Analytic Quotient Operator in Genetic Programming	- 35 -
3.1 Analytic Quotient	- 35 -
3.1.1 Motivation	- 35 -
3.1.2 Definition	- 37 -
3.2 Method	- 37 -
3.2.1 Datasets	- 37 -
3.2.2 GP Algorithms	- 40 -
3.2.3 Statistical Tests	- 41 -
3.3 Experimental Results	- 43 -
3.4 Discussion	- 47 -
3.5 Conclusion	- 53 -
Chapter 4 Tikhonov Regularisation as a Complexity Measure in Multiobjective Genetic Programming	- 55 -
4.1 Introduction	- 55 -
4.1.1 Model Complexity	- 56 -
4.1.2 Tikhonov Regularisation	- 58 -
4.1.3 Other Complexity Measures	- 59 -
4.2 Methodology	- 60 -
4.2.1 Implementation of Regularisation	- 61 -
4.2.2 Application of Regularisation with Extended Pareto-ranking	- 63 -
4.2.3 Datasets	- 67 -
4.2.4 GP Algorithms	- 69 -
4.2.5 Experimental Setup	- 70 -
4.3 Results	- 70 -
4.3.1 Direct Application of Regularisation	- 70 -
4.3.2 Grand Complexity	- 72 -
4.4 Discussion	- 75 -
4.4.1 Premature Convergence of Regularisation	- 75 -
4.4.2 Pareto Comparison of Grand Complexity	- 81 -
4.5 Conclusion	- 83 -
Chapter 5 Training Genetic Programming Classifiers by Vicinal Risk Minimisation	- 84 -
5.1 Motivation	- 84 -
5.2 Vicinal Risk	- 87 -
5.3 Experiment Setup	- 91 -
5.3.1 GP Configuration	- 91 -
5.3.2 Datasets	- 92 -
5.3.3 Statistical Testing Methodology	- 94 -
5.4 Results	- 95 -
5.4.1 Correlation with Test Error	- 95 -
5.5 Extended Applicability	- 102 -
5.6 Discussion	- 106 -
5.7 Conclusion	- 108 -
Chapter 6 Conclusions	- 110 -
6.1 Contributions	- 110 -
6.2 Future Directions	- 111 -
6.2.1 Analytic Differentiation	- 111 -
6.2.2 Simplified Distribution Transformation	- 112 -
6.2.3 Further Tuning	- 112 -
References	- 113 -

List of Figures

Figure 2.1 Examples of non-unique solutions to typical machine learning problems...........- 9 -
Figure 2.2 A simple example of a GP tree...- 20 -
Figure 2.3 Surface plot for function ...- 28 -
Figure 2.4 Plot for equation ..- 29-
Figure 3.1 Plots for test functions..- 39 -
Figure 3.2 An example of QQ-plot for pairwise difference of test error arising from AQ
		 and (U)PD...- 41 -
Figure 3.3 An example of histogram of pairwise difference of test error arising from AQ
		 and (U)PD...- 42 -
Figure 3.4 Fitted automatic French curve..- 47 -
Figure 3.5 Cumulative probability distributions of the test errors for steady-state MOGP
		 and all test functions...- 49 -
Figure 3.6 Cumulative probability distributions of the test errors for generational MOGP
		 and all test functions...- 50 -
Figure 3.7 Typical cumulative probability distribution for the test errors for varying
		 values of a, generational single-objective GP...- 51 -
Figure 4.1 Plots for test functions..- 68 -
Figure 4.2 Mean value of probabilities of generating category (i), (ii), and (iii) outcomes
		 for test function F2 (a) and F5 (b)...- 77 -
Figure 4.3 Maximum ranks as a function of iteration number for: 3D MOGP, node count
		 and grand complexity measures; steady-state evolution...................................- 79 -
Figure 4.4 Maximum ranks as a function of iteration number for order regulariser,
		 and with quantisation of Q = 1 and Q = 10; steady-state evolution..................- 80 -
Figure 4.5 Illustration of the way quantisation of the regularisation measure increases
		 rank diversity..- 81 -
Figure 5.1 Illustration of the deficiency of 0/1 loss...- 85 -
Figure 5.2 Illustration of the propagation of the Gaussian kernel into decision space........- 90 -
Figure 5.3 Correlation between training and test errors for 0/1 loss....................................- 96 -
Figure 5.4 Correlation between training and test errors for VRM for a range of values of
		 (a-d)...- 97 -
Figure 5.5 Mean cross-validation test error over fifteen folds vs. for WDBC dataset.- 98 -.
Figure 5.6 Illustration of the domain of integration over pattern space to calculate loss..- 108 -

List of Tables

Table 3.1 Test functions...- 38 -
Table 3.2 GP parameters..- 40 -
Table 3.3 Summary of best test errors for single objective generational GP for varying
		 division operators..- 44 -
Table 3.4 Summary of best test errors for single objective steady-state GP for varying
		 division operators..- 44 -
Table 3.5 Summary of best test errors for multiobjective generational GP for varying
		 division..- 44 -
Table 3.6 Summary of best test errors for multiobjective stead-state GP for varying
		 division..- 45 -
Table 3.7 Statistical comparisons of differences in best MSE for single-objective GP 			 algorithms...- 46 -
Table 3.8 Statistical comparisons of differences in best MSE for multiobjective GP 		 		 algorithms...- 46 -
Table 3.9 Mean node counts for single-objective generational GP for different division 			 operators..- 52 -
Table 3.10 Mean node counts for single-objective steady-state GP for different division
		 operators..- 52 -
Table 3.11 Mean node counts for multiobjective generational GP for different division...- 53 -
Table 3.12 Mean node counts for multiobjective steady-state GP for different division
		 operators..- 53 -
Table 4.1 Accuracy comparison between Lagrange interpolation and 5-point central
		 difference..- 63 -
Table 4.2 Test functions...- 67 -
Table 4.3 GP Parameters used in this study...- 69 -
Table 4.4 2D-MOGP mean & standard deviation (SD) of the best test MSE in the final
		 population arising from different complexity measures.....................................- 71 -
Table 4.5 Mean & SD of the best test MSE for steady-state MOGP in the final population
		 arising from different complexity measures...- 72 -
Table 4.6 Mean & SD of the best test MSE for generational MOGP in the final population
 		 arising from different complexity measures...- 73 -
Table 4.7 Sign test results comparing GrC with different regularisers, against node count;
		 steady-state..-74 -
Table 4.8 Sign test results comparing GrC with different regularisers, against node count;
		 generational evolution...- 74 -
Table 4.9 Grand complexity (GrC) and 3D relations...- 82 -
Table 5.1 GP Parameters Used...- 92 -
Table 5.2 Details of Datasets..- 93 -
Table 5.3 Median test errors for individuals with the best training error.............................- 99 -
Table 5.4 Median test errors for the best individuals on the Pareto front..........................- 100 -
Table 5.5 Wilcoxon's test comparing 0/1 and VRMs within each dataset; individuals with
		 the lowest training sett error...- 101 -
Table 5.6 Wilcoxon's test comparing 0/1 and VRMs within each dataset; individuals with
		 the lowest test error on the Pareto front..- 102 -
Table 5.7 Test error & Friedman ranks from best trained individual................................- 103 -
Table 5.8 Test error & Friedman ranks from the best individual on PF............................- 104 -
Table 5.9 Holm’s procedure on results from best trained individuals...............................- 105 -
Table 5.10 Holm’s procedure on results from best individual on PF................................- 106 -

x

[bookmark: _Toc365230473][bookmark: _Toc365550543]Abstract
 Multiobjective genetic programming (MOGP) is a powerful evolutionary algorithm that requires no human pre-fixed model sets to handle regression and classification problems in the machine learning area. We aim to improve the model generalisation of MOGP in both regression and classification tasks. The work in this thesis has three main contributions.
 First, we propose replacing the division operator used in genetic programming with an analytic quotient (AQ) operator in regression to systematically achieve lower mean squared error due principally to removing the discontinuities or singularities caused by conventional protected or unprotected division. Further, this AQ operator is differentiable.
 Second, we propose using Tikhonov regularisation, in conjunction with node count (using an extension of Pareto comparison from vectors to tuples) as a general complexity measure in MOGP. We demonstrate that employing this general complexity yields mean squared test error measures over a range of regression problems which are typically superior to those from conventional node count. We further analysed the reason why our new method outperforms the conventional complexity measure and conclude that it forms a decision mechanism which balances both syntactic and semantic information.
 Third, we propose using a loss measure complementary to Vapnik's statistical learning theory, which can effectively stabilise classifiers trained by MOGP. We demonstrate that this loss measure has a number of attractive properties and has a better correlation with generalisation error compared to 0/1 loss, so that better generalisation performance is achievable.

[bookmark: _Toc365230170][bookmark: _Toc365230474][bookmark: _Toc365550544]Chapter 1 Introduction

 In this thesis, we are pursuing enhancement in model generalisation of multiobjective genetic programming. We aim to apply a variety of learning theories that yield lower test error, namely better generalisation, for the models evolved by multiobjective genetic programming (MOGP) which is an advanced evolutionary methodology widely applied in the machine learning area. Underpinned by solid mathematical theories as well as carefully-designed statistical assessment, we demonstrate that we have achieved statistically significant improvement in solving both regression and classification problems by MOGP.

[bookmark: _Toc365230171][bookmark: _Toc365230475][bookmark: _Toc365550545]1.1 Background
 The empirical modelling of data [1] has wide applications in science, engineering, commerce and other related areas. It aims to search for a function that represents the empirical observations.
 (1.1)
For instance, given some samples of training data, a subset taken from an -dimensional measurement space assumed drawn from a stationary distribution:
 (1.2)
it is a regression modelling problem for , whereas the alternative representation of alters it to classification.
 One of the key issues in empirical data fitting is model selection, determining which structural model form gives the most reliable predictions. During the empirical learning (modelling) process that minimises the empirical error, too simple a model will fail to capture the variability in the data, hence underfit the training data with large empirical training error (over a training set) and produce large test error (over a test set). Comparatively, too complex a model will display spurious variability and lead to overfitting that produces large error for the future prediction (test error or generalisation error) despite the small training error obtained. Bishop [2] shows a nice example of this dilemma in terms of polynomial functions. To cope with this issue, regularisation is a commonly-used general approach where a data analyst seeks the model with the lowest value of:
 (1.3)
where is the regularisation constant and "Complexity" is some measure of the model complexity that is used to penalise complex models.
 To quantitatively measure the complexity with a solid mathematical foundation,
Tikhonov [3] proposed regularisation as a general smoothness measure for an -times differentiable function defined in the Sobolev space , minimising which (factorised by) accompanied with empirical error yields lower expected risk for future predictions, namely the test error over an unseen dataset. Vapnik [4] used a structural risk minimisation (SRM) framework and interpreted the "complexity" as a probabilistic uncertainty based on the Vapnik-Chervonenkis (VC)-dimension [4], which, essentially, is an upper bound on a measure of complexity. Minimising the sum of the empirical error and factorised "risk" upper bound also yields lower risk on future predictions. In essence, the general regularisation framework that minimises empirical error and a penalty term simultaneously conforms to the principle of parsimony, or Occam's razor [5]. Having been employed in many algorithms, both theories are widely applied and actively studied in the machine learning area [6-10]. In image processing, for instance, the norm (n is commonly up to 2), which is just a special case of Tikhonov's regularisation, is commonly used as a penalty term to enhance generalisation performance [11-13]. In pattern recognition, the powerful support vector machine (SVM) learning algorithm [4] is developed from Vapnik's statistical learning theory and achieves success in various applications [14-16]. Nevertheless, there are still shortcomings in the existing methods. On the one hand, conventional learning algorithms commonly require human analysts (or somehow empirically) to determine a pre-fixed model set, either linear or non-linear. e.g., the highest order of a polynomial, or more generally a pre-fixed length of a series expansion. On the other hand, the SVM essentially works on linear models although the non-linear models can be obtained by non-linearly mapping the feature space into kernel space where the linear model is used.
 Genetic programming [17] as an advanced evolutionary algorithm based on syntax trees has little requirement in terms of a pre-fixed model set, hence needs little prior information on model sets and provides a large set of models to search, including both linear and non-linear models. With all these advantages, genetic programming has proved a valuable and flexible technique for a range of machine learning problems [18-23].
 There are numbers of methods in the GP literature that explicitly or implicitly employ the "general" regularisation framework guided by the parsimony principle or Occam's Razor. Explicitly, a typical example is that of Rissanen [24] who introduced the Minimum Description Length (MDL) as a computable form of Kolmogorov complexity and this was applied to GP by Iba et al. [25] who followed the regularisation framework to minimise a single objective that sums the empirical error and complexity. However, Iba et al. obtained the neutral results.
 Multiobjective genetic programming [26] optimises multiple objectives simultaneously via Pareto dominance (although there are cases using non-Pareto methods [27]) and evolves a set of non-dominated individuals. The implicit application of regularisation framework is to consider empirical error and complexity as competing objectives; minimising them simultaneously is effectively minimising the weighted sum to identify the trade-off between error and complexity. The most commonly used complexity measure is the node count of the tree [26]. Despite that node count only concerns structural size and is heedless of semantic complexity or syntactic redundancy, it achieves success in both regression and classification problems [28, 29] due to its simplicity. There are other complexity measures [30, 31], neither of which has shown significantly improved results, or have fundamental technical flaws; details will be given in Chapter 2.
 Further we can see that those authors have proposed "some" complexity measure and expected better results mainly based on the parsimony principle or Occam's razor. Tikhonov regularisation or Vapnik's statistical learning theory have solid mathematical foundations that prove lower generalisation error is expected. (Details will be discussed based on the literature in Chapter 2)
 As far as we have seen, there are difficulties in employing Tikhonov's and Vapnik's theories to genetic programming. To use Tikhonov regularisation, an -times differentiable function is required and GP does not necessarily always generate differentiable function. e.g., a discontinuity is observed [32] in evolved GP trees. Secondly, the SRM framework cannot be used in GP due to the fundamental difference in model syntax. The SVM essentially works only on linear function sets and is difficult to apply to evolved GP trees that commonly are nonlinear.
 To cope with these difficulties, we firstly motivate generating analytic trees by fundamentally removing discontinuities so that Tikhonov regularisation can be calculated and minimised in the evolutionary process. Vapnik has also presented vicinal risk minimisation (VRM) [4], a loss framework complementary to SRM; in some cases VRM and more conventional SRM approaches can be shown to yield identical results [4]. There is no fundamental difficulty in replacing the conventional 0/1 loss minimisation by the new risk minimisation in the GP process.

[bookmark: _Toc365230172][bookmark: _Toc365230476][bookmark: _Toc365550546]1.2 Research Perspective
 In this thesis, we focus on properly employing learning theories in genetic programming to achieve enhancement in regression and classification problems, respectively. A detailed study of both learning theories and genetic programming methodology is carried out to illustrate the difficulty in merging them, as well as the limits of existing methods. We motivate our methods theoretically to cope with these issues and the expected enhancement is supported by statistical tests.

[bookmark: _Toc365230173][bookmark: _Toc365230477][bookmark: _Toc365550547]1.3 Overview and Contributions
 The remainder of the thesis is organised as follows.
 In Chapter 2, we present a literature review that covers model generalisation, and genetic programming related to this study. For the model generalisation literature, we review the advantages and shortcomings of applying a variety of learning theories to regression and classification problems. We then review the GP literature, mainly on the application of different complexity measures and relevant issues. We end this chapter with a summary and motivations for the new methods in this thesis.
 In Chapter 3, we present our first main contribution – replacing the conventional (UN) protected division in GP by an analytic quotient operator. We demonstrate that this new operator systematically yields significantly lower best test error in regression problems by fundamentally removing the discontinuity (or singularity) produced by the (un)protected division operator. We demonstrate that this analytic quotient operator better correlates training and test error without losing expressive power. Further, this operator is analytic, unlike (un)protected division, so we can further apply regularisation to arbitrarily generated trees.
 In Chapter 4, we describe our second main contribution by motivating the use of Tikhonov regularisation in MOGP. We propose using Tikhonov regularisation in conjunction with node count as a general complexity measure in regression problems. We further extend Pareto dominance from vectors to tuples so as to smoothly apply Tikhonov regularisation by coping with diversity issues in MOGP. We demonstrate that employing this general complexity typically yields superior best test error over a range of regression test problems to those from conventional node count. We further analyse the reasons of the superior results and conclude that the new method forms a mechanism that balances both syntactic and semantic information.
 In Chapter 5, the third main contribution is described by proposing and motivating the use of Vapnik's vicinal risk minimisation (VRM) for training genetic programming classifiers. Besides a number of attractive properties, we have demonstrated that VRM has a better correlation with generalisation error compared to 0/1 loss so is more likely to lead to better generalisation performance, in general. We further demonstrate that VRM yields consistently superior generalisation error compared to 0/1 loss by statistical tests over a range of real and synthetic classification problems. To extend the applicability of our new method by removing or simplifying the cross-validation process, we empirically estimate the superiority for pre-fixed values of the tunable parameter by statistical tests and produce evidence to support it.
 In Chapter 6, we state the conclusions, summarise the results obtained throughout the thesis, and suggest improvements for future research.

[bookmark: _Toc365230174][bookmark: _Toc365230478][bookmark: _Toc365550548]Chapter 2 Literature Review

 In this chapter, we review in detail the associated literature on model generalisation learning theories and genetic programming, on which we have principally based our new methods in this thesis. We will mainly review Tikhonov’s regularisation and Vapnik’s statistical learning theories – two famous regularisation learning theories, as well as other model generalisation principles in the machine learning area. We then review genetic programming and include details of justifications for the methodology being used, or issues that need to be solved in this thesis. We then summarise the reviews and motivations for our new methods.

[bookmark: _Toc365230175][bookmark: _Toc365230479][bookmark: _Toc365550549]2.1 Model Generalisation
[bookmark: _Toc365230176][bookmark: _Toc365230480][bookmark: _Toc365550550]2.1.1 Tikhonov Regularisation and Ill-posed Problems
 Tikhonov is one of the earliest researchers in the field of ill-posed problems to successfully give a precise mathematical definition of ‘approximate solutions’ for general classes of such problems, and construct ‘optimal’ solutions [3]. From a mathematical point of view, ill-posed problems are in contrast to well-posed problems. For the problem of determining the solution, in the space from the “initial data”, in the space has to satisfy the following conditions to be considered a well-posed problem.
	i) For every element , there exists a solution in the space .
	ii) The solution is unique.
	iii) The problem is stable (continuous [33]) on the spaces ().
Problems which do not satisfy any of these conditions are said to be ill-posed.
 Based on the definition, regression and classification are both ill-posed problems since a solution using a finite set of training patterns – a partial observation of the whole problem [34] – is not unique without further constraint. We illustrate in Fig. 2.1 (a and b) that the “solution” models for a training set (shown by open circles) is usually an infinite set of functions rather than unique.
[image:]
(a)

[image:]
(b)
Fig. 2.1 Examples of non-unique solutions to typical machine learning problems. (a) regression problems and (b) classification problems.

In Fig. 2.1(a), we have shown that there is an infinite number of functions perfectly fitting the finite training set in regression problems, giving zero mean squared error. Over this infinite function set, the original training dataset cannot be used to prefer functions from one to another. Tikhonov regularisation provides further justification by imposing a smoothness prior to be additive to empirical mean squared error to justify expected risk among arbitrary functions. Fig. 2.1 (b) shows a similar example for separable classification problems that further information is required to distinguish classifiers with zero misclassification error. Tikhonov regularisation is a quantitative measure of smoothness (complexity) of a model that can be applied to select models with lower generalisation error.
 Chen and Haykin [33] have reviewed Tikhonov’s regularisation theory in detail as well as related it to Occam’s razor, the MDL principle, Bayesian theory, etc. The expected risk is decomposed into two terms: the empirical risk function and the regularised risk function.

To mathematically quantify the smoothness of a given function, Tikhonov regularisation is defined by the Sobolev norm operator in the Sobolev space :

where is the order of the regulariser and is the norm. Varying defines different smoothness functions. When , Sobolev space reduces to a Hilbert space and eqn (2.2) reduces to:

 For a regression problem, as long as the model is up to order differentiable, we could use equation (eqn) (2.2) or (2.3) to calculate the order regulariser that measures the smoothness. For those non-differentiable functions, we could only possibly calculate their order regulariser, although whether the integral exists depends on the function itself. The following presents three cases of non-differentiable functions. The order regulariser for the first two functions can be computed while the integral for the third one is divergent, hence the regulariser does not exist. The three non-differentiable functions are listed as follows:
 	 	 , (continuous, non-differentiable, integrable)
		 , (discontinuous, integrable)
		 , (discontinuous, non-integrable)
The third function listed above is a typical case in genetic programming when protected division is applied [17]. It implies that the functions with this type of discontinuity are highly unstable in terms of expected risk since the integral does not even converge. In practice, it is more convenient to have an analytic function set as a candidate to employ Tikhonov regularisation. There are successful applications of the regularisation theory. Wahba [35] used the special case to successfully smooth splines. Giustolisi and Savic [36] effectively minimised the number of non-zero coefficients as one objective in their multiobjective genetic algorithm system, which essentially employs a form of norm – the special case of a regulariser defined in space. A solid mathematical foundation and successful examples suggest its potential in wider application.

[bookmark: _Toc365230177][bookmark: _Toc365230481][bookmark: _Toc365550551]2.1.2 Statistical Learning Theory and Risk Minimisation
 Vapnik introduced statistical learning theory to solve machine learning problems by minimising the expected risk measures of the loss between the supervised response and the response from learning machine with a given input [37]. The risk function is given by:

Vapnik then established a probabilistic upper bound for the generalisation based on the Vapnik-Chervonenkis (VC) dimension [4], which is a capacity metric of the function set (learning machine). More specifically, such an upper bound depends on the loss function .

i) Classification and Vicinal Risk Minimisation (VRM)
 In classification problems, the loss commonly measures the difference between the state of the nature – y and the indicated class , which is commonly a non-negative function and bounded by unity. For a totally bounded non-negative function [4], a risk function,

where is the bound on the loss function, commonly unity if 0/1 loss is applied to assess the generalisation error, and is determined by:

Note that is the VC-dimension, is the number of the training patterns and is the probability such that the inequality (2.5) holds at least with probability .
 As indicated by the inequality (2.5), given constant , l and , the second term on the right-hand side is a function of the VC-dimension h. This term is a confidence level on the upper-bound of the difference between the empirical error and the expected risk, namely the true error [38]. In other words, the variability between the true error and the empirical error is positively correlated with h for a given training set. The larger the VC-dimension, the higher the uncertainty on the empirical error. Further, the size of the training set is another variable as the uncertainty is a monotonically decreasing function of . In other words, a large quotient (large training set and simpler models) yields small uncertainty, leading to an empirical error that well approximates the true error. The significance of statistical learning theory is that it gives a quantitative evaluation of uncertainty for the "ill-posed" problem. Informally, it quantifies “how ill-posed”.
 The explicit upper bound provides convenient foundation for further development and application. Byun and Lee [39] have surveyed the application of support-vector machine (SVM) for pattern recognition, and the great success of using Vapnik's theory in real problems. Especially, the SVM algorithm dominates the classification area due to its simplicity and effective performance. Strictly speaking, maximising margins in an SVM also employs structural risk minimisation (SRM) since a larger-margin function set is a subset with smaller VC-dimension given the whole function set contains arbitrary (linear) functions. Vapnik also proved that the optimal classifier (with largest margin) is unique [40]. An SVM only concerns linear classifiers in either feature space or the nonlinearly-transformed kernel space. The nonlinearity (in the feature space) of the classifiers trained by SVM is dependent on the kernel function, so it is not possible to obtain arbitrarily nonlinear classifiers using SVM. This is a limitation of SVM due to the fact that nonlinear problems are commonly encountered in real applications. The reason why SVM almost invariably uses linear functions is that the VC-dimension is not easy to obtain for an arbitrary function set, but for the linear function set it is proved to be , where is the VC-dimension and is the input dimensionality. There are known VC-dimensions or bounds for particular function sets [38]. The difficulty in directly applying VC-dimension-based algorithms to a general function set is fundamental.
 Complementary to statistical learning theory, Vapnik further introduced vicinal risk minimisation (VRM) so as to establish a novel classification loss that stabilises the decision hyperplane while being independent of the model function set. In other words, vicinal risk can be universally applied to any algorithm with any function sets. To reconsider the equation (2.4), Vapnik assumes that the (unknown) data distribution is locally 'smooth' in which case can be approximated by placing a vicinity function on each training datum – this procedure is equivalent to interpolation or using a Gaussian Parzen window density
estimator [4]. The predictive risk is given by:

where is the Heaviside step function and is a Gaussian Parzen window centred on each training datum with variance .
Chapelle et al. [41] reported that by choosing heuristically, superior results were obtained compared to conventional 0/1 loss in a range of problems using linear classifiers. We noticed that the merit of VRM is that, unlike SVM that is derived from a constant VC-dimension for a linear function, it is a risk measure independent to the form of classifiers; hence, there is no fundamental difficulty in application for arbitrary learning algorithms.

ii) Regression and Structural Risk Minimisation
 In regression problems, the loss is usually measured by mean squared error (MSE), ranging from 0 to infinity. Thus, the loss being unbounded non-negative function cannot yield an inequality of type (2.5) without additional information about the loss function set [4]. The upper bound in a different form is obtained as:

where

Note that for , is determined by (2.6), and is the supremum (upper bound) of where . As Vapnik mentioned in [4], Cherkassky also illustrated that the bound (2.9) cannot be further optimised in theory due to the lack of knowledge of the bound of the true function and the additive noise [38].
 Although the general upper bound for a regression problem cannot be explicitly quantified, the practical minimisation process can still be guided by the structural risk minimisation (SRM) inductive learning principle. For a given learning machine, say, polynomial , where is the parameter, consider the structure:

where is the nested subset of the functions such that , hence (where is the VC-dimension); is a given constant.
The minimisation task is formed by:

where is a given constant.
 This is a similar form to regularisation theory although measuring the complexity differently. SRM can be applied to any model, e.g., classifiers, as long as the complexity measure is based on the VC-dimension. Hence, it can be applied more generally than regression problems.

[bookmark: _Toc365230178][bookmark: _Toc365230482][bookmark: _Toc365550552]2.1.3 Comparison of the Two Theories
 Both theories aim to minimise the expected risk by considering the empirical error and a complexity term, see (2.1) (2.5) and (2.12). They utilise a priori constant (or more in variant SVM algorithms) to factorise the complexity (differently defined by norm or based on VC-dimension) so as to exhibit a trade-off between empirical error and complexity. The priori constant is commonly determined by cross-validation.
 Both theories express their "complexity measure" in very different ways mathematically although both are solid, as has been proved [3] [40]. Tikhonov's regularisation is very straightforward. He has precisely quantified the complexity measure to minimise by Sobolev's norm, whereas Vapnik's method appears more indirect. Vapnik, standing on a statistical point of view, has proposed SRM to minimise the VC-dimension of the subset of functions so as to minimise the upper bound of the uncertainty added to the empirical error. Moreover, Vapnik quantitatively illustrated how well the empirical error can predict the generalisation error in (2.5) and (2.9) based on the VC-dimension. Even though eqn (2.9) cannot provide an optimal bound for regression problems, it is suggested by Vapnik that from (2.5), is typically where the uncertainty is not small enough to ignore [4]. Informally, this is a quantitative answer to "how ill-posed" the problem is.
 Since there are many differences in principle, their applicability differs as well. Tikhonov's regularisation favours models with differentiability. In classification problems, the discriminant can be disjoint hyperplanes (as the examples given in section 2.2.2) where regularisation is hard to apply while in regression, problems like model selection using a polynomial is where regularisation is applicable. In contrast, Vapnik's SRM is based on VC-dimension and is hard to apply other than in specific cases like polynomial model selection. Models generated by GP trees are unconstrained in syntax, hence cannot be formulated so as to apply SRM. In regression problems, Tikhonov's regularisation has the fundamental advantage of applicability to general models, e.g., evolved trees in GP, as Vapnik's statistical learning theory has no optimal bound. The dominant algorithm for classification derived from SRM is the support-vector machine. By using a non-linear (although unknown) kernel function, a maximum margin linear discriminant in kernel space can still successfully be constructed giving a non-linear classifier in feature space. Hence SVM can be successfully applied in the classification area. However, the discriminant function set is still constrained by the "linearity" in kernel space and the fixed (although unknown) kernel function. The main difficulty to apply SRM to a general discriminant function set, e.g., GP trees, is again that there is no trivial way to estimate their VC-dimensions. The only feasible method to apply in GP is VRM that replaces the conventional 0/1 loss by vicinal risk. The mathematical justification for VRM is solid [4] while the application in GP is also straightforward.

[bookmark: _Toc365230179][bookmark: _Toc365230483][bookmark: _Toc365550553]2.1.4 Other Theories about Model Generalisation
i) Bias-Variance Dilemma
 The bias-variance decomposition was originally derived for squared loss [42]. The expected test error over all training sets can be rewritten into the following:

where is the generated model from training set , is the true (but unknown) function and denotes the expectation operator. The first term in the right-hand side is the bias (squared) and the second term is the variance. In order to minimise the generalisation error, we need to minimise the bias and variance simultaneously. It is more difficult to explicitly formulate the decomposition of bias and variance in classification. Having considered the shortcomings from varieties of attempted decompositions of bias and variance in classification [43-45], Domingos proposed a unified bias-variance decomposition [46]. The significance is that Domingos defined bias as and variance as , where is the loss function and is the optimal model. This is a general definition for machine learning problems and simplifies the bias-variance defined for classification problems.
 Nevertheless, the main difficulty in application of the bias-variance dilemma is that both terms have to be calculated on multiple training sets. Thus it is time consuming and not practical similar to cross-validation. Moreover, empirical learning is asymptotic to the generalisation error when training data is increasing. Rather than using partitioned training sets, training with large training sets (with or without Vapnik or Tikhonov's methods) can provide arguably better results than partitioning a large dataset to estimate bias and variance.
ii) Occam's Razor and Other Complexity Measures
 The regularisation and the statistical learning theories both conform to the parsimony principle or Occam's razor: that is, for a given empirical error, a 'simpler' model is preferred. Both theories have generally combined empirical error with a weighted complexity measure, which implies a trade-off between the empirical error and complexity of the model (set).
 In essence, there is a difference between “applied Occam’s razor” and Occam’s razor on its own. Domingos [5] used a very interesting and clear interpretation to explore the impact of Occam's razor on machine learning. He clarified there are two 'razors'; one is, given identical generalisation error, the simpler is desired in itself, while the other is, given identical empirical training error, the simpler is chosen as it is more likely to have better generalisation error. The first interpretation is from the origin of the Occam’s razor while the second is “common sense” and an “applied version” in machine learning area. He also claimed that the first razor holds true while the second one has been shown to fail in certain cases. He concluded that the 'second razor' is false and we should seek to constrain induction using domain knowledge. We appreciate his easily understandable introduction but cannot fully agree with his conclusion.
 First, those failure cases of applying the second razor are with various mathematical measures of complexity. Whether the observed failure is caused by the razor or by the inappropriate measure of complexity is uncertain. After all, the second razor does not guarantee success for an arbitrary complexity measure, especially for a syntactic complexity. Secondly, in Domingos's argument, he used VC dimension as a counter-example to illustrate that as long as the “complex” model is well constrained by another methods (e.g., SRM), the generalisation error is also minimised. It is clear that Domingos’s conclusion is based on pre-defining the “complex” model as “syntactically complex” and considering the “simpler” as “syntactically simpler”. In [4] (page 95), Vapnik himself claims his SRM is a trade-off between empirical fitness and the complexity (measure based on VC-dimension) of the model, precisely conforming to the second razor. Domingos's argument can be unified by defining the complexity of the model in a broad sense. In our opinion, the correctness of the second razor has not been proved or disproved. It appears, from the evidence, that certain measures of complexity with reliable mathematical justification (e.g., regularisation and VC-dimension) provide supportive results while others may not.
 Guided by the arguable philosophical principle (as Occam's razor itself is not proved or disproved in philosophy), there are varieties of other complexity measure to be explored in machine learning problems. Rissanen [24] introduced the minimum description length (MDL) as a computable Kolmogorov complexity and regulated the learning process to minimise a (weighted) sum of the description of the training data with respect to that model (h) and the model's algorithmic complexity in [47]:

, where is the Kolmogorov complexity and the optimal model that
.
 This principle can be viewed as another form of regularisation theory with an alternative mathematical interpretation of complexity and the empirical error in terms of Kolmogorov complexity. The Kolmogorov complexity is a solid and objective measure for universal objects, although with two main difficulties. One is that the true Kolmogorov complexity is uncomputable, and the other is that the computable Kolmogorov complexity given by a language has an additive constant overhead c that depends on the language chosen [48]:

The "true" complexity is of interest rather than the summation with the unknown constant overhead. The key MDL principle illustrates that for a fixed coding (notion) table, the minimum description length is a computable form of Kolmogorov complexity. Nevertheless the remaining theoretical difficulty is that the constant overhead needs to be removed or reduced so that the computable complexity can well approximate the true complexity in practice. Further, to search for the simplest form in a given language for computing the minimum description length can still practically be an NP-complete problem, which leaves the computation of MDL unsolved even though the 'theoretical' issues are satisfied. In other words, the difficulty of applying the MDL principle to practical problems remains.
 There are also varieties of definitions of model complexity measures attempted for model generalisation purposes, mainly based on a trade-off between empirical errors and a pre-defined complexity measure. In particular, we only review those applied to genetic programming, which is our interest, in section 2.2.3.

[bookmark: _Toc365230180][bookmark: _Toc365230484][bookmark: _Toc365550554]2.2. Genetic Programming (GP)
[bookmark: _Toc365230181][bookmark: _Toc365230485][bookmark: _Toc365550555]2.2.1 General GP
 Genetic programming has shown successful applications in varieties of machine learning problems due to its avoiding pre-determination of the structure of the model, hence the search space is not limited by a certain model structure [26]. Conventional optimisation commonly concentrates on determining the coefficients of pre-fixed models, e.g., polynomial models or the simple and widely-applied linear models. Strictly speaking, to determine the model structure in the first place, say polynomial or multi-layer neutral networks, carries the risk of using a sub-optimal solution. Further, the number of coefficients requires prior knowledge set by the model. To avoid these shortcomings, genetic programming – an evolutionary algorithm – searches for the optimal solution by evolving syntax trees from a randomly-generated initial population [17].
 The model space to be searched using GP is still dependent on the operation set defined, although complex models can be flexibly generated by large trees. For instance, we only need to use to produce a search set larger than a polynomial and without the necessity to predetermine much detail. Or we can use '' or '' to extend the search set to trigonometric polynomials. The evolutionary process will automatically combine the operators defined in the operation set, termed a 'node', with constant and/or input variables, termed terminal or 'leaf' nodes to construct a syntax tree to express the generated model. By traversing the simple GP tree in Fig. 2.2 the model is evaluated and the results output at the root.
 From a pre-determined operation set, GP can be applied to a wide range of machine learning problems in reality. For instance, a logical operation set can be used for decision tree problems; more complicated operators, e.g., filters can be used to construct GP trees for signal processing tasks. Strictly speaking, this is where GP requires "prior" knowledge for the problem; nevertheless, this is already much weaker than the requirement for conventional "coefficient-based" learning algorithms.
[image: E:\jnPublic\Dropbox\Topics\Thesis\Chapter2 Literature Review\path3024-2-5-9-1.png]
Fig 2.2. A simple example of a GP tree

 The evolutionary process of GP starts from a population consisting of a group of randomly-generated individuals. Selected individuals [26] breed offspring via crossover and/or mutation and the whole population evolves by generating and preserving superior individuals but discarding worse individuals during the evolutionary process. The fitness score evaluated from the objective function (e.g. mean squared error in regression problems) is used to measure the good or bad individuals so that the individuals in the population are evolved towards the optimal solution.
 The objective function is the goal that we aim to optimise (maximise or minimise). It is determined by the nature of the learning problem. For instance, we minimise the mean squared error for regression and 0/1 loss for classification problems. Or we could minimise a weighted sum of MSE and regularisation following regularisation theory. In other words, GP can be widely applied to optimisation problems.
 According to the number of objective functions, there is single-objective and multiobjective GP. In the real world, it is common that one desires to optimise multiple objectives simultaneously when those objectives compete against each other. Unlike the (close to) optimal solution being unique for single objective problems, the optimal solutions for multiobjective optimisation is in a non-dominated solution set justified by Pareto dominance. For N-D vectors and , where N is the integer dimension, in a minimisation problem, dominates iff:

In other words, all elements in are no worse than those in and there exists at least one superior element in , in this case smaller, to that in ; we say dominates . Otherwise we say is not dominated by .
 Pareto comparison provides a mechanism for comparing the solutions of multiobjective problems and the non-dominated individuals in the final population form the best solution set, namely the Pareto-front. Since solutions on the Pareto-front are non-dominated to each other, as long as there is no further information, we cannot distinguish one solution from another, and all solutions on the Pareto-front remain equivalent. The Pareto-front presents the trade-off among all the objectives. This property exhibits the potential for implementing regularisation theory in multiobjective genetic programming, as eqn (2.1) also presents the trade-off between the empirical error and model complexity that cooperatively impacts the expected generalisation error. Methods for using MOGP to optimise empirical error accompanied with varieties of complexity will be reviewed in section 2.2.3. The general, MOGP is able to optimise multiple objectives of interest [49-52].
 There are also successful applications of MOGP, particularly in a range of regression and classification problems. Ekárt and Németh [28] used node count as the second objective in regression problems. Gustafson [53] considered maintaining diversity as an objective to improve the performance in symbolic regression. Zhang and Rockett [18, 29] successfully applied MOGP to classification problems with a scheme to minimise empirical training error and node count simultaneously. Classifiers can be trained as an edge detector in [29] or a feature extractor in [18] depending on the requirement.
 Bloat is a phenomenon whereby the tree size increases without improving fitness during the evolutionary process [26]. It remains an important topic in the GP literature since the increasing size of trees demands higher computational consumption and reduces the algorithm efficiency. Further, in the machine learning area, models with larger tree sizes are more likely to be more complex. Hence, given an empirical error, one tree of a larger size is more likely to have worse generalisation error than that of a smaller tree size. We have to clarify, however, that larger trees do not necessarily represent a complex model since there can be redundancy in the tree; it is possible that a larger tree can be a semantically simpler model due to large redundancy. However, the tree size, namely syntactic complexity, is somehow correlated to the model complexity (smoothness or in terms of any other mathematical interpretation), namely the semantic complexity. Larger trees are more capable to express complex semantics. So, bloated trees risk of worse generalisation.
 Suppressing bloat benefits the computational consumption as well as the potential to enhance generalisation ability by reducing the capability to express complex semantics. Many methods to control bloat have been proposed. In the early stage of GP history, computers were not as powerful as now and consumption was more of a concern. Setting a limit on tree size or alternatively, the depth of the trees, is commonly used to control bloat, even though we have no prior information to justify whether the limit on the "tree size" or "tree depth" is sufficient to express the optimal models. Silva and Costa [54] proposed a dynamic depth (size) control method to control bloat by which the size (depth) limit only takes effect for those larger-than-the-limit trees with no superior fitness. If a larger tree produces lower training error, this tree will be preserved and the limit of the tree depth is replaced by the new depth/size. This method provides an adaptive limit to control bloat without eliminating those improved individuals with larger syntax due to a "hard limit". It is an effective bloat control method without compromising progress during the evolutionary process.
 Wong and Zhang [55, 56] have proposed online algebraic simplification of trees to control bloat as well as to accelerate the evolutionary process. By using a number of rewriting rules, GP (sub) tress are simplified once a "rule" is matched. They studied the impact of applying simplification at different frequencies on bloat control, time consumption and the best fitness of the GP system. The results on two regression and two classification problems suggest that bloat control is positively correlated to the simplification frequency, e.g., to apply simplification every generation yields smaller trees compared to other frequencies (or no simplification). The time consumption gain is achieved only when simplification is applied every 2 or 4 or 6 generations because the overhead of implementing simplification at every generation can neutralise or exceed the time saved by evaluating smaller trees compared to methods without simplification. The best fitness shows no trend against simplification at different frequencies. This work is a good example to show that online simplification will control bloat effectively and will accelerate the evolutionary process with a "proper" frequency of implementing simplification. The results on best fitness show that the simplification process does not necessarily compromise the accuracy. Nevertheless, Wong and Zhang also illustrated in [55] that simplification at every generation is "more likely" to have worse fitness in the end and this may be because simplifying trees too often may reduce the "evolution effectiveness". This phenomenon confirms what Poli et al. have mentioned in [26] that simplification of (sub)trees may lead the evolutionary process to become stuck in local optima due to, we suspect, manipulating syntactic diversity. Moreover, the "proper frequency" for not compromising the fitness is a heuristic.
 The above-reviewed bloat control methods on "internal mechanisms" to control bloat by adding a constraint (size or depth) or modifying trees. (Although Silva's dynamic depth control method already concerns fitness at some level compared to conventional methods, it is still very weakly correlated to fitness performance.) We now review setting an "external mechanism" to control bloat more directly concerning the fitness.
 To control bloat without compromising fitness, both objectives need to be optimised. Multiobjective GP is a natural choice, setting the tree size and fitness functions as the two objectives to be minimised simultaneously. In the evolutionary process, Pareto dominance will rank trees considering both fitness and tree size. Those with bad fitness and large sizes will be assigned lower ranks and have lower probability to breed (given Goldberg's selection algorithm [57]) as well as a higher probability to be discarded, which implies a higher efficiency of the evolutionary process. The optimal solution set – the Pareto front will represent the trade-off between fitness and tree size.
 Based on the recent research on bloat [58, 59], it is not necessary to employ bloat control strategies to improve generalisation ability. In other words, bloat control limits the growth of the tree size during the evolutionary process (by reducing or limiting the size of the trees) so that the GP system demands less computation (faster) rather than achieving better generalisation (learning) ability. Logically, the reason why MOGP (using node count) achieves improved generalisation performance is a side effect of bloat control. Since regularisation theory always presents a trade-off between empirical error and model complexity in terms of different measures and conforms to Occam's razor, we consider node count as a syntactic complexity measure (implicitly correlated to the semantic complexity somehow) which minimises simultaneously with empirical error, yields improved generalisation. The main advantage of multiobjective GP is that we can successfully avoid, in advance, using cross-validation to empirically estimate the constant and then minimise the sum, but always present the trade-off between empirical error and complexity using Pareto comparison to justify "better" and "worse" results. In this thesis, MOGP is always employed not only because the new complexity measure is easy to apply, but because it also controls bloat effectively.
 To further justify the algorithms that we choose for experiments in this thesis, we also review different GP algorithms. Based on the preservation strategy, GP algorithms are typically divided into elitist GP and non-elitist GP. Elitist GP breeds the offspring by copying a portion of the elite individuals of the parent population so as to always preserve the best part of the population. Non-elitist GP generates a new population at each generation with the risk of losing the top-performing individuals. Generally speaking, the elitist algorithm dominates recent GP algorithms.
 In elitist GP algorithms, a variety of strategies are employed. There are three state-of-the-art algorithms originally motivated for multiobjective genetic algorithms which can be adapted in GP form.
 Deb et al. [60] proposed a fast and elitist non-dominated sorting genetic algorithm II (NSGA-II) with an additional justification for discarding individuals based on a distance measure to improve diversity. Bleuler et al. [61] proposed the use of the strength Pareto evolutionary algorithm II (SPEA-II) [62] and report its effectiveness in reducing bloat while maintaining the convergence speed on an even-parity problem. Kumar and Rockett [63] proposed an steady-state evolutionary strategy to improve sampling of the Pareto-front, called Pareto converging genetic algorithm (PCGA). Using a steady-state evolutionary process will provide better sampling on the Pareto-front, giving better solutions in the evolved population.
 Zhang and Rockett have compared these three GP algorithms [64] over three regression and five classification problems and concluded that
· SPEA-II failed to control bloat very effectively
· NSGA-II has competitive results to PCGA in classification problems
· NSGA-II did not seem very adept at finding solutions with low errors on regression problems.
Comparatively, the steady-state GP provides non-dominated performance in terms of fitness and bloat control in both regression and classification problems. In this thesis our work is mainly based on steady-state GP, although in some cases, we have also employed typical generational GP in our experiments. Details will be introduced accordingly in Chapters 3, 4 and 5.
 There are also other variant implementations of MOGP. One is to combine multiple objective functions additively into one fitness. For instance, Langdon and Buxton [65] linearly combined two objectives into one fitness to be optimised and succeeded on a feature selection task. O'Reilly and Hemberg used six different objectives to develop 3D surfaces in response to a simulated environment [66].

[bookmark: _Toc365230182][bookmark: _Toc365230486][bookmark: _Toc365550556]2.2.2 Discontinuity and Disjointedness
 The models generated by genetic programming can differ from one task to another. In regression problems, a GP tree represents a model function () that maps an -dimensional input to a real number . The evolutionary process is to minimise the mean squared error that is averaged over all training data. The nature of GP trees, being highly flexible in syntax, can produce discontinuities which are not necessarily present in other algorithms for regression problems.
 For instance, a simple GP tree represents . Since protected division is used, rather than a singularity. However, the discontinuity remains. Namely and . Since training data are finite, it is not guaranteed there is always a training sample in the neighbourhood of to yield a large training MSE and thereby detect the discontinuity. In other words, a given model can produce a very small empirical training error for a training dataset consisting of a finite number of patterns, but generalisation error is still large. (Observation of large test error requires an effective test set). Conventional methods of coefficient optimisation methods for pre-fixed syntax do not necessarily suffer from this problem. According to the Weierstrass theorem [67, 68], there always exists a degree m such that the polynomial can well approximate any continuous function on a compact set, e.g., on an interval [a, b] in real space and constants a, b are real [38]. This is the foundation for all the conventional methods using polynomials to solve regression problems, where the form of the polynomial can be algebraic, trigonometric or any other form, like multilayer networks [4]. For a fixed-length of polynomial models, they are commonly continuous and bounded without risk of mapping an input to infinity, which implies the pre-fixed length is effectively imposing a smoothness constraint equivalent to adding prior knowledge [38]. In genetic programming, as a consequence of maintaining high flexibility of model syntax, a discontinuity can occur based on the choice of operator, typically protected division.
 In mathematical analysis, a function that has derivatives of all orders is said to be of class or smooth [69]. Note that is a differentiability class with order derivatives being continuous. For instance, represents curves that are joined but non-differentiable, whereas represents through order derivatives are continuous. The definition of continuity for function requires the left limit equals the right limit everywhere in the domain:

Models without continuity are not smooth analytic models of class . Further, discontinuous models lose consistency (a form of stability) of neighbourhood everywhere as the discontinuities violate (2.17). (e.g., Tikhonov [3] used "stable" for the third condition of well-posed problems while Chen and Haykin [33] used "continuous".) It implies that discontinuous models have higher risk of larger generalisation error. This phenomenon in genetic programming was first noted by Keijzer [32] who proposed a method to detect the discontinuity. Since the discontinuity caused by the protected division operator is always associated with infinite response, namely large generalisation error, a tree that 'finds' a discontinuity is discarded regardless of its empirical error. Unfortunately his work has been largely ignored in the later research on GP. In the literature, people typically conclude large generalisation errors are due to overfitting or even a "bad run", but do not consider that an "underfitted" model can still contain a discontinuity and have a large generalisation error. Similarly the test set must be dense enough to address approximation of the true generalisation error.
 Keijzer [32] proposed interval arithmetic to guarantee that individuals in the evolved population have no discontinuity, but this cannot fundamentally prevent discontinuous trees from being generated. Even for those trees eliminated in the later stages, the cost of generating and evaluating those discontinuous trees reduces efficiency. Further, the method to detect the discontinuity is another overhead. Given those shortcomings, we propose a method that fundamentally removes discontinuities, hence no effort in generating new trees is wasted. Further, the new method should not decrease the expressive power of the GP system. e.g., a direct removal of protected division severely decreases the expressive power and is undesired. The new method will be present in Chapter 3.
 We now consider GP models in classification problems. The goal of classification is to find a discriminant function by separating the input patterns into correct classes [47]. Without losing generality, in this thesis we always discuss two-class classification problems because multiple-class problems can be solved by being considered as a set of two-class problems [47].
 We aim to evolve a discriminant function , where is a constant. We consider a GP tree maps the -dimensional input feature space into a one-dimensional decision space , where the input vector in feature space is mapped into scalar in the decision space. We then search for an optimal threshold that gives the lowest empirical error rate, namely 0/1 loss. The discriminant function is the classifier we aim to optimise.
 Different from the regression model being an dimensional surface (given -dimensional input), the classification model is an -diemsional decision surface of an equation. For instance, function represents a 3D surface given 2D inputs, shown in Fig. 2.3, while is a hyperbola shown in Fig. 2.4. This example shows that even when the evolved trees are continuous, the discriminant function can be disjoint. Essentially, unlike regression models, it is difficult to constrain the discriminant function to be continuous or differentiable as we have done in Chapter 3 for regression. A complexity measure like regularisation is barely applicable in classification no matter whether the evolved tree is continuous or not. This is the fundamental reason why we only consider employing a regularised loss function in classification problems rather than proposing advanced complexity measures for a discriminant function. In Chapter 5, we use vicinal risk – a regularised loss function – to train GP classifiers while using node count as the second objective to effectively control bloat.
[image: C:\Users\nj32\Desktop\untitled1.png]
Fig 2.3 Surface plot for function

[image: C:\Users\nj32\Desktop\untitled2.png]
Fig. 2.4 Plot for equation

[bookmark: _Toc365230183][bookmark: _Toc365230487][bookmark: _Toc365550557]2.2.3 Complexity Measure in Genetic Programming
 Due to simplicity in application, node count is a complexity measure considered either to control bloat or to improve generalisation [28] [70].
 Borges et al. [71] claim the number of "non-scalar" nodes, namely the operators and terminal variables, of the tree is the VC-dimension of the tree and:

where and h is the VC-dimension is used to calculate the upper bound of generalisation risk. They also claim eqn (2.18) is cited from Vapnik [40].
 First, they have no justification to connect the number of "non-scalar" nodes of a GP tree to the shattering dimension [4]. Thus the correctness of representing the upper bound of generalisation error using such a measure is unfounded. Second, Vapnik used a very conservative approach in interpreting the upper bound in regression problems as he has repeated in different chapters that the bound holds in the form of eqn (2.9) if there is no further information about the model or noise. Vapnik further extended discussion of this bound only in terms of regression by series expansion (see 6.4 in [40]): we cannot see much chance of GP trees generally remaining in the form of a series expansion. Equation (2.18) is found in 4.3.2 in [38]. Strictly speaking, it is an inequality that represents an upper bound rather than an equation. More importantly, Cherkassky has discussed this inequality and emphasised that this "practical" form of VC bound for regression is obtained by empirically imposing two unknown constants. Vapnik's book clarifies premises or conditions upon which this equation holds. Comparatively Cherkassky wrote [38] more in an application sense, hence introduced an "empirical applicable form" of (2.18) which should be more carefully dealt with. In other words, there is no clear condition or premises to apply eqn (2.18); using (2.18) in GP has no more justification other than 'empirical success' clarified by [38]. Essentially, [71] is an interesting attempt although there are fundamental flaws, as addressed above.
 Iba et al. [25] proposed using MDL in genetic programming by defining:

Comparing eqn (2.14) to (2.19) in the sense of Kolmogorov complexity, the tree coding length is equivalent to in eqn (2.14), namely the complexity portion while the exception coding length is the , namely the empirical error portion. The definition of MDL in Iba's work imposed . Iba applied MDL – the summation of complexity and empirical error in terms of Kolmogorov complexity as the single objective function and ran experiments over an decision tree problem as well as a regression problem. Iba demonstrated the MDL effectively controls tree growth while fitness results were not as good as neural networks for the systems they employed. As reviewed in section 2.1.2, there are fundamental issues for Iba's application.
 First, since there is correlation between the MDL principle and other regularisation theories, the constant factor is a priori used to weight the complexity. The optimal (true) value of is problem dependent and can be arbitrary. Simply imposing unity for this constant can lead to a bad learning process. It might work on the cases that Iba has presented, but is not guaranteed good performance in others.
 Second, MDL is a computable form of Kolmogorov complexity for which the value of complexity is "language dependent". Such dependency determines an unknown overhead for the true Kolmogorov complexity measure. In other words, this value is only a upper bound of Kolmogorov complexity. In the case that such overhead is too large to ignore, the results will not be accurate. Nevertheless, this is a fundamental issue that MDL principle has not fully solved.
 Third, the requirement of the MDL principle is for the GP trees have to be their simplest form in the given language. For general GP trees, it is very common to have reducible (sub)trees in the population [26]. Therefore, it is hard to calculate MDL due to the difficulty of simplifying a tree to its most parsimonious form. Wong and Zhang [56] showed a table of rewriting rules for simplification. Nevertheless those rewriting rules are still far from leading to the simplest trees, especially as rewriting rules can differ for different operation sets (again, language dependency). For instance, if the operator is in the operation set, all consecutive multiplications have to be simplified into the form of ; e.g., . Essentially, we suspect that to simplify an arbitrary tree into its simplest form is an NP-complete problem [72].
 As far as we are concerned, there are still fundamental issues to solve in applying MDL genetic programming.
 Vladislavleva et al. [30] claimed to have solved the model selection problem for GP by constructing a measure based on the order of the Chebyshev polynomials used to approximate the GP trees. The idea is interesting in that they have defined a list of methods for measuring different operators, which are used to calculate the order of nonlinearity for a GP tree once the tree can be approximated by a Chebyshev polynomial with an error less than . In their implementation, they have imposed a practical upper bound on the order of the polynomial which is 100. If a Chebyshev polynomial with more than -order still cannot approximate a GP tree with less than error, they assign a large predetermined complexity value to that tree. They also set . It is not difficult to see from here that this method is dependent on these two settings – there is no justification other than empirical. For example, if we set to a higher accuracy level, there will be fewer trees with a complexity measure not exceeding the order limit. More trees will be assigned the predetermined larger number (intended to be discarded) since the accuracy constraint is more difficult to reach. Thus the whole evolutionary process will change. This implies that for a given and a given order limit, the computable nonlinearity measure (complexity) always tolerates some error determined by . This phenomenon is very interesting and similar to the "overhead" of MDL – uncertain error on the true complexity in the Kolmogorov sense. Given a certain language, the minimum description length is computable, namely a form of Kolmogorov complexity. Nevertheless, there is always an unknown overhead contained in the MDL value that depends on the language used. The case of nonlinearity order is slightly different. Informally, can be set quantitatively and with enough computational power, we can practically set an extremely small as well as an extremely large upper bound on the highest order, such that the error contained in the complexity measure can be effectively reduced. Comparatively, there is no quantitative way to choose a language with higher efficiency and less "overhead" even if the high computational power is affordable. It will be very interesting if there is further theoretical or practical justification on how impacts the error contained in the complexity measure.
 Vanneschi et al. [31] proposed using the summation of partial complexity of each dimension inspired by the theory of generalised curvatures [73]. Unfortunately this paper lacks detail of the experimental methodology. The paper aims to quantitatively define measures for bloat, overfitting and complexity. As a practical measure, those mathematical definitions for all terms are reasonable. But the experiments are too weak to convince if those terms are effective. Concerning the complexity only, there is no clear interpretation on the way of calculating the curvature over discontinuous GP trees [32, 74]. However, to use curvature to measure the complexity is an interesting idea. Wahba [35, 75] used a second-order regulariser to penalise the "wigglyness", essentially penalising a form of curvature.
 To sum up, the study of complexity measures in GP is not quite systematic. There can be a number of measures for complexity in mathematics, most of which have little justification in combining complexity and training error but Occam's razor. MDL has a formal equation related to generalisation error but the "simplest" form debars it from practical application. Borges [71] claiming that non-constant node count is "VC-dimension" lacks justification. Other methods are guided by Occam's razor, hence unnecessarily tightly coupled with the generalisation error (minimising those complexity measures may suffer from Domingos's statement of using the "second razor"). Although [30] present strong results, their empirical reliance on is not desired. In chapter 4 we are proposing using Tikhonov's regularisation to solve ill-posed problems, a special case of which is machine learning problems. We also provide strong results by statistical tests, justified by an objective confidence level.

[bookmark: _Toc365230184][bookmark: _Toc365230488][bookmark: _Toc365550558]2.3 Summary
 In this chapter, we have reviewed the literature on model generalisation and genetic programming, respectively. We have systematically studied the advantages and limitations of applying Tikhonov regularisation theory and Vapnik's statistical learning theory to regression and classification problems. Within the context of GP models having little restriction in structure, it is the Tikhonov regularisation that is easier to apply to regression problems, whereas Vapnik's vicinal risk minimisation can be applied to classification problems without fundamental difficulty. We have also reviewed other complexity measures, like minimum description length (MDL) principle, generalised curvature, order of nonlinearity and so forth for completeness. The MDL is a computable Kolmogorov complexity given the language being used, but only measures an upper bound of the true Kolmogorov complexity. The simplest form required to calculate MDL can also be NP-hard. These are the theoretical and practical difficulties to apply the MDL principle. Other complexity measures applied in genetic programming either have technical flaws or little evidence to support better generalisation.
 We have also reviewed the genetic programming literature to justify that the GP algorithms used in this thesis are state-of-the-art. Improvements achieved in this thesis extend the frontier of using multiobjective genetic programming for solving machine learning problems. We have illustrated that models evolved from genetic programming can be discontinuous and disjoint. Keijzer [32] has identified that discontinuities in regression models incur large generalisation error, although his internal arithmetic algorithm cannot fundamentally solve this problem. This inspired us to improve the generalisation by 'smoothing' the function – aiming to create an expressive operation set to fundamentally evolve analytic trees that are mathematically smoother than discontinuous ones. Analytic trees further facilitate application of Tikhonov regularisation. For classification problems, the decision surface evolved by genetic programming can be disjoint, which naturally lead us to apply Vapnik's VRM for general classifiers.

[bookmark: _Toc365230185][bookmark: _Toc365230489][bookmark: _Toc365550559]Chapter 3 The Use of an Analytic Quotient Operator in Genetic Programming

 In this chapter we propose replacing the division operator [17] used in genetic programming with an analytic quotient (AQ) operator. We demonstrate that this AQ operator systematically yields lower mean squared errors over a range of regression tasks, due principally to removing the discontinuities or singularities that can often result from using either protected or unprotected division. Further, the AQ operator is differentiable. This chapter will begin with the motivation and definition of an analytic quotient in genetic programming, followed by methods employed for assessing the performance. We then present statistically superior results from an analytic quotient and further discuss its variance stabilisation property. A summary is given in the final section.

[bookmark: _Toc365230186][bookmark: _Toc365230490][bookmark: _Toc365550560]3.1 Analytic Quotient
[bookmark: _Toc365230187][bookmark: _Toc365230491][bookmark: _Toc365550561]3.1.1 Motivation
 The function set is a very important component in a GP setup, and can be set as arithmetic operators, for instance, addition, subtraction, multiplication and protected division (PD), or Boolean operators, such as AND, OR, XOR or even complex functions e.g., filters for different problems [26]. The commonly-used basic arithmetic operators appear to date back to Koza [17]. Koza’s basic concern about operator sets was closure – the desire for an operation on a real number to always map to another real number – although he recognised the difficulties with the normal division operator and therefore introduced protected division whereby

The protected division imposes a real number “1” to replace the mathematical singularity that is produced by normal division when the denominator equals 0.
 The use of the protected division appears “common” although maybe not universal, and some authors appear to use an unprotected form of the division operation. According to IEEE754:1985 standard for floating-point arithmetic [76], using unprotected division (UPD) we have

where INF symbolises infinity and NaN, not-a-number. More specifically, NaN stands for the indeterminate form of 0/0 [32], although in other cases, e.g., NaN = stands for an imaginary (not real) number.
 In the evolutionary process, we evaluate trees to obtain their fitness vectors comprising mean squared error and node count. While comparing fitness vectors by Pareto dominance, INF produces sensible results, while NaN always gives a logical “FALSE” that possibly disrupts the evolutionary process. We speculate that authors using unprotected division in GP have an (implicit) mechanism to discard GP trees with NaN fitness in selection for breeding or tournament comparison. Both PD and UPD operators are used in GP so we cover both protected and unprotected division in our experiments. Specifically, to avoid NaN disrupting the evolutionary process, we assign a large fitness to trees returning a NaN so that they will be discarded. Details of UPD experiments will be introduced in Section 3.3.
 Having further investigated unprotected and protected division, we noticed the only effective difference is that they define the mathematical singularity differently – returning 1 in PD while returning INF in UPD – the discontinuity remains consistent. In the neighbourhood of the discontinuity, sensible but “large” real numbers are returned. Those “spikes” of very large values are highly undesirable, especially in regression problems since predictions can deviate markedly from the target function. This shortcoming of (un)protected protected division was previously identified by Keijzer [32] who proposed using interval arithmetic to probe the regions around training points for discontinuities. Unfortunately, Keijzer’s work seems to have been largely ignored. Similarly, the option of simply omitting the problematic division operator has been explored (see [32]), but the resulting function set is far less expressive.
 Additionally, (U)PD embeds a discontinuity whenever x2 = 0 and therefore renders the function represented by the whole tree nonanalytic. This inability to differentiate the tree function restricts the range of operations which can be carried out on the tree. For example, the nonanalyticity due to (un)protected division prevents the use of curvature as a complexity measure [77]. We thus propose an analytic quotient (AQ) operator to replace PD to stabilize the GP trees by fundamentally removing discontinuities.

[bookmark: _Toc365230188][bookmark: _Toc365230492][bookmark: _Toc365550562]3.1.2 Definition
 The analytic quotient operator (AQ) is defined by

which has the general properties of division, especially when , but is everywhere differentiable. Given that the empirical modelling of data has been carried out using a very wide range of functions [78], we can see no fundamental reason why the (U)PD is sacrosanct. (Details are given in [74] of the properties of this particular form of analytic operator as that work was contributed by the co-authors of the paper.)

[bookmark: _Toc365230189][bookmark: _Toc365230493][bookmark: _Toc365550563]3.2 Method
[bookmark: _Toc365230190][bookmark: _Toc365230494][bookmark: _Toc365550564]3.2.1 Datasets
 We have considered six regression problems ranging from one to five dimensional to assess the performance arising from different operators. The six functions are listed in Table 3.1. Functions 1 (F1) to F3 are one-dimensional functions with different ‘wiggliness’, whereas F4 to F6 are to assess the performance in multiple dimensions. Plots for all functions are shown in Fig. 3.1. Specifically, for F5 and F6 being higher than two dimensional and impossible to visualise, we plot projections to 3D space given , where .

Table 3.1 Test functions
	F1
	
	
	Automatic French curve [35]

	F2
	
	
	Chebyshev polynomial

	F3
	
	
	Scaled sinc function

	F4
	
	
	'Ripple' function [30]

	F5
	
	
	'RatPol3D' function [30]

	F6
	
	
	'UBall5D' function [30]

 Fig. 3.1 (a) is the famous French curve of Wahba and Wold [35]. Within the domain , the curve rapidly changes with a high slope around interval and with a valley at around 0.4. It remains quite smooth for . Fig. 3.1 (b) and (c) are the Chebyshev polynomial and scaled sinc() function, respectively. The Chebyshev polynomial is odd symmetric to the origin from to . The sinc() function is asymmetric with domain of . The other three functions were employed by [30] as they are considered as "complex" models to fit. Fig. 3.1 (d) is the 3D plot for function 4, while the Fig. 3.1 (e) and (f) are plots for 3D projection. Since functions 5 and 6 are high-dimensional functions, we visualise them for for so as to provide an indirect visual representation of their "complex" hyper-surfaces.
 We generated 100 independent training sets from each function comprising 30 data per dimension, randomly selected from the domain, and added zero-mean Gaussian noise with a variance of 0.01 to each training instance. Independent test sets comprising 100,000 randomly-drawn instances were used to assess generalisation performance.

Fig. 3.1. Plots for test functions. (a) Automatic French curve; (b) Chebyshev polynomial; (c) Scaled sinc() function; (d) 'Ripple' function; (e) 'RatPol3D' function; (f) 'UBall5D' function. (Note that it is the 3D projections for higher dimensional functions in plot (d), (e), and (f))

[bookmark: _Toc365230191][bookmark: _Toc365230495][bookmark: _Toc365550565]3.2.2 GP Algorithms
 To ensure our results are not dependent on evolutionary strategy, we have employed both generational GP with 50% elitism and steady-state algorithms. To further illustrate that AQ can fundamentally improve the GP performance in regression problems, we have used both MOGP and single-objective (SO) GP algorithms. We have used rank-based selection for all algorithms. For the MOGP experiments that used steady-state, we have used the Pareto converging genetic programming (PCGP) algorithm [63]. The parameters are summarised in Table 3.2. The steady-state algorithms were run for constant 20,000 tree evaluations per run and the generational algorithms for 398 generations (which corresponds to an equivalent 20,000 tree evaluations).
 An enduring problem in GP is bloat, the tendency for trees to continue to increase in size without any improvement in fitness [26]. For the single-objective GP experiments, we have used the dynamic depth-control method of Silva and Almeida [54] to control bloat. For the multiobjective GP experiments, we have controlled bloat by simultaneously minimising 1) mean squared error (MSE) over the training set, and 2) tree node count, including terminals, within a Pareto framework [18, 28].

Table 3.2 GP parameters used in this chapter
	Population Size
	100

	No. of Evaluations(PCGP)
No. of Generations(Generational)
	20,000
398

	Crossover
Mutation strategy
	Point crossover[26]
Point mutation[26]; full depth of 4

	Node types
	Unary minus
Addition, Subtraction
Multiplication
UPD, PD or Analytic quotient

[bookmark: _Toc365230192][bookmark: _Toc365230496][bookmark: _Toc365550566]3.2.3 Statistical Tests
 Statistical tests are a powerful tool that allow inference about the differences between algorithms by giving a quantitative confidence level calculated over a set of repeated tests. We have computed the test errors for each of the 100 training runs by averaging the squared errors over the relevant test set of 100,000 data. Our consideration is to choose a proper test for the 100 pairwise (AQ against (U)PD) comparisons. A t-test or Z-test directly takes account of the value of each pairwise difference and hence exhibits high power. However, the assumption requires the distribution of the pairwise differences is symmetric or Gaussian.

Fig. 3.2. An example of QQ-plot for pairwise difference of test error arising from AQ and (U)PD
Further, our large population of resamplings – 100 independent comparisons – leads the t-test very close to a Z-test. We examined the normality as well as the distribution of some of the pairwise differences and typical observations are in Figs. 3.2 and 3.3, respectively.
 The Quantile-Quantile (QQ) plot [79] is used to compare two arbitrary distributions by plotting their quantiles against each other. In our case, we plot the quantile drawn from standard Gaussian distribution against that from the observations so as to justify the correlation between them. The more linear the plot, the more likely the observed distribution is a Gaussian. The desired linear plot is a straight line while our observation, being very nonlinear, shows that our pairwise differences deviates significantly from a Gaussian distribution, which violates the assumption for applying a Z-test . Fig. 3.3 presents another example of the histogram of the pairwise differences which is highly asymmetric.

Fig. 3.3. An example of histogram of pairwise difference of test error arising from AQ and (U)PD
 To avoid dependency on the sample distribution, we employ nonparametric statistics that make no assumptions about the distribution of the underlying sampling other than that it is continuous [80], which is satisfied by the pairwise different of test MSE. The sign test [81] requires the fewest assumptions, only independence of the samples. Our statistical run over 100 independently generated training datasets satisfied this assumption. Thus we have performed one-sided sign tests on each set of 100 paired differences under the null hypothesis that the median is less than or equal to zero. The necessary binomial probability can be well-approximated using a normal distribution leading to p-values supporting the null hypothesis [81].

[bookmark: _Toc365230193][bookmark: _Toc365230497][bookmark: _Toc365550567]3.3 Experimental Results
 For a given generating function (see Table 3.1) and for each of the 100 training sets, we have conducted paired experiments of minimising the training set MSE (SOGP) or training set MSE/node count (MOGP) using trees with either PD, UPD, or AQ operators. For both SO and MOGP methods, on the termination of each GP run, we have selected the individuals with the best MSE over the test set and compared the values arising from the use of the AQ, PD, and UPD operators.
 Obtaining the UPD results, which we include for completeness, proved problematic. During evolution, a large fraction of the trees using UPD evaluated to NaN [76], i.e., indeterminate values. This posed a problem with our tree sorting algorithm since any binary comparison of a floating-point number with a NaN always returns false [76]. On further investigation, the source of these NaNs was found to be zero-divided-by-zero operations. We thus modified our UPD procedure to assign any tree evaluating to NaN to have a very large fitness, making it unlikely to be selected for breeding in the subsequent iterations [26]. (We speculate that anybody using truly UPD in GP must be implementing sorting or tournament selection in a way that implicitly discards NaN-evaluating trees.)
 All the mean test error results are summarized in Tables 3.3 to 3.6. Some of the mean test errors, particularly for SOGP (Tables 3.3, 3.4) are very large. This reflects not any lack of convergence to small training errors but the fact that over 100 trials, although some runs produced very small test errors, some produced extremely large test errors resulting in an overall very large mean test error. [The large spread of test errors also results in large values of standard deviation (SD), as can be seen in Tables 3.3 and 3.4.] This trend is most marked for the steady-state single-objective algorithm. An unambiguous general trend emerges that for any given evolutionary setup (e.g., single objective + generational), trees using the AQ operator always yielded the smallest mean test errors. Comparing PD and UPD, no clear pattern emerges – sometimes PD is better, sometimes UPD. Overall, the steady-state MOGP algorithm yielded the lowest mean test errors over the set of functions explored here.
Table 3.3 Summary of best test errors for single objective generational GP for varying division operators
	
	AQ
	PD
	UPD

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	

	F4
	
	1293396
	

	F5
	
	
	

	F6
	
	
	

(Errors are shown one SD)
Table 3.4 Summary of best test errors for single objective steady-state GP for varying division operators
	
	AQ
	PD
	UPD

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	

	F4
	
	
	

	F5
	
	
	

	F6
	
	
	

Table 3.5 Summary of best test errors for multiobjective generational GP for varying division
	
	AQ
	PD
	UPD

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	

	F4
	
	
	

	F5
	
	
	

	F6
	
	
	

Table 3.6 Summary of best test errors for multiobjective stead-state GP for varying division
	
	AQ
	PD
	UPD

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	

	F4
	
	
	

	F5
	
	
	

	F6
	
	
	

 An equally important observation is that, comparing within a given evolutionary setup (i.e., by table), AQ yields the smallest SD of any operator (with the single exception of PD for F6 under generational MOGP where the SD is the same as for AQ). This implies that AQ consistently produces more compact distributions of test errors across different runs leading to greater repeatability and a far higher probability of obtaining a good generalization error from a limited number of runs.
 The results of the statistical comparisons are shown in Tables 3.7 and 3.8 from which it can be seen that for all strategies (generational and steady-state, single and multiple objectives) and for all functions (F1 to F6), the p-values "suggest" that the AQ outperforms both protected and UPDs with around 99% confidence or greater. (Due to the limited power of nonparametric tests, a few of the tests using 100 paired samples yielded p-values that provided no clear evidence either way about the null hypothesis. We repeated these tests using 500 training sets to give the figures shown in bold in Table 3.8, in which case clearer evidence is obtained due to the extra power from the increasing sample size) The AQ is thus much more likely to produce individuals exhibiting statistically better generalization.

Table 3.7 Statistical comparisons of differences in best MSE for single-objective GP algorithms, 100 paired samples
	
	Generational GP
	Steady-state GP

	
	AQ versus PD
	AQ versus UPD
	AQ versus PD
	AQ versus UPD

	
	Z score
	p-value
	Z score
	p-value
	Z score
	p-value
	Z score
	p-value

	F1
	3.4
	0.000337
	4.4
	
	9.6
	0
	9.6
	0

	F2
	5.6
	
	3.8
	
	9.8
	0
	9.2
	0

	F3
	9.0
	0
	8.6
	0
	9.4
	0
	9.8
	0

	F4
	9.4
	0
	9.6
	0
	10
	0
	10
	0

	F5
	5.4
	
	6.4
	
	9.4
	0
	9.2
	0

	F6
	9.4
	0
	9.0
	0
	9.6
	0
	9.8
	0

Table 3.8 Statistical comparisons of differences in best MSE for multiobjective GP algorithms, 100 paired samples apart from results in bold face (see the text for further details)
	
	Generational GP
	Steady-state GP

	
	AQ versus PD
	AQ versus UPD
	AQ versus PD
	AQ versus UPD

	
	Z score
	p-value
	Z score
	p-value
	Z score
	p-value
	Z score
	p-value

	F1
	3.2
	0.00687
	5.4
	
	3.0
	0.00135
	3.4
	0.00034

	F2
	4.2
	
	4.4
	
	3.2
	0.00687
	4.2
	

	F3
	8.4
	0
	8.4
	0
	8.8
	0
	9.4
	0

	F4
	8.8
	0
	9.2
	0
	9
	0
	9.2
	0

	F5
	3.4
	0.00034
	2.4
	0.0082
	2.4
	0.0082
	6.3
	

	F6
	9.6
	0
	9.6
	0
	7.8
	
	8.6
	0

[bookmark: _Toc365230194][bookmark: _Toc365230498][bookmark: _Toc365550568]3.4 Discussion
 To further explore the reasons for the superiority of the AQ operator, we show in Fig. 3.4 (a) and (b) an example of a GP fit to the French curve function [35] (F1) for one particular training set instance using PD. The filled (red) circles represent the training data and the solid line shows the evolved mapping over the domain. Note that Fig. 3.4 (a) and (b) show the same plot at different scales.
[image: E:\jnPublic\Dropbox\Topics\Thesis\Chapter3 Analytic Quotient\spike-1 copy.png] [image: E:\jnPublic\Dropbox\Topics\Thesis\Chapter3 Analytic Quotient\spike-2 copy.PNG]
Fig. 3.4. Fitted automatic French curve. Filled points are the training data and the solid line the fitted model.
 Although the evolutionary pressure has ensured that the fitted function’s deviation is small at the training data, there is nothing to constrain the function away from the training points. For , the fitted function has a discontinuity that deviates significantly with a “spike” up to and down to . AQ does not produce such discontinuities due fundamentally to removing discontinuities. Although we show only one example, and although not every fit using (U)PD exhibits discontinuities, such behaviour is not uncommon. We can further see from Table 3.4 that for steady-state + single objectives algorithm, the best test error values for (U)PD are extremely large (around or more than) for all cases. It indicates that over 100 statistical runs, there always an evolved population, in which all individuals produce extremely large test errors since the "best"(smallest) test error is large enough to yield the mean of around or more than . We believe the large test errors are caused by discontinuities rather than "over-fitting" as AQ produces consistently low test errors without any problem. Indeed, this phenomenon has previously been reported by Keijzer[32] who gave other examples.
 In Figs. 3.5 and 3.6 we plot comprehensive examples for all test functions (a – f) of the cumulative probability distributions of the mean-squared test errors over the 100 runs for both the PD and AQ trees, for the individuals with the best training errors in their run using steady-state and generational MOGP, respectively.
 The distributions for the AQ trees (shown with red dashes) are always compact in terms of test error indicating that there is a good correlation between low training error and low test error. For the PD trees, although there are some instances of highly-performing individuals, it is clear that many of the GP runs are producing very large best test errors despite these individuals having the lowest training errors in their respective runs. This frequent association of low training error with very large test error is a result of the instabilities introduced by (U)PD, as illustrated in Fig. 3.4, but is completely absent from trees using the AQ operator. This phenomenon of some GP runs producing best-performing individuals with large test errors has frequently (but incorrectly) been ascribed in the literature to overfitting or a "bad run", whereas we suspect it is, in fact, caused by the instabilities of the (U)PD operator. Although using interval arithmetic to probe the regions around the training points [32] can mitigate the instabilities due to (U)PD, interval arithmetic cannot completely remove the problem – unless a discontinuity falls within the interval around a training datum it will not be identified.
 All the results reported above have used the functional form for the AQ given by equation (3.1). It is possible to envisage a more general AQ form as follows:

 Fig. 3.5. Cumulative probability distributions of the test errors for steady-state MOGP and all test functions.

 Fig. 3.6. Cumulative probability distributions of the test errors for generational MOGP and all test functions.
We have investigated the effect of varying the value of the constant a to see if it can be "tuned" to give better results. Broadly, as , the distribution of test errors (unsurprisingly) tends to the same distribution as the (U)PD operator. For values of a larger than unity, the distribution of test errors becomes more compact, but its mean shifts to larger values. For , the AQ tends to divided by a large, positive constant which presumably lacks the expressive power of a division-type operator [32]. Typical data for generational SOGP are shown in Fig. 3.7 in the form of cumulative probability distributions. A value of seems to be a good compromise for the data used in our experiments; whether it might be beneficial to tune '' for other datasets would need to be investigated on a case-by-case basis.

Fig.3.7 Typical cumulative probability distribution of the test errors for varying values of a, generational single-objective GP.
 Finally, we have examined the distributions of tree sizes which result from using the AQ operator. Since the AQ function is somewhat smoother than (U)PD, we might expect the expressiveness of the AQ function to be lower leading to larger tree sizes. The mean node counts for each of the experiments are shown in Tables 3.9 – 3.12. The averaged tree sizes from a single objective are much larger than that of multiobjective GP, especially with the steady-state algorithm. This is a clear evidence that minimising node count as the second objective is a much more efficient to control bloat. If we further correlate the tree size with the accuracy performance in Tables 3.3 – 3.6, we do not observe extremely large values in the best test errors using PD or UPD with multiobjective strategies, as opposed to the extremely large errors always observed in single objective strategies. This implies that it is much less likely to include a discontinuity in a tree of much smaller size.

Table 3.9 Mean node counts for single-objective generational GP for different division operators
	
	AQ
	PD
	UPD

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	

	F4
	
	
	

	F5
	
	
	

	F6
	
	
	

Table 3.10 Mean node counts for single-objective steady-state GP for different division operators
	
	AQ
	PD
	UPD

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	

	F4
	
	
	

	F5
	
	
	

	F6
	
	
	

 Moreover, it is indeed the case that, within any given evolutionary setup, AQ produces larger trees. Interestingly, Šprogar [82] also observed a significant variation in the mean size of trees due to using different versions of the division operator. Despite tending to produce larger trees, the AQ operator has the overriding advantage of delivering consistently and statistically-significant smaller test errors.

Table 3.11 Mean node counts for multiobjective generational GP for different division operators
	
	AQ
	PD
	UPD

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	

	F4
	
	
	

	F5
	
	
	

	F6
	
	
	

Table 3.12 Mean node counts for multiobjective steady-state GP for different division operators
	
	AQ
	PD
	UPD

	F1
	
	
	

	F2
	
	
	

	F3
	
	
	

	F4
	
	
	

	F5
	
	
	

	F6
	
	
	

[bookmark: _Toc365230195][bookmark: _Toc365230499][bookmark: _Toc365550569]3.5 Conclusion
 In this Chapter, we proposed an analytic quotient as a replacement for the commonly used protected and unprotected division operations. The problems related to protected division have previously been identified in the literature [32] and although these can be mitigated by using interval arithmetic, the fundamental problem of instability remains. We showed that the AQ produces statistically lower mean test error on a range of regression problems due to the elimination of the unstable fitted functions, which can result from the use of (U)PD. We also demonstrated the variance-stabilising property of the AQ transformation [74]. Further, this transformation is differentiable.
 We thus propose the AQ as a superior replacement for division in genetic programming. Its differentiability enables the calculation of derivatives of the tree, which allows us to study a new complexity measure, Tikhonov regularisation that requires calculation of order derivative of a function.

[bookmark: _Toc365230196][bookmark: _Toc365230500][bookmark: _Toc365550570]Chapter 4 Tikhonov Regularisation as a Complexity Measure in Multiobjective Genetic Programming

 In this chapter, we propose using Tikhonov regularisation in conjunction with node count as a general complexity measure to evolve models using multiobjective genetic programming. We demonstrate that employing a general complexity measure yields mean squared test error measures over a range of regression problems which are typically superior to those from conventional node count. We also analyse the reason why our new method outperforms the conventional complexity measure and conclude that it forms a decision mechanism which balances both syntactic and semantic information.

[bookmark: _Toc365230197][bookmark: _Toc365230501][bookmark: _Toc365550571]4.1 Introduction
 Model selection is one of the key issues in the empirical modelling of data [1] . It determines which structural model gives the most reliable predictions. Too simple a model will fail to capture the variability in the data (underfitting) while too complex a model will display spurious variability (overfitting). Bishop [2] shows a nice example of this dilemma in terms of polynomial functions. How to balance closeness-of-fit to the training set (which can usually be reduced by fitting a more complex model) against model complexity, is the essence of the model selection problem. This is commonly addressed by a regularisation approach where a data analyst seeks the model with lowest value of:

where is the regularisation constant and “Complexity” is some measure of the complexity of the model under consideration. In regression problems, “Closeness-of-fit” is normally mean-squared error (MSE). Regularisation is the basis of the well-known Akaike information criterion [83] as well as having more general interpretation [4]; Bayesian model selection methods can often be interpreted in a regularisation framework where a log prior forms the right-hand term in (4.1).
 In essence, eqn. (1) expresses the trade-off between the desire to make the model fit the training data as closely as possible, and the competing desire to have as simple a model as possible to conform the principle of parsimony, or Occam’s razor. Unfortunately, for some given data set and a given model, selecting is not trivial since its value influences the minimum of (4.1) and therefore the model selection decision. When regularisation is used in the form of (4.1), cross validation schemes are often used to select . Alternatively, the regularisation framework can be expressed as the simultaneous desire to minimise the fitting error and the model complexity which leads naturally to Pareto optimisation in which identifying a specific, optimum value of is avoided. Given some 2-vector of objectives f, where the elements of f are (i) the MSE over the training set, and (ii) a measure of model complexity, the Pareto dominance relation that an objective vector dominates (expressed symbolically as) is :

What results from such a multiobjective optimisation is a set of non-dominated individuals which delineate the fundamental trade-off between training-set MSE and model complexity. In the present context, we perform this multiobjective optimisation using genetic programming (GP) [26] and obtain a set of candidate models which have the property that no models exist which are both less complex and have a lower training set MSE. Analogous to the final model selection by a human data analyst discussed above, it remains to select one of the Pareto set of non-dominated candidates as the final model using an independent test set. The overarching advantage of the GP process, of course, is that GP is able to explore a far wider and richer set of possible model structures than can generally be considered by a human analyst.

[bookmark: _Toc365230198][bookmark: _Toc365230502][bookmark: _Toc365550572]4.1.1 Model Complexity
 Crucially, we have not so far discussed the key aspect of model complexity, how to measure the complexity of a quite general functional model produced by GP. Multiobjective genetic programming was initially introduced [28] to address the bloat issue, the tendency of GP trees to increase in the size without any accompanying improvement in performance. By imposing an evolutionary pressure to reduce tree size, bloated trees will be less likely to breed although we believe the situation is more subtle than this: simultaneously minimising training set MSE and tree complexity is actually a regularisation framework. Bloat control – which is the setting of some practical upper bound on tree size – follows as a beneficial consequence of regularisation which principally seeks the least complex model for some given training set MSE.
 By far the most common complexity measure used in the MOGP literature is a count of the number of nodes in the GP tree. This was introduced because it was a “simple” and “easy to calculate” measure [28] although it is not without its philosophical difficulties. Firstly, it is a measure of the syntactic complexity of a tree. Considering the two expressions and encoded as trees, the first appears twice as complex as the second despite being functionally smoother and therefore less likely to display excessive variability under prediction. In evolutionary breeding selection, the second tree would be preferred whereas from the perspective of evolving a function, the first is semantically simpler in terms of the "wigglyness" of the functions as in [35].
 Second, every node in the tree contributes equally to a node count measure regardless of the function it implements. So a unary minus node and a sine transformation node are both equally weighted despite the sine node embedding an (infinite) power series which would intuitively appear more complex than a unary minus operation.
 The apparent shortcomings of node count have motivated us to consider other complexity measures. Kolmogorov complexity [84] is known to be a fundamental measure although it is uncomputable. Consequently, a number of other, more practical measures have been developed over the years.

[bookmark: _Toc365230199][bookmark: _Toc365230503][bookmark: _Toc365550573]4.1.2 Tikhonov Regularisation
 In this chapter, we principally explore the use of Tikhonov regularisers in MOGP. Formally, Tikhonov regularisation is defined [3, 33] in terms of the Sobolev norm operator which broadly determines the “smoothness” of a function. In a Sobolev space , the Sobolev norm operator is given by:

where is the order of the regulariser and is the norm. For the case of (the Euclidean or 2-norm), a Sobolev space reduces to a Hilbert space, since , and the Sobolev norm operator is given by:

where denotes the 2-norm.
 Typically, regularisation is applied by minimising the so-called Tikhonov function:

where is the empirical error (typically mean squared error), is the regularisation constant and is the complexity term given by (4.4). The (lengthy) derivation of (4.4) can be found in [3, 33].To calculate the regulariser for an -times differentiable function, we have to sum up to order partial derivatives of the fitted function which is usually approximated by a small number of low-order derivatives. Tikhonov regularisation works by imposing additional constraints on the solution of the ill-posed learning problem in the form of a ‘smoothness prior’ [33] but although smoothness is an intuitively obvious notion, expressing it mathematically is less straightforward. For example, the zeroth-order () regulariser term in (4.4) tends to penalise functions with many extreme values whereas the first-order () term disfavours functions which change rapidly. Wahba [75] informally noted that the second-order () regulariser penalises the “wiggliness” of the fitted function (i.e., acts to suppress overfitting). Hence each term in (4.4) measures smoothness in a subtly different way.
 From the perspective of GP, the regulariser in (4.4) is a semantic measure – that is, it is invariant to the particular syntax of a given GP tree. Furthermore, it has solid theoretical foundations.
[bookmark: _Toc365230200][bookmark: _Toc365230504][bookmark: _Toc365550574]4.1.3 Other Complexity Measures
 In passing, and for completeness of this chapter, we briefly discuss several other complexity measures that have been applied to GP.
 Rissanen [24] introduced the Minimum Description Length (MDL) as a computable form of the Kolmogorov complexity and this was applied to GP by Iba et al. [25] who obtained neutral results. Reconsidering the two example mappings above, and , these two expressions ought to have the same MDL complexity measure but the first evaluates to be more complex than the second because it happens to be in non-minimal algebraic form. It is clear that just calculating the MDL from an unsimplified tree – as done by Iba et al. – only produces an upper bound on the MDL measure. The true MDL complexity measure of tree can only be meaningfully computed, in the Kolmogorov sense, after the tree has been reduced to its minimal form which, we suspect, is an NP-complete problem [72]. After numerical simplification, the above examples become and , with same MDL complexity measure (but the first expression is obviously smoother and has less ‘flexibility’ to overfit). We suspect that the failure to reduce their trees to minimal form explains the neutral results obtained in [25].
 Second, Vladislavleva et al. [30] claim to have solved the model selection problem for GP by constructing a measure dependent on the order of the Chebyshev polynomials used to approximate the GP tree. In fact, careful inspection reveals that Vladislavleva et al. have converted the model selection problem in GP into a model selection problem on the set of polynomial fits which they solve with an arbitrary threshold (their “” in the definition in Section B [29, p. 337]). Thus they have not solved the GP model selection problem rather changed it into another model selection problem which, in turn, they have not fundamentally solved.
 Vanneschi et al. [31] proposed using the summation of partial complexity of each dimension inspired by the theory of generalised curvature [73]. However, Vanneschi et al. did not show any evidence that such a measure yields superior test MSE. Further, curvature is one specific component of a Tikhonov regulariser – see (4.4). In addition, these authors used protected division in their GP formulation and it is not clear how a second-order derivative was defined for this discontinuous function [74].
 An interesting approach has been employed by Giustolisi and Savic [36] who defined a set of pseudo-polynomial models where inclusion/exclusion of terms in the model structure, and consequently the number of input variables, is determined by evolutionary search. In fact, they use a genetic algorithm over a fixed-size chromosomal structure rather than genetic programming. The subsequent models – which can be “extended” by incorporation of user-defined transformations – are (potentially) nonlinear in the input variables although linear-in-the-parameters, which are determined by conventional least squares fitting. Giustolisi and Savic control the complexity of candidate models by placing an upper bound on the number of terms in the pseudo-polynomial, the value of which is one of the multiple objectives to be minimised. In fact, these authors implicitly employ a form of regularisation because omitting terms from the fitted function is equivalent to reducing an norm – see (4.3). Overall, restriction of possible models to those belonging to a user-defined set is a limitation with the approach of [36].
 The remainder of this chapter is structured as follows: the next section presents the methodology to apply regularisation to MOGP and the statistical tests we have set up to assess the performance of the new method. Section 4.3 presents the development of our new complexity measure and the results obtained to support its superiority compared to node count. In Section 4.4 we discuss the operation of regularisation in MOGP and the reason for its success. Conclusions and future work is the last section of this chapter.

[bookmark: _Toc365230201][bookmark: _Toc365230505][bookmark: _Toc365550575]4.2 Methodology
 In this section we first discuss the implementation of regularisation in MOGP followed by the development of a 'grand complexity' measure. The experimental methodology we have employed is covered in Section 4.2.3.

[bookmark: _Toc365230202][bookmark: _Toc365230506][bookmark: _Toc365550576]4.2.1 Implementation of Regularisation
 Except for the order regulariser, order regularisation requires calculation of the first () derivatives of the function. Therefore, all GP-generated individuals have to be analytic. Conventional (un)protected division can produce discontinuities [32] and lead to individuals which are non-differentiable [74]. We consequently replaced conventional (un)protected division with an analytic quotient operator [74], defined in (3.1) to satisfy the condition of differentiability. Using this analytic quotient systematically yields lower test MSE compared to conventional protected division and stabilises the evolved trees by eliminating discontinuities. See [74] (or Chapter 3) for more details.
 Every individual evolved by GP is a tree which implicitly encodes a function. It is possible to transform such trees to evaluate a derivative of arbitrary order but for this initial exploratory study, we have estimated the necessary derivatives using numerical methods for convenience. For regularisers with order , we have to calculate order derivatives followed by an integration over the domain. High accuracy is desired for numerical differentiation. On one hand, to flexibly calculate the order derivates, we differentiate the function times to have

The higher order (e.g.,) derivative is calculated based on the one-degree lower order derivative, and the error increases exponentially with the respect to the order. On the other hand, the numerical integration is based on the results of derivative functions, so low accuracy on the numerical derivatives will cause severe error propagation. The difficulty of reducing the error of a numerical derivative is that there is a trade-off between rounding and truncation errors. As theoretically reviewed in Chapter 2, we have used the method of Hahm et al. [85] who proposed the use of Lagrange interpolation to approximate numerical derivatives and showed it to be superior to the widely-used central-difference method, achieving higher overall accuracy. We have used a general recursive method to calculate an order derivative for an arbitrary function so that an arbitrary numerical differentiation method (e.g., central difference, Richardson's extrapolation, etc. [86]) is applicable. Given an arbitrary numerical method for a first-order derivative , where is the 'step' applied and is where the derivative to be estimated, and is the original function to be differentiated. The recursive algorithm is:

	Algorithm 1:

	double NumDif (int mOrder, double input)
{
	if (N == 0)	return ; // order derivative is
	else return ;
	// order derivative is the (numerical) differentiation of order derivative 	// that is . Namely,
}

 For the purpose of completeness, we set up a brief experiment to demonstrate that the Lagrange interpolation method provides superior results to central difference, especially for higher-order derivatives using the recursive method. We modify to a 5-point central difference (best results on) method and Lagrange interpolation methods (), respectively. We use to test the accuracy of each methods since the order derivative of remains and remains constant . The results are shown in Table 4.1. Relative to the standard e value, we notice that using "double" precision numbers in C++ achieves a rounding error around for . We then have tested up to 3rd order derivatives using the recursive method. As implied by [85], Lagrange interpolation systematically achieves higher accuracy than the 5-point central difference method for all the results; Hahm et al. [85] only present the superior results of the 1st order derivative. Our later experiments employ Lagrange interpolation for numerical differentiation up to -order derivatives which is superior to the commonly-used central difference methods.
Table 4.1 Accuracy comparison between Lagrange interpolation and 5-point central difference
	Standard e value
	
	2.71828182845904523...

	0th order derivative
	
	2.71828182845904509

	1st order derivative
	Lagrange Interpolation
	2.7182818284590362

	
	Central difference
	2.718281828458745

	2nd order derivative (recursive)
	Lagrange Interpolation
	2.7182818284580680

	
	Central difference
	2.7182818281846765

	3rd order derivative (recursive)
	Lagrange Interpolation
	2.71828182862514

	
	Central difference
	2.718281876136911

 For the numerical integration, the accuracy is not as critical as for differentiation since there are fewer calculation steps. To compare two floating-point numbers, relative error is of more concern due to catastrophic cancellation [87]. We have used adaptive Gauss-Kronrod integration from the Gnu Scientific Library (GSL) to obtain a relative accuracy of to reduce the impact of catastrophic cancellation, as well as having acceptable time consumption.

[bookmark: _Toc365230203][bookmark: _Toc365230507][bookmark: _Toc365550577]4.2.2 Application of Regularisation with Extended Pareto-ranking
 Regularisation, having no regard to syntactic complexity, measures the 'smoothness' of a function which is a semantic measure. From Occam's razor, we prefer simpler individuals given the same MSE during the evolutionary process but there are, however, two difficulties with direct replacement of conventional node count by a regulariser in MOGP. One is that although the solid regularisation theory only concerns the empirical error and the smoothness – semantic complexity, the evolutionary process, e.g., crossover and/or mutation, is based on syntax due to the fact that genetic programming is a syntax-tree-based evolutionary algorithm. Without consideration of syntactic complexity, bloat will reduce the efficiency of a GP run[26]. Nevertheless, minimising syntactic complexity will not necessarily minimise semantic complexity and vice versa (although these quantities will tend to exhibit some positive correlation). For example, a semantic complexity measure cannot distinguish between and , preferring them equally, which is not desired. Semantic complexity cannot help to select trees with less syntactic redundancy. Similarly, a syntactic complexity measure cannot help to select variance-stabilised solutions.
 The second practical difficulty with applying (semantic) regularisation is that, even when the extra computational effort due to bloated trees is affordable, we will show in Sections 4.3 that a direct application of regularisation causes premature convergence during the evolutionary process.
 To cope with these two difficulties, we seek a complexity measure that minimises both syntactic and semantic complexity simultaneously. An obvious approach is to use 3-dimentional MOGP to minimise MSE, node count and regularisation simultaneously. Again we will show in Section 4.3 that premature convergence still occurs. We further investigate the diversity/premature convergence issue in GP to search for potential solutions. Essentially, the genotype and phenotype diversity [88] can be interpreted more generally as two types of diversities. The genotype is the "gene" of each GP tree and considered as the syntax, whereas the phenotype expresses the functionality of the GP tree, namely semantics. There are methods to calculate the syntactic "distance" between two trees and a corresponding mechanism is set up to maintain diversity (or even maximise it as an objective) in the evolutionary process. Nevertheless, those measures of diversity are always time consuming and there is no strong evidence to show they significantly improve the results. Further, due to the existence of redundancy in GP trees that prevents the generated GP trees from being in parsimonious form, to maintain a highly diversified population in terms of genotype (or syntax) does not necessarily maintain semantic diversity.
 The -dominance method [89] successfully controls and preserves the phenotype diversity by selecting the proper to diversify the samples in objective space, which is determined by the phenotype of a GP individual. However, the unknown has to been fine-tuned by cross validation or a preference-based learning algorithm [89, 90] and is problem dependent. It possibly varies from problem to problem, or even among different training samples from the same problem. Despite a solid foundation that -dominance provides good selective pressure in terms of general evolutionary, so far we have not seen application in genetic programming. Further, the overhead of pre-determining is undesired.
 Essentially, we desire to minimise MSE, with syntactic and semantic complexity in an MO scheme while preserving semantic (phenotype) diversity. 3D MOGP implicitly considers syntactic and semantic complexity in competition, which is not appropriate since it is common to consider syntax and semantics as positively correlated although such correlation is not always obeyed. Rather than considering syntactic and semantic complexity to be in competition, we desire a better, more cooperative strategy to be formulated between both complexity measures.
 Reconsidering complexity, syntax and semantics are two components. As there is no easy way to combine them, we propose a 2-dimensional vector that consists of node count and a regulariser to represent the general complexity of an individual, and use Pareto comparison to select the simpler one. We term this 2D vector grand complexity as it reflects both the syntactic and semantic complexity of an individual. This selection method can handle the loose correlation between syntactic and semantic complexity and when the complexity of one individual dominates another, we have better confidence that one individual is 'simpler' and therefore to be preferred. Otherwise, we prefer neither individual as simpler due to the contradictory evidence provided by syntax and semantics.
 To apply this grand complexity to MOGP, we reformulate the traditional overall MOGP fitness vector into a fitness tuple that consists of: i) the MSE (), and ii) grand complexity, a two-dimensional vector which itself comprises node count (as a syntactic measure) and a regulariser (as a measure of solution smoothness). In general multiobjective optimisation problems, the fitness vector consists of two or more objectives that are usually in conflict. Here we extend the fitness vector to a fitness tuple, one component of which is a real number and the other a vector. The ranking method is an extension of the conventional Pareto comparison introduced by Goldberg [57].
 In conventional Pareto-ranking, Goldberg [57] introduced assignment of equal ranks to all non-dominated individuals in a population so that non-dominated individuals within the same rank have the same probability to breed. For a minimisation problem, recall from the definition in (4.2), for -dimensional vectors , an objective vector dominates iff:

 If an individual is not dominated by any other in the population, it is said to be non-dominated [57]. We denote the non-domination of by as In (4.6), f is a real vector. We now expand this definition in a general sense by considering each component of the fitness tuple to be a vector rather than a real number. Consider an member fitness tuple G, each component of which is a -dimensional vector g where . We define that dominates iff:

 Similar to the case with (4.6), if does not dominate we consider as non-dominated by (). If an individual is not dominated by any member of the population then it is said to be non-dominated. Notice that when are 1D vectors (i.e., scalars), (4.7) reduces to (4.6). With the extended definition of Pareto dominance in (4.7), we can address more complicated forms of comparisons, particularly when G comprises a scalar and a 2-vector. Considering specific examples where where is the 2-vector comprising node count and a regulariser, and , the extended Pareto comparison can be expressed in pseudo-C code in Algorithm 4.2.

	Algorithm 2 Algorithm for determining extended Pareto dominance

	if (() and not (
or (() and () then

else

end if

[bookmark: _Toc365230204][bookmark: _Toc365230508][bookmark: _Toc365550578]4.2.3 Datasets
 We have considered six one-dimensional regression problems of varying degrees of curvature listed in Table 4.2 and plotted in Fig. 4.1 (a – f).
Table 4.2 Test functions
	F1
	
	
	 order polynomial

	F2
	
	
	Automatic French curve

	F3
	
	
	 order polynomial [28]

	F4
	
	
	Salutowicz-2D [30]

	F5
	
	
	Chebyshev polynomial

	F6
	
	
	Scaled sinc function

 Fig. 4.1. Plots for test functions
We have generated 100 independent training sets from each function comprising 30 data, randomly-selected from the domain, and added zero-mean Gaussian noise with a variance of 0.01 to each training instance. Independent test sets comprising 100,000 randomly-drawn instances were used to assess generalisation performance. (We have employed different regression functions compared to Chapter 3, but used the identical resampling method – 100 independent training sets and 1 large independent test set.)

[bookmark: _Toc365230205][bookmark: _Toc365230509][bookmark: _Toc365550579]4.2.4 GP Algorithms
 To confirm that our conclusions are independent of evolutionary strategy, we have employed both generational GP with 50% elitism, and a steady-state algorithm. We have used rank-based selection for both strategies. For the steady-state experiments, we have used Pareto Converging Genetic Programming (PCGP), a GP adaption PCGA algorithm [63]. The GP parameters are summarised in Table 4.3. The steady-state algorithm was run for 10,000 tree evaluations and the generational GP for an equivalent 198 generations. Note that these evaluations numbers only count a complete evaluation of a tree fitness, not the somewhat larger number of calculations necessary to perform the numerical differentiation/integration.
Table 4.3 GP Parameters used in this study
	Population Size
	100

	No. of Evaluations(PCGP)
No. of Generations(Generational)
	10,000
198

	Crossover
Mutation strategy
	Point crossover [26]
Point mutation [26]; full depth of 4

	Node types
	Unary minus
Addition, Subtraction, Multiplication
Analytic quotient [74]

[bookmark: _Toc365230206][bookmark: _Toc365230510]

[bookmark: _Toc365550580]4.2.5 Experimental Setup
 For each function, we have run paired statistical tests over 100 independent training sets by minimising both MSE and complexity measure, which is either node count, regulariser or grand complexity. For the grand complexity measure, we have employed regularisers of either zeroth-, first- or second- order [, 1 or 2; see (4.4)] to explore the performance over different ways of defining smoothness. We computed statistics using the individual in the final population of each GP run with the lowest error over the relevant independent test sets described in Section 4.2.3.

[bookmark: _Toc365230207][bookmark: _Toc365230511][bookmark: _Toc365550581]4.3 Results
[bookmark: _Toc365230208][bookmark: _Toc365230512][bookmark: _Toc365550582]4.3.1 Direct Application of Regularisation
 The results of directly applying zeroth-order regularisation in MOGP are shown in Table 4.4 for both 2D (MSE/regulariser) and 3D objective vectors (MSE/node count/regulariser). For brevity we present only results for the F3 and F5 test functions which are typical enough to present the general situation. Comparing columns 3 ('node count') and 4 ('Reg0') of Table 4.4, it is obvious that the node count complexity measure produces significantly better average test errors.
 Inspection of the population reveals that regularisation has resulted in premature convergence – all individuals have quickly become all rank-1. Considering Goldberg's algorithm [57], individuals with higher ranks have higher probability to be selected and breed than those with lower ranks, and individuals with equal rank have equal probability. Thus, premature convergence in the early stages fills the whole population with all rank-1 individuals leading the later evolutionary process to run with equal selection (due to equivalent rank) in breeding, hence the evolutionary pressure is eliminated by uniform selection over the whole population.
Table 4.4 2D-MOGP mean & standard deviation (SD) of the best test MSE in the final population over 100 statistical runs arising from different complexity measures (node count, zeroth-order regularisation and quantised zeroth-order regularisations)
	
	Function
	Node count
	Reg0
	Reg0 (quantised to 1)
	Reg0 (quantised to 10)

	2D-steady-state
	F3
F5
	

	

	

	

	3D-steady-state
	F3
F5
	

	

	

	

	2D-Gener-
ational
	F3
F5
	

	

	

	

	3D-Gener-
ational
	F3
F5
	

	

	

	

 Besides, since there is no further mechanism to distinguish individuals with identical ranks, discarding rank-1 individuals is also problematic. This phenomenon is observed in both using 2D and 3D objective vectors. Clearly regularisation on its own is worse than conventional node count.
 Closer inspection shows that the premature convergence we observe using a regularisation measure is due to failure to maintain selective pressure in the population when using more than one real objective. Consider a non-dominated objective vector f = where . If we generate a new but marginally different individual with objective vector , for some arbitrarily small , this too will be non-dominated. It is thus fairly easy to reduce the population to all rank-1 individuals by essentially resampling the existing rank-1 solutions, rather than advancing the Pareto front. At this point all selective pressure ceases and this is indeed what we observe in practice.
 To preserve effective selective pressure, and inspired by the idea of -dominance [89], we have experimented with quantising the regulariser since -dominance increases selective pressure. The results of quantising [replacing the regulariser with where or 10] are shown in columns 5 and 6 of Table 4.4. It is clear that quantisation has improved the performance to be as good as node count in some cases, particularly for , but still just worse than node count in others. After quantisation, inspection of the populations revealed that premature convergence had either been eliminated () or at least delayed (). Nonetheless, direct application of regularisation – either as a replacement for node count in a 2D optimisation, or in addition to it in a 3D formulation – produces no advantage in GP despite its theoretical solidity.

[bookmark: _Toc365230209][bookmark: _Toc365230513][bookmark: _Toc365550583]4.3.2 Grand Complexity
 The test error performances over 100 repetitions for the grand complexity measure with zeroth, first and second order regularisers are shown in Table 4.5 for steady-state evolution, and Table 4.6 for the generational algorithm.
Table 4.5 Mean & SD of the best test MSE for steady-state MOGP in the final population over 100 statistical runs arising from different complexity measures (node count and grand complexity of various orders). The statistically-significant differences compared to node count at 95% confidence are shown in bold
	
	Node count
	GrC-Reg0
	GrC-Reg1
	GrC-Reg2

	F1
	
	
	
	

	F2
	
	
	
	

	F3
	
	
	
	

	F4
	
	
	
	

	F5
	
	
	
	

	F6
	
	
	
	

Generally, grand complexity gives a lower mean test error than using node count with the exception of the test function F2 for the steady-state method. As far as we have observed, there does not appear to be a great deal of difference between the different-order regularisers.

Table 4.6 Mean & SD of the best test MSE for generational MOGP in the final population over 100 statistical runs arising from different complexity measures (node count and grand complexity of various orders). The statistically significant differences compared to node count at 95% confidence are shown in bold
	
	Node count
	GrC-Reg0
	GrC-Reg1
	GrC-Reg2

	F1
	
	
	
	

	F2
	
	
	
	

	F3
	
	
	
	

	F4
	
	
	
	

	F5
	
	
	
	

	F6
	
	
	
	

To further examine the significance of the results in Table 4.5 and 4.6, we have performed a one-sided paired sign-test under the null hypothesis that the median difference between the two methods is 0 [81]. If grand complexity outperforms node count in 59 pairwise comparisons then this implies statistical significance at the confidence level. Conversely, if grand complexity is outperformed by node count in 41 comparisons, this implies node count is statistically superior at the level. The outcomes of the pairwise comparisons are shown in Tables 4.7 and 4.8 for steady-state and generational algorithms, respectively together with the corresponding p-values.
In 25 of the 36 comparisons, grand complexity is statistically superior, sometimes at the 99.99% confidence level. In the remaining eleven comparisons, there is no strong evidence to support the superiority of either method. Most significantly, in no case is node count statistically superior.
Table 4.7 Sign test results comparing GrC with different regularisers, against node count; steady-state. The '+' column shows the number of times out of 100 trials that GrC gave a smaller test error than node count
	
	Reg0
	Reg1
	Reg2

	
	+
	p-value
	+
	p-value
	+
	p-value

	F1
	60
	0.0228
	57
	0.0808
	52
	0.3446

	F2
	49
	0.5793
	49
	0.5793
	46
	0.7881

	F3
	69
	0.0001
	76
	
	74
	

	F4
	56
	0.1151
	60
	0.0228
	64
	0.0026

	F5
	59
	0.0359
	53
	0.2743
	59
	0.0359

	F6
	50
	0.5000
	62
	0.0082
	76
	

Table 4.8 Sign test results comparing GrC with different regularisers, against node count; generational evolution. The '+' column shows the number of times out of 100 trials that GrC gave a smaller test error than node count
	
	Reg0
	Reg1
	Reg2

	
	+
	p-value
	+
	p-value
	+
	p-value

	F1
	62
	0.0082
	63
	0.0047
	61
	0.0139

	F2
	58
	0.0548
	68
	0.0002
	62
	0.0082

	F3
	66
	0.0007
	70
	
	63
	0.0047

	F4
	73
	
	78
	
	75
	

	F5
	81
	
	78
	
	75
	

	F6
	74
	
	74
	
	79
	

 (From the foregoing, it might be inferred that the generational algorithm is superior. Directly performing pairwise comparisons between the corresponding steady-state and generational results shows that the steady-state PCGP algorithm consistently outperforms the generational algorithm at the 99.99% confidence level. So although grand complexity in the generational algorithm scores more successes over node count than for PCGP, this is because the strongly elitist, steady-state PCGP algorithm with node count produces better results than the generational/node count combination; grand complexity in the generational algorithm thus has a weaker set of 'opponents' to beat in the pairwise tests. This observation of the superiority of the steady-state algorithm reinforces previous observations, for example [64] as reviewed in Chapter 2.)

[bookmark: _Toc365230210][bookmark: _Toc365230514][bookmark: _Toc365550584]4.4 Discussion
 To further explore the reason for the superiority of grand complexity, we analysed the properties of MOGP with grand complexity compared to the other methods of computing a complexity measure.

[bookmark: _Toc365230211][bookmark: _Toc365230515][bookmark: _Toc365550585]4.4.1 Premature Convergence of Regularisation
 Based on regularisation theory, we seek to minimise (4.5). Minimising MSE and complexity simultaneously will effectively minimise the Tikhonov functional and should yield a set of non-dominated rank-1 individuals with various (implicit) values of . In other words, theoretically it is possible to minimise MSE/complexity using MOGP to yield a set of individuals with the lowest attainable MSE for some given value of . Based on our experiments, however, GP in such a setting suffers premature convergence in that the whole population converges to all rank-1 individuals at a very early stage and the MSE remains large due to stagnated search. Crucially, this premature convergence is not a failing of Tikhonov regularisation, rather a problem caused by the interaction of two, real-valued objectives in MOGP.
 Regularisation concerns only the semantic 'smoothness' of a function without any regard to its syntactic representation so it is not surprising that GP, as a syntax-based algorithm, experiences problems with no control on its syntax. We have tried using a 3D objective vector within MOGP, minimising MSE/node count/regulariser, however, premature convergence remains. Premature convergence leads to all rank-1 individuals and causes the evolution to degenerate to random search, which is the reason for the low efficiency.
 To further study the reason why premature convergence occurs, we have inspected the properties of the newly-generated offspring. As premature convergence can be considered as a rapid growth in the numbers of individuals labelled as rank-1 (regardless of their absolute quality), we recorded the Pareto comparison between the newly-generated offspring and the current rank-1 individuals. (Here "current" is taken as the quasi-stationary population in the case of steady-state evolution, and the existing population from which offspring are being generated in the case of the generational model.) We can identify three mutually-exclusive outcomes from such a comparison:
	i)	The new offspring dominates at least one individual on the current Pareto-front. The 		Pareto front is thus advanced, and the number of rank-1 individuals will not 			increase.
	ii)	The new offspring is dominated by the current Pareto front. The offspring will be 		labelled as of lower than rank-1, hence making no impact on the Pareto-front.
	iii)	The new offspring is neither of (i) nor (ii). In this situation, the new individual is			labelled as rank-1 and the number of rank-1 individuals will be increased. The 			Pareto-front thus expands rather than being advanced. Note that this outcome is the 		main cause of the population converging to all rank-1 individuals.
 The probability of each category is obtained straightforwardly from the counts of offspring falling into each category divided by the total number of newly generated offspring. We accumulated the statistics over 100 training sets and characterised the average value of the probability in each category. Since regularisers with different orders give similar results, we present results only for the zeroth-order regulariser. The results are summarised in Figs. 4.2 and 4.3 for test functions F2 and F5.

(a)

(b)
Fig. 4.2. Mean value of probabilities of generating category (i), (ii) and (iii) outcomes for test function F2(a) and F5(b).
 For the node count complexity objective, it is very rare for offspring to fall to categories (i) and (iii), as most fall to (ii). This implies that it is rare for node count to generate a new rank-1 individual either by improving or expanding the current Pareto-front. With a low rate of Pareto-front expansion, the evolutionary process using node count remains stable and yields good results, albeit rather slowly and, by implication, inefficiently.
 For 2D and 3D MOGP minimising MSE vs. regulariser, and MSE vs. regulariser vs. node count, respectively, both methods have small probabilities of generating category (i) individuals, while category (iii) offspring are much more likely than category (i). This means that there is large chance that the newly-generated individuals will be rank-1 but most are simply supplementing the current Pareto-front rather than improving it. If the population is of all rank-1 individuals, then optimisation is reduced to simple random search and hence is very inefficient. We believe this is the reason why both 2D and 3D MOGP suffer premature convergence.
 For grand complexity, the probability of generating category (iii) individuals that fill-in the Pareto-front is lower than for 2D and 3D, however it is still much higher than for node count. The reason that grand complexity does not suffer premature convergence despite generating large number of category (iii) individuals is that grand complexity also generates an even higher number of category (i) individuals. Such individuals keep driving the Pareto front forward and mitigate the category (iii) individuals by dominating them, thereby reducing them to lower ranks. Thus under grand complexity, the population does not prematurely converge to all rank-1 individuals.
 To gain further insight into how the ranking distribution changes during evolution, Fig. 4.3 shows the maximum rank during the evolutionary process starting from an identical initial population for test function F3. In Fig. 4.3, grand complexity starts from large maximum rank – more than 60 on initialisation – and keeps the maximum rank fluctuating over all 10,000 evaluations.
[image: E:\jnPublic\Dropbox\Topics\Thesis\Chapter4 Tikhonov Regularisation\MaxRankGrC.PNG]
Fig. 4.3 Maximum ranks as a function of iteration number for: 3D MOGP, node count and grand complexity measures; steady-state evolution.
 Fig. 4.4 compares 2D regularisation with different quantisation again for test function F3 and illustrates how a quantised regulariser affects premature convergence. For the original, unquantised regulariser, the maximum rank starts at a little less than 40 (higher diversity compared to node count) but reduces very quickly. Occasionally in the remainder of the 10,000 iterations the maximum rank increases to 2 or 3, but returns to 1 very rapidly. With exactly the same algorithm and initialisation, quantising the regularisation measure, has a larger range of ranks on initialisation and delays degeneration to all rank-1 individuals until around 2000 iterations.
[image: E:\jnPublic\Dropbox\Topics\Thesis\Chapter4 Tikhonov Regularisation\MaxRankQ.PNG]
Fig. 4.4. Maximum ranks as a function of iteration number for order regulariser, and with quantisation of Q = 1 and Q = 10; steady-state evolution.
 Quantising the regulariser as further improves the rank distribution and maintains a better spread of ranks throughout the whole evolutionary process. In other words, a properly quantised regulariser may have the potential to produce good performance. From Fig. 4.5, it is easy to see how three individuals which are all rank-1 in continuous regularisation space take on a range of ranks from 1 to 3 after quantisation (i.e., projected onto the vertical dashed line). Quantisation increases the range of ranks and thereby prevents premature convergence. However, determining the quantisation scale Q is problem-dependent and there seems no way to predetermine it other than enumerative search. Moreover, despite careful tuning of the quantisation, the improvement compared to node count is small; we observe no result better than node count even where highly diversified ranks are maintained by quantising the regulariser. This shows that the high rank diversity is a necessary but not sufficient condition for the better results.
[image:]
Fig. 4.5. Illustration of the way quantisation of the regularisation measure increases rank diversity. Three individuals all of rank-1 are quantised to rank 1 to 3.
The regulariser quantised to 10 provides wider rank diversity than node count (e.g., Fig. 4.4), however, the elite individuals evolved under the higher selective pressure from quantised regulariser are not as good as those evolved with lower pressure from node count. This phenomenon implies that not all the superiority of grand complexity over node count is due to maintaining a higher rank diversity and higher evolutionary pressure, but that grand complexity forms an intrinsically better general complexity measure.

[bookmark: _Toc365230212][bookmark: _Toc365230516][bookmark: _Toc365550586]4.4.2 Pareto Comparison of Grand Complexity
 An interesting aspect of grand complexity is that it is very similar to 3D MOGP but the evolutionary processes clearly differ significantly. Table 4.9 lists the two comparisons in detail. In this table, the comparisons between MSE values are shown horizontally and those based on the grand complexity vector components are shown vertically. Based on Goldberg's algorithm, there is a binary relation between two individuals 'A and 'B'. 'A' either dominates 'B' (denoted by 'D'), or 'B' is not dominated by 'A' (denoted by 'ND').
Table 4.9 Grand complexity (GrC) and 3D relations. The differences are highlighted in grey.
	
	MSE

	Complexity
	<
	=
	>

	Node #
	Regulariser
	GrC
	3D
	GrC
	3D
	GrC
	3D

	<
	<
	D
	D
	D
	D
	ND
	ND

	<
	=
	D
	D
	D
	D
	ND
	ND

	<
	>
	D
	ND
	ND
	ND
	ND
	ND

	=
	<
	D
	D
	D
	D
	ND
	ND

	=
	=
	D
	D
	ND
	ND
	ND
	ND

	=
	>
	ND
	ND
	ND
	ND
	ND
	ND

	>
	<
	D
	ND
	ND
	ND
	ND
	ND

	>
	=
	ND
	ND
	ND
	ND
	ND
	ND

	>
	>
	ND
	ND
	ND
	ND
	ND
	ND

 From Table 4.9, there are only two cases where 3D Pareto comparison and grand complexity produce different results, indicated by the grey cells. Taking the first of these cases for illustration, despite the fact that 'A' has a lower MSE than 'B' and a smaller node count, its regulariser is larger. Thus under 3D vector comparison, 'A' does not dominate 'B' as there is no clear evidence to indicate the superiority of either individual. For grand complexity, the opposing relations between node count ('') and regulariser ('') mean that will not dominate so the overall result of the comparison will be determined by the relative MSEs. Thus under grand complexity, 'A' does indeed dominate 'B'. Grand complexity effectively reduces the syntactic and semantic complexity to a lower priority compared to MSE and forms a 'soft' decision in terms of complexity.
 As to the impact on the behaviour of GP, based on Figs. 4.2 and 4.3, we believe this is the reason that grand complexity produces a higher probability of generating better, category (i) individuals compared to 3D MOGP. This small difference essentially improves the evolutionary process from one prone to premature convergence to one with a stable population.
 Finally, for further work, it is worth considering transformation of trees to yield the derivative of the tree function rather than using numerical differentiation. This would involve a fairly straightforward recursive application of the laws of basic calculus and save significant computing time, especially for extension to higher-order regularisers and higher-dimensional problems.

[bookmark: _Toc365230213][bookmark: _Toc365230517][bookmark: _Toc365550587]4.5 Conclusion
 In this chapter, we have proposed applying Tikhonov regularisation, a general semantic complexity (smoothness) measure, to MOGP. We extend Pareto-ranking between vectors to tuples, constructing a general complexity measure, grand complexity, that incorporates both the syntactic and semantic complexities of individuals. Grand complexity with regularisers of different orders yields generally lower test mean squared errors; we have confirmed our observations with appropriate statistical sign tests. Further, we have examined the mechanisms why grand complexity outperforms node count and shown that whereas the node count complexity measure leads to large fractions of offspring which are dominated by existing population members, grand complexity is able to produce significant numbers of offspring which advance the Pareto front. Grand complexity maintains a larger range of ranks and thus sustains a high selective pressure. In addition, using regularisation alone leads to premature convergence. We conclude that grand complexity forms a 'soft' comparison able to incorporate the non-commensurate syntactic and semantic complexity measures and is thus a superior complexity measure.

[bookmark: _Toc365230214][bookmark: _Toc365230518][bookmark: _Toc365550588]Chapter 5 Training Genetic Programming Classifiers by Vicinal Risk Minimisation

 In this chapter we propose and motivate the use of vicinal risk minimisation (VRM) for training genetic programming classifiers. We demonstrate that VRM has a number of attractive properties and has a better correlation with generalisation error compared to 0/1 loss so is more likely to lead to better generalisation performance, in general. From the results of statistical tests over a range of real and synthetic datasets, we further demonstrate that VRM yields consistently superior generalisation errors compared to conventional 0/1 loss.

[bookmark: _Toc365230215][bookmark: _Toc365230519][bookmark: _Toc365550589]5.1 Motivation
 In classification problems, 0/1 loss is widely used as the empirical error in training varieties of classifiers [47]. However, fitting to the training data by minimising empirical error can lead to overfitting and large generalisation error. As shown in Fig. 5.1, to generate classifiers for a small training set of non-separable data drawn from two, arbitrary, two-dimensional class distribution, there is no reason to differentiate between the two candidate decision surfaces and due to the deficiencies of 0/1 loss.
 Both and have identical 0/1 loss because both misclassify two training set patterns out of ten. There is no reason to prefer one decision surface over another; more generally, any function which misclassifies any two training patterns cannot be set apart from and by 0/1 loss. As to the generalization abilities of and , it is clear that will exhibit a worse test error than since it does a worse job at separating the two underlying class distributions although this, of course, cannot be judged from the 0/1 loss over this training set. In summary, it is clear that the same value of 0/1 loss can produce a range of possible generalisation errors – it is, of course, the objective of machine learning to produce the best possible generalisation error. It is noteworthy that almost all GP classifiers reported in the literature have involved minimising 0/1 loss.

[image: E:\jnPublic\Dropbox\Topics\Thesis\Chapter5 GPVR\path3024-2-5-9-1.png]
Fig. 5.1. Illustration of the deficiency of 0/1 loss. A small training set, shown as crosses and circles have been drawn from the distributions of class A and B, respectively. and are two arbitrary, candidate decision surfaces.

 In order to attempt to strike a balance between error over the training set and the complexity of the discriminant, a number of methods have been employed in the machine learning field. Classically, regularisation [3] seeks to minimise the weighted sum of an empirical loss and some measure of discriminant complexity, although how to decide on the weighting (the so-called regularisation constant) between the two terms usually involves cross-validation [38]. Further, the Tikhonov’s regularisers much-used in regression problems and illustrated in the previous chapter, cannot easily be applied to training GP classifiers since the discriminant functions evolved by GP are commonly disjoint. In classification, we use GP to evolve and further search a threshold in decision space, such that provides the smallest training error. The discriminant function : , unlike the model representing an -dimensional hyper-surface (where is the dimensionality of input) in regression problems, represents an -dimensional decision surface that is the solution set for the equation . No matter whether is continuous or not, can easily be disjoint; e.g., yields hyperbolae that are two disjoint 1D decision surfaces. In other words, the differentiability of the decision hyperplane is not necessarily satisfied for classifiers trained by GP and Tikhonov’s regulariser, which directly measures the smoothness, cannot generally be applied.
 The parsimony principle [26] much-used in GP is an example of another form of regularisation. Minimum description length (MDL) approaches [24] can also be viewed as a regularisation that minimises descriptive length, for a given language, to minimise an upper bound on the true Kolmogorov complexity. Iba et al. [25] attempted to apply MDL to GP but failed to account for the not-necessarily-minimal form of the trees – logically, MDL can only be applied to trees which have been simplified to truly minimal form which we suspect is an NP-complete task. In Bayesian approaches, the log prior can be interpreted as a regularisation term [4].
 Over the past twenty years, the structural risk minimisation (SRM) framework of Vapnik[4] has been a dominant paradigm in machine learning and has lead to powerful notion of maximum margin classification as well as support-vector machines (SVMs). Application of SRM to genetic programming classifiers, however, is technically difficult. Borges et al. [71] interpreted the node count of GP trees as the Vapnik-Chervonenkis (VC) dimension of the discriminant and claimed to apply SRM principles to GP training although there is no theoretical justification of why node count is connected to the shattering dimension [38] of the function; the fact that these authors were able to observe improved performance was probably because their “VC dimension” was employed in a conventional regularisation framework and the value of the regularisation constant adjusted to yield improved performance over non-regularised comparators.
 Exploring the complexity of the discriminant implemented by a GP tree is feasible using multiobjective (MO) (or other parsimony) methods by simultaneously minimising the empirical error/complexity leading to a (Pareto) set of solutions which delineate this trade-off. The problem that remains, as we have argued above, is that minimising the 0/1 loss over a training set does not necessarily equate to minimising the generalisation error of the resulting classifier. As shown in Fig. 5.1, training-set 0/1 loss is a one-to-many mapping to test error which undermines the validity of the regularisation framework, especially under the small sample conditions that are typical of machine learning. For this reason we have explored the use of an improved loss function for training GP classifiers.
 Although SRM principles are not straightforward to apply in GP, Vapnik [4] has also presented vicinal risk minimisation (VRM), a loss framework complementary to SRM; in some cases VRM and more conventional SRM approaches can be shown to yield identical results [4]. Crucially in the present context, applying VRM in GP is readily tractable. We introduce VRM in Section 5.2. We describe our experimental setup in Section 5.3 and report the results of statistical comparisons over a range of real and synthetic datasets in Section 5.4 with statistically-founded evidence that VRM produces superior classifiers. We further extend the applicability of training genetic programming classifiers by VRM by statistical analysis in Section 5.5. We discuss a number of aspects of VRM and illustrate its Bayesian setting in Section 5.6 before summarising this chapter in Section 5.7.

[bookmark: _Toc365230216][bookmark: _Toc365230520][bookmark: _Toc365550590]5.2 Vicinal Risk
 Given some set of training data drawn independent and identically distributed (i.i.d) from a data distribution :

where and , the task of training a scoring classifier in machine learning is to select some discriminant function such that:
 (5.1)
 We require to select the which minimises the expected risk, which will ensure optimum generalisation over future unseen examples drawn from :

where is some loss function. Unfortunately, is not known in practice and so a conventional approximation has been to minimise the empirical risk, (i.e., the 0/1 loss) over the training set. We take the loss function to be:

where is the Heaviside step function. Thus for -values which would give rise to a misclassification, (5.3) is unity; conversely, for -values which yield correct classification, the loss is zero. Thus can be formally defined as:

 As is clear from Section 5.1, the fundamental shortcoming of the 0/1 loss is due to its discrete nature, in particular, that a pattern is either classified correctly, in which case it contributes zero to the cumulative loss, or the pattern is misclassified and so contributes unity to the loss. Crucially, no account is taken of the margin by which a pattern is misclassified (or indeed, correctly classified). A misclassified pattern which is just the wrong side of a decision surface is weighted equally with a pattern that is a very large distance from the decision surface; intuitively, the latter case should be treated as more serious than the former. As a logical consequence, a pattern's distance from the decision surface should weight its contribution to the loss.
 Vapnik [4] has motivated vicinal risk by assuming that the (unknown) data distribution is locally 'smooth' in which case can be approximated by placing a vicinity function on each training datum – this process can be thought of as either resampling or, equivalently, interpolating . Since the shortcomings of 0/1 loss are due to its discrete nature, smoothing the training set will have the effect of stabilising the training process. Vapnik [4] described two possible types of vicinity functions, hard and soft. Hard vicinity functions have an abrupt cut-off at some distance from a training datum – under a 2-norm, this would be a ball or hypersphere centred on each datum. Whereas a hard vicinity function has a constant, non-zero value up to the cut-off distance and zero beyond, a soft vicinity function, such as a Gaussian kernel, typically has a peak value at the training datum and a monotonically-reducing value with increasing distance from the datum. Entirely equivalently, placing a kernel over each training datum can be viewed as approximating using a Parzen windows density estimator [47], [41] for which a Gaussian kernel is a natural choice. Here we develop the soft vicinity function approach because: i) it is more tolerant of the setting of scale of the kernel and ii) there is a technical requirement with hard vicinity functions that they do not overlap in pattern space [4] which is inconvenient to ensure.
 Taking the loss function given in (5.3), analogous to minimising (5.2), we wish to select the which minimises the vicinal risk, which is the expectation of (5.3) over the data distribution:

where is the zero-mean Gaussian kernel of variance placed on the datum, and is approximated by the Parzen windows estimate of a sum of Gaussians. The equation (5.6) has a straightforward interpretation as the hypervolume, in the -dimensional pattern space, of the portion of the kernel which falls on the 'wrong' side of the decision surface and hence would give rise to misclassification.
 A number of properties of VRM is apparent:
· Under VRM, we seek to minimise a continuous function (5.6), thereby removing the problem with 0/1 loss of being discrete. Patterns contribute to the loss depending on their distance from the decision surface, or more strictly, the hypervolume of the kernel function falling on the 'wrong' side of the decision surface. It is clear that correctly-classified patterns with a long way from the decision surface will make a very small contribution to the loss and will hence have a minimal influence on the placement of the decision surface – this is highly desirable since only data in the vicinity of the decision surface run the risk of misclassification and should arbitrate on the location of the decision surface.
· At distances greater than 3 from the decision surface, the contribution to the loss of an incorrectly-labelled datum saturates at unity, conferring robustness to outliers.
· As , the Gaussian kernel tends to a -function and so the vicinal risk tends to the 0/1 loss. Thus 0/1 loss can be understood as a special case of vicinal risk.
· As , the value of vicinal risk tends to 0.5 since in the limit, ‘half’ the kernel extends either side of the decision surface.
· defines a characteristic ‘scale’ for the learning problem which will vary by dataset.
 Chapelle et al. [41] have directly minimised VRM for linear classifiers, assigning each training datum kernel its own value of proportional to a measure of local density although the constant of proportionality had to be determined by cross-validation. As far as we are aware, the present chapter is the first report of applying VRM to genetic programming classifiers.
 Key to the computational tractability of VRM is the evaluation of the integral in (5.6). Rather than the inconvenient evaluation of an -dimensional integral, we can propagate the Gaussian kernel through into the 1D decision space, the image of . Given a scoring classifier as in (5.1) and a true pattern label of, say, , all points in the set for which the integrand in (5.6) is non-zero map to . (And conversely for when the true label is +1) This situation is illustrated in Fig. 5.2. Hence we can consider this measure as the probability of misclassification of the training pattern. It is the expectation of this probability over the training set that we seek to minimise.

[image: E:\jnPublic\Dropbox\Topics\Thesis\Chapter5 GPVR\text5258.png]
Fig. 5.2. Illustration of the propagation of the Gaussian kernel into decision space. The shaded area is the probability of misclassification of the propagated kernel.

 Ultimately, we desire a loss function which is more predictive of (i.e. better correlated with) test error than 0/1 loss which is a one-to-many mapping. Namely, minimising a given loss function produces a classifier with superior generalisation performance. We have explored this issue in Section 5.4.1 where we present results that demonstrate that vicinal risk does indeed have this key property of superior correlation. In Section 5.4.2 we show that vicinal risk yields lower generalization errors.

[bookmark: _Toc365230217][bookmark: _Toc365230521][bookmark: _Toc365550591]5.3 Experiment Setup
[bookmark: _Toc365230218][bookmark: _Toc365230522][bookmark: _Toc365550592]5.3.1 GP Configuration
 We have used conventional tree-based GP to train discriminant functions where each individual in the population represents a function . In the process of evaluating the fitness of an individual, we run a further search for the threshold using golden section search (GSS) [91] in the 1D decision space to yield the lowest training set error (either 0/1 or vicinal risk). Despite the fast convergence of GSS, there is an assumption that the function is continuous and unimodal, which is not necessarily satisfied here. To make the search for robust, we divide the whole decision space into multiple intervals and perform GSS within each to reduce the risk of the algorithm getting stuck in a local optimum; five intervals appears to give a satisfactory compromise between speed and robustness of the search.
 We have employed a GP-variant of the multiobjective, steady-state Pareto-converging algorithm [63] to compare 0/1 loss and vicinal risk (VR). Loss – either 0/1 or VR – was one objective, and node count, a straightforward measure of tree complexity, was the other. We have used MO-GP here principally to suppress bloat [28] although we should point-out a key relationship between model complexity and bloat control. Although MO methods were originally motivated by the desire to control bloat – see, for example, [28] – MO approaches actually minimise tree size (for some given value of the other objective, typically error), yielding the set of the most parsimonious models. Conventional bloat control has operated by placing an upper bound on tree size (although see [92] for more sophisticated work on bloat control), whereas MOGP seeks to minimise tree size for some given error. The two are profoundly different outcomes. Thus MO methods perform highly effective bloat control almost as a side effect of minimising tree size. This explains why numerous authors have found little correlation between bloat control and generalisation performance since simply placing an upper bound on tree size does not necessarily minimise the complexity of the generated mapping, . The parameters used in the experimental work are listed in Table 5.1.
Table 5.1 GP Parameters Used
	Population size
	100

	No. of tree evaluations
	10,000

	Crossover
	Point crossover [26]

	Mutation
	Point mutation [26] with tree depth = 4

	Node types
	Unary minus

	
	Addition, Subtraction,

	
	Multiplication, Protected division

 To calculate the vicinal risk of a GP tree requires propagation of the Gaussian-distribution in pattern space through into the 1D decision space. For a tree, which implements an arbitrary mapping, we have used Monte Carlo integration with 200 samples generated from each training datum, pre-calculated and stored as an augmented training set. The necessary value of the integral can be well-approximated by counting the fraction of patterns in the augmented training set that are misclassified.

[bookmark: _Toc365230219][bookmark: _Toc365230523][bookmark: _Toc365550593]5.3.2 Datasets
 We have conducted experiments with a range of synthetic and real 2-class datasets. Most have real attributes since the formulation of vicinal risk implicitly makes this assumption although the German and Australian Credit datasets also contain categorical attributes which we have mapped to integers in the order in which they are described in the UCI documentation [93]. All (numerical) attributes have been normalised to unit variance.
 We have used three synthetic datasets: a 2D mixture of Gaussians due to Ripley [94], a second 2D mixture of Gaussians due to Hastie et al. [78], and a 10D Gaussian problem with class-mean vectors of (0, ..., 0) and and equal, unit covariance matrices. The Ripley and Hastie datasets have very non-linear optimal decision boundaries. For these synthetic problems, we randomly drew 100 patterns of each class to produce datasets of 200 data which were randomly partitioned into training and test folds.
 In addition to the three synthetic datasets described above, we also used eight real datasets from UCI repository [93] to compare the performance of 0/1 loss and VRM. Details of the datasets are summarised in Table 5.2. 2-Glass is a 2-class dataset generated from the original 6-class UCI dataset to classify float and non-float glasses. The Pima Indians Diabetes dataset is the version due to Ripley [94] with incomplete/implausible records removed.

Table 5.2 Details of Datasets
	Name
	Dimensionality
	#Patterns

	2-Glass
	9
	163

	BUPA
	6
	345

	Pima Indians Diabetes (PID)
	7
	532

	German Credit
	24
	1000

	Australian Credit
	14
	690

	Statlog Heart
	13
	270

	Wisconsin Breast Cancer (WBC)
	9
	683

	Wisconsin Diagnostic Breast Cancer (WDBC)
	30
	569

	Ripley [94]
	2
	200

	Hastie [78]
	2
	200

	10D-Gaussian (10D-G)
	10
	200

[bookmark: _Toc365230220][bookmark: _Toc365230524][bookmark: _Toc365550594]5.3.3 Statistical Testing Methodology
 We have estimated test error by taking the average over fifteen [95] cross-validation partitions of each dataset. Due to the small numbers of patterns in each UCI dataset, to assess the performance with an independent “large” test set that provides “true” test error is not possible. We hence employ cross-validation techniques that average test errors obtained from each partition, using half the patterns for training, and the rest for independent testing. The averaged test error from cross-validation is considered as the assessment of the performance of the algorithm [96].
 In order to accommodate the stochastic nature of GP the estimate of test error for every fold is the median of 30 runs with randomly initialised population (i.e. a total of runs per dataset). The median value presents the “most likely” results given arbitrary initialisation.
 For each dataset, we have used a single, optimised value of for every smoothing kernel determined by the cross-validation procedure outlined in Section 5.4.1. To facilitate a single value of on each dimension, we normalised each attribute to unit variance over every training fold and then normalised the test fold using the same scaling. (Chapelle et al [41] assigned individually optimised values of which may improve the performance of VRM.) To gauge statistical significance, we have used the Wilcoxon two-sided non-parametric test to assess the results [96]. Unlike using the single-sided sign test as in previous chapters, we have employed a method with higher power but stronger assumptions as well. A fundamental difference between the experiments in this chapter and previous one is that we have very limited, finite number of data for both training and testing. It is not affordable, as previously, to run a large number of repetitions for statistical testing. The fundamental reason is that the statistical tests based on resampling techniques require that the result from each run is independent so that the mean and variance are meaningful. The statistical tests used in previous chapters used 100 independent training sets to guarantee this premise is satisfied and used an extremely large test set (100,000 patterns) to provide a high-accuracy test error. In this situation, using a sign test provides enough power to statistically interpret the results. Using datasets from the UCI repository we can only re-use a finite and small number of patterns as training and testing sets in each different partition, and a correlation between each run always exists. Repeatedly partitioning the dataset into 100 runs does not greatly increase the power of the statistical test but around 10 repetitions is recommended [95]. In other words, we require a more powerful statistical test to cope with a situation lacking data.
 As to the assumption that is made for the two-sided Wilcoxon rank test, it requires a symmetric distribution for differences arising from pairwise competitors. Demsăr [96] has discussed that this is a very weak assumption for tests taken over various datasets since the tests are highly dependent on one another. Despite the fact that the assumption of the Wilcoxon test is not guaranteed to be satisfied, it is still widely used in machine learning due to the weakness of the assumption that is easily satisfied in practice, together with the benefit of high statistical power.
 To extend the applicability of VR, by avoiding time-consuming cross-validation to determine the optimal , we aim to search for an empirically optimal that generally yields superior performance. We have run Friedman’s tests with Holm’s procedure in Section 5.5 to quantitatively identify the difference in performance among 0/1 and VR with varying but pre-fixed . Applying Friedman’s test requires no assumption (or premises) to identify if there is any significant difference among multiple algorithms tested on multiple datasets. We followed Holm’s procedure [96] to further address the difference between each candidate algorithm which in our case yields the significance in the error difference between VRM with a given and 0/1 loss.

[bookmark: _Toc365230221][bookmark: _Toc365230525][bookmark: _Toc365550595]5.4 Results
[bookmark: _Toc365230222][bookmark: _Toc365230526][bookmark: _Toc365550596]5.4.1 Correlation with Test Error
 To explore whether the proposed vicinal risk exhibits superior correlation between training and the test errors than 0/1 loss, we have sampled a large number of randomly-initialised, partially-trained and fully-trained GP trees. We present typical results for the Hastie dataset where we have actually measured test error over an independently drawn set of 10,000 data per class. Results for 0/1 loss are shown in Fig. 5.3, and for vicinal risk in Fig. 5.4 for a range of values of . Ideally, we would like a relation between training error and test error which displays a clear, single minimum such that minimising the loss over the training set invariably leads to the lowest possible test error.
 The correlation plot for 0/1 loss in Fig. 5.3 displays vertical striations reinforcing the fact that this is a one-training-error-to-many-possible-test-errors mapping. The minimum test error does not coincide with minimum training error although this may be due to deficiencies in the sampling; logically, the GP optimization could discover the optimal decision surface by chance which should return the Bayes-optimal test error. The key feature is that this optimal solution could not be identified using 0/1 loss due to the one-to-many nature of 0/1 loss.

Fig. 5.3. Correlation between training and test errors for 0/1 loss. Hastie dataset.

The sequence of plots (Fig. 5.4 a – d) for vicinal risk shows the correlation for different values of . For much of the striated character of the 0/1 loss plot in Fig.5.3 remains implying insufficient smoothing. At the other extreme, Fig. 5.4 (d) does not display a clear minimum. Fig. 5.4 (c) for appears near-optimal with a cloud of points that form a reasonably sharp cusp; training to the minimum value of vicinal risk for this value of would yield a test error quite close to the Bayes error for the Hastie dataset of 0.21. Sequences of plots such as those in Fig. 5.4 (a) to (d) appear to pass though an 'optimum', thereby implying that conventional cross-validation can be used to identify a (near-)optimal value of . In most of what follows we have 'tuned' rather coarsely by only considering .

Fig. 5.4. Correlation between training and test errors for VRM for a range of values of (a-d). Hastie dataset.

 A typical although more detailed plot of mean cross-validation test error against is shown in Fig. 5.5 (a) and (b) for the WDBC dataset, for the individuals with smallest training error (best trained) and individuals with the smallest test error (best-performing) from the Pareto front, respectively. Clear although reassuringly broad minima are apparently allowing an appropriate determination of which justifies the coarse tuning of described above. The horizontal dashed line in Fig. 5.5 is the corresponding cross-validation test error for 0/1 loss. It is clear that VRM produces a significantly lower error values – we consider statistical testing of differences in errors in the next section.

Fig. 5.5 Mean cross-validation test error over fifteen folds vs. for WDBC dataset. The dashed line is the best mean-of-medians test error for 0/1 loss.

5.4.2 Results over Real and Synthetic Datasets
 The average of the median test errors over fifteen folds of cross-validation on each dataset are shown in Tables 5.3 and 5.4 in the case of vicinal risk for optimised values of .
· Table 5.3 shows the results for the individuals with the lowest value of training error in the final population – either 0/1 or vicinal risk.
· Table 5.4 shows the results for the individuals with the lowest errors over each test fold, taken from the whole Pareto front [78, pp. 222-223].
 In Table 5.3 and 5.4, the lowest errors are shown bold font, and the standard deviations of the averages are given after the mean errors. A number of observations can be made from these results.
 First, vicinal risk displays the consistently lowest test errors across all datasets in both tables. From a statistical perspective, a Wilcoxon test returns and , where W+ is the count of datasets where 0/1 loss delivers a larger test error than VRM, and the converse. We obtain a p-value of . There is thus very little evidence to support the null hypothesis that the median test error for 0/1 and VR are identical. (See [97] for more detail.)
 Second, although minimising some loss over a training set might be naively presumed to yield the best test error, from the arguments concerning regularisation and model selection in Section 5.1, it is clear from comparing values of 0/1 loss in Table 5.3 and 5.4, and also VR across these two tables, that simply minimising training loss (Table 5.3) does not deliver the best generalisation. A model selection stage over the test set in each fold (Table 5.4) selects better generalising models. (This procedure is well-established in the conventional machine learning fields – see [78, pp. 222-223].) An identical statistical calculation to that detailed in the paragraph above again yields a p-value of <0.01, yet again very little evidence to support the null hypothesis that the median errors for the two model selection methods (smallest training error vs. best test fold error) are identical. The fact that simply minimising vicinal risk regardless of model complexity (Table 5.3) does not yield the optimal generalisation demonstrates that vicinal risk is not perfectly correlated with test error. From Section 5.4.1, however, it is clear that vicinal risk displays better correlation properties than 0/1 loss. The results here indicate that vicinal risk produces better generalisation results than 0/1 loss.

Table 5.3 Median test errors for individuals with the best training error
	
	0/1 Loss
	Soft Loss

	2-Glass
	
	

	BUPA
	
	

	PID
	
	

	German Credit
	
	

	Australian Credit
	
	

	Statlog Heart
	
	

	WBC
	
	

	WDBC
	
	

	Ripley
	
	

	Hastie
	
	

	10D-G
	
	

Table 5.4 Median test errors for the best individuals on the Pareto front
	
	0/1 Loss
	VRM

	2-Glass
	
	

	BUPA
	
	

	PID
	
	

	German Credit
	
	

	Australian Credit
	
	

	Statlog Heart
	
	

	WBC
	
	

	WDBC
	
	

	Ripley
	
	

	Hastie
	
	

	10D-G
	
	

 Within each dataset, we can also compare the vicinal risk (for optimised) with 0/1 loss using the Wilcoxon test. Results over the fifteen folds are summarised in Table 5.5 (individuals with the lowest training error), and Table 5.6 (individuals with lowest test fold error). is the number of folds for which 0/1 loss produces larger test error than VR, and the count of the converse. As before, we have taken the median test error over 30 independently-initialised runs as representative of the test error over each of the fifteen folds.
 For most datasets, there is little evidence to support the null hypothesis that training with 0/1 loss and VRM produce the same averaged median test error, the only exceptions being the results for 2D-Glass in Table 5.5 and for German Credit in Table 5.6. This could be a manifestation of the probabilistic nature of hypothesis testing – perform enough tests and eventually one will yield an erroneous result due to the non-zero probability of type II error. Nonetheless, taking the results at face value, VRM generally delivers superior results and at very worst, two results which are not statistically separable. In no single case is 0/1 loss superior to VRM. (It should also be noted that 2D-Glass VRM vs. 0/1 loss produced 8 'wins' for VRM and 5 'losses' out of 15 pairwise comparisons.
 From Table 5.5 and 5.6, it is obvious that the optimal value of and the apparent superiority of VRM both vary by dataset which is expected as each problem has different characteristics.

Table 5.5 Wilcoxon's test comparing 0/1 and VRMs within each dataset; individuals with the lowest training sett error
	Dataset
	Optimal
	W-score
	p-value

	2-Glass
	10-2
	
	=0.26

	BUPA
	10-3
	
	<0.02

	PID
	100
	
	<0.02

	German Credit
	10-1
	
	<0.01

	Australian Credit
	100
	
	<0.01

	Statlog Heart
	100
	
	<0.02

	WBC
	10-1
	
	

	WDBC
	10-1
	
	<0.01

	Ripley
	10-1
	
	<0.01

	Hastie
	10-1
	
	<0.01

	10D-G
	100
	W+ = 97.5, W- = 7.5
	<0.05

Table 5.6 Wilcoxon's test comparing 0/1 and VRMs within each dataset; individuals with the lowest test error on the Pareto front
	Dataset
	Optimal
	W-score
	p-value

	2-Glass
	10-2
	
	<0.01

	BUPA
	10-3
	
	<0.01

	PID
	100
	
	<0.01

	German Credit
	10-1
	
	=0.30

	Australian Credit
	100
	
	<0.01

	Statlog Heart
	100
	
	<0.01

	WBC
	10-1
	
	

	WDBC
	10-1
	
	<0.01

	Ripley
	10-1
	
	<0.01

	Hastie
	10-3
	
	<0.01

	10D-G
	10-1
	
	<0.05

[bookmark: _Toc365230223][bookmark: _Toc365230527][bookmark: _Toc365550597]5.5 Extended Applicability
 As shown in the statistical tests, the superior results are obtained from VRM with optimal , which can be obtained by a cross-validation framework. Nevertheless, from the stand point of efficiency, using cross-validation to select incurs a heavy overhead in computational cost. We address if there is any optimal value for generally satisfying various problems.
 Recall from Fig. 5.4 (a – d), the four plots imply that the smallest test errors either from best trained individuals or the best-from-Pareto-front are always around . Further inspection of the optimal in Tables 5.5 and 5.6 suggests that is the most-frequent optimal . To quantitatively study the effectiveness of VR with varying , we perform Friedman’s tests and Holm’s procedure [96] among 0/1 loss and VR with varying to explore the statistical superiority for a given . We present the test error and assigned Friedman’s ranks arising from best-trained individuals and best test error from Pareto-front in Table 5.7 and Table 5.8, respectively. The tables list the test error coupled with assigned ranks in the brackets.

Table 5.7 Test error & Friedman ranks from best trained individual
	
	0/1 loss
	
	
	
	

	2-Glass
	0.29024 (4)
	0.28537 (3)
	0.28374 (1)
	0.28415 (2)
	0.34715 (5)

	BUPA
	0.30019 (3)
	0.29152 (1)
	0.293449 (2)
	0.31773 (4)
	0.38516 (5)

	PID
	0.24812 (5)
	0.24774 (4)
	0.246366 (3)
	0.24048 (2)
	0.23571 (1)

	German Credit
	0.27187 (4)
	0.27100 (3)
	0.269867 (2)
	0.26780 (1)
	0.28013 (5)

	Australian Credit
	0.14261 (4)
	0.14145 (2)
	0.141932 (3)
	0.14271 (5)
	0.13411 (1)

	Statlog Heart
	0.19383 (5)
	0.18938 (4)
	0.18716 (3)
	0.17630 (2)
	0.16469 (1)

	WBC
	0.03392 (3)
	0.03470 (4)
	0.032651 (2)
	0.03109 (1)
	0.03577 (5)

	WDBC
	0.03906 (4)
	0.03579 (3)
	0.032748 (2)
	0.03170 (1)
	0.04444 (5)

	Ripley
	0.08767 (4)
	0.08567 (3)
	0.071333 (2)
	0.06067 (1)
	0.09667 (5)

	Hastie
	0.30200 (4)
	0.29833 (3)
	0.29200 (2)
	0.28600 (1)
	0.32900 (5)

	10D-G
	0.41733 (5)
	0.41500 (4)
	0.40800 (3)
	0.40067 (2)
	0.39067 (1)

	Average Ranks
	4.09091
	3.09091
	2.27273
	2.00000
	3.54545

As in [96], we employ Friedman's test to identify whether there is a significant difference among all algorithms. In our case, is the number of the classifiers, and is the number of datasets, the F-score is distributed according to the -distribution with and degrees of freedom.

Table 5.8 Test error & Friedman ranks from the best individual on PF
	
	0/1 loss
	
	
	
	

	2-Glass
	0.24675(4)
	0.23455 (3)
	0.23211 (1)
	0.23293 (2)
	0.34715 (5)

	BUPA
	0. 26628(3)
	0.25877 (1)
	0.25973 (2)
	0.28170 (4)
	0.38516 (5)

	PID
	0.23208 (5)
	0.22857 (4)
	0.22807 (3)
	0.22130 (1)
	0.23571 (1)

	German Credit
	0.25720 (4)
	0.25593 (2)
	0.25620 (3)
	0.25587 (1)
	0.28013 (5)

	Australian Credit
	0.12976 (4)
	0.12841 (2)
	0.12966 (3)
	0.13343 (5)
	0.13411 (1)

	Statlog Heart
	0.16716 (5)
	0.16100 (4)
	0. 15901(3)
	0.15407 (2)
	0.16469 (1)

	WBC
	0.02885 (4)
	0.02710 (3)
	0.02602 (2)
	0.02573 (1)
	0.03577 (5)

	WDBC
	0.03298 (4)
	0.02702 (3)
	0.02620 (2)
	0.02480 (1)
	0.04444 (5)

	Ripley
	0.07200 (4)
	0.06100 (3)
	0.05367 (2)
	0.05233 (1)
	0.09667 (5)

	Hastie
	0.26767 (4)
	0.24467 (1)
	0.26400 (2)
	0.26433 (3)
	0.32900 (5)

	10D-G
	0.35600 (5)
	0.41500 (4)
	0.34933 (3)
	0.34833 (1.5)
	0.34833 (1.5)

	Average Ranks
	4.18182
	2.72727
	2.36364
	2.04545
	3.68182

Given that , and , the F-score has to be greater than or equal to 3.83 or 2.61 to achieve 99% or 95% confidence level, respectively. We then have

where is the average ranks from the classifier. And

According to the above equations (5.7) and (5.8) and for Table 5.7,
,
.
For Table 5.8,
,
.
 The results that for both tables reject the null hypothesis that the five classifiers show no difference in terms of test error from both best-trained individuals and from the best-test-error individuals from the Pareto front.
 Since Friedman’s test only illustrates the existence of significant differences among five classifiers, we need to further run Holm’s procedure to identify the specific differences between classifiers. From Table 5.7 and 5.8, the fact that 0/1 loss always provides the largest average rank indicates its worst performance among all classifiers. Moreover, we aim to address the differences between 0/1 loss and VR with varying hence we consider 0/1 loss as the base case to be compared with VR with varying through Holm’s procedure. To transform rank differences into a Z-score, we have the standard error

We have examined restricted confidence levels of both and using Holm’s procedure in Tables 5.9 and 5.10 for test errors arising from best-trained and best-PF individuals, respectively.
Table 5.9 Holm’s procedure on results from best trained individuals
	i
	Classifier
	
	
	
	
	Confidence
level

	1
	
	
	0.0009
	0.0025
	0.0125
	>99%

	2
	
	
	0.0035
	0.0034
	0.017
	>95%

	3
	
	
	0.07
	0.005
	0.025
	<95%

	4
	
	
	0.21
	0.01
	0.05
	<95%

Table 5.10 Holm’s procedure on results from best individual on PF
	i
	Classifier
	
	
	
	
	Confidence
level

	1
	
	
	0.00076
	0.0025
	0.0125
	>99%

	2
	
	
	0.0035
	0.0034
	0.017
	>95%

	3
	
	
	0.015
	0.005
	0.025
	>95%

	4
	
	
	0.21
	0.01
	0.05
	<95%

 The results from Holm’s procedure show that provides more than 99% confidence level of superiority over 0/1 loss while provides more than 95% in terms of test error from both best-trained individuals and from best-individual-on-PF. For , the results from best-individual-on-PF achieves 95% confidence level, however, it falls slightly below the 95% confidence level for the results from the best trained. Despite the fact that achieves rank 1 several times as shown in Tables 5.7 and 5.8, it still fails to achieve any significant difference in comparison with 0/1 loss. The reason is that it is also beaten by 0/1 loss in a lot of cases and falls to the last position (rank 5). The unstable performance of yields insignificant results compared to 0/1 loss, where the p-value is around 0.21 in both tables.
 Considering and achieve significant confidence levels of superiority over various datasets, this implies that in a statistical sense, applying vicinal risk with pre-fixed will generally perform better than conventional 0/1 loss without further the need of cross-validation. This property improves the applicability of VR in terms of computational cost by avoiding of cross-validation for choosing .

[bookmark: _Toc365230224][bookmark: _Toc365230528][bookmark: _Toc365550598]5.6 Discussion
 In essence, what we are doing in the VRM approach is to form a ‘better’ approximation of the underlying class-conditioned densities by smoothing-out the set of discrete samples in the training set. In this sense, is another kind of regularizing parameter which needs to be adjusted to obtain best results. Similar although differently motivated approaches have previously been employed with multi-layer perceptron (MLP) neural networks. For example, Holmström and Koistenen [98] obtained improved generalization performance by adding Gaussian-distributed noise to the training set in an ad hoc manner. Karystinos and Pados [99] employed a much more elaborate approach of modelling the distribution of input variables and then drawing a large, similarly-distributed training set which yielded improved performance.
 In fact, the act of placing Gaussian kernel over a dataset is like Parzen window density estimation [47] where the width of the kernel is a smoothing parameter which has to be tuned, typically by cross-validation. Under Parzen window estimation, the probability density function (PDF) of each class is approximated by a (normalized) summation of Gaussian kernels. Assuming the approximation of the class-conditioned PDF for class ‘A’ is given by , the loss associated with misclassifying a pattern drawn from ‘A’ is given by:

Where and the region of integration, is the portion of N-dimensional pattern space to the right of the decision surface in Fig. 5.6.
 A similar argument holds for class ‘B’ which can be approximated by and where the integral defining is taken over the region of space in Fig. 5.6 to the left of the decision boundary. The overall probability of error, is given by a weighted sum of and :

where is the cost of misclassifying a pattern from class i as belonging to class j , which we can, without loss of generality, assume to be unity. and are the prior probabilities of classes ‘A’ and ‘B’, respectively. By selection of an appropriate decision surface (i.e., by classifier training), (5.10) can be minimised to yield the Bayes' optimal error. Since are given by a (normalised) sum of Gaussian kernels, one for each training pattern, it follows that minimising (5.10) is equivalent to minimising the vicinal risk under the assumption of a meaningful discriminant that separates the majority of points in one class such that and the majority of the points in the other class such that . VRM can thus be directly related to minimising the overall prbability of error. The significant advantage of the formulation presented in the work is that the class-conditioned risks (5.9) are evaluated in the 1D decision space rather than in N-dimensional pattern space over, typically, a region of integration defined by a highly non-linear decision surface. (Indeed, in our experience, GP classifiers can frequently generate disjoint decision regions in pattern space.)

[image: E:\jnPublic\Dropbox\Topics\Thesis\Chapter5 GPVR\Fig. 6.png]
Fig. 5.6. Illustration of the domain of integration over pattern space to calculate loss.

 As to why vicinal risk does not exhibit perfect correlation with test error (Section 5.4.1), obviously the (implicitly) assumed forms for are approximations and therefore incur some error. Nonetheless, VRM is able to guide the optimisation to consistently superior regions of the solution space and is thus a demonstrable improvement over 0/1 loss.

[bookmark: _Toc365230225][bookmark: _Toc365230529][bookmark: _Toc365550599]5.7 Conclusion
 In this chapter we have introduced and motivated vicinal risk minimisation (VRM) for training genetic programming classifiers. VRM is formulated by placing a Gaussian kernel on each training datum in pattern space and propagating the resulting errors on the decision into the 1D decision space. Minimising vicinal risk over the training set is shown to be equivalent to approximately minimising the overall probability of error in a Bayesian setting. VRM is shown to be far better correlated with test error than 0/1 loss, that is, minimising vicinal risk leads to consistently improved classifier generalization.
 We present statistical comparisons between 0/1 and VRM which indicate there is very little evidence to support the null hypothesis that the two loss functions perform identically. We further illustrate that is a generally applicable optimal value for choosing the width of Gaussian kernel and yields statistical superiority over 0/1 loss. VRM is shown not to completely remove the need for a model selection stage over the Pareto front of equivalent solutions, although there is good evidence that it guides the evolutionary optimisation to improved solutions.

[bookmark: _Toc365230226][bookmark: _Toc365230530][bookmark: _Toc365550600]Chapter 6 Conclusions

 In this thesis, we have achieved enhancement in model generalisation in multiobjective genetic programming by applying regularisation theory and statistical learning theory for regression and classification problems, respectively. There are three main contributions.

[bookmark: _Toc365230227][bookmark: _Toc365230531][bookmark: _Toc365550601]6.1 Contributions
 First, we have fundamentally removed the discontinuity/singularity and stabilised the evolved GP trees as well as providing differentiability, by introducing replacing the conventional (un)protected division operator by an analytic quotient, by which systematically lower generalisation error is obtained for a range of regression problems. The analytic quotient transformation, being differentiable, satisfies the requirements of applying Tikhonov regularisation.
 Second, we have employed Tikhonov regularisation (a semantic/smoothness measure) in conjunction with node count (a syntactic measure) in MOGP. We extended Pareto dominance between vectors to tuples so as to construct a general complexity measure, grand complexity, that incorporates syntactic and semantic complexities of a GP tree. We have observed typically superior generalisation error from grand complexity with different-order regularisers, which is confirmed by appropriate statistical sign tests. We have further investigated why grand complexity copes with premature convergence and illustrated that by maintaining a high diversity in objective space (in terms of Pareto ranks) during the evolutionary process, grand complexity preserves a high selection pressure yielding better evolved individuals.
 Third, we have applied Vapnik's vicinal risk minimisation (VRM) which effectively stabilises classifiers trained by MOGP. VRM is formulated by placing a Gaussian kernel on each training datum in pattern space and propagating the resulting errors on the 1D decision space. The width of the Gaussian kernel can be straightforwardly chosen by cross-validation. We have shown that VRM has far better correlation to generalisation error than 0/1 loss, hence better generalisation error is systematically obtained. We have also employed appropriate statistical tests to confirm our observation. By examining the optimal variance of the Gaussian kernel by statistical tests over a range of real and synthetic problems, we have identified an empirically optimal region for choosing the variance of a Gaussian kernel. An empirically optimal region is practically significant as to avoid using time-consuming cross-validation to determine the optimal variance. We further demonstrate that VRM approximates a Bayes optimal classifier. Despite that, we have not observed perfect correlation between VRM and generalisation error although there is good evidence from statistical tests that VRM guides the evolutionary optimisation to improved solutions.

[bookmark: _Toc365230228][bookmark: _Toc365230532][bookmark: _Toc365550602]6.2 Future Directions
 Although we have applied solid learning theories to MOGP and obtained statistically superior results in terms of generalisation error, there are further studies which can achieve improvement.

[bookmark: _Toc365230229][bookmark: _Toc365230533][bookmark: _Toc365550603]6.2.1 Analytic Differentiation
 In this thesis, we aim to address the effectiveness of applying learning theories to MOGP to improve model generalisaiton ability. For convenience, we have employed numerical differentiation and Monte-Carlo integration of the transformed Gaussian kernel, although both are computationally costly. To more efficiently apply both theories in the MOGP framework in real applications, we propose potential methods to accelerate these numerical methods.
 To avoid numerical differentiation, we suggest using rewrite rules to generate differentiated trees, by which an order derivative of a tree can be generated with m applications of the rewrite rules. Once the order derivative tree is generated, the derivatives at any point can be analytically computed. As to accuracy, numerical methods propagate overall error () exponentially for every iteration (see Algorithm 1 in Chapter 4). Comparatively, the expansion of derivative trees only leads to (possibly) higher rounding error as there is no truncation error incurred. Further, the final derivative tree can possibly be simplified. (e.g., higher-order derivative polynomial trees or sub-trees yielding terms evaluating to zero) So, a derivative tree provides potential to cope with efficiency and accuracy for computing higher-order derivatives.

[bookmark: _Toc365230230][bookmark: _Toc365230534][bookmark: _Toc365550604]6.2.2 Simplified Distribution Transformation
 To approximate the Gaussian kernel in Vapnik's VRM, we have employed the Monte-Carlo integration and transformed values (by the GP tree) into the 1D decision space to approximate the transformed distribution in 1D space. Since the process of searching for the threshold is in the 1D decision space, a good approximation of the transformed distribution is desired. The unscented transform [100] could be used to estimate the (nonlinearly) transformed distribution in the 1D decision space from the N-dimensional Gaussian distribution in the feature space. This would be much less time-consuming.

[bookmark: _Toc365230231][bookmark: _Toc365230535][bookmark: _Toc365550605]6.2.3 Further Tuning
 In Vapnik's vicinal risk minimisation, the variance of the Gaussian kernel is tunable. Despite the superior results are obtained, we and Chapelle [41] have used different methods to predetermine the variance, followed by a fine-tuning process for a global factor. To achieve further improved generalisation ability, it is possible to fine tune the variance of the Gaussian kernel of each datum in the evolutionary process with a preference dataset. In this way, every Gaussian kernel can be optimised and flexibly fine-tuned, which is expected to have closer-to-perfect correlation between VRM and generalisation error, hence better generalisation ability. The issue for this method is the extra time consumption required for online optimisation of each variance.

[bookmark: _Toc365550606]References

[bookmark: _ENREF_1][1]	G. E. P. Box and N. R. Draper, Empirical Model-building and Response Surfaces. New York: Wiley, 1987.
[bookmark: _ENREF_2][2]	C. M. Bishop, Neural Networks for Pattern Recognition. Oxford: Clarendon Press, 1995.
[bookmark: _ENREF_3][3]	A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems. New York: Wiley, 1977.
[bookmark: _ENREF_4][4]	V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. New York: Springer, 2000.
[bookmark: _ENREF_5][5]	P. Domingos, "The role of Occam's razor in knowledge discovery," Data Mining and Knowledge Discovery, vol. 3, pp. 409-425, 1999.
[bookmark: _ENREF_6][6]	J. Z. Kolter and A. Y. Ng, "Regularization and feature selection in least-squares temporal dierence learning," in Proceedings of the 26th Annual International Conference on Machine Learning (ICML '09), Montreal, Quebec, Canada, 2009, pp. 521-528.
[bookmark: _ENREF_7][7]	G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, pp. 513-529, 2012.
[bookmark: _ENREF_8][8]	S. M. Kakade, S. Shalev-Shwartz, and A. Tewari, "Regularization techniques for learning with matrices," The Journal of Machine Learning Research, vol. 13, pp. 1865-1890, 2012.
[bookmark: _ENREF_9][9]	R. Mazumder, T. Hastie, and R. Tibshirani, "Spectral regularization algorithms for learning large incomplete matrices," The Journal of Machine Learning Research, vol. 11, pp. 2287-2322, 2012.
[bookmark: _ENREF_10][10]	K. Crammer and C. Gentile, "Multiclass classification with bandit feedback using adaptive regularization," Machine Learning, vol. 90, pp. 347-383, 2013.
[bookmark: _ENREF_11][11]	B. Dong and Y. Zhang, "An efﬁcient algorithm for L0 minimization in wavelet frame based image restoration," Journal of Scientific Computing, vol. 54, pp. 350-368, 2012.
[bookmark: _ENREF_12][12]	W. Dong, L. Zhang, G. Shi, and X. Wu, "Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization," IEEE Transactions on Image Processing, vol. 20, pp. 1838-1857, 2011.
[bookmark: _ENREF_13][13]	M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, "Fast image recovery using variable splitting and constrained optimization," IEEE Transactions on Image Processing, vol. 19, pp. 2345-2356, 2010.
[bookmark: _ENREF_14][14]	S. Tong and D. Koller, "Support vector machine active learning with applications to text classiﬁcation," The Journal of Machine Learning Research, vol. 2, pp. 45-66, 2002.
[bookmark: _ENREF_15][15]	Y.-H. Liu and Y.-T. Chen, "Face recognition using total margin-based adaptive fuzzy support vector machines," IEEE Transactions on Neural Networks, vol. 18, pp. 178-192, 2007.
[bookmark: _ENREF_16][16]	H. Qian, Y. Mao, W. Xiang, and Z. Wang, "Recognition of human activities using SVM multi-class classifier," Pattern Recognition Letters, vol. 31, pp. 100-111, 2010.
[bookmark: _ENREF_17][17]	J. R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.
[bookmark: _ENREF_18][18]	Y. Zhang and P. I. Rockett, "A generic multi-dimensional feature extraction method using multiobjective genetic programming," Evolutionary Computation, vol. 17, pp. 89-115, 2009.
[bookmark: _ENREF_19][19]	R. S. Torres, A. X. Falcão, M. A. Gonçalves, J. P. Papa, B. Zhang, W. Fan, and E. A. Fox, "A genetic programming framework for content-based image retrieval," Pattern Recognition, vol. 42, pp. 283-292, 2009.
[bookmark: _ENREF_20][20]	J. A. Santos, C. D. Ferreira, R. d. S. Torres, M. A. Gonçalves, and R. A. C. Lamparelli, "A relevance feedback method based on genetic programming for classification of remote sensing images," Information Sciences, vol. 181, pp. 2671-2684, 2011.
[bookmark: _ENREF_21][21]	W. B. Langdon, "Large scale bioinformatics data mining with parallel genetic programming on graphics processing units," Parallel and Distributed Computational Intelligence, vol. 269, pp. 113-141, 2010.
[bookmark: _ENREF_22][22]	T. Kowaliw, W. Banzhaf, N. Kharma, and S. Harding, "Evolving novel image features using genetic programming-based image transforms," in IEEE Congress on Evolutionary Computation 2009. (CEC '09), Trondheim, 2009, pp. 2502-2507.
[bookmark: _ENREF_23][23]	M. Buckley, Z. Michalewicz, and R. Zurbruegg, "An application of genetic programming to forecasting foreign exchange rates," in Nature-Inspired Informatics for Intelligent Applications and Knowledge Discovery: Implications in Business, Science, and Engineering, R. Chiong, Ed.:IGI Global, 2009, pp. 26-48.
[bookmark: _ENREF_24][24]	J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1978.
[bookmark: _ENREF_25][25]	H. Iba, H. d. Garis, and T. Sato, "Genetic programming using a minimum description length principle," in Advances in Genetic Programming: MIT Press, 1994, pp. 265-284.
[bookmark: _ENREF_26][26]	R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza. (2008). A Field Guide to Genetic Programming. Available: http://www.gp-field-guide.org.uk/
[bookmark: _ENREF_27][27]	S. Luke and L. Panait, "Lexicographic parsimony pressure," in Proceedings of Genetic and Evolutionary Computation Conference (GECCO '02), New York, 2002, pp. 829-836.
[bookmark: _ENREF_28][28]	A. Ekárt and S. Z. Németh, "Selection based on the Pareto nondomination criterion for controlling code growth in genetic programming," Genetic Programming and Evolvable Machines, vol. 2, pp. 61-73, 2001.
[bookmark: _ENREF_29][29]	Y. Zhang and P. I. Rockett, "Evolving optimal feature extraction using multi-objective genetic programming: A methodology and preliminary study on edge detection," in Proceedings of 2005 Conference on Genetic and Evolutionary Computation (GECCO '05), Washington DC, USA, 2005, pp. 795-802.
[bookmark: _ENREF_30][30]	E. J. Vladislavleva, G. F. Smits, and D. den Hertog, "Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming," IEEE Transactions on Evolutionary Computation, vol. 13, pp. 333-349, 2009.
[bookmark: _ENREF_31][31]	L. Vanneschi, M. Castelli, and S. Silva, "Measuring bloat, overfitting and functional complexity in genetic programming," in Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO '10), Portland, Oregon, USA, 2010, pp. 877-884.
[bookmark: _ENREF_32][32]	M. Keijzer, "Improving symbolic regression with interval arithmetic and linear scaling," in Proceedings of the 6th European Conference on Genetic Programming (EuroGP '03), Essex, UK, 2003, pp. 70-82.
[bookmark: _ENREF_33][33]	Z. Chen and S. Haykin, "On different facets of regularization theory," Neural Computation, vol. 14, pp. 2791-2846, 2002.
[bookmark: _ENREF_34][34]	S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2rd ed.: Prentice Hall, 2003.
[bookmark: _ENREF_35][35]	G. Wahba and S. Wold, "A completely automatic French curve: fitting spline functions by cross validation," Communications in Statistics, vol. 4, pp. 1 - 17, 1975.
[bookmark: _ENREF_36][36]	O. Giustolisi and D. A. Savic, "Advances in data-driven analyses and modelling using EPR-MOGA," Journal of Hydroinformatics, vol. 11, pp. 225-236, 2009.
[bookmark: _ENREF_37][37]	V. N. Vapnik, "An overview of statistical learning theory," IEEE Transactions on Neural Networks, vol. 10, pp. 988-999, 1999.
[bookmark: _ENREF_38][38]	V. Cherkassky and F. M. Mulier, Learning from Data: Concepts, Theory, and Methods, 2nd ed.: Wiley-IEEE Press, 2007.
[bookmark: _ENREF_39][39]	H. Byun and S.-W. Lee, "Applications of support vector machines for pattern recognition: A survey," in Proceedings of the First Internatinal Workshop on Pattern Recognition with Support Vector Machines, 2002, pp. 213-236.
[bookmark: _ENREF_40][40]	V. N. Vapnik, Statistical Learning Theory: John Wiley & Sons, Inc., 1998.
[bookmark: _ENREF_41][41]	O. Chapelle, J. Weston, L. Bottou, and V. Vapnik, "Vicinal risk minimisation," in Advances in Neural Information Processing Systems 13 (NIPS 2000), Denver, 2000, pp. 416-422.
[bookmark: _ENREF_42][42]	S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Computation, vol. 4, pp. 1-58, 1992.
[bookmark: _ENREF_43][43]	E. B. Kong and T. G. Dietterich, "Error-correcting output coding corrects bias and variance," in Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, CA, 1995, pp. 313-321.
[bookmark: _ENREF_44][44]	G. James and T. Hastie, "Generalizations of the bias/variance decomposition for prediction error," Department of Statistics, Standford University, Standford, CA, Technical Report, 1997.
[bookmark: _ENREF_45][45]	J. H. Friedman, "On bias, variance, 0/1 -- loss, and the curse of dimensionality," Data Mining and Knowledge Discovery, vol. 1, pp. 55-77, 1997.
[bookmark: _ENREF_46][46]	P. Domingos, "A unified bias-variance decomposition and its applications," in Proceedings of the Seventeenth International Conference on Machine Learning (ICML '00), San Francisco, CA, USA, 2000, pp. 231-238.
[bookmark: _ENREF_47][47]	R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York: John Wiley, 2001.
[bookmark: _ENREF_48][48]	L. Fortnow, "Kolmogorov complexity," presented at the Aspects of Complexity, Minicourses in Algorithmics, Complexity, and Computational Algebra, NZMRI Mathematics Summer Meeting, Kaikoura, New Zealand, 2000.
[bookmark: _ENREF_49][49]	K. Rodriguez-Vazquez, C. M. Fonseca, and P. J. Fleming, "Multi-objective genetic programming for nonlinear system identification," Electronics Letters, vol. 34, pp. 930-931, 1998.
[bookmark: _ENREF_50][50]	R. Rossi, V. Liberali, and A. B. Tettamanzi, "An application of genetic programming to electronic design automation: from frequency specifications to VHDL code," in Soft Computing and Industry, R. Roy, M. Köppen, S. Ovaska, T. Furuhashi, and F. Hoffmann, Eds.: Springer London, 2002, pp. 809-820.
[bookmark: _ENREF_51][51]	C. Dimopoulos, "A genetic programming methodology for the solution of the multiobjective cell-formation problem," in Proceedings of the 8th Joint Conference in Information Systems (JCIS 2005), Salt Lake City, USA, 2005, pp. 1487-1494.
[bookmark: _ENREF_52][52]	A. Agapitos, J. Togelius, and S. M. Lucas, "Multiobjective techniques for the use of state in genetic programming applied to simulated car racing," in IEEE Congress on Evolutionary Computation 2007 (CEC 2007), Singapore, 2007, pp. 1562-1569.
[bookmark: _ENREF_53][53]	S. Gustafson, E. K. Burke, and N. Krasnogor, "On improving genetic programming for symbolic regression," in Proceedings of the 2005 IEEE Congress on Evolutionary Computation., Edinburgh, 2005, pp. 912-919.
[bookmark: _ENREF_54][54]	S. Silva and E. Costa, "Dynamic limits for bloat control in genetic programming and a review of past and current bloat theories," Genetic Programming and Evolvable Machines, vol. 10, pp. 141-179, 2009.
[bookmark: _ENREF_55][55]	P. Wong and M. Zhang, "Effects of program simplification on simple building blocks in genetic programming," in Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 2007, pp. 1570-1577.
[bookmark: _ENREF_56][56]	P. Wong and M. Zhang, "Algebraic simplification of GP programs during evolution," in Proceedings of Genetic and Evolutionary Computation Conference (GECCO '06), Seattle, Washington, USA, 2006, pp. 927-934.
[bookmark: _ENREF_57][57]	D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reeding, Massachusetts: Addison-Wesley, 1989.
[bookmark: _ENREF_58][58]	S. Silva and L. Vanneschi, "Operator equalisation, bloat and overfitting: A study on human oral bioavailability prediction," in Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, Montreal, Québec, Canada, 2009, pp. 1115-1122.
[bookmark: _ENREF_59][59]	M. Castelli, L. Manzoni, S. Silva, and L. Vanneschi, "A comparison of the generalization ability of different genetic programming frameworks," in Evolutionary Computation (CEC), 2010 IEEE Congress on, 2010, pp. 1-8.
[bookmark: _ENREF_60][60]	K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, 2002.
[bookmark: _ENREF_61][61]	S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, "Multiobjective genetic programming: reducing bloat using SPEA2," in Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, Seoul, Korea, 2001, pp. 536-543.
[bookmark: _ENREF_62][62]	E. Zitzler, M. Laumanns, and L. Thiele, "SPEA2: Improving the Strength Pareto Evolutionary Algorithms," Gloriastrasse 35, CH-8092 Zurich, Switzerland, Technical Report 103, 2001.
[bookmark: _ENREF_63][63]	R. Kumar and P. Rockett, "Improved sampling of the Pareto-front in multiobjective genetic optimizations by steady-state evolution: a Pareto converging genetic algorithm," Evolutionary Computation, vol. 10, pp. 283-314, 2002.
[bookmark: _ENREF_64][64]	Y. Zhang and P. Rockett, "A Comparison of three evolutionary strategies for multiobjective genetic programming," Artificial Intelligence Review, vol. 27, pp. 149-163, 2007.
[bookmark: _ENREF_65][65]	W. B. Langdon and B. F. Buxton, "Genetic programming for mining DNA chip data from cancer patients," Genetic Programming and Evolvable Machines, vol. 5, pp. 251-257, 2004.
[bookmark: _ENREF_66][66]	U.-M. O'Reilly and M. Hemberg, "Integrating generative growth and evolutionary computation for form exploration," Genetic Programming and Evolvable Machines, vol. 8, pp. 163-186, 2007.
[bookmark: _ENREF_67][67]	L. V. Kantorovich and G. P. Akilov, Functional Analysis, 2nd ed. Oxford: Pergamon, 1982.
[bookmark: _ENREF_68][68]	N. E. Cotter, "The Stone-Weierestrass Theorem and its application to neural networks," IEEE Transactions on Neural Networks, vol. 1, pp. 290-295, 1990.
[bookmark: _ENREF_69][69]	F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups. Glenview, Ill., London: Scott, Foresman and Co., 1971.
[bookmark: _ENREF_70][70]	C. M. Fonseca and P. J. Fleming, "Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization," in Proceedings of the Fifth International Conference of Genetic Algorithms, San Mateo, CA, 1993, pp. 416-423.
[bookmark: _ENREF_71][71]	C. E. Borges, C. L. Alonso, and J. L. Montaña, "Model selection in genetic programming," presented at the the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010), Portland, Oregon, USA, 2010.
[bookmark: _ENREF_72][72]	M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco, CA: W. H. Freeman, 1979.
[bookmark: _ENREF_73][73]	J. M. Morvan, Generalized Curvatures vol. 2: Springer, 2008.
[bookmark: _ENREF_74][74]	J. Ni, R. H. Drieberg, and P. I. Rockett, "The use of an analytic quotient operator in genetic programming," IEEE Transactions on Evolutionary Computation, vol. 17, pp. 146-152, 2013.
[bookmark: _ENREF_75][75]	G. Wahba, Spline Models for Observational Data vol. 59. Philadephia: SIAM, 1990.
[bookmark: _ENREF_76][76]	"IEEE Standard for Binary Floating-Point Arithmetic," in IEEE Standard 754, 1985.
[bookmark: _ENREF_77][77]	M. Castelli, L. Manzoni, S. Silva, and L. Vanneschi, "A quantitative study of learning and generalization in genetic programming," in Genetic Programming. vol. 6621, S. Silva, J. Foster, M. Nicolau, P. Machado, and M. Giacobini, Eds.: Springer Berlin / Heidelberg, 2011, pp. 25-36.
[bookmark: _ENREF_78][78]	T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Berlin, Germany: Springer-Verlag, 2009.
[bookmark: _ENREF_79][79]	NIST/SEMATECH. (2010). e-Handbook of Statistical Methods [Online]. Available: http://www.itl.nist.gov/div898/handbook/
[bookmark: _ENREF_80][80]	D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers. New York: John Wiley & Sons, 2003.
[bookmark: _ENREF_81][81]	P. Sprent and N. C. Smeeton, Applied Nonparametric Statistical Methods, 4th ed.: Chapman and Hall, 2007.
[bookmark: _ENREF_82][82]	M. Šprogar, "A study of GP's division operators for symbolic regression," in Proceedings of the 7th International Conference on Machine Learning and Applications (ICMLA '08), 2008, pp. 286-291.
[bookmark: _ENREF_83][83]	H. Akaike, "A new look at the statistical model identification," IEEE Transactions on Automatic Control, vol. 19, pp. 716-723, 1974.
[bookmark: _ENREF_84][84]	T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Hoboken, N. J.: John Wiley, 2006.
[bookmark: _ENREF_85][85]	N. Hahm, M. Yang, and B. I. Hong, "Generalized numerical differentiation using the Lagrange interpolation," Journal of Applied Mathematics and Computing, vol. 21, pp. 495-504, 2006.
[bookmark: _ENREF_86][86]	R. L. Burden and J. D. Faires, Numerical Analysis. Pacific Grove, California: Brooks/Cole, 2010.
[bookmark: _ENREF_87][87]	M. A. Malcolm, "On accurate floating-point summation," Communications of the ACM, vol. 14, pp. 731-736, 1971.
[bookmark: _ENREF_88][88]	E. K. Burke, S. Gustafson, and G. Kendall, "Diversity in genetic programming: an analysis of measures and correlation with fitness," IEEE Transactions on Evolutionary Computation, vol. 8, pp. 47-62, 2004.
[bookmark: _ENREF_89][89]	M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, "Combining convergence and diversity in evolutionary multiobjective optimization," Evolutionary Computation, vol. 10, pp. 263-282, 2002.
[bookmark: _ENREF_90][90]	L. B. Said, S. Bechikh, and K. Ghédira, "The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making," IEEE Transactions on Evolutionary Computation, vol. 14, pp. 801-818, 2010.
[bookmark: _ENREF_91][91]	E. Polak, Optimization: Algorithms and Consistent Approximations: Springer-Verlag New York, Inc., 1997.
[bookmark: _ENREF_92][92]	S. Silva, S. Dignum, and L. Vanneschi, "Operator equalisation for bloat free genetic programming and a survey of bloat control methods," Genetic Programming and Evolvable Machines, vol. 10, pp. 283-314, 2012.
[bookmark: _ENREF_93][93]	A. Frank and A. Asuncion. UCI Machine Learning Repository [Online]. Available: http://archive.ics.uci.edu/ml
[bookmark: _ENREF_94][94]	B. D. Ripley, "Neural networks and related methods for classification," Journal of the Royal Statistical Society. Series B (Methodological), vol. 56, pp. 409-456, 1994.
[bookmark: _ENREF_95][95]	C. Nadeau and Y. Bengio, "Inference for the generalization error," Machine Learning, vol. 52, pp. 239-281, 2003.
[bookmark: _ENREF_96][96]	J. Demsăr, "Statistical comparisons of classifiers over multiple data sets," Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006.
[bookmark: _ENREF_97][97]	J. Cohen, "The earch is round (p < .05)," American Psychologist, vol. 49, pp. 997-1003, 1994.
[bookmark: _ENREF_98][98]	L. Holmström and P. Koistinen, "Using additive noise in back-propagation training," IEEE Transactions on Neural Networks, vol. 3, pp. 24-38, 1992.
[bookmark: _ENREF_99][99]	G. N. Karystinos and D. A. Pados, "On overfitting, generalisation, and randomly expanded training sets," IEEE Transactions on Neural Networks, vol. 11, pp. 1050-1057, 2000.
[bookmark: _ENREF_100][100]	S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, "A new method for the nonlinear transformation of means and covariances in filters and estimators," IEEE Transactions on Automatic Control, vol. 45, pp. 477-482, 2000.

- 6 -

image2.emf

image3.png
Root

image4.png

image5.png

image6.emf
(a)

0.0 .5 1.0 1.5 2.0 2.5 3.0 3.5

-1.2

-1.0

-.8

-.6

-.4 -.2 0.0 .2 .4

oleObject1.bin

image7.emf
(b)

-1.5 -1.0 -.5 0.0 .5 1.0 1.5

-4

-3

-2

-1

0 1 2 3 4

oleObject2.bin

image8.emf
(c)

0 2 4 6 8 10 12

-2

-1

0

1

2 3 4 5 6

oleObject3.bin

image9.emf
-8

-6

-4

-2

0

2

4

6

8

10

12

1

2

3

4

1

2

3

4

(d)

-8

-6

-4

-2

0

2

4

6

8

10

12

1

2

3

4

1

2

3

4

(d)

oleObject4.bin

image10.emf
-30

-25

-20

-15

-10

-5

0

5

10

1

2

3

4

1

2

3

4

(e)

-30

-25

-20

-15

-10

-5

0

5

10

1

2

3

4

1

2

3

4

(e)

oleObject5.bin

image11.emf
.18

.20

.22

.24

.26

.28

.30

.32

1

2

3

4

1

2

3

4

(f)

.18

.20

.22

.24

.26

.28

.30

.32

1

2

3

4

1

2

3

4

(f)

oleObject6.bin

image12.emf
Expected Value

-3 -2 -1 0 1 2 3

Observed Value-1

0

1

23456

oleObject7.bin

image13.emf
Pairwised difference

-.02 0.00 .02 .04 .06 .08 .10 .12 .14 .16

Count 0

10

20 30 40

oleObject8.bin

image14.png
0.0 5 1.0

® Training Datum
—— Evolved GP model

15
(@)

2.0

image15.png
0.0

0.0 5 1.0

® Training Datum
—— Evolved GP model

15 20 25 30
(b)

35

image16.emf
(a)

Test Error

10-3 100 103 106 109 1012 1015 1018 1021

Percentage(%) 0

20

40

60 80 100 120

oleObject9.bin

image17.emf
(b)

Test Error

10-4 10-2 100 102 104 106 108 1010 1012 1014 1016

Percentage(%) 0

20

40

60 80 100 120

oleObject10.bin

image18.emf
(c)

Test Error

10-3 100 103 106 109 1012 1015 1018 1021 1024

Percentage(%) 0

20

40 60 80 100 120

oleObject11.bin

image19.emf
(d)

Test Error

10-2 100 102 104 106 108 1010 1012 1014 1016

Percentage(%) 0

20

40

60 80 100 120

oleObject12.bin

image20.emf
(e)

Test Error

10-2 100 102 104 106 108 1010

Percentage(%) 0

20

40 60 80 100 120

oleObject13.bin

image21.emf
(f)

Test Error

10-2 100 102 104 106 108 1010 1012

Percentage(%) 0

20

40

60 80 100 120

oleObject14.bin

image22.emf
(a)

Test Error

10-3 100 103 106 109 10121015101810211024

Percentage(%) 0

20

40 60 80 100 120

oleObject15.bin

image23.emf
(b) Test Error

10-410-2 100 102 104 106 10810101012101410161018

Percentage(%) 0

20

40 60 80 100 120

oleObject16.bin

image24.emf
(c)

Test Error

10-3 100 103 106 109 101210151018102110241027

Percentage(%) 0

20

40 60 80 100 120

oleObject17.bin

image25.emf
(d)

Test Error

100 102 104 106 108 1010 1012 1014 1016 1018

Percentage(%) 0

20

40 60 80 100 120

oleObject18.bin

image26.emf
(e)

Test Error

10-1100101102103104 105106107 10810910101011

Percentage(%) 0

20

40 60 80 100 120

oleObject19.bin

image27.emf
(f) Test Error

10-3 10-2 10-1 100 101 102 103 104 105 106 107

Percentage(%) 0

20

40 60 80 100 120

oleObject20.bin

image28.emf
Best Test MSE

.0001 .001 .01 .1 1 10 100 1000 10000

Percentage (%) 0

20

40

60 80 100 120 a=10

4

PD a=10-8 a=1

oleObject21.bin

image29.emf
(a)

-1.5 -1.0 -.5 0.0 .5 1.0 1.5

-2

-1

0

1 2 3

oleObject22.bin

image30.emf
(b)

0.0 .5 1.0 1.5 2.0 2.5 3.0 3.5

-1.2

-1.0

-.8

-.6

-.4 -.2 0.0 .2 .4

oleObject23.bin

image31.emf
(c)

0.0 .2 .4 .6 .8 1.0 1.2

0

2

4

6

8 10 12 14 16

oleObject24.bin

image32.emf
(d)

0 2 4 6 8 10 12

-8

-6

-4

-2

0 2 4 6 8

oleObject25.bin

image33.emf
(e)

-1.5 -1.0 -.5 0.0 .5 1.0 1.5

-4

-3

-2

-1

0 1 2 3 4

oleObject26.bin

image34.emf
(f)

0 2 4 6 8 10 12

-2

-1

0

1

2 3 4 5 6

oleObject27.bin

image35.emf
Node 2D-Regularizer 3D Grand Complexity

Fractions0.0

.2

.4

.6 .8 1.0 1.2 Category i Category ii Category iii

oleObject28.bin

image36.emf
Node 2D-Regularizer 3D Grand Complexity

Fractions0.0

.2

.4

.6 .8 1.0 1.2 Category i Category ii Category iii

oleObject29.bin

image37.png
Max Ranks

80

60

D
o

20

-

— 3D
Node
—— Grand
Complexity

0

2000

4000 6000
Evaluations

8000

10000

image38.png
Max Rank

100

80

(&)
o

40

20

ot

—— Unquantised
— Q=1
— Q=10

2000

4000

6000

8000 10000
Evaluations

image39.emf

image40.png

image41.png
Class '+1'

image42.emf
Training Error

.20 .25 .30 .35 .40 .45 .50

Test Error .20

.25

.30

.35

.40 .45 .50 .55 .60

oleObject30.bin

image43.emf
(a)





 = 1 x 10

-4

Training Error

.20 .25 .30 .35 .40 .45 .50

Test Error.20

.25

.30

.35

.40 .45 .50 .55 .60

oleObject31.bin

image44.emf
(b)





 = 1 x 10

-2

Training Error

.20 .25 .30 .35 .40 .45 .50

Test Error.20

.25

.30

.35

.40 .45 .50 .55 .60

oleObject32.bin

image45.emf
(C)





 = 1 x 10

-1

Training Error

.20 .25 .30 .35 .40 .45 .50

Test Error.20

.25

.30

.35

.40 .45 .50 .55 .60

oleObject33.bin

image46.emf
(d)





 = 1

Training Error

.20 .25 .30 .35 .40 .45 .50

Test Error.20

.25

.30

.35

.40 .45 .50 .55 .60

oleObject34.bin

image47.emf
(a) From best trained individual

Variance

.001 .01 .1 1

Test error.030

.032

.034

.036

.038 .040 .042 .044 .046

image1.emf

oleObject35.bin

image48.emf
(b) From Best individual on Pareto front

Variance

.001 .01 .1 1

Test error .024

.026

.028

.030 .032 .034 .036

oleObject36.bin

image49.png
Decision surface Predict Class 'B'

